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Preface

The costs of extensive computational simulations used for engineering designs can
be very expensive, and thus can be a serious bottleneck for the design process
in many applications. Nowadays prototyping is heavily involved in design and
verification using computer models, and such computational approaches can have
many advantages such as the reduction of the overall design costs and design
cycles as well as finding good solutions to ‘what-if’ scenarios. However, the
computation costs incurred by extensive computational time can still be very high.
Though the speed of the computer power has steadily increased over past the
decades, computationally extensive tasks are still a challenging issue. One of the
reasons is the ever-increasing demand of the high-accuracy, high-fidelity models
for simulating complex systems. For many applications such as those in aerospace
engineering, microwave engineering and biological applications, a single simulation
task can take hours, even days or weeks on modern computers. While in other
applications such as combinatorial optimization problems, the evaluations of every
possible combination can be prohibitive because such numbers of combinations can
be astronomical. For continuous problems such as computational fluid dynamics
and electromagnetic wave simulation, some forms of efficient approximations such
as surrogate-based models are needed, while for combinatorial problems, efficient
algorithms should be used, though there are no efficient algorithms for genuinely
NP-hard problems.

In addition, other challenges associated with such problems include numerical
noise in the simulation data, multimodality with multiple local optimum designs
due to high nonlinearity, as well as multiple (potentially conflicting) objectives. All
these make computationally expensive design tasks even more challenging. Thus,
it is timely to edit a book to address such problems with the focus on the latest
developments.

From the computational point of view, three key issues should be emphasized:
approximation models, optimization algorithms and multi-objectives. Approxi-
mation models often use the so-called surrogates that can reliably represent
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vi Preface

the expensive, simulation-based model of the system/device of interest. If such
surrogates are designed properly, they can speed up the simulation significantly.
However, such surrogates tend to work for the local, smooth design landscape,
and for multimodal problems, good approximations are not easy to construct. This
book will include some of the latest developments in this area when dealing with
nonlinear problems with complex design objectives.

Even with efficient, computational models, efficient optimization algorithms are
also crucial to ensure design optimization that can be carried out successfully
in a practically acceptable time scale. Traditional algorithms such as the trust-
region method, the interior-point method and gradient-based algorithms can work
well for local search, but for multimodal global optimization, heuristic and meta-
heuristic algorithms start to demonstrate their efficiency. Swarm intelligence based
approaches will be introduced and reviewed in this book.

In almost all engineering applications, there are multiple design objectives
and these objectives can often be conflicting, resulting in very complex objective
landscapes in the design space. In addition, complex constraints can often modify
the search regions significantly and thus make it even more challenging for search
algorithms. Furthermore, the computational costs for multi-objective optimization
will increase multifold, compared to the counterpart of single objective optimization
problems. For example, multi-objective optimization can be very challenging in
image processing applications, and we will also briefly touch this area in this book.

This edited book provides a timely snapshot of some of the latest developments in
surrogate-based models, optimization algorithms and multi-objective design appli-
cations. Topics include surrogate models in engineering design, surrogate-based and
PDE-constrained models in climate applications, shape-preserving response predic-
tions, simulation-driven design for antenna designs, space dimension reduction for
multi-objective design, large-scale optimization via swarm intelligence, clustering
of radar images, classification of laser point clouds, knowledge-based modelling by
artificial neural networks and others. However, as the length of the book is limited, it
is not our intention to cover everything. As a result, many topics that are very active
in the field may not be covered at all. But we hope all the topics we have covered
can form a basis with enough literature for further research in the relevant areas.

The editors hope that topics covered in this book will allow the readers to gain
understanding of basic mechanisms of surrogate modeling process and surrogate-
based optimization algorithms, to follow the trend of swarm intelligence and image
processing, and to see the ways of dealing with multi-objective optimization.
Ultimately, this may help to reduce the costs of the design process aided by computer
simulations. Therefore, this book can serve as a timely reference to researchers,
lecturers and engineers in engineering design, modelling and optimization as well
as industry.

May 2014 Slawomir Koziel
Reykjavik, Iceland Leifur Leifsson
London, UK Xin-She Yang
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Surrogate-Based and One-Shot Optimization
Methods for PDE-Constrained Problems
with an Application in Climate Models

Thomas Slawig, Malte Prieß, and Claudia Kratzenstein

Abstract We discuss PDE-constrained optimization problems with iterative state
solvers. As typical and challenging example, we present an application in climate
research, namely a parameter optimization problem for a marine ecosystem model.
Therein, a periodic state is obtained via a slowly convergent fixed-point type
iteration. We recall the algorithm that results from a direct or black-box optimization
of such kind of problems, and discuss ways to obtain derivative information to
use in gradient-based methods. Then we describe two optimization approaches,
the One-shot and the Surrogate-based Optimization method. Both methods aim to
reduce the high computational effort caused by the slow state iteration. The idea
of the One-shot approach is to construct a combined iteration for state, adjoint
and parameters, thus avoiding expensive forward and reverse computations of a
standard adjoint method. In the Surrogate-based Optimization method, the original
model is replaced by a surrogate which is here based on a truncated iteration with
fewer steps. We compare both approaches, provide implementation details for the
presented application, and give some numerical results.

Keywords Optimization • Climate model • Marine ecosystem model • One-shot
method • Surrogate-based optimization

1 Introduction

Climate simulations are a very challenging task in applied mathematics and
scientific computing. The underlying mathematical systems have a high number
of uncertainties with respect to initial values, model parameters, or the relevant
processes to be included. Moreover, the state equation solvers often involve iterative
algorithms to compute steady or periodic solutions. To identify model parameters
and to assess the models, model-to-data misfit functions are minimized using
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2 T. Slawig et al.

numerical methods. Since iterative processes are involved, it is crucial to derive
highly efficient optimizers.

In this respect, such kind of models and the corresponding optimization or
control problems are only one representative for PDE-constrained optimization
problems with iterative state solvers. Similar problems arise in Computational Fluid
Mechanics and many other application areas. Thus, we will consider here a more
general class of PDE-constrained optimization problems.

2 PDE-Constrained Optimization Problems with Iterative
State Equation Solvers

We study optimization problems governed by partial differential equations (PDEs),
given in the following general form

min
.y;u/2Y�Uad

J.y; u/ (1)

s:t: e.y; u/ D 0 in Z: (2)

Here J W Y �U ! R is the cost or objective function defined on the cartesian prod-
uct of state and control (or parameter) spaces Y and U , respectively. The admissible
set Uad characterizes additional constraints on the controls (parameters) u.

• either as infinite-dimensional function spaces
• or, e.g., when studying the discretized problem, as finite-dimensional spaces,

being isomorphic to R
nY ;RnU with nY ; nU the dimensions of Y; U , respectively.

It is also possible (and often the case) that Y is a function space and U is finite-
dimensional, e.g., a space of real-valued parameters. In many cases, the admissible
set is then given by simple bounds, i.e., as

Uad WD fu 2 U W umin � u � umaxg

with some fixed umin; umax 2 R
nU , and the inequalities meant component-wise.

The state equation is defined by the often nonlinear mapping e W Y � U ! Z.
If it is given in an infinite-dimensional setting, e.g., as weak form of a PDE, the
space Z is the dual of the test space. When considering an already discretized state
equation, Z is isomorphic to R

nZ with appropriate dimension nZ .
We will also use the reduced cost functional OJ W U ! R defined by

OJ .u/ WD J.y.u/; u/ where y D y.u/() e.y; u/ D 0: (3)
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It is characteristic for the two optimization methods we describe that the solution of
the state equation (2) is computed by a fixed-point type iteration of the form

yj D G.yj�1; u/; j D 1; 2; : : : ; (4)

with iteration function G W Y � U ! Y . In climate models, this iteration is
called spin-up. Each iteration step includes one or more time-integration steps with
constant or periodic external forcing, thus leading to a steady solution, in climate
models often a steady annual cycle. A similar procedure is also very common in
fluid dynamics to compute stationary or periodic solutions with transient solvers.
This fact also motivates the notion pseudo time-stepping scheme for (4).

We will briefly write Gj .y; u/ for the result of j subsequent iterations with the
same control variable u, i.e.

yj D Gj .y0; u/; j D 1; 2; : : : (5)

The solution of the state equation (2) is now given as the limit

y� D lim
j!1yj ; (6)

We will assume here that this limit exists for all feasible controls u 2 Uad ,
guaranteed, for example, by some contraction or quasi-contraction property of G.
Assuming that G is continuous w.r.t. its first argument, (6) implies

e.y; u/ D 0 in Z () y D G.y; u/ in Y: (7)

In practice, the iteration (4) has to be terminated when a stopping criterion is
satisfied. Thus, instead of using the limit y� from (6) in the evaluation of J , an
approximation Oy WD yjmax with an appropriate value of jmax is taken.

3 Exemplary Application: Parameter Optimization
in a Marine Ecosystem Model

In this section we show a model problem from climate research that fits in the
above general setting, and where both methods can be and have been applied. The
model problem is an application in marine science. It deals with the identification of
climate model parameters using experiment or model data. In climate models, the
iterative computation of the state variables is rather common and usually very time-
consuming. Three-dimensional climate model simulations may take several days or
more of computer time. In this section, we introduce the underlying model, i.e. the
state equation, its discretization, and the resulting iterative scheme (4).
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3.1 Marine Ecosystem Models as Example for Climate Models

We here give the basic structure of marine ecosystem models which serve as one
possible example for climate models. A typical optimization problem for this kind
of models is parameter identification or optimization, i.e., poorly known or not
measurable model parameters shall be adjusted such that the model output fits given
observational (or other model) data. This task is also called model calibration. We
give one example that we actually used in both optimization strategies.

Marine ecosystem models consist of two parts, namely the ocean circulation
and the biogeochemistry. The former is basically given by the Navier-Stokes
equations including temperature and salinity transport, whereas the latter describes
the reaction of and interactions between nutrients and different species of ocean
biota, e.g., photosynthesis, dying and growth of plankton species, etc. The marine
ecosystem plays an import role within the global carbon cycle, but its complex
organic and inorganic cycles are challenging when formulating a comprehensive
biogeochemical model, see for example, [23].

The coupling between ocean circulation and the biogeochemical interactions is
mostly regarded as one-way coupling. The influence of the circulation (including
temperature and salinity distribution) on the biota is assumed to be much more
important as vice versa. This is mainly motivated by the high complexity and
the enormous computational effort that is necessary to solve the time-dependent
and spatially three-dimensional coupled system of (1) an ocean circulation model
(consisting of the Navier-Stokes equations with free ocean surface, energy and
salinity transport equations) together with (2) the biogeochemical model (consisting
of between two and about 50 transport equations for the different species, depending
on the chosen model). Thus often an off-line computation is performed: Velocity,
turbulent diffusion, temperature, and salinity fields are computed beforehand by the
ocean circulation model and used as input or forcing data for the biogeochemical
simulations. This significantly reduces the amount of computation. By using pre-
computed circulation data, all tracers necessarily are regarded as passive, i.e., they
do not have any influence on the circulation.

In our example, we use this off-line mode. The model equations then form a
system of coupled transport or advection-diffusion-reaction equations, with reaction
terms given by the biogeochemical processes. Our model equations then read

@yi

@t
D div.�ryi /� div.vyi /C qi .y; u/; in ˝ � Œ0; T �; i D 1; : : : ; nstate (8)

together with given initial data yinit D y.t D 0/ 2 Y and usually Neumann
boundary conditions. Here, ˝ � R

3 is the spatial domain, Œ0; T � the considered time
interval, y D .yi /iD1;:::;nstate the vector of state variables (biogeochemical tracers),
where yi .x; t/ denotes a single tracer concentration at .x; t/.

The time dependent turbulent mixing or diffusion coefficient � and the velocity
vector field v, together with temperature and salinity distributions (entering in the qi ,
but omitted for brevity in the notation above) are precomputed data from an ocean
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model and thus not subject to identification here. The turbulent mixing dominates
the molecular tracer diffusion in this application, and thus � is the same for all
tracers. Since velocity v and � are given, the nonlinearity in the above system
w.r.t. to the state variables y D .yi /i comes from the nonlinear coupling terms qi ,
whereas the transport part (diffusion and advection, the first two terms on the right)
is linear.

The parameters to be identified are summarized in the vector u and appear in the
nonlinear biogeochemical coupling terms qi . These are non-autonomous extensions
of predator–prey models, since, for example, the growth rate of phytoplankton
(algae) depends on the sunlight and thus on space and time. Nearly all of these
coupling terms qi are spatially local, i.e., they describe processes happening at
point x and not depending on neighborhood points. Some of them include sinking
processes and thus become non-local. The sinking velocity of dead material, for
example, is one parameter that is crucial to identify.

3.2 Example: The N-DOP Model

In this section we describe the biogeochemical model we used both in the One-
shot and the Surrogate-based Optimization approach. Since there are many different
biogeochemical models, the one used here is only an example. Modelers are
interested not only in the right parameters for a single model, but moreover try to
assess and compare different models, a task where parameter identification becomes
important.

The N-DOP model (see [19]) consists only of the two tracers phosphate
(nutrients, N) and dissolved organic phosphorus (DOP), denoted by y D .y1; y2/.
Thus nstate D 2 in (8), which is at the lower limit of complexity for such
kind of model. Typical for a biogeochemical model are different biogeochemical
interactions in two horizontal layers in the ocean, namely the upper, euphotic zone
˝1 (where light enables photosynthesis) and the lower, non-euphotic zone ˝2. The
model consists of the following coupling terms:

q1.y; u/ D
8
<

:

�g.y1; I /C �y2 in ˝1

.1 � �/
@ Qg
@x3

.y1; I /C �y2 in ˝2

q2.y; u/ D
�

�g.y1; I / � �y2 in ˝1

��y2 in ˝2:

The vertical spatial coordinate here is x3. On the left-hand side, we have summarized
here as above all parameters (see below) in the vector u. The biological production

g.y1; I / D ˛
y1

y1 CKN

I

I CKI
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depends on nutrients y1 and light I , and is limited by a maximum production
rate parameter ˛. Light is computed from the short wave radiation (as a function
of latitude and time, thus making g a non-autonomous function), the photosyn-
thetically available radiation, the ice cover and the exponential attenuation of
water KH2O . A fraction � of the biological production remains suspended in the
water column as dissolved organic phosphorus, which remineralizes with rate �.
The remainder of the production sinks as particulate to the bottom where it is
remineralized according to an empirical power law relationship:

Qg.y1; I / D
�

x3

xdepth

��b Z xdepth

0

g.y1.x; t/; I.x; t// dx3:

Here xdepth D xdepth.x1; x2/ is the depth of the upper layer ˝1 which depends
on the horizontal coordinate .x1; x2/. The parameters to be optimized are given in
Table 1.

Here, the parameters are assumed to be constant w.r.t. to space and time, i.e., the
parameter space U equals R

nU , with Uad defined by box constraints that are also
given in Table 1. For further model details we refer to [19].

3.3 Discretization

In this section we describe a discretization scheme that is adapted to the mentioned
one-way coupling and was used in our numerical tests. It is built upon a matrix
representation of the linear part of system (8), namely the pure transport operators.

The Transport Matrix Method (TMM) introduced in [13] computes the effect of
the ocean circulation on the tracer distributions. It avoids using ocean circulation
data �; v directly and discretizing the corresponding diffusion and advection opera-
tors in the tracer transport simulation. In contrast, the TMM builds up a set of pairs
of explicit and implicit matrices (corresponding to the discretization in the ocean
model which is based on an operator splitting) in every time step. The transport
matrices are generated by several runs of one time step of the ocean model, each for
a given initial tracer distribution (designed similar to a linear finite element ansatz
function) in every grid point. Each resulting tracer distribution builds one column
of the pair of transport matrices for one ocean model time step, and all evaluations
together build up the whole matrix pair. Since the discretization of the transport
in ocean models typically involves nonlinear schemes (like flux limiters etc.), this
generation of the matrix pair can be seen as a way of linearization of the scheme.
Since the external forcing depends on time, even with climatological (i.e., annually
periodic) forcing data and due to the typical time step-size of 3 h, the amount of
storage for all these matrices would be prohibitively large, even though the matrices
are block-diagonal and sparse. Thus, the matrices are usually averaged in time.
In our case, they are monthly averaged. More details on the temporal and spatial
discretization and the evaluation of transport matrices, especially in combination
with operator splitting schemes, can be found in [13].
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We now turn to the resulting discretized version of (8). Let ˝h be the set of
discrete spatial points x 2 ˝, usually arranged on a rectangular grid, adapted to the
bottom ocean topography and coastlines. This set ˝h is determined by the spatial
discretization of the used ocean model which was used to compute the transport
matrices. In our case, the latitudinal and longitudinal resolution of the underlying
ocean model grid is 2:8125ı, with 15 vertical levels. This results in a dimension of
the discretized state space Y of nY D 105; 498.

Let yl be the appropriately arranged vector of values .yi .x; tl //i of all nstate

tracers on all spatial grid points x 2 ˝h, and, in a similar way, ql .yl ; u/ the vector
of discretized coupling terms qi for all x 2 ˝h, both at fixed time step l . The time
integration scheme for 1 year model time with a fixed step-size � then reads

ylC1 D Aimp;l .Aexp;l ylC� ql .yl ; u//D W 'lC1.yl ; u/; lD0; 1; : : : ; lyear � 1: (9)

Here Aimp;l ; Aexp;l are the implicit and explicit transport matrices at time step l ,
which are linearly interpolated between the pre-computed set of monthly matrices
to the corresponding time tl . In our case, the number of time steps in 1 year model
ranges may vary from lyear D 45 (a very coarse temporal resolution, resulting in a
step-size of � D 192 h) to lyear D 2; 880 (which is the original one of the model,
resulting in � D 3 h). Each step in the time-integration scheme (9) now consists of
the evaluation of the coupling term ql and two matrix–vector multiplications.

In climate model calibration or parameter optimization, as a first step a steady
annual cycle, in our case a periodic solution of (8), is computed and used in the cost
function evaluation. As a consequence, the iteration function G in (4) is given as

G WD 'nyear ı : : : ı '1:

We thus regard one step in (4) as 1 year model time, and j there counts model years.
The set of all discrete time instants used in a simulation is denoted by

Œ0; T �� WD
˚
..j � 1/lyear C l/� W j D 1; : : : ; jmax; l D 1; : : : ; lyear

�
;

where jmax is the number of model years simulated. For the numerical computation,
the iteration starts with a constant distribution y0. It can be observed that after
jmax � 3; 000 to 10; 000 iterations of G in (4), i.e. years model time, an acceptable
approximately steady periodic solution is obtained, see also [16]. Since a typical
step-size is 3 h, this means that about 106–108 discrete time steps of the spatially
three-dimensional system of transport equations are necessary to attain a steady
periodic solution. Even on parallel high performance hardware, the computation of
a numerically converged steady periodic solution may take several minutes. This
is the reason for the high demand for fast optimization methods, since usually
one optimization may take hundreds of function evaluations, i.e., the mentioned
computations of steady periodic solutions. More details and results can be found
in [21].
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3.4 Parameter Optimization Problem

In our numerical tests, the considered minimization problem was a least squares cost
functional with regularization term given by

J.y; u/ WD 1

2
ky � ydatak2Y C

˛

2
ku � uguessk2U ; ˛ > 0: (10)

Working in the finite-dimensional spaces for the discretized models, the used norms
are Euclidean vector norms, optionally with weighting coefficients. Components of
u are the parameters in Table 1. We follow [16] in the choice of the initial parameter
guess uguess and took the initial value u0 (both given in Table 1) for the parameters
in both optimization methods. For the choice of the desired state or target data ydata

we use here model-generated test data, obtained with parameter vector u D ud , in
order to evaluate the two methods and the quality of their results compared to the
known optimal parameter values.

4 Direct Optimization

In this section we describe a direct optimization algorithm, i.e., a method where
the state equation iteration (4) is numerically converged before the parameters u are
updated. Such kind of algorithm is used for example, when a black-box optimizer is
applied on the original problem (1–2). In an iterative optimization algorithm, there
will be two nested iterations then, and it can be conceptually written as follows.

Optimization Algorithm with Iterative State Equation Solver:

1. Choose an initial value for the control u0.
2. For k D 0; 1; : : : ; kmax W

a. Choose an initial value y0 for the state corresponding to control uk.
b. Compute an approximation of the state for uk :

Oyk D Gjk .y0; uk/:

c. Optionally: Compute the gradient of the cost J w.r.t. u, i.e.,

d

du
J.y.u/; u/

ˇ
ˇ
ˇ
ˇ
. Oyk ;uk/

; (11)

using

• either the gradient Oy0k WD
d Oyk

du

ˇ
ˇ
ˇ
ˇ
uDuk

• or the adjoint state Nyk .
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d. Perform an update uk ! ukC1 of the control.
e. If some criterion for u or J or its gradient is satisfied, stop.

The number jk of inner iterations in step 2b might be varying with k or be fixed
beforehand to some value constant jmax . To make things simpler in notation, we
will here assume in this section that jk D jmax is constant.

A typical case which motivates the two methods compared here is that the
evaluation of G is costly and/or that the convergence in (4) and thus in step 2b (and
then presumably also in the gradient iterations usually needed in step 2c) is slow.
Both strategies aim to reduce this high computational effort by using some kind of
reduced accuracy or low-fidelity approximation in step 2b by taking low values jmax

there to reduce the computationally effort or to make the whole algorithm feasible
at all. As a result, the Oyk used to evaluate the cost are different (and eventually far
away) from the limits

y�k WD lim
j!1G.yj ; uk/: (12)

We call the above algorithm a direct or direct fine model optimization if the number
jmax of inner state iterations equals a high number denoted by j f , for example
given by the original model or simulation code before used in an optimization.

4.1 Gradient Evaluation

The optional gradient computation in step 2c of the above algorithm can be
performed either by a sensitivity or by an adjoint approach. Here, we assume that
all derivatives of G; J and y used below exist as Fréchet derivatives and that Y and
U are Hilbert spaces.

4.1.1 Sensitivity Equation Approach

Using a sensitivity equation, the iteration (4), with u D uk and up to step j D jk , is
differentiated w.r.t. u. This leads to the following iteration for the derivatives:

y0j WD
dyj

du

ˇ
ˇ
ˇ
ˇ
uDuk

D Gy.yj�1; uk/y0j�1 CGu.yj�1; uk/; j D 1; : : : ; jk: (13)

Here subscripts y; u denote partial derivatives of G. This iteration is initialized by
y00 D dy0

du which usually is zero, except in the case when the initial data are to be
optimized as well (which is possible).
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Now, the two iterations in steps 2b and 2c can be computed in different ways and
orders. We use here the notions introduced in [7, 11].

• In the two-phase approach, the two iterations are performed after another, i.e., the
two steps 2b and c remain separate. It can be seen from (13), where the iterates
yj of the state are used, that these have to be stored during step 2b in order to use
them in step 2c.

• In the piggy-back approach, both iterations are combined to

y0j D Gy.yj�1; uk/y0j�1 CGu.yj�1; uk/;

yj D G.yj�1; uk/

)

j D 1; : : : ; jk :

This approach avoids the storing of the state iterates.
• The Christianson approach presented in [2] performs the sensitivity iteration (13)

with the previously computed (numerically) converged state Oyk instead of using
its iterates yj ; j D 0; : : : ; jk � 1, thus also avoiding storage of the iterates.

Once Oy0k is computed, the gradient of OJ with respect to the control can be computed
by the chain rule as

d

du
J.y.u/; u/

ˇ
ˇ
ˇ
ˇ
. Oyk ;uk/

D Jy. Oyk; uk/ Oy0k C Ju. Oyk; uk/: (14)

4.1.2 Adjoint Approach

In the adjoint approach, the Lagrangian associated with problem (1–2) is used
to compute the gradient (14) without knowing or evaluating Oy0k . We compute the
directional derivative of the state equation in its fixed-point form, namely the right-
hand side of (7), w.r.t. u in direction v and obtain

y0.u/v D d

du
G.y.u/; u/v D Gy.y.u/; u/y0.u/vCGu.y.u/; u/v inŁ Y; (15)

i.e.,

�
Gy.y.u/; u/� IdY

�
y0.u/v D �Gu.y.u/; u/v inŁ Y: (16)

Here IdY is the identity in Y , and the subscripts y; u denote partial derivatives of G.
To eliminate y0.u/ (or its approximation Oy0k) from the last equation, we introduce

the Lagrange multiplier or adjoint state Ny 2 Y 0 (the dual of Y ) and the Lagrangian
L W Y � Y 0 � U ! R given by

L.y; Ny; u/ D J.y; u/C h Ny; G.y; u/ � yiY 0;Y :
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Here h�; �iY 0;Y denotes the dual pairing in the function space setting. It can be
replaced by an inner product in R

nY in finite dimensions. In a solution point
.y�; Ny�; u�/ 2 Y � Y 0 � U of problem (1–2), the Lagrangian is stationary w.r.t. to
variations in all three variables. This leads to the three Karush-Kuhn-Tucker (KKT)
conditions:

0 D Ly.y�; Ny�; u�/ D Jy.y�; u�/C Ny� ıGy.y�; u�/� Ny� in Y 0;
0 D L Ny.y�; Ny�; u�/ D G.y�; u�/� y� in Y 00 Š Y;

0 D Lu.y�; Ny�; u�/ D Ju.y�; u�/C Ny� ıGu.y�; u�/ in U 0:

9
=

;
(17)

For arbitrary state y and control u, the first equation (called the adjoint equation)
can be used to compute the adjoint variable or state Ny from

h Ny;
�
Gy.y; u/� IdY

�
wiY 0;Y D �Jy.y; u/w for all w 2 Y: (18)

With the adjoint state Ny computed, we take w D y0.u/v in this equation and get
with (16) the representation

Jy.y; u/y0.u/v D �h Ny;
�
Gy.y; u/� IdY

�
y0.u/viY 0;Y D h Ny; Gu.y; u/viY 0;Y : (19)

Thus the gradient representation (14) can be written as

d

du
J.y.u/; u/

ˇ
ˇ
ˇ
ˇ
. Oyk ;uk/

D Nyk ıGu. Oyk; uk/C Ju. Oyk; uk/: (20)

5 One-Shot Optimization Method

The approach described here was in this form developed by Hamdi and Griewank,
and can be seen as an extension of the piggy-back strategy. Theoretical results
were published in [8, 9], and summarized also in [5]. An engineering application
was presented in [18] and results from an ocean model calibration in [15]. Two
examples in infinite-dimensional spaces are studied in [12]. In the One-shot
approach described here, the motivation is to update the control u already during
the state iteration. In the above algorithm, this means that the number jmax of steps
in the state equation iteration (step 2b) is set to 1 or (in the so-called multistep One-
shot method to some low value).

The motivation for this method is again taken from the KKT system (17). The
adjoint equation, i.e., the first equation in (17), can be formulated (omitting the stars)
as a fixed-point equation for the adjoint state:

Ny D NG.y; Ny; u/ WD Jy.y; u/C Ny ıGy.y; u/ in Y; (21)
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and a corresponding fixed-point iteration (only for the adjoint, with state and control
fixed) can be defined by

Nyj D NG.y; Nyj�1; u/; j D 1; : : : ; jk: (22)

Similar to the iteration for the state in (5), we write for j subsequent iterations:

Nyj D NGj .y; Ny0; u/; j D 1; 2; : : : (23)

We now formulate the following algorithm:

Multistep One-Shot Optimization Algorithm:

1. Choose initial values for state, adjoint state, and control .y0; Ny0; u0/.
2. For k D 0; 1; : : : ; kmax W

a. Compute an approximation of the state for uk :

ykC1 D Gjk .yk; uk/:

b. Update the adjoint state:

NykC1 D NG Njk .ykC1; Nyk; uk/:

c. Update the control using the formula

ukC1 D uk � B�1
k ŒJu.ykC1; uk/C NykC1 ıGu.ykC1; uk/�

d. If some criterion for .y; Ny; u/ or J is satisfied, stop.

The term multistep comes from the usage of the jk; Njk subsequent state and adjoint
updates in steps 2a and b, respectively, before a control update is performed in
step 2c. The operators Bk W U ! U 0 can be seen as control preconditioners. They
are chosen such that the whole coupled iteration defined in step 2 converges. In the
finite-dimensional setting, the Bk are matrices.

If contractivity of the state iteration is given, i.e., there exists � < 1 satisfying

kG.y; u/�G. Qy; u/k � �ky � Qyk; 8y; Qy 2 Y; (24)

the first equation in the coupled iteration (step 2a) converges linearly for fixed u.
Although the second equation exhibits a certain time-lag, it converges with the same
asymptotic R-factor (see [10]). For the coupled iteration, the goal is to find Bk that
ensure that the spectral radius of the coupled iteration stays below 1 and as close as
possible to the one of the Jacobian of the original iteration function G.
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5.1 Choice of Preconditioner Bk

We now briefly describe the choice of appropriate preconditioners Bk according to
[8,9] that we used in our study. For the derivation of Bk , the authors of [8,9] use the
doubly augmented Lagrangian La, defined as

La.y; Ny; u/ WD L.y; Ny; u/C ˛L

2
kG.y; u/ � yk2Y C

ˇL

2
k NG.y; Ny; u/� Nyk2Y 0

;

which is the Lagrangian of the original problem augmented by the errors in the state
and adjoint fixed-point equations, with ˛L; ˇL > 0 being weighting coefficients. In
[9] it is proved that under certain conditions on ˛L and ˇL (see below), stationary
points of problem (1–2) are also stationary points of La and that La is an exact
penalty function. This leads to the idea to choose Bk as an approximation to the
Hessian of La, i.e. Bk � d2

du2 La.yk; Nyk; uk/. In [9], it is also proved that—in the
finite-dimensional setting—descent of La is provided for any preconditioner Bk

fulfilling

Bk � B0 WD 1

�
.˛LG>u Gu C ˇLL>yuLyu/ (25)

i.e., Bk � B0 is positive semidefinite, with

� WD 1 � � � .1C kLyyk
2

ˇL/2

˛LˇL.1 � �/
:

In order to make the maximal eigenvalue of B0 as small as possible (but still
positive), under the assumptions

p
˛LˇL.1 � �/ > 1 C ˇL

2
kLyyk and kLyyk ¤ 0

the choice

˛L D
kLyuk2ˇL.1C kLyyk

2
ˇL/

kGuk2.1 � kLyyk
2

ˇL/
; ˇL D 3

q

kLyyk2 C 3
kLyuk2
kGuk2 .1 � �/2 C kLyyk

2

was made in [9]. At a stationary point of La the Hessian of La w.r.t. u is

d 2

du2
La D ˛LG>u Gu C ˇLL>yuLyu C Luu:

As La is an exact penalty function, d2

du2 La 	 0 in a neighborhood of the constrained

optimization solution. Assuming that also d2

du2 L 	 0 implies that the preconditioner

B D 1

�
.˛LG>u Gu C ˇLL>yuLyu C Luu/
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fulfills (25) and thus the update in u of the coupled iteration yields descent on La.
In the more recent paper [8], the same authors perform a different approach in the
choice of the weighting factors and obtain two alternative versions, namely:

� D 1; ˛L D 2kLyyk
.1 � �/2

; ˇL D 2

kLyyk or ˛L D 6kLyyk
.1 � �/2

; ˇL D 6

kLyyk : (26)

To simplify the computations even more, in [8] the choice kLyyk D 1 is proposed.

5.2 Required Derivatives and Automatic Differentiation

In the One-shot iteration including the preconditioner Bk , first and second order
derivative information is needed. The cost for its calculation is small compared to
the one of the direct method, since here only one iteration step, i.e., G and not
Gjk , has to be differentiated. In the discretized setting, the iteration function G W
R

nY�nU ! R
nY consists of up to 2,880 intermediate time steps, compare Sect. 3.3.

Thus, the computation of the needed derivatives Gy; Gu using, for example, forward
finite differences would mean to perform those time steps nY ; nU times only for
Gy; Gu, with high computational costs. To reduce the effort and moreover avoid the
approximation error of finite differences, we used here the technology of Automatic
or Algorithmic Differentiation (AD), see [11]. We used the tool Transformation of
Algorithm in Fortran (TAF, [6]) on the nonlinear biogeochemical model terms qi ,
whereas the linear transport matrix part was differentiated analytically.

There are two modes of AD, namely the forward and the reverse mode
(corresponding to an adjoint equation). The forward mode enhances an iteration
with the corresponding derivative iteration and thus is the discrete analogue of
the sensitivity equation approach from Sect. 4.1.1. Here, the cost for evaluating
derivatives increases linearly with the number of unknowns, in our case nY or
nU , which is comparable to a finite difference approximation, but avoids the
approximation errors. In our application, it is only recommended for derivatives
w.r.t u, since in our application nU D 7 
 nY � 100; 000. In contrast, the reverse
mode stores all intermediate variables of the function evaluation and then, in a
reverse sweep reverting the order of operations, computes all partial derivatives of
the function with respect to intermediate variables at once. It is the discrete analogue
of the adjoint equation approach described in Sect. 4.1.2. In particular, the gradient
of a scalar valued function as J can be evaluated as a cost independent from the
number of independent variables. Therefore, the reverse mode is appropriate for
derivatives w.r.t. y. The concatenation of a reverse and a forward sweep yields
second order derivatives. Due to the very small number of parameters nU D 7

and the complexity of the code, we chose the reverse sweep followed by a finite
differences approach to compute second order derivatives. Table 2 summarizes the
applied strategies for the computation of the needed derivatives.
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Table 2 Computation of derivatives using different approaches

Derivative Mode of computation

Jy Analytically

Ju Analytically

Ny>Gy , Ny>Gu One reverse sweep of AD combined with transport matrices by hand

Gu Forward mode of AD combined with transport matrices by hand

Jyu Analytically .D 0/

Ny>Gyu After computation of Ny>Gy , application of finite differences

For the computation of the weights � , ˛L and ˇL of the preconditioner Bk , see
Sect. 5.1, we chose the first of the cheaply computable versions defined in (26) and
fixed kLyyk D 1. Furthermore, we set the unknown contraction factor � of the
state iteration function G to � D 0:9. We observed for the N-DOP model that the
contraction property (24) is violated for some steps in the state iteration. However,
it converges to a steady solution and the average contraction factor is close to, but
less than 1. Fixing � in such a way simplifies the code. Another option is to update
y and Ny without an update of u (i.e., increasing the iteration numbers jk; Njk) until
the contraction factor � is less than 1 again.

6 Surrogate-Based Optimization

The surrogate-based optimization strategy (SBO, see, e.g., [1,4,17,22]) is built upon
a coarse or low-fidelity model that can be evaluated much faster than the original,
in this context then called fine or high-fidelity model used in the direct optimization
approach. Since a coarse model naturally does not include as much information or
have the accuracy of the fine one, an (ideally computationally cheap) alignment or
correction of the coarse model is performed. The aim of this alignment is to keep the
output of the aligned coarse model, the so-called surrogate, close to the output of
the fine model, also when the optimization parameters are changed to a certain limit.
When this optimization of the surrogate is numerically converged, the fine model
is evaluated again and the alignment is updated. Then the surrogate is optimized
again, and the process is iterated. The benefit is that fine model optimization runs
are completely avoided, which reduces the overall effort tremendously.

Surrogates can be created by approximating sampled fine model data (functional
surrogates). Popular techniques include polynomial regression, kriging, artificial
neural networks, and support vector regression [22, 24, 25]. Another possibility,
exploited in this work, is to construct the surrogate model through appropriate
correction/alignment of a low-fidelity or coarse model (physics-based surrogates,
[26]). Physics-based surrogates inherit physical characteristics of the original fine
model so that only a few fine model data is necessary to ensure their good alignment
with the fine model. Moreover, generalization capability of the physics-based
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models is typically much better than for functional ones. As a result, SBO schemes
working with this type of surrogates normally require small number of fine model
evaluations to yield a satisfactory solution. On the other hand, their transfer to other
applications is less straightforward since the underlying coarse model and chosen
correction approach is rather problem specific. The specific correction technique
exploited in this work is described below (see also [20]).

In applications that use iterative state equation solvers, a simple way to construct
a coarse model is just to stop the iteration after fewer steps or with a relaxed stopping
criterion. Then, the term coarse refers not to a coarser discretization in space and/or
time, but to a model and state with reduced accuracy compared to the original one.
This way of constructing a coarse model is much simpler than to use a coarser
discretization scheme, which of course is also possible, but involves prolongation
and restriction operations on the model output. We now give the structure of an
SBO algorithm based on this coarse model construction.

Surrogate-Based Optimization Algorithm (With Iterative Solver):

1. Choose initial value for the control u0.
2. For k D 0; 1; : : : ; kmax W

a. Compute an approximation of the state for uk with a fine model:

y
f

k D Gj
f
k .yk; uk/:

b. Compute an approximation of the state for uk with a coarse model:

yc
k D Gj c

k .yk; uk/:

c. Compute the correction or alignment operator

Ak D Ak.y
f

k ; yc
k/ W Y ! Y satisfying Akyc

k D y
f

k

and optionally
dAkyc

k

du
D dy

f

k

du

and define the surrogate

sk W U ! Y; sk.u/ WD AkGjk;c .yk; u/

d. Compute

ukC1 D argmin
u2Uad

J.sk.u/; u/;

or approximate it by ik steps of an iterative optimization method.
e. If some criterion for y; u or J is satisfied, stop.
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The iteration numbers chosen in steps 2b (j c
k ) and step 2d (ik) can be either kept

constant or adapted. The latter variant is called a hybrid SBO strategy. The two
conditions imposed on the alignment operator Ak in step 2c are called zeroth
and first order consistency. The second one might be relaxed to be valid only
approximately. If the surrogate sk satisfies both conditions at u D uk , the SBO
algorithm is provable convergent to at least a local optimum under conditions
regarding the coarse and fine model smoothness, and provided that the algorithm
is enhanced by the trust-region safeguard, i.e., in step 2d the minimum is just taken
over the set

Uk WD fu 2 Uad W ku � ukkU � ıkg

with ık being a trust-region radius updated according to the usual trust region rules.
We refer the reader to, e.g., [3, 14] for more details.

One example for the alignment operator we used in our application is the point-
wise multiplicative operator

Ak.y
f

k ; yc
k/y.x; t/ W Dy

f

k
.x; t/

yc
k.x; t/

y.x; t/ for all grid � points .x; t/ 2 ˝h � Œ0; T �� ;

which is very easy to compute. It just satisfied the zeroth order consistency
condition.

For the inner optimization iteration in step 2d, any algorithm is possible. We used
the MATLAB (registered trademark of The MathWorks, Inc.) function fmincon,
exploiting the active-set algorithm and using the option setting {‘TolCon’, 1e-6,
‘TolX’, 1e-6, ‘TolFun’, 1e-6}. To ensure convergence of the SBO, we enhanced
each surrogate optimization in step 2d by restricting the current step-size to a
certain trusted region ık . The gradients used in this inner optimization were supplied
externally as finite difference approximations, but took special care about the step-
sizes for their computation.

We used the absolute difference (measured in the Euclidean norm) between two
successive iterates uk and uk�1 as well as a lower bound for the trust-region radius ık

as stopping criterion for the outer iteration (over k). The inner optimization for each
surrogate (i.e., for each k) is terminated after ik D 10 iterations (for all k), except
in the examples below using a hybrid strategy (where it varies between ik D 2; 3).

7 Optimization Results

In this section we present a brief summary of results of the two optimization
methods for a parameter optimization problem for the above presented ecosystem
model. For both methods, results for twin-data experiments are available. In such
kind of experiments, model-generated data (with parameters ud ) are used to evaluate
the applicability and computational efficiency of the methods.
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7.1 Surrogate-Based Optimization

Results for the SBO method for this application were in detail presented in [21].
Therein, the coarse model uses a constant number j c D j c

k D 25 (for all k)

of iteration steps in the state equation solver, compared to j f D j
f

k D 3; 000

(also constant for all k) ones in the original fine model. On these results, we
thus here give only a brief summary. Additionally, we present some recent results
obtained using a hybrid SBO strategy that uses different values of j c

k in the different
optimization steps.

The number j c D 25 of coarse model iterations used in [21] leads to a poor
identification of two of the seven parameters, see also Fig. 1. The usage of higher
values of j c or a hybrid strategy solved this problem. Concerning performance,
Figs. 1 and 2 show that the gain compared to the direct optimization can be
significantly enlarged when using a hybrid strategy. On the other hand, finding
adequate sequences of inner optimization steps .ik/k and number of coarse model
iteration steps .j c

k /k requires considerable testing or experience.

7.2 One-Shot Optimization

The results for the One-shot optimization available so far are preliminary and not
that detailed as the one for the SBO approach. A difference by design of the
method is that, in its current version, the One-shot method does not treat parameter
bounds explicitly, whereas the SBO method can take them into account in the
inner optimization loop. The considered model problem is the same as for the SBO
method, concerning (model-generated) data yd , the least-squares cost function (10),
and the underlying simulation model. Here we show results for a version of the

Fig. 1 Cost function value J during SBO runs using (1) different constant coarse models’ iteration
numbers j c , (2) two hybrid strategies both with .j c

k /k D .25; 100; 200; 200; : : :/, but once ik D 3

for all k (top) and the other time .ik/k D .3; 2; 2; : : :/, (3) a direct fine model optimization. The
computational cost of the optimization is decreased by about 75–90 %
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Fig. 2 Convergence of the model parameters .uki /iD1;:::;7 during the optimization (step counter k),
here only for one SBO run, one hybrid run and for the direct fine model optimization. Also shown
are target parameter vector ud and the constant bounds umin; umax

one-step variant (jk D Njk D 1), i.e. after one iteration of the state equation solver
one for the adjoint and another for the parameter is performed. The only exception
is the first step, where a higher number j0 of state iterations are performed before
the first adjoint step.

In this one-step variant, one of the seven parameters provides some problems.
The parameters and therewith the tracer concentrations oscillate and the cost
function is not reduced anymore after a certain time even though the weighting
factor ˛ was chosen very large (˛ D 100) to force parameters towards uguess , see
the plot on the left of Fig. 3. The problematic parameter turned out to be u7 D b,
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Fig. 3 Results of the One-shot method for seven parameters showing oscillations (top), for six
parameters, uguess D ud and different ˛ (middle), and for uguess ¤ ud and ˛ D 0:01 (bottom)
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Fig. 4 Parameter values during the optimization for uguess D ud and different ˛

the sinking exponent. Its influence demands further analysis. Numerical tests with
the other parameters, fixing u7 D ud7 performed very well, both for uguess D ud (the
easier case), but also for uguess ¤ ud and even without any regularization (˛ D 0/.
Figure 4 shows the convergence of the parameter values during the optimization
process for different regularization parameters ˛. Not surprisingly, the larger ˛ the
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better the data is fit and the cost function is reduced if uguess D ud . During the first
One-shot iteration steps, parameter values may go astray optimal values, because at
that stage of the optimization y and Ny are far away from optimality such that the
preconditioner Bk will correct both via a big change in u. Concerning performance,
the method needs about 15,000 iterations to give an acceptable solution. It has to
be noticed that the computational effort in the adjoint step and the evaluation of the
derivatives used in the algorithm parameters ˛L; ˇL has to be further quantified in
order to give sound performance comparisons with the SBO method.
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Shape-Preserving Response Prediction
for Surrogate Modeling and Engineering
Design Optimization

Slawomir Koziel and Leifur Leifsson

Abstract Computer simulation models are fundamental tools of contemporary
engineering design. The components, structures, and systems considered in most
engineering disciplines are far too complex to be accurately described using simple
theoretical models. Therefore, numerical simulation is often the only way to
evaluate the performance of the design with sufficient reliability. However, accu-
rate, high-fidelity simulations are computationally expensive. Consequently, their
use for design automation, especially when exploiting conventional optimization
algorithms is often prohibitive. Availability of faster computers and more efficient
simulation software does not always translate into computational speedup due
to growing demand for improved accuracy and the need to evaluate larger and
larger systems. Surrogate-based optimization (SBO) techniques belong to the most
promising approaches capable of alleviating these difficulties. SBO allows for
reducing the number of expensive objective function evaluations in a simulation-
driven design process. This is obtained by replacing the direct optimization of the
expensive model by iterative updating and re-optimization of its cheap surrogate
model. Among proven SBO techniques, the methods exploiting physics-based low-
fidelity models are probably the most efficient. This is because the knowledge about
the system of interest embedded in the low-fidelity model allows constructing the
surrogate model that has good generalization capability at a cost of just a few
evaluations of the original model. This chapter reviews one of the most recent SBO
techniques, the so-called shape-preserving response prediction (SPRP). We discuss
the formulation of SPRP, its limitations, and generalizations, and, most importantly,
demonstrate its applications to solve design problems in various engineering
areas, including microwave engineering, antenna design, and aerodynamic shape
optimization. We also discuss the use of SPRP for creating fast surrogate models
with illustrations from the microwave engineering area.
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1 Introduction

Computer simulations are one of the most important tools in contemporary science
and engineering. From miniature electronic components and circuits, through
complete systems such as aircraft, to large-scale physical phenomena (e.g., climate
models), simulations are used to describe the behavior, evaluate the performance,
and validate designs. Nowadays, commercial simulation packages have matured
and the computing resources are cheaper and in abundance. In spite of this, in
many cases, accurate, high-fidelity simulations are computationally expensive, to
the extent that their use in the design process, e.g., by employing simulations
directly in an automated design optimization loop, may be impractical. The primary
reason is that conventional optimization algorithms, both gradient-based [1] and
derivative-free [2] typically require a large number of objective function evaluations.
In some cases, the use of adjoint sensitivity [3] can alleviate this problem; however,
this technique is not always available through commercial simulation packages.
Conversely, design automation is key in situations where simple theoretical models
are no longer capable to adequately account for complex interactions between
the system components and, therefore, only yield an initial approximation of the
optimum design which consequently has to be tuned further in order to meet the
given performance requirements. In practice, design “tuning” is often based on
parametric studies guided by engineering experience. This combination is often
sufficient to obtain satisfactory designs in a reasonable time; however, it is far from
being an automated process.

Surrogate-based optimization (SBO) [4, 5] is one of the most promising
approaches to alleviate the difficulties discussed in the previous paragraph. In SBO,
direct optimization of an expensive high-fidelity simulation model is replaced by
iterative updating and re-optimization of its computationally cheap representation, a
surrogate. The high-fidelity model is referenced occasionally to verify the prediction
produced by the surrogate and to improve the latter. The overall design cost can be
greatly reduced, because the optimization burden is shifted to the surrogate.

SBO methods differ mostly in the way the surrogate is created. A large group
of function approximation modeling techniques exist. Here the surrogate is created
by approximating sampled high-fidelity model data and the most popular methods
include polynomial approximation [5], radial basis function interpolation [6],
kriging [7], support vector regression [8], and neural networks [9]. Approximation
models are very fast, however, a large number of training samples—and a high
CPU cost of gathering the simulation data—are necessary to ensure reasonable
accuracy. Furthermore, the number of required samples grows exponentially with
the dimensionality of the design space (the curse of dimensionality). Depending on
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the model purpose, this initial computational overhead may or may not be justified.
This depends for example whether the models are for a multiple-use library or a
one-time optimization.

Correcting an auxiliary low-fidelity (or coarse) model is another approach to
SBO. A low-fidelity model is a reduced-accuracy but faster representation of the
system of interest. Low-fidelity models can be developed in various ways, such as by
using simplified-physics, leaving out certain second-order effects, or by describing
the system on a different physical level (e.g., equivalent circuit versus full-wave
electromagnetic simulation in case of microwave components). Engineers have been
using simplified models for decades: before the computer era simplified models and
physical experiments were the only tools available to perform the design process.
Because of the fact that a low-fidelity model contains certain knowledge about the
system of interest, physics-based surrogates offer good generalization capabilities
and can be set up using a limited number of training points. These are their biggest
advantages over purely approximation models.

Several techniques have been proposed to exploit physics-based surrogate mod-
els in the SBO process, such as the approximation model management optimization
(AMMO) framework [10], space mapping (SM) [11], manifold mapping [12], and
simulation-based tuning [13]. Several of these methods are based on correcting
the low-fidelity model output (response). The SBO process is provably convergent
to the high-fidelity model optimum [13] when embedded in the trust-region
framework [14] and the correction is realized by ensuring both zero- and first-
order consistency [10] between the surrogate and the high-fidelity model. In some
cases (with a notable example of SM), the correction can be done by introducing a
mapping between the parameter spaces of the low- and high-fidelity models.

The shape-preserving response prediction (SPRP) technique [15] is a recently
developed approach which exploits physics-based low-fidelity models. The method
was originally developed in the microwave engineering area [15], but has also
been applied to problems in antenna design [16] and aerodynamic design [17].
SPRP is a parameter-less method where the surrogate model response is constructed
by tracking the changes of the low-fidelity model response when moving from a
certain reference design to another one, and applying those changes (represented by
translation vectors) to a reference response of the high-fidelity model. The SPRP
surrogate exploits the knowledge embedded in the low-fidelity model to a greater
extent than other physic-based surrogate modeling approaches, e.g., SM. Therefore,
the generalization capability of SPRP is usually better than that of SM [15]. In
this chapter, we review the SPRP technique, its basic and generalized formulations,
and attempt to give an intuitive explanation of its efficiency. We also illustrate its
operation and performance using several design examples from various engineering
disciplines.

The chapter is organized as follows. In Sect. 2, we formulate the engineering
optimization problem, briefly recall the basics of SBO, and introduce the concept of
the SPRP methodology. Section 3 demonstrates the use of SPRP for optimization of
microwave filters. Application of SPRP for antenna design is discussed in Sect. 4.
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Section 5 describes formulation and the use of SPRP for the design of transonic
airfoils. Section 6 discusses the use of SPRP for surrogate modeling. Section 7
concludes the chapter.

2 Surrogate-Based Optimization and Shape-Preserving
Response Prediction

In this section, we formulate the engineering design optimization problem, recall
the concept of SBO, and discuss the SPRP methodology [15]. Examples illustrating
application of SPRP in various engineering fields are provided in Sects. 3–6.

2.1 Engineering Design Optimization. Problem Formulation

The engineering design optimization problem can be defined as

x�f D arg min
x

U .f .x// (1)

where f : Xf !Rm, Xf �Rn, denotes the response vector of a high-fidelity (or fine)
model of the device or system of interest; U: Rm!R is a given objective function,
e.g., minimax [18]. In microwave engineering, the response vector may contain,
for example, the values of transmission coefficient jS21j evaluated over certain
frequency band.

2.2 Surrogate-Based Optimization

Because of the high computational cost of evaluating f, its direct optimization is
replaced by an iterative procedure [5]

x.iC1/ D arg min
x

U
�
s.i/ .x/

	
(2)

that generates a sequence of points (designs) x(i) 2Xf , iD 0, 1, : : : . Each x(iC1)

is the optimal design of the surrogate model s(i): Xs
(i)!Rm, Xs

(i)�Rn, iD 0,
1, : : : . s(i) is assumed to be a computationally cheap and sufficiently reliable
representation of the fine model f, particularly in the neighborhood of the current
design x(i). Under these assumptions, the algorithm (2) is likely to produce a
sequence of designs that quickly approach xf

*. Because f is evaluated rarely (usually
once per iteration), the surrogate model is supposedly fast, and the number of
iterations for a well-performing algorithm is substantially smaller than for most
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direct optimization methods, and the process (2) may lead to substantial reduction
of the computational cost of solving (1). If the surrogate model satisfies zero-
and first-order consistency conditions with the fine model, i.e., s(i)(x(i))D f (x(i))
and (@s(i)/@x)(x(i))D (@f /@x)(x(i)) (verification of the latter requires f sensitivity
data), and the algorithm (2) is enhanced by the trust-region method [19], then it
is provably convergent to a local optimum of the fine model [10]. Convergence can
also be guaranteed if the algorithm (2) is enhanced by properly selected local search
methods [20].

2.3 Shape-Preserving Response Prediction: Concept [15]

SPRP [15] has been initially introduced in microwave engineering to reduce the
cost of optimizing electromagnetic (EM)-simulated structures such as filters [15].
In SPRP, the surrogate model is constructed assuming that the change of the fine
model response due to the adjustment of the design variables from can be predicted
using the actual response changes of the auxiliary low-fidelity (or coarse) model c:
Xc!Rm, Xc�Rn, that describes the same object as the high-fidelity model; c is less
accurate but much faster to evaluate than f.

The choice of the coarse model very much depends on the engineering discipline.
In microwave engineering, the coarse model might be an equivalent circuit of the
considered microwave structure, that describes the structure using circuit theory
methods rather than through solution of the Maxwell equations. It is critically
important for SPRP that the coarse model is physically based, which ensures that the
effect of the design parameter variations on the model response is similar for both
the fine and coarse models. The change of the coarse model response is described
by the translation vectors corresponding to certain (finite) number of characteristic
points of the model’s response. These translation vectors are subsequently used to
predict the change of the fine model response with the actual response of f at the
current iteration point, f (x(i)), treated as a reference.

Here, we explain the concept of SPRP using the specific case of a microwave
filter. Figure 1a shows the example of the coarse model response, jS21j in the
frequency range 8–18 GHz, at the design x(i), as well as the coarse model response
at some other design x. The responses come from the double folded stub bandstop
filter [15]. Circles denote five characteristic points of c(x(i)), here, selected to
represent jS21jD�3 dB, jS21j D�20 dB, and the local jS21j maximum (at about
13 GHz). Squares denote corresponding characteristic points for c(x), while small
line segments represent the translation vectors that determine the “shift” of the
characteristic points of c when changing the design variables from x(i) to x. Because
the coarse model is physics-based, the fine model response at the given design, here,
x, can be predicted using the same translation vectors applied to the corresponding
characteristic points of the fine model response at x(i), f (x(i)). This is illustrated in
Fig. 1b. Figure 2 shows the predicted fine model response at x as well as the actual
response, f (x), with a good agreement between both curves.
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Fig. 1 The SPRP concept [15]: (a) Example coarse model response at the design x(i), c(x(i))
(solid line), the coarse model response at x, c(x) (dotted line), characteristic points of c(x(i))
(o) and c(x) (square), and the translation vectors (short lines); (b) Fine model response at x(i),
f (x(i)) (solid line) and the predicted fine model response at x (dotted line) obtained using SPRP
based on characteristic points of this figure; characteristic points of f (x(i)) (o) and the translation
vectors (short lines) were used to find the characteristic points (square) of the predicted fine model
response; coarse model responses c(x(i)) and c(x) are plotted using thin solid and dotted line,
respectively [9]

2.4 Shape-Preserving Response Prediction: Formulation [15]

SPRP can be rigorously formulated as follows. Let f (x)D [f (x,!1) : : : f (x,!m)]T

and c(x)D [c(x,!1) : : : c(x,!m)]T , where !j, jD 1, : : : , m, is the frequency
sweep (it can be assumed without loss of generality that the model responses are
parameterized by frequency). Let pj

f D [!j
f rj

f ]T , pj
c0D [!j

c0 rj
c0]T , and pj

cD [!j
c

rj
c]T , jD 1, : : : , K, denote the sets of characteristic points of f (x(i)), c(x(i)), and c(x),

respectively. Here, ! and r denote the frequency and magnitude components of the
respective point. The translation vectors of the coarse model response are defined
as tjD [!j

t rj
t]T , jD 1, : : : , K, where !j

tD!j
c �!j

c0 and rj
tD rj

c � rj
c0. The SPRP

surrogate model is defined as follows

s.i/ .x/ D �s.i/ .x; !1/ : : : s.i/ .x; !m/
�T

(3)
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Fig. 2 (a) Fine model response at x, f (x) (solid line), and the fine model response at x obtained
using the shape-preserving prediction (dotted line). Good agreement between both curves is
observed, particularly in the areas corresponding to the characteristic points of the response;
(b) Interpolating function F (solid line) corresponding to the fine/coarse model plots in Fig. 1;
the identity function is denoted using the dotted line, the frequency components of the translation
vectors are denoted as short solid lines; (c) Interpolating function R (solid line); the magnitude
components of the translation vectors are denoted using short solid lines

where

s.i/
�
x; !j

	 D f


x.i/; F



!j ;

˚�!t
k

�K

kD1

��
CR



!j ;

˚
rt

k

�K

kD1

�
(4)

for jD 1, : : : , m. f .x; !/ is an interpolation of ff (x,!1), : : : , f (x,!m)g onto
the frequency interval [!1,!m]. The scaling function F interpolates the data pairs
f!1,!1g, f!1

f ,!1
f �!1

tg, : : : , f!K
f ,!K

f �!K
tg, f!m,!mg, onto the frequency

interval [!1,!m]. The function R does a similar interpolation for data pairs f!1,r1g,
f!1

f ,r1
f � r1

tg, : : : , f!K
f ,rK

f � rK
tg, f!m,!rmg; here r1DRc(x,!1)�Rc(xr,!1) and

rmD c(x,!m)� c(xr,!m). In other words, the function F translates the frequency
components of the characteristic points of f (x(i)) to the frequencies at which they
should be located according to the translation vectors tj, while the function R adds
the necessary magnitude component. The interpolation onto [!1,!m] is necessary
because the original frequency sweep is a discrete set.
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Formally, both the translation vectors tj and their components should have
an additional index (i) indicating that they are determined at iteration i of the
optimization algorithm (2), however, this was omitted for the sake of simplicity.

Figure 2 shows the plots of the functions F and R corresponding to the fine/coarse
model response plots of Fig. 1. The interpolation of ff (x,!1), : : : , f (x,!m)g, F, and
R is implemented using cubic splines.

As follows from its formulation, SPRP is developed assuming that the frequency
components of the translation vectors are zero at the edges of the frequency
spectrum (i.e., at !1 and !m). This limitation can be easily overcome either
by extending the frequency range of the covarse model and applying extrapolation
(cf. [15]). Also, it is assumed that the overall shape of both the fine and coarse
model response is similar. This means, in particular, that the characteristic points
of responses of both the coarse model c and the fine model f are in one-to-
one correspondence. If this assumption is not satisfied, the surrogate model (3),
(4) cannot be evaluated because the translation vectors ti are not well defined.
Generalizations of SPRP that allow alleviating this difficulty in some cases can be
found in [15].

3 SPRP for Microwave Design Optimization

In this section, we demonstrate the use of SPRP for the design optimization of
microwave components. Consider the dual-band bandpass filter [21] (Fig. 3a).
The design parameters are xD [L1 L2 S1 S2 S3 d g W]T mm. The fine model is
simulated in Sonnet em [22]. The design specifications are jS21j ��3 dB for
0.85 GHz�!� 0.95 GHz and 1.75 GHz�! � 1.85 GHz, and jS21j ��20 dB for
0.5 GHz�!� 0.7 GHz, 1.1 GHz�!� 1.6 GHz, and 2.0 GHz�!� 2.2 GHz. The
coarse model is implemented in Agilent ADS [23] (Fig. 3b). The initial design is
x(0)D [16.14 17.28 1.16 0.38 1.18 0.98 0.98 0.20]T mm (the optimal solution of c).
The following characteristic points are selected to set up functions F and R: four
points for which jS21j D�20 dB, four points with jS21jD�5 dB, as well as six
additional points located between �5 dB points. For the purpose of optimization,
the coarse model was enhanced by tuning the dielectric constants and the substrate
heights of the microstrip models corresponding to the design variables L1, L2, d, and
g (original values of "r and H were 10.2 and 0.635 mm, respectively) [15]. The filter
was optimized using two versions of SPRP, a regular one and SPRP enhanced by
input SM (cf. Table 1). Figure 4 shows the initial fine model response as well as the
fine model response at the design obtained using the SPRP method.

