
Chapter 12
Linear Cellular Automata and Decidability

Klaus Sutner

Abstract. We delineate the boundary between decidability and undecidability in the
context of one-dimensional cellular automata. The key tool for decidability results
are automata-theoretic methods, and in particular decision algorithms for automatic
structures, that are inherently limited to dealing with a bounded number of steps in
the evolution of a configuration. Undecidability and hardness, on the other hand, are
closely related to the full orbit problem: does a given configuration appear in the
orbit of another?

12.1 Linear Cellular Automata

Cellular automata arise as a natural discretization of continuous dynamical systems.
In the continuous case, we are dealing with configurations of the form, say, X :
IR → Σ , where Σ is some set of values whose precise nature is not important here.
Write C for the space of all configurations. The shift operation σa(x) = x+ a acts
on C in the natural way and accounts for a change in coordinates. The dynamics
of the system are then given by a family of evolution operators τt : C → C , where
“time” t is a non-negative real. These operators form a monoid under composition:
τt ◦ τs = τt+s and τ0 = Id. By discretizing the underlying space, as well as the
operators σ and τ , we naturally arrive at maps G : ΣZ → ΣZ that are continuous
in the standard product topology and invariant under the discrete shift operator σ :
ΣZ → ΣZ , σ(X)(i) = X(i+ 1). This is expressed in the classical Curtis-Hedlund-
Lyndon theorem, see [18]. Hence, in a cellular automaton the global map G = Gρ
can be represented by a finite lookup table, essentially a map ρ : Σw → Σ , and is
thus amenable to analysis from the perspective of decidability and computational
complexity. It is customary to refer to this finite function as the local map or rule of

Klaus Sutner
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, USA
e-mail: sutner@cs.cmu.edu

c© Springer International Publishing Switzerland 2015 259
A. Adamatzky (ed.), Automata, Universality, Computation,
Emergence, Complexity and Computation 12, DOI: 10.1007/978-3-319-09039-9_12



260 K. Sutner

the cellular automaton. The operator monoid is generated by G and we are therefore
interested in the iterates Gt for all t ∈N.

One of the main areas of interest in the study of cellular automata is their clas-
sification with respect to the evolution of configurations, i.e., the repeated applica-
tion of the global map. This problem was expressed by Wolfram in [53] as “What
overall classification of cellular automata behavior can be given?” While aspects
of short-term evolution such as reversibility are not excluded, it is clear from the
classification proposed by Wolfram that he had the long-term evolution in mind,
see [52,54]. In a nutshell, the Wolfram classification looks like so. The evolution of
a configuration leads to

• Class I: homogeneous fixed points,
• Class II: periodic configurations,
• Class III: chaotic, aperiodic patterns,
• Class IV: persistent, complex patterns of localized structures.

In [27, 28] Li and Packard introduce an alternative version of this hierarchy.
Again, their classification is based on the asymptotic behavior of the automaton.

Another well-known attempt at classification is due to Kurka, see [25, 26, 31,
47], and is based on the topological notions of equicontinuity, sensitivity to initial
conditions and expansivity. Needless to say, these notions all relate to long-term
behavior.

In [30], Margenstern gave a comprehensive description of the “frontier between
decidability and undecidability,” in a variety of computational settings. In this pa-
per we will focus on one-dimensional cellular automata and discuss an approach
to classification that is based on model theory and computability rather than clas-
sical dynamics. Our key tool is the use of automata theory to obtain decidability
results for the first-order theory of cellular automata, construed as first-order struc-
tures. Using first-order logic one can easily formalize assertions such as “the global
map is surjective,” “the system is reversible”, “the global map is k-to-1” where k is
fixed, “there exists a 5-cycle” or “there are exactly 2 fixed points.” Thus, we will
deal exclusively with one-dimensional cellular automata; their higher-dimensional
analogues are not amenable to these techniques as can be seen for example from
Kari’s theorem concerning the undecidability of injectivity and surjectivity of the
global map in dimension 2, see [20]. As Douglas Lind pointed out, the study of
higher-dimensional cellular automata requires one to step into “the Swamp of Un-
decidability,” see [29]. In fact, even the most basic question of whether a shift of
finite type, given by a finite collection of forbidden 2-dimensional patterns, is non-
trivial already turns out to be undecidable.

More formally, suppose a one-dimensional cellular automaton has local map ρ :
Σw → Σ . We consider the associated first-order relational structure

Cρ = 〈C,�〉

where Σ is a finite set, the alphabet of the cellular automaton, and w the width, C
denotes the space of configurations. We always assume that our language includes



12 Linear CA and Decidability 261

equality without further mention. Given a first-order sentence ϕ , we want to de-
termine whether ϕ is valid over Cρ , in symbols Cρ |= ϕ . In computer science this
problem is often referred to as model checking , see [9, 19]. There are two natural
variants that are both relevant in the context of cellular automata: first, in expression
model checking the structure is fixed and we are interested in establishing the valid-
ity of a number of assertions. For example, we may be interested in understanding
properties of particularly interesting specific elementary cellular automata such as
rule 30 or rule 110, [54]. Second, in data model checking the sentence is fixed and
one tries to determine validity in as many structures as possible. For example, one
might try to examine the existence of a particular finite subgraph of Cρ for all ele-
mentary cellular automata ρ . In our case, the machinery for both problems is quite
similar, though in particular for data model checking it is important to optimize the
decision procedures in order to avoid efficiency problems.

