
Chapter 68

Cloud Storage Architecture with Meta-Data
Service Layer in Cloud Computing

Kai Fan, Libin Zhao, Hui Li, and Yintang Yang

Abstract With the rise of cloud computing, cloud storage has become a challenging

issue. It is a huge challenge to design a distributed file architecture to meet the require-

ments of cloud storage. In this paper, in order to improve the system reliability and

performance, we propose a cloud storage architecture with a meta-data service layer.

The proposed architecture is a distributed file storage system based on the master-slave

architecture, which uses multiple proxy servers of the meta-data server to establish a

peer-to-peermeta-data service layer. Eachmeta-data server and the proxy server, could

be an access to service for clients rather than only one fixed access as usual, which can

improve the parallel processing performance of ameta-data service layer greatly. Some

P2P techniques areusedbetweenproxyservers to solve thedisadvantages of themaster-

slavearchitecture efficiently.Analysis andevaluationareperformed todemonstrate that

the proposed architecture improves the system reliability and performance greatly.

Keywords Cloud storage • Architecture • Meta-data service layer • Reliability •

Performance

68.1 Introduction

The master-slave and the peer-to-peer (P2P) are the two most basic architectures.

The former has the advantages of simpleness, easy operation and maintenance. On

the other hand, the latter has the advantages of reliability and stability. GFS [1], the

representative of the master-slave storage architecture, has the bottlenecks of

reliability and performance [2, 3], which leads to the inefficient concurrent access

and the single point failure. In order to improve the parallel processing perfor-

mance, the parallel optimization BlobSeer [3] storage layer is used to substitute the

K. Fan (*) • L. Zhao • H. Li

State Key Laboratory of Integrated Service Networks, Xidian University, Xian, China

e-mail: kfan@mail.xidian.edu.cn

Y. Yang

Key Lab. of the Minist. of Educ. for Wide Band-Gap Semiconductor Materials and Devices,

Xidian University, Xian, China

© Springer International Publishing Switzerland 2015

J. Mu et al. (eds.), The Proceedings of the Third International Conference
on Communications, Signal Processing, and Systems, Lecture Notes in Electrical

Engineering 322, DOI 10.1007/978-3-319-08991-1_68

659

mailto:kfan@mail.xidian.edu.cn


distributed file storage system HDFS [4] in Hadoop cloud computing system.

Although the BlobSeer improves the concurrency, it cannot address the single

point reliability efficiently. The P2P based data sharing network [5, 6] is proposed

to eliminate the single point failure and ensure the expansion and reliability. In

addition, Amazon presents the decentralized P2P cloud storage architecture

Dynamo, which is the top-down P2P structure. Although Dynamo ensures the

balance of data distribution and node load, the update and search of large-scale

P2P network will be delayed greatly. Furthermore, Dynamo improves the reliabil-

ity, but it delays some data processing in consistency.

Although the consistency, reliability and availability cannot be achieved simulta-

neously, they can be balanced to some extent.We propose a cloud storage architecture

with a meta-data service layer. The proposed architecture is a distributed file storage

systembasedon themaster-slave architecture,which usesmultiple proxy servers of the

meta-data server to establish a P2Pmeta-data service layer. The P2P server structure is

only used in the meta-data service layer. All the meta-data is stored with one copy in

each different meta-data servers, which can ensure the fault tolerance, and reduce the

complexity of the file lock service in the case of one file beingwritten bymany clients.

In the proposed architecture, each meta-data server or each proxy server could be an

access to service for clients rather than only one fixed access as usual, which can

improve the parallel processing performance of the meta-data service layer greatly. In

addition, proxy servers share part of services of themeta-data server inGFS andHDFS

to improve the performance. In addition, some P2P techniques, such as configuration,

service scheduling, and searching, are used between the proxy servers to solve the

disadvantages of the master-slave architecture efficiently. That can improve the reli-

ability and the access concurrency, in which the meta-data can be used as the system

cache in each proxy server. Analysis and evaluation are performed to demonstrate that

the proposed architecture improves the system reliability and performance greatly.

The remainder of this paper is organized as follows: in Sect. 68.2, the cloud

storage architecture with a meta-data service layer is proposed; in Sect. 68.3, the

system service interaction protocol of the proposed architecture is proposed; and

the analysis and evaluation of the proposed architecture is performed in Sect. 68.4;

finally, concluding remarks are provided in the last section.

68.2 Cloud Storage Architecture with a Meta-Data
Service Layer

The cloud storage architecture with a meta-data service layer is shown in Fig. 68.1.

The block-data service layer, the meta-data service layer and the client application

layer are defined from the inside out respectively.

The meta-data service layer is the key of the architecture. Compared with GFS

system, the meta-data service layer is a P2P distributed service network using

multiple proxy servers in the proposed architecture, which is like the meta-data

server Master in GFS.

660 K. Fan et al.



The definition of the function of the meta-data service layer is as follows.

1. Request listening: that is to listen on the request events of the client and the

block-data server. The client events are the name space to be created and deleted,

files to be created, wrote, read, deleted and renamed, list of files information to

be accessed, resource lock to be obtained and released, and so on. The events of

the block-data server are the heartbeat information, the file block information,

the error information, and so on.

