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Abstract Computer simulation models are fundamental tools of contemporary
engineering design. The components, structures, and systems considered in most
engineering disciplines are far too complex to be accurately described using simple
theoretical models. Therefore, numerical simulation is often the only way to
evaluate the performance of the design with sufficient reliability. However, accu-
rate, high-fidelity simulations are computationally expensive. Consequently, their
use for design automation, especially when exploiting conventional optimization
algorithms is often prohibitive. Availability of faster computers and more efficient
simulation software does not always translate into computational speedup due
to growing demand for improved accuracy and the need to evaluate larger and
larger systems. Surrogate-based optimization (SBO) techniques belong to the most
promising approaches capable of alleviating these difficulties. SBO allows for
reducing the number of expensive objective function evaluations in a simulation-
driven design process. This is obtained by replacing the direct optimization of the
expensive model by iterative updating and re-optimization of its cheap surrogate
model. Among proven SBO techniques, the methods exploiting physics-based low-
fidelity models are probably the most efficient. This is because the knowledge about
the system of interest embedded in the low-fidelity model allows constructing the
surrogate model that has good generalization capability at a cost of just a few
evaluations of the original model. This chapter reviews one of the most recent SBO
techniques, the so-called shape-preserving response prediction (SPRP). We discuss
the formulation of SPRP, its limitations, and generalizations, and, most importantly,
demonstrate its applications to solve design problems in various engineering
areas, including microwave engineering, antenna design, and aerodynamic shape
optimization. We also discuss the use of SPRP for creating fast surrogate models
with illustrations from the microwave engineering area.
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1 Introduction

Computer simulations are one of the most important tools in contemporary science
and engineering. From miniature electronic components and circuits, through
complete systems such as aircraft, to large-scale physical phenomena (e.g., climate
models), simulations are used to describe the behavior, evaluate the performance,
and validate designs. Nowadays, commercial simulation packages have matured
and the computing resources are cheaper and in abundance. In spite of this, in
many cases, accurate, high-fidelity simulations are computationally expensive, to
the extent that their use in the design process, e.g., by employing simulations
directly in an automated design optimization loop, may be impractical. The primary
reason is that conventional optimization algorithms, both gradient-based [1] and
derivative-free [2] typically require a large number of objective function evaluations.
In some cases, the use of adjoint sensitivity [3] can alleviate this problem; however,
this technique is not always available through commercial simulation packages.
Conversely, design automation is key in situations where simple theoretical models
are no longer capable to adequately account for complex interactions between
the system components and, therefore, only yield an initial approximation of the
optimum design which consequently has to be tuned further in order to meet the
given performance requirements. In practice, design “tuning” is often based on
parametric studies guided by engineering experience. This combination is often
sufficient to obtain satisfactory designs in a reasonable time; however, it is far from
being an automated process.

Surrogate-based optimization (SBO) [4, 5] is one of the most promising
approaches to alleviate the difficulties discussed in the previous paragraph. In SBO,
direct optimization of an expensive high-fidelity simulation model is replaced by
iterative updating and re-optimization of its computationally cheap representation, a
surrogate. The high-fidelity model is referenced occasionally to verify the prediction
produced by the surrogate and to improve the latter. The overall design cost can be
greatly reduced, because the optimization burden is shifted to the surrogate.

SBO methods differ mostly in the way the surrogate is created. A large group
of function approximation modeling techniques exist. Here the surrogate is created
by approximating sampled high-fidelity model data and the most popular methods
include polynomial approximation [5], radial basis function interpolation [6],
kriging [7], support vector regression [8], and neural networks [9]. Approximation
models are very fast, however, a large number of training samples—and a high
CPU cost of gathering the simulation data—are necessary to ensure reasonable
accuracy. Furthermore, the number of required samples grows exponentially with
the dimensionality of the design space (the curse of dimensionality). Depending on
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the model purpose, this initial computational overhead may or may not be justified.
This depends for example whether the models are for a multiple-use library or a
one-time optimization.

Correcting an auxiliary low-fidelity (or coarse) model is another approach to
SBO. A low-fidelity model is a reduced-accuracy but faster representation of the
system of interest. Low-fidelity models can be developed in various ways, such as by
using simplified-physics, leaving out certain second-order effects, or by describing
the system on a different physical level (e.g., equivalent circuit versus full-wave
electromagnetic simulation in case of microwave components). Engineers have been
using simplified models for decades: before the computer era simplified models and
physical experiments were the only tools available to perform the design process.
Because of the fact that a low-fidelity model contains certain knowledge about the
system of interest, physics-based surrogates offer good generalization capabilities
and can be set up using a limited number of training points. These are their biggest
advantages over purely approximation models.