The reasons for representing the global map as a binary relation rather than a
function are purely technical and need not concern us here. To avoid trivial cases,
we assume that Σ has cardinality at least 2, so configuration spaces are infinite and
indeed uncountable, but see section 12.2 below for a natural reduction to countable
subspaces. For our purposes, there are three natural choices of the configuration
space C: the bi-infinite case Σζ , the one-way infinite case Σω and the finite case Σn.
In the last case, n∈N is a parameter and we are mostly concerned with the spectrum
of a first-order sentence, see section 12.2.1 below. Correspondingly, we write Cn

ρ for

the finite structure 〈Σn,�〉 , Cω
ρ for the one-way infinite structure 〈Σω ,�〉 and C

ζ
ρ

for the two-way infinite structure 〈Σζ ,�〉 , following the terminology established
in [35, 40] for the corresponding automata. In all cases, we think of configurations
as words over a finite alphabet Σ and use appropriate finite state machines to ob-
tain decision algorithms: ordinary word automata in the finite case, Büchi automata
in the infinite case and ζ -automata in the bi-infinite case. Note that special care
is needed to deal with boundary conditions both in the finite and one-way infinite
case. We point out that the notion of finite configuration here refers exclusively
to configurations that are finite in the sense that they involve a finite grid of cells.
Unfortunately, it is customary in the literature to use the same terminology with
respect to infinite configurations that have finite support: only finitely many cells
are in a state different from some specially designate null state. We will avoid this
usage here. At any rate, Cρ is an automatic structure in the sense of Khoussainov
and Nerode [22, 23] and generalizations in [5]. Historically, automaticity was first
exploited in work by Gilman, Cannon, Holt, Thurston and others in study of vari-
ous types of groups, see [12]. More recently, there has been substantial progress in
elucidating the structure of automorphism groups of the infinite binary tree that are
described by certain types of Mealy automata, see [4, 15, 16, 34, 50]. As we will see
in section 12.2, automaticity can be exploited in all three cases to produce decision
algorithms for the first-order theory of these structures. Alas, the efficiency of the
algorithms varies considerably; in particular in the bi-infinite case the corresponding
ζ -automata are algorithmically difficult to handle and it is hard to push the decision
methods beyond very basic properties. One interesting technique in this connection



262 K. Sutner

is to enlarge the language by adjoining suitable automatic predicates. For example,
the predicate “differ in only finitely many places” is useful to express surjectivity of
the global map in the bi-infinite case and easily seen to be automatic.

Needless to say, any full classification of cellular automata will require stronger
logics such as monadic second-order logic or transitive closure logic. Alternatively,
we can consider augmented structures

Tρ = 〈C,�,
∗→〉.

where
∗→ denotes the transitive reflexive closure of �, the reachability or orbit rela-

tion of the automaton. Whenever necessary, we use qualifiers n , ω and ζ to indicate
the type of cellular automaton under consideration. Pace Lind, this leads back into
the undecidability swamp: the first-order theory of Tρ is not decidable in general,
though there are interesting automatic relations where the augmented structure sur-
prisingly remains automatic and can thus be handled in very much the same way as
the plain structure, see [50].

In the following section 12.2 we will describe the machinery required to produce
decision algorithms for the first-order theory of all three kinds of cellular automata.
As we will see, there are significant efficiency obstacles to overcome, in particular
in the bi-infinite case. Section 12.3 then summarizes corresponding undecidabil-
ity results in connection with the long-term evolution of configurations. Lastly, we
comment on open problems and future work.

12.2 The First-Order Theory

In this section we show how to solve a very limited version of the Entscheidungsprob-
lem for one-dimensional cellular automata: the first-order theory of all these automata
is decidable. Of course, the first-order theory of Cρ is too weak to deal with aspects
of the long-term behavior of the cellular automaton, but it easily captures elemen-
tary properties such as injectivity, surjectivity, k-to-1-ness, the existence of k-cycles
and so on. We can think of these properties as being local in the temporal sense, but
note that we can obviously construct a first-order sentence that asserts, say, that every
configuration has distance at most k from an �-cycle. Or we can express the assertion
that a particular finite directed graph has an isomorphic copy somewhere in Cρ . As
we will see, all these temporally local properties are decidable, at least in principle.

12.2.1 Finite Configurations

In the finite case we are dealing with structures Cn
ρ which are clearly automatic,

uniformly in n, meaning that the same automata can be used for all these structures.



12 Linear CA and Decidability 263

As a sample decision problem, consider the standard question of testing reversibility
of the system, i.e., injectivity of the global map. The corresponding problem for bi-
infinite cellular automata was handled by Amoroso and Patt [2] and appears to be
the first clear example of a decidability result in the context of cellular automata,
following the paradigm established by Rabin and Scott [36]. To see how to tackle
injectivity in our setting, consider first an automaton Aρ(x,y) that tests whether two
finite words X ,Y ∈ Σn are related by X � Y . The automaton works on words over
the alphabet Σ2 which we may consider as having two tracks:

X :Y =
x1 x2 . . . xi . . . xn−1 xn

y1 y2 . . . yi . . . yn−1 yn
∈ Σ2

This two-track word X :Y ∈ (Σ2)n is often referred to as the convolution of X and Y ,
unfortunate but well-established terminology. For simplicity assume that the width
w = 2r+1 of the local map is odd. To test whether word y is obtained from x by uni-
form application of the local map on all finite blocks of the form xi−r, . . . ,xi, . . . ,xi+r,
the appropriate automaton Aρ (x,y) has state set Σ2r ×Σ r and the transitions are of
the form a1, . . . ,a2r

b1, . . . ,br

a:b−→ a2, . . . ,a2r,a
b2, . . . ,br,b

provided that ρ(a1, . . . ,a2r,a) = b1. Here a:b indicates the 2-track letter composed
of a,b ∈ Σ and labels the transition. Thus, we are dealing with a subautomaton of
the complete de Bruijn automaton over Σ2 of order 2r: we remove all the directed
edges from the full de Bruijn automaton that do not conform to ρ . An example is
shown in figure 12.1. Note that the underlying CA is the additive rule 150, as a
consequence the automaton uses the full de Bruijn graph.