2. Request processing: that is to process the request listening events and return the

result.

3. Meta-data management: the meta-data is mainly the name space, the mapping

from file to the file block and the mapping from the file block to the block-data

server.

4. Name space management: the name space is managed by using the directory tree

structure.

5. File management: that is some basic operations to the file. For example, creating,

writing, deleting and renaming.

6. File block management: that is to create or copy new files, delete the invalid file

blocks and recover the orphaned file blocks.

7. Load balance of the block-data server: due to the uneven distribution of file

blocks in different block-data servers, which caused by a large number of file

blocks writing and deleting the file block load balance, should be performed.

Fig. 68.1 The cloud storage architecture with a meta-data service layer

68 Cloud Storage Architecture with Meta-Data Service Layer in Cloud Computing 661



8. Lease (session) management: that is to manage the lease of client. That includes

the obtaining and releasing lease, and recovering lease, in which the lease is

expired.

9. Heartbeat detection: the block-data server will report its load condition to the

meta-data server though sending heartbeat information regularly.

The function of the block-data service layer is similar as the basic master-slave

distributed file system. The definition of the function is as follows.

1. Data block information management: there may be tens of thousands of data

blocks in the block-data servers, and the block-data server may operate any data

block in anytime.

2. Data block writing and reading: client could write data blocks to or read data

blocks from the block-data servers frequently. When the data block is being

written, it also should be backed up.

3. Data block transmission: the data block transmission between block-data servers

is frequent. When the writing operation and backup operation are performed, the

data block transmission will be established between block-data servers.

4. Sending heartbeat information to the meta-data server: the meta-data server

judges whether the block-data server is working normally based on the heartbeat

information.

5. Processing the command information of the meta-data server: when the system

is running, the meta-data server will tell the block-data server to back up, delete

and move file blocks.

6. Reporting the file block information to the meta-data server: because file blocks

will change in the block-data server, the block-data server should report the file

block information to the meta-data server regularly. Then the newest block

information will be in the meta-data server.

7. Processing client requests: the system interaction is the interaction between

client and the block-data servers, such as the writing and reading of data blocks.

Therefore, the interactive interface should be established between client and the

block-data servers.

The client application layer is the service access layer, in which the compliable

interface is provided as GFS. The storage interface is provided to client using the

programming language in the proposed architecture, which can provide the func-

tion access using the command-line mode, and reduce the difficulty of the operation

and maintenance. The definition of the function is as follows.

1. Directory management: that is to create, rename and delete directories.

2. File management: that is some basic operations to the file. For example,

uploading, downloading, deleting and renaming.

3. Data flow operation: the output flow to file system will be created, when a client

wants to upload a file to the system. Otherwise, the input flow reading from the

system will be created when a client wants to download a file in the system.

4. The operation of resource lock: that is to obtain the resource lock and release it.

662 K. Fan et al.



68.3 System Service Interaction Protocol

We can summarize the interaction in distributed file storage system as writing and

reading operation. The data updating can be regarded as a special writing process,

which is the same as the ordinary writing operation process. The processes of

writing and reading are shown in Fig. 68.2.

The communication in the architecture consists of the control flow and the data

flow, which are shown in the thin lines and thick lines. We define the main process

in different layers.

68.3.1 The Writing Operation Step

W1: request writing, in addition, sending file information.

W2: returning the information of main storage block, including the mapping of

file name, the size of the block, and so on.

W3: client writes files into the block-data server based on the result of W2.

W4: the block-data server backups files based on the result of W2.

W5: the backup node returns the backup result to main storage server.

W6: the result of block storage is sent to the meta-data server to generate the

meta-data.

W7: confirming the meta-data.

W8: sending the result of client. If it fails, returning events, which will be

completed by using control command and state recovering.

Fig. 68.2 The system service interaction process

68 Cloud Storage Architecture with Meta-Data Service Layer in Cloud Computing 663



W9: updating the local meta-data and the corresponding vector clock, and this

operation information is transmitted to other main servers, meta-data proxy

servers, by IP multicasting. Other servers choose to update their meta-data

set or not based on the vector clock.

W10: checking the results returned from other main servers. The fault-tolerant

processing is performed if there is a return warning with failure.

68.3.2 The Reading Operation Step

R1: request reading data.

R2: the main server returns the information of file blocks.

R3: client sends block information to the block-data server.

R4: the block-data server sends data blocks.

The copy process of the meta-data in servers is the key issue of the system

performance improvement, such as W9 and W10 in Fig. 68.2.

68.4 Analysis and Evaluation

The architecture evaluation mechanism [3] we used is to determine the properties of

the architecture bymodeling or simulating one ormany aspects in the system.We use

theoretical modeling to qualitative analyze the proposed architecture. In addition, we

code and implement the meta-data service layer model of meta-data proxy servers.

The analysis of reliability in Sect. 68.4 is valid based on following assumptions:

• life of each node follows an exp distribution.

• the life of all nodes is I.D.D.

68.4.1 The Analysis of System Scale

There are 40 servers in each cabinet in the condition of HDFS typical configuration.

