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Knowing where things are, and why, is essential to rational 
decision making 
Jack Dangermond, ESRI

9.1  Introduction

Since 1990, major advances in computer software and hardware have enabled 
development of spatially explicit fire growth models, thereby revolutionizing fire 
management decision support systems (Xiao-rui et al. 2005; Ball and Guertin 1992; 
Keane et al. 1998b). However, these complex spatial models demand detailed, 
high-resolution digital maps of surface and crown fuel characteristics to generate 
accurate and consistent fire behavior predictions (Pala et al. 1990). The commonly 
used FARSITE fire growth model, for example, requires five fuel layers to simulate 
surface and crown fire growth and intensity (Finney 1998). Early efforts at map-
ping fuels did not describe the physical aspects of the fuelbed, but rather interpreted 
resultant fire behavior if the fuels burned and how difficult it would be to suppress 
that fire, then mapped those attributes (Hornby 1936). With advancing computer 
technology, most fuel maps were developed to meet the input requirements of fire 
models (Keane et al. 1998a).

Fuel maps are now used in nearly all phases of fire management from planning 
to operational analysis at multiple organizational and spatial scales (Rollins 2009). 
Coarse scale fuel maps are integral to global, national, and regional fire danger 
assessment to more effectively plan, allocate, and mobilize suppression resources 
at weekly, monthly, and yearly evaluation intervals (Burgan et al. 1998; De 
Vasconcelos et al. 1998). Regional fuel maps are also useful as inputs for simulating 
regional carbon dynamics, smoke scenarios, and biogeochemical cycles (Kasischke 
et al. 1998; Leenhouts 1998; McKenzie et al. 2007), while finer scale subregional 
fuel layers are critically needed to rate ecosystem health (Keane et al. 2007), identi-
fying fuel treatment locations (Agee and Skinner 2005), evaluating fire hazard and 
risk for land management planning (Hessburg et al. 2010), and aiding in environ-
mental assessments and fire danger programs (Chuvieco and Salas 1996). However, 
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most fuel maps are used at finer scales, primarily for landscape assessments, be-
cause this is the scale at which most fires can effectively be simulated and managed 
(Heyerdahl et al. 2001). Landscape fuel maps are used to predict future spread of 
wildfires (Finney 2005), describe fire hazard and risk (Finney 2006), and portray 
fire severity (Karau and Keane 2010).

Creating wildland fuels maps is quite difficult, especially at landscape to region-
al scales, for a number of reasons (Arroyo et al. 2008; Keane et al. 2001). The lack 
of critical resources, such as limited geo-referenced fuel data and inadequate fuel 
classifications, coupled with a variety of ecological concerns, such as fuelbeds be-
ing hidden by the canopy and scale mismatches in field data, imagery, and analysis 
techniques, often complicate fuel-mapping efforts. Accurate fuels layers are costly 
to build because they require abundant field data, extensive expertise in a wide 
variety of spatial fields (remote sensing, geographic information system (GIS), fire 
and fuel modeling, image processing, vegetation mapping), and of course, a com-
prehensive knowledge of fuels (Keane et al. 2001). But most importantly, fuels 
are notoriously difficult to map because of their high variability and disparate spa-
tial distributions across components (Chap. 6). This chapter first summarizes some 
critical mapping resources needed for nearly all mapping projects and then presents 
some general approaches used to map fuels for fire management at multiple scales. 
The challenges of fuel mapping are presented last to explain why most of today’s 
fuel maps have some major limitations.

9.2  Fuel-Mapping Resources

9.2.1  Field Data

Field data are the most critical resource for mapping fuels, and collecting enough 
appropriate field data is often the most costly and time-consuming part of any 
mapping effort (see Chap. 8). Ground-based fuel sampling is literally the only way 
to realistically, accurately, and consistently describe the fuel characteristics being 
mapped (Keane et al. 2013) and it would be imprudent to attempt to map fuels 
without extensive field sampling. Geo-referenced field data are important for many 
reasons. First, field data provide important references for the mapped fuels classes 
because the data provide the only detailed descriptions of fuels (loading, classifica-
tion category). Field plot data can also be used to describe polygons that can then be 
used as training areas in supervised classifications, or they can be used to describe 
unique clusters in unsupervised classifications (Verbyla 1995). More importantly, 
field data allow the development of statistical models for predicting fuel character-
istics over space using ancillary biophysical spatial layers. Field data also provide a 
means for quantifying accuracy and precision of not only the fuel map but also the 
classification whose categories are being used as mapping units (Keane et al. 2013; 
Burgan and Hardy 1994). Plot data can be used to design and improve keys for 
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the vegetation and fuels classifications being mapped. And most importantly, field 
data provide a means for interpreting fuel maps; inaccuracies or inconsistencies in 
mapping results can be explored using detailed plot data. A mapped shrub–herb 
category, for example, might be poorly mapped because the sampled cover of bare 
soil and rock was high on field plots.