A further complication is caused by the boundary conditions associated with a
finite cellular automaton. In the case of fixed boundary conditions, we can augment
the de Bruijn automaton with additional initial and final states that represent the
phantom cells. More precisely, the initial states have indegree 0 and transitions lead-
ing to the main automaton; the final states have outdegree 0 and are reachable via
transitions leaving the main automaton. To deal with periodic boundary conditions,
these additional states have to be associated appropriately.

Injectivity is now easily expressed in our relational setting as the first-order
formula

ϕ ≡ ∀x,y,z(x � z∧ y � z ⇒ x = y)

To convert the sentence ϕ into an automatonAϕ we use the 3-track alphabet Γ =Σ3.
We combine two copies of the �-testing automaton, Aρ(x,z) and Aρ(y,z), associ-
ated with tracks in the obvious manner. A standard product construction is used to
express logical conjunction of x � z and y � z, refer to the result as A′. Lastly, let
A be the conjunction of A′ and an automaton testing inequality x �= y. This last
step amounts to creating two copies of A′, with appropriate cross transitions that
verify inequality. To check injectivity we need to test the acceptance language of
A for emptiness. Clearly, this last step can be handled in time linear in the size of



264 K. Sutner

00:0

00:1 01:0

11:1

11:000:1

01:1 10:00:0

0:1

1:0

1:1

0:1

1:1

1:1

1:0

0:1

0:0

1:0

0:0

0:1

1:0

1:1

0:0

Fig. 12.1 An example of an automaton Aρ ; the underlying cellular automaton here is the
additive elementary automaton number 150

A, which size is quadratic in the size of the lookup table for the local map of the
cellular automaton and we have a perfectly practical algorithm.

In the general case, the algorithm rests on the fact that regular languages form an
effective Boolean algebra. Suppose we are given a first-order formula ϕ(x1, . . . ,xk)
with k free variables as indicated. The decision algorithm constructs an automaton
Aϕ that accepts exactly those k-track words that satisfy the formula:

L(Aϕ ) = {u1:u2: . . . :uk ∈ Γ �}Cρ |= ϕ(u1,u2, . . . ,uk)

where Γ = Σ k is the k-track version of Σ . The construction proceeds by induction
on the subformulae of ϕ . For simplicity, assume that the given formula is in prefix
normal form, but note that this may not be the most desirable setup for efficiency
reasons.

We can handle the Boolean connectives in the matrix of the formula using stan-
dard algorithms such as product machines and determinization, see [40] for a recent
description of the requisite machinery. Note that determinization here refers to the
classical Rabin-Scott algorithm [36] used for word automata; in the following sec-
tions significantly more complicated procedures are required.

Universal quantifiers can be translated into existential ones via the standard trans-
formation ∀xϕ ≡ ¬∃x¬ϕ . Somewhat surprisingly, existential quantifiers are actu-
ally easier to handle than logical connectives, at least from a purely algorithmic
perspective: we can simply erase the corresponding track from the transition labels.
Note, however, that this transformation usually introduces nondeterminism, which
can cause problems at later stages if determinization is required to deal with logical



12 Linear CA and Decidability 265

negation. Unfortunately, this typically happens when dealing with universal quanti-
fiers in the manner described above.

A first-order sentence has no free variables. To handle this case properly it is con-
venient to adopt the convention that (Σ0)

�
is the 2-element Boolean algebra {',⊥}.

Projection yields ⊥ if the set is empty and ' otherwise. To determine which case ob-
tains one has to test the corresponding regular language for emptiness, which can be
handled by standard path-existence algorithms in the unlabeled directed graph that
results after all quantifiers have been removed. At any rate, we have the following
result, see also [48].

Theorem 1. First-order logic for finite one-dimensional cellular automata is
decidable.

It should be noted that the use of product automata and determinization has the
potential effect of exponential blow-up in the size of the finite state machines in-
volved in the decision algorithm. Hence, as a practical matter, only relatively simple
formulae can be handled.

While the automaton Aϕ can be used to determine validity for specific values of
n, it is usually more interesting to exploit it to compute the spectrum of ϕ , defined
as the tally language

spec(ϕ) = {0n}Cn
ρ |= ϕ ⊆ 0�

As a tally language, the spectrum can be determined by a finite state machine and
hence must be regular.

Lemma 1. Any sentence in first-order logic has regular spectrum over the structures
Cn

ρ .

Alternatively we can think of the spectrum as a set of natural numbers, in which
case the set must be semi-linear (i.e., a finite union of linear sets). As an exam-
ple consider the elementary cellular automaton number 90, an additive automaton
whose local rule corresponds to the exclusive-or of the left and right argument.
The property “every configuration has exactly 4 predecessors” here has spectrum
2N. Likewise, elementary cellular automaton number 30 has spectrum 12N for the
property “there is a 3-cycle.” See Wolfram [54] and references therein for more
background on elementary cellular automata. One particularly important case arises
when the spectrum of a sentence is universal: all finite grids have the property in
question. We can test universality of a first-order sentence ϕ by testing universality
of the associated automaton, at least disregarding the fact that this test is PSPACE-
hard in general [14]. In general, efficiency is a non-negligible issue in the finite
case, but with some effort one can obtain feasible decision algorithms for interest-
ing properties.



266 K. Sutner

12.2.2 Infinite Configurations

To lift our decision algorithm to infinite configurations of the form X ∈ Σω we need
to generalize ordinary word automata to machines operating on infinite inputs. More
precisely, we can retain the finite transition systems that describe word automata, but
we have to work with a significantly more complicated acceptance condition. To this
end, a Büchi automatonB= 〈Q,Σ ,τ ; I,F 〉 is said to accept a word X ∈Σω if there is a
computationB on X that starts at a state in I and touches F infinitely often, see [35,40].