Every cluster can support about 1,000 nodes mostly in GFS. In the proposed

architecture, the larger node scale can be supported. That is only the advantage of

the proxy server model.

The proxy server in the meta-data service layer is a group of the P2P meta-data

server. The scale should not be too large. One reason is to reduce the complexity of

664 K. Fan et al.



consistency maintenance. The other reason is the P2P structure is used in this layer,

in which when P2P network scale is too large, network changing and data updating

would cause the problem of jitter and delay, and the higher searching complexity.

So the meta-data service layer based on small scale not only can reduce the

design complexity of the large-scale P2P network, but also can support much larger

block server node scale, except the simplified consistency. We can estimate as

follow.

The number of the meta-data server node, the proxy server node, in the meta-

data service layer is at least 2 and at most 256 in the proposed architecture. That is

the number of preliminary estimating. The node scale of the block-data server can

be expanded of at least 200 times in GFS and HDFS theoretically. In addition,

because every proxy server is an access for client, the concurrent processing

capability of the meta-data service can be enhanced at least 200 times. When the

number of the proxy server is less than 256, this is already a considerable enhance-

ment. In addition, there is no the single point failure. The performance enhancement

will be quantitatively analyzed in the availability analysis.

68.4.2 The Analysis of Service Performance

There are higher concurrent responses in the proposed architecture, because the

proxy server shares the work of the Master node in GFS. The enhancement of

system performance will be analyzed in the two aspects of writing and reading, and

the simulation is also performed.

The average writing time of concurrent file request with different number of

proxy servers is shown in Fig. 68.3. We have performed eight concurrent processes

160
proxy N=0

proxy N=2

proxy N=4

t/s

140

120

100

80

60

40

20

2 4 8 32 128 512 1024 2048 size/m
0

Fig. 68.3 The average writing time of concurrent file request with different number of the proxy

servers

68 Cloud Storage Architecture with Meta-Data Service Layer in Cloud Computing 665



with 4,000 connections in each process. The size of files in each concurrent request

is from 2 to 2,048MByte.

From Fig. 68.3, the larger of the number of the proxy server and the larger of the

file writing concurrent request, the less time cost in writing and the higher perfor-

mance of the proposed architecture.

68.4.3 The Analysis of System Reliability

The reliability of the GFS and the proposed architecture with different server nodes

is shown in Fig. 68.4.

From Fig. 68.4, the larger the system scale is, the higher reliability the proposed

architecture achieves. The solution of the single point failure in GFS is the multiple

nodes backed up. When the number of nodes is much larger, the reliability will not

be improved obviously with the change of the number of nodes. Otherwise, the

proposed architecture uses multiple proxy servers in service at the same time.

Although the service performance will be decreased when many nodes cannot

work, the availability will not be affected. Therefore, the proposed architecture

has higher reliability with more nodes.

R
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
2 3 4 5 6

the GFS

the proposed architecture

7 8 N

Fig. 68.4 The reliability of the GFS and the proposed architecture

666 K. Fan et al.



Conclusions

In this paper, a cloud storage architecture with a meta-data service layer has

been proposed. Compared with other existing cloud storage architectures, the

proposed architecture achieves higher reliability and performance. For our

future work, we will further explore other challenging issues, such as, file

blocking storage method in cloud computing environment.

Acknowledgements This work has been financially supported by the National Natural Science

Foundation of China (No. 61303216 and No. 61373172), the China Postdoctoral Science Foun-

dation funded project (No.2013M542328), the Xidian-Ningbo Information Technology Institute

Seed Foundation funded project, National 111 Program of China B08038, and the Xian Science

and Technology Plan funded project (CXY1352WL30).

References

1. Zhan Y, Sun Y (2009) Cloud storage management technology. In: ICS, pp 301–311

2. Ye W (2009) SaaS architecture design. Publishing house of electronics industry, pp 56–78

3. Nicolae B, Moise D, Antoniu G (2010) BlobSeer: Bringing high throughput under heavy

concurrency to Hadoop map-reduce applications. In: Parallel and Distributed Processing, pp

1–11

4. Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop distributed file system. In:

Mass Storage Systems and Technologies, pp 1–10

5. Xu K, Song M, Zhang X, Song J (2009) A cloud computing platform based on P2P. In: IT in

Medicine and Education, pp 427–432

6. Rivero M, Rubino G (2010) Priority-based scheme for file distribution in peer-to-peer networks.

In: Communications, pp 1–6

68 Cloud Storage Architecture with Meta-Data Service Layer in Cloud Computing 667


	Chapter 68: Cloud Storage Architecture with Meta-Data Service Layer in Cloud Computing
	68.1 Introduction
	68.2 Cloud Storage Architecture with a Meta-Data Service Layer
	68.3 System Service Interaction Protocol
	68.3.1 The Writing Operation Step
	68.3.2 The Reading Operation Step

	68.4 Analysis and Evaluation
	68.4.1 The Analysis of System Scale
	68.4.2 The Analysis of Service Performance
	68.4.3 The Analysis of System Reliability

	Conclusions
	References