Several techniques have been proposed to exploit physics-based surrogate mod-
els in the SBO process, such as the approximation model management optimization
(AMMO) framework [10], space mapping (SM) [11], manifold mapping [12], and
simulation-based tuning [13]. Several of these methods are based on correcting
the low-fidelity model output (response). The SBO process is provably convergent
to the high-fidelity model optimum [13] when embedded in the trust-region
framework [14] and the correction is realized by ensuring both zero- and first-
order consistency [10] between the surrogate and the high-fidelity model. In some
cases (with a notable example of SM), the correction can be done by introducing a
mapping between the parameter spaces of the low- and high-fidelity models.

The shape-preserving response prediction (SPRP) technique [15] is a recently
developed approach which exploits physics-based low-fidelity models. The method
was originally developed in the microwave engineering area [15], but has also
been applied to problems in antenna design [16] and aerodynamic design [17].
SPRP is a parameter-less method where the surrogate model response is constructed
by tracking the changes of the low-fidelity model response when moving from a
certain reference design to another one, and applying those changes (represented by
translation vectors) to a reference response of the high-fidelity model. The SPRP
surrogate exploits the knowledge embedded in the low-fidelity model to a greater
extent than other physic-based surrogate modeling approaches, e.g., SM. Therefore,
the generalization capability of SPRP is usually better than that of SM [15]. In
this chapter, we review the SPRP technique, its basic and generalized formulations,
and attempt to give an intuitive explanation of its efficiency. We also illustrate its
operation and performance using several design examples from various engineering
disciplines.

The chapter is organized as follows. In Sect. 2, we formulate the engineering
optimization problem, briefly recall the basics of SBO, and introduce the concept of
the SPRP methodology. Section 3 demonstrates the use of SPRP for optimization of
microwave filters. Application of SPRP for antenna design is discussed in Sect. 4.
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Section 5 describes formulation and the use of SPRP for the design of transonic
airfoils. Section 6 discusses the use of SPRP for surrogate modeling. Section 7
concludes the chapter.

2 Surrogate-Based Optimization and Shape-Preserving
Response Prediction

In this section, we formulate the engineering design optimization problem, recall
the concept of SBO, and discuss the SPRP methodology [15]. Examples illustrating
application of SPRP in various engineering fields are provided in Sects. 3–6.

2.1 Engineering Design Optimization. Problem Formulation

The engineering design optimization problem can be defined as

x�
f D arg min

x
U .f .x// (1)

where f : Xf ! Rm, Xf � Rn, denotes the response vector of a high-fidelity (or fine)
model of the device or system of interest; U: Rm ! R is a given objective function,
e.g., minimax [18]. In microwave engineering, the response vector may contain,
for example, the values of transmission coefficient jS21j evaluated over certain
frequency band.

2.2 Surrogate-Based Optimization

Because of the high computational cost of evaluating f, its direct optimization is
replaced by an iterative procedure [5]

x.iC1/ D arg min
x

U
�
s.i/ .x/

�
(2)

that generates a sequence of points (designs) x(i) 2 Xf , i D 0, 1, : : : . Each x(iC1)

is the optimal design of the surrogate model s(i): Xs
(i) ! Rm, Xs

(i) � Rn, i D 0,
1, : : : . s(i) is assumed to be a computationally cheap and sufficiently reliable
representation of the fine model f, particularly in the neighborhood of the current
design x(i). Under these assumptions, the algorithm (2) is likely to produce a
sequence of designs that quickly approach xf

*. Because f is evaluated rarely (usually
once per iteration), the surrogate model is supposedly fast, and the number of
iterations for a well-performing algorithm is substantially smaller than for most
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direct optimization methods, and the process (2) may lead to substantial reduction
of the computational cost of solving (1). If the surrogate model satisfies zero-
and first-order consistency conditions with the fine model, i.e., s(i)(x(i)) D f (x(i))
and (@s(i)/@x)(x(i)) D (@f /@x)(x(i)) (verification of the latter requires f sensitivity
data), and the algorithm (2) is enhanced by the trust-region method [19], then it
is provably convergent to a local optimum of the fine model [10]. Convergence can
also be guaranteed if the algorithm (2) is enhanced by properly selected local search
methods [20].

2.3 Shape-Preserving Response Prediction: Concept [15]

SPRP [15] has been initially introduced in microwave engineering to reduce the
cost of optimizing electromagnetic (EM)-simulated structures such as filters [15].
In SPRP, the surrogate model is constructed assuming that the change of the fine
model response due to the adjustment of the design variables from can be predicted
using the actual response changes of the auxiliary low-fidelity (or coarse) model c:
Xc ! Rm, Xc � Rn, that describes the same object as the high-fidelity model; c is less
accurate but much faster to evaluate than f.

The choice of the coarse model very much depends on the engineering discipline.
In microwave engineering, the coarse model might be an equivalent circuit of the
considered microwave structure, that describes the structure using circuit theory
methods rather than through solution of the Maxwell equations. It is critically
important for SPRP that the coarse model is physically based, which ensures that the
effect of the design parameter variations on the model response is similar for both
the fine and coarse models. The change of the coarse model response is described
by the translation vectors corresponding to certain (finite) number of characteristic
points of the model’s response. These translation vectors are subsequently used to
predict the change of the fine model response with the actual response of f at the
current iteration point, f (x(i)), treated as a reference.