9.2.2  Ancillary Spatial Data Layers

Fuel maps can be dramatically improved if supplementary spatial data are integrated 
into the mapping process (Keane et al. 2001). These ancillary spatial data often 
describe the biophysical environment to provide ecological context to the mapping 
process and to represent those processes that control fuel dynamics to increase pre-
dictive potential (Chap. 6). The most important ancillary GIS layer is the digital 
elevation model (DEM) that is used to describe the topography (e.g., slope, aspect, 
position) and indirectly represent the biophysical environment (e.g., climate). Many 
important topographic products can be derived from the DEM, such as slope posi-
tion, stream corridors, and drainage basins (Skidmore 1989), to use as independent 
variables in statistical predictive models that create fuel maps. Moreover, it is possi-
ble to use the DEM as input to simulation models to create other biophysical layers, 
such as radiation, exposure, and microsite temperatures, and these new biophysical 
layers can be used to developed predictive relationships for mapping fuels (see 
Sect. 9.3.4). The DEM also is useful in delineating broad biophysical settings that 
can be used to stratify statistical modeling and fuel-mapping processes.

Perhaps the next most used ancillary data layers are digital maps of potential and 
existing vegetation classification systems, such as cover type, potential vegetation 
type, and structural stage maps (Menakis et al. 2000). Even though fuel loadings are 
rarely correlated to vegetation (Chap. 6), these maps are be important because they 
provide valuable context for assigning fuels to known settings, information on bio-
physical environment, and important linkages to other land management concerns. 
Vegetation layers are most useful if they were created across multiple scales using 
standardized, hierarchical classifications so that categories can be merged or split 
based on the ability of remote sensing to discriminate differences (Loveland et al. 
1993; McKenzie et al. 2007). The most commonly used vegetation maps are ones 
that describe species composition (cover type), structure (vertical canopy layers), 
and some expression of potential vegetation (i.e., biophysical site; Menakis et al. 
2000) because these three maps can be used to simulate vegetation development 
and therefore possibly fuel succession (Keane et al. 2006b).

Many other existing data layers have been used to map fuels. Spatial chronose-
quences of ecosystem characteristics, such as leaf area index (LAI), created from 
updated satellite imagery (e.g., MODIS), can be integrated in map development to 
quantify available biomass, represent fuel models, and correlate to many other fuel 
attributes (Rollins et al. 2004). Climate layers that integrate long-term weather into 
quantitative summaries that relate to fuel dynamics are also valuable ancillary layers 
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(Keane et al. 2001). Spatial soils data can also be used to describe the biophysical 
environment that can then be statistically related to fuel loadings or used in simulation 
models to create ancillary biophysical layers. Digital maps that describe social con-
text (population density), transportation routes (roads, trails), utilities (power lines, 
gas lines), political (land ownership, management units), and ecological (stand maps, 
values at risk) resources can be used as references to characterize local to regional 
fuel differences and to stratify fuel assignments (Krasnow 2007).

The last set of ancillary data layers are those that are created from simulation 
modeling (Rollins et al. 2004; Keane et al. 2006a). Simulation modeling provides 
a platform to integrate disparate ancillary biophysical variables, such as climate, 
topography, and soils, into one comprehensive, integrated variable that may be 
more related to fuel attributes than the other variables separately. A potential evapo-
transpiration (PET) layer, computed from soils and climate data layers using an 
ecosystem model, may have a better relationship to fuel loading than the soils or 
climate data alone or together (Rollins et al. 2004). This simulation approach is 
discussed extensively in Sect. 9.3.4.

9.2.3  Fuel Classifications

A comprehensive fuel classification system is indispensable in fuel mapping be-
cause the classification’s categories can serve as mapping units in the fuel map 
(Chap. 7). It is difficult to map loading, or any other fuel property, for each of 
the fuel components because of the high number of components and the fact that 
most components are difficult to map remotely, such as duff and litter, because 
they are hidden by higher fuel strata such as the forest canopy (see Sect. 9.4). Fuel 
classifications simplify the mapping process by providing a means to map all fuel 
components at once. Since most classifications were developed for specific fire ap-
plications, creating a map using a classification ensures that it will be useful in fire 
management. Finally, most fire managers are somewhat familiar with most exist-
ing fuel classifications, so mapping existing classifications eliminates the need for 
additional training to learn newly developed map units.

An ideal fuel classification for mapping should quantify a myriad of fuel charac-
teristics (e.g., loading, size, bulk densities) for all fuel components at the appropriate 
mapping scale and resolution (Chap. 7). Fuel classification categories should be 
easily, accurately, and consistently identified in the field with comprehensive keys, 
and the classification should be related to other standardized vegetation and bio-
physical classifications (Keane 2013). The fuel classification should uniquely iden-
tify fuel types based on fuelbed characteristics, not on vegetation attributes or envi-
ronmental descriptions, because the mapped categories must be easily validated in 
the field or using existing fuel data (Keane et al. 2013). Moreover, the classification 
structure should allow hierarchical aggregation and division so fuel categories can 
be tailored to match the strengths of the mapping approach, attributes of the re-
motely sensed products, resolution of available field data and imagery, and scale 
of eventual fire application. A link to other historical and current land-use maps is 
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also desirable. Another desirable trait of useful fuel-mapping classifications is that 
the categories in the classification are easily and effectively discriminated by the 
diverse approaches used to map fuels (see Sect. 9.3).

