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Preface

This volume contains the proceedings of the International Meeting on Computational
Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013), which was in
its tenth edition this year. While many past editions were organized in Italy, from last
year when the conference took place at the Methodist Research Institute, Houston
(USA), the conference started an internationalization process. It coincided with a
further enlargement of the spectrum of the scientific domains covered.

Indeed, the main scope of the CIBB meeting series is to provide a forum open to
researchers from different disciplines to present and discuss problems concerning
computational techniques in bioinformatics, systems biology, and medical and health
informatics with a particular focus on neural networks, machine learning, fuzzy logic,
and evolutionary computation methods.

This year CIBB was co-located and followed the PRIB (Pattern Recognition In
Bioinformatics) conference and there were many authors who contributed to both
conferences. As organizers of CIBB we would like to thank all the contributors and
organizers of PRIB. There was also a common day between the two conferences. We
hope that this was an occasion for new scientific collaborations and exchanges. Many
thanks also go to the invited speakers: Sylvain Sené (Aix-Marseille Université,
France) Anne Siegel (IRISA CNRS and Inria Rennes, France) and Ernst Wit (Uni-
versity of Groningen, The Netherlands) for their excellent talks.

This year 33 papers were selected for presentation at the conference, and each
paper received two reports on average. A further reviewing process took place for the
19 papers that were selected to appear in this volume. The authors are spread over
more than ten different countries: Algeria (3), Canada (2), France (18), Islamic
Republic of Iran (4), Italy (55), The Netherlands (1), Norway (1), Romania (6),
Taiwan (2), Tunisia (2), UK (6), and USA (7).

The editors would like to thank all the Program Committee members and the
external reviewers both of the conference and post-conference version of the papers
for their valuable work. We are also indebted to the chairs of the very interesting and
successful special sessions (‘‘Knowledge-Based Medicine’’ and ‘‘Data Integration and
Analysis in Omic-Science’’), which attracted even more contributions and attention.

A big thanks also to the munificent sponsors, and in particular to Nice Sophia
Antipolis University, which made this event possible. And last but not least, the
editors would also like to thank all the authors for the high quality of the papers they
contributed and warmly invite them to submit their work to the next edition that will
take place in Cambridge.

March 2013 Enrico Formenti
Roberto Tagliaferri

Ernst Wit
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Dynamic Gaussian Graphical Models
for Modelling Genomic Networks

Antonio Abbruzzo1, Clelia Di Serio2, and Ernst Wit3(B)

1 University of Palermo, Palermo, Italy
A.Abbruzzo@unipa.it

2 Universita Vita-Salute San Raffaele, Milano, Italy
3 Johann Bernoulli Institute, University of Groningen, Groningen, The Netherlands

e.c.wit@rug.nl

Abstract. After sequencing the entire DNA for various organisms, the
challenge has become understanding the functional interrelatedness of
the genome. Only by understanding the pathways for various complex
diseases can we begin to make sense of any type of treatment. Unfortu-
nately, decyphering the genomic network structure is an enormous task.
Even with a small number of genes the number of possible networks is
very large. This problem becomes even more difficult, when we consider
dynamical networks. We consider the problem of estimating a sparse
dynamic Gaussian graphical model with L1 penalized maximum likeli-
hood of structured precision matrix. The structure can consist of specific
time dynamics, known presence or absence of links in the graphical model
or equality constraints on the parameters. The model is defined on the
basis of partial correlations, which results in a specific class precision
matrices. A priori L1 penalized maximum likelihood estimation in this
class is extremely difficult, because of the above mentioned constraints,
the computational complexity of the L1 constraint on the side of the
usual positive-definite constraint. The implementation is non-trivial, but
we show that the computation can be done effectively by taking advan-
tage of an efficient maximum determinant algorithm developed in convex
optimization.

1 Introduction

Networks are important models to address specific questions in genomics.
Dynamic gene-regulatory networks are complex objects since the number of
potential components involved in the system is very large. For example, one
important direction in systems biology is to discover gene regulatory networks
from microarray data based on the observed mRNA levels of thousands of genes
under various conditions. We shall show that one solution to such problem is the
use of penalized Gaussian graphical models, which have been extensively used
to estimate sparse static graphs.

Proteins are essential parts of the cell that determine the cell’s structure and
execute nearly all its functions. The production of proteins is carried out by the
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 3–12, 2014.
DOI: 10.1007/978-3-319-09042-9 1



4 A. Abbruzzo et al.

ribosomes, but the information needed for their production is encoded in genes
which are the segments of DNA. DNA contains valuable genetic information,
that must be preserved. Transient RNA is used to carry the message from DNA
to ribosomes. In all living cells, the flow of genetic information is thought to go
in this way

DNA → RNA → PROTEIN.

This fundamental principle in biology is called the central dogma of molecular
biology. The step from DNA to RNA consists of copying the information from
genes to RNA and it is called transcription. The step from RNA to protein
consists of decoding the information from RNA by ribosomes and it is called
translation. Together these two processes are known as gene expression.

The process of transcription is carried out by special enzymes called RNA
polymerases (RNAp). RNA polymerase binds to the promoter and then opens
up the double helix of the DNA sequence immediately in front of it and slides
down the gene producing the RNA molecule. The promoter is a region of DNA
that facilitates the transaction of a particular gene and contains a sequence
of nucleotides indicating the starting point for RNA synthesis. Chain elongation
continues until enzyme encounters a second signal in DNA, the terminator, where
RNAp halts and releases both the DNA chain and the newly made RNA chain.
RNA which encodes information for production of a certain protein is called
messenger RNA(mRNA).

However, to do all of this RNAp needs help from special proteins called
transcription factors. Transcription factors bind at the promoter and form a
transcription initiation complex. They position the RNAp correctly on the pro-
moter and aid in pulling apart the two strands of DNA to allow transcription
to begin and to allow RNAp to leave promoter as transcription begins. After
RNAp is released from the complex it starts making RNA. Once transcription
has begun, most of the transcription factors are released from the DNA so that
they are available to initiate another round of transcription with a new RNAp
molecule. The synthesis of the next RNA usually starts before the first RNA is
completed. There maybe several polymerases moving along a single stretch of
DNA and RNAs.

The main goal of gene transcription is to produce mRNA which will be
translated by ribosomes to make proteins. Each mRNA can be translated several
times by ribosome in order to make proteins. This is done until mRNA reaches
the end of its life-span. The network of gene regulation can be very complex,
where one regulatory protein controls genes that produce other regulators that
in turn control other genes. Gene regulatory network models can be represented
as directed or undirected graphs, where nodes are the elements, such as DNA,
RNA, proteins etc. The directed or undirected edges from one node to another
represent the corresponding interaction, for example, activation, repression or
translation. Being able to create gene regulatory networks from experimental
data and to use them to think about their dynamics is the aim of this paper.
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2 Graphical Models

An undirected graphical model is also called a Markov random field. It is defined
as a pair (G,P) that specifies a probability density function f for their joint
distribution P in the form

(F ) f(y1, . . . , yp) =
1
z

∏

c∈C

ψc(yc), (1)

where C is a set of cliques, i.e. complete subsets of V that are maximal, in
G, ψc(yc) is a potential function, which is a positive function of the variables
{yi}i∈C , and

z =
∑

y

∏

c∈C

ψc(yc)

is a normalization factor. If the factorization (F) is possible, then it implies the
global Markov property. A probability distribution P is said to obey the global
Markov property, relative to G, if for any triple (A,B,S) of disjoint subsets of V
such that S separates A from B in G

(G) YA ⊥ YB |YS .

The global Markov property in turn implies the local and pairwise Markov prop-
erties. A probability distribution function is said to obey:

(L) the local Markov property, relative to G, if for any vertex i ∈ V

Yi ⊥ YV \{cl(i)}|Ybd(i),

(P) the pairwise Markov property, relative to G, if for any pair (i, j) of non-
adjacent vertices

Yi ⊥ Yj |YV \{i,j},

The boundary of i is the set of nodes such that bd(i) = pa(i) ∪ ne(i), and
the closure of i is the set of nodes such that cl(i) = i ∪ bd(i). The expression
V \{i, j} indicates the set of nodes V except nodes i and j. The expression Yi ⊥
Yj |YV \{i,j} means that the probability distribution function can be factorized
as follows:

fYi,Yj |YV \{i,j}(yi, yj |yV \{i,j}) = fYi|YV \{i,j}(yi|yV \{i,j})fYj |yV \{i,j}(yj |yV \{i,j}).

It can be shown that (F ) ⇒ (G) ⇒ (L) ⇒ (P ) [1]. Moreover, Hammersley and
Clifford’s theorem states that:

Theorem 1 (Hammersley and Clifford). A probability distribution P with
positive and continuous density f with respect to a product measure μ satisfies
the pairwise Markov property with respect to an undirected graph G if and only
if it factorizes according to G.
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This theorem gives the necessary and sufficient condition for (P ) ⇔ (F ), and
under this condition we have that all Markov properties are equivalent:

(F ) ⇔ (G) ⇔ (L) ⇔ (P ).

Undirected graphical models are useful when random variables can be
analysed symmetrically. Specific undirected graphical models are distinguished
by the choice of the undirected graph G and the potential functions ψc.

A multivariate Gaussian graphical model (GGM) for an undirected graph
G is defined in terms of its Markov properties. Variables, i.e. nodes in the
graph, are independent conditional on a separating set. In other words, let
X = (X1,X2, . . . , Xp)T be a multivariate Gaussian vector, then an undirected
edge is drawn between two nodes i and j, if and only if the corresponding vari-
ables Xi and Xj are conditionally dependent given the remaining variables. Let
G = (X,E) be an undirected graph with vertex set X = {X1, ...,Xp} and edge
set E = {eij}, where eij = 1 or 0 according to whether vertices i and j are
adjacent in G or not. The GGM model N(G) consists of all p-variate normal
distributions Np(μ,Σ), for arbitrary mean vectors μ and covariance matrices Σ,
assumed nonsingular, for which the concentration or precision matrix Θ = Σ−1

satisfies the linear restriction eij = 0 ⇔ θij = 0.
The model N(G) has also been called a covariance selection model [2] and a

concentration graph model [3]. The reader is referred to [4, Chap. 6] for statistical
properties of these models, including methods for parameter estimation, model
testing and model selection. The model N(G) also can be defined in terms of
pairwise conditional independence. If X = (X1, . . . , Xp)T ∼ Np(μ,Σ), then

θij = 0 ⇔ Xj ⊥ Xi|X{−(i,j)} ⇔ ρij = 0

where ρij = −θij/
√

θijθij denotes the partial correlation between Xi and Xj ,
i.e. the correlation between Xi and Xj given X{−(i,j)}. This suggests that the
determination of the graph G, can be based on the set of sample partial cor-
relations ρ̂ij arising from independent and identically distributed observations
X ∼ Np(μ,Σ), where n >> p is assumed in order to guarantee positive definite-
ness of the sample covariance matrix. In other words, given a random sample
X we wish to estimate the concentration matrix Θ. Of particular interest is the
identification of zero entries in the concentration matrix Θ = {θij}, since a zero
entry θij = 0 indicates the conditional independence between the two variables
Xi and Xj given all other variables.

Graphical models are probability models for multivariate random variables
whose independence structure is characterized by a conditional independence
graph. The standard theory of estimating GGMs can be exploited only when the
number of measurements n is much higher than the number of variables p. This
ensures that the sample covariance matrix is positive definite with probability
one. Instead, in most application, such as microarray gene expression data sets,
we have to cope with the opposite situation (n 	 p). Thus, the growing interest
in “small n, large p” problems, requires an alternative approach. In problems
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where the number of nodes is large, but the number of links are relatively few
per node, sparse inference of Θ in the framework of a GGM is useful.

Estimating the dimensionality of the GGM model is complicated issue. The
standard approach is greedy stepwise forward-selection or backward-deletion,
and parameter estimation is based on the selected model. In each step the edge
selection or deletion is typically done through hypothesis testing at some level α.
It has long been recognized that this procedure does not correctly take account
of the multiple comparisons involved [5]. Another drawback of the common step-
wise procedure is its computational complexity. To remedy these problems, [6]
proposed a method that produces conservative simultaneous 1 − α confidence
intervals, and use these confidence intervals to do model selection in a single
step. The method is based on asymptotic considerations. Reference [7] proposed
a computationally attractive method for covariance selection that can be used for
very large Gaussian graphs. They perform neighbourhood selection for each node
in the graph and combine the results to learn the structure of a Gaussian con-
centration graph model. They showed that their method is consistent for sparse
high-dimensional graphs. However, in all of the above mentioned methods, model
selection and parameter estimation are done separately. The parameters in the
concentration matrix are typically estimated based on the model selected. As
demonstrated by [8], the discrete nature of such procedures often leads to insta-
bility of the estimator: small changes in the data may result in very different
estimates.

Here, we propose a sparse dynamic Gaussian graphical model with L1 penalty
of structured correlation matrix that does model selection and parameter esti-
mation simultaneously in the Gaussian concentration graph model. We employ
an L1 penalty on the off-diagonal elements of the correlation matrix. This is
similar to the idea of the glasso [9]. The L1 penalty encourages sparsity and at
the same time gives shrinkage estimates. In addition, we can model arbitrary,
locally additive models for the precision matrix, while explicitly ensuring that
the estimator of the concentration matrix is positive define.

3 Dynamic Gaussian Graphical Model for Networks

The graph structure of the Gaussian graphical model describes the conditional
independence structure between the variables. The two main applications of this
conditional independence are either (i) modular dependency structures and (ii)
Markovian dependency structures. The former are used in expert systems or flow-
chart descriptions of causal structures, whereas the latter is typical for spatio-
temporal forms of (in)dependence. A dynamic gaussian graphical model for a
network contains both types of conditional dependence: a Markovian dependence
structure would capture that temporal relatedness of nearby observations, which
is broken by one (or more) conditioning, intervening observations. The network
itself has an internal relatedness due to the modular structure of the network:
the results of the observed outcomes at the nodes flow through the links to the
other nodes, thereby affecting neighbouring vertices. Due to its computational
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tractability is the multivariate normal distribution uniquely suited as an initial
model for a dynamic graphical model. If we measure a univariate outcome at
p nodes across T discrete time-points, then initially we describe the data X as
coming from a multivariate normal distribution:

X ∼ NpT (μ,Θ−1).

In many practical example, it may be the case that only a single replicate X
has been observed. Estimation will only be possible if we are willing to impose
restrictions on the parameters. There are two types of restrictions that we will
consider: sparsity restrictions and model definitions.

3.1 Sparsity Restrictions of the Precision Matrix

The arrival of the high-throughput era in genomics has seen an explosion of
data gathering: for a fraction of the amount of time and money it used to cost to
monitor the level of a particular gene or protein, now thousands are monitored.
Nevertheless, the underlying physical reality will not have changed as a result
of our data-gathering. The particular protein that used to bind to the promotor
region of the particular gene will still do so: the fact that we monitor thousands
of genomic variables has not made the genomic reality itself any more difficult.
Obviously, this reality is certainly highly complex, but at the same time it is also
highly structured as DNA sequences are highly specific for binding to particular
proteins. Therefore, the genomic network can be thought to be highly sparse set
of relations between thousands of genomic players, such as DNA, mRNA and
proteins. Obviously, we don’t know exactly which links should be assumed to be
zero, but we want to create a model that encourages zeroes between the vertices.

Furthermore, the fact that we are considering dynamic models with observa-
tions of the genomic system spaced in time, it is probably sufficient to assume –
especially given the usual spacing of genomic observations – the existence of first
or at most second order Markov dependence. This means that large part of the
precision matrix can be filled with zeroes a priori.

3.2 Model Restrictions of the Precision Matrix

Given the sparsity of the data, it is essential to define models that are finely
tuned to be able to estimate interesting quantities of interest. For example, we
have seen in the previous paragraph that Markov assumptions are sensible ways
to reduce the dimensionality of the estimation problem. Additionally, given that
the temporal correlation is probably not particularly important, it makes sense to
compromise a little on the amount of variables we use to model it. For example,
it makes sense to restrict the attention to models in which

∀i, t : cor(xi,t, xi,t−1|x−i) = ρ.

This reduces the number of parameters in Θ by pT − 1. Moreover, it may, in
certain circumstances, be sensible to assume that the genomic network at each
time-point is the same. This reduces the number of parameters by (T − 1)p2.
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Fig. 1. The lag zero network selected in the case of the T-cell data. It shows two hubs
involving the JUNB and CCNC genes, which are well-known for being central regulator.
Blue and red links represent positive and negative partial correlations, respectively
(color figure online).

3.3 Maximum Likelihood

The most simple model is the unconstrained Θ with no penalty on the ele-
ments θij on the precision matrix Θ. The log-likelihood for μ and Θ = Σ−1

based on a random sample X = (X(1), . . . , X(n)) is l(μ,Σ;X) ∼= n
2 log |Θ| −

1
2

∑n
i=1(Xi − μ)TΘ(Xi − μ) up to a constant not depending on μ and Θ. Even

if S = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)T is of full rank (only if n > pT ), the matrix

S−1 will not be ‘sparse’. To achieve ‘sparse’ graph structure and to obtain a
better estimator of the concentration matrix, we introduce an L1 penalty on the
likelihood, i.e. we want a minimizer Θ of

− log |Θ| + trace (ΣS) subject to
∑

i≤=j

|θij | ≤ t, (2)

over the set of positive definite matrices Θ. Here t ≥ 0 is a tuning parameter.
The constraint as formulated above does not penalize the diagonal of Θ.

We could also choose not to penalize links that we know are there or time-
dependencies which are so low-dimensional that it is not worth penalizing.

4 Max Determinant Optimization Problem

The non-linearity of the objective function, the positive definiteness constraint
and the structured correlation make the optimization problem non-trivial.
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We take advantage of the connection of the penalized likelihood and the max-
determinant optimization problem [10]. We make use of the SDPT3 algorithm
[11] to manage higher dimensional problems. We consider the optimization
problem:

min cTβ + log |Θ(β)| (3)

subject to Θ(β) ≥ 0, F (β) ≥ 0, Lβ = b;

where the optimization variable is the vector β ∈ Rm. The functions Θ : Rm →
Rl×l and F : Rm → Rn×n are affine:

Θ(β) = Θ0 + β1Θ1 + . . . + βmΘm

F (β) = F0 + β1F1 + . . . + βmFm,

where Θi = ΘT and Fi = FT
i . The inequality signs in (3) denote matrix inequal-

ities, i.e., Θ(β) > 0 means zTΘ(β)z ≥ 0 for all nonzero z and F (β) ≥ 0 means
zTF (β)z ≥ 0 for all z. We will refer to problem (3) as a maxdet problem.

The maxdet problem is a convex optimization problem, i.e. the objective
function cTβ + log |Θ(β)|, is convex (on {x : Θ(β) ≥ 0}, and the constraint
set is convex. The current version of SDPT3, version 4.0, is designed to solve
conic programming problems whose constraint cone is a product of semidefi-
nite cones, second-order cones, nonnegative orthants and Euclidean spaces; and
whose objective function is the sum of linear functions and log-barrier terms
associated with the constraint cones.

5 Application to T-Cell Data

Tcell dataset is a large time-series experiment to characterize the response of
a human T-cell line (Jurkat) to PMA and ionomycin treatment. The data set
contains the temporal expression levels of 57 genes for 10 unequally spaced time
points. At each time point there are 44 separate measurements. See [12] for more
details.

We consider a particular structure to the graphical model. We define the
nodes of the graph to be the genes at a particular time point. This results
in a 570 × 570 inverse covariance matrix Θ. This requires estimating more than
160,000 parameters with only 25,000 observations. However, there is good reason
to impose some constraints on Θ.

1. Markov assumption: we assume that except for lag zero and lag one, there
are no higher order interactions between the genes, i.e.,

Cov(Xgt,Xg∗t∗) = 0 for |t − t∗| > 1.

2. Interaction persistence: For the lag zero and lag one interactions, we
assume that the interactions are persistent across all ten time points, i.e.,

Lag 0: Ωgt,g∗t = Ωgs,g∗s,

Lag 1: Ωgt,g∗t+1 = Ωgs,g∗s+1.
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Fig. 2. The lag one network for the T-cell data: the arrows are a semantic interpretation
of the graphical model. They are given their direction by pointing from the past to the
future, although in the structure of the graphical model they are in fact undirected.
Blue and red links represent positive and negative partial correlations, respectively
(color figure online).

This reduces the number of parameters from over 160,000 to a manageable num-
ber less than 5,000. Furthermore, the shrinkage induced by the L1 penalty further
stabilizes the estimates. The application of the above model to the T-cell data,
results in the lag zero graph shown in Fig. 1 and the lag one graph shown in
Fig. 2. Blue and red links represent positive and negative partial correlations,
respectively. We see a typicall feature that the majority of links are blue, as it is
impossible to have stable networks with a lot of negative interactions. Further-
more, the networks we infer seem to have other typical characteristics of genomic
networks, such as modularity and small world properties.

6 Conclusions

As more and more large datasets become available, the need for efficient tools
to analyse such data has become imperative. In this paper, we have considered
sparse dynamic Gaussian graphical models with 
1-norm penalty. This type of
modelling offers a straightforward interpretation: the edges of the graph define
the partial conditional correlations among the nodes. In particular, under the
sparsity assumption, a large part of the precision matrix can be filled with zeroes
a priori. Based on the consideration of dynamic and model-oriented definitions,
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we are able to reduce the number of parameters to be estimated, which allows
for more relevant interpretations in real data analysis.
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Abstract. Molecular docking is a widely-employed method in structure-
based drug design. An essential component of molecular docking pro-
grams is a scoring function (SF) that can be used to identify the most
stable binding pose of a ligand, when bound to a receptor protein, from
among a large set of candidate poses. Despite intense efforts in developing
conventional SFs, which are either force-field based, knowledge-based, or
empirical, their limited docking power (or ability to successfully identify
the correct pose) has been a major impediment to cost-effective drug dis-
covery. Therefore, in this work, we explore a range of novel SFs employing
different machine-learning (ML) approaches in conjunction with physic-
ochemical and geometrical features characterizing protein-ligand com-
plexes to predict the native or near-native pose of a ligand docked to
a receptor protein’s binding site. We assess the docking accuracies of
these new ML SFs as well as those of conventional SFs in the context
of the 2007 PDBbind benchmark datasets on both diverse and homoge-
neous (protein-family-specific) test sets. We find that the best performing
ML SF has a success rate of 80 % in identifying poses that are within
1 Å root-mean-square deviation from the native poses of 65 different pro-
tein families. This is in comparison to a success rate of only 70 % achieved
by the best conventional SF, ASP, employed in the commercial docking
software GOLD. We also observed steady gains in the performance of the
proposed ML SFs as the training set size was increased by considering
more protein-ligand complexes and/or more computationally-generated
poses for each complex.

1 Introduction

1.1 Background

Bringing a new drug to the market is a complex process that costs hundreds of
millions of dollars and spans over ten years of research, development, and testing.
A fairly big portion of this hefty budget and long time-line is spent in the early
stages of drug design that involves two main steps: first, the enzyme, receptor,
or other protein responsible for a disease of interest is identified; second, a small
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 15–32, 2014.
DOI: 10.1007/978-3-319-09042-9 2
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molecule or ligand is found or designed that will bind to the target protein,
modulate its behavior, and provide therapeutic benefit to the patient. Typically,
high-throughput screening (HTS) facilities with automated devices and robots
are used to synthesize and screen ligands against a target protein. However, due
to the large number of ligands that need to be screened, HTS is not fast and
cost-effective enough as a lead identification method in the initial phases of drug
discovery [1]. Therefore, computational methods referred to as virtual screening
are employed to complement HTS by narrowing down the number of ligands
to be physically screened. In virtual screening, information such as structure
and physicochemical properties of a ligand, protein, or both, are used to esti-
mate both binding pose and/or binding affinity , which represents the strength of
association between the ligand and its receptor protein. The most popular app-
roach to predicting the correct binding pose and binding affinity (BA) in virtual
screening is structure-based in which physicochemical interactions between a lig-
and and receptor are deduced from the 3D structures of both molecules. This
in silico method is also known as protein-based as opposed to the alternative
approach, ligand-based, in which only ligands that are biochemically similar to
the ones known to bind to the target are screened.

In this work, our focus will be on protein-based drug design, wherein ligands
are placed into the active site of the receptor. The 3D structure of a ligand,
when bound to a protein, is known as ligand active conformation. Binding mode
refers to the orientation of a ligand relative to the target and the protein-ligand
conformation in the bound state. A binding pose is simply a candidate binding
mode. In molecular docking , a large number of binding poses are computationally
generated and then evaluated using a scoring function (SF), which is a mathe-
matical or predictive model that produces a score representing binding stability
of the pose. The outcome of the docking run, therefore, is a ligand’s top pose
ranked according to its predicted binding score as shown in Fig. 1. Typically,
this docking and scoring step is performed iteratively over a database containing
thousands to millions of ligand candidates. After predicting their binding poses,
another scoring round is performed to rank ligands according to their predicted
binding free energies. The top-ranked ligand, considered the most promising drug
candidate, is synthesized and physically screened using HTS.

The most important steps in the docking process are scoring ligands’ con-
formations at their respective binding sites and ranking ligands against each
other. These core steps affect the outcome of the entire drug search campaign.
That is because predictions of scoring functions determine which binding orien-
tation/conformation is deemed the best, which ligand from a database is con-
sidered likely to be the most effective drug, and the estimated binding affinity
(BA). Correspondingly, three main capabilities that a reliable scoring function
should have are: (i) the ability to identify the correct binding mode of a ligand
from among a set of (computationally-generated) poses, (ii) the ability to cor-
rectly rank a given set of ligands, with known binding modes when bound to
the same protein, and, finally, (iii) the ability to produce binding scores that
are (linearly) correlated to the experimentally-determined binding affinities of



Molecular Docking for Drug Discovery: Machine-Learning Approaches 17

...

HIV-1 Protease

...

To Next Phase: HTS
Docking and Scoring

Pose Generation

Ligand Database Scored Ligands

Input Molecular Docking Process Output

...

Scored Poses

Protein A Pose
SF1

Score: 3.25
Scoring Pose M

Po
se

 1

1.
02

6.
84

3.
25

Score: -8.14
Scoring Ligand 2

Li
ga

nd
 1

Li
ga

nd
 2

Li
ga

nd
 N

Protein
SF2

-2
.7

7
-8

.1
4

A Ligand

Li
ga

nd
 i

Pr
ot

ei
n

To
p 

R
an

ke
d 

Po
se

Top Ranked Ligand

Po
se

 2
Po

se
M

Li
ga

nd
 1

Li
ga

nd
 2

Li
ga

nd
 N

Fig. 1. Protein-ligand docking and ranking workflow.

protein-ligand complexes with known 3D structures. These three performance
attributes were referred to by Cheng et al. as docking power , ranking power ,
and scoring power , respectively [2]. We refer to the corresponding problems as
ligand docking , ligand ranking , and ligand scoring problems. In practice and in
all existing work, a single general SF is trained to predict protein-ligand BA
and then used in both the ligand docking and ranking stages to identify the
top pose and ligand, respectively. In this work, we propose docking-specialized
machine-learning SFs capable of predicting native poses more accurately than
the conventional BA-based SFs. These native-pose prediction models are used
as SF1 in Fig. 1. As for the second scoring round, designated by SF2 in Fig. 1, in
previous work we built accurate machine-learning SFs to score and rank ligands
against each other using their predicted binding affinities [3,4].

1.2 Related Work

Most SFs in use today can be categorized as either force-field-based [5], empiri-
cal [6], or knowledge-based [7] SFs. Despite intense efforts into these conventional
scoring schemes, several recent studies report that the docking power of existing
SFs is quite limited. Cheng and co-workers recently conducted an extensive test
of sixteen SFs from these three categories that are either employed in main-
stream commercial docking tools and/or have been developed in academia [2].
The main test set used in their study consisted of 195 diverse protein-ligand
complexes and four other protein-specific test sets. In order to assess the dock-
ing power of all SFs, they generated 100-pose decoy sets for each protein-ligand
complex in the main test set. They defined the docking power of an SF as its rate
of success in identifying binding poses that are within a certain root-mean-square
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deviation (RMSD) from the native pose over all complexes. Using this criteria,
three SFs were found to have a relatively higher level of accuracy when their
docking abilities were judged in three different experiments. These SFs are ASP
[8] in the GOLD [9] docking software, PLP1 [10] in Discovery Studio [11], and
the stand-alone SF DrugScore [12].

In this work, we will compare our novel ML SFs against these three and the
other thirteen SFs considered by Cheng et al. [2]. They used the four popular
docking programs LigandFit [13], GOLD, Surflex [14], and FlexX [15] to generate
diverse sets of decoy poses. Each of these tools employs different conformational
search algorithms for best poses. Namely, LigandFit relies on a shape-directed
algorithm, GOLD uses a genetic algorithm, Surflex is guided by a molecular-
similarity based algorithm, and FlexX employs an incremental construction algo-
rithm as a search engine [2]. They then combined the generated poses of each
program and selected a subset of 100 decoys according to a systematic clustering
procedure that will be explained in more detail in Sect. 2.3. The intention behind
using four different docking algorithms was to explore the conformational space
as thoroughly as possible and to avoid a potential sampling bias of this space if
only one program were to be used.

In previous work, we have presented BA-based ML models for the ligand
scoring and ranking problems [3,4]. However, the focus of this work is on the
ligand docking problem and we present docking-specialized ML SFs in which we
consider a more diverse collection of features and an explicit modeling of RMSD
of binding poses, which dramatically improve docking performance.

1.3 Key Contributions

Various nonparametric ML methods inspired from statistical learning theory
are examined in this work to model the unknown function that maps structural
and physicochemical information of a protein-ligand complex to a corresponding
distance to the native pose (in terms of RMSD value). Ours is the first work to
perform a comprehensive assessment of the docking accuracies of conventional
and machine-learning (ML) SFs across both diverse and homogeneous (protein-
family-specific) test sets using a common diverse set of features across the ML
SFs. We show that the best ML SF has a success rate of ∼80% compared to
∼70% for the best conventional SF when the goal is to find poses within RMSD
of 1 Å from the native ones for 195 different protein-ligand complexes. Such a
significant improvement (> 14%) in docking power will lead to better quality
drug hits and ultimately help reduce costs associated with drug discovery.

We seek to advance structure-based drug design by designing SFs that signif-
icantly improve upon the protein-ligand modeling performance of conventional
SFs. Our approach is to couple the modeling power of flexible machine learning
algorithms with training datasets comprising hundreds of protein-ligand com-
plexes with native poses of known high-resolution 3D crystal structures and
experimentally-determined binding affinities. In addition, we computationally
generate a large number of decoy poses and utilize their RMSD values from the



Molecular Docking for Drug Discovery: Machine-Learning Approaches 19

native pose and a variety of features characterizing each complex. We will com-
pare the docking accuracies of several ML and existing conventional SFs of all
three types, force-field, empirical, and knowledge-based, on diverse and indepen-
dent test sets. Further, we assess the impact of training set size on the docking
performance of the conventional BA-based SFs and the proposed RMSD-based
models.

The remainder of the paper is organized as follows. Section 2 presents the
compound database used for the comparative assessment of SFs (Sect. 2.1), the
physicochemical features extracted to characterize the compounds (Sect. 2.2),
the procedure for decoy generation and formation of training and test datasets
(Sect. 2.3), and conventional SFs (Sect. 2.4) and the ML methods (Sect. 2.5) that
we employ. Next, in Sect. 3, we present results comparing the docking powers of
conventional and ML SFs on diverse (Sect. 3.2) and homogeneous (Sect. 3.3) test
sets, and analyze how they are impacted by training set size (Sect. 3.4). Finally,
we close with concluding remarks in Sect. 4.

2 Materials and Methods

2.1 Compound Database

We used the 2007 version of PDBbind [16], the same complex database that
Cheng et al. used as a benchmark in their recent comparative assessment of six-
teen popular conventional SFs [2]. PDBbind is a selective compilation of the Pro-
tein Data Bank (PDB) database [17]. Both databases are publicly accessible and
regularly updated. The PDB is periodically mined and only complexes that are
suitable for drug discovery are filtered into the PDBbind database. In PDBbind,
a number of filters are imposed to obtain high-quality protein-ligand complexes
with both experimentally-determined BA and three-dimensional structure from
PDB [2]. A total of 1300 protein-ligand complexes are compiled into a refined set
after applying rigorous and systematic filtering criteria. The PDBbind curators
compiled another list out of the refined set. It is called the core set and is mainly
intended to be used for benchmarking docking and scoring systems. The core
set is composed of diverse protein families and diverse binding affinities. BLAST
[18] was employed to cluster the refined set based on protein sequence similarity
with a 90 % cutoff. From each resultant cluster, three protein-ligand complexes
were selected to be its representatives in the core set. A cluster must fulfill the
following criteria to be admitted into the core set: (i) it has at least four members
and (ii) the BA of the highest-affinity complex must be at least 100-fold of that
of the complex with the lowest one. The representatives were then chosen based
on their BA rank: the complex having the highest rank, the middle one, and the
one with the lowest rank. The approach of constructing the core set guarantees
unbiased, reliable, and biochemically rich test set of complexes. In order to be
consistent with the comparative framework used to assess the sixteen conven-
tional SFs mentioned above [2], we too consider the 2007 version of PDBbind
which consists of a 1300-complex refined set and a 195-complex core set (with
65 clusters).
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2.2 Compound Characterization

For each protein-ligand complex, we extracted physicochemical features used
in the empirical SFs X-Score [6] (a set of 6 features denoted by X) and Aff-
iScore [19] (a set of 30 features denoted by A) and calculated by GOLD [9]
(a set of 14 features denoted by G), and geometrical features used in the ML
SF RF-Score [20] (a 36-feature set denoted by R). The software packages that
calculate X-Score, AffiScore (from SLIDE), and RF-Score features were available
to us in an open-source form from their authors and a full list of these features
are provided in the appendix of [4]. The GOLD docking suite provides a utility
that calculates a set of general descriptors for both molecules. The set includes
some common ligand molecular properties such as: molecular weight, number
of rotatable bonds, number of hydrogen bonds, solvent exposed descriptors, etc.
Protein-specific features are also calculated that account for the number of polar,
acceptor, and donatable atoms buried in the binding pocket. As a complex, two
protein-ligand interaction features are calculated which are the number of ligand
atoms forming H-bonds and the number of ligand atoms that clash with protein
atoms. The full set of these features can be easily accessed and calculated via
the Descriptors menu in GOLD.

2.3 Decoy Generation and Formation of Training and Test Sets

The training dataset derived from the 2007 refined set is referred to as the
primary training set (1105 complexes) and we denote it by Pr. It is composed of
the 1300 refined-set complexes of 2007, excluding those 195 complexes present
in the core set of the same year’s version. The proteins of both these sets form
complexes with ligands that were observed bound to them during 3D structure
identification. These ligands are commonly known as native ligands and the
conformation in which they were found at their respective binding sites are
referred to as true or native poses. In order to assess the docking power of SFs
in distinguishing true poses from random ones, a decoy set was generated for
each protein-ligand complex in Pr and Cr. We utilize the decoy set produced for
the core set Cr by Cheng et al. [2] using four popular docking tools: LigandFit
in Discovery Studio, Surflex in SYBYL, FlexX in SYBYL (currently in LeadIT
[21]), and GOLD. From each tool, a diverse set of binding poses was generated by
controlling docking parameters as described in [2]. This process generated a total
of ∼2000 poses for each protein-ligand complex from the four docking protocols
combined. Binding poses that are more than 10 Å away, in terms of RMSD
(root-mean-square deviation), from the native pose are discarded. The remaining
poses are then grouped into ten 1 Å bins based on their RMSD values from the
native binding pose. Binding poses within each bin were further clustered into
ten clusters based on their similarities [2]. From each such subcluster, the pose
with the lowest noncovalent interaction energy with the protein was selected as
a representative of that cluster and the remaining poses in that cluster were
discarded. Therefore, at the end of this process, decoy sets consisting of (10 bins
× 10 representatives =) 100 diverse poses were generated for each protein-ligand
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complex. Since we have access to the original Cr decoy set, we used it as is and
we followed the same procedure to generate the decoy set for the training data
Pr. Since we did not have access to Discovery Studio software, we did not use
LigandFit protocol for the training data. In order to keep the size of the training
set reasonable, we generated 50 decoys for each protein-ligand complex instead
of 100 as it is the case for Cr complexes. Due to geometrical constraints during
decoy generation, the final number of resultant decoys for some complexes does
not add up exactly to 50 for Pr and 100 for Cr. It should be noted that the
decoys in the training set are completely independent of those in the test set
since both datasets share no ligands from which these decoys are generated.

We develop two types of ML SFs in this work. The first type are trained
to predict binding affinities (BAs) and use these scores to distinguish promising
poses from less promising ones. The second set involves building SFs to predict
RMSD values explicitly. As it will be shown later, this novel approach has a
superior accuracy over conventional BA-based prediction. Accordingly, two ver-
sions of training and test data sets are created. The first version uses BA as the
dependent variable (Y = BA) and the size of Pr remains fixed at 1,105 while
Cr includes 16,554 complexes because it consists of native poses and a decoy
set for each pose. The dependent variable of the second version is RMSD (Y =
RMSD) and because both training and test sets consist of native and decoy
poses, the size of Pr expands to 39,085 while Cr still retains the 16,554 complex
conformations.

For all protein-ligand complexes, for both native poses and computationally-
generated decoys, we extracted X, A, R, and G features. By considering all
fifteen combinations of these four types of features (i.e., X, A, R, G, X ∪ A,
X ∪R, X ∪G, A∪R, A∪G, R∪G, X ∪A∪R, X ∪A∪G, X ∪R∪G, A∪R∪G,
and X ∪A∪R∪G), we generated (15 × 2 =) 30 versions of the Pr and Cr data
sets, which we distinguish by using the notation PrYF and CrYF to denote that
the data set is characterized by the feature set F and its dependent variable is
Y . For instance, PrBA

XR denotes the version of Pr comprising the set of features
X ∪ R (referred to simply as XR) and experimentally-determined BA data for
complexes in the Pr dataset.

2.4 Conventional Scoring Functions

A total of sixteen popular conventional SFs are compared to ML SFs in this study.
The sixteen functions are either used in mainstream commercial docking tools
and/or have been developed in academia. The functions were recently compared
against each other in a study conducted by Cheng et al. [2]. This set includes five
SFs in the Discovery Studio software [11]: LigScore, PLP, PMF, Jain, and LUDI.
Five SFs in SYBYL software [22]: D-Score, PMF-Score, G-Score, ChemScore, and
F-Score. GOLD software [9] contributes three SFs: GoldScore, ChemScore, and
ASP. GlideScore in the Schrödinger software [23]. Besides, two standalone scoring
functions developed in academia are also assessed, namely, DrugScore [12] and X-
Score [6]. Some of the SFs have several options or versions, these include LigScore
(LigScore1 and LigScore2), PLP (PLP1 and PLP2), and LUDI (LUDI1, LUDI2,
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and LUDI3) in Discovery Studio; GlideScore (GlideScore-SP and GlideScore-XP)
in the Schrödinger software; DrugScore (DrugScore-PDB and DrugScore-CSD);
and X-Score (HPScore, HMScore, and HSScore). For brevity, we only report the
version and/or option that yields the best performance on the PDBbind bench-
mark that was considered by Cheng et al.

2.5 Machine Learning Methods

We utilize a total of six regression techniques in our study: multiple linear regres-
sion (MLR), multivariate adaptive regression splines (MARS), k-nearest neigh-
bors (kNN), support vector machines (SVM), random forests (RF), and boosted
regression trees (BRT) [24]. These techniques are implemented in the following
R language packages that we use [25]: the package stats readily available in R
for MLR, earth for MARS [26], kknn for kNN [27], e1071 for SVM [28], ran-
domForest for RF [29], and gbm for BRT [30]. These methods benefit from some
form of parameter tuning prior to their use in prediction. The optimal parameter
values we use to build our models resulted from a grid search associated with
10-fold cross validation over the training set Pr and are provided in [4]. These
values are obtained based on PrBA

F for any given feature set F ; optimizing based
on PrRMSD

F yielded similar parameter values, therefore, for brevity, we do not
include them here. For every machine-learning method, we will be using these
values to build ML SFs in the subsequent experiments.

3 Results and Discussion

3.1 Evaluation of Scoring Functions

In contrast to our earlier work in improving and examining scoring and ranking
accuracies of different families of SFs [3,4], this study is devoted to enhancing
and comparing SFs in terms of their docking powers. Docking power measures
the ability of an SF to distinguish a promising binding mode from a less promis-
ing one. Typically, generated conformations are ranked in non-ascending order
according to their predicted binding affinity (BA). Ligand poses that are very
close to the experimentally-determined ones should be ranked high. Closeness is
measured in terms of RMSD (in Å) from the true binding pose. Generally, in
docking, a pose whose RMSD is within 2 Å from the true pose is considered a
success or a hit.

In this work, we use comparison criteria similar to those used by Cheng et al.
to compare the docking accuracies of sixteen popular conventional SFs. Doing
so ensures fair comparison of ML SFs to those examined in that study in which
each SF was assessed in terms of its ability to find the pose that is closest to the
native one. More specifically, docking ability is expressed in terms of a success
rate statistic S that accounts for the percentage of times an SF is able to find a
pose whose RMSD is within a predefined cutoff value C Å by only considering
the N topmost poses ranked by their predicted scores. Since success rates for
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various C (e.g., 0, 1, 2, and 3 Å) and N (e.g., 1, 2, 3, and 5) values are reported
in this study, we use the notation SN

C to distinguish between these different
statistics. For example, S2

1 is the percentage of protein-ligand complexes whose
either one of the two best scoring poses are within 1 Å from the true pose of a
given complex. It should be noted that S1

0 is the most stringent docking measure
in which an SF is considered successful only if the best scoring pose is the native
pose. By the same token and based on the C and N values listed earlier, the least
strict docking performance statistic is S5

3 in which an SF is considered successful
if at least one of the five best scoring poses is within 3 Å from the true pose.

3.2 ML vs. Conventional Approaches on a Diverse Test Set

After building six ML SFs, we compare their docking performance to the sixteen
conventional SFs on the core test Cr that comprises thousands of protein-ligand
complex conformations corresponding to 195 different native poses in 65 diverse
protein families. As mentioned earlier, we conducted two experiments. In the
first, BA values predicted using the conventional and ML SFs were used to rank
poses in a non-ascending order for each complex in Cr. In the other experiment,
RMSD-based ML models directly predicted RMSD values that are used to rank
in non-descending order the poses for the given complex.

By examining the true RMSD values of the best N scoring ligands using
the two prediction approaches, success rates of SFs are shown in Fig. 2. Panels
(a) and (b) in the figure show the success rates S1

1 , S1
2 , and S1

3 for all 22 SFs.
The SFs, as in the other panels, are sorted in non-ascending order from the
most stringent docking test statistic value to the least stringent one. In the
top two panels, for example, success rates are ranked based on S1

1 , then S1
2 in

case of a tie in S1
1 , and finally S1

3 if two or more SFs tie in S1
2 . In both BA-

and RMSD-based scoring, we find that the 22 SFs vary significantly in their
docking performance. The top three BA-based SFs, GOLD::ASP, DS::PLP1, and
DrugScorePDB::PairSurf, have success rates of more than 60 % in terms of S1

1

measure. That is in comparison to the BA-based ML SFs, the best of which has
an S1

1 value barely exceeding 50 % (Fig. 2(a)). On the other hand, the other six
ML SFs that directly predict RMSD values achieve success rates of over 70 %
as shown in Fig. 2(b). The top performing of these ML SFs, MARS::XARG,
has a success rate of ∼80%. This is a significant improvement (>14%) over
the best conventional SF, the empirical GOLD::ASP, whose S1

1 value is ∼70%.
Similar conclusions can also be made for the less stringent docking performance
measures S1

2 and S1
3 in which the RMSD cut-off constraint is relaxed to 2 Å and

3 Å, respectively.
The success rates plotted in the top two panels (Fig. 2 (a) and (b)) are

reported when native poses are included in the decoy sets. Panels (c) and (d) of
the same figure show the impact of removing the native poses on docking suc-
cess rates of all SFs. It is clear that the performance of almost all SFs does not
radically decrease by examining the difference in their S1

2 statistics which ranges
from 0 to ∼5%. This, as it was noted by Cheng et al. [2], is due to the fact that
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(c) C = 2 Angstrom, N = 1 pose, Y =BA.
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(d) C = 2 Angstrom, N = 1 pose, Y =RMSD.
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(e) C = 2 Angstrom, N = 1, 2 and 3 poses, Y = BA.
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(f) C = 2 Angstrom, N = 1, 2 and 3 poses, Y = RMSD.
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Fig. 2. Success rates of conventional and ML SFs in identifying binding poses that are
closest to native ones. The results show these rates by examining the top N scoring
ligands that lie within an RMSD cut-off of C Å from their respective native poses.
Panels on the left show success rates when binding-affinity based (BA) scoring is used
and the ones on the right show the same results when ML SFs predicted RMSD val-
ues directly. Scoring of conventional SFs is BA-based in all cases and for comparison
convenience we show their performance in the right panels as well.
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some of the poses in the decoy sets are actually very close to the native ones. As
a result, the impact of allowing native poses in the decoy sets is insignificant in
most cases and therefore we include such poses in all other tests in the paper.

In reality, more than one pose is usually used from the outcomes of a docking
run in the next stages of drug design for further experimentation. It is useful
therefore to assess docking accuracy of SFs when more than one pose is consid-
ered (i.e., N > 1). Figure 2 (e) and (f) show the success rates of SFs when the
RMSD values of the best 1, 2, and 3 scoring poses are examined. These rates
correspond, respectively, to S2

1 , S2
2 , and S2

3 . The plots show a significant boost
in performance for almost all SFs. By comparing S2

1 to S2
3 , we observe a jump in

accuracy from 82 % to 92 % for GOLD::ASP and from 87 % to 96 % for RF::RG
that models RMSD values directly. Such results signify the importance of exam-
ining an ensemble of top scoring poses because there is a very good chance it
contains relevant conformations and hence good drug candidates.

Upon developing RMSD-based ML scoring models, we noticed excellent
improvement over their binding-affinity-based counterparts as shown in Fig. 2.
We conducted an experiment to investigate whether they will maintain a similar
level of accuracy when ML SFs are examined for their ability to pinpoint the
native poses from their respective 100-pose decoy sets. The bottom two panels,
(g) and (h), plot the success rates in terms of S1

0 , S3
0 , and S5

0 for the six ML
SFs. By examining the five best scoring poses, we notice that the top BA-based
SF, MLR::X, was able to distinguish native binding poses in ∼60% of the 195
decoy sets whereas the top RMSD-based SF, MARS::XARG, achieved a success
rate of S5

0 = 77% on the same protein-ligand complexes. It should be noted that
both sets of ML SFs, the BA- and RMSD-based, were trained and tested on
completely disjoint test sets. Therefore, this gap in performance is largely due
to the explicit modeling of RMSD values and the corresponding abundance of
training data which includes information from both native and computationally-
generated poses.

3.3 ML vs. Conventional Approaches on Homogeneous Test Sets

In the previous section, performance of SFs was assessed on the diverse test set
Cr. The core set consists of more than sixty different protein families each of
which is related to a subset of protein families in Pr. That is, while the train-
ing and test set complexes were different (at least for all the ML SFs), proteins
present in the core test set were also present in the training set, albeit bound to
different ligands. A much more stringent test of SFs is their evaluation on a com-
pletely new protein, i.e., when test set complexes all feature a given protein—test
set is homogeneous—and training set complexes do not feature that protein. To
address this issue, four homogeneous test sets were constructed corresponding to
the four most frequently occurring proteins in our data: HIV protease (112 com-
plexes), trypsin (73), carbonic anhydrase (44), and thrombin (38). Each of these
protein-specific test sets was formed by extracting complexes containing the pro-
tein from Cr (one cluster or three complexes) and Pr (remaining complexes).
For each test set, we retrained BRT, RF, SVM, kNN, MARS, and MLR models
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on the non-test-set complexes of Pr. Figure 3 shows the docking performance of
resultant BA and RMSD-based ML scoring models on the four protein families.
The plots clearly show that success rates of SFs are dependent on the protein
family under investigation. It is easier for some SFs to distinguish good poses
for HIV protease and thrombin than for carbonic anhydrase. The best perform-
ing SFs on HIV protease and thrombin complexes, MLR::XRG and MLR::XG,
respectively, achieve success rates of over 95 % in terms of S3

1 as shown in panels
(b) and (n), whereas no SF exceeded 65 % in success rate in case of carbonic
anhydrase as demonstrated in panels (i) and (j). Finding the native poses is even
more challenging for all SFs, although we can notice that RMSD-based SFs out-
perform those models that rank poses using predicted BA. The exception to this
is the SF MLR::XAR whose performance exceeds all RMSD-based ML models
in terms of the success rate in reproducing native poses as illustrated in panels
(c) and (d).

The results also indicate that multivariate linear regression models (MLR),
which are basically empirical SFs, are the most accurate across the four families,
whereas ensemble learning models, RF and BRT, unlike their good performance
in Fig. 2, appear to be inferior compared to simpler models in Fig. 3. This can be
attributed to the high rigidity of linear models compared to ensemble approaches.
In other words, linear models are not as sensitive as ensemble techniques to the
presence or absence of certain protein family in the data on which they are
trained. On the other hand, RF- and BRT-based SFs are more flexible and
adaptive to their training data that in some cases fail to generalize well enough
to completely different test proteins as seen in Fig. 3. In practice, however, it
has been observed that more than 92 % of today’s drug targets are similar to
known proteins in PDB [31], an archive of high quality complexes from which
our training and test compounds originated. Therefore, if the goal of a docking
run is to identify the most stable poses, it is important to consider sophisticated
SFs (such as RF and BRT) calibrated with training sets containing some known
binders to the target of interest. Simpler models, such as MLR and MARS, tend
to be more accurate when docking to novel proteins that are not present in
training data.

Sophisticated ML algorithms are not the only critical element in building
a capable SF. Features to which they are fitted also play an important role as
can be seen in Fig. 3. By comparing the right panels to the ones on the left, we
can notice that X-Score features (X) are almost always present in BA-based SFs
while those provided by GOLD (G) are used more to model RMSD explicitly.
This implies that X-Score features are more accurate than other feature sets
in predicting BA, while GOLD features are the best for estimating RMSD and
hence poses close to the native one.

3.4 Impact of Training Set Size

An important factor influencing the accuracy of ML SFs is the size of the train-
ing dataset. In the case of BA-based ML SFs, training dataset size can be
increased by training on a larger set of protein-ligand complexes with known
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(d) HIV protease, C = 0 Angstrom, N = 1, 3 and 5 poses, Y = RMSD.
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Fig. 3. Success rates of ML SFs in identifying binding poses that are closest to native
ones observed in four protein families: HIV protease (a-d), trypsin (e-h), carbonic
anhydrase (i-l), and thrombin (m-p). The results show these rates by examining the
top N scoring ligands that lie within an RMSD cut-off of C Å from their respective
native poses. Panels on the left show success rates when binding-affinity based (BA)
scoring is used and the ones on the right show the same results when ML SFs predicted
RMSD values directly.
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binding affinity values. In the case of RMSD-based SFs, on the other hand,
training dataset size can be increased not only by considering a large number of
protein-ligand complexes in the training set, but also by using a larger number
of computationally-generated ligand poses per complex since each pose provides
a new training record because it corresponds to a different combination of fea-
tures and/or RMSD value. Unlike experimental binding affinity values, which
have inherent noise and require additional resources to obtain, RMSD from the
native conformation for a new ligand pose is computationally determined and is
accurate.

We carried out three different experiments to determine: (i) the response of
BA-based ML SFs to increasing number of training protein-ligand complexes,
(ii) the response of RMSD-based ML SFs to increasing number of training
protein-ligand complexes while the number of poses for each complex is fixed
at 50, and (iii) the response of RMSD-based ML SFs to increasing number of
computationally-generated poses while the number of protein-ligand complexes
is fixed at 1105. In the first two experiments, we built 6 ML SFs, each of which
was trained on a randomly sampled x% of the 1105 protein-ligand complexes in
Pr, where x = 10, 20, . . . , 100. The dependent variable in the first experiment
is binding affinity (Y = BA), and the performance of these BA-based ML SFs
is shown in Fig. 4(a) and partly in Fig. 4(d) (MLR::XARG). The set of RMSD
values from the native pose is used as a dependent variable for ML SFs trained
in the second experiment (Y = RMSD). For a given value of x, the number of
conformations is fixed at 50 ligand poses for each protein-ligand complex. The
docking accuracy of these RMSD-based ML models is shown in Fig. 4(b). In the
third experiment, all 1105 complexes in Pr were used for training the RMSD-
based ML SFs (i.e., Y = RMSD) with x randomly sampled poses considered per
complex, where x = 2, 6, 10, . . . , 50; results for this are reported in Fig. 4(c) and
partly in Fig. 4(d) (MARS::XARG). In all three experiments, results reported
are the average of 50 random runs in order to ensure all complexes and a vari-
ety of poses are equally represented. All training and test complexes in these
experiments are characterized by the XARG (=X ∪ A ∪ R ∪ G) features.

From Fig. 4(a), it is evident that increasing training dataset size has a positive
impact on docking accuracy (measured in terms of S1

1 success rate), although
it is most appreciable in the case of MLR::XARG and MARS::XARG, two of
the simpler models, MLR being linear and MARS being piecewise linear. The
performance of the other models, which are all highly nonlinear, seems to satu-
rate at 60 % of the maximum training dataset size used. The performance of all
six models is quite modest, with MLR::XARG being the only one with docking
success rate (slightly) in excess of 50 %. The explanation for these results is that
binding affinity is not a very good response variable to learn for the docking
problem because the models are trained only on native poses (for which binding
affinity data is available) although they need to be able to distinguish between
native and non-native poses during testing. This means that the training data
is not particularly well suited for the task for which these models are used.
An additional reason is that experimental binding affinity data, though useful,
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Fig. 4. Dependence of docking accuracy of ML scoring models on training set size
when training complexes are selected randomly (without replacement) from Pr and
the models are tested on Cr. The size of the training data was increased by including
more protein-ligand complexes ((a) and (b)) or more computationally-generated poses
for all complexes ((c) and (d)).

is inherently noisy. The flexible highly nonlinear models, RF, BRT, SVM, and
kNN, are susceptible to this noise because the training dataset (arising only from
native poses) is not particularly relevant to the test scenario (consisting of both
native and non-native poses). Therefore, the more rigid MLR and MARS models
fair better in this case.