Here, we explain the concept of SPRP using the specific case of a microwave
filter. Figure 1a shows the example of the coarse model response, jS21j in the
frequency range 8–18 GHz, at the design x(i), as well as the coarse model response
at some other design x. The responses come from the double folded stub bandstop
filter [15]. Circles denote five characteristic points of c(x(i)), here, selected to
represent jS21j D �3 dB, jS21j D �20 dB, and the local jS21j maximum (at about
13 GHz). Squares denote corresponding characteristic points for c(x), while small
line segments represent the translation vectors that determine the “shift” of the
characteristic points of c when changing the design variables from x(i) to x. Because
the coarse model is physics-based, the fine model response at the given design, here,
x, can be predicted using the same translation vectors applied to the corresponding
characteristic points of the fine model response at x(i), f (x(i)). This is illustrated in
Fig. 1b. Figure 2 shows the predicted fine model response at x as well as the actual
response, f (x), with a good agreement between both curves.
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Fig. 1 The SPRP concept [15]: (a) Example coarse model response at the design x(i), c(x(i))
(solid line), the coarse model response at x, c(x) (dotted line), characteristic points of c(x(i))
(o) and c(x) (square), and the translation vectors (short lines); (b) Fine model response at x(i),
f (x(i)) (solid line) and the predicted fine model response at x (dotted line) obtained using SPRP
based on characteristic points of this figure; characteristic points of f (x(i)) (o) and the translation
vectors (short lines) were used to find the characteristic points (square) of the predicted fine model
response; coarse model responses c(x(i)) and c(x) are plotted using thin solid and dotted line,
respectively [9]

2.4 Shape-Preserving Response Prediction: Formulation [15]

SPRP can be rigorously formulated as follows. Let f (x) D [f (x,!1) : : : f (x,!m)]T

and c(x) D [c(x,!1) : : : c(x,!m)]T , where ! j, j D 1, : : : , m, is the frequency
sweep (it can be assumed without loss of generality that the model responses are
parameterized by frequency). Let pj

f D [! j
f rj

f ]T , pj
c0 D [! j

c0 rj
c0]T , and pj

c D [! j
c

rj
c]T , j D 1, : : : , K, denote the sets of characteristic points of f (x(i)), c(x(i)), and c(x),

respectively. Here, ! and r denote the frequency and magnitude components of the
respective point. The translation vectors of the coarse model response are defined
as tj D [! j

t rj
t]T , j D 1, : : : , K, where ! j

t D ! j
c � ! j

c0 and rj
t D rj

c � rj
c0. The SPRP

surrogate model is defined as follows

s.i/ .x/ D �
s.i/ .x; !1/ : : : s.i/ .x; !m/

�T
(3)
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Fig. 2 (a) Fine model response at x, f (x) (solid line), and the fine model response at x obtained
using the shape-preserving prediction (dotted line). Good agreement between both curves is
observed, particularly in the areas corresponding to the characteristic points of the response;
(b) Interpolating function F (solid line) corresponding to the fine/coarse model plots in Fig. 1;
the identity function is denoted using the dotted line, the frequency components of the translation
vectors are denoted as short solid lines; (c) Interpolating function R (solid line); the magnitude
components of the translation vectors are denoted using short solid lines

where

s.i/
�
x; !j

� D f
�
x.i/; F

�
!j ;

˚�!t
k

�K

kD1

��
C R

�
!j ;

˚
rt

k

�K

kD1

�
(4)

for j D 1, : : : , m. f .x; !/ is an interpolation of ff (x,!1), : : : , f (x,!m)g onto
the frequency interval [!1,!m]. The scaling function F interpolates the data pairs
f!1,!1g, f!1

f ,!1
f � !1

tg, : : : , f!K
f ,!K

f � !K
tg, f!m,!mg, onto the frequency

interval [!1,!m]. The function R does a similar interpolation for data pairs f!1,r1g,
f!1

f ,r1
f � r1

tg, : : : , f!K
f ,rK

f � rK
tg, f!m,!rmg; here r1 D Rc(x,!1) � Rc(xr,!1) and

rm D c(x,!m) � c(xr,!m). In other words, the function F translates the frequency
components of the characteristic points of f (x(i)) to the frequencies at which they
should be located according to the translation vectors tj, while the function R adds
the necessary magnitude component. The interpolation onto [!1,!m] is necessary
because the original frequency sweep is a discrete set.
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Formally, both the translation vectors tj and their components should have
an additional index (i) indicating that they are determined at iteration i of the
optimization algorithm (2), however, this was omitted for the sake of simplicity.