Nearly all the fuel classifications mentioned in Chap. 7 have been used in fuel-
mapping efforts. Perhaps the most mapped classifications are the fire behavior fuel 
models (FBFMs) which are needed to simulate wildfire in the USA. Reeves et al. 
(2009) created fine-scale (30 m) FBFM maps for both the Scott and Burgan (2005) 
and Anderson (1982) classifications for the contiguous USA. Root et al. (1985) 
mapped FBFMs for North Cascades in the US Pacific Northwest, while Peterson 
et al. (2012) produced FBFM maps for Yosemite National Park and Falkowski et al. 
(2005) for northern Idaho. McKenzie et al. (2007) mapped FCCS fuelbeds at 1 km 
for a national US scale and at 30 m for the Wenatchee National Forest, Washington, 
USA. Hawkes et al. (1995) mapped the fuel types in the Canadian Fire Behav-
ior Prediction system for landscapes in British Columbia, Canada. The National 
Fire Danger Rating System (NFDRS) fuel types were mapped at a coarse scale by 
Burgan et al. (1998) for the USA and by Chuvieco and Salas (1996) for Spain.

There is a fundamental problem with using FBFMs as mapping units. The iden-
tification of FBFMs in the field is entirely subjective because it is based on an in-
dividual’s perception of fire behavior under assumed weather rather than on actual 
measurements of fuel loadings (Chap. 7). Many field technicians find it difficult to 
consistently identify FBFMs on the ground because it requires knowledge of the 
fuel characteristics important to fire behavior, expertise in forecasting fire behav-
ior in the field, and familiarity with the FBFMs. Even more important is that it is 
impossible to uniquely identify a FBFM from extant or legacy field data because a 
visual inspection of the fuelbed is absolutely essential for evaluating potential fire 
behavior (Anderson 1982). The FuelCalc program (Reinhardt et al. 2006) contains 
a routine that attempts to assign a FBFM from fuel loading data, but the routine 
has never been evaluated for accuracy and consistency. As a result, it is impossible 
to assess map accuracy for any of the FBFM classifications; one would have to 
observe fire behavior at a burning pixel to properly evaluate FBFM map accuracy. 
Reeves et al. (2009) addressed this subjectivity by holding calibration workshops 
attended by fire behavior specialists to evaluate fuel maps and adjust values where 
needed (Keane and Reeves 2011). And since most FBFMs quantify only a fraction 
of all dead and live biomass pools, they are rarely useful for most other fire applica-
tions such as smoke estimation and carbon cycling simulation.

9.3  Fuel-Mapping Approaches

Today’s fuel maps are created by a complex merging of technologies and integra-
tion of analysis techniques (Arroyo et al. 2008). In general, there are four general 
approaches used to map fuels at multiple scales: field assessment, association, 
remote sensing, and biophysical modeling (Table 9.1). Early attempts at mapping 
fuels often used only one or two of these approaches, but as computing resources 
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improved, mapping expertise increased, and extensive spatial ecological data sets 
became available, most of today’s fuel-mapping efforts integrate these multiple 
technologies to get the best possible fuel maps (Keane et al. 2001). Therefore, these 
approaches should not be considered methods per se, but rather a set of general 
strategies to map fuels.

Several analysis methods were not included as approaches in this chapter 
because they are used across most of the four mapping approaches. The most 
important and most commonly used analysis method is statistical modeling, where 
advanced statistical techniques, such as multiple regression analysis, generalized 
linear modeling, and regression trees, are used with field and spatial data to create 
empirical models that are then employed to build fuels maps (Miller et al. 2003). 
Another exciting branch of spatial analysis is the integration of expert knowledge 
into numerical analysis to develop fuel maps (Keane and Reeves 2011); the vast 
knowledge and expertise of fire professionals can be used to develop and test fuel 
maps using a wide variety of computing technology, such as expert systems, neural 
networks, and artificial intelligence (Krivtsov et al. 2009).

9.3.1  Field Assessment

Field assessments involve traversing a landscape on the ground and recording fuel 
conditions using data recorders, notebooks, or paper maps (Arroyo et al. 2008). 
Conditions in the field are assessed using a diversity of methods that include actual 
sampling of the fuel (Chap. 8), recording a category in a fuel classification cat-
egory (Chap. 7), or describing the fuel type using vegetation, disturbance, and site 
characteristics. The observed conditions are then assigned to polygons on a photo 
or map. Few fuel maps were created using this approach, and of those that were, 
they were mostly for fine-scale, small-area projects. The exception was Hornby 
(1936), who remarkably mapped more than 6 million ha in the northern Rocky 
Mountains using more than 90 Civilian Conservation Corps (CCC) workers. These 
crews walked, rode, or drove through national forests in Montana and Idaho of the 
USA and described fuel conditions by coloring polygons on maps. But, instead of 
actually recording fuels loadings, the CCC crews mapped two categorical fire be-
havior descriptors that were inferred from the fuel conditions: resistance to control 
and rate of fire spread. The fuel classification used by Hornby (1936) was only 
useful for one fire management purpose, suppressing wildfires. Many employed the 
Hornby (1935) methods to other parts of the country (Abell 1937; Banks and Frayer 
1966; New Jersey Department of Conservation and Development 1942) (Chap. 1).

The primary advantage of the field survey strategy is that fuels are mapped from 
actual conditions observed on the ground (Table 9.1). Mapping error is limited to 
erroneous fuel-type assessments or improper stand delineations on paper maps and 
no error is introduced from inappropriate statistical modeling or data analysis. Fuel 
assignments can be subjectively adjusted based on the observers’ knowledge of the 
fuel complex, of how fire burns the fuel complex, and of how fire behavior models 
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simulate burning in the fuel complex. Observers are easily able to visually assess 
highly variable fuel conditions across large areas to estimate an average or represen-
tative value providing there is extensive training. Any special conditions that arise 
in the field, such as the identification of a new fuel type or the elimination of a rare 
fuel type, can be easily integrated into the mapping scheme. And this approach can 
easily be augmented with field sampling to increase accuracies and map detail. It 
can also be scaled to specific projects creating anywhere from high-resolution maps 
for small areas to coarse-resolution maps for large regions.