In other words, for a computation π , let Inf(π) = { p ∈ Q |
∞
∃ i ∈N (pi = p)} denote

the set of recurrent states in π . Then B accepts X if there exists some computation
π on X , starting at I, such that Inf(π)∩F �= /0. Of course, as a finite data structure a
Büchi automaton is indistinguishable from an ordinary nondeterministic automaton.

The addition of automatic predicates to our language makes it possible to de-
scribe other properties of interest. For example, consider the left-shift operator L
and suppose we adjoin a predicate xLy, also denoted by L, that is interpreted as
“x is the left-shift of y.” Using the standard sloppy notation to express chains of
relations, we can then write in the extended language L(�,L)

∃x,y,z,u,v(x � y � z � u∧uLvLx)

to formalize the assertion that, for some configuration X , we have G3(X) = L2(X).
Thus we can state that 3 steps in the temporal evolution correspond to a double left-
shift. Similarly we could restrict our attention to spacially periodic configurations
of a fixed period. Note that chains such as x � y � z � u in the preceding formula
require an adjustment in the basic de Bruijn automaton; except for u both tracks of
a state will now contain 2r symbols.

Symbolic dynamics is concerned with the Cantor space Σω , but our use of finite
state machines to determine first-order properties has the side effect that we are
essentially dealing with a smaller space. Define a configuration to be ultimately
periodic if it is of the form vwω where v and w are finite words, w not empty. Thus,
after a finite initial segment v the configuration simply repeats the block w forever.
We writeCup of this space of configurations. From the perspective of computability,
ultimately periodic configurations may seem ad hoc, but they have a perfectly good
justification in terms of model theory:

Theorem 2. The space Cup of ultimately periodic configurations is an elementary
substructure of the full space.

This is easy to see using the standard Tarski-Vaught test, see [8, 49]. Thus, ul-
timately periodic configurations are finitary objects but are indistinguishable from
arbitrary configurations from the perspective of first-order logic. In fact, they form
the least class of configurations that contain configurations of finite support and
form an elementary subspace. Another useful property of this subspace is that its
elements afford a natural finite description as pairs of finite words (v,w). Hence the
orbits on Cup are recursively enumerable, or r.e. for short, see [41]. As in the finite



12 Linear CA and Decidability 267

case, the collection of ω-regular languages over some alphabet forms an effective
Boolean algebra and we can lift the construction from the finite to the infinite case.

Theorem 3. First-order logic for infinite one-dimensional cellular automata is
decidable.

It was pointed out by O. Finkel that we can extend our language slightly by
quantifiers for “there exist infinitely many” and “there exist r mod k many” with-
out affecting decidability, see [13]. As a consequence, we can check, say, whether
there are infinitely many fixed points. Alas, efficiency problems now become dom-
inant: it is still straightforward to determine emptiness of a Büchi automaton, but
the construction of the machines becomes problematic. As an example, consider the
following test related to nilpotency: a cellular automaton is nilpotent if there exists
a quiescent configuration Y such that all configurations evolve to Y in finitely many
steps. A standard compactness argument shows that there has to be a fixed bound n,
the nilpotency index, that limits the length of the corresponding transient:

∃y quiescent ∀x∃x1, . . . ,xn−1 (x � x1 � x2 � . . . � xn−1 � y)

A priori, quiescence is not first-order definable in L(�), but we can easily add an
automatic predicate that singles out quiescent configurations. The matrix of the for-
mula has a simple structure, and can easily be converted into a product de Bruijn
automaton; alas, the size of this automaton is exponential in n and there is little hope
to be able to deal with the universal quantifier, except for exceedingly small values
of n.

While Büchi automata can be represented by the exact same data structure as
a standard nondeterministic automaton, some of the attendant algorithms are sig-
nificantly more complicated. In particular determinization based on Safra’s algo-
rithm [39] is notoriously difficult to implement well; the upper bound of O(nn) is
known to be tight in general. Indeed, much effort has gone into finding ways around
determinization, see [24] and references there. Minimization techniques are also of
little help, since one would need to minimize nondeterministic machines: determin-
istic Büchi automata are strictly weaker than their nondeterministic counterparts,
so one has to resort to other devices such as Rabin and Muller automata, see [35].
The data structures associated with these types of automata can be quite large and
are difficult to deal with in conversion algorithms between the various types of ma-
chines. Overall, and in contrast to the finite case, it is quite difficult to test interesting
properties and more effort is needed to find ways to design feasible decision algo-
rithms.

12.2.3 Bi-infinite Configurations

The study of classical symbolic dynamics deals with another, yet more compli-
cated situation: bi-infinite words X ∈ Σζ . Acceptance conditions become corre-
spondingly more unwieldy and, informally, need to cover an infinite past as well



268 K. Sutner

as an infinite future. To this end let Inf−(π) = { p ∈ Q |
∞
∃ i ∈ N(p−i = p)} and

Inf+(π) = { p ∈ Q |
∞
∃ i ∈ N(pi = p)} denote the set of negatively and positively

recurrent states in π . Then A accepts a bi-infinite word X if there exists some com-
putation π on X such that Inf−(π)∩ I �= /0 and Inf+(π)∩F �= /0. While these con-
ditions are arguably more complicated, they sometimes are actually easier to deal
with than in the plain infinite case. To wit, in the the basic de Bruijn automata all
states are initial and final, so that Aρ(x,y) accepts its input if there is a bi-infinite
computation: no complications arise from boundary conditions as in the finite and
infinite case. This was used in [44] to give simple quadratic algorithms to test for
injectivity, surjectivity and openness of the global map.