Figure 2 shows the plots of the functions F and R corresponding to the fine/coarse
model response plots of Fig. 1. The interpolation of ff (x,!1), : : : , f (x,!m)g, F, and
R is implemented using cubic splines.

As follows from its formulation, SPRP is developed assuming that the frequency
components of the translation vectors are zero at the edges of the frequency
spectrum (i.e., at !1 and !m). This limitation can be easily overcome either
by extending the frequency range of the covarse model and applying extrapolation
(cf. [15]). Also, it is assumed that the overall shape of both the fine and coarse
model response is similar. This means, in particular, that the characteristic points
of responses of both the coarse model c and the fine model f are in one-to-
one correspondence. If this assumption is not satisfied, the surrogate model (3),
(4) cannot be evaluated because the translation vectors ti are not well defined.
Generalizations of SPRP that allow alleviating this difficulty in some cases can be
found in [15].

3 SPRP for Microwave Design Optimization

In this section, we demonstrate the use of SPRP for the design optimization of
microwave components. Consider the dual-band bandpass filter [21] (Fig. 3a).
The design parameters are x D [L1 L2 S1 S2 S3 d g W]T mm. The fine model is
simulated in Sonnet em [22]. The design specifications are jS21j � �3 dB for
0.85 GHz � ! � 0.95 GHz and 1.75 GHz � ! � 1.85 GHz, and jS21j � �20 dB for
0.5 GHz � ! � 0.7 GHz, 1.1 GHz � ! � 1.6 GHz, and 2.0 GHz � ! � 2.2 GHz. The
coarse model is implemented in Agilent ADS [23] (Fig. 3b). The initial design is
x(0) D [16.14 17.28 1.16 0.38 1.18 0.98 0.98 0.20]T mm (the optimal solution of c).
The following characteristic points are selected to set up functions F and R: four
points for which jS21j D �20 dB, four points with jS21j D �5 dB, as well as six
additional points located between �5 dB points. For the purpose of optimization,
the coarse model was enhanced by tuning the dielectric constants and the substrate
heights of the microstrip models corresponding to the design variables L1, L2, d, and
g (original values of "r and H were 10.2 and 0.635 mm, respectively) [15]. The filter
was optimized using two versions of SPRP, a regular one and SPRP enhanced by
input SM (cf. Table 1). Figure 4 shows the initial fine model response as well as the
fine model response at the design obtained using the SPRP method.

As the second example, consider the third-order Chebyshev bandpass
filter [29] shown in Fig. 5. The design parameters are x D [L1 L2 S1 S2]T mm;
W1 D W2 D 0.4 mm. The fine model is simulated in Sonnet em [22]. The design
specifications are jS21j � �3 dB for 1.8 GHz � ! � 2.2 GHz, and jS21j � �20 dB
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Fig. 3 Dual-band bandpass filter: (a) geometry [21], (b) coarse model (Agilent ADS)

for 1.0 GHz � ! � 1.6 GHz and 2.4 GHz � ! � 3.0 GHz. The coarse model is
implemented in Agilent ADS [23] (Fig. 6). The initial design is x(0) D [14.6
15.3 0.56 0.53]T mm (the optimal solution of the coarse model c). The following
characteristic points are selected to set up functions F and R: two points for which
jS21j D �30 dB, two points with jS21j D �20 dB, two points with jS21j D �6 dB,
as well as ten additional points located between �6 dB points. Figure 7 shows
the initial fine model response as well as the fine model response at the design
obtained using SPRP. The numerical results including the design cost are presented
in Table 2.
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Table 1 Optimization results for dual-band bandpass filter

Algorithm
Final specification
error (dB)

Number of fine model
evaluationsa

Shape-preserving response
prediction

�2.0b 3

Shape-preserving response
prediction C ISMc

�1.9d 2

aExcludes the fine model evaluation at the starting point
bDesign specifications satisfied after the first iteration (spec. error �1.2 dB)
cThe surrogate model is of the form s(i)(x) D c(x C c(i)); c(i) is found using
parameter extraction [9]
dDesign specifications satisfied after the first iteration (spec. error �1.0 dB)
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Fig. 4 Dual-band bandpass filter: fine model (dashed line) and coarse model (thin dashed line)
response at x(0), and the optimized fine model response (solid line) at the design obtained using
shape-preserving response prediction
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Fig. 5 Third-order Chebyshev bandpass filter: geometry [29]
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Fig. 6 Third-order Chebyshev filter: coarse model (Agilent ADS)

Fig. 7 Wideband microstrip antenna [24]: top and side views. The dash-dot line in the top view
shows the magnetic symmetry wall (XOY)

Table 2 Optimization results for third-order Chebyshev filter

Algorithm
Final specification
error (dB)

Number of fine model
evaluationsa

Shape-preserving response prediction �1.8 2
aExcludes the fine model evaluation at the starting point
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4 SPRP for Antenna Design