When RMSD is used as the response variable, the training set consists of
data from both native and non-native poses and hence is more relevant to the
test scenario and the RMSD values, being computationally determined, are also
accurate. Consequently, docking accuracy of all SFs improves dramatically com-
pared to their BA-based counterparts as can be observed by comparing Fig. 4(a)
to Fig. 4(b) and (c). We also notice that all SFs respond favorably to increas-
ing training set size by either considering more training complexes (Fig. 4(b)) or
more computationally-generated training poses (Fig. 4(c)). Even for the small-
est training set sizes in Fig. 4(b) and (c), we notice that the docking accuracy
of most RMSD-based SFs is about 70 % or more, which is far better than the
roughly 50 % success rate for the largest training set size for the best BA-based
SF MLR::XARG.
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In Fig. 4(d), we compare the top performing RMSD SF, MARS::XARG, to
the best BA-based SFs, GOLD::ASP and MLR::XARG, to show how docking
performance can be improved by just increasing the number of computationally-
generated poses, an important feature that RMSD-based SFs possess but which
is lacking in their BA-based conventional counterparts. To increase the per-
formance of these BA-based SFs to a comparable level, thousands of protein-
ligand complexes with high-quality experimentally-determined binding affinity
data need to be collected. Such a requirement is too expensive to meet in prac-
tice. Furthermore, RMSD-based SFs with the same training complexes will still
likely outperform BA-based SFs.

4 Conclusion

We found that ML models trained to explicitly predict RMSD values significantly
outperform all conventional SFs in almost all testing scenarios. The estimated
RMSD values of such models have a correlation coefficient of 0.7 on average with
the true RMSD values. On the other hand, predicted binding affinities have a
correlation of as low as -0.2 with the measured RMSD values. This difference
in correlation explains the wide gap in docking performance between the top
SFs of the two approaches. The empirical SF GOLD::ASP, which is the best
conventional model, achieved a success rate of 70 % in identifying a pose that lies
within 1 Å from the native pose of 195 different complexes. On other hand, our
top RMSD-based SF, MARS::XARG, has a success rate of ∼80 % on the same
test set, which represents a significant improvement in docking performance. We
also observed steady gains in the performance of RMSD-based ML SFs as the
training set size was increased by considering more protein-ligand complexes
and/or more computationally-generated ligand poses for each complex.
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Abstract. The massive production and spread of biomedical data around the
web introduces new challenges related to identify computational approaches
for providing quality search and browsing of web resources. This papers pre-
sents BioCloud Search EnGene (BSE), a cloud application that facilitates
searching and integration of the many layers of biological information offered
by public large-scale genomic repositories. Grounding on the concept of da-
taspace, BSE is built on top of a cloud platform that severely curtails issues
associated with scalability and performance. Like popular online gene portals,
BSE adopts a gene-centric approach: researchers can find their information of
interest by means of a simple ‘‘Google-like’’ query interface that accepts
standard gene identification as keywords. We present BSE architecture and
functionality and discuss how our strategies contribute to successfully tackle
big data problems in querying gene-based web resources. BSE is publically
available at: http://biocloud-unica.appspot.com/.

Keywords: Biomedical data exploration � Cloud computing � Data searching �
Data integration � Dataspaces � Pay-as-you-go data querying

1 Introduction

The massive production and spread of biomedical data around the web introduces new
challenges related to identify computational approaches for their management and
exploitation. These challenges mainly result from three issues:

– Biomedical data are typical of the category of ‘‘big data’’ [1]. The term ‘‘big data’’
refers to ‘‘the ever increasing amount of information that organizations are storing,
processing and analyzing, owning the growing number of information sources in
use’’ [2].

– Biomedical data relay with a wide range of types and sources. As biomedical
research became interdisciplinary, information searching often requires the inte-
gration of information with multiple levels of granularities and relates data that
pertain to different disciplines. Hence, the user search is not limited to a single
source, but it is carried out through separate web resources in which information is
represented in a different way.
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– Biomedical data must be accessed quickly to determine which information to show
to a user on a webpage. To do global analysis, biological researchers often need to
access data from multiple archival databases.

It has been observed [3] that gene sequencing technologies have become more and
more affordable but the challenge of integrating disparate resources of biologic
information remains difficult and more implicit or automatic ways of joining infor-
mation are needed to improve the usability of gene annotation resources where
searching is often unwieldy.

The development of efficient, optimized, and highly scalable search tools is a
particularly challenging task as data are reaching tsunami proportions [4] and related
clinical applications are seen as a ‘‘slowly rising tide’’ [5].

In this work we focus on genomics, a key area of biology which places greater
stress on trying to solve the problem of collecting and processing large volumes of
biological information, due to the fact that biological data accumulate at an ever-faster
pace.

Specifically, we envision searching genetic information in databases and web
resources to be like searching information in the web: we search for the information
we exactly need and capture a lot of information in a short time from different
websites. To face the challenge of supporting scientists in searching genetic infor-
mation, we stop thinking in terms of capabilities of individual web resources and
instead think of the computational functionalities needed.

In order to avoid browsing web resources and data locked to specific infrastruc-
tures, we propose advanced search functionalities on many resources via high quality,
interoperable services offered in a ‘‘neutral’’ territory. As it happens for web engines
which are designed to search for information on the World Wide Web, these services
act as specialists which mine data available in many databases or open directories and
return real-time information. They are a mean of organizing and integrating infor-
mation from different web sources and making them manageable and satisfactory for
the user.

In this article, we present BioCloud Search EnGene (BSE), a comprehensive
searching environment which facilitates the versatile integration of existing genetic
and genomic information from multiple heterogeneous resources. It proposes a new
operational framework in which genetic information and computing technologies are
reshaping each other. Like popular online gene portals, BSE adopts a gene-centric
approach: researchers can find their information of interest by means of a simple
‘‘Google-like’’ query interface that accepts standard gene identification as keywords.
Moreover, by using advanced searching and tools, users are allowed to extend their
possibilities of standard data searching on popular genetic databases. BSE heavily
relies on the following key design features.

First, BSE is grounded on the concept of dataspace [6, 7], a new paradigm for data
integration characterized by a very loosely structured data model and intended for the
management of heterogeneous data coming from a diverse set of sources regardless
their format and location.

Second, to handle important coordination tasks, BSE is built on top of a cloud
platform which is the physical infrastructure for hosting the dataspace. This severely
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curtails issues associated with scalability and performance, especially during infor-
mation retrieval as searching expands across multiple server nodes. Finally, BSE is
built into an integrated cloud environment that allows a close integration with web
servers and standard protocols and facilitates rapid development and updates.

The paper is organized as follows. Section 2 provides background concepts and
motivates the adoption of dataspace and cloud paradigms. Section 3 details the
architectural aspects of BSE. The system functionalities are described in Sect. 4.
Finally, Sect. 5 presents conclusions.

2 Background and Motivations

Dozens of gene annotation resources and databases exist which serve prominent roles
in the genetics and genomics communities, each presenting a particular aspect of
available gene notations. For example, the 20th annual Database Issue of Nucleic
Acids Research (NAR) includes 176 articles half of which describe new online
molecular biology databases and the other half provide updates on the databases
previously featured in NAR and other journals.

As notable example, Entrez [8, 9] is the most popular system for searching and
retrieving information from databases that are maintained by the NCBI (National
Center for Biotechnology Information) [10]. Entrez is constantly being developed and
improved. It indexes records in NCBI databases by means of nodes that correspond to
specific databases including GenBank [11, 12], Protein database [13] and also sci-
entific abstracts from the PubMed database [14, 15]. Access to these resources is
provided by the graphical user interface of the NCBI Entrez system or by using NCBI
Web services.

In exploring a database, researchers are not interested in exploiting the resource
full content, but they just distil a huge amount of data to obtain succinct, key infor-
mation about a concept. As biology encompasses many domains of knowledge, the
success of their search depends on their ability in browsing large-scale information
that is stored in several databases and web sites, each having its own organization,
terminology and data formats. Unearthing specialized information can also be com-
plex, time consuming and daunting as the researcher is also involved in learning and
remembering the navigation paths of each specific web site. Finally, different web
portals implement the same basic functionality and are often concerned with over-
lapping information.

For effective searching biomedical databases in the face of the growing number of
bio-resources available worldwide, we have to answer three fundamental questions.

First, how to integrate structured, semi-structured and unstructured available data
with diverse and sparse schemas?

Second, how to retrieve meaningful information in an easy and efficient way?
Finally, how implementing a searching infrastructure which has to scale, hence

change, to meet new requirements stemming from the growth of its searching domain?
Computational solutions ranging from database to data warehouse poorly adapt to

facing the above questions as:
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(a) Many resources are large in size, dynamic, and physically distributed. Conse-
quently, there is the need for mechanisms that can efficiently extract the relevant
information from disparate sources on demand.

(b) The resources of interest are autonomously owned and operated. Consequently,
searching strategies must be devised for obtaining the necessary information
within the operational constraints imposed by the data source.

(c) Being heterogeneous in structure and content, information resources represent
data according to their own schema which, implicitly or explicitly, defines its own
concepts and relationships among concepts.

(d) Searching happens in different contexts and from different user perspectives.
Hence, it is necessary to implement mechanisms for extracting context-dependent
information.

The research community has recently proposed the concept of dataspace [6, 7] as a
new scenario for structuring information relevant to a particular organization,
regardless of its format and location. The elements of a dataspace are a set of par-
ticipants (i.e., individual data sources) and a set of relationships between them [7]. In
this sense, a dataspace is an abstraction of a database that does not require data to be
structured and has a minimal ‘‘off-the-shelf’’ set of search functions based on key-
words. The key idea is to enhance the quality of data integration and the semantic
meaning of information without an a priori schema for the data sources [16–18].

In sharp contrast to the traditional approaches, a dataspace is based on a ‘‘data co-
existence’’ approach as it integrates data according to a very loosely structured data
model which is intended for the management of heterogeneous data coming from a
diverse set of sources. A fundamental part of a dataspace is the catalogue that contains
information about participants and their relationships with associate mechanisms for
its gradually extension. Advanced DBMS-like functions, queries and mappings are
provided over time by different components, each defining relationships among data
when required. Integrated views over a set of data sources are provided following the
so-called pay-as-you-go principle that is currently emerging on the web [19, 20].

In this work, we choose the dataspace paradigm as a data integration architecture
for reconciling data from heterogeneous sources and providing users with a unified
view of these data.

Our key idea is to conceive BSE as a cloud based application which essentially
rents its capacity from a cloud computing platform.

Recent research [21] has proposed cloud computing as an innovative computa-
tional environment for searching large-scale data in a more efficient way. Specifically,
cloud computing refers to a flexible and scalable internet infrastructure where pro-
cessing and storage capability are dynamically provided. A cloud infrastructure
abstracts the underlying hardware (i.e. servers, networking, storage etc.) and enables
on-demand network access to a shared pool of computing resources that can be readily
provisioned and released.

The next section will present how the BSE architecture benefits from both the
dataspace and the cloud paradigms.

36 N. Dessì et al.



3 Architectural Aspects

Grounded on the dataspace paradigm, BSE undertakes the responsibility of coordi-
nating and organizing the search across different web resources that are assumed to be
the dataspace participants.

Data integration expects no data transfer to any central repository, except for the
data stored in BSE catalogue which is initially built and gradually updated. In some
way, this catalogue has the same role of the table of facts in a data warehouse where
the dimension tables are distributed across many web resources. However, it differs
from a data warehouse schema because:

(1) It contains information about various participants instead of relational tables.
(2) Besides storing and indexing participants, the catalogue contains mechanisms for

creating new relationships by modifying the existing ones.
(3) It avoids the definition of an a priori matching schema.

From a logical point of view, the catalogue is a multi-level index that specifies
how genetic information from various web resources is captured and linked together.
Physically, it is implemented by an object-oriented database, specifically a key-value
NoSQL database [22], which stores gene annotations, acquires and combines infor-
mation from external resources that participate in the dataspace.

The current version of BSE implements a dataspace with the contribution of 34
participants. According to their role in supplying data, these participants are catego-
rized as:

– Local participants, i.e. resources from which some useful content is captured and
permanently stored into the catalogue.

– Service-based participants, i.e. resources whose content is captured at running time
by specific BSE services in a pay-as-you-go fashion according to the user request.

– External participants, i.e. resources whose web links are dynamically built and
activated when it is required.

The catalogue organizes objects in classes, each corresponding to one local par-
ticipant. Table 1 shows the list of local participants and the corresponding catalogue
content.

BSE also relies on the following external services:

– NCBI Entrez Programming Utilities (E-utilities) [23]
– UniChem RESTful Web Service API [24]
– Database identifier mapping [25]
– STRING API [26]
– WikiPathways Webservice/API [27]
– REST-style version of KEGG API [28]
– mygene.info REST web services [29]
– RESTful web service Europe PMC [30]
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Conversely, a local participant is viewed as a repository of objects associated with
the catalogue. Relationships between participants are expressed by means of key-
values [31] that store gene identifiers as defined by international scientific standards.

3.1 Query Contextualization

The schema free and non-rigid structure of the catalogue allows us to implement with
relative ease new ways of querying and extracting information on the basis of what we
can here define as a query context or a context from now on.

Specifically, a context is a logical structure that supports queries about common
points of interest the users share in browsing dataspace participants. As an example, if
the user is interested in searching information about genes associated with a specific
disorder, he refers to the context ‘‘Mendelian genetic disorders’’. Contexts are the only
way to query data. Each context presents a ‘‘gene centric view’’ where the users can
easily identify the relevant resources and navigate the content of the resources to
which the context relates. Contexts hide the complexity of data searching, where BSE
services capture and present the information of interest.

From a technical point of view, contexts identify specific perspectives on data-
space participants that are kept in the dataspace catalogue. These perspectives
resemble to views in relational databases. However, being the catalogue implemented
by a NoSQL database, they do not result from joining structured relational tables, but
from relationships expressed by key-values. As well, contexts take very little space to
be stored as the catalogue contains only the definition of contexts without a copy of all
the data that the context relates to.

The present version of BSE implements the following contexts:

1. Known gene name or gene identifications.
Here, we assume that the user is able to identify genes by their standard identifier

and wants to know further details.

Table 1. Local participants and corresponding catalogue content.

Dataset Catalogue content

ENTREZ GENE homo sapiens gene info [32] Main annotations about human genes

ENTREZ GENE RELATIONS human gene relations [32] Gene to gene relationships

M.A.T.A.D.O.R. Manually annotated targets and
drugs online resource [33]

Gene drug relationships

ENTREZ GENE ID TO PATHWAYS [34] Human genes pathways, according to
Reactome

ENTREZ GENE ID TO MENDELIAN PHENOTYPE [35] Human mendelian phenotypes and their gene
associations

ENTREZ GENE ID TO REFSEQ [36] Cumulative set of transcripts and proteins

H.A.G.R. - HUMAN AGEING GENOME RESOURCE [37] Genes possibly related to human ageing

Wellcome Trust Sanger Institute - cancer genomics
annotations [38]

Cancer drug sensitivity annotated genes
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2. Query by Human Mendelian Genetic disorders.
The user is allowed to extract a list of genes using the name of a certain phenotype

associated with a genetic disorder with Mendelian transmission character.

3. Query by pathway.
This context allows the user to extract a list of human genes annotated in a given

biological pathway. A pathway is a set of chemical reactions related to one or more
processes within a cell. It results in expression products whose knowledge is very
important in the study of biological phenomena.

4. Bulk queries.
This context allows to extract a list of human genes meeting the following

searching criteria: gene biotype, chromosome belonging, ageing related annotation,
chemotherapeutic sensitivity related to annotated genes according to their mutational
status.

5. Query by Drug information.
It moves the query focus from a purely genetic perspective to a context dealing

with the relationships between pharmacologically active molecules and the human
genome expression products.

3.2 Technical Details

BSE is built on top of GAE (Google App Engine) [39], a platform as a service (PaaS)
cloud computing environment which hosts web applications. Differently from other
PaaS offerings, GAE benefits from the same infrastructure that supports basic Google
applications and services such as Google search engine, You tube, Google Earth etc.

We stored the dataspace catalogue into the GAE datastore, a distributed data
storage service that performs distribution, replication and load balancing automati-
cally and supports operations to access objects (i.e. create, read, update, delete) by
means of an SQL-like language called GQL.

We used Phyton as programming language and implemented BSE functionality
using JavaScript/AJAX/jQuery and Django, a high-level Python web framework that
runs within GAE.

For implementing the pay-as-you-go approach in searching data we relied on
Biopython [40], a rich set of Python libraries which provides the ability to deal with
‘‘things’’ of interest to biologists while working on the cloud. Specifically, the Entrez
Programming Utilities provided by NCBI were accessed by means of the Bio.Entrez
library available in Biopython. This library was made available on the cloud just
making some easy changes in the source code.

4 BSE Functionalities

BSE is publically available at: http://biocloud-unica.appspot.com/. In what follows we
will present and discuss the BSE functionality.
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BSE utilizes a simple graphical user interface (GUI) that takes account for the
concept of usability in presenting information. Specifically, BSE GUI is implemented
by an accordion i.e. a vertically stacked list of items each of ones can be ‘‘expanded’’
or ‘‘stretched’’ to reveal the content associated with that item. There can be zero or
more items expanded at a time, depending on the show/hide operation users carry on.

When a web page is loaded, the accordion expands the corresponding item into a
window which contains the web page and allows users to navigate through this page.
Practically, an accordion is expandable whenever needed and allows to really save
some space while showing a lot of information.

By default, the first item is expanded whenever an accordion appears. Each item
can be open/closed by clicking on it. A new item is added dynamically on top of the
accordion to present query results.

BSE implements the following accordions:

(1) The basic accordion is the BSE main page where each item represents a query
context.

(2) The gene accordion is visualized whenever the user clicks on a gene identifier
and allows to detail information about that gene.

(3) The drug accordion is visualized whenever the user clicks on the name of a drug
and allows to investigate about the drug properties and effects.

Fig. 1. The BSE main page with the basic accordion. This screenshot shows a typical search
by typing the HGNC official gene symbol related to tumor protein 53 gene. Within this search
context the user can also search for genes by Entrez ID, or UNIPROT accession. The Alias gene
identification is supported too.
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In what follows we present the structure of each accordion.
Figure 1 shows the BSE main page with its basic accordion. The first item,

corresponding to the context ‘Search gene by IDs’, is expanded and shows a text field
where users enter a single keyword which is the identifier of the gene they want to
find. In Fig. 1 the user is typing the keyword ‘‘tp53’’ as standard gene identifier while
BSE dynamically provides predictive suggestions by expanding the keyword ‘‘tp53’’
in a sliding list of its synonyms and variants. The user selects the appropriate keyword
from the list, submits his query and obtains information showed in Fig. 2.

When the user clicks on the gene identifier (i.e. TP53 – Entrez ID 7157 in Fig. 2),
he is redirected to the gene accordion (see Fig. 3) which details a new context to
explore information about TP53. By expanding the items of this new accordion, the
user can extract a series of highly detailed data and then investigate every aspect of its
interest in specialized databases with a redirection that is consistent with the initial
query.

For example, Fig. 4 shows the effects of expanding the item ‘‘Interaction network
and Structures’’. Here, in order to limit the number of query results, the searching
process follows a pay-as-you-go approach: the user is invited to load additional
information if necessary. In this case, he interactively triggers the capture of data by
clicking the ‘‘Load PDB IDs’’ button. Captured information is permanently stored in a
buffer during 24 h and then released.

Fig. 2. Results to the query in Fig. 1.
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Figure 5 shows the results of this capture including PDB IDs, the images about
related 3D structures from Protein Data bank, and FASTA Sequence of the corre-
sponding structure. As showed on the left of Fig. 5, images can be expanded. Clicking
on the sky blue arrows which have a wavy tail (see Fig. 5 on the right), the user is
redirected to an external web site providing more detailed information.

The same design logic features the organization of the other search contexts of the
basic accordion, i.e. Search genes by Human Mendelian Genetic disorder, Search
genes by Pathway, Bulk Queries, Search by Drug.

In the Search by Drug context, as a further example, the user specifies a drug name
and BSE auto-completes the user input using M.A.T.A.D.O.R. [33], a public repos-
itory which annotates relationships between human genes and drugs. Figure 6 depicts
results of searching for the drug ‘‘Aspirin’’.

Finally, the drug accordion occurs whenever the user clicks on a drug name. For
example, in Fig. 6, when the user clicks on ‘‘Aspirin - Pubchem ID 2244’’ in the
window ‘‘Results’’, he is redirected to the drug accordion (Fig. 7) to obtain additional
information.

Fig. 3. The gene accordion and its items.
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In Fig. 7, the item ‘‘General Information’’ is expanded and shows details about the
drug ‘‘Aspirin’’ and the related 2D structure. The drug accordion enables searching for
specific molecular information about drugs. For example, the ‘‘Protein Interactions’’
item shows the relationships among drugs and Gene expression products as annotated
in the M.A.T.A.D.O.R. dataset [33].

The current functionalities of BSE could be extended to incorporate scalable tools
for appropriate use cases in order to facilitate rapid large scale analysis of genetic
information. In this direction, we are starting to implement tools which are made
available easily through BSE and benefit from BSE searching capabilities.

We believe that this combination (searching-plus-tools) will allow for easy, user-
friendly and transparent analysis of genetic data without requiring the user to know
anything about the technical specifications of different systems (i.e. job submission,
localization of web resources etc.).

Finally, the BSE user interface is unique in its focus on aggregating distributed
web content in a flexible menu, a model that is highly amenable to future extension
and customization by adding additional gene annotation resources, and by custom-
izing the accordion menu to suit specific user needs.

Fig. 4. Expansion of the item ‘‘Interaction network and Structures’’ in the gene accordion. The
arrow shows the button to catch data in ‘‘pay as you go’’ fashion.
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Fig. 5. Data captured in pay-as-you-go fashion.

Fig. 6. Search by drug context in the basic accordion: query results.
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5 Conclusions

Designed for people involved in the analysis of biological data (i.e. molecular biol-
ogists, biochemists, medical doctors, molecular pathologists etc.), BSE is a suitable
and scalable cloud application that allows simple and advanced data searching in
different databases. Going further from simply integrating content within genetic
databases, as data warehousing systems do, BSE considers cloud and dataspaces the
basic paradigms for effective searching big data from genomic resources. This is a
unique feature of BSE.

Specifically, our work has explored how the convergence of cloud computing and
dataspaces can offer both added-value service components and flexibility, making this
convergence an attractive combination also for any scientific domain. BSE meets

Fig. 7. The drug accordion which shows the contexts related to the drug ‘‘Aspirin’’.
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some important requirements, such as high performance, fault handling and com-
pensation, scalability, elasticity, trust and security support, multi-tenancy, quality of
service, and so on.

Most importantly, we tried to identify the nature of the technology we need in
order to address big data searching issues in bioinformatics field in that comple-
menting the capabilities of genetic portals. Albeit relatively new, cloud computing and
dataspace paradigms seem to offer a prospect of new insights in bioinformatics.
Finally, we are confident that, even implemented for data searching in genetic dat-
abases, our approach might reveal new directions for improving web based explora-
tion of big data in life science.
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Abstract. Taxonomic classification of genomic sequences is usually
based on evolutionary distance obtained by alignment. In this work we
introduce a novel alignment-free classification approach based on prob-
abilistic topic modeling. Using a k -mer (small fragments of length k)
decomposition of DNA sequences and the Latent Dirichlet Allocation
algorithm, we built a classifier for 16S rRNA bacterial gene sequences.
We tested our method with a tenfold cross validation procedure consider-
ing a bacteria dataset of 3000 elements belonging to the most numerous
bacteria phyla: Actinobacteria, Firmicutes and Proteobacteria. Experi-
ments were carried out using complete and 400 bp long 16S sequences, in
order to test the robustness of the proposed methodology. Our results,
in terms of precision scores and for different number of topics, ranges
from 100 %, at class level, to 77 % at genus level, for both full and 400 bp
length, considering k-mers of length 8. These results demonstrate the
effectiveness of the proposed approach.

Keywords: Genomic classification · Alignment-free analysis · 16S rRNA ·
DNA k -mers · Topic modeling · LDA

1 Introduction

Taxonomic classification of bacteria isolates has become of fundamental impor-
tance in biomedical and microbiological fields. The ever growing amount of bio-
logical data produced by high-throughput sequencing technologies has led to
the design and implementation of bioinformatics tools in order to analyse this
kind of data. Taxonomic studies of bacteria species are based on the analysis of
their 16S rRNA housekeeping gene [8,24], that can be seen as a species barcode.
Genomic analysis of 16S sequences for taxonomic classification purpose has been
carried out in the first place by finding sequence similarities, in terms of evo-
lutionary distance, with known species using for example alignment algorithms
like BLAST [1]. More recent approaches dealt with taxonomic classification of
bacteria isolates through clustering techniques, with the aim of finding a match
between clusters and taxonomic categories (taxa). The clustering approach was
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 49–61, 2014.
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done considering both evolutionary distances [17,22] and compression–based dis-
tances [18,19] based on the Universal Similarity Metric [23]. Compression-based
approaches were also used for the study of barcode sequences [20,21]. An exhaus-
tive comparison of classification algorithms for 16S sequences has been done in
[24]. The authors concluded that the alignment–free approach based on naive
Bayesian classifier proposed by [29] and the Simrank search tool by [7] produced
the best classification results of 16S rRNA gene sequences. Both approaches
adopts a k -mer representation of genomic sequences, that uses small fragment
of DNA of fixed length k. More in detail, the algorithm in [29] uses a k -mer rep-
resentation of DNA sequences for training a Bayesian classifier. The resulting
statistical model is then used to assign a taxonomic label to a query sequence.
Simrank algorithm, on the other hand, uses the k -mer approach to increase the
speed of the similarity searches of a query sequence against a database of known
16S sequences.

In this paper we present a novel alignment-free approach for dealing with tax-
onomic classification of 16S gene sequences. Our proposed methodology draws
its main concepts from text mining techniques, representing a suite of algorithms
to analyse set of text documents. In this work, in fact, we adopt probabilistic
topic models in order to set up a 16S gene sequence classifier. A probabilis-
tic topic model is a statistical algorithm that, according to the distribution of
words in documents, is able to extract a group of recurrent meaningful themes,
called topics, that can be used to label the documents with semantic features.
Our main idea is to extract the topics from a dataset of DNA sequences and
then to demonstrate that sequences sharing the same topics belong to the same
taxonomic group and, consequently, it is possible to use probabilistic topic mod-
eling in order to classify the sequences according to their taxonomic membership.
The experimental results we present show high classification scores, ranging from
80 % to 100 % in terms of precision rate, at phylum, class, order and family taxo-
nomic levels. At genus level we reached about 77 % precision score. These results
were obtained considering both full length sequences (about 1200–1300 bp) and
400 bp sequences, in order to check out the robustness of our approach with
respect to the sequence length. These first results represent a very encouraging
outline in order to tune and improve in the near future the proposed approach
in order to provide a robust and more accurate classifier for 16S sequences at all
taxonomic levels.

2 Related Work

Probabilistic topic models are mainly used in text mining field in order to orga-
nize a corpus of documents according to a set of topics, representing the recurring
themes of those documents [3,12]. In this approach a topic represents a prob-
ability distribution over the words in the documents, so that given a topic, it
is possible to have a posterior probability value that a word belonging to that
topic appears in an observed document. These models are then used to train
classifiers that allow, by discovering the topics of a document, to classify them.
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Given an unlabeled document, we can infer if it is a law document, rather than
a biological document, rather than an economic paper and so on.

Topic models have been also applied to other types of input data. For example
topic models have been adapted to deal with images [2,26], audio and music
[14,15], social networks [25,31]. To the best of our knowledge, the other only
application of topic models to the analysis of genomic sequences has been done
in [9]. There the authors used topic modeling in population genetics: they aimed
at discovering a genetic signature, i.e. topics, shared by a population descending
from a common ancestral parent.

3 Methods

In this Section we first present a brief description of probabilistic topic models,
the machine learning technique we adopted in our work. Secondly we present
how we adapted this technique to the analysis of 16S sequence datasets.

3.1 Probabilistic Topic Models

Probabilistic topic models represent a class of machine learning algorithms used
in order to extract a set of meaningful themes (topics) from a corpus of doc-
uments [3,28]. Topic modeling is based on the concept of generative model for
documents, which assumes a document is generated through a probabilistic pro-
cedure. Topics are considered as probability distributions over a fixed dictionary
and documents can be seen as a mixture of topics. In order to create a new
document, first of all a distribution over topics is fixed, then a topic is randomly
chosen according to the distribution over topics, and finally a word is randomly
chosen with regards to the probability distribution over the vocabulary belong-
ing to that topic. To be more precise, topic modeling aims at discovering the
best hidden structure, also known as the latent variables, that generated the
corpus of documents. The latent variables are the topics, the distribution over
the topics, the topic distributions over the vocabulary; the observed data are the
words of the documents.

Introducing some math, we call P (z) the probability distribution over topics
z within a document and P (w|z) the probability distribution over words w given
the topic z. P (zi = j) is then the probability of sampling a word from the topic j
and P (wi|zi = j) is the probability of word wi given the topic j. The probability
of the ith word in a given document is then P (wi) and it is defined by means of
the following conditional probability distribution over words within a document
(also called posterior distribution):

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j) (1)

where T is the number of topics. Latent Dirichlet Allocation (LDA) is the sim-
plest topic model algorithm to estimate the topics from the generative model
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defined in Eq. 1. Since LDA’s mathematic formulation is not the main subject
of this paper, please refer to the work of Blei et al. [4] for a full description. In
this Section it is important to highlight that LDA is a probabilistic topic model
algorithm that allows to infer the conditional distribution of the latent hidden
variables given the observed data, i.e. the words in documents. Fitting a gener-
ative model through LDA then means to find, given a corpus of documents, the
probabilities that a documents has a specific topic. The number of topics is a
model parameter that has to be specified a priori.

3.2 Document Model and DNA Sequences

Probabilistic topic models, as said in Sect. 2, have been basically used to extract
topics from a corpus of documents. In this Section we will explain how LDA can
be used to extract meaningful information from DNA sequences. In the proposed
methodology, a single DNA sequence represents a document and, consequently,
a dataset of genomic sequences can be seen as a corpus of documents. In order to
extract words from DNA sequences, we follow a k -mer decomposition. A k -mer is
a short DNA fragment of length k contained in the original sequence. By extract-
ing all the overlapping k -mers, for a fixed value of k, from a genomic sequence,
it is possible to consider the k -mers as the words contained in that sequence.
A k -mer representation has been successfully adopted for the analysis of genomic
sequences by many authors, like for example [5,7,10,16,27,29]. Here we consider
the so called bag-of-words representation, i.e. we do not consider the position of
the k -mer in the sequence. A cartoon representation of k -mer decomposition, for
k = 8, is shown in Fig. 1. Given a dataset of genomic sequences, it is possible to
train a probabilistic topic model, using the LDA algorithm, in order to extract
the topics. Since a topic, as explained in the previous section, is a probabilistic
distribution over the words in the documents, it specifies how much a document,
i.e. a sequence, exhibits a certain group of words, i.e. the k -mers. Our main
hypothesis is that similar sequences which share the same group of statistically
meaningful k -mers, exhibits with high probability the same topic, or group of
topics. Our thesis is then to demonstrate that DNA sequences sharing the same
topics belong to the same taxonomic group and, consequently, it is possible to
use probabilistic topic modeling in order to classify the sequences according to
their taxonomic membership.

4 Experimental Tests

4.1 Bacteria Dataset

In order to validate our approach, we considered the three most populous phyla
belonging to the Bacteria domain: Actinobacteria, Firmicutes and Proteobac-
teria. The 16S rRNA sequences were downloaded from the RDP Ribosomal
Database Project II (RDP-II) [6], release 10.27. DNA sequences were selected
according to the following criteria:
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Fig. 1. k -mer decomposition (with k = 8) and bag-of-words representation for genomic
sequences, adopted in our approach.

– Strain: type;
– Source: both uncultured and isolates;
– Size: ≥ 1200 bp;
– Quality: good;
– Taxonomy: NCBI.

These options ensure sequences of high quality. In fact type strains are the
best sample species; 16S average length is about 1200–1400 bp; “good” quality
means the selected sequences have gone through a quality checking by RDP sys-
tem. NCBI taxonomy represents the taxonomic nomenclature provided by NCBI
biosystems [11]. We kept out the unclassified and “without rank” sequences.
Moreover we tagged the downloaded sequences with their taxonomic category,
from phylum to genus, and we considered only those taxa having at least ten
elements, in order to obtain a well balanced training set. Finally, from the result-
ing sequences, we randomly selected 1000 sequences per phylum, so that we
obtained a 16S sequences bacteria dataset of 3000 elements. In our study, we
considered both full length sequences (about 1200–1400 bp) and 400 bp long
sequences, obtained extracting, randomly, 400 consecutive nucleotides from the
original sequences, as done in [29]. This way we want analyse he robustness of our
approach with respect to the length of the genomic sequences. The taxonomic
features of this dataset are summarized in Table 1.

4.2 Training and Testing Pipelines

Our experimental pipeline is shown in Figs. 2 and 3. In order to provide statis-
tical significance to our experiments, we carried out a ten–fold cross validation
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Table 1. Taxonomic categories (taxa) of the three phyla composing our 16S bacteria
dataset.

Phylum # Class # Order # Family # Genus

Actinobacteria 1 3 12 79

Firmicutes 2 3 19 110

Proteobacteria 2 13 34 204

methodology. The original dataset of 3000 sequences is randomly partitioned
into ten equal sized subsets. Then one subset is used as test set and the remain-
ing nine datasets are used as training set. The cross-validation procedure is
repeated ten times, considering each time a different subset as test set and the
remaining ones as training set. The ten different results can be combined for
statistical analysis, such for instance computing an average of the results. Look-
ing at Fig. 2, the training set is first decomposed into its k -mers, and then the
resulting sequences are used to fit a topic model using the LDA algorithm. In
Fig. 3 it is shown the testing pipeline of our approach. Once again the test set is
first decomposed through a k -mer approach. Then, by computing the posterior
probability (see Eq. 1) of the sequences belonging to the test set, given the fitted
topic model obtained during the training phase, it is possible to obtain the topics
distribution over the test set. This topics distribution provides the probability
that a topic is present into a test sequence. The topic distribution is one of the
input data of the proposed classifier, shown in its explicit form in Fig. 4.

l

Fig. 2. Training pipeline. The 90 % of 16S bacteria dataset is decomposed using a k -
mer approach and then is used as learning set of the LDA algorithm in order to fit a
topic model.

4.3 Classification Pipeline

In order to validate our experimental tests, we adopted the following procedure,
depicted in Fig. 4. Each test sequence is labeled with its most probable topic,
i.e. each sequence is assigned to the topic having the highest probability value,
according to the topic distribution computed during the test pipeline (Fig. 2).
Then the taxonomic categories of the sequences of the training set are used to
match the topics extracted by the model with the taxa. Each topic, in fact, is
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I
I

I

Fig. 3. Testing pipeline. The remaining 10 % of 16S bacteria dataset is decomposed
using a k -mer approach and then it is computed the posterior probability of test
sequences, in order to obtain their topic distributions, representing is the main input
of the proposed classifier.

l

Fig. 4. Classification pipeline. Starting from the topic distribution, the most probable
topic is assigned to each test sequence. Then, through a majority voting mechanism,
the topics are matched with the taxa of original training set. Finally a precision score is
computed, considering as correctly classified those test sequences whose taxon assigned
to the most probable topic match with their own taxonomic category.

given a label, representing a taxon, by means of a majority voting mechanism.
That means a topic is labeled with the taxon owned by the most of sequences
that share that topic with the highest probability. The final validation is done
considering the taxonomy of the test set and computing the precision rate of
the test sequences with respect to the taxa associated to the topics. As it is well
known, precision is defined as:

precision =
TP

TP + FP
(2)

where TP = true positive and FP = false positive. In our case, a sequence whose
taxon match with the one of its most probable topic is considered as correctly
classified (true positive); otherwise it is misclassified (false positive).

4.4 Results and Discussion

Our experiments have been performed using the topicmodels R package [13]
in order to train the topic models with the LDA algorithm. We used default
parameters and the Gibbs sampling method as the estimation technique for LDA.
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We carried out our experiments as the number of topics and the k -mer length
change, because, as we explained in the previous Sections, they represent the
input parameters. The k -mer length ranged from 3 to 10 nucleotides, and we
obtained the best results, in terms of precision rate, with k -mer length = 8, so
for this reason the other results with k -mer length lesser and greater than 8 are
not shown in this paper. A k -mer length = 8 has been also used for the classifier
presented in [29].

Table 2. Classification results, in terms of precision rate and for different number of
topics, for the whole 16S bacteria dataset consisting of 3000 sequences. The results are
obtained with respect to class, order and family taxa and for full length and 400 bp
sequences.

# Topics Precision rate (%)

Length = full Length = 400 bp

class order family class order family

3 99.73 59.13 35.03 99.73 59.13 35.03

6 99.80 70.62 48.50 99.74 69.87 48.43

9 99.61 75.80 55.94 99.61 74.37 55.79

12 99.41 78.04 63.14 99.40 77.28 62.60

15 99.35 78.87 68.10 99.35 78.44 67.94

20 99.79 83.80 74.21 99.25 83.23 73.02

25 99.11 83.78 77.04 99.78 83.78 76.84

30 99.43 87.24 80.18 99.71 87.85 79.19

70 100 88.04 77.95 100 85.30 77.51

80 100 87.35 76.10 99.60 85.83 78.28

In our first experiments, we used the whole bacteria dataset, composed of
3000 sequences, considering three kinds of taxa: class, order and family. The
precision results, obtained for different number of topics, both kinds of sequence
length (full and 400 bp) and averaged after a ten-fold cross validation procedure
(see Sect. 4.2), are summarized in Table 2. We used a gradual growing number
of topics, from 3 to 30, and then we tested our approach with a very large
number of topics, i.e. 70 and 80, so that we can evaluate its performances with
a small, medium and large number of topics. Looking at the class column,
the precision values, for both sequence lengths, are always between 99 % and
100 % for each number of topics. That means the fitted topic models are able
to distinguish among the five total classes of the bacteria dataset, as reported
in Table 1. In particular, we reached almost a perfect score (99.73 %) even when
using three topics to classify five taxa, because two of the five available classes
have only one sample sequence and therefore they add only a very small amount
of classification error. As for the precision rate considering the order category,
we obtained scores lesser than 80 % when we trained the models with lesser than
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Table 3. Classification results, in terms of precision rate and for different number of
topics, for the three bacteria phyla, Actinobacteria, Firmicutes, Proteobacteria, con-
sisting each one of 1000 sequences, considering full length sequences. The results are
obtained with respect to class, order, family and genus (only for Actinobacteria)
taxa.

# Topics Precision rate (%) - length = full

Actinobacteria Firmicutes Proteobacteria

class order family genus class order family class order family

3 100 94.75 72.90 60.10 100 98.68 59.20 100 46.80 39.20

6 100 92.67 76.27 55.57 99.38 98.67 75.64 100 74.59 59.00

9 100 93.72 86.79 58.70 98.10 97.21 81.08 100 82.19 70.75

12 100 93.75 89.32 63.53 97.59 99.42 83.07 100 88.38 77.03

15 100 100 94.76 67.00 100 96.15 83.10 100 88.89 79.42

20 100 100 95.44 75.25 98.15 99.24 84.25 100 84.62 79.42

25 100 100 96.32 77.37 99.22 99.52 80.32 100 91.51 85.62

30 100 100 85.57 67.21 100 100 82.75 100 88.69 81.88

35 100 99.60 92.39 70.40 99.03 100 80.42 100 87.24 82.07

40 100 99.59 90.01 70.49 100 96.76 82.93 100 88.31 86.29

45 100 100 91.61 72.27 100 98.01 78.31 100 89.14 84.51

50 100 99.61 92.20 69.84 100 99.47 81.62 100 93.03 83.69

100 - - - 69.85 - - - - - -

20 topics. In fact, we need at least 20 topics in order to correctly classify the 19
orders (Table 1) of our dataset. In this case, we obtained a precision rate between
83 % and 88 %, with a max value (88.04 %) using 70 topics. With regards to the
family column, we obtained the highest precision score for 30 topics (80.18 %),
while we expected that the best score would be for 70 and 80 topics, because
we have 65 different categories to classify. In this case, with too many topics
(70 and 80), the fitted models were not able to proper classify the test set and,
in turn, we found better precision scores even considering a number of topics
(30) lesser than the actual number of taxa (65). We obtained almost the same
precision scores considering 400 bp sequences, with less than 1 % of difference
with respect to the scores related to the full length sequences.

In order to further investigate the proposed approach, we retrained the topic
models considering separately the three available phyla, each one consisting of
1000 sequences: Actinobacteria, Firmicutes and Proteobacteria. Once again we
adopted a ten-fold cross validation procedure. The classification results, in terms
of precision rate, are shown in Table 3, for full length sequences, and Table 4 for
400 bp sequences. Considering full length sequences (Table 3), precision scores for
class and order taxa range from 91 % to 100 % for all three phyla, considering
a number of topics at least equal to the number of categories to classify. For
example, for the order taxon, we obtained low precision scores (lesser than 80 %)
for Proteobacteria if we considered a few topics, 3 and 6, with regards to the
number of different orders, i.e. 13 (Table 1). As for the family taxon, we reached
a precision rate of about 96 % for Actinobacteria using 25 topics to classify
12 families; for Firmicutes the best precision score (84 %) is obtained using 20
topics to classify 19 families; for Proteobacteria we reachead a max precision
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Table 4. Classification results, in terms of precision rate and for different number of
topics, for the three bacteria phyla, Actinobacteria, Firmicutes, Proteobacteria, consist-
ing each one of 1000 sequences, considering 400 bp sequences. The results are obtained
with respect to class, order, family and genus (only for Actinobacteria) taxa.

# Topics Precision rate (%) - length = 400 bp

Actinobacteria Firmicutes Proteobacteria

class order family genus class order family class order family

3 100 93.53 72.60 59.90 99.19 96.76 59.10 99.71 46.60 38.80

6 100 91.90 76.04 54.83 99.47 95.54 74.50 100 72.90 58.50

9 100 94.06 86.35 57.19 99.16 98.15 81.04 100 81.38 70.53

12 100 94.19 88.36 59.38 100 99.43 82.28 100 86.27 74.17

15 100 100 91.21 66.97 99.28 91.03 80.22 98.28 87.70 75.36

20 100 100 89.85 71.55 100 97.94 81.82 98.72 87.92 74.90

25 100 100 95.47 74.79 98.11 98.41 83.82 100 84.67 77.21

30 100 100 87.10 68.81 98.63 93.10 81.21 100 87.50 73.96

35 100 99.59 91.41 70.24 99.17 96.08 78.08 100 84.53 75.84

40 100 99.57 88.28 71.27 100 96.73 80.16 98.25 84.01 79.63

45 100 100 95.57 72.91 100 97.04 77.54 100 89.45 76.99

50 100 99.55 90.64 70.65 100 93.91 80.85 100 88.84 79.86

100 - - - 69.35 - - - - - -

score of 86 % with 40 topics and 34 families. Finally, we tested our approach
considering the genus taxon only for Actinobacteria phylum. Both Firmicutes
and Proteobacteria, in fact, have a large number of different genera, respectively
110 and 204, and therefore they required to train topic models with more than
100 topics. Topic models with such a number of topics are very computationally
intensive. Looking at the genus column of Actinobacteria, in Table 2, the best
precision scores are obtained with 25 topics. even if we expected to obtain a
greater score with 100 topics because Actinobacteria phylum has 79 genera.
Once again, a topic model with too many topics, in this case 100, was not able
to proper classify the input dataset and, in turn, it produced an error rate greater
than a topic model trained with a small number of topics with respect to the
different categories to find. Moreover, topic models with hundreds of topics are
very computationally expensive to train (about 24 h for a complete ten-fold cross
validation procedure).

As for the results obtained with 400 bp sequences (Table 4), we obtained very
similar scores with respect to the full length sequences. Precision rates, in fact,
differ, at most, of less than 8 percent points and, even in this cases, we reached
precision scores of about 80 %.

Our experimental results demonstrated that probabilistic topic models gives
high classification results, ranging from 85 % to 100 %, when used to classify
genomic sequences at class, order and family taxonomic level. These high
scores are obtained using a number of topics greater than the number of actual
taxonomic levels. On the other hand, with too many topics, the resulting topic
models are not able to proper classify the test sets, resulting in low precision
scores, about 70 %. At genus level, for Actinobacteria we scored a 77 % precision
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rate, but with a number of topics lesser than the number of genera. Furthermore,
as we can see in Table 2, the precision results are dataset–dependent: this situa-
tion is very common when dealing with biological data, as recently investigated
in [30]. Moreover precision scores exhibit little variance (less than 8 percent
points) when considering 400 bp sequences, showing an high robustness of the
proposed approach with respect to sequence lengths.

5 Conclusion and Future Work

In this paper we presented a new classification approach of 16S genomic sequences
using probabilistic topic modeling. In our proposed methodology, a gene sequence
represents a document and its overlapping nucleotide fragment of fixed length k,
the k -mers, represent the words. We trained probabilistic topic models through
LDA algorithm of 3000 16S gene sequences belonging to the most populous bac-
teria phyla: Actinobacteria, Firmicutes, Proteobacteria. We trained the models
using both full length sequences (about 1200–1400 bp) and 400 bp long sequences.
We used a ten-fold cross validation procedure and a number of topics ranging
from 3 to 100, in order to analyse the classification accuracy of the fitted models
with regard to the number of topics. The best classification results, in terms of
precision rates, were obtained with 8-mers and with a number of topics greater
than the number of different taxonomic categories of the bacteria dataset. Con-
sidering the whole bacteria dataset of 3000 elements, we obtained, for both
types of sequence lengths, precision scores of 100 %, 88 % and 80 % at, respec-
tively, class, order and family taxonomic levels. Training a separate model for
each phylum, we reached more accurate results, reaching max precision scores of
100 % at class and order level for Actinobacteria and Firmicutes, and 93 % at
order level for Proteobacteria. Precision rates at family level ranged from 96 %
(Actinobacteria) to 86 % (Firmicutes and Proteobacteria). Finally we consid-
ered a topic model with 100 topics to classify Actinobacteria sequences at genus
level, obtaining a max precision score of 77 % with a number of topics (25) lesser
than the number of genera to classify (79). Considering 400 bp sequences, we
obtained almost identical results, with no significative differences in the preci-
sion scores. As future work, therefore, we are going to tune and improve the
proposed methodology in order to achieve higher classification results even at
genus level, and then to compare our approach with other 16S classifiers, like for
instance the RDP classifier [29]. Our main idea is to train a hierarchy of topic
models, considering a different model at each taxonomic level (class, order,
family and genus), so that the resulting classification results is given by the
consensus of the single classifiers.
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Abstract. Inferring significant communities of interacting proteins is
a main trend of current biological research, as this task can help in
revealing the functionality and the relevance of specific macromolecu-
lar assemblies or even in discovering possible proteins affecting a specific
biological process. Efficient algorithms able to find suitable communi-
ties inside proteins networks may support drug discovery and diseases
treatment even in earlier stages. This paper employs spectral and graph
clustering methodologies for discovering protein-protein interactions
communities in the Saccharomyces cerevisiae protein-protein interaction
network.

Keywords: Community detection · Fuzzy C-Means clustering ·
Centrality · Betweenness · Spectral clustering · Modularity

1 Introduction

Protein-protein interactions (PPIs) occur when two or more proteins bind together
in a cell, in vitro or in a living organism as the interaction interface of proteins is
evolvedtoaspecificpurpose, the interactionsbetweenproteinsareconnectedtobio-
logical functions.Not all possiblePPIs occur in any cell at a given time [9]. In studies
ofbiologicalnetworks, suchasSaccharomycescerevisiaePPIs [22]networks,weana-
lyze in this paper, communitydetection techniques are used to extract aggregations
showing dense relationships. The most used community detection algorithms can
be categorized into graph based partitioning [10], hierarchical clustering [21], par-
titional clustering [18,24], spectral clustering [13,25], edge removal [26], and mod-
ularity based methods [27].
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It is known that proteins involved in the same cellular processes often interact
with each other. Therefore, the functions of uncharacterized proteins can be
predicted through comparison with the interactions of similar known proteins,
and the detection of pertinent communities in PPIs networks can be used to
predict the function of uncharacterized proteins based on the functions of others
they are grouped with.

Adopting a suitable community detection technique in biological networks
is an open problem due to various challenges of clustering approaches. Among
them, there are the following: initialization criteria (e.g., choosing an initial
number of clusters is required in partitional clustering like K-Means [23], while
it is not needed in hierarchical clustering), accuracy (e.g., a main drawback of
hierarchical clustering is the possible misclassification of some nodes [27], while
removing edges may result in singleton clusters in graph bisection approach),
stability (e.g., results may differ depending on the specific similarity measure
used and on the random initialization of cluster centers in partitional clustering).
Other challenges are complexity (e.g., deciding whether a cut exist is an NP-
complete problem even for regular graphs or else for spectral clustering there is
a cost concerning the computation of the first k eigenvectors of their Laplacian
matrix), noise sensitivity (e.g., hierarchical clustering is very sensitive to noise
artifacts), and overlapping detection (e.g., the algorithm ability to detect possible
overlapping between communities).

In this paper, we propose a method for communities detection based on
spectral and fuzzy clustering able to infer the possible overlaps between protein
communities in networks and we study its application to the analysis of the S.
cerevisiae PPI network.

The paper is organized as follows: Graph and spectral clustering approaches
for community detection are presented in Sects. 2 and 3; in Sect. 4 we propose
the Fuzzy C-Means Spectral Modularity community detection method, while its
application to the discovery of communities in the PPI network of S. cerevisiae
is shown in Sect. 5; Sect. 6 contains the conclusions.

2 Communities Discovering in Networks Using Graph
Analysis

Community detection studies [2,5,15,27] devote huge efforts to capture complex
relational network structures by attempting to exploit weights between inter-
acting nodes. In a social network weights can be a function of the relationship
between linked individuals like co-authorship, duration, or friendship, while in
PPI networks weights refer to the biological interactions between nodes (pro-
teins).

A network can be represented as a weighted graph G(V,E), where V is the
set of vertices or nodes and E is the set of edges or lines and a number (weight)
is assigned to each edge. The length of a path with endpoint vertices s and t in
a graph G(V,E) is the sum of the weights on its edges.
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Table 1. The Newman’s edge betweenness community detection method [26].

1. Calculate the betweenness of all existing edges in the network.
2. The edge with the highest betweenness is removed.
3. The betweenness of all edges affected by the removal is recalculated.
4. Repeat steps 2 and 3 are until no edges remain.

The art of identifying nodes having more influence over the network struc-
ture than others is referred to as a node centrality study. A vertex with high
centrality implies that it lies on considerable fractions of shortest paths connect-
ing vertices. Various centrality measures are used in network analysis such as
centrality degree, closeness, betweenness, and modularity [4,14,17,20,29,31].

The centrality degree CD(v) of a node v indicates the risk of catching the
information flow and is defined as the number of links incident upon v, however
CD(v) may be deceiving due to its locality:

CD(v) =
deg(v)
n − 1

, (1)

where n is number of nodes.
Node closeness CC(v) is the inverse of “farness” or distance from other ver-

tices such that dG(v,t) is the shortest distance between nodes v and t [29]:

CC(v) = 1

/
∑

t∈V

dG(v,t) (2)

The betweenness CB(e) of an edge e is measured by the ratio between shortest
paths linking each vertex pairs s and t that pass through e referred as σst(e)
and all shortest paths between these pairs σst [4,14]:

CB(e) =
∑

s,t∈V,s ≤=t

σst(e)
σst

, (3)

Newman [26] proposed a divisive method based on progressive removal of
edges (see Table 1). Edges to be eliminated are chosen on the basis of the updated
evaluation of betweenness scores after each edge removal. Betweenness can be
computed for all vertices in time O(mn) and requires O(n + m) space for a
network with m edges and n vertices [4]. In addition to the complexity of this
approach that makes it unfeasible in application to large networks, another disad-
vantage is that there is no quantitative evaluation of the resultant communities.

Network modularity Q [27] is defined as:

Q =
1

2m

∑

i,j

[
Aij − kikj

2m

]
δ(ci, cj) (4)
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Table 2. The normalized spectral clustering method by Ng et al. [28].

1. Input: Set the initial number of clusters k∗, and the similarity matrix S ∈
Rn×n.

2. Processing:
– Compute the normalized Laplacian Lsym given in Eq. 5.
– Obtain the top k eigenvectors v1, .., vk of Lsym, and calculate V ∈ Rn×k

by reshaping them as columns.
– Get U ∈ Rn×k by normalizing the row sum of V to 1, where uij =

vij/(
∑

k v2
ik)

1
2 .

– For i = 1, .., n, let yi ∈ Rk represents the ith row of U .
– Apply K-Means for clustering (yi)i=1,..,n points into k clusters.

3. Output: Clusters C1, .., Ck.

where Aij is the weight of edge linking vertices i and j, ki =
⎢

j Aij is the degree
of vertex i, ci is the community to which node i is assigned, m = 1

2

⎢
ij Aij , and

δ(ci, cj) function is 1 if ci is the same as cj and 0 otherwise.
Network modularity is used for measuring the strength of community struc-

ture in networks and also as an objective function to maximize with suitable
optimization methods. Q is a scalar value ranging between −1 and 1. Networks
with high modularity implies the existence of dense connections within commu-
nities and of sparse links between them. Although modularity suffers a resolution
limit specially in case of detecting small communities, it has the advantages of
not requiring prior knowledge about the number or sizes of communities, and
it is capable of discovering network partitions composed of communities having
different sizes.

It is worth noting that both Newman’s betweenness [26] and Newman and
Girvan modularity [27] approaches cannot support possible overlapping commu-
nities detection.

3 Communities Discovering in Networks Using Clustering
Approaches

There are many approaches to clustering. Among them, the most promising for
discovering communities in networks is the spectral graph partitioning, proposed
by Donath and Hoffman [11].

Spectral clustering refers to methods used to cluster n objects based on the
evaluation of the Laplacian matrix obtained from the data similarity matrix
(which is symmetric and non negative), and then in application of a clustering
technique (such as K-Means) to data in a subspace spanned by the first k∗

eigenvectors of the Laplacian matrix. Several approaches exploit spectral theory
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for clustering, such as un-normalized spectral clustering by Shi and Malik [30],
normalized spectral clustering by Ng et al. [28], random-walk spectral clustering
by Melia and Shi [25].