As the second example, consider the third-order Chebyshev bandpass
filter [29] shown in Fig. 5. The design parameters are xD [L1 L2 S1 S2]T mm;
W1DW2D 0.4 mm. The fine model is simulated in Sonnet em [22]. The design
specifications are jS21j ��3 dB for 1.8 GHz�!� 2.2 GHz, and jS21j ��20 dB
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Fig. 3 Dual-band bandpass filter: (a) geometry [21], (b) coarse model (Agilent ADS)

for 1.0 GHz�!� 1.6 GHz and 2.4 GHz�!� 3.0 GHz. The coarse model is
implemented in Agilent ADS [23] (Fig. 6). The initial design is x(0)D [14.6
15.3 0.56 0.53]T mm (the optimal solution of the coarse model c). The following
characteristic points are selected to set up functions F and R: two points for which
jS21j D�30 dB, two points with jS21j D�20 dB, two points with jS21jD�6 dB,
as well as ten additional points located between �6 dB points. Figure 7 shows
the initial fine model response as well as the fine model response at the design
obtained using SPRP. The numerical results including the design cost are presented
in Table 2.
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Table 1 Optimization results for dual-band bandpass filter

Algorithm
Final specification
error (dB)

Number of fine model
evaluationsa

Shape-preserving response
prediction

�2.0b 3

Shape-preserving response
predictionC ISMc

�1.9d 2

aExcludes the fine model evaluation at the starting point
bDesign specifications satisfied after the first iteration (spec. error �1.2 dB)
cThe surrogate model is of the form s(i)(x)D c(xC c(i)); c(i) is found using
parameter extraction [9]
dDesign specifications satisfied after the first iteration (spec. error �1.0 dB)
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Fig. 4 Dual-band bandpass filter: fine model (dashed line) and coarse model (thin dashed line)
response at x(0), and the optimized fine model response (solid line) at the design obtained using
shape-preserving response prediction
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Fig. 5 Third-order Chebyshev bandpass filter: geometry [29]
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Fig. 7 Wideband microstrip antenna [24]: top and side views. The dash-dot line in the top view
shows the magnetic symmetry wall (XOY)

Table 2 Optimization results for third-order Chebyshev filter

Algorithm
Final specification
error (dB)

Number of fine model
evaluationsa

Shape-preserving response prediction �1.8 2
aExcludes the fine model evaluation at the starting point
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4 SPRP for Antenna Design

In this section, we illustrate the use of SPRP for the design of antenna structures.
As an example, consider an antenna shown in Fig. 7 [24], where xD [l1 l2 l3 l4 w2

w3 d1 s]T are the design variables. Multilayer substrate is ls � ls (lsD 30 mm). The
antenna stack (bottom-to-top) comprises: metal ground, 0.813 mm thick RO4003,
microstrip trace (w1D 1.1 mm), 1.905 mm thick RO3006 and a trace-to-patch via
(r0D 0.25 mm), driven patch, 3.048 mm thick RO4003, and four patches at the
top. The antenna stack is fixed with four M1.6 bolts at the corners (uD 3 mm).
Metallization is with thick 50 �m copper. Feeding is through an edge mount 50	

SMA connector with the 10� 10� 2 mm flange.
The design objective is jS11j ��10 dB for 3.1–4.8 GHz. Realized gain not less

than 5 dB for the zero zenith angle is an optimization constrain over the frequency
band. The initial design is xinitD [�4 15 15 2 15 15 20 2]T mm.

Both the high-fidelity model f (2,334,312 mesh cells at the initial design, 160 min
of the evaluation time) and the low-fidelity model c (122,713 mesh cells, 3 min of
the evaluation time) are simulated using the CST MWS transient solver [25]. Here,
the first step is to find the rough optimum of c, x(0)D [�4.91 15.15 15.07 2.56 14.21
14.23 21.07 2.67]T mm. The computational cost of this step is 82 evaluations of c
(which corresponds to about 1.5 evaluations of the high-fidelity model). Figure 8a
shows the responses of f at xinit and x(0), as well as the response of c at x(0).
The final design x(4)D [�5.21 15.38 15.57 2.58 14.41 13.73 21.07 2.067]T mm
(jS11j ��11 dB for 3.1–4.8 GHz, Fig. 8b) is obtained after four iterations of the
SPRP-based optimization. The gain of the final design is shown in Fig. 8c which
illustrates that the maximum of radiation points along the zero zenith angle closely
over the bandwidth of interest. The total design cost corresponds to about ten
evaluations of the high-fidelity model (Table 3).

As the second example, consider a planar antenna shown in Fig. 9. It consists of
a planar dipole as the main radiator element and two additional strips. The design
variables are xD [l0 w0 a0 lp wp s0]T . Other dimensions are fixed to: a1D 0.5 mm,
w1D 0.5 mm, lsD 50 mm, wsD 40 mm, and hD 1.58 mm. Substrate material is
Rogers RT5880 [30].

The high-fidelity model f of the antenna structure (10,250,412 mesh cells at
the initial design, evaluation time of 44 min) is simulated using the CST MWS
transient solver. The design objective is to obtain jS11j ��12 dB for 3.1–10.6 GHz.
The initial design is xinitD [20 10 1 10 8 2]T mm. The low-fidelity model c is also
evaluated in CST but with coarser discretization (108,732 cells at xinit, evaluated
in 43 s). For this example, the approximate optimum of c, x(0)D [18.66 12.98
0.526 13.717 8.00 1.094]T mm, is found as the first design step. The computational
cost is 127 evaluations of c, and it corresponds to about two evaluations of f.
Figure 10a shows the reflection responses of Rf at both xinit and x(0), as well as
the response of c at x(0). The final design x(2)D [19.06 12.98 0.426 13.52 6.80
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Fig. 8 Wideband microstrip antenna: (a) high-fidelity model response (dashed line) at the initial
design xinit, and high- (solid line) and low-fidelity (dotted line) model responses at the approximate
low-fidelity model optimum x(0); (b) high-fidelity model jS11j at the final design; (c) realized gain
at the final design for the zero zenith angle (solid line, XOZ co-pol.) and realized peak gain (dash
line). Design constrain is shown with the horizontal line at the 5 dB level

1.094]T mm (jS11j ��13.5 dB for 3.1–10.6 GHz) is obtained after two iterations
of the SPRP-based optimization with the total cost corresponding to about seven
evaluations of the high-fidelity model (see Table 4). Figure 10b shows the reflection
response and Fig. 11 shows the gain response of the final design x(2).
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Table 3 Wideband microstrip antenna: optimization cost

Evaluation time
Algorithm component Number of model evaluations Absolute (h) Relative to Rf

Evaluation of Rcd
a 289�Rcd 14.4 5.4

Evaluation of Rf
b 5�Rf 13.3 5.0

Total optimization time N/A 27.7 10.4
aIncludes initial optimization of Rcd and optimization of SPRP surrogate
bExcludes evaluation of Rf at the initial design
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Fig. 9 UWB dipole antenna geometry: top and side views. The dash-dot lines show the electric
(YOZ) and the magnetic (XOY) symmetry walls. The 50 	 source impedance is not shown at the
figure

5 SPRP for Aerodynamic Shape Optimization

The SPRP technique is illustrated here on aerodynamic design of airfoil sections
at transonic flow conditions [17]. The airfoil shapes are parameterized with three
parameters of the NACA four-digit method: m (the maximum ordinate of the mean
camberline as a fraction of chord), p (the chordwise position of the maximum
ordinate), and t/c (the thickness-to-chord ratio) [26]. The design variable vector is
xD [m p t/c]T .

The airfoil performance is obtained through computational fluid dynamic (CFD)
models which are implemented using the ICEM CFD [27] grid generator and the
FLUENT [28] flow solver. The high-fidelity CFD model f is a two-dimensional
steady-state Euler analysis with roughly 400,000 mesh cells and an overall
simulation time around 67 min. The low-fidelity CFD model c is the same as
the high-fidelity one, but with a coarser mesh (roughly 30,000 cells) and relaxed
convergence criteria (100 flow solver iterations). The low-fidelity model is roughly
80 times faster than the high-fidelity one.

In aerodynamic shape optimization, the SPRP technique is applied to the pressure
distribution (Cp(x)) on the airfoil surface [17]. Figure 12a shows the pressure
distributions of two different designs obtained by the low-fidelity model. Shown
are the characteristic points (red circles) and the translation vectors (blue lines) at
important areas of the distributions. The application of the translation vectors to the
high-fidelity model distributions is shown in Fig. 13b.
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Fig. 10 UWB dipole antenna reflection response: (a) high-fidelity model response (dashed line)
at the initial design xinit, and high- (solid line) and low-fidelity (dotted line) model responses at the
approximate low-fidelity model optimum x(0); (b) high-fidelity model jS11j at the final design

Table 4 UWB dipole antenna: optimization cost

Evaluation time
Algorithm component Number of model evaluations Absolute (min) Relative to Rf

Evaluation of Rcd
a 233�Rcd 167 3.8

Evaluation of Rf
b 3�Rf 132 3.0

Total optimization time N/A 299 6.8
aIncludes initial optimization of Rcd and optimization of SPRP surrogate
bExcludes evaluation of Rf at the initial design

The design objective is to maximize the section lift coefficient (Cl(x)) subject
to constraints on the section drag coefficient (Cdw(x)) and the non-dimensional
cross-sectional area (A(x)). The problem is formulated as minimization of
the high-fidelity model f (x)D�Cl(x) subject to g1(x)DCdw(x)�Cdw.max� 0,
and g2(x)DAmin�A(x)� 0, where Cdw.maxD 0.0041 is the maximum drag and
AminD 0.065 the minimum cross-section. The free-stream Mach number is set
M1D 0.75 and the angle of attack ˛D 1ı. The design variable bounds are
0�m� 0.1, 0.2� p� 0.8, and 0.05� t� 0.20. The initial design is xinitD [0.03
0.2 0.1]T .
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Fig. 11 UWB dipole antenna at the final design: IEEE gain pattern (x-pol.) in the XOY plane at
4 GHz (thick solid), 6 GHz (dash-dot line), 8 GHz (dash line), and 10 GHz (solid line)

Due to unavoidable misalignment between the pressure distributions of the high-
fidelity model and its SPRP surrogate, it is not convenient to handle the drag
constraint directly, because the design that is feasible for the surrogate model
may not be feasible for the high-fidelity model. This problem is alleviated by
implementing the drag constraint through a penalty function. More specifically, the
objective function is defined as

H
�
Cp .x/

	 D �Cl:s

�
Cp .x/

	C ˇ
�

Cdw:s

�
Cp .x/

	�2
(5)

where 4Cdw.sD 0 if Cdw.s�Cdw.s.max and 4Cdw.sDCdw.s�Cdw.s.max otherwise. The
cross-sectional area constraint is handled directly. We use ˇD 1,000 in the numer-
ical study. Here, the pressure distribution for the surrogate model is CpDCp.s, and
for the high-fidelity model CpDCp.f . Also, Cl.s and Cdw.s denote the lift and drag
coefficients for the surrogate.

The optimization problem is solved by the direct optimization of the high-fidelity
model using the pattern-search algorithm, as well as by the SPRP algorithm. The
results are presented in Table 5. It can be seen that both approaches are able to meet
the design goals and produce similar optimized airfoil shapes. The direct approach
requires 120 high-fidelity model evaluations (Nf ). The SPRP algorithm requires 330
low-fidelity model evaluations (Nc) and 11 high-fidelity ones, yielding a total cost
of less than 18 equivalent high-fidelity model evaluations.

To meet the design goals, the optimizer does three fundamental shape changes:
(1) the maximum ordinate of the mean camber line (m) is reduced, (2) the location
of the maximum ordinate of the mean camber line (p) is moved aft, thus increasing
the trailing-edge camber, and (3) the thickness-to-chord ratio (t/c) is reduced. Shape
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Fig. 12 An illustration of the SPRP technique applied to the pressure distributions obtained by
the low-fidelity CFD models of two designs, (a) initial characteristic points and translation vectors,
(b) additional points

changes (1) and (3) reduce the shock strength and, thus, reduce the drag coefficient.
The associated change in the pressure distribution reduces the lift coefficient.
However, shape change (2) improves (or recovers a part of) the lift by opening up
the pressure distribution behind the shock. These effects can be seen in the pressure
distribution plot in Fig. 14, and the Mach contour plots in Figs. 15 and 16.

6 Fast Surrogate Modeling Using SPRP

In this section, we illustrate the use of SPRP for modeling of microwave compo-
nents. We consider two versions of SPRP surrogates: the basic one and the modified
implementation that exploits multiple training points. Further discussion on the
recent developments of SPRP models can be found in [31].
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Fig. 13 Application of SPRP to the high-fidelity CFD model responses (thick lines) with (a) initial
characteristic points and translation vectors (coarse model distributions are shown with thin lines),
and (b) comparison of the actual and the predicted (dash) high-fidelity response

Table 5 Numerical results for the airfoil
design optimization

Variable Initial Direct SPRP

m 0.0300 0.0080 0.0090
p 0.2000 0.6859 0.6732
t/c 0.1000 0.1044 0.1010
Cl 0.8035 0.4641 0.4872
Cdw 0.0410 0.0041 0.0040
A 0.0675 0.0703 0.0680
Nc N/A 0 330
Nf N/A 120 11
Total cost N/A 120 <18
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Fig. 14 Airfoil optimization results: initial and optimized airfoils pressure distributions and
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Fig. 15 Airfoil optimization results: Mach contours at the initial design
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Fig. 16 Airfoil optimization results: Mach contours at the optimized design

6.1 SPRP Modeling: Basic Version [32]

Let XR�X be the region of interest where we want the surrogate model to be
valid. Typically, XR is an n-dimensional interval in Rn with center at reference point
x0D [x0.1 : : : x0.n]T 2Rn and size ıD [ı1 : : : ın]T . Let XBDfx1, x2, : : : , xNg�XR

be the base set, such that the fine model response is known at all points xj, jD 1,
2, : : : , N. Here, the base points are allocated using so-called star-distribution [33],
which is a design of experiments traditionally used by space mapping.

The SPRP surrogate model is defined as follows:

s .x/ D S .x; xr / (6)

where xr is the base point that is the closest to x, i.e.,

xr D arg min
y2XB

jjx � y jj (7)

whereas S(x,xr) is the SPRP model created with xr used as a reference design (cf.
Sect. 2.3).

Although, as demonstrated in [32], this simple modeling approach proves to be
more accurate than SM, and it has some drawbacks. The model (6), (7) utilizes only
one base point at a time. As shown in Fig. 17a, the region of interest is divided
into regions of “attractions” of particular base points. For all evaluation points x
located in a given region of “attraction,” the surrogate model (6) is determined
using the same single base point as a reference design. Due to this, the surrogate
does not utilize all available f -model data at a time. Also, the surrogate model is
discontinuous at the borders of the areas of “attraction” because the solution to (6) is
not unique at these points. This may cause some problems while using the surrogate
for design optimization.
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Fig. 17 SPRP modeling (nD 2): (a) Original: Star-distributed base points are denoted using
black circles. The region of interest is divided into areas of “attraction” of particular base points,
determined by the Euclidean distance. An example evaluation design x is close to the base design
x3, and this point becomes a reference design for SPRP model; (b) Modified: Base points are
denoted using black circles. A shaded area denotes a hypercube defined by a subset XS of base
points being the closest to an example evaluation design x. The surrogate at x is defined as a linear
combination of SPRP models using all base points from XS as reference designs. Coefficients of
this linear combination are calculated by representing x through all points from XS

6.2 Modified SPRP Modeling [34]

Here, a modified SPRP modeling technique is proposed that utilizes multiple
reference designs and solves the discontinuity problem described in the previous
section. Again, the base set is assumed to be allocated using star-distribution [33];
however, the model can also be formulated for more general setups.

The concept of the SPRP model exploiting multiple reference designs is
explained in Fig. 17b. For an evaluation point x, we find a subset XS of the base set
XB that defines a rectangular area (hypercube) of the region of interest containing
x. The surrogate model is set up using all points from XS. The star-distribution base
set contains ND 2nC 1 points as illustrated in Fig. 17a for nD 2. Without loss of
generality, we can assume that XSDfx0, x1, : : : , xng. We have

x D x0 C ˇ1v1 C ˇ2v2 C � � � C ˇnvn (8)

where ˇ1, : : : , ˇn determines a unique representation of x – x0 using vectors
viD xi – x0, iD 1, : : : , n. Coefficients ˇi can be found as
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ˇ2

ˇn

3

7
7
5 D Œv1 v2 : : : vn��1 � �x � x0

	
(9)

The vector x can be the unique represented as

x D ˛0x0 C ˛1x
1 C ˛2x2 C � � � C ˛nxn (10)

where ˛0D 1� (˛1C : : : C˛n), and ˛iDˇi, iD 1, : : : , n. The modified SPRP
surrogate model is then defined as

bs .x/ D ˛0S
�
x; x0

	C ˛1S
�
x; x1

	C � � � C ˛nS .x; xn/ (11)

with S(x, xi), iD 0, 1, : : : , n, being the SPRP models (1) determined using respective
reference designs.

It can be verified that the model (11) is continuous with respect to x provided that
both f and c are continuous functions of x. Also, it is expected to be more accurate
than the model (6), (7) because it exploits the available fine model data in a more
comprehensive way.

6.3 Verification: Fourth-Order Ring Resonator
Bandpass Filter [35]

In this section we illustrate the use of SPRP for modeling of a microwave filter.
We also compare both basic and modified SPRP with surrogate modeling using
standard space mapping [33]. The standard SM model is quite involved because it is
using input and output SM of the form A � c(B � xC c), enhanced by the implicit
and frequency space mapping [33]. All surrogate models are set up using the
same base set consisting of ND 2nC 1 points allocated according to the star-
distribution [33]. The quality of the models is assessed using a relative error measure
jjf (x)� s(x)jj/jjf (x)jj expressed in percent.

Consider the fourth-order ring resonator bandpass filter [35] (Fig. 18a). The
design parameters are xD [L1 L2 L3 S1 S2]T mm. The fine model f is simulated in
FEKO [36]. The coarse model, Fig. 18b, is implemented in Agilent ADS [23].
The region of interest is defined by the reference point x0D [24.0 21.0 26.0 0.2
0.1]T mm, and the region size ıD [2.0 2.0 2.0 0.1 0.05]T mm.

The modeling accuracy has been verified using 50 random test points. The results
shown in Table 6 and in Fig. 19 indicate that the modified SPRP model ensures better
accuracy than both the standard SM model and the original version of SPRP [32].



Shape-Preserving Response Prediction for Surrogate Modeling. . . 47

L2

Input Output

L3

L1

S2

S1W2

W1

W1

W1

W1

Term 1
Z=50 Ohm

Term 2
Z=50 Ohm

MLIN
TL1
W=W0 mm
L=L0 mm

MACLIN
Clin1
W=W1 mm
S=S1 mm
L=L1 mm

MACLIN
Clin2
W=W1 mm
S=S1 mm
L=L1 mm

MLIN
TL4
W=W0 mm
L=L0 mm

MLIN
TL2
W=W2 mm
L=L3 mm

MLIN
TL3
W=W2 mm
L=L3 mm

MACL

a

b
IN

Clin3
W=W1 mm
S=S2 mm
L=L2 mm

MACLIN
Clin4
W=W1 mm
S=S2 mm
L=L2 mm

Fig. 18 Fourth-order ring resonator bandpass filter: (a) geometry [35], (b) coarse model
(Agilent ADS)

Table 6 Fourth-order ring resonator filter: modeling results

Model Average error (%) Maximum error (%)

SM 1.8 4.5
SPRP (Basic version [32]) 1.1 2.7
SPRP (Modified version) 0.3 0.6

As an application example, the modified SPRP surrogate was utilized to optimize
the filter with respect to the following design specifications: jS21j ��1 dB for
1.75 GHz�!� 2.25 GHz, and jS21j ��20 dB for 1.0 GHz�!� 1.5 GHz and
2.5 GHz�!� 3.0 GHz. The initial design was x0D [24.0 21.0 26.0 0.2 0.1]T mm.
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Fig. 19 Fourth-order ring resonator bandpass filter: fine model (solid line) and surrogate model
(circles) responses at three selected test points for: (a) standard SM model, (b) modified SPRP
surrogate model

Figure 20a shows the fine model response of the filter at the initial design and at
the design x*D [22.61 20.11 26.626 0.156 0.040]T mm obtained by optimizing the
surrogate. The specification error at the optimized design is �0.45 dB.

The SPRP model was also used to estimate yield at the optimized design,
assuming 0.2 mm deviation for length parameters (L1 to L2) and 0.02 mm for
spacing parameters (S1 and S2). The yield estimation based on 200 random samples
is 68 % (Fig. 9b). This value is very close to the yield estimated directly using the
fine model (70 %). The estimation performed with the SM model is less accurate
(50 %). Note that the total computational cost of building the surrogate model,
design closure, and statistical analysis is only 11 full-wave simulations of the filter
structure!

7 Conclusion

A review of SPRP and its applications to solving simulation-driven design problems
in various engineering disciplined has been presented. SPRP exploits the knowledge
embedded in the low-fidelity model of the structure under consideration in order to
predict the response of the expensive high-fidelity model. As a result, SPRP is capa-
ble of yielding a satisfactory design at a low computational cost as demonstrated
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Fig. 20 Fourth-order ring resonator bandpass filter: (a) fine model responses at the reference
point x0 (dashed line) and at the optimal solution x* of the modified shape-preserving response
prediction surrogate model (solid line); (b) statistical analysis at x* using the modified shape-
preserving response prediction model. Estimated yield is 68 %. Thick black solid line denotes the
fine model response at optimal design x*

using several examples involving design problems in electrical and mechanical
engineering. As indicated in Sect. 5, SPRP can also be used to construct accurate
global or quasi-global surrogate models. SPRP is a relatively novel technique that
is still under development. Recent papers provide various enhancement of the
technique in the context of both optimization (e.g., [37]) and modeling (e.g., [31]).
It should also be mentioned that a potential limitation of SPRP is the fact that one-
to-one correspondence of all the model (both low- and high-fidelity ones) responses
involved in the process of creating the surrogate model is an important prerequisite
for the technique to work. Various ways of ensuring such a correspondence can be
found in the literature (e.g., [15]).
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Nested Space Mapping Technique for Design
and Optimization of Complex Microwave
Structures with Enhanced Functionality

Slawomir Koziel, Adrian Bekasiewicz, and Piotr Kurgan

Abstract In this work, we discuss a robust simulation-driven methodology for
rapid and reliable design of complex microwave/RF circuits with enhanced func-
tionality. Our approach exploits nested space mapping (NSM) technology, which
is dedicated to expedite simulation-driven design optimization of computationally
demanding microwave structures with complex topologies. The enhanced func-
tionality of the developed circuits is achieved by means of slow-wave resonant
structures (SWRSs), used as replacement components for conventional transmission
lines. The NSM is a hierarchical, bottom-up methodology, in which the inner space
mapping layer is applied to improve generalization capabilities of the equivalent
circuit constructed on the SWRS level, whereas the outer layer is used to enhance
the surrogate model of the entire structure of interest. We demonstrate that the NSM
significantly improves the performance of traditional surrogate-based optimization
routines applied to the design problem of computationally expensive microwave/RF
structures with modular topology. The proposed technique is used to design three
exemplary microwave/RF circuits with enhanced functionality: two abbreviated
microstrip matching transformers and a miniaturized rat-race coupler with harmonic
suppression. We also provide a comprehensive comparison with other surrogate-
assisted methods, as well as supply the reader with basic design guidelines for the
state-of-the-art SWRS-based microwave/RF circuits.
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1 Introduction

Modern wireless communication systems impose stringent requirements upon
microwave and radio-frequency (RF) blocks, placing particular emphasis on passive
components. These commonly used circuits are required to satisfy strictly defined
system specifications, e.g., multiband [1–3], or wideband operation [4–6], attenua-
tion of harmonic frequencies [7–9], high isolation [10–12], etc. Moreover, physical
dimensions of passive components are also regulated by available, often limited
estate area [13–15]. In general, traditional theory-based design routines are inca-
pable of providing reliable design solutions when circuit size and its performance
are simultaneously taken into consideration [16, 17]. Among variety of techniques
dedicated to enhance the functionality of conventional passive components [18–22],
the modification of circuit’s geometry by means of intentional perturbations,
defects, or discontinuities—implemented in either metallization plane—has gained
increased attention as the most promising method to perform a cost-efficient
microwave/RF circuit refinement [23–25].

Although the implementation of various perturbations and discontinuities may
be extremely beneficial from the perspective of the functionality of microwave/RF
structures—both geometrical- and performance-wise—it simultaneously hinders
the design process due to the increased number of designable parameters that have
to be simultaneously adjusted to yield a proper operation of the circuit [26, 27].
A typical experience-based design approach using repetitive parameter sweeps is
suitable for tuning only one parameter at a time and, therefore, its utilization is
limited for multi-dimensional design spaces of microwave/RF circuits with complex
topologies. Consequently, the design of microwave/RF structures with enhanced
functionality is considered to be a multifaceted problem that may be addressed only
by means of numerical optimization.

Reliable design optimization of highly miniaturized microwave/RF components
is an extremely challenging issue of contemporary wireless communication engi-
neering. The main reason for it is the lack of computationally cheap and accurate
theoretical models representing the behavior of such unconventional structures.
Unfortunately, a reliable performance evaluation of complex microwave/RF
components, and—consequently—their design, can only be achieved through
CPU-intensive electromagnetic (EM) simulations. As opposed to conventional
microwave/RF circuits, EM models of sophisticated structures with enhanced
functionality are, in general, computationally expensive, which is another crucial
factor hindering the design process. Additionally, a large number of independent
designable parameters involved in structure optimization significantly increases
numerical complexity of the process, as well as the number of EM evaluations
necessary to complete the optimization task. Hence, direct EM-based optimization
using conventional gradient [28] or derivative-free [29] algorithms is normally
prohibitive. On the other hand, techniques such as adjoint sensitivity [30, 31] allow
for low-cost derivative evaluation, which may lead to substantial cost reduction
of gradient-based search procedures [32, 33]. However, this technology is not yet
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widely available in commercial computer-aided design (CAD) software. Another
important issue related to conventional optimization techniques is their local
convergence properties, i.e., the ability to find only a local optimum (usually
the one closest to the initial design). The aforementioned difficulty may be partially
addressed by global optimization methods. In practice, this means resorting to
population-based metaheuristics, which are even more expensive—computational-
wise—than local-search algorithms [34, 35]. For that reason, the utilization of
direct optimization techniques in the design and optimization of complex circuits is
usually impractical.

High-computational cost related to the design of compact microwave/RF struc-
tures may be partially alleviated by means of surrogate-based optimization (SBO)
techniques [36], including, among others, manifold mapping [37, 38], shape pre-
serving response prediction [39, 40], or space mapping [41, 42]. The attractiveness
of the SBO lies in its ability to iteratively correct/enhance a low-fidelity model using
a limited amount of data acquired from simulations of a high-fidelity model [43].
SBO methods gained a considerable attention in diverse engineering fields [44–46]
and proved to be very efficient design methodologies, capable of yielding desired
solutions at the cost of only a few simulations of respective high-fidelity models.
Space mapping—originated in the field of microwave technology—is particularly
interesting in the context of numerically complex circuit design, especially due
to its simple implementation [47, 48], high efficiency [43, 49], and successful
validation on a variety of microwave structures [27, 43, 49]. On the other hand, SBO
techniques, especially space mapping algorithms, are mostly used for the expedited
design and optimization of conventional microwave/RF circuits [47, 49]. Although
several methods regarding this concept have been proposed for optimization of
complex structures [27, 50] they require inconvenient manual setup of multiple
optimization problems and are problematic when large number of parameters is
involved [51].

In this chapter, we provide general guidelines for the development of unconven-
tional microwave/RF circuits with enhanced functionality. This is achieved through
the decomposition of a conventional circuit into its elementary building blocks,
more particularly uniform transmission lines (TLs) and their subsequent replace-
ment with unconventional (e.g., shortened, dual-band, etc.) slow-wave structures.
Moreover, challenges and benefits regarding the design of SWRS-based circuit are
presented. Next, we introduce a nested space mapping (NSM) technology aimed
at fast and accurate design of computationally expensive planar microwave/RF
components. NSM constructs a two-stage low-fidelity model, with the inner space
mapping layer applied at the level of the decomposed TL, and the outer space
mapping layer applied for the entire circuit. The proposed technique mitigates
the problem of surrogate model inaccuracy resulting from complex layouts of
unconventional circuits and enables its rapid optimization in a single run of the
algorithm.

The chapter is organized as follows. In Sect. 2, we discuss the concept of circuit
functionality enhancements based on its decomposition and a subsequent refinement
of its elementary building blocks using SWRSs. We also explain techniques for
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the construction of SWRSs and their influence on the behavior of the entire
microwave/RF circuit. Sect. 3 is devoted to the problem of complex microwave
circuits design using surrogate-based optimization. We briefly formulate a SBO
design task and introduce the concept of NSM, numerical methods used to construct
an accurate surrogate model, as well as generalization capabilities of the developed
surrogate models. Verification of the introduced methodology on the basis of several
illustrative examples is given is Sect. 4. Two shortened matching transformers and
a miniaturized rat-race coupler with harmonic suppression are considered for the
design and optimization using the NSM. Section 5 concludes the chapter with a
discussion and recommendations for the future research related to fast design and
optimization of complex structures with enhanced functionality.

2 Design of Complex Microwave Circuits: Methodology

Design of complex microwave/RF circuits with enhanced functionality is trou-
blesome, especially due to the lack of universal strategies for determination of
their topology. In general, three approaches for the design of unconventional
circuits are available, including: (1) manual, experience-based construction [52,
53] (2) structure decomposition and substitution of its sections with unconventional
structures [54, 55], and (3) automated design by means of metaheuristic algorithms
[56, 57].

While the first technique benefits from many degrees of freedom that allow for
the construction of novel structures with unusual properties (both geometry- and
performance-wise), possible results strongly depend on engineering experience. In
such a setup, the design process is conducted using cut and trial technique, often
in conjunction with repetitive parameter sweeps. Therefore, the method is laborious
and prone to failure, which restricts its applicability to designs with relatively simple
topologies with up to several independent parameters [58, 59].

Improved properties of the circuit may also be obtained through decomposition
of a conventional structure into a set of TL sections. Each TL may be subsequently
replaced with its discontinuous counterpart and modified sections may be utilized
for the construction of an unconventional structure. Despite the manual setup of
the aforementioned steps, the risk of design failure in such a scheme is alleviated
by using discontinuous TL components with simplified geometry that mimic the
behavior of their conventional TLs. Furthermore, a lot of perforations from the
literature may be directly utilized to substitute typical TL sections [60–63], which
makes the technique useful, even for less experienced engineers. One should note
that the method is restricted only to certain microwave/RF structures that may
be decomposed, however a variety of passive circuits fall into this category, e.g.,
matching transformers, hybrid couplers, Butler matrices, phase shifters, or planar
filters.

Although methods based on the manual design of circuits with unconventional
properties are most commonly used, some automated approaches for a construction
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of such structures are also available [56, 64–66]. Automated design is especially
attractive for inexperienced engineers as it reduces the interference into the design
process only to formulating the desired performance specifications. Design of a
microwave/RF structure in such a setup may be conducted using either EM model
generated from binary matrix [56, 64] or interconnected TL sections [65, 66]. While
the former technique allows for a construction of very compact circuits, it requires a
number of computationally expensive EM simulations for a metaheuristic algorithm
to complete. The latter method is considerably faster because it exploits circuit
simulator instead of EM one. On the other hand, it suffers from lack of support
for the reduction of the overall circuit size.

In this section, we give general guidelines for the construction of microwave/RF
circuits with enhanced functionality. Moreover, we instruct how to identify TL
sections of a conventional circuit that may be extracted from the design. Two main
approaches for the determination of sufficient perforations are discussed.

2.1 Construction of a Circuit with Enhanced Functionality

Modifications of a microwave/RF structure by a substitution of its TL sections with
their corresponding perforations may be utilized to obtain some unconventional
circuit behavior (e.g., attenuation of harmonic frequencies [50], high circuit selectiv-
ity [67], and/or broad operational band [68]) or advantageous physical dimensions
[69]. One should bear in mind that techniques mentioned in this section require the
preparation of a conventional circuit for its further modifications, however theory-
based design of microstrip structures is well described in the literature (e.g., in [17,
70, 71]) and, for the sake of brevity, we omit details of their formulation.

The general flow (see Fig. 1 for a detailed block diagram with conceptual
explanation of each step) of an unconventional structure design may be summarized
as follows:

1. Define design specification of a circuit with enhanced functionality;
2. Synthesize conventional circuit using theory-based approach;
3. Decompose circuit into k sections that may be substituted with respective

perforations;
4. Construct n abbreviated sections suitable for UTL replacement;
5. Perform surrogate-based design and optimization of the circuit.

In general, a conventional structure is composed of various building blocks,
including: conventional lines (TL and/or coupled line sections) as well as their
interconnections (e.g., bends, tees, crosses, etc.) [27]. This modular design allows
to perform a so-called circuit decomposition step, which is a procedure—guided by
engineering experience—aimed at identification of sections that may be important
for functionality enhancements of the structure. While interconnections between
consecutive sections are considered irrelevant, a total of k (where kD 1, : : : , K)
coupled lines and/or TLs may be distinguished and isolated from the circuit.
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Fig. 1 Construction of a circuit with enhanced functionality by substituting conventional TL
sections with perturbations—a design flow. In the first step, design specification is defined.
Subsequently, general circuit line theory is utilized for a synthesis of a reference microstrip
circuit. Next, the structure is decomposed into k conventional lines. In the fourth step, a set of n
perturbations is designed in order to substitute their conventional counterparts. Finally, surrogate-
based design driven by algorithm described in Sect. 3 is performed

Identification of respective sections is a crucial step for the determination of n
(where nD 1, : : : , N) different perturbations that are necessary to substitute their
conventional counterparts. Exemplary microwave/RF circuits realized in microstrip
technology with highlight of decomposition-ready sections are shown in Fig. 2.

A number of perturbations necessary to achieve desired functionality depend on
such global factors such as desired bandwidth and/or geometry of the structure [69,
72], as well as local properties regarding characteristic impedance ZC, electrical
length � (for TLs), and the coupling coefficient (for coupled lines). For that reason,
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a

c d

e

b

Fig. 2 Exemplary conventional microstrip circuits with highlighted relevant section: (a) brachline
coupler —two TL sections with different characteristic impedance: (–––) and (– – –); (b)
rat-race coupler —one TL section: (–––); (c) band-pass filter —three coupled line sections:
(–––), (– – –) and (•••); (d) impedance matching transformer —four TL section: (–––), (–––),
(•••), (• – • –); (e) open-stub filter —five TL sections: (–––), (– – –), (•••) (• – • –),
(–– ––)

a number of necessary perturbations as well as their geometry should be care-
fully chosen for realization of specified design requirements. Although substantial
research effort has been devoted towards the determination of perturbations with
novel topologies over the years [60–63], only a few works attempted to address—
in a systematic manner—the issue of their applicability for various unconventional
designs [27, 50, 73]. However, in general, this problem may be solved only by means
of engineering expertise, aided by some guidelines pointed out below:

– Substitution of conventional section with a cascade connection of perturbations
allows for the bandwidth enhancement [24].

– Single perturbation is capable of realizing a range of ZC and � parameters and,
therefore, it may substitute variety of corresponding TL sections [27].

– Miniaturization of asymmetric conventional circuit enforces preparation of a set
of perturbations to mimic TL with equal electrical properties [69].

Several classes of perturbations, including: defected ground structures (DGS)
[24], fractal space filing curves [67], or slow-wave resonant structures (SWRS)
[50] may be exploited to mimic the behavior of conventional microwave/RF circuit
components in a restricted frequency range. On the other hand, implementation of
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perforations not only increases the complexity of the structure, but also introduces
multiple independent design parameters that highly influence its performance.
Design and optimization of such circuits is considered to be a computationally
expensive problem that may be partially addressed using SBO algorithms [27].
Perturbations in the form of SWRS are particularly attractive for SBO setup
because—in contrary to fractal curves and DGSs—they may be designed using a cir-
cuit simulator. Moreover, SWRS introduces slow-wave phenomenon that allows for
decreasing the phase velocity, and consequently such perforations are shorter than
conventional transmission lines. Nonetheless, a large number of variables associated
with such circuits introduce serious problems with convergence of conventional
SBO algorithms [51]. Techniques for the design of SWRS are described in Sects. 2.2
and 2.3, whereas SBO-based design and optimization of unconventional circuits
with multiple perturbations are addressed in Sect. 3.

2.2 Design of Slow-Wave Resonant Structures:
Database Approach

The choice of proper SWRS for a construction of a microwave/RF circuit with
enhanced functionality is troublesome. The design of SWRS that may be considered
to be a sufficient replacement of its corresponding UTL (or coupled line) is mostly
conducted using cut and trial technique guided by engineering experience, which is
a time consuming process involving numerous EM simulations. On the other hand,
determination of appropriate SWRS may be conducted by gathering EM models of
various predefined components. Such a database comprises an extensive description
of each SWRS, including a number and range of design variables, as well as electric
properties. Moreover, it provides tools for the identification of structures being most
appropriate for realization of desired circuit behavior [73]. Several approaches that
exploit database for the construction of unconventional circuits are available in
literature [27, 50, 73]. Figure 3 depicts a set of exemplary SWRSs that may be
utilized for the construction of a database.

Fig. 3 An exemplary database containing 12 EM models of SWRSs [73]



Nested Space Mapping Technique for Design and Optimization of Complex. . . 61

The most appropriate SWRS is selected from the database by means of cell
assessment with respect to defined efficiency coefficients, which may refer to local
properties (e.g., range of ZC and � realizations, or transverse dimension of the
SWRS) as well as global properties (e.g., bandwidth, or overall size) of the circuit
(cf. Sect. 2.1). Each SWRS is evaluated with respect to all of its coefficients
by computation of their weighted mean and a component with the best value is
considered as sufficient to substitute respective conventional section. This technique
may be also utilized for the selection of the most versatile SWRS to work as a
substitute component of conventional sections with varied electrical parameters (c.f.
Sect. 2.1). More detailed explanation of SWRS determination technique by means of
a database utilization is presented in [73]. One should emphasize that a construction
of a database comprising a number of EM models of SWRS requires considerable
computational effort, however, once prepared, it may be reused multiple times with
no extra computational cost.

2.3 Design of Slow-Wave Resonant Structures:
Knowledge-Based Approach

Although design of unconventional circuit constituted by SWRS obtained from
a predefined database is considerably easier in comparison to knowledge-based
approach, it suffers from a smaller number of degrees of freedom in the process
of forming a component into the desired shape. SWRSs gathered in database
exhibit similarities that prevent their utilization for the design of structures with
very unusual properties (e.g., very compact circuit [69], or wide range of electrical
properties [27]). Therefore, SWRS designed exclusively for a specific circuit may
provide the best results regarding desired specification. Additionally, a knowledge-
based approach allows for a construction of complementary SWRSs (i.e., cells that
geometrically supplement each other [69]), which is especially useful in the design
of very compact circuits (e.g., [69, 73, 74]).

Despite the manual nature of the described SWRS design technique, some
mathematical models aimed at the determination of its initial dimensions may be
provided. In the lossless case, the response RU of TL section may be described in
the form of ABCD matrix:

RU D
"

cos .�/ jZC sin .�/
j

ZC
sin .�/ cos .�/

#

(1)

The performance of a distributed TL section may be mirrored at the given operating
frequency by its corresponding SWRS section in the form of T-type distributed-
element circuit, which is composed of interconnected high-impedance ZH and
stepped-impedance sections with low-impedance ZL stub. Realization of SWRS in
such a configuration is particularly attractive due to its considerable slow-wave
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Fig. 4 Various models of a component: (a) distributed-element model of TL; (b) distributed model
of T-type SWRS structure; (c) microstrip model of T-type SWRS—parameters w1, w2, and l2 are
set based on technology limitations

properties, as well as great usefulness for circuit miniaturization [69, 74, 75].
A conceptual illustration of a TL section and its interchangeable SWRS (both the
composite and microstrip realizations) is shown in Fig. 4.

The response of T-type SWRS may be described by the following set of
equations:

RT D
"

cos .�1/ jZH sin .�1/
j

ZH
sin .�1/ cos .�1/

#"
1 0
j

Z1
1

#"
cos .�1/ jZH sin .�1/

j

ZH
sin .�1/ cos .�1/

#

(2)

Z1 D ZH

Z2 C jZH tan .�2/

ZH C jZ2tan .�2/
(3)

Z2 D ZH

ZL

jtan .�3/
(4)

where �1 stands for the electrical length of a high-impedance section, �2 and
�3 denote electrical length of a high-impedance interconnection between the ZH

line and the low-impedance stub, respectively. One should note that parameters
ZH , ZL and �2 may be determined a priori based on technology limitations of
microstrip line circuits (minimal/maximal values of line length/width allowed for
fabrication) [69]. Parameters �1 and �3 may be found numerically by solving
RU DRT for the given operational frequency (parameters ZC and � of UTL section
are known). Subsequently, geometrical dimensions of SWRS are calculated using
general microstrip equations [17].
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Although the designed SWRS may be directly utilized for a construction of
an unconventional circuit, its shape may not be optimal for some applications.
Therefore, ZH and ZL sections of the cell may be manually formed—assuming
preservation of their electrical properties—to fulfill the specified requirements
regarding circuit functionality (e.g., compact size of hybrid couplers [74] or Butler
matrices [76]). A more detailed explanation of the knowledge-based construction of
SWRS can be found in [72].

3 Surrogate-Based Design and Optimization
of Complex Circuits

Design and optimization of unconventional circuits with enhanced functionality
is clearly a complex process that involves not only engineering knowledge, but
also considerable computational resources. The cost-related issues may be partially
alleviated by means of surrogate-based optimization. Here, we discuss a NSM
methodology, which is suitable for the design of complex microstrip circuits
with SWRS perturbations. We also demonstrate the performance of the NSM
technique as well as its advantages over conventional space mapping modeling and
optimization.

3.1 Surrogate-Based Optimization

The design of microwave/RF circuit driven by surrogate-based optimization algo-
rithm requires two representations of the same microwave structure at different
levels of fidelity. Let Rf (x) be a response vector of a high-fidelity EM model of
a complex microwave/RF structure with enhanced functionality, whereas the vector
x denotes independent design parameters of the respective circuit. Unfortunately,
Rf model is computationally too expensive to be directly used in the numerical
optimization process [77]. Instead, a physics-based low-fidelity model Rs in the
form of equivalent circuit representation of the respective structure may be—
upon suitable correction—utilized to reduce the computational cost of structure
optimization. For the sake of brevity, we omit details regarding construction of
surrogate model using circuit representation. A comprehensive explanation of this
process is available in literature (e.g., [48, 78, 79]).

The design process of microwave/RF circuits may be formulated as a nonlinear
minimization problem of the following form:

x� D arg min
x

U
�
Rf .x/

	
(5)
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where U is a scalar merit function (e.g., a minimax function with upper and lower
specifications) that implements given design specifications. Vector x* is the optimal
design to be determined. A high-computational cost of a single EM simulation
makes the utilization of conventional optimization to handle (5) impractical, because
both gradient-based (e.g., Quasi-Newton [28]) and derivative-free (pattern search
[80], genetic algorithms [81]) methods usually require a substantial number of
objective function (and thus, high-fidelity model) evaluations. In order to reduce
the CPU expense, a direct optimization of a computationally expensive model may
be replaced by the following iterative procedure [24, 82]:

x.iC1/ D arg min
x

U
�
R.i/

s .x/
	

(6)

that generates a sequence of approximate solutions x(i) (iD 0, 1, : : : ) to the original
design problem of (5). The surrogate model at iteration i, Rs

(i), is constructed from
the low-fidelity model so that the misalignment between Rs

(i) and the fine model
is reduced using so-called parameter extraction process. The latter is a nonlinear
minimization problem by itself [36]. A conceptual flow of SBO is shown in Fig. 5.

For a well working SBO algorithm, only a few iterations of (6) are necessary
to find a satisfactory solution. Also, the fine model is typically evaluated only

Initial Design

Final Design

Evaluate Fine Model

Update Surrogate Model
(Parameter Extraction)

Optimize Surrogate Model

i = 0

i = i + 1Termination
Condition?

Surrogate Model

Surrogate-Based
Optimization
Algorithm

x(i)

x(i)

x(i+1)

Yes

No

EM Solver

x(0)

x(i), Rf (x(i))

Rs
(i)

Fig. 5 A conceptual flow of surrogate-based optimization: the optimization burden is shifted to
the computationally cheap surrogate model which is updated and re-optimized at each iteration of
the main optimization loop. High-fidelity EM simulation is only performed once per iteration to
verify the design produced by the surrogate model and to update the surrogate itself. The number
of iterations for a well-performing SBO algorithm is substantially smaller than for conventional
techniques
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once per iteration [83]. However, conventional SBO algorithms—particularly space
mapping—suffer from convergence problems or relatively large number of EM
model evaluations necessary to conclude the process, if complex microwave/RF
designs are considered. These difficulties are alleviated here using a NSM approach.

3.2 NSM Modeling

The NSM technique [51] is a two-level modeling methodology, with the first (inner)
space mapping layer applied at the level of component (a so-called local model), and
the second (outer) layer applied at the level of the entire structure (so-called global
model). The purpose of NSM is to improve the generalization capability of the
surrogate model and facilitate the parameter extraction process. Consequently the
cost of the design optimization process using NSM can be greatly reduced compared
to conventional space mapping applied only at the level of the entire structure [51].

Let Rf.cell(y) and Rc.cell(y) be responses (here, S-parameters) of the high-fidelity
(i.e., EM-simulated) and low-fidelity—circuit-simulated—models of the local com-
ponent (here, SWRS cell). The vector y represents geometry parameters of the
cell, whereas Rf (x) and Rs(x) denote high- and low-fidelity response of the
entire microwave/RF structure with x being a corresponding vector of geometrical
parameters. In NSM approach the surrogate model of the entire circuit is constructed
starting from the component level, i.e., each SWRS surrogate being relevant
for circuit functionality enhancements. A surrogate of inner generic component
denoted as Rs.g.cell(y,p*) stands for a composition of Rc.cell and suitable space
mapping transformations; the vector p* denotes the set of extractable space mapping
parameters of the model. The space mapping surrogate Rs.cell of a SWRS component
is obtained as

Rs:cel l .y/ D Rs:g:cel l

�
y; p�

	
(7)

The parameter vector p* is obtained by solving the following nonlinear parameter
extraction process

p� D arg min
p

XNcel l

kD1

ˇ
ˇ
ˇ
ˇRs:g:cel l

�
y.k/; p

	 � Rf

�
y.k/

	ˇ
ˇ
ˇ
ˇ (8)

where vectors y(k), (kD 1, : : : , Ncell) denote the training (or base) solutions
obtained using a so-called star-distribution scheme [36]. A base obtained using
star-distribution method is composed of NcellD 2dC 1, where d is design space
dimensionality (i.e., a number of independent design variables). Although local
generic surrogate of each SWRS depends on much smaller number of parameters
than the structure optimized using conventional space mapping technique (usually
up to a few independent variables rather than a few dozen [51]), it exploits a
combination of various space mapping methods (c.f. Sect. 3.3) [41]. Therefore,
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a local surrogate model Rs.cell implemented within a global model of the whole
microwave/RF circuit should be valid for the entire range of parameters y.

A generic space mapping surrogate of the entire unconventional circuit denoted
by Rs.g(x,P) is composed of the local models of individual SWRS cells:

Rs:g.x; P /DRs:g

��
y1I : : : Iyp

�
; P
	DF

�
Rs:g:cel l

�
y1; p�

	
; : : : ; Rs:g:cel l

�
yp;p�

	
; P
	

(9)

where F realizes a sufficient connection between respective sections of a structure
with enhanced functionality. Vector x represents a concatenation of component
parameter vectors yk, while vector P stands for space mapping parameters at the
outer level. One should note that P is usually defined as perturbations (with respect
to p*) of selected space mapping parameters of individual components.

The outer space mapping level is applied to the global model Rs.g(x,P), so that
the final surrogate Rs

(i) utilized in the ith iteration of the SBO scheme (6) is defined
as follows

R.i/
s .x/ D Rs:g

�
x.i/; P.i/

	
(10)

where

P.i/ D arg min
P
jjRs:g

�
x.i/; P

	� Rf

�
x.i/
	 jj (11)

It should be emphasized that the number of parameters in P is much smaller than
the combined number of space mapping parameters of SWRS components (i.e.,
multiple copies of a vector p*). This is normally sufficient because the inner space
mapping layer already provides good alignment between the Rs.cell and Rf.cell so that
the role of (10), (11) is mainly to account for possible interactions between SWRS
components that are considered by the composing function F. The algorithm may
be summarized as follows (see Fig. 6 for conceptual illustration):

1. Construct circuit model Rc.cell of the nth SWRS component;
2. Obtain inner space mapping surrogate Rs.cell of nth SWRS by performing

multipoint extraction of p* parameters;
3. If n < N go to 1;
4. Utilize N Rs.cell components to construct a generic space mapping surrogate

Rs.g(x,P) of an unconventional microwave/RF circuit;
5. Utilize SBO scheme for the determination of desired functionality at the output

space mapping level.

3.3 Surrogate Model Construction

Multipoint parameter extraction utilized for a construction of a reliable local model
of SWRS component requires a combination of various space mapping techniques to
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Fig. 6 The concept of nested space mapping (NSM): (a) local space mapping model of SWRS
component. Extractable parameters p* are optimized to match the circuit Rs.cell(y) and Rf.cell(y)
within solution space; (b) global space mapping model composed of two SWRS components. Once
extractable parameters p*

(1,2) are set they are reused in global model. Vector of design parameters
x is optimized to obtain desired specification

achieve desired generalization. The inner space mapping layer is constructed using
the following relation:

Rs:g:cel l .y; p/ D Rc:F .B � xC c; pI / (12)

where B and c are input space mapping parameters (a diagonal matrix B is
utilized), pI are implicit space mapping (ISM) parameters (a substrate parameters
of individual microstrip subsection of SWRS component, specifically, dielectric
permittivity and the substrate heights). Additionally, a frequency scaling Rc.F of
low-fidelity model aimed at evaluation of the Rc model across the frequency band
of interest, is performed. The frequency-scaled model Rc.F(y) corresponding to
Rc(y)D [Rc(y,!1) Rc(y,!2) : : : Rc(y,!m)]T is defined as flows:

Rc:F .y; p/DŒRc .y; f0C!1 � f1/ Rc .y; f0C!2 � f1/ : : : Rc .y; f0 C !m � f1/�
T

(13)

where f0, f1 are extractable scaling parameters. Technique is especially useful for
correction of frequency misalignment between low- and high-fidelity models of
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the SWRS component [51]. An exemplary inner space mapping layer of SWRS
component Rs.cell(y, p) and its corresponding high-fidelity model Rf.cell(y) are shown
in Fig. 7.

3.4 Generalization Capability of NSM

The most notable advantage of NSM technique lies in good generalization capability
of the global NSM surrogate Rs.g, which is achieved by global accuracy of each local
SWRS model Rs.cell utilized for a construction of unconventional microwave/RF
circuit. A typical modeling accuracy of an exemplary SWRS cell (see Fig. 7)
after multipoint parameter extraction is illustrated in Fig. 8. A comparison of
global NSM surrogate for an exemplary structure—in the form of unconventional

Rs.cell( )y

y p *

Rc.cell( )y

a b

Fig. 7 An exemplary SWRS component: (a) coarse model Rc.cell(y) within inner space mapping
layer Rs.cell(y); (b) high-fidelity EM model Rf.cell(y)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

|S
11

|

Fig. 8 NSM modeling of SWRS component. Responses at the selected test designs: coarse model
(dotted line), fine model (solid line), NSM surrogate after multipoint parameter extraction (open
circle). The plots indicate very good approximation capability of the surrogate
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Fig. 9 Geometry of an exemplary matching transformer composed by cascading three SWRS
sections of Fig. 7
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Fig. 10 NSM modeling of a matching transformer of Fig. 9: (a) high-fidelity model response
(solid line), NSM surrogate before parameter extraction (dotted line) and NSM surrogate after
parameter extraction (open circle); (b) visualization of excellent generalization of NSM surrogate
(open circle) extracted at random designs. Corresponding high-fidelity model responses (solid line)
are also provided

matching transformer of Fig. 9—before and after parameter extraction step (10) is
shown in Fig. 10. One should emphasize that Rs.g model matches its high-fidelity
counterpart even before parameter extraction step. Therefore, parameter extraction
is aimed only at addressing the interactions (i.e., couplings) between respective
SWRS components that are not accounted by the Rs.cell models.

For a comparison purpose, an exemplary transformer of Fig. 9 is also designed
using conventional space mapping modeling (i.e., correction of its low-fidelity
model Rc). The process of circuit design in such a setup is considerably more com-
plex because (1) the low-fidelity model of the entire unconventional microwave/RF
circuit is much less accurate than Rs.g (cf. Fig. 11a), (2) a large number of
space mapping parameters with considerable range of variation is required, (3)
the parameter extraction process is more challenging and time consuming, and (4)
generalization capability of the model is poor (cf. Fig. 11b).

Sufficient accuracy of the underlying low-fidelity model and good generalization
capability of the surrogate are essential for fast convergence of the SBO optimiza-
tion process (6) [51]. The NSM model exhibits both aforementioned features (here,
the global model Rs.g is formally a low-fidelity model for (6)), which results in
not only rapid, but also accurate design of complex microwave/RF circuits with
enhanced functionality.
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Fig. 11 Conventional space mapping modeling of a matching transformer of Fig. 9: (a) high-
fidelity model response (solid line), SM surrogate before (dotted line) and after parameter
extraction (open circle); (b) visualization of poor generalization capability of a surrogate (open
circle) extracted at random designs. Corresponding high-fidelity model responses (solid line) are
also provided

4 Case Studies

In this section, we present verification examples for the design of complex
microwave/RF circuits using NSM methodology of Sect. 3. The technique is
validated using a four-section ultra-wideband matching transformer with 16
independent design variables, a 15-variable broadband three section matching
transformer, and a miniaturized rat-race coupler with a total of ten designable
parameters. Unconventional properties of illustrative circuits are obtained by
implementation of SWRS components using both the database approach of Sect. 2.2
and knowledge-based design of complementary SWRS explained in Sect. 2.3. A
comparison of the NSM technique with sequential space mapping (SSM) and
implicit space mapping (ISM) methods is also provided.

4.1 Design of Ultra-Wideband Four-Section
Matching Transformer

Consider a four-section microstrip matching transformer (MT). The structure is
aimed to mimic the functionality of a conventional MT, i.e., (1) match a 50 	

line to a 130 	 load, and (2) provide a reflection coefficient jS11j ��15 dB
within 3.1–10.6 GHz frequency band of interest (ultra-wideband structure).
A circuit is considered to operate on Taconic RF-35 dielectric substrate ("rD 3.5,
tanıD 0.0018, hD 0.762).

A prototype circuit satisfying design specifications regarding reflection and
matching properties is constructed using binomial design expressions [17] resulting
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Fig. 12 Geometry of a conventional four-section MT

in a cascade of four quarter-wavelength (� D 90ı at f0D 6.65 GHz) TL sections
described by the following vector of characteristic impedances ZCD [53.1 67.4
96.4 122.5]T 	. Subsequently, physical dimensions of the MT: xrD [wr1 wr2 wr3

wr4 lr1 lr2 lr3 lr4]T are calculated using general equations for microstrip lines and
slightly tuned. The design parameters of the reference structure (see Fig. 12) are
xrD [1.2 0.9 0.5 0.3 6.6 6.8 6.7 7.0]T . Moreover, variables lr0D 10, wri0D 1.7, and
wro0D 0.18 denote size of 50 and 130 	 lines (all dimensions in mm).

The reference MT is characterized by a very simple geometry that allows for
its decomposition into four TL sections (cf. Sect. 2.1). Furthermore, similarities
between consecutive cells indicate that they might be substituted with one ver-
satile SWRS component. An appropriate structure may be found using database
approach described in Sect. 2.2. A desired SWRS is intended to mimic a range
of characteristic impedances ZC with preservation of electrical length around 90ı. A
double-T-type SWRS constituted by a vector of four independent design parameters:
yD [l1 l2 w1 w2]T (dimensions l3D 0.2 and w3D 0.2 are fixed) is sufficient to fulfill
our needs [73]. One should emphasize that due to technology limitations (i.e.,
minimum feasible width of the SWRS lines and the gaps between them equal to
0.1 mm), acceptable structure dimensions are defined by the following lower/upper
l/u bounds: lD [0.1 1 0.1 0.1]T and uD [1 5 1 1]T . The high-fidelity model Rf.cell

of the double-T-type SWRS (200,000 mesh cells and evaluation time of 60 s) is
implemented in CST Microwave Studio [84], whereas its low-fidelity model Rc.cell

is constructed in Agilent ADS circuit simulator [85].
The inner layer model Rs.cell of the chosen double-T-type SWRS component is

constituted by 16 space mapping parameters, including: eight input space mapping
(four BD diag([B1 B2 B3 B4]T) and four cD [c1 c2 c3 c4]T parameters), six ISM
(three various substrate heights and permittivity parameters pID [h1 h2 h3 "1 "2

"3]T), and two frequency scaling (f0 and f1) ones. A multipoint parameter extraction
based on star-distribution scheme (c.f. Sect. 3.2) has been conducted to achieve
Rs.cell model generalization within predefined lower/upper bounds. A comparison
of the component characteristics before and after multipoint parameter extraction
is shown in Fig. 8, whereas a double-T-type structure with highlighted geometrical
and space mapping parameters is shown in Fig. 13.

A global model Rs.g of the unconventional MT has been constructed using a
cascade connection of Rs.cell models of the double-T-type component. Subsequently,
the high-fidelity model of the structure has been prepared in CST Microwave
Studio (1,060,000 mesh cells and average simulation time 10 min). The initial
set of parameters is xD [0.55 3.75 0.65 0.35 0.55 3.75 0.65 0.35 0.55 3.75 0.65
0.35 0.55 3.75 0.65 0.35]T. Subsequently, the circuit has been optimized using
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Fig. 13 A double-T-type SWRS component: (a) low-fidelity Rc.cell model; (b) conceptual visu-
alization of the inner layer model Rs.cell with highlighted extractable parameters; (c) topology of
Rf.cell model with highlighted geometrical parameters
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Fig. 14 An unconventional MT composed of cascade connection of double-T-type SWRS
components [51]: (a) geometry of an optimized structure; (b) schematic diagram of SWRS
interconnections

the NSM technique of Sect. 3. The final design of complex MT is denoted by
vector xD [1.0 3.52 0.85 0.2 0.8 4.1 0.58 0.1 0.8 3.09 0.1 0.25 1 2.32 0.13 0.1]T .
Figure 14 illustrates geometry of the structure as well as schematic diagram of Rs.cell

interconnections.
The final design of the unconventional MT is obtained after three iterations of

the NSM algorithm. The structure fulfills all assumed design specifications: (1) it
provides 50–130 	 matching as well as (2) jS11j ��16.2 dB within band of interest.
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Fig. 15 Reflection response of the optimized unconventional MT

Moreover, the operational bandwidth of the circuit for reflection below �15 dB
is 2.7–10.8 GHz, which is 15 % broader than assumed one. Figure 15 presents
simulated characteristics of the unconventional MT. One should emphasize that the
number of the outer layer SM parameters P is much smaller than the combined set
of SM parameters for the inner layer (14 vs. 64 for the considered structure) as only
frequency scaling and selected implicit SM parameters are used. Reduction of the
number of parameters (introduced by excellent generalization capability of NSM)
considerably speeds up the design process.

The cost of inner space mapping model preparation corresponds to nine Rf.cell

model evaluations for multi parameter extraction step, while determination of the
final design required only three evaluations of the Rf model. The accumulated
cost of Rs.cell and Rs.g models evaluations corresponds to about 0.2 Rf evaluations,
thus the total aggregated cost of the unconventional MT design using the NSM
technique is about 40 min. For the sake of comparison, the design process of MT
has been also conducted by means of ISM [47] and SSM [27] techniques resulting
in considerably higher computational cost or failure of algorithms. Additionally, a
direct optimization of the transformer using pattern search method [80] was carried
out. The algorithm failed at seeking for desired circuit dimensions and has been
terminated after 500 iterations. A detailed comparison of the computational costs of
mentioned optimization techniques is provided in Table 1.

4.2 Design of a Broadband Three Section
Matching Transformer

Consider a microstrip MT composed of three sections. The structure is aimed to
mimic the functionality of a conventional TL-based MT, i.e., (1) match a 50 	
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Table 1 Four-section unconventional MT: design and optimization
cost

Optimization algorithm
Model evaluations NSM ISM SSM Direct search

SWRS Rs.cell 0.1�Rf N/A N/A N/A
SWRS Rf.cell 0.6�Rf N/A N/A N/A
MT low-fidelity Rs 0.1�Rf 5.1�Rf 1.7�Rf N/A
MT high-fidelity Rf 3 7 10a 500b

Total cost 3.8�Rf 12.1�Rf 11.7�Rf 500b �Rf

Total cost [min] 38 121 N/A 5,000
aThe algorithm started diverging and was terminated after ten
iterations
bThe algorithm failed to find a geometry satisfying performance
specifications

line to 130 	 load and (2) obtain reflection jS11j ��15 dB within 1–3.5 GHz
frequency band of interest. Additionally, circuit is intended to offer at least 50 %
length diminution in comparison to the conventional one. A structure is considered
to work on Taconic RF-35 dielectric substrate ("rD 3.5, tanıD 0.0018, hD 0.762).