Of course, for more complicated formulae the construction of the associated au-
tomaton overall becomes more involved. The only known approach is to split a
ζ -word into two ω-words and to use two Büchi automata to handle these one-way
infinite input words, see again [35] for a careful discussion. Note, though, that we
are actually dealing with a whole family of pairs of Büchi automata, corresponding
to a representation of the ζ -regular languages in the form

L =
⋃

i∈I

Ui
opVi

where Uop stands for reversed ω-words obtained from U . The languages Ui and Vi

are ω-regular and the index set I is finite. As in the infinite case we can identify a
collection of ultimately periodic words, this time words of the form ω uvwω where
u,v,w are finite words. Again we obtain an elementary subspace which we denote
by Cup.

Theorem 4. The space Cup of ultimately periodic configurations is an elementary
substructure of the full space of bi-infinite configurations.

One can then express all the necessary Boolean operations as well as projections
in terms of this union-of-pairs representation. Alas, there are substantial efficiency
problems; in particular determinization becomes highly problematic. To see why,
note that the first step in the determinization process is to make sure that that the
languages Ui are pairwise disjoint, and likewise for the Vi. This can be achieved
by exploiting the fact that ω-regular languages form and effective Boolean algebra,
but may cause an exponential blow-up in the size of the index set. In conjunction
with the complexity of determinization of Büchi automata this makes if typically
unfeasible to handle first-order sentences of all but the most limited complexity.
Even pure Σ1 sentences can cause major efficiency problems if the matrix of the
formula is sufficiently large. A typical example for this kind of problem is again the
existence of “long” �-chains, the automaton for the matrix grows exponentially in
k. Still, we have a decision algorithm, at least in principle.

Theorem 5. First-order logic for bi-infinite one-dimensional cellular automata is
decidable.



12 Linear CA and Decidability 269

In this context it is particularly important to exploit computational shortcuts
whenever possible. For example, surjectivity is a priori the Π2 statement ∀x∃y(y �

x). The automaton corresponding to A∃y(y�x) is nondeterministic and thus the test
for universality necessitated by the outermost quantifier can cause exponential blow-
up. On the other hand, one can exploit Hedlund’s classical result that characterizes
surjectivity in terms of injectivity on configurations with finite support. More pre-
cisely, introduce the obviously automatic predicate “equal except for finitely many
places,” in symbols x E y. We can now express surjectivity as ∀x,y,z(x � z∧ y �

z∧ x E y ⇒ x = y) in the extended language L(�,E). Testing this formalization is
significantly easier: once the automaton for the matrix of the formula has been con-
structed we simply have to solve a path-existence problem in a directed graph, a
problem easily tackled in linear time and space.

Perhaps more importantly, the choice of suitable additional predicates makes it
possible to formalize properties that fail to be first-order in the original language
L(�). As an example, consider openness of the global map, a property known to
be equivalent to the map being k-to-1 for some k. As such, the property cannot be
formalized in first-order. However, consider the predicate x =L y if ∃n ∈ Z∀ i <
n(xi = yi) and likewise for x =R y. It is easy to see that both predicates can be
tested by a finite state machine. Both are weaker versions of being almost equal:
x E y ⇐⇒ x =L y∧ x =R y. Hence, the global map is open if, and only if,

∀x,y,z
(

x � z∧ y � z∧ (x =L y∨ x =R y)⇒ x = y
)

,

following the same pattern as injectivity and surjectivity and using the language
L(�,=L,=R). With a little more effort this produces an alternative proof for the
quadratic algorithms from [44].

12.3 Undecidability and Hardness

When it comes to undecidability, there is little difference between the one-way in-
finite situation and the two-way infinite one, and we will focus on the latter. It is
clear from the previous sections that the framework appropriate to the study of
undecidability and computational hardness is given by the augmented structures
T

ζ
ρ = 〈C,�,

∗→〉 and their finite counterparts Tn
ρ = 〈Σn,�,

∗→〉 . Moreover, since

the orbit relation
∗→ involves transitive closure one can expect hardness results for

the plain Reachability Problem: for two configurations X and Y that have finitary
descriptions, is X

∗→ Y ? Technically we need to augment our language by appro-
priate constants to reflect Reachability, but we will ignore these details. The first
observation is

Theorem 6. Reachability over Tn
ρ , uniformly in n, is PSPACE-hard.

This follows from the fact that cellular automata are easily capable of simulat-
ing linear bounded automata. On the other hand, over Tn

ρ , validity of any first-order



270 K. Sutner

sentence is trivially decidable in polynomial space, so the validity problem is
PSPACE-complete. Thus, the problem is still decidable in principle, though the
computation may well fail to be feasible. This changes drastically when we try to
classify all finite structures at once by determining the spectrum of a sentence. In
particular, consider

FP ≡ ∀x∃y(x
∗→ y∧ y � y),

a Π2 sentence that expresses the assertion that every orbit ends in a fixed point.
We can construe FP as a formalization of the first Wolfram class, see [11, 42] for
a discussion of more general attempts to formalize Wolfram’s heuristics. To test
membership in this class we have to solve the data version of the model checking
problem. Alas, this problem is undecidable.

Theorem 7. It is undecidable whether the spectrum of the sentence FP from above
is universal. In fact, this property is Π 0

1 -complete.