In this section, we illustrate the use of SPRP for the design of antenna structures.
As an example, consider an antenna shown in Fig. 7 [24], where x D [l1 l2 l3 l4 w2

w3 d1 s]T are the design variables. Multilayer substrate is ls � ls (ls D 30 mm). The
antenna stack (bottom-to-top) comprises: metal ground, 0.813 mm thick RO4003,
microstrip trace (w1 D 1.1 mm), 1.905 mm thick RO3006 and a trace-to-patch via
(r0 D 0.25 mm), driven patch, 3.048 mm thick RO4003, and four patches at the
top. The antenna stack is fixed with four M1.6 bolts at the corners (u D 3 mm).
Metallization is with thick 50 �m copper. Feeding is through an edge mount 50�

SMA connector with the 10 � 10 � 2 mm flange.
The design objective is jS11j � �10 dB for 3.1–4.8 GHz. Realized gain not less

than 5 dB for the zero zenith angle is an optimization constrain over the frequency
band. The initial design is xinit D [�4 15 15 2 15 15 20 2]T mm.

Both the high-fidelity model f (2,334,312 mesh cells at the initial design, 160 min
of the evaluation time) and the low-fidelity model c (122,713 mesh cells, 3 min of
the evaluation time) are simulated using the CST MWS transient solver [25]. Here,
the first step is to find the rough optimum of c, x(0) D [�4.91 15.15 15.07 2.56 14.21
14.23 21.07 2.67]T mm. The computational cost of this step is 82 evaluations of c
(which corresponds to about 1.5 evaluations of the high-fidelity model). Figure 8a
shows the responses of f at xinit and x(0), as well as the response of c at x(0).
The final design x(4) D [�5.21 15.38 15.57 2.58 14.41 13.73 21.07 2.067]T mm
(jS11j � �11 dB for 3.1–4.8 GHz, Fig. 8b) is obtained after four iterations of the
SPRP-based optimization. The gain of the final design is shown in Fig. 8c which
illustrates that the maximum of radiation points along the zero zenith angle closely
over the bandwidth of interest. The total design cost corresponds to about ten
evaluations of the high-fidelity model (Table 3).

As the second example, consider a planar antenna shown in Fig. 9. It consists of
a planar dipole as the main radiator element and two additional strips. The design
variables are x D [l0 w0 a0 lp wp s0]T . Other dimensions are fixed to: a1 D 0.5 mm,
w1 D 0.5 mm, ls D 50 mm, ws D 40 mm, and h D 1.58 mm. Substrate material is
Rogers RT5880 [30].

The high-fidelity model f of the antenna structure (10,250,412 mesh cells at
the initial design, evaluation time of 44 min) is simulated using the CST MWS
transient solver. The design objective is to obtain jS11j � �12 dB for 3.1–10.6 GHz.
The initial design is xinit D [20 10 1 10 8 2]T mm. The low-fidelity model c is also
evaluated in CST but with coarser discretization (108,732 cells at xinit, evaluated
in 43 s). For this example, the approximate optimum of c, x(0) D [18.66 12.98
0.526 13.717 8.00 1.094]T mm, is found as the first design step. The computational
cost is 127 evaluations of c, and it corresponds to about two evaluations of f.
Figure 10a shows the reflection responses of Rf at both xinit and x(0), as well as
the response of c at x(0). The final design x(2) D [19.06 12.98 0.426 13.52 6.80
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Fig. 8 Wideband microstrip antenna: (a) high-fidelity model response (dashed line) at the initial
design xinit, and high- (solid line) and low-fidelity (dotted line) model responses at the approximate
low-fidelity model optimum x(0); (b) high-fidelity model jS11j at the final design; (c) realized gain
at the final design for the zero zenith angle (solid line, XOZ co-pol.) and realized peak gain (dash
line). Design constrain is shown with the horizontal line at the 5 dB level

1.094]T mm (jS11j � �13.5 dB for 3.1–10.6 GHz) is obtained after two iterations
of the SPRP-based optimization with the total cost corresponding to about seven
evaluations of the high-fidelity model (see Table 4). Figure 10b shows the reflection
response and Fig. 11 shows the gain response of the final design x(2).
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Table 3 Wideband microstrip antenna: optimization cost

Evaluation time
Algorithm component Number of model evaluations Absolute (h) Relative to Rf

Evaluation of Rcd
a 289 � Rcd 14.4 5.4

Evaluation of Rf
b 5 � Rf 13.3 5.0

Total optimization time N/A 27.7 10.4
aIncludes initial optimization of Rcd and optimization of SPRP surrogate
bExcludes evaluation of Rf at the initial design
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Fig. 9 UWB dipole antenna geometry: top and side views. The dash-dot lines show the electric
(YOZ) and the magnetic (XOY) symmetry walls. The 50 � source impedance is not shown at the
figure

5 SPRP for Aerodynamic Shape Optimization

The SPRP technique is illustrated here on aerodynamic design of airfoil sections
at transonic flow conditions [17]. The airfoil shapes are parameterized with three
parameters of the NACA four-digit method: m (the maximum ordinate of the mean
camberline as a fraction of chord), p (the chordwise position of the maximum
ordinate), and t/c (the thickness-to-chord ratio) [26]. The design variable vector is
x D [m p t/c]T .