A binomial design expressions are utilized for a construction of a sufficient
prototype circuit in the form of a cascade connection of three TL sections with
� D 90ı for the given operating frequency of f0D 2.25 GHz. The characteristic
impedances of the prototype circuit are represented by vector ZCD [56.3 80.6
115.4]T 	, while physical dimensions: xrD [wr1 wr2 wr3 lr1 lr2 lr3]T of the MT
are calculated using general microstrip equations. Subsequently, the circuit is tuned
to match the design requirements resulting in the following variables: xrD [1.09
0.64 0.34 20 21.7 23.6]T . Moreover, lr0D 10, wri0D 1.7, and wro0D 0.18 denote
dimensions of 50 and 130 	 lines (all dimensions in mm).

The reference structure has been decomposed into three TL sections (cf.
Sect. 2.1). Moreover, a database approach of Sect. 2.2 has been utilized for the
determination of SWRS component that is versatile enough to substitute all TL
sections. Therefore, a desired SWRS is intended to mimic their ZC parameters for
electrical length � being around 90ı. A SWRS in the form of C-type component is
suitable to fulfill the specification [73]. The structure is represented by the following
vector of geometrical parameters: yD [w1 w2 w3 l1 l2]T . The lower/upper bounds
imposed by technology limitations of circuit realization in microstrip technology
(i.e., minimal feasible width of SWRS lines and gaps between them equal to 0.1)
are set to: lD [0.1 0.1 0.1 5 0.1]T and uD [2 2 0.5 10 0.5]T . The high-fidelity model
Rf.cell of C-type SWRS component is implemented in CST Microwave Studio. An
average evaluation time of the model is 60 s (330,000 mesh cells). The low-fidelity
model Rc.cell of the structure is prepared in Agilent ADS circuit simulator.

Eighteen space mapping parameters of the inner layer model Rs.cell include: ten
input space mapping (five BD diag([B1 B2 B3 B4 B5]T) and five cD [c1 c2 c3 c4

c5]T parameters), six ISM (three various substrate heights and three permittivity
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Fig. 16 A C-type SWRS component: (a) low-fidelity Rc.cell model; (b) conceptual visualization
of inner layer model Rs.cell with highlighted 16 extractable parameters (except frequency scaling);
(c) topology of Rf.cell model with highlighted five geometrical parameters

parameters pID [h1 h2 h3 "1 "2 "3]T ), and two frequency scaling (f0 and f1) ones.
A star-distribution scheme of Sect. 3.2 has been utilized for multipoint parameter
extraction of the Rs.cell model. Figure 16 illustrates the structure with the emphasis
on its geometrical and extractable parameters.

A cascade connection of three Rs.cell models of the C-type SWRS component
has been utilized for a construction of a global Rs.g model of unconventional MT.
A high-fidelity model Rf of the entire structure has been implemented in CST
Microwave Studio (1,400,000 mesh cells and average simulation time 18 min).
The initial set of parameters is: xD [0.2 1 0.2 4 0.2 0.2 1 0.2 4 0.2 0.2 1 0.2 4 0.2]T .
Subsequently, NSM methodology of Sect. 3 has been utilized for optimization of the
structure resulting in the following vector of design parameters: xD [1.21 0.18 10
0.3 0.5 1.5 0.2 8.98 0.3 0.19 0.97 0.15 10 0.3 0.15]T . Geometry of unconventional
structure and a schematic diagram of Rs.cell interconnections are shown in Fig. 17.

The unconventional MT that offers over 51 % length reduction (length of
31.9 mm) in comparison to conventional structure (length of 65.3 mm) and reflection
jS11j ��17 within band of interest is obtained using only three iterations of NSM
algorithm. Furthermore, jS11j ��15 dB of an abbreviated circuit is obtained within
0.9–3.6 GHz frequency band. Similarly to the results of Sect. 4.1, the width of
an unconventional MT is slightly greater than of conventional one. Figure 18
shows comparison of the reflection characteristics of the conventional and the
abbreviated MT.

A total design and optimization cost of the structure, including eleven Rf.cell

model evaluations during generation of the inner space mapping layer, three Rf

model simulations for optimization of unconventional MT circuit, and evaluations
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Fig. 17 An abbreviated MT composed of four C-type SWRS components: (a) geometry of an
optimized structure; (b) schematic diagram of SWRS cascade connection
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Fig. 18 Reflection characteristics of the conventional (dashed line) and abbreviated (solid line)
MT

of surrogate models (Rs.g and Rs.cell) corresponds to about 0.5 Rf model simulations
(1.2 h). Alternative techniques including ISM and SSM as well as direct optimiza-
tion driven by pattern search algorithm have been also utilized for the design and
optimization of abbreviated MT. SSM and ISM requires twice as many iterations as
NSM approach, while direct optimization required 520 iterations to complete, which
turns the method virtually impractical for such circuits. A detailed comparison of the
methods in terms of iterations is collected in Table 2.



Nested Space Mapping Technique for Design and Optimization of Complex. . . 77

Table 2 An abbreviated three section MT: design and optimiza-
tion cost

Optimization algorithm
Model evaluations NSM ISM SSM Direct search

SWRS Rs.cell 0.2�Rf N/A N/A N/A
SWRS Rf.cell 0.6�Rf N/A N/A N/A
MT low-fidelity Rs 0.3�Rf 3�Rf 1.3�Rf N/A
MT high-fidelity Rf 3 7 6 520
Total cost 4.1�Rf 10�Rf 7.3�Rf 520�Rf

Total cost [h] 1.2 3.2 2.3 149.8

4.3 Design of a Compact Rat-Race Coupler

Our last example is an unconventional rat-race coupler (RRC). The structure is
desired to fulfill the following design specifications: (1) at least 20 % bandwidth
defined for both isolation jS41j and reflection coefficients jS11j below �20 dB and
(2) �3 dB coupling. Both goals are considered for the given operating frequency
f0D 1 GHz. Moreover, the design is intended to achieve at least 80 % of footprint
reduction in comparison with conventional rectangle-based RRC. The circuit is
desired to operate on Taconic RF-35 dielectric substrate ("rD 3.5, tanıD 0.0018,
hD 0.762).

A conventional, equal-split RRC may be constructed using well-known even-
odd mode analysis [70]. The reference circuit is composed of six TL sections of
characteristic impedance ZC D

p
2 Z0 	 and electrical length � D 90ı, where

Z0D 50 	 is the characteristic impedance of feed lines. Moreover, TL sections are
interconnected through tee junctions and microstrip bends (see Fig. 2b). Physical
dimensions of the conventional structure are represented by a vector: xrD [wr1

lr1]T . The dimensions of reference design are: xrD [0.87 45.8]T , while parameters
l0D 10, w0D 1.7 are fixed to ensure 50 	 feed (all dimensions in mm). One
should emphasize that the design is characterized by a considerable footprint of
4,536 mm2 (47.5� 95.5 mm2).

A conventional RRC may be decomposed into six TL sections characterized by
the same electrical parameters. Unfortunately, determination of SWRS component
for TL replacement by means of database approach prevents sufficient circuit
miniaturization. For that reason, we perform a knowledge-based construction of
SWRSs (cf. Sect. 2.3) aimed at manual forming of components to maximally utilize
interior of the coupler. To satisfy miniaturization requirements, nD 2 complemen-
tary SWRS components based on T-type topology have been constructed. Both cells
are represented by the following vectors of design parameters: y(1)D [w11 l11 l21 l31

l41]T and y(2)D [w12 l12 l22 l32 l42]T . Technology limitations impose the lower/upper
bounds of each structure dimensions: l(1)D [0.2 0.2 0.2 0.2 0.2]T , u(1)D [0.5 0.5 4
0.5 4]T , and l(2)D [0.2 0.2 0.2 0.2 0.2]T , u(2)D [0.5 1 7 0.5 7]T . The high-fidelity
models Rf.cell

(n) of SWRS are both prepared in CST Microwave Studio (340,000
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Fig. 19 A T-type SWRS components designed by means of knowledge-based approach: (a)
general visualization of low-fidelity Rc.cell

(1) and Rc.cell
(2) models; (b) topology of Rf.cell

(1) model
with highlighted six geometrical parameters (w21D 18l11C 21w11); (c) topology of Rf.cell

(2) model
6 geometrical parameters are highlighted (w22D 6l12C 7w12)

and 400,000 mesh cells, as well as 4 and 4.5 min evaluation time for Rf.cell
(1)

and Rf.cell
(2) respectively). The low-fidelity models Rc.cell

(n) of both structures are
constructed in Agilent ADS circuit simulator. Designs of both components with
highlighted geometrical parameters as well as visualization of their circuit models
are illustrated in Fig. 19.

A star-distribution design of experiments scheme for training data allocation
(cf. Sect. 3.2) has been utilized for a multipoint parameter extraction. Inner space
mapping layers of Rs.cell

(1) and Rs.cell
(2) models have been both composed of 18

parameters. The surrogate model responses of both SWRS components before and
after multipoint parameter extraction are shown in Fig. 20.

A global model Rs.g of compact RRC has been constructed using two Rs.cell
(1)

and four Rs.cell
(2) models that substitute TL sections of a conventional circuit.

The coupler dimensions are represented by the following vector: xD [w11 l11 l21

l31 l41 w12 l12 l22 l32 l42]T , whereas w10D 0.75, l10D 4.3, l20D 0.4 remain fixed.
Moreover, w21D 18l11C 21w11 and w22D 6l12C 7w12. A high-fidelity model Rf of
the structure has been prepared in CST Microwave Studio (800,000 mesh cells
and average simulation time 75 min per design). The initial design parameters are:
xD [0.2 0.2 2.5 0.2 2.5 0.2 0.2 5.0 0.2 5.0]T . A NSM methodology of Sect. 3
has been utilized for optimization of the structure resulting in the following vector
of design parameters: xD [0.24 0.26 3.35 0.28 2.04 0.25 0.29 6.52 0.29 5.63]T .
Geometry of the unconventional structure and a schematic diagram of Rs.g are shown
in Fig. 21.
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Fig. 20 NSM modeling of T-type SWRS components. Responses at the selected test designs—
coarse model (dotted line), fine model (solid line), NSM surrogate after multipoint parameter
extraction (open circle): (a) Rs.cell

(1); (b) Rs.cell
(2)

The final design of compact RRC has been obtained after four iterations
of the NSM algorithm. The footprint of the miniaturized structure is only
17� 27.3D 464 mm2 and thus it offers a considerable miniaturization of almost
90 % with respect to the conventional circuit (4,536 mm2).

The actual obtained �20 dB bandwidth is 23.5 %, which is broader than the one
assumed in the specifications. The lower and upper operating frequencies are 0.915
and 1.150 GHz, respectively. A very slight shift of the operational frequency may
be observed. What is also important, low-pass properties of SWRS components
[73] introduced attenuation of harmonic frequencies up to 4 GHz. Narrow-band
transmission characteristics of miniaturized RRC as well as a comparison of
broadband responses of compact and conventional RRC is shown in Fig. 22.

A total design and optimization cost of the structure (8.6 h), including 11
Rf.cell

(1) and 11 Rf.cell
(2) model evaluations during generation of the inner space

mapping layers, four Rf model simulations for RRC optimization, and evaluations of
surrogate models (Rs.g, Rs.cell

(1) and Rs.cell
(2)) corresponds to about 1.2 simulations

of Rf model. Additionally, the circuit has been optimized using alternative SBO
techniques and direct optimization driven by pattern search algorithm. The NSM
algorithm clearly outperforms the benchmark techniques. A detailed comparison of
the methods in terms of iterations is provided in Table 3.

5 Conclusions

In this chapter, a technique for fast design and optimization of computationally
expensive microwave/RF circuits with enhanced functionality has been discussed.
The design procedure is based on a decomposition of conventional passive structure
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Fig. 22 A compact rat-race coupler: (a) transmission characteristics—(asterisk) reflection, (open
circle) transmission, (cross) coupling, (open square) isolation; (b) attenuation of harmonic
frequencies of compact RRC (black line) in comparison with conventional one (gray line)

Table 3 A compact rat-race coupler: design and optimization cost

Optimization algorithm
Model evaluations NSM ISM SSM Direct search

SWRS Rs.cell 0.9�Rf N/A N/A N/A
SWRS Rf.cell 1.3�Rf N/A N/A N/A
MT low-fidelity Rs 0.3�Rf 3.9�Rf 3.2�Rf N/A
MT high-fidelity Rf 4 16 12 286
Total cost 6.5�Rf 18.9�Rf 15.2�Rf 286�Rf

Total cost [h] 8.6 26.5 18.7 363.6
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into a set of transmission line sections and their substitution with respective
slow-wave resonant structures. Two distinct approaches for a determination of
SWRS for transmission line replacement based on selection of a proper component
from a predefined database and knowledge-based construction of the cell have been
described.

Direct design of unconventional microwave/RF circuits constituted by SWRS
components is a computationally expensive problem that may be efficiently handled
only by means of surrogate-based optimization. Here, we discuss a NSM method-
ology, which is a two-stage design and optimization approach utilizing inner space
mapping layer prepared at the level of each SWRS component, and the outer layer
constructed at the level of the entire unconventional circuit. Representing of the
design in such a way allows for a construction of a SWRS component model that
exhibits good generalization capability and may be reused for the design various
unconventional circuits.

The introduced technique allows for a fast and reliable design of computationally
expensive circuits constituted of SWRS components. It is illustrated using three
exemplary planar structures: a 16-variable four-section UWB matching transformer,
a 15-variable three section broadband matching transformer, and a 10-variable
rat-race coupler. All structures are successfully designed in a timeframe being
only a fraction in comparison conventional design based on direct optimization
scheme. Despite promising results, the discussed technique requires a considerable
engineering knowledge to perform circuit decomposition and determine sufficient
SWRS components. This is somehow problematic from the point of view of full
automation of the design process. Expanding of the presented methods with the aim
of design automation will be the subject of the future research.
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Automated Low-Fidelity Model Setup
for Surrogate-Based Aerodynamic Optimization

Leifur Leifsson, Slawomir Koziel, and Piotr Kurgan

Abstract Computational fluid dynamics (CFD) simulations are a fundamental tool
in aerodynamic design. Unfortunately, accurate, high-fidelity CFD models may be
computationally too expensive to conduct the design using numerical optimization
procedures. Recently, variable-fidelity optimization algorithms have attracted atten-
tion for their ability to reduce high CPU-cost related to the design process solely
based on accurate CFD models. Low-fidelity simulation models are the most critical
components of such algorithms. They normally employ the same CFD solver as the
high-fidelity model but with reduced discretization density and reduced number of
flow solver iterations. Typically, the selection of the appropriate model parameters
has only been guided by the designer experience. In this chapter, an automated
low-fidelity model selection technique is described. By defining the model setup
task as a constrained nonlinear optimization problem, suitable grid and flow solver
parameters are obtained. The approach is compared to two conventional methods of
generating a family of variable-fidelity models. Comparison of the standard and the
proposed approach is carried out in the context of aerodynamic design of transonic
airfoils using a multi-level optimization algorithm. The results obtained for several
test cases indicate that the automated model generation may lead to significant
computational savings of the CFD-based airfoil design process. Illustration of
the entire optimization cycle involving automated low-fidelity model preparation
and B-spline-parameterized airfoil design using space mapping algorithm is also
provided.
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1 Introduction

Shape optimization is one of the fundamental procedures of aerodynamic design
[1, 2]. Modern optimization methodologies exploit computational fluid dynamics
(CFD) simulations for reliable evaluation of engineering systems and components
such as aircraft wings and turbine blades. Accurate high-fidelity CFD simulations
are computationally expensive. Consequently, performing CFD-based design may
be unrealistic when using conventional numerical optimization techniques, even
with adjoint sensitivity information [3–6]. Surrogate-based optimization (SBO)
methods [3–5] provide a promising way to reduce the computational cost of
aerodynamic design, particularly the ones using physics-based surrogates [6–10].
Those methods are often referred to as variable- (or multi-) fidelity optimization
methods. In these approaches, the optimization burden is shifted from an expensive
model over to a suitably corrected low-fidelity model.

The low-fidelity models are the most critical part of variable-fidelity design
techniques. In CFD-based design, the low-fidelity models are, typically, exploiting
the same flow solver as the high-fidelity one, but with coarser discretization and a
reduced number of flow solver iterations. One of the main challenges here is the
selection of the discretization parameters and the flow solver convergence criteria
for a fast and reliable CFD analysis of the low-fidelity model [11]. Currently, this
process is hands-on and guided by engineering experience.

This chapter describes an automated procedure for setting up low-fidelity CFD
models. The model setup task is formulated as a constrained nonlinear optimization
problem which is solved numerically to find appropriate values of the parameters
of the CFD model discretization and convergence criteria. The process is carried
out for multiple designs simultaneously to ensure consistency of the low-fidelity
model performance (both simulation time and accuracy) across the entire design
space. The technique replaces an ad hoc method of constructing the low-fidelity
model by hand to automate the process. Applications of the technique to the design
of transonic airfoil shapes as well as comparisons with conventional approaches are
provided.

2 Multi-Level CFD-Based Aerodynamic Shape Optimization

This section provides a formulation of the aerodynamic shape design problem. We
also describe a variable-fidelity optimization approach, as well as a so-called multi-
level optimization algorithm [12] as an exemplary design technique. Multi-level
optimization exploits a family of CFD models of increasing discretization density
so that a proper selection of the models is critical for the algorithm performance.
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2.1 Problem Formulation

Airfoil shape optimization aims, in general, at finding the best geometry which
maximizes the aerodynamic performance at a certain operating condition(s) for a
given set of constraints. The problem can be formulated as follows:

min
x

f .x/

s:t: gj .x/ � 0; j D 1; : : : ; M

hk.x/ D 0; k D 1; : : : ; N

l � x � u

(1)

where f (x) is the objective function, x is the design variable vector, gj(x)
are the inequality constraints, M is the number of the inequality constraints,
hk(x) are the equality constraints, N is the number of the equality constraints,
and l and u are the design variables lower and upper bounds, respectively.

The objective and constraint functions are assumed to be obtained through high-
fidelity CFD simulation. The objective can be written as, for example, f (x)DCd(x)
with the constraints g1(x)DCl.min�Cl(x)� 0 and g2(x)DAmin�A(x)� 0, where
Cd is the drag coefficient, Cl is the lift coefficient, Cl.min is a minimum lift coefficient,
A is the cross-sectional area, and Amin is a minimum cross-sectional area.

2.2 Optimization Algorithm

A multi-level optimization algorithm is used here to solve the problem (1). The
algorithm was first introduced in the area of microwave engineering [13], and later
extended and applied to airfoil shape optimization [12]. The algorithm exploits
a family of low-fidelity models denoted as fcjg, jD 1, : : : , K, all evaluated by
the same CFD solver as the one used for the high-fidelity model f. Discretization
of the model cjC1 is finer than that of the model cj, which results in higher
accuracy and, unfortunately, a longer evaluation time. In practice, KD 2 or 3. The
discretization density may be controlled by solver-dependent parameters (e.g., the
grid parameters).

The multi-level optimization works as follows. Starting from the initial design
x(0), the coarsest model c1 is optimized to produce a first approximation of the
high-fidelity model optimum, x(1). The vector x(1) is used as a starting point to find
the subsequent approximation of the high-fidelity model optimum, x(2), which is
obtained by optimizing the next model, c2. The process continues until the optimum
x(K) of the last low-fidelity model cK is found.

Having x(K), we evaluate the model cK at all perturbed designs around x(K), i.e.,
at xk

(K)D [x1
(K) : : : xk

(K)C sign(k) � dk : : : xn
(K)]T , kD�n, �nC 1, : : : , n–1, n.

We use the notation c(k)D cK(xk
(K)). This data is used to refine the final design

without directly optimizing the high-fidelity model f. More specifically, we set up
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an approximation model involving c(k) and optimize it in the vicinity of x(K) defined
as [x(K)� d, x(K)C d], where dD [d1 d2 : : : dn]T . The size of the area, i.e., the
parameter d, can be selected based on sensitivity analysis of c1 (the cheapest of the
low-fidelity models); usually d equals 2–5 % of x(K).

Here, approximation is performed using a reduced quadratic model q(x)D [q1 q2

: : : qm]T , defined as

qj .x/Dqj



Œx1� � � xn�T

�
D �j:0C�j:1x1C� � �C�j:nxnC�j:nC1x

2
1C � � �C�j:2nx2

n

(2)

The coefficients �j.r, jD 1, : : : , m, rD 0, 1, : : : , 2n, are uniquely obtained by
solving the linear regression problems
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(3)

where xk.j
(K) is a jth component of the vector xk

(K), and cj
(k) is a jth component of

the vector c(k). In our case, the components of the response vector consist of the lift
and drag coefficients, as well as the cross-section area.

In order to account for unavoidable misalignment between cK and f, instead
of optimizing the quadratic model q, it is recommended to optimize a corrected
model q(x)C [f (x(K))� cK(x(K))] that ensures a zero-order consistency [6] between
cK and f. The refined design can be then found as

x� D arg min
x.K/�d�x�x.K/Cd

H
�
q .x/C �f �x.K/

	 � cK

�
x.K/

	�	
(4)

This type of correction is also known as output space mapping [14]. If necessary,
the step (4) can be performed a few times starting from a refined design, i.e.,
x*D argminfx(K)� d� x� x(K)C d: H(q(x)C [f (x*)� cK(x*)])g. It should be noted
that the high-fidelity model is not evaluated until executing the refinement step (4).
Also, each refinement-iteration requires only a single evaluation of f.

The optimization procedure can be summarized as follows (where K is the
number of models):

1. Set jD 1;
2. Select the initial design x(0);
3. Starting from x(j–1) find x(j)D arg minfx: H(cj(x))g;
4. Set jD jC 1; if j < K go to 3;
5. Obtain a refined design according to (4).
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The main benefit of using several models of varying fidelity is that starting
from a less accurate but faster model allows us to quickly find an approximate
location of the optimum design. Switching to finer models at the later stages allows
us to locate the optimum more accurately without excessive computational effort
because each algorithm-iteration starts from an already reasonable approximation
of the optimum. Another benefit of this procedure is that, aside from the refinement
stage, no enhancement/correction of the low-fidelity models is necessary, which is
in contrast to most of other SBO techniques. Therefore, the multi-level approach is
less dependent on the low-fidelity model quality.

3 High-Fidelity Model

In this section we consider a two-dimensional CFD model describing transonic flow
past airfoil sections. The steady compressible Euler equations are taken to be the
governing fluid flow equations.

3.1 Computational Grid

The computational grids are of structured curvilinear body-fitted C-topology, as
shown in Fig. 1, with elements clustering around the airfoil and growing in size with
distance from the airfoil surface. The free-stream Mach number, static pressure,
and angle of attack are prescribed at the farfield boundary. The solution domain
boundaries are placed at 25 chord lengths in front of the airfoil, 50 chord lengths
behind it, and 25 chord lengths above and below it.

The grid density is controlled by the following parameters (shown in Fig. 1a):
m1D number grid points on the upper and lower airfoil surfaces, m2D number grid
points on the horizontal line behind the airfoil from the trailing edge to the farfield
boundary, m3D number of grid points on the vertical line from the airfoil surface
to one-fourth of the distance to the farfield, m4D number of grid points on the
three-fourths of the vertical line from the farfield down to the airfoil surface, and
m5D distance from the airfoil surface to the first grid point. Local clustering on the
airfoil surface is also controlled, but not parameterized. The computer code ICEM
CFD [15] is used for the grid generation. An example grid is shown in Fig. 1b.

3.2 Flow Solver

The flow solver is of implicit density-based formulation and the inviscid fluxes are
calculated by an upwind-biased second-order spatially accurate Roe flux scheme.
Asymptotic convergence to a steady state solution is obtained in each case.
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Fig. 1 Structured curvilinear body-fitted C-topology grid for transonic airfoil flow simulation,
(a) the computational domain, and (b) an example grid for the NACA 0012 airfoil

The iterative convergence of each solution is examined by monitoring the overall
residual, which is the sum (over all the cells in the computational domain) of the L2

norm of all the governing equations solved in each cell. The solution convergence
criterion for the high-fidelity model is the one that occurs first of the following:
a reduction in the residual by six orders, or a maximum number of iterations of
1,000. Numerical fluid flow simulations are performed using the computer code
FLUENT [16].

3.3 Grid Independence

A grid independence study was performed using the NACA 0012 airfoil at Mach
number M1D 0.75 and an angle of attack ˛D 1ı. The results of the study, shown
in Fig. 2a, reveal that 400,000 grid cells are needed for mesh convergence.
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Fig. 2 Grid independence study using the NACA 0012 airfoil at Mach number M
1

D 0.75 and
an angle of attack ˛D 1ı; (a) lift and drag coefficients versus the number mesh cells, and (b) the
simulation time versus the number of mesh cells

The high-fidelity CFD model is based on that particular grid. The overall simulation
time for the case considered is roughly 67 min (Fig. 2b). The flow solver reached
a converged solution after 352 iterations. The other grids required around 350–
500 iterations to converge, except the coarsest one, which terminated after 1,000
iterations, with the overall simulation time around 9.5 min.

4 Low-Fidelity Models

The low-fidelity models are evaluated using the same CFD solver as the one utilized
for the high-fidelity model, but with a coarser computational mesh and relaxed
convergence criteria. As explained in Sect. 2, the optimization algorithm presented
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here may exploit several models of different fidelity. The setup of the low-fidelity
CFD models is essential for robust performance and high efficiency of the multi-
fidelity optimization algorithm.

The grid density is controlled by five parameters, mi, iD 1, : : : , 5, as described
in Sect. 3.1. The number of flow solver iterations is denoted by N. The vector of all
combined parameters will be referred to as zD [m1 m2 m3 m4 m5 N]T . We consider
three different ways of defining the grid parameters in order to setup the low-fidelity
models for the multi-level optimization algorithm. In Sect. 5, we demonstrate the
influence of the low-fidelity model families set up with these approaches on the
performance of the multi-level optimization algorithm.

4.1 Low-Fidelity Model Setup Based on Grid
Independence Study

The most common strategy for setting up the low-fidelity models is by using the
results of a grid independence study. The process is typically done in “reverse,”
meaning a high-fidelity grid is developed by an experienced engineer and then the
number of grid points in each direction is reduced by half. The distance to the grid
point closest to the surface is doubled as well. Figure 2 is an example of such a study.

The flow solution history, shown in Fig. 3a, for a low-fidelity model indicates that
the lift and drag coefficients are nearly converged after 80–100 iterations. Therefore,
the maximum number of iterations is set to 100 for the low-fidelity model and,
thereby, reducing the simulation time further.

A comparison of the pressure distributions of the high- and the low-fidelity
models, shown in Fig. 3b, indicates that the low-fidelity model, in spite of being
based on much coarser mesh and reduced flow solver iterations, captures the main
features of the high-fidelity model pressure distribution quite well. The biggest
discrepancy in the distributions is around the shock on the upper surface, leading
to an over estimation of both lift and drag (Fig. 2a).

4.2 Low-Fidelity Model Setup Based on Insight

An alternative way of setting up the low-fidelity models is by modifying the grid
parameters based on the insight of the engineer. The objective would be to reduce
the simulation time, but at the same time retain the accuracy of the high-fidelity
model. For example, regions with large gradients need to be resolved better than
other regions. With that in mind, one can reduce the number of grid points in the
outer regions more than in the region close to the surface. In our case, the grid
parameters m2 and m4 can be reduced more rapidly than the other grid parameters.
The number of flow solver iterations is set in the same way as described in Sect. 4.1.
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4.3 Low-Fidelity Model Setup Based on Numerical
Optimization

The last low-fidelity model setup methodology considered here exploits numerical
optimization. More specifically, the grid parameters as well as the number of
iterations N, i.e., the vector z, are optimized in order to reduce the discrepancy
between the drag coefficients predicted by the low-fidelity model and the high-
fidelity one, assuming given simulation time ratios between the models.
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Let us denote the drag coefficient predicted by a CFD model simulated using the
grid/iteration parameters z as Cd(x,M,˛,z), where x represents the airfoil geometry,
whereas M and ˛ are operating conditions for a reference airfoil for which the low-
fidelity model is being set up. The optimization problem is defined as follows

z� D arg min
z

Hz .Cd .x; M; ˛; z// (5)

with the objective function defined as

Hz.Cd .x; M; ˛; z//D
 

Cd .x; M; ˛; z/�Cd

�
x; M; ˛; zf

	

Cd

�
x; M; ˛; zf

	

!2

C�

 
t
�
zf

	

t .z/
�Rtarget

!2

(6)

Here, zf are the grid parameters of the high-fidelity model, Cd(x,M,˛,zf ) is the
drag coefficient predicted by the high-fidelity model for the reference airfoil and
operating conditions, whereas t(z) represents the CFD model simulation time for
given grid parameters z. The objective function contains a penalty factor with the
proportionality coefficient � (here, we use � D 1,000) that forces the optimization
process to obtain the given simulation time ratio Rtarget.

The low-fidelity model setup through the optimization process (5), (6) allows us
to obtain the best possible grid setup for a required simulation time ratio that can be
controlled much more precisely than for typical methods of Sects. 4.1 and 4.2.

5 Numerical Results

This section presents the effects of various low-fidelity model setup strategies
on the performance of the CFD-simulation-based airfoil design. In particular, we
consider the multi-level optimization algorithm of Sect. 2 to the design of airfoils
in transonic flow using the NACA airfoil parameterization. The high-fidelity CFD
model is described in Sect. 3 and the setup of the low-fidelity CFD models is
described in Sect. 4. Additionally, design of transonic airfoils exploiting a B-spline
parameterization is considered with the low-fidelity model set up using the approach
of Sect. 4.3 and a space mapping algorithm utilized as an optimization engine.

5.1 Airfoil Shape Design with NACA Parameterization

Three test cases involving both drag minimization and lift maximization are
considered. The performance of the algorithm (with respect to the quality of the final
design, as well as the computational complexity of the design process) is compared
for different setups of the low-fidelity models (as described in Sect. 4).
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5.1.1 NACA Airfoils

The airfoil shape is parameterized with the NACA four-digit method [17]. The
NACA airfoils are constructed by combining a thickness function zt(x) with a mean
camber line function zc(x). The x-coordinates are

xu;l D x � zt sin � (7)

and the z-coordinates are

zu;l D zc ˙ zt cos � (8)

where u and l refer to the upper and lower surfaces, respectively, zt(x) is the thickness
function, zc(x) is the mean camber line function, and

� D tan�1

�
d zc

dx

�

(9)

is the mean camber line slope. The NACA four-digit thickness distribution is
given by

zt D t
�
a0x1=2 � a1x � a2x2 C a3x3 � a4x

4
	

(10)

where a0D 1.4845, a1D 0.6300, a2D 1.7580, a3D 1.4215, a4D 0.5075, and t is the
maximum thickness. The mean camber line is given by

zc D

8

<̂

:̂

m

p2

�
2px � x2

	
; x < p

m

.1 � p/2

�
1 � 2p C 2px � x2

	
; x � p

(11)

where m is the maximum ordinate of the camber line and p is the location of the
maximum ordinate. Example NACA four-digit airfoils are shown in Fig. 4.

The NACA four-digit airfoil shapes are designed for low-speed applications
and are therefore not suitable for transonic flow speeds. However, the NACA
four-digit parameterization is a convenient approach for numerical experiments
of the optimization algorithms since there are only three well defined parameters
controlling the airfoil shape. The design variable vector is written as xD [m p t]T .

5.1.2 Setup of the Low-Fidelity Models

The low-fidelity models were configured using the NACA 0012 airfoil shape as a
baseline and assuming the following operating conditions: M1D 0.75 and ˛D 1ı.
Three sets of the low-fidelity models were considered: LFM 1Dmodels created
using linear variation of all grid parameters (cf. Sect. 4.1), LFM 2Dmodels created
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Fig. 4 Shown are two different NACA four-digit airfoil sections: NACA 2412 (mD 0.02, pD 0.4,
tD 0.12) and NACA 4608 (mD 0.04, pD 0.6, tD 0.08)

using variation of a set of grid parameters (cf. Sect. 4.2), and LFM 3Dmodels
obtained by numerical optimization of the grid parameters (cf. Sect. 4.3).

The characteristics of all three low-fidelity model sets are presented in Fig. 5.
It can be observed that the lift coefficient values (Fig. 5a) diverge from the high-
fidelity value upon reducing the grid cells for all the low-fidelity model families.
The behavior of the drag coefficient values (Fig. 5b) is different. For the sets LFM
1 (constructed by a typical grid independence study) and LFM 2 (constructed by
insight), a deviation from the high-fidelity model drag due to the reduction of the
cell number is much more pronounced as compared to LFM 3 (constructed by
numerical optimization). LFM 3 can be characterized by the drag coefficient being
nearly constant with respect to the number of cells.

What is even more important, the time ratio (Fig. 5c) increases more rapidly
with reduced number of cells for the LFM 3 family than the other two. It can
be therefore concluded that constructing the low-fidelity model families using
numerical optimization yields both more accurate and faster models, at least for
the our baseline airfoil shape.

5.1.3 Shape Optimization

The multi-level optimization algorithm of Sect. 2.2 is applied to three different
design cases. The pattern-search algorithm, a derivative-free optimization method
(see, e.g., Koziel [13]), is used for the low-fidelity model optimization (Step 3 of the
algorithm) with the maximum number of model evaluations set to 200. The stopping
criterion on the argument is 10�4.
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Table 1 Simulation time ratio for the
high-to-low-fidelity models for each
low-fidelity model used from different
families

Model LFM 1 LFM 2 LFM 3

c1 25 84 100
c2 3 12 40

Table 2 Design case formulations

Case M
1

˛ (ı) Objective Constraint 1 Constraint 2

1 0.70 1 min Cd Cl� 0.6000 A� 0.075
2 0.75 0 max Cl Cd � 0.0050 A� 0.075
3 0.80 0 min Cd Cl� 0.5000 A� 0.065

For each design case, three optimization studies are performed using the three
different low-fidelity model sets constructed as described in the previous section.
Two low-fidelity models are used by the multi-level optimization algorithm in
each case. Table 1 shows the time ratio of the two low-fidelity models used from
each family. Using faster models for LFM 1 and LFM 2 either resulted in failed
simulations during the optimization run, i.e., the grids were simply to coarse for the
flow solver to handle, or the optimizer would not yield improved designs.

The design cases are described in Table 2. In each case, the airfoil shape is
parameterized using the NACA four-digit method as described in Sect. 5.1.1. The
bounds on the design variables are 0�m� 0.1, 0.2� p� 0.8, and 0.05� t/c� 0.2.
The Mach number is M1D 0.75 and the angle of attack ˛D 1ı. Details of the
optimization results are given in Table 2.

The results presented in Tables 3, 4, and 5 indicate that the performance of the
multi-level algorithm is consistent throughout all the test cases. The results show
that the optimized designs obtained by using the three different low-fidelity model
families are similar. The thickness-to-chord ratio is nearly the same for all designs,
but the maximum camber and the location of maximum camber differ slightly. All
designs satisfy both constraints, but they differ slightly in the objective function.

The algorithm using the low-fidelity model set LFM 3 yields designs similar
to those produced with the low-fidelity model sets LFM 1 and LFM 2, but at a
considerably lower CPU cost (4–5 equivalent evaluations of the high-fidelity model
on average). At the same time, the quality of the final designs produced with all sets
is similar. It should be emphasized that because of the algorithm setup, the number
of evaluations of particular models are similar (Nc150, Nc240, Nf3) so that
the computational benefit mostly comes from the fact that the models of LFM 3 are
faster than those of LFM 1 and LFM 2. However, the fact that the LFM 3 models are
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Table 3 Numerical results for Case 1

Variable Initial LFM 1 LFM 2 LFM 3

m 0.0200 0.0175 0.0166 0.0180
p 0.4000 0.5500 0.5800 0.5233
t 0.1200 0.1114 0.1164 0.1114
Cl 0.5963 0.6001 0.6000 0.6000
Cd 0.0047 0.0016 0.0018 0.0017
A 0.0808 0.0750 0.0784 0.0751
Nc1 – 51 54 52
Nc2 – 38 38 38
Nf – 3 3 2
Cost – <18 <7 <4

Table 4 Numerical results for Case 2

Variable Initial LFM 1 LFM 2 LFM 3

m 0.0200 0.0152 0.0146 0.0151
p 0.4000 0.7433 0.7656 0.7661
t 0.1200 0.1140 0.1140 0.1120
Cl 0.4745 0.5676 0.5702 0.5900
Cd 0.0115 0.0050 0.0050 0.0050
A 0.0808 0.0767 0.0768 0.0754
Nc1 – 52 51 51
Nc2 – 38 38 38
Nf – 3 4 3
Cost – <18 <8 <5

Table 5 Numerical results for Case 3

Variable Initial LFM 1 LFM 2 LFM 3

m 0.0000 0.0150 0.0153 0.0151
p 0.0000 0.5300 0.5150 0.5200
t 0.1000 0.0966 0.0965 0.0966
Cl 0.0006 0.5002 0.5004 0.4999
Cd 0.0016 0.0156 0.0162 0.0159
A 0.0673 0.0651 0.0650 0.0650
Nc1 – 51 51 51
Nc2 – 38 38 38
Nf – 3 3 2
Cost – <18 <7 <4

also more accurate than LFM 1 and LFM 2 has its contribution to the computational
savings: the average number of the refinement iterations of the multi-level algorithm
(and, consequently, the number of high-fidelity model evaluations) equals 3 for LFM
1, 3.3 for LFM 2 but only 2.3 for LFM 3.
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5.2 Airfoil Shape Design with B-Spline Parameterization

In this section, we consider optimization of the airfoil shape described by a B-spline
parameterization. Formulation of the parameterization is followed by the results of
the low-fidelity model setup, as well as a description of the optimization approach.
The section is concluded with the numerical results and discussion.

5.2.1 Airfoil Shapes with B-Spline Curves

A B-spline is a piecewise polynomial function of the order k in a variable t defined
over the range t0� t� tm, mD kC 1, where the points tD tj are known as knots (or
break-points). A spline function of order k on a given set of knots can be expressed
as a linear combination of B-splines as [18]

p.t/ D
nX

iD0

Ni;k.t/Pi (12)

where Ni,k are the B-spline blending functions, also referred to as the basis functions,
and Pi, iD 0, 1, : : : n, are control points. The basis functions are calculated from
the Cox-DeBoor recursion relation as

Ni;1 D
�

1 i f ti � t � tiC1

0 elsewhere
(13)

and

Ni;k.t/ D t � ti

tiCk�1 � ti
Ni;k�1.t/C tiCk � t

tiCk � tiC1

NiC1;k�1.t/ (14)

for kD 2, 3, : : : , K, as well as for all needed values of i. The basis functions Ni,k

can be polynomials of the order one, two, or higher.
Figure 6 shows an example of two B-spline curves of the order 3. We can observe

that the curves have the same control points, aside from control point 5. The two
curves, however, are very similar, except locally near the perturbed control point.
This highlights the local control capability of the B-spline curves.

To obtain a typical airfoil shape, a few control points need to be set at specific
locations:

• A control point is fixed at the leading edge, typically set at (x, z)D (0,0).
• A control point is fixed at the trailing edge, i.e., at xD 1. If the trailing edge is

fixed on the x-axis, then it is set at (x,z)D (0,1), and
• To ensure a rounded leading edge, two control points are allocated on the line

xD 0.
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Fig. 7 B-spline curve approximation to the RAE 2822 airfoil (see coordinates in Selig [19]). The
free control points can only move vertically

With these control points in place, the upper and lower surfaces are determined
by the remaining control points. In general, the remaining control points need not
be bounded. However, often in practice, e.g., within an optimization run, the control
points are set at fixed x-locations and allowed to move in the z-direction. This is
done to prevent unrealistic airfoil shapes or shapes which cannot be handled by the
fluid flow solver.

Figure 7 shows an example of a B-spline curve approximation to the RAE 2822
supercritical airfoil (see coordinates in Selig [19]). The airfoil shape is found by
minimizing the norm of the difference between the target airfoil shape and the curve
shapes generated by (12).
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5.2.2 Setup of the Low-Fidelity Models

The low-fidelity models are configured by the numerical optimization procedure
described in Sect. 4.3. The RAE 2822 airfoil shape (Fig. 7) is used as a baseline at
M1D 0.734 and ˛D 1.944ı. The target time ratios are 20, 40, 60, 80, and 100.

The results are shown in Fig. 8. We can see that the optimizer sets up grids which
have time ratios of 20 and 40 rather precisely. However, it turns out to be more
challenging to reach the remaining time ratios, i.e., 60, 80, and 100. The grids with
the target time ratios of 60 and 80 can still be obtained, but the optimizer is unable to
find a grid with a time ratio close to 100. This essentially means that time evaluation
ratios higher than 80 are unreachable for the considered model.

5.2.3 Model Validation

The low-fidelity model setups are validated by performing CFD simulations for
(1) airfoils shapes other than the baseline, and (2) for a different operating condition.
In particular, the new shapes are generated by applying small random perturbations
to the control point locations of the baseline airfoil shape. Thus, generating shapes
which are located close to the baseline in the design space, but with a significantly
different shape. The CFD simulations are performed at M1D 0.75 and ˛D 1.0ı.

Figure 9 shows the obtained time ratios of the CFD simulations of seven different
shapes with three different low-fidelity model setups, i.e., for ratios of 40, 60,
and 80. We can see that the results for time ratios of 40 and 60 are slightly lower
than originally required, i.e., the mean time ratio is 36.7 and 56.8, respectively, but
slightly higher for the time ratio of 80, i.e., the mean time ratio is 80.4.

5.2.4 Shape Optimization

The initial shape is set as the RAE 2822. The Mach number is M1D 0.734 and
the angle of attack is ˛D 1.944ı. The objective is to minimize the drag coefficient
subject to constraints on the lift coefficient and the cross-sectional area. The
minimum lift coefficient is Cl.minD 65.9 l.c., where l.c.D lift countD 0.01�Cl, and
the minimum cross-sectional area is AminD 0.0779.

The optimization problem is solved using the space mapping (SM) algo-
rithm [20]. The SM algorithm produces a sequence x(i), iD 0, 1, : : : , of approximate
solutions to (1) (here, x(0) is the initial design) as

x.iC1/ D arg min
x

H.s.i/ .x// (15)

where s(i)(x)D [Cl.s
(i)(x) Cd.s

(i)(x) As
(i)(x)]T is a surrogate model at iteration i. Here

Cl.s, Cd.s, and As denote the lift and drag coefficients, as well as the cross-sectional
area for the surrogate. The surrogate model is a composition of the low-fidelity
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model and simple, usually linear, transformations (or mappings). Here, we utilize
so-called output SM [20] of the form:

s.i/ .x/ D A.i/ ı c .x/C D.i/ C q.i/ D

D
h
a

.i/

l Cl:c .x/C d
.i/

l C q
.i/

l a
.i/

d Cd:c .x/C d
.i/

d C q
.i/

d Ac .x/
iT

(16)

where ı denoted component-wise multiplication. Cl.c, Cd.c, and Ac denote the lift and
drag coefficients, as well as the cross-sectional area for the low-fidelity model. Note
that there is no need to map Ac because Ac(x)DAf (x) for all x. Response correction
parameters A(i) and D(i) are obtained as

�
A.i/; D.i/

� D arg min
ŒA;D�

Xi

kD0
jjf �x.k/

	 �A ı c
�
x.k/

	C D jj 2 (17)

i.e., the response scaling is supposed to (globally) improve the matching for all
previous iteration points. The additive response correction term q(i) is defined as

q.i/ D f
�
x.i/
	 � �A.i/ ı c

�
x.i/
	CD.i/

�
(18)

i.e., it ensures perfect matching between the surrogate and the high-fidelity model at
the current design x(i), s(i)(x(i))D f (x(i)) (so-called zero-order consistency [21]). All
mapping parameters can be found analytically as shown in [20].

The problem has been solved several times, each with a different maximum
number of low-fidelity model evaluations (Nc.max) allowed for the surrogate model
optimization (here, executed using the pattern-search algorithm). The stopping
criterion on the argument is set to 10�3. The low-fidelity model with the time ratio
of 40 is used in all instances. The results are shown in Table 6.

One can observe that both constraints, the lift and the area constraints, are active,
but not violated, in all the cases. The drag coefficient is reduced as the maximum
number of low-fidelity model evaluations is increased. The difference between
the highest and the lowest drag coefficient values is 1.7 d.c., where d.c.D drag
countD 0.0001�Cd, which issignificant.

Table 6 Optimization results for varying number of maximum low-fidelity
model evaluations

Nc.max 65 100 150 200 250 300 350 400 450

Cl (l.c.) 65.9 66.1 65.9 65.9 66.0 65.9 65.9 65.9 65.9
Cd (d.c.) 22.0 22.0 21.5 21.0 20.6 20.7 20.9 20.9 20.3
A (�104) 78.9 78.4 78.4 78.6 78.6 78.6 78.9 78.9 78.7
Nf 3 3 3 3 3 3 3 3 3
Ntotal 5.29 6.23 7.83 8.82 8.78 11.32 11.89 11.58 13.75
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The design iteration cost, i.e., the number of high-fidelity model evaluations, is
constant for all the cases, Nf D 3. The total optimization cost (Ntot) increases with the
maximum number of low-fidelity model evaluations, with the lowest being less than
six equivalent high-fidelity model evaluations and the highest being less than 14. It
can be observed that allowing more function evaluations in the surrogate model
optimization results in slight improvement of the final design quality (i.e., lower
drag coefficient).

The evolution of the optimization for the case with Nc.maxD 200 is shown in
Fig. 10. One can see how the optimization quickly reaches the stopping criteria
(Fig. 10a) and how the lift coefficient reaches the minimum value (Fig. 10b).
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Fig. 10 Optimization history: (a) convergence plot, (b) evolution of the drag coefficient. The con-
straint value is indicated by the straight solid line
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The cross-sectional area stays close to the constraint value (Fig. 11a). The drag
coefficient is reduced significantly in the first iteration (Fig. 11b). Compared to the
initial design, the optimized shape has a thinner leading edge and a thicker trailing
edge (Fig. 12).

6 Conclusion

A technique for automated low-fidelity model setup in the context of variable-
resolution SBO is described. The approach replaces a hands-on process guided
by experience to construct accurate and reliable low-fidelity models by an
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optimization-guided procedure, where the objective is to adjust the grid parameters
so that an accurate model as possible is obtained assuming a given evaluation time in
reference to the high-fidelity model. It has been demonstrated that the methodology
leads to faster and more accurate low-fidelity models than those obtained using
conventional approaches.
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Abstract A surrogate-based technique for efficient multi-objective antenna
optimization is discussed. Our approach exploits response surface approximation
(RSA) model constructed from low-fidelity antenna model data (here, obtained
through coarse-discretization electromagnetic simulations). The RSA model
enables fast determination of the best available trade-offs between conflicting
design goals. The cost of RSA model construction for multi-parameter antennas
is significantly lowered through initial design space reduction. Optimization of
the response surface approximation model is carried out by a multi-objective
evolutionary algorithm (MOEA). Additional response correction techniques are
subsequently applied to improve selected designs at the level of high-fidelity
electromagnetic antenna model. The refined designs constitute the final Pareto
set representation. The presented multi-objective design approach is validated
using three examples: a six-variable ultra-wideband dipole antenna, an eight-
variable planar Yagi-Uda antenna, and an ultra-wideband monocone with 13 design
variables.
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1 Introduction

Microwave/RF antennas belong to the key components of modern wireless commu-
nication systems. They have to fulfill stringent requirements upon their electrical
and geometrical properties [1–4]. For the sake of reliability, the antenna design
process requires a realistic structure setup that comprises not only the radiator
together with its feeding network, but also the nearest environment of the structure,
e.g., housing, connectors, or neighboring subsystems [5, 6]. Such a configuration
cannot be evaluated using conventional empirical equations. Consequently, a com-
putationally expensive analysis of antenna, based on high-fidelity electromagnetic
(EM) simulations becomes a necessity [5, 7]. An important factor is also the fact
that the relationships between adjustable parameters (both material and geometry)
and the antenna performance parameters might be rather complex so that a
conventional design (or tuning) procedures based on repetitive parameter sweeps
driven by engineering experience are prone to failure [8, 9]. These difficulties make
contemporary antenna design a very complicated and multifaceted problem that may
be efficiently solved only by means of suitably developed optimization algorithms.

High demands related to both the antenna geometry and its field properties
create the necessity of simultaneous account for several (often conflicting) objec-
tives including not only the minimization of reflection characteristics within the
frequency band of interest, but also reduction of the antenna footprint [7, 10],
minimization of side-lobe level [11, 12], cross polarization [13, 14], or maxi-
mization of gain [12, 15], to name just a few. Coexistence of many objectives
constitutes a multi-objective design problem that is significantly more challenging
than conventional single-objective optimization. The complexity of such a setup lies
in the occurrence of two solution spaces bonded by a unique and highly nonlinear
mappings [16, 17]: (1) the decision variable space (so-called design space), whose
dimensionality is determined by the number of design variables selected for the
optimization process, and (2) the feature space (or a so-called objective space)
that represents the responses of the designed structure with respect to given design
objectives (its dimensionality is determined by the number of optimization goals).
Due to a nature of the problem, a conventional definition of design priorities in
multi-objective optimization scheme is not possible and a set of trade-off solutions
between non-commensurable objectives have to be sought. Such solutions form a
so-called Pareto optimal set (a representation of a Pareto front), where improvement
with respect to single objective is impossible without degradation of others [17, 18].
The use of conventional algorithms (both gradient-based and derivative-free) for
solving multi-objective optimization problems is not possible unless the objectives
are aggregated into a scalar merit function [17–20]. In the latter case, only a single
Pareto optimal solution may be generated at a time, and multiple algorithm runs
with various objective aggregation parameters are necessary to yield a Pareto set
representation [17].

High diversity of Pareto optimal solutions can be accounted for by population-
based algorithms. Particularly, metaheuristic algorithms are attractive in such a
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setup, mostly due to their ability to process and outcome the entire Pareto set
representation in a single algorithm run [10, 17]. Metaheuristics may be considered
as simple and universal optimization strategies, usually imitating various biological
or social phenomena (e.g., the swarm intelligence [21], genetic processes [22],
behavior of cuckoos [23], etc.). In particular, they benefit from lack of restrictive
assumptions upon model formulation. This is especially useful if complex problems
that may be represented as a black box are considered [18]. Metaheuristic algorithms
proved their usefulness in the context of seeking for globally optimal solutions for
highly nonlinear and noisy functions with multiple discontinuities [17, 18], and
therefore they tend to be very useful for design and optimization of contemporary
antennas. Most common schemes applied for these structures are genetic algorithms
(GA) [22, 24–26] and particle swarm optimizers (PSOs) [27–30]. Both have
strong foundations in the context of antenna optimization [31–35], even in multi-
objective sense [7, 10, 25, 36, 37]. Nonetheless, all the benefits of population-based
metaheuristics come with a great drawback, which is a tremendous number of
model evaluations needed to complete the optimization process. Unfortunately,
single evaluation of a realistic antenna model may take even a few hours [38],
which significantly hinders direct utilization of metaheuristics in the design process.
These difficulties led to the development of various design strategies that aim
at lowering the computational cost [39–41]. On the other hand, the problem of
high computational cost may be partially addressed by the utilization of massive
computational resources in the form of supercomputers with multiple CPU or GPU
units together with multiple licenses for computer-aided design software (especially,
electromagnetic solvers) [42]. Nevertheless, such hardware configurations are not
widely available and they offer very poor speedup-to-cost ratio.

In this chapter, we discuss a fast multi-objective optimization technique that
exploits population-based metaheuristic algorithm in the design process of numer-
ically demanding antenna structures [7, 10, 42]. Our procedure expedites seeking
for a trade-off solutions by the utilization of computationally cheap response
surface approximation (RSA) model [43, 44] as an antenna evaluation engine.
Moreover, we address difficulties related to the generation of a reliable RSA
model of antennas with multiple independent design variables by initial design
space reduction. The initial Pareto set representation is obtained by optimizing
the RSA model using a multi-objective evolutionary algorithm (MOEA) [17, 18].
Subsequently, discrepancies between the RSA and EM antenna models are reduced
by means of surrogate-based optimization (SBO) techniques. The presented design
methodology allows us to perform antenna design at a cost being only a fraction of
that corresponding to direct multi-objective optimization of the EM antenna model
(without involving massive computational resources).

The chapter is organized as follows. In Sect. 2, we briefly discuss a multi-
objective antenna design problem. We also introduce the concept of multi-fidelity
antenna models that may be utilized for expedited optimization process, and
we explain in detail the optimization algorithm. In Sect. 3, we describe the
importance of design space reduction to limit a number of test samples for the
generation of a reliable response surface approximation model in multi-dimensional



116 A. Bekasiewicz et al.

parameter space. We also comment on the scaling properties of the RSA model in
the reduced design space. Section 4 introduces the design space reduction algorithm
based on identification of extreme designs that reside on a Pareto optimal set
by means of single-objective optimizations. In Sect. 5, we explain the algorithm
aimed at reduction of the solution space by analysis of a Pareto dominance relation
between the designs obtained in consecutive iterations, whereas in Sect. 6, we
discuss a scheme constituted by volume-wise restriction of design space by means of
identification of extreme Pareto designs at two levels of fidelity. Moreover, Sects. 4,
5, and 6 are supplemented with illustrative antenna design examples. Section 7
concludes the chapter with discussion and recommendations for the future research
related to multi-objective antenna design.

2 Multi-Objective Optimization: Methodology

Direct optimization of contemporary antennas in multi-objective setup is very
troublesome, mostly due to a large number of computationally expensive EM
simulations required to find a set of trade-off solutions [10, 17]. In such a setup,
the overall optimization cost may correspond to several days of CPU time[13, 14],
even if the antenna model is relatively simple (with the evaluation time a few
minutes per design). However, many modern structures feature complex architec-
tures with unconventional asymmetric geometries and multiple design parameters
(e.g., [6, 45–47]), which does not only influence the cost of single EM evaluation
but also increases the number of optimization algorithm iterations. As a matter of
fact, multi-objective metaheuristic optimization of high-fidelity EM antenna model
that simulates, say, in 1 h or more would be simply impractical: even a few thousands
of antenna simulations necessary to yield a reasonable Pareto front approximation
would take almost a year on a single PC machine.

Difficulties related to high computational cost of antenna simulation may be
partially addressed by utilizing SBO methods that recently gained a considerable
attention in various engineering fields [48–50]. Examples of such techniques include
space mapping [51], manifold mapping [52], or shape preserving response predic-
tion [53]. The attractiveness of SBO lies in its ability to iteratively correct/enhance a
computationally cheap yet less accurate low-fidelity model using limited amount of
data acquired from the simulations of a high-fidelity yet computationally expensive
antenna model [54]. In such a setup, the antenna design variables are adjusted using
a corrected low-fidelity model (referred to as a surrogate model). Subsequently,
the optimal dimensions are then applied to a high-fidelity model for verification
purposes. The utilization of SBO for antenna optimization is well described in
literature [5, 7, 55]. SBO methods proved to be very efficient design tools, capable
of yielding desired solutions at the cost of only a few simulations of respective high-
fidelity antenna models. However, so far, SBO techniques have mostly been applied
for solving single-objective antenna problems [56–58].
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In this section, we formulate the multi-objective optimization problem with the
emphasis on Pareto dominance relation. We also explain the differences between
functional and physics-based surrogate models and their importance for expedited
optimization of contemporary antennas. Finally, we formulate an SBO algorithm for
fast antenna design and optimization in a multi-objective setup.

2.1 Multi-Objective Antenna Design Problem

Let Rf (x) denote a response of an accurate, high-fidelity model of the antenna
structure under consideration (usually obtained using an EM solver). In particular,
it may represent an antenna reflection coefficient [59], gain [10], directivity [24],
isolation [60], etc. A vector x represents design variables, specifically, antenna
dimensions. Here, nD dim(x) represents a dimensionality of the design space.

Let Fk(x), where kD 1, : : : , Nobj denote a kth design objective. A typical
performance objective is minimization of antenna reflection over a certain frequency
band of interest, and to ensure that jS11j<�10 dB over that band. There might be
also some additional geometrical objectives such as minimization of antenna size
defined in a convenient way (e.g., maximal lateral size, overall antenna footprint, the
maximal dimension, antenna volume) [8, 42]. Similar objectives can be formulated
with respect to antenna gain, radiation pattern, efficiency, etc.

If a number of design objectives Nobj > 1 then any two designs x(1) and x(2) for
which Fk(x(1)) < Fk(x(2)) and Fl(x(2)) < Fl(x(1)) for at least one pair k¤ l, are not
commensurable, i.e., none is better than the other in the multi-objective sense. We
may define the Pareto dominance relation � [17] saying that for the two designs
x and y, we have x� y (x dominates y) if Fk(x) < Fk(y) for all k. The goal of the
multi-objective optimization is to find a representation of a Pareto optimal set XP of
the design space X, such that for any x2XP, there is no y2X for which y� x [17].
A conceptual illustration of the relations between the solutions in a feature space
with the emphasis on non-dominated designs is shown in Fig. 1.

2.2 Multi-Fidelity Antenna Models in Multi-Objective Setup

Determination of a Pareto optimal set in a multi-objective optimization setup
requires a population-based algorithm that needs a very large number of model eval-
uations to converge. A restriction of population size, or the number of evaluations
in such a scheme significantly degrades the diversity of optimal solutions and the
quality of the overall Pareto front representation found by the algorithm. Therefore,
the cost of multi-objective optimization can be effectively reduced primarily by
modifications in the antenna model.

A high-fidelity model Rf of antenna is computationally too expensive to be
directly utilized in a multi-objective optimization setup. Nonetheless, the lack of
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Fig. 1 Example designs in a three-dimensional (nD 3 independent design variables) design space
(filled circle) mapped into a two-dimensional (kD 2 design objectives) feature space (open square,
open circle). The goal of the multi-objective optimization is to find a set of non-dominated solutions
(open square) that represents the Pareto optimal set XP

analytical description of contemporary structures forces the utilization of their
physics-based representations that may be evaluated only by means of EM solvers.
In such a setup, a computational cost of single EM simulation may be reduced by
replacement of the Rf model with its low-fidelity counterpart Rcd [10]. Generally,
the Rcd model is constructed using certain simplifications with respect to Rf .
On the other hand, the low-fidelity model has to be carefully adjusted to ensure
its decent accuracy. The most common Rcd simplifications include: sparse mesh,
modeling of metallization as infinitely thin sheet (hD 0), neglecting losses of
dielectric substrate (tanıD 0), or utilization of perfect electric conductor in place of
metals with finite-conductivity (� D1) [61]. Additionally, evaluation cost may be
reduced by neglecting the nearest antenna environment (e.g., housing, connectors, or
neighboring subsystems). One should emphasize that the utilization of a low-fidelity
Rcd model usually decreases the cost of single simulation by a factor of 10–50 in
comparison to its high-fidelity counterpart Rf [42].

Despite its low computational cost, the low-fidelity model Rcd is still too
expensive to be directly utilized in multi-objective optimization. On the other
hand, the accuracy of a well prepared model is sufficiently good to use it for
construction of a response surface approximation model Rs. The latter is very fast
and thus well suited for direct multi-objective optimization using a population-
based metaheuristic algorithm. Preparation of the RSA model Rs requires some
computational effort due to data acquisition from the low-fidelity model Rcd. The
training samples necessary to set up the RSA model are allocated using appropriate
design of experiments technique, here, Latin Hypercube Sampling (LHS) [62–65].

Because the model Rs prepared this way is merely a representation of Rcd rather
than Rf , it needs to be further refined using SBO methods. An illustration of three
ways of modeling the antenna structure of interest utilized in the presented approach
is shown in Fig. 2, whereas Fig. 3 illustrates the concept of RSA model preparation.
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Fig. 2 Various representations of the same antenna structure. The functional model Rs is generated
using data acquired from a simplified physics-based model Rcd , here coarse-discretization EM
simulation one. Simplifications introduced in Rcd with respect to Rf include, among others, lack of
connector, zero thickness metallization (hD 0), coarse mesh, perfect conductivity of metallization
(� D1), and lossless dielectric (tanıD 0)

EM Solver

. . .