The great amount of effort involved in a successful field approach would 
probably preclude its use in most large-scale operational fuel-mapping projects 
today. The majority of time and money spent on any fuel-mapping effort is usually 
in field assessments of fuel conditions so assessing the entire map area would be 
impractical. Another drawback is that there are always inconsistencies between field 
observers because of differences in their expertise and knowledge of fuels and fire 
(Sikkink and Keane 2008). And there is a sampling bias toward mountainous terrain 
since most of the reconnaissance mapping efforts are done from observation points 
on high, burned-over vistas, so locations not directly seen from these observation 
areas were probably mapped with less accuracy (Brown and Davis 1973). This 
approach would be more valuable if it were integrated with field sampling to create 
the field reference datasets to augment with other fuel-mapping approaches.

9.3.2  Association

In the association approach, fuel maps are developed by assigning fuel attributes 
to the categories or mapping units of maps of other land classifications, similar to 
the associative fuel classification (Chap. 7) and associative fuel-sampling (Chap. 8) 
approaches. There are a number of readily available, well-known spatial data lay-
ers of vegetation, topography, and land use that can be used either alone or in 
combination to associate fuel characteristics to each classification category or com-
bination (McKenzie et al. 2007). In the association process, fuel attributes are usu-
ally quantified or selected from a synthesis of field data across extant classification 
categories. These fuel attributes are then assigned to that category to create the fuel 
map from the existing map. Satellite imagery and other remotely sensed products 
are better suited for differentiating between vegetation types than fuel types (Keane 
et al. 2001). Keane et al. (1998a), for example, overlaid maps of vegetation and 
topography classifications with plot-level geo-referenced FBFM assessments and, 
for each vegetation and topography class combination, they assigned the modal 
FBFM of all field plots within that combination. A fuel type group map was created 
by averaging fuel loadings for each of eight fuel components for all USFS Forest 
Inventory and Analysis plots in each forest-type group category (Keane et al. 2013). 
This approach may also be used with expert knowledge techniques that assign fu-
el-classification categories to other map categories using the experiences of fire 
professionals (Keane and Reeves 2011) or statistical analysis of field data to build 
empirical models that assign fuel characteristics to other classification categories 
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(Reeves et al. 2009). The associative approach is easily the most commonly used 
approach for developing fuel maps.

Examples of this approach can be presented by spatial scale. Coarse-scale im-
agery is often used to discriminate broad vegetation types or land cover classes, 
and these classes sometimes correlate with fuels because vegetation categories are 
so broad they generally have unique fuel characteristics. Burgan et al. (1998) used 
Omernik (1987) ecoregions and the Loveland et al. (1991) AVHRR land-cover 
classification to develop an NFDRS fuel model map of the conterminous USA. 
Landsat imagery was used to map vegetation on 100 million ha in Alaska, and then 
fuel models were assigned to each vegetation category (Willis 1985). McKenzie 
et al. (2007) mapped FCCS fuelbeds to vegetation and disturbance classification 
categories, and the FCCS fuelbeds of Ottmar et al. (1994) were assigned to combi-
nations of vegetation cover and structure types for the Interior Columbia Basin Eco-
system Management Project (Quigley et al. 1996). Menakis et al. (2000) expounded 
on the “vegetation triplet” approach where fuel models or classes are assigned to 
categories in three classifications: potential vegetation, vegetation composition, and 
vegetation structure. Jain et al. (1996) intensively sampled fuels for all categories 
of a forest-type map created from Linear Image Self Scanning (LISS II) imagery to 
create a fuel map for Rajaji National Park in India. In Canada, the Canadian Forest 
Fire Behaviour Prediction System (FBP, Forestry Canada Fire Danger Group 1992) 
fuel types were assigned to vegetation categories on maps created from Landsat 
Multi-Spectral Scanner (MSS) data for Wood Buffalo National Park (Wilson et al. 
1994), Quebec (Kourtz 1977), British Columbia (Hawkes et al. 1995), and Mani-
toba (Dixon et al. 1985).

The association approach is used for many reasons. The most common reason is 
that it is relatively easy, quick, and economical to create fuel maps from other maps 
because they can be done by anybody for any location where there is an associative 
map. There are many vegetation classification maps available to associate fuel char-
acteristics (Anderson et al. 1998; Grossman et al. 1998), and most people can easily 
identify the vegetation-type categories of these classifications in the field. There 
are also many field data sets that contain assessments of these extant classification 
categories at the plot level that can augment fuel mapping. Since extant classifica-
tion maps are used extensively in resource management, the assignment of fuel 
attributes are easily understood by managers, and the resultant fuel maps can be 
linked to other resource concerns. Many fuel attributes can be assigned to an extant 
category allowing the creation of many types of fuel maps, such as surface fuel 
maps and canopy fuel maps (Keane et al. 2000). Finally, associative maps often pro-
vide a context for interpreting fuel distributions across a landscape. For example, it 
is helpful to know that a polygon was assigned a needle and litter FBFM because it 
was a ponderosa pine stand.

