
Chapter 73

Unequal-Compressed Sensing Based
on the Characteristics of Wavelet Coefficients

Weiwei Li, Ting Jiang, and Ning Wang

Abstract Compressed sensing (CS) has drawn quite an amount of attentions as a

joint sampling and compression approach. Its theory shows that if a signal is sparse

or compressible in a certain transform domain, it can be decoded from much fewer

measurements than suggested by the Nyquist sampling theory. In this paper, we

propose an unequal-compressed sensing algorithm which combines the compressed

sensing theory with the characteristics of the wavelet coefficients. First, the original

signal is decomposed by the multi-scale discrete wavelet transform (DWT) to make

it sparse. Secondly, we retain the low frequency coefficients; meanwhile, one of the

high frequency sub-band coefficients is measured by random Gaussian matrix.

Thirdly, the sparse Bayesian learning (SBL) algorithm is used to reconstruct the

high frequency sub-band coefficients. What’s more, other high frequency sub-band

coefficients can be recovered according to the high frequency sub-band coefficients

and the characteristics of wavelet coefficients. Finally, we use the inverse discrete

wavelet transform (IDWT) to reconstruct the original signal. Compared with the

original CS algorithms, the proposed algorithm has better reconstructed image

quality in the same compression ratio. More importantly, the proposed method

has better stability for low compression ratio.

Keywords Discrete wavelet transform • Random Gaussian matrix • Unequal-

compressed sensing • Image compression • SBL algorithm

73.1 Introdution

With the recent advances in computer technologies and Internet applications, the

number of multimedia files increase dramatically. Thus, despite extraordinary

advances in computational power, the acquisition and processing of signals in

application areas such as imaging, video and medical imaging continues to pose a

tremendous challenge. The recently proposed sampling method, Compressed
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Sensing (CS) introduced in [1–3], can collect compressed data at the sampling rate

much lower than that needed in Shannon’s sampling theorem by exploring the

compressibility of the signal. Suppose that x2ℝN� 1 is a length-N signal. It is said

to be K-sparse (or compressible) if x can be well approximated using only K�N
coefficients under some linear transform

x ¼ Ψω ð73:1Þ

where Ψ is the sparse transform basis, and ω is the sparse coefficient vector that has

at most K (significant) nonzero entries.

According to the CS theory, such a signal can be acquired through the random

linear projection:

y ¼ Φxþ n ¼ ΦΨωþ n ð73:2Þ

where, y2ℝM� 1 is the sampled vector with M�N data points. Φ represents a

M�N random matrix, which must satisfy the Restricted Isometry Property (RIP)

[4], and n2ℝM� 1 is the measurement noise vector. Solving the sparsest vector ω
consistent with the Eq. (73.2) is generally an NP-hard problem [4]. For the problem

of sparse signal recovery with ω, lots of efficient algorithms have been proposed.

Typical algorithms include basis pursuit (BP) or l1-minimization approach [5],

orthogonal matching pursuit (OMP) [6], and Bayesian algorithm [7].

CS theory provides us a new promising way to achieve higher efficient data

compression than the existing ones [8–10]. The reference [9] proposed a new kind

of sampling methods, it sampled the edge of the high frequency part of the image

densely and the non-edge part randomly in the encoder, instead of using the

measurement matrix to obtain the lower-dimensional observation directly in the

traditional compressed sensing theory. The reference [10] proposed an improved

compressed sensing algorithm based on the single layer wavelet transform

according to the properties of wavelet transform sub-bands. But this article doesn’t
consider the characteristic of high sub-band frequency coefficients. In this paper,

the proposed unequal-compressed sensing algorithm combines the compressed

sensing theory with the characteristics of the wavelet coefficients. The proposed

algorithm has better reconstructed image quality in the same compression ratio.

Usually, the coefficients are not zero but compressible (most of them are negligible)

after sparse transform (e.g., DWT). Therefore, the sparse Bayesian learning (SBL)

algorithm is used to resolve the reconstructed problem, which can recover the

image correctly and effectively.

The remainder of this paper is organized as follows. Section 73.2 introduces the

characteristics of wavelet coefficients. In Sect. 73.3, the proposed algorithm for

image compression is presented. In Sect. 73.4, experiment results are given.