Design of Experiments

Data
Acquisition Model

Identification

Antenna
Geometry

Fig. 3 Conceptual illustration of antenna modeling using RSA

A variety of RSA methods may be utilized for the construction of fast antenna
models. These include polynomial approximation [66], neural networks [67–71]
kriging [66, 72, 73], multi-dimensional Cauchy approximation [74], or support
vector regression [75]. In this chapter, we discuss the utilization of a kriging
interpolation technique for a construction of Rs surrogate. This method is attractive
for multi-objective antenna optimization, especially due to very low evaluation cost,
smoothness, and simple implementation provided through availability of MATLAB-
based kriging toolboxes. In our implementation, we use a DACE toolbox [76]. For
the sake of brevity, we omit details of kriging formulation. Interested reader is
referred to the literature (e.g., [10, 43], or [66]).

Response surface approximation in general (and kriging interpolation in
particular) as a method of generating the surrogate model for multi-objective
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optimization has a number of advantages: (1) the cost of model preparation depends
only on the number of independent design variables; (2) there is no need for
empirical-equivalent model of an antenna, and, consequently, no extra simulation
software needs to be involved; (3) the RSA model may be applied for antenna
structures that have no fast empirical representation; (4) initial design obtained
through optimization of the coarse-mesh EM model is usually better than the initial
design that could be possibly obtained by means of other methods.

2.3 Optimization Algorithm

The algorithm for expedited design and optimization of contemporary antennas
in multi-objective setup utilizes variable-fidelity EM simulations of Rcd and Rf

models as well as RSA model Rs in the form of a computationally cheap kriging
interpolation model. Only the latter may be directly utilized as the fast evaluation
engine for the metaheuristic algorithm. The RSA model is generated within the
initially reduced design space using suitable design of experiments technique [65],
followed by Rcd model data acquisition [77]. Moreover, a design space reduction
scheme is also carried out at the Rcd model level, however Rf simulations may also
be exploited at this step to ensure that high-fidelity representation of Pareto optimal
solutions is contained within the reduced design space [7]. Finally, the Rf model
data is utilized at the step of Pareto set refinement. The SBO engine is exploited
here to reduce the misalignment between the Rs and Rf responses.

The design algorithm flow (see Fig. 4 for a detailed block diagram) can be
summarized as follows:

1. Design space reduction using Rcd model (optionally refine the reduced space
using the Rf model simulations in an SBO setup);

2. Sample the design space and acquire the Rcd data;
3. Construct the kriging interpolation model Rs;
4. Obtain the Pareto set representation by optimizing Rs using MOEA;
5. Refine a set of designs selected from the initial Pareto set by means of SBO.

A construction of reliable RSA model requires a sufficient amount of training
samples. Their number depends on the dimensionality and size of the design space,
as well as the type (especially, nonlinearity) and the ranges of the training data
outputs. In general, it cannot be determined beforehand. In our approach, the number
of training samples within design space is iteratively increased until the RSA model
reaches sufficient accuracy. For our purposes, the highest acceptable error is usually
about 5 %. Cross-validation is performed for the accuracy verification, specifically,
to estimate the generalization error of the surrogate [66].

Among various metaheuristic schemes available in the literature [21, 23, 27],
MOEAs with the emphasis of genetic algorithms [19, 24, 35, 40], and PSOs
[13, 29, 30, 32] belong to the most popular approaches in the context of antenna
optimization. Here, we use the in-house implementation of an evolutionary
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Fig. 4 Design flow of the multi-objective optimization technique. In the first stage, design variable
ranges are reduced using a specialized algorithm and the Rcd model (optionally, Rf simulations may
be involved in the process as well). Subsequently, the Rcd model data is acquired at the allocated
training points, and a kriging interpolation model Rs is identified (here, using a DACE toolbox
[76]). In the fourth stage, an in-house MOEA is used to optimize the Rs model and to determine
the initial Pareto set. Finally, the SBO algorithm is utilized to refine the Pareto optimal designs by
correcting the Rs model using data gained from Rf model simulations

algorithm with fitness sharing, mating restrictions, and Pareto dominance
tournament selection [17, 18] as the optimization engine for identification of a
Pareto optimal set.

The set of designs generated as an outcome of the MOEA-based optimization of
the kriging model Rs is considered as an initial approximation of the Pareto optimal
set. Subsequently, K designs selected from that initial set, i.e., xs

(k), kD 1, : : : , K,
are refined using SBO to find a Pareto front representation at the high-fidelity Rf

model level. Without loss of generality, we consider here two design objectives F1

and F2. The chosen xs
(k) solutions are refined using output space mapping (OSM)

[51, 54] which enhances the surrogate model by a correction term in the form of
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a difference between Rf and the original response of the Rs model at the current
iteration point so that a perfect match between them is ensured (also referred to as
a zero-order consistency condition [78]). The OSM algorithm used here is of the
following form:

x
.k:iC1/

f D arg min
x; F2.x/�F2



x

.k:i /
s

�F1

�
Rs .x/C �Rf

�
x.k:i/

s

	�Rs

�
x.k:i/

s

	�	
(1)

The goal of design refinement is to minimize F1 for each design xf
(k) without

degrading the objective F2. The correction of the surrogate model Rs using the OSM
term Rf (xs

(k.i)) – Rs(xs
(k.i)) ensures zero-order consistency between the models (here,

xf
(k.0)D xs

(k)). Usually, only 2–3 iterations of (1) are required to find a refined high-
fidelity model design xf

(k), so the cost of Rf simulations is only a fraction of the
total optimization cost. The OSM procedure is repeated for all K chosen samples,
resulting in the Pareto set composed of refined high-fidelity solutions [7, 10].

3 Feature Space: Pareto Set Identification

This section is devoted to motivate the necessity of search space reduction in
order to make the construction of the RSA model feasible in computational terms,
particularly, for higher-dimensional design cases. The fundamental prerequisite
(following practical observations) is that the Pareto set resides in a small part of
the original design space, and only this very subset is of interest from the multi-
objective optimization standpoint. Another important aspect is that narrowing down
the ranges of design parameter variability which occurs during the space reduction
process has important (and advantageous) consequences for scalability of the RSA
model error with respect to the number of training samples.

3.1 Design Space Reduction as Prerequisite for Expedited
Multi-Objective Antenna Optimization

Construction of the RSA model is a numerically demanding process involving
multiple simulations of the Rcd model within a predefined solution space. In this
chapter, we exploit uniform training point allocation realized through LHS [62–65].
LHS allows for generating any number of required samples for any number of
design variables. The only restriction is that the sampled region of the design
space should be a hypercube (i.e., a multi-dimensional interval). Here, we utilize
a modified version of the algorithm LHS that allows to iteratively add any number
of samples into the design space while retaining the LHS properties of the entire
sample set [65].
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Regardless of the design of experiments technique chosen for test samples
generation, the numerical cost of RSA model preparation may be very high,
especially if the number of adjustable parameters of the antenna structure of interest
is large. In general, the cost of RSA model preparation—in terms of a number of
training samples necessary to ensure usable accuracy—grows exponentially with
the dimensionality of design space. For that reason, construction of RSA models
is only practical for low-dimensional cases (up to a few independent parameters).
For higher number of dimensions, the cost of a model preparation may surpass the
number of evaluations needed for the direct determination of Pareto front by means
of population-based metaheuristics. Unfortunately, contemporary antennas are often
described by complex geometries with many (more than ten) design parameters.
Setting up an accurate RSA model for such structures may be computationally
prohibitive. This difficulty may be partially alleviated by decomposition of a
structure into a sub-structures and generation of individual RSA models for each
of them [10]. Nonetheless, the applicability of such a technique is restricted only
to specific antenna structures, which may be divided into separate circuits (e.g.,
[59, 79]). Moreover, decomposition introduces additional inaccuracy into a model
and complicates the design process [10].

On the other hand, the initial ranges of geometrical parameters of contemporary
antennas are usually set rather wide to ensure that the optimum design (or, in
case of multi-objective optimization, the Pareto optimal set) is allocated within the
prescribed bounds. Setting up the RSA model in such redundant initial spaces,
particularly for large number of adjustable parameters, is virtually impossible.
Therefore instead of sampling the entire design space, a more practical approach is
to determine the space region where Pareto optimal solutions reside. The reduction
of initial solution space may alleviate the curse of dimensionality preventing the
utilization of RSA model setup for a multi-parameter designs [7, 80]. It is also
important that only a fraction of the Pareto optimal set representing the designs
with reflection coefficient jS11j ��10 dB within the frequency band of interest is
considered relevant with respect to antenna applications [42]. Therefore, even higher
restrictions for the solution space that accounts only the designs with acceptable
reflection coefficient may be applied. Such an approach allows to decrease the
volume of solution space by several orders, which significantly reduce the cost
of RSA model preparation, especially for the structures with many independent
variables. An illustration example of the location of the Pareto optimal set within
redundant design space is shown in Fig. 5.

3.2 RSA Model Error Scaling in Reduced Solution Spaces

The ability to identify a relevant part of the Pareto optimal set within the pre-
defined design space has a serious consequence that facilitates the RSA model
setup in highly dimensional spaces. More specifically, Pareto optimal solutions
obtained in a diminished solution space may be very similar in terms of some
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Fig. 5 (a) Visualization of the Pareto optimal set (open circle) in 3-dimensional solution space
(nD 3). The portion of the design space Xr that contains the part of the Pareto set we are interested
in (red cuboid, where F1��10) is only a small fraction of the initial space X (black cuboid).
(b) The Pareto set of interest (open square) versus the entire design space mapped to the feature
space (cross). The set Xr is 456 times smaller (volume-wise) than the initial space X. The benefits
of design space reduction are even more pronounced for higher-dimensional cases [7, 42, 80]

dimensions. This results in a flattening of the solution space with respect to the
problem dimensionality. Moreover, some dimensions in the design space may be
completely flattened, which allows excluding them from the process of solution
space sampling [7].

Figure 6a shows a typical “thick” design space where increasing the number of
training samples results in only slight reduction of the average minimum distance
between the training points (proportional to 1/N1/n with n being dimension of the
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Fig. 6 Test sample allocation within two-dimensional design space. An increase of the number
of samples from 10 to 90 in.: (a) “thick” design space; (b) “flat” design space. In the latter case,
the increase of the number of training points results in larger reduction of the average minimum
distance between the points along the “thick” dimension leading to better RSA model scalability

design space). The modeling error, on the other hand, is more or less proportional
to that average distance. For “thin” space (Fig. 6b), the average minimum distance
along “thick” (i.e., critical) dimensions decreases much faster than 1/N1/n so that
increasing the number of training points has more effect on the RSA model error. Of
course, rigorous assessment of these effects is not possible in general because they
are dependent on “flattening” effects and nonlinearity of the model along specific
dimensions, which are both problem dependent.

4 Design Space Reduction Based on Sequential
Single-Objective Optimizations

In the following sections we discuss different approaches to the design space
reduction. These techniques allow for generating reliable RSA models even in
multi-dimensional design spaces, which is critical for optimization of antennas in
multi-objective setup. More specifically, design space reduction process is utilized
to: (1) narrow down initial frontiers (lower/upper bounds for design variables),
(2) enable preparation of the RSA model with desired accuracy, (3) reduce the
number of necessary training samples, (4) identify the relevant fraction of the Pareto
optimal set, and finally (5) speed-up generation of the RSA model. The design
space reduction techniques require antenna model simulations, which increases
the overall cost of antenna design. Notwithstanding, this overhead is mitigated
by the identification of a relevant design space fraction using low-fidelity model
simulations. Most importantly, the reduction step allows for a construction of a
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reliable RSA model within orders of magnitude (volume-wise) smaller design space
using reasonably small number of samples [7, 42]. As a consequence, it enables the
possibility of generating accurate models of antennas in multi-dimensional spaces.
In this section, we discuss a reduction technique that utilizes sequential single-
objective optimizations to find the extreme designs that determine the boundaries of
the reduced search region. The approach is illustrated using a planar ultra-wideband
dipole antenna.

4.1 Design Space Reduction Method

Here, we describe a simple scheme for design space reduction based on identifi-
cation of the designs that determine the extreme points of a Pareto optimal set of
interest. The designs are obtained by means of single-objective optimizations with
respect to each objective, one at a time. Design parameter values corresponding to
these extreme points may be utilized for the determination of the new frontiers of a
refined solution space Xr, which is normally significantly smaller than the initial
search space X. The design flow of the reduction algorithm is shown in Fig. 7.
The algorithm operates as follows [42, 81]. Consider l and u as initially defined
lower/upper bounds for the design parameters. Let

x
�.k/

cd D arg min
l�x�u

Fk .Rcd .x// (2)

where kD 1, : : : , Nobj, be the optimum design of Rcd model with respect to the kth
objective. The vectors xcd

*(k) determine the extreme designs of the Pareto optimal
set. The reduced solution space is then defined through the following lower/upper
bounds:

START

Define initial design space X

Optimize ( ( ))Fk R xcd

k = 1

k N =  ?obj k k =  + 1

Define reduced space Xr

END

Fig. 7 The block diagram of design space reduction scheme based on sequential single-objective
optimizations
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Fig. 8 Conceptual illustration of the design space reduction technique for nD 3 independent
design variables (three-dimensional solution space) and kD 2 design objectives. The initial design
space X is reduced by means of a sequential single-objective optimizations with respect to each
objective, one at a time. The dimensions of the extreme designs (filled circle) xcd

*(k) are used for
the determination of refined solution space Xr

l� D min
n
x�.1/; x�.2/; : : : ; x�.Nobj /

o
(3)

and

u� D max
n
x�.1/; x�.2/; : : : ; x�.Nobj /

o
(4)

In practice, the refined space Xr is only a small subset of the initial one, which
enables the generation of a reliable RSA model using reduced amount of data even if
a design with multiple independent variables is considered. It should be emphasized
that the above frontiers may not contain the entire Pareto optimal set, however the
majority of it should be accounted for (including, of course, the extreme points).
A conceptual illustration of the design space reduction scheme is shown in Fig. 8.

4.2 Design Example: Planar Dipole Antenna

Consider a planar, single layer dipole antenna shown in Fig. 9. The structure is
composed of a main radiator with 50 	 input impedance and two parasitic strips
[82], with a total of six independent design variables. The antenna is designated
to operate on a Rogers RT5880 dielectric substrate ("rD 2.2, tanıD 0.0004,
hD 1.58 mm). Design variables considered for optimization are: xD [l0 w0 a0 lp wp

s0]T , whereas a1D 0.5 and w1D 0.5 remain fixed (all dimensions in mm). Both the
high-fidelity model Rf (12,510,000 mesh cells, average evaluation time: 20 min)
and its low-fidelity counterpart Rcd (167,900 mesh cells, average evaluation time:
30 s) are implemented in CST Microwave Studio [83]. The initial solution space
X is defined by the following lower/upper bounds: lD [10 5 0.5 2 1 0.1]T and
uD [30 20 5 20 10 5]T . Two design objectives are considered: (1) minimization of
antenna reflection within 3.1–10.6 GHz frequency band of interest (objective F1),



128 A. Bekasiewicz et al.

lp

ls

l0

s0wp

w0

a0 a1

w1
ws

l0

Fig. 9 Geometry of a considered planar ultra-wideband dipole antenna with six independent
parameters [81]
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Fig. 10 Relative error of the kriging interpolation with respect to objective F1. Model is
constructed using 500 samples obtained in the initial design space (open circle) and in the refined
design space (open square)

and (2) reduction of the antenna footprint defined by a rectangle ADws � ls, where
wsD 2wpC 2s0Cw0 and lsD 2l0C 2a0C a1 (objective F2).

An optimization scheme introduced in Sect. 2.3 and design space reduction
technique of Sect. 4.1 are both utilized to perform multi-objective optimization
of the structure [81]. The refined lower/upper bounds: l*D [18 7.96 0.5 12.8
4.01 1.08]T and u*D [18.7 12.98 0.53 13.72 8.45 1.54]T are obtained at a total
cost of 250 evaluations of the Rcd model. We utilized pattern search algorithm
[84] as single-objective optimization engine. The refined space Xr obtained by
the utilization of discussed scheme is—volume-wise—six orders smaller than the
initially defined one.

A kriging interpolation model Rs is constructed within a reduced solution space
Xr using a base set composed of 500 Rcd samples (423 samples obtained using
LHS scheme, supplemented with 64 design space corners, and 13 based on star-
distribution [51]). The same set of samples is utilized for a construction of the RSA
model in the initial solution space for comparison purposes. The average relative
error of the Rs model generated in such a space is over 20 %, which makes it useless
for the prediction of the antenna behavior. The error of the model obtained in refined
space is only 2.2 % (see Fig. 10 for comparison). One should emphasize that the
model generated within the initial space should be composed of well over 500,000
samples to achieve similar accuracy.
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Fig. 11 Pareto optimal set of planar dipole antenna: RSA model optimized by means of MOEA
(open circle) and fine model (open square) representation constituted by 12 samples obtained by
OSM algorithm

The Rs model generated in the refined solution space is utilized as an evaluation
engine for MOEA. In the next step, a set of 12 designs is chosen from the
obtained Pareto optimal set and then refined using the OSM algorithm [54]. The
smallest footprint of the antenna that fulfills the criteria upon reflection is 820 mm2,
while the lowest in-band reflection is �13.6 dB (corresponding antenna footprint:
1,004 mm2). Note that the overall size of the structure with highest acceptable
reflection (�10 dB) is over 18 % smaller than for the structure with the lowest
reflection. The comparison of Pareto optimal sets composed of Rf and Rs models is
shown in Fig. 11, while Table 1 gathers detailed dimensions of the selected high-
fidelity antenna designs. Frequency characteristics of the selected Pareto optimal
designs are shown in Fig. 12.

The design space reduction and generation of samples for RSA model prepa-
ration corresponds to 750 Rcd evaluations and about 37 Rf model simulations
for MOEA-based optimization and refinement step. The detailed evaluation cost
including number of each model evaluations is collected in Table 2. The total
aggregated cost of multi-objective optimization of dipole antenna is about 19 h,
which is negligible in comparison to cost of direct optimization being over 208 days
(estimation based on a number of evaluations required by MOEA to yield initial
front).
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Table 1 Optimization results of planar dipole antenna

Design variables [mm]
xf

(k) F1 [dB] F2 [mm2] l0 w0 a0 lp wp s0

1 �8.7 703 18.1 8.60 0.51 12.8 4.28 1.15
2 �9.0 730 18.0 8.74 0.52 12.8 4.58 1.16
3 �9.2 750 18.0 9.02 0.52 12.8 4.74 1.15
4 �9.9 792 18.0 9.44 0.52 12.8 5.11 1.17
5 �10.3 820 18.0 9.76 0.52 12.8 5.31 1.18
6 �10.9 856 18.2 10.2 0.50 12.8 5.60 1.08
7 �11.5 883 18.1 10.3 0.50 12.8 5.98 1.08
8 �11.9 905 18.0 10.6 0.50 12.8 6.15 1.10
9 �12.4 932 18.0 11.0 0.51 12.8 6.31 1.14
10 �13.1 964 18.1 12.6 0.50 12.8 5.52 1.47
11 �13.4 982 18.1 12.6 0.50 12.9 5.80 1.45
12 �13.6 1; 004 18.2 12.4 0.51 12.8 6.25 1.36
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Fig. 12 Frequency responses of the selected designs from Table 1: xf
(5) (dotted line), xf

(6) (dotted
dashed line), xf

(7) (dashed line), xf
(9) (solid line), xf

(12) (open circle)

Table 2 Planar dipole antenna: optimization cost

CPU time
Algorithm component Number of model evaluationsa Absolute [min] Relative to Rf

Evaluation of Rs 15,000 16 0.8
Evaluation of Rcd 750 375 18.8
Evaluation of Rf 36 720 36
Total costa N/A 1,111 55.6

aExcludes Rf and Rcd evaluation at the initial design
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5 Pareto Dominance-Based Design Space Reduction
for Multi-Objective Optimization of Antennas

In this section, we discuss another design space reduction technique based on
identification and rejection of the most dominated solutions together with the design
subspaces associated with them. A considered algorithm improves the design space
reduction scheme referred in Sect. 4.1 by reducing the number of low-fidelity model
evaluations required to seek the Pareto optimal set of interest. The operation of
the algorithm is illustrated using a planar Yagi-Uda antenna with eight independent
variables.

5.1 Design Space Reduction Algorithm

The concept of design space reduction explained in this section stems from
identification of non-dominated designs within the initially defined frontiers. In
practice, the region of solution space containing non-dominated designs is very
small compared to the entire space, thus even rough identification of such a region
could make the task of setting up the RSA model computationally feasible, even for
high-dimensional problems. Here, we describe a two-stage design space reduction
algorithm to achieve this goal [80]. The algorithm is based on a sparse sampling
of the solution space X using low-fidelity Rcd model simulations and the utilization
of Pareto ranking scheme [17] to cut out unpromising design space subsets, as a
way toward seeking for the relevant fraction of the design space Xr that contains
the Pareto optimal set of interest. In each iteration, a simple factorial design of
experiments, a so-called star-distribution [51] is used to sample design space on
the frontiers of X. The star-distribution scheme generates a test set Xt composed of
2nC 1 samples (where n is the number of independent design variables), referred to
as nodes. The algorithm evaluates each node using the Rcd(x) model, and ranks them
using Pareto dominance criteria (see Sect. 2.1). Then, the most dominated nodes
are considered as irrelevant and they are rejected together with their corresponding
design subspace. This step refines the lower/upper bounds defining the current
approximation of the solution space Xr

* being of interest. The block diagram of
the algorithm is shown in Fig. 13, whereas an exemplary workflow of the algorithm
for the three-dimensional design space (nD 3) is detailed in Fig. 14.

In the course of the solution space reduction, all the nodes considered in the
process are stored and then utilized for the determination of new lower/upper bounds
of the temporary region of interest Xr

*. This is realized by assigning to each node
its Pareto rank; the nodes with rank being less or equal two (i.e., those that are
dominated by at most one other design, cf. Fig. 14b, d, f), contribute to Xr

*.
The latter is defined as the smallest n-dimensional interval that contains all the
contributing nodes. The algorithm stops if no further Xr

* reduction can be obtained
in three consecutive iterations.
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most dominated nodes
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Fig. 13 The flow of the two-stage design space reduction scheme [80]. The first stage of the
algorithm is executed until temporary region of interest Xr

* stays unchanged for three consecutive
iterations. In the second, stage the solution space is extended by additional k designs separately
optimized toward each Fk(Rcd(x)) objective

This restrictive approach for the rejection of dominated nodes can produce Xr
*

that does not contain the entire Pareto front Xp. In order to prevent this, we expand
the previously obtained solution space Xr

* by means of results of single-objective
optimizations carried out with respect to each of the design objectives separately
(cf. Fig. 14e–f). The starting points for the optimization of both nodes are maxfx:
Fk(Rcd(x))g, kD 1, 2, where x2Xr

*. The region of interest Xr obtained using the
explained algorithm is usually a few orders smaller (volume-wise) than the original
design space, so that a sufficiently accurate RSA model can be generated in it using
reasonable number of training samples. Procedure may be directly applied for larger
number of objectives.



Design Space Reduction for Expedited Multi-Objective Design Optimization. . . 133

F 1

F2

1

1
1

2

3

3 4

F 1

F2

1 2

2

2

2 1

1

1
1

F 1

F2

F 1

F2

2

1

1
13

3

4

5

5
4

a b

c d

e f

g h
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nodes. Black circles are most dominated, rejected nodes. White squares are nodes refined by single-
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*, and Xr , respectively.
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Fig. 15 Topology of the optimized eight-variable planar Yagi-Uda antenna [79]

5.2 Design Example: Planar Yagi-Uda Antenna

Consider a planar Yagi-Uda antenna (see Fig. 15) with eight independent design
variables [79]. The antenna is designated to work on Rogers RO6010 dielectric
substrate ("rD 10.2, tanıD 0.0023, hD 0.635 mm), and it is constituted by a
driven element fed by a microstrip-to-coplanar strip transition, a director and
an asymmetrical microstrip balun excited by a 50 	 line. Design variables con-
sidered for optimization are: xD [s1 s2 v1 v2 u1 u2 u3 u4]T . Other parameters,
w1Dw3Dw4D 0.6, w2D 1.2, u5D 1.5, s3D 3, and v3D 17.5 remain fixed (all
dimensions in mm). The high-fidelity model Rf (1,512,000 mesh cells, average
evaluation time: 18 min) and its low-fidelity counterpart Rcd (85,680 mesh cells,
average evaluation time: 110 s) are both prepared in CST Microwave Studio [83].
The initial solution space is defined by the following lower/upper bounds: lD [3.8
2.8 8.0 4.0 3.0 4.5 1.8 1.3]T , and uD [4.4 4.5 9.8 5.2 4.2 5.2 2.6 1.8]T . Two
design objectives are considered: (1) minimization of the reflection coefficient
(objective F1), and (2) maximization of the antenna gain (objective F2), both within
10–11 GHz frequency band of interest.

A multi-objective optimization of the structure follows the general design flow
described in Sect. 2.3 and design space reduction scheme of Sect. 5.1. The first
stage of the algorithm terminated after 153 evaluations of the Rcd model, while the
expansion stage driven by a conventional gradient-based optimization scheme [85]
needed 137 Rcd model evaluations to complete. The refined lower/upper bounds
l*/u* are: l*D [4.1 3.63 8.11 4.27 3.6 4.67 1.8 1.3]T , u*D [4.4 4.5 8.9 5.4 3.8 4.85
2.2 1.55]T , which resulted in reduction of design space by three orders [80].

Kriging interpolation model Rs is constructed within the reduced design space
using 1,344 Rcd samples (1,000 LHS-allocated samples supplemented with 256
corners of Xr as well as those nodes considered in the space reduction stage that are
within Xr). For the sake of comparison, the same set of 1,344 samples is used for
the generation of kriging model within reduced and initial design space. The average
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Fig. 16 Relative error of the kriging interpolation model constructed using 1,344 samples obtained
using LHS scheme in the initial design space (open circle) and in the refined design space (open
square) with respect to objective F1

relative error of Rs model estimated using a cross-validation scheme [66] is 3 % for
the former and 9 % for the latter. The error of the RSA model generated in the initial
space excludes its utilization for prediction of the structure behavior. Due to space
flattening by design space reduction algorithm the number of samples needed for
the generation of an accurate RSA model should be increased at least by 3 orders,
which is computationally infeasible. Relative errors of both models are graphically
compared in Fig. 16.

The prepared RSA model has been used as an evaluation engine for optimization
driven by MOEA. Subsequently, a set of ten design samples selected from the initial
Pareto set has been refined using OSM technique. The results indicate that the
best average gain of the antenna that still fulfills the requirements upon reflection
(jS11j D�10.5 dB) is almost 6.4 dB, while the minimum reflection coefficient is
about �19.8 dB (with corresponding average gain being about 5.5 dB). Moreover,
an average gain of the structure that satisfies requirements upon reflection is over
16 % greater in comparison with the antenna having the best reflection. The Pareto
optimal sets constituted by Rs model and ten Rf samples refined by OSM algorithm
are shown in Fig. 17, while detailed antenna dimensions of selected designs are
gathered in Table 3. Moreover, a comparison of frequency responses of the selected
antenna designs is presented in Fig. 18.

The total computational cost of multi-objective optimization of the considered
Yagi-Uda antenna is about 57 h. The detailed data related to the number of each
model evaluations and the corresponding numerical cost is gathered in Table 4. The
total estimated cost of direct multi-objective optimization of Rf model based on
number of evaluations required by MOEA to yield initial front is 50,000 (over 625
days), which is over 263 times longer in comparison with the described fast multi-
objective optimization technique.
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Fig. 17 Pareto optimal set of considered planar Yagi-Uda antenna obtained for low- (open circle)
and high-fidelity (open square) model

Table 3 Planar Yagi-Uda antenna: multi-objective optimization results

Design variables [mm]
xf

(k) F1 [dB] F2 [dB] s1 s2 v1 v2 u1 u2 u3 u4

1 6.81 �7.14 4.39 4.43 8.11 5.40 3.78 4.84 2.20 1.55
2 6.44 �9.42 4.19 4.34 8.30 5.07 3.67 4.77 2.10 1.51
3 6.35 �10.55 4.19 4.34 8.29 4.98 3.67 4.78 2.10 1.51
4 6.26 �11.28 4.18 4.35 8.29 4.86 3.67 4.78 2.11 1.51
5 6.14 �12.04 4.17 4.34 8.31 4.73 3.67 4.78 2.10 1.51
6 5.99 �13.82 4.23 4.26 8.40 4.58 3.68 4.76 2.18 1.46
7 5.94 �14.95 4.20 4.28 8.48 4.49 3.69 4.76 2.18 1.46
8 5.75 �16.84 4.13 3.80 8.81 4.61 3.72 4.77 2.18 1.51
9 5.67 �17.27 4.12 3.71 8.83 4.54 3.73 4.76 2.17 1.51
10 5.54 �19.79 4.12 3.64 8.89 4.34 3.80 4.73 2.13 1.50

Table 4 Planar Yagi-Uda antenna: optimization cost

CPU time
Algorithm component Number of model evaluationsa Absolute [min] Relative to Rf

Evaluation of Rs 50,000 20 1.1
Evaluation of Rcd 1,540 2,823 156.8
Evaluation of Rf 30 540 30
Total costa N/A 3,383 187.9

aExcludes Rf and Rcd evaluation at the initial design
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Fig. 18 Yagi-Uda antenna frequency responses: (a) reflection coefficient; (b) gain. Plots corre-
spond to selected designs from Table 3, i.e., xf

(3) (dotted line), xf
(5) (dotted dashed line), xf

(7)

(dashed line), xf
(9) (solid line), xf

(10) (open circle)

6 Design Space Reduction Based on Sequential
Single-Objective Optimizations Refined by SBO

In this section, we explain a modified design space reduction technique based
on determination of extreme designs from the Pareto optimal set. Similarly
to the method of Sect. 4.1, the technique exploits sequential single-objective
optimizations. Additionally, optimal solutions based on low-fidelity model
simulations are refined using SBO setup for the determination of their corresponding
high-fidelity representations. Inclusion of the high-fidelity optimal extreme designs
ensures that the reduced design space not only contains the majority of the
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high-fidelity Pareto front but also the low-fidelity one, which is important for
subsequent creation of the RSA model as well as design refinement. An illustration
example of antenna optimization using introduced scheme is presented.

6.1 Design Space Reduction Algorithm

In general, the responses of high-fidelity model Rf and its corresponding Rcd model
are in reasonable agreement, which allows for the prediction of the refined design
space Xr boundaries by performing simulations of the latter. Nonetheless, due to
misalignment between the model responses, the refinement procedure may not be
able to find some of the actual high-fidelity Pareto optimal designs, particularly
those allocated close to the “ends” of the front. One should emphasize that the
defined solution space Xr used for the generation of the RSA model cannot be
simply expanded without Rcd model evaluations, and for that reason the subspace
where Pareto front resides should be possibly accurate determined beforehand. In
the approach detailed here [7], we estimate the boundaries of this region using the
two-stage optimization procedure that involves both Rcd and Rf models (see Fig. 19

START

Define initial design space X
k = 1

k N =  ?obj k k =  + 1

END

Optimize ( ( ))
to obtain 

Fk R x
x

cd

cd
*( )k

Optimize  using SBO
to obtain

xcd
*( )k

xf
*( )k

Blend  andxcd
*( )k *( )k  to define

reduced design space 
xf

rX

Fig. 19 Block diagram of the design space reduction algorithm [7]. An initial solution space X
is refined using iterative single-objective optimizations. Subsequently, the obtained designs are
corrected using the SBO algorithm. Dimensions of the final design solutions xcd

*(k) and xf
*(k) are

blended to define the new frontiers of the refined design space
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for a detailed algorithm flow). Let us consider l and u as lower/upper bounds of the
initially defined solution space X. Then (2) may be utilized for the determination of
optimal designs with respect to each objective. The frontiers defined in such a way
may be inaccurate to some extent, thus, in the next step a high-fidelity Rf model
representation of optimal points is obtained

x
�.k/

f D arg min
l�x�u

Fk

�
Rf .x/

	
(5)

The designs xf
*(k) are found using SBO (typically, frequency scaling combined with

additive response correction is utilized [51]).
The introduced procedure allows for the determination of 2Nobj extreme points

determined for the models with various fidelities. Dimensions of obtained designs
may be subsequently blended to form a frontiers of the refined design space:

l� D min

�

x
�.1/

cd ; : : : ; x
�.Nobj /
cd ; x

�.1/

f ; : : : ; x
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and

u� D max

�

x
�.1/

cd ; : : : ; x
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f ; : : : ; x
�.Nobj /
f

�

(7)

For typical shapes of the Pareto optimal set, the refined solution space Xr contains
fronts of both the surrogate and high-fidelity models. The former is important
because the RSA model created in [l*, u*] is a representation of Rcd. The latter
is essential to ensure sufficient room for improving the high-fidelity designs during
the refinement stage (cf. (1)). It should be noted that the utilization of high-fidelity
models in the design space reduction step increases the computational cost of the
design procedure. Notwithstanding, a number of extreme designs are relatively low
depending on a number of design objectives (mostly 2–3) [7]. Furthermore, the
refinement stage usually requires two to three evaluations of Rf model, thus the
influence of SBO on the overall simulation cost during design space reduction is
small. A conceptual illustration of the described procedure is shown in Fig. 20.

6.2 Design Example: Planar Monopole Antenna

Consider a planar monopole antenna described by 13 independent design
variables [25]. The structure consists of a radiator formed by three stacked
trapezoids (see Fig. 21). The antenna is designated to work on Taconic RF-35
dielectric substrate ("rD 3.5 tan•D 0.0018, hD 0.762 mm). Design variables
considered for optimization are represented by a vector xD [a1 a2 a3 a4 a5 a6

b1 b2 b3 w2 l d o]T . Variable w1 is fixed to 1.7 to ensure 50 	 input impedance
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X

Xr

Fig. 20 Conceptual illustration of the modified design space reduction technique for nD 3
independent design variables and kD 2 design objectives. The initial design space X is reduced
by means of a sequential single-objective optimizations toward each objective. The dimensions of
extreme designs xcd

*(k) (filled circle) are then refined using SBO scheme. Auxiliary designs xf
*(k)

(open circle) are subsequently utilized together with xcd
*(k) to set boundaries of a refined solution

space Xr
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Fig. 21 Geometry of the considered planar monopole antenna with 13 independent design
variables [25]

of antenna (all dimensions are in mm). The high-fidelity model Rf of the structure
(2,500,000 mesh cells, average simulation time: 10 min) and its low-fidelity
counterpart Rcd (33,600 mesh cells, average simulation time: 22 s) are both
prepared and evaluated in CST Microwave Studio [83]. The initial design frontiers
are: lD [5 5 5 5 5 5 1 1 1 0.2 8 20 5]T and uD [25 25 25 25 25 25 15 15 15 2 15 40
10]T . The monopole is optimized with respect to the following design objectives:
(1) minimization of reflection within 3.1–10.6 GHz frequency band of interest
(objective F1), and (2) reduction of the overall antenna size defined as wa � la
rectangle, where waD lC dC b1C b2C b3C o and laDw2C o (objective F2).

The antenna is designed using the generic procedure of Sect. 2.3 and design space
reduction methodology explained in Sect. 6.1. Determination of the refined frontiers
required 800 evaluations of Rcd model during single-objective optimization (pattern
search is utilized as an optimization engine) and four simulations of the Rf model
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Fig. 22 Relative error of the kriging interpolation model constructed using 1,500 Rcd samples
obtained using LHS scheme in the initial design space (open circle) and in the refined design space
(open square). The errors are estimated with respect to objective F1

during SBO driven refinement of extreme designs. Frontiers of the reduced design
space Xr are as follows: l*D [10.07 21.63 22.2 21 20.8 22.7 3.2 3.8 12.32 0.57 8.3
22.07 5.0]T , u*D [11.3 21.96 24.3 24.15 21.27 24.6 3.9 4 13.08 0.74 11.2 39.35
5.75]T . The refined design space is 14 orders of magnitude smaller (volume-wise)
than the initial one [7].

In this example, a RSA model is sequentially generated within the refined design
space Xr starting from 500 Rcd samples allocated using the LHS scheme (average
relative error estimated through cross-validation is 6 %) [7]. After three iterations
the average error of final RSA model composed using 1,500 Rcd samples is reduced
to only 3.5 %. It should be emphasized that the accuracy improvement of the final
model compared to the initial one, i.e., 1.72, is much better than 31/13D 1.08 (cf.
Sect. 3.2). This is due to the “flattening” of the design space. Moreover, average
error of the model generated using the same set of 1,500 samples within initial
solution space is over 22 % which definitely turns it useless for the multi-objective
optimization. A comparison of both RSA models errors is shown in Fig. 22.

The initial Pareto optimal set is found using MOEA. Subsequently, a set of
12 designs selected from the initial front is refined using OSM algorithm [54].
Moreover, two designs obtained during the determination of extreme points are
added to the final Pareto front. The minimum antenna in-band reflection is�16.3 dB
(corresponding antenna footprint is 1,526 mm2). The smallest footprint of an
antenna that still satisfies the conditions upon acceptable reflection (jS11j ��10 dB)
is 1,134 mm2. Furthermore, the difference between the minimal and maximal
antenna size that satisfies the requirements upon reflection is over 26 %. The
comparison of Pareto representations constituted by Rf and Rs models is shown
in Fig. 23, while the comparison of antenna reflection characteristics is presented
in Fig. 24. Detailed dimensions of selected designs based on high-fidelity model
evaluations are collected in Table 5.

The overall cost of antenna optimization including design space reduction,
generation of RSA model, MOEA optimization, and design refinement using SBO
engine is about 21 h. A detailed evaluation cost with respect to each model is
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Fig. 23 Pareto optimal set of a planar UWB monopole antenna obtained for low- (open circle)
and high-fidelity (open square) model
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Fig. 24 Frequency responses of the selected designs from Table 5: xf
(1) (open circle), xf

(3) (solid
line), xf

(8) (dashed line), xf
(10) (dotted dashed line), xf

(13) (dotted line)

presented in Table 6. The total estimated cost of direct multi-objective optimization
is about 347 days, thus the utilization of introduced design procedure together with
the design space reduction algorithm speeds up the multi-objective antenna design
by over two orders of magnitude compared to conventional approach.
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Table 5 Multi-objective optimization results of a planar UWB monopole antenna

Selected designs
xf

(1) xf
(2) xf

(3) xf
(5) xf

(8) xf
(10) xf

(13)

F1 [mm2] 1,526 1,475 1,405 1,342 1,261 1,202 1,134
F2 [dB] �16.3 �15.2 �14.9 �14.1 �12.7 �11.5 �10.0
Antenna parameters [mm] a1 11.3 10.9 11.0 11.1 11.1 10.9 10.1

a2 21.6 21.8 21.8 21.9 21.7 21.6 21.6
a3 22.4 22.4 22.2 22.2 22.2 22.2 22.2
a4 22.3 22.4 22.8 21.6 21.3 21.0 21.0
a5 21.3 20.9 21.0 20.9 21.0 21.0 20.8
a6 24.6 24.1 23.7 23.8 24.1 24.6 22.7
b1 3.9 3.9 3.9 3.9 3.6 3.5 3.9
b2 4.0 4.0 3.9 3.9 3.9 3.8 3.8
b3 13.0 13.1 13.0 12.7 12.4 12.3 12.3
w2 0.6 0.6 0.7 0.6 0.6 0.6 0.6
l 11.0 10.6 10.6 10.7 11.0 11.0 11.1
d 37.9 37.0 35.4 33.9 32.0 30.6 28.3
o 5.2 5.1 5.0 5.0 5.0 5.0 5.0

Table 6 Planar UWB monopole antenna: optimization cost

Number of model evaluationsa CPU time
Algorithm component Absolute [min] Relative to Rf

Evaluation of Rs 50,000 20 2
Evaluation of Rcd 2,300 843 84.3
Evaluation of Rf 43 430 43
Total costa N/A 1,293 129.3

aExcludes Rf and Rcd evaluation at the initial design

7 Conclusion

In this chapter, a technique for multi-objective optimization of computationally
expensive antenna models is discussed. The method exploits population-based
metaheuristic in the form of an evolutionary algorithm. Fast determination of
the trade-off solutions between non-commensurable objectives is possible by the
utilization of the multi-fidelity EM-simulated antenna models. The physics-based
models are evaluated only during the construction and the refinement of the
response surface approximation model. The latter bears the burden of multi-
objective optimization. Pareto optimal solutions obtained from RSA model are
refined by means of SBO. The overall cost of the method is negligible in comparison
with direct multi-objective optimization of the high-fidelity antenna model.

The presented method is further extended to handle antennas with multiple
independent design variables. This is realized by means of suitable design space
reduction schemes. The goal of design space reduction is to identify the region that
contains relevant fraction of the Pareto front. Three different schemes for solving
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this task based on sequential single-objective optimizations and analysis of the
designs with respect to Pareto dominance criteria are discussed. Furthermore, intro-
duced design and optimization methodology is illustrated using three exemplary
planar antennas: a 6-variable UWB dipole, an 8-variable Yagi-Uda structure, and
13-variable UWB monopole that are successfully optimized in a timeframe being
only a fraction of conventional multi-objective setup. Despite promising results, the
proposed optimization methodology is restricted to designs with about a dozen of
independent design variables. Moreover, the methods for design space reduction
discussed in this chapter cannot guarantee that the entire Pareto front of interest is
accounted in the refined space. Expanding the presented methods to handle highly
dimensional cases will be the subject of the future research.
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Numerically Efficient Approach
to Simulation-Driven Design of Planar
Microstrip Antenna Arrays By Means
of Surrogate-Based Optimization

Slawomir Koziel and Stanislav Ogurtsov

Abstract A numerically efficient technique for simulation-driven design of planar
microstrip antenna arrays is discussed. It exploits the surrogate-based optimiza-
tion (SBO) paradigm and variable-fidelity electromagnetic (EM) simulations. The
design process includes radiation pattern optimization and matching. Two low-
fidelity models are utilized: a coarse-mesh EM model of the entire array and
a model of the array based on the array factor combined with the simulated
radiation response of a single element. Both models, after suitable correction, guide
the optimization process towards the optimum of the high-fidelity model of the
antenna array. Design optimization of microstrip antenna arrays comprising 25
and 49 elements is conducted and described to demonstrate operation as well as
efficiency of the proposed technique. The computational cost of optimized designs
is equivalent to a few high-fidelity simulations of the entire array despite a large
number of design variables.

Keywords Antenna array design • Antenna array optimization • Microstrip
antenna array • Radiation pattern synthesis • Simulation-driven design •
Surrogate-based optimization • Variable-fidelity simulations

1 Introduction

Optimization of planar antenna arrays can be challenging if array radiation and
reflection responses are noticeably affected by coupling, finite size of the substrate,
and radomes. In all of these situations, full-wave electromagnetic (EM) simulations
of the entire structure are required in the design process. Such simulations, however,
are computationally expensive when accurate. In addition, antenna array problems
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normally involve a large number of adjustable parameters such as excitation
amplitudes and/or phases, spacing, dimensions of elements, location of feeds, etc.
[1, 2]. As a result, the design process—with conventional numerical optimization
methods such as gradient-based routines [3]—involves numerous EM simulations
of the array model and, therefore, might be of prohibitive computational costs. An
alternative (and popular) approach is the use of simple and fast superposition model
assuming ideal (isotropic) radiators. While numerically feasible, this approach is
not reliable and cannot be utilized for design of real-world antenna arrays.

Some recent approaches to array design exploit metaheuristics, such as genetic
algorithms [4, 5], particle swarm optimizers [6, 7], and other population-based
methods [8, 9]. These techniques are useful for handling certain challenges of array
pattern synthesis, e.g., search in the presence of multiple local optima. However,
metaheuristics normally need hundreds and even thousands of objective function
calls. Thus, they are applicable to problems where the array evaluation cost is not of
concern.

In this work we utilize discrete EM models of the entire array under design
[10–13]. Unfortunately, such models are computationally expensive when accurate.
To speed up the design process we use two types of auxiliary models. The first
model is based on the simulated radiation responses of the single element combined
with the analytical array factor [1, 2, 14]. This semi-analytical model cannot
reliably account for coupling and may produce inaccurate radiation responses in
the directions off the main beam. On the other hand, the model is very fast so that,
upon suitable correction, it can be used to optimize the array radiation pattern.

The second utilized model is a coarse-discretization model of the entire array.
Although this model cannot be used directly in the design process due to its
inaccuracy and high level of numerical noise, it can speed up the design process
by exploiting its correlations with the original, high-fidelity EM model.

We employ both aforementioned auxiliary models in the surrogate-based opti-
mization (SBO) framework [15–20] to reduce the computational cost of the
optimization process and make it robust. The paper is organized as follows. We
begin with a description of a typical problem of a planar array design where both
radiation and reflection responses should be adjusted. We describe the flow of
the SBO process where the corrected and fast coarse-mesh model of the entire
array is used as a predictor. An example of a 5 by 5 planar array of microstrip
antennas demonstrates performance and costs of this approach. Comparison with
direct optimization is also provided. As a way to make the SBO procedure even
faster we introduce a surrogate model configured from the simulated single element
radiation response combined with the analytical array factor. An example of a 7 by
7 array demonstrates performance and costs of this modified SBO procedure.
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2 Simulation-Based Antenna Array Design

2.1 Antenna Array Design Through Numerical Optimization

Antenna array design problems are challenging because of the following reasons,
to list just a few major ones: (1) necessity of accurate full-wave electromagnetic
(EM) simulations to evaluate radiation and reflection responses of the array of
interest at different points of the design space; (2) a large number of design variables
(array dimensions and/or element excitations); (3) several often conflicting design
requirements imposed on the radiation and reflection response of the array so that it
is essentially a multi objective design problem.

Full-wave EM simulations are probably the only versatile and generic way to
reliably estimate the radiation and reflection responses of antenna array structures
and account for different non-idealities (e.g., finite size of the substrate/ground,
presence of the radome/housing). Unfortunately, such simulations are computation-
ally expensive when accurate. Simplified models, e.g., models based on the single
element radiation response combined with the analytical array factor [1, 2] do not
produce accurate radiation responses in the directions off the main beam and fail to
account for inter element coupling.

With a large number of variables and several design objectives simulation-
driven antenna array design realized as a parameter sweep, which is guided by
the user, turns to be either tedious or unfeasible. On the other hand, numerical
optimization [3] is a systematical way to handle antenna array design tasks [4–13].
Notice however that if objective functions are supplied by a discrete EM solver,
as outlined in the diagram of Fig. 1, then many optimization approaches, e.g.,
gradient-based [3] and metaheuristic methods [4–8], turn to be impractical with
realistic antenna array models because these optimization approaches typically need
hundreds and thousands simulations of the antenna array models each of which
is already computationally expensive. A SBO approach described in Sect. 3 and
demonstrated in Sect. 4 offers a solution to simulation-driven antenna array design
problems.

Antenna array design normally comprises two major steps: adjusting of the
radiation response, e.g., directivity pattern, and adjusting the reflection response.
Typical antenna array design requirements can be illustrated with Fig. 2: the required
side-lobe level (SLL) is shown with the horizontal lines and the broadside peak
directivity (to be maintained) is shown with a circle in Fig. 2b; the maximal level
of the active reflection coefficient over the operational bandwidth is shown with
horizontal line in Fig. 2c. Both these radiation and reflection figures can be obtained
in general only with discrete EM simulations of the antenna array models. An
additional reason to perform simulation-based antenna array design is illustrated
with help of Fig. 3 where the effect of an element location in the array is clearly
seen.
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Fig. 1 Simulation-driven design by optimization: a conventional approach

2.2 Planar Antenna Array Design Problem

Consider an antenna array of Fig. 4. The use of discrete EM models of the entire
array is necessary here to account for coupling and reliably evaluate the radiation
and reflection responses. The array is required to have a linear polarization and
operate at 10 GHz. Each patch is fed by a 50 ohm probe.

The design tasks are: to maintain the array peak directivity at the 20 dBi level;
to have the direction of maximum radiation normal to the plane of the array; to
suppress the SLL down to �20 dB; to keep returning signals lower than �10 dB, all
at 10 GHz. Initial dimensions of the elements are 11 by 9 mm; a grounded 1.58 mm
thick RT/duroid 5880 is the substrate; lateral extension of the substrate/metal ground
is set to a half of the patch size in a particular direction. Locations of feeds at the
initial design are at the center of the patch in horizontal direction and 2.9 mm off
the center in the vertical direction.

The symmetry wall, shown in Fig. 4, defines the array dimensions and incident
waves (amplitudes and phases) to be symmetrical with respect to the wall. With the
imposed symmetry we restrict ourselves to adjusting spacing (s1, s2, u1, u2), patch
size (x1, y1), location of probes (d1, : : : , d15), amplitudes (a1, : : : , a15), and phases
(b1, : : : , b15).

To evaluate the response of the array under design we adopt the following two
EM models: (1) a high-fidelity (or fine) discrete EM model of the entire array, Rf ;
and (2) a coarse-discretization EM model of the entire array Rcd which is a coarse-
mesh version of Rf . The use of these models in the developed SBO procedure is
described in the following section.
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Fig. 2 A 16 element microstrip antenna array of Cartesian lattice: (a) view; (b) directivity pattern
cuts in the E(dashed line) and H-planes (solid line); (c) active reflection coefficients at the feeds
of the elements. The radiation and reflection responses are for a certain set of dimensional
parameters and with the uniform excitation of the elements. Design specifications are shown with
the horizontal lines at (b) and (c). The array is on a 1.575 mm thick RT5880 layer with finite lateral
dimensions. sxD syD 8.0 mm, wxDwyD uxD uyD 9.15 mm. The feeding probes are 2.9 mm off
the patch center in the y-direction

Fig. 3 Directivity pattern (linear scale) of selected elements embedded into the antenna array of
Fig. 1: (a) element 1; (b) element 2; (c) element 10
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Fig. 4 Microstrip antenna array. The symmetry (magnetic) wall is shown with the vertical
dash line

3 Design Optimization Methodology

3.1 SBO Basics

The array design is formulated here as a nonlinear minimization task, where we aim
at solving the following problem

x� D arg min
x

U
�
Rf .x/

	
(1)

Here, Rf (x)2Rm is the response vector of a high-fidelity model, representing all
figures of interest, in particular, the radiation response, as well as the reflection
response at all ports; U is the objective function; x2Rn is a vector of design
variables, here, representing all adjustable parameters as described in Sect. 2. The
objective function is defined so that a better design corresponds to a smaller value
of U(Rf (x)). Typically, minimax formulation is used, where appropriate upper/lower
specification levels are imposed on both radiation response (in particular, related to
minimizing the side lobes) as well as reflection response (e.g., to keep reflection
simultaneously at all ports at a given operating frequency �10 dB).

In the SBO approach, direct optimization of the expensive EM-simulated model
Rf in Fig. 1 is replaced by an iterative correction and optimization of its fast
surrogate as shown in Fig. 5. Typically, the model Rf is only evaluated once per
iteration (at every new design x(iC1) after optimizing the surrogate model) to update
the surrogate. The number of iterations for a well performing SBO algorithm is
substantially smaller than for direct optimization methods [16].
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Fig. 5 Simulation-driven design by optimization: a generic SBO approach

A generic SBO scheme produces approximations x(i) of x* as follows [16]:

x.iC1/ D arg min
x

U
�
R.i/

s .x/
	

(2)

where Rs
(i) is the surrogate model at iteration i. In general, the surrogate model

is constructed by suitable correction of the underlying low-fidelity model. In this
work the low-fidelity model Rcd is a lossless coarse-mesh version of the original
high-fidelity model Rf [19]. Often, the algorithm (2) is embedded in the trust-
region framework for improving its convergence properties [21]. In any case, it is
advantageous to ensure at least zero-order consistency [22] between the surrogate
and the high-fidelity model, i.e., Rs

(i)(x(i))DRf (x(i)), and, whenever possible, also
the first-order consistency, i.e., J[Rs

(i)(x(i))]D J[Rf (x(i))], where J[] stands for the
Jacobian of the respective model. Satisfying the latter condition requires derivative
information from both the surrogate and the high-fidelity model which is normally
not available, unless adjoints sensitivities can be applied [23, 24].

The quality of model Rcd with a particular discretization is determined by a visual
inspection of its responses simulated at and about the initial design and with respect
to those of model Rf , i.e., the quality of Rcd is inferred from numerical experiments
involving the user’s judgments. A major requirement is that the responses of
the low-fidelity model should capture main properties of the high-fidelity model.
Optimal automatic setting of the low-fidelity model is addressed in [19].

Quality of the low-fidelity model Rcd turns into prediction capability of the
surrogate [18]. At the same time, Rcd should be much faster than Rf so that
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the total costs of optimization and update of the surrogate are reasonably small.
For coarse-discretization models of antennas the time evaluation ratio of the high-
and low-fidelity models is usually from 5 to 50 so that the computational cost
of the low-fidelity model cannot be neglected. Therefore, when developing SBO
algorithms for antennas design, it is also important to reduce the number of low-
fidelity model simulations.

3.2 SBO Procedure for Array Design

The evaluation time of the high-fidelity model Rf of the array of Fig. 4 is around
20 min. It makes its direct optimization impractical. Here, we exploit an auxiliary
low-fidelity model Rcd but with a coarser mesh so that its evaluation time is around
1 min. Both models Rf and Rcd are simulated with CST MWS [25] on a 2 GHz
Intel(R) Xeon(R) CPU 64 GB RAM computer. The model Rcd represents the array
radiation pattern quite accurately but it is not particularly good for representing the
reflection response.

One can split the design variable vector x into two parts: xD [xp
T xm

T ]T , where
xpD [s1 s2 u1 u2 x1 y1 a1 : : : a15] are variables used to optimize the array pattern,
and xmD [dy1 dy2 : : : dy15] are variables used to adjust the reflection. Having this in
mind, the following three-step design procedure (also outlined in Fig. 6) has been
developed:

Step 1: Optimize the directivity pattern of the low-fidelity model Rcd using xp with
fixed xmD xm.0 (the initial value); the optimized xp will be referred to as xp

*.
Optimization is performed using the pattern search algorithm [26] in order to
overcome the problem of numerical noise present in the simulated responses of
model Rcd. Optimization of Rcd at this step is realized using auxiliary first-order
response surface models constructed using large-step design perturbations, and
the trust-region framework to ensure convergence.

Step 2: Evaluate model Rf at xD [(xp
*)T (xm.0)T ]T ; Use Rcd to estimate the necessary

changes in xm to improve reflection responses; Here, it is assumed that a small
change of a given xm component will noticeably affect the reflection of the
corresponding patches and not the others. It has been verified with numerical
experiments that this assumption is satisfied for the structure under design for the
used range of the design variables. The procedure is the following: (1) evaluate
model Rcd at xD [(xp

*)T (xm.0)T ]T and at the two perturbed designs varied by
˙4dy corresponding to a reflection response that does not satisfy matching
requirements (cf. Fig. 7); (2) using interpolation of the data obtained in (1),
estimate the change of dy that gives reasonable change of the response (this takes
into account the fact that responses of Rf and Rcd are shifted both in frequency
and amplitude); The modified vector xm will be referred to as xm

*.
Step 3: Evaluate Rf at xD [(xp

*)T (xm
*)T ]T ; Adjust the global parameter y1 (patch

length) to shift the matching responses in frequency as necessary. The change
of y1 is estimatedusing evaluation of Rcd at xD [(xp

*)T (xm
*)T]T and the two
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Final Design

Optimize Radiation Response (Step 1)
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Coarse Model Rcd

Optimizer
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(i)

x(0)

Sensitivity Analysis (on xm)
of Reflection Response (Step 2)

xp,0 xm,0

xm,0xp
*

High-Fidelity
Model Rfxp

* xm
*

Validation (Step 3)

Adjustment of the global
parameter y1 (Step 3)

x*

EM Solver

Fig. 6 SBO procedure of Sect. 3.2 with two EM models Rcd and Rf : a block diagram
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Fig. 7 SBO procedure of Sect. 3.2, reflection responses at a selected port: Rf (thick solid line) and
Rcd (thin solid line) at xD [(xp

*)T (xm.0)T ]T and at a design with variable dyk corresponding to port
k perturbed by certain4dyk (thick and thin dotted lines). Based on these responses of Rcd and that
of Rf at [(xp

*)T (xm.0)T ]T a proper perturbation for dyk is found as described in Step 2. Additional
“horizontal” correction of this response may be necessary as described in Step 3. A circle denotes
design specifications
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perturbed designs obtained by changing y1 and interpolating the results. The final
design is obtained after this step is referred to as x*.

It should be noted that the high-fidelity model Rf is only evaluated in Step 2
(once) and in Step 2 (twice). From the generic SBO scheme (2) point of view, the
above design procedure (also shown in Fig. 6) represents an one-iteration approach.

4 Implementation and Validation

The initial design is an array with x(0)D [s1 s2 u1 u2 x1 y1 a1 : : : a15 dy1 dy2 : : :

dy15]D [16 16 16 16 11 9 1 : : : 1 2.9 : : : 2.9]T , where geometry dimensions are
in mm and excitation amplitudes are normalized to the maximal amplitude of the
incident signals. Responses of this design x(0) are shown in Fig. 8 where in Fig. 8b
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Fig. 8 High-fidelity model Rf : (a) directivity pattern in the E (dashed line) and H (solid line)
planes at the initial design at 10 GHz; (b) active reflection coefficient of element 3 (solid line) and
7 (dashed line) (see Fig. 4), at the initial design, and the reflection coefficient of a single element
(dotted dashed line). The active reflection coefficients are normalized to the maximal amplitude of
the incident signals. Reflection coefficients of other elements are shown with the grey lines in (b)
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the reflection coefficient of the isolated single element is given for reference. Peak
directivity of a single isolated element (a microstrip patch antenna) is about 7.4 dBi.

Design specifications for Step 1 (directivity pattern optimization) are the follow-
ing: minimize directivity (in the minimax sense) off the main beam of design x(0),
i.e., for the zenith angles off the sector [�21.50, 21.50]. Step 1 (optimization of
the coarse model for pattern) results in design xp

*D [16.363 16.588 16.498 16.910
11.072 8.926 0.9845 0.4529 0.3718 0.9873 0.9748 0.4500 0.9970 0.9754 0.9919
0.9548 0.9369 0.5503 1.0000 0.4671 0.3621]T. Responses of the array after Step
1 are shown in Fig. 9. The cost of this Step 1 is 182 evaluations of the coarse-
discretization model Rcd.

-150 -100 -50 0
q

50

a

b

100 150
-30

-20

-10

0

10

20

[deg]

]i
Bd[

ytivitceri
D

8 8.5 9 9.5 10 10.5 11 11.5 12
-25

-20

-15

-10

-5

0

Frequency [GHz]

|S
k| [

dB
]

Fig. 9 High-fidelity model Rf : (a) directivity pattern in the E (dashed line) and H (solid line)
planes after Step 1 (directivity optimization) at 10 GHz; (b) active reflection coefficient of elements
3 (solid line) and 7 (dashed line) (see Fig. 4). The active reflection coefficients are normalized to
the maximal amplitude of the incident signals. Reflection coefficients of other elements are shown
with the grey lines in (b)
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Fig. 10 High-fidelity model Rf at the final design: (a) directivity pattern cuts in the E (dashed
line) and H (solid line) planes at 10 GHz; (b) active reflection coefficient of element 3 (solid line),
and that of element 7 (dashed line) (see Fig. 4). The active reflection coefficients are normalized
to the maximal amplitude of the incident signals

At Step 2 (matching correction I), we change dyk for ports where matching is not
sufficient (i.e., jSkj>�10 dB). For ports 4, 7, 8, and 10 the feed location is increased
to 3.4 mm. The cost of Step 2 is 8�RcC 1�Rf . At Step 3, (matching correction II)
one changes the global parameter y1 to 9.1 mm to move reflection responses to the
left in frequency. This step costs 2�RcC 2�Rf .

Responses of the final design with SLL of �21 dB are shown in Fig. 10. The
total cost of the design optimization process is 192�RcdC 3�Rf D 12.5�Rf , i.e.,
it is equivalent in time to only 12.5 high-fidelity simulations of the entire structure.

Other cases were also considered. Responses of the final design with additional
suppression (extra �10 dB) of the radiation in the sectors of [�31.5ı, �21.5ı]
and [21.5ı, 31.5ı] with the incident excitation amplitudes as variables and uniform
phase distribution are shown in Fig. 11. The total cost of this design is 13�Rf .
It should be noted that obtaining additional suppression in the aforementioned
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Fig. 11 Responses at the final design with additional suppression of SLL next to the main lobe,
non-uniform amplitude excitation: (a) directivity pattern cuts in the E (dashed line) and H (solid
line) planes at 10 GHz; (b) active reflection coefficient of element 3 (solid line) and that of element
7 (dashed line) (see Fig. 4). The active reflection coefficients are normalized to the maximal
amplitude of the incident signals

sector compromises to some extent the SLL, which is now about �17 dB. It can be
observed that the proposed design method is sufficiently flexible to handle various
types of design specifications.