The major disadvantage of association in fuel mapping is that fuels are not 
always correlated with vegetation characteristics or land-use categories so statistical 
relationships between fuel and the associated layers may be too weak to develop 
useful predictive models (Chap. 6). An example of this lack of relationship is the 
redundancy of fuel classes across the associated mapped classification classes. For 
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example, there were as many as four different FBFMs found in the many of the 
combinations of vegetation structure, species composition, and topographic set-
tings classes for maps of the Selway-Bitterroot Wilderness Area, USA. (Keane et al. 
1998a). Stand disturbance history, biophysical setting, and vegetation structure are 
significant factors governing fuel characteristics so they should be incorporated into 
the fuel model assignment protocols. Also, the scales of the base classifications 
may not match the scale of the fuels being mapped or the sample design of the field 
data used in the mapping (Keane et al. 2006a). The vegetation categories in the 
Society of American Foresters (SAF) cover-type classification used in the FOFEM 
model, for example, are so broad for some cover types that they encompass a wide 
variety of fuelbed conditions that overwhelm important local differences (Schmidt 
et al. 2002). Other disadvantages are compounding errors occurring when the error 
inherent in the original base classifications is combined with errors in the fuels clas-
sifications and errors in fuel class assignment (Keane et al. 2013).

9.3.3  Remote Sensing

Remote sensing approaches attempt to correlate remotely sensed imagery with fuel 
characteristics using statistical modeling to create a fuel map (Keane et al. 2001; 
Lanorte et al. 2011). The imagery can be from any number of passive and active 
sensors. Passive sensors include digital aerial photography (Oswald et al. 1999), 
Landsat Thematic Mapper (TM; Brandis and Jacobson 2003), Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER; Falkowski et al. 
2005), and hyperspectral (Jia et al. 2006), while active sensors are usually LiDAR 
(Andersen et al. 2005) and radar (Bergen and Dobson 1999). These sensors can be 
mounted on any number of platforms including fixed wing aircraft, helicopters, 
and satellites to obtain a wide range of resolutions and detail (Xiao-rui et al. 2005). 
Passive sensors usually measure the reflectance of light in a narrow band of the 
electromagnetic spectrum, and some of these sensors, such as Landsat’s TM with 
a 30 m pixel size, create multiple data layers that represent the reflectance from 
multiple spectral bands. Hyperspectral imagery, such as Airborne Visible InfraRed 
Imaging Spectrometer (AVIRIS), Hyperion, and HYDICE, may have more than 50 
different spectral reflectance layers. Active sensors, such as LiDAR, consist of a 
cloud of point measurements of return times and signal strengths that are then used 
to statistically model height and loading (Riaño et al. 2003).

The central assumption of the remote sensing approach is that there is a cor-
relation between fuel characteristics and the remotely sensed data signal. Fuel at-
tributes, such as loading, canopy bulk density ( CBD), or classification categories, 
either computed from legacy plot data or measured directly on geo-referenced plots, 
are related to the reflectance values of the plot location using simple to complex 
statistical modeling. Two general statistical methods are used to create fuel maps. In 
the supervised classification technique, statistical models that directly predict fuels 
information are built from the reflectance values of the imagery and the field data. 
Then, fuel maps are then created by employing the developed predictive relationships  
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across all pixels. In the unsupervised classification technique, the reflectance values 
of all pixels are used in advanced statistical clustering methods to create unique 
spectral “signatures” and then various statistical techniques are used to assign the 
geo-referenced plot information to the mapped spectral signatures. Numerous other 
data layers and spatial information can be augmented with the spectral imagery to 
improve both the unsupervised and supervised statistical analyses (see Sect. 9.3.2).

Many types of fuel maps have been created using passive satellite imagery, 
mainly from Landsat satellite sensors. The majority of fuel-mapping efforts used 
from Landsat MSS and TM imagery to map surface fuel classification categories. 
Kourtz (1977) used Landsat MSS data to map fuel models in Canada. Salas and 
Chuvieco (1994) classified Landsat TM imagery directly to 11 of Anderson’s (1982) 
fuel models, then assigned vegetation categories to each fuel model to compute fire 
risk on a large landscape in Spain. An Anderson (1982) FBFM map was classified 
directly from TM imagery of Camp Lejeune, North Carolina, for simulating pre-
scribed fires with FARSITE (Campbell et al. 1995). However, the highest successes 
are when total living and dead biomass were directly mapped to spectral signatures. 
Direct biomass imagery mapping is more accurate for grasslands and shrublands 
(Chladil and Nunez 1995; Millington et al. 1994; Friedl et al. 1994), but less cer-
tain when assessing surface fuels in forested ecosystems because of the canopy 
obstruction problem (Elvidge 1988; see Sect. 9.4). Merrill et al. (1993) estimated 
living grassland biomass in Yellowstone National Park using regression models on 
bands 4, 6, and 7 from Landsat MSS) imagery. Using TM imagery, Peterson et al. 
(2012) directly mapped 1-, 10-, and 100-h loadings in Yosemite National Park USA 
and Brandis and Jacobson (2003) mapped total fuel loads in Australia. Large-scale 
aerial photography and aerial sketch mapping have been used successfully to esti-
mate natural and slash fuel distributions in a variety of forested settings in Canada 
(Belfort 1988; Morris 1970; Muraro 1970).