Conclusions of this paper and some future work are given in Sect. 73.5.
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73.2 Characteristics of Wavelet Coefficients

73.2.1 Characteristic One

Wavelet transform as the sparse decomposition has been widely used in compressed

sensing. In this paper, we choose the discrete wavelet transform (DWT) as the

sparsifying basis. As we know, the low frequency coefficients are much more

important than the high frequency coefficients. Table 73.1 gives an idea about the

PSNR (in dB) achieved that the image restoration only used low frequency coef-

ficients or high frequency coefficients when the images are decomposed by four-

scale DWT. In the Table 73.1, we can see that the low frequency coefficients make

far greater contribution to the PSNR than the high frequency coefficients. There-

fore, we retain the low frequency to ensure the quality of image restoration, and the

high frequency coefficients are measured by the random Gaussian matrix to achieve

compression.

Table 73.2 shows that the PSNR is achieved by the Lena images using multi-

scale DWT. We can see that the scale of the decomposition S is smaller, the

contribution to the PSNR which is made by low frequency coefficients is greater,

and the length of the low frequency coefficients (N/2S) is longer. Therefore, we can
choose the proper the scale of the decomposition S according to the compression

ratio.

Table 73.2 The PSNR of multi-scale DWT

Scale S

PSNR

The length of

low coefficients

Low frequency

coefficients

High frequency

coefficients

1 31.97 7.25 N/2

2 27.32 7.27 N/4

3 23.91 7.31 N/8

4 21.16 7.38 N/16

Table 73.1 The PSNR

of four-scale DWT
Image

PSNR

Low frequency High frequency

Lena 22.51 7.38

Cameraman 20.72 5.72

Baboon 19.21 5.64

Boat 20.31 5.48

Peppers 21.36 5.85

Fruits 21.81 3.48
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73.2.2 Characteristic Two

In order to reduce the computational complexity and storage space, we make each

column of image x as a N� 1 signal to be coded alone. It is compressible in the

discrete wavelet basis Ψ . The coefficients of the two-scale decomposition structure

are shown in Fig. 73.1.

We can see that wavelet coefficient c consists of three parts, which are cA2 (low

frequency coefficients), cD2 (one of the high frequency sub-band coefficients) and

cD1 (the other high frequency sub-band coefficients). We choose one column of

image 256� 256 Lena as a 256� 1 signal to be decomposed alone. The

decomposed high frequency sub-band coefficients are shown in Fig. 73.2.

We can see that, the locations of the larger coefficients in cD1 are almost two

times than the locations of the larger coefficients in cD2. Then, we extend cD2 using

the zero insertion method, the comparison of the extended cD2 and cD1 are shown
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Fig. 73.2 The decomposed high frequency sub-band coefficients
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in Fig. 73.3. As can be seen from the Fig. 73.3, if the high frequency coefficient is

lager (or smaller) at a certain location in cD1, the high frequency coefficient is also

larger (or smaller) with a great probability at the same location in the extended

cD2(ex _ cD2). Let s _ cD1 _ cD2 represents the sum of ex _ cD2 and cD1, it has only

a few of larger coefficients cd, other coefficients are almost close to zero. More

importantly, the locations of the larger coefficients in s _ cD1 _ cD2 are almost the

same as the locations of the larger coefficients in cD1 and ex _ cD2. Let

s cD1 cD2 ¼ ex cD2 þ cD1

Then

cD1 ¼ s cD1 cD2�ex cD2

Let cd represents the only a few of the largest coefficients in s _ cD1 _ cD2.

According to ex _ cD2 and cd, we can recover cD1 approximately.
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73.3 The Proposed Algorithm for Image Compression

In the original CS algorithm for image compression, the N�N image is firstly

decomposed by a certain sparse transform (e.g. wavelet transform). And then, random

Gaussian matrix Φ is employed to measure the wavelet coefficients. At the decoder,

the original image is recovered by SBL algorithm and inverse wavelet transform.