Responses of the final design with amplitudes and phases as design variables
are shown in Fig. 12. In this case, the problem is much more complex from the
optimization point of view (51 variables); however, the proposed approach allows
for obtaining the optimized design at the total cost of only about 21�Rf . The
additional degrees of freedom make it possible to further reduce the SLL to�24 dB.
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Fig. 12 Responses at the final design with non-uniform amplitude and phase excitation: (a)
directivity pattern cuts in the E (dashed line) and H (solid line) planes at 10 GHz; (b) active
reflection coefficient of element 3 (solid line) and that of element 7 (dashed line) (see Fig. 4). The
active reflection coefficients are normalized to the maximal amplitude of the incident signals

5 Rapid Optimization of Radiation Response

5.1 Design Case: 7 by 7 Microstrip Array

Consider a 7 by 7 planar array shown in Fig. 13. The array is to operate at 10 GHz
with linear polarization in the E-plane. Each patch is fed by a probe in the 50 ohm
environment. Initial dimensions of elements, microstrip patches, are 11 by 9 mm; a
grounded layer of 1.58 mm thick RT/duroid 5880 is the substrate. The extension of
the substrate and ground, s0 and u0, is set to 15 mm.

The design tasks are: to have (a) SLL below �20 dB for zenith angles off
the main beam with the null-to null width of 32ı; (b) the peak directivity about
20 dBi; (c) the direction of the maximum radiation perpendicular to the plane of
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Fig. 13 Array of 49 microstrip patches: front view. Symmetry (magnetic) plane is shown with the
vertical dash line at the center

the array; (d) returning signals lower than �10 dB, all at 10 GHz. A starting point
for optimization is a uniform array, x(0)D [s1 s2 s3 u1 u2 u3 x1 y1 a1 : : : a28 dy1 : : :

dy28]TD [16 16 16 16 16 11 9 1 : : : 1 2.9 : : : 2.9]T where all dimensional parameters
are in mm, excitation amplitudes are normalized, and phase shifts are in degrees.

Initial values of the spacings are easily found using model Ra assuming them
equal to each other. The feed offsets, dyn shown in Fig. 10, are 2.9 mm for all
patches; it is obtained by optimizing the EM model of the single patch antenna.
The SLL of this design is about �13 dB as expected, and the peak directivity is
22.7 dBi (cf. Fig. 14a).

5.2 Utilization of the Analytical Model

While the total cost of the procedure described in Sect. 3 and illustrated for the
antenna array considered in Sect. 4 is quite low (corresponding to around 10–
20 evaluations of the high-fidelity EM model of the entire array), the majority of
this cost is related to optimization of the coarse-discretization model Rcd. This
contribution would be even larger for the 7 by 7 array considered here. This
overhead can be reduced by replacing the coarse-discretization model Rcd by the
analytical model at the stage of radiation response optimization. The resulting
design methodology is a two-stage process described below.
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Fig. 14 Array of 49 microstrip patches, directivity pattern cuts in the E (dashed line) and H (solid
line) planes at the initial design at 10 GHz: (a) high-fidelity model Rf ; (b) analytical model Ra

Stage 1 (radiation optimization): Here, we adopt the analytical model Ra repre-
senting directivity Da(� ,)De(� ,)•jA(� ,)j2, which embeds the EM-simulated
radiation response of the single microstrip patch antenna De(� ,) and analytical
array factor A(� ,) [14]. Although the analytical model is extremely fast, it is not as
accurate as the coarse-discretization EM one; the response of model Ra is shown in
Fig. 14b.

Therefore, the radiation response is optimized iteratively, exploiting an SBO
scheme shown in Fig. 15. The surrogate model is created by means of the following
additive response correction (also referred to as output space mapping [15, 27])

R.i/
s .x/ D Ra .x/C �Rf

�
x.i/
	 �Ra

�
x.i/
	�

(3)
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Fig. 15 SBO approach for optimization of the radiation response using the analytical model Ra as
the low-fidelity model. Surrogate model Rs is constructed according to (3)

where x(i) is the current design. This kind of correction ensures zero-order
consistency [22] between the surrogate and the high-fidelity model at x(i), i.e.,
Rs

(i)(x(i))DRf (x(i)).
It should be emphasized that the additive response correction is well suited for

constructing the surrogate model in our case because the major discrepancy between
the analytical and the high-fidelity EM radiation model is vertical difference as
indicated in Fig. 14a, b. Usually, 2–3 iterations of the SBO algorithm (2) with
the surrogate model (3) are necessary to yield a satisfactory design in terms of the
radiation pattern. One iteration requires only one evaluation of Rf .

Stage 2 (reflection/coupling adjustment): the coarse-discretization model Rcd is
used to correct reflection. After completion of Stage 1, the reflection responses are
shifted in frequency so that the minima of returning signals jSkj are not exactly at
the required frequency. Responses jSkj can be shifted in frequency individually by
adjusting the feed offsets dn, and collectively by adjusting the patch size, y1. The
amounts of adjustments are estimated using Rcd, for which, the dependencies of jSkj
w.r.t. design variables are similar as for Rf .

Both models are evaluated using the same EM solver so that the responses are
well correlated despite their misalignment (both in frequency and level as illustrated
in Fig. 16). The computational cost of reflection adjustment is only one evaluation
of Rf and a few evaluations of Rcd (depending on how many reflection coefficients
jSkj are to be adjusted).
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Fig. 16 Array of Fig. 10, active reflection coefficient of element 4 (solid line) which is at the
center, that of element 22 (dashed line) which is at the corner: (a) high-fidelity model Rf ; (b)
coarse model Rcd . One can see a frequency shift as well as a vertical misalignment

5.3 Results I: Optimization with Non-uniform
Amplitude Excitation

Design has been carried out with incident excitation amplitudes as design variables.
Maximum allowed array spacings were restricted to 20 mm. The cost of Stage 1,
directivity pattern optimization, is only three evaluation of Rf (the cost of optimizing
the analytical Ra can be neglected).

At Stage 2, we change the y-size of the patches, global parameter y1 to 9.14 mm
in order to move reflection responses to the left in frequency y1. Offsets dn of the
elements still violating the specification have been adjusted individually.

The cost of this step is 5�RcdC 1�Rf . The final design is found at x*D [s1

s2 s3 u1 u2 u3 x1 y1 a1 : : : a28]T D [15.97 17.35 20.00 14.38 17.98 19.99 11.00
9.14 0.922 0.787 1.000 0.835 0.953 0.779 0.770 0.958 0.966 1.000 0.810 0.963
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Fig. 17 Array of 49 microstrip patch antennas optimized with non-uniform amplitude excitation
and spacings constrained to 20 mm: (a) directivity pattern cuts in the E (dashed line) and H (solid
line) planes at 10 GHz; (b) active reflection coefficient of element 4 (solid line) which is at the
center, that of element 22 (dashed line) which is at the corner. The active reflection coefficients are
normalized to the maximal amplitude of the incident signals

0.989 0.925 0.452 0.620 0.832 0.842 0.814 0.631 0.576 0.072 0.752 0.697 0.872
0.821 0.703 0.037]T where the dimensional parameters are in mm and excitation
amplitudes are normalized. Most probe offsets dn have been left of the initial design
value, 2.9 mm, except four adjusted to d4D d11D d18D 3.9 mm and d10D 3.4 mm.

The radiation response and reflection response of the final design are shown in
Fig. 17. The SLL of this design x* is under �20 dB and the peak directivity of x* is
22.9 dBi. The total cost of optimization is about 5�Rf .
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5.4 Results II: Optimization with Non-uniform Phase
Excitation

Another case has been considered with the excitation phase shifts as design variables
and spacings restricted to 20 mm. The final design is at x*D [s1 s2 s3 u1 u2 u3 x1

y1 b1 : : : b28]T D [15.00 15.00 20.00 15.15 5.46 19.95 11.00 9.10 0 8.6 �6.3 1.1
4.3 2.6 3.1 33.3 0.3 11.0 �4.9 5.3 �14.6 45.7 �60.7 17.4 5.8 29.6 �7.0 39.4 �48.9
�17.7 46.5 �13.8 22.5 �1.65 47.9 �38.9]T where the dimensional parameters are
in mm, phase shifts are in degrees and given relatively the first element. Its responses
are shown in Fig. 18.

The SLL of this design x* is under�17 dB; the peak directivity of x(0) is 22.2 dBi;
return signals jSkj are higher than in the previous case, their suppression should be
addressed with design of the feed network. The total cost of 5�Rf is similar to that
of the previous example.
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Fig. 18 Array of 49 microstrip patch antennas optimized with non-uniform phase excitation and
spacings constrained by 20 mm: (a) directivity pattern cuts in the E (dashed line) and H (solid line)
planes at 10 GHz; (b) active reflection coefficient of elements 4 (solid line) and 22 (dashed line)
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6 Conclusions

Low-cost SBO approach for simulation-driven design of planar arrays of microstrip
patch antennas has been discussed. By utilizing variable-fidelity simulations and
auxiliary analytical array models with suitable correction schemes, the design goals
can be met at the cost of only a few high-fidelity EM simulations of the entire array.
Optimized simulation-driven designs for cases of non-uniform amplitude and non-
uniform phase have been obtained. The final designs have shown, in overall, similar
performance in terms of radiation and reflection.

It seems that combination of coarse-discretization simulations with SBO tech-
niques (in particular, response correction) is a promising way to conduct EM-driven
design of realistic antenna array models in a computationally feasible manner. As
demonstrated, the use of quasi-analytical models offers further design speed up;
however, at the expense of somehow limited control of the reflection response. An
extension of this work will address design optimization of phased antenna arrays.
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Abstract It is quite a challenge to find the optimal design of computationally
expensive engineering systems in different areas such as electrical engineering,
structural mechanics, fluid dynamics, and electromagnetic-based (EM-based) sys-
tems. The optimal design of such systems requires solving huge optimization
problems involving a lot of expensive function evaluations. For example, in
microwave circuit design, a function evaluation requires running a full-wave
electromagnetic simulator which may exhaust hours of CPU time. The total compu-
tational overhead makes the optimization of these engineering systems practically
prohibitive. Computationally cheap surrogates (Response Surfaces, Space Mapping,
Kriging models, Neural Networks, etc.) offer a good solution of such problems.
Throughout the optimization process, iteratively updated surrogates are employed
to replace the computationally expensive function evaluations.

In this chapter, surrogate-based approaches that can be applied for optimal
design of EM-based systems are presented. The first one is a novel surrogate-based
trust region optimization approach. The proposed approach relies on building and
successively updating quadratic surrogate models to be optimized instead of the
objective function over the trust regions. The approach is applied to find the optimal
design of RF cavity linear accelerator (LINAC).

In addition, a novel surrogate-based geometrical design centering technique for
microwave circuits is introduced. The technique integrates generalized space map-
ping (GSM) surrogates with the normed distances concept. The normed distances
from a point to the feasible region boundaries are evaluated using norms related to
the probability distribution of the circuit parameters. The technique is applied to
obtain the design center point of a microwave filter.
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1 Introduction

Engineering systems, in general, are required to meet some performance measure
constraints through the adjustment of a set of designable parameters. The desired
performance of a system (design specifications) is set by the designer and usually
described by specifying bounds on the performance measures of the system.
The conventional system design aims at finding values of the system designable
parameters that merely satisfy the design specifications. In general, there will be
a multitude of acceptable designs. However, for contemporary engineering design,
other criterion (objective function) can be chosen for selecting the best acceptable
design. In this respect, optimal system design is usually accompanied with an
optimization problem. Naturally, the performance measures and the objective func-
tions of an engineering system depend on the parameter values and are evaluated
through numerical simulations. Hence, the design process is heavily based on
system simulations, and for computationally expensive engineering systems, the
high expense of the required simulations may obstruct the optimization process.
To overcome this, computationally cheap surrogates (Response Surfaces, Space
Mapping, Kriging Models, Neural Networks, etc.) offer a good solution of such
problems. Throughout the optimization process, iteratively updated surrogates are
employed to replace the computationally expensive function evaluations.

The surrogate model is a mathematical or physical model which can take the
place of the computationally expensive fine model (simulations) throughout the opti-
mization process. Computationally expensive simulations may arise from numerical
solution of large systems of, e.g., integral or differential equations describing a
physical system, or it could be an actual physical system. Surrogate models may be
obtained through physical simplification or by employing a less accurate numerical
approximation. Often the computationally cheap surrogate model is less accurate
than the expensive high fidelity model.

The surrogate model is used in all heavy computations of the optimization
process, whereas the fine model is evaluated only at a limited number of points,
e.g., the sequentially generated optimal points. These fine model evaluations can be
used to construct or update the surrogate model and also to validate the optimization
results. Surrogate models are classified into two main categories: functional and
physical models [48, 49]. Functional models are constructed without any knowledge
about the underlying physics of the expensive model they represent. Physical models
carry some information about the system they are representing; hence, they can
predict the behavior of the system with much less computations.

In practice, the optimal design process and the corresponding optimization
problem have some permanent special difficulties. The high cost of the frequent
evaluation of computationally expensive functions is one of these difficulties.
Hence, robust optimization methods that utilize the fewest possible number of
function evaluations are greatly required [1, 2]. Another difficulty is the absence
of any gradient information as the required simulation cost in evaluating the
gradient information is prohibitive in practice [3]. Attempting to approximate
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the function gradients using the finite difference approach requires much more
function evaluations, which highly increase the computational cost. Another defect
in estimating the gradients by finite differencing is that the estimated function values
are usually affected by some numerical noise due to estimation uncertainty. Hence,
small perturbations do not reflect the local behavior of the function value itself but
rather that of the noise.

For such objective functions, only derivative-free optimization (DFO) is feasible
[1, 2, 4–6]. Further, the derivative-free trust region methods usually handle such
problems more efficiently as the trust region framework constitutes one of the
most important globally convergent optimization methods, which has the ability
to converge to a solution starting from any initial point [7]. In addition, these
methods employ computationally inexpensive surrogates that can be constructed
by using function evaluations at some selected points. These surrogate models may
be response surfaces or radial basis functions.

This chapter presents new surrogate-based approaches that can be applied
for optimal design of EM-based systems. In the first part of this chapter, a
new derivative-free trust region optimization approach is introduced that neither
requires nor approximates the gradients of the objective function. It implements a
non-derivative optimization method that combines a trust region framework with
quadratic fitting surrogates for the objective function [4, 5]. The approach relies
on building, successively updating and optimizing quadratic surrogate models of
the objective function over trust regions. The quadratic surrogate model reasonably
reflects the local behavior of the objective function in a trust region around the
current iterate. The efficiency of the new approach is investigated by applying it
to a numerical example and comparisons with a recent optimization technique are
also included. The effective shunt impedance per unit length is maximized to find
the optimal design of the structure of RF cavity. The RF cavity is the major part of
particle linear accelerators (LINACs).

The second part of this chapter treats the problem of design centering of com-
putationally expensive microwave circuits. Design centering is an optimal design
problem which attempts to find the nominal values of designable circuit parameters
that maximize the probability of satisfying the design specifications (yield function).
These design specifications are functions of circuit parameter values. Practically, the
values of circuit parameters are subjected to known but unavoidable fluctuations due
to model uncertainty, manufacturing process, or environmental changes. To simulate
these fluctuations, the circuit parameters are considered to be random variables with
certain probability distribution. The fluctuations in the circuit parameters may lead
to violation of the design specification. Design centering seeks for the best nominal
values of circuit parameters which make the design more robust against circuit
fluctuations.

Generally, there are two main approaches for design centering. The first approach
is based upon statistical analysis techniques, e.g., Monte Carlo method, for the
estimation of the yield function values during the optimization process [1, 2, 8–14].
The second approach is classified as a geometric approach. The approach maximizes
the yield function implicitly [15–29, 46–47]. In this approach, the feasible region
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(a region in the parameter space where all design specifications are satisfied)
is approximated using a convex body, e.g., a hyperellipsoid. The center of this
approximating body is considered as a design center [30].

The main obstacle in the design centering process is the computational effort
required in evaluating the circuit performance measures, especially in case of
microwave circuits [31]. These evaluations depend on circuit simulations. Generally,
circuit simulations need running a full-wave electromagnetic simulator which may
exhaust hours of CPU time. The total computational overhead makes the design
centering of these microwave systems practically prohibitive. To overcome this
problem, space mapping surrogates are employed instead of the computationally
expensive high fidelity fine model. The surrogate model is used to make an
approximation to the feasible region. Hence, centering process is performed on that
approximation and then validated by the fine model. The process is repeated till the
final center is obtained [31].

In the second part of this chapter, a novel surrogate-based geometrical design
centering technique for microwave circuits is introduced. The technique integrates
generalized space mapping (GSM) surrogates [32] with the normed distances con-
cept [25]. The normed distances from a point to the feasible region boundaries are
evaluated using norms related the probability distribution of the circuit parameters.
The technique is applied to obtain the design center point of a six-section H-plane
waveguide filter.

2 The New Surrogate-Based Trust Region
Optimization Approach

The majority of the existing derivative-free trust region techniques have the
following features:

• They require a relatively large number of function evaluations, O(n2) (where n is
the number of system variables) to construct the initial quadratic model.

• The quadratic surrogate models are constructed via interpolating the objective
function at a constant number of points; when a point is obtained, a previous point
is dropped. In addition, these algorithms usually ignore the valuable information
contained in all previously evaluated expensive function values.

In this section, a novel surrogate-based trust region optimization approach is
presented. The proposed approach relies on building and successively updating
quadratic surrogate models for the objective function. These surrogate models are
optimized instead of the objective function over trust regions. Truncated conjugate
gradients [33] are used to find the optimal point within each trust region. The
approach constructs the initial quadratic surrogate model using few data points
of order O(n), where n is the number of design variables. In each iteration of the
proposed approach, the surrogate model is updated using a weighted least squares



Optimal Design of Computationally Expensive EM-Based Systems: : : 175

fitting. The weights are assigned to give more emphasis to points close to the current
center point. The accuracy and efficiency of the proposed approach are demonstrated
by applying it on a set of classical benchmark test problems. Also, the approach is
employed to find the optimal design of RF cavity LINAC. A comparison analysis
with a recent optimization technique is also included.

The proposed algorithm, which belongs to the trust region DFO class, will be
introduced. The computationally expensive objective function is locally approxi-
mated around a current iterate xk by a computationally cheaper quadratic surrogate
model M(x) which can be given by:

M .x/ D aC bT .x � xk/C 1

2
.x � xk/T B .x � xk/ ; (1)

where, a2R, the vector b 2Rn, and the symmetric matrix B2Rn� n are the
unknown parameters of M(x). The total number of the model parameters is
qD (nC 1)(nC 2)/2. These parameters can be evaluated by interpolating the objec-
tive function at q points.

2.1 Initial Model

Let x0 be the initial point that is provided by the user. Initially, assuming that B is
a diagonal matrix, then the number of points required to construct the initial model
is mD 2nC 1 [34]. The initial m points xi, iD 1, 2, : : : , m, can be chosen as follows
[6, 35]:

x1 D x0 and

�
xiC1 D x0 C
1ei ; i D 1; 2; : : : ; n

xiCnC1 D x0 �
1ei ; i D 1; 2; : : : ; m � n � 1
(2)

where 
1 is the initial trust region radius that is provided by the user, and ei is the
ith coordinate vector in R

n.
The initial quadratic model M(1)(x) will have the parameters a(1), the vector b(1),

and the n diagonal elements of the model Hessian matrix B(1). These parameters
are computed by requiring that the initial model interpolates the objective function
f (x) at the initial m points given in (2). Therefore, the initial model parameters are
obtained by satisfying the matching conditions:

M .1/ .xi / D f .xi / ; i D 1; 2; : : : ; m: (3)
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2.2 Model Optimization

At the kth iteration, assume that xk is the current solution point. The model M(k)(x)
is then minimized, in place of the objective function, over the current trust region
and a new point is produced by solving the trust region sub-problem:

minsM
.k/ .s/ ; subject to ksk � 
k; (4)

where sD x� xk, 
k is the current trust region radius, and � throughout is
the l2-norm. This problem is solved by the method of truncated conjugate gradient
which is proposed in [33]. It is identical to the standard conjugate gradient method
as long as iterates are inside the trust region. If the conjugate gradient method
terminates at a point within the trust region, this point is a global minimizer of
the objective function. If the new iterate is outside the trust region, a truncated step
which is on the region boundary is considered. Also, the method treats the case
where the minimum is in the opposite direction of the conjugate direction, which
is due to the non-convexity of the model [33]. One good property of this method
is that the solution computed has a sufficient reduction property which was proved
in [36].

Let s* denote the solution of (4), and then a new point xnD xkC s* is obtained.
The achieved actual reduction in the objective function is compared to that predicted
reduction using the model by computing the reduction ratio which is given by:

rk D actual reduction

predicted reduction
D f .xk/� f .xn/

M .k/ .xk/�M .k/ .xn/
: (5)

This ratio reflects how much the surrogate model agrees with the objective function
within the trust region. The trust region radius and the current iterate will be updated
such that, if rk is sufficiently high, i.e., rk � 0.7, there is a good agreement between
the model and the objective function over this step. Hence, it is beneficial to expand
the trust region for the next iteration, and to use xn as the new center of the trust
region. If rk is positive but not close to 1, i.e., 0.1� rk < 0.7, the trust region radius
is not altered. On the other hand, if rk is smaller than a certain threshold, rk < 0.1,
the trust region radius is reduced. The updating formula used for updating 
k and
xk can be expressed as follows:

rk

8
ˆ̂
<

ˆ̂
:

rk < 0:1 W 
kC1 D 1
2

k

0:1 � rk � 0:7 W 
kC1 D 
k

rk � 0:7

� ks�k < 
k W 
kC1 D 
k

ks�k � 
k W 
kC1 D 1:5 �
k

; (6)

xkC1 D
�

xk C s�; if rk > 0

xk; otherwise
: (7)
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It is to be mentioned that the current center is the point of least function value
achieved so far.

2.3 Model Update

When a new point is available, the current quadratic model M(k)(x) is updated so
that the point of lowest objective function value xk is now the center of the kth trust
region. The model will take the form:

M .k/ .s/ D a.k/ C sT b.k/ C 1

2
sT B.k/sI s D x � xk and s 2 R

n: (8)

The parameters a(k), b(k), and B(k) are evaluated employing the parameter values
of the previous model M(k� 1)(x) in addition to all available function values. The
constant a(k) is assigned the value of f (xk), i.e., a(k)D f (xk). The model will be
updated in two steps. First, the vector b(k) is updated then the Hessian matrix B(k) is
updated as follows:

Step1: Updating the vector b(k)

The vector b(k) can be obtained using only n points. However, using the n recent
points may result in ill-conditioned system of linear equations. In order to avoid
this, it is proposed to use the least squares approximation with the most recent
2n points. So, the vector b(k) is evaluated such that the model M(k)(x) fits the last
2n points obtained, xi, iD 1, 2, : : : , 2n, i.e., the following condition should be
satisfied:

M .k/ .si / D f .si / ; where si D xi � xk and i D 1; 2; : : : ; 2n: (9)

When computing the vector b(k), the matrix B(k) is assigned temporarily the value
of the previous model Hessian matrix, B(k�1), hence the vector b(k) is obtained by
solving the following system of linear equations:

Ab.k/ D v; (10)

where

A D

2

6
6
6
4

sT
1

sT
2
:::

sT
2n

3

7
7
7
5

and v D

2

6
6
6
4

f .s1/ � a.k/ � 1
2
sT
1 B.k�1/s1

f .s2/ � a.k/ � 1
2
sT
2 B.k�1/s2

:::

f .s2n/� a.k/ � 1
2
sT
2nB.k�1/s2n

3

7
7
7
5

: (11)

The previous system is an over-determined system. The least squares approxi-
mation for b(k) is
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b.k/ D �AT A
	�1

AT v: (12)

Step2: Updating the matrix B(k)

The model Hessian matrix B(k) is evaluated using the following updating formula:

B.k/ D c B.k�1/ C qpT ; (13)

where c is a positive constant, 0.5 < c < 1, and the vector p2 Rn,

q D
h
sign



diag



B.k�1/

��i
�
q

.1 � c/ � ˇˇdiag
�
B.k�1/

	ˇ
ˇ: (14)

This choice of q ensures that changes in B(k) occur gradually. The vector p is
evaluated such that the model M(k)(x) tries to fit all the available m points obtained
so far, xi, iD 1, 2, : : : , m, i.e., the following condition should be satisfied

M .k/ .si / D f .si / ; where si D xi � xk and i D 1; 2; : : : ; m; (15)

i.e., the vector p is obtained by solving the weighted system of linear equations

Ap D v; (16)

where

A D

2

6
6
6
6
4

1
2
sT
1 qsT

1 w1

1
2
sT
2 qsT

2 w2

:::
1
2
sT
mqsT

mwm

3

7
7
7
7
5

; v D

2

6
6
6
4

w1 �
�
f .s1/ � a.k/ � sT

1 b.k/ � 1
2
sT
1 cB.k�1/s1

	

w2 �
�
f .s2/ � a.k/ � sT

2 b.k/ � 1
2
sT
2 cB.k�1/s2

	

:::

wm �
�
f .sm/� a.k/ � sT

mb.k/ � 1
2
sT
mcB.k�1/sm

	

3

7
7
7
5

:

(17)

To obtain more accurate model in the neighborhood of the current center, the
available points are assigned different weights wi , iD 1, 2, : : : , m according to
their distances from the trust region center. In the proposed approach the weight
wi associated with each equation takes the form:

wi D
(

1 if ksik � c1

c1

ksik if ksik > c1


; i D 1; 2; : : : ; m; (18)

where c1 is a positive constant, c1� 1.
The previous system in (16) is an over-determined system (m > n). The least
squares approximation for p is

p D �AT A
	�1

AT v: (19)
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After getting the vector p, the term qpT is calculated and the matrix is made
symmetric by resetting the off-diagonal elements to their average values, i.e.,
bijD bji (bijC bji)/2, then the new Hessian matrix B(k) is updated according to
Eq. (13). It is to be mentioned that making the matrix B(k) symmetric does not
affect the model neither in value nor in gradient.

2.4 Comment

If rk < 0, for two consecutive iterations, then xk is kept unchanged and the trust
region radius is not altered. A procedure aiming to improve the quality of the model
is employed. The model can be improved by generating a new point snewD xnew� xk,
which is chosen to be on the boundary of the trust region so that it improves the
distribution of points around the center of the trust region.

2.5 Numerical Example

The effectiveness of the proposed algorithm is demonstrated through the 6D Watson
benchmark example. The function was proposed in [37]. All results are compared
with those obtained by NEWUOA (NEW Unconstrained Optimization Algorithm)
[6]. The performance is measured by the number of function evaluations N required
to reach the optimal solution.

f .x/ D x2
1 C

�
x2 � x2

1 � 1
	2 C

X30

iD2

(
X6

jD2
.j � 1/ xj

�
i � 1

29

�j�2

�
(
X6

jD1
xj

�
i � 1

29

�j�1
) 2

� 1

) 2

: (20)

This minimization problem is ill-conditioned, and rather difficult to solve.
This function has a minimum of 2.2877� 10�3 at (�0.0157 1.0124� 0.233
1.2604� 1.5137 0.993)T . The initial values used for x0 and 
1 are (0 0 0 0 0 0)T

and 0.25, respectively. The optimal value obtained using the proposed technique
and NEWUOA for different N function evaluations are shown in Table 1 and Fig. 1.

In this numerical example, it is to be noticed that at the beginning of the
optimization process, the proposed algorithm is much faster than NEWUOA.
However, as the optimization gets close to the optimum, the methods based on
interpolation will be more accurate as expected. This explains why the proposed
algorithm is well suited for objective functions that have some uncertainty in their
values or subject to statistical variations.
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Table 1 The 6D Watson function: proposed
approach versus NEWUOA

N Proposed algorithm NEWUOA

23 1.0399 1.5134
37 0.6976 0.2405
51 0.3369 0.1854
65 0.2358 0.0535
80 0.0780 0.0216
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Fig. 1 The 6D Watson example

2.6 Optimal Design of RF Cavity

The RF cavity is a major component of LINACs [38, 39]. The structure of RF cavity
must efficiently transfer the electromagnetic energy to the beam.

The most useful figure of merit for high field concentration along the beam axis
and low ohmic power loss in the cavity walls is the effective shunt impedance per
unit length ZT2 where T is the transient-time factor (a measure of the energy gain
reduction caused by the sinusoidal time variation of the field in the cavity, [40]).

The technique is applied to an RF cavity with resonance frequency 9.4 GHz,
shown in Fig. 2. The objective is to maximize effective shunt impedance per unit
length. In order to do that, we optimize the axial z positions of ten points that
describe the cavity curvature through a spline curve. The axial positions zD (z1, z2,
: : : , z10)T in the z-direction are taken as the design parameters. The radial positions
of these points are chosen on a logarithmic scale along r-direction. It is to be noted
that during the variation of the curvature, the resonance frequency is always kept at
9.4 GHz. The initial values used for the ten radial positions z0 are all set to 0.6 cm
and 
1 is set to 0.02 cm.



Optimal Design of Computationally Expensive EM-Based Systems: : : 181

Fig. 2 Structure of the RF cavity

Table 2 RF cavity design results: proposed
approach versus NEWUOA

N Proposed algorithm NEWUOA

50 111.771 112.587
75 115.207 116.833
90 117.183 119.316
120 119.01 120.511
160 120.5 120.910
200 121.01 121.211
260 121.301 121.521

The results of the effective shunt impedance per unit length for RF cavity in
mega ohm per meter after N function evaluations for both the proposed algorithm
and NEWUOA are shown in Table 2.

It is to be mentioned that starting from the same initial point, the convergence
of the proposed algorithm is nearly the same as NEWUOA algorithm. However, the
advantage of the proposed algorithm is its easy implementation and accessibility for
update and modification.

The figure of optimal cavity using the proposed algorithm and the NEWUOA are
shown in Fig. 3.
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Fig. 3 The optimal cavity: (a) using the proposed algorithm with effective shunt impedance per
unit lengthD 121.301 M ohm/m. (b) using NEWUOA with effective shunt impedance per unit
lengthD 121.521 M ohm/m

3 Microwave Circuit Design Centering Approach Exploiting
Normed Distances and Space Mapping Surrogates

In this section, GSM surrogates are integrated with the normed distances concept
to develop a novel surrogate-based geometrical design centering technique for
microwave circuit applications. The design centering problem is formulated as a
max–min optimization problem using normed distances from a point to the feasible
region boundaries. The norm used in evaluating the distances is related to the
probability distribution of the circuit parameters. The normed distance is evaluated
by solving a nonlinear optimization problem. A convergent iterative boundary
search technique is used to solve the nonlinear optimization problem concerning
the normed distance. In the new approach of microwave design centering, a GSM
surrogate is initially constructed based on the coarse model and then updated
through space mapping (SM). In each SM iteration, a current SM feasible region
approximation is available and the centering process using normed distances is
implemented with this region approximation leading to a better design center. The
new center point is validated by the fine model and is used to update the next GSM
surrogate. The process is repeated to obtain the next center point. Practical circuit
examples are given to show the effectiveness of the new design centering method.
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3.1 Generalized Space Mapping (GSM)

A GSM [32] with input and output mappings is used where a matching in response
and gradient between surrogate and fine models is performed. The matching will be
made at every center point xk. The response of the surrogate at any point is given
by:

Rk
s .x/ D Ak � Rc

�
BkxC ck

	C dk C Ek
�
x � xk

	
; (21)

where Rc is the coarse model response vector, Ak 2Mm�m is a diagonal matrix,
Bk 2Mn� n, ck 2Mn� 1, and dk 2Mm� 1 (n is the number of design variables and m
is the number of constraints) is given by:

dk D Rf

�
xk
	 � Ak � Rc

�
Bkxk C ck

	
; (22)

where Rf is the fine model response vector, and Ek 2Mm� n is given by:

Ek D Jf

�
xk
	 �Ak � Jc

�
Bkxk C ck

	
Bk; (23)

where Jf and Jc are the Jacobian matrices of the fine and coarse model, respectively.
The mapping parameters A, B, and c are obtained through an optimization process
called parameter extraction:

�
Ak; Bk; ck

	 D arg minA;B;c ek .A; B; c/ ; (24)

where ek represents the response deviation residual of the surrogate from the fine
model and is given by:

ek .A; B; c/ D
kX

iD0

wi


Rf

�
xi
	 �ARc

�
Bxi C c

	
C

Xk

iD0
vi


Jf

�
xi
	 � AJc

�
Bxi C c

	
B

 ;

(25)

where the coefficients wi and vi are weights chosen according to the nature of the
problem.

3.2 Feasible Region and Yield Function

In general, design specifications define a region in the parameter space called the
feasible region F which can be defined as:

F D
n
x – Rn

ˇ
ˇ
ˇ f
�
Rf .x/

	 � 0
o

; (26)
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where x – R
n is a vector of the design parameters, n is the number of design

parameters, Rf : Rn!R
m, Rf (x) is a fine model response vector, m is the number of

the constraints, and f :Rm!R
m is the constraint vector function. As the response

of the fine model is very expensive, it will be replaced by a GSM surrogate model
response Rs (x) given by (21) which is computationally cheap. Hence, we have a
feasible region approximation Fs which will replace the actual feasible region and
is defined as:

Fs D
n
x – Rn

ˇ
ˇ
ˇ f .Rs .x// � 0

o
: (27)

The design parameters are assumed to be random variables distributed with joint
probability density function (pdf) Ø (x, x0), where x0 – R

n the nominal parameter
vector. Accordingly, the yield function is defined as:

Y
�
x0
	 D Prob fx � Fsg D

Z

FS

Ø
�
x; x0

	
dx: (28)

Hence, the design centering problem can be formulated as:

x0
max

�

Y
�
x0
	 D

Z

FS

Ø
�
x; x0

	
dx
�

: (29)

According to practical requirements of the system design, the system parameters
are assumed to be normally distributed with pdf given by:

Ø
�
x; x0

	 D 1

.2�/n=2
pjCje

� 1
2 .x�x0/

T
C�1.x�x0/; (30)

where C is n� n covariance matrix which is symmetric positive definite. Other
distributions like the unimodal are commonly approximated by normal pdf’s [20].

3.3 Normed Distances

There exists a correspondence between the level contours of a given probability
density function and a particular norm [41]. For example, the level contours of the
normal pdf given by (30) can be described using the l2-norm such that:

kxk D
p

xT C�1x; (31)

where C is the covariance matrix and x – Rn.
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According to the assumption that the circuit parameters are normally distributed,
by using the pdf norm given by (30), the distance between the two points x1, x2 – Rn

will be given by:

d .x1; x2/ D kx1 � x2k D
q

.x1 � x2/
T C�1 .x1 � x2/: (32)

Let x0– Rn be a feasible point, i.e., x0– Fs where Fs is the feasible region which is
given by (27). Using the norm defined by the normal pdf, the distance between the
point x0 and the feasible region boundary (fi(Rs(x))D 0 , iD 1, 2, : : : , m) is given
by [20, 25]:

ˇi D minx

n
d
�
x0; x

	 ˇˇ
ˇfi .Rs .x// D 0

o
: (33)

If the point x0 violates the ith constraint, ˇi could be defined as:

ˇi D �minx

n
d
�
x0; x

	 ˇˇ
ˇfi .Rs .x// D 0

o
: (34)

The normed distance ˇi is denoted in [20] as a worst-case distance as it is the
minimum distance from x0 to violate the constraint boundary fi(Rs(x))D 0 in the
norm defined by the pdf. The normed distance ˇi between the point x0 and the
feasible region boundary fi(Rs(x))D 0 defines a normed body (ellipsoid) as shown
in Fig. 4.

Fig. 4 Normed distance between the point x0 and the feasible region boundary
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For simplicity, drop the suffix i, then the normed distance between x0 and the
hypersurface f (Rs(x))D 0 will be given by:

ˇ D minx

q

.x � x0/
T C�1 .x � x0/

such that f .Rs .x// D 0:
(35)

Hence, finding the normed distance ˇ requires solving the nonlinear optimization
problem (35). The solution x* of this problem [25] is given by:

x� D x0 C ˇ
C g

p
gT C g

; (36)

where, gDrf (Rs(x*)) and ˇ D
ˇ
ˇ
ˇ
ˇ

gT .x��x0/p
gT C g

ˇ
ˇ
ˇ
ˇ.

It is to be noticed that the solution point x* of (35) is a boundary point, i.e.,
f (Rs(x*))D 0. In [25] a convergent search technique to locate the solution point x*
is proposed as follows:

1. Locate a boundary point x1 on the constraint boundary f (Rs(x))D 0, by perform-
ing a line search in the C g direction starting from x0. This search takes small
steps in the C g direction till it reaches the boundary point x1 (f (Rs(x1))D 0).
The gradient of the constraint function is updated during the search. This process
will permit the rotation of the search to locate a good boundary point on the
constraint boundary f (Rs(x))D 0 [23, 42].

2. Starting from the boundary point x1, a boundary search technique on the bound-
ary f (Rs(x))D 0 for the location of solution boundary point x* is performed as
follows:

Starting from the boundary point x1, a point xc1– R
n is obtained which is

given by:

xc1 D x1 C �
C g1

p
g1

T C g1

; (37)

where,

g1 D r f .Rs .x1//

� D �ˇ1; � 2 .0; 1/

ˇ1 D gT
1 .x1�x0/p

g1
T C g1

9
>>=

>>;

: (38)

After obtaining xc1, a line search starting from xc1 along the direction (x0� x1)
is performed to obtain a boundary point x2– R

n such that f (Rs(x2))D 0, where

x2 D xc1 C �1

�
x0 � x1

	
; (39)

where �1 is the step of the line search starting from xc1 in the (x0� x1) direction.
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Fig. 5 Boundary search technique

This process is repeated till the convergence occurs and the solution boundary
point x* is located. See Fig. 5.

3.4 Design Centering using Normed Distances

The design centering problem can be formulated using normed distances as
follows [20]:

maxx0 .miniD1;2;:::mˇi / ; (40)

where ˇi , iD 1, 2 : : : , m is the normed distance from x0 to the constraint boundary
fi(Rs(x))D 0 in the norm defined by the normal probability distribution.

The above max–min problem can be transformed into a nonlinear programming
problem by using an additional variable z, the problem will be:

max
x0; z

z

Such that z� ˇi � 0; i D 1; 2 : : : : : : :; m:
(41)

It is to be noticed the final center obtained from the algorithm with the minimum
ˇi defines the largest ellipsoid (with certain orientation given by the covariance
matrix C) that can be inscribed in the feasible region.
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3.5 Illustrative Examples

Consider the following two-dimensional nonlinearly convex feasible region given
by the following constraints:



.x2 � 1/2 C 1

�
� exp .1 � x1/ � 7

exp .x1 � 2x2 C 1/ � 7

x2
1 C x2

2 � 1 � 7;

(42)

Case1 By starting from an initial infeasible point x0 D [5 5]T and applying the

algorithm with covariance matrix C D
�

0:25 0

0 0:25

�

(independent parameters case)

with initial yieldD 0 % , the final point is reached at [0.8455, 1.3410]T with final
yieldD 97.2 % (see Fig. 6).

Case2 Starting from an initial infeasible point x0D [5 5]T and applying the

algorithm with covariance matrix C D
�

0:25 0:2

0:2 0:25

�

(correlated parameters case)

with initial yieldD 0 % and final pointD [0.907, 0.967]T with final yieldD 96.6 %.
(See Fig. 7).

x

y

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5 initial
center

Final
center

Fig. 6 The maximum volume ellipsoid inscribed in the feasible region of case1
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x
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3

4
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Final
center

initial
center

Fig. 7 The maximum volume ellipsoid inscribed in the feasible region of case2

3.6 Microwave Design Centering Algorithm

The proposed algorithm to solve design centering problem can be performed
through application of two sub-algorithms. The first algorithm uses GSM to perform
feasible region approximation by extracting the parameters needed to match the
response of fine and surrogate models while the second algorithm performs a design
centering process using normed distance to obtain a new design center. The new
center point is validated by the fine model and is used to update the next GSM
surrogate. The process is repeated to obtain the next center point.

The algorithm can be summarized by the following steps:

Step 1: Define the fine model Rf , its associative coarse model Rc, starting point x0,
stopping criterion �1, and initialize kD 0

Step 2: Build the surrogate model Rk
s and the corresponding feasible region

approximation Fk
s using the GSM technique at the current design center xk

Step 3: Apply the normed distance design centering approach on the feasible region
approximation Fk

s to obtain a new center xkC 1

Step 4: Increment k

Step 5: If kx
k�xk�1k
kxkk > –1 go to step 2,

else the solution is obtained and it is xk.
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3.7 Practical Example: Six-Section H-Plane Waveguide Filter

The six-section H-plane filter [43] is a waveguide with a width 3.485 cm. The
propagation mode is TE10 with a cutoff frequency of 4.3 GHz. The six-waveguide
sections are separated by seven H-plane septa (as shown in Fig. 8a) which have
a finite thickness of 0.6223 mm [44]. In this problem, there exist seven design
parameters: three waveguide-section lengths L1, L2, and L3 and four septa widths
W1, W2, W3, and W4. The feasible region is constrained by the magnitude of the
reflection coefficients at 44 frequencies f5.2, 5.3, : : : , 9.5 GHzg. These magnitudes
have to satisfy the upper and lower design specifications given by:

f i

�
Rf .x/

	 D
8
<

:

jS11 .x; !i /j � 0:85 !i � 5:2 GHz
jS11 .x; !i /j � 0:16 5:4 GHz � !i � 9:0 GHz
jS11 .x; !i /j � 0:5 !i � 9:5 GHz

:

The coarse model [45] consists of lumped inductances and dispersive transmis-
sion line sections (as shown in Fig. 8b) while the fine model is performed using
High Frequency Structure Simulator (HFSS).

The normed distance centering technique with GSM is applied using at
most two SM iterations. The yield values are calculated by performing Monte
Carlo method with 100 sample points. The starting point is [0.0161614,
0.0161899, 0.0166975, 0.0133376, 0.0120823, 0.0117456, 0.0115212] which is
infeasible point. The results of independent parameter case with parameter spread
¢ D 10� 4[0.7629, 0.7665, 0.7977, 0.6326, 0.5850, 0.5588, 0.5516] are shown in
Table 3, while the results of correlated case are shown in Table 4 using covariance
matrix C1 and C2 where

b

2a

2W
1

2W
2

2W
3

2W
4

2W
3

2W
2

2W
1

L1
L2

L3

L3

The 3D view

a
b

The equivalent empirical circuit model

L2
L1

Y0 Y0B1 B2 B3 B4

q1 q2 q3 q3 q2 q1

B3 B2 B1

Fig. 8 The six-section H-plane waveguide filter
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Table 3 Yield results for independent parameters case

Parameter
spread

Initial
yield (%) Final point

Final
yield (%)

¢ 19 [0.016405823, 0.0161035450, 0.016587334,
0.013201395, 0.012225853, 0.011711792,
0.011557065]

76

¢ /2 27 [0.016347863, 0.0161306, 0.016589344,
0.013204043, 0.012248974, 0.011707544,
0.011561786]

100

Table 4 Yield results for correlated parameters case

Parameter
spread

Initial
yield (%) Final point

Final
yield (%)

C1 23 [0.015961198 0.01617798 0.016556444
0.013416461 0.012223545 0.011697941
0.011578781]

100

C2 15 [0.016117571, 0.016208453, 0.016561121,
0.013355854, 0.012194497, 0.011702117,
0.011561046]

94

C1D 10�9

16

2

6
6
6
6
6
6
6
6
6
4

352:483 �128:704 27:484 �8:318 4:011 �1:382 6:665

�128:704 188:716 �86:261 7:295 �18:624 �1:568 9:168

27:484 �86:261 65:081 �13:953 9:197 �3:139 �9:842

�8:318 7:295 �13:953 56:679 �2:301 8:995 3:324

4:011 �18:624 9:197 �2:301 18:288 �8:795 10:197

�1:382 �1:568 �3:139 8:995 �8:795 18:971 �14:011

6:665 9:168 �9:842 3:324 10:197 �14:011 23:016

3

7
7
7
7
7
7
7
7
7
5

C2D 10�9

49

2

6
6
6
6
6
6
6
6
6
4

352:483 �128:704 27:484 �8:318 4:011 �1:382 6:665

�128:704 188:716 �86:261 7:295 �18:624 �1:568 9:168

27:484 �86:261 65:081 �13:953 9:197 �3:139 �9:842

�8:318 7:295 �13:953 56:679 �2:301 8:995 3:324

4:011 �18:624 9:197 �2:301 18:288 �8:795 10:197

�1:382 �1:568 �3:139 8:995 �8:795 18:971 �14:011

6:665 9:168 �9:842 3:324 10:197 �14:011 23:016

3

7
7
7
7
7
7
7
7
7
5
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Atomistic Surrogate-Based Optimization
for Simulation-Driven Design
of Computationally Expensive Microwave
Circuits with Compact Footprints

Piotr Kurgan and Adrian Bekasiewicz

Abstract A robust simulation-driven design methodology for computationally
expensive microwave circuits with compact footprints has been presented. The
general method introduced in this chapter is suitable for a wide class of N-port
unconventional microwave circuits constructed as a deviation from classic design
solutions. Conventional electromagnetic (EM) simulation-driven design routines are
generally prohibitive when applied to numerically demanding microwave circuits
with highly miniaturized and complex topologies. The key idea of the approach
proposed here lies in an iterative redesign of a conventional circuit by a sequential
modification and optimization of its atomic building blocks. The speed and accuracy
of the presented method has been acquired by solving a number of simple
optimization problems through surrogate-based optimization (SBO) techniques.
Two exemplary designs have been supplied to verify the proposed method. An
abbreviated wideband quarter-wave impedance matching transformer (MT) and a
miniaturized hybrid branch-line coupler (BLC) have been developed. Diminished
dimensions of the constructed circuits have been achieved by means of compact
microstrip resonant cells (CMRCs). In the given examples, an implicit space
mapping (ISM) technique has been utilized as a SBO engine. In general, the
proposed method is compatible with other SBO routines as well. The final results
have been acquired in only a fraction of time that is necessary for a direct EM
optimization to generate competitive results. Numerical results have been validated
experimentally.
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1 Introduction

Reliable design of compact microwave circuits is the focus of ongoing research in
the field of microwave and antenna engineering. It has recently gained an increased
attention with the rapid development and expansion of industrial, commercial, and
military markets aimed at low-cost, small-size, and multi-functional microwave
devices [1–4]. The diversity of their applications includes, but is not limited
to mobile phones, wireless personal digital assistants, portable vector network
analyzers, smart meters, defense electronics equipment, wireless routers, repeaters,
and many others [5–10]. The fundamental issue here is the excessive physical
dimensions of traditional microwave components that are comparable to the guided
wavelength and require a certain (and fixed) relation with respect to it in order to
maintain a proper operation of the entire component. This becomes particularly
troublesome for the ultra-high frequency (UHF) band, where the wavelength varies
from 1 m down to 10 cm, and conventional microwave passives such as baluns,
matching transformers, phase shifters, filters, power dividers, couplers, etc. [11]
exceed practical limitations of miniaturization-oriented designs. For this reason, the
development of reliable design methodologies for compact microwave circuits is of
utmost importance for the progress in applied microwave technologies.

The overly large substrate area consumption of conventional microwave circuits
is due to their modular architecture primarily based on distributed-element uniform
transmission lines (UTLs), whose electrical lengths and characteristic impedances
are strictly defined. One of the representative examples is a rat-race coupler that
occupies 89� 89 mm estate area, when designed for 1-GHz operating frequency
on Taconic RF-35 substrate having the thickness of 0.508 mm [12]. The problem
becomes even more pronounced when microwave components are designed to meet
the requirements of wideband or ultra-wideband (UWB) applications. In such cases,
the most common approach is to use a multi-section topology, which inevitably
results in much larger substrate area consumption [13].

The aforementioned issues can be conveniently mitigated by exploiting a slow-
wave phenomenon, which increases the electrical to physical length ratio without
altering the operation of a given component [14]. To date, four main size reduction
methods have been suggested in the scientific literature to capitalize on this concept:
(1) application of lumped or lumped-distributed elements instead of conventional
TLs [15–17], (2) utilization of high-permittivity dielectric substrates [18–20], (3)
exploitation of artificially engineered substrates composed of periodic inclusions
or cavities [21–23], and (4) spatially separated storage of electric and magnetic
energy, realized by using short (usually smaller than half-quarter wavelength)
UTL sections of low and high characteristic impedances, respectively [24–28].
The first technique offers substantial miniaturization capabilities (even threefold
length diminution compared to conventional TLs [29, 30]), but also suffers from
common unavailability of suitable lumped elements with high-quality factors, nar-
rowband operation, and a hindered assembly of lumped capacitors in the microstrip
technology requiring the use of via-holes [30, 31]. The second one enables the
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achievement of a linear reduction in physical dimensions of the circuit, proportional
to the square root of the relative dielectric coefficient [32], but at the same time
it poses serious obstacles, such as high material cost, difficulty in the realization
of high characteristic impedance UTLs, and high sensitivity to small variations in
physical dimensions [18]. The third approach creates a viable chance of obtaining a
compact microwave component, which can be attributed to unusual EM properties
of an artificially engineered transmission medium [33]. These are achieved by
placing structural perturbations with a half-wavelength period, which makes the
accommodation of their physical size a challenging task itself [34]. Neither of
the above methods is suitable for cost-efficient miniaturization, mostly due to the
increased complexity of the fabrication process or the cost of materials. On the other
hand, the fourth technique is devoid of the aforementioned limitations and, most
importantly, it is fully compatible with a standard printed circuit board fabrication
process. In this approach, traditional microwave components are redesigned so that
their atomic building blocks, i.e., conventional TLs, are systematically replaced with
slow-wave structures constructed, in general, from high and low impedance TL
segments that are usually tightly assembled to achieve a high scale of compactness.
Although it is nowadays the most frequently used technique dedicated to low-cost
miniaturization of microwave circuits [35–40], there are still serious methodological
issues that remain to be solved.

A reliable design of compact microwave circuits requires an accurate analysis of
the entire structure under development. This can be done by means of high-fidelity
full-wave EM simulations, however the task proves to be difficult, because minia-
turized microwave components, due to the high complexity of their layouts, are
numerically demanding and their evaluation is not only extremely time-consuming,
but also involves the use of massive CPU resources. For example, a single-
frequency simulation of a miniaturized hybrid ring coupler of [41] takes 75 min
and requires 3 GB of RAM memory. In case of designs that comprise a larger
number of components, e.g., a planar Butler matrix composed of hybrid couplers,
phase shifters, crossovers, and UTLs, the simulation may be incomparably more
expensive or even unattainable on regular PC machines. Moreover, highly complex
layouts of typical compact structures are parameterized by many variables, which
have to be simultaneously adjusted to meet given specifications, both geometry-
and performance-wise. As opposed to conventional microwave circuits with only
two designable parameters per unique element, the operation of their miniaturized
counterparts is often counter-intuitive in terms of parameter setups and requires
not only some sort of preliminary studies (e.g., based on principal component
analysis [42] or lumped-element equivalent circuit [40]), but also an excessively
large and multi-dimensional designable space to make sure that the target solution
(or optimum design) can be found within the prescribed lower and upper bounds.
For these reasons, standard simulation-driven design methodologies that perform
an accurate EM analysis hundreds or thousands of times in the course of a single
design routine, e.g., repetitive parameter sweeps or gradient-based optimization,
are normally prohibitive. Figure 1 illustrates exemplary miniaturized microwave
structures, indicating high complexity of contemporary microwave engineering
design problems.
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a

b

c

Fig. 1 Examples of miniaturized microwave structures: (a) branch-line coupler (left) and rat-race
coupler (right) [43, 44]; (b) band-pass filter [45]; (c) 4� 4 Butler matrix [46]

Although the straightforward use of high-fidelity, but CPU-intensive EM simula-
tions is necessary for the reliability of the results, in most design methods available
in the literature, e.g., [44, 47–57], it is exploited only in the design closure and
preceded with theoretical analysis that rests on the simplified TL approach. For
these instances, basic T- [3, 44, 47–52, 58] or  -shaped [3, 28, 37, 51, 53, 54, 59,
60] topologies are most commonly chosen for the slow-wave physical realization.
Also, their various modifications are possible, e.g., where UTLs are substituted by
stepped-impedance sections or quasi-periodic structures of alternating impedances
[27, 48, 49, 57, 61, 62]. These rather plain networks can be easily analyzed by using
simplified analytical formulas of the TL theory and ABCD matrix calculus [11],
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which offer a relatively good approximation to the solution of the corresponding
EM problem, assuming the lack of cross-coupling effects and a negligible influence
of TL discontinuities on the performance of the entire microwave component. This,
however, is acceptable only for conventional circuits [63]. When dealing with highly
miniaturized passives, characterized by complex and densely arranged layouts, the
exploitation of simplified theoretical models is useful only to provide initial design
solutions that require further EM fine-tuning [44, 47–57]. On the other hand, for
more sophisticated slow-wave structures that are poorly describable by theoretical
models, it is preferable to apply a high-fidelity EM analysis from the early stages of
the design to yield reliable results [25, 26]. In other words, EM simulation-driven
design optimization of the entire miniaturized structure is a design step that cannot
be avoided, but which is too expensive to be commonly used in engineering practice,
particularly when supplemented by conventional numerical optimization routines.

Design difficulties related to high computational cost of accurate EM simulation
can be alleviated to some extent by using surrogate-based optimization (SBO)
techniques [64–67]. The most popular SBO approach in microwave engineering is
undoubtedly space mapping (SM) [68, 69]. Unfortunately, straightforward utiliza-
tion of an algorithm such as SM is problematic in case of miniaturized structures
for several reasons. Conventional SBO methods exploit the low-fidelity model (e.g.,
equivalent circuit) of the entire structure [68], which is of limited accuracy because
it does not account for EM couplings between tightly allocated atomic building
blocks of the structure. On the other hand, large number of design variables makes
the extraction of the surrogate model parameters (as well as subsequent surrogate
model optimization) numerically complex with issues such as non-uniqueness of the
extraction process and poor generalization capability of the surrogate [66]. Also, EM
simulation of the entire structure has to be performed from the very first iteration of
the algorithm, which greatly affects the overall cost of the design process.

In summary, there is an urgent need for the development of computation-
ally efficient, yet reliable methods for EM-simulation-driven design of compact
microwave structures. Availability of such techniques would be of great importance
for simplifying and shortening the design cycles for compact structures and,
consequently, lowering their manufacturing costs in numerous application areas as
elaborated at the beginning of this section.

In this chapter, a new approach to the design of computationally expensive
microwave circuits with compact footprints has been presented and showcased.
The novelty of the proposed method lies in the reduction of the overall design
cost by replacing a single complex optimization problem by a number of simple
optimization problems that are solved sequentially to reach a satisfactory approxi-
mation of the optimal solution. Furthermore, the method presented here exploits a
SBO concept to capitalize on its high speed and accuracy. In the initial steps of the
demonstrated design scheme, a logical decomposition of a conventional circuit into
its atomic building blocks is performed. Next, each elementary constitutive element
of the circuit under development is rebuilt in a sequential manner and undergoes
a SBO. For illustration purposes, the proposed method has been used to design
two exemplary microwave circuits with compact, yet complex layouts at a low
computational cost, realized in microstrip technology. The substantial accuracy of
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the circuit optimization with only a handful of EM simulations has been achieved by
means of an implicit space mapping (ISM) technique. The diminished dimensions
of the circuits have been acquired by using slow-wave compact microstrip resonant
cells (CMRCs) as a substitution for initial fundamental building blocks. However,
it is noteworthy that the proposed method is also compatible with other SBO
techniques (e.g., explicit SM, aggressive SM, neural SM, fuzzy SM, tuning SM
[70–74], etc.) as well as with alternative means of circuit refinement (e.g., composite
right/left-handed TLs, defected ground structures [75, 76], etc.), if only adequate
computationally cheap surrogate models are available.

The chapter is organized as follows. Section 2 provides a general description
of the proposed method—an overall design flow, surrogate model update, and
SBO. Section 3 demonstrates the operation of the proposed design technique.
A comprehensive comparison with benchmark optimization methods (conventional
optimization schemes as well as traditional ISM) is also included. Section 4 provides
experimental results, whereas Sect. 5 concludes the chapter.

2 Sequential Space Mapping: Methodology

Miniaturized microwave circuits, due to their novelty and considerable geometrical
complexity, lack accurate analytical models of good generalization capabilities. For
this reason, conventional design methods, i.e., theory-based and EM-simulation-
driven, are typically prohibitive—the former one, due to its considerable inaccu-
racy, and the latter one, due to the excessive computational cost associated with
high-fidelity, but extremely CPU-intensive and time-consuming EM simulations.
Typically, computationally expensive design problems can be effectively solved by
means of SBO methodologies. However, the aforementioned obstacle also limits the
usefulness of traditional SBO techniques—in particular various types of SM—by
causing convergence problems of the process. In order to address this inconvenience,
the following design flow has been proposed.

2.1 General Design Flow

The new approach introduced in this chapter and illustrated in Fig. 2 offers a robust
simulation-driven design methodology enabling the achievement of an accurate
design solution in relatively short time. The initial step of the diagram of Fig. 2 is a
definition of design specifications, e.g., substrate parameters, frequency-dependent
performance of the circuit (e.g., desired S11 and S21 over a given frequency band),
physical dimension requirements, etc. Subsequently, a conventional circuit is con-
structed from UTL segments and various discontinuities. This can be done without
major obstacles as conventional microwave circuits are supplied with good theo-
retical models ready to be used instantly after a few iterations of fine-tuning [78].
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Fig. 2 Design diagram of microwave circuits with compact footprints [80]

Next, a surrogate model of a conventional circuit is constructed (or re-used from
the previous step). Afterwards, atomic building blocks of a conventional circuit are
identified. This is done by performing a logical decomposition of the initial circuit,
i.e., dividing it into n sets of identical UTLs and a (nC 1)th set of all required
discontinuities. For example, a logical decomposition of a rat-race coupler would
result in three sets (nD 2)—the first one containing three UTLs of 90ı electrical
length and Z characteristic impedance, the second one containing a single UTL of
270ı electrical length and Z characteristic impedance, and the third one containing
four T-junctions. The following steps of the design flow are performed iteratively
(from iD 1 to n). In each iteration, the circuit under consideration is updated, i.e.,
the ith set of identical UTL surrogate models is replaced with a set of identical
nonuniform transmission line (NUTL) surrogate models, after which a new circuit
is composed from fixed and updated building blocks and undergoes a SBO aimed
at the satisfaction of the desired design specifications. In each iteration of the main
algorithm, only designable parameters corresponding to NUTL surrogate models of
the ith set become optimization variables used during a SBO, while all other design
parameters remain fixed. The main algorithm ends after a successful optimization
of n updated circuits.
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2.2 Surrogate Model Update

A UTL segment is an elementary (atomic) building block of a conventional
microwave circuit. In order to construct a circuit with compact footprint, one should
substitute a UTL segment with its nonuniform counterpart (e.g., a discontinuous
transmission line segment [12], a slow-wave resonant structure [40], a TL with
perturbed ground plane metallization [35], etc.). It is noteworthy that, in general,
the process of constructing a NUTL is difficult, time-consuming, and guided by
engineering experience. Thus, it is convenient to use a NUTL library of [79] that
contains a number of exemplary NUTL topologies and provides theoretical tools for
their comparison and selection (depending on the application), as well as practical
guidelines for their design and improvement.