Other imagery has been successfully used in fuel-mapping efforts. At fine scales, 
Lasaponara and Lanorte (2007a) used QuickBird high-resolution imagery (2.9 m) 
to map fuel types in Italy. ASTER imagery, having higher spectral (15 bands) and 
spatial (15 m) resolution than Landsat TM (7 spectral plus a panchromatic band, 
30 m spatial resolution), was used to map Mediterranean fuel types in southern 
Italy (Lasaponara and Lanorte 2007b) and the 13 Anderson (1982) FBFMs in Idaho, 
USA (Falkowski et al. 2005). Root and Wagtendonk (1999) used hyperspectral im-
agery to map fuels in Yosemite National Park, USA, while Jia et al. (2006) used 
AVIRIS hyperspectral imagery to map canopy fuels. Active remote sensors such as 
Synthetic Aperture Radar (SAR) that propagate pulses of electromagnetic radiation 
and detect the reflective backscatter have shown promise for mapping stand bio-
mass (Rignot et al. 1994) so they may be useful for estimating surface fuel models, 
crown bulk densities, and canopy dimensions. In Yellowstone National Park in the 
USA, Saatchi et al. (2007) mapped canopy fuel characteristics and Huang et al. 
(2009) mapped CWD using SAR and other ancillary data layers. Keramitsoglou 
et al. (2008) fused hyperspectral imagery with ASTER to map fuel types in Greece.

Airborne LiDAR appears to be the most promising remotely sensed product for the 
mapping of fuel properties, especially canopy fuel attributes, because it describes the 



9 Fuel Mapping164

vertical profile of the fuelbed. LiDAR estimates distance to an object by measur-
ing the time delay between the transmission of a pulse of light and the detection of 
the reflected light from a target. This process, in a vegetative setting, can result in 
millions of points in an area that describe the fuel strata. The point distances can 
be used to calculate elevations to map a fuelbed in three dimensions if the spatial 
density of laser measurements is high. The distribution of elevations can be used 
as a signal to map fuels and the strength of the return signal is also useful for deter-
mining the surface condition that may be related to certain fuel types. Some have 
used LiDAR to map surface FBFMs with some success (Mutlu et al. 2008), but the 
real strength of LiDAR is in the mapping of canopy fuels (Andersen et al. 2005; 
Erdody and Moskal 2010) because the number of LiDAR distance measurements 
within the canopy profile is often correlated to CBD and canopy base height (CBH; 
Riaño et al. 2003). However, LiDAR also has its problems. While it can accurately 
produce a canopy height profile, it has limited ability in differentiating the material 
that reflected the laser intercept; it is difficult to tell if the piece of biomass hit by the 
laser was a leaf, twig, or log. The canopy obstruction problem is also a factor in that 
upper canopies obscure lower canopy strata and thereby collect a disproportionate 
number of LiDAR hits. Loadings for those fuel components that contain the major-
ity of dead biomass, logs, litter, and duff are also difficult to sense from LiDAR 
because their size or depth is nearly impossible to measure using LiDAR.

There are advantages to using a remote sensing approach (Arroyo et al. 2008). 
First, unlike all other approaches, remotely sensed data provide a spatial description 
of existing landscape conditions and act as a snapshot of the landscape. As such, 
these data can be useful for the detection of changes in fuel conditions through time 
and space. Most imagery products are easy to obtain but their cost is highly variable 
ranging from free to quite expensive. Remotely sensed imagery can be obtained for 
a wide variety of resolutions allowing appropriate scaling of the imagery to fuel 
component distributions.

Logistical concerns, however, may limit many remotely sensed fuel-mapping 
projects. Expertise in image processing, GIS analysis, and statistical modeling is 
rare and expensive, and combined with expertise in fuel science and fire behavior 
modeling, the number of people qualified for fuel-mapping projects are scarce. Ab-
solutely critical to remotely sensed fuel-mapping projects are surface and canopy 
fuel data which are often limiting in most areas. The analysis of the imagery also 
demands high computing resources which may be restrictive for many fire manag-
ers. Finally, many of the remotely sensed products, such as LiDAR, ASTER, and 
SAR, may be too expensive for operational fuel mapping across large domains and 
require specialized expertise in data processing.

There are also important ecological limitations of remote sensing approaches for 
fuel mapping. As mentioned, some fuel component attributes, such as CBH, FWD, 
and herbs, are obscured by the canopy in most forest and some shrubland ecosystems 
(Keane et al. 2001). Even if the fuel components were visible from above, the remote-
ly sensed imagery probably would probably have low correlation to many attributes 
that are being mapped, such as loading, because of the mismatch in scales. Logs and 
FWD are too small to be sensed by most imagery products with 30-m pixel resolution, 
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yet they comprise the majority of loading in some environments. Duff and litter 
loading, as another example, depends on their depth on the ground, and this depth 
is rarely correlated to imagery signals (Asner 1998). Most imaging sensors were 
designed to differentiate vegetation characteristics, so vegetation conditions may 
often overwhelm any fuel signal, and most fuel components, such as woody fuels, 
have similar reflective properties making it difficult for their differentiation.

Another limitation is that it is often difficult to quantify fuelbed characteristics 
for each component with only one unique spectral signature, unless, of course, a 
fuel classification is being mapped, but then few fuel classifications are highly cor-
related to imagery (Keane et al. 2013). Conversely, if fuel components are mapped 
separately, there is a good chance that each component map will be spatially in-
congruent or inconsistent, and impossible combinations may result. And, since fuel 
components are spatially distributed at different scales, using only one imagery 
product with one resolution ensures some fuels may always be mapped at an inap-
propriate scale (Keane et al. 2012a; Chap. 6); fine fuels important for fire spread 
are too small to be detected accurately by most passive imagery products. It is also 
difficult to detect the vertical distribution of fuels with passive imagery; the sensed 
FWD might actually be suspended above the ground.