The airfoil performance is obtained through computational fluid dynamic (CFD)
models which are implemented using the ICEM CFD [27] grid generator and the
FLUENT [28] flow solver. The high-fidelity CFD model f is a two-dimensional
steady-state Euler analysis with roughly 400,000 mesh cells and an overall
simulation time around 67 min. The low-fidelity CFD model c is the same as
the high-fidelity one, but with a coarser mesh (roughly 30,000 cells) and relaxed
convergence criteria (100 flow solver iterations). The low-fidelity model is roughly
80 times faster than the high-fidelity one.

In aerodynamic shape optimization, the SPRP technique is applied to the pressure
distribution (Cp(x)) on the airfoil surface [17]. Figure 12a shows the pressure
distributions of two different designs obtained by the low-fidelity model. Shown
are the characteristic points (red circles) and the translation vectors (blue lines) at
important areas of the distributions. The application of the translation vectors to the
high-fidelity model distributions is shown in Fig. 13b.
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Fig. 10 UWB dipole antenna reflection response: (a) high-fidelity model response (dashed line)
at the initial design xinit, and high- (solid line) and low-fidelity (dotted line) model responses at the
approximate low-fidelity model optimum x(0); (b) high-fidelity model jS11j at the final design

Table 4 UWB dipole antenna: optimization cost

Evaluation time
Algorithm component Number of model evaluations Absolute (min) Relative to Rf

Evaluation of Rcd
a 233 � Rcd 167 3.8

Evaluation of Rf
b 3 � Rf 132 3.0

Total optimization time N/A 299 6.8
aIncludes initial optimization of Rcd and optimization of SPRP surrogate
bExcludes evaluation of Rf at the initial design

The design objective is to maximize the section lift coefficient (Cl(x)) subject
to constraints on the section drag coefficient (Cdw(x)) and the non-dimensional
cross-sectional area (A(x)). The problem is formulated as minimization of
the high-fidelity model f (x) D �Cl(x) subject to g1(x) D Cdw(x) � Cdw.max � 0,
and g2(x) D Amin � A(x) � 0, where Cdw.max D 0.0041 is the maximum drag and
Amin D 0.065 the minimum cross-section. The free-stream Mach number is set
M1 D 0.75 and the angle of attack ˛ D 1ı. The design variable bounds are
0 � m � 0.1, 0.2 � p � 0.8, and 0.05 � t � 0.20. The initial design is xinit D [0.03
0.2 0.1]T .
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Fig. 11 UWB dipole antenna at the final design: IEEE gain pattern (x-pol.) in the XOY plane at
4 GHz (thick solid), 6 GHz (dash-dot line), 8 GHz (dash line), and 10 GHz (solid line)

Due to unavoidable misalignment between the pressure distributions of the high-
fidelity model and its SPRP surrogate, it is not convenient to handle the drag
constraint directly, because the design that is feasible for the surrogate model
may not be feasible for the high-fidelity model. This problem is alleviated by
implementing the drag constraint through a penalty function. More specifically, the
objective function is defined as

H
�
Cp .x/

� D �Cl:s

�
Cp .x/

� C ˇ
�
�Cdw:s

�
Cp .x/

��2
(5)

where 4Cdw.s D 0 if Cdw.s � Cdw.s.max and 4Cdw.s D Cdw.s � Cdw.s.max otherwise. The
cross-sectional area constraint is handled directly. We use ˇ D 1,000 in the numer-
ical study. Here, the pressure distribution for the surrogate model is Cp D Cp.s, and
for the high-fidelity model Cp D Cp.f . Also, Cl.s and Cdw.s denote the lift and drag
coefficients for the surrogate.

The optimization problem is solved by the direct optimization of the high-fidelity
model using the pattern-search algorithm, as well as by the SPRP algorithm. The
results are presented in Table 5. It can be seen that both approaches are able to meet
the design goals and produce similar optimized airfoil shapes. The direct approach
requires 120 high-fidelity model evaluations (Nf ). The SPRP algorithm requires 330
low-fidelity model evaluations (Nc) and 11 high-fidelity ones, yielding a total cost
of less than 18 equivalent high-fidelity model evaluations.