It should be noted that this result does not follow directly from standard results
about the computations of Turing machines: we need to deal with all possible con-
figurations of the cellular automaton, not just the ones that code stages in a com-
putation. As it turns out, similar assertions about the length of the limit cycle of all
orbits in Cn

ρ for all n are undecidable, see [43].
With a view towards the importance of Reachability, it is desirable to address

decidability questions in the augmented structures Tρ not in the full Cantor space of
configurations but in a subspace that is amenable to the methods of classical com-
putability theory as presented in, say, [37, 41]. As we have seen in sections 12.2.2
and 12.2.3, arguably the most plausible choice is the set of ultimately periodic con-
figurations. Further evidence for the naturalness of this choice is given by Cook’s
result [10] that, in the bi-infinite case, there is an elementary cellular automaton
capable of universal computation. Cook’s proof of computational universality uses
ultimately periodic configurations. Interestingly, the construction seems to rest on
the ability to have two different periodic blocks, one extending to the left and the
other to the right: in the construction, the left block serves to time the computation
whereas the right block encodes the cyclic tag-system that is essential for universal-
ity. By contrast, Reachability for rule 110 is trivially decidable for configurations of
finite support.

It has since been shown by Neary and Woods that the exponential slow-down
inherent in the original construction can be avoided entirely, so that the simulation
is actually quite efficient, at least from the perspective of complexity theory, see
[32, 33]. This has the consequence that it is P-complete to determine the state of a
particular cell at time t of the evolution of a finite configuration under rule 110.

From now on, let us assume that the configurations in our structures, infinite or
bi-infinite, are always ultimately periodic. It is obvious that in both cases Reachabil-
ity is undecidable in general. Significantly more effort shows that one can carefully
control the evolution of configurations on the cellular automaton in question so as
to make sure that the complexity of Reachability is an arbitrarily chosen recursively
enumerable degree, see [41]. Of course, at heart the construction rests on the ability



12 Linear CA and Decidability 271

of a one-dimensional cellular automaton to simulate Turing machines. Alas, there
are two substantial problems to overcome. First, hardness results for Turing ma-
chines are always phrased in terms of instantaneous descriptions, snap-shots of a
computation that actually occur. By contrast, we have to deal with all configurations
of the cellular automaton, most of which are meaningless from the perspective of
the Turing machine. Second, we need to make sure that there are no unintended sim-
ulations that could drive the degree of Reachability up to, say, r.e.-completeness. It
was shown in [42, 45, 46] and theorem 9 below how to cope with this problems. In
summary, we can derive the following result.

Theorem 8. The Reachability problem of an infinite or bi-infinite cellular automa-
ton over Cup can be chosen to be any r.e. degree.

The theorem suggests that, if one is interested in computational properties, as
opposed to the more classical dynamical systems aspects, one should consider a
more fine-grained hierarchy based on the complexity of Reachability. The resulting
classification is again highly undecidable: testing whether a cellular automaton has
Reachability problem of degree d is Σd

3 -complete. In particular, testing for compu-
tational universality is Σ0

4 -complete. As it turns out, no constraints arise if we were
to choose to base our classification on both Reachability and Confluence: two con-
figurations are confluent if their orbits overlap. Thus, confluence is an equivalence
relation and corresponds vaguely to basins of attraction. It is clear from the defini-
tions that Confluence also has r.e. degree, but it is quite surprising that there is no
connection between the two: given arbitrary r.e. degrees d1 and d2 there is a cellu-
lar automaton whose Reachability and Confluence problems have exactly those two
chosen degrees as their complexity. It remains to be seen how other more compli-
cated properties fit into this pictures.

As is well-understood, the semi-lattice of the r.e. degrees exhibits a rather com-
plicated structure. For example, by a famous theorem of Sacks, the partial order of
the r.e. degrees is dense: whenever A <T B for two r.e. sets A and B there is a third
r.e. set such that A <T C <T B, [38]. Here <T denotes Turing reducibility. The first
order theory of this semi-lattice is highly undecidable [17].

More complicated sentences in the first-order logic of Tρ will, in general, yield
undecidable versions of the data model checking problem. For example, the nilpo-
tency statement ∃y∀x(x

∗→ y∧ y � y) is undecidable according to [21]. By inter-
changing quantifiers we obtain the “fixed point” sentence FP≡∀x∃y(x

∗→ y∧y � y)
from above. For finite cellular automata deciding FP is Π 0

1 -complete, but for infinite
and bi-infinite ones it is harder, given a slight restriction of the configuration space.
For simplicity, let us only consider the bi-infinite automata, the argument is entirely
similar in the one-way infinite case. Choose a particular symbol $ in the alphabet
and define C$ ⊆ Cup to be the class of all ultimately periodic configurations that
contain $ infinitely often in both directions. In other words, in the representation
(u,v,w) both u and w contain $. This property is easy to check by a pair of Büchi
automata, so we are dealing with an automatic subspace.

Theorem 9. Deciding FP for an infinite cellular automaton is Π 0
2 -complete on C$.



272 K. Sutner

For the proof first note that the problem lies in Π 0
2 , since we only consider ulti-

mately periodic configurations and these can be coded naturally as triples (u,v,w)
of finite words, representing ω uvwω . For hardness, recall that INF, the collection
of all indices of infinite r.e. sets is well-known to be Π 0

2 -complete, see [41]. Now
e ∈ INF ⇐⇒ ∀n∃m(n < m∧m ∈We) where n and m range over the naturals. The
construction of the cellular automaton ρe begins with a Turing machine Me with
binary tape that, on input 1n dovetails on computations m ∈We for all m > n. More
precisely, at stage s of the construction Me will perform s steps in the computation
of m ∈We for all n < m < n+ s. If any of these computations converges, Me halts.