It is worth to say that most of the previously mentioned spectral clustering
approaches differ only in the way they calculate the Laplacian matrix L, and
whether they apply a normalization step. One of the most popular approaches
to spectral clustering is the method proposed by Ng et al. [28] (see Table 2)
making use of the symmetric Laplacian matrix [6] defined as:

Lsym := D− 1
2 LD− 1

2 = I − D− 1
2 AD− 1

2 , (5)

where D is the degree matrix, and A is the adjacency matrix.
When used to detect communities in networks, spectral clustering approaches,

such as in Ng et al. [28] algorithm, present the following challenges:

1. The complexity of calculating eigenvectors increases with increasing number
of interacting vertices.

2. The number of clusters must be specified in advance.
3. Solution are instable due to the random initialization of centroids (e.g., in

case of using K-Means).
4. The method is incapable to detect possible overlaps between communities

(when we use crisp clustering techniques, e.g., K-Means).

We underline that the estimation of the optimal number of communities k∗

is an open problem. Some intra-cluster validity indices [19] (e.g. Davies Bouldin,
Dunn, etc.), or affinity measures based on eigen-gap analysis specific for spectral
clustering [33] can be used for estimating the number of clusters, but they are
not always reliable when used to estimate the number of communities k∗ inside
networks.

4 The FSM Community Detection Method

The Fuzzy C-Means Spectral Clustering Modularity (or FSM) community detec-
tion method we propose in this paper applies the following three improvements
to the original Ng et al. [28] spectral clustering algorithm, when used to detect
communities in networks:

1. First of all, the estimation of the number of clusters is performed using
the maximization of modularity procedure depicted by Neuman and Gri-
van in [27]; the estimated number of clusters, say k∗, will be used both for
selecting the top eigenvectors of the Laplacian matrix, and to set the number
of clusters in the clustering algorithm.

2. Then, the clustering in the affine subspace spanned by the first k∗ eigenvectors
is obtained with the application of the Fuzzy C-Means (FCM) clustering algo-
rithm [1,12] (see Appendix) instead of K-Means (as done in the Ng et al. [28]
approach). As FCM considers that a point may belong to two or more clusters
at the same time, with different membership degrees, this choice supports the
detection of overlapping communities and can allow us to understand the role
that each protein may play in different communities.
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Table 3. The FSM community detection method.

1. Detect the number of cluster k∗ using modularity measurement in Eq. 4.
2. Apply the spectral clustering (e.g., Ng et al. Normalized Spectral Clustering

Algorithm discussed in Sec. 3) and obtain the spectral space using top k eigen
vectors.

3. Cluster the resultant spectral space using Fuzzy C-Means in Eq.8.
4. Assign vertices to clusters having members larger than the threshold α .

3. After FCM, we apply an α-cut to remove nodes with membership to discov-
ered communities below a threshold α. This thresholding allows us to aggre-
gate only proteins having strong memberships, and to handle the noise and
possible outliers in communities. In extreme cases it allows us to eliminate
insignificant communities including nodes with low membership only. When
we have an a priori knowledge on the number of possible communities, we
can set the threshold α in order to obtain the desired number of communities.
One possible criterion is to set α as:

α =
η

l
, (6)

where l is the number of expected clusters. The parameter η (with 0 < η →
1) is a user-selectable tuning term controlling the number of simultaneous
communities to which a single node can be attributed. When η = 1, each
node can belong to one community only, whereas for η ⊥ 0 each node will be
attributed to all communities. In the experiments presented in this paper we
used η = 0.5.

Table 3 shows the FSM community detection method.

5 Saccharomyces cerevisiae PPIs Discovery

5.1 Dataset

In this paper we shall analyze the S. cerevisiae’s PPIs network. The study of
the S. cerevisiae genetic interactions and their organization by function is the
target of many bioinformatic studies [7]. S. cerevisiae genome sequence and a set
of its deletion mutants represents about 90 % of the yeast genome. S. cerevisiae
PPIs can be used to infer regulation of eukaryotic cells. With some 12 million
base pairs and 6,466 genes, at least 31 % of S. cerevisiae genes have a human
homologue [3].

We use the S. cerevisiae proteins dataset of Krogan et al. [22]. In that paper
they used a tandem affinity purification to process 4,562 different tagged pro-
teins of the yeast Saccharomyces cerevisiae. Each preparation was analyzed by
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Table 4. Properties of four different subgraphs extracted from S. cerevisiae
dataset [22]. For each subgraph we show the number of nodes (proteins), the num-
ber of edges and the number of estimated communities using Newman and Girvan
modularity [27].

SG#1 SG#2 SG#3 SG#4

Nodes 31 76 143 257

Edges 30 80 150 300

Communities 2 5 12 19

both matrix-assisted laser desorption/ionization time of flight mass spectrome-
try and liquid chromatography tandem mass spectrometry. Then they applied an
ensemble of decision trees to integrate the mass spectrometry scores and assign
probabilities to the protein-protein interactions.

We can represent the dataset as an undirected weighted graph G = (V,E)
with V vertices, corresponding to proteins, and E edges indicating protein-
protein interaction probabilities (weights) obtained from experiments shown
in [22].

We performed our experiments on subgraphs of four different sizes obtained
from S. cerevisiae dataset (see Table 4). The subgraphs were chosen on the basis
of prior knowledge about protein involved in different biological process. For
instance, protein YAL001C is the largest of six subunits of the RNA polymerase
III transcription initiation factor complex (TFIIIC); part of the TauB domain of
TFIIIC that binds DNA at the BoxB promoter sites of tRNA and similar genes
cooperates with Tfc6p in DNA binding [16].

In this paper we report the results obtained on subgraph SG#1 only.

5.2 Experimental Results and Discussion

The software was developed in Matlab R2009b(C) under Windows 7(C) 32 bit.
The experiments were performed on a laptop with 2.00 GHz dual-core processor
and 3.25 GB of RAM.

Application of Graph Analysis Methods. We analyzed applied various
centrality measures and algorithms on SG#1.

The evaluation of node centrality degree (Eq. 1) allows us to find the centroid
YAL001C only (see Fig. 1a), while closeness (Eq. 2) discovers two central nodes:
YAL007 and YDR381W (see Fig. 1b).

The results of the application of the Newman’s edge betweenness community
detection method [26] are shown in Fig. 2: Edges linking proteins YDR381W,
YAL007C and YAL001C have highest centralities, but the application of that
method is not meaningful on large subgraphs because the random null model
underlying modularity becomes unreasonable.
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Fig. 1. Centrality measurements on subgraph SG#1 of the S. cerevisiae PPI network.
(Left) Closeness of proteins; (right) proteins degree calculation.
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Fig. 3. Relationship between Newman and Girvan modularity [27] and the choice of
the number of clusters (a.k.a. communities) for the four sub-graphs.

Application of the FSM Community Detection Method. To apply the
FSM community detection method proposed in Sect. 4, we evaluated the ini-
tial number of clusters step k∗ as shown in Fig. 3 using Newman and Girvan
modularity approach [27] on the sub-graphs on Table 4.

Figure 3 shows for each sub-graph the evaluation of modularity versus the
number of clusters (or communities). The optimal values are reported on Table 4.

The we calculated the affinity or adjacency matrix A between protein pairs
s and t with entries defined as:

as,t =
{

1 if {s, t} ∈ E
0 otherwise (7)

The diagonal degree matrix D is obtained by calculating vertices degree. The
degree deg(v) of each vertex v is the number of edges incident on it.

Figure 4 shows the clustering results on subgraph SG#1 obtained in spectral
space using k∗ = 2 as the number of clusters to find (corresponding to maximum
modularity). The α-cut was set to α = 0.25.

The network is divided into two communities with centroid proteins YAL007C
and YAL001C (see Fig. 4). We notice that protein YDR381W is assigned with dif-
ferent memberships over threshold α to both communities: membership μ(C1) =
0.63 to the community C1 (with protein names framed with rectangles and cen-
troid protein YAL007C), and μ(C2) = 0.36 to the community C2 (with protein
names framed with diamonds and centroid protein YAL001C).

We also applied the FSM community detection method to the other sub-
graphs of Table 4, each of them contains the preceding subgraphs. The proposed
method showed robust results: for example, communities discovered from SG#2
contain those obtained from SG#1 analysis and we still discover the same over-
lapping proteins and fuzzy structure.
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6 Conclusions

Community detection approaches allow us to extract dense aggregation of nodes
from networks. They can be used in knowledge inference of different application
domains such as social network analysis, and biological networks. Understanding
such communities may help to understand the communication flow and the role
played by entities inside networks.

This paper proposed the Fuzzy C-Means Spectral Clustering Modularity (or
FSM) community detection method, and applies it to the identification of protein
communities and detecting their possible overlapping in the S. cerevisiae protein-
protein interaction network.

The FSM community detection method makes use of an a priori estimation
of the number of communities in the network obtained by network modularity
measures [27], then it applies the spectral approach [28] to project the data set
in the affine space spanned by the first eigenvalues of the Laplacian of the graph
associated to the network, and at that point it employs the Fuzzy C-Means
algorithm [1] to cluster data and to obtain the communities, allowing possible
overlapping among them.

The performed experiments on different sub-graphs of the S. cerevisiae protein-
protein interaction network demonstrate that the proposed approach can be used
with large networks, when the application of graph bases methods, such as New-
man’s edge betweenness community detection method [26], is not feasible, due to
their high complexity.

Application of the Fuzzy C-Means algorithm in the proposed method allows
us to detect possible overlapping (fuzzy) communities that cannot be identified
by graph analysis methods.

Appendix: Fuzzy C-Means Algorithm

The Fuzzy C-Means (FCM) clustering algorithm [1] performs the minimization
of the following functional:

Jm(U, Y ) ∪
n∑

i=1

c∑

k=1

(uik)mdik (8)

where X = {x1, x2, . . . , xn} is a data set containing n unlabeled sample points;
Y = {y1, y2, . . . , yc} is the set of the centers of clusters; U = [uik] is the c × n
fuzzy c-partition matrix, containing the membership values of all samples to all
prototypes; m ∈ (1,⇒) is the fuzziness control parameter; dik is a dissimilarity
measure between data point xi and the center yk of a specific cluster k. Usually
the Euclidean squared distance dik ∪ ⇔xi − yk⇔2 is employed as the dissimilarity
measure.

The clustering problem can be formulated as the minimization of Jm with
respect to Y , under the normalization constraint

⎢c
k=1 uik = 1.
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The necessary conditions for minimizing Jm are then:

yk =
⎢n

i=1(uik)mxi⎢n
i=1(uik)m

for all k, (9)

uik =

⎡

⎣
c∑

j=1

(
dik
djk

) 1
m−1

⎤

⎦
−1

for all i, k. (10)

The Fuzzy C-Means algorithm usually starts with a random initialization of
the fuzzy c-partition matrix U or of the centroids yk. Then, it iterates Eqs. 9
and 10 until convergence, that is usually checked by comparing the change in
the position of the centroids or in the cost function with some fixed thresholds.

Note that in the limit for m ⊥ 1 the fuzzy C-Means Functional Jm (Eq. (8))
becomes the expectation of the K-Means global error < E >∪ ⎢n

i=1

⎢c
k=1 uikdik,

and the FCM behaves as the classic K-Means algorithm [8,23,32].
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20. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D.,
Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network
Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)

21. Krause, A., et al.: Large scale hierarchical clustering of protein sequences. BMC
Bioinf. 6, 6–15 (2005)

22. Krogan, N., et al.: Global landscape of protein complexes in the yeast Saccha-
romyces cerevisiae. Nature 440, 637–643 (2006)

23. Lloyd, S.P.: Least square quantization in PCM, Bell telephone laboratories, Murray
Hill (1957). Reprinted. In: IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)

24. Mahmoud, H., Masulli, F., Rovetta, S.: Feature-based medical image registration
using a fuzzy clustering segmentation approach. In: Peterson, L.E., Masulli, F.,
Russo, G. (eds.) CIBB 2012. LNCS, vol. 7845, pp. 37–47. Springer, Heidelberg
(2013)

25. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Artificial
Intelligence and Statistics AISTATS (2001)

26. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B:
Condens. Matter 38, 321–330 (2004)

27. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

28. Ng, J., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm.
In: Proceedings of Neural Information Processing Systems, pp. 849–856 (2002)

29. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)
30. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell. 22, 888–905 (2000)
31. Shimbel, A.: Structural parameters of communication networks. Bull. Math. Bio-

phys. 15, 501–507 (1953)
32. Steinhaus, H.: Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci

1, 801–804 (1956)
33. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416

(2007)



Weighting Scheme Methods
for Enhanced Genomic Annotation Prediction

Pietro Pinoli(B), Davide Chicco, and Marco Masseroli

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy

{pinoli,davide.chicco,masseroli}elet.polimi.it

Abstract. Functional genomic annotation data banks, which store the
associations between genes (or a gene products) and terms of controlled
vocabularies describing their features, are paramount in computational
biology. Despite their undeniable importance, these data sources can-
not be considered neither complete nor totally accurate; in their curated
updates often new annotations are added and some of their annotations
are revised. In this scenario, computational methods that are able to
quicken the curation process of such data banks are very important.
To this end, the Latent Semantic Indexing (LSI) by Singular Value
Decomposition, and its Semantically IMproved (SIM) variant, have
shown to be able to predict novel functional annotations from a set
of available ones. In this work, we propose a further improvement of
those techniques, based on a preparatory weighting of the associations
between genes (or a gene products) and functional annotation terms.
We tested the effectiveness of our approach on nine Gene Ontology anno-
tation datasets. The results demonstrated that this technique is able to
improve novel annotation predictions.

Keywords: Biomolecular annotation prediction · Weighting schemes ·
Latent Semantic Indexing · Singular Value Decomposition · Semantic
analysis

1 Introduction

Thanks to the new technologies introduced in recent years, we have been wit-
nessing an exponential growth in biomedical and biomolecular information, with
a large amount of data becoming available for investigation. Among them, those
that describe the current biomedical knowledge in a controlled and computable
form are the most valuable. In particular the associations of a gene (or a gene
product) to one or more controlled vocabulary terms, which describe its func-
tional properties, are paramount to perform in silico analyses and being able
to biologically interpret experimental results. Some consortia maintain lists of
controlled terms and the sets of genes and proteins annotated to them. We refer
to those associations as functional annotations, which are stored in annotation
databases. When, as often occurs, semantic relations between annotation terms
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 76–89, 2014.
DOI: 10.1007/978-3-319-09042-9 6
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are also available (i.e. terms are organized in an ontological structure), only
the annotations of biomolecular entities to the most specific terms describing
their properties are stored in such databases. Their less specific annotations are
implicitly defined and can be automatically derived from the ontology structure.

With the progression of the biomedical knowledge, new annotations are con-
tinuously added or revised, and annotation databases are usually neither com-
plete or totally accurate. In this scenario, tools that are able to improve the
quality of available annotations, both in coverage and accuracy, are very useful.
In recent years, scientists have proposed several of such tools [1]. In 2007, Drachici
et al. [2] proposed the Latent Semantic Indexing (LSI) algorithm, enhanced by
means of data weighting schemes, to predict novel human gene annotations. In
2011, we proposed the Semantic IMprovement (SIM) algorithm [3], which is an
improved version of LSI based on clustering and semantic similarity of genes.
Here, we present an extension of these methods, featuring significant improve-
ments through the use of novel weighting schemes.

After this introduction the paper is organized as follows. In Sect. 2 we describe
both the data warehouse containing the annotation data that we considered and
the annotation unfolding method, which was used to derive all the ontological
gene annotations available from their most specific ones stored in the data ware-
house. In Sect. 3, first we present the novel weighting schemes that we defined
and their application to an annotation matrix. Then, we briefly describe the algo-
rithms that we considered for annotation prediction (Latent Semantic Indexing
and Semantically Improved Latent Semantic Indexing), applied on a weighted
annotation matrix. In Sect. 4 we describe the procedure that we used to test cor-
rectness and reliability of our predictions, and in Sect. 5 we report and discuss
some of the obtained results. Finally, in Sect. 6 we draw some conclusions about
the presented work and outline some future development.

2 Annotation Data Considered

In order to have easy access to subsequent versions of gene annotations to be
used as input to the considered algorithms or to evaluate the results that the
algorithms provided, we took advantage of the Genomic and Proteomic Data
Warehouse (GPDW) [4,5].

2.1 Genomic and Proteomic Data Warehouse

In the GPDW several controlled terminologies and ontologies, which describe
genes and gene products related biomolecular process, functionalities and
phenotypes, are stored together with their numerous annotations of genes and
proteins of many organisms imported from several well known biomolecular data-
bases. A software framework manages creation and bimonthly updating of the
GPDW with new data releases that become available in the original databases;
subsequent GPDW versions are stored for comparison. In addition, the GPDW
framework provides mechanisms for automatically checking the quality of the
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Table 1. Quantitative characteristics of the considered annotation datasets

Gallus gallus Bos taurus Danio rerio

CC MF BP CC MF BP CC MF BP

July 2009

# genes 260 308 273 497 541 511 430 692 1,525

# features 147 223 526 234 420 929 137 306 958

# annotations 477 505 735 921 931 1555 601 919 4,080

May 2013

# genes 775 690 898 1,675 1,419 1,685 1,460 1,674 3,342

# features 257 363 1,891 423 571 3,050 330 553 2,794

# annotations 1,560 1,399 3,917 3,405 2,781 7,031 2,432 2,814 11,008

Δ annotations between GPDW versions

#Δ annotations 1,083 894 3,182 2,484 1,850 5,476 1,831 1,895 6,928

%Δ annotations 227.04 177.03 432.92 269.70 198.71 52.15 304.66 206.20 169.80

imported data (both in accuracy and consistency). These quality procedures are
able to reduce, if not eliminate, errors and inconsistencies often present in anno-
tation data; thus, they provide more clean data to our methods, which can then
learn more consistent and coherent prediction models.

In the performed tests, we run our predictions on gene annotations from the
July 2009 version of the GPDW, and compared the obtained predictions to the
same annotations available in the May 2013 version of the GPDW. We focused
on the Gene Ontology (GO) [6] annotations of Gallus gallus (red junglefowl),
Bos taurus (cattle) and Danio rerio (zebrafish) genes. We chose these organisms
because their gene annotations to the three GO ontologies (Biological Process,
Molecular Function, Cellular Component) included a representative number of
annotations and involved genes and terms (i.e. gene features). Actually, we did
not use all the annotations present in the GPDW, but for each organism we
filtered out the less reliable ones (according to the GO annotation evidence) and
the ones related to very rare annotation terms (i.e. associated with less than
three genes). We denote this filtering phase as term pruning. Table 1 provides a
quantitative description of the annotation sets that we used.

2.2 Annotation Unfolding

Curators of ontological annotations always use the most specific ontology terms
to describe a given feature of an annotated gene or gene product. Such anno-
tations, named direct annotations, are the only ones available in biomolecular
databases. Yet, according to the ontology structure, when a gene or gene prod-
uct is annotated to an ontological term, it is implicitly annotated also to all the
ancestor terms of the directly annotated term. Such annotations to the ancestor
terms, which describe more generic features, are named indirect annotations.

In order to be able to provide all direct and indirect annotations, when onto-
logical annotations are imported in the GPDW from the original databases,
the ontological relationships between the annotation terms are also imported
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and the ontology structure is computed and stored in the GPDW. Thus, at
run time, when the GPDW is queried for all the ontological annotations of a
biomolecular entity, the direct annotations stored in the GPDW for that bio-
molecular entity are unfolded according to the ontology structure, the related
indirect annotations are inferred and all direct and indirect annotations are made
available. We refer to this process as annotation unfolding [7].

3 Computational Methods

In this Section we describe the techniques that we considered to predict novel
gene annotations starting from the available ones. In Subsect. 3.1 we describe the
novel weighting schemes that we propose and how we apply them to an annota-
tion matrix. In Subsects. 3.2 and 3.3 we briefly describe the prediction methods
(thoroughly illustrated in [3]) that we considered and propose to enhance with
the new weighting schemes.

3.1 Weighting Schemes for Annotation Matrices

Let G be a set of genes (or gene products) and F a set of their features described
by terms of the controlled vocabulary of an ontology. We can then build the
binary annotation matrix A → {0, 1}|G|×|F |, whose rows correspond to genes
and columns correspond to feature terms. An element A(g, f) of this matrix
can assume value 1, if the gene g is annotated to the term f or to one of its
descendants in the considered ontology structure; otherwise it assumes value
0. Previous works in information retrieval [8] have shown that it is possible to
improve the performance of a predictive system in terms of precision by using a
real representation, instead of a binary one, of the considered data. In our case
such representation can be obtained by weighting the associations between genes
and feature terms. Towards this goal, different weighting schemes can be used.
The intuitions behind these schemes are the following:

– if a feature term is included in multiple unfolding paths to the ontology root
from any of the ontology terms directly associated with a given gene, then
this feature is more strongly related to that gene than a feature represented
by a term of the same ontology that is included in less unfolding paths;

– if a feature is associated only with a limited number of genes, it is a good dis-
criminator of the genes; thus, the annotation to the term representing that fea-
ture should be considered more important, because it brings a higher amount
of information.

These two concepts can be expressed by using two statistics: term-frequency
(tf ) and inverse-gene-frequency (igf ). Term-frequency measures how important
a feature (represented by an ontology term) is to a certain gene; it provides a
local weight. For each gene g and feature f , tf(g, f) = 1 + N , where N is the
number of child-terms of f which are associated with the gene g, both directly
or indirectly (i.e. added by the unfolding procedure).
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Inverse-gene-frequency measures how important an annotation to a certain fea-
ture is; it provides a global weight that decreases the relevance of common
features, while increasing the relevance of the rare ones. For each feature f
we can compute:

igf(f) = ln
|G|

|genes annotated tof | (1)

These two statistics can be combined in order to build different weighting schemes.
Draghici et al. [2] proposed some of these schemes. Here we introduce new schemes
that differ from the previously proposed ones because of the way in which the above
frequencies are computed. In keeping with Draghici and colleagues [2], we refer to
each of our weighting schemes with a three letter code: the first letter specifies
the local weight used by the scheme (e.g. tf ), the second letter denotes the used
global weight (e.g. igf ), and the last letter indicates which normalization function
is applied (Table 2).

Each weighting schema can be applied to the annotation matrix by (a) mul-
tiplying every gene annotation by the corresponding local weight factor and by
the global weight factor of the specific annotation term and (b) normalizing the
new obtained real valued annotations by the normalization factor. For exam-
ple the schema named NTM uses as local schema the tf directly, igf as global
weighting and the maximum normalization. That is, for each entry A(g, f) of the
annotation matrix, the correspondent entry in the weighted annotation matrix
W(g, f) is computed as:

W(g, f) = tf(g, f) · igf(f) · 1
maxf ′{tf(g, f ∈) · igf(f ∈)} (2)

The possible combinations of the weight and normalization functions described
in Table 2 lead to 9 weighting schemes, but only 7 of them are distinct (notice
that the NTM and NTC schemes are equal to the MTM and MTC schemes
respectively).

Table 2. Weighting schemes

Code Name Description

Local Weight

N No-Transformation ∈f, g : wloc = tf(g, f)

M Maximum ∈f, g : wloc = tf(g, f) / maxf ′ tf(g, f ′)

A Augmented ∈f, g : wloc = 0.5 + 0.5 · (tf(g, f)/maxf ′ tf(g, f ′))

Global Weight

T Term Weight ∈f : wglob = igf(f)

Normalization

N None Normalization factor is not used

M Maximum wnorm(g, f) = w(g, f) / maxf ′w(g, f ′)

C Cosine wnorm(g, f) = w(g, f) /
√∑

f ′ w(g, f ′)
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Fig. 1. The Singular Value Decomposition of a weighted annotation matrix W.

3.2 Latent Semantic Indexing by Singular Value Decomposition

Let W be a weighted annotation matrix. The Singular Value Decomposition
(SVD) of such matrix is W = UΣVT , where V is an orthonormal |G| × p real
matrix whose columns are the left-singular vectors of W, Σ = diag(σ1, σ2, . . . ,
σp), with 0 ⊥ σp ⊥ σp−1 ⊥ . . . ⊥ σ1, is a p × p diagonal matrix of the non-
negative singular values of W, V is an orthonormal |F | × p real matrix whose
columns are the right-singular vectors of W, and p = min(|G| , |F |). Figure 1
shows an example of SVD decomposition.

Given the annotation profile of a gene (i.e. a vector a → {0, 1}|F | of all the
gene annotations to the terms of the considered vocabulary), the Vk matrix,
composed of the first k < p columns of the V matrix, can be used to obtain
the predicted annotation profile â → R

|F | for the gene. It can be computed as
follows:

âT = aTVkVT
k (3)

Then, every real valued âij annotation obtained can be compared to the corre-
sponding aij annotation in the matrix A. If, given a threshold τ → [0, 1], âij > τ
(i.e. the annotation of the gene i to the term j is suggested by the computa-
tional method used) and aij = 0 (i.e. that annotation is not given as input to
the computational method), such annotation is defined as a predicted annotation.
The threshold τ can be chosen on the basis of how many most likely annotations
are desired to be obtained. In our tests, we chose τ = 0.5.

3.3 Semantic IMprovement (SIM)

An improvement of the Latent Semantic Indexing (LSI) method has been pro-
posed with the SIM method [9], which clusters the genes and considers their
semantic similarity. The LSI method implicitly uses a global term-to-term corre-
lation matrix T = WTW, which is estimated from the whole corpus of available
annotations (notice that, according to the SVD, V is composed of the eigenvec-
tors of T). Instead, authors in [9] proposed an adaptive approach, which clusters
genes based on their original annotation profiles and for every cluster estimates
a distinct correlation matrix Tc, c = 0, 1, . . . , C, where C denotes the number
of clusters and T0 = T. For each matrix Tc, a set of k eigenvectors V̂c,k is
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computed. Then, for each gene annotation profile a, the Vc,k matrices are used
to compute C + 1 different predicted annotation profiles:

âT
c = aTVc,kVT

c,k (4)

Among them, the best predicted annotation profile of the gene is selected as the
one that minimizes the L2 -norm with respect to the original annotation profile
of the gene:

â = arg min
c=0,...,C

∈âc − a∈2 (5)

In order to build the correlation matrices Tc, the genes can be clustered based
on their functional similarity, expressed by their functional annotations. To this
end, we can exploit the SVD of the W matrix, as suggested in [10]. In fact, each
column uc of the matrix U represents a cluster and the value U(i, c) represents
the degree of membership of the gene i to the cth cluster (notice how every gene
can belong to more than one cluster at the same time, with different degrees of
membership). The estimation of Tc proceeds as follows. First, a modified gene-
to-term matrix Wc = CcW is generated, where Cc → R

|G|×|G| is a diagonal
matrix with the entries of uc along the main diagonal. Then, Tc = WT

c Wc

is computed. A more accurate clustering can be obtained by incorporating the
functional similarity between the annotation terms.

As for LSI, once the output Â matrix is obtained, every aij element of the
input annotation A matrix is compared with its corresponding âij element in
the output matrix, and the predicted annotations are found. Figure 2 provides
an overview of the SIM method with weighting schema.

3.4 Anomaly Correction

According to the hierarchical structure of an ontology and the True Path Rule of
annotations [11], when a gene (or gene products) is annotated to an ontological
term, it must be also annotated to all its ancestor terms. Yet, this is not guar-
anteed to hold for the predicted annotation profiles computed by the (weighted)
LSI or SIM methods. In fact, since they do not consider the ontology structure
and the predicted annotations are defined based on the comparison between the
predicted annotation values and a threshold, these methods might suggest that
a gene shall be annotated to a term, but not to one or more of its ancestor terms.

To avoid such anomalous cases and hence to violate the True Path Rule, we
defined an anomaly correction procedure. It is based on the transformation of
the predicted annotation values, so that the value of an annotation between a
gene and an ontological term can not be greater than any of the annotation
values of the gene to any of the term’s ancestors. Our procedure consists in
updating parent-term annotation values with the greater annotation value of
their child-terms. An iterative process is carried on from annotation ontology
leaf nodes to the ontology root node, in order to correct possible annotation
values that could create anomalies for some threshold values. Compared to more
complex anomaly correction methods previously proposed [12], this procedure
can be efficiently applied also on large annotation datasets.
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1. Retrieve the gene annotations and populate the A(g, f) annotation matrix
2. Compute the tf(g, f) and igf(f) statistics on A(g, f)
3. Define the weighting schema to be used and calculate its weighting factors

based on tf(g, f) and igf(f)
4. Compute the W(g, f) weighted annotation matrix by multiplying every ele-

ment of A(g, f) by its corresponding weighting factor
5. Define a number C ∈ {1, 2, 3, . . .N} of clusters and a truncation level k ∈ N

6. Consider only the first Uc columns of the U matrix, where c ∈ {1, ..., C} and
W = UΣV T

7. Use the membership degree U(i,c) of gene i to cluster c, to cluster the genes
8. For each cluster c:

(a) Generate W c = CcW , where Cc = diag(uc) and uc is the cth column of
the U matrix

(b) Compute the correlation matrix, T c = W c
TW c

(c) Compute the set of k eigenvectors V c,k of T c

9. For each annotation profile a of a gene g:
(a) For each cluster c, compute the vector:

âc
T = aTVc,kV

T
c,k

(b) Among the C predicted annotation profiles âc of gene g, chose as best
prediction the one that minimizes the L-2 norm:

â = arg min
c=0,...,C

‖a − ac‖2

10. Consider as predicted annotations of gene g to the feature terms f the ones
that have a(f) = 0 and â(f) > τ , with τ ∈ [0, 1] range

Fig. 2. Overview of the SIM algorithm with weighting schema

3.5 Computational Complexity

The time complexity of LSI and SIM methods is strictly related to the complex-
ity of the Singular Value Decomposition. According to [13], the computational
complexity of the Lanczos-based approach, which we have been using to approx-
imate the actual SVD of the matrix W , is O(k × (nnz + |F |)), where nnz is the
number of non-zero elements of W , k is the SVD truncation level introduced in
Subsect. 3.2 and |F | is the number of features.

The overall complexity of the weighing scheme is O(|G| × |F | × U), where U
is the complexity of the unfolding operation, which we use so as to estimate the
number of ancestor terms. This operation depends on the number of annotations
and on the ontological DAG depth; in the worst case it can be estimated to be
O(|F |2).

Given the usually high dimension of the considered annotation matrix, the
computational time could be a critical aspect of a prediction algorithm; so we
tried to optimize as much as possible the software implementation of the algo-
rithms, in particular by exploiting data parallelism where possible.
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4 Validation of Annotation Predictions

We used the algorithms described above, with and without weighting schemes,
to analyze sets of gene functional annotations and predict new gene annotations
based on the available ones. In order to assess the actual improvement given
by the weighting schemes, we compared the predictions given by the weighted
versions of the LSI and SIM algorithms with the ones given by their unweighted
versions. To this end, we evaluated the quality of a set of predicted annotations
as follows:

1. we extracted the annotations to be used as input to the prediction algorithm
from an outdated version of the GPDW (July 2009 version in our tests)

2. we excluded from those annotations the less reliable ones, i.e. the annotations
with IEA (Inferred from Electronic Annotation) evidence code

3. by running the prediction algorithm, we got a list of predicted annotations
ordered by their confidence value (i.e. their corresponding Â(g, f) value)

4. we toke into account the top P predictions (we used P = 250) and we counted
how many predictions among these P were found confirmed in the updated
version of the GPDW (May 2013 version in our tests).

We depict the validation procedure workflow in Fig. 3. Notice that selecting the
top P predictions corresponds to set, for each dataset, the value of the threshold
τ that leads to the selection of P predictions. We preferred to fix the number
of predictions rather than the value of τ , so as to homogeneously compare the
results given by different weighting schemes.

5 Validation Results

Test results for LSI and SIM methods are reported in Tables 3 and 4, respec-
tively. The obtained validation results show that the proposed weighting schemes
generally improve annotation predictions in the tested datasets, especially in the
smallest ones: in the Gallus gallus datasets, the weighted variants of LSI outper-
form the unweighted one in 14 out of 21 cases (66.7%) and the weighted variants
of SIM outperform the classical one in 16 out of 21 cases (76.2%). Overall, not
all the schemes provide equal benefits; in particular, the schemes with the No-
Transformation local weight seem to be the best ones. Conversely, the schemes
with the Augmented local weight seem to provide a poorer improvement.

Although the obtained validation results showed that the weighting schemes
are able to improve the classical predictive methods, they can be considered
only an underestimation of the real number of corrected predictions; in facts, the
computed list of predictions could include several additional biologically correct
annotations that have not been included yet in the annotation databases, and
hence in the GPDW, or which have not been even discovered yet.

As an example of our predictions, we report in Fig. 4 the Directed Acyclic
Graph (DAG) of the Gene Ontology Cellular Component terms predicted by
the LSI method, with the NTN weighting schema, as associated with the Heat
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Table 3. Validation results of the predictions obtained by the LSI algorithm, without
or with different weighting schemes: amount of the top 250 predicted gene annotations
to the GO Biological Process (BP), Molecular Function (MF) and Cellular Component
(CC) terms in the Gallus gallus, Bos taurus and Danio rerio datasets that have been
found confirmed in the updated GPDW version. In bold the cases where a weighting
schema outperforms the unweighted method. k: SVD truncation level.

LSI, k=50

Dataset None NTN NTM NTC MTN ATN ATC ATM

Gallus gallus - BP 49 43 63 55 63 44 41 53

Gallus gallus - MF 20 12 24 18 18 9 31 27

Gallus gallus - CC 24 48 31 35 43 45 39 33

Bos taurus - BP 61 53 56 34 39 53 34 47

Bos taurus - MF 36 14 33 37 31 20 38 35

Bos taurus - CC 75 102 81 79 78 70 53 87

Danio rerio - BP 36 44 36 36 47 51 42 60

Danio rerio - MF 43 26 37 34 25 48 45 36

Danio rerio - CC 40 45 42 41 33 45 27 28

Total 384 387 403 372 377 385 350 406

Table 4. Validation results of the predictions obtained by the SIM algorithm, without
or with different weighting schemes: amount of the top 250 predicted gene annotations
to the GO Biological Process (BP), Molecular Function (MF) and Cellular Component
(CC) terms in the Gallus gallus, Bos taurus and Danio rerio datasets that have been
found confirmed in the updated GPDW version. In bold the cases where a weighting
schema outperforms the unweighted method. k: SVD truncation level; C: number of
gene clusters.

SIM, k=50, C=3

Dataset None NTN NTM NTC MTN ATN ATC ATM

Gallus gallus - BP 45 86 56 50 62 24 18 43

Gallus gallus - MF 5 24 21 26 33 6 25 15

Gallus gallus - CC 31 50 32 28 42 30 42 38

Bos taurus - BP 40 55 49 64 53 35 27 22

Bos taurus - MF 39 28 28 28 20 41 32 31

Bos taurus - CC 76 91 89 70 53 22 70 63

Danio rerio - BP 55 35 70 83 56 36 36 63

Danio rerio - MF 32 35 58 22 27 48 28 21

Danio rerio - CC 33 44 41 38 22 26 24 24

Total 356 447 444 409 378 268 302 320
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Fig. 3. Workflow of the validation process that we implemented in order to assess the
quality of a set of predictions.

shock 70kDa protein 8 (HSPA8 ) gene (Entrez Gene ID: 395853 ) of the Gallus
gallus organism. One may notice that for this gene the predictions comprise new
annotations to GO terms that constitute a DAG independent branch, including
the organelle (GO:0043226 ) and membrane-bounded organelle (GO:0043227 )
terms, and new annotations to five GO terms that constitute a DAG sub-branch.
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Fig. 4. Direct Acyclic Graph of the GO Cellular Component annotation terms pre-
dicted by the LSI method, weighted with the NTN schema, as associated with the Heat
shock 70kDa protein 8 (HSPA8 ) gene (Entrez Gene ID: 395853 ) of the Gallus gallus
organism. The black circle elements represent the annotation terms of the HSPA8 gene
that were already present in the considered dataset (from the GPDW version of July
2009), while the blue hexagon elements represent those terms of the predicted anno-
tations. The intracellular part (GO:0044424 ) and cytoplasm (GO:005737 ) predicted
annotation terms, in the green rectangles, were found and confirmed in the valida-
tion dataset (from the updated GPDW version of May 2013). The other predicted
annotation terms might be added in the GPDW database in the future.

Out of these seven predicted annotations for the Gallus gallus (HSPA8 ) gene, we
found two of them in the validation dataset (from the May 2013 updated version
of the GPDW database), i.e. the annotations to intracellular part (GO:0044424 )
and cytoplasm (GO:005737 ).
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The shown prediction DAG very interestingly suggests the annotation of the
Gallus gallus (HSPA8 ) gene to several features never associated to this gene
before, including some features that are independent from the ones previously
annotated to this gene.

6 Conclusions

In this paper, we have shown that the proposed weighting schemes enhance the
predicted annotations. These schemes, associated with classical annotation pre-
diction methods based on vectorial latent semantic analysis, are able to predict
novel functional annotations useful to biologists and physicians. In addition, the
proposed weighting schemes are also independent on both the considered organ-
ism and the controlled vocabulary used for the annotations. Thus, they can
be profitably used to improve quality and coverage of biomolecular annotation
databases.

The validation tests performed on the datasets extracted from the GPDW
show a significant enhancement with respect to the correspondent unweighted
prediction methods, making the weighting schemes a remarkable tool for the
improvement of both quantity and quality of the predicted annotations. Never-
theless, our tests also underlined difficulties in the choice of the best weighting
schemes, particularly when applied on wider datasets. It seems that mostly pro-
posed weighting schemes can improve annotation prediction results on smaller
datasets. On wider datasets only some schemes can provide better predictions.

Future work will address advantages and issues related to annotation pre-
diction, for example by considering the annotations of all three GO ontologies
jointly, instead of independently, in order to take advantage of potential cor-
relations existing among them. We also plan to further verify the effectiveness
of the proposed weighting schemes by assessing the quality of the top ranked
predictions by means of a literature-based validation approach (as shown for
example in [14]). At last, our additional aim is to provide Web service access
to our implemented method and integrate such Web service with other avail-
able services within the Search Computing framework [15], in order to provide
support for answering complex life science questions [16,17].
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Abstract. Below the influence of the mechanical cues and genetic expres-
sion, constraints underlying the developmental process play a key role
in forms’ emergence. Theses constraints lead to cells’ differentiation and
sometimes determine the directions of cells growth. To better under-
stand these phenomena, we present in this paper our work focused pri-
marily on a development of a mathematical model. A one which takes
into account the co-evolution of cellular dynamics with it’s environment.
To study the influence of the developmental constraints, we have devel-
oped algorithms to make and explore a base of genomes. The purpose
of this exploration is first to check conditions under which specific genes
are activated. Then, this exploration allows us to follow the conditions
of emergence of some patterns that lead to a specific shape. From our
model, we found a genome that can generate the French flag. With this
French flag pattern and its genome starting, we addressed the following
question: is there another genome in the simulated base that achieves
the same shape, i.e. the French flag pattern?

Keywords: Mathematical modelling · Simulation of biological systems ·
Morphogenesis · Multi-agent system · French flag problem

1 Introduction

1.1 Morphogenesis: Emerging of Interests

Biomedical science has undergone a remarkable evolution during this last decade.
Advances and innovations in biotechnology, more particularly in microscopy and
imaging, have provided a large amount of data. And these data include all levels
of the biological organization. In 2007, Melani and al. achieved a tracking of
cell’s nuclei and the identification of cell’s divisions in live zebrafish’s embryos.
They used 3D+time images acquired by confocal laser scanning microscopy [13].
These kind of data allowed new description in details of many components and
structures of living organisms. Observations noticed from these data like geo-
metrical segmentations during cells’ proliferation have raised relevant issues in
mathematical and numerical point of view. But experimental complexity usu-
ally restricts observations to a single or very restricted spatial or temporal scales.
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 90–106, 2014.
DOI: 10.1007/978-3-319-09042-9 7
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Thus, one of the purposes of mathematical and computational models in biology
is to reconstruct integrated models from this large amount of data gathered at
different scales. So that, the dynamical interactions between different levels of
the biological organization is taken into account. In cellular proliferation mod-
els, it means to consider the cell as a place of integration of causalities and
downgrades.

For this purpose, tensegrity model considers biomechanical forces between
cells and the extracellular matrix. The stretching of cells adhering to the extra-
cellular matrix may result from local reshuffle in this latter. According to this
model, growth-generated strains and pressures in developing tissues regulate
morphogenesis throughout development [9]. It is therefore the biomechanical
forces which play a key role in this model of morphogenesis. For example by
modulating cell’s differentiation, influencing the direction of division or deform-
ing tissues. However, the question of cells’ diversity even arises before the acqui-
sition of shape [16]. Indeed, when the embryo has only a few pairs of cells, we
can already see a diversification of biochemical content or a diversification of
embryonic cells’ morphology. That may be the result of genetic and molecular
interactions. Indeed, the emergence of shapes also stems from the acquisition
of differential properties, from cells’ mobility and genes’ expression throughout
their development.

Moreover, Artificial Regulatory Networks also allow modelling morphogene-
sis [15]. They define a series of regulatory genes and structural genes. The first
consist of a network of rules determining the evolution of the system. And the
latter are intended to each generate a simple specific pattern. They can be seen
as a dynamical system following different trajectories in a state space [10]. How-
ever, even if the detailed knowledge of genomic sequences allows to determine
where and when different genes are expressed in the embryo, it is insufficient to
understand how the organism emerge [14].

1.2 Below Genetic Expression

So, we have looked forward to learn more about the emergent properties of
cellular organization. And especially, the importance of cellular dynamics in the
emergence and evolution of shapes, both in mathematical and numerical point
of view.

A Multicellular organism is a complex system which can be defined as a
composition of a significant number of elements interacting locally to produce a
global behaviour. Complex systems are also characterized by a high capacity of
self-adaptation and self-organization similarly to multicellular organisms. They
can evolve and learn through feedbacks between their external environment and
their internal architecture. And according to Doursat [5], whether inanimate
structures or living organisms, all processes of shape’s emergence are instances
of decentralized morphological self-organization. When cells evolve, they modify
their organism which in its turn impacts their behaviour. This is what biologists
mean by co-evolution. Epigenetic considers that this coupling between organism
and environment can not be ignored in understanding the development of living
organisms [19].
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In mathematics, the viability theory [2] offers concepts and methods to control
a dynamical system in a given fixed environment, in order to maintain it in a set
of constraints of viability. Applied to morphogenesis, this means that we should
have at least one co-viable evolution of the cells’ state and their environment
based on each state-environment pair. This formalization allows us to establish
feedback rules in terms of changes in growth direction and cells’ differentiation.
This mathematical model was formalized in [7]. So, in our computational model,
every cell has its own rules monitored by a set of controls and stays aware of
its neighbourhood. This ensures cells to be autonomous while being aware of a
wrong evolution of their dynamic, and consequently, to know when to implement
feedback mechanisms. The integration of the behaviours of each component of
the system allows to determine its global state in a finite time.

In this paper, we are going first to establish the mathematical formalization
of the model described above (Sect. 2) before presenting our morphogenesis simu-
lation tool (Sect. 3). Then, we aim to better understand the influences of shape’s
emergence on cellular dynamics. To do so, we have developed here original algo-
rithms based on the mathematical model. The main goal of these algorithms is
to explore and simulate a base formed by all possible genomes from a same set of
genes. Genome and gene don’t have the same meaning here as in Biology. In our
view, a gene carries a set of properties for the cell, such as colour, reproductive
age, energies’ minimum levels, viscosity, rigidity, maximum allowable pressure,
tolerated stress threshold, choice of dividing direction etc. In a given simulation,
it’s allowable to not define some of theses properties. Genes are designated by
their index. A genome is defined as a suit of genes’ indexes. During a simulation,
when a gene in a genome is activated, cells adopt the properties defined by this
gene. The exploration of the base of genomes allows us to verify the conditions
under which certain genes are activated. And more specifically, if these condi-
tions are unique for a targeted pattern (Sect. 4). We test the algorithms on our
morphogenesis simulation tool with the French flag as being the form to reach
(Sect. 5). Finally, we conclude before highlighting some relevant applications and
future prospects we could give to them (Sect. 6).

2 Morphological Dynamic of Cells

2.1 Mathematical Model

We proposed in [7] a mathematical model of morphogenesis through a formaliza-
tion of cellular dynamics in the context of mutational and morphological analysis
[1,12]. It provides an extension of differential equations in a metric space instead
of the classical Euclidean space R

N . At the tissue level, we have a large group
of connected cells, of a same cellular type, performing a specific function [18].
Therefore, the behaviour of cellular tissue can be seen as a result of a bottom-up
process of cellular dynamic. A minor change on tissue implies that cells have
implemented dynamics where each cell can not only “move” but also can multi-
ply, die or stay quiescent (see Fig. 1).
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Fig. 1. Multivalued analysis to formalize a cell that multiplies and moves

M ⊂ R
3 denotes the cells’ containment and represents the complement of the

vitellus1.
K ⊂ R

3 representing tissue cells, the cells are denoted by x ∈ K ⊂ R
3.

If we restrict morphogenesis in the plan,

D := {(1, 0), (−1.0)(0, 1), (0,−1)}
For convenience, we note:

D := {1, 3, 2, 4}
denotes the set of 4 planes directions and

D := D ∪ {(0, 0)} ∪ ∅
means the 6 “extended” directions.
For morphogenesis in the space R

3,

D := {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0, −1)}
For convenience:

D := {1, 3, 2, 4, 5, 6}
denotes the set of six directions and D := D ∪ {(0, 0, 0)} ∪ ∅ means the eight
“extended” directions.
We note

ΞM (K,x) := {u ∈ D, such that x + u ∈ {x} ∪ (M \ K)}
and

RM (K,x) := ΞM (K,x) × ΞM (K,x).

Then we introduce the correspondence

Ψ(x, u, v) := {x + u} ∪ {x + v}(u,v)∈RM (K,x).

The morphological dynamic ΦM is then defined by

ΦM (K) :=
⋃

x∈K

⋃

(u,v)∈RM (K,x)

Ψ(x, u, v) (1)

And the discrete morphological dynamic Kn+1 = ΦM (Kn).
1 In biology, the vitellus is the energy reserve used by the embryo during its

development.
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This gives the different cases of cell behaviour:

1. apoptosis, obtained by taking (∅, ∅) ∈ RM (K,x) since Ψ(x, ∅, ∅) = ∅ ∪ ∅ = ∅
2. migration by taking u ∈ D and v = ∅ or u = ∅ and v ∈ D or further u = v
3. stationarity, which is a migration obtained by taking u and v equal to (0, 0, 0)
4. cell division by taking u := (0, 0, 0) and v ∈ ΞM (K,x) (or vice-versa)
5. division and migration by taking u ∈ ΞM (K,x) and v ∈ ΞM (K,x)

We introduce an equivalence relation on the directions

u ≡x v if and only if x + u = x + v

which we denote by μ and ν the representatives, noting that by construction,
for every pair (μ, ν) the equivalence class, for all u ∈ μ and v ∈ ν, Ψ(x, μ, ν) =
Ψ(x, u, v) does not depend on the choice of directions belonging to equivalence
classes.

Because two cells can not occupy the same position, at most they just select
one extensive direction in each class.

The correspondence of regulation is defined by the quotient set:

ΘM (K,x) := RM (K,x)/ ≡x (2)

The morphological dynamics ΦM is always defined by

ΦM (K) :=
⋃

x∈K

⋃

(μ,ν))∈ΘM (K,x)

Ψ(x, μ, ν)

=
⋃

x∈K

⋃

(u,v)∈∈RM (K,x)

Ψ(x, u, v)
(3)

In the case of a discrete dynamic, it is defined by the sequences of control (un, vn)
associated to Kn to be able to define K(n+1).

Implementing this formalization is to set the viable directions throughout
the developmental process whatever underlying constraints.

2.2 Shapes Emergence

Thanks to our mathematical model, here is a code achieving the three first
cellular segmentations:
∀x ∈ K1 = {(0, 0, 0)}, the first route choice for step 1 (see Fig. 2) may be:

U(1, x) = U(1) = [1, 3, 2, 4, 5, 6, 0]

∀x ∈ K2 = {(0, 0, 0), (1, 0, 0)}, the second route choice for step 2 (see Fig. 3)
may be:

U(2, x) = U(2) = [2, 4, 1, 3, 5, 6, 0]
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Fig. 2. U(1, x) = U(1) = [1, 3, 2, 4, 5, 6, 0] means that the first axis of segmentation is
x-axis and the direction is right

Fig. 3. U(2, x) = U(2) = [2, 4, 1, 3, 5, 6, 0] means that the second axis of segmentation
is y-axis and the direction is forward

Fig. 4. U(3, x) = [1, 3, 2, 4, 5, 6, 0] means that the third axis of segmentation is x-axis
and the direction is right in the first choice and left in second one

∀x ∈ K3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}, the third route choice for step 3
(see Fig. 4) may be:

U(3, x) = U(3) = U(1) = [1, 3, 2, 4, 5, 6, 0]

For the following steps, the route choices can be chosen among any possible ones.
Considering, for instance, the step n, a route choice v is the one which enable
segmentation of any cell in K. That means the route choice which let the system
evolving:

u ∈ ΞM (Kn, x) = {u|x + u ∈ M \ Kn}
The list of directions in the route choice U(n, x) for which, the place is empty
in (M \ Kn) is R(n, x).

Then for each x ∈ Kn, we have a direction u ∈ R(n, x).
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And ψ(x, 0, u) = {x} ∪ {x + u}
Kn+1 = ΦM (Kn) =

⋃

x ∈ Kn

u ∈ R(n, x)

Ψ(x, u)

=
⋃

x∈Kn

Ψ(x,R(n, x))

3 Simulation Tool

In this section, we describe Dyncell which is a tool developed for simulating
generative systems [6]. The platform was created to experiment our theoretical
model of morphogenesis.

The program is implemented in C++ using a tool kit of Virtual Reality: ARéVi
[4,17]. ARéVi is a simulation library of autonomous entities with a 3D rendering
developed at European Center of Virtual Reality (Brest, France).

3.1 Architecture

The architecture of our simulation tool is based on the concept of shape. All
classes inherit from a generic parent class called Form (see Fig. 5). During simu-
lation, each instantiated object is a form by definition.

Fig. 5. Dyncell classes diagram
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This class has two main subclasses: Environment and Cell, which are the
two types of objects to be instantiated before starting any simulation.

Running a simulation always consists of instantiating an object Environment
and some Cells objects evolving in this environment.

Class Cell is responsible for representing cells. Then, an object Cell is
defined by its age, color, division speed and energy amount. During mitosis,
another Cell object is created next to the mother Cell object that triggered
the division. The position of the daughter Cell depends on the route choice
taken by its mother, as defined in the mathematical model.

Environment is a Form object which has a lifetime. It is used to delimit the
space in which cells’ population operates or to exert external forces on them.

3.2 Features

The order of scheduling has a significant impact on the results of the simulation
[3,11]. It determines how local interactions (self-organization) have been held.
Thus, how and when the system reaches the final shape. Different behaviours
can be observed in virtual models depending on the scheduling mode. When
modelling natural systems, asynchronism seems more appropriate. In morpho-
genesis, for instance, synchrony is likely to cause false correlations between cells.
In ARéVi, scheduling of agents is handled implicitly in asynchronous and stochas-
tic way. Routines of each agent are executed sequentially and entirely, the same
number of times. However the running order of agents is randomly determined.
We set as a basic principle that cells are autonomous agents and ignorant of the
whole system even if they can perceive their environment and adapt accordingly.
They are represented on screen by spheres and can proliferate in a discrete envi-
ronment (cellular automaton) or in a “continuous” one. In the latter case, the
movement of cells is more precisely described and we can have more complex
interactions.

A graphical interface has been implemented in order to set the options of the
simulation. It allows dynamic change of parameters and selecting mechanisms
(e.g. apoptosis) that will be active/inactive during the simulation.

Options are available to allow choice between 2D/3D, discrete or continuous
simulations. The size and shape of both the environment and the cells can also
be defined and adjusted.

Spatial constraints are crucial for evolution of the cells. If they are too heavy,
the cell is not viable as it can no longer divide. A maximal constraint parameter
sets up a threshold below which the cell can remain viable.

To account for the influence of the environment, a parameter is defined as the
maximum number of cells that a cell is able to push when it divides. When the
current strain of the cell is greater than the maximum stress threshold, the cell
can no longer divide. To stay alive, a cell can undertake two modes of mitosis.
Firstly, the cell chooses to divide in the direction where the stress is less intense.
Secondly, it takes a predetermined direction.

It is also possible to assign an amount of energy to each Cell. The basic
idea is to consider that an organism accumulates a certain reserve of energy by
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consuming its environment’s foods. A percentage of this reserve is used to main-
tain its structure and growth. The remaining part is used for its maturation and
reproduction. Thus, in Dyncell, at each timestep, cells lose an energy amount
intended for their structure maintaining. Moreover, during mitosis, the energy
level is shared between the mother and the daughter Cell. A Cell dies when its
energy level becomes too low.

4 Algorithms

At the initial stage of living organisms’ creation, all cells have the same genome.
But during the developmental process, they don’t all express the same genes.
Why has the dynamic of these cells changed to lead to their differentiation?
What are the factors that come into play? What is the mechanism by which this
takes place?

These are the questions that underlie any understanding of collective self-
organization and self-adaptation mechanisms that target then achieve the well-
guided form of living organisms. To address them, it is important to consider
the influence of the developmental process on the overall shape. Besides, the
underlying constraints that this development imposes locally to the cells must
be considered. The idea of the algorithms we have developed to study this influ-
ence is greatly inspired by the concept that Waddington introduced in 1940 as
the epigenetic landscape [20]. The barriers through this landscape are similar to
the constraints that the form faces through its development. Thus, each possible
path of the landscape represents a possible form evolution process. In fact, an
evolution is held in given conditions where only some specific genes can be acti-
vated (see Fig. 6). The identification of the obstacles across the landscape allows
to know where and when feedback mechanisms are involved (i.e. differentiation
that gives a particular character to the form at this time).

To study the effect of the developmental process constraints, we verify the
conditions under which feedback mechanisms are triggered. To do so, we have

Fig. 6. In 1957, Conrad Waddington proposed the concept of an epigenetic landscape
to represent the process of cellular decision-making during development. At various
points in this dynamic visual metaphor, the cell (represented by a ball) can take specific
permitted trajectories, leading to different outcomes or cell fates [8].
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generated a base of genomes formed from the same set of genes. Having a genome
that achieves a given shape, we aim to explore the entire space of possible
genomes. The aim is to see if we can find another genome which allows to reach it.