9.3.4  Biophysical Modeling

This last approach relates fuel attributes to measured or simulated biophysical gra-
dients using statistical modeling. Biophysical gradients describe those ecological 
phenomena that may directly or indirectly influence fuel dynamics (Chap. 6), such 
as climate, productivity, and disturbance. Spatial data representing these gradients 
can be (1) measured directly, such as climate, soils, and topography, (2) measured 
indirectly by correlating with imagery, or (3) simulated using biophysical models. 
The direct and indirect gradients are often used as inputs into biophysical models to 
create additional gradients.

Ecosystem models have vastly improved over the past two decades and there 
are a wide variety of models for application at coarse (e.g., MAPPS, Lenihan et al. 
1998), regional (e.g., BIOME-BGC, Thornton et al. 2002), and fine scales (e.g., 
FireBGCv2, Keane et al. 2011). These models simulate those ecosystem processes 
known to govern fuel dynamics and these simulated processes can then be mapped 
and used to predict fuel characteristics across space. Relationships between biophysi-
cal processes and organic matter accumulation and decomposition, for example, can 
be used to predict fuel characteristics (Gosz 1992; Ohmann and Spies 1998). Rollins 
et al. (2004) developed a prototype system to link remote sensing, gradient model-
ing, and ecosystem simulation into a package for mapping those characteristics im-
portant to land management, and then used the system to map FBFMs (Keane et al. 
2006a). Biophysical layers can be topographical (e.g., elevation, aspect, slope), bio-
logical (e.g., successional stages), geological (e.g., soils, landform), or biogeochem-
ical (i.e., evapotranspiration, productivity, nutrient availability). Kessell (1976) 



9 Fuel Mapping166

used seven biophysical gradients based on topography and vegetation to spatially 
predict fuel models and loadings in Glacier National Park, Montana. Habeck (1976) 
sampled fuels and vegetation in the Selway-Bitterroot Wilderness Area of Idaho and 
related fuel loadings to stand age and moisture–temperature gradients. Keane et al. 
(1997) developed a protocol for mapping surface fuels from several biogeochemical 
and biophysical variables using an extensive network of field plots, and later used 
those techniques for mapping canopy fuels (Keane et al. 2006a).

The value of this approach is that simulated environmental gradients provide an 
ecological context in which to understand, explore, and finally, predict fuel dynam-
ics. Low fuel loadings in a stand, for example, may be explained by low precipi-
tation, high evapotranspiration, and low productivity. Furthermore, environmental 
gradients can quantify those important ecosystem processes that correlate with fu-
els, such as decomposition, to provide a temporal and spatial framework for creat-
ing dynamic fuels maps. Climate change effects on spatial fuel loadings can be 
easily computed by evaluating changes in environmental gradients under the new 
climate (Keane et al. 1996). Most environmental gradients are scale-independent, 
meaning the same gradients might be useful to predict fuel characteristics across 
many spatial scales, but the range, distributions, and strengths of the relationships 
might change. These models can also be used to update fuel maps by simulating 
deposition and decomposition processes to see how the fuels have changed over the 
life of the map. And once biophysical layers are developed, they may be used by 
land management agencies for many management applications (Keane et al. 2002).

One major problem with this approach is that biophysical gradients do not pro-
vide a comprehensive description of existing biotic conditions so remotely sensed 
data are often needed to spatially portray the current fuel conditions. Another 
disadvantage is that this approach requires abundant field data, complex ecosystem 
models, and intensive statistical analyses requiring extensive expertise in ecological 
sampling, simulation modeling, and statistical examination. Ecosystem models de-
mand comprehensive initialization, parameterization, calibration, and validation to 
be useful, and this often requires extensive data, time, expertise, and computing re-
sources. Biophysical settings are inherently difficult to map because they represent 
the complex integration of long-term climatic interactions with vegetation, soils, 
fauna, and disturbance (Barrett and Arno 1991; Habeck 1976; Keane et al. 1996b). 
Moreover, identification of those biophysical processes critical to fuel dynamics 
is difficult because most are unknown or unquantifiable, and they are difficult to 
identify in the field because of their temporal aspect. Many biophysical layers may 
have limited value for mapping fuels because of interacting factors and they are of-
ten correlated with other biophysical processes. And last, all biophysical gradients 
affect fuel processes at different scales so it is important that the biophysical layers 
are created at the most appropriate scales that influence fuel properties.
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9.3.5  Integrating Approaches

Most mapping projects integrate all approaches to create state-of-the-art fuel maps. 
Peterson et al. (2012) statistically modeled live and dead woody fuel component 
loadings using regression classification procedures with a suite of climate, topog-
raphy, imagery, and fire history-independent variables. Varga and Asner (2008) 
merged LiDAR with hyperspectral imagery to map surface fuels in Hawaii. A 
knowledge-based system of neural networks was used to search for unique fuel 
patterns on a large landscape in Portugal from land-use, vegetation, satellite im-
agery, and elevation information (Vasconcelos et al. 1998). Pierce et al. (2012) 
used intensive field sampling to describe surface fuels for spectral clusters in an 
unsupervised approach and correlated canopy fuel characteristics to topography 
(elevation, slope, aspect) and Landsat TM imagery using Random Forests statisti-
cal modeling. And, in the most extensive fuel-mapping effort in the USA, Reeves 
et al. (2009) mapped canopy fuel attributes ( CBD, CBH) for the contiguous USA 
by creating regression models from Landsat TM reflectance imagery, biophysical 
gradients simulated by an ecosystem process model, and topographic variables cal-
culated from the DEM. They also mapped four surface fuel classifications using an 
associative approach where categories were assigned to combinations of vegeta-
tion cover, structure, and biophysical classifications using statistical modeling and 
expert opinion. The merging of multiple approaches has resulted in some of the 
most useful and accurate fuel maps.