A standard simulation of the Turing machine Me by a cellular automaton will not
produce the desired results since there are configurations of the cellular automaton
that do not translate into instantaneous descriptions of Me. For example, there might
be several cells indicating state and head position of Me; in fact, there could be in-
finitely many such cells due to the periodicity of the blocks on either side. A signif-
icantly more difficult problem is that a configuration may syntactically look like an
instantaneous description of the Turing machine, but may actually not appear in any
computation of Me on any input 1n. For example, it might contain an inaccessible state
of the Turing machine Me, which state then launches a divergent computation despite
of the fact that the actual machine on input 1n would halt. Let us refer to an instan-
taneous description as admissible if it occurs during a computation on some input.
Needless to say, accessibility is not decidable in general but one can convert Me into
an equivalent Turing machine M′

e that is stable in the sense that it ultimately halts on
all inadmissible descriptions, see [45, 49] for a more detailed description. The idea
is to modify the machine so that it becomes self-verifying: retraces its steps every so
often to try to verify that the current instantaneous description is indeed admissible.
To this end, the Turing machine keeps a copy of the alleged original input throughout
the computation. Roughly, we consider instantaneous descriptions of the form

ω b#x#s#D# t #E #bω

where x, s and t are numbers written in unary and D and E are instantaneous de-
scriptions of Me, the original machine. The symbol b is the blank symbol for Me and
# is a new separator symbol. The idea is that x is the original input to Me and that
instantaneous description D occurs after s steps in the computation. The remaining
fields are used for the admissibility test, t as a counter and E as a corresponding
instantaneous description.

As to the actual cellular automaton that simulates the self-verifying Turing ma-
chine, consider the alphabet

Γ =
�

Σ ∪Q∪
�

Σ ∪{$}.
As usual, Q denotes the state set of the stable Turing machine and

�

Σ and
�

Σ are copies
of the tape alphabet modified by additional direction bits that indicate whether the
symbol is to the right or to the left of the state symbol. The special symbol $ is
the one that is required to appear infinitely often in both directions and serves
the purpose of limiting the part of the configuration that can code instantaneous



12 Linear CA and Decidability 273

descriptions. Any local configurations that represent syntactically incorrect descrip-
tions are fixed points; for example, two adjacent symbols from

�

Σ and
�

Σ will stay
fixed. Similarly two adjacent symbols from Q do not change. Changes do occur at
local configurations of the form

�

Σ ×Q×
�

Σ , except when the state in Q is the halting
state of the stable Turing machine. The special symbol $ can be converted into a
symbol in

�

Σ ∪Q∪
�

Σ in the presence of the state head. As a consequence, the only
orbits free of “frozen” components are the ones that correspond to instantaneous
descriptions of M′

e, though a priori not necessarily admissible ones and not neces-
sarily single ones either. But since M′

e is stable, inadmissible descriptions will be
recognized and lead to the Turing machine halting. At the configuration level we
obtain a fixed point. Thus, the only situation where a configuration can not evolve to
a fixed point is when we are in fact simulating a divergent computation of Me. But
then e ∈ INF if, and only if, the sentence FP holds over the structure Cρe

.
We note that the argument relies quite heavily on the fact that we consider con-

figurations in C$, for general ultimately periodic configurations there appears to be
no way to organize the self-testing mechanism for the intermediate Turing machine.
To wit, a non-fixed point computation could occur because of an ultimately periodic
configuration of the cellular automaton that corresponds to an infinitely instanta-
neous description of the Turing machine.

12.4 Summary

We have shown that a small part of the classification of one-dimensional cellular
automata can be handled automatically by using ideas from model checking. Un-
fortunately, this approach leads to considerable efficiency problems and it is not
clear at present how far the corresponding decision algorithms can be pushed. Ef-
forts are under way to give a local classification for elementary cellular automata
on one-way infinite grids, but even in this relatively simply case there are problems
dealing with the corresponding Büchi automata. In particular, determinization us-
ing Safra’s classical algorithm often disrupts the decision algorithm. It is safe to
assume that the problems become virtually unsurmountable when one moves on to
bi-infinite automata. One could try use compact representations such as binary de-
cision diagrams to try to cope with large state spaces [6, 7], but first experiments in
this direction have been less than compelling.

Needless to say, any plausible classification scheme for cellular automata will
have to go further and include aspects of the long-term evolution of configura-
tions. Even in the one-dimensional case, assertions about long term evolution tend
to be undecidable and fully automatic classification is simply impossible. On the
other hand, as shown conclusively by Cook, simulation tools can help to sharpen
one’s intuition and provide sufficient insights into the behavior of a particular cel-
lular automaton to complete classification “by hand.” This is somewhat similar to
the current situation in theorem proving and formally verified mathematics: fully
automatic tools can cover only so much ground, but with sufficient intervention



274 K. Sutner

from the user, proof assistants can produce quite interesting results, see the re-
cent [3]. Some efforts in this direction can be found in [1, 51, 55]. One wonders
whether crowd-sourcing might be helpful; in astronomy, classification of galax-
ies by large numbers of amateur volunteers has produced spectacular results, see
http://www.galaxyzoo.org/. For example, the pseudo-random behavior
of elementary cellular automaton rule 30 seems to make it a hopeless undertaking
to encode any kind of undecidability proof. Perhaps many eyes could find enough
structure to support such an argument.

One natural challenge is to determine the degree of the full first-order theory of
Tρ , perhaps first over some specialized configuration space such as C$. One suspects
that any level in the arithmetic hierarchy can be represented by a suitable assertion
about orbits of a cellular automaton. Note, though, that the preceding construction
differs in significant technical details from the result in [49] that shows that Reach-
ability has arbitrary r.e. degree. In particular, a special annihilator symbol ⊥ is used
there to reduce the complexity of orbits of syntactically incorrect configurations to
being decidable–the corresponding light cones of ⊥ cells would break the current
argument. Hence, it is not entirely clear how to generalize this kind of argument to
longer chains of arithmetic quantifiers. Lastly, there is the question of the degree of
the full first-order theory of Tρ over Cup or the full configuration space.