In this paper we have chosen to target the well known French flag. That
means we have sought genomes that give forms with these following
characteristics:

– activation of the same genes as the French flag (same colors),
– choice of same segmentation directions as the French flag (same shape).

In Waddington’s point of view, it implies that from different origins on the
top of the epigenetic landscape, the ball can go through different trajectories and
finally hits the same endpoint.

4.1 Software Architecture

In our software architecture, we have two main classes which handle exploration
and simulation activities.

1. Genome: represents a genome and allows us to manage all treatments that can
be performed on a genome. As we designed it, a genome is composed of one
or more genes that are activated or not during the simulation.

2. GenerateGenome: includesall theactivitiesofexploration, initialization, launch-
ing and stop. It carries initialization of the exploration’s parameters methods,
start and stop genome’s simulation methods, genomes’ treatments methods, set
of genomes’ managing methods, exploration results’ recording methods.

4.2 Genomes Base Construct

Genes are defined in an xml file with all their attributes (coded color, applied
route choice, number of repetitions in the genome, etc.). From this file, they are
loaded into a vector. And from this vector, we create all possible combinations
of genomes. Their construction is based on the characteristics of the French flag
genome which are:

1. must be composed of 4 genes
2. the 1st gene in the genome must be the same as the 4th gene
3. if n is the number of times in which is repeated the 1st gene in the genome

(called multiplicity of the gene), the 2nd gene must have therefore a multi-
plicity of 2xn and n for the 3rd and 4th genes.

Thus, all genomes are constructed in the same way (see Table 1).
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Table 1. French Flag genome characteristics

Genes Gene 1 Gene 2 Gene 3 Gene 1

Multiplicity n 2xn n n

Table 2. French Flag genome simulation results

Multiplicity Number of cells Age

3 70 1.16

4 117 1.224

5 176 1.288

6 247 1.352

4.3 Initialization

During initialization, we define matching criteria to be achieved by simulated
genomes in the base. When simulating French flag genome, we chose 3 as the
first gene’s order of multiplicity. We note that the multiplicity doesn’t affect the
shape but just its size. The bigger it is, the larger is the shape. And 3 is an
optimal value for an exploration of such a large base.

In Table 2, we have some informations from different simulations performed
with French flag genome. For a given multiplicity of the French flag’s genome
(row 1), we have the values of the criteria recorded during the simulation. The
number of cells that make it up (row 2) and the age at which it reaches its
final form (row 3). The current time is determined during the simulation by the
scheduler and is expressed as a double.

So, during the exploration, to assess that a given genome has achieved the
French flag, we mainly refer to these values of these criteria.

4.4 Description of the Algorithm

The goal of the algorithm is to explore all genomes. Each one is simulated in
order to check if it is able to reach the French flag. In other terms, if it can
achieve the same number of cells as the French flag in an identical time. If a
such genome is found, the algorithm lists it as well as the order of multiplicity
with which it has converged.

Outside a match, there may be two cases (see Fig. 7):

1. the number of cells exceeds that corresponding to the current choice of multi-
plicity. So we definitely assume that we can’t reach the French flag with this
genome. In this case, the algorithm continues exploring and pick its follower
in the base.

2. the number of cells doesn’t reach that of the current choice of multiplicity.
So, the algorithm reloads and simulates the same genome, but leads it to a
higher order of multiplicity (i.e. from 3 to 4). In the 2nd simulation of the
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Fig. 7. The algorithm’s flowchart

genome, if the number of cells corresponding to this new choice of multiplicity
is met, then the genome is finally listed. Else, if the number of cells exceeds,
we execute the same treatment as in (1). Else, if during this second simulation
of the genome, the corresponding number of cells is still not reached, we go
back to (2): increase multiplicity from 4 to 5 in the 3rd simulation of the
genome.

While the number of cells keeps being lower than that expected, we rede-
fine the current genome by modifying its genes’ parameters of multiplicity. This
operation is repeated a maximum allowed number of times. In the algorithm,
it is 3 times. So the last choice of multiplicity is 6 with an expected number of
cell of 247 in 1.352 time units. In this step, the genome is no longer reloaded,
considered definitely not able to achieve the French flag. Then, the algorithm
continues exploring and picks its follower in the base.

When the algorithm has finished simulating all genomes, the program stops
and we retrieve the results in an output file.

5 Evaluation

5.1 Test Conditions

In the tests we have achieved, the targeted pattern was, as shown in Fig. 8, the
French flag introduced by L. Wolpert in 1969 [21].

The genome which allows to generate the French flag is as follows (details in
Table 3): [1 2 3 1].
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Fig. 8. Pattern targeted by genomes in the base

Table 3. Informations carried by the French flag genome

Genes Colour coded Direction indicated

in the route choice

1 Blue Right

2 White Forward

3 Red Left

For the 64 genes we have, we obtained 262,114 possible combinations of genomes.
This number made the exploration space pretty huge. Indeed, the simulation of
the entire base took 5 days. Simulations were done on a computer with the
following characteristics:

– System: Linux 32 bits
– Processor: Intel Core 2 CPU 6300 1.86GHz x 2
– RAM: 2 Go
– GPU: ATI Readon X1300/X1550 Series (256MB)

5.2 Output Results

5 genomes were identified as generating forms with characteristics identical to
those of the French flag (see Fig. 9):

[1 2 4 1] - [1 4 2 1] - [3 2 1 3] - [4 1 2 4] - [4 3 2 4].

They have all achieved it with the first order of multiplicity (i.e. 3). Consequently,
they are each composed of 70 cells with a maturation age of 1.16 time units
(ref. Table 2).

We note that among these 5 forms retained, there are only 2 in which exactly
the three genes of the French flag are activated: [4 3 2 4]-[3 2 1 3]. And only
1 of these 2 is same as French flag : [3 2 1 3].



French Flag Tracking by Morphogenetic Simulation 103

Fig. 9. Forms identified by the algorithm that have met matching criteria of the French
flag

Fig. 10. Example of a discarded form after three attempts of reaching the French flag

So, from two different genomes, we have reached the same form.
Two generated forms discarded by the algorithm are presented in Figs. 10

and 11.
The first one presents the case where removal is due to the fact that the

algorithm has reloaded the 3 times authorized the same genome [1 1 3 1] without
reaching the sought pattern. Based on the output results of the simulation, we
can point out that for these 3 times, the number of cells remains 13. Then, the
algorithm moves to the next genome.

The second one presents the case where removal is due to the exceed number
of cells in the generating form. An excess relative to that of the sought pattern
with respect to the defined order of multiplicity. Here too, output results show
that the algorithm aborts the simulation of the genome [3 2 12 3] and proceeds
to the next one in the base.



104 A. Sarr et al.

Fig. 11. Example of a discarded form with a number of cells exceeded that targeted

6 Conclusion

Inspired by the concept of epigenetic landscape, we have shown the importance of
the developmental process constraints on the final form. Starting from 2 different
genomes, we have achieved the same form thanks to the choices of feedback
mechanisms to deal with stress throughout development. Theses mechanisms
are, on the one hand, cellular differentiation. It allows the activated genes to
encode the colors of the form. On the other hand, feedback mechanisms imply
successive changes of direction. This allows to generate (to design) the shape as
it goes along.

6.1 Relevance to Biological Issues

The model is tested in French flag pattern because it is a widely known issue in
studying the factors that put into play in cells’ differentiation. It constitutes the
first steps towards the comprehension of biological mechanisms. Nevertheless,
in future works, it might be also possible to test the model in real case. For
example, in genetics, single nucleotide polymorphism (SNP) is the variation of a
single base pair of the genome between individuals of same species. They are used
for recognition of individuals or reconstruction of family trees. In our algorithm,
we could build the genomes’ base so that they are all identical except the last
gene in each of them. This gene, different from one genome to another, would
constitute our SNP. Then, to study the influence of this SNP, we can simulate
the genomes and compare the generated forms.

We can also consider applying the algorithm to look for genomes that can
generate more complex forms. Indeed, from the cell lineage of an organism, we
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can know its number of cells and its different type of cells. We can take the case of
Caenorhabditis Elegans (C. Elegans). This is an eukaryote2, which means that it
shares cellular structures, molecular structures and control channels with organ-
isms of higher species. Thus, its biological informations (embryogenesis, morpho-
genesis, growth, etc.) could be directly applicable to more complex organisms,
such as humans. In addition, it has a fixed number of cells. The adult her-
maphrodite is composed of 959 somatic nuclei and the adult male of 1031 while
the young consists of 1090. The algorithm can be used to search in the base a
genome which can generate a form with the following characteristics: an identi-
cal number of cells as the C. Elegans and the same number of activated genes
than cellular types in C. Elegans.

6.2 Future Works

To consider the description of all types of dynamics, we plan to study a gener-
alization of our mathematical model. In the current model, when a cell initiates
mitosis, we just create next to it another one. The mother cell does not imple-
ment any other mechanism. Therefore, we will consider a mathematical model
where the mother cell can in each time step:

– remain quiescent as it is in the current model,
– migrate to another point or,
– die.

This formalization will allow to reach all possible forms. The development of a
such model raises new challenges in mathematical and numerical perspectives.
Because describing all possible dynamics for each cell at each time step offers
many options to consider. In computing, parallel programming on GPU3 could
overcome scalability and duration of simulations.
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13. Melani, C., Peyriéras, N., Mikula, K., Zanella, C., Campana, M., Rizzi, B.,
Veronesi, F., Sarti, A., Lombardot, B., Bourgine, P.: Cells tracking in the live
zebrafish embryo. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 1631–1634 (2007)

14. Müller, G., Newman, S.: Origination of Organismal Form: Beyond the Gene in
Developmental and Evolutionary Biology. MIT Press, Cambridge (2003)
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pp. 179–201. Belin, Paris (2006)

17. Reignier, P., Harrouet, F., Morvan, S., Tisseau, J., Duval, T.: ARéVi: a virtual
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Abstract. The conditional logistic regression model is the standard tool
for the analysis of epidemiological studies in which one or more cases (the
event of interest), are matched with one or more controls (not showing the
event). These situations arise, for example, in matched case–control and
case–crossover studies. In sparse and high-dimensional settings, penal-
ized methods, such as the Lasso, have emerged as an alternative to con-
ventional estimation and variable selection procedures. We describe the
R package clogitLasso, which brings together algorithms to estimate
parameters of conditional logistic models using sparsity-inducing penal-
ties. Most individually matched designs are covered, and, beside Lasso,
Elastic Net, adaptive Lasso and bootstrapped versions are available.
Different criteria for choosing the regularization term are implemented,
accounting for the dependency of data. Finally, stability is assessed by
resampling methods. We previously review the recent works pertaining
to clogitLasso. We also report the use in exploratory analysis of a large
pharmacoepidemiological study.

Keywords: Software tool · Biostatistics · Algorithms for pharmacoepi-
demiology · Penalized conditional logistic regression · Lasso

1 Introduction

Epidemiological case–control studies are used to identify factors that may con-
tribute to a medical condition by comparing a group of cases, that is, people
with the condition under investigation (a disease, for example), with a group
of controls who do not have the condition but who are believed to be similar
c© Springer International Publishing Switzerland 2014
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in other respects. Logistic regression is the most important statistical method
in epidemiology to analyze data arising from a case-control study. It allows to
account for the potential confounders and, if the logistic model is correct, to
eliminate their effect.

Cases and controls are sometimes matched: every case is matched with a
preset number of controls who share a similar exposure to these matching fac-
tors, to ensure that controls and cases are similar in variables that are related
to the variable under study but are not of interest by themselves [1]. Matching
is useful when the distributions of the confounders differs radically between the
unmatched comparison groups. In these situations, the weight of confounding
factors is so important that a simple adjustment does not guarantee a straight-
forward interpretation of results. Advantages (as elimination of confounding or
gain in efficiency) and disadvantages (as possible reduction in sample size or
introduction of new bias if the matching factor is not a confounder but is in the
causal pathway between exposure and disease), use and misuse of matching have
been widely discussed in the literature [1–10].

The case-crossover design, in which each subject serves as his own control, is
a particular matched case-control design [11,12]. The association between event
onset and risk factors is estimated by comparing exposure during the period of
time just prior to the event onset (case period) to the same subject’s exposure
during one or more control periods. As a result, this design inherently eliminates
the bias in control selection and removes the confounding effects of time-invariant
factors. However, the case-crossover design is sensitive to the effects of time-
varying risk factors [13,14].

The conditional logistic regression model is the standard tool for the analy-
sis of individually matched case–control and case–crossover studies. Usually,
regression coefficients are estimated by maximizing the conditional log–likelihood
function and variable selection is performed by conventional manual or auto-
matic selection procedures, such as stepwise. These techniques are, however,
unsatisfactory to analyze high-dimensional data which arise nowadays in many
diverse fields of epidemiological research (genetic, environmental or pharmaco–
epidemiology, for instance).

Fortunately, appropriate statistical methods have been proposed to address
problems in high-dimensional settings where the number of relevant predictors
is expected to be small. The issue there is to find reasonably accurate sparse
solutions that are easy to interpret and can be used for the prediction and/or
estimation of the predictors effects on the response. Penalized methods, such as
the Lasso (least absolute shrinkage and selection operator) [15], have emerged as
an alternative. In particular, the Lasso and related methods have recently been
adapted to conditional logistic regression [16,17].

2 Conditional Logistic Regression

In matched case-control, the data are not independent. Each case is seen as
one stratum with its set of matched controls. The standard analysis tool is then
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conditional logistic regression [18], which differs from ordinary logistic regression
in that it allows intercept to vary among the matched sets. As a consequence of
matching, the effects of matching covariates on the response are not estimable.
Also, the likelihood function has to be conditional on the design.

2.1 The Model

We focus our attention on the relationship between several input variables X =
(X1, . . . , Xp) and the binary response variable Y → {0, 1}. In the matched case-
control design, observations are grouped into strata (indexed by n = 1, . . . , N),
and each stratum consists in one case (with y = 1) and M controls (with y = 0).
The vector of observations for subject i of stratum n is xin = (xin1, . . . , xinp),
i = 1, . . . , M + 1. The data matrix of dimension (N × (M + 1)) × p is denote X.

Let Pin be the (unconditional on the design) probability of occurrence of
the event for the i-th subject of the n-th stratum. Consider the logistic model,
supposing that disease risk differs among strata:

Pin = P (Yin = 1|xin) =
1

1 + e−(αn+xinβ)
, (1)

where αn are coefficients representing the effect of matching covariates on the
response; and coefficients β = (β1, . . . , βp)∈ represent the effect of predictors.

2.2 Conditional Likelihood

When the differences among strata are not of interest, we only wish to estimate
β. Consider the n-th stratum, the unconditional probability of observing the
occurrence of the event only in the i-th subject is:

(1 − P1n) . . . (1 − Pi−1n)Pin(1 − Pi+1n) . . . (1 − PM+1n) . (2)

Under the logistic model, the conditional probability (conditional on the design
where each stratum consists in 1 case and M controls) is given by:

Pin

1−Pin

∏M+1
l=1 (1 − Pln)

∑M+1
l=1

Pln

1−Pln

∏M+1
i=1 (1 − Pin)

=
exinβ

∑M+1
l=1 exlnβ

. (3)

Using the convention that all cases are indexed by l = 1 (Y1n = 1 and Yln = 0,
l ⊥= 1), the negative log conditional likelihood loss function, evaluated at β and
D = {(xin, yin)}i=1,...,M+1;n=1,...,N can be written as:

L(β,D) = −
N∑

n=1

[
x1nβ − log

( M+1∑

l=1

exlnβ
)]

. (4)

Usually, the estimation of the parameters vector β is found by minimizing the
negative log conditional likelihood loss function:

β̂
ML

D = argmin
β

(
L(β,D)

)
, (5)

and inference is based on the estimated covariance matrix of the parameter
estimates. Notice that αn disappear from the likelihood function.
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2.3 L1 Penalized Conditional Likelihood

The penalization of likelihoods by L1-norms has become an established and rel-
atively standard technique with sparse high-dimensional data: these techniques
may improve prediction accuracy (since regularization leads to variance reduc-
tion) together with interpretability (since sparsity identifies a subset of variables
with strong effects). Computationally, these penalties are attractive (the opti-
mization problem is convex), and their theoretical properties have been inten-
sively studied during the last years.

The Lasso applied to conditional logistic regression consists in minimizing
the negative log conditional likelihood penalized by the L1-norm of the unknown
coefficient vector:

β̂
L

D(λ) = argmin
β

(
L(β,D) + λ∈β∈1

)
,

where λ is a regularization parameter, and ∈β∈1 =
∑p

j=1 |βj | is the L1-norm of
coefficients. Consistency properties of Lasso for estimating the regression para-
meter and for variable selection have been well studied in the linear regression
case (see, for example, [19–25]) and, in a second time, in the logistic regres-
sion case (see, for example, [26–29]). While the Lasso has excellent properties in
dimensionality reduction and estimation, it generally does not lead to consistent
model selection, only to conservative model selection: with a proper penalty
parameter, the Lasso retains the relevant variables, but also a few additional
irrelevant ones (see for example, [30] and [31] for logistic regression).

Different procedures have been proposed to address this particular problem.
In the adaptive Lasso [32], weights are incorporated in the L1-norm to provide
an adaptive penalization of coefficients:

β̂
AL

D (λ) = argmin
β

(
L(β,D) + λ

p∑

j=1

wj |βj |
)
.

The adaptive Lasso attempts to reduce the estimation bias and improve
variable selection accuracy by assigning heavy penalties to zero coefficients and
lighter ones for nonzero coefficients. The weights are often chosen to be inversely
proportional to the magnitude of a basic estimate of the coefficients, such as the
maximum likelihood estimate wj = |β̂ML

j |−1 or the Lasso estimate wj = |β̂L
j |−1,

with the convention wj = ∪ if |β̂L
j | = 0 (if a predictor is not selected by the

Lasso, it will also not be selected by the adaptive Lasso [27]). The latter choice
is operative when the total number of predictors is larger than the sample size.

Other enhancements of the Lasso based on resampling techniques have been
introduced in the literature, starting with Bolasso [22], which consists in drawing
bootstrap samples from the original training set and then intersecting the sup-
ports of the Lasso bootstrap estimates or, in the soft version of Bolasso, selecting
predictors frequently present in the bootstrap replications (see also [33–36]).

The random Lasso [37] randomly selects candidate predictors and then aver-
ages the predictive models adjusted on bootstrap samples. This procedure alle-
viate another known weakness of the Lasso, which tends to select only few of the
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relevant predictors when the latter are highly correlated. The elastic net [38] is
another proposal targeting the same issue, using a deterministic approach and
a different penalty:

β̂
EN

D (λ1, λ2) = argmin
β

(
L(β,D) + λ1∈β∈1 + λ2∈β∈2

)
, (6)

where the Lasso penalty, controlled by the regularization parameter λ1, is com-
plemented with a quadratic penalty term controlled by λ2, designed to compen-
sate for the correlation between predictors.

3 Complexity Tuning

The parameter λ ⇒ 0 controls the complexity of the model, so that if λ ⇔ ∪,
we obtain the “null model” in which no variable is useful, whereas if λ = 0, the
solution is the unpenalized conditional logistic regression estimate obtained by
minimizing the likelihood-based loss function. The performance of the Lasso and
related methods depends crucially on the choice of the tuning parameter [28,39].

When prediction accuracy is sought, λ can be estimated by cross-validation.
The data set D is first chunked into K disjoint blocks of the same size N/K,
where N is the number of strata (we recall here that strata correspond to subjects
and assume to simplify that N is a multiple of K). Let us write Dk for the k-
th block, and D\Dk the training set obtained by removing the elements in Dk

from D. The negative conditional log-likelihood-based cross-validation criterion,
preserving the matching of data, is [40,41]:

CV (λ) =
1
K

K∑

k=1

L
(
β̂D\Dk

(λ),Dk

)
.

λ̂ = argminλCV (λ) minimizes the average of the log-likelihood, evaluated on test
block Dk, of the parameters estimated from the training set deprived from Dk.

Common choices for K are 5 and 10. Note that K-fold cross-validation with
K = N is leave-one-out cross-validation, recommended for small sample sizes if
the signal-to-noise ratio is large enough [42]. Leave-one-out cross-validation can
be approximated by generalized cross-validation:

GCV (λ) =
2L(β,D)

[1 − df(λ)/
(
N × (M + 1)

)
]2

,

where df(λ) corresponds to the effective number of parameters [43]. A simple
unbiased estimator of df(λ) is the number of coefficients estimated to be nonzero
[44,45]. For large datasets, we can use the Akaike information criterion (AIC):

AIC(λ) = 2L(β,D) + df(λ)2
(
N × (M + 1)

)
.

AIC is efficient (asymptotically optimal) and it is asymptotically equivalent to
leave-one-out cross-validation, without incurring the additional computational
cost.
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Cross-validation does not primarily target the identification of the set of
truly relevant variables (also known in this context as support recovery), since
prediction and identification are somehow conflicting goals [46–48]. A voting-
based cross-validation in which λ̂ is the λ-value that minimizes a majority of the
likelihood-based loss function evaluated at a given test block when the training
set is deprived from him is model consistent when a larger proportion of data is
put in the test block [47,49]. Thus, λ̂ is the more frequent value in {λ̂k}k=1,...,K ,
where:

λ̂k = argminλL
(
β̂Dk

(λ),D\Dk

)
.

When the Lasso is primarily used to identify relevant variables, the Bayesian
information criterion (BIC) may be appropriate:

BIC(λ) = 2L(β,D) + df(λ) log
(
N × (M + 1)

)
.

Other criteria aim to control the false discovery rate [50].
Two parameters have to be tuned in the elastic net (6) and the soft version of

Bolasso (λ and the frequency threshold). A two–dimensional grid search is rec-
ommended for the elastic net (instead of successive one-dimensional optimiza-
tion) [51]. Knowledge-driven [52,53] as well as data-driven (CV, AIC) [54,55]
approaches are used to choose the frequency threshold of Bolasso.

4 Uncertainty Measures

Lasso-related methods are useful for constructing analytic models in high–
dimensional settings. However, recent reviews have pointed out the under-use of
these new techniques in epidemiological publications [56,57], despite admitted
drawbacks of stepwise-type procedures and other conventional methods [58–61].

We believe that the main obstacle for the use of penalization techniques in
epidemiological studies resides in the lack of undisputed uncertainty measures
attached to estimators. Confidence intervals based on approximations of the
covariance matrix of the estimated coefficients have been derived [15,32,62,63],
but their reliability is questionable [19,64]. Few of the studies that use Lasso-
related methods to analyze real data provide measures of uncertainty. These few
studies use bootstrapping to generate measures of statistical accuracy. Reference
[65] use the mean and the standard error of the estimates computed from the
bootstrap samples, and the percentage of the bootstrap coefficients at zero to
validate the chosen coefficient estimates. Reference [66] use bootstrap-normal
confidence intervals in the analysis of genetic data to indicate the statistical
importance of a selected variable. Reference [53] complement the Lasso step by
a bootstrap step to measure the frequency with which each predictor is chosen
by the Lasso procedure.

This is a critical problem as it is known that confidence intervals of sparse
estimators are larger than the ones of ordinary likelihood estimators, when the
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tuning parameter is chosen to lead to consistent model selection [67–69]. The dis-
continuity of the sampling distribution of the parameters raises also a difficulty
regarding the interpretation of standard errors [70]. Some authors consider that
standard errors are not very meaningful for penalized estimates since the vari-
ance of estimators is reduced by introducing substantial bias: the bias is then a
major component of the mean squared error of the estimator, while the variance
may only contribute minimally. As a result, bootstrap would give an assessment
of the variance of the estimates, but could not give a sufficiently accurate esti-
mate of the bias [71]. Bootstrap-based confidence intervals have been shown to
be inconsistent in the presence of any irrelevant variable (true zero coefficients)
[19,64]. The residual bootstrap mimics the main features of the regression model
closely but it fails to reproduce the sign of the zero-components of β with suf-
ficient accuracy in the formulation of the bootstrap Lasso estimation criterion,
leading to a random limit, and subsequently, to inconsistency.

Reference [36] proposed a modified version of the residual based bootstrap
method for linear regression that takes into account the particularities of the
limiting distribution of the L1-penalized least squares estimator. The idea is to
force components of the Lasso estimator β̂ to be exactly zero whenever they
are close to zero. The modified bootstrap is consistent for estimating the dis-
tribution of the estimator, however it is not uniformly consistent and so the
resulting confidence interval will most likely not be valid uniformly with respect
to the unknown parameter values. Reference [72] adapted this method to the
L1-penalized logistic model by different bootstrap procedures (standard residual
bootstrap, one-step residual resampling based on the ridge-based reformulation
of Lasso, double bootstrap). Reference [73] used bootstrap percentile confidence
intervals to account for uncertainty in selection by adapting the modifications
suggested in [36] to logistic regression.

At the moment it is still not clear how to construct valid confidence inter-
vals for this type of estimators. Reference [68] have shown how to do it in the
case of linear orthogonal design (asymptotically and also for finite samples) but
adjusting it for more general situations is still an open research topic. Another
possibility is to adopt the Bayesian formulation of Lasso that naturally leads to
valid standard errors [74,75].

5 Standardization, Bias Correction, Unpenalized
Predictors

Penalization techniques based on norms being sensitive to scaling, covariates are
usually standardized (and, sometimes, also mean-centered), in order to compare
and remove predictors from the model. It should be noted that, in an identi-
fication approach, even if predictors are in the same units already (as in the
case of binary covariates), it is useful to standardize: without scaling, the Lasso
estimate has a tendency to disregard predictors with small variability on the
sample used for estimation which may be as important regarding inference as
more commonly ones. A classical scaling approach in penalized regression model
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is from 0 to 1. This would prevent detrimental effects on binary covariates which
would be actually unscaled. Covariates can be standardized by dividing by their
respective standard errors or the diagonal elements of the covariance matrix of
the minimum likelihood estimator [76].

Penalized estimation goes through the introduction of a bias on the estimated
coefficients. To correct bias, we can fit the unpenalized regression model with the
covariates retained in the model (those having a nonzero point estimate) [77].

A common approach in epidemiological studies consists in forcing some of
the covariates into the model in order to ensure that the apparent differences
between predictor values of cases and controls are not misleadingly created by
confounding covariates. Thus, to control for potential confounding, these covari-
ates can be unpenalized, so that they are not permitted to drop out of the
model.

Usually, in epidemiological studies, categorical variables are coded using
grouped dummy variables and pairwise-products of original variables represent-
ing pairwise-interactions are included in the model. In that cases, to enhance
interpretability, grouped dummy variables corresponding to a given categorical
variable are removed altogether or selected all them, and optional variables asso-
ciated to relevant interactions become mandatory. Several proposals specifically
address the question of interactions [78] or categorical variables [79].

6 Capabilities of clogitLasso

The R package clogitLasso (available on request from authors) implements,
for small to moderate sample sizes (less than 3000 observations), the algorithms
discussed in [17], based on the stratified discrete-time Cox proportional haz-
ards model and depending on the penalized package [71]. For large datasets,
clogitLasso computes the efficient procedures proposed in [80], based on an
IRLS (iteratively re-weighted least squares) algorithm and depending on the
lassoshooting package [81]. Methods and model selection criteria reviewed in
Sects. 2.3 and 3 are available.

In the situation of unbalanced strata in a 1:M study and in the situation
in which there is M controls matched to more than one case in each stra-
tum, only the algorithm based on the stratified discrete-time Cox proportional
hazards model applies. The penalized package is optimized for scenarios with
many covariates but does not handle a large amount of observations, then these
situations can be analyzed only for small to moderate sized samples. Elastic
net is available when calling penalized but unavailable in the lassoshooting
package.

A basic nonparametric bootstrap allows us to provide the frequency with
which each predictor is chosen by the Lasso. A heuristic algorithm combining
two ideas: the modification by means of a threshold constant, introduced in [36],
and the pre-selection of candidate variables by means of a measure of impor-
tance, used in [37], is also proposed (if the threshold constant is fixed to 0 and
the number of candidate predictors if fixed to be greater or equal to the number
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of nonzero Lasso coefficients, the procedure consists in bootstrapping only the
selected predictors). This procedure is also closed to iterated Lasso [27] except
that Bolasso replaces the adaptive Lasso procedure in which weights are deter-
mined in a previous Lasso step. Residual or one-step (using IRLS last step)
versions of bootstrap [72] are however not available.

When variable standardization is performed prior to fitting, the coefficients
are returned on the original scale.

clogitLasso depends on the survival package to estimate regression coeffi-
cients using (unpenalized) conditional maximum likelihood, when a bias correc-
tion step is applied. Classic maximum likelihood estimation is also needed when
using adaptive Lasso or univariate logistic regression (predictor by predictor) ad
hoc method. We have no solution by now concerning the handling of grouped
categorical variables. In the situation in which there is an interest on interac-
tion effects, we suggest to apply a two step procedure: in step 1, clogitLasso is
applied to original predictors; in step 2, clogitLasso is applied to the predictors
selected in step 1, forcing them into the model, plus their interactions.

6.1 Example 1

To illustrate the use of clogitLasso in a 1:M matched case-control study with
unbalanced strata and N < p, we consider the infertility after spontaneous
and induced abortion data from the survival R package. Each of the 83 cases
(infertile women) is matched to one or two controls (fertile women) on age,
education and parity (the number of children to which a woman has given birth).
There are two predictors, the number of prior induced abortions and the number
of prior spontaneous abortions (0, 1, 2 or more). We add 1000 irrelevant variables
independently Bernoulli distributed with a probability of 0.8.

Figure 1 shows coefficient estimates for each variable as a function of λ.
The vertical line indicates the λ value minimizing the 10-fold likelihood cross-
validation criterion (λ̂ = 6.4). The cross-validation function of λ is represented at
right. The Lasso with a cross-validation criterion selected the two risk factors and
some noise variable (9 among 1000, in the present example). As noticed above,
when a prediction–based method, such as cross–validation, is used to estimate
the regularization parameter, in general, the Lasso retains the relevant predic-
tors, but also a few additional irrelevant ones, though, typically, their estimates
are small. Indeed, the two truly associated variables have a positive coefficient
and some of the 9 noise variables have negative signs, then the overall prediction
of the response is slightly better than predicting the response by using only the
two truly associated variables with lower coefficient values (for example, with
λ̂ = 8.2).

6.2 Example 2

To illustrate the use of clogitLasso in a large 1:1 case-crossover study, we
consider the exposure to medicinal drugs and the risk of being involved in an
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Fig. 1. L1-regularization path as a function of λ for the infertility data with 100 noise
variables (left). Original predictors (the number of prior induced abortions and the
number of prior spontaneous abortions) are plotted in black while noise variables are in
grey. Cross–validation values as a function of λ (right). The red vertical lines indicate
the λ value minimizing the 10-fold likelihood-based cross-validation criterion (Color
figure online).

injurious non-alcohol related road traffic crash in France [55]. We consider all
dispensed and reimbursed medicines to the drivers, coded by the WHO ATC
(World Health Organization Anatomical Therapeutic Chemical) classification
fourth level system. This leads to 402 candidate binary predictors (exposure,
coded 1, and unexposure, coded 0, to each medicinal drug). The case period is
designated as the one-day period preceding the crash, and the control period
is designated as the one-day period one month preceding the crash, to avoid
any residual effect of an exposure in the control period on the case one. 36,612
person-periods contributed to the estimation.

The use of Lasso–related techniques is justified in this context as follows.
First, regression models, with straightforward interpretation, are the most impor-
tant statistical techniques used in analytical epidemiology. Thus, these tech-
niques appear to be a good compromise between traditional and data-driven
approaches since modeling is based on standard regression models, rather than
a black–box. Second, controlling for potential confounding is an critical point in
epidemiology, thus multivariate modeling approaches are preferable to separate
univariate tests. Third, it is expected that that only few drugs will be truly
associated with the risk of being involved in a road traffic crash, thus sparsity-
inducing penalties seem to be appropriate. It is also expected that some of these
relevant drugs will have a weakly strength of association, however, only predic-
tors with effect sizes above the noise level can be detected using Lasso–related
techniques. Nevertheless, this limitation is shared by any model selection method
[21,53,82]. Although some drugs are usually prescribed together and correlation
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problems are possible, we observed only mild correlation, probably because the
large sample size.

Our main goal is to identify prescription drugs associated with an increased
risk of crash. Here we considered Bolasso, thus only exposures frequently chosen
by Lasso over the bootstrap samples are selected, which improves results’ stabil-
ity. Two parameters have to be tuned: lambda and the frequency threshold. We
used 10-fold likelihood-based cross-validation to estimate the penalization para-
meter (for each bootstrap sample) and AIC to estimate the frequency threshold
(over 1000 bootstrap samples). Penalization is intended to control variance, at
the cost of introducing bias in the estimated coefficients. Subsequent to the
Bolasso procedure, we corrected for bias.

Figure 2 shows coefficient estimates for each variable as a function of λ for
one of the bootstrap samples (left). The mean±standard deviation number of
selected drugs across the 1000 resamples was 157 ± 14. For the particular boot-
strap sample in the figure, cross-validation leaded to a model containing 151
drugs. However only 32 among them were selected in at least 78 % (the fre-
quency threshold estimated using AIC) of the bootstrap samples. Coefficient
values of drugs stably selected are indicated in black, the others are in grey.

Some pharmacoepidemiological results were consistent with literature (for
example, benzodiazepine hypnotics: N05CD, anxiolytics: N05BA, N05BC).

Fig. 2. L1-regularization path as a function of λ for one particular bootstrap sample
of the case-crossover data of medicinal drugs related traffic accidents (left). The top
axis indicates the number of drugs selected (with non null estimated coefficients) as a
function of lambda. The red vertical line indicates the λ value minimizing the 10-fold
likelihood-based cross-validation criterion. Predictors frequently selected by Bolasso
(in at least 78 % of the bootstrap samples) are plotted in black while the others are in
grey. AIC values as a function of the frequency threshold (right). The red vertical line
indicates the frequency value minimizing the AIC criterion (Color figure online).
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Some results completed results of other studies (for instance, antiepileptics:
N03AF, N03AG, N03AX, antidepressants: N06AB, N06AX, drugs used in opioid
dependence: N07BC, and drugs used in diabetes: A10AD). Cardiovascular drugs:
C10BA, C10BX presented relevant association with the risk of crash. These
drugs are markers of cardiovascular diseases which themselves may increase the
risk of accident involvement. Finally, antithrombotic agents: B01AB showed an
inversed association, likely indicating that cardiovascular events may occur when
the treatment is interrupted. This result oriented new researches.

7 Conclusion

The clogitLasso R package brings together penalized conditional likelihood
methods for the analysis of sparse high-dimensional matched case-control data.
The main underlying algorithms are presented in [17,80], they require both the
penalized and the lassoshooting packages [71,81]. We have reviewed here the
recent works pertaining to the clogitLasso package. Some theoretical proper-
ties of Lasso-type estimators are now well established, others are, however, still
heuristic-based and the results obtained when applying that methods have to be
interpreted with caution. This is notably the case for the validity of uncertainty
measures and the consistency of model selection criteria when identification of
the “true model” is sought.

The development of the clogitLasso R package has been motivated by the
will to provide an appropriate tool for addressing the problems related to high-
dimensionality that arise nowadays in many fields of epidemiological research.
Our recent experience in helping pharmacoepidemiologists to conduct statistical
analyses with large data from a self-matched case-only study has been very
supportive [55,73].
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Abstract. The hazard function plays an important role in the study of
disease dynamics in survival analysis. Longer follow-up for various kinds
of cancer, particularly breast cancer, has made it possible the observation
of complex shapes of the hazard function of occurrence of metastasis and
death. The identification of the correct hazard shape is important both
for formulation and support of biological hypotheses on the mechanism
underlying the disease.

In this paper we propose the use of a neural network to model
the shape of the hazard function in time in dependence of covariates
extending the piecewise exponential model. The use of neural networks
accommodates a greater flexibility in the study of the hazard shape.

1 Introduction

Several analyses of survival data the role of prognostic factors is investigated
independently of the shape of the baseline hazard function, which is commonly
left undefined (Cox model). Several analyses of survival data are focused on
prognostic factors independently of the shape of the baseline hazard function,
which is commonly left undefined (Cox model). When the aim is to explore
the time course of the disease to support or generate biological hypotheses, the
shape of the hazard function provides relevant information as in the case of
tumor dormancy in breast cancer [7].

When long follow-up is available, the shape of hazard function may be com-
plex, for example with the presence of multiple peaks. Accordingly, sufficiently
flexible techniques are required for an adequate estimation, for example kernel-
like smoothing [15]. Other authors [10,18] adopted regression cubic splines with
or without constraints of linearity on both tails based on a full likelihood para-
metric approach.

Further possibilities are the piecewise exponential and grouped-time mod-
els where the smoothing of the hazard is performed by splines [6]. In these two
c© Springer International Publishing Switzerland 2014
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approaches time is subdivided in intervals, the main difference being that in each
interval the piecewise exponential model directly estimates the hazard function,
while the discrete time model estimates the conditional probability (discrete haz-
ard). Artificial neural networks extending discrete-time model (PLANN [2]) have
been proposed. In this paper we develop a neural network structure extending
the piecewise exponential model (PEANN).

The complex structure of neural networks, with their well known approxi-
mating properties, allows in principle an extended flexibility in comparison to
splines. In medical data neural networks could be useful when several variables
are available and non-additive or non-linear effects are biologically plausible. In
such situations a linear model where the structure of the linear predictor must
be defined could be suboptimal.

In this paper an application to breast cancer data is presented where the
shape of the hazard function could be hypothesized to depend on different kinds
of events and/or covariates. Moreover, possible nonlinear effects for the contin-
uous variables should be accounted for. Interactions could be expected too, as
the prognostic role of a covariate may differ in time in dependence on both the
other covariates and the type of event.

This paper is structured as follows: in Sect. 2 the technique is presented, in
Sect. 3 the application is illustrated and the conclusions follow in Sect. 4.

2 Methods

In survival analysis, the distribution of the random variable time U to a certain
event is of interest. To model it, besides the density function f(u) and the cumu-
lative distribution function F (u), the survivor function S(u) = pr(T > u) and
the hazard function

h(u) = lim
Δu∈0+

pr(u < T → u + ⊥u|T > u)
⊥u

(1)

are often used. In particular, the latter is especially convenient when studying the
dynamics of the event. The following relations link the aforementioned functions:

S(u) = exp

(
−

∫ u

0

h(s)ds

)
(2)

f(u) = h(u)S(u). (3)

Survival data are often right censored, i.e. the time to event is not observed
and the information available is the last time of follow-up when the subject
is event free. If Ui and Ci denote, respectively, the random variables time to
event of interest and time to censorship for the i−th subject, we observe ti, the
realization of the variable Ti = min(Ui, Ci), and the censoring index δi, equal
to 0 if ti is censored and 1 otherwise.

To estimate the hazard function we follow an approach based on the opti-
mization of the likelihood function.
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Under the hypothesis of non-informative censoring, the full likelihood for N
independent observations can be written as [11]:

L =
N∏

i=1

f(ti; xi)δiS(ti; xi)1−δi =
N∏

i=1

h(ti; xi)δi

exp
⎢∫ ti

0
h(u; xi)du

⎡ , (4)

where xi = (xi1, . . . , xip) denotes the p covariates for subject i.
By introducing the assumption that the hazard function is constant within

each of J intervals [aj−1, aj), j = 1, . . . , J , where a0 = 0 and aJ = +∈, i.e.
h(ti; xi) = λj(xi) for aj−1 → ti < aj , we can write [1]:

L =
N∏

i=1

⎣Ji

j=1 λj(xi)δij

exp
⎢∑Ji

j=1 λj(xi)τij

⎡ =
1

⎣N
i=1

⎣Ji

j=1 τ
δij
ij

N∏

i=1

Ji∏

j=1

(λj(xi)τij)
δij

δij !exp (λj(xi)τij)
,

(5)
where

δij =
{

1 if subject i experiments the event in the j − th interval
0 otherwise

τij =

⎤
⎦

⎩

aj − aj−1 if aj → ti
ti − aj−1 if aj−1 < ti → aj

0 if ti → aj−1

and Ji indicates the last interval in which subject i is observed. Represents,
apart from a constant factor, the likelihood corresponding to observations δij

from independent Poisson variables with means μij = λj(xi)τij .
We model the hazard rates λj ’s as a function of time as well as of covariates:

λj(xi) = h(ξj ; xi), where ξj is the midpoint of the j-th time interval and h(ξ; x)
is a smooth function.

Usually Generalized Linear Models (GLM) with Poisson error are adopted
for inference. h(ξ; x) is then a monotonic transformation of a linear predictor
in which time and covariates are modelled by splines. We propose to model
h(ξ; x) by artificial neural networks [3,4,12,17], which represent a flexible tool
successfully adopted in statistics to flexibly model the dependence on covari-
ates of continuous, dichotomous and polytomous variables. Theoretical results
on the approximation capabilities of neural networks have been obtained; for
example it has been proved that every continuous function can be approximated
uniformly on a compact set by a neural network with linear output activation
and logistic hidden units activation. Starting from the recent proposals of neural
networks with Poisson responses [8,14], we extended the methods to account for
the presence of censored survival data.

In this paper the hazard function is modeled by means of the following feed-
forward artificial neural network:

h(t; x) = exp

(
β
(2)
0 +

H∑

k=1

logis

(
β
(1)
0k +

p∑

l=1

xlβ
(1)
lk + tβ

(1)
p+1,k

)
β
(2)
k

)
, (6)
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Fig. 1. Scheme of a multilayer perceptron with the layer of inputs x1, . . . , xp, t, the
layer of hidden units z1, . . . , zH and the output layer, here represented by the unique
response h. A constant unit set to 1 feeds every other non-input unit for clarity it is
indicated twice.

where exp and logis stand for the exponential and the logistic function respec-
tively.

This net (Fig. 1) presents three layers of units: the inputs xl and t, the hid-
den units zk = logis

⎢
β
(1)
0k +

∑p
l=1 xlβ

(1)
lk + tβ

(1)
p+1,k

⎡
and the single output h.

Moreover a constant unit set to 1 “feeds” every non-input unit (for clarity of
representation in the Fig. 1 it has been indicated twice).

To estimate the coefficients β we minimize the error function

E = −log L + α

(
H∑

k=0

p+1∑

l=0

β
(1)2
lk +

H∑

k=0

β
(2)2
k

)
, (7)

where the first term is the negative of the logarithm of the likelihood and the
second term is a quadratic penalty [17]. The effect of the penalization is that
of increasing the performance of the optimization routines and of preventing
overfitting. The decay parameter α regulates the trade-off between smoothness
and fitting to the data.

The error function can be explicitly written in terms of the augmented data
(ξj , xi, τij , δij) as

E = −
N∑

i=1

Ji∑

j=1

[δij log h(ξj ; xi) − h(ξj ; xi)τij ] + α

(
H∑

k=0

p+1∑

l=0

β
(1)2
lk +

H∑

k=0

β
(2)2
k

)
.

(8)
To assure that in the penalty the coefficients from input to hidden units

and those from hidden to output units are of comparable size, the input values
are properly scaled to lie between about -1 and 1 and the initial values of the
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coefficients furnished to the optimization routine are sampled from a uniform
distribution on the interval (-0.7, 0.7).

For the optimization we used the quasi-Newtonian algorithm BFGS. It
exploit the gradient of the error function, which is given by:

∂E

∂β
(2)
0

= −
N∑

i=1

Ji∑

j=1

dij + 2αβ
(2)
0 (9)

∂E

∂β
(2)
k

= −
N∑

i=1

Ji∑

j=1

dijzik + 2αβ
(2)
k (10)

∂E

∂β
(1)
0k

= −
N∑

i=1

Ji∑

j=1

dijβ
(2)
k zik (1 − zik) + 2αβ

(1)
0k (11)

∂E

∂β
(1)
lk

= −
N∑

i=1

Ji∑

j=1

dijβ
(2)
k zik (1 − zik) xil + 2αβ

(1)
lk , (12)

where dij = δij − h(ξj ; xi)τij .
The flexibility of the neural networks depends on both the number of hidden

units and the decay parameter. One strategy to choose them is to recur to cross-
validation. We adopted a ten-fold cross validation, by splitting the subjects into
ten subsets S(m), m = 1, . . . , 10 of about the same size. The criterion to be
minimized is then

CV =
1

∑N
i=1 Ji

·
N∑

i=1

Ji∑

j=1

[
δij log ĥ(−m(i))(ξj ; xi) − ĥ(−m(i))(ξj ; xi)τij

]
, (13)

where ĥ(−m(i)) is the hazard estimate obtained by averaging on five fits for
various values of the number of hidden units and of the decay parameter. These
fits were performed by excluding individuals which belong to the same subset
S(m(i)) as subject i.

As cross validation is computationally intensive, we chose values of the decay
parameter in the explorative range of 10−3 − 10−1, which was suggested in [17]
based on Bayesian considerations. Alternatively, the value of the decay parameter
can be selected via information criteria. Among the latter, one of the most used,
NIC, has been proved [16] to be equivalent for large samples to the leave-one-out
cross validation. Nevertheless NIC may be less reliable when many local minima
are present.

In performing both cross validation and estimation, the averaging over mul-
tiple fits obtained from different initial values for the parameters has been advo-
cated [19].

When different kinds of event are of concern, the hazard for each event is
named cause-specific hazard (CSH) and a covariate indicating the type of event
has to be included in the covariate vector. The likelihood function (Eq. 5) can
be generalized as reported in detail in [6].
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We used R [13], version 3.0.1, for all computations, in particular the package
Epi for data augmentation and function optim for optimization.

3 Breast Cancer Survival Study

As an application we consider a dataset of 2233 breast cancer patients hospital-
ized at the Istituto Nazionale dei Tumori of Milan between 1970 and 1987 [20].
All patients underwent conservative surgery and axillary lymph node dissection
followed by radiotherapy. Information about age (in years), tumor size (in cm)
and number of metastatic axillary nodes was recorded. Histological type (catego-
rized as: extensive intraductal component; infiltrating intraductal or infiltrating
lobular component; other histologies) and tumor site (categorized as: external
quadrant; internal or central quadrant) are also available. With a median follow-
up of 8.5 years, 151 intrabreast tumor recurrences (IBTRs), 110 contralateral
breast carcinomas, 414 distant metastases (DMs) and 69 primary non-mammary
malignant tumors were recorded as first neoplastic events. 27 patients died with-
out any evidence of breast cancer recurrence. The interval until the appearance
of neoplastic events other than IBTR and DM was censored.

For the dataset under study, to select the structure of the network, a ten-fold
cross validation was applied considering 3, 6 and 9 hidden units and penalty
coefficients 0.001, 0.01 and 0.1. The values of the CV criterion (Table 1) show a
better performance in correspondence to a choice of 6 hidden units and decay
parameter equal to 0.01, that we therefore used.

We then considered a neural network with time, age, tumor size and number
of metastatic lymph nodes as continuous variables, and histological type, tumor
site and type of event as categorical variables, using the average over ten fits
obtained from different initial choice of parameters. Due to the possible pres-
ence of non-additive effects, the investigated shapes might vary among different
values of the conditioning covariates. A detailed exploration was accomplished
by multipanel conditioning plots to investigate the joint effects of couples of con-
tinuous covariates on the shape of CSHs. For each variable, three selected values
were considered. With regards to age, 30, 50 and 70 years were chosen, for tumour
size 0.5, 1.4, 2.5 cm, and, for the number of metastatic axillary nodes, 0, 3 and
10. A different behavior of the three variables on IBTR and DM is observed.
The hazard function trend for the two failure causes show different patterns.
As regards IBTR CSH, a strong impact of a young age and largest tumor size

Table 1. Ten-fold cross-validation obtained by averaging over five fits for various values
of the number of hidden units (H) and of the decay parameter.

Decay H = 3 H = 6 H = 9

0.001 0.2576 0.2727 4.3013

0.01 0.2570 0.2562 0.3409

0.1 0.2568 0.2564 0.2565
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Fig. 2. Multipanel conditioning plots of cause-specific hazards for intrabreast tumor
recurrence (IBTR CSH) for age = 30, 50 and 70 years and number of positive lymph
nodes (N) = 0, 3 and 10. Tumor size is fixed at its median values (1.4 cm) while
categorical covariates are fixed at their modal values (tumor site = external, histology
= infiltrating intraductal or infiltrating lobular component).
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Fig. 3. Multipanel conditioning plots of cause-specific hazards for intrabreast tumor
recurrence (IBTR CSH) for age = 30, 50 and 70 years and tumor size = 0.5, 1.4 and
2.5 years. Number of positive nodes is fixed at its median values (0) while categorical
covariates are fixed at their modal values (tumor site = external, histology = infiltrating
intraductal or infiltrating lobular component).
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Fig. 4. Multipanel conditioning plots of cause-specific hazards for intrabreast tumor
recurrence (IBTR CSH) for tumor size = 0.5, 1.4 and 2.5 years and number of positive
lymph nodes (N) = 0, 3 and 10. Age is fixed at its median values (50 years) while
categorical covariates are fixed at their modal values (tumor site = external, histology
= infiltrating intraductal or infiltrating lobular component).
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Fig. 5. Multipanel conditioning plots of cause-specific hazards for distant metastasis
(DM CSH) for age = 30, 50 and 70 years and number of positive lymph nodes (N) = 0, 3
and 10. Tumor size is fixed at its median values (1.4 cm) while categorical covariates are
fixed at their modal values (tumor site = external, histology = infiltrating intraductal
or infiltrating lobular component).
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Fig. 6. Multipanel conditioning plots of cause-specific hazards for distant metastasis
(DM CSH) for age = 30, 50 and 70 years and tumor size = 0.5, 1.4 and 2.5 years. Num-
ber of positive nodes is fixed at its median values (0) while categorical covariates are
fixed at their modal values (tumor site = external, histology = infiltrating intraductal
or infiltrating lobular component).
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Fig. 7. Multipanel conditioning plots of cause-specific hazards for distant metastasis
(DM CSH) for tumor size = 0.5, 1.4 and 2.5 years and number of positive lymph
nodes (N) = 0, 3 and 10. Age is fixed at its median values (50 years) while categorical
covariates are fixed at their modal values (tumor site = external, histology = infiltrating
intraductal or infiltrating lobular component).

is apparent while the hazard shape in dependence of the number of positive
lymph nodes is approximately constant (Figs. 2, 3 and 4). No pairwise interac-
tion between age, size and N is evident. No time-dependent effect is observed for
tumor size: a peak of the hazard is shown at about 2 years. A time-dependent
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effect of age is evident (Figs. 2 and 3), with a peak of the hazard at about 5
years for youngest age and no evidence of peak for older patients. For DM CSH,
the effect of age seems to be strongly dependent on the number of lymph nodes
(Fig. 5). The CSH peak is greater for women aged 70 when the number of nodes
is 10; on the contrary, the peak is greater for the youngest women when there are
no metastatic lymph nodes. This dependence is not observed when age is con-
ditioned to size. In this case, the DM CSH peak is greater for youngest women
for all values of size (Fig. 6). Similarly, considering the pattern of DM CSH as a
function of tumor size and number of lymph nodes, no interaction is apparent
(Fig. 7). The hazard of event increases with tumor size and the prognostic effect
of the covariate seems to be decreasing with time.

4 Conclusions

For diseases with long follow-up available, the shape of the hazard function may
be of great clinical interest to support clinical-biological hypotheses or to plan
follow-up visits. In the past, a limited number of covariates, preferably on a cat-
egorical scale, were recorded. Previous knowledge about the effect of covariates
was available, so that the main task was smoothing the effect of time. For this
purpose, GLM implementation of the piecewise exponential model was sufficient,
as the structure of linear predictor could be simply defined. As the number of
prognostic variables considered is ever increasing and only a partial knowledge
on the biological phenomenon is available, statistical approaches able to model
jointly covariates and complex non-linear and non-additive effects should be pre-
ferred. In particular, when different types of event are of concern, it is expected
that cause-specific hazard functions do not behave in a proportional way with
respect to different events. In this context artificial neural networks, in view of
their good approximation properties, at least at a theoretical level, are a useful
tool.

The trend obtained with PEANN in the present application is in good agree-
ment with that observed by piecewise exponential model implemented with GLM
and regression splines [6], suggesting that the main interaction and non-linear
effects were adequately modeled in the previous GLM implementation.

Previously an extension of piecewise regression model by Radial Basis Func-
tions Neural Networks (RBFNNs) has been proposed and applied to the same
data set [5]. An attractive feature of this approach is that it can be implemented
with standard statistical software for GLM. In fact, localized symmetric basis
functions are directly included in the model linear predictor. The estimates of
IBTR and DM cause-specific hazards by RBFNN appear to be generally consis-
tent with those obtained by PEANN, but show more complex patterns in the late
follow-up time. Nevertheless special attention should be paid to the examina-
tion of right tail behavior of the hazard functions since the RBFNNs estimates,
like those obtained with non-parametric procedures, may fluctuate. A possible
drawback of RBFNNs is the choice of the centers and widths of the radial basis
functions. In particular heuristic approaches have been proposed allowing fast
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modeling implementation but not necessarily providing an optimal performance
[3]. PEANN, like the other feed forward neural networks, does not present these
problems.

As concerns the selection of the decay parameter and the number of hidden
units, a simulation study would be advisable to compare the performance of
cross validation and information criteria.

In conclusion, artificial neural networks appear to be useful in the interme-
diate steps of the model building, both for exploratory evaluation of non-linear
and non-additive effects and for checking model assumptions.