9.4  Challenges

The accuracy of fuels maps varies widely, but generally, most fuel maps have 
low accuracies. When accuracy assessments were reported, they usually ranged 
between 5 and 85 % correct, regardless of fuel-mapping approach or integrative 
strategy (Keane et al. 2013). Fuel map accuracies often reflect the approaches used 
to create the maps; maps created with the associative approach, for example, tend 
to have the same accuracies as the core maps used to associate fuel attributes. Low 
map accuracies, however, don’t always mean the fuel map is worthless, especially 
considering the high variability and complexity of fuels. Alternative management 
strategies can be effectively compared by assessing the relative differences in fuel 
conditions between sites in fuel maps with precision. Low fuel map accuracies may 
be a result of a number of inherent sampling and analysis errors that are out of 
the mapper’s control, such as (1) scale differences in field data and mapped ele-
ments, (2) improper geo-registration, (3) erroneous field identification or measure-
ment of a mapped attribute, (4) improper use of vegetation or fuels classifications, 
(5) mistakes in field data entry, (6) differences in sampling error across fuel compo-
nents, and (7) inappropriate fuel-sampling methods and designs. However, the main 
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reason for low fuel map accuracies probably lies in the ecology of fuels rather than 
in the limitations of the approaches and data used to map them.

Several ecological reasons are to blame for the low accuracies in most fuel maps. 
As with other fuel applications, the high variability of fuel characteristics in space 
and time across the diversity of components compromises most fuel-mapping ef-
forts (Chap. 6). In a validation of the LANDFIRE fuel maps, Keane et al. (2013) 
found that the inability of a fuel classifications’ category to uniquely quantify fuel 
loadings was the biggest reason for poor mapping results. This inability to predict 
fuel loadings was mainly because of the high variability of loadings across compo-
nents within a classification category (Chap. 6). High variability of loadings across 
classification categories is often because fuel components vary at different scales 
and are uncorrelated with each other (Keane et al. 2012b). Keane et al. (2000) hi-
erarchically assessed accuracy of vegetation and fuel maps by quantifying error in 
the field data, vegetation and fuel classifications, and found more than 20 % of map 
error resulted from the inherent variability of fuel components attributes sampled 
at the stand-level. This high loading variability is also because fuel components are 
spatially distributed at different scales and accumulate at different rates (Chap. 6). 
In summary, the high variability of fuel attributes, especially loading, often over-
whelms any spectral or biophysical signal used for mapping, resulting in inadequate 
discrimination of fuel classification categories and attributes.

Stand disturbance history, expressed as time since last fire for an example, is 
perhaps the single most important factor dictating fuel bed characteristics (Chap. 6) 
yet there are few ancillary spatial data sources that describe stand history that can be 
used in fuel mapping. Vogelmann et al. (2011) use fire severity maps to update the 
LANDFIRE vegetation and fuels data layers, but there are few comprehensive maps 
of other disturbances. Past fires both reduce fuel component loadings by consump-
tion and increase loadings by causing plant mortality (Chap. 6). Insects, diseases, 
and wind often increase fuel loadings disproportionately across components. With-
out a spatial description of the timing, severity, and extent of past disturbances, it 
will always be difficult to map fuels.

There may be other logistical reasons for poor map accuracies. The biggest 
limitation in most fuels mapping is the lack of timely, dependable, geo-referenced 
field data describing existing fuels conditions. Few comprehensive standardized 
fuel-sampling efforts have created the databases needed for fuel-mapping efforts. 
For those projects where fuels were actually measured, inadequate training in fuel 
model assessment and fuel measurement techniques resulted in questionable field 
estimates (Keane et al. 1998b). Fuel characteristics (e.g., surface fuel model, crown 
fuels, stand height) should not be mapped independently or illogical combinations 
will inevitably result. All fuel layers must be developed and mapped in parallel so 
they are spatially congruent and consistent.

Low fuel map accuracies may be improved by employing newer methods and 
better technology, but there are more fundamental challenges in fuel mapping that 
need to be addressed first before accurate fuel maps are possible. As mentioned, we 
need to view fuels as biomass and understand those ecological processes and condi-
tions that influence biomass properties over time and space. Once we understand 
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fuel dynamics, we can then develop standardized sampling methods that describe 
fuels at their appropriate scales for quantifying reference conditions and select 
biophysical layers that represent those ecological processes that most influence fuel 
dynamics (Chap. 8). Spatial fuels databases containing all collected geo-referenced 
field data that is appropriately scaled to each fuel component can then be created 
so that spatially explicit fuels data can be accessible to everyone. Comprehensive, 
robust, and flexible fuel classifications can then be developed from these data 
(Chap. 7) that incorporate and account for the high variability in their design (Keane 
2013). Categories in these new classifications can then be mapped using a fusion of 
the technologies mentioned here and any new technologies developed in the future. 
A new approach to fuels mapping is needed for enlightened fire management.
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