References

1. Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis, London (1994)
2. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel

maps for tesselation structures. Journal of Computer and Systems Sciences 6, 448–464
(1972)

3. Avigad, J., Harrison, J.: Formally verified mathematics. Comm. ACM 57(4), 66–75
(2014)

4. Bartholdi, L., Silva, P.V.: Groups defined by automata. CoRR, abs/1012.1531 (2010)
5. Blumensath, A., Grädel, E.: Automatic structures. In: Proc. 15th IEEE Symp. on Logic

in Computer Science, pp. 51–62. IEEE Computer Society Press (1999)
6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans.

Computers C-35(8), 677–691 (1986)
7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model

checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)
8. Chang, C.C., Keisler, H.J.: Model Theory. In: Studies in Logic and the Foundations of

Mathematics, Elsevier (1990)
9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)

10. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40
(2004)

11. Culik, K., Yu, S.: Undecidability of CA classification schemes. Complex Systems 2(2),
177–190 (1988)

12. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Patterson, M.S., Thurston, W.P.:
Word Processing in Groups. Jones and Bartlett, Burlington (1992)

13. Finkel, O.: On decidability properties of one-dimensional cellular automata. Computing
Research Repository, abs/0903.4615 (2009)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)

http://www.galaxyzoo.org/


12 Linear CA and Decidability 275

15. Grigorchuk, R., Šunić, Z.: Self-Similarity and Branching in Group Theory. In: Groups
St. Andrews 2005. London Math. Soc. Lec. Notes, vol. 339. Cambridge University Press
(2007)

16. Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical systems
and groups. Proc. Steklov Institute of Math. 231, 128–203 (2000)

17. Harrington, L., Shelah, S.: The undecidability of the recursively enumerable degrees.
Bull. Amer. Math. Soc. 6, 79–80 (1982)

18. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Math. Systems Theory 3, 320–375 (1969)

19. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Sys-
tems, Cambridge, UP (2000)

20. Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–385
(1990)

21. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Com-
put. 21(3), 571–586 (1992)

22. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.)
LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

23. Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions. J. Au-
tom. Lang. Comb. 8(2), 287–301 (2003)

24. Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on Logic in Com-
puter Science (2006)

25. Kurka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Th.
Dynamical Systems 17, 417–433 (1997)

26. Kurka, P.: Topological and Symbolic Dynamics. Number 11 in Cours Spécialisés. Soci-
ete Mathematique de France, Paris (2003)

27. Li, W., Packard, N.: The structure of the elementary cellular automata rule space. Com-
plex Systems 4(3), 281–297 (1990)

28. Li, W., Packard, N., Langton, C.G.: Transition phenomena in CA rule space. Physica
D 45(1-3), 77–94 (1990)

29. Lind, D.: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics and its Appli-
cations. Proc. Sympos. Appl. Math., vol. 60, pp. 61–79. AMS (2004)

30. Margenstern, M.: Frontier between decidability and undecidability: a survey. TCS 231,
217–251 (2000)

31. Meyers, R.A. (ed.): Encyclopedia of Complexity and System Science. Springer, Berlin
(2009)

32. Neary, R., Woods, D.: On the time complexity of 2-tag systems and small universal turing
machines. In: FOCS, pp. 439–448. IEEE Computer Society, Washington (2006)

33. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051,
pp. 132–143. Springer, Heidelberg (2006)

34. Nekrashevych, V.: Self-Similar Groups. In: Math. Surveys and Monographs, vol. 117.
AMS (2005)

35. Perrin, D., Pin, J.-E.: Infinite Words. In: Pure and Applied Math., vol. 141, Elsevier,
Amsterdam (2004)

36. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM Jour. Re-
search 3(2), 114–125 (1959)

37. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York (1967)

38. Sacks, G.E.: The recursively enumerable degrees are dense. Ann. Math. 80, 300–312
(1964)



276 K. Sutner

39. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327. IEEE
Computer Soc. Press, Washington (1988)

40. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
41. Soare, R.I.: Recursively Enumerable Sets and Degrees. In: Perspectives in Mathematical

Logic. Springer, Berlin (1987)
42. Sutner, K.: A note on Culik-Yu classes. Complex Systems 3(1), 107–115 (1989)
43. Sutner, K.: Classifying circular cellular automata. Phys. D 45(1-3), 386–395 (1990)
44. Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5(1),

19–30 (1991)
45. Sutner, K.: Cellular automata and intermediate degrees. Theoretical Computer Sci-

ence 296, 365–375 (2003)
46. Sutner, K.: Universality and cellular automata. In: Margenstern, M. (ed.) MCU 2004.

LNCS, vol. 3354, pp. 50–59. Springer, Heidelberg (2005)
47. Sutner, K.: Encyclopedia of Complexity and System Science, chapter Classification of

Cellular Automata. In: Meyers [31], (2009)
48. Sutner, K.: Model checking one-dimensional cellular automata. J. Cellular Au-

tomata 4(3), 213–224 (2009)
49. Sutner, K.: Cellular automata, decidability and phasespace. Fundamenta Informati-

cae 140, 1–20 (2010)
50. Sutner, K., Lewi, K.: Iterating invertible binary transducers. In: Kutrib, M., Moreira, N.,

Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 294–306. Springer, Heidelberg (2012)
51. Vorhees, B.: Computational Analysis of One-Dimensional Cellular Automata. World

Scientific, Singapore (1996)
52. Wolfram, S.: Computation theory of cellular automata. Comm. Math. Physics 96(1),

15–57 (1984)
53. Wolfram, S.: Twenty problems in the theory of cellular automata. Physica Scripta T9,

170–183 (1985)
54. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)
55. Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66

(1999)


	Linear Cellular Automata and Decidability
	12.1 Linear Cellular Automata
	12.2 The First-Order Theory
	12.3 Undecidability and Hardness
	12.4 Summary
	References