References

1. Aitkin, M., Francis, B., Hinde, J., Darnell, R.: Statistical Modelling in R. Oxford
University Press, Oxford (2009)

2. Biganzoli, E., Boracchi, P., Marubini, E.: A general framework for neural network
models on censored survival data. Neural Netw. 37, 119–130 (2002)

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Springer, New York (1995)
4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York

(2006)
5. Boracchi, P., Biganzoli, E., Marubini, E.: Modelling cause-specific hazards with

radial basis function artificial neural networks: application to 2233 breast cancer
patients. Statist. Med. 20, 3677–3694 (2001)

6. Boracchi, P., Biganzoli, E., Marubini, E.: Joint modelling of cause-specific haz-
ard functions with cubic splines: an application to a large series of breast cancer
patients. Comput. Stat. Data An. 42, 243–262 (2003)

7. Demicheli, R., Retsky, M.W., Baum, M.: Tumor dormancy and surgery-driven
interruption of dormancy in breast cancer: learning from failures. Nat. Clin. Pract.
Oncol. 4, 699–710 (2007)

8. Fallah, N., Gu, H., Mohammad, K., Seyyedsalehi, S.A., Nourijelyani, K.,
Eshraghian, M.R.: Nonlinear Poisson regression using neural networks: a simu-
lation study. Neural Comput. Appl. 18, 939–943 (2009)

9. Fu, K.K., Phillips, T.L., Silverberg, I.J., Jacobs, C., Goffinet, D.R., Chun, C.,
Friedman, M.A., Kohler, M., McWhirter, K., Carter, S.K.: Combined radiotherapy
and chemotherapy with bleomycin and methotrexate for advanced inoperable head
and neck cancer: update of a Northern California Oncology Group randomized
trial. J. Clin. Oncol. 5, 1410–1418 (1987)

10. Herndon, J.E., Harrell, F.E.: The restricted cubic spline hazard model. Comm.
Statist. Theory Meth. 19, 639–663 (1990)

11. Marubini, E., Valsecchi, M.G.: Analysing Survival Data from Clinical Trials and
Observational Studies. Wiley, Chichester (2004)

12. Nabney, I.T.: NETLAB, Algorithms for Pattern Recognition. Springer, New York
(2002)

13. R Core Team: R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.
org/

14. Rajaram, S., Graepel, T., Herbrich, R.: Poisson-networks: a model for structured
point processes. In: Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics (2005)

http://www.R-project.org/
http://www.R-project.org/


136 M. Fornili et al.

15. Ramlau-Hansen, H.: Smoothing counting process intensities by means of kernel
functions. Ann. Stat. 11, 453–466 (1983)

16. Ripley, B.D.: Statistical ideas for selecting network architectures. In: Kappen, B.,
Gielen, S. (eds.) Neural Networks: Artificial Intelligence and Industrial Applica-
tions, pp. 183–190. Springer, London (1995)

17. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge (1996)

18. Rosenberg, P.S.: Hazard function estimation using B-splines. Biometrics 51, 874–
887 (1995)

19. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, New
York (2002)

20. Veronesi, U., Marubini, E., DelVecchio, M., Manzari, A., Andreola, S., Greco, M.,
Luini, A., Merson, M., Saccozzi, R., Rilke, F., Salvadori, B.: Local recurrences and
distant metastases after conservative breast cancer treatments: partly independent
events. J. Natl Cancer Inst. 87, 19–27 (1995)



Writing Generation Model for Health Care
Neuromuscular System Investigation

D. Impedovo1, G. Pirlo1, F.M. Mangini1, D. Barbuzzi1, A. Rollo1,
A. Balestrucci1, S. Impedovo1(&), L. Sarcinella2, C. O’Reilly3,

and R. Plamondon3

1 Computer Science Department, Bari University, Via Orabona 4, Bari, Italy
sebastiano.impedovo@uniba.it

2 Rete Puglia Centre, Via G. Petroni 15/F.1, Bari, Italy
3 École Polytecnique de Montréal, Montreal, Canada

Abstract. In this paper the use of handwriting for health investigation is
addressed. For the purpose, the paper first presents the Delta-Log and Sigma-
Log models to investigate on the handwriting generation processes carried out
by the neuromuscular system. Successively, a computational system for
handwriting analysis is presented and some considerations are exploited about
the use of the model to investigate insurgence and monitoring of some neu-
romuscular diseases. The experimental results show the validity of the pro-
posed approach and highlight some directions for further research.

Keywords: Neuromuscular disease investigation � Handwriting analysis �
Neuromuscular transfer function

1 Introduction

In the developed societies, neuromuscular diseases are generally the leading cause of
greater severe adult disability. In the modern society, these disabilities generate
health-care expenditures due to hospitalization, rehabilitation, long-term cares and so
on. Therefore a severe investigation is strongly required to know better brain activities
in connection with the insurgence of some illnesses.

The investigation of the upper limb human movements like those supporting
handwriting generation can become one of the strategies to neuromuscular illness
assessment. In this paper, pen-strokes modelling in handwriting generation is dis-
cussed and its use for diagnostic investigation is addressed. The investigations of
signal degeneration related to Alzheimer disease growth is here developed, starting
from the early stage of insurgence, by taking into account the handwriting actions.

To investigate in depth the phenomena, in this paper a short survey of the kine-
matic theory is firstly presented by considering both delta and sigma lognormal
models and the different algorithms for the extraction of parameters describing
handwriting stroke trajectories [1]. Then the neuromuscular task selected for diag-
nostic system is described by pointing out the assessing of its performances. Specif-
ically, many design questions associated to data acquisition, motion deterministic
modelling, and decision making are presented.
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The results can be then used for developing a statistical model leading to a
diagnostic protocol of assessment of the brain illness and monitoring of the cerebral
disease.

2 Neuromuscular System Function Transfer 2
the Delta-Log Model

Based on a kinematic theory of rapid movement generation [2], the proposed model
allows the description of individual strokes in terms of a delta lognormal equation. It
predicts the very basic speed/accuracy tradeoffs observed in target-directed
movements.

Several bottom-up approaches have been used by those interested in the analysis
and synthesis of the low-level neuromuscular process, obviously by controlling ago-
nist and antagonist muscular movements. For these perceptive motor strategies
involved in the generation and perception of handwriting, two criteria have been met:

1. A model should be realistic enough to reproduce specific pen tip trajectories
perfectly;

2. Its descriptive power should be such that it provides consistent explanations of the
basic properties of single stroke.

Delta Lognormal Model
A general way to look at the impulse response of a specific controller, say the velocity
module controller, is to consider the overall sets of neural and muscle networks
involved in the production of a single stroke as a synergetic linear system producing a
curvilinear velocity profile from an impulse command of amplitude D occurring at the
time t0. So the curvilinear velocity profile directly reflects the impulse response
H(t-t0) of neuromuscular synergy [1, 3].

The mathematical description of this impulse response can be specified by con-
sidering each controller as composed of two systems that represent the sets of neural
and muscular networks involved in the generation of the agonist and antagonist
activities resulting in a specific movement.

In the mathematical description, agonist and antagonist impulses are taken into
account. It is expected that the impulse response of a system under the coupling
hypothesis will converge toward a log-normal curve. The output of the module or the
direction controller will be described by the weighted difference of two lognormal,
called a delta lognormal equation [4].

In this context, the control of the velocity module can now be seen as resulting
from the simultaneous activation (at time t = t0) of a controller made up of two
antagonist neuromuscular systems, with a command of amplitude D1 and D2

respectively. Both systems react to their specific commands with an impulse response
described by a lognormal function, whose parameters l1, r2

1 and l2, r2
2 characterize

the time delay and response time of each process.
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In a similar fashion, for rotation movements like wrist flexion and extension, it is
predicted that the control of the angular velocity will also obey a specific delta
lognormal equation with respect to command amplitude D1 and D2. (I am not sure if I
understood what you meant here but the sentence as it was written was not clear. If my
correction is not what you meant feel free to make a better modification) Figure 1
shows the Delta lognormal profile obtained using these parameters:

• D1 = 2.35 cm;
• D2 = 0.94 cm;
• t0 = 0.348 s;
• l1 = -1.61;
• l2 = -1.45;
• r2

1 = 0.0134;
• r2

2 = 0.00497;
• mean square error: 0.0728 cm2/s2.

Fig. 1. Delta lognormal profile
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Model Testing: First Criterion
The delta lognormal equation has been proven to be the most powerful in recon-
structing experimental data and movement generation [4].

Model Testing: Second Criterion
It has been shown tendency of human subjects to produce strokes of about the same
duration and the same relative spatial precision to insure legibility [2]. These evi-
dences demonstrate that the delta lognormal model is certainly among the most
promising candidate for sensor motor control of handwriting generation and
perception.

3 Neuromuscular System Function Transfer –
the Sigma-Log Model

The kinematic theory of rapid human movement, relies on the Sigma-Lognormal
model to represent the information of both the motor commands and timing properties
of the neuromuscular system involved in the production of complex movements like
word writing [5, 6].

The Sigma-Lognormal model considers the resulting speed of a single stroke j as
having a lognormal shape K scaled by a command parameter (D) and time-shifted by
the time occurrence of the command (t0).

v!jðt; PjÞ
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�

�
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where Pj = [Dj, t0j, lj, rj, Hsj, Hej] represents the sets of Sigma-Lognormal param-
eters [5]:

• Dj: amplitude of the input commands;
• t0j: time occurrence of the input commands, a time-shift parameter;
• lj: log-time delays, the time delay of the neuromuscular system expressed on a

logarithmic time scale;
• rj: log-response times, which are the response times of the neuromuscular system

expressed on a logarithmic time scale;
• Hsj: starting angle of the circular trajectories described by the lognormal model

along pivot;
• Hej: ending angle of the circular trajectories described by the lognormal model

along pivot.

Additionally, from the hypothesis that every lognormal stroke represents the
movement as happening along pivot, the angular position can be computed as [5, 7]:

/jðt; PjÞ ¼ hsj þ
hej � hsj

Dj

Z t

0
v!ðs; PjÞ
�

�

�

�ds ð3Þ
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In this context, a written word can be seen as the output of a generator that
produces a set of individual strokes superimposed in time. The resulting complex
trajectories can be modelled as a vector summation of lognormal distributions (being
NLN the total number of lognormal curves in which the handwritten trace is
decomposed):

v!ðtÞ ¼
X

KðtÞ ¼
X

NLN

j¼1

v!j t; Pj

� �

ð4Þ

The velocity components in the Cartesian space can be calculated from the tan-
gential speed as [7–9]:
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The reconstruction error of a velocity profile using Sigma-Lognormal parameters
can be evaluated by comparing the SNR between the reconstructed specimen and the
original one:
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where ts and te are respectively the starting and the ending times of the written word.
As it is well known enormous progress in signal processing has been done by

using Fourier Analysis, in fact in this approach not only the time domain has been
investigated but also the spectral analysis of trace has been started [10].

4 Experimental Setup for Writing Generation Model

Firstly, some clear effects on signature shape modification are shown in Figs. 2 and 3,
in which it is visible the changing in signature shape by passing through the different
period of the live for a person that approaching to the 90-th years of her live has been
affect by the Alzheimer disease.

Fig. 2. Signature produced in year 1997, when the person was healthy

Writing Generation Model for Health Care Neuromuscular System 141



In order to investigate in depth the degenerative process, the software used for
handwriting acquisition and parameter generation of the sigma-log model is consid-
ered. In particular the software determines the number of sigma-log functions and the
parameter set of each function: (t0, D, l, r, hs, he). The set of parameters conveys
several information that are here used for analysis of the neuromuscular system in
order to detect the illness progression of the neuromuscular disease.

In particular, concerning neuromuscular disorders, handwriting dynamics can be
used for both early diagnosis of neuromuscular illness and monitoring evolution of the
illness over time also to evaluate the individual effect of a patients treatment.

In order to start experiments and to tune the system, some initial evaluation have
been done by using the ISUNIBA database developed for the purpose of this research
at the Computer Science Department of Bari University, Italy. 50 patients affected by
Alzheimer disease have been enrolled for the data base realization. Each patient
supplied 10 of his/her handwriting words in two different sessions(5 for each session)
collected in two separate sessions that were approximately one month a part. In order
to monitoring the disease progression it has been programmed the repetition of data
acquisition monthly. Figure 4 shows the acquisition device used for the experiments:
the WACOM INTUOS-5 peripheral device.

Fig. 3. Signature produced in year 2010, when the person was affected by Alzheimer disease

Fig. 4. An example of using WACOM INTUOS-5
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Software System for Delta-Log Parameter Extraction
The system that has been used for parameter extraction is named ScriptStudio, it

has been developed at the Corporation de l’Ecole Polytechnique de Montreal,
Canada [5].

For the aims of this paper two modules of the software have been considered:

• The first module has the objective to acquire handwritten words;
• The second module has the objective to generate parameters.

Each handwritten word is modelled in a matrix, in which each column has the
following information:

• Column 1: time of starting of each point: t0;
• Columns 2, 3, 4: position of each point in X, Y and Z axe, respectively;
• Column 5: pressure;
• Column 6: azimuth;
• Column 7: elevation;
• Column 8: tangential speed.

These information are modeled in a.hws file. that also includes information about
file format, sampling rate and numbers of elements. An example of a.hws file is
provided in the following.

TypeFichier: HWS 
NombrePoints: 1202 
FrequenceEchantillonage(Hz): 200.00 
1.360000 0.503890 0.000000 0.000000 0.000000 
0.000000  0.000000 147.402571  
....... 
7.365000 140.950904 -79.755773 0.000000 0.000000 
0.000000  0.000000 13.732579 

Each word is stored, stroke by stroke, in a .ana file. Specifically each element of
the stroke matrix includes:

• Column 1: stroke initial time;
• Column 2: stroke amplitude;
• Columns 3, 4: log time delay and log response time, respectively;
• Columns 5, 6: initial and final angle of the stroke, respectively;
• The last three columns have to be unconsidered.

In the following there is the .ana file of an hws example.
TypeFichier: ANA 
Version: 3 
NombreLognormales: 17 
1.820250 88.210019 -0.961191 0.375332 -1.128164 -
1.678627 0.000 0.000 1  
..... 
1.716305 15.691989 -1.599541 0.384121 -1.204084 -
1.270359 0.000 0.000 1. 
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The same analysis has been developed to investigate modifications in handwriting
words due to neuromuscular diseases. In the following, the results of some pattern
analysis related to patients are reported.

In order to investigate in depth the relationship between handwriting and Alz-
heimer disease, a detailed investigation on 50 patients has been developed by
acquiring some handwriting basic words like ‘‘mamma’’. In fact the word ‘‘mamma’’
is one of the first learned and written and remain one of the last used before to died.

In order to investigate the relation between disease and writing process also the
Fourier analysis of writing trace has been developed and the spectra for three hand-
writing words, the first produced by an healthy person, the second by a patient in the
early stage of Alzheimer disease and the last related to an advanced stadium of disease
are reported in Figs. 5, 6 and 7, respectively.

The .ana profiles in Figs. 8, 9 and 10 show respectively the velocity profiles
obtained by the ANA files.

By looking the speed profile along the process, it can be observed that in healthy
person the maxima speed value are almost regular in height (Fig. 8), instead these
regularity is strongly reduced at beginning of the disease (Fig. 9) and completely lost
in the advance stadium of the disease (Fig. 10).

Fig. 5. Example of handwritten word ‘‘mamma’’ made by an healthy person

Fig. 6. Example of handwritten word ‘‘mamma’’ made by a patient in early stage of illness
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Furthermore it must be noted that the time duration pass from 3.5 s up to 6 s to
reach the duration of 10 s as can be seen comparing Figs. 8, 9 and 10.

It must be also noted that the starting delay pass from 1 s. to about 2 s, to reach
4.5 s for people heavily affected by the disease.

Fig. 8. Velocity profile for word in Fig. 5

Fig. 7. Example of handwritten word ‘‘mamma’’ made by a patient in advanced stadium of
illness

Fig. 9. Velocity profile for word in Fig. 6
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Fig. 10. Velocity profile for word in Fig. 7

Fig. 11. Spectral analysis for word in Fig. 5

Fig. 12. Spectral analysis for word in Fig. 6
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Furthermore by looking more in depth the velocity profiles it can be seen that for
healthy person rarely the speed becomes zero instead for injured patients the zero
speed is reached many times.

It must be also noted that the duration of the zero profile is enlarged for injured
persons.

The spectra profiles reported in Figs. 11, 12 and 13, clearly shown the Alzheimer
effect when the number of maxima along the spectra are considered in the frequency
band 1–40 Hz. In fact, the number of peaks increase from 6 in healthy person to 10 at
beginning of disease to reach 15 in advanced stadium of the illness.

5 Conclusion

In this paper it has been introduced the investigation of handwriting words in order to
detect some parameters for Alzheimer diagnosis and its disease process monitoring.
Both parameters in time domain and in frequency domain have been shown.
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for his grant in the database developing.
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Abstract. In many different research area, identification of clusters or
regions showing an increment in event rate over a given study area is
an important and interesting problem. Nowadays literature concerning
scan statistics is quite broad and methods can be subdivided based on
dimensional complexity of the study area, assumption on distribution
generating the data under the null hypothesis and shape-dimension of
the scanning window. The aim of this study is to adapt and apply this
methodology to the genomics field taking into account for some peculiar-
ities of these data and to compare its performance to existing method
based on DBSCAN algorithm.

Keywords: Hotspot · Scan statistics · Binary genomic event

1 Introduction

Identification of clusters of events over a certain space or of regions showing an
higher event rate of occurrence represents an important issue in many research
fields, and in particular in biology. Many different approaches have been pro-
posed within both classical and bayesian frameworks, either parametric or non
parametric. Most of the algorithms require to specify a priori the number of clus-
ters or their expected dimension and/or length. Usually setting these parame-
ters strongly affects the results if no information are available. This contribution
places the problem of cluster identification within a genomic framework. We will
compare two different approaches to investigate genomic binary event cluster-
ing, the first being the so called Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [8] and the second based on scan statistics methodology
proposed by [6].

Both methods have been originally developed in different research areas.
DBSCAN has been implemented as a computer science tool, it can search for
arbitrary shaped clusters and does not assume any probabilistic models. Kull-
dorff scan statistics has been mainly used for cluster localization in epidemiolog-
ical space-time data. Both have been never applied to the analysis of genomic
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 149–158, 2014.
DOI: 10.1007/978-3-319-09042-9 11
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data. Although computational demanding the procedure is completely data-
driven since no input parameters are needed. Different probabilistic models have
been proposed based on the aim of the study, data type and field of applica-
tion. In this paper we will focus in particular on Bernoulli model that better
describes the nature of experimental data. The aim of this study is to extend
these methodology to genomic data, accounting for some specific features of the
field and comparing identification performances among different settings.

Our experimental framework includes data from gene therapy.
In particular we consider the process of integration in human hematopoietic

stem cells CD34+, of viral vector derived from lentivirus Human immune defi-
ciency virus (HIV) and retrovirus Moloney murine leukemia virus (MLV), the
most widely used in gene therapy clinical trials [1,2,5,9]. Thanks to the recent
developments of Next-Generation Sequencing (NGS) techniques we are able to
retrieve the exact genomic coordinates (IS, integration site) for virus integration
position in patients’ cells. Localization of common integration sites (CIS), that
are regions over the genome with high integration density, represents a crucial
feature to improve vector safety and to avoid risk of insertional mutagenesis.

2 Methods

2.1 DBSCAN

In computational biology literature and in particular in viral integration data
analysis different methods has been proposed to identify clusters of event or
CIS. In [11] for the first time a non-uniform distribution of IS along the genome
was assessed and the concept of cluster referred to genomic was introduces.
Authors proposed a definition of CIS based simply on proximity between events.
In particular they define a portion of the genome as CIS if in 30, 50, 100 kb
(kilo-bases) respectively more than 2, 3, 4 IS were observed. Interval length and
event counts were completely independent on data sets size and fixed for all
experiment.

New techniques, such as high-throughput data, increased the order of magni-
tude of genomic events available. There are examples in the literature [3] where
more than 30 000 events were obtained, about two order of magnitude more than
previous experiments. Due to this difference, a new methods based on DBSCAN
was proposed. The key idea of this algorithm is that within a neighbourhood
of radius Eps centered on each observation belonging to a cluster there must
be at least other MinPts observations. This method classify observations, also
termed points, in three categories: (core points) and (border points) are obser-
vation falling within a cluster respectively presenting more (or equal) or less
than MinPts points in their neighborhood and (outer points) located outside
any cluster.

In [3] the setting of parameter MinPts depends on data sets size, in particular
it was fixed to 2 for total count below 10 000 and to 3 for bigger count. Eps
was set by means of a Monte Carlo procedure consisting in re-sampling 1,000
times the same amount of experimental data from an in-silico generated library
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generated under the assumption of uniform distribution along the genome. Using
the distribution of distances between each event and the MinPts-consecutive ones
is possible to control the expected number of cluster under the null hypothesis.

2.2 Kulldorff Spatial Scan Statistics for Bernoulli Model

The method proposed by [6] addresses clusters identification problem in a very
general manner. As aforementioned many different models have been proposed
depending on data type, ranging from Poisson to logistic model for categorical
data. In this work, we will focus on Bernoulli model, since integration data
are binary events. Kulldorff scan statistics vary according to different size of
scanning window, to the possibility to deal with arbitrary but known underlying
intensity function under the null hypothesis and to the likelihood ratio statistics.
The method consists in moving a window of variable size over the genomic area
G, defining a collection Z of zones Z ⊂ G. Conditioning on the observed total
number of cases, X, the spatial scan statistics S is defined as the maximum
likelihood ratio over all possible zone Z ∈ Z:

S =
max{L(Z)}

L0
= max

Z

{
L(Z)
L0

}
. (1)

L(Z) correspond to the maximum likelihood for zone Z, expressing how likely
the observed data are, given that events within Z occurs with an higher rate
than outside. L0 is the likelihood under the null hypothesis of equal rate over
the whole study area.

For the Bernoulli model let define N as the total amount of Bernoulli trials
composing to the whole support G, X as the total success or event count over
G, nZ and xZ respectively as the count of trials and success observed within the
zone Z. Conditioning on a given Z, the likelihood function for Bernoulli model
is:

L(Z, pZ , qZ) ∝ pxZ

Z (1 − pZ)nZ−xZ qX−xZ

Z (1 − qZ)(N−nZ)−(X−xZ) . (2)

To identify S, is necessary to maximize the conditional likelihood for all zones
Z ∈ Z by means of the following function:

L(Z) = L(pZ , qZ |Z = Zj) =
(

xZ

nZ

)xZ
(

1 − xZ

nZ

)nZ−xZ

×
(

X − xZ

N − nZ

)X−xZ
(

1 − X − xZ

N − nZ

)(N−nZ)−(X−xZ)

(3)

Under the null hypothesis, corresponding to a constant probability of success
over G, the 2 reduces to:

L0 =
(

X

N

)X (
N − X

N

)N−X

.

for all Z ∈ Z. To replicate the experiment it is sufficient to sample without
replacement X locations against N available [4,7,10]. Relying on a considerable
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high number of simulations, M = 1000, is possible to retrieve a Monte Carlo
estimation of S∈

1 , S∈
2 , . . . S∈

M . The p-value associated to observed test statistics S

will be defined as P (S) = [1+
∑M

i=1 I(S∈
i ≥ S)]/(M +1) where I is the indicator

function.
In [12] two alternative procedures are proposed to identify eventual secondary

cluster non overlapping with the most evident. In this work we will use a sequen-
tial approach ensuring a good control of I type error and higher power, consisting
in removing from G the zone previously detected and redefining a new collection
Z∈ = Z \ Ẑ of zones to investigate.

2.3 Experimental Data

Reference [3] analyze and compare the profile of retrovirus MLV and lentivirus
HIV integrations in human hematopoietic stem cells CD34+ in order to study
the behavior of the 2 adopted in the same cell type. To reduce possible technical
bias the same laboratory protocol and sequencing platform was adopted.

Genomic DNA was extracted 10 to 12 days after transduction and adapted
to the GS-FLX Genome Sequencer (Roche/454 Life Sciences) pyrosequencing
platform. MLV (n = 244 879) and HIV (n = 163 755) raw sequence reads were
processed through an automated bioinformatic pipeline that eliminated short
and redundant sequences, and they were mapped on the UCSC hg18 release15 of
the human genome (http://genome.ucsc.edu) to obtain 32 631 and 28 382 unique
insertion sites, respectively.

As control data set a library of 11 655 601 weighted for possible mappability
issue was generated.

3 Results

Both MLV and HIV clusters have been clearly defined, identifying integration
hot and cold spots. The control library of 11 655 601 in-silico generated random
sites were uniformly distributed, except for centromeric, repetitive, or poorly
defined regions.

Since both data sets size are bigger than 10 000, DBSCAN parameter MinPts
was fixed to 3. Using the Monte Carlo resampling procedure the distributions of
distance between MinPts-consecutive observations was estimated for both data
sets. Eps were fixed to first percentile of the distributions, in order to control the
number of clusters expected under the null hypothesis. Obtained value for Eps
were 12 587 bp for MLV and 14 460 bp for HIV. Given these parameters setting
the following results were achieved by means of DBSCAN.

In HIV data 2 446 clusters were identified over whole genome, containing
50.6 % (14 369) IS of the total count. Cluster length ranges from 100 to 200500
with a mean value of 19220. The 90 % of HIV clusters were composed of 3–10
IS with a maximum of 110 and on average the distance between consecutive
integration in cluster was 3 593 bp.

http://genome.ucsc.edu
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Fig. 1. Length distributions of clusters identified by DBSCAN algorithm in HIV and
MLV data sets.

For MLV, 3 497 clusters were identify, containing 65.3 % (21 307) ISs of the
total count. Clusters length ranges from 19 bp to 78530, with a mean value of
8385. As it can be noticed in Fig. 1 length of clusters identified in MLV data
set is substantial smaller than those founded in HIV data set. Regarding the
dimensions, as for HIV the main portion of MLV clusters (88 %) are composed of
3–10 IS but the maximum dimension is 42, so considerable smaller than HIV. The
average inter-integration distance within MLV clusters is 1 424 bp, suggesting a
stronger tendency to aggregate with respect to HIV.

Since no inferential procedure has been proposed for DBSCAN, the cluster
were sorted in terms of dimension (IS count) in order to compare with scan
statistics results.

Running scan statistics methods with a significance threshold set to α = 0.05,
121 and 754 clusters were identified respectively for HIV and MLV.

For HIV derived vector, clusters length vary between a minimum of 3 712 bp
to a maximum of 18 206 570 bps, with a mean value of 1 675 751 bps. The count
of IS within clusters ranges from 6 to 610, average 92. In general 39 % of IS
belong to clusters. The most significant (MSC) over whole genome was located
in chromosome 11, interval 64 287 380;66 820 001. The value of statistics S associ-
ated is 971.24 and 471 ISs belong to it. The p value associated to MSC obtained
by means of the Monte Carlo procedure is p − value ≤ 0.001 since the critical
value for S∈

0.95 result in 23.612. The most important, in terms of IS, identify
using DBSCAN was located in chromosome 11, interval 65 586 752;65 736 062,
hence completely included in MSC, see Fig. 3. In addition, it is necessary to
highlight that other 22 out of 2446 DBSCAN interesting regions fall completely
within MSC margins, including the overall second most relevant. The second
most significant cluster, named MSC2 was located on chromosome 17, positions
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Fig. 2. Length distributions of clusters identified by scan statistics algorithm in HIV
and MLV data sets.

71 294 851;77 821 445 and 610 IS were included. It corresponds to 38 DBSCAN
clusters, including the third most important.

In conclusion, the main part of the difference in total cluster count is attribut-
able to an art fragmentation of scan statistics cluster in more DBSCAN clusters.
Despite that, a clear and well defined correspondence in terms of localization and
ranking was observed.

For MLV derived vector, 754 clusters were identified using scan statistics app-
roach. As already observed using DBSCAN, clusters for MLV tend to be shorter
than HIV (Fig. 2). Length vary from 6 bps to 12 271 839 bps, with a mean value
of 222 271 bps, more than seven times smaller then HIV. Also the dimension
in term of IS count was significantly different since it varies between 3 and
318, average equal to 20. About 47 % of ISs belong to clusters. The MSC is
located on chromosome 20,51 646 845;51 991 770 and contains 89 ISs, see Fig. 4.
The corresponding test statistics value S is 198.94, a remarkably significant
value compared to the critical value 24.869 calculated using Monte Carlo meth-
ods. In MLV data there was no equivalent performance, at least in terms of
results ranking, among the two methods. In fact, in genomic portion labeled
as MSC, 8 DBSCAN clusters were identified, but the highest in ranking was
only 135-th. The second, MSC2, obtained re-running the scan statics procedure
after MSC has been remove from the support, was on chromosome 17, interval
26 659 383;26 672 265 and was composed by 39 ISs. It perfectly correspond to
the fifth cluster derived from DBSCAN. The most important cluster calculated
using DBSCAN is on chromosome 22 27 525 356;27545150, its dimension is 42
and correspond to MSC3 estimated using scan statistics approach.
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4 Conclusions

Both methods confirm results previously published revealing deep biological dif-
ferences in integration process and target sites selection process, when referred to
different virus. In particular, speculating only on cluster dimensions and length,
our analysis agrees with known preferences of MLV for regulatory element or
in general for small genomic interval and HIV for bigger regions corresponding
to active coding elements. Despite total cluster count, for HIV data set a sub-
stantial overlap between results was observed, in terms of both localization and
significance. The intrinsic nature of HIV probably explains this correspondence,
since aggregation is weaker in HIV than MLV but affects wider regions, leading
to cluster formed by many ISs rewarded by DBSCAN ranking scheme based
on dimension. For MLV instead, generally the aggregation tendency is much
stronger but related to narrower genomic intervals.

Scan statistics, relying on a probabilistic approach based on success probabil-
ity estimates and comparison is able to capture this aspect and using hypothesis
testing procedure is possible to sort the regions in terms of effect strength instead
of dimension. Finally, scan statistics seems to be more flexible than DBSCAN
in capturing different clustering behavior and no input parameters, except for
significance threshold, is needed. The cost to pay for this unsupervised search is
computational time.
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Abstract. This paper presents a robust automatic modelling of microRNA
(miRNA) dynamics which has at core a Genetic Programming (GP) Reversing
Ordinary Differential Equations Systems (RODES) methodology which was
developed before and which is enhanced herein and consists of four steps: (1)
smooth and fit the miRNA experimental data which is enhanced in this paper
with other types of statistical analyses such as gene differential expression
analyses, (2) decomposition of the transcription network or ODEs system, (3)
automatically discovering the structure of networks or their ODEs system
model by using GP and automatically estimating parameters of the ODEs
systems models, (4) identification of the biochemical and pharmacological
mechanisms. All four steps are paramount to the GP RODES methodology,
which has been already applied in bioinformatics, while in this paper it is
underlined a robust set of procedures for implementing the first step of the four
step GP RODES framework together with an application of the GP RODES on
a real miRNA dataset. Specifically it is highlighted a robust method to noise for
fitting omics experimental input data, which consists of the Smoothing Spline
Regression (SSR) algorithm based on the Generalized Cross Validation (GCV)
criterion. The differential expression analysis of a dataset of 837 mirRNAs
genes (GEO accession: GSE35074) is achieved by using various statistical
methods. Furthermore, a GP algorithm (i.e. GP TIPS software) is used on the
SSR and GCV fitted miRNA200a (microRNA200a), miRNA200b and miR-
NA424, which were selected from a larger group of identified differential
expressed miRNA genes and with the scope of predicting accurately the
miRNAs derivatives with regard to time. While the computational findings are
in agreement with the ones from the initial study by Moes et al. (2012) [21],
this paper develops an enhanced GP RODES methodology which can be further
applied to bioinformatics.
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1 Introduction

The purpose of any biochemical networks reverse engineering method [1–5] is to
determine the mechanisms, structure and interactions of the respective networks by
inferring their properties from data and knowledge rather than enforcing a mathe-
matical model. By using reverse engineering, the need for having initially a mathe-
matical model which describes the structure or dynamics of the networks can be
avoided [6].

In the last decade, many reverse engineering studies [7] attempted to determine the
structure and interactions of these networks by using boolean networks [8], proba-
bilistic models [9], evolutionary computation [10] or non-linear Ordinary Differential
Equations (ODEs) [11]. Genetic Programming (GP) inferring from genomics input
data [1, 6, 12] has recently shown very good perspectives for determining the char-
acteristics of such biochemical networks, as for example gene regulatory networks
[13].

A robust methodology is the GP Reversing Ordinary Differentially Equation
System (GP RODES) [6] which can automatically determine ODE systems from
genomics data by using the GP. In comparison to other methods based on evolutionary
computation, GP RODES can deal with incomplete data (i.e. either missing variables
or variables with missing values) in the high-throughput time-series omics datasets. It
can also be coupled with Neural Network (NN) RODES [6] when some partial
knowledge is known about the gene regulatory network and the input omics dataset.
GP RODES is comprised of four successive procedures, each of them addressing a
different problem in an efficient and effective manner. Various GP algorithms or
software applications can be used to implement the GP part of GP RODES: Tree GP
(e.g. GPLAB software, GPTIPS software, ECJ software), Linear GP (e.g. Discipulus
software), Gene Expression Programming (e.g. GeneXproTools software).

This paper is structured as follows: first the GP RODES methodology is presented,
then numerical results are shown on a real genomics dataset and the paper ends with
conclusions.

2 Enhanced GP RODES Methodology

The GP RODES methodology starts with the omics time-series data. It can actually be
applied to all types of high throughput time-series data for which an ODE can be
considered as an adequate model. In this case, the main focus lies on the application of
the methodology on the microRNA (miRNA) omics data.

The result of GP RODES is an ODE system, dX/dt = g(X) with n equations, one
for each variable or network node Xi, i = 1,…, n and t is time. The GP RODES
methodology applied on a generic miRNA dataset for obtaining reverse engineered
transcription networks includes the following steps:

1. smooth and fit the miRNA experimental data that can be enhanced with various
statistical methods for differential expression analysis of omics data, clustering
methods, genomic correlation measurements, etc.;
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2. decomposition of the transcription network or ODEs system [14];
3. automatically discovering the structure of the networks or their ODEs system

model and automatically estimating the parameters of the ODEs by using GP;
4. identification of the biochemical and pharmacological mechanisms involved;

The decomposition of transcription networks or ODEs system models is described
in [14] in the context of GP RODES together with the identification of biochemical
and pharmacological mechanisms. Here, the main focus will be on the first step of the
GP RODES methodology. This first step includes preparation of the input data
together with various types of statistical analyses which can be applied on this omics
input data, such as the analysis of differentially expressed genes or gene clustering.
Before the core of GP RODES comes in place (i.e. steps 2, 3 and 4), it is mandatory to
have reliable genomics (miRNA) input data as well as to gain knowledge regarding
the omics dataset by using various types of analyses for the purpose of ODEs
determination, which describe the interactions within a given omics (miRNA) dataset.

The general ODE model of miRNA transcription is shown in the Eq. (1), which is
used to calculate the rate of change of a miRNA:

dmiRNA

dt
¼ b0 þ b � P� c � miRNA: ð1Þ

where b0 is the basal miRNA transcription rate (which could be zero), b represents the
maximal transcription rate, c is the miRNA degradation constant, P is a probability
function describing miRNA production regulation by other nodes of the drug gene
regulatory network, Transcription Factors and drug related compounds.

The probability function P is increasing for activation and decreasing for inhibi-
tion. P could be calculated if the concentration profiles for all regulators and other
parameters involved are known. However this is not the case in most real-world
situations. Therefore in [14, 15] a method was developed to estimate P when infor-
mation is incomplete. The respective work in [14, 15] introduced the notion of reg-
ulome which defines the set of regulatory factors (e.g. TFs) which can influence the
miRNA transcription. Furthermore, in the case of missing information in the
respective regulome, the regulome probabilities (i.e. depending on TFs) were intro-
duced which formed regulome functions. These functions could be estimated by
means of GP RODES by using certain types of functions which can accurately
describe regulatory interactions in empirical data [14, 15].

The GP part of GP RODES, which is used to determine the ODEs, can be
described as follows:

1. Initialize a population of randomly generated individuals coding mathematical
models relating inputs Xi to outputs dXi/dt.

2. Repeat the following steps until an acceptable solution is found or some other
stopping condition is met (e.g. a maximum number of generations is reached):

(a) Run each individual and ascertain its fitness. The fitness is computed using
the mean squared error and it depicts how well an individual maps the input
data Xi to the output data dXi/dt.
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(b) Randomly select several individuals from the population (usually, between 1
and 4 individuals) with a fitness based probability in order to participate in
genetic operations.

(c) Create new individuals by applying genetic operations. As an example, from
4 individuals selected at the previous step, take two individuals as winners
and the other two as losers. Copy the two winner individuals and transform
them probabilistically by applying several genetic operators: i. crossover and/
or; ii. mutation; iii. reproduction.

3. Return the best-so-far individual.

The enhanced GP RODES methodology can be summarized in Fig. 1. When GP
RODES has no missing variables then it can use as input variables values Xi(t), i =
1,…, n at discrete time points t = 1,…, T. If variables are missing, GP RODES can
also use as inputs the regulomes probabilities Pj(t), j = 1,…, m as in [14, 15]. GP
RODES predicts the first order derivative of the miRNAs of interest. This way GP
RODES performs reverse engineering on individual algebraic decomposed ODEs
instead of reverse engineering on the whole system of ODEs.

Fig. 1. GP RODES main characteristics.
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2.1 Data Fitting with Smoothing Spline and Time Derivative Computing

Machine learning algorithms (e.g. GP, NN) [16] require enough input points in order
to be able to use the respective learning algorithms. In order to apply the GP RODES
methodology on the experimental miRNA data, a sufficient number of experimental
points must be available for a miRNA. Frequently this is not the case and hence it is
necessary to use interpolation methods which fit a function of the available experi-
mental points. By sampling this function, the necessary number of points can be
obtained. The smoothing splines methodology is one of the interpolation methods that
are robust to noise in the experimental data. Therefore, the method of choice here is
the Smoothing Spline Regression (SSR) with Generalized Cross-Validation (GCV)
criterion [17]. The determination of smoothing parameter k, which controls the fitted
function f, is of interest. The smoothing parameter can make the function f smoother
or closer to the data.

1
n

X

n

i¼1

ffi

yi � f ðxiÞ
�2 þ k

Z

1

0

ðf ðlÞÞ2dx: ð2Þ

where n is the total number of experimental points of a gene, i is an index describing

the number of experimental points, xi is the experimental data,
R

1

0
f ðlÞ
ffi �2

dx is a

penalization term that regulates the amount by which f is permitted to vary relative to
a polynomial model, l is the order of the derivative.

Equation (2) defines the Penalized Least Squares (PLS) which is minimized so
that:

Z

1

0

ðf ðlÞÞ2\ b: ð3Þ

where b is a constant.
The GCV estimate of k minimizes the function:

GCVðkÞ ¼
1
n

�

�

ffi

I � DðkÞ
�

y
�

�

2

1
n

tr
ffi

I � DðkÞ
�

� �2 : ð4Þ

where tr is the trace of a matrix, I is the identity matrix of size n, D(k) is the influence
matrix with the property that multiplied by y will give the fitted points [17].

The fitted data produces a function that can be used to resample the miRNA time
series data. Once the resampling is done, the time derivative of the resampled time
data must be calculated since this derivative will be used as input for GP RODES.

Careful consideration has to be taken as the derivation of a signal affected by low
noise can increase the level of noise in the signal derivative. Therefore, derivation is
used here for exploratory purposes first, based on a centered difference formula with
two points (Eq. 5) and subsequently, by using an eleven-point centered difference
approximation [18] (Eq. 6).
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f 0ðx0Þ ¼
f ðx0 þ hÞ � f ðx0 � hÞ

2h
: ð5Þ

f 0ðx0Þ ¼
3f ðx0 � 4hÞ � 32f ðx0 � 3hÞ þ 168f ðx0 � 2hÞ � 672f ðx0 � hÞ

þ672f ðx0 þ hÞ � 168f ðx0 þ 2hÞ þ 32f ðx0 þ 3hÞ � 3f ðx0 þ 4hÞ
840h

: ð6Þ

where x0 is the point where the first derivative is calculated, h is a certain step.

2.2 Temporal Differentially Expressed Genes

Statistical analysis methods can be applied on miRNA data with the aim of discov-
ering differentially expressed genes. These statistical methods can be incorporated in
the first step of the 4-step GP RODES producing an enhanced framework.

A commonly used method involves the application of a certain statistical test for
each gene (e.g. t-test) thus obtaining a probability pg that under the null hypothesis
(i.e. not statistical significant) follows the expression Pr (pg \k) = k. A low pg value
can be seen as evidence that the null hypothesis may not be true, and therefore lead to
the conclusion that the gene is differentially expressed. The t-test is defined below
where it is compared for example the gene mean against a mean value of 0:

t ¼ �x

s=
ffiffiffi

n
p : ð7Þ

where t is the t-value, �x is the mean calculated over all the expression points for a
gene, n is the number of time points for a gene, s is the variance of the respective gene.

Considering that the gene has 97 expression points corresponding to 97 consec-
utive time points, this would count to 96 degrees of freedom in the t-test. Corroborated
with a two-tailed t-test and a significance level of 0.01 (i.e. p-value), it would cor-
respond to a critical t-value of 2.63. Therefore t-values above 2.63 would correspond
to differentially expressed genes while t-values under 2.63 would not be considered as
indicators of differentially expressed genes.

However, another type of t-test would be to make a comparison of Eq. (7) with a
high numerical value (e.g. 100000) for each gene. In the case of this type of t-test,
small t-test values would correspond to differentially expressed genes and big t-test
values would correspond to non-differentially expressed genes.

Time course studies of differentially expressed genes can provide information
regarding the differentiation of a set of genes by taking into account the entire shape of
the gene expression function of time. The time course method, based on t and F
statistics and implemented by the software Edge [19], realizes time course studies of
genes. This method initially fits a mathematical model to the gene expression under
the null hypothesis by imposing constraints on the shape of the fitted curve, and
subsequently fits a different mathematical model under an alternative hypothesis by
using a general parametrical form based on cubic splines for the fitted curve. Then the
sum of squares of the differences between the fitted values and the given values for the
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null hypothesis model Si
0 and for the alternative hypothesis model Si

1 form the sta-
tistics for gene i [19]:

Fi ¼
S0

i � S1
i

S1
i

: ð8Þ

Based on the Fi value for each gene, the statistical measures p-value and the Q-
value can be calculated for each gene by determining the probability that the null
hypothesis model for a gene is more statistically significant than the alternative
hypothesis model.

The Bayesian Estimation of Temporal Regulation (BETR) algorithm is a time
course study [20] which works by taking into consideration the correlation between
the different time points of a gene and calculating the respective correlation terms.
Based on these, the probability of a differentially expressed gene is determined by
using a treatment gene group and a control gene group.

Pðg ¼ 1 jDtnÞ ¼
PðDtn j g ¼ 1ÞPðg ¼ 1Þ

ð1� Pðg ¼ 1ÞÞPðDtn j g ¼ 0Þ þ Pðg ¼ 1Þ PðDtn j g ¼ 1Þ : ð9Þ

where g equals 1 denotes a differentially expressed gene, Dtn is the difference in gene
expression between the treatment and the control gene groups, Pðg ¼ 1 jDtnÞ is the
probability of a differentially expressed gene given the difference in gene expressions
between the two control groups, PðDtn j g ¼ 1Þ is the probability of having a difference
between the two gene expression control groups given a differentially expressed gene,
PðDtn j g ¼ 0Þ is the probability of having a difference between the two gene
expression control groups given a not differentially expressed gene, Pðg ¼ 1Þ is the
probability of differentially expressed genes.

The calculation of the differentially expressed genes g is realized through a fast
iterative process which starts with an initial estimation of Pðg ¼ 1Þ based on which
the probability PðDtn j g ¼ 1Þ is determined [20] and then a first estimation of g is
obtained. This process is repeated until g becomes stable and the differentially
expressed genes are identified. The differentially expressed genes are the ones which
have the probability Pðg ¼ 1 jDtnÞ higher than an imposed value.

3 Results

The methods presented in the previous theoretical sections and which are now
included in the first step of the GP RODES framework are applied to a time-resolved
microarray data (GEO accession: GSE35074) of Epithelial to Mesenchymal Transi-
tion (EMT). This study primarily focuses on the potential effects of SNAI1 tran-
scription factor on a set of 837 miRNAs extracted from a culture of transformed
MCF7 breast carcinoma cells [21]. The experimental data points of the 837 miRNAs
are given at time points 0h, 4h, 8h, 12h, 24h, 72h and 96h. For each miRNA there are
four technical and three biological replicates. Between 72h and 96h is achieved the
Mesenchymal stable state for the differentially expressed miRNAs because of the
influence of the SNAI1 transcription factor.
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3.1 Data Fitting and Time Derivative Computing

In Fig. 2 the SSR with GCV fitted curve is shown for miRNA200a, miRNA200b and
miRNA424 considering the mean of their four technical and three biological repli-
cates. SSR with GCV is applied to the entire set of miRNAs. Since the derivative of
the miRNA function of time (dmiRNA/dt) is required by GP RODES, it is done for
comparison purposes with two methods: an eleven-point finite difference approxi-
mation and a derivative based on two points centered difference formula. Both
methods are applied to the entire miRNAs dataset. In Fig. 3 the derivative of miR-
NA200a, miRNA200b and miRNA424 are shown, calculated using the two formulas.

Over the entire miRNA dataset, the maximum differences between the two
methods of derivative calculation with respect to time are shown in Fig. 4. Some
differences can be noticed between the two methods particularly in the first 10 time
points out of the 97 points. For example, in Fig. 3, a bigger difference can be observed
for the first two time points in the derivative of miRNA200a of 0.1 and a smaller
difference for the calculated derivative of miRNA200b of 0.006.

As especially the concern is on the values of the derivative towards the middle and
the end of the time of study, the two point finite difference approximation which is
similar with the 11-eleven point method for the respective time period is chosen to be
used in the calculation of the derivative of the miRNAs dataset and subsequently in
GP RODES.

3.2 Results of Time Course Study

It is important to find the actual differentially expressed genes from a larger set which
involves the identification of directly and indirectly affected miRNAs relative to one
or more transcription factors. In this study, four algorithms are used: a time course
study based on BETR method [20], the methods implemented by Edge software which
could be either a static or a time course study, as well as a specific t-test explained
above.

For exploratory purposes, the methods for differentially expressed genes analysis
can be applied on the experimental miRNA data, the fitted miRNA data or the fitted
miRNA data at the experimental time points.

The differential expression analysis is realized first with BETR implemented with
the MultiExperiment Viewer (MEV) [22] software. In the analysis made with BETR,
there were used three experimental biological replicates/groups. The numerical results
in Fig. 5 showed a top-list of 27 miRNAs being differentially expressed, while the
extended list obtained with BETR had many similarities with a list of 350 experi-
mentally validated miRNAs that are influenced by SNAI1 transcription factor and
which 350 experimental validated gene list was obtained using the MetaCore appli-
cation’s database [23]. Specifically, the miRNA200 group was identified as being
differentially expressed within the reduced 27 miRNAs list together with other
experimentally confirmed miRNAs (e.g. miRNA424, miRNA221, etc.).
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a)

b)

c)

Fig. 2. (a) Fitted miRNA200a with SSR and GCV; (b) fitted miRNA200b with SSR and GCV;
(c) fitted miRNA424 with SSR and GCV.
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a)

b)

c)

Fig. 3. (a) Derivative of fitted d(miRNA200a)/dt; (b) derivative of fitted d(miRNA200b)/dt;
(c) derivative of fitted d(miRNA424)/dt.

170 C.T.C. Arsene et al.



These findings are also in agreement with the ones reported in the initial study by
Moes et al. (2012) in [21] which addressed firstly this miRNA dataset (GEO acces-
sion: GSE35074).

A second differentially analysis was carried out with software Edge and the static
analysis implemented by the software. Two groups were formed, Group A consisting
of the fitted data at times 0h, 1h, 2h, 3h, 4h, 5h and Group B consisting of the fitted
data at times 94h, 95h, 96h. A static analysis was implemented with Edge and the
ranked list of differentially expressed miRNAs showed again similarities with the
previous result (Fig. 6).

A third analysis implemented herein was a time course study realized with Edge
on the experimental data for the mean of the four technical replicates for each bio-
logical replicate. There were again three biological replicates used in the time course
study for each miRNA.

The numerical results (Fig. 7) clearly identified a set of 34 miRNAs as being
differentially expressed in conformity with the previous results reported here and in

Fig. 4. Maximum difference between the derivatives calculated with the two methods (two
points and eleven points difference approximation) over the entire miRNAs dataset.

Fig. 5. 27 miRNAs identified with BETR using the three experimental biological replicates.
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the literature concerning experimental studies. The ranking was made based on the p-
value statistical measure while the Q-value is also shown.

In conclusion the numerical results of the differentially expression analyses
showed a consistent degree of similarity among the time course studies and the static
analysis. These differentially expression analyses can be combined with other types of
statistical analyses such as clustering (e.g. Self Organizing Maps, etc.) for the purpose
of identification of the traits of the omics datasets.

The final differentially expression analysis is realized for the mean of the bio-
logical and the technical replicates from above and with t-test implemented with the
same software MEV. By using the fitted data with SSR and GCV, a t-value for each
gene is calculated by comparing the mean of a gene with a high numerical value (e.g.
100000) on the grounds that genes that are differentially expressed may have the mean
value bigger than the means of the other genes while the standard deviations being
smaller for the differentially expressed genes: this would result in small t-test values
for the differentially expressed genes. Once again in this experiment we are interested
in small t-test values as a way of detecting the differentially expressed genes by
comparison with a high numerical value. The numerical results in Fig. 8 show that
most of the genes which clustered at the bottom of the ordered list of genes with

Fig. 6. miRNAs identified in a static differentially expressed analysis with Edge software
considering fitted points at times 0 h, 1 h, 2 h, 3 h, 4 h, 5 h (Group A) and 94 h, 95 h, 96 h
(Group B).

Fig. 7. 34 miRNAs identified in a time course study with Edge software using three biological
replicates.
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respect to the t-values had many similarities with the lists obtained in the other
experiments and includes the group miRNA200a.

This analysis gives appropriate results also for the genes which are affected by
SNAI1 in the EMT and are both up-regulated and down-regulated and would
potentially have the mean value very small (i.e. closed to 0). In this last case the
standard deviation of the respective genes are represented by high values and the
comparison with a high numerical value would still result in small t-test values as
above and would successfully determine the differentially expressed genes.

3.3 Structure and Parameters Discovery from the GSE35074 miRNA
Time Series Data with GP RODES

GP RODES is used to obtain an ODE for dmiRNA200a/dt. Specifically from the suite
of GP software available, the genetic programming software GPTIPS (Genetic Pro-
gramming & Symbolic Regression Toolbox for MATLAB) [23] is used with the
following parameters: (1) Population size 500, (2) Number of generations 2000, (3)
Number of trees in tournament 7, (4) Maximum tree depth 12, (5) Maximum number
of genes 2, (6) Probability of tree mutation 0.1, (7) Probability of tree crossover 0.85,
(8) Probability of tree direct copy 0.05, (9) Function set {+, -, *, /}. The elitism
selection was present also as an initial setting in the software, each individual could
have a maximum number of 2 genes and no duplicates were allowed at the initiali-
zation stage and the operator ‘‘/’’ was protected against division by zero.

The ODE, which might be expected to obtain for miRNA200a with GP RODES
and with a basal miRNA transcription rate b0 of zero, has the form:

d miRNA200að Þ
dt

¼ ks � P SNAI1; . . .ð Þ � kd � miRNA200a ð10Þ

where ks is the miRNA200a production constant, kd is the miRNA200a degradation
constant, SNAI1 is one of the transcription factors which regulates miRNA200a.

Fig. 8. 40 miRNAs identified with t-test using the mean of the three biological and technical
replicates and a comparison with a high numerical value (e.g. 100000).
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a)

b)

c)

Fig. 9. (a) Measured and predicted d(miRNA200a)/dt; (b) measured and predicted d(miR-
NA200b)/dt; (c) measured and predicted d(miRNA424)/dt.
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In Eq. (10) the probability function P describing miRNA200a production regu-
lation by other TFs and drug related compounds depends in special on the tran-
scription factor SNAI1 based on the experimental information. The miRNA200a was
found by the differentially expression analyses to be influenced directly in EMT by
SNAI1 confirming also the experimental results [24]. The complexity of the equation
which describes d(miRNA200a)/dt can be controlled by changing for example the tree
depth in the GPTIPS software so that to obtain a simpler or a more complex equation
for a given level of accuracy in the numerical results.

In Fig. 9(a) is shown the measured and the predicted d(miRNA200a)/dt obtained
with GPTIPS where the Root Mean Square Error (RMSE) is 0.0033749. In Fig. 9(b) is
shown the measured and the predicted d(miRNA200b)/dt where the RMSE is
0.0032146. In Fig. 9(c) is shown the measured and the predicted d(miRNA424)/dt
where the RMSE is 0.00091695.

However, in the examples presented herein, more investigation in the structure of
the ODEs might be required as described in [15].

By integrating the ODE determined with respect to time on the interval [0h 96h]
for example for d(miRNA424)/dt, it is obtained the predicted miRNA424 values for
the respective time interval. Finally, once the discovering of the structure of the
networks or their ODEs system model has been done, it can take place the identifi-
cation and the study of the biochemical and pharmacological mechanisms involved,
which is the last step of the 4-step GP RODES methodology.

4 Conclusions

The enhanced GP RODES methodology was applied successfully to a high-
throughput time-series omics dataset of miRNAs which are influenced in the EMT by
transcription factors, especially SNAI1.

First, there was an interest to incorporate statistical analyses in the first step of the
four-step GP RODES framework, which could provide useful information or
knowledge regarding the interactions present in a miRNA dataset. A series of dif-
ferential expression analyses were carried out on a miRNA dataset based on BETR
algorithm, two methods implemented by Edge software and a specific t-test calcula-
tion. The lists of differentially expressed genes, which were found with the statistical
tests, confirmed the expectations based on the experimentally validated results as well
as the ones reported in the initial study by Moes et al. (2012) in [21] which addressed
initially this miRNA dataset (GEO accession: GSE35074). It can be concluded that
various combinations of statistical tests can be incorporated at the first step of the four-
step GP RODES with the aim of alleviating the work of biomedical researchers with
respect to deriving the needed information regarding the differentially expressed
genes.

Finally, by using a GP algorithm (i.e. GP TIPS software) applied on data obtained
with a robust fitting method SSR with GCV criterion, the aim was to predict accu-
rately and to determine reliable ODEs, which describe how miRNA200a, miRNA200b
and miRNA424 vary in time function of the inhibitory and stimulatory biological
molecules. This information can be useful in the biomedical research field in
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determining the drugs which can tackle serious diseases such as cancer disease.
Further work will involve the comparison of the GP RODES with other methodologies
or computational models based for example on NNs [6, 25–27].
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Abstract. This paper investigates the integration of clinico-pathological
and microRNA data for breast cancer relapse prediction. Clinical and
pathological data proved to be relevant in making predictions about
cancer disease outcome. The most accurate predictive models can be
obtained by using clinico-pathological information together with genomic
information. We analyzed the performance of various combinations
between twenty classification algorithms and thirteen feature selection
methods. The best performer was the regularized regression method
Elastic Net, using its built-in feature selection method, on the data set
integrating clinico-pathological data with microRNAs. The hybrid signa-
ture contains four clinico-pathological features and fifteen microRNAs.
We also evaluated the influence of the separation of patients according
to ER status and the impact of the exclusion from the data set of HS
molecules (novel microRNAs without an assigned miRBase ID) on the
overall performance. Functional analysis of the microRNAs of the best
classifier showed that they are involved in cancer related processes.

