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Abstract

Discontinuity surveys are based on collecting rock data from fieldwork and are an essential
component of rock-mass quality estimation in rock engineering. Strength, deformability and
permeability characteristics of a rock-mass are strongly influenced by its discontinuities.
Scanline surveys are a reliably technique in which a line is drawn over an outcropped rock
surface and all the discontinuities intersecting it are measured and described. The discontinuity
geometry for a rock-mass is characterised by the number of discontinuity sets, mean density and
the distributions for location, orientation, size and spacing/fracture intercept. Rock site
investigation deals with several key elements that need to be addressed, namely the information
required to characterise the rock system and the intrinsic uncertainty associated with this
information. This way, quantifying the information content of the on-site measurements and
creation a database is vital to be used for decision making processes and risk assessment on rock
engineering design projects. In addition, a clear geology framework plays a key-role to support
the investigation of all rock engineering projects. Nevertheless, the intrinsic variability of
geological, petrophysical and geotechnical properties must be quantified for reliability-based
design and to decrease the geological uncertainty. All geologists and engineers’ practitioners
must have the aim to contribute to the correct study of the ground behaviour of soil and rock, their
applications in sustainable design with nature and environment and to satisfy the society’s needs.
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61.1 Introduction

Barton (2012) argues the “Discontinuous behaviour pro-
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vides rich experiences for those who value reality, even
when reality has to be simplified by some empiricism”. This
impressive quotation describes the general framework of the
complexity of the heterogeneous rock-mass behaviour. The
lessons learned on several geoengineering projects stress the
importance of the accuracy of the basic geological and
geotechnical data information related to the rock masses
characterization and assessment.

Linear or circular sampling or sampling within windows
along a scanline are accurate approaches to the systematic
record of discontinuities (joints, fractures, faults, veins, etc.).
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In several geologic and geotechnical frameworks this is,
moreover, the easiest and fastest way to collect discontinu-
ities data (e.g., Priest and Hudson 1981; Hudson and Priest
1983; Priest 1993; Mauldon et al. 2001; Rohrbaugh et al.
2002; Priest 2004; Peacock 2006; Chaminé et al. 2010,
2013; Pinheiro et al. 2014). Scanline surveys will provide an
amount of reliable information concerning structural geol-
ogy, petrophysical and geotechnical features of rock masses,
either in boreholes or exposed rock surfaces (Fig. 61.1).
However, some procedures must be fulfilled to avoid sys-
tematic or random errors (Terzaghi 1965; ISRM 1981;
CFCFF 1996; Hudson and Cosgrove 1997). Collecting data
for the basic geotechnical description of rock masses is of
considerable importance for the prediction of scale effects in
rock mechanical behaviour (Cunha and Muralha 1990).

The characteristics of discontinuities can be estimated
using scanline sampling techniques (Fig. 61.2), but the
accuracy is subject to bias (e.g., Priest and Hudson 1981;
Priest 1993; Park and West 2002; Rohrbaugh et al. 2002).
According to Mauldon et al. (2001) the circular sampling
tools and estimators (such as fracture trace intensity, trace
density and mean trace length) eliminate most sampling
biases, due to orientation and also correct many errors owing
to censoring and length bias. Conversely, Wu et al. (2011)
argue the predictions based on the rectangular window
methods were found to be more accurate than that based on
the circular window methods.

In this work, we highlight the importance of an integrative
approach for geoengineering purposes of field surveys per-
formed with scanline techniques on free rock-mass faces in

Fig. 61.1 The main scientific
and technical fields of
applications of scanline sampling
technique surveys related to
engineering geosciences, rock
engineering and geotechnical
engineering
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diverse contexts, such as quarrying, underground excavations
and hard-rock hydrogeotechnical studies. All studies should
be developed in a GIS platform by using the following tools:
field mapping, morphotectonic analysis, structural geology,
rock geotechnics and hydrogeomechanics. This approach led
us to a better understanding of the relevance of rock masses
heterogeneity for geoengineering purposes at different scales
and to reduce the intrinsic variability and uncertainty in
collecting geologic and geotechnical data.

61.2 Rock Scanline Surveys: A Reliable Tool
to Unbiased Sampling

Discontinuity features play a major role in controlling the
mechanical behaviour of a rock-mass (Priest and Hudson
1981). Discontinuities are generally characterised in terms of
the following properties (e.g., ISRM 1981; Priest 1993,
2004): orientation, frequency or spacing, size and shape,
aperture, conductivity, surface geometry, strength and stiff-
ness. Describing only the discontinuities which seem to be
important can be considered as a subjective method of frac-
turing surveying. From a statistical perspective, it is important
to set up a rigorous unbiased sampling regime at the rock face
such as (Priest 2004): sampling all traces of discontinuities
within a defined area (window sampling), all that intersect a
circle (circle sampling) or all that intersect a straight line
(scanline sampling). ISRM (1981) stated that a scanline
survey is an objective method for recording and describing
rock fracturing on a rock-mass exposure (Fig. 61.3).
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Fig. 61.2 Rock scanline surveys
framework to rock design (slope,
tunnel, quarry and cavern): a
reliable tool to reduce the intrinsic
geologic variability and
uncertainty

Fig. 61.3 The description/
classification/behaviour versus
assessment/design/modelling of
heterogeneous and fractured rock
masses
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61.3 Concluding Remarks

A clear geology and structural geology framework plays a
key-role to support the investigation of all rock engineering
projects (Hudson and Cosgrove 1997; Hoek 2007; De Freitas
2009; Chaminé et al. 2013; Shipley et al. 2013). The hetero-
geneity of the geological properties of rock masses is very
significant in geoengineering issues (Hudson and Cosgrove
1997). Particularly, the assessment of in situ block size plays a
key-role in rock engineering design projects, such as mining,
quarrying and highway cutting operations (e.g., Lu and La-
tham 1999; Haneberg 2009; Chaminé et al. 2013). In addition,
the evaluation based on engineering geosciences, geohy-
draulic and geotechnical features of rock masses involve
combining parameters to derive quantitative geomechanical
classifications for geoengineering design (e.g., Bieniawski
1989; Gates 1997; Smith 2004; Barton 2006, 2012; Hoek
et al. 2013). In short, good rock engineering must be based in
good engineering geosciences, and the big issue raised by
Pells (2008), “what happened to the mechanics in rock
mechanics and the geology in engineering geology”, is still
valid. However, the intrinsic variability of geological, petro-
physical and geotechnical properties must be quantified for
reliability-based design and to decrease the uncertainty (e.g.,
Mazzoccola et al. 1997; Hoek 1999; Keaton 2013). In addi-
tion, Mazzoccola et al. (1997) stated an important issue: “Is
there enough information available for design?”.
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