Subsequently, an optimization of a NUTL follows. In practice, a NUTL is
optimized to match the frequency-dependent parameters of a UTL (e.g., scattering
parameters, characteristic impedance, electrical length, etc.) in a given frequency
range and to demonstrate an enhanced performance (e.g., out-of-band character-
istics) as well as diminished dimensions. Moreover, in order to omit the final EM
fine-tuning of the circuit, one should optimize the designable parameters of a NUTL
as a part of the whole circuit and not as a stand-alone component. A general
illustration of a surrogate model update of the entire circuit has been presented
in Fig. 3. An initial design is constituted by UTLs (collected in n sets, each of
them containing at least one UTL element characterized by a certain electrical
length and a characteristic impedance) and various discontinuities (gathered in the
(nC 1)th set). In the first iteration, the first set containing UTL1 elements is replaced
by a set containing NUTL1 elements, while all the other sets remain unchanged.
In the ith iteration, the ith set is updated in a similar fashion and the circuit is

Fig. 3 General scheme for surrogate model update of the entire microwave component [80]
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composed of NUTL1, NUTL2, : : : , NUTLi, UTLiC1, UTLiC2, : : : , UTLn elements
and discontinuities collected in the (nC 1)th set. After the nth update, no UTL
segments remain and the whole circuit can be considered as completely refined.

2.3 Surrogate-Based Optimization

In order to design an unconventional microwave circuit with a complex topology
accordingly to the prescribed specifications, a nonlinear minimization problem of
the following form should be solved:

x� D arg min
x

U
�
Rf .x/

	
(1)

where U denotes an objective function formulated on the basis of design speci-
fications, Rf stands for a high-fidelity model evaluation (a fine model response),
whereas x represents a vector of designable variables. The optimal design solution
vector is denoted by x*. The optimization problem from (1), when solved directly,
is usually extremely CPU-intensive and time consuming and can be found grossly
impractical in the case of numerically complex structures. The SBO approach
addresses this issue by using a computationally cheap surrogate model evaluation
Rs and an iterative formulation that follows [78, 80]:

x.jC1/ D arg min
x

U
�
R.j /

s .x/
	

(2)

where x(jC1) represents the optimized solution of the jth iteration surrogate model
Rs

(j), which is assumed to represent the fine model Rf in a relatively accurate manner
[78]. Within these theoretical constraints, the algorithm formulated in (2) is aimed at
approaching a quasi-optimal solution located in the vicinity of the global optimum
x*. A SBO flowchart illustrating a general implementation of the theory described
above is presented in Fig. 4. For detailed description of the SBO concept see,
e.g., [66].

3 Design Examples

The general method described in Sect. 2 and schematically presented in Fig. 2 has
been applied to design two exemplary microwave circuits with compact footprints.
A design flow of an exemplary 2-port device, i.e., an abbreviated impedance
matching transformer has been described in Sect. 3.1. A step-by-step design
procedure of an exemplary 4-port device, i.e., miniaturized branch-line coupler
(BLC), has been discussed in Sect. 3. In both design examples, ISM [81] has been
used as a SBO engine due to the simplicity of its implementation [82]. A detailed
flowchart of the ISM algorithm exploited in this work is depicted in Fig. 5. The EM
fine model evaluation has been performed by ADS Momentum EM solver [83].



204 P. Kurgan and A. Bekasiewicz

Fig. 4 Surrogate-based optimization flowchart [80]. The computational burden of a conventional
design process is shifted from the iterative evaluation of a numerically demanding EM model to a
computationally cheap surrogate model exploited in an iterative prediction–correction loop. High-
fidelity model is evaluated only once per iteration for verification purposes [68]

Fig. 5 Block diagram of the ISM algorithm used in this work [80]. The algorithm has been
specifically tailored for the design process of compact microwave circuits with complex topologies.
CMRC library can be built based on Ref. [65]
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It has been assumed that the circuit improvement in terms of its diminution
(example 1) and its miniaturization (example 2) is to be obtained by means
of metallization perforations, i.e., intentional defects implemented in the signal
line metallization plane (termed here CMRCs [77, 79]). Surrogate models of
CMRCs used in this work are supplied with a geometric and preassigned parameter
description of the following general form: xi

(j)D [L1 H1 L2 H2 : : : ]T and pi
(j)D [h1

"1 h2 "2 : : : ]T , respectively (i being the iteration index of the main algorithm and j
denotes the iteration index of the ISM algorithm). The former parameters undergo
the ISM optimization, while the latter auxiliary parameters (substrate height and
relative permittivity) are used in the extraction process (see Fig. 5). Interested reader
can find detailed information on ISM and extraction of preassigned parameters in
the literature (e.g., [66] or [81]).

In general, the ISM algorithm should successfully finish after the jth iteration,
when the EM circuit surrogate model evaluation satisfies the initially defined design
specifications. In such a case, the iteration counter i of the main algorithm is
incremented and a novel refined circuit with the ith UTL replaced by a NUTL
is developed in a similar fashion. Conversely, when no convergence of the ISM
algorithm can be found or the design specification is not met after the circuit
optimization, surrogate model(s) under optimization should be replaced or improved
(e.g., following the procedure of [79]) and the ith iteration of the main algorithm
should be repeated with a new NUTL surrogate model.

3.1 Abbreviated Matching Transformer

The design specifications have been defined as follows: (a) Rogers RO3210
substrate ("rD 10.2, hD 0.635 mm, tanıD 0.0027); (b) circuit functionality
(jS11j ��20 dB over 1–2.5 GHz frequency band), ZsourceD 50 	, ZloadD 6 	;
(c) physical requirements (minimal length reduction equals 30 %). Following the
above-stated design specifications, a four-section conventional microstrip MT has
been designed and fine-tuned using ADS software [83]. Subsequently, a simple
MT surrogate model composed of four UTL components and several elements
representing microstrip step discontinuities has been constructed in ADS circuit
simulator. Next, four (nD 4) single-element sets of identical quarter-wavelength
UTLs have been identified (46.8-	 UTL1, 33.6-	 UTL2, 17.3-	 UTL3, and 8.9-	
UTL4). Afterwards, as presented in detail in Fig. 6, an iterative part of the main
algorithm follows. In the first three iterations of the main algorithm, successive
UTL surrogate models have been successfully substituted with a T-shaped CMRC
surrogate model (termed here CMRCA). However, in the fourth iteration of the
main algorithm, no convergence of the ISM algorithm has been achieved due to
a very low impedance of the UTL4 section. Therefore, a different CMRC model
(named here CMRCB) has been introduced for the circuit to meet the design
specifications. Both CMRC models have been presented in Fig. 7. The initial
design variable vector used in each iteration is xi

(0)D [1 1 1 1 : : : ]T mm, whereas
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Fig. 6 A schematic description of the MT under iterative construction [80]

the initial preassigned parameter vector is pi
(0)D [0.635 10.2 0.635 10.2 : : : ]T ,

in which odd elements are in mm and even elements are unitless. After four
iterations of the main algorithm, a completely refined MT design has been obtained,
revealing a satisfactory performance and a considerable 34 % length reduction.
Particular CMRC design solutions are labeled as CMRCA1, CMRCA2, CMRCA3,
and CMRCB1. A convergence plot for the ISM algorithm executed in each iteration
of the main algorithm has been illustrated in Fig. 8. Error functions from Fig. 8 have
been calculated at frequencies from 1 to 2.5 GHz with a 0.4 GHz step. The ISM
algorithm has been set to terminate when the error function is less than 10�1. Final
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a

b

Fig. 7 Layout representations of surrogate models: (a) CMRCA. (b) CMRCB [80]. Models include
geometrical parameterization as well as preassigned parameter description

Fig. 8 Convergence plot for the ISM algorithm executed for MT design example. Iteration index
corresponds to the number of high-fidelity model evaluations [80]
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Table 1 Final designable geometric parameters

CMRCA CMRCB

Final design dimensions NUTL1 NUTL2 NUTL3 NUTL4

x* [mm] L1 0.4 0.8 0.4 1.05
H1 0.35 1.05 2.45 7.5
L2 2.4 1.4 1.4 1.6
H2 0.25 0.4 0.2 11.4
L3 0.25 0.4 0.2 0.4
H3 0.25 0.4 0.2 13
L4 – – – 0.2
H4 – – – 11.8

Table 2 Abbreviated MT: total design cost

Optimization method
Holistic Atomistic

Total design cost Direct SBO Direct SBO

Convergence Yes No Yes Yes
Total number of high-fidelity model evaluations 2,120 N/A 746 20

geometric parameters of the abbreviated MT are listed in Table 1. The total design
cost of the proposed method is presented in Table 2. Additionally, the iterative
method based upon multiple SBOs applied to atomic CMRC building blocks (this
work) has been compared against several other approaches, i.e., an iterative method
based on multiple atomistic EM optimizations, a method based on a holistic SBO
(traditional SBO where the entire design optimization problem is solved within a
single optimization routine), and a method based on a holistic EM optimization
(direct EM optimization of the entire circuit). It should be concluded upon data
collected in Table 2 that a multiple atomistic optimization approach requires less
high-fidelity model evaluations than a direct holistic optimization. Moreover, a
combination of a multiple atomistic optimization approach and a SBO technique
results in a method that outclasses other competitive design methodologies included
in this comparison. The atomistic SBO method introduced in this work presents a
design cost of 20 EM simulations for the first example, which proves its considerable
computational efficiency in comparison to a classic holistic optimization method
offering 2,120 EM simulations for the same example. Average CPU time of a
single 64-point EM model evaluation is approximately 51 s for the atomistic SBO
approach and 61 s for the holistic EM optimization approach (both methods used
i7 2,600 k 8 GB RAM PC). Respective CPU times differ as the complexity of
the circuit iteratively increases in case of the atomistic SBO approach, reaching
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the greatest complexity in the last iteration, whereas the holistic EM optimization
approach utilizes the most complex model in every iteration. For these reasons, the
total time of EM model evaluations is 17 min for the atomistic SBO method and
36 h for the holistic EM optimization approach.

3.2 Miniaturized BLC

The design specifications have been formulated as follows: (a) FR4 substrate
("rD 4.4, hD 0.508 mm, tanıD 0.02); (b) circuit performance (jS11j and
jS41j ��20 dB over a 10 % bandwidth with a 2.2 GHz operating frequency,
jS11j ��40 dB at 2.2 frequency, and jS21jD jS31j at 2.2 frequency); (c) physical
requirements (minimal circuit size reduction equals 30 %). Using ADS simulation
environment [83], a conventional BLC has been designed and fine-tuned to meet
the above defined design specifications. Next, a simple BLC surrogate model
comprising two pairs of UTL components and four T-junctions has been built in
ADS circuit simulator. Subsequently, two (nD 2) double-element sets of identical
UTLs have been identified (35.35-	 UTLs1 and 50-	 UTLs2). Then, two iterations
of the main algorithm have been performed in order to construct a completely
refined BLC. A schematic illustration of the iterative part of the main algorithm is
presented in Fig. 9.

In each iteration i, the ith pair of UTL surrogate models has been replaced with
the ith pair of NUTL surrogate models. Each NUTL surrogate model has been
constituted by a cascade of two CMRCs (termed here CMRCsC). A surrogate model
layout representation described by geometric and preassigned parameters is shown
in Fig. 10. The initial design variable vector used in each iteration is xi

(0)D [1 1 1
1 : : : ]T mm, whereas the initial preassigned parameter vector is pi

(0)D [0.508 4.4
0.508 4.4 : : : ]T (odd elements are in mm, while even elements are unitless). The
final design demonstrates an acceptable performance and a notable 36 % circuit
area miniaturization. Particular CMRC optimization results are denoted as CMRCC1

and CMRCC2. Error functions plotted against ISM algorithm iterations (see Fig. 11)
have been calculated at frequencies from 2.09 to 2.31 GHz with a 20 MHz step
and at the 2.2 GHz operating frequency alone. Final geometric parameters of the
miniaturized BLC are listed in Table 3. Table 4 demonstrates total design cost of the
method implemented in this work in comparison to other competitive approaches.
The ISM algorithm implemented in the atomistic SBO method has converged in five
iterations total—two iterations for UTLs1 (iD 1) and three iterations for UTLs2
(iD 2)—which is more than eight times more efficient than a classic holistic EM
optimization method applied to the same example. Average CPU time of a single
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Fig. 9 Schematic description of a BLC under iterative construction [80]

64-point EM model evaluation is approximately 26 s for the atomistic SBO approach
and 29 s for the holistic EMBO approach (both methods used i7 2,600 k 8 GB RAM
PC), resulting in a total EM design cost of 2.16 min in case of the former approach
and 20.3 min in case of the latter one.
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Fig. 10 Surrogate model layout representation of a CMRCC [80]. Model includes geometrical
parameterization as well as preassigned parameter description

Fig. 11 ISM algorithm convergence plot obtained for the miniaturized BLC design example.
Iteration index corresponds to the number of high-fidelity model evaluations [80]

4 Experimental Results

All final design examples discussed in the previous section have been manufactured
and measured (see Figs. 12 and 13). One should notice that the abbreviated
MT has been fabricated in a back-to-back configuration (see Fig. 12b) for the
source and load impedance to be 50 	. Theoretical characteristics of the designed
circuits, obtained by means of EM simulations, have been included for comparison
purposes. It can be observed that the measured MT performance presents a reflection
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Table 3 Final designable geometric parameters

CMRCC

Final design dimensions NUTLs1 NUTLs2

x* [mm] L1 0.15 0.15
H1 0.15 0.15
L2 2.55 3.05
H2 1.8 0.65

Table 4 Miniaturized BLC: total design cost

Optimization method
Holistic Atomistic

Total design cost Direct SBO Direct SBO

Convergence Yes No Yes Yes
Total number of high-fidelity model evaluations 42 7 15 5

coefficient jS11j ��15 dB in the specified frequency band. Furthermore, measured
characteristics of the fabricated MT demonstrate a 8 % bandwidth enlargement in
comparison to the theoretical performance. Insertion loss jS21j is smaller than 0.7 dB
in 0.85–1.9 GHz frequency range and smaller than 1 dB in 1.9–2.65 GHz band.
Lossless conductor used during EM simulations as well as the fabrication tolerance
is accounted for differences in frequency characteristics between simulated and
measured MT responses. The comparison between theory and experiment also
reveals that 4S21 is ranged between 0.3 and 0.6 dB in the predefined frequency
range. In case of the miniaturized BLC, an agreement between theoretical and
experimental characteristics has been found (see Fig. 13). It is important to
emphasize that the 36 % rate of miniaturization has been achieved without major
degradation in the performance of the circuit.

5 Conclusion

A computationally efficient design approach to compact microwave circuits with
complex topologies has been presented and experimentally validated. The generality
of the method discussed makes it suitable for a wide class of N-port unconventional
microwave circuits conceived by a sequential alternation of a conventional design
solution. The introduction of the atomistic optimization design approach as a vital
alternative to a holistic EM optimization design methodology has been found useful
in application to computationally demanding microwave circuits with unconven-
tional topologies. Moreover, a combination of a sequential atomistic optimization
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Fig. 12 (a) Measured transmission characteristics of the abbreviated MT in comparison to its
theoretical (simulated) performance; (b) a photograph of the abbreviated MT in a back-to-back
configuration [80]

approach and the ISM technique has resulted in a method that outclasses other
competitive design methodologies mentioned in this work. The robustness and
computational efficiency of the method elaborated in application to circuits with
miniaturized footprints has been obtained at the price of finding an approximation
of the global optimum, rather than the global optimum itself. The computational
gain from the application of the atomistic SBO concept promoted in this work is
much more impressive in case of the circuit described by more design variables.
The number of design variables, for which the utilization of this method is cost-
efficient still remains an open issue.
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a

b

Fig. 13 (a) Measurement vs. simulation performance of the miniaturized BLC. (b) Layout of the
manufactured miniaturized BLC [80]
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Knowledge Based Three-Step Modeling Strategy
Exploiting Artificial Neural Network

Murat Simsek

Abstract Artificial Neural Network (ANN) is an important technique for modeling
and optimization in engineering design. It is very suitable in modeling as it needs
only the information based on relationship between the input and the output related
to the problem. For further improvement in modeling, a priori knowledge about
the problem such as an empirical formula, an equivalent circuit model, and a semi-
analytical equation is directly embedded in ANN structure through a knowledge
based modeling strategy. Three-step modeling strategy that exploits knowledge
based techniques is developed to improve some properties of conventional ANN
modeling such as accuracy and data requirement. All these improvements ensure
better accuracy with less time consumption compared to conventional ANN model-
ing. The necessary knowledge in this strategy is generated in the first step through
conventional ANN. Then this knowledge is embedded in the new ANN model for
the second step. Final model is constructed by incorporating the existing knowledge
obtained by the second step. Therefore each model generates better accuracy than
previous model. Conventional ANN, prior knowledge input, and prior knowledge
input with difference techniques are used to improve accuracy, time consumption,
and data requirement of the modeling in three-step modeling strategy. The efficiency
of three-step modeling strategy is demonstrated on the nonlinear function modeling
and the high dimensional shape reconstruction problem.

Keywords Neural Network Modeling • Knowledge Based Modeling • Three-step
modeling strategy • Nonlinear function modeling • Inverse scattering problem

1 Introduction

Artificial Neural Network has been extensively preferred as a modeling technique
to obtain surrogate model instead of a fine model which has high computational
burden. Surrogate based modeling [6, 17] is required to overcome this computa-
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tional burden of the fine model. Surrogate based models can be fundamentally
developed in two ways. First way only requires input or output mapping without
any change in the computationally cheap coarse model. Space mapping based
modeling [1, 5, 10, 12–14] is developed considering this approach. Second way is
based on updating the coarse model during modeling process for the coarse model.
ANN is very suitable to obtain this kind of coarse model.

ANN provides an efficient strategy to solve modeling and optimization problems
which are essential in engineering where only input–output data are available
instead of mathematical formulations [2, 4, 7, 18, 19]. ANN modeling is generally
used to construct a mapping from the input to the output depending on data obtained
from detailed physical/EM simulation models or measurements (fine model) and
generate approximate results depending on some tunable parameters such as training
set, topological structure, and complexity of the fine model.

Since ANN technique constitutes input–output mapping highly depending on the
training set, when the points outside of the training range (extrapolation) are used
as inputs for final model after training process, responses of the model are probably
unsatisfactory compared to the points inside of the training set (interpolation). ANN
and the existing knowledge about the fine model should be combined in the same
modeling process in order to reduce complexity of the fine model, while improving
extrapolation performance or lowering data requirements for training process.

Knowledge based modeling techniques have been developed to embed existing
knowledge in conventional ANN modeling [3, 10, 11, 15, 16, 18]. Knowledge based
models utilize less training data compared to the need of conventional ANN. The
knowledge provides coarse information for modeling and ANN completes rest of
the information using less training data. This modeling approach provides more
accuracy and better extrapolation performance than ANN models and offers less
computational burden compared to the detailed physical/EM simulation models.

In some cases, modeling involves numerous training data to satisfy specific
design purposes such as good accuracy, better extrapolation, and less computational
burden. However training process takes long time and modeling accuracy cannot be
good enough with respect to design purposes. To get over this problem, Knowledge
Based ANN (KBANN) techniques emerged to generate an efficient model.

During KBANN modeling, empirical formulas, equivalent circuit models, and
semi-analytical equations are exploited as the existing knowledge (coarse model).
This coarse model that is less accurate but fast than the fine model facilitates to
reduce the complexity of ANN model. If the coarse model does not exist for the fine
model, knowledge based modeling is not suitable under this condition.

Three-step modeling strategy is developed to generate required knowledge
without any extra data besides training data. Therefore gradual improvement can
be obtained by applying knowledge based techniques during modeling process of
three-step strategy. Required knowledge that is obtained by conventional ANN in the
first step is exploited as the coarse model for Prior Knowledge Input (PKI) technique
[18] in the second step. Last step utilizes knowledge come from the second step in
order to satisfy narrow output interval and reduce the complexity of ANN model.
Since the last step exploits more accurate coarse model, output correction between
fine model and second step responses provides better accuracy than conventional
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ANN technique. Considering all steps, Prior Knowledge Input with Difference
(PKI-D) technique [8, 10, 11, 16] that is used in the third step completes the gap
between the fine model and the coarse model.

Considering general approach and detailed information about each step,
three-step strategy will be discussed in Sect. 2. The modeling performance will
be presented in Sect. 3 through Branin function modeling in Sect. 3.1 and the shape
reconstruction of inverse scattering problem in Sect. 3.2. The less complex and
more complex models of Branin function will be discussed in Sect. 3.1. Finally the
shape reconstruction problem will be considered with different number of data in
Sect. 3.2 to demonstrate the efficiency of three-step strategy with less data.

2 Three-Step Modeling Strategy

Conventional ANN modeling is not convenient when the numerous training data
is required to obtain sufficient accuracy. More training data involve more number
of iterations to satisfy stopping condition. Three-step modeling strategy totally
utilizes the same number of iterations and neurons like conventional ANN. Main
contribution of the new strategy is that former model improves latter model via
knowledge based modeling techniques. This contribution changes according to
knowledge based technique. For example, PKI only uses extra input to reduce ANN
complexity, hence more accurate coarse model is not necessary to obtain more
accurate result than the coarse model. PKI constitutes general correction instead
of detail one. Each step of three-step modeling strategy will be discussed in detail
following three subsections.

2.1 Step-1: Generating Knowledge via Conventional
ANN (M-1)

In this step, required knowledge is obtained by Multi Layer Perceptron (MLP) after
training process. Final model is called M � 1 after training process is completed.
Number of neurons and iterations are reduced to one third of conventional ANNs.
This process guarantees same total number of neurons and iterations usage when
three-step modeling is completed.

Training process for M � 1 is given in (1). Error value for i . iteration is given
in (2). Final model M � 1 response is shown in (3). In Fig. 1, training process and
final model M � 1 are shown dotted line and bold box, respectively.
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Fig. 1 Block diagram of step-1 via conventional ANN technique for three-step modeling strategy

Fig. 2 Block diagram of step-2 via knowledge based PKI technique for three-step modeling
strategy

2.2 Step-2: Using Knowledge to Reduce Complexity
via Prior Knowledge Input Model (M-2)

Knowledge obtained by step-1 is used as an extra input to constitute PKI model.
Final model is called M �2 after training process is completed. Number of neurons
and iterations are same as step-1. Extra input provides extra knowledge to reduce
complexity of ANN structure. This model creates better accuracy than M � 1 via
knowledge obtained by M � 1.

Training process for M � 2 is given in (4). Error value for i . iteration is given
in (5). Final model M � 2 response is shown in (6). In Fig. 2, training process and
final model M � 2 are shown dotted line and bold box, respectively. This model
needs M � 1 responses to improve M � 2 responses. M � 1 response which is
shown in (3) is used in (5) and (6)
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2.3 Step-3: Learning Difference to Improve Model via Prior
Knowledge Input with Difference Model (M-3)

Knowledge obtained by step-2 is used as an extra input to constitute PKI-D model.
In addition to this usage, difference between fine model response and M � 2 model
response is used as a target for ANN structure in M � 3 model. Final model is
called M � 3 after training process is completed. Number of neurons and iterations
are same as step-1 and step-2. Extra input not only provides extra knowledge to
reduce complexity of ANN structure but also provides narrow interval via difference
usage. This model creates better accuracy than M � 2 via knowledge obtained
by M � 2.

Training process for M � 3 is given in (7). Error value for i . iteration is given
in (8). Final model M � 3 response is shown in (9). In Fig. 3, training process and
final model M � 3 are shown dotted line and bold box, respectively. This model
needs M � 2 responses to improve M � 3 responses. M � 2 response which is
shown in (6) is used in (8) and (9)
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Fig. 3 Block diagram of step-3 via knowledge based PKI-D technique for three-step modeling
strategy
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3 Examples for Three-Step Modeling

In this section, knowledge based three-step modeling strategy has been mainly
discussed by comparing it with conventional ANN technique. Conventional ANN is
easy to apply to modeling problems and three-step strategy is developed to improve
its performance, thus ANN trained with different number of data has been consid-
ered to demonstrate the accuracy and time efficiency of three-step modeling. The
Branin function modeling and the shape reconstruction of high dimensional inverse
scattering problem are used to show mathematical and engineering projection for
this strategy. In addition different number of training data and two complexity levels
that produce distinctive effect for ANN modeling are preferred in order to realize
better performance criteria for this new strategy.

3.1 Mathematical Modeling Problem: Branin Function

The Branin function is considered to demonstrate the general performance of
three-step modeling strategy and conventional ANN technique in modeling. Since
Branin function [8, 10] is a well-known benchmark problem for optimization
algorithm, it has highly nonlinear behavior and a wide response range.

Branin function modeling involves numerous training data and conventional
ANN model is not sufficient for good accuracy, thus it is chosen to compare all
results obtained in modeling. Mathematical formulation of Branin function is given
in (10).

ff .x1; x2/ D
�

x2 � 5x1
2

4�2
C 5x1

�
� 6

�2

C 10 �
�

1 � 1

8�

�

� cos x1 C 10 (10)

According to valid input interval, it is possible to determine the complexity of
Branin function. This complexity can be divided into two classes such as response
range and nonlinearity. Three-dimensional figures of Branin function is sufficient to
determine nonlinearity of the function. Less complex Branin function is depicted in
Fig. 4 and more complex version is depicted in Fig. 5. The ratio of maximum output
to the minimum output can be used to define criterion about output range of the
function.

The maximum and minimum responses of less complex Branin function
as depicted in Fig. 4 are 215:6 for ŒX1 D 6:356; X2 D 15� and 54:51 for
ŒX1 D 10; X2 D 10�, respectively. The maximum and minimum responses of
more complex case as depicted in Fig. 5 are 100:6 for ŒX1 D 10; X2 D 6:356�
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Fig. 4 Less complex fine model for Branin function modeling

Fig. 5 More complex fine model for Branin function modeling

and 3:094 for ŒX1 D 15; X2 D 10�, respectively. 215:6
54:51

) 3:96 for less complex
case and 100:6

3:094
) 32:51 for more complex case are obtained using recommended

formulations above in order to determine the complexity of output range.
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3.1.1 Less Complex Branin Function Modeling

Conventional ANN model is constituted by MLP with two hidden layers for less
complex Branin function. Each layer has 30 neurons. Training process takes 300

iterations and utilizes 10; 000 data to constitute final model. Each model in three-
step modeling strategy is constituted MLP with two hidden layer as well. Each
layer has 10 neurons. Therefore total number of neurons are equal for conventional
ANN and three-step modeling. Each modeling process in three-step strategy uses
100 iterations and utilizes 10; 000 data. Therefore total number of iterations are
equal for conventional ANN and three-step modeling. Twenty five test data are used
to demonstrate modeling performance. Moreover MATLAB m-file is used to run
iteration processes of ANN for all techniques.

Error calculation is an important part of comparison. Equation (11) is used for
calculation of normalized test error. While N denotes number of test data, (12)
and (13) are used for calculation of mean error and maximum error, respectively.

Error D jXoriginal � Xmethodj
Xoriginal

(11)

Mean Error D 1

N
�

NX

iD1

jXoriginal;i � Xmethod;ij
Xoriginal;i

(12)

Max Error D max
i

� jXoriginal;i �Xmethod;ij
Xoriginal;i

�

(13)

Conventional ANN model and M � 3 model are compared in two different figures,
namely Figs. 6 and 7. Real response of fine, conventional ANN and M � 3 models
are depicted in Fig. 6. As shown in these figures, gradual improvement of three-step
modeling strategy can be recognized in detail from error performance of each steps
as depicted in Fig. 6b. Final model M �3 of three-step modeling has better accuracy
than conventional ANN for the same training data as depicted in Fig. 7. For detailed
information, Fig. 7b shows how much improvement can be achieved with three-step
strategy with regard to the same training data in conventional ANN modeling. Time
consumption analysis is very important to compare conventional ANN and three-
step modeling. This analysis also gives the complexity of developing three-step
modeling and conventional ANN. All results about less complex Branin function
are summarized in Table 1. Three-step model is constructed as a combination of
M � 1, M � 2, and M � 3. These results demonstrate that three-step modeling
strategy provides efficient modeling performance with regard to accuracy and time
consumption for modeling of less complex Branin function.
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Fig. 6 Modeling results of the Branin function for less complex fine model: (a) Normalized test
error for M-1 model, M-2 model, and M-3 model (b) Output of less complex fine model, M-1
model, M-2 model, and M-3 model for test data
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Fig. 7 Modeling results of the Branin function for less complex fine model: (a) Normalized test
error for ANN model and M-3 model (b) Output of fine model, ANN model, and M-3 model for
test data

3.1.2 More Complex Branin Function Modeling

Conventional ANN model is constituted by MLP with two hidden layers for more
complex Branin function. Each layer has 60 neurons. Training process takes 600
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Table 1 Comparing all techniques for modeling of less complex Branin
function

Methods
Iteration Neuron Time Max Mean
number number consumption error error

ANN 300 30-30 859.80 (s) 1.086 e-01 3.611 e-02

M � 1 100 10-10 180.65 (s) 1.166 e-01 4.271 e-02

M � 2 100 10-10 204.05 (s) 1.219 e-01 3.854 e-02

M � 3 100 10-10 190.71 (s) 2.501 e-02 7.041 e-03

Three-step 300 30-30 575.41 (s) 2.501 e-02 7.041 e-03

iterations and utilizes 20; 000 data to constitute final model. Each model in three-
step modeling strategy is constituted MLP with two hidden layer as well. Each layer
has 20 neurons. Therefore total number of neurons in model is same for conventional
ANN and three-step modeling. Each modeling process in three-step strategy takes
200 iterations and utilizes 20; 000 data like conventional ANN. Therefore total
number of iterations in model is same for conventional ANN and three-step
modeling. Twenty five test data are used to demonstrate modeling performance of
two kinds of techniques.

M �1, M �2, and M �3 models are also compared in two different figures. Real
response of fine model, M � 1, M � 2, and M � 3 model are depicted in Fig. 8a.
Normalized test error for three methods is depicted in Fig. 8b.

Real response of fine, conventional ANN, and M � 3 models are depicted in
Fig. 9a. The difference between three-step model and conventional ANN can be
recognized from Fig. 9b. As shown in these figures, three-step modeling generates
more accurate results gradually for the same training data and number of iterations.

All results for more complex Branin function modeling are summarized in
Table 2. Three-step model consists of M � 1, M � 2, and M � 3. These
results demonstrate that three-step modeling strategy provides efficient modeling
performance with regard to accuracy and time consumption for modeling of more
complex Branin function.

3.1.3 Results for Branin Function Modeling

Considering Branin function modeling, it is necessary to summarize all the results
about less complex and more complex fine models. Normalized test errors are
depicted in Fig. 10a considering different number of data. This figure indicates
that the accuracy of three-step modeling gradually improves starting from model
1 and arrives final value with model 3. In addition three-step strategy provides
better accuracy that increases according to number of training data than conventional
ANN. Time consumptions for different kinds of fine models are depicted in Fig. 10b.
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Fig. 8 Modeling results of the Branin function for more complex fine model: (a) Normalized test
error for M-1 model, M-2 model and M-3 model (b) Output of more complex fine model, M-1
model, M-2 model and M-3 model for test data

Time consumption increases according to number of training data, while three-
step modeling still preserves better time consumption performance towards to
conventional ANN.



Knowledge Based Three-Step Modeling Strategy Exploiting Artificial... 231

0 5 10 15 20 25
0

20

40

60

80

100

Number of test data

O
ut

pu
t

Yf

YANN
YM-3

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

a

b

Number of test data 

N
or

m
al

iz
ed

 te
st

 e
rr

or

 Yf -YANN

 Yf - YM-3

Fig. 9 Modeling results of the Branin function for more complex fine model: (a) Normalized test
error for ANN model and M-3 model (b) Output of fine model, ANN model, and M-3 model for
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Table 2 Comparing all techniques for more complex Branin function modeling

Methods
Iteration Neuron Time Max Mean
number number consumption (s) error error

ANN 600 60-60 7,216.61 1.698 e-01 5.124 e-02

M � 1 200 20-20 882.59 4.825 e-01 9.986 e-02

M � 2 200 20-20 908.51 3.943 e-01 7.837 e-02

M � 3 200 20-20 899.78 1.197 e-01 2.961 e-02

Three-step 600 60-60 2,690.88 1.197 e-01 2.961 e-02

Fig. 10 Comparing results of the Branin function for conventional ANN, M-1, M-2, and three-step
models: (a) Normalized test error (b) Time consumption

3.2 Engineering Modeling Problem: The Shape
Reconstruction of Inverse Scattering

We consider the direct scattering problem [14] depicted in Fig. 11. The arbitrary
shaped infinitely long impedance cylinder in free space is illuminated by plane wave
whose polarization is cylinder axis (z axis). Cylinder contour can be expressed by
means of Fourier series as
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iφ

φ
)(φρ

D∂

Fig. 11 Scattering problem geometry [14]

�./ D
PX

pD�P

apeip; a�p D a�p (14)

where ap is Fourier coefficients satisfying a�p D a�p and obtained as in (15)

ap D 1

2�

2˘Z

0

�./e�ipd (15)

The fine model which is used to calculate measured electric field via direct
scattering formulations constitutes a relation between the Fourier coefficients and
the measured electric field as depicted as in Fig. 12.

3.2.1 The Shape Reconstruction of High Dimensional Inverse
Scattering Problem

The shape reconstruction of the conducting cylinder using electromagnetic field
measurements [9, 12, 14] will be used to demonstrate efficiency of three-step
strategy. For this application, data efficiency that is provided by three-step strategy
will be exhibited using different geometries of conducting cylinder. The conducting
cylinder is illuminated by TMz wave with frequency 33 MHz and angle of incidence
i D 0. The scattered field data are measured at ten points on measurement
circle with radius 100� as indicated in Fig. 11. The shape of conducting cylinder is
represented by one real and four complex Fourier coefficients as indicated in Fig. 12.

Conventional ANN is used not only as one method for solving the problem but
also as a way of building the coarse model for three-step modeling strategy. The con-
sidered conventional ANN structure is feed-forward MLP with two hidden layers.
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φ
)(φρ

Fig. 12 Fine model for scattering problem [13]

a b

Fig. 13 Shape reconstruction of geometry-1 obtained from original (fine model), three-step
trained with 100 data, MLP-100 and MLP-145 models

Error measurement is required to compare all methods. The mean and maximum
errors are determined by (12) and (13). The efficiency of three-step strategy is tested
via five different geometry. Only two of them can be shown in the figures. In addition
the results obtained from three-step strategy for 100 and 200 training data compare
to both MLP � 100 (ANN trained with 100 data) and MLP � 200 (ANN trained
with 200 data) in order to demonstrate time consumption performance for same
training data. To show data efficiency, same results obtained from three-step strategy
compare to both MLP � 145 and MLP � 245 with respect to the accuracy.

All results of geometry � 1 for 100 and 145 training data are depicted in
Fig. 13. Normalized test errors are 5 % .MLP � 100/, 2:4 % .MLP � 145/ and
2 % (three-step for MLP � 100). The similar results for more training data are also
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a b

Fig. 14 Shape reconstruction of geometry-1 obtained from original (fine model), three-step
trained with 200 data, MLP-200 and MLP-245 models

a b

Fig. 15 Shape reconstruction of geometry-2 obtained from original (fine model), three-step
trained with 100 data, MLP-100 and MLP-145 models

depicted in Fig. 14. In this case, normalized test errors are 3:2 % .MLP � 200/,
2:3 % .MLP � 245/ and 1:7 % (three-step for MLP � 200). All results of
geometry � 2 for 100 and 145 training data are depicted in Fig. 15. Normalized
test errors are 6 % .MLP � 100/, 4:4 % .MLP � 145/ and 4:9 % (three-step for
MLP �100). The similar results for more training data are also depicted in Fig. 16.
In this case, normalized test errors are 3:7 % .MLP�200/, 3:1 % .MLP�245/, and
2:5 % (three-step for MLP � 200). All these figures show that three-step modeling
strategy improves accuracy and time consumption using same training data and also
provides more accuracy and similar time consumption using less training data than
conventional ANN. Mean errors and maximum errors for five different geometry
and other results are summarized for inverse scattering problem in Table 3.
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a b

Fig. 16 Shape reconstruction of geometry-2 obtained from original (fine model), three-step
trained with 200 data, MLP-200 and MLP-245 models

3.2.2 Results for Shape Reconstruction of Inverse Scattering Problem

Considering shape reconstruction of inverse scattering problem, it is necessary
to summarize all the results in terms of accuracy and required number of data.
Normalized test errors are depicted in Fig. 17a in terms of different number of data.
This figure indicates that the accuracy of three-step modeling gradually improves
starting from model 1 and arrives final value with model 3. In addition three-
step strategy provides better accuracy that increases according to the number of
training data than conventional ANN. Time consumptions for different kinds of fine
models are depicted in Fig. 17b. Time consumption increases according to number
of training data, while three-step modeling still preserves better time consumption
performance towards to conventional ANN. Three-step strategy also provides better
accuracy with less number of training data. For example, three-step strategy trained
with 100 data that can provide more accurate results than conventional ANN trained
with 145 data also has less time consumption than conventional ANN as depicted
in Fig. 17.

4 Conclusion

In this work, three-step modeling strategy is considered to improve modeling in
terms of accuracy, data use and time consumption and the results are compared with
conventional ANN technique. Three-step modeling is constituted gradually using
knowledge based techniques. First step is used to create required knowledge for the
second step. Second step improves model response of the first step. Final step is
performed with prior knowledge input with difference using response of the second
step. Main advantage of final step is that coarse model obtained by the second



Knowledge Based Three-Step Modeling Strategy Exploiting Artificial... 237

T
ab

le
3

C
om

pa
ri

ng
al

lt
ec

hn
iq

ue
s

fo
r

th
e

sh
ap

e
re

co
ns

tr
uc

ti
on

of
in

ve
rs

e
sc

at
te

ri
ng

pr
ob

le
m

M
et

ho
ds

It
er

at
io

n
N

eu
ro

n
T

im
e

co
ns

um
pt

io
n

M
ea

n
of

M
ea

n
of

nu
m

be
r

nu
m

be
r

tr
ai

ni
ng

se
t+

tr
ai

ni
ng

m
ax

er
ro

r
m

ea
n

er
ro

r

M
L

P
�

1
0
0

30
0

60
-6

0
1
0
:0

3
1
�1

0
0
C

5
6
:8

6
2

„
ƒ
‚

…
1
0
5
9
:9

6
2
.s

ec
/

0.
13

63
75

(1
3.

6
%

)
0.

04
08

93
(4

.1
%

)

M
L

P
�

1
4
5

30
0

60
-6

0
1
0
:0

3
1
�1

4
5
C

8
1
:6

8
2

„
ƒ
‚

…
1
5
3
6
:1

7
7
.s

ec
/

0.
08

86
49

(8
.9

%
)

0.
03

18
81

(3
.2

%
)

T
hr

ee
-s

te
p

fo
r

M
L

P
�

1
0
0

30
0

60
-6

0
1
0
:0

3
1
�1

0
0
C

1
7
2
:3

6
4

„
ƒ
‚

…
1
1
7
5
:4

6
4
.s

ec
/

0.
08

19
63

(8
.2

%
)

0.
03

09
98

(3
.1

%
)

M
L

P
�

2
0
0

30
0

60
-6

0
1
0
:0

3
1
�2

0
0
C

1
1
2
:7

8
8

„
ƒ
‚

…
2
1
1
8
:9

8
8
.s

ec
/

0.
08

61
36

(8
.6

%
)

0.
02

81
24

(2
.8

%
)

M
L

P
�

2
4
5

30
0

60
-6

0
1
0
:0

3
1
�2

4
5
C

1
7
2
:4

0
6

„
ƒ
‚

…
2
6
3
0
:0

0
1
.s

ec
/

0.
08

35
54

(8
.4

%
)

0.
02

70
61

(2
.7

%
)

T
hr

ee
-s

te
p

fo
r

M
L

P
�

2
0
0

30
0

60
-6

0
1
0
:0

3
1
�2

0
0
C

3
5
6
:4

9
2

„
ƒ
‚

…
2
3
6
2
:6

9
2
.s

ec
/

0.
06

22
46

(6
.2

%
)

0.
02

13
82

(2
.1

%
)



238 M. Simsek

Fig. 17 Comparing results of the shape reconstruction for conventional ANN, M-1, M-2 and
three-step models: (a) Normalized average test error (b) Time consumption

step is used twice in the modeling process. Therefore three-step model accuracy
is better than conventional ANNs. Time consumption performance of three-step
modeling strategy is another reason to prefer this strategy. To demonstrate efficiency
of time consumption, total number of training data, total number of neurons and
total number of iterations are fixed for both three-step strategy and conventional
ANN during the Branin function modeling. In this case, three-step strategy provides
more accuracy with less time consumption than conventional ANN. In order to
demonstrate data efficiency, total number of neurons and total number of iterations
are fixed for both each part of three-step strategy and conventional ANN during the
shape reconstruction of inverse scattering problem. Although time consumption is
same for same training data, it is possible to obtain more accuracy for less training
data from three-step strategy with respect to conventional ANN.
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Large-Scale Global Optimization
via Swarm Intelligence

Shi Cheng, T.O. Ting, and Xin-She Yang

Abstract Large-scale global optimization (LSGO) is a challenging task with many
scientific and engineering applications. Complexity, nonlinearity and size of the
problems are the key factors that pose significant challenges in solving such
problems. Though the main aim of optimization is to obtain the global optimal
solutions with the least computational costs, it is impractical in most applications.
Thus, a practical approach is to search for suboptimal solutions and good solutions,
which may not be easily achievable for large-scale problems. In this chapter, the
challenges posed by LSGO are addressed, followed by some potential strategies
to overcome these difficulties. We also discuss some challenging topics for further
research.

Keywords Large-Scale Global Optimization • Swarm Intelligence
Optimization • Population Diversity • Exploration/Exploitation

1 Introduction

Optimization problems can be challenging to solve, especially for highly nonlinear
problems. Finding solutions to such problems becomes even more challenging when
the problem size becomes large, and in this case, we have to deal with large-scale
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optimization problems. Even for problems of small and moderate sizes, finding
the best feasible solutions is not straightforward. Sometimes, it may be useful to
consider the problem of interest in terms of its modality. In the context of modality,
optimization problems can be divided into two categories: unimodal problems and
multimodal problems. As indicated by its name, a unimodal problem has a single
optimum solution whereas a multimodal problem may have more than one global
solution, together with potentially many local solutions.

For many large-scale, complex optimization problems, there are no efficient
algorithms at all. In many cases, heuristic algorithms such as evolutionary
algorithms (EA) are the main alternatives, and they can be very useful. However,
they may be inefficient in tackling global optimization problems in the case of
multimodal problems, due to the possible occurrence of the premature convergence,
and such issue occurs when the solution is trapped in local optima [1–3]. The good
news is that for a given type of problem, their efficiency can be increased by tuning
their parameter settings, usually determined based on empirical results [4].

In essence, an optimization problem in R
n is a mapping of f W Rn ! R

k ,
where R

n is known as a decision space [5], also known as search space [6], and
R

k is the objective space [7]. Further, optimization problems can be sub-divided
into two categories according to the value of k. Thus, when k D 1 for a given
problem, it can be categorized as Single Objective Problem (SOP), and when k > 1,
this is known as multi-objective optimization (MOO), or multicriteria optimization
[8–10]. The evaluation function in optimization, f .x/, maps the decision variables
to objective vectors. Each solution in decision space is associated with a fitness
value with respect to relevant objective space. This situation is illustrated in Fig. 1
for the case of n D 3 and k D 2.

However, as our emphasis here is on the swarm intelligence in the context of
large-scale optimization problems, we will focus on the single objective formulation
without the loss of generality. Thus, we have

Minimize f .x/

x1

x2

x3

Ω = {x ∈ Rn}

Solution space →

f2

f1

Λ

a b

= {y ∈ Rk}
Objective space

Fig. 1 The mapping from solution space to objective space
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where

x D .x1; x2; : : : ; xn/ 2 X:

Here, X � R
n represents the decision space with n dimensions. In addition, f W

X ! R denotes the continuous real-valued objective function mapped from an
n-dimensional decision space to one fitness value F.x/. Usually, a problem with
n � 1; 000 is referred to as a continuous LSGO problem [11]. The single objective
formulation of LSGO problem is given here; however, the LSGO problem also can
be a multi-objective problem.

For large-scale optimization problems, there are many additional challenges, and
this chapter will focus on these challenging issues concerning the solution methods.
Therefore, it is organized as follows. Section 2 reviews the basic concepts in
swarm intelligence. Section 3 outlines the challenges in the large-scale optimization
problems. The techniques concerning swarm intelligence adopted for solving large-
scale problems are discussed in Sect. 4. Some applications of swarm intelligence in
real-world large-scale problems are briefly reviewed in Sect. 5, followed by the brief
conclusions in Sect. 6.

2 Swarm Intelligence

Many real-world applications can be transformed into optimization problems, but
this does not mean that it would be easy to solve such problems. In reality,
problems can be quite complex, as the design variables can be continuous, discrete,
or even mixed, while the functions may not be differentiable. Therefore, to find
even a feasible solution may not be easy. Obviously, in special cases of unimodal,
continuous problems, traditional methods such as gradient-based methods (e.g., hill-
climbing) can be used to find the global solutions. But for multimodal problems,
gradient-based methods do not work well, and their results will largely depend on
the initial starting points, even for smooth problems. In reality, real-world problems
are rarely unimodal or differentiable, and therefore, significant challenges arise.

Among all the methods that are designed to tackle large-scale problems,
metaheuristic algorithms are among the most promising types [12]. One class of
the metaheuristic algorithms is the so-called Swarm Intelligence (SI). SI-based
algorithms typically use a population of multiple agents so as to mimic the
successful characteristics of natural systems such as ants, fish, birds, bats, fireflies
and others [12–17]. In essence, multiple interacting agents may evolve and thus may
lead to self-organized behaviour, the so-called collective intelligence. Contemporary
algorithms such as particle swarm optimization, ant colony optimization, bat
algorithm, firefly algorithm, cuckoo search, bee algorithms as well as bacterial
foraging optimization all have demonstrated some unique characteristics and
potential for solving nonlinear optimization problems [12, 18].
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The wide use and popularity of SI-based algorithms may be attributed to
their simplicity, parellelism and flexibility. Most SI-based algorithms are relatively
simple and easy to implement, and the use of multiple agents makes them natural
to be parallelized. In addition, such seemingly simple algorithms tend to be
very flexible in dealing with a wide range of problems. All these features make
swarm intelligence based algorithms quite efficient in many applications [12, 16].
Despite such success, there are still many problems. This chapter will focus on the
challenges and potential improvements in solving large-scale problems.

3 Challenges in Large-Scale Global Optimization

The size of a problem is sometimes a deciding factor that affects the solution
strategies. However, the combination of size with nonlinearity often causes the
major difficulty. For example, if the problems are linear, then linear programming
techniques such as the simplex method can often deal with large-scale problems
(up to a few million design variables) easily. However, for nonlinear problems, these
techniques will not work. Nonlinearity with moderately large-scale sizes can pose
substantial challenges.

Though there is no agreed exact definition for large-scale problems, typically
nonlinear problems with a large number of variables, e.g., more than thousands
variables, can be called LSGO problems [19, 20]. In practice, the performance of
many algorithms deteriorates quickly as the dimension of the problem increases.
For example, the nearest neighbour approaches are very effective in categorization,
but they will be very ineffective for high-dimensional problems. The computa-
tional complexity often increases dramatically as the problem size increases. It is
well known that the travelling salesman problems (TSP) can have exponential
complexity, and thus no efficient algorithms for the TSP class of problems.

3.1 Large-Scale Optimization

Large-scale problems typically have more than 1,000 design variables [21], and they
can have many issues, including algorithms, data structures, memory problem and
performance issues. One of the main issue is the choice of algorithms, and in many
cases, there is no good algorithm at all. Even if there is a good algorithm available,
data structures and memory management can also be very important. Even with
all these problems sorted, there still exists some performance issue. Whether the
computational time is acceptable, and in most cases, the computational costs are too
high and thus impractical. In addition, proper performance measures are needed to
ensure a fair comparison of different algorithms.
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For LSGO, many optimization methods suffer from the “curse of dimensionality”
[22–26], which may imply that their performance deteriorates quickly as the
dimension of the search space increases [27]. There are several reasons that cause
this phenomenon. Firstly, as mentioned above, the complexity of the problem
increases exponentially with respect to the number of dimensions. The “empty space
phenomenon” is a good example to this scenario [24, 28, 29]. With a number of
m possible solutions with n dimensions, the fraction of the feasible search space
becomes negligible. In addition, the bias can be accumulated. For example, in parti-
cle swarm optimization, the solution update depends on the combination of several
vectors, i.e., the current value, the difference between current value and previous
best value. In a low-dimensional space, the direction of the vector combination has
the high probability to direct towards the global optimum. However, the distance
metric for the low dimension space may not be effective in a high-dimensional
space. The search direction may be far away from the global optimum due to the
bias accumulation.

For traditional methods, Benson et al. compared three major methods: the
interior-point method, a trust-region algorithm and the quasi-Newton methods that
works for 10,000 dimensions with promising results [21].

From the implementation point of view, to obtain a good approximate solution
quickly may be more useful than to find an accurate solutions very slowly.
Fortunately, in many SI-based algorithms, good feasible solutions can be found
with various improvements and strategies, even for high-dimensional problems
[6, 27, 30–36]. However, different degrees of success exist and more extensive
research is highly needed.

3.2 Good Solution or Good Convergence?

One of the challenges for large-scale optimization is that there is no guarantee for
global optimality, except for special cases such as linear problems and convex prob-
lems. In general, in order to get a good set of solutions in a practically acceptable
timescale, one has to sacrifice the possibility of finding the true global optimality.
Therefore, there is some compromise between speed and global optimality. In
order to obtain good solutions, a good convergence rate is needed. However, if the
convergence rate is high, it can usually lead to premature convergence. In most
case, a prematurely converged solution is usually not a good solution because
it can be stuck in any point in the search if the convergence speed is too high,
because premature convergence is essentially stagnation with almost no diversity
in the solution population. Consequently, there is a trade-off between getting a truly
optimal solution and good algorithm convergence.

Even so, from a practical point of view, LSGO requires a fast convergence on
the large search space, and thus any algorithm that can find the “good enough”
solution(s) within a limited time is preferred.
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For convergence in the context of computational intelligence, there is no well-
accepted definition, and the traditional definition of sequence convergence cannot be
used directly. In fact, convergence in probability and convergence in distribution are
acceptable. Mathematical speaking, convergence with probability 1 can be defined
as follows: If an objective function f is measurable in a feasible solution space ˝

in the measurable subset of <n (i.e., ˝ � <n), an algorithm A produces a search
sequence fxkg1kD0. Then, the convergence with probability 1 is expressed as

lim
k!1P.xk 2 Ropt / D 1;

where Ropt is the optimal set of the solutions in the search space [37].
However, even with this definition, the proof of convergence often requires

complex mathematical tools such as dynamical systems and Markov chain theory
[12, 36]. Unless theory proves otherwise, most convergence analyses have focused
on the convergence to the best solution of the population during the iterative search
process, there is no guarantee that the best solution found by an algorithm is truly
the global optimum for the problem of interest.

Even without theoretical analysis, convergent behaviour and characteristics can
be observed in practice when running an algorithm. In fact, premature convergence
and stagnation can also be frequently observed in many algorithms such as particle
swarm optimization and genetic algorithms.

3.3 Performance Measures

For the purpose of comparing different algorithms, the performance measure can
be very important. After all, the performance is measured against a criterion. In the
literature, the following two main criteria are in use [19]: functional evaluations and
accuracy. To compare two algorithms for solving a given problem, a fixed accuracy
or tolerance is usually chosen, then the aim is to compare the number of function
evaluations. If algorithm A uses fewer evaluations than B, then A tends to be better
than B. However, care must be taken when drawing such conclusions, as a single run
is normally inconclusive. In practice, multiple independent runs are needed so that
meaningful statistics such as the means and standard deviations can be calculated.

On the other hand, another measure is to compare the accuracy of the solution
found for a fixed number of functional evaluations. Again the accuracy should be
calculated based on multiple independent runs. In addition, a third measure is to
compare computational times for other things being fixed. However, extreme care
must be taken for this approach as computational time can depend on the details
of implementation, computer configurations and data structures even for efficient
algorithms. In addition, run times may vary on the same computer when running
at different times due to the potential hidden processes in the system, especially on
Windows operating systems.
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Even if the above measures are properly implemented, multiple runs on a diverse
range of problems are required to ensure fair comparison and sensible conclu-
sion. Statistical testing and hypotheses should be carried out to draw meaningful
conclusions.

For a more thorough performance measure, performance profiling is a very good
measure [21, 38]. The performance profile developed by Dolan and Moré works
well to compare m algorithms on the same set of N problems [38]. If tQ;A is the
runtime required by algorithm A to solve problem Q, then the performance ratio is
defined by

�Q;A D tQ;A

minftQ;A W 1 � A � mg ;

which means the ratio of the current solver (algorithm) to the best time of all
algorithms.

In a special case when an algorithm cannot find a solution, �Q;A D 1 [21], The
performance profile PA 2 Œ0; 1� of an algorithm on the whole set of problems can
be defined as

PA.�/ D 1

N
size fQ W 1 � Q � N; �Q;A��g;

which essentially represents the cumulative distribution function of �Q;A. Here � is
a constant. Statistically speaking, P.�/ can be considered as efficiency for � D 1,
while lim�!1 P.�/ becomes the probability of success.

4 Techniques and Potentials for Solving
Large-Scale Problems

Many effective strategies have been proposed for high-dimensional optimiza-
tion problems, including problem decomposition and subcomponents cooperation,
parameter adaptation and surrogate-based fitness evaluations [6, 21]. In the context
of swarm intelligence, there are some strategies that try to improve the performance
of swarm intelligence based algorithms for large-scale global optimization.

The literature in this area is expanding, and thus we do not intend to be
complete in reviewing the relevant literature. Instead, we will highlight a few useful
approaches or strategies for solving large-scale optimization problems in the context
of nature-inspired algorithms. These strategies are diversity promotion, exploitation
enhancement, decomposition and adaptation. As a matter of fact, there is no clear
distinct between these strategies. Most algorithms use one or a combination of
several approaches so as to be effective in solving large-scale problems.
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4.1 Diversity Promotion

The diversity in the population of any SI-based algorithms can be important for
sufficient exploration of the search space. In fact, diversity is almost equivalent to
exploration [20,39]. Premature convergence is more likely to happen in a population
with low diversity. In many cases, the population variance can be a good measure
of solution diversity. If the variance gradually reduces, then the population will
converge, but it can also be an indicator of premature convergence. Therefore,
maintaining a good diversity in the population can avoid potential premature
convergence. However, how to maintain the diversity is still a challenging question,
though there are some approaches that can be useful. The aim of the diversity is to
ensure the population maintains the capability of jumping out of local optima [40].
Some algorithms use initialization as a part of diversity control.

• Random partial re-initialization: As its name indicates, random partial
re-initialization means reserving particles by means of a random approach.
This strategy is able to achieve a great ability of exploration as a majority of the
particles are re-initialized.

• Elitist partial re-initialization: This strategy keeps a better half of the pop-
ulation, with the other half being re-initialized. In this case, the algorithm
increases the ability of exploration and this is essentially the fitness-proportional
randomization technique.

Though the above approaches use the term “re-initialization”, they are in fact
randomization techniques. Some parts of the population are just generated by
randomization, and this does not re-start the search process. However, the term
“re-initialization” does have a meaning of indicating reset of some of the solutions
so as to keep them afresh.

4.2 Exploitation Enhancement

In almost all algorithms, the convergence is a result of the appropriate use of
local information such as gradients. Such use of updated information is referred to
exploitation. Thus, it is natural to understand that exploitation enhancement may
lead to improved convergence if used wisely. In fact, exploitation enhancement
contradicts the diversity promotion. Therefore, some trade-off or balance between
diversity/exporation and exploitation. Despite the importance, there is no good
strategy in maintaining this balance [16].

Exploitation can be static by using some local information, and it can also be
dynamical by using updated information found in the search so far. It seems that
dynamical exploitation can be a promising approach and should be investigated
further.
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4.3 Decomposition

For large-scale problems, a “divide and conquer” approach can be very useful.
A good example is the dynamical programming which uses a dynamical re-use
of the results by solving a series of subproblems. Another example is sequential
quadratic programming [19]. Based on the idea of “Divide and Conquer”, a
large-scale problem can be decomposed into a series of sub-problems in lower
dimensions. For example, the separation of the whole decision variable set into a
number of groups. Each group forms a sub-space of solutions, a certain evolutionary
algorithm is applied on each sub-space, and after that, useful search information
is shared among different groups. The advantage of this approach is that it can
reduce the problem size, however, the optimality may be affected because the
optimal solutions to each sub-problems do not guarantee the optimality for the
whole problem. However, some studies can be useful in producing good solutions
[33, 41].

4.4 Adaptation

The “No Free Lunch” (NFL) theorems for optimization, proved by Wolpert and
Macready [35, 42], suggest that no algorithm is better than another algorithm in the
absolute sense when measured in terms of average performance for all problems.
However, NFL theorems are not valid for the cases of co-evolution [43]. This
may mean that large-scale problems can be solved by coevolutionary methods
or adaptive methods. Potentially, an algorithm that can adapt according to the
problem landscape can be advantageous to solve LSGO problems. Several studies
have investigated such possibility, including adaptive coevolutionary differential
evolution algorithm [44], scalability of generalized adaptive differential evolution
[34], and self-adaptive mixed distribution based univariate estimation of distribution
algorithm [45].

4.5 Multi-Stage Strategy

Another potentially effective way to deal with large-scale problems is to use
multi-stage strategies. A simple and yet very powerful two-stage strategy is called
the Eagle Strategy [46], which uses a combination of two different stages in
iterative manner so as to reduce the computational efforts and thus increase the
efficiency [36]. It can be expected that a good combination of multi-stage strategies
with adaptation, while maintaining a good diversity and properly enhancement of
exploitation, would be a very effective approach. Certainly, future research should
explore this further.
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5 Applications

The applications of swarm intelligence based algorithms are very diverse, while
their application for large-scale optimization is sparse in contrast. However, the
good news is that more applications in this area start to expand.

Among SI-based algorithms, it seems that PSO is relatively thoroughly inves-
tigated due to its relative long history, and thus more case studies and variants
have emerged [47]. In the context of large-scale numerical optimization, existing
studies include particle swarm optimization [47], covariance matrix adaptation
evolution strategy [48], self-adaptive mixed distribution based univariate estimation
of distribution algorithm [45], dynamic multi-swarm particle swarm optimizer
with local search algorithm [49, 50], cooperative co-evolution particle swarm
optimization (CCPSO) [51,52] and velocity divergence of CCPSO [53]. In addition,
harmony search has also been applied to relatively large-scale problems such as
water distribution networks [54].

New algorithms have also demonstrated promising efficiency in dealing with
large-scale problems. For example, the travelling salesman problem has been solved
by cuckoo search [31], while computationally extensive structural optimization
problems have been solved by the firefly algorithm [32].

In the area of telecommunications and wireless communications, more and more
applications are becoming increasingly large-scale problems [55, 56]. Massive data
are being generated from the long-term and/or large-scale applications as driven
by information technology and social networks. Consequently, many large-scale
optimization now concerns data mining applications and massive data sets.

6 Conclusions

Many real-world applications are large-scale problems and thus pose special
challenges to solve. Though swarm intelligence based algorithms can be promising,
challenging issues still exist. In this chapter, we have briefly reviewed the main chal-
lenges associated with swarm intelligence in the context of large-scale global
optimization.

Strategies for improving solution diversity, exploitation enhancement, decompo-
sition, adaptation and multistage strategies are discussed. It can be expected that an
effective approach requires a good combination of all these strategies.

Obviously, other issues also exist. Even applications of about 1,000–10,000
dimensions exist (but rare), real-world applications such as business optimization
and structural optimization can have millions of design variables, which can be
truly large-scale. It is not clear at the moment if the existing algorithms can be
scaled up to deal with these truly large-scale problems. In addition, algorithms are
just one part of the challenges. As the speed of computers increases, distributed
and parallel computing as well as cloud computing facilities can be good tools for
solving large-scale global optimization problems.
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Evolutionary Clustering for Synthetic
Aperture Radar Images

Chin Wei Bong and Xin-She Yang

Abstract Image segmentation is a multiobjective optimization problem. The aim
of this paper is to propose and apply a small population multiobjective evolutionary
clustering method for solving segmentation of SAR (synthetic aperture radar)
images. The multiobjective optimization method is based on the scatter search,
which can usually avoid using many random components, and this method is based
on a small population approach, known as the reference set, whose individuals
are combined to construct new solutions which are generated systematically. The
reference set is initialized from an initial population composed of diverse solutions,
and then updated with the solutions resulting from the local search improvement.
The proposed method uses fuzzy clustering method to optimize two fitness functions
in terms of the global fuzzy compactness of the clusters and the fuzzy separation.
The proposed approach incorporates the concepts of Pareto dominance, external
archiving, diversification, and intensification of solutions. Experiments for various
objective formulations and solution combination methods are tested for syntactic,
COINS and SAR images to show the precision of the algorithm. Furthermore, we
also compare our proposed method with other multiobjective evolutionary clustering
methods such as multiobjective clustering with automatic k-determination (MOCK)
and NSGA-II. The performance of the proposed method is encouraging.
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1 Introduction

SAR sensors can penetrate clouds and they can work in bad weather conditions
and at nighttime when optical sensors are inoperable. Thus, SAR images have
been widely used by researchers and industrial sponsors in the past decades.
Applications of SAR include climate studies, forest resources identification, marine
environments inspection, and so on. An important and yet challenging task in SAR
image applications is image segmentation. It is defined as the extraction of the
important objects from an input image [1]. It partitions the pixels in the image
into homogeneous regions, each of which corresponds to some particular landcover
type. The process has received much attention and is also considered one of the
most difficult low-level tasks because the process performance needs to be adapted
to the changes in image quality, which is affected by variations in environmental
conditions, imaging devices, time of day, and other factors [2, 3].