Keywords: microRNA · Clinico-pathological data · Breast cancer
relapse · Predictive models · Regularization

1 Introduction

Integrative analysis, mining, and modeling of various types of data are necessary
prerequisites in the development of intelligent clinical decision support systems
(i-CDSS) that would facilitate implementation of personalized medicine. Person-
alized medicine essentially involves the use of patient’s omics data together with
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clinical, pathological, and imaging information, to select a therapy or implement
preventive measures that are particularly suited to certain patients. Integrat-
ing various types of data represents a key aspect in this context and can assist
in the discovery of hybrid cancer signatures, while shedding new light on the
molecular mechanisms underlying pathogenesis [15]. Despite significant efforts,
cancer is still a lethal disease with a high mortality rate. Breast cancer occurs
predominantly among women, being one the most common cancers. Worldwide,
1.4 million newly diagnoses and 460, 000 breast cancer deaths are being reported
each year [31]. Cancer research is currently focused on two major themes: the
exploitation of biomarker panels for the development of clinical applications and
a better understanding of the molecular mechanisms involved in carcinogenesis
and cancer progression, at pathway-level.

Classical clinico-pathological markers incorporate experiences and conclu-
sions accumulated over the years, and are usually relevant in making predic-
tions about disease outcome. microRNAs are small, non-coding RNAs, mainly
involved in the negative regulation of gene expression at the post-transcriptional
and translational levels. They were identified as regulators in various types of dis-
ease, including breast cancer [23]. microRNAs were found differentially expressed
between normal and tumor tissues and therefore, they can be used as disease
predictors in different human cancers.

The current work analyzed the use of clinico-pathological and genomic data
for developing intelligent systems for relapse prediction in breast cancer.
We consider a binary classification problem: the response variable to be predicted
can take two values, corresponding to disease relapse and no-relapse. We ana-
lyzed the predictive power of clinico-pathological markers and microRNAs, either
alone or taken together. We tested various combinations between twenty classi-
fication algorithms and thirteen feature selection methods. The most accurate
predictive models were obtained by integrating clinico-pathological and genomic
data. The best accuracy (AUC = 0.87) was obtained with the regularized regres-
sion method Elastic Net, using its built-in feature selection. Elastic Net discov-
ered a hybrid signature, integrating four clinico-pathological variables and fifteen
microRNAs. The functional analysis of the selected microRNAs showed that they
are related with various cancer processes. Thus, accuracy is increased and the
cost is decreased by integrating classical clinico-pathological and microRNAs
markers.

The paper is structured as follows. This section finishes with related works.
The methods, including the experimental framework are presented in Sect. 2.
The experimental evaluation and the biological interpretation of the results are
presented in Sects. 3 and 4. Several conclusions are outlined in the last section.

Related Works

Integrating clinico-pathological information was reported to improve perfor-
mance estimated on expression data only in breast cancer [22,42]. In addition,
other studies [12,28] enforce the position of clinico-pathological markers as pow-
erful prognostic tools that overshadow the predictive capability of microarray
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expression profiles. Identifying a hybrid signature through the combination of
genomic and clinico-pathological markers has been investigated in [39]. Classifi-
cation performance of the hybrid signature on a survival data set outperforms
the results obtained with a 70-gene signature of [41], with clinico-pathological
makers alone, and with the St. Gallen consensus criterion [21]. Prognosis pre-
diction for patients with breast cancer by integrating clinico-pathological and
microarray data with Bayesian networks was studied by Gevaert et al. [20]. In
the same field of interest, we previously investigated the development of trans-
parent and interpretable intelligent systems for cancer diagnosis using decision
tree models [16].

2 Methods

We consider a binary classification problem in which the response variable corre-
sponds to breast cancer relapse and no-relapse. We analyze the predictive power
of clinico-pathological markers and microRNAs, combined and separately.

2.1 Data Set

We used the breast cancer data set published in [6] and available on GEO [13]
with the accession number: GSE22220. These data consist of expression profiling
of mRNA and microRNA from 210 patients. Two patients were omitted from the
original data set, as they have been lost sight of and thus the final data set com-
prised 208 case. Each patient’s expression profile consisting of 735 microRNA
and 24332 mRNA have been assessed. For the current study, we will use only
the microRNA data, since evidence suggests a regulatory role for microRNAs
in cancer [8,24]. The microRNA identifiers used here are of two types: (i) those
with assigned miRBase IDs; and (ii) relatively novel microRNAs that are iden-
tified as HS sequences. Each patient in the data set has associated information
regarding disease relapse. Disease relapse in cancer is defined as the recurrence
of an identical tumor after complete cure in a specific time interval, which is ten
years for the data set used here.

In addition to gene expression data, clinico-pathological information has been
collected for every patient. The clinico-pathological information consists of five
patient characteristics: age, tumor size, tumor grade, nodes involved, and ER
(estrogen receptor) status. According to Eifel et al. [14], clinico-pathological data
can be classified in: (i) patient characteristics that are independent of the disease;
(ii) disease characteristics, for example the tumor size; and (iii) measurable
parameters in tissue cells or fluids, such as estrogen receptor status.

1. Patient age has the average of 55 years with a standard deviation of 10 years.
2. Tumor size is a variable with values ranging from 0 to 7.
3. Tumor grade is a variable used to classify tumor cells into 3 categories accord-

ing to their differentiation status.
4. Nodes involved is a clinical variable ranging from 0 to 16.
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5. Estrogen receptor (ER) status is a binary variable used to distinguish between
two major tumor groups: ER−positive and ER−negative. These tumor groups
differ with respect to endocrine sensitivity to estrogen or estrogen-mimicking
substances.

2.2 Experimental Framework

The data set was split into training and testing in a cross-validation procedure
with 10 folds. On each fold, training data set was used for learning the model,
feature selection and classifier, and testing data was used for evaluating the
learned model.

We compared twenty classification algorithms1 in combination with thirteen
feature selection methods2 to decide on which to further focus for tunning. We
took as input: microRNA data only, clinico-pathological data only, and their
combination. The experimental evaluation was performed in R language [34],
using at first the CMA package. The CMA [38] package provides an interface that
allows the user to easily run and compare a large set of classification algorithms.
The algorithms were run with their default parameters and performance measure
was considered in terms of misclassification error.

Out of all evaluated classification algorithms, we selected six that showed
the best performance: Componentwise Boosting, Elastic Net, Lasso, Penalized
Logistic Regression, Random Forests and Support Vector Machines. Componen-
twise Boosting combines linear functions in an ensemble; it generates sparsity
and can be as used for variable selection alone [5]. Penalized Logistic Regression
adds an L2-type penalty to the high dimensional logistic regression [49]. Random
Forests [4] is a learning ensemble that constructs decision tree learners and ran-
domly selects features at each split. SVM [37] is able to perform both linear and
non-linear classifications by constructing one or several hyperplanes in a high
dimensional space. Performance of these selected algorithms was further tested
over different values of selected variables. The algorithm with the best result was
chosen for further analysis.

Linear models have regained popularity in machine learning applications for
big datasets where the number of features is much larger than the number of sam-
ples. In this context, our focus on Elastic Net enforces this observation. Elastic
Net [50] is a regularized regression method combining the L1 and L2 penalties of

1 Componentwise Boosting, Diagonal Discriminant Analysis, Elastic Net, Fisher Dis-
criminant Analysis, Tree-based Boosting, k-nearest neighbors, Linear Discriminant
Analysis, Lasso, Feed-Forward Neural Networks, Probabilistic nearest neighbors,
Penalized Logistic Regression, Partial Least Squares with Linear Discriminant
Analysis, Partial Least Squares with logistic regression, Partial Least Squares with
Random Forest, Probabilistic Neural Networks, Quadratic Discriminant Analysis,
Random Forest, PAM, Shrinkage Discriminant Analysis, Support Vector Machine.

2 t test, Welch test, Wilcox test, F test, Kruskal-Wallis test, moderated t and F test
(limma), One-step Recursive Feature Elimination, random forest variable impor-
tance measure, Lasso, Elastic Net, componentwise boosting, Golub ad-hoc criterium,
shrinkcat.
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the Lasso and Ridge methods. This method encourages a grouping effect, where
strongly correlated predictors tend to be in or out of the model together. Elastic
Net is particularly suitable in classification problems on data where the num-
ber of predictors is much larger than the number of observations. Microarray
data constitutes a classical example: thousands of transcripts measured, while
patients are at maximum a few hundreds.

The classification problem can be formalized as follows: we have a predictor
space X ∈ R

p. We are given a training set with n observations {(x1, y1), . . . ,
(xn, yn)} where xi denotes a p dimensional predictor vector and y is a binary
response variable encoding disease relapse or no-relapse. The task is to find a
decision function:

f̂ : X → {0, 1}
x → f̂(x)

where ·̂ means that the prediction function is being estimated from the training
sample such that the generalization error is minimized. For linear models, this
error is defined as:

L[(f(x), y)] =
n∑

i=1

(yi − xT
i β)2

In order to reduce overfitting, a penalty term is added to the loss function:

L[(f(x), y)] =
n∑

i=1

(yi − xT
i β)2 + λPα(β) (1)

Ridge regression (α = 1), Elastic Net (0 < α < 1) and Lasso (α = 0) are part of
the same family with general form of the penalty term:

Pα(β) =
p∑

j=1

[1
2
(1 − α)β2

j + α|βj |
]

(2)

The experimental evaluation was performed using the glmnet R package [18].
This package is a fast implementation of the standard coordinate descent algo-
rithm for solving L1 penalized learning problems. Models are built in a so-called
coordinate descent: optimization of each parameter is done separately, maintain-
ing all other parameters fixed and λ values in a descending scale.

3 Results

We first analyzed the relation between two clinical variables and disease relapse.
The clinical variables that we considered were: tumor size and nodes involved.
We observed that tumor size is related to disease relapse, and, in general, the
larger the tumor, the higher the chances of disease relapse. This can be seen
in the plot shown on the lefthand side of Fig. 1: for small tumor sizes, 1 or 2,
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Fig. 1. Left: Histogram of patient number versus tumor size. Right: Histogram of
patient number versus number of nodes involved. The color of the bars in the histograms
show the division of patients in the two groups: relapse (light gray) and no-relapse (dark
gray). The numbers show the percentages of patients with relapse.

the percentage of relapse is between 20–25 %, while for tumor sizes larger than
3, the percentage reaches 60 %. A certain correlation degree can be observed
between the number of nodes involved and disease relapse by analyzing the plot
from the righthand side of Fig. 1: for a small number of nodes, the risk of relapse
is smaller than for a larger number of nodes involved.

We compared several classification algorithms in combination with several
feature selection methods to decide on which to concentrate for further tunning.
The comparison was performed using CMA package in R language.

1. Clinical data only. The classification algorithms were tested using clinical data
only. The tumor grade clinical variable is missing for a number of 23 patients.
To screen the effect over classification performance of the tumor grade vari-
able three input sets were tested: first, the tumor grade variable was excluded
from the input data set. Second, tumor grade missing values were imputed
using the k-Nearest Neighbor algorithm (kNN) [11] available in the package
imputation [45]. The optimal number of neighbors to use was determined by
cross validation (k = 4) and passed on the imputation. Third, patients with
missing tumor grade values were excluded from the data set. Tumor grade
variable affected the average classification performance as follows. When it
was excluded from the clinico-pathological variables, the average misclassifica-
tion error was 0.321 and standard deviation of 0.056. Evaluation on input data
that excluded patients with missing values for tumor grade resulted in 0.335
average misclassification error and standard deviation of 0.059. The best aver-
age performance, 0.318 and standard deviation of 0.050, was obtained when
missing values were imputed with kNN. Further analyses were conducted
using tumor grade imputed with kNN algorithm.

2. Genomic data only. Considering that some classification algorithms have
built-in feature selection, the number of variables selected from the feature
selection outcome was relatively high, specifically 250. Classification
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algorithms tested on microRNA data only produced fair results: average mis-
classification error was 0.357, with a standard deviation of 0.014.

3. Combination between clinical and genomic data. As explained above, classifi-
cation algorithms were also run on 250 selected variables. Combining
microRNA expression values with clinical data, resulted in overall improved
accuracy. Results: average misclassification error was 0.334 with a standard
deviation of 0.054.

Further analyses were run exclusively on the combined data set.
Selection of the best classification algorithms and feature selection method

was done as follows: we observed that classification algorithms performed best
in combination with feature selection using Boosting method and set an upper
threshold of 0.280, corresponding to the misclassification error obtained with
Random Forest and Boosting. Feature selection methods that included at least
three classification algorithms with performance below the threshold were main-
tained for the analysis and all the remaining combinations were further tested.
Table 1 shows the selected algorithms with their combined feature selection, high-
lighted in a grey background. Best accuracy 0.267 was obtained with Compo-
nentwise Boosting classification algorithm and Shrinkcat as feature selection.

The selected algorithms and feature selection methods were run for a range
of selected number of variables: 20, 50, 100, 150, . . . , 300, for the combination
between clinical and microRNA data. Results are shown in Fig. 2. From the
tested combinations of feature selection methods and classification algorithms,
the smallest misclassification error was obtained with Shrinkcat as feature selec-
tion method and Elastic Net as classifcation algorithm.

Since Elastic Net has built-in feature selection, we further tested its per-
formance using the implementation from glmnet package on the combination
between clinical and microRNA data. Classification performance of Elastic Net
was estimated using area under ROC curve (AUC) [46]. We considered different

Table 1. Comparison of classification algorithms (Componentwise Boosting, Elastic
Net, Lasso, Penalized Logistic Regression, Random Forest and SVM) in combination
with several feature selection methods. Performance was measured in terms of misclas-
sification error.

Boosting Elastic Net Kruskal-Wallis Shrinkcat

Componentwise Boosting 0.271 0.275 0.267 0.267

Elastic Net 0.350 0.276 0.268 0.272

Lasso 0.349 0.275 0.280 0.277

Penalized Logistic Regression 0.2690 0.298 0.417 0.305

Random Forest 0.280 0.289 0.311 0.316

SVM 0.275 0.312 0.333 0.303
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Fig. 2. Classification performance for all combinations of feature selection methods
and classification algorithms. Misclassification error was used for measuring the per-
formance.

parameter configurations for the values of α = {0.1, 0.2, . . . , 0.9} (see Eqs. 1 and
2) using 10 fold cross-validation. Best AUC performance over the whole data
set was 0.87, corresponding to α = 0.6, λ = 0.11 and only nineteen selected
variables. This AUC value is higher than the AUC obtained by Buffa et al. [6]
(the AUC’s obtained by Buffa et al. [6] using Cox models is around 0.71). The
algorithm’s selected variables were also screened during the process. For each α
value tested, we observed that four out of the total of five clinico-pathological
variables were always selected: age, tumor size, nodes involved and ER status.
This aspect confirms their important role as predictors along with genomic data.

Basically, the classification algorithm developed will be used to make a pre-
diction about cancer relapse for new patients, and this prediction will help in
choosing the appropriate treatment for that patient (for example, patients with
a high risk of relapse will be given a more aggressive treatment). By considering
and screening only 15 microRNAs instead of about 700, the costs associated are
considerably reduced.

For comparison purposes, we have investigated the results and the value of
λ by using a cross-validation procedure, for α = 0 and α = 1 corresponding to
the Lasso algorithm and the Ridge regression (Fig. 3). The dotted lines indicate
the most stable interval of λ values corresponding to the best performances.
It can be noticed that Ridge regression algorithm produces less robust results,
with a larger standard deviation. Lasso classification algorithm shows a similar
behavior to Elastic Net.

3.1 Patient Differentiation Based on ER Status

The ER status variable has the capability to distinguish between tumor cell
populations of different origins and it is an important parameter used in practice
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Fig. 3. Performance comparison for Lasso, Elastic Net and Ridge Regression for dif-
ferent values of λ parameter. AUC was used as the evaluation metric.

by clinicians. This is why we wanted to evaluate two models of classifiers for ER+
patients, respectively ER−. The original group of patients was divided into two
subsets based on the ER status. We obtained 81 patients with ER positive status
and 127 patients with ER negative status. We investigated the performance of
18 classification algorithms and 11 selection methods for the two subsets of data
obtained.

To assess whether the classification algorithms perform better after this dif-
ferentiation, we used the t-test. We compared the performances for the full set of
patients with the performances on the ER+ subset. On average, a better perfor-
mance was obtained on the complete set for 12 classification algorithms, and for
8 algorithms this difference was significant. For the 5 classifiers that had a better
accuracy on the data set with ER+ patients, the difference was significant only
for two of them. Similarly, 11 classification algorithms had better average results
on the complete set of patients compared with the performance of classifiers
tested on ER− group of patients, the difference being significant for 7 of them.
Of the remaining 6 algorithms, only 2 had a significantly better performance
when running ER− data.

This separation would be worthy of further consideration if the results clearly
indicated a significant increase in performance, which they do not, in this case.

3.2 Exclusion of HS Sequences

From the total of 735 micoRNA molecules, only 488 of them have an identifier in
the miRBase [29]. We investigated whether the performance improves when the
microRNA molecules which are not classified in the miRBase (the HS sequences)
are excluded from the data set. To make this comparison we used the t-test. The
analysis showed that 15 (out of 18 algorithms) had a better average accuracy in
classifying all 735 microRNA molecules, the difference being significant for 8 of
them. This suggests that the HS molecules are involved in cancer recurrence.
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4 Biological Significance

Among the fifteen objects from the initial list, only ten were confirmed as microR-
NAs with assigned miRBase IDs, and we consider these ten microRNAs as the list
of informative microRNAs. The ten microRNAs found to be informative regard-
ing disease relapse are: hsa-miR-668, hsa-miR-566, hsa-miR-487a, hsa-miR-451,
hsa-miR-448, hsa-miR-199a-5p, hsa-miR-191, hsa-miR-18a, hsa-miR-106a:9.1,
hsa-miR-1260. None of these microRNAs matched any of those determined in the
original study conducted by Buffa et al. [6]. We further subjected the microRNAs
to functional analysis, thus bringing them into biologically meaningful context.
The functional role of each informative microRNA was investigated by consult-
ing the available PubMed literature on similar studies. Integrated analysis was
then conducted for all informative microRNAs using three web-based enrichment
analysis applications: MetaCoreTM, DAVID v6.7 [27] and ToppGene [10]. We
further discuss our findings.

Expression levels of hsa-miR-106a:9.1 have been previously investigated by
Wang et al. [44] in both tumor and adjacent normal tissues, as well as in
serum derived from blood samples. Results have indicated the overexpression
of this microRNA in the tumor tissue samples and in the serum of breast cancer
patients. One known role of hsa-miR-106a:9.1 is the inhibition of macrophage
development, thus limiting the immune response towards cancer cells [17]. The
overexpression of hsa-miR-18a in breast cancer cell lines and tumor tissue was
linked to the downregulation of ATM kinase which is normally involved in DNA
damage detection. This study has confirmed ATM as being a target of hsa-miR-
18a, whose increased expression levels lead to lowered DNA repair capabilities.
Also, significantly higher levels of hsa-miR-18a where observed in ER+ tumors
than in ER− ones [9]. Volinia et al. have shown that hsa-miR-191, together
with hsa-miR-21 and hsa-miR-17-5p, are expressed at higher levels in all the
types of cancer that they have studied [43]. Evidence shows that hsa-miR-191
is involved in the epithelial to mesenchymal transition (EMT) [26]. Also, the
role of hsa-miR-448 in EMT has been highlighted by Li et al. [30] using breast
cancer cell lines. The involvement of hsa-miR-199a-5p in autophagy has been
documented in a study conducted by Yi et al. [47]. Even though autophagy has
been associated with various diseases, including cancer, the exact mechanisms
involved have not been elucidated since. The overexpression of hsa-miR-199a-
5p inhibited radiation induced autophagy in a breast cancer cell line. This is
achieved by repression of two key proteins involved in autophagy activation:
DRAM1 and Beclin1, by hsa-miR-199-5p. In a recent study, Bergamaschi et al.
[3] have demonstrated the link between hsa-miR-451 and breast cancer recur-
rence and another study has highlighted the relationship between this microRNA
and resistance to cancer treatment [48]. Seven microRNAs, together with hsa-
miR-487a, from the 14q32 chromosomal region have shown lowered expression
levels in Ewig sarcoma metastatic xenografts, in comparison to control samples,
thus suggesting a potential role in tumor suppression for these microRNAs [33].

No relevant literature was found linking hsa-miR-668, -566 or -1260 to breast
cancer. However, we have used a freely accessible web-based tool called
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MIRUMIR [2] to perform survival analyses for submitted microRNA IDs across
multiple available GEO data sets. MIRUMIR makes use of rank information
from these data sets. For each set, samples are grouped according to the expres-
sion rank of the miRNA that is specified by the user. The two groups : “low
expression” and “high expression”, are those in which the expression rank of the
microRNA is lower or higher than the average expression rank across the whole
data set. In order to find statistical differences in patient survival outcome, this
separation into low and high groups is used along with survival information [2].
Nine out of ten microRNAs from our list were thus found to be significantly
linked to poor survival outcome in breast cancer when expressed at low lev-
els. In this case, data set GSE37405 was analysed for microRNA ranking. No
expression data was available for hsa-miR-1260 however.

Functional analysis for the ten microRNAs was first performed in
MetaCoreTM using Dijkstra’s shortest paths algorithm to add known targets and
intermediary molecules linking the microRNAs in an expanded network. Ade-
quate connectivity was reached when choosing four as the maximum number of
steps in the path between objects. We exported the gene list associated with the
obtained network and analyzed it using the functional enrichment analysis appli-
cation in MetaCoreTM software [1]. Figure 4 shows the top ten pathway maps
(left plot) and processes (right plot) identified using our initial microRNAs list
together with their targets and intermediary molecules. The pathway maps and
processes are ordered according to their statistic significance (log(pValue)). The
first ranking pathway map that was identified points out to cytoskeleton remod-
eling processes together with Wnt and TGF-β signaling, all of which are relevant
to cancer progression, tumor growth, differentiation and metastasis [7,32]. TGF-
β also modulates processes such as cell invasion, immune regulation and tumor
microenvironment modification [32]. The activation of IGF-1 receptor signaling

Fig. 4. The top ten pathway maps (left plot) and processes (right plot) identified using
our initial microRNAs list together with their targets and intermediary molecules.
The analysis was performed using MetaCoreTM software [1]. The pathway maps and
processes are ordered according to their statistic significance (− log(pValue)).
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Fig. 5. The highest ranking phenotypes associated with the informative microRNA list
and their targets and intermediary molecules identified using ToppGene [10]. The top
scale of the graph is concordant with gene count and the bottom scale with P-value.

was identified in the second highest ranking pathway map, and it is known to be
highly correlated to disease progression, radiotherapy resistance and a generally
unfavorable prognostic in breast cancer [35,40]. Interleukin 2 (IL-2) activation
and signaling was also identified as a relevant process for our list of microR-
NAs. The IL-2 receptors activate several different pathways that mediate the
flow of mitogenic and survival-promoting signals [7] but also play a critical role
in orchestrating the immune responses [19]. Another relevant map points out to
the process of angiogenesis, induced by VEGF signaling, which is required for
invasive tumor growth and metastasis [36].

In summary, all of the top ten pathway maps and processes that have been
identified by us are known as key players in carcinogenesis and immune suppres-
sion [25]. Functional annotation of the extended list obtained in MetaCore TM
was analyzed in DAVID v6.7 [27] (The Database for Annotation, Visualization
and Integrated Discovery) and returned the top KEGG Pathway term Pathways
in cancer, with a pValue of 3.0E-42. ToppGene [10] identified the highest rank-
ing phenotypes associated with these genes as neoplasms and breast carcinoma,
both with pValues <<0.005 (Fig. 5).

MicroRNAs associated with distant relapse-free survival identified by Buffa
et al. [6] (hsa-miR-29c, hsa-miR-642, hsa-miR-548d), considering both ER+ and
ER- patients, returned similar results: top KEGG Pathway term Pathways in
cancer, with a pValue of 3.8E-8 and neoplasms as highest ranking phenotype in
ToppGene, with a pValue below 0.015.
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5 Conclusions

We analyzed the predictive power of clinico-pathological markers and microRNA
in the disease relapse binary classification problem. Multiple classification algo-
rithms and feature selection methods were tested over clinico-pathological and
genomic data, combined and separately. The focus was set on developing a hybrid
signature that would improve classification performance. The best result was
obtained with regularized regression method Elastic Net implemented in the R
package glmnet. The marker variables selected included four out of five clinico-
pathological data and fifteen other microRNAs which were found to be associ-
ated with various cancer processes. Integrating classical and genomic markers
can increase accuracy and decrease cost.

Using the integrated data, we also investigated the efficiency of patient differ-
entiation according to the ER status. The results obtained for the two subsets
did not show that this strategy would optimize the predictive models, since
the performance was slightly better for the complete set of individuals which
included both patients with ER+ and ER− status. Given the uncertain status
of microRNA molecules which are not associated with an identifier in the miR-
Base (HS sequences), they were excluded from the predictor variables. Testing
the combinations of classification algorithms and feature selection methods on
the data set with HS sequences excluded showed slightly lower performance,
suggesting that HS molecules are involved in breast cancer recurrence.
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Abstract. We introduce a bootstrap root MUSIC (BRM) technique,
which employs superresolution multisignal classification to reduce high-
dimensional sets of genes from expression microarrays to low-dimensional
sets used in supervised classification analysis. During BRM, the
Marčenko-Pastur limit distribution of eigenvalues for the array-by-array
gene expression covariance matrix was used for determining the eigen-
value cutoff for the noise subspace. Classifier results were compared with
and without replacing gene expression values with the inverse of the
distance to class-specific noise eigenspace for each microarray. Nine gene
expression datasets were used for classification, and results of using BRM
were compared with classification results based on use of random and
best ranked N genes. On average, BRM resulted in greater classification
of randomly selected genes when compared with direct use of randomly
selected genes for classifier input. In addition, when BRM was applied
to best ranked N genes, the interquartile ranges of accuracy were smaller
when compared with direct input of best ranked genes into classifiers.
Overall, BRM can optimally be used with 128 or 256 best ranked mark-
ers, requiring less extensive filtering to identify smaller sets of predictors.
Use of a larger set of markers with BRM can help minimize the effect of
concept drift over time.

1 Introduction

Supervised classification analysis of DNA microarrays based on expression of
messenger RNA, oligonucleotides, or micro RNAs in various disease or exposure
classes is a common enterprise in etiologic research. Under most circumstances,
an “optimal” gene set is identified via filtering, where selection of the best pre-
dictors is done independent of the classifier used, or by wrapping, where the
classifier itself identifies the best predictors. “Best” is taken to mean either a
statistically significant set of joint predictors identified simultaneously or the
best ranked N predictors identified singly. Wrapping is known to suffer from a
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 194–209, 2014.
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varying degree of selection bias because the genes identified can make up for
weaknesses of the classifier employed [1]. For this reason, there is typically less
selection bias when a wholly independent filtering-based approach is initially
used, followed by classifier training and testing.

The informativeness of an optimal set of gene predictors is inextricably hinged
to the bias-variance relationship for the data and model used [2]. A classifier
model having too many features (degrees of freedom) will likely result in over-
fitting, where system noise is also learned. In such cases, the bias will be con-
sistently low implying a good model fit; however, the amount of variance will
be moderate as the high fitness levels will change with the data. Analogously,
when there are too few degrees of freedom, the classifier will usually fit most
data sets poorly resulting in a consistently high level of bias – in this case the
data used has a lesser impact. The point is clear: overfitted models with too
many degrees of freedom are more sensitive to the data (high variance of fitness
across datasets), whereas poorly fitting under-parametrized models are charac-
teristically less sensitive to the data and therefore inaccurate (high bias across
datasets).

An alternative solution for the bias-variance dilemma is to employ superres-
olution multiple signal classification (MUSIC), which has been shown to pro-
vide significant advantages in high-dimensional RADAR recognition involving
range, azimuth, and target identification [3]. Superresolution MUSIC provides
asymptotically unbiased estimates of RADAR target characteristics and has
been shown to outperform beamforming, maximum likelihood, and maximum
entropy techniques [4]. The fundamental benefit of superresolution MUSIC is
that it exploits the orthogonality between the eigenvector noise subspace of the
feature-by-feature covariance matrix and the direction vector for each unknown
target [5]. In this study, we investigate the performance of an ensemble of classi-
fiers employed for class prediction of 9 gene expression datasets with and without
the use of superresolution MUSIC.

2 Methods

2.1 Datasets Used

A 2-class adult brain cancer dataset was comprised of 60 arrays (21 censored, 39
failures) with expression for 7,129 genes [6]. A 2-class adult prostate cancer data
set consisted of 102 training samples (52 tumor, and 50 normal) with 12,600
features. The original report for the prostate data supplement was published by
Singh et al. [7]. Two breast cancer data sets were used. The first had 2 classes
and consisted of 15 arrays for 8 BRCA1 positive women and 7 BRCA2 positive
women with expression profiles of 3,170 genes [8], and the second was also a
2-class set including 78 patient samples and 24,481 features (genes) comprised
of 34 cases with distant metastases who relapsed (“relapse”) within 5 years after
initial diagnosis and 44 disease-free (“non-relapse”) for more than 5 years after
diagnosisl [9]. Two-class expression data for adult colon cancer were based on the
paper published by Alon et al. [10]. The data set contains 62 samples based on
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Table 1. Data sets used for classification analysis.

Cancer site Classes Samples Features Reference

Brain 2 60 (21 censored, 39 failures) 7,129 Pomeroy et al. [6]

Prostate 2 102 (52 tumor, 50 normal) 12,600 Singh et al. [7]

Breast 2 15 (8 BRCA1, 7 BRCA2) 3,170 Hedenfalk et al. [8]

Breast 2 78 (34 relapse, 44 non-relapse) 24,481 van ’t Veer et al. [9]

Colon 2 62 (40 negative, 22 positive) 2,000 Alon et al. [10]

Lung 2 32 (16 MPM, 16 ADCA) 12,533 Gordon et al. [11]

AMLALL 2 38 (27 ALL, 11 AML) 7,129 Golub et al. [12]

MLL 3 57 (20 ALL, 17 MLL, 20 AML) 12,582 Armstrong et al. [13]

SRBCT 4 63 (23 EWS, 8 BL, 12 NB, 20 RMS) 2,308 Khan et al. [14]

expression of 2000 genes in 40 tumor biopsies (“negative”) and 22 normal (“posi-
tive”) biopsies from non-diseased colon biopsies from the same patients. An adult
2-class lung cancer set including 32 samples (16 malignant pleural mesothelioma
(MPM) and 16 adenocarcinoma (ADCA)) of the lung with expression values for
12,533 genes [11] was also considered. Two leukemia data sets were evaluated:
one 2-class data set with 38 arrays (27 ALL, 11 AML) containing expression for
7,129 genes [12], and the other consisting of 3 classes for 57 pediatric samples for
lymphoblastic and myelogenous leukemia (20 ALL, 17 MLL and 20 AML) with
expression values for 12,582 genes [13]. The Khan et al. [14] data set on pedi-
atric small round blue-cell tumors (SRBCT) had expression profiles for 2,308
genes and 63 arrays comprising 4 classes (23 arrays for EWS-Ewing Sarcoma, 8
arrays for BL-Burkitt lymphoma, 12 arrays for NB-neuroblastoma, and 20 arrays
for RMS-rhabdomyosarcoma). Values of gene expression within each microarray
were log-transformed. Table 1 lists the datasets used allong with the number of
classes and genes.

2.2 Gene Selection and Usage

Sets of p = 32, 64, 128, 256, and 512 genes were selected from the original high-
dimensional datasets. Six methods were employed, and these are described in
the following paragraphs.

N(0,1) BOOT MUS. This approach simulated sets of 32, 64, 128, 256, and 512
gene expression values with i.i.d. variates from the standard normal distribution,
i.e., N(0,1). The random values of simulated gene expression were used for the
in-bag arrays selected during bootstrapping (next section) prior to root MUSIC.

RND E A BOOT MUS. This method randomly selected sets of 32, 64, 128,
256, and 512 expression values (“E”) from randomly selected arrays (“A”) within
the entire dataset. Randomly selected expression values were used for the in-bag
arrays selected during bootstrapping prior to root MUSIC.

RND E BOOT MUS. Sets of 32, 64, 128, 256, and 512 expression values
(“E”) were selected randomly within each array. Randomly selected expression
values were used for the in-bag arrays selected during bootstrapping prior to
root MUSIC.
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RND F BOOT MUS. Using this technique, sets of 32, 64, 128, 256, and 512
features (“F”) or genes were randomly selected from the entire dataset, and used
across all the arrays that were employed. Randomly selected genes were used for
the in-bag arrays selected during bootstrapping prior to root MUSIC.

RND F. This approach involve randomly sampling sets of 32, 64, 128, 256, and
512 features (“F”) or genes from the full set of genes in each dataset, and then
inputting them directly into the classification analysis. No bootstrapping was
used and root MUSIC was not performed.

BRN BOOT MUS. For each dataset, all possible pairs of classes were used
to identify for each 2-class comparison the genes with the greatest Gini index
for 2-class discrimination. After obtaining a lists of ranked genes for all possible
2-class comparisons, a single non-redundant list of ranked genes was constructed.
Sets of 32, 64, 128, 256, and 512 of the best ranked N (“BRN”) genes were used
for in-bag arrays selected during bootstrapping prior to root MUSIC.

BRN. Sets of 32, 64, 128, 256, and 512 of the best ranked genes (“BRN”)
for the full set of arrays (without bootstrapping) were used for classification
analysis. The assumption surrounding use of the best ranked genes for input to
classification runs is that class prediction should increase with the number of
genes used. It also warrants noting that the intent here was not to determine
classification accuracy as a function of incrementing the gene count by one, but
rather to obtain a general trend as the bulk size of the genes used increases.

2.3 Bootstrap Root MUSIC Classifier

Bootstrapping. Let xi (i = 1, 2, . . . , n) be a p-dimensional microarray, and B
(b = 1, 2, . . . , B) be the number of bootstraps. Bootstrapping involves selection
of the same number of n arrays in a dataset, but sampling with replacement
is used. The probability that a microarray is not selected during bootstrapping
is (1 − 1/n)n = exp(−1) = 0.368, and we used n∈ to denote the number of
unselected arrays, which varied over each bootstrap. Therefore, during each bth
bootstrap, there were n “in-bag” selected arrays xIB

i in the in-bag dataset D(b)
IB ,

and n∈ “out-of-bag” unselected arrays xOOB
i in the out-of-bag dataset D(b)

OOB .
The in-bag dataset was further partitioned into class-specific datasets D(b)

IBω for
root MUSIC analysis (next section). A total of 10 bootstraps (B = 10) was used.

Superresolution Root MUSIC Dimension Reduction. During each bth
bootstrap, superresolution (root) MUSIC was employed on the bootstrap- and
class-specific p×p covariance matrices Cω for random or best ranked 32, 64, 128,
256, and 512 genes using arrays in D(b)

IBω. The empirical eigenvalue distribution
(e.e.d.) of Cω was determined using singular value decomposition. Let Eω =
|EnωEsω| represent the partitioned matrix of eigenvectors of Cω in the noise
and signal subspaces, whose eigenvalues (eigenvectors) are in ascending order
(λ(1) ≤ λ(2) ≤ · · · ≤ λ(p)). The eigenvector noise subspace was identified by
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applying the Marčenko-Pastur (MP) law [15] to the e.e.d. of Cω. The MP law
states that for a random matrix X having i.i.d. columns (n, p → ∞, γ = p/n), the
minimum and maximum eigenvalues of its white Wishart matrix, Wp(n,Σ) =
XXT , almost surely converge to λ− = σ2(1 − √

γ)2 and λ+ = σ2(1 +
√

γ)2,
respectively. The e.e.d. for Wp(n,Σ) based on X with i.i.d. elements is given by

f(λ) = max
(

0, 1 − 1
γ

)
δ(λ) +

√
(λ+ − λ)(λ − λ−)

2πγλσ2
I(λ− ≤ λ ≤ λ+), (1)

where max()δ(λ) represents the density at λ = 0 for the p − n = p(1 − 1/γ) zero
eigenvalues when p > n, i.e., γ > 1, and I() represents the density when λ is
between λ− and λ+. While λ+ can be used as an estimate of the upper bound
of the e.e.d of Wp(n,Σ), the value of λ̂+ for Cω was obtained by fitting f(λ)
to the e.e.d. of Cω using particle swarm optimization [16]. Eigenvectors whose
associated λ was below λ̂+ were considered to be in Enω, while eigenvectors with
λ values above λ̂+ were assumed to be in Esω. Once the noise eigenvectors were
determined, the predicted class-specific mode vector for an out-of-bag microarray
xOOB

i (during the bth bootstrap) was determined in the form

P (xOOB
i , ω)(b) =

1
(xOOB

i )TEnωET
nωxOOB

i

. (2)

Altogether,eachmodevectorforamicroarrayconsistedofΩvaluesofP (xOOB
i , ω)(b),

which resulted in the row vector P(b)
i . For each OOB dataset containing n∈ OOB

arrays (during the bth bootstrap), the final matrix was

P(b)

(n′ × Ω)
=



⎢⎢⎢⎢⎢⎢⎢⎢⎢

P(b)
1

P(b)
2
...

P(b)
i
...

P(b)
n′

⎡

⎣⎣⎣⎣⎣⎣⎣⎣⎣

, (3)

which, when expanded to reveal individual elements appears as

P(b)

(n′ × Ω)
=



⎢⎢⎢

P (x1, 1)(b) P (x1, 2)(b) · · · P (x1, ω)(b) · · · P (x1, Ω)(b)

P (x2, 1)(b) P (x2, 2)(b) · · · P (x2, ω)(b) · · · P (x2, Ω)(b)
...

P (xn′ , 1)(b) P (xn′ , 2)(b) · · · P (xn′ , ω)(b) · · · P (xn′ , Ω)(b)

⎡

⎣⎣⎣ . (4)
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The resulting P(b) matrices from the B = 10 bootstraps were stacked on top of
one another using the following form

P
(N ′ × Ω)

=



⎢⎢⎢⎢⎢⎢⎢⎢

P(1)

P(2)

...
P(b)

...
P(B)

⎡

⎣⎣⎣⎣⎣⎣⎣⎣

, (5)

which was input into classification analysis. Note that the number of rows N ∈ =
n∈(1) + n∈(2) + · · · + n∈(B) in P was equal to the sum of the varying number of
OOB arrays obtained from each bootstrap. Algorithm 1 lists the workflow for
Bootstrap Root Music (BRM) described above.

2.4 Classification Runs Using Bootstrap Root MUSIC (BRM)

For each dataset, classification analysis was performed on either (a) the set of
predicted mode vectors P for OOB arrays, or (b) the original n arrays using
sets of 32, 64, 128, 256, or 512 best ranked N genes without bootstrapping
and without root MUSIC. Classification [17] runs were made using k-nearest
neighbor (KNN), learning vector quantization (LVQ1), and kernel regression
(KREG). Ten 10-fold cross validation (CV) was used to establish classification
accuracy, or performance [2]. During each of the ten repartitionings, arrays were
randomly shuffled and assigned to the 10 folds prior to classification analysis. The
confusion matrix was constructed by assigning arrays into rows for the predicted
class and columns for the true class label, and accuracy was determined as the
ratio of the trace of the confusion matrix to the sum of all elements after the ten
repartitions. In summary, when bootstrapping and root MUSIC was employed,
the input sets of 32, 64, 128, 256, 512 genes for in-bag arrays were used to
extract class-specific noise eigenvalues, which were applied to OOB arrays in
(2) to predict Ω-dimensional mode vectors in P. The P for all N ∈ OOB arrays
over B = 10 bootstraps were then used for input during classification analysis.
Otherwise, full sets of 32, 64, 128, 256, or 512 genes for all n arrays in a dataset
were input into classification analysis.

3 Results

The overall average classification accuracy for the various feature selection meth-
ods is listed in Table 2. As can be seen, bootstrap root MUSIC (BRM) of
randomly selected within-array expression (RND E BOOT MUS) increased, on
average, classification accuracy when compared with results based on random
standard normal variates (N(0,1) BOOT MUS) or random selection of expres-
sion from any array (RND E A BOOT MUS). On average, the use of BRM
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Fig. 1. Ten 10-fold CV classification accuracy for 2-class AMLALL dataset.
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Fig. 2. Ten 10-fold CV classification accuracy for 2-class Brain dataset.
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Fig. 3. Ten 10-fold CV classification accuracy for 2-class BreastA dataset.
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Fig. 4. Ten 10-fold CV classification accuracy for 2-class BreastB dataset.
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Fig. 5. Ten 10-fold CV classification accuracy for 2-class Colon dataset.
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Fig. 6. Ten 10-fold CV classification accuracy for 2-class Lung dataset.
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Fig. 7. Ten 10-fold CV classification accuracy for 3-class MLL dataset.

0 .2 .4 .6 .8 1

BRN

BRN_BOOT_MUS

RND_F

RND_F_BOOT_MUS

RND_E_BOOT_MUS

RND_E_A_BOOT_MUS

N(0,1)_BOOT_MUS

Prostate2

KNN LVQ1
KREG

Fig. 8. Ten 10-fold CV classification accuracy for 2-class Prostate dataset.
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Fig. 9. Ten 10-fold CV classification accuracy for 4-class SRBCT dataset.
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Fig. 10. Ten 10-fold CV classification accuracy for all datasets as a function of feature
selection and number of genes.
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Algorithm 1. BRM: Bootstrap Root MUSIC
Data: n arrays, p=32,64,128,256,512 genes; arrays xi (i = 1, 2, . . . , n); Ω classes
for b ← 1 to #Bootstraps do

Randomly select p genes (or use p best ranked genes)

Generate bootstrap dataset D(b)
IB containing n “in-bag” arrays xIB

i

Separate in-bag arrays into class-specific datasets D(b)
IBω

Assign the n′ unselected “out-of-bag” arrays xOOB
i to dataset D(b)

OOB

for ω ← 1 to Ω do

Generate p × p covariance matrix Cω from D(b)
IBω

Perform root MUSIC on Cω to yield Enω

for i ← 1 to n′ do
Calculate mode-vector P (xOOB

i , ω)(b) from Enω using (2)

Perform ten 10-fold CV classification using P as input

resulted in greater accuracy results when comparing use of random features (i.e.,
RND F BOOT MUS vs. RND F) and best ranked N genes (BRN BOOT MUS
vs. BRN). For the KNN classifier, use of the BRM approach based on ran-
dom features (i.e., RND F BOOT MUS vs. RND F) resulted in an accuracy
that was 3.5 % greater than random gene selection alone (t-test, P = 0.026).
Tables 3–5 list the classification accuracies obtained for the KNN, LVQ1, and
KREG classifiers, respectively, for each dataset. Tail probabilities for t-tests
for the equality of mean accuracy from BRM based on random gene selec-
tion (RND F BOOT MUS) and random genes input directly into the classifier
(RND F) are listed in the far right column of Tables 3–5.

Figures 1–9 show for each dataset the ten 10-fold CV accuracy for the three
classifiers employed. It was observed, that whenever classification accuracy for
using the best rank N features directly input into classifiers (“BRN”) was greater
than accuracy based on BRM of best ranked N genes (“BRN BOOT MUS”), clas-
sification accuracy for RND F runs exceeded accuracy for RND F BOOT MUS

Table 2. Mean ± s.d. of classification accuracy for classifiers used as a function of
feature selection method.

Feature selection KNN LVQ1 KREG n

N(0,1) BOOT MUS 0.506 ± 0.112 0.486± 0.099 0.462± 0.107 45

RND E A BOOT MUS 0.496 ± 0.107 0.480± 0.096 0.466± 0.114 45

RND E BOOT MUS 0.522± 0.110 0.515± 0.105 0.504± 0.108 45

RND F BOOT MUS 0.720*± 0.114 0.710± 0.127 0.714± 0.123 45

RND F 0.685*± 0.088 0.700± 0.124 0.712± 0.116 450

BRN BOOT MUS 0.878± 0.114 0.862± 0.124 0.841± 0.138 45

BRN 0.828± 0.140 0.845± 0.141 0.840± 0.151 45

*T-test for equality of means of KNN accuracy 0.72 (RND F BOOT MUS) vs. 0.685
(RND F), significant with P = 0.026. T-test assumed unequal variances.
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Table 3. Mean ± s.d. of KNN classification accuracy for classifiers used as a function
of datasets for randomly selected genes with and without use of BRM.

RND F BOOT MUS RND F

Dataset μ ± σ μ ± σ P-value

AMLALL2 0.772±0.110 0.659±0.018 <0.0005

Brain2 0.598±0.041 0.559±0.022 0.00108

Breast2A 0.758±0.110 0.725±0.093 0.46389

Breast2B 0.582±0.011 0.590±0.043 0.68813

Colon2 0.648±0.073 0.771±0.048 <0.0005

Lung2 0.862±0.063 0.693±0.023 <0.0005

MLL3 0.776±0.103 0.720±0.052 0.04343

Prostate2 0.720±0.076 0.669±0.052 0.04902

SRBCT4 0.764±0.083 0.779±0.075 0.67806

RND F BOOT MUS - Uses bootstrap root MUSIC (BRM) on ran-
domly selected features prior to classification.
RND F - Directly inputs randomly selected features into classifica-
tion.

Table 4. Mean ± s.d. of LVQ1 classification accuracy for classifiers used as a function
of datasets for randomly selected genes with and without use of BRM.

RND F BOOT MUS RND F

Dataset μ ± σ μ ± σ P-value

AMLALL2 0.766±0.111 0.590±0.020 <0.0005

Brain2 0.552±0.035 0.514±0.016 0.00005

Breast2A 0.774±0.103 0.864±0.087 0.03407

Breast2B 0.566±0.054 0.738±0.050 0.00007

Colon2 0.632±0.077 0.738±0.050 0.00007

Lung2 0.862±0.070 0.753±0.042 <0.0005

MLL3 0.774±0.115 0.731±0.047 0.09744

Prostate2 0.702±0.070 0.645±0.051 0.02325

SRBCT4 0.762±0.095 0.857±0.059 0.00215

RND F BOOT MUS - Uses bootstrap root MUSIC (BRM) on ran-
domly selected features prior to classification.
RND F - Directly inputs randomly selected features into classifica-
tion.

runs. Another observation was that, when best ranked N genes were used (Figs. 10
and 11), the interquartile range of classification accuracy was smaller when boot-
strapping and MUSIC was used when compared with direct input of best ranked
genes into classifiers.
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Table 5. Mean ± s.d. of KREG classification accuracy for classifiers used as a function
of datasets for randomly selected genes with and without use of BRM.

RND F BOOT MUS RND F

Dataset μ ± σ μ ± σ P-value

AMLALL2 0.744±0.104 0.627±0.052 0.00006

Brain2 0.556±0.035 0.559±0.036 0.85954

Breast2A 0.786±0.051 0.773±0.041 0.50806

Breast2B 0.536±0.063 0.555±0.025 0.17570

Colon2 0.666±0.068 0.716±0.045 0.0279

Lung2 0.884±0.060 0.871±0.097 0.77181

MLL3 0.776±0.081 0.736±0.038 0.04996

Prostate2 0.746±0.062 0.778±0.046 0.15608

SRBCT4 0.736±0.071 0.789±0.071 0.11359

RND F BOOT MUS - Uses bootstrap root MUSIC (BRM) on ran-
domly selected features prior to classification.
RND F - Directly inputs randomly selected features into classifica-
tion.
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Fig. 11. Ten 10-fold CV classification accuracy for all datasets as a function of feature
selection and number of genes.

4 Discussion

We have shown that BRM exploits the noise eigenvectors of the class-specific
gene-by-gene covariance matrix of gene expression and when performed on
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randomly selected genes can improve results. BRM when performed on the best
ranked genes also resulted in lower variance across data sets and less bias depend-
ing on the filtration method used. It is not surprising that class-specific root
MUSIC is capable of increased information retrieval from noise eigenvectors, as
the noise for a given class is unique, and there are typically many more eigenvec-
tors in the noise region than there are in the signal region. BRM can also reduce
uncertainty of classifier accuracy based on randomly selected genes and best
ranked genes. In another sense, use of the noise region of eigenspace for classifi-
cation basically exploits what is not known about a given class of arrays. Since
there are many more noise eigenvectors, there is essentially more information
provided when compared with the signal when exploited by root MUSIC.

The majority of groups now trying to identify reduced sets of markers for
development of diagnostic chips are focusing on parsimony and robustness. Parsi-
mony attempts to identify fewer genes yielding greater classification performance
in order to optimize resource allocation. The parallel requirement for robustness
results in the identification of genes that perform well across different environ-
ments. Unfortunately, parsimony and robustness are not always attainable for
certain diagnostic classes or certain biomaterials such as urine and saliva, where
protein expression signals can degrade from protease digestion. In these cases,
there may be greater informativeness from using 128 or 256 markers and per-
forming root MUSIC on their noise eigenspace. There may also be significant
cost savings when performing root MUSIC on expression of 128 or 256 markers
on a fabricated chip, since there would be far fewer resources required when
compared with the painstaking efforts associated with identification of a small
set of optimal markers which are jointly parsimonious and robust. In the future,
the whole of science may actually benefit greater by performing root MUSIC on
expression of large sets of unfiltered markers known (reported) to be informative
and allocating fewer resources for the screening and identification of small sets
of markers. The use of small sets of markers for classification is more prone to
lose discriminatory power when concept drift occurs, that is, when the diagnostic
classes tend to become moving targets due to a change in patients appended to
a prediction database over time. In situations where there is a smaller effect size
(signal) and greater uncertainty, the root MUSIC approach with larger marker
sets would almost assuredly provide greater informativenes. Future use of root
MUSIC on larger sets of markers may therefore become more popular with the
increasing complexity of diagnostic classification problems.
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Abstract. The study of rare diseases uses next-generation sequencing
(NGS) technology to detect causative mutations in the human genome.
NGS is a new approach for biomedical research, useful for the genetic
diagnosis in extremely heterogeneous conditions. Nevertheless, only few
publications address the problem when pooled experiments are consid-
ered, and existing tools are often inaccurate. In this work we focus on
rare diseases and we describe how data are generated by NGS.

We present how data are organized in the pre-processing phase, how
they are filtered and features constructed in the learning phase. We com-
pare different computational procedures to identify and classify vari-
ants potentially related to rare diseases and we biologically validate the
obtained results.

1 Introduction

The introduction of capillary electrophoresis (CE)-based Sanger sequencing
makes possible the interpretation of genetic information from any given bio-
logical system. Although this technology has been widely used, it has some limi-
tations with respect to throughput, scalability, speed, and resolution. In order to
overcome these drawbacks, Next-Generation Sequencing (NGS) has been intro-
duced [1,2]. In principle, the idea of NGS technology is similar to CE: the bases
of a small fragment of DNA are sequentially identified from signals emitted as
each fragment is re-synthesized from a DNA template strand. NGS extends this
process across millions of reactions through a massive parallelization, rather than
being limited to a single or a few DNA fragments. It provides an enormous num-
ber of reads, which permits the sequencing of entire genomes at a fraction of
the costs for Sanger technology. Hence, this allows to get the complete genomic
sequences for a large number of individuals. We are interested in molecular diag-
nosis of muscular diseases: neuromuscular disorders and progressive loss of motor
function [3,4]. This problem is characterized by genetic heterogeneity (see, for
more details, [5]). In this study 98 genes related to these diseases are considered.

In heterogeneous genetic conditions, about 40% of patients do not obtain
a molecular diagnosis by means of a traditional approach, because it would
require a high number of gene sequences, which is expensing and time-consuming.
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 213–224, 2014.
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On the other hand, NGS is useful for the molecular diagnosis of extremely hetero-
geneous conditions. For genetic diagnosis, it provides an easy analytic pipeline,
high specificity and sensitivity. Furthermore, it reduces the overall execution
time.

Currently NGS techniques are mainly used to sequence individual genomes
and the costs for population-scale analyses are still too high. To this extent,
pooling individuals in NGS experiments can reduce the costs, still maintaining
an adequate coverage to detect single nucleotide polymorphism (SNP) in each
patient. Furthermore, pooled NGS is often theoretically more effective in muta-
tion discovery and provides more accurate allele frequency estimates [6]. In prac-
tice, only few publications address this problem and existing tools are often
inaccurate.

Calvo et al. [7] introduce high-throughput, pooled sequencing to identify
mutations in NUBPL and FOXRED1 in human complex I deficiency. This prob-
lem is characterized by a large number of both mitochondrial (mt) and nuclear
genes. Seven pools of DNA from a group of 103 cases and 42 healthy controls
are involved. The aim is to identify 151 rare variants that are predicted to affect
protein function. In this case, genetic diagnoses are established in 13 of 60 previ-
ously unsolved cases. This study illustrates how large-scale sequencing, coupled
with functional prediction and experimental validation, can be used to identify
causal mutations in individual cases. Unfortunately, they were able to confirm
only the mutations only in half of the 103 subjects.

Wang et al. [8] propose sequencing pooled mtDNA of multiple individuals for
estimating allele frequency using the Illumina genome analyzer (GA) II sequenc-
ing system. Each pool includes mtDNA samples of 20 subjects that have been
previously sequenced using Sanger sequencing. Furthermore, each pool is repli-
cated to assess variation of the sequencing error between pools. The proposed
technique is not resilient to sequencing errors, thus providing a large number of
false positives.

Finally, Ding et al. [9] compare four standard supervised machine learning
algorithms to predict causative SNP in tumour/normal NGS experiments. In
order to evaluate these approaches (random forest, Bayesian additive regression
tree, support vector machine and logistic regression), features are constructed to
represent 3369 candidate somatic SNPs from 48 breast cancer genomes, originally
predicted with naive methods and subsequently revalidated to establish ground
truth labels. The solution depends on third-party software packages.

The aim of this paper is to predict causative mutations for rare diseases in
pooled experiments. The genomic regions are analyzed by means of the Agi-
lent HaloPlex Target Enrichment System [10]. In a preliminary phase the data
are filtered by means of classification rules. Then, features are constructed and
subsequently used in the learning phase. The last part of the computational
procedure consists of a supervised classification of potential mutations.

The paper is organized as follows. Next section deals with formats and tools
for managing NGS data, pooling strategy and its empirical analysis. In Sect. 3
a computational procedure to identify and predict causative mutations for rare
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diseases is introduced and discussed. In Sect. 4 results are discussed. Finally, in
Sect. 5 some concluding remarks and open problems are addressed.