However, we study that the high frequency sub-band coefficients have a strong

relevance. The algorithm which combines compressed sensing theory with the char-

acteristics of the wavelet coefficients is proposed. The specific steps are as follows:

• Step 1: in order to reduce the computational complexity and storage space, we

make each column of image X as a N� 1 signal x to be decomposed alone. It is

compressible in the DWT Ψ . We decompose the signal x by S-scale DWT.

Retain the low frequency coefficients cAs. The scale of the decomposition S is

decided by the compression ratio.

• Step 2: let s _ cDS _ cDi represent the sum of ex _ cDS and cDi, i¼ 1, . . . S–1.
Restore the only a few of the larger coefficients ci, i¼ 1, . . . S–1. Let

m represents the number of the largest coefficients ci.

• Step 3: the random Gaussian matrix M � N
2s
M < N=2sð ÞΦ is employed to

measurement sampling the cDS to yield a sampled vector y¼Φ � cDS.

• Step 4: we can use the SBL algorithm to recover the vector cD̂ S and then,

according to cD̂ S and ci to recover cD̂ i, i¼ 1, . . . S–1. Finally, we use the inverse
discrete wavelet transform to reconstruct the original signal.

The compression ratio of the proposed CS method is

α ¼ N=2S þ m� iþM

N
ð73:3Þ

Where, N/2S is the number of the low frequency coefficients, m� i represents the
total number of the largest coefficients ci, i¼ 1, . . . S–1. M is the dimension of

measurement matrix Φ, and, M<N/2S.

73.4 Experimental Results

The performance of the proposed algorithm has been evaluated by simulation. We

choose the 256� 256 Lena, Fruits, Baboon and Boat image as the original signals.

We set the compression ratio α from 0.1 to 0.9. First, we determine the scale of the

wavelet transform S according to the compression ratio α, and then get the length of
the low frequency coefficients N/2S. Secondly, we choose the proper the dimension

M of measurement matrix to guarantee the high frequency coefficients cDS trans-

mits reliably. When the result is decimal, we choose the integer bMc. Thirdly, we
get the number of the largest coefficients m according to the formula (73.3). When
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the result is decimal, we choose the integer bmc. In conclusion, the principle of

distribution of these parameters is to ensure the reliable transmission of more

important information in the fixed compression ratio α.
Similarly, we conduct the simulation using two types of original CS algorithm.

One method is that the signal is decomposed by four-scale DWT (In general, the

decomposition level of 256� 256 image should be more than four to satisfy the

sparsity), and then, all of the wavelet coefficients are measured by random Gaussian

matrix. (In this paper, we named the general CS method). The compression ratio is

calculated by the formula α1¼M/N. The other method is that the signal is

decomposed by single layer DWT, and then, the low frequency coefficients are

retained, the high frequency coefficients are measured [10]. (In this paper, we

named the single layer CS method). The compression ratio is calculated by the

formula α2 ¼ N=2þM
N , α2� 0.5. Both of the two methods have not considered the

characteristics of high frequency coefficients.

The PSNR of Lena, Fruits, Baboon and Boat images at different compression

ratio using unequal-CS, general CS and single layer CS algorithms are shown in

Fig. 73.4.
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These figure shows that the proposed unequal-CS method achieves much higher

PSNR than the other two CS methods. Especially, the gap is much larger in low

compression ratio. What’s more, with the decrease of compression ratio, the PSNR

of the rate of decline is much lower than the other two CS methods. And, the PSNRs

which are achieved by the proposed unequal-CS method are not less than 18 dB. It

indicates that the proposed method has a better stability for various compression

ratios.

However, from the Fig. 73.4, we can see that the PSNR of Baboon image are

lower than that of Lena, Fruits and Boat image at the same situations, because there

are more high frequency coefficients in Baboon. After measurement, the loss is

much. As this type of sources, the high frequency coefficients are larger relatively;

the proposed method is not suitable for them.

Conclusion

An unequal-compressed sensing algorithm is proposed in this paper.

According to the characteristics of the wavelet coefficients, we propose an

unequal-compressed sensing algorithm which combines the compressed

sensing theory with the characteristics of the wavelet coefficients and the

PSNR of the proposed algorithm is greatly improved than the original CS

algorithms. What’s more, it indicates that the proposed method has a better

stability for various compression ratios.
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