To meet the design goals, the optimizer does three fundamental shape changes:
(1) the maximum ordinate of the mean camber line (m) is reduced, (2) the location
of the maximum ordinate of the mean camber line (p) is moved aft, thus increasing
the trailing-edge camber, and (3) the thickness-to-chord ratio (t/c) is reduced. Shape
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Fig. 12 An illustration of the SPRP technique applied to the pressure distributions obtained by
the low-fidelity CFD models of two designs, (a) initial characteristic points and translation vectors,
(b) additional points

changes (1) and (3) reduce the shock strength and, thus, reduce the drag coefficient.
The associated change in the pressure distribution reduces the lift coefficient.
However, shape change (2) improves (or recovers a part of) the lift by opening up
the pressure distribution behind the shock. These effects can be seen in the pressure
distribution plot in Fig. 14, and the Mach contour plots in Figs. 15 and 16.

6 Fast Surrogate Modeling Using SPRP

In this section, we illustrate the use of SPRP for modeling of microwave compo-
nents. We consider two versions of SPRP surrogates: the basic one and the modified
implementation that exploits multiple training points. Further discussion on the
recent developments of SPRP models can be found in [31].
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and (b) comparison of the actual and the predicted (dash) high-fidelity response

Table 5 Numerical results for the airfoil
design optimization

Variable Initial Direct SPRP

m 0.0300 0.0080 0.0090
p 0.2000 0.6859 0.6732
t/c 0.1000 0.1044 0.1010
Cl 0.8035 0.4641 0.4872
Cdw 0.0410 0.0041 0.0040
A 0.0675 0.0703 0.0680
Nc N/A 0 330
Nf N/A 120 11
Total cost N/A 120 <18
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Fig. 15 Airfoil optimization results: Mach contours at the initial design
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Fig. 16 Airfoil optimization results: Mach contours at the optimized design

6.1 SPRP Modeling: Basic Version [32]

Let XR � X be the region of interest where we want the surrogate model to be
valid. Typically, XR is an n-dimensional interval in Rn with center at reference point
x0 D [x0.1 : : : x0.n]T 2 Rn and size ı D [ı1 : : : ın]T . Let XB D fx1, x2, : : : , xNg � XR

be the base set, such that the fine model response is known at all points xj, j D 1,
2, : : : , N. Here, the base points are allocated using so-called star-distribution [33],
which is a design of experiments traditionally used by space mapping.

The SPRP surrogate model is defined as follows:

s .x/ D S .x;xr / (6)

where xr is the base point that is the closest to x, i.e.,

xr D arg min
y2XB

jjx � y jj (7)

whereas S(x,xr) is the SPRP model created with xr used as a reference design (cf.
Sect. 2.3).

Although, as demonstrated in [32], this simple modeling approach proves to be
more accurate than SM, and it has some drawbacks. The model (6), (7) utilizes only
one base point at a time. As shown in Fig. 17a, the region of interest is divided
into regions of “attractions” of particular base points. For all evaluation points x
located in a given region of “attraction,” the surrogate model (6) is determined
using the same single base point as a reference design. Due to this, the surrogate
does not utilize all available f -model data at a time. Also, the surrogate model is
discontinuous at the borders of the areas of “attraction” because the solution to (6) is
not unique at these points. This may cause some problems while using the surrogate
for design optimization.
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Fig. 17 SPRP modeling (n D 2): (a) Original: Star-distributed base points are denoted using
black circles. The region of interest is divided into areas of “attraction” of particular base points,
determined by the Euclidean distance. An example evaluation design x is close to the base design
x3, and this point becomes a reference design for SPRP model; (b) Modified: Base points are
denoted using black circles. A shaded area denotes a hypercube defined by a subset XS of base
points being the closest to an example evaluation design x. The surrogate at x is defined as a linear
combination of SPRP models using all base points from XS as reference designs. Coefficients of
this linear combination are calculated by representing x through all points from XS

6.2 Modified SPRP Modeling [34]

Here, a modified SPRP modeling technique is proposed that utilizes multiple
reference designs and solves the discontinuity problem described in the previous
section. Again, the base set is assumed to be allocated using star-distribution [33];
however, the model can also be formulated for more general setups.

The concept of the SPRP model exploiting multiple reference designs is
explained in Fig. 17b. For an evaluation point x, we find a subset XS of the base set
XB that defines a rectangular area (hypercube) of the region of interest containing
x. The surrogate model is set up using all points from XS. The star-distribution base
set contains N D 2n C 1 points as illustrated in Fig. 17a for n D 2. Without loss of
generality, we can assume that XS D fx0, x1, : : : , xng. We have

x D x0 C ˇ1v1 C ˇ2v2 C � � � C ˇnvn (8)

where ˇ1, : : : , ˇn determines a unique representation of x – x0 using vectors
vi D xi – x0, i D 1, : : : , n. Coefficients ˇi can be found as
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ˇ1

ˇ2
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7
7
5 D Œv1 v2 : : : vn��1 � �

x � x0
�

(9)

The vector x can be the unique represented as

x D ˛0x
0 C ˛1x

1 C ˛2x
2 C � � � C ˛nx

n (10)

where ˛0 D 1 � (˛1 C : : : C ˛n), and ˛i D ˇi, i D 1, : : : , n. The modified SPRP
surrogate model is then defined as

bs .x/ D ˛0S
�
x;x0

� C ˛1S
�
x;x1

� C � � � C ˛nS .x;xn/ (11)

with S(x, xi), i D 0, 1, : : : , n, being the SPRP models (1) determined using respective
reference designs.