2 Materials

2.1 Formats and Tools for Managing NGS Data

The advent of high-throughput DNA sequencing in biological sciences has
enabled researchers to obtain millions of short sequence reads in a single, low-
cost experiment. Instead of one whole genome, that is characterized by billions
of nucleotides, these sequence reads are, in general, very short, usually 36–200
nucleotides. In addition, they are very redundant, namely, they may have the
same sequence. The sequences can be used for detecting small differences in the
genome of the sample. This is possible by means of computational techniques
that align each short sequence read against a reference genome. As second step,
the obtained alignments are analyzed and, finally, the positions where these
differences emerge from are determined. Many software have been created for
alignment. Most NGS alignment programs produce a standard output file in
Sequence Alignment/Map format (SAM) [11]. The mandatory fields in the SAM
format and their descriptions are reported in Table 1. In details, we want to
focus on MAPQ and QUAL. The first one indicates the mapping quality and it
is the phred-scaled error probability which is equal to −10 log10 P , where P is
the error probability in mapping. This is also known as alignment quality score.
The second one is the ASCII encoding of base call QUALity plus 33. A base
call quality is equal to −10 log10 P , where P is the probability of an incorrect
base call. Since the SAM files are large, they can be converted to the binary
equivalent BAM files, making genetic analyses less storage consuming.

2.2 Pooling

In this study, 8 pools of 16 patients each one are considered.

Table 1. Mandatory fields in the SAM format

No. Name Description

1 QNAME Query NAME of the read or the read pair

2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.)

3 RNAME Reference sequence NAME

4 POS 1-Based leftmost POSition of clipped alignment

5 MAPQ MAPping Quality (Phred-scaled)

6 CIGAR Extended CIGAR string (operations: MIDNSHP)

7 MRNM Mate Reference NaMe (= if same as RNAME)

8 MPOS 1-Based leftmost Mate POSition

9 ISIZE Inferred Insert SIZE

10 SEQ Query SEQuence on the same strand as the reference

11 QUAL Query QUALity (ASCII-33=Phred base quality)
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Table 2. Pooling: the original pools (1–8) and the replicated ones (9–16). The control
patients are indicated in bold.

Each pool contains 2 control patients with known mutations. Pools are repli-
cated, using 2 patients from each original pool. The pools are reported in Table 2.
Each row represents a pool, where patients are numbered from 1 to 128.

A control heterozygous mutation is present in each of two samples of every
pool. This means that it is present in 1 out 32 alleles, that is, approximately
3.12% of reads. The total number of generated reads and their qualities are
reported in Table 3. It is worth noting that the percentage of reads with a map-
ping quality greater than Q30, that is, a probability of mapping error lower than
0.001, is always greater than 90%.

3 Methods

3.1 Decision Rules

The proposed computational procedure consists of two parts: a rules based filter-
ing and a supervised classification algorithm. In the first step, for each position,
the frequencies of four bases are computed together with the coverage, that is
the sum of the frequencies. Since we want approximately an average of 30 reads
for each individual, that is 480 reads, we select only the positions with a cover-
age at least equal to 500 (we use 500 to approximate 480). Furthermore, taking
into account that the contribution of each sample varies from 1 to 2.5 and fix-
ing an error rate equal to 0.01, a mutation is characterized by one base with
a frequency in the interval (1.1%, 8%) and two bases below 1%. The obtained
dataset is classified by means of supervised techniques.
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Table 3. Total number of reads, percentage of reads with a mapping quality ≥ Q30
and mean quality score (QS) for each pool.

ID pool Number of reads (millions) % ≥ Q30 Mean QS

#1 35.970 90.47 35.7

#2 32.522 90.48 35.7

#3 25.408 90.01 35.52

#4 27.523 90.33 35.62

#5 24.384 90.23 35.59

#6 21.221 89.78 35.41

#7 28.266 89.80 35.44

#8 38.356 93.52 36.78

#9 17.690 93.59 36.85

#10 9.995 93.2 36.68

#11 28.823 93.51 36.82

#12 17.229 93.8 36.96

#13 41.533 92.92 36.45

#14 48.657 93.19 36.59

#15 46.022 93.24 36.62

#16 27.419 93.1 36.55

3.2 Features

The next step consists in constructing the features used in the learning phase of
the classification procedure. The supervised classification is based on a training
and a testing set. In the training phase, each classifier learns from the data on
the basis of some features. In this study, taking into account that the aim is to
predict causative mutations, we construct features mainly related to the base
frequency, the mapping quality and the base quality. In details, for each position
we consider: the frequency of each base (‘T’, ‘G’, ‘C’, ‘A’), the minimum, the
maximum and the average mapping quality, and the minimum, the maximum
and the average base quality.

3.3 Generalized Eigenvalue Classification

Mangasarian and Wild [12] introduce a multisurface proximal support vector
machine classification via generalized eigenvalues (GEPSVM). Each plane is
obtained as the closest to one class, and as far as possible from the other one
(see Fig. 1). The solution plane xT ω − γ = 0 for class A is the one that is the
closest to that class, and the furthest from B:

min
ω,γ ∈=0

→Aω − eγ→2
→Bω − eγ→2 , (1)
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Fig. 1. Example of two classes, A and B, and the planes obtained by GEPSVM

where e is a unit column vector of proper dimension
The optimization problem to obtain the planes is reduced to the minimiza-

tion of a Rayleigh quotient, whose solution is obtained by solving a generalized
eigenvalue problem, for which many well known results exist in literature [13,14].

Let G = [A − e]T [A − e] and H = [B − e]T [B − e], then the problem
(1) becomes:

min
z ∈=0

zT Gz

zT Hz
, (2)

with z =
[
ωT γ

]T . This is the Rayleigh quotient of the generalized eigenvalue
problem Gz = λHz. The inverse of the objective function in (2) has the same
eigenvectors and reciprocal eigenvalues. In [12] it is proven that proximal planes
are defined by

zmin = [ω1 γ1]≤, zmax = [ω−1 γ−1]≤ (3)

where zmin and zmax are the eigenvectors related to the eigenvalues of smallest
and largest modulo, respectively.

The model is also able to predict the class label of unknown samples by
assigning them to the class with minimum distance from the hyperplane. For a
point xu:

class(xu) = arg min
i∗{A,B}

=
|wT

i xu − γi|
→wi→ .

The matrices involved in the objective function can be singular, hence the solu-
tion can be not unique. Mangasarian and Wild [12] propose a Tikhonov regu-
larization term in two generalized eigenvalue problems. Guarracino et al. [15]
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introduce a new regularization technique (ReGEC) in order to solve only one
eigenvalues problem. In Cifarelli et al. [16] the incremental version of the algo-
rithm is proposed.

We use ReGEC for the prediction of SNPs. We use the set of true mutations
and non-mutation positions as a training set in the learning phase and then we
test the positions obtained in the filtering step in order to predict mutations.

4 Results and Discussion

4.1 Benchmark Dataset

We constructed a benchmark dataset composed of 16 files from lines of a real
experiments. The benchmark is based on 148 mutations and 57 non mutations
biologically verified. The files are built using all reads of the original experiments
that have been mapped starting at most 75 bases before the 148 + 57 testing
positions.

4.2 Other Tools Results

In this section we briefly recall four tools existing in literature used for NGS
data: the Genome Analysis Toolkit (GATK), SNVer, FreeBayes and CRISP.
These are not directly comparable with supervised classification techniques but
they are very used in this context. GATK is a software package developed at
the Broad Institute to analyse next-generation data [17,18]. Among the different
tools offered, the most important is variant discovery and genotyping. The GATK
was designed using the functional programming paradigm of MapReduce. It is
characterized by a robust architecture.

SNVer is a statistical tool for calling common and rare variants in analysis
of pool or individual next-generation sequencing data [19]. Loci with any (low)
coverage can be tested and depth of coverage will be quantitatively factored into
final significance calculation.

FreeBayes is a Bayesian genetic variant detector designed to find small poly-
morphisms, specifically SNPs, Indels, and MNPs (multi-nucleotide polymor-
phisms) smaller than the length of a short-read [20].

CRISP uses a cross-pool comparison approach to distinguish sequencing
errors from rare variants. It can be used to evaluate pooled sequencing datasets
(human and bacterial) generated by the Illumina sequencing platform [21].

We check the positions of the benchmark dataset of mutations by means
of all above software. GATK recognizes 104 out of 148 as true positive and 44
as false negative. Only 4 out of 57 are classified as false positive. The number
of false negative obtained with FreeBayes is 82 out of 148, while there are no
false positives. SNVer has 0% specificity, and CRISP accuracy (less than null
classification). The values of accuracy, sensitivity and specificity are shown in
Table 4.
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Table 4. Accuracy, sensitivity and specificity of Gatk and FreeBayes

Method Accuracy (%) Sensitivity (%) Specificity (%)

GATK 77 70 93

SNVer 69 95 0

FreeBayes 60 44 100

CRISP 50 31 100

Table 5. Examples of positions associated to mutations according to the classification
rules

Position Gene Chromosome T G C A Coverage Pool

152990560 ABCD1 X 27 0 528 0 555 #3

152990560 ABCD1 X 52 0 968 1 1021 #15

22301361 ANO5 11 1132 13 0 29 1146 #7

22301361 ANO5 11 521 0 6 0 528 #10

4.3 Decision Rules Results

The first step of the computational procedure consists in selecting only the posi-
tions characterized by a coverage greater than 500, one base with a frequency
greater than 1.1% and lower than 8% and two bases below 1%. Furthermore,
since the replicated pools are composed by the same individuals of the origi-
nal ones, each mutation, characterizing one sample, has to be replicated in 2
pools, one of the original group and one of the replicated group. For examples,
two positions associated to possible mutations, according to the above rules, are
reported in Table 5. In details, position 152990560, related to gene ABCD1 and
chromosome X, is characterized by a coverage equal to 555, two bases, G and
A, below 1% and base T equal to 4.9% in pool #3. In addition, this position is
replicated in pool S15. An analogous situation is present in position 22301361
of gene ANO5 and chromosome 11. By means of the described filtering rules,
6502 mutations have been selected.

4.4 Standard Classifiers Performance

We check the accuracy of the classifier on a dataset consisting of 148 true muta-
tions and 57 non-mutation positions (obtained by the biologists in a previous
analysis). We applied a 10-fold cross-validation analysis using robust quantita-
tive accuracy measurements of sensitivity and specificity on labelled training
data. For this classifier we obtain an accuracy equal to 94.25%, a sensitivity
equal to 93% and a specificity equal to 98%. In order to check the adequacy of
ReGEC algorithm, we compare different classifiers reported in Table 6. In details
we consider: Support Vector Machines using Sequential Minimal Optimization
(SMO) [22], Bayesian Network Classifier [23], k-Nearest Neighbours (k-NN)
[24], Classification via Clustering (simple k-means), Multivariable functional
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Table 6. Accuracy, sensitivity and specificity of different classification methods

Method Accuracy Sensitivity Specificity

ReGEC 94.25 % ± 0.01 93 % ± 0.02 98 % ± 0.02

SMO (linear) 74.72 % ± 3.36 93 % ± 0.04 27 % ± 0.09

Bayes Net 92.82 % ± 3.14 93 % ± 0.04 92 % ± 0.06

5-NN 85.61 % ± 4.43 90 % ± 0.05 73 % ± 0.11

10-NN 81.34 % ± 4.31 90 % ± 0.04 60 % ± 0.11

Classification via Clustering 52.22 % ± 6.29 49 % ± 0.08 61 % ± 0.15

RBFnetwork 82.78 % ± 4.57 89 % ± 0.05 68 % ± 0.11

Simple Logistic 78.41 % ± 4.85) 88 % ± 0.05) 52 % ± 0.13

Complement Naive Bayes 65.33 % ± 5.50 62 % ± 0.07 75 % ± 0.10)

Bayesian Logistic Regression 72.32 % ± 0.61 100 % ± 0.00 0 % ± 0.00

Spegasos 76.82 % ± 4.53 87 % ± 0.07 50 % ± 0.16

interpolation and adaptive networks [25], Simple Logistic [26,27], Complement
Naive Bayes [28], Bayesian Logistic Regression [31] and Primal Estimated sub-
GrAdient SOlver for SVM (Pegasos) [29].

As it is shown, ReGEC is better than the other considered classifiers in terms
of accuracy, sensitivity and specificity.

4.5 Prediction

Using the set of 148 true mutations and 57 non-mutation positions as a training
set, we test the 6502 positions obtained in the filtering step and we predict 1300
mutations. We consider only the loci corresponding to mutations in both pools.
These predicted mutations were ranked using their distances from the plane of
the belonging class. In details, we construct a rank as a ratio of the distance
from the belonging class (+) to the distance from the non-belonging class (−):

rank =
|wT

+xu−γ+|
‖w+‖

|wT
−xu−γ−|
‖w−‖

.

The biologists start to check these mutations following the order of rank-
ing and considering only exon positions. 114 mutations have been confirmed,
including the control mutations, and 28 mutations have not been confirmed
(false positive).

4.6 SIFT

In this section a structural analysis on the predicted mutations is conducted
using SIFT (Sorting Intolerant From Tolerant). SNP studies identifies amino
acid substitutions in protein-coding regions. Each substitution has the potential



222 M.B. Ferraro and M.R. Guarracino

to affect protein function. SIFT is a program that predicts whether an amino acid
substitution affects protein function. SIFT can distinguish between functionally
neutral and deleterious amino acid changes in mutagenesis studies and on human
polymorphisms (see, for more details, [30]). The result is that the mutations are
100% damaging, that is, they are causative mutations.

5 Concluding Remarks

In this paper we consider pooled next generation sequencing data. We propose
a computational procedure to identify and classify variants potentially related
to human diseases. This procedure consists of two parts. The first step involves
decision rules and in the second step we use a supervised classifier. We focus on
causative mutations for muscular diseases and we compare different classification
algorithms by means of a cross-validation framework.

In the near future, it will be interesting to consider the base qualities related
to each base as features.
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Abstract. The last decade saw the marked increase in the availability of
the Life Sciences data on the Semantic Web. At the same time, the need
to interactively explore complex and extensive biological datasets lead to
development of advanced visualisation tools, many of which present the
data in the form of a network graph. Semantic Web technologies offer
both a means to define rich semantics necessary to describe complex bio-
logical systems and allow large amounts of data to be shared effectively.
However, at present the need to be familiar with relevant technologies
greatly impedes access to these datasets by the non-specialist Life Sci-
ences researches. To address this, we have developed a software frame-
work that facilitates both access to the resources and presents the data
returned in an intuitive, graph-based format. Our framework is closely
integrated with Ondex, an established data integration solution in the
Life Sciences domain. The implementation consists of two parts. The first
one is a query console that allows expert users to execute Semantic Web
queries directly. The second one is a graph-based interactive browsing
solution that can be used to launch stock queries by choosing items in
the menu. In both cases, the result is re-formatted and visualised as a
graph in Ondex frontend.

1 Introduction

Compare to other domains of knowledge, Life Sciences have particularly complex
semantics, resulting from the convergence of different disciplines (e.g.: Medicine,
Genetics, Biochemistry, etc.) each with its proper language and conceptualiza-
tions. Reconciliation of these disparate data types is a pre-requisite for compu-
tationally driven analysis. Graphs (networks) model the data by representing
entities as nodes and relationships between them as edges. Graphs have been
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 225–237, 2014.
DOI: 10.1007/978-3-319-09042-9 16
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demonstrated to be both flexible and powerful modelling formalism for bringing
together biological data and are increasingly popular among biologists [1]. In
Life Sciences, the data relevant to particular problem is often spread out across
multiple data providers [2] therefore the problem lies not only in the semantic
reconciliation, but also in technical management of data storage, acquisition and
convention between different formats. In this work we illustrate how both techni-
cal and semantic challenges of biological data integration can be addressed using
graph-based modelling combined with federated data integration using Seman-
tic Web technologies. Semantic Web is considered to be a particularly good fit
for the data integration needs in a Life Sciences domain [3]. The Semantic Web
formalism is based on an Resource Description Framework (RDF) format [4]
for representing data. RDF can be queried using SPARQL query language [5],
and web-based resources that can be queried in such way are called SPARQL
endpoints. RDF format enforces the use of globally unique identifiers for all
entities in the form of the Uniform Resource Identifiers (URIs) [6]. Therefore,
on the Semantic Web all data is in part integrated by design: identifiers for the
same entities are shared (or reconciled) across the entirety of the Web, and their
properties inherit those semantics. In essence, data in RDF is represented as
a set of triples (statements), each comprising subject, object and a predicate
(property) that defines the association between the two. A subject is an RDF
resource identified by a URI, an object can be either a resource or a literal
(e.g. string, number, etc.) and a predicate is an instance of a type for that rela-
tionship. Although the type of a predicate can be a URI-identifiable resource,
instances themselves cannot be assigned a URI and therefore cannot have any
properties of their own. For this work, we have taken a well-established bioin-
formatics network analysis software Ondex [7], and developed an extension that
allows it to access data on the Semantic Web. Ondex framework is made up
of several tools including components for data integration, analysis, visualiza-
tion and workflow composition and enactment [7]. The unifying feature across
them is an Ondex graph data model - a Java-based implementation of graph
formalism. What differentiates Ondex data model from those adopted by other
graph-based bioinformatics tools, like BioTapestry [8] and Cytoscape [1], is that
Ondex graph structure was specifically designed to facilitate data integration [9].
For this reason, Ondex graph is backed by a set of controlled vocabularies called
Ondex metadata. Ondex metadata allows an unambiguous definition for types of
nodes, edges and their attributes (Fig. 1). Because Ondex data model allows the
definition of some semantics, in some ways it already resembles the Semantic Web
model, even though there are also some important differences [10]. At the same
time, Ondex data model was developed around entities of biological significance
(e.g. proteins, genes, metabolic pathways) and is therefore more intuitive for
the non-technical users compare to the relatively low-level RDF representation.
This study focuses exclusively on the interactive graph visualisation component
of the Ondex system called Ondex frontend. Ondex frontend presents the pre-
integrated data to the user as an interactive and customisable network. It also
provides other features expected in modern graph visualisation software, like
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Concept (Node) 

Class (CC) 

Data Source (CV) 

Parser ID (PID) 

Name Name Name 

Accession Accession Accession 

Evidence Evidence Evidence 

name is preferred? 

source (CV) accession is ambiguous? 

attribute name data type of data index? 

User Data (GDS) User Data (GDS) User Data (GDS) 

Relation (edge) 

Type (RT) 

Evidence Evidence Evidence 

attribute name data type of data index? 

User Data (GDS) User Data (GDS) User Data (GDS) 

Fig. 1. Ondex data model, showing all possible attributes on Ondex nodes and edges.
The shaded boxes indicate entities which are bound to the controlled vocabulary. The
underline indicates where the presence of at least one attribute is compulsory and
stacked boxes indicate where multiple attributes of that type are possible. Indentation
is used to indicate sub-components of attributes composed of several fields

analysis-driven graph annotation (colour, size and shapes) as well as interactive
inspection and modification of nodes and edges. This paper describes how Ondex
data model was reconciled with RDF and an implementation of an interactive
query solution for mining Life Sciences data on the Semantic Web.

2 Material and Methods

In this paper we propose a novel technical framework for exploring Life Sciences
data on the Semantic Web. Our implementation also aims to provide a toolkit to
make Semantic Web more accessible to the non-specialist users. To that end, we
have also developed a versatile user interface via which non-experts can run pre-
generated queries against Semantic Web resources retrieve context-specific RDF
data without being exposed to the underlying Semantic Web technology. The
defining feature of our approach is its ability to effectively combine data RDF and
non-RDF data. Ondex already offers a rich set of import and integration options
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for dealing with non-RDF data. To support Semantic Web formalisms within the
same system, we have developed a conversion strategy that can consistently rec-
oncile Ondex data representation with RDF. It is worth pointing out that Ondex
can already export data from its own format to RDF and this work primarily
focuses on developing the capability to import RDF data. Although this export
functionality will not be discussed here, the data conversion paradigms estab-
lished during the development of Ondex exporter do have some consequences for
the direction of this work. Specifically, the importer needs to be able to read in
and correctly process Ondex-generated RDF. For this reason points about how
Ondex data is represented in RDF will also be explained where relevant to the
explanation of the technical requirements. To accommodate different levels of
user expertise, our implementation consists of two distinct parts. The first one is
a console that can be used to run SPARQL queries against specified endpoints.
This is likely to be a method of choice for the users familiar with the Semantic
Web and relevant resources. The second way of running queries is by selecting
items from a context-sensitive menu, which allow context-specific execution of
pre-generated quires without any technical expertise.

2.1 Semantic Reconciliation of Ondex and RDF Data Models

To import Semantic Web data into Ondex it is first necessary to establish a set
of rules for interpreting RDF and re-packaging the data into an Ondex format.
Although both formats can be loosely viewed as graphs, there are also some
important semantic distinctions between them. The first distinction is in the
representation of edges. In RDF an edge has a type and a direction but cannot
have attributes. However, from the semantic point of view, addition of properties
is possible if a statement is decomposed into its constituent subject, predicate
and object entities (reification [4]). In that way, a predicate instance can become
an RDF resource which can have properties of its own. In Ondex attributes
are allowed and some are even required to be supplied at edge creation. To solve
this, Ondex exporter relies on the reification, therefore an importer must be able
to handle it as well. Consequently, at the import stage it is no longer possible
to rely on an RDF resource always corresponding to a node, as it can also be
part of a reified statement. To represent such data correctly it is necessary to
clarify the identity of every resource. If a resource returned in response to user
query is part of a reified statement, additional queries are needed to retrieve
all other parts of the statement, so it can be correctly parsed. The developed
implementation automates the launch of these additional queries to ensure that
all reified statements are correctly interpreted as edges. The second distinction is
the scope of the identifiers in Ondex and RDF formats. As RDF was designed as a
data sharing format for the Web, it is inherently reliant on the unique identifiers
for all resources. However, Ondex system was originally developed as a desktop
application and therefore internally relies on identifiers that are only guaranteed
to be unique within a context of one graph. In our implementation this was
resolved by retaining an original URI for all imported resources as a special
attribute. This URI then functions as a unique identifier when accessing the
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Semantic Web. If a user executes a query that returns resources already present
in the graph, they will be correctly reconciled and merged using their URIs. The
third difference is in the verbosity of interpretation, e.g. how data is consolidated
to create entities that are presented to the user. If interpreted literally, RDF
can be represented as a graph of URIs and literals and typed edges. However,
such a detailed, data-centric representation would be neither particularly useful,
nor familiar to most users in the Life Science domain. In Life Sciences, entities
normally seen as nodes in networks are often proteins, metabolites and genes,
and relatively few of their attributes are visualised as links to other entities
in the network, e.g. attributes such as database accessions, expression levels or
sequences would not normally be represented as separate nodes in a network.
Ondex network model is designed to cater to what is expected by the users from
the Life Science community. Therefore, from the point of view of RDF such a
representation is a higher-level abstraction of the actual data. This means that
an Ondex node/edge would in fact correspond to an RDF sub-graph centred on a
particular URI resource. To accommodate this, the importer launches additional
queries to retrieve the declared types of all resources returned by user query.
Based on these types, some of the resources are interpreted to create complex
attributes of the Ondex data model instead of nodes. Additionally, all literal
properties are always interpreted as attributes of Ondex nodes/edges.

2.2 SPARQL Query Console

The SPARQL console interface uses the functionality of the Apache Jena Seman-
tic Web libraries (http://jena.apache.org) to forward queries entered by the user
to a specified SPARQL endpoint. The console interface is completely reliant on
the endpoint for processing the SPARQL query, and will therefore support all
of the advanced SPARQL language features or even language extensions offered
by the current endpoint. Additionally, the console offers two extra commands.
The first is the connect command used to change the endpoint against which the
queries are resolved. The second is use command to change the current config-
uration, a specially formatted flat file where additional options can be defined.
An endpoint can return either data or an error message as response to a query.
All error messages are displayed in the console, e.g. syntax or connection errors.
For the cases where query returns a result, this result can either be an RDF
graph (e.g. DESCRIBE and CONSTRUCT queries) or a table/value (e.g. ASK
and SELECT queries). For the latter case, the results are formatted accordingly
and displayed in a console window. For the former, returned RDF is passed to
the on-the-fly parser that converts it into an Ondex graph. The parser will first
execute any additional queries in a current configuration set. Then, it will apply
the rules outlined in the previous section to interpret the combined result and
create corresponding Ondex graph entities. The parser also retains an index of
all URI attributes currently in an Ondex graph and will only create new entities
if there is no matching entity in that index. An outline of the complete set of
operations carried out to convert RDF to Ondex data model is shown in Fig. 2.

http://jena.apache.org
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Fig. 2. A simplified schematic showing how RDF data is converted to fit into Ondex
data model and queries for additional data triggered to populate required attributes

2.3 Interactive Browsing

Access to the interactive browsing was realised via a contextual popup menu,
which can be opened by right-clicking on any visible nodes/edges in Ondex
frontend. Each item in the menu is linked to a set of queries (Fig. 3), which are
executed with respect to the URI of the graph element the menu applies to. As
well as executing the queries directly linked to that menu items, each of them
will also trigger any of the queries in the current configuration set – therefore,
Ondex-specific parsing can be correctly applied to all results. Any actions done
via a right-click menu are applied to all selected entities in the graph as well
as an element that was clicked on to bring up the menu. The right-click menu
is different for edges and nodes; therefore it is possible to specify different sets
of queries appropriate to these elements. The data can be retrieved both from
the endpoint or raw RDF file available at a particular URL on the Internet. If
a menu entry is reading from the file, the URL is passed to the Jena library,
which will download it and temporarily hold an internal representation of the
data against which SPARQL queries will be executed. Such ability to access
data in RDF files is particularly important to ensure that our implementation
would benefit from the development of the Life Sciences resources supporting the
Linked Data specification [11]. Briefly, the Linked Data rules dictate that a URI
of the resource should be resolvable (i.e. lead to a resource on the Internet). If
links resolve to a resource in RDF, Linked Data specification can be effectively
used to navigate interlinked data across different resources. At present, this
functionality is available in our implementation as a proof-of-concept only and
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Fig. 3. An example screenshot showing an expanded SPARQL query sub-menu
(bottom-left) and an extract from the interactive browsing menu configuration file
(top-right) showing an entry for the find objects of item from the menu

will only resolve the UniProt URIs to populate their attributes. Queries launched
via the right-click menu are processed by the same on-the-fly parser as those
for the SPARQL console. From a users perspective, the experience is somewhat
similar to browsing the web, whereby any node can be expanded by showing what
other information is available about that entity in the current endpoint. The new
graph elements created after the execution of the query can then be queried in
the same manner, gradually building up an application-specific knowledge graph.

2.4 SPARQL Commands Configuration File

Both SPARQL console and interactive browsing menu can be associated with
more than one query. By incorporating ability to chain executions of several
queries, the system can to offer some intelligent re-interpretation of raw RDF
data. The results can therefore be more accurately coerced into an Ondex data
model, which is both more intuitive and more relevant to the way these data
are customarily modelled in the Life Sciences. However, the use of query sets
necessitated the development of additional mechanisms to link them i.e. it is
necessary to define a way of passing the output from one query to the other(s).
As in RDF all resources are identified by the URIs, this effectively means that
the URIs from the result set need to be substituted into the right places in the
following queries. This is done by defining appropriate place-holders that can
be used in place of the URIs when constructing queries. At the execution time,
the on-the-fly parser handles the replacement. A similar mechanism was used
for defining queries in the interactive browsing menu except there, another set
of place-holders was introduced that would be substituted for the URI of the
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node(s)/edge(s) selected by the user. In order to enable easy extensibility, these
query sets are externalised in special flat-files. This allows the system to be eas-
ily re-targeted for use in a different application case without the need to change
any of the application code. Only basic knowledge of SPARQL and understand-
ing of how different URI place-holders are used are required to develop a new
set of application-specific queries. The console only uses a configuration file that
defines SPARQL prefixes and expansion queries. The browsing menu requires
an additional file that binds query sets to particular menu items. Each entry in
that file allows to specify the name of the menu item (including if it is intended
for the edge or node right-click menu), an optional endpoint to be used and an
actual set of queries. All of these files are updated live – e.g. the new configura-
tion takes effect immediately, as soon as the source file is changed, without the
need to restart the main application, facilitating rapid development.

3 Results and Discussion

As well as an application case outlined below, the SPARQL extension for Ondex
frontend was tested against several RDF resources frequently used in bioinfor-
matics; in particular we have used the UniProt [12], MyExperiment [13] and
Bio2RDF [14] endpoints in our evaluation. For the set of general queries devel-
oped the performance was good enough to offer an interactive data exploration
experience and it was possible to build up integrated networks for common bioin-
formatics analysis scenarios, like getting a set of proteins involved in particular
biological processes and finding out what pathways they are involved in. We
have developed an application case that approximates a common bioinformat-
ics analysis scenario. The queries for this example were developed using Ondex
SPARQL console and then adapted for use in the interactive browsing menu. We
have included all of the commands developed for this example with the latest
release of Ondex frontend software (available for download at www.ondex.org).
Therefore, it should be possible to reproduce this example simply be selecting
appropriate commands from the right-click menu, as described in the text below.
Additionally, we have also included a set of generic commands that will fetch
all available information about nodes and edges from the currently selected data
source, which can be used to expand the network further.

3.1 Example Use Case Identifying Interacting Proteins
with IPR002048 and IPR003527 Domains

To illustrate the developed method we present the following scenario. As a start-
ing point we take a list of Arabidopsis thaliana protein accessions. The objective
is to find out whether any of them encode proteins that both contain either
IPR002048 (calcium binding) or IPR003527 (MAP kinase) domain and also are
involved in a protein-protein interaction. As both calcium binding and kinase
activity are commonly associated with signal transduction and regulation, an
interaction between such proteins may be of significance to regulation of bio-
logical processes. This set-up is representative of a typical starting point for a

www.ondex.org
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bioinformatics analysis of experimental results. Many commonly-employed bio-
logical assays return lists of genes for follow-up study (e.g. microarray expres-
sion studies), which are then mined for meaningful patterns by consulting prior
knowledge from various databases. The application case commands were added
as items to the right-click interactive browsing menu. Each step was executed by
selecting all relevant nodes in the graph and then launching appropriate query
to fetch further information about them. In the queries shown, a~~URI~~token
is replaced by a URI of a selected node at query execution. After a list of acces-
sions is imported into Ondex, a node representing a protein is created for each
of them, each having a URI attribute. In this example, the accessions we have
started with were from Tair database [15], which does not offer its data on the
Semantic Web. Therefore the first step was to find matching accessions from
UniProt, by running a query against a UniProt Beta endpoint:

PREFIX : <http://purl.uniprot.org/core/>
CONSTRUCT {?protein rdfs:seeAlso <~~URI~~>}
WHERE {?protein rdfs:seeAlso <~~URI~~>}

This query creates an additional set of nodes representing protein entries
from UniProt in the graph. As those nodes have UniProt URIs, which follow the
LinkedData standard, it is possible to fetch additional information about these
proteins by selecting them and choosing Resolve URL command from the menu.
To access the protein-protein interaction data, we have chosen to use Bio2RDf
endpoint. As Bio2RDF uses a different type of URIs to identify proteins, a query
was run to build this mapping:

PREFIX : <http://purl.uniprot.org/core/>

CONSTRUCT {<~~URI~~> owl:sameAs ?bio2rdf}

WHERE {<~~URI~~> rdf:type :Protein .

BIND (URI(REPLACE(STR(<~~URI~~>), "http://purl.uniprot.org/uniprot/",

"http://bio2rdf.org/uniprot:")) AS ?bio2rdf)}

The next task was to fetch all interaction for those proteins, by executing
the following query against the Bio2RDF endpoint:

PREFIX ire: <http://bio2rdf.org/irefindex_vocabulary:>
PREFIX : <urn:default#>
CONSTRUCT {<~~URI~~> :participates_in ?s . ?b :participates_in ?s}
FROM http://bio2rdf.org/irefindex-all
WHERE {?s ire:interactor_a <~~URI~~> .?s ire:interactor_b ?b}

This query has returned 363 interactions (also represented by the nodes).
Note that the query also returned all of the other proteins participating in those
interactions and, where the match was found, they were correctly linked up to
existing nodes. The last step is to find out which proteins have protein domains of
interest. The domain information is brought in by running Get InterPro domains
command from the menu that launches the following query against UniProt
endpoint:
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PREFIX : <http://purl.uniprot.org/core/>
CONSTRUCT {<~~URI~~> owl:hasValue ?resource}
WHERE {<~~URI~~> rdf:type :Protein ;rdfs:seeAlso ?resource .
FILTER REGEX (STR(?resource), "interpro", "i")}

The dataset produced as a result of executing all of these queries is shown
in Fig. 4 (top). As the original objective was to find the proteins in the list that
have a IPR002048 or IPR003527 domain and were also engaged in an interac-
tion, an additional clean-up is required to actually focus in on the entities of
interest. This can was done by selecting the two domain nodes and running a
shortest path algorithm to remove all nodes that do not lie on a path between
them. The result showed that there was one protein in the original set with
an IPR003527 domain that is known to interact with 3 proteins possessing an
IPR002048 domain (Fig. 4, bottom).

3.2 Discussion

This example presented above illustrates that the proposed method can be used
effectively to locate relevant information on the Semantic Web and can be used
to tackle certain classes of biological problems. However, at present our imple-
mentation does have several limitations, in particular with relation to the poten-
tially unbounded nature of the Semantic Web. For example, some entities can
have very large number of links and/or attributes, which may be unfeasible to
import and visualise in their entirety. Currently, this is solved by restricting
the number of returned results from queries that can potentially return large
amounts of data. As this can lead to potentially missing some data, a better
option would be to provide an interface that would summarise the results and
allow the user to refine their query to reduce it to manageable number. The
development of such an interface is one of the potential extensions to the system
that will be considered in the future. As Ondex system also offers an extensive
set of pre-existing parsers for other, non-RDF formats, including an ability to
import simple tabular files, another potential application for this extension is
combining the RDF-based and legacy data. As most of the URIs are currently
constructed by simply combining the data provider URI with a database acces-
sion, the URI can often be generated if both accession and database is known.
Interactive browsing menu made it possible for non-technical users of the Ondex
system to benefit from the Life Sciences datasets now available on the Semantic
Web. As each query is described in plain text in the menu and all data returned
is presented in an intuitive way, this system can be used without requiring any
knowledge of SPARQL or RDF. The envisaged usage for this functionality is to
bring the federated data integration to the biological users of the Ondex sys-
tem by changing the way bioinformatics and biologic researchers use Ondex for
the collaborative research. At present, bioinformatics specialists usually prepare
complex integrated datasets, which are then explored by biologists in Ondex
frontend. Interactive browsing menu allows the integration step to be replaced



A Framework for Mining Life Sciences Data on the Semantic Web 235

1. List of starting proteins with

2. A query to UniProt endpoint
was run to get matching UniProt
proteins

3. Another query to UniProt endpoint to
create matching Bio2RDF protein entities

4. Interaction nodes (bottom) found by
quering Bio2RDF endpoint. Other interactors
where also returned (top circle)

5. InterPro domains returned by
quering the UniProt endpoint

Fig. 4. Acquiring data using interactive query menu. An overview network showing the
complete dataset and how it was constructed (top panel) and the results of applying the
shortest path filter to show interactions between proteins possessing either IPR002048
or IPR003527 domain (bottom panel)

by a set of pre-defined queries relevant to the particular application case. Then,
all integration can be done by the end-user, who would no longer be reliant on
the bioinformatician for updates necessary to get access to the new data.
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4 Conclusion

Using a Semantic-Web interface from within the Ondex front-end it is possible
to interactively construct a knowledge graph, which is based exclusively around
the entities of interest. The data can be inspected visually and refined further
using an extensive toolkit of graph annotation and analysis tools. As only the
data of relevance is retrieved, this strategy can be particularly advantageous
when it is necessary to deal with large amounts of data and/or independent
resources as very little data needs to be stored locally. Although other tools
utilising a federated approach to data integration provide similar advantage,
the solution presented does have a number of additional features that make it
unique. First, by allowing additional queries to be specified in a flat-file by the
end-user the system can be easily extended and re-shaped to fit particular needs
and application cases. Secondly, it caters to both advanced (SPARQL console)
and non-expert users (interactive browsing menu).

Availability: Ondex software and source code are available from www.
ondex.org under the conditions of the GPLv2 licence.
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Abstract. TNRC (Test for Not Proper ROC Curve) is a statistical tool
recently developed to identify differently expressed genes in microarray
studies. In previous investigations it was demonstrated to be able to sep-
arate hidden subgroups in a two-class experiment, but being a univariate
technique it could not exploit the complex multivariate correlation nat-
urally occurring in gene expression data. In this study we show as the
combination of TNRC with a standard technique of hierarchical cluster-
ing may provide useful biological insights. An example is provided using
data from a publicly available data set of 4026 gene expression profiles
in 42 samples of lymphomas and 14 samples of normal B cells.

Keywords: ROC analysis · Hierarchical clustering · Feature selection ·
Gene expression

1 Introduction

In the last four decades Receiver Operating Characteristic (ROC) curve analysis
has been extensively used in biomedical setting for the evaluation of the perfor-
mance of tumour markers for diagnostic and prognostic purposes [1–4]. In recent
years, ROC curve parameters, including the whole and the partial area under the
curve (AUC and pAUC, respectively), have also been applied to feature selec-
tion tasks to identify potential markers from microarray experiments [5,6]. How-
ever, not-proper ROC curves that cross the ascending diagonal (“wiggly” curves)
are in general discarded by standard methods of analysis, in that the value of
AUC and often also of pAUC tend to be similar to those of a not informative
curve [7].

Some statistical tests, able to identify wiggly ROC curves, have been devel-
oped, including two algorithms based on the projected length and on the area
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 238–247, 2014.
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swept out by the ROC curve [7], Pietra and Gini indices of the corresponding
Lorentz curve [8], and a test on the highest vertical distance between the rising
diagonal and the curve. This latter can be estimated either on the whole set of
observed values (in that case corresponding to the Kolmogorov-Smirnov statis-
tics [4]) or an a priori identified range of specificity [9]. However, these methods
are all unable to separate proper ROC curves from not-proper ones and also
tend to show a low statistical power [9].

A statistical test for not-proper ROC curves (TNRC ) has been recently devel-
oped, which was demonstrated to be able to identify differently expressed genes
that tend to escape common statistical methods of feature selection [5,10]. TNRC
is highly specific for not-proper curves and its statistical power clearly outper-
formed that of other statistical methods in a large simulation study [9]. Fur-
thermore, differently from the above cited methods, a high level of the TNRC
statistics can reveal hidden subgroups inside either one class under study [10]. In
particular, TNRC was applied to a large dataset of gene expression profiles [11]
and was able to identify 16 genes that had not been selected by two standard
methods of analysis (namely, AUC and Student t statistics). Interestingly, 13
out of the 16 corresponding not-proper ROC curves allowed to separate either
the two hidden subclasses of malignant lymphomas (namely, CLL and FL) or
the two hidden subgroups of differently stimulated normal cells [10].

A limit of the application of not-proper ROC curves is that it is impossible
to assess if a high value of the TNRC statistics actually corresponds to hidden
subclasses with clinical or biological meaning in the absence of some a priori
information. In such case not-proper ROC analysis could take advantage from
information derived from common methods of unsupervised data mining that
have been largely applied in several biomedical fields including gene expression
data analysis [12]. In the present investigation we will show how results from
hierarchical clustering can contribute to the interpretation of not-proper ROC
curves, comparing the expression profile of an apparently homogeneous group of
diffuse large B-cell lymphoma (DLBCL) with that of a group of non-neoplastic
B cells (NBC).

2 ROC Curve and the TNRC Statistics

Consider a sample of n subjects, classified into two classes (A and B, respectively)
on the basis of a binary outcome Y taking values in {0, 1}. Suppose that a
variable of interest (e.g., the expression level of a given gene) is measured in all
the n individuals of the study. If n0 is the number of subjects belonging to class
A (Y = 0), denote with X1,X2, . . . , Xn0 the values assumed by the variable of
interest in this group of subjects, and denote with W1,W2, . . . , Wn1 the values
measured in the n1 individuals belonging to class B (Y = 1). The empirical
ROC curve can then be defined by considering different threshold values c for
the variable of interest and by computing the true and the false positive fractions,
denoted by TPF (c) and by FPF (c), respectively, in the sample at hand [2,4]. It
can be seen that:
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TPF (c) =
1
n1

n1∑

j=1

I(Wj ≥ c), FPF (c) =
1
n0

n0∑

i=1

I(Xi ≥ c) (1)

where I is the indicator function providing I(Xi = c) = 1 if Xi = c and I(Xi =
c) = 0 otherwise. TPF is often called the sensitivity of a diagnostic test, while
FPF corresponds to 1 − specificity .

Let AUC k be the partial area under an ROC curve between the consecutive
abscissa points FPF (ck−1) and FPF (ck), with k = 1, . . . , n, computed according
to the standard trapezoidal rule. The total area AUC under the ROC curve is
then given by:

AUC =
n0∑

k=1

AUC k =
n0∑

k=1

1
2
(TPF (ck) + TPF (ck − 1))(FPF (ck) − FPF (ck − 1))

When TPF (ck) = FPF (ck) for any k, every threshold ck is not able to provide
a valid classification for the two groups of subjects, i.e., the class is assigned by
chance. In this case we obtain a particular ROC curve, named the chance line
(or chance diagonal) corresponding to the rising diagonal (Fig. 1, panel A). It
should be observed that AUC = 0.5 for the chance line.

AUC is strictly related to the Mann-Whitney U statistics [13]. In particular,
when referred to a gene expression profile, AUC corresponds to the probability
that a subject randomly selected from class B has a higher gene expression
than a subject randomly selected from class A [14]. In most cases, the greater
is the value of AUC, the higher is the difference between the two distributions
[2,4]. Figure 1 shows an example of a proper (concave) ROC curve (panel A)
derived from two normal distributions (panel B, plot I). However, in some cases
the ROC curve is not-proper and crosses the chance line in one or more points
(curve II in Fig. 1, panel A). In this case, even if the value of AUC is close to
0.5, the two distributions can differ significantly (plot II in panel B). To recover
these situations, the TNRC statistics was introduced, by employing the following
definition [10]:

TNRC =
n0∑

k=1

|AUC k − Ak| − |AUC − 0.5| (2)

where Ak represents the partial area below the chance line.
When an ROC curve completely lies above (resp. below) the chance line we

have AUC k ≥ Ak (resp. AUC k < Ak) for every k = 0, 1, . . . , n, and (2) gives
TNRC = 0. As a special case, this holds also for the chance line.

As shown in our previous paper [10], high values of TNRC may correspond
to a variety of not-proper ROC plots, including sigmoid and anti-sigmoid shaped
curves. In particular, when a class of malignant cells samples is compared to non-
neoplastic samples, considered as the referent (i.e., corresponding to the class
with Y = 0), sigmoid curves point out the presence of two hidden subclasses
among normal cells, whereas anti-sigmoid curves indicate the presence of two
hidden subclasses inside malignant cells. Finally, differently shaped not-proper
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Fig. 1. Proper (concave, curve I) and not-proper (sigmoid, curve II) ROC curves (panel
A) and the corresponding gene expression distributions (plot I and plot II, respectively,
panel B).

curves can be occasionally observed. In general, they are difficult to interpret, and
they may originate from multimodal distributions within either one class [10].

2.1 Properties of TNRC

It should be noted that the first part of the TNRC statistics in (2) corresponds
to the area between the ROC curve and the chance diagonal (ABCD). Then, (2)
can be rewritten as follows:

TNRC = ABCD − |AUC − 0.5|

Considering that ABCD can be split into two subareas, namely the part
above (ABCDa) and below (ABCDb) the chance diagonal, it can be easily shown
that TNRC corresponds to the minimum value between ABCDa and ABCDb:

TNRC = 2min(ABCDa,ABCDb) (3)
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As a matter of fact:

AUC = ABCDa − ABCDb + 0.5

that, replaced in (2), provides:

TNRC = ABCD − ABCDa + ABCDb = 2ABCDb, ifAUC ≥ 0.5
TNRC = ABCD + ABCDa − ABCDb = 2ABCDa, ifAUC < 0.5

Since ABCDa ≥ ABCDb (resp. ABCDa < ABCDb) if AUC ≥ 0.5 (resp.
AUC < 0.5), (3) follows.

2.2 Interpreting TNRC Using Information from Hierarchical
Clustering

Hierarchical clustering represents a standard simple unsupervised method for
the analysis of microarray data able to exploit the complex correlation inside
gene expression profiles [11]. When applied to an apparently homogeneous class,
the associated plot (dendrogram) can identify subsets of samples belonging to
hidden distinct subclasses. Conversely, TNRC is a supervised method that is also
able to discover hidden clusters of samples, but, as illustrated above, it needs
a referent group to make a comparison between the cumulative distributions of
each feature in two classes.

Accordingly, a dendrogram identifying two distinct clusters can be combined
with a not-proper ROC curve simply by merging the two corresponding plots,
as it will be illustrated in the example reported in the Results section. The
concordance between the hidden subclasses identified by the two methods can
be assessed by standard statistical methods of bivariate analysis (e.g., Pearson
χ2 test, Fisher exact test or some index of concordance [15]).

A hierarchical clustering based on the Euclidean distance, was successfully
applied to the large group of DLBCL considered for the present analysis (also
including few samples from some selected lymphoma cell lines) and was able
to identify two clusters with a signature characteristic of normal germinal cells
(GC) and activated circulating B cells (AC), respectively [11]. Very interestingly,
the two identified sub-classes corresponded to two groups of patients with a
statistically significant different survival.

In order to combine information from TNRC and hierarchical clustering
analysis we have classified our samples in over- and under-expressed on the basis
of their location on the ROC curve, similarly to our previous investigation [10].
For this task, ROC curves identified by a high value of TNRC were separated
into sigmoid shaped curves that can point out a bimodal distribution among
NBC, and anti-sigmoid shaped curves, probably corresponding to a bimodal dis-
tribution among DLBCL samples. Other differently shaped curves were excluded
from the analyses because considered as not-informative [10].

The two supposed hidden clusters were identified simply by splitting the
ROC plot into two parts drawing a vertical line in the middle of the graph, thus
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crossing the x axis in the correspondence of 0.5 specificity. Samples lying at the
left part of the graph were considered as over-expressed, whereas those lying
at the opposite site were classified as under-expressed. It should be noted that,
according to the above reported definition of FPF , in the presence of an anti-
sigmoid curve, over-expressed (under-expressed) samples correspond to DLBCL
with a gene expression higher (lower) than the median expression among NBC.

The association between over- and under-expression obtained from the not-
proper ROC plots and the DLBCL classification from hierarchical clustering
(namely, GC and AC) was assessed by the Pearson χ2 test, and p-values <0.05
were considered as statistically significant.

3 Results

Analysis was performed on a subset of samples from the database by Alizadeh
et al. [11], which included 4026 gene expression profiles in many different samples
of lymphomas or non-neoplastic cells. For the present analysis we selected a

Table 1. Comparison between the gene expression of 14 samples of normal circulating
B cells and 42 samples of diffuse large B cell lymphomas by the TNRC test. The first
20 selected features, corresponding to the highest TNRC values, are listed.

N Gene ID Gene name TNRC PTNRC AUC

1 GENE1358X c-fos 0.1667 0.275 0.481

2 GENE563X Similar proteasome sub. p112 0.1616 0.230 0.477

3 GENE3494X ribonuclease 6 precursor 0.1553 0.170 0.511

4 GENE3968X Deoxycytidylate deaminase 0.1536 0.220 0.490

5 GENE289X Unknown 0.1514 0.330 0.453

6 GENE789X KIAA0052 0.1446 0.135 0.487

7 GENE813X Unknown 0.1429 0.340 0.438

8 GENE790X Unknown 0.1417 0.210 0.532

9 GENE173X Unknown 0.1406 0.075 0.489

10 GENE1226X LD78 beta 0.1372 0.055 0.499

11 GENE2474X Unknown 0.1366 0.100 0.498

12 GENE1860X KSR1 0.1366 0.190 0.474

13 GENE3493X ribonuclease 6 precursor 0.1361 0.140 0.533

14 GENE1225X MIP-1 alpha 0.1338 0.160 0.537

15 GENE1086X LYL-1 0.1321 0.175 0.520

16 GENE2335X Unknown 0.1315 0.120 0.475

17 GENE295X FBP1 0.1315 0.165 0.474

18 GENE3967X Deoxycytidylate deaminase 0.1298 0.090 0.499

19 GENE827X Unknown 0.1281 0.125 0.474

20 GENE904X cote1 0.1253 0.065 0.503
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Fig. 2. Not-proper ROC curve corresponding to the expression of GENE1358X (c-fos)
in Table 1. Hst= Highly stimulated; SSt = Slightly or not stimulated. NBC samples are
numbered according to Alizadeh et al. (2000) [11].

class of 14 NBC, stimulated in different ways (6 heavily and 8 slightly or not
stimulated) and a class of 42 DLBCL.

Feature selection was performed using the TNRC statistics. The first 20
genes corresponding to the highest TNRC values were retained. An estimate of
the false discovery rate (FDR) was obtained from 200 permutations, using the
method by Tusher et al. [16], while the probability for each gene to be included
in the first 20 ones (PTNRC or PAUC ) was estimated by the method by Pepe
et al. [6] using 200 bootstrapped samples.

Similarly to our previous analysis [10], selected genes were grouped on the
basis of their function as follows: lymphocyte related genes (group 1), major
histocompatibility complex related genes (group 2), genes involved in malignant
cell transformation (group 3), genes related to nucleic acid metabolism or DNA
transcription (group 4), and gene encoding various enzymes/kinases (group 5).
In spite of some overlap, this classification allows to subdivide the tested genes
according to their functional features.

Table 1 shows the results of the comparison between DLBCL and NBC. Seven
genes had an unknown function at the time of the microarray experiment (genes
n. 5, 7, 8, 9, 11, 16, 19), while the remaining fell in group 1 (genes n. 10, 14),
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Fig. 3. Not-proper ROC curve corresponding to the expression of GENE3968X (Deoxy-
cytidilate deaminase) in Table 1, and sample classification by hierarchical clustering.
The corresponding dendrogram above the ROC curve was adapted from the origi-
nal Fig. 3 in Alizadeh et al., 2000 [11] (http://www.nature.com/nature/journal/v403/
n6769/full/403503a0.html), with permission.

group 3 (genes n. 15, 17), group 4 (genes n. 1, 3, 4, 6, 13, 18) or group 5 (genes
n. 2 and 12).

AUC estimates were all close to the expected value of 0.5 and, accordingly,
the corresponding selection probabilities equal 0 for any comparison (not shown
in Table 1). Conversely, values of TNRC statistics ranged from 0.1253 to 0.1667
and the corresponding selection probability PTNRC varied between 0.065 to
0.275. FDR estimate was 16.9 %. Anti-sigmoid shaped curves were observed
in five cases (genes n. 4, 11, 12, 15 and 18), whereas the remaining curves all
had a rather regular sigmoid shape, which indicated the existence of at least
two hidden subclasses within the NBC class. As an example, ROC curve for
GENE1358X (c-fos) is shown in Fig. 2. All the six samples lying in the right side
of the plot corresponded to highly stimulated B cells, while the remaining eight

http://www.nature.com/nature/journal/v403/n6769/full/403503a0.html
http://www.nature.com/nature/journal/v403/n6769/full/403503a0.html
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samples, corresponding to slightly or not stimulated B cells, lied at the opposite
side. As expected, anti-sigmoid curves allowed to separate DLBCL in (allegedly)
over- and under-expressed groups. Figure 3 shows the ROC curve corresponding
to the Deoxycytidilate deaminase expression profile (gene n. 4 in Table 1). The
large majority of samples in the right part of the curve corresponded to GC
B-like DLBCL identified by the hierarchical clustering in the original paper by
Alizadeh et al. [11], with only three exceptions (namely: DLCL-005, DLCL-0021
and DLCL-0049), while all samples but four (DLCL-0030, DLCL-0034, DLCL-
0020, and DLCL-0051) in the left part of the curves (over-expressed respect to
NBC) corresponded to Activated B-like DLBCL. This association was highly
statistically significant (χ2 = 18.7, p < 0.001).

With regards to the other four anti-sigmoid curves, no association was found
between gene n. 11, gene n. 12 and the GC/AC status. Over-expressed DLBCL
samples for gene n. 15 were mostly AC (16 out of 21) and under-expressed
samples were mostly GC (11 out of 21), similarly to that observed for gene
n. 4, but in this case statistically significance was borderline (χ2 = 3.635, p =
0.057). Finally, DLBCL expression for gene n. 18 was strongly associated to
GC/AC status (χ2 = 11.96, p = 0.001). Interestingly, gene n. 18 is a clone of
gene n. 4 (Deoxycytidilate deaminase), thus indicating that a chance finding due
to multiple testing is very unlikely.

4 Conclusions

TNRC represents a new methodology of ROC analysis, which belongs to the
supervised methods of feature selection. The main limitation of ROC analysis is
that it cannot take into account the complex multivariate correlation between
features that is commonly encountered in gene expression databases. Conversely,
hierarchical clustering is an unsupervised methodology that can identify hidden
subgroups of genes and/or samples exploiting the distance between features in
a multivariate Euclidean space [17]. The main limit of this technique is the
tendency to find pseudo-clusters also in data sets of randomly generated features.
Results from the present investigation, even if still explorative, indicates that the
combination of not-proper ROC analysis with traditional hierarchical clustering
can provide useful insights for the interpretation of gene expression data.