There are many approaches available for SAR image segmentation in the
literature, including threshold methods [4, 5], clustering algorithms [6, 7], statistic
model-based methods [8–11], and morphologic methods [12, 13]. The clustering
algorithms are the most popular and the earliest approaches used. Among the
existing clustering algorithms for SAR images, nature-inspired algorithms include
particle swarm optimization [14, 15], and artificial immune system [16] are
relatively recent methods being used. However, each approach poses its own
limitation, and most of these studies have optimized a single objective for specific
applications [17]. In reality, image segmentation is a multiobjective optimization
problem, which is difficult to solve, and there is a significant gap between the
nature of image segmentation problems and real-world solutions [18]. Thus, a
multiobjective optimization (MO) approach is an appropriate method to use for a
real-world application [19–21]. In addition, this approach seems to be promising
with the nature of SAR image segmentation [22–25].

Therefore, this chapter examines the approach of nature-inspired clustering-
based SAR image segmentation. A new algorithm based on a small population
evolutionary algorithm, namely the scatter search, is considered. We propose and
apply the proposed multiobjective scatter search to study SAR image segmentation
using hybrid scatter search (HSS). This method incorporates the concepts of Pareto
dominance, external archiving, diversification, and intensification of the solutions.
The rest of this chapter is organized as follows. Section 2 presents related studies
concerning MO problems and scatter search. Section 3 describes our proposed
method in detail. Experimental results, comparing HSS with other standard image
segmentation methods are presented in Sect. 4. Finally, conclusions are drawn in
Sect. 5.
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2 Literature Review

The majority of existing clustering algorithms are based on only one internal
evaluation function, which is a single-objective function that measures intrinsic
properties of a partitioning such as the spatial separation between the clusters or the
compactness of the clusters. However, it is sometimes difficult to reflect the quality
of partitioning reliably with only one internal function evaluation which may be
violated for certain datasets [26]. In this paper, we use a multiobjective optimization
approach to overcome the defects of the single-objective clustering algorithms such
as Fuzzy C-Mean. Given that the objective functions (no less than two) for clustering
are complementary, the simultaneous optimization of several of those objectives
may lead to high-quality solutions and improve the robustness towards different
data properties. Multiobjective clustering with automatic k-determination (MOCK)
proposed by [27] may be the first application of MO clustering in data clustering.
Although many methods have been proposed for MO clustering, only a few appli-
cations have been reported in image segmentation [28]. Among those applications,
NSGA-II [29] was found to be the most frequently used method. It is difficult to
apply the current MO clustering technology to image segmentation, owing to an
extremely large amount of data need to be handled and thus such handling in an
evolutionary algorithm (EA) is tedious and computationally expensive [30].

Nature-inspired techniques have been used with clustering methods, either
evolutionary algorithms (EAs) or non-EAs [31]. Although they have been applied in
the image segmentation problem, there is still room for more extensive research and
the results and performance can be improved further. For the successful operation
of an EA with multiobjective clustering (or multiobjective EA clustering) in image
segmentation, some of the important issues that should be addressed include the
proper size of population, suitable genetic encoding of partitioning, appropriate set
of objective functions, and suitable genetic operators (e.g., mutation and crossover).
For the methods to work, one of the challenges is to formulate a suitable set
of objective functions and the efficient generation of solutions that offer reduced
optimization cost. However, the search strategies of the different metaheuristics are
highly dependent on the philosophy of these metaheuristic algorithms themselves.

Here, metaheuristics refer to a general algorithmic framework that can be applied
to different optimization problems, with relatively few modifications required to
adapt them to a specific problem [32, 33]. They are strategies that “guide” the
search process. They aim to explore efficiently the search space to find (near-)
optimal solutions. Every metaheuristic approach should be designed with the aim
of effectively and efficiently exploring a search space. An effective initialization
scheme should serve as a good start, without biased towards any unpromising local
regions. The search performed by a metaheuristic should be “clever” enough both
to explore intensively the areas of the search space with high-quality solutions and
to move to unexplored areas of the search space when necessary.

We extend the work of archive-based HSS [34], which follows the scatter search
(SS) structure but uses mutation and crossover operators from EA. Scatter search
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[35] is an EA in the sense that it incorporates the concept of population. Compared to
other EAs, it usually uses fewer random components, and it uses a small population,
known as the reference set, whose individuals are combined to construct new
solutions which are generated systematically. The reference set is initialized from
an initial population, composed of diverse solutions, and they are updated with
the solutions resulting from the local search improvement. Scatter search has been
found to be successful in a wide variety of optimization problems because it offers
reduced optimization cost. Until recently it had been extended to deal with MO
problems [34] and also SAR image segmentation problem [36]. According to [26],
SS can serve as a powerful local search engine for tasks such as generating missing
parts of an approximate Pareto front because of its flexibility and ease of use. In
[24], the authors first tested the algorithm in gray-scale images. Now, we provide a
more in-depth analysis for the segmentation of SAR image segmentation.

3 Multiobjective Clustering with HSS

The objective function defined in MO clustering can be formulated based on the
validity index in clustering algorithms [17]. The optimization of the validity index
usually aims for the optimal number of clusters with the optimal clustering output.
Although there are many available indices, none of them perform satisfactorily for
a wide range of datasets [37]. Therefore, MO clustering methods should be used to
optimize the validity indices of two to three clusters to complement their strengths
and compensate their weaknesses [38].

The proposed approach consists of three main phases: (1) the features of the
image are extracted; (2) HSS optimizes two complementary clustering objective
functions using a multiobjective clustering method. It outputs a set of mutually
dominant clustering solutions, corresponding to different tradeoffs between the
two objectives; (3) all the dominant clustering solutions are combined together to
generate the final best solution and to assign each pixel in the sample dataset to one
of the clusters. Subsequently, all the remaining pixel data are assigned to one of the
clusters, according to the relationship with the assigned sample dataset.

The image segmentation problem can be formulated as clustering the pixels of the
images in the intensity space [39, 40]. Here, a fuzzy clustering algorithm produces
a K � n membership matrix U(X)D [ukj], kD 1, : : : , K and jD 1, : : : , n, where ukj

denotes the membership degree of pattern xj to cluster Ck.
Here, the individuals are made up of real numbers which represent the coordi-

nates of the cluster centers. If individual i encodes the centers of Ki clusters in a p
dimensional space, its length li will be p�Ki. In the initial population, each string i
encodes the centers of Ki of clusters, such that

Ki D
�
rand . / %K�

	C 2 (1)
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where rand( ) is a random integer generator, and K* is a soft estimate of the upper
bound of the number of clusters. Therefore, the number of clusters will vary from
2 to K*C 1. The Ki centers encoded in an individual of the initial population are
randomly selected with distinct points from the input dataset.

In computing the first objective functions, the centers VDfv1, v2, : : : vkg
encoded in a given individual are extracted. The fuzzy membership values
uikD 1, 2, : : : , K, where kD 1, 2, : : : , n are computed using

uik D
XK

jD1

 
D .vi ; xk/

D
�
vj ; xk

	

!� 2
m�1

; 1 � i � KI 1 � k � n (2)

where D (vi, xk) denotes the distance between ith cluster center and kth data point and
m 2f1,1g is the fuzzy exponent. In this chapter, the Euclidean distance measure
is used. If D (vj, xk) is equal to zero for some j, the uik is set to zero for all
iD 1, 2, : : : , K, i ¤ j, while ujk is set equal to 1. Subsequently, the center of each
cluster viD 1, 2, : : : , K is updated by using

vi D
Xn

kD1
uik

mxk

Xn

kD1
uik

m
; 1 � i � k (3)

Next, the membership values are recomputed. The variation � i and fuzzy
cardinality ni of the ith cluster, iD 1, 2, : : : , K, are calculated as follows:

�i D
Xn

kD1
uik

mD .vi ; xk/ ; 1 � i � K; (4)

and

ni D
Xn

kD1
uik; 1 � i � K: (5)

Therefore, the global compactness J of the solution represented by the chromosome
is computed as

J D
XK

iD1

�i

ni

D
XK

iD1

Xn

kD1
uik

mD.vi ; xk/
Xn

kD1
uik

: (6)

The second fitness function, or fuzzy separation S, is computed as follows:
the center vi of the ith cluster is assumed to be the center of a fuzzy set
fvjj1 � i � K, j ¤ ig. Hence the membership degree of each vj to vi, j ¤ i is
computed as

uik D
XK

jD1

 
D .vi ; xk/

D
�
vj ; xk

	

!� 2
m�1

; 1 � i � KI 1 � k � n: (7)
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Subsequently, the fuzzy separation can be defined as

S D
XK

iD1

XK

jD1; j¤i
uij

mD
�
vi ; xj

	
: (8)

The third objective function is a newly developed point symmetry distance based
cluster validity index, FSym-index [23]. It is defined as follows:

FSym .K/ D
�

1

K
� E1

Ek

�DK

�

(9)

where K is the number of cluster,

DK D maxK
i;jD1d

�
vi ; vj

	
: (10)

Note that dps(vj, xk) is the point symmetry based distance between the cluster center
vj and the data point xk. If the corresponding dps(vj, xk)D d (vi, xj) is smaller than
a pre-specified value, we update the membership uij using the following criterion:
uijD 1; if iD k, uijD 0; if i¤ k. Otherwise, we update the membership uij by using
the rule which corresponds to the normal fuzzy c-means algorithm. In short, the
index FSym is a composition of three factors, namely 1

K
, El

Ek
and DK . As the MO

problem here is formulated as the minimization of all the three objectives, hence the
objectives are to minimize J, 1

S
and 1

FSym .K/
.

In the proposed approach, there are basically five parts:

• Diversification Generation Procedure: The procedure is the same as that pro-
posed in [35]. The goal is to generate an initial set P of diverse solutions.
This is a straightforward method based on dividing the range of each variable
into a number of subranges of equal size; so, the value for each decision
variable of every solution is generated in two steps. First, a subrange of the
variable is randomly chosen. The probability of selecting a subrange is inversely
proportional to its frequency count (the number of times the subrange has already
been selected). Second, a value is randomly generated within the selected range.
This is repeated for all the solution decision variables.

• Improvement procedure: This procedure is to use a simplex method to improve
new solutions obtained from the diversification generation and solution combina-
tion methods. The improvement method takes an individual as a parameter, which
is repeatedly mutated with the aim of obtaining a better individual. The term
“better” is defined here in a similar way to the constrained-dominance approach
used in NSGA-II [29].

• Reference Set Update procedure: The reference set is a collection of both high-
quality and diverse solutions that are used to generate new individuals. The
set itself is composed of two subsets, RefSet1 and RefSet2, of size p and q,
respectively. The first subset contains the best quality solutions in P, while the
second subset should be filled with solutions promoting diversity.
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• Subset Generation and Combination procedure: This procedure generates
subsets of individuals, which will be used to create new solutions with a solution
combination method. The strategy used considers all pairwise combinations
of solutions in the reference set [34]. Furthermore, this method should avoid
producing repeated subsets of individuals, i.e., subsets previously generated. In
the subset combination, the procedure is to find linear combinations of reference
solutions.

• External Archive: The aim of this archive is to store a record of the non-
dominated individuals found during the search in order to keep those individuals
so as to produce a well-distributed Pareto front. The key issue is the archive
management that is to decide whether a new solution should be added to the
archive or not. This archive is empty at the beginning. It is continuously updated
whenever a new individual or solution is not dominated by the RefSet1.

Whenever a new solution is created, it becomes a member of the memory. The
size of the memory is kept constant and its worst elements are regularly replaced by
the better ones. A data structure called quad trees is used to accelerate the process
of updating External Archive. The quad tree of points where no point dominates
any other point is applied and it is a computationally efficient method to determine
whether points in the tree dominate a given new point and to retrieve a point in the
tree, which it dominates.

Initially, the diversification generation method is invoked to generate the initial
solutions, and each one is passed to the improvement method and the result is the
initial set P. Then, a fix number of iterations are performed. At each iteration, the
reference set is built, the subset generation method is called, and the main loop of
the scatter search algorithm is executed until the subset generation method stops
producing new subsets of solutions. There is a restart phase, which consists of three
steps. First, the individuals RefSet1 in are inserted into P; second, the best individu-
als n from the external archive, according to the crowding distance, are also moved
to P; and, third, the diversification generation and improvement methods are used
to produce new solutions for filling up the set P. The idea of moving n individuals
from the archive to the initial set is to promote the intensification capabilities of the
search towards the Pareto front already found. The intensification degree can vary,
depending on the number of chosen individuals.

4 Experiments

The proposed method is evaluated using gray-scale images that include three types
of images (synthetic image, coins images, and SAR images as shown in Fig. 1).
These SAR images are based on two 3-class SAR images which have been obtained
from http://www.sandia.gov/radar/imageryku.html. The SAR image 1 (Fig. 1c) is a
Ku-band SAR image with 1 m spatial resolution in the area of Rio Grande River
near Albuquerque, New Mexico, USA. This image consists of three types of land

http://www.sandia.gov/radar/imageryku.html


262 C.W. Bong and X.-S. Yang

Fig. 1 Images used (a) Synthetic image, (b) COINS image, (c) SAR image 1, (d) SAR image 2

Table 1 Two different experiments settings: (1) variation of objec-
tive combinations and (2) variation of reference set combination

Setting 1 Variation of objective formulation

1-A Minimization of J and 1
S

1-B Minimization of 1
S

and 1
FSym .K/

1-C Minimization of J and 1
FSym .K/

Setting 2 Reference set variation Combination method
2-A RefSet1[RefSet2 Linear combination
2-B RefSet1[RefSet2 SBX combination
2-C RefSet1, RefSet1 Linear combination
2-D RefSet1, RefSet1 SBX combination

covers, namely the river, the vegetation, and the crop. Meanwhile, the SAR image 2
(Fig. 1d) is a SAR image in the area of Potomac River in Arlington near Washington.
It consists of three types of land covers, namely the buildings, the land, and the
water.

Several experiment settings have been conducted to obtain the best combination
of the method. Finally, we have evaluated our proposed approach and compared it
with two other popular MO methods: NSGA-II [40] and MOCK [27].

4.1 Experiment Settings

To assess the precision of the proposed multiobjective method, we choose to repeat
the clustering process that considers all sources of variations in the objective
formulations and the reference set with different combination mechanisms. We have
conducted experiments based on different settings as shown in Table 1. In Setting 1,
we use a different combination of the objective functions with two objectives.
Meanwhile in Setting 2, we tested different mechanisms of the subset generation
and solution combination.

In the subset generation, we generated all the pairwise combination of individuals
belonging to both RefSet1 and RefSet2 in Setting 2-A and 2-B (RefSet1[RefSet2).
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In Setting 2-C and 2-D, the subset generation methods produce pairs of individuals
belonging only to RefSet1 or RefSet2. The aim is to intensify the search in two
directions by reducing the number of combinations with diverse solutions coming
from RefSet2. Since the lower the number of combinations, the shorter the inner loop
of HSS and the higher the number of restarts, promoting feedback of non-dominated
solutions from the external archive. The linear combination was used to create new
trial solutions in the solution combination mechanism in Setting 2-A and 2-C, while
SBX combination was used in Setting 2-B and 2-D.

4.2 Evaluation Method

The performance metrics are to evaluate the closeness to the Pareto front and
the diversity in the solutions obtained. First, the Generational Distance (GD) was
introduced in [30] to measure how far the elements are in the set of non-dominated
vectors found from those in the Pareto optimal set and it is defined as

GD D

0

B
@

qXn

iD1
d 2

i

n

1

C
A (11)

where is n the number of vectors in the set of non-dominated solutions found
so far and di is the Euclidean distance (measured in objective space) between
each of these solutions and the nearest member of the Pareto optimal set. All the
generated elements are on the Pareto front when GD D 0. The non-dominated sets
are normalized before this distance measure is calculated to obtain reliable results.

Besides, we use a Spread metric by computing the distance from a given point to
its nearest neighbor:


 D
Xm

iD1
d.ei ; B/C

X

X2B
d.X; B/C d

Xm

iD1
d.ei ; B/C B � d

(12)

where S is a set of solutions, S* is the set of Pareto optimal solutions, and e1 : : : em

are extreme solutions. In addition, m is the number of objectives,

d.X; B/ D minX2B; Y¤X F .X/� F .Y /2 (13)

and

d D 1

S�
X

X2B
d.X; B/ : (14)

If the solutions are well distributed, including those extreme solutions, 
D 0.
Again, we apply this metric after the normalization of the objective function values.
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Table 2 Results of mean values for GD and spread

Mean values for GD
and spread (subscript) 1-A 1-B 1-C

Synthetic image

2-A 2.4E�04 2.7E�05 8.7E�054.9E�06 4.2E�04 3.2E�04

2-B 2.6E�03 8.0E�04 1.5E�03 5.1E�04 3.0E�051.6E�05

2-C 2.4E�04 8.0E�03 8.7E�04 5.1E�04 4.2E�051.6E�05

2-D 6.1E�03 7.3E�04 1.4E�04 4.1E�04 2.0E�053.4E�04

COINS image

2-A 1.1E�03 1.1E�03 8.0E�04 2.1E�04 2.1E�053.2E�04

2-B 9.0E�04 7.4E�04 4.4E�04 1.1E�03 2.5E�053.6E�04

2-C 1.7E�04 1.7E�02 1.4E�05 3.4E�04 8.5E�052.3E�04

2-D 8.9E�03 3.4E�03 3.2E�04 1.1E�03 1.5E�053.2E�04

5 Results and Discussions

First, we present the results for segmentation of the syntactic and coins images.
The results are considered better when the GD and Spread values are lower.
The comparison of mean values of GD and Spread values in Table 2 shows that
the configuration used in setting 1-B works best with Setting 2-A (highlighted
in bold) for syntactic images. Meanwhile, in the setting of 1-C, the setting 2-B,
2-C, and 2-D give the best result (highlighted in bold) for COINS images. This
reflects that the minimization of J and 1

FSym .K/
yield better result in general.

With the SBX crossover operator, the result for the setting 1-C and 2-D for both
images are the best out of all combinations of the bi-objectives. It shows that
the diversification/intensification balance is penalized when the subset generation
method produces pairs of individuals belonging to RefSet1 and RefSet2 in the
experiment, thus the method should allow the combinations of individuals belong to
the same subset.

Later, the method is compared with two other multiobjective algorithms, namely
NSGA-II and MOCK as mentioned earlier. The Pareto fronts obtained with the three
algorithms were plotted in Fig. 2 for various settings of bi-objective functions for the
COINS image. For this minimization problem, it is demonstrated that the proposed
method is able to produce much lower values in all three cases.

Finally, Fig. 3 shows the original SAR images and their segmented results using
MOCK, NSGA-II, and the proposed method. In terms of the regional consistency
of the water and the buildings region, MOCK and the proposed method are
better than NSGA-II. However, all three algorithms cannot achieve the visually
correct segmentation in the right top region, i.e. MOCK, and the proposed method
misclassifies a big area of the land region as the water. In contrast, the proposed
method performs the best in this area where the misclassification is not so serious
as MOCK and NSGA-II.
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Fig. 2 Pareto front approximation for COINS images for different objective spaces for setting:
(a) 1-A, (b) 1-B, and (c) 1-C

6 Conclusion

Most real-world image segmentation problems are challenging, involving simul-
taneously optimizing multiple criteria with some tradeoffs. Segmentation methods
tend to be computationally expensive. Therefore, we have presented a small popu-
lation multiobjective evolutionary clustering method, based on the scatter search for
the SAR image segmentation. This chapter has demonstrated the concepts of Pareto
dominance, external archiving, diversification, and intensification of solutions. The
performance of the proposed method has been compared with two other methods,
and the results of proposed method were encouraging.

Even though the proposed approach achieved the best results, there is still room
for improvement. Future work will focus on enhancing the performance speed
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Fig. 3 Two 3-Class SAR images (a)(e) and their segmentation results for the proposed method
(b)(f), NSGA-II (c)(g) and MOCK (d)(h)
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of the algorithm. More in-depth research will also be conducted in carrying out
the parametric studies in the algorithm. In addition, extension to include more
criteria for image segmentation may potentially improve the segmentation quality.
Furthermore, there are other promising nature-inspired algorithms such as cuckoo
search and firefly algorithm [41], and hybridization with other nature-inspired
methods will also be highly useful.
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1 Introduction

Surveying the very planet we live on has been an ongoing effort since the dawn of
mankind. From the early maps of Anatolia to modern geospatial intelligence, the
mission of any map was always to make sense of the world around us. Boosting
map drawing with the latest advances of machine learning has the potential to
largely facilitate the generation of maps and extend their usefullness into application
domains beyond path finding.

In this chapter, we present the combined efforts of academia and industry to
create a framework for the automated generation of maps. The basis for this project
is airborne laser scanning: the systematic recording and digitizing of ground by
means of laser emitted from aircraft. The resulting point clouds of the environment
are then automatically classified into ground cover types, using supervised learning
and evolutionary computation approaches.

This chapter is organized as follows. In the first section we describe the
technical background of airborne laser scanning. Section 3 details the work related
to develop automated classification models. There we will compare the practical
aspects of supervised and unsupervised approaches as well as detail the supervised
classification approach we implemented and evolutionary computation extensions
to it. That section also features a description of the data set we used to empirically
test our approaches. The aspects of implementing our model in industry applications
are discussed in the subsequent Sect. 4. We close with some concluding remarks
pointing to future research.

2 Airborne Laser Scanning Point Clouds

2.1 Measurement Principle

Airborne Laser Scanning (ALS) is a remote sensing method for obtaining geomet-
rical and additional information about objects not in contact with the sensor, i.e. the
laser scanner. A laser scanner emits a short pulse of infrared light which travels
through the atmosphere and is scattered and partially absorbed by any objects in the
instantaneous field of view of the laser beam. If diffuse reflection occurs, which is
the standard case for many object surfaces, including, e.g., vegetation, bare ground,
and building surfaces, a portion of the incident light is scattered back to the sensor.
There, the backscattered signal is detected and recorded. The time lag between
emission of the pulse and detection of its echo is the two-way travel time from
the sensor to the object. With the known speed of light this time lag is turned into
the distance from sensor to object. This is also called laser range finding (LRF).
In laser scanning, the beam is scanned across the entire field of view, thus covering
a larger extent. Rotating mirrors and comparable devices are used to deflect the laser
beam and cover large areas. With the known orientation of the mirror and the known
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Fig. 1 Diagram explaining the principles of ALS [3]

position of the laser scanner in a global Earth fixed coordinate system (e.g., WGS84,
in UTM projection), the location of the objects at which the laser pulse was scattered
can be computed. This provides a so-called 3D point cloud: a set of points, each with
3 co-ordinates x; y; z. These points are obtained in the sensor co-ordinate system.

In airborne laser scanning the scanner is mounted on a flying platform (fixed wing
or helicopter). Its position is measured with Global Navigation Satellite Systems
(GNSS, e.g., GPS). The angular attitude of the sensor platform inside the aircraft is
observed with Inertial Measurement Unit (IMU, comprised of accelerometers and
gyros). The laser scanner is mounted to look downwards and the beam is scanned at
right angles to the flight direction (see Fig. 1).1 Together with the forward motion of

1Full color, high resolution versions of each figure can be found at http://www2.wu.ac.at/alsopt.

http://www2.wu.ac.at/alsopt
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the aircraft, larger areas can be scanned. Even larger areas are measured by flying
strip-wise above the terrain. This six degree of freedom trajectory defines a moving
co-ordinate system for the observation of range and angle from the laser scanner.
With an Euclidean transformation the points can be transformed from the sensor co-
ordinate system to the global co-ordinate system. Typical results for the accuracy of
such points is in the order of 10 cm (single standard deviation in each coordinate).

Besides the observation of distance between the sensor and an object point by
the time lag of emission and detection of its echo, also other observations can be
retrieved from the received echo. Firstly, it is not always the case that the laser beam
hits exactly one object. Due to the diameter of the beam, e.g., 50 cm, multiple objects
may be within the beam, but at different heights. Examples include vegetation
canopy and ground below. While a part of the signal is reflected at the leaves of
the canopy of a tree, other parts of the signal continue traveling downwards until
they hit lower vegetation or the ground, from which they are reflected. Thus, each
emitted pulse may give rise to several echoes. Other examples, next to vegetation,
are power lines and house edges, where a part of the signal is reflected on the roof,
while the other part is reflected from the ground.

Furthermore, the backscattered echo can be sampled as a function of time,
so-called waveform digitizing. The recorded amplitude depends on the range, on
laser scanner device parameters, e.g. the receiving aperture diameter, but also
on object properties, i.e., how much of the incident signal is absorbed, scattered
diffusely, etc. By means of calibration [26] the parameters of the object like the
backscatter cross-section can be determined [20, 27]. The received echo may also
be deformed relative to the emitted pulse. An increased echo width [9] is a hint for
either hitting a slanted surface or, more often the case, hitting vegetation. Within
the footprint a number of leaves may be found which have similar by not identical
height. Thus the echoes from all the leaves overlap and form a single widened echo.

2.2 Additional Point Descriptors

A point cloud P is a collection of points pi D .x; y; z/ 2 P in a three-dimensional
space. The laser scanning point cloud can be analyzed locally to enhance the
description of each point further. For instance, given a point density of 4 points/m2,
a local surface model [13] can be computed using, e.g., the ten nearest points.
This model may be an inclined plane, with its normal vector being an additional
description for the point. The equation of a plane through the point .x0; y0; z0/

having a normal vector n D .a; b; c/ is given as

a .x � x0/C b .y � y0/C c .z � z0/ D 0 (1)

To compute the three components .a; b; c/ of the normal vector, three equations,
i.e. three (non-collinear) points are required. To add robustness, generally more than
three points are used. A subset of points in the neighborhood are typically selected
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based on k-nearest neighbors or points within the sphere of a predefined radius.
If k nearest neighbors are selected, then there are kC1 points and subsequently kC1

equations (1). A least squares solution of this overdetermined system of equations
estimates an optimal plane by minimizing squared sum of distances between the
points and the estimated plane. In the matrix form this equation system is written as

A � ˇ D 0; (2)

where each row of matrix A contains the coordinates of a point relative to the center
Œxn � x0; yn � y0; zn � z0�, here n D 1::k C 1 and ˇ D Œa; b; c�T is the unknown
normal vector. The least squares solution for a system of equations of this (2) form
is equivalent to solving the eigenvalue problem of the matrix AT A. The unknown
normal vector ˇ of the estimated plane is the eigenvector corresponding to the
smallest eigenvalue of AT A. The matrix AT A is often called structure tensor [7].
The mathematical form of the structure tensor is:

AT A D T D 1

k

kC1X

iD1

.pi � Np/T .pi � Np/ (3)

here Np D .x0; y0; z0/ is the center of the points in the neighborhood.
For house roofs or street surfaces the normal vectors have been shown to reach

an accuracy of a few degrees. The normal vector further allows to convert the
backscatter cross section into the so-called diffuse reflectance. This value assumes a
certain (Lambertian) scattering behavior of the object. This scattering mechanism is
described by the reflectance (a unit-less value) and the normal vector of the surface.
A surface reflecting all incoming light perfectly diffuse has a reflectance of 1.

The quality of the plane fitting, e.g., the root mean square distances between the
optimal plane and the given points indicates the roughness of the surface [11]. The
smallest eigenvalue of T gives the variance of the distances between the points and
the estimated plane.

The structure tensor T holds plenty more useful information about the dis-
tribution of points in the neighborhood. The geometric information encoded in
T is essential in the characterization and classification of natural and artificial
objects. Three widely used features derived from T are linearity, planarity, and
omnivariance. The linearity feature reflects how well the distribution of points can
be modeled by a 3D line. Points over power lines exhibit such a characteristic,
therefore, the linearity feature is essential in classifying power lines and similar
structures. The planarity describes the smoothness of the surface which is directly
related to the roughness measure and the quality of plane fitting for normal vector
estimation. In contrast to power lines and smooth surfaces, laser echoes from
trees often spread inhomogeneously across a larger 3D volume. This volumetric
point distribution is described by the concept of omnivariance. These features are
computed using the three eigen values �1 � �2 � �3 � 0 of the matrix T :
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LT D �1 � �2

�1

(4)

PT D �2 � �3

�1

(5)

OT D 3
p

�1�2�3 (6)

In addition to LT , PT and OT , features like anisotropy, eigenentropy, and
curvature are also derived using the eigenvalues of the structure tensor T [8, 14,
21, 28].

More information about the characteristics of the surfaces can be derived using
features like echo ratio, ZRange, ZRank, NormalizedZ, and PointDistance. Echo
ratio represents the vertical penetration of the surface [10]. ZRange represents the
maximum height difference between the points in the neighborhood, while ZRank is
the rank of the point corresponding to its height in the neighborhood. NormalizedZ
is the rank of the point (between 0 and 1) multiplied by the height range in the
neighborhood. PointDistance is the average of all shortest distances between the
points in the neighborhood. A more detailed description of these features can
be found in [16, 19].

Thus, the point cloud can be augmented by additional parameters besides the
coordinates x; y; z: the echo ID (first, second, . . . last echo of a sequence of
echoes) and overall length of the echo sequence, echo amplitude, echo width,
backscatter cross section, diffuse reflectance, roughness (NormalSigma), normal
vector (NormalX, NormalY, NormalZ) echo ratio (ER), ZRange, ZRank, Normal-
izedZ, PointDensity, PointDistance, linearity, planarity, and omnivariance.

3 Classification

A major application for the automated processing of point clouds is the classification
of points. In this application, every point is assigned a class due to its inherent
laser return characteristics and its derived features. If successful, any such endeavor
promises massive savings in terms of human resources and time, and thus ultimately
in cost.

In the past, the remote sensing community focused on classifying data obtained
from satellite measurements [15]. They report that results in general have been
only somewhat satisfactory with large portions being continuously misclassified.
In contrast we work with air- and not satellite-borne data. This allows for a much
higher resolution and considerable less atmospheric interference when measuring.
Further, the used full waveform data contains much more information than tradi-
tional approaches using laser solely for range measurements. Finally, the method of
actively illuminating the ground with a laser beam is superior to passively recording
reflections of sunlight.
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Classification tasks can be grouped into human and machine based classi-
fications. Machine based classification itself can be split into knowledge- and
learning based systems. The former is today’s industry standard in ALS point cloud
processing, the latter the eventual developmental goal. The main disadvantage of
knowledge-based systems over machine learning classifiers is their requirement of
explicit definitions of ontologies and classification rules. Machine learning classi-
fiers, on the other hand, base their classifications on rules automatically deduced
from the available data with minimal (or no) human intervention. A machine
learning classifier with human intervention uses initial human input to deduce
automatically classification rules from it, that then can be used to autonomously
classify points of previously unseen point clouds.

When charging humans with point classification, a number of factors come into
play. Foremost, there is the need for additional data. Usually, this data is provided
by means of orthophotos that are (ideally) taken in parallel to the laser scanning.
Secondly, the qualification, endurance, and accuracy of the employed human has
to be taken into consideration as well. That person needs to be an expert user
of geographical information systems and trained to recognize the subtleties of
orthophotos.

This confluence of laser scanning data, external data via orthophotos and
human experience allows for rather precise classifications of points. So far, human
performance has not been surpassed by machines in terms of accuracy. Naturally,
human classification is a very time-consuming process. And equally naturally,
machines outperform humans in the time domain by many orders of magnitude.
Therefore, investigating algorithms for automated point cloud classification is an
active area of research.

When turning to learning based classification, two approaches following the
classical machine-learning dichotomy of supervised vs. unsupervised learning come
to mind. The former requires initial human classifier input to derive a classification
of unseen points, while the latter does not. The advantage of supervised classifi-
cation is that the resulting classes correspond with target classes provided through
human input. Since unsupervised classification lacks any human interaction, the
classes found may or may not be interpretable or relatable to classes that humans
would come up with. In the remainder of this section, we will focus on supervised
classification based on initial human interaction and the difficulties that arise from it.

As detailed above and elsewhere [16], point characteristics can be grouped
according to the way they were obtained: by direct measurement, by calibrated
or spatial improved measurements, by deriving them computationally, by linking
with meta data. For the former three groups, problems can arise. Directly measured
point features are subject to the specifics of the laser scanner used. The predominant
method employed for airborne laser scanning enterprises is a laser that is being
deflected off the vertical by a rotating prism or a swinging mirror. This allows to
scan a range perpendicular to the flight path and is essential for obtaining complete
laser scans. However, this method changes the characteristics of the laser return
signal, as the angle of the return signal depends on not only the characteristics of
the surface but also the angle of the inbound signal. For instance, when scanning
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directly below the aircraft only little occlusion will occur, while at extreme scan
angles, the laser beam will be obscured by any objects between the aircraft and
the ground. This distortion needs to be taken into consideration when working with
point cloud data. Section 3.4 below discusses the detection of and compensation for
these effects in greater detail.

A further question that needs addressing is rooted in the way derived attributes
are being computed. Many such attributes are computed taking in to account
a neighborhood of points. Here, neighborhood size becomes a defining factor.
Choosing an appropriate neighborhood size is far from trivial. However, neighbor-
hood size theoretically affects the classification quality that can be derived. Further
complications arise from different neighborhood sizes that can be chosen for each
attribute. In Sect. 3.5 we present a genetic algorithm for finding optimal neighbor-
hood sizes for all neighborhood dependent features involved in the classification.

Before turning to the problems described above, we will briefly introduce the data
set we worked with and describe how supervised classification works from human
and machine perspectives, respectively.

3.1 Data Set and Example

From the industrial side of view, the motivation for this project was to find a
new, fast, and reliable algorithm for the classification of point clouds, which can
minimize the manual checking and correction, because every manual manipulation
is a very time-consuming task. The scenario described in Sect. 4.4 below was the
basis for the development of the models used to automatically classify point clouds.

The data set used was taken from the project DGM-W Niederrhein with kind
permission of the Bundesanstalt für Gewässerkunde, Germany. Four predefined
areas have been selected, each not bigger than 60 hectares, with different content
like bridge, power lines, houses, coniferous and deciduous trees, concrete, gravel,
bare earth, groynes, and water.

The flight was done by airplane with the use of a Riegl LMS-Q560 200 KHz
Laser Scanner. Flight speed was 100 knots at an altitude above ground of 600 m.
The distance between the flight lines was 300 m. The effective scanning rate was set
to 150 KHz with 80 lines per second. The resulting mean point density was about 6
points/m2 over the whole area (except water areas). A radiometric calibration was
computed using asphalt streets in each flight session as calibration reference. The
calibration parameters were then applied to compute the reflectance, a normalized
intensity value. Roughness shapes (derived from digital orthophotos), which define
different ground classes of all areas were known and used as support.

For the classification a list of classes was discussed and defined. First a high-
order list with standard classes (level 1), which are most common in the majority
of laser scanning projects was generated; then each standard class was refined
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Table 1 Defined classes in two levels of granularity

First level Second level
Class Code Class Code

Unclassified 0 Unclassified 0

Undefined 1 Undefined 1

Ground

Ground 2
Sand 18
Gravel 3

Stone, rock 4
Asphalt 22
Cement 21

2

River dam, groyne 28

Vegetation
Deciduous forest 5

Coniferous forest 65

Mixed forest 7

Building
Building roof 88

Wall, building wall 24

water 9 Water 9
Car, other moving object 10

Temporary object (under construction) 11
Bridge 12
Power line 13
Tower, power pole 14
Bridge cable 15
Road protection fence 16

Artificial objects 10

Bridge construction 17

Technical 23 Technical, e.g. concrete part of a
bridge

23

Ground, vegetation 20 Ground, vegetation 20

Error 99 Error 99

into subclasses (level 2) to better represent the different kinds of environment.
The classes used for this project can be seen in Table 1.

Following the refined class list and taking the roughness shapes into consider-
ation, a three-dimensional classification was done manually using the TerraScan
software package. This was done to provide reference data to generate training
and testing data sets for the supervised classification method. Later the manual
classification was also used as gold standard for assessing the results of the
classification done with both the supervised and unsupervised methods.
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3.2 Reference Data Generation Through Manual
Classification

The term reference data refers to data that is manually classified by humans using
external data sources like orthophotos. It serves two purposes: providing training
data for supervised classification and representing a gold standard that can be used
to test the automatic classification’s accuracy.

One method to generate reference data is a manual classification of the data set
[12, 24]. This process requires a thorough visual analysis of the data and a labeling
of each point. As this process is time consuming, typically only small parts of the
data set are manually labeled. Thus, this part should represent the diversity of the
terrain surface (flat, hilly, etc.) as well as a large amount of the different target
classes with a variety of geometric appearance and distribution of other measured
or derived objects. These target classes often comprise natural objects (bare-earth,
water, vegetation, etc.) and man-made objects (buildings, roads, bridges, ramps,
power and other transmission lines, fences, cars and other moving objects, etc.).
Vegetation, as one targeted class for example, can be tall and low and have different
density. The variety of vegetation has to be included in the manually labeled part for
both, accuracy assessment and machine learning. The diversity of classes depends
on the purpose of the classification.

Reference data generation can be performed in a number of different ways.
Firstly, an automatic classification based on a selection from available algorithms
can be performed, followed by a manual improvement of the results. Secondly, only
manual classification of an unclassified data set can be performed. In the case of
a large number of classes the second way is recommended. A third option in the
generation of reference data by using existing data sets. As those data sets were
often acquired at a different time, with a different measurement technology, and
often with other applications in mind, the transferability of such a classification is
limited. Therefore, the next paragraphs will concentrate on the methods for manual
classification.

The most common methods for visualization and reference data generation are
described below. The basic and most common method uses a 2D profile (Fig. 2).
Profiles are sets of points cut out from the entire point cloud with a vertical
rectangular prism, not bound in height. The width of the prism is typically small,
e.g. 2 m, whereas its length is larger, e.g. 50 m. These values are sensible when
working with point densities ranging from 1 to 20 points/m2. Profiles allow the
user to see a part of the terrain from a side view which enables her to distinguish
the points within different classes but also to identify the border between different
objects, e.g. building and ground, or vegetation and ground. These borders are
harder to identify in a top view. In order to classify larger areas in an organized
manner, transects are used. This means that a set of parallel profiles is generated
which cover a rectangular area. Advancing in the manual classification from one
profile to the next accelerates the entire process. The second method uses a shaded
relief map (hillshade) of the surface generated by the points of one class. A hillshade
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Fig. 2 Methods for visualizing the data during manual classification; (a)—shaded relief for DTM;
(b)—shaded relief for DTM, buildings and vegetation; P1, P2—2D profiles; T(P1), T(P2)—
transects for 2D profiles; SA—sun azimuth for shaded relief

requires an artificial illumination source, which is set in a standard manner to
an azimuth of 315 degrees, lighting the area from the northwest. Lighting from
different directions can substantially help to notice the terrain slope as well as
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objects located on the ground, especially in the case of mountainous regions.
Hillshades can be generated for the bare-earth class, in which the surface represents
the digital terrain model (DTM). An example for transects and hillshades can be
found in the top panel of Fig. 2. That figure’s bottom panel exhibits a DTM. Also
combinations of classes, e.g. bare-earth and buildings, can be used. This method
can be applied for refining a manual classification, i.e. reclassifying points. This is
especially suited to remove small artifacts which occur when close spatial proximity
between two classes led to a misclassification in an earlier step.

3.3 Supervised Classification

The idea behind supervised classification is to automatically derive from a small
training set enough classification rules, so that a larger, unseen data set can be
classified automatically using the model derived from the former. For that purpose,
the training data needs to be classified already. Usually, this initial classification
is achieved by manually classifying the points. This training data is then used to
build a model or equally train the classifying algorithm. In supervised classification,
the interpretation of the model comes second, therefore more complex models
are favored over simplistic ones that would ease human interpretation; in fact,
the boundary to model complexity is dictated only by overfitting avoidance. This
model is then used to classify unseen data. To evaluate model performance, true
classification information for the unseen data is required as well. However, in
production environments, model evaluation for the entire data set is usually not
performed. Therefore, supervised classification promises to save a considerable
amount of costs.

The method of choice for supervised classification here is classification trees.
The tree is a predictive model that links up point features with that point’s class.
Structurally, the tree consists of leaves and branches. The leaves represent the final
class labels and the branches the conjunctions of features that lead up to these
class labels. Literature suggests a number of different algorithms for growing a tree
[15, 23]. For the purpose of classifying point clouds, we have found Breiman et al.’s
Classification and Regression Trees (CART) [1] to strike a good balance between
computational complexity and reliability. The implementation we used was that of
rpart [25]. In terms of Friedl et al. [5] these trees are univariate classification trees.

Conceptually, a classification tree seeks to partition the entire feature space
of a data set, one variable at a time. It does that by selecting a variable and an
appropriate splitting value that will contribute maximally to node purity. Node purity
is computed using the Gini impurity coefficient:

IG.f / D 1 �
mX

iD1

f 2
i (7)

with fi being the fraction of items labeled to be of class i for a set of m class
labels.
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This splitting and branch growing continues, until no variable can be found that
further increases node purity. The resulting trees can become quite large which
hinders interpretation (not a problem for point cloud classification) and are prone
to overfitting. This latter limitation can become troublesome when trying to classify
point clouds, as the learned model does not generalize well anymore for unseen data.
However, using cross-validation and pruning off branches that are not occurring in a
significant number of replications proves to be an effective tool against overfitting.

As stated above, the performance of a classification tree can be gauged if not
only training but also test data contain true class labels. A measurement statistic
of classification performance is the misclassification rate. Let M be a cross-
classification matrix between true and predicted class labels and its elements being
the counts of the predicted elements and J the number of all points in the point
cloud, then

MCR D 1 � t r.M /=J (8)

is the misclassification rate.
When selecting training data, two factors need consideration: the randomness

of the selection process and its stratification. The former factor becomes important
once large sets of random numbers need to be created. While computers can always
only generate pseudo random numbers, most of them are sufficiently strong for point
cloud processing.2 However, strong random number generation with guaranteed
randomness does not suffice to select a suitable training data set, if the classes are not
evenly distributed. In that common case, single classes—say temporary construction
structures—have only very few points associated with them. When choosing points
at random, it is extremely unlikely that many of the rare class points will end up
in the training data set. And if a class does not show up in the training data set,
the supervised classification algorithm cannot learn the rules required to classify it.
Therefore simple random sampling schemes do not work in the presence of rare
classes.

To enable the supervised classification of rare classes, stratified sampling needs
to be applied. In its simplest form, stratified sampling guarantees that numerous
points from each class are selected for the training data set. This, at the expense of
having the entire training data set being representative for the point cloud it has been
sampled from. The heuristic used for our stratified sampling approach sets the size
of the sample for stratum c (sc) to be either half of the points of that class (Sc) or the
overall sample size (k) divided by the number of classes in the point cloud (jAj):

sc D min.
Sc

2
;

k

jAj/ (9)

2We used the R [18] implementation of the Mersenne twister, which has a period of 219937 � 1.
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Fig. 3 Misclassification rate as a function of training data size; classification of a 3 million strong
point cloud, results bootstrapped with 50 replications

As noted above, the resulting stratified sample is not representative for the entire
point cloud anymore: rare classes occur much more often in the training data set
than they do in the point cloud. It is therefore necessary to inform the supervised
classification algorithm of that misrepresentation.

Perhaps obviously, the performance of a tree depends on the number of data
points it is allowed to learn from: the larger the training data set, the better (usually)
the classification of test data will be. However, manually classifying points is
expensive. Therefore, it is crucial to find a training data set size that is just large
enough to produce reliable predictions. Figure 3 depicts this relationship. As can
be seen, there is a sharp drop between 10,000 and 20,000 points as training data
set size with respect to mean misclassification rate and its dispersion. After about
50,000 points, the improvement gained by adding additional points subsides. We
therefore settled for 50,000 points as training data set size. The resulting mean
misclassification rate of 0.065 is a usable starting point. In the following, we will
discuss aspects of improving this achievement even further.

When classifying point cloud data into predetermined classes, not all classes
that appear to be epistemologically justified to humans can be sufficiently identified
using laser return signals. For the problem at hand, the points were to be partitioned
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Table 2 Classes that were hard to predict. Percent-
age of points that ended up in that class. Remainder
to 100 % is scattered in all classes

True class Predicted classes
Building, wall Deciduous forest (67 %)

Building roof (17 %)
Building, wall (17 %)

Temporary object Temporary object (78 %)
Road protection fence (14 %)

Power pole Power pole (75 %)
Road protection fence (16 %)

Error class points Scattered in all classes

Fig. 4 Predicted (left) and true (right) classification of a sample area

into 26 classes. Logically, these classes could be broken down into coarsely and
finely grained classes. While the coarse classes were successfully classified (MCR:
0.02, � D 0:002), the finer classification exhibited the 6.5 % MCR as described
above. Table 2 lists the finely grained classes that were notoriously troublesome.
Figure 4 shows the differences between automatic and true human classification
results.

When casting a more detailed look at these misclassifications, it becomes evident
that many of them are conceivably caused by imprecise classifications of humans in
the first place. Consider, for example, a road in winter: the asphalt tarmac is at places
covered with grit sand to prevent the icing of the road. Grit and asphalt tarmac will
differ in texture and material. Therefore, the laser return signal for patches of road
that contain more grit sand than others will exhibit different characteristics. In man-
ual classification based on aerial photography, these patches of grit sand are unlikely
to be identified and marked as such by the human classifier. To a certain extent,
the misclassification rate achieved by supervised classification of finely grained
classes can be explained by the algorithm outperforming human classification. This
is obviously very dependent on the quality of human classification.



284 C. Waldhauser et al.

A similar argument holds for the error class. Here, points were classified as errors
if some of their measurements exceeded a valid measurement range. The algorithm
was informed about these missing values. On the other hand, classification trees are
able to cope with missing information by substituting it with the second best split.
Therefore, points that a human would not classify because it contained obviously
faulty measurements were classified by the algorithm.

Another problem that is rooted in the difficulty of epistemological concepts is
the misclassification of many temporary object points as road protection fences.
It is difficult for any automated classifier to learn the concept of an object
being temporary in nature. While the algorithm successfully classifies almost all
temporary objects as some kind of artificial objects, it cannot differentiate between
these objects being permanent or temporary (road protection fences).

However, the largest problem in misclassification cannot possibly be rooted in
epistemological complexities: Buildings and walls are being classified predomi-
nantly as trees. From a geometrical point of view, trees and buildings do indeed
share some properties related to their height and volume. On the other hand,
distinctive characteristics like texture and material should have been picked up by
the algorithm. This type of mistake is also represented in Fig. 5. To some extent,
the misclassifications can be explained by snow or leaf covered roofs on top of
buildings. Still, this unsatisfactory performance can most likely only be overcome
by implementing geometrical shape detection in a post-processing step. This is the
focus of ongoing research.

Fig. 5 Misclassification at a power line where pole and vegetation cannot be separated reliably;
automatically classified point cloud on top, bottom panel shows the manually classified one
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Table 3 Model quality in mean MCR for models with
different kinds of border effect components. Results boot-
strapped with 50 replications.

Model type �MCR �MCR

No border effects 0:081 0:004

Beam vector components 0:065 0:005

Scan angle 0:074 0:005

Beam vector components and scan angle 0:063 0:004

3.4 Border Effects

Airborne laser scanning is limited by the principles of optics: dependent on the
incident angle, the characteristics of a laser return signal varies. For example,
hitting vegetation from the side will produce many more laser echoes than hitting
it straight from above. Also, the shape of the beam’s cross section depends on
that angle. Additional distortion in the characteristics of points may arise from the
method of aerial laser scanning. Due to the limited field of view of airborne laser
scanners wider areas are scanned by multiple overlapping strips. Typically, these
strips overlap to achieve full coverage even in case of wind sheer or minor navigation
errors. In these overlapping areas, the properties of the measurement process change
(as there are multiple overpasses); a change that needs to be accounted for.

One method to compensate for the different return signal quality/properties is to
take the deflection of the laser into account. There are two approaches available.
One uses the raw beam vector components (vx, vy , vz) that indicate the deflection of
the laser beam for a given point. The other method combines these components to
derive the scan angle :

 D arctan.

q
v2

x C v2
y

jvzj /

The following Table 3 shows the effect beam vector components and scan angle
have on the misclassification rate. Starting with the simplest model without any
compensation for border effects, the mean classification rate lies at 8.1%. Adding the
scan angle to the model improves its quality by one, beam vector components by 2 %
points. Adding both compensation terms to the model barely improves classification
quality with respect to a pure beam vector components model.

3.5 Scale Space Selection

A number of point cloud features are not directly measured but computed with
respect to any points immediate neighborhood. In general, the local neighborhood
of a point can be defined in 2D or 3D. Furthermore, a certain number of closest
neighbors, a fixed distance or a combination of both can be used as neighborhood
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definition. For the following analysis a cylinder (i.e., 2D fixed distance neighbor-
hood) for each point is formed. Obviously, larger radii lead to a stronger averaging
effect while smaller ones are prone to overfitting. It, therefore, is important to find
the optimal radius for each feature in order to minimize misclassification rate.

To discover the optimal radii for neighborhood-dependent features, a genetic
search algorithm [6] was used. In the following we will describe the genetic
algorithm used for this optimization and its parameters. We then turn our attention
towards evaluating the algorithm’s performance in terms of convergence and
solution stability. The former examines the relation of improvement achieved due
to and time spent on optimization. The latter analyzes the stability of recommended
radii across a number of optimizations.

The 13 neighborhood-dependent features were computed each with radii ranging
from 1 to 6 m in 0.5 m increments resulting in 11 versions of each feature. The
algorithm’s genomes were then modeled to be integer vectors of length 13 with
each gene being an integer from 1 to 11, encoding the chosen neighborhood size for
each feature. The algorithm was initialized with 100 random genomes as starting
solutions. The standard genetic operators of single-point cross-over breeding and
mutation were employed for evolutionary optimization. Further, pairing genomes
for mating was done using tournament selection and a proportion of the top
performing solutions was cloned directly into each new generation. To ensure
that the gene pool remained fresh and to safeguard against local optima traps,
some random genomes were introduced with each generation. Table 4 gives the
parameters of the genetic algorithm, which were established by experiment.

The fitness function to be optimized was the misclassification rate as described
above. In order to ensure comparability, MCR was computed using the same
training–test data split each time. The initial split was generated using a stratified
sampling scheme and included 5,137 points in the training data set. Using a random
sample of 100,000 points, the algorithm was allowed 500 generations to find the
optimum combination of radii for the 13 neighborhood-dependent features. In order
to ensure computability within reasonable time, not the entire point cloud could be
processed. Therefore, a very large simple random sample of 100,000 points was
drawn from the point cloud, and all operations were performed on that sample.

As genetic optimization is essentially stochastic in nature, the optimization was
repeated 34 times. Of these 34 replications, 30 reached the same optimum while
four stayed behind (by a very small margin). Almost all replications had converged

Table 4 Parameters of the
genetic algorithm

Parameter Value

Population size 100

Tournament size 5

Mutation probability 0.05

Elite proportion 0.1

Reseed proportion 0.1
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Fig. 6 Solution stability of 30 genetic optimization replications

to the optimum after 50 generations. By generation 75 all 30 successful replications
had converged. The optimum discovered implied a misclassification rate of 0.022.
When compared to the best misclassification achieved using a constant radius of 6 m
(0.065) this is a notable improvement by more than 60 %.

Turning to solution stability, it is of interest whether each replication’s terminal
solution leads to the same combination of radii or not. Figure 6 displays a heat
map of cylinder radii per feature chosen in each (optimal) replication. Features
that exhibit the same color shades for the entire column can be considered stable.
These are the variables NormalizedZ, NormalZ, and PointDensity. For each of these
features, the optimal cylinder radius is at 1 meter. At the other end of the spectrum,
very colorful columns, Linearity, Planarity, and Z-Range, are indicative of features
whose neighborhood size has no impact on misclassification rate.
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The genetic algorithm delivers a definite improvement of the misclassification
rate. The remaining 2 % are most likely due to measurement and human clas-
sification error. With respect to solution stability, it became obvious that while
some features are computationally dependent on neighborhood size, the outcome
is not affected by them. On the other hand, there are features that clearly exhibit a
strong dependence on neighborhood size. Conceptually, the genetic algorithm can
be improved by implementing consensus voting when delivering radii recommen-
dations. This too is an ongoing research effort.

We conclude that supervised classification of point clouds is definitely an idea
worthwhile pursuing. The data quality obtained from airborne laser scanning allows
for a very precise analysis of the ground. In combination with the sophisticated
computation of derived point cloud features, advanced classification algorithms
sampling schemes as well as evolutionary optimization strategies, we are able to
produce classification accuracies that surpass classical satellite based classification.
While the classical approaches rarely ever reach above 90 % accuracy, our approach
delivers consistently accuracies close to 100 %. While there are challenges that
remain to be overcome, the achieved accuracy is already good enough for many
applications. In the following we will discuss these applications further.

4 Industrial Applications

Airborne Laser Scanning is in use for industrial purposes since the mid-1990s
and has dramatically improved since then. For example: in the beginning there
have been laser scanners with a fixed array of fiber optical conductors, which
brought a good point density in the direction of flight, but very poor density in the
transverse direction. So a detection of embankments along the flight direction was
very hard. Technological advances like the steadily increased measurement rates,
improved apertures and new detection algorithms prepared the way for a wide field
of applications.

There are different technologies at work in today’s laser scanners: they provide
sampling rates of up to 600,000 laser pulses per second. Also modern apertures
are able to detect more than just one single return per pulse and provide reflectance,
echo ID and echo width for each return; some can even penetrate water surfaces and
give information on submarine ground and submerged objects.

Higher point densities result in better environment depicting. With today’s high
point densities, embankments can be well detected by extracting breaklines within
the point clouds. Normally 4 points/m2 will be ordered, but customers more often
want 8 or more points/m2. This gives the opportunity to model the ground more
precisely. But customers are not only interested in the presence of ground, but they
also want to know what kind of ground they are looking at.

Classification is mostly a semiautomatic process, consisting of an automatic step
and a manual checking and correction step. One of the aims is to minimize the
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need of manual correction, due to its cost. Another aim is to improve the automatic
detection of more than a standard set of classes to cater to future customer’s
requirements.

In the following we will present some examples of airborne laser scanning
applications.

4.1 Digital Terrain Model

Often a plain model of the ground is needed for planning or research purposes.
These models are of great importance, e.g. for road- or railway planning offices, in
order to know how much material has to be removed or added for street or railway
planning. Therefore the point cloud has to be classified with special emphasis on
detecting erroneous echoes. The DTM classes mostly consist of ground, water and
unclassified points, which have no influence on the model.

4.2 Digital Surface Model

The DSM features ground, vegetation, buildings, bridges, and sometimes power
lines and describes the earth’s surface including natural and artificial objects. By
subtracting the DTM from the DSM the result will be a normaliuzed DSM. This can
then be used, e.g., for easy measurement of building or vegetation heights.

4.3 Avalanche Prediction

In mountainous areas avalanches (snow or boulders) are a common threat, so
prediction and subsequently protection is an important task. For aviation purposes it
is also necessary to know the position of power lines or cable-cars. Therefore each
point needs to be classified along the lines of ground, various vegetation, water,
building, power lines, . . .

To compute the pathways and probabilities of avalanches in certain areas, one
needs to know not only point classes but also inclination, roughness (in this case
roughness refers to a parameter, which will tell how fluids will be slowed on a
surface), azimuth, . . .

All these features can be derived out of the point cloud by classifying using the
above algorithm.
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4.4 Flooding Prediction

To protect people and environment in areas that are in danger of flooding around
rivers, it is vital to know how water is flowing over different types of ground.
Therefore ground has to be classified in different roughness classes, that have known
properties for flowing or seeping. The classification of roughness areas is normally
done by digitizing digital orthophotos [4, 17]. In respect to the classification
methods described in Sect. 3, roughness can be set in direct relation with different
ground classes. Taking into account the derived DTM together with the digitized
breaklines [2], a triangulated surface can be computed.

By combining the DTM surface with information of the different point classes
from ground detection, there can be defined areas with varying roughness. This
classification is normally done by using digital orthophotos as reference. By
classifying the roughness purely from the data contained within a laser point cloud,
the high cost of extra orthophotos can be skipped.

4.5 Forestry and Vegetation

The detection of forested areas is an important part of environmental applications.
Especially time series analyses, e.g. to estimate deforestation, were often carried
out using analog or digital orthophotos so far. However, Airborne Laser Scanning
gets more popular for such applications, because it is not restricted to the canopy.
The laser beam can often penetrate the vegetation returning multiple echoes. This
provides information about the vertical structure of the forest including good
knowledge of the ground, which is needed to compute high quality DTMs, tree
heights, stem volumes, etc. In urban areas the knowledge of classified vegetation is
used in applications for 3D visualizations, urban planning, noise emission charts,
etc. [22].

5 Conclusion

In this chapter we presented an overview of advances in processing and auto-
matically classifying point clouds from airborne laser scanning. Particularly, the
accuracy of the classification of point clouds can be improved greatly using machine
learning based methods like decision trees. There, manually classified training
data—a small subset of the entire point cloud—is used to build a classification
model. This then in turn can be used to classify the remainder of the point cloud
or a fresh one.

These advances in classification accuracy are chiefly due to our making use
of the entire full wave form of the laser echoes. Using advanced radiometric
and computational methods, for every echo additional properties or features are
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computed from that echo’s wave form, external data and the echo’s immediate
neighborhood. Using an evolutionary algorithm we were able to identify features
where the size of that neighborhood influenced classification accuracy and establish
optimal neighborhood size values for these features.

The model presented in this chapter has applications ranging from forestry to
avalanche and flooding protection. A more immediate application is the automatic
generation of maps. However, this is but the beginning of our journey. We
already pointed to the inclusion of shape detection for improving classification
accuracy and consensus voting the genetic algorithm to optimize neighborhood
size recommendations as current research goals. Further extensions focus on better
understanding how the scan angle affects echo properties when analyzing the flights
strip-wise. A major issue is the possibility to learn from multiple but possibly
unreliably sources. Often, orthophotos related to a point cloud are out-of-date or
older maps are used to provide external reference data. Ideally, if we were able to
use these data sources to speed up training data and model generation, the entire
remote sensing work flow could be revolutionized.
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A Novel Approach to the Common Due-Date
Problem on Single and Parallel Machines

Abhishek Awasthi, Jörg Lässig, and Oliver Kramer

Abstract This chapter presents a novel idea for the general case of the Common
Due-Date (CDD) scheduling problem. The problem is about scheduling a certain
number of jobs on a single or parallel machines where all the jobs possess
different processing times but a common due-date. The objective of the problem
is to minimize the total penalty incurred due to earliness or tardiness of the job
completions. This work presents exact polynomial algorithms for optimizing a
given job sequence for single and identical parallel machines with the run-time
complexities of O.n log n/ for both cases, where n is the number of jobs. Besides,
we show that our approach for the parallel machine case is also suitable for non-
identical parallel machines. We prove the optimality for the single machine case
and the run-time complexities of both. Henceforth, we extend our approach to one
particular dynamic case of the CDD and conclude the chapter with our results for
the benchmark instances provided in the OR library.

Keywords Scheduling • Common Due Date • Algorithms • Combinatorial
optimization • Simulated annealing

1 Introduction

The Common Due-Date scheduling problem involves sequencing and scheduling of
jobs over machine(s) against a common due-date. Each job possesses a processing
time and different penalties per unit time in case the job is completed before or
later than the due-date. The objective of the problem is to schedule the jobs so as to
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minimize the total penalty due to earliness or tardiness of all the jobs. In practice,
a common due date problem occurs in almost any manufacturing industry. Earliness
of the produced goods is not desired because it requires the maintenance of some
stocks leading to some expenses to the industry for storage cost, tied-up capital with
no cash flow, etc. On the other hand, a tardy job leads to customer dissatisfaction.