It can be verified that the model (11) is continuous with respect to x provided that
both f and c are continuous functions of x. Also, it is expected to be more accurate
than the model (6), (7) because it exploits the available fine model data in a more
comprehensive way.

6.3 Verification: Fourth-Order Ring Resonator
Bandpass Filter [35]

In this section we illustrate the use of SPRP for modeling of a microwave filter.
We also compare both basic and modified SPRP with surrogate modeling using
standard space mapping [33]. The standard SM model is quite involved because it is
using input and output SM of the form A � c(B � x C c), enhanced by the implicit
and frequency space mapping [33]. All surrogate models are set up using the
same base set consisting of N D 2n C 1 points allocated according to the star-
distribution [33]. The quality of the models is assessed using a relative error measure
jjf (x) � s(x)jj/jjf (x)jj expressed in percent.

Consider the fourth-order ring resonator bandpass filter [35] (Fig. 18a). The
design parameters are x D [L1 L2 L3 S1 S2]T mm. The fine model f is simulated in
FEKO [36]. The coarse model, Fig. 18b, is implemented in Agilent ADS [23].
The region of interest is defined by the reference point x0 D [24.0 21.0 26.0 0.2
0.1]T mm, and the region size ı D [2.0 2.0 2.0 0.1 0.05]T mm.

The modeling accuracy has been verified using 50 random test points. The results
shown in Table 6 and in Fig. 19 indicate that the modified SPRP model ensures better
accuracy than both the standard SM model and the original version of SPRP [32].
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Fig. 18 Fourth-order ring resonator bandpass filter: (a) geometry [35], (b) coarse model
(Agilent ADS)

Table 6 Fourth-order ring resonator filter: modeling results

Model Average error (%) Maximum error (%)

SM 1.8 4.5
SPRP (Basic version [32]) 1.1 2.7
SPRP (Modified version) 0.3 0.6

As an application example, the modified SPRP surrogate was utilized to optimize
the filter with respect to the following design specifications: jS21j � �1 dB for
1.75 GHz � ! � 2.25 GHz, and jS21j � �20 dB for 1.0 GHz � ! � 1.5 GHz and
2.5 GHz � ! � 3.0 GHz. The initial design was x0 D [24.0 21.0 26.0 0.2 0.1]T mm.
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Fig. 19 Fourth-order ring resonator bandpass filter: fine model (solid line) and surrogate model
(circles) responses at three selected test points for: (a) standard SM model, (b) modified SPRP
surrogate model

Figure 20a shows the fine model response of the filter at the initial design and at
the design x* D [22.61 20.11 26.626 0.156 0.040]T mm obtained by optimizing the
surrogate. The specification error at the optimized design is �0.45 dB.

The SPRP model was also used to estimate yield at the optimized design,
assuming 0.2 mm deviation for length parameters (L1 to L2) and 0.02 mm for
spacing parameters (S1 and S2). The yield estimation based on 200 random samples
is 68 % (Fig. 9b). This value is very close to the yield estimated directly using the
fine model (70 %). The estimation performed with the SM model is less accurate
(50 %). Note that the total computational cost of building the surrogate model,
design closure, and statistical analysis is only 11 full-wave simulations of the filter
structure!

7 Conclusion

A review of SPRP and its applications to solving simulation-driven design problems
in various engineering disciplined has been presented. SPRP exploits the knowledge
embedded in the low-fidelity model of the structure under consideration in order to
predict the response of the expensive high-fidelity model. As a result, SPRP is capa-
ble of yielding a satisfactory design at a low computational cost as demonstrated
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Fig. 20 Fourth-order ring resonator bandpass filter: (a) fine model responses at the reference
point x0 (dashed line) and at the optimal solution x* of the modified shape-preserving response
prediction surrogate model (solid line); (b) statistical analysis at x* using the modified shape-
preserving response prediction model. Estimated yield is 68 %. Thick black solid line denotes the
fine model response at optimal design x*

using several examples involving design problems in electrical and mechanical
engineering. As indicated in Sect. 5, SPRP can also be used to construct accurate
global or quasi-global surrogate models. SPRP is a relatively novel technique that
is still under development. Recent papers provide various enhancement of the
technique in the context of both optimization (e.g., [37]) and modeling (e.g., [31]).
It should also be mentioned that a potential limitation of SPRP is the fact that one-
to-one correspondence of all the model (both low- and high-fidelity ones) responses
involved in the process of creating the surrogate model is an important prerequisite
for the technique to work. Various ways of ensuring such a correspondence can be
found in the literature (e.g., [15]).
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