References

1. Kampfrath, T., Levinson, S.S.: Brief critical review: statistical assessment of bio-
marker performance. Clin. Chim. Acta 419, 102–107 (2013)

2. Alemayehu, D., Zou, H.: Applications of ROC analysis in medical research: recent
developments and future directions. Acad. Radiol. 19, 1457–1464 (2012)

3. Parodi, S., Muselli, M., Carlini, B., Fontana, V., Haupt, R., Pistoia, V., Cor-
rias, M.V.: Restricted ROC curves are useful tools to evaluate the performance of
tumour markers. Stat. Methods Med. Res. 26 Jun 2012 [epub ahead of print]

4. Pepe, M.: The Statistical Evaluation of Medical Tests for Classification and Pre-
diction. Oxford University Press, Oxford (2003)



Combining Not-Proper ROC Curves and Hierarchical Clustering 247

5. Silva-Fortes, C., Turkman, M.A., Sousa, L.: Arrow plot: a new graphical tool for
selecting up and down regulated genes and genes differentially expressed on sample
subgroups. BMC Bioinf. 13, 147 (2012)

6. Pepe, M., et al.: Selecting differentially expressed genes from microarray experi-
ments. Biometrics 59, 133–142 (2003)

7. Lee, W., Hsiao, C.: Alternative summary indices for the receiver operating char-
acteristic curve. Epidemiology 7, 605–611 (1996)

8. Lee, W.: Probabilistic analysis of global performances of diagnostic tests: interpret-
ing the Lorentz curve-based summary measures. Stat. Med. 18, 455–471 (1999)

9. Kagaris, D., Yiannoutsos, C.: A multi-index ROC based methodology for high
throughput experiments in gene discovery. Int. J. Data Min. Bioinf. 8, 42–65 (2013)

10. Parodi, S., Pistoia, V., Muselli, M.: Not proper ROC curves as new tool for the
analysis of differentially expressed genes in microarray experiments. BMC Bioinf.
9, 410 (2008)

11. Alizadeh, A., et al.: Distinct types of diffuse large B-cell lymphoma identified by
gene. Nature 403, 503–511 (2000)

12. Michiels, S., Kramar, A., Koscielny, S.: Multidimensionality of microarrays: statis-
tical challenges and (im)possible solutions. Mol. Oncol. 5, 190–196 (2011)

13. Bamber, D.: The area above the ordinal dominance graph and the area below the
receiver operating characteristic graph. J. Math. Psychol. 12, 387–415 (1975)

14. Parodi, S., Muselli, M., Fontana, V., Bonassi, S.: ROC curves are a suitable and
flexible tool for the analysis of gene expression profiles. Cytogenet. Genome Res.
101, 90–91 (2003)

15. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference, 4th edn. Mar-
cel Dekker Inc, New York (2003)

16. Tusher, V., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to
the ionizing radiation response. Proc. Nat. Acad. Sci. USA 98, 5116–5121 (2001)

17. Hastie, T., Tibshirani, R., Friedman, J.: Hierarchical clustering. The Elements of
Statistical Learning, 2nd edn, pp. 520–528. Springer, New York (2009)



Fast and Parallel Algorithm
for Population-Based Segmentation

of Copy-Number Profiles

Guillem Rigaill1(B), Vincent Miele2, and Franck Picard2
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Abstract. Dynamic Programming (DP) based change-point methods
have shown very good statistical performance on DNA copy number
analysis. However, the quadratic algorithmic complexity of DP has lim-
ited their use on high-density arrays or next generation sequencing data.
This complexity issue is particularly critical for segmentation and calling
of segments, and for the joint segmentation of many different profiles. Our
contribution is two-fold. First we provide an at worst linear DP algorithm
for segmentation and calling, which allows the use of DP-based segmen-
tation on high-density arrays with a considerably reduced computational
cost. For the joint segmentation issue we provide a parallel version of the
cghseg package which now allows us to analyze more than 1,000 profiles
of length 100,000 within a few hours. Therefore our method and software
package are adapted to the next generation of computers (multi-cores)
and experiments (very large profiles).

Keywords: DNA copy number · Dynamic Programming · Segmenta-
tion · Joint segmentation · Parallel computing

1 Introduction

Segmenting heterogeneous signals into regions of common characteristics is often
required for biologists that face high dimensional information. This partitioning
helps reducing the dimension of the data and provides guidelines for interpreta-
tion and further biological investigation. Such methods have been widely applied
in Genomics, to unravel DNA sequences structures using base composition [6], to
segment expression profiles [2,7], and to determine copy-number variations based
on array CGH data. Microarray CGH data analysis is certainly the field for which
every possible method of segmentation have been tried. Three main categories
of methods lead to many developments: Circular Binary Segmentation (CBS,
[8]), Hidden Markov Models [5], and change-point analysis [10,11]. Our purpose
c© Springer International Publishing Switzerland 2014
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in this work is not to compare the different methods for array CGH analysis.
Such comparisons have been done elsewhere [18], and extensive reviews now exist
on the subject [14,16]. Our focus is the following: in every comparative study,
change-point analysis based on Dynamic Programming (DP) has shown excellent
performance along with CBS [3,18]. The advantage of DP-based segmentation is
that it provides the best global segmentation, i.e. the segmentation that globally
minimizes a likelihood criterion, whereas local approaches like CBS only provide
local minimizers. Moreover, change-point models can also integrate a calling
step that is used to cluster segments that show the same copy-number on aver-
age (also called segmentation/clustering) [11,17], which has been shown to be of
central importance in the segmentation process [18]. Unfortunately, the algorith-
mic complexity of DP is proportional to the square of the signal’s length, which
has hampered the use of such method on high-density arrays for instance. This
issue has become even more problematic when dealing with population-based
or joint segmentation [9,15,20]. Our contribution is two-fold: first we provide
a linearized version of the DP algorithm for segmentation/clustering adapting
pruning strategies that have recently emerged in the field [4,13]. Secondly we
deal with the joint segmentation issue by providing a parallel version of existing
algorithms implemented in the cghseg package. With the growing availability of
multicore computers (from laptops to many-core servers), it has become essential
to provide software that use every available resource. R has been a tremendous
platform for package distribution, and here we provide a new version of the
cghseg package, a next generation package that is adaptive to available comput-
ing power. The performance of cghseg are impressive: segmenting 1,000 profiles
of length 100,000 can now be done in few hours, which was impossible before.
This makes segmentation models a new exact investigation method that can be
used in routine for exploratory as well as deep analysis.

2 Linearization of Dynamic Programming
for Segmentation and Segmentation/Clustering

The purpose of segmentation is to partition a signal of n observations {Y (t)}
into K segments of homogeneous distributional parameter. In this section we
deal with the univariate segmentation of one array CGH profile, the case of
Joint multivariate segmentation being considered in Sect. 3. In the following
a segment is an interval delimited by two change-points τk, τk+1 for instance.
rk = [[τk, τk+1 − 1]] stands for segment k. To stick to this definition for the first
and last segment we use the convention τ0 = 1 and τK = n + 1. A segmentation
in K segments is denoted by m(K) = {r0, r1, . . . , rK−1}.

A standard statistical model for segmentation is the detection of changes
in the mean of a signal, such that ∀t ∈ rk, Y (t) ∼ N (μk, σ2). In the special
case of array CGH, an additional step is the “calling” step that is performed by
introducing additional (hidden) label variables {Z(rk)}k to cluster each segment
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into categories such as deleted, normal, amplified (not limited to 3 states).
Then the segmentation/clustering model becomes:

∀t ∈ rk, ∀p ∈ {1...P}, Y (t)|{Z(rk) = p} ∼ N (μp, σ
2),

with P the total (fixed) number of hidden states, with πp the proportion of
segments in each state.

Once the statistical model has been defined, the main algorithmic challenge
lies in the exact determination of the boundaries of segments {τk} (and not
in the estimation of mean parameters μks or μps depending on the model).
A well known solution to this problem is to use Dynamic Programming for
a given number of segments K to find the best global segmentation in terms
of “cost” (to be defined). In this work, we do not deal with the issue of model
selection to estimate K and P , discussed elsewhere [10,19]. To perform Dynamic
Programming, we need to define the “unit” cost of a generic segment r = [[t1, t2]],
which is given by minus the local log-likelihood calculated on r:

C
(1)
(r) =

{∑
t∈r(y(t) − μr)2/2σ2, for segmentation in the mean

− log
(∑

pπp exp
{−∑

t∈r(y(t) − μp)2/2σ2
})

, for seg/clust,

with superscript (1) standing for “one segment”. A main difference between the
two models lies in the estimation of the mean parameters. In the case of segmen-
tation in the mean, parameters {μk}k can be estimated directly by the empirical
means of segments while computing the position of the breaks. In the case of
segmentation/clustering, parameters {μp}p are common across segments. Con-
sequently, they are fixed while computing breakpoint coordinates, and they are
estimated iteratively by using an EM-algorithm, leading to a so-called DP-EM
algorithm [11]. In the case of segmentation/clustering, we propose to simplify the
cost function by using a classification cost function, an approximation denoted
by C̃

(1)
(r) which consists in focusing on the dominant term within the sum over P

exponentials:

C̃
(1)
(r) = min

p

{
∑

t∈r

(y(t) − μp)2

2σ2
+ log(πp)

}
. (1)

This cost function is analog to the cost function that is used in standard k-means
algorithms.

Since the purpose is to find the global minimum of the total cost function
into K segments, we also introduce the set of all segmentations of a given seg-
ment r into K segments such that M(K)

(r) = M(K)
t1,t2 . Then the optimal cost of a

segmentation of r into K segments and its associated optimal segmentation are
defined as:

C
(K)
(r) = min

m∈M(K)
(r)

{
∑

r∈m

C
(1)
(r)

}
, and m̂

(K)
(r) = argmin

m∈M(K)
(r)

{
∑

r∈m

C
(1)
(r)

}
.

Similarly, when Approximation C̃
(1)
(r) is used (Eq. (1)), we use notations C̃

(K)
(r) and

m̃
(K)
(r) . When the cost of a segmentation is segment additive (which is the case
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in both models), a O(Kn2) Dynamic Programming algorithm can be built to
recover the best exact segmentation (into 1 to K segments).

2.1 Original Dynamic Programming Algorithm for Segmentation

A basic statement is that the cost of a given segmentation is the sum of the
cost of its segments. Thus the Bellman optimality principal holds and we have:
C

(k+1)
1,t = minτ≤t{C

(k)
1,τ−1 + C

(1)
τ,t }. Using this update rule a Dynamic Program-

ming algorithm can be built to recover all C
(k+1)
1,t for all t ≤ n and k ≤ K. This

can be done using Algorithm 1 for instance. For simplicity we did not include
the initialization of all C

(1)
1,t for t ≤ n and of all C

(k)
1,t for k ≤ K and t < k. All

C
(k)
1,t are initialized as +∞ and C

(1)
1,t are initialized using their definition. This

algorithm assumes that all C
(1)
t1,t2 have been pre-computed and stored (in a n

by n matrix) or that they can be efficiently computed on the fly, which is the
case for every models we consider here. At step k, t of Algorithm 1 O(t) basic
operations are performed. If we sum these for all k < K and t < n we see that
the algorithm has a O(Kn2) time complexity. This n2 factor is the main reason
why Dynamic Programming can be prohibitive to use on large signals (like SNP
arrays for instance).

Algorithm 1. Standard DP algorithm
Input: Y (t) a profile of n observations, K an integer

Output: C
(k)
1,t in R and M

(k)
1,t in N for all k ≤ K and t ≤ n

for t ∈ [[1, n]] do

C
(1)
1,t = C1t ; M

(1)
1,t = 0

end for
for k ∈ [[2, min(t, K)]] do

for t ∈ [[1, n]] do

C
(k)
1,t = min

k−1≤τ≤t−1
{C

(k−1)
1,τ + C

(1)

(τ+1)t} ; M
(k)
1,t = argmin

k−1≤τ≤t−1
{C

(k−1)
1,τ + C

(1)

(τ+1)t}
end for

end for

2.2 A Linear Dynamic Programming Algorithm
for the Classification Cost Function

An important consequence of using the classification cost C̃
(1)
(r) rather than C

(1)
(r)

is that the set of candidate segmentations can be pruned efficiently. The idea of
pruning the set of candidate segmentations is not new and was proposed for other
cost functions [4,13]. In these two algorithms the pruning step usually allows for
an important speed up and the average time complexity is for many signal in
O(n) or O(n log(n)). Nonetheless, in both cases, the worst case is quadratic with
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respect to n. In the case of the classification cost however the pruning step is
particularly efficient and we can guarantee that the time and space complexity of
the algorithm are at worst in O(KPn). Furthermore, we can also guarantee that
the average cost (over all data points) of the recovered segmentation m̃

(K)
(r) is at

worst within K log(P )/n of the optimal segmentation m̂
(K)
(r) (see Theorem 22).

Before we describe the algorithm we need to define some new notations.
We define the approximate cost of a segment knowing its mean μ as C̃

(1)
(r) (μ) ={∑

t∈r(y(t) − μ)2/2σ2 − log(πp)
}

. Using this notation we can rewrite the classi-
fication cost of a segment r = [[t1, t2]] as C̃

(1)
t1,t2 = minp{C̃

(1)
t1,t2(μp)}, with C̃

(1)
t1,t2(μ)

being point additive in the sense that C̃
(1)
t1,t2(μ) =

∑
t1≤t≤t2

C̃
(1)
t,t (μ). Then we define

the cost of the best segmentation knowing that the mean of the last segment is
μ as:

C̃
(K)
1,t (μ) = min

m∈M(K)
(1,t)

{
∑

k<K−1

C̃
(1)
(rk)

+ C̃
(1)
(rK)(μ)

}
.

Using this notation we get that C̃
(k)
1,t = min

p<P

{
C̃

(k)
1,t (μp)

}
, and if we know every

C
(k)
1,t (μp) at step t for all p < P , we straightfowardly get C

(k)
1,t in O(p). As C̃t1,t2(μ)

is point additive updating C̃t1,t2(μ) is easy and can be done efficiently using the
following theorem.

Theorem 21. C̃
(k)
1,t+1(μ) = min

{
C̃

(k)
1,t (μ), C̃(k−1)

1,t

}
+ C̃

(1)
t+1,t+1(μ)

Proof. Let us first notice that: C̃
(k)
1,t+1(μ) = min

τ<t+1

{
C̃

(k−1)
(1,τ) + C̃

(1)
(τ+1,t)(μ)

}
. Using

the definition of C̃
(k)
1,t (μ) we get that:

C̃
(k)
1,t (μ) + C̃

(1)
(t+1,t+1)(μ) = min

τ<t

(
C̃

(k−1)
(1,τ)

)
+ C̃

(1)
(t+1,t+1)(μ)

From this the theorem follows. �

Using this theorem, knowing C̃
(k)
1,t (μ) and C̃

(k−1)
1,t we get C̃

(k)
1,t+1(μ) in O(1)

and we derive Algorithm 2 for the DP step of the DP-EM algorithm [11]. For
simplicity we did not include the initialization of C̃

(1)
1,t for t < n and C̃

(k)
1,1 (μp). All

C̃
(k)
1,1 (μp) are initialized as +∞ and C̃

(1)
1,t are initialized using their definition. At

step k, t of Algorithm 2 O(P ) basic operations are performed. If we sum these
for all k < K and t < n we straightforwardly see that the algorithm has an
O(KPn) time complexity.

2.3 A Bound on the Quality of the Approximation

Using the approximation defined in Eq. 1 we can guarantee the quality of the
obtained segmentation using the following theorem.
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Algorithm 2. Linear DP algorithm for the classification cost
Input: Y (t) a profile of n observations, K an integer
Input: Ct1,t2 cost of the segments ]]t1, t2]] for all (t1, t2) ∈ [[1, n]]2

Output: C
(k)
1,t in R and M

(k)
1,t in N for all k ≤ K and t ≤ n

for k ∈ [[2, min(t, K)]] do
for t ∈ [[1, n]] do

for p ∈ [[1, P ]] do

C
(k)
1,t (μp) = min{C

(k)
1,t−1(μp), C

(k−1)
1,t−1 } + C

(1)
t,t (μp) ;

M
(k)
1,t (μp) = argmin{C

(k)
1,t−1(μp), C

(k−1)
1,t−1 }

end for
C

(k)
1,t = min

p
{C

(k)
1,t (μp)} ; p∗ = argmin

p
{C

(k)
1,t (μp)} ; M

(k)
1,t = M

(k)
1,t (μp∗)

end for
end for

Theorem 22. Using approximation defined in Eq. 1 we have for all segments R
and K

C̃
(K)
(R) −K log(P ) ≤

∑

r∈m̂
(K)
(R)

C̃
(K)
(R) −K log(P ) ≤ C

(K)
(R) ≤

∑

r∈m̃
(K)
(R)

C
(K)
(R) ≤ C̃

(K)
(R) .

Proof. We have C
(1)
(r) = −log(

∑
p exp{−C̃

(1)
(r) (μp)}) and C̃

(1)
(r) ≥ C̃

(1)
(r) (μp). From

this we get that: ∀r, C̃
(1)
(r) − log(P ) ≤ C

(1)
(r) ≤ C̃

(1)
(r) , which gives, along with the

definition of C
(K)
(R) :

∀m ∈ M(K)
(R) , C̃

(K)
(R) − K log(P ) ≤

∑

r∈m

C̃
(1)
(r) − K log(P ) ≤

∑

r∈m

C
(1)
(r) . (2)

Similarly we get:

∀m ∈ M(K)
(R) , C

(K)
(R) ≤

∑

r∈m

C
(1)
(r) ≤

∑

r∈m

C̃
(1)
(r) . (3)

Applying Eq. 2 to m = m̂
(K)
t1,t2 and then Eq. 3 to m = m̃

(K)
t1,t2 we get the

theorem. �

3 Joint Segmentation and Parallelization
of the Algorithm

Joint segmentation arises when more than one profile should be segmented
jointly. We make the distinction between simultaneous segmentation, where all
breakpoints are the sames across profiles, with joint segmentation where all pro-
files have their own specific breakpoints, but may share some characteristics, like
the same noise, the same biases, the same values for the mean of segments that
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share the same copy numbers (i.e. parameters μp). When segmenting I profiles
jointly, a typical model is:

∀i ∈ [1, I], ∀t ∈ ri
k, Yi(t)|{Z(ri

k) = p} ∼ N (μp + b(t), σ2),

where ri
k stands for segment k of profile i, and where b(t) is a bias function

that depends on the position (like the wave effect [9]). Then the segmentation
of profile i into Ki segments is denoted by mKi

i = {ri
1, ..., r

i
Ki

}, and the global

segmentation into K segments is denoted by mK = {mK1
1 , ...,mKI

I }, with K =∑I
i=1 Ki.
Joint segmentation presents an additional algorithmic challenge. When each

Ki is known, the best segmentation for each profile m̂Ki
i can be found inde-

pendently and therefore computed in parallel using Algorithm 1 or 2. Then the
additional step, which remains sequential, is to determine (i) the common para-
meters across profiles ({μp}, b(t)) and (ii) the best combination of {K̂i} that
provides the best joint segmentation for a given total number of segments K
[9]. Dynamic Programming has also been shown to provide an exact solution to
problem (ii) in O(I3K2

max), where Kmax is the maximum number of segments
to be put in each profile. Consequently, DP-based joint segmentation alternates
between parallel steps (computation of individual segmentations) and sequential
steps (estimation of common parameters and determination of the best combi-
nation of individual segmentations), as shown in Algorithm 3.

Algorithm 3. Parallel Algorithm for Joint segmentation
Input: {Yi(t)}, I profiles of n observations, K an integer, {μ̂0

p} starting values for
common parameters

Input: Ci
t1,t2 cost of the segments ]]t1, t2]] for profile i for all (t1, t2) ∈ [[1, n]]2

Output: {K̂1, ..., K̂I}, C
( ̂Ki)
1,t in R for all i ≤ I, k ≤ Ki and t ≤ n, {μ̂p}, b̂(t)

while not convergence do
for i ∈ {1, ...I} do in parallel

compute C
(k)
1,t ∀k ≤ K and t ≤ n with Algorithm 2

end for
update {μ̂p}, b̂(t)

compute {K̂1, ..., K̂I} with sequential DP [9]
end while

4 Correctness, Computational Footprint and Scalability

All the presented algorithms are available into the cghseg R-package1, which
now relies on the parallel R-package and on the shared memory programming
1 http://cran.r-project.org/web/packages/cghseg

http://cran.r-project.org/web/packages/cghseg
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Table 1. Performance comparison between the non linearized and non parallel (“old”)
and the linearized-parallel (“new”) versions. Performance is assessed through Mean
Square Errors (over 50 replicates) for the estimates of the number of segments (K̂),
the mean level of each segment (μ̂), and confidence intervals for the False Discovery
and False Negative Rates for breakpoint detection. The methodology is similar to [9].

SNR MSEnew(̂K) MSEold(̂K) MSEnew(μ̂) MSEold(μ̂) CInew(fdr) CIold(fdr) CInew(fnr) CIold(fnr)

1 [0.90; 1.02] [0.90; 1.02] [0.14; 0.16] [0.14; 0.17] [0.42; 0.45] [0.42; 0.45] [0.59; 0.62] [0.59; 0.62]

5 [0.36; 0.44] [0.37; 0.45] [0.05; 0.06] [0.05; 0.06] [0.15; 0.20] [0.17; 0.22] [0.21; 0.26] [0.23; 0.28]

10 [0.22; 0.30] [0.23; 0.30] [0.03; 0.03] [0.03; 0.03] [0.06; 0.10] [0.07; 0.11] [0.08; 0.14] [0.09; 0.14]

15 [0.17; 0.22] [0.17; 0.23] [0.02; 0.02] [0.02; 0.02] [0.02; 0.06] [0.03; 0.07] [0.03; 0.08] [0.03; 0.09]

20 [0.15; 0.20] [0.15; 0.21] [0.01; 0.02] [0.01; 0.02] [0.01; 0.05] [0.01; 0.05] [0.01; 0.06] [0.01; 0.07]

standard openMP in the C++ sections. The new package is now designed to be
executed in parallel on multiprocessor architectures.

We recall that the statistical performance of the model have been discussed
elsewhere [9], so that our focus here is computational only. Consequently, we
use a previously published simulation scheme to generate the data [9,12] with
n = 20,000 observations per profile, and a number of profiles of 256, 512 and 1024.
The average number of segments is set to 10 for each profile, and the Signal to
Noise Ratio is set to 5 (which corresponds to moderately easy configurations [9]).

We first check the correctness of our method, by verifying that the lineariza-
tion approximations (with and without calling) give the same statistical perfor-
mance compared with the non-linearized version. This is shown in Table 1), as
the performance are identical over 50 replicates.

Then we assess the effectiveness of the parallel implementation by running
cghseg on an increasing number of cores (1, 2, 4, 16, 32, 48). When dealing with
parallelized codes, the Amdahl’s law [1] provides the expected theoretical speedup
with respect to the time proportion of the sequential part and the number of
cores. The speedup of cghseg follows the Amdahl’s law when the number of pro-
files is high (Fig. 1, dashed lines), which demonstrates the quality of our imple-
mentation as the Amdahl’s law constitutes the best possible speedup. However,
we observe an unexpected moderate speedup decrease for a lower number of pro-
files. This is due to overheads associated with the use of the parallel R-package,
overheads which become negligible when the number of profiles is high. Still, the
execution time of configurations with 256 profiles is 6 min on average using 48
cores, which remains excellent.

While the main interest of cghseg lies in the quality of its results, the asso-
ciated computational expense is affordable even for very large datasets. As a
benchmark, we simulated datasets with 1024 profiles of length 100,000 which
corresponds to the up-to-date limits of the available datasets of SNP-arrays
for instance. When joint segmentation is performed along with calling, cghseg
required 4 h on average on 48 cores (see Table 2), which is very reasonable consid-
ering the size of the dataset. Lastly, due to the copy-on-write mechanism of the
parallel R-package that avoids memory copy between processes, and thanks to
the shared memory efficiency provided by openMP, the memory needs of cghseg
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Table 2. Average computational requirements of cghseg estimated on simulated
datasets for a varying number of profiles and observations, computed on 48 cores.
Results correspond to averages over 5 replicates. Run on a quadri-12 cores Opteron
2.2 GHz, 256 Gb RAM.

n (observations/profile) 20,000 100,000

I (number of profiles) 256 512 1024 256 512 1024

Average CPU time (min) 6 15 54 31 70 253

Memory usage (Gb) 0.4 0.8 1.8 1.7 3.7 7.9

only correspond to the dataset under study (see Table 2). Therefore, our method
and software package are adapted to the next generation of computers (many
cores) and experiments (large profiles).

References

1. Amdahl, G. M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the AFIPS ’67 Spring Joint Computer
Conference, 18–20 April 1967 (Spring), pp. 483–485. ACM (1967)

2. David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C.J., Bofkin, L., Jones,
T., Davis, R.W., Steinmetz, L.M.: A high-resolution map of transcription in the
yeast genome. Proc. Natl. Acad. Sci. USA 103(14), 5320–5325 (2006)

3. Hocking, T.D., Schleiermacher, G., Janoueix-Lerosey, I., Delattre, O., Bach, F.,
Vert, J.-P.: Learning smoothing models using breakpoint annotations. HAL Tech-
nical report 00663790 (2012)

4. Killick, R., Fearnhead, P., Eckley, I. A.: Optimal detection of changepoints with a
linear computational cost. arXiv:1101.1438, January 2011.

5. Marioni, J.-C., Thorne, N.-P., Tavare, S.: BioHMM: a heterogeneous hidden
markov model for segmenting array CGH data. Bioinformatics 22(9), 1144–1146
(2006)

6. Nicolas, P., Bize, L., Muri, F., Hoebeke, M., Rodolphe, F., Ehrlich, S.D., Prum,
B., Bessieres, P.: Mining Bacillus subtilis chromosome heterogeneities using hidden
Markov models. Nucleic Acids Res. 30(6), 1418–1426 (2002)

7. Nicolas, P., Leduc, A., Robin, S., Rasmussen, S., Jarmer, H., Bessieres, P.: Tran-
scriptional landscape estimation from tiling array data using a model of signal shift
and drift. Bioinformatics 25(18), 2341–2347 (2009)

8. Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmen-
tation for the analysis of array-based DNA copy number data. Biostatistics 5(4),
557–572 (2004)

9. Picard, F., Lebarbier, E., Hoebeke, M., Rigaill, G., Thiam, B., Robin, S.: Joint seg-
mentation, calling and normalization of multiple array CGH profiles. Biostatistics
12(3), 413–428 (2011)

10. Picard, F., Robin, S., Lavielle, M., Vaisse, C., Daudin, J.-J.: A statistical approach
for array CGH data analysis. BMC Bioinf. 6, 27 (2005)

11. Picard, F., Robin, S., Lebarbier, E., Daudin, J.-J.: A segmentation/clustering
model for the analysis of array CGH data. Biometrics 63, 758–766 (2007)

http://arxiv.org/abs/1101.1438


258 G. Rigaill et al.

12. Pique-Regi, R., Ortega, A., Asgharzadeh, S.: Joint estimation of copy number
variation and reference intensities on multiple DNA arrays using GADA. Bioinfor-
matics 25(10), 1223–1230 (2009)

13. Rigaill, G.: Pruned dynamic programming for optimal multiple change-point detec-
tion. arxiv:1004.0887, April 2010

14. Shah, S.P.: Computational methods for identification of recurrent copy number
alteration patterns by array CGH. Cytogenet. Genome Res. 123(1–4), 343–351
(2008)

15. Teo, S.M., Pawitan, Y., Kumar, V., Thalamuthu, A., Seielstad, M., Chia, K.S.,
Salim, A.: Multi-platform segmentation for joint detection of copy number variants.
Bioinformatics 27(11), 1555–1561 (2011)

16. van de Wiel, M.A., Picard, F., van Wieringen, W.N., Ylstra, B.: Preprocessing
and downstream analysis of microarray DNA copy number profiles. Brief. Bioinf.
12(1), 10–21 (2011)

17. van de Wiel, M.A., Kim, K.I., Vosse, S.J., van Wieringen, W.N., Wilting, S.M.,
Ylstra, B.: CGHcall: calling aberrations for array cgh tumor profiles. Bioinformatics
23(7), 892–894 (2007)

18. Willenbrock, H., Fridlyand, J.: A comparison study: applying segmentation to array
CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)

19. Zhang, N.R., Siegmund, D.O.: A modified Bayes information criterion with applica-
tions to the analysis of comparative genomic hybridization data. Biometrics 63(1),
22–32 (2007)

20. Zhang, N.R., Siegmund, D.O., Ji, H., Li, J.Z.: Detecting simultaneous changepoints
in multiple sequences. Biometrika 97(3), 631–645 (2010)

http://arxiv.org/abs/1004.0887


Identification of Pathway Signatures
in Parkinson’s Disease with Gene Ontology

and Sparse Regularization

Margherita Squillario(B), Grzegorz Zycinski(B), Annalisa Barla,
and Alessandro Verri

DIBRIS, University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy
{margherita.squillario,grzegorz.zycinski,
annalisa.barla,alessandro.verri}@unige.it

http://www.dibris.unige.it/

Abstract. The purpose of this work is to compare Knowledge Driven
Variable Selection (KDVS), a novel method for biomarkers, processes
and functions identification with the most frequently used pipeline in the
analysis of high–throughput data (Standard pipeline). While in the Stan-
dard pipeline the biological knowledge is used after the variable selection
and classification phase, in KDVS it is used a priori to structure the data
matrix. We analyze the same gene expression dataset using �1�2FS , a
regularization method for variable selection and classification, choosing
Gene Ontology (GO) as source of biological knowledge. We compare the
lists identified by the pipelines with state–of–the–art benchmark lists of
genes and GO terms known to be related with Parkinson’s disease (PD).
The results indicate that KDVS performs significantly better than the
Standard pipeline.

Keywords: Knowledge driven variable selection · �1�2FS · Enrichment ·
Benchmark · Parkinson · Gene Ontology · Biomarkers

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that impairs the motor
skills at the onset and successively the cognitive and the speech functions. Like
other neurological diseases [1,2], once the first symptoms appear, a great loss
of neurons has already occurred and so far no clinical tests are able to early
diagnose it. In this scenario, it is relevant to identify those altered processes,
functions for which candidate biomarkers can be discovered, especially in the
early onset of PD.

To this aim, we analyze an early onset gene expression microarray dataset,
containing cases (i.e., diseased) and controls (i.e., healthy) samples, comparing
two different approaches. We refer to the most frequently used approach as Stan-
dard, and we present here an alternative method, Knowledge Driven Variable
Selection (KDVS) [3,4] (see Fig. 1).
c© Springer International Publishing Switzerland 2014
E. Formenti et al. (Eds.): CIBB 2013, LNBI 8452, pp. 259–273, 2014.
DOI: 10.1007/978-3-319-09042-9 19
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Fig. 1. KDVS and Standard pipelines. Gene Ontology (GO) is divided in three domains:
Biological Process (BP), Molecular Function (MF) and Cellular Component (CC).

Some steps are common for both pipelines. First, the gene expression data
are collected from diseased patients and healthy controls. Next, the data are
normalized to produce uniform gene expression data matrix, where columns
refer to biological samples, and rows refer to genes measured.

In the Standard pipeline, classification and subsequent variable selection [5]
(i.e., data analysis) are performed on gene expression data matrix, producing a
list of selected variables (i.e., genes), that maximally discriminates two physi-
ological states (i.e., cases and controls). Finally, the list of selected genes (i.e.,
gene signature) is enriched [6] (i.e., functional analysis) using a chosen source
of biological knowledge to determine the functions or processes, in which the
discriminant genes are involved in. The final result consists of a list of genes,
that are probably associated to the development of the investigated biological
state, and a list of enriched functions, processes or interactions, characterizing
the disease, that depend on the source of biological knowledge utilized. In this
work, the enrichment analysis for the Standard pipeline was performed using the
webtoolkit WebGestalt [7], with GO as source of domain knowledge.

In general, the two most used sources of biological knowledge are Gene Ontol-
ogy (GO) [8] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [9].
We choose GO as source of biological knowledge for both pipelines, consider-
ing all three domains that constitute GO: Molecular Functions (MF), Biological
Process (BP) and Cellular Component (CC).
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The novel alternative method, KDVS, uses a priori biological knowledge,
before the classification and variable selection phase, rather than a posteriori in
the enrichment step, as in the Standard pipeline. Briefly, the genes are associated
to GO terms through a curated process of annotation. For each GO term in a
given domain, individual submatrices of the gene expression data matrix are
produced. Each of these submatrices, containing all the samples and all the
genes annotated to a specific GO term, is then the subject of variable selection
and classification. The partial results from all submatrices are integrated into
a final result. Each partial result consists of a classification error and a list of
selected variables (i.e., genes) that contribute most to the discrimination between
two classes. The final result consists of a list of GO terms that are identified as
discriminating between the two classes, and of a gene signature, derived from
the combination of all the individual gene lists produced for each selected GO
term.

The variable selection method of choice in both pipelines is ψ1ψ2FS [10],
a regularization method that belongs to the class of embedded methods [5],
which incorporate variable selection within the classification step. We choose
this method because many state–of–the–art methods (e.g., t-test, Wilcoxon,
ANOVA) do not cope well with multivariate models, which are more suited
to reflect the behavior of genes involved in a complex disease (e.g., tumors, neu-
rodegenerative diseases). The major drawback of univariate models, often used
as standard approaches in high-throughput data analysis, concerns their inabil-
ity to exploit the complex correlation among molecular variables, especially in
the context of multifactorial diseases. Also, recent publications [11,12] proved
the suitability of multivariate models in identifying reliable gene signatures.

In this paper, we compare the results of KDVS and Standard pipeline in
the analysis of the same gene expression data set, investigating which pipeline
provides as output more biologically sound results. Both pipelines identify a
list of discriminant GO terms and a list of selected genes, one using the avail-
able biological knowledge a priori and the other one a posteriori. To validate
these findings in silico, we compare the results obtained from each pipeline with
the currently available biological knowledge regarding PD. To this aim, we com-
pile two benchmark lists: one of GO terms, and one of genes, relevant to PD
according to the current state of research.

Our experiments show that KDVS, the new proposed pipeline, identifies more
discriminating GO terms and genes, known to be related to PD, with respect
to the Standard pipeline. This result is confirmed by the precision, recall and
F-measures calculated on the results derived from the pipelines.

2 Materials and Methods

For our experiments, we use a public microarray data set from the Gene Expres-
sion Omnibus (GEO) [13]. The dataset (ID: GSE6613, [14]) is composed of mea-
surements on whole blood samples from 50 patients affected by early onset PD
and from 22 healthy controls. The microarray platform is the Affymetrix Human
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Genome U133A Array (HG-U133A) and contains 22283 probesets, that measure
the gene expression. We devise a binary classification problem of healthy vs. dis-
eased samples. Hence, our data matrix is 72×22283-dimensional. Normalization
of the gene expression values is performed using the Robust Multichip Average
method [15], with a R script based on the aroma package1.

2.1 Feature Selection Framework

ψ1ψ2FS is an embedded regularization method for variable selection capable to
identify subsets of discriminative genes. It can be tuned to give a minimal set of
discriminative genes or larger sets including correlated genes [16]. The method
is based on [17] and it was successfully applied in the analysis of molecular
high–throughput data [11,12].

The objective function is a linear model f(x) = βx, whose sign gives the
classification rule that can be used to associate a new sample to one of the two
classes. The sparse weight vector β is found by minimizing the ψ1ψ2 functional:

||Y − βX||22 + Σ ||β||1 + μ||β||22
where the least square error is penalized with the ψ1 and ψ2 norm of the coefficient
vector β. Once the relevant features are selected we use regularized least squares
(RLS) to estimate the classifier:

||Y − X̃β||22 + Θ||β||22
where X̃ is the submatrix obtained by only using the columns of X correspond-
ing to the variables selected at the first step. The training for selection and
classification requires a careful choice of the regularization parameters Σ and Θ
for both ψ1ψ2 and RLS. The third parameter μ is fixed a priori and governs the
amount of correlation allowed for selected variables. To avoid biased results [18],
model selection and statistical significance assessment are performed within two
nested K-cross validation loops as in [10]. The framework is implemented in
Python and uses the L1L2Signature2 and L1L2Py3 libraries.

2.2 The KDVS Pipeline

The general schema of KDVS [4] is based on the prototype presented in [3] and
is depicted in Fig. 2. KDVS consists of a local integration framework, KDVS core
that performs an integration of microarray platform data and annotations [13]
with prior biological knowledge. Outside this framework, the raw data are pre–
processed for normalization and summary with state–of–the–art algorithms for
microarray technologies [19]. KDVS core performs all data management opera-
tions and provides skeletal execution environment for user applications. The data
1 http://www.aroma-project.org
2 http://slipguru.disi.unige.it/Software/L1L2Signature
3 http://slipguru.disi.unige.it/Software/L1L2Py

http://www.aroma-project.org
http://slipguru.disi.unige.it/Software/L1L2Signature
http://slipguru.disi.unige.it/Software/L1L2Py
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Fig. 2. Schema representing the KDVS inner structure.

management part consists of several processors that work with specific type of
data. It also maintains the information ensemble, a shared data storage that
can be used across user applications. KDVS core provides convenient functional-
ities for developers of user applications, such as atomic execution units, variable
sharing, interface to parallel computational resources etc. The result of the local
integration framework consists in extracting a submatrix: taking for each GO
term, the corresponding set of probesets and the expression values extracted
across all samples. The submatrix is fed as input of the classification/feature
selection task performed by the Statistical framework, where the knowledge dis-
covery concept is implemented.

The Statistical framework runs the variable selection/classification method of
choice on each submatrix, in our case ψ1ψ2FS . Each subproblem is processed and
treated independently as a variable selection and classification problem. Partial
results (gene signatures, classification errors, performance plots) are collected
and postprocessed to obtain the final output.
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KDVS4 is implemented in Python and runs in parallel in order to speed–up
the computation. In the current implementation, an ad–hoc environment is built
over a local network of multicore desktop machines, where the computational
tasks were distributed to individual machines and executed in the background.
The environment is controlled using the Python package PPlus5, a Python wrap-
per for the python library Parallel Python.

2.3 The Standard Pipeline

The Standard pipeline represents the classical procedure to extract relevant bio-
logical features from high–throughput datasets and it is composed of two steps:
the data analysis and the functional analysis [20]. In the first one, the data
matrix is normalized and then analyzed with ψ1ψ2FS . The typical output of this
phase is a list of discriminant genes, defined as gene signature, that is given as
input to the functional analysis, whose purpose is to find the statistically signif-
icant categories that are associated with the gene signature. To this aim we use
the online toolkit WebGestalt6.

This web-service takes as input a list of relevant genes/probesets and per-
forms a GSEA analysis [21] in several databases, as KEGG or GO, identifying
the most relevant pathways and ontologies in the signatures. For our experi-
ments, we use the GO database and select the WebGestalt human genome as
reference set, 0.05 as level of significance, 3 as the minimum number of genes
and the default Hypergeometric test as statistical method.

2.4 Benchmark Lists

To obtain the necessary benchmark lists we followed the workflow in Fig. 3. We
started with the union (in terms of sets) of three gene lists: the first one from
the “Parkinson’s disease - Homo sapiens” pathway of KEGG PATHWAY data-
base (ID: hsa05012), the second one from the “Parkinson’s disease (PD)” entry
of KEGG DISEASE database (ID: H00057), and the third one from the result
of Gene Prospector tool [22] when queried for “Parkinson’s disease”. In case of
KEGG databases, the genes associated through “linkDB” were included in the
respective lists. While the first two lists contain genes that have been experi-
mentally verified to be involved in the disease, the third list could contain also
genes that are loosely connected to the disease, because they are derived from
high–throughput experiments and therefore need further experimental valida-
tion. Next, we merged the three lists and eliminated duplicates. The merged list
contained a total of 482 genes.

To proceed, we used Gene Ontology Annotations (GOA), compiled for homo
sapiens. Here, each gene is associated with some GO term(s), based on specific

4 http://www.scfbm.org/content/supplementary/1751-0473-8-2-s1.zip
5 http://slipguru.disi.unige.it/Software/PPlus
6 http://bioinfo.vanderbilt.edu/webgestalt/

http://www.scfbm.org/content/supplementary/1751-0473-8-2-s1.zip
http://slipguru.disi.unige.it/Software/PPlus
http://bioinfo.vanderbilt.edu/webgestalt/
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evidences. The evidences describe the work or analysis upon which the associa-
tion between a specific GO term and gene product is based; there are 22 possible
evidence codes in GO7. Each single association of a gene to an evidence is tagged
with the annotation date as well.

Based on that information, we constructed a filtering schema to derive the
benchmark gene list and benchmark GO terms list, that are strongly associated
with PD. The first benchmark list is composed of 444 genes and the second of
2121 GO terms. Two filters were applied: based on the annotation date (for GO
terms), and based on the evidence strength (for both genes and GO terms).

The first filter was applied because, while examining the annotations, we
notice that each gene can be associated with the same GO term but with dif-
ferent evidences, due to the internal history of GO curation process. During the
construction of the benchmark lists, we kept those associations whose evidences
displayed the most recent annotation date.

The second filter was applied based on the reliability of the evidences [8].
Based on this consideration, we arbitrarily defined the trustability of the evi-
dences, as follows: the evidences recognized as more trustable include all those
belonging to the Experimental Evidence Codes’ category (i.e., EXP, IDA, IPI,
IMP, IGI, IEP), the Traceable Author Statement (i.e., TAS), and the Inferred
by Curator (i.e., IC). During the construction of benchmark lists, we kept the
genes and GO terms associated with this selection of evidences.

2.5 Precision, Recall and F-measure

Precision and recall are evaluated following their usual definition:

Precision = tp/(tp + fp)

Recall = tp/(tp + fn)

We consider as true positives the genes or GO terms that were selected as
relevant and that belong to the corresponding benchmark list. False positives
genes or GO terms are those selected items that do not belong to the corre-
sponding benchmark list. False negatives genes or GO terms are those items of
the corresponding benchmark list that were not selected by the pipeline.

For example, in case of the Standard pipeline, the precision for the genes was
3/66 and for the GO terms was 31/65. The recall for the genes was 3/444, while
for the GO terms was 31/2121 (Table 1).

For KDVS, we compute precision and recall for the cumulative list of genes
and GO terms (Table 1) and for each domain separately (Table 2).

The F-measure follows its definition:

F-measure = 2 × Precision × Recall/(Precision + Recall).

7 ftp://ftp.geneontology.org/go/www/GO.gettingStarted.shtml

ftp://ftp.geneontology.org/go/www/GO.gettingStarted.shtml
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3 Results and Discussion

3.1 The KDVS Pipeline

The analysis of the early onset PD microarray data set with KDVS provided a
list of discriminant terms for each domain of GO: 150 for MF, 418 for BP and
103 for CC. A term was called discriminant, if the classification performed on
the corresponding data submatrix resulted in an accuracy of at least 70%, i.e.
an error below 30 % (for this dataset, the equal error rate was 55 %). To ensure
unbiased results, for each variable selection problem we used a nested double
cross validation procedure with 9 external and 8 internal splits.

From the list of discriminant GO terms, a list of selected probesets (and
related genes) was derived: 6072 probesets, associated to 4286 genes for MF,
3822 probesets, associated to 2713 genes for BP and 3842 probesets, associated
to 2836 genes for CC.

3.2 Comparison Between Lists: KDVS and Benchmark

To validate the biological soundness of the GO term lists identified by KDVS, we
evaluated its intersection with the benchmark list of GO terms compiled for PD
(term benchmarking), following the workflow depicted in Fig. 3 (see Materials
and Methods).

Since the KDVS pipeline was run separately for MF, BP and CC domains, the
comparison between the two lists was restricted only to the elements belonging to

Fig. 3. Workflow followed to build the benchmark gene and GO terms lists.
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each specific domain knowledge. When MF was considered, the overlap consisted
of 54 terms, corresponding to a 12 % coverage of the benchmark list. Here, the
terms were related to the binding to motor proteins (i.e., kinesin and dynein),
to components of the extracellular matrix and of the cytoskeleton (respectively
fibronectin and beta–tubulin), to binding ions and groups (i.e., iron, manganese,
magnesium, heme), to binding to nucleotidic acids (i.e., chromatin, rRNA and
the mRNA 3′ UTR), and finally to binding to proteins like chaperone, ubiquitin
and syntaxin. The activities above involved mainly enzymes (e.g., hydrolase,
peptidase, especially serine–type peptidase, peroxidase), but also transcription
factors, such as ubiquinone and ubiquitin.

When BP was considered, the overlap consisted of 154 terms, correspond-
ing to a 11 % coverage of the benchmark list. Here, the terms were related to
various kind of metabolic processes concerning lipids (e.g., prostaglandins, sphin-
golipids), ATP or dopamine; to the development of the brain, specifically to the
neuromuscular junctions, and the cardiac muscle tissue; to defense response, in
particular from viruses, that prompt the activation and regulation of B and T
cells. The biological terms related to the cell are those that control cell death,
arrest, growth, differentiation, proliferation and specific cell cycle checkpoints
(e.g., from G1 to S). The involved pathways concerned: the Notch receptors,
which regulate cell-cell communication in several ways (acting in particular in
the central nervous system and in the heart); the Wnt proteins, which regulates
cell–cell communication either, passing the information from the plasma mem-
brane to the nucleus, prompting the transcription regulation of specific genes;
three specific groups of growth factors, which are nerve, platelet–derived and
insulin–like, and are fundamental respectively for the growth, maintenance, and
survival of neurons, for the angiogenesis or the growth of existing blood vessels,
and for the communication with the environment, through the promotion of cell
proliferation and inhibition of cell death.

When CC was considered, the overlap consisted of 34 terms, corresponding
to a 15 % coverage of the benchmark list. The terms were particularly related
to the mitochondrion (e.g., matrix cellular, outer membrane cellular, proton–
transporting ATP synthase complex cellular component), to the cell–cell bound-
aries (e.g., focal adhesion, basal lamina), to the vesicles and the methods of
transport of molecules inside the cell (e.g., coated pit, vesicle, clathrin–coated
vesicle).

We also evaluated the overlap between the lists of discriminant genes and
the benchmark list of genes, compiled for PD (gene benchmarking), following
the custom workflow in Fig. 3 (see Materials and Methods). Considering MF as
source of biological knowledge, the overlap consisted of 196 genes, corresponding
to 44% of the benchmark list. Using BP, the overlap consisted of 161 genes,
corresponding to 36% of the benchmark list. With CC, the overlap consisted of
123 genes, corresponding to 28% of the benchmark list.

We calculated the precision, recall and F-measures as shown in Materials and
methods, considering, for KDVS, MF, BP, CC together (Table 1) and separately
(Table 2). These values were calculated to evaluate the classification performance
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Table 1. Comparison of precision, recall and F-measures for both pipelines, considering
all the GO terms.

Standard KDVS

Precision GO terms 47.7 % 36 %

Recall GO terms 1 % 11.4 %

Precision genes 4.5 % 7.8 %

Recall genes 0.7 % 16.2 %

F-measure GO terms 0.028 0.173

F-measure genes 0 0.108

Table 2. Comparison of precision, recall and F-measures for KDVS, considering the
three domains of GO separately.

KDVS

GO domain MF BP CC

Precision GO terms 36 % 36.8 % 32.7 %

Recall GO terms 2.5 % 7.3 % 1.6 %

Precision genes 4.6 % 5.9 % 4.3 %

Recall genes 44.1 % 36.3 % 27.7 %

F-measure GO terms 0.047 0.122 0.029

F-measure genes 0.082 0.1 0.075

of both pipelines, considering the state–of–the–art knowledge on PD, here rep-
resented by the benchmark lists.

If we compare the results in Table 2 between GO terms and genes, it is
evident that the precision is higher than the recall in the GO terms case, while
an opposite trend is evident in the genes case. This observation could be argued
considering the known redundancy of the genes: the low precision obtained for
the genes, could be explained by the fact that the same role can be performed by
more than one gene. Therefore the processes or functions characterizing a specific
disease constitute a well defined group, but there is a high number of possible
and different combinations of genes that can perform one specific function or
that can be involved in a specific process.

3.3 The Standard Pipeline

3.4 Data Analysis

The analysis of the early onset PD microarray data set with the Standard
pipeline provided a signature of 77 probesets associated to 66 genes. To ensure
unbiased results, for the variable selection step we used a nested double cross
validation procedure with 9 external and 8 internal splits, resulting in a 64%
accuracy performance.
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3.5 Functional Analysis

The functional analysis was performed with WebGestalt [7], using GO as source
of biological knowledge; 65 terms were identified as enriched. The terms from the
MF domain showed that the majority of the proteins are involved in the binding
to other molecules (e.g., proteins or nucleic acids) or to metals. This last function
has a fundamental role in generating free radicals responsible of oxidative stress
and was already shown to be important in PD and in other neurodegenerative
diseases [23]. Furthermore the generation of protein aggregates, shown from some
discriminating MF terms (e.g., protein homodimerization activity, identical pro-
tein binding) is also a known feature of PD [24]. The terms from the CC domain
showed that most of the identified gene products are located in the cytoplasm,
and are also associated with the cytoskeleton, whose involvement (in particular
the microtubules) is becoming an emerging topic in the pathogenesis of PD [25].
The terms from the BP domain concerned the response to different stimuli (i.e.,
stress, chemical and other organisms), the involvement of the immune system
(both in its development and in the defense response), the cell death, the bio-
logical regulation of homeostatic processes (in particular of the erythrocytes),
and of metabolism. Both the terms regarding responses to chemical stimulus and
other organism (in our case virus), are the two candidate processes suggested to
be external triggers for initiating the pathogenesis of PD [26].

3.6 Comparison Between the Lists: Standard and Benchmark

To assess how much of the GO terms identified by the Standard pipeline were
known to be involved in PD, we performed an overlap between its list and the
benchmark list of GO terms compiled for PD (term benchmarking), following the
workflow depicted in Fig. 3. The overlap between the lists was of 31 GO terms.
The terms from the BP domain were mainly related to the defense response in
general and to the response to virus, to the activation of the immune system,
particularly the innate part, and to the regulation of the apoptosis. The terms
from the MF domain were related to the binding to other proteins (e.g., actin,
kinase), to binding to iron and heme group, and to structural component of the
cytoskeleton. The terms from the CC domain were related to the cytoskeleton,
the cell cortex, the basolateral plasma membrane and the lysosome.

Similarly, we evaluated the intersection between the gene list, identified by
WebGestalt, and the benchmark list of genes (gene benchmarking). The identi-
fied lists had three common genes, namely SNCA, ATXN1 and HLA-DQB1.

The values shown in Table 1 underline the fact that the precision calculated
on the GO terms identified was sixteen times higher than the precision computed
considering the genes. One possible explanation can be attribute to the gene
redundancy, already mentioned above.

3.7 Comparison of KDVS and Standard Pipelines

The final goal of our analysis was to evaluate how well KDVS captures the known
biological knowledge about PD, in comparison with the Standard approach.
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To this aim, we compared the lists of the pipelines with the benchmark lists,
that we defined following the workflow in Fig. 3 (see Materials and Methods).

This approach provided a way to validate the results in silico, using state–
of–the–art information about the genes, the functions and the processes known
to be involved in the disease. We also calculated the precision, recall and the
F-measure to accurately validate our results from both the statistical and the
biological viewpoints (Tables 1, 2).

The comparisons showed that the results obtained with KDVS have a sensibly
higher information overlap with the trustable knowledge gathered for PD (here
represented by the benchmark lists), than the results of the Standard pipeline. It
is evident that, considering the GO terms, the precision was higher in the Stan-
dard pipeline than in KDVS but the recall was higher in KDVS. This underlines
that KDVS returns more relevant results (considering the recall) with respect to
the other pipeline, but with a slightly lower precision. For the genes, both preci-
sion and recall were considerably lower with respect to the results obtained with
the GO terms, but they were higher for KDVS than for the Standard pipeline.
Again, the recall was much higher for KDVS than for the other approach. Look-
ing at this data it is clear that the Standard pipeline identified fewer genes in
comparison with KDVS but involved in very few and highly specific GO terms.
The KDVS pipeline, instead, identified more genes with respect to Standard,
but involved in a relevant number of GO terms, less specific compared to the
other approach.

Finally, we performed a three–way comparison between the lists of GO terms
from Standard, KDVS and benchmark lists. This revealed thirteen common
terms. The most relevant MF terms were: iron ion binding, heme binding, iden-
tical protein binding, protein homodimerization activity. The most relevant BP
terms were: cell death, response to stress, defense response and defense response
to virus.

The same kind of three–way comparison was performed, considering the
respective lists of genes. Considering MF as source of domain knowledge, this
comparison gave SNCA and ATXN1 as common genes. When using BP just
ATXN1 was found in common among the lists, using CC, ATXN1, SNCA and
HLA-DQB1 were in common. While SNCA is a gene already known to be asso-
ciated with PD [27], ATXN1 is prevalently known to be associated with another
neurodegenerative disorder, known as Autosomal Dominant Cerebellar Ataxia
(ADCA) [28]. The main clinical symptom of this disease is ataxia, that consists
of gross lack of muscle movements coordination that is severely impaired also in
PD patients.

4 Conclusions

The purpose of this work was to identify possible candidate biomarkers, processes
and functions related with PD by comparing the results of the new proposed
pipeline, namely KDVS, with the Standard pipeline, usually used to analyze
high–throughput data.
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The KDVS pipeline represents a novel approach to analyze gene expression
data because, differently from the Standard pipeline, combines in one single step
the functional and the data analysis (see Fig. 1). In KDVS, the data matrix is
used as a template to generate data submatrices that correspond to expression
of genes related to individual GO terms. Each data submatrix, containing the
same number of samples, is analyzed by the ψ1ψ2FS regularization method to
identify discriminant GO terms, as well as the relevant genes associated with
those terms, defined as gene signature.

Conversely, in the Standard pipeline, the data matrix is first analyzed by
ψ1ψ2FS to obtain the gene signature, then the signature is functionally charac-
terized by an enrichment procedure in order to identify processes and functions
in which the discriminant genes are involved in. Such characterization was per-
formed with the public on–line tool WebGestalt [7], that utilizes the gene set
enrichment analysis technique, using the GO database as biological knowledge.

For each pipeline, we obtained a list of discriminant GO terms as well as a list
of selected genes that were compared with the benchmark lists, defined following
the workflow of Fig. 3 (see Materials and Methods) and that represents acquired
knowledge about PD. Based on the comparison between the benchmark lists and
the lists identified by both pipelines, we calculated the precision, recall and F-
measures (Tables 1, 2). In the GO terms case, it is evident that the recall of KDVS
was higher with respect to the Standard pipeline, considering a comparable
precision. In the gene case, both the precision and the recall values were higher
for KDVS than for the other pipeline. The meaning of this high recall for KDVS,
considering either GO terms and genes, is that this approach identified most of
the relevant GO terms or genes in comparison with the Standard approach. The
F-measures confirmed the better performance of KDVS in comparison with the
other approach.

Finally, from the three–way comparison, one new gene and thirteen GO
terms emerged in the spotlight. The gene is ATXN1, known to be associated
with ADCA, another neurodegenerative disease. The terms are a combination of
processes or functions already known to be involved in PD and not yet related
with the disease.

These pinpointed entities were derived from the application of two different
pipelines to the same data set related to early onset PD, and emerged from the
comparison with the verified knowledge on the disease (benchmark lists). This
suggests that a direct exploration of the possible impact of these entities in the
development of PD should be performed.
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