When scheduling on a single machine against a common due date, one job
at most can be completed exactly at the due date. Hence, some of the jobs will
complete earlier than the common due-date, while other jobs will finish later.
Generally speaking, there are two classes of the common due-date problem which
have proven to be NP-hard, namely:

• Restrictive CDD problem
• Non-restrictive CDD problem.

A CDD problem is said to be restrictive when the optimal value of the objective
function depends on the due-date of the problem instance. In other words, changing
the due date of the problem changes the optimal solution as well. However, in
the non-restrictive case a change in the value of the due-date for the problem
instance does not affect the solution value. It can be easily proved that in the
restrictive case, the sum of the processing times of all the jobs is strictly greater
than the due date and in the non-restrictive case the sum of the processing times is
less than or equal to the common due-date.

In this chapter, we study the restrictive case of the problem. However, our
approach can be applied to the non-restrictive case on the same lines. We consider
the scenario where all the jobs are processed on one or more machines without
pre-emption and each job possesses different earliness/tardiness penalties. We also
discuss a particular dynamic case of the CDD on a single machine and prove that
our approach is optimal with respect to the solution value.

2 Related Work

The Common due-date problem has been studied extensively during the last 30

years with several variants and special cases [13, 21]. In 1981, Kanet presented an
O(n log n) algorithm for minimizing the total absolute deviation of the completion
of jobs from the due date for the single machine, n being the number of jobs [13].
Panwalkar et al. considered the problem of common due-date assignment to
minimize the total penalty for one machine [17]. The objective of the problem was
to determine the optimum value for the due-date and the optimal job sequence to
minimize the penalty function, where the penalty function also depends on the due-
date along with earliness and tardiness. An algorithm of O(n log n) complexity was
presented but the special problem considered by them consisted of symmetric costs
for all the jobs [17, 21].

Cheng again considered the same problem with slight variations and presented a
linear programming formulation [5]. In 1991 Cheng and Kahlbacher and Hall et al.
studied the CDD problem extensively, presenting some useful properties for the
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general case [6, 10]. A pseudo polynomial algorithm of O(n2d ) (where d is
the common due-date) complexity was presented by Hoogeveen and Van de Velde
for the restrictive case with one machine when the earliness and tardiness penalty
weights are symmetric for all the jobs [11]. In 1991 Hall et al. studied the
unweighted earliness and tardiness problem and presented a dynamic programming
algorithm [10]. Besides these earlier works, there has been some research on
heuristic algorithms for the general common due date problem with asymmetric
penalty costs. James presented a tabu search algorithm for the general case of the
problem in 1997 [12].

More recently in 2003, Feldmann and Biskup approached the problem using
metaheuristic algorithms, namely simulated annealing (SA) and threshold accept-
ing, and presented the results for benchmark instances up to 1; 000 jobs on a single
machine [4, 7]. Another variant of the problem was studied by Toksari and Güner
in 2009, where they considered the common due date problem on parallel machines
under the effects of time dependence and deterioration [22]. Ronconi and Kawamura
proposed a branch and bound algorithm in 2010 for the general case of the CDD
and gave optimal results for small benchmark instances [19]. In 2012, Rebai et al.
proposed metaheuristic and exact approaches for the common due date problem to
schedule preventive maintenance tasks [18].

In 2013, Banisadr et al. studied the single-machine scheduling problem for the
case that each job is considered to have linear earliness and quadratic tardiness
penalties with no machine idle time. They proposed a hybrid approach for the
problem based upon evolutionary algorithm concepts [2]. Yang et al. investigated
the single-machine multiple common due date assignment and scheduling problems
in which the processing time of any job depends on its position in a job sequence and
its resource allocation. They proposed a polynomial algorithm to minimize the total
penalty function containing earliness, tardiness, due date, and resource consumption
costs [23].

This chapter is an extension of a research paper presented by the same authors
in [1]. We extend our approach for a dynamic case of the problem and for
non-identical parallel machines. Useful examples for both the single and parallel
machine cases are presented.

3 Problem Formulation

In this section we give the mathematical notation of the common due date problem
based on [4]. We also define some new parameters which are necessary for our
considerations later on.
Let

n D total number of jobs
m D total number of machines
nj D number of jobs processed by machine j .j D 1; 2; : : : ; m/

Mj D time at which machine j finished its latest job



296 A. Awasthi et al.

W k
j D kth job processed by machine j

Pi D processing time of job i .i D 1; 2; : : : ; n/

Ci D completion time of job i .i D 1; 2; : : : ; n/

D D the common due date
˛i D the penalty cost per unit time for job i for being early
ˇi D the penalty cost per unit time for job i for being tardy
Ei D earliness of job i , Ei D maxf0; D � Cig (i D 1; 2; : : : ; n)
Ti D tardiness of job i , Ti D maxf0; Ci �Dg (i D 1; 2; : : : ; n) .

The cost corresponding to job i is then expressed as ˛i � Ei C ˇi � Ti . If job i

is completed at the due date, then both Ei and Ti are equal to zero and the cost
assigned to it is zero. When job i does not complete at the due date, either Ei or Ti

is nonzero and there is a strictly positive cost incurred. The objective function of the
problem can now be defined as

min
nX

iD1

.˛i �Ei C ˇi � Ti / : (1)

According to the three-field problem classification introduced by Graham
et al. [9], the common due-date scheduling problem on a single machine can
be expressed as 1jPi jPn

iD1.˛i Ei Cˇi Ti /. This three-field notation implies that the
jobs with different processing times are scheduled on a single machine to minimize
the total earliness and tardiness penalty.

4 The Exact Algorithm for a Single Machine

We now present the ideas and the algorithm for solving the single machine case for
a given job sequence. From here onwards we assume that there are n jobs to be
processed by a machine and all the parameters stated at the beginning of Sect. 3
represent the same meaning. The intuition for our approach comes from a property
presented and proved by Cheng and Kahlbacher for the CDD problem [6]. They
proved that the optimal solution for a problem instance with general penalties has
no idle time between any two consecutive jobs or in other words, when the schedule
is compact. This property implies that at no point of time the machine processing
the jobs is left idle till the processing of all the jobs is completed. In our approach
we first initialize the completion times of all the jobs without any idle times and
then shift all the jobs with the same amount of time.

Let J be the input job sequence where Ji is the i th job in the sequence J .
Note that without loss of any generality we can assume Ji D i , since we can
rank the jobs for any sequence as per their order of processing. The algorithm
takes the job sequence J as the input and returns the optimal value for Eq. (1).
There are three requirements for the optimal solution: allotment of jobs to specific
machines, the order of processing of jobs in every machine, and the completion
times for all the jobs.
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Due
Date

0

Job 1 Job 2 Job 3 Job 4 Job 5

Shifting Left

Fig. 1 Left shift (decrease in completion times) of all the jobs towards decreasing total tardiness
for a sequence with five jobs. Each reduction is done by the minimum of the processing time of the
job which is starting at the due date and the maximum possible left shift for the first job

Using the property of compactness proved by Cheng and Kahlbacher [6], our
algorithm assigns the completion times to all the jobs such that the first job is
finished at maxfP1; Dg and the rest of the jobs follow without any idle time in
order to obtain an initial solution which is then improved incrementally. It is quite
apparent that a better solution for this sequence can be found only by reducing the
completion times of all the jobs, i.e. shifting all the jobs towards decreasing total
tardiness penalty as shown in Fig. 1 with five jobs. Shifting all the jobs to the right
will only increase the total tardiness.

Hence, we first assign the jobs in J to the machine such that none of the jobs are
early and there is no idle time between the processing of any two consecutive jobs,
as stated in Eq. (2).

Ci D
(

maxfP1; Dg if i D 1

Ci�1 C Pi if 2 � i � n :
(2)

Before stating the exact algorithm for a given sequence for the single machine case,
we first introduce some new parameters, definitions, and theorems which are useful
for the description of the algorithm. We first define DTi D Ci �D, i D 1; 2; : : : ; n,
and ES D C1 �P1. It is clear that DTi is the algebraic deviation of the completion
time of job i from the due date and ES is the maximum possible shift (reduction of
completion time) for the first job.

Definition 1. PL is a vector of length n and any element of PL (PLi ) is the penalty
possessed by job i . We define PL, as

PLi D
(
�˛i ; if DTi � 0

ˇi ; if DTi > 0 :
(3)

With the above definition we can express the objective function stated by Eq. (1)
as min.Sol/, where

Sol D
nX

iD1

.DTi � PLi / : (4)

The Algorithm 1 mentioned below returns the optimal solution value for any job
sequence for the CDD problem on a single machine.
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Algorithm 1: Exact Algorithm for Single Machine

1 Initialize Ci8i (Equation (2))
2 Compute PL; DT; ES

3 Sol  nP

iD1

.DTi � PLi /

4 j  2

5 while .j < nC 1/ do
6 Ci  Ci �minfES; DTj g, 8i

7 Update PL; DT; ES

8 Vj  
nP

iD1

.DTi � PLi /

9 if .Vj < Sol/ then Sol  Vj else go to 11
10 j  j C 1

11 return Sol

5 Parallel Machine Case

For the parallel machine case we first need to assign the jobs to each machine to get
the number of jobs and their sequence in each machine. In addition to the parameters
explained in Sect. 3, we define a new parameter �, which is the machine assigned to
each job.

Definition 2. We define � as the machine which has the earliest scheduled comple-
tion time of the last job on that machine. Using the notation mentioned in Sect. 3, �

can be mathematically expressed as

� D argmin
jD1;2;:::;m

Mj :

Algorithm 2 assigns the first m jobs to each machine, respectively, such that
they all finish processing at the due date or after their processing time, whichever
is higher. For the remaining jobs, we assign a machine � to job i since it offers the
least possible tardiness. Likewise each job is assigned at a specific machine such
that the tardiness for all the jobs is the least for the given job sequence. The job
sequence is maintained in the sense that for any two jobs i and j such that job j

follows i ; the Algorithm 2 will either maintain this sequence or assign the same
starting times at different machines to both the jobs. Finally, Algorithm 2 will give us
the number of jobs .nj / to be processed by any machine j and the sequence of jobs
in each machine, W k

j . This is the best assignment of jobs at machines for the given
sequence. Note that the sequence of jobs is still maintained here, since Algorithm 2
ensures that any job i is not processed after a job i C 1. Once we have the jobs
assigned to each machine, the problem then converts to m single machine problems,
since all the machines are independent.
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Algorithm 2: Exact Algorithm: Parallel Machine

1 Mj  0 8j D 1; 2; : : : ; m

2 nj  1 8j D 1; 2; : : : ; m

3 i  0

4 for j  1 to m do
5 i  i C 1

6 W 1
j  i

7 Mj  maxfPi ; Dg
8 for i  mC 1 to n do
9 Compute �

10 n�  n� C 1

11 W
n�

�  i

12 M�  M� C Pi

13 for each machine do
14 Algorithm 1

For the non-identical parallel machine case we need a slight change in the
definition of � in Definition 2. Recall that Mj is the time at which machine j

finished its latest scheduled job and � is the machine which has the least completion
time of jobs, among all the machines. In the non-identical machine case we need to
make sure that the assigned machine not only has the least completion time but it
is also feasible for the particular job(s). Hence, for the non-identical machines case,
the definition of � in Algorithm 2 will change to �i where

�i D argmin
jD1;2;:::;m

Mj ; such that machine j is feasible for job i :

For the remaining part, the Algorithm 2 works in the same manner as for the
identical parallel machines. Algorithm 2 can then be applied to the non-identical
independent parallel machine case for the initial allocation of jobs to machines.

6 Illustration of the Algorithms

In this section we explain Algorithms 1 and 2 with the help of illustrative examples
consisting of n D 5 jobs for both, single and parallel machine cases. We optimize
the given sequence of jobs J where Ji D i , i D 1; 2; : : : ; 5. The data for this
example is given in Table 1. There are five jobs to be processed against a common
due-date (D) of 16. The objective is to minimize Eq. (4).
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Table 1 The data for the
exemplary case. The parameters
possess the same meaning as
explained in Sect. 3

i Pi ˛i ˇi

1 6 7 9

2 5 9 5

3 2 6 4

4 4 9 3

5 4 3 2

6 5 2 4 4

t0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 2 Initialization of the completion times of all the jobs. The first job completes processing at
the due date and the remaining jobs follow without any idle time

6 5 2 4 4

t0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 3 All the jobs are shifted left by minfES; DTj g D 2 units processing time

6.1 Single Machine Case

We first initialize the completion times of all the jobs according to Eq. (2) as
shown in Fig. 2. The first job is completed at the due-date and possesses no
penalty. However, all the remaining jobs from Ji ; i D 2; 3; 4; 5 are tardy. After the
initialization, the total penalty of this schedule is Sol DPn

iD1.˛i �Ei C ˇi � Ti/ D
.0 � 7C 0 � 9/C .0 � 9C 5 � 5/C .0 � 6C 7 � 4/C .0 � 9C 11 � 3/C .0 � 3C 15 � 2/.
Hence, the objective value Sol D 116.

After the first left shift of 5 time units, the total penalty of this schedule is Sol D
Pn

iD1.˛i �Ei C ˇi � Ti / D .5 � 7C 0 � 9/C .0 � 9C 0 � 5/C .0 � 6C 2 � 4/C .0 � 9C
6 � 3/C .0 � 3C 10 � 2/. Hence the objective value Sol D 81.

After the third left shift of 2 time units (Fig. 3), the total penalty of this schedule
is Sol DPn

iD1.˛i �Ei Cˇi � Ti/ D .7 � 7C 0 � 9/C .2 � 9C 0 � 5/C .0 � 6C 0 � 4/C
.0 � 9C 4 � 3/C .0 � 3C 4 � 2/. Hence the objective value Sol D 95.

Since the new value of the objective function is higher than in the previous step,
we have the optimal value and schedule for this problem as shown in Fig. 4 with a
total penalty of 81.
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6 5 2 4 4

t0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 4 All the jobs are shifted left by minfES; DTj g D 5 units processing time

6 5 2 4 4

t0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 5 Final left shift by ES D 3 units

For the sake of completeness, Fig. 5 shows the next step if we continue reducing
the completion times using the same criterion as before. After the last possible left
shift of 3 time units, the total penalty of this schedule is Sol D Pn

iD1.˛i � Ei C
ˇi �Ti/ D .10 �7C0 �9/C .5 �9C0 �5/C .3 �6C0 �4/C .0 �9C1 �3/C .0 �3C5 �2/.
Hence the objective value Sol D 146. The total penalty increases further to a value
of 146. Hence, the optimal value for this sequence is 81.

6.2 Parallel Machine Case

In the parallel machine case we consider two parallel machines and illustrate how
we first assign the jobs in the same job sequence J to the machines and optimize
them independently. The data used in this example is the same as in Table 1. The
common due-date for the instance is also the same as earlier, D D 16.

As shown in Fig. 6a, there are five jobs to be processed on two independent
identical parallel machines, against a due-date of 16. Hence, we first assign the
jobs to a machine. We start with the first two jobs in the sequence J and assign
them to the machines separately at maxfPi ; Dg, Fig. 6b. For the remaining jobs, we
subsequently choose a machine which offers least tardiness for each job. The third
job in the sequence is assigned to the first machine and the fourth job goes to the
second machine on the same lines, as depicted in Fig. 6c. Finally, we have all the
jobs assigned to a machine (Fig. 6d) and each machine has a certain number of
jobs to process in a given sequence. In this example, the first machine processes
three jobs with the processing times of 6; 2, and 4, while the second machine
processes two jobs with processing times of 5 and 4, in that order. Once we have
this assignment of jobs to machines, we can apply our single machine algorithm to
both of them independently to optimize the overall earliness and tardiness penalty.
Figure 7 shows the best schedule for both the machines with an overall penalty
of 32.
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Fig. 6 Illustration of the assignment of jobs to machines. After the assignment, each machine has
a certain number of jobs in the given sequence

0 2 4 6 8 10 12 14 16 18 20 22

t

0 2 4 6 8 10 12 14 16 18 20 22

t

6

5

2

4

4

Fig. 7 Final optimal schedule for both the machines for the given sequence of jobs. The overall
penalty of 32 is reached, which is the best solution value as per Algorithms 1 and 2.

7 Proof of Optimality

We now prove the optimality of Algorithm 1 with respect to the solution value for
the single machine case.

Lemma 1. If the initial assignment of the completion times of the jobs (Ci ), for a
given sequence J is done according to Eq. (2), then the optimal solution for this
sequence can be obtained only by reducing the completion times of all the jobs or
leaving them unchanged.
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Proof. We prove the above lemma by considering the two cases of Eq. (2).

Case 1: D > P1

In this case Eq. (2) will ensure that the first job is completed at the due-date and
the following jobs are processed consecutively without any idle time. Moreover,
with this assignment all the jobs will be tardy except for the first job which will
be completed at the due date. The total penalty (say, PN ) will be

Pn
iD1.ˇi � Ti /,

where Ti D Ci � D, i D 1; 2; : : : ; n. Now if we increase the completion time
of the first job by x units, then the new completion times C 0i for the jobs will be
CiCx8i; .i D 1; 2; : : : ; n/ and the new total penalty PN 0 will be

Pn
iD1.ˇi �T 0i /,

where T 0i D TiCx .i D 1; 2; : : : ; n/. Clearly, we have PN 0 > PN which proves
that an increase in the completion times cannot fetch optimality which in turn
proves that optimality can be achieved only by reducing the completion times or
leaving them unchanged from Eq. (2).
Case 2: D � P1

If the processing time of the first job in any given sequence is more than the
due-date, then all the jobs will be tardy including the first job as P1 > D.
Since all the jobs are already tardy, a right shift (i.e., increasing the completion
times) of the jobs will only increase the total penalty and hence worsening the
solution. Moreover, a left shift (i.e., reducing the completion times) of the jobs
is not possible either, because C1 D P1, which means that the first job will start
at time 0. Hence, in such a case Eq. (2) is the optimal solution. In the rest of
the paper we avoid this simple case and assume that for any given sequence the
processing time of the first job is less than the due-date. �

Theorem 1. Algorithm 1 finds the optimal solution for a single machine common
due date problem, for a given job sequence.

Proof. The initialization of the completion times for a sequence P is done according
to Lemma 1. It is evident from Eq. (2) that the deviation from the due date (DTi )
is zero for the first job and greater than zero for all the following jobs. Besides,
DTi < DTiC1 for i D 1; 2; 3; : : : ; n � 1, since Ci < CiC1 from Eq. (2) and DTi is
defined as DTi D Ci �D. By Lemma 1 the optimal solution for this sequence can
be achieved only by reducing the completion times of all the jobs simultaneously
or leaving the completion times unchanged. Besides, a reduction of the completion
times is possible only if ES > 0 since there is no idle time between any jobs.

The total penalty after the initialization is PN DPn
iD1.ˇi �Ti/ since none of the

jobs are completed before the due date. According to Algorithm 1 the completion
times of all the jobs is reduced by minfES; DTj g at any iteration. Since DT1 D 0,
there will be no loss or gain for j D 1. After any iteration of the while loop in
line 5, we decrease the total weighted tardiness but gain some weighted earliness
penalty for some jobs. A reduction of the completion times by minfES; DTj g is
the best non-greedy reduction. Let minfES; DTj g > 0 and t be a number between
0 and minfES; DTj g. Then reducing the completion times by t will increase the
number of early jobs by one and reduce the number of tardy jobs by one. With
this operation, if there is an improvement to the overall solution, then a reduction
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by minfES; DTj g will fetch a much better solution (Vj ) because reducing the
completion times by t will lead to a situation where none of the jobs either start
at time 0 (because ES > 0) nor any of the jobs finish at the due date since the jobs
1; 2; 3; : : : ; j � 1 are early, jobs j; j C 1; : : : ; n are tardy and the new completion
time of job j is C 0j D Cj � t .

Since after this reduction DTj > 0 and DTj < DTjC1 for j D 1; 2; 3; : : : ; n�1,
none of the jobs will finish at the due date after a reduction by t units. Moreover,
it was proved by Cheng et al. [6] that in an optimal schedule for the restrictive
common due date, either one of the jobs should start at time 0 or one of the jobs
should end at the due date. This case can occur only if we reduce the completion
times by minfES; DTj g. If ES < DTj , the first job will start at time 0 and if
DTj < ES then one of the jobs will end at the due date. In the next iterations we
continue the reductions as long as we get an improvement in the solution and once
the new solution is not better than the previous best, we do not need to check any
further and we have our optimal solution. This can be proved by considering the
values of the objective function at the indices of two iterations; j and j C 1. Let
Vj and VjC1 be the value of the objective function at these two indices, then the
solution cannot be improved any further if VjC1 > Vj by Lemma 2. �

Lemma 2. Once the value of the solution at any iteration j is less than the value
at iteration j C 1, the solution cannot be improved any further.

Proof. If VjC1 > Vj , a further left shift of the jobs does not fetch a better solution.
Note that the objective function has two parts: penalty due to earliness and penalty
due to tardiness. Let us consider the earliness and tardiness of the jobs after the j th
iterations are E

j
i and T

j
i for i D 1; 2; : : : ; n. Then we have Vj D Pn

iD1.˛i E
j
i C

ˇi T
j
i / and V jC1 D Pn

iD1.˛i E
jC1
i C ˇi T

jC1
i /. Besides, after every iteration of

the while loop in Algorithm 1, the completion times are reduced or in other words
the jobs are shifted left. This leads to an increase in the earliness and a decrease
in the tardiness of the jobs. Let’s say, the difference in the reduction between V jC1

and V j is x. Then we have EjC1 D EjCx and TjC1 D Tj �x. Since V jC1 > V j ,
we have:

Pn
iD1.˛i E

jC1
i C ˇi T

jC1
i / >

Pn
iD1.˛i E

j
i C ˇi T

j
i /. By substituting the

values of EjC1 and T jC1 we get
PjC1

iD1 ˛i x >
Pn

iDjC2 ˇi x. Hence, at the .jC1/th

iteration the total penalty due to earliness exceeds the total penalty due to tardiness.
This proves that for any further reduction there cannot be an improvement in the
solution because a decrease in the tardiness penalty will always be less than the
increase in the earliness penalty. �

8 Algorithm Run-Time Complexity

In this section we study and prove the run-time complexity of the Algorithms 1
and 2. We calculate the complexities of all the algorithms separately considering the
worst cases for all. Let T1 and T2 be the run-time complexities of the algorithms,
respectively.
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Lemma 3. The run-time complexities of both Algorithms 1 and 2 are O.n2/, where
n is the total number of jobs.

Proof. As for Algorithm 1, the calculations involved in the initialization step and
evaluation of PL; DT; ES; Sol are all of O.n/ complexity and their evaluation
is irrespective of the any conditions unlike inside the while loop. The while loop
again evaluates and updates these parameters at every step of its iteration and returns
the output once there is no improvement possible. The worst case will occur when
the while loop is iterated over all the values of j , j D 2; 3; : : : ; n. Hence the
complexity of Algorithm 1 is O.n2/ with n being the number of jobs processed by
the machine. Hence, T1 D O.n2/.

Let m be the number of machines, then in the Algorithm 2, the complexity for
the first two for loops is O.mC .n�m/m/ where O.m/ corresponds to the first for
loop and O..n�m/m/ corresponds to the second for loop involving the calculation
of �. For the last for loop, we need to consider all the cases of the number of jobs
processed by each machine.

Let x1; x2; x3; : : : ; xm be the number of jobs processed by the machines, respec-
tively. Then,

Pm
iD1 xi D n. We make a reasonable assumption that the number of

machines is less than the number of jobs, which is usually the case. In such a case the
complexity of Algorithm 2 (T2) is equal to O.mCnm�m2/CPm

iD1 O.x2
i /. Since

Pm
iD1 xi D n, we have

Pm
iD1 O.x2

i / D O.n2/. Thus the complexity of Algorithm 2
is O.mC nm �m2 C n2/. Since we assume m < n we have T2 D O.n2/. �

9 Exponential Search: An Efficient Implementation
of Algorithm 1

Algorithm 1 shifts the jobs to the left by reducing the completion times of all the jobs
by minfES; DTj g on every iteration of the while loop. The run-time complexity
of the algorithm can be improved from O.n2/ to O.n log n/ by implementing an
exponential search instead of a step by step reduction, as in Algorithm 1. To explain
this we first need to understand the slope of the objective function values for each
iteration. In the proof of optimality of Algorithm 1, we proved that there is only
one minimum present in V j8j . Besides, the value of DTj increases for every j as
it depends on the completion times. Also note that the reduction in the completion
times is made by minfES; DTj g. Hence, if for any j , ES � DTj then every
iteration after j will fetch the same objective function value, V j . Hence, the solution
values after each iteration will have a trend as shown below in Fig. 8.

With such a slope of the solution we can use the exponential search as opposed
to a step by step search, which will in turn improve the run-time complexity of
Algorithm 1. This can be achieved by increasing or decreasing the step size of the
while loop by orders of 2 (i.e. 2; 22; 23; : : : ; n) while keeping track of the slope
of the solution. The index of the next iteration should be increased if the slope is
negative and decreased if the slope is non-negative. At each step we need to keep
track of the previous two indices and once the difference between the indices is less
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j0 1 ES≤ DTj
n

Vj

Fig. 8 The trend of the solution value against each iteration of Algorithm 1, for a job sequence.
The value of the solution does not improve any further after a certain number of reductions

than the minimum of the two, then we need to perform binary search on the same
lines. The optimum will be reached if both the adjacent solutions are greater than
the current value. In this methodology we do not need to search for all values of j

but in steps of 2j . Hence the run-time complexity with exponential search will be
O.n log n/ for both the single machine and parallel machine cases.

10 A Dynamic Case of CDD

In this section we discuss about a dynamic case of the common due-date problem for
the single machine case at the planning stage. Consider the case when an optimal
schedule has been calculated for a certain number of jobs, and then an unknown
number of jobs with unknown processing times arrive later. We assume that the
original schedule is not disturbed and the new sequence of jobs can be processed
after the first set of jobs. We show that in such a case the optimal schedule for the
new extended job sequence can be achieved only by further reducing the completion
times of all the jobs. We would like to emphasize here that we are considering the
dynamic case at the planning stage when none of the jobs of the original known job
sequence has gone to the processing stage.

Let us assume that at any given point of time there are a certain number of jobs
(n) in a sequence J , for which the optimal schedule against a common due-date
D on a machine has been already calculated using Algorithm 1. In such a case, if
there are some additional jobs n0 in a sequence J 0 to be processed against the same
due-date and by the same machine without disturbing the sequence J , the optimum
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solution for the new sequence of n C n0 jobs in the extended sequence J C J 01
can be found by further reducing the completion times of jobs in J and the same
reduction in the completion times of jobs in J 0 using Algorithm 1. We prove it using
Lemma 4.

Lemma 4. Let Ci .i D 1; 2; : : : ; n/ be the optimal completion times of jobs in
sequence J and C 0j .j D 1; 2; : : : ; n; nC 1; : : : ; nC n0 � 1; nC n0/ be the optimal
completion times of jobs in the extended job sequence J C J 0 with n C n0 jobs.
Then,

(i) 9 � � 0 s.t. Ci � C 0i D � for i D 1; 2; : : : ; n

(ii) C 0k D Cn � � CPk
�DnC1 P� , .k D nC 1; nC 2; : : : ; nC n0/ .

Proof. Let SolJ denote the optimal solution for the job sequence J . This optimal
value for sequence J is calculated using Algorithm 1 which is optimal according
to Theorem 1. In the optimal solution let the individual penalties for earliness and
tardiness be Ei and Ti , respectively, hence

SolJ D
nX

iD1

.˛i Ei C ˇi Ti / : (5)

Clearly, the value of SolJ cannot be improved by either reducing the completion
times any further as explained in Theorem 1. Now, processing an additional job
sequence J 0 starting from Cn (the completion time of the last job in J ) means that
for the new extended sequence J C J 0 the tardiness penalty increases further by
some value, say P TJ 0 . Besides, the due date remains the same, the sequence J is
not disturbed and all the jobs in the sequence J 0 are tardy. Hence the new solution
value (say VJCJ 0 ) for the new sequence J C J 0 will be

VJCJ 0 D SolJ C P TJ 0 : (6)

For this new sequence we do not need to increase the completion times since it will
only increase the tardiness penalty. This can be proved by contradiction. Let x be
the increase in the completion times of all the jobs in J C J 0 with x > 0. The
earliness and tardiness for the jobs in J become Ei � x and Ti C x, respectively,
and the new total penalty (VJ ) for the job sequence J becomes

VJ D
nX

iD1

.˛i � .Ei � x/C ˇi � .Ti C x//

D
nX

iD1

.˛i �Ei C ˇi � Ti /C
nX

iD1

.ˇi � ˛i / � x : (7)

1J and J 0 are two disjoint sets of jobs, hence J C J 0 is the union of two sets maintaining the job
sequences in each set.



308 A. Awasthi et al.

Equation (5) yields

VJ D SolJ C
nX

iD1

.ˇi � ˛i / � x : (8)

Since SolJ is optimal SolJ � VJ , we have

nX

iD1

.ˇi � ˛i / � x � 0 : (9)

Besides, the total tardiness penalty for the sequence J 0 will further increase by
the same quantity, say ı, ı � 0. With this shift, the new overall solution value V 0JCJ 0

will be

V 0JCJ 0

D VJ C P TJ 0 C ı : (10)

Substituting VJ from Eq. (8) we have

V 0JCJ 0

D SolJ C
nX

iD1

.ˇi � ˛i / � x C P TJ 0 C ı : (11)

Using Eq. (6) gives

V 0JCJ 0

D VJCJ 0 C
nX

iD1

.ˇi � ˛i / � x C ı : (12)

Using Eq. (9) and ı � 0 we have

V 0JCJ 0

� VJCJ 0 : (13)

This shows that only a reduction in the completion times of all the jobs can
improve the solution. Thus, there exists a � , � � 0 by which the completion times
are reduced to achieve the optimal solution for the new job sequence JCJ 0. Clearly,
Ci �C 0i D � for i D 1; 2; : : : ; n and C 0k D Cn � � CPk

�DnC1 P� , .k D nC 1; nC
2; : : : ; n C n0/ since all the jobs are processed one after another without any idle
time. �

11 Results

In this section we present our results for the single and parallel machine cases.
We used our exact algorithms with simulated annealing for finding the best job
sequence. All the algorithms were implemented on MATLAB® and run on a
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machine with a 1:73 GHz processor and 2 GB RAM. We present our results for
the benchmark instances provided by Biskup and Feldmann in [4] for both the
single and parallel machine cases. For brevity, we call our approach as APSA and
the benchmark results as BR.

We use a modified Simulated Annealing algorithm to generate job sequences and
Algorithm 1 to optimize each sequence to its minimum penalty. Our experiments
show that an ensemble size of 4 C n=10 and the maximum number of iterations
as 500 � n, where n is the number of jobs, work best for the provided benchmark
instances. The run-time for all the results is the time after which the solutions
mentioned in Tables 2 and 3 are obtained. The initial temperature is kept as
twice the standard deviation of the energy at infinite temperature: �ET D1

Dq

hE2iTD1 � hEi2TD1. We estimate this quantity by randomly sampling the
configuration space [20]. An exponential schedule for cooling is adopted with
a cooling rate of 0:999. One of the modifications from the standard SA is in
the acceptance criterion. We implement two acceptance criteria: the Metropolis
acceptance probability, minf1; exp..��E/=T /g [20] and a constant acceptance
probability of 0:07. A solution is accepted with this constant probability if it is
rejected by the Metropolis criterion. This concept of a constant probability is
useful when the SA is run for many iterations and the metropolis acceptance
probability is almost zero, since the temperature would become infinitesimally
small. Apart from this, we also incorporate elitism in our modified SA. Elitism
has been successfully adopted in evolutionary algorithms for several complex
optimization problems [8, 14]. We observed that this concept works well for the
CDD problem. Lässig and Sudholt made theoretical studies analysing speed-ups in
parallel evolutionary algorithms with elitism applied to combinatorial optimization
problems [15]. In [16] it is shown that for a large class of quality measures, the best
possible probability distribution is a rectangular distribution over certain individuals
sorted by their objective values, which can be seen as a mild form of elitism. As for
the perturbation rule, we first randomly select a certain number of jobs in any job
sequence and permute them randomly to create a new sequence. The number of
jobs selected for this permutation is taken as 2C bpn=10c, where n is the number
of jobs. For large instances the size of this permutation is quite small but we have
observed that it works well with our modified simulated annealing algorithm.

In Tables 2 and 3 we present our results (APSA) for the single machine case. The
results provided by Biskup and Feldmann can be found in [7]. The first 40 instances
with ten jobs each have been already solved optimally by Biskup and Feldmann and
we reach the optimality for all these instances within an average run-time of 0:457 s.

Among the next 160 instances we achieve equal results for 13 instances, better
results for 133 instances and for the remaining 14 instances with 50, 100, and 200

jobs, our results are within a gap of 0:803 %, 0:1955 %, and 0:1958 %, respec-
tively. Feldmann and Biskup [7] solved these instances using three metaheuristic
approaches, namely: simulated annealing, evolutionary strategies, and threshold
accepting; and presented the average run-time for the instances on a Pentium/90 PC.

In Table 4 we show our average run-times for the instances and compare them
with the heuristic approach considered in [7]. Apparently our approach is faster
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Table 2 Results obtained for the single machine case of the common due date problem
and comparison with benchmark results provided in the OR Library [3]. For any given
number of jobs there are ten different instances provided and each instance is designated a
number k. The gray boxes indicate the instances for which our algorithm could not achieve
the known solution values given in [3]

Jobs hD0.2 hD0.4 hD0.6 hD0.8

nD10 APSA BR APSA BR APSA BR APSA BR

k=1 1,936 1,936 1,025 1,025 841 841 818 818

kD2 1,042 1,042 615 615 615 615 615 615

kD3 1,586 1,586 917 917 793 793 793 793

kD4 2,139 2,139 1,230 1,230 815 815 803 803

kD5 1,187 1,187 630 630 521 521 521 521

kD6 1,521 1,521 908 908 755 755 755 755

kD7 2,170 2,170 1,374 1,374 1,101 1,101 1,083 1,083

kD8 1,720 1,720 1,020 1,020 610 610 540 540

kD9 1,574 1,574 876 876 582 582 554 554

kD10 1,869 1,869 1,136 1,136 710 710 671 671

nD20 APSA BR APSA BR APSA BR APSA BR

kD1 4,394 4,431 3,066 3,066 2,986 2,986 2,986 2,986

kD2 8,430 8,567 4,847 4,897 3,206 3,260 2,980 2,980

kD3 6,210 6,331 3,838 3,883 3,583 3,600 3,583 3,600

kD4 9,188 9,478 5,118 5,122 3,317 3,336 3,040 3,040

kD5 4,215 4,340 2,495 2,571 2,173 2,206 2,173 2,206

kD6 6,527 6,766 3,582 3,601 3,010 3,016 3,010 3,016

kD7 10,455 11,101 6,279 6,357 4,126 4,175 3,878 3,900

kD8 3,920 4,203 2,145 2,151 1,638 1,638 1,638 1,638

kD9 3,465 3,530 2,096 2,097 1,965 1,992 1,965 1,992

kD10 4,979 5,545 3,012 3,192 2,110 2,116 1,995 1,995

nD50 APSA BR APSA BR APSA BR APSA BR

kD1 40,936 42,363 24,146 24,868 17,970 17,990 17,982 17,990

kD2 31,174 33,637 18,451 19,279 14,217 14,231 14,067 14,132

kD3 35,552 37,641 20,996 21,353 16,497 16,497 16,517 16,497

kD4 28,037 30,166 17,137 17,495 14,088 14,105 14,101 14,105

kD5 32,347 32,604 18,049 18,441 14,615 14,650 14,615 14,650

kD6 35,628 36,920 20,790 21,497 14,328 14,251 14,075 14,075

kD7 43,203 44,277 23,076 23,883 17,715 17,715 17,699 17,715

kD8 43,961 46,065 25,111 25,402 21,345 21,367 21,351 21,367

kD9 34,600 36,397 20,302 21,929 14,202 14,298 14,064 13,952

kD10 33,643 35,797 19,564 20,048 14,367 14,377 14,374 14,377

nD100 APSA BR APSA BR APSA BR APSA BR

kD1 148,316 156,103 89,537 89,588 72,017 72,019 72,017 72,019

kD2 129,379 132,605 73,828 74,854 59,350 59,351 59,348 59,351

kD3 136,385 137,463 83,963 85,363 68,671 68,537 68,670 68,537

kD4 134,338 137,265 87,255 87,730 69,192 69,231 69,039 69,231

kD5 129,057 136,761 74,626 76,424 55,291 55,291 55,275 55,277

(continued)
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Table 2 (continued)

Jobs hD0.2 hD0.4 hD0.6 hD0.8

nD10 APSA BR APSA BR APSA BR APSA BR

kD6 145,927 151,938 81,182 86,724 62,507 62,519 62,410 62,519

kD7 138,574 141,613 79,482 79,854 62,302 62,213 62,208 62,213

kD8 164,281 168,086 95,197 95,361 80,722 80,844 80,841 80,844

kD9 121,189 125,153 72,817 73,605 58,769 58,771 58,771 58,771

kD10 121,425 124,446 72,741 72,399 61,416 61,419 61,416 61,419

kD3 136,385 137,463 83,963 85,363 68,671 68,537 68,670 68,537

kD4 134,338 137,265 87,255 87,730 69,192 69,231 69,039 69,231

kD5 129,057 136,761 74,626 76,424 55,291 55,291 55,275 55,277

kD6 145,927 151,938 81,182 86,724 62,507 62,519 62,410 62,519

kD7 138,574 141,613 79,482 79,854 62,302 62,213 62,208 62,213

kD8 164,281 168,086 95,197 95,361 80,722 80,844 80,841 80,844

kD9 121,189 125,153 72,817 73,605 58,769 58,771 58,771 58,771

kD10 121,425 124,446 72,741 72,399 61,416 61,419 61,416 61,419

Table 3 Results obtained for the single machine case of the common due date problem and
comparison with benchmark results provided in the OR Library [3]. There are ten different
instances provided and each instance is designated a number k.The gray boxes indicate the
instances for which our algorithm could not achieve the known solution values given in [3]

Jobs h D 0:2 hD 0:4 hD 0:6 h D 0:8

n D 200 APSA BR APSA BR APSA BR APSA BR

k D 1 523,042 526,666 300,079 301,449 254,268 254,268 254,362 254,268

k D 2 557,884 566,643 333,930 335,714 266,105 266,028 266,549 266,028

k D 3 510,959 529,919 303,924 308,278 254,647 254,647 254,572 254,647

k D 4 596,719 603,709 359,966 360,852 297,305 297,269 297,729 297,269

k D 5 543,709 547,953 317,707 322,268 260,703 260,455 260,423 260,455

k D 6 500,354 502,276 287,916 292,453 235,947 236,160 236,013 236,160

k D 7 477,734 479,651 279,487 279,576 246,910 247,555 247,521 247,555

k D 8 522,470 530,896 287,932 288,746 225,519 225,572 225,897 225,572

k D 9 561,956 575,353 324,475 331,107 254,953 255,029 254,956 255,029

k D 10 560,632 572,866 328,964 332,808 269,172 269,236 269,208 269,236

and achieves better results. However, there is a difference in the machines used
for the implementation of the algorithms. In Table 5 we present results for the
same problem but with parallel machines for the Biskup benchmark instances.
The computation has been carried out for k D 1 up to 200 jobs and a different
number of machines with restrictive factor h. We make a change in the due date
as the number of machines increases and assume that the due date D is D D
bh �Pn

iD1 Pi =mc. This assumption makes sense as an increase in the number of
machines means that the jobs can be completed much faster and reducing the due-
date will test the whole setup for more competitive scenarios. We implemented
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Table 4 Average run-times in seconds for the
single machine cases for the obtained solutions. The
average run-time for any job is the average of all
the 40 instances

Jobs 10 20 50 100 200

BR 0.9 47:8 87:3 284:9 955:2

APSA 0.46 1:12 22:17 55:22 132:32

Table 5 Results obtained for parallel machines for the benchmark
instances for k D 1 with 2, 3, and 4 machines up to 200 jobs

No. of jobs Machines h value Results obtained Run-time (s)
10 2 0.4 612 0:0473

0.8 398 0:0352

3 0.4 507 0:0239

0.8 256 0:0252

4 0.4 364 0:0098

0.8 197 0:0157

20 2 0.4 1; 527 0:4061

0.8 1; 469 0:6082

3 0.4 1; 085 3:4794

0.8 957 7:8108

4 0.4 848 8:5814

0.8 686 8:4581

50 2 0.4 12; 911 7:780

0.8 9; 020 55:3845

3 0.4 8; 913 59:992

0.8 6; 010 125:867

4 0.4 7; 097 153:566

0.8 4; 551 22:347

100 2 0.4 45; 451 101:475

0.8 37; 195 147:832

3 0.4 31; 133 159:872

0.8 25; 097 186:762

4 0.4 23; 904 236:132

0.8 19; 001 392:967

200 2 0.4 154; 094 165:436

0.8 133; 848 231:768

3 0.4 103; 450 226:140

0.8 96; 649 365:982

4 0.4 81; 437 438:272

0.8 71; 263 500:00
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Algorithm 2 with six different combinations of the number of machines and
the restrictive factor. Since these instances have not been solved for the parallel
machines, we are presenting the upper bounds achieved for these instances using
Algorithm 2 and the modified simulated annealing.

12 Conclusion and Future Direction

In this paper we present two novel exact polynomial algorithms for the common
due-date problem to optimize any given job sequence. We prove the optimality
for the single machine case and the run-time complexity of the algorithms. We
implemented our algorithms over the benchmark instances provided by Biskup
and Feldmann [4] and the results obtained by using our algorithms are superior
to the benchmark results in quality. We discuss how our approach can be used for
non-identical parallel machines and present results for the parallel machine case for
the same instances. Furthermore, we also discuss the efficiency of our algorithm for
a special dynamic case of CDD at the planning stage.
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On Gaussian Process NARX Models and Their
Higher-Order Frequency Response Functions

Keith Worden, Graeme Manson, and Elizabeth J. Cross

Abstract One of the most versatile and powerful approaches to the identification
of nonlinear dynamical systems is the NARMAX (Nonlinear Auto_regressive
Moving Average with eXogenous inputs) method. The model represents the current
output of a system by a nonlinear regression on past inputs and outputs and can
also incorporate a nonlinear noise model in the most general case. Although the
NARMAX model is most often given a polynomial form, this is not a restriction
of the method and other formulations have been proposed based on nonparametric
machine learning paradigms, for example. All of these forms of the NARMAX
model allow the computation of Higher-order Frequency Response Functions
(HFRFs) which encode the model in the frequency domain and allow a direct
interpretation of how frequencies interact in the nonlinear system under study.
Recently, a NARX (no noise model) formulation based on Gaussian Process (GP)
regression has been developed. One advantage of the GP NARX form is that
confidence intervals are a natural part of the prediction process. The objective of the
current paper is to discuss the GP formulation and show how to compute the HFRFS
corresponding to GP NARX. Examples will be given based on simulated data.

Keywords Nonlinear system identification • NARMAX models • Higher-order
Frequency Response Functions (HFRFs) • Gaussian processes

1 Introduction

The presence of a chapter here on system identification is motivated by the fact
that almost all identification problems can be cast as optimisation problems. In the
simplest sense, one wishes to find a mathematical model which is “closest” in some
sense to the physical system of interest. In almost all cases, this is accomplished by
measuring data from the system and finding the model that can reproduce that data
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with the minimum error. Finding the optimal model is a matter of first establishing
a model class or structure and then optimising the free parameters of the structure
to give the best agreement with the data. It is clear at this point that one should
always choose (where possible) a model class with the highest possible generality
and therefore explanatory power.

Over the last 30 years one of the most versatile and enduring time series models
used for nonlinear system identification has been the NARMAX (Nonlinear Auto-
Regressive Moving Average with eXogenous inputs) model. The NARMAX model
was introduced in 1985 [1, 2] and has been the subject of constant interest and
development since. A comprehensive monograph on the theory and applications
of the model recently appeared in [3]. In its full generality the model form
accommodates nonlinear discrete-time process and noise models. However, if one
can assume that the noise process is white Gaussian, one can adopt the simpler
NARX form that will be discussed in this chapter. The basic principle of the NARX
model is that one predicts the current value of system output using a nonlinear
function F of previous inputs and outputs, i.e.

yi D F.yi�1; : : : ; yi�ny I xi�1; : : : ; xi�nx / (1)

The earliest and still most common form of the NARX model adopts a multi-
nomial expansion basis for the function F and learns the expansion parameters
by linear (but advanced) least-squares methods; however, this is by no means the
only possible form. Any expansion basis which satisfies a universal approximation
property can be used, and this has led to nonparametric NARX model forms
based on machine learning including Multi-Layer Perceptron (MLP) and Radial
Basis Function (RBF) neural networks [4, 5]. The nonparametric forms of the
NARX model have at least one attractive feature in that they bypass (or rather,
usually ignore) the structure detection problem. One can think of the problem of
establishing a “traditional” NARX (or NARMAX) model in terms of two steps. The
first step is structure detection, i.e. determining which multinomial terms should
be included in the model; the second is establishing the expansion parameters for the
included terms, i.e. parameter estimation. The nonparametric forms of the NARX
models simply include all expansion terms consistent with certain hyperparameters
of the form, e.g. number of nodes per layer in an MLP neural network. One then
need only concern oneself with issues of including too many terms—leading to
overfitting of models—and these issues can usually be addressed in a principled
manner in a machine learning context [6].

One of the interesting features of the NARX model is that, through a connection
with the Volterra series [7], it allows the construction of Higher-order Frequency
Response Functions (HFRFs) that allow one to visualise how different frequencies
in the input to a nonlinear system interact in forming the output [8]. In fact, the
HFRFs are important, if not vital, if one wishes to extract a meaningful physical
interpretation from a NARX model. Because almost all NARX models (even the
multinomial ones) are nonparametric in the sense that their expansion coefficients
have no physical meaning, one has to move to the frequency domain to make
contact with the physics of the processes they express. In the case of the polynomial
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form of the NARX model, the method for determining the HFRFs—the harmonic
probing algorithm—proved to be a simple extension of the long-held algorithm for
differential equations [9, 10]. In the case of the neural network forms of the NARX
model, the harmonic probing algorithm could also provide closed form expressions
for the HFRFS at the expense of a little more complicated algebra [11].

A comparatively recent addition to the literature of the NARX model was the
discussion of the Gaussian Process (GP) NARX model in [12]. This model form
allows a number of potential advantages over the previously mentioned common
forms of the NARX model, including a Bayesian framework encompassing the
generation of natural confidence intervals for model predictions. The GP form of
the model also suffers from a number of disadvantages relating to its tolerance
of noise on training data and its computational expenses; these matters will be
discussed in a little more detail later. The objective of the current paper is to discuss
and illustrate the GP NARX model and to provide expressions for its HFRFs.
No attempt is made here to give a comprehensive survey of the literature relating to
dynamic GP models, for such a survey the reader could consult the comparatively
recent [13].

The layout of the paper is as follows: Sect. 2 will provide a short summary of the
relevant Gaussian process theory and how one can use it to define a NARX model.
Section 3 introduces a case study and shows how the GP NARX model is applied
in the context of a nonlinear Single-Degree-of-Freedom (SDOF) system. Section 4
discusses the basic principles of the Volterra series and how it leads to the definition
of HFRFs. Section 5 presents the derivation of the HFRFs for the GP NARX model
which is then computed for the case study system in Sect. 6. The chapter ends with
a short discussion and conclusions.

2 Gaussian Process NARX Models

2.1 Gaussian Processes

The Gaussian Process (GP) has its roots in the geostatistics community where it
was developed as a tool for interpolating the profile of landscapes considered as
random fields. Although much of the main theory was developed later, it rests on
early work carried out in the Masters thesis of Krige, which dates back to 1951 [14].
For this reason, the technique has long been known as Kriging in the geostatistics
field. In more recent times, GPs were brought to the attention of the machine
learning community by Neal [15] and Mackay [16], and consolidated in the recent
book by Rasmussen and Williams [17]. The basic premise of the method is to
perform inference over functions directly, as opposed to inference over parameters
of functions.

For simplicity, the discussion here will assume that the system of interest has
a single output variable. Following the notation of [17], let X D Œx1; x2 : : : xN �T

denote a matrix of multivariate training inputs, and y denote the corresponding
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vector of training outputs. The input vector for a testing point will be denoted by
the column vector x� and the corresponding (unknown) output by y�.

A Gaussian process prior is formed by assuming a (Gaussian) distribution over
functions,

f .x/  GP .m.x/; k.x; x// (2)

where m.x/ is the mean function and k.x; x0/ is a positive-definite covariance
function.

One of the defining properties of the GP is that the density of a finite number
of outputs from the process is multivariate normal. Together with the known
marginalisation properties of the Gaussian density, it is therefore possible to
consider the value of this function only at the points of interest: training points and
predictions. Allowing f to denote the function values at the training points X , and
f � to denote the predicted function value at a new point x�, one has

 
f

f �

!

 N

�

0;

�
K.X; X/ K.X; x�/
K.x�; X/ K.x�; x�/

��

(3)

where a zero-mean prior has been used for simplicity (see [17] for a discussion), and
K.X; X/ is a matrix whose i; j th element is equal to k.xi ; xj /. Similarly, K.X; x�/
is a column vector whose i th element is equal to k.xi ; x�/, and K.x�; X/ is the
transpose of the same.

In order to relate the observed target data y to the function values f , a simple
Gaussian noise model can be assumed,

y  N .f ; �2
nI / (4)

where I is the identity matrix and �2
n constitutes a hyperparameter which can easily

be identified by optimisation. Since one is not interested in the variable f , it can be
marginalised (integrated out) from Eq. (3) [17], as the relevant integral

p.y/ D
Z

p.yjf /p.f /df (5)

is over a multivariate Gaussian and is therefore analytically tractable. The result is
the joint distribution for the training and testing target values,

 
y

y�

!

N

�

0;

�
K.X; X/C �2

nI K.X; x�/
K.x�; X/ K.x�; x�/C �2

n

��

(6)

In order to make use of the above, it is necessary to re-arrange the joint
distribution p.y; y�/ into a conditional distribution p.y�jy/. Using standard results
for the conditional properties of a Gaussian reveals [17]
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y�  N .m�.x�/; k�.x�; x�// (7)

where

m�.x�/ D k.x�; X/ŒK.X; X/C �2
nI ��1y (8)

is the posterior mean of the GP and,

k�.x�; x0/ D k.x�; x0/�K.x�; X/ŒK.X; X/C �2
nI ��1K.X; x0/ (9)

is the posterior variance.
Thus the GP model provides a posterior distribution for the unknown quantity y�.

The mean from Eq. (7) can then be used as a “best estimate” for a regression
problem, and the variance can also be used to define confidence intervals.

There does remain the question of the choice of covariance function k.x; x0/. In
practice, it is often useful to take a squared-exponential function of the form

k.x; x0/ D �2
f exp

�

� 1

2l2
jjx � x0jj2

�

(10)

although various other forms are possible (see [17]). Equation (10) is the form
adopted here. The covariance function involves the specification of two hyper-
parameters �2

f and l . The hyperparameters can be optimised using an evidence

framework, along with the noise parameter �2
n [17]. Denoting the complete set of

these parameters as t , they can be found by maximising a function,

f .t/ D �1

2
yT ŒK.X; X/C �2

nI �y � 1

2
log jK.X; X/C �2

nI j (11)

which is equal to the log of the evidence, up to some constant. Since the number of
hyperparameters in this case is small, the optimisation can be carried out simply by
gradient descent.

2.2 GP NARX Models

The GP models discussed so far are essentially static maps, learning the relationship
between point inputs and point outputs. The question now arises as to how such
models can be used to learn dynamical system behaviour. The answer adopted here
will be to use a NARX framework. The functional form in Eq. (1) is used with the
function F represented by a GP. A slight variant of the NARX form which also uses
the current input for prediction will be used here.

Once the GP NARX model has been learned, there are various tests one can apply
to assess the goodness of fit. The most basic is to compute one step ahead (OSA)
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predictions. In this case, using the training data, one computes the predictions for a
given time using observed inputs up to that time, i.e.

y�i D F.yi�1; : : : ; yi�ny I xi�1; : : : ; xi�nx / (12)

and compare the predicted and observed outputs. It is useful to have an objective
measure of comparison, the one used here will be the Normalised Mean-Square
Error (NMSE) defined by

NMSE. Oy/ D 100

N�2
y

NX

iD1

.yi � Oyi /
2 (13)

Experience shows that an NMSE of less than 5.0 indicates good agreement while
one of less than 1.0 reflects an excellent fit.

Clearly, the OSA predictions are not a particularly stringent test of the model.
A more demanding test is to compute the Model Predicted Output (MPO) defined by

y�i D F.y�i�1; : : : ; y�i�ny
I xi�1; : : : ; xi�nx / (14)

and this test can be conducted on testing data as well as training data, which is an
important consideration in the more general context of machine learning.

As discussed in the introduction to this chapter, the use of the GP form in order
to create a NARX model has advantages and disadvantages. Two of the main issues
will be discussed briefly here with directions to the literature as to their means of
solution.

The first problem is that the GP algorithm depends on the inversion of the
covariance matrix K; this is an operation which costs O.N 3/ multiplications,
where N is the number of training points. Slightly less costly is the prediction
of new outputs with O.N / multiplications needed for the predictive mean and
O.N 2/ for the predictive variance. In fact, system identification with NARX models
has traditionally been carried out with small training sets with a low number of
thousands of data points, and this size of problem is typically feasible using a
standard GP algorithm. However, if one wishes to move to larger training sets,
the costs of computation can become prohibitive. This problem has led to the idea
of sparse Gaussian processes which, as the name suggests, can establish models
on reduced training sets [18]. One of the most effective methods is the so-called
Fully Independent Training Conditional (FITC) model [19]. The FITC approach
approximates the full GP by establishing M pseudo-inputs which are not restricted
to be actual data points, but can be considered as hyperparameters which can be
learned. In the FITC approach, the computational complexity of establishing the GP
is reduced to O.M 2N /; the cost of computing the predictive mean is reduced to
O.M / and that of the predictive variance is reduced to O.M 2/.

The second problem with the GP NARX formulation relates to noise on the
training data. The standard formulation of the GP algorithm assumes that the
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training inputs are noise-free and that the noise on the outputs is Gaussian with
constant variance. One immediately sees an issue if one is attempting multi-step
ahead predictions with a GP NARX model; because of the feeding back of the
output predictions, the outputs become inputs and carry their predictive uncertainty
with them. The most principled approach to this problem is to adopt the Bayesian
approach of marginalising or integrating over the input noise distributions; however,
even if these were known with complete accuracy, the computation would be
intractable. One of the first comprehensive studies of this problem appears to have
been the work leading to the thesis [20]. The thesis of Giraud is largely concerned
with time-series predictions and the models are named GP AR there. This name
makes complete sense in terms of the fact that the models are auto-regressive
Gaussian processes; however, it misses the fact that the terms AR or ARX in
the time series literature usually refer to linear models. The term GP NARX is
preferred here as it indicates that the GP models are typically nonlinear. Of course,
by appropriate choice of the covariance function one could fit linear GP AR models
and the algorithm would then essentially be Bayesian linear regression [17].

Because of the highly simplified case study presented in this work, the issues
referred to above have been ignored without damage to the results; however, in real
engineering problems they will likely need to be addressed.

3 Case Study: An Asymmetric Duffing Oscillator

In order to illustrate the use of the GP NARX formulation, data simulated from a
Duffing oscillator data system will be used. In the asymmetric case when a quadratic
stiffness is present, the relevant equation of motion is

m Ry C c Py C ky C k2y
2 C k3y3 D x.t/ (15)

Data were simulated by integrating the equation of motion using a fourth-order
fixed step Runge-Kutta algorithm [21]. The parameters adopted were m D 1,
c D 20, k D 104, k2 D 107, and k3 D 5 � 109. The excitation used was a zero-
mean Gaussian random sequence with a standard deviation of 2.0. The time step
used was �t D 0:001 seconds corresponding to a sampling frequency of 1 kHz.
Noise was added to the data to introduce an element of reality to matters; initially in
this case, Gaussian noise of 1 % RMS of the signal was added to both the excitation
and response time data.

As discussed in Sect. 2.1, there are three hyperparameters for the simple GP
formulation used here. Although these parameters can (and will later) be determined
by optimisation, in the current case good estimates of two are directly available
as �2

f is essentially the response RMS and �2
n is the noise RMS and both of

these are known here. The parameter l is a scale for the covariance function
and was established here to be 11.0 through a coarse line search. To improve
the conditioning of the estimation process, all data were standardised before the
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Fig. 1 OSA predictions for GP NARX model of Duffing oscillator data

computation (and this fixes �2
f D 1:0), the scales for the data were reintroduced after

predictions were made. Somewhat arbitrarily, the number of lags for the model used
here was ny D 3 and nx D 3. The training data consisted of 1,000 samples of input
and output data. As a more severe test of the prediction capability of the model, the
results presented here are for an independent test set of data, also comprising 1,000
samples of data from the system at the same level of excitation as the training data.

The first set of results presented are for the OSA predictions on the test data
set from the trained GP as shown in Fig. 1. The NMSE value for the predictions
was 0.05, indicating an excellent result. The confidence intervals (˙ 3 standard
deviations) on the predictions in this case are so small that they are indistinguishable
in the figure.

As discussed above, the MPO predictions provide a more stringent test and these
are shown in Fig. 2. The corresponding NMSE in this case was 3.65, which still
indicates a good fit.

As discussed in [22], the confidence intervals are still very small and do not
accommodate the observed prediction errors. This is simply because not all of the
uncertainty has been accounted for. In the predictions so far, the predicted outputs
have been fed back into the model in order to form the MPO. This means that
the only uncertainty accounted for in the predictions is the parameter uncertainty.
In order to take a proper Bayesian viewpoint, one should allow for the fact that
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Fig. 2 MPO predictions for GP NARX model of Duffing oscillator data

each prediction is actually a sample from a distribution; this distribution being
determined by the parameter distribution. To account for this, during a prediction
run, at each instant i the prediction y�i was sampled from the distribution specified
by the mean and covariance from the GP for that instant. One such run generates a
single realisation of the prediction process, in order to accumulate information about
the distribution of predictions with state estimation taken into account, a Monte
Carlo approach was adopted here with 50 different runs conducted. Figure 3 shows
50 realisations of the predictions.

There is clearly a great deal of more uncertainty associated with the predictions
now. From the MC realisations, one can compute a mean prediction and determine
˙3� confidence bounds, and the result of the analysis for the case here is shown
in Fig. 4. The confidence intervals are now a more appropriate assessment of the
predictive capability of the model. This exercise shows clearly that the dominant
contribution to uncertainty in the predictions is not the direct component from
the parameter uncertainty, but the indirect component due to state estimation
from the uncertain parameters. In fact, for a full treatment of uncertainty, the
confidence limits should be augmented by adding in the variance identified by the
�2

n hyperparameter [17].
As discussed above, the hyperparameters for this example have been chosen

partly by appealing to prior knowledge of the problem. When the hyperparameters
are optimised through the evidence procedure, values of l D 1265:4, �2

f D 657:8
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Fig. 3 MC realisations of predictions for GP NARX model of Duffing oscillator data
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Fig. 4 MC predictions for GP NARX model of Duffing oscillator data
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and �2
n D 0:0184 are obtained. While the value of �2

n is reasonably close to the
true noise variance, the other two values are rather counter-intuitive, but do lead to
a lower MSE of 3.5 on the test set. For reasons discussed later, the option of setting
the hyperparameters partly “by hand” is pursued in the sequel.

4 The Volterra Series and Higher-Order FRFs

In the time-domain analysis of linear dynamical systems, the impulse response
function h.�/ is known to characterise the system completely. For such a system,
excited by an input signal x.t/, the response y.t/ is given by the convolution
integral,

y.t/ D
Z 1

�1
d� h.�/x.t � �/ (16)

This relationship is manifestly linear and will not hold for nonlinear systems;
however, the theory was extended by Volterra [23] in the early part of the last century
to cover the more general case. The output of a nonlinear system is composed of
additional higher-order contributions. Volterra showed that the total response, y.t/,
is given by

y.t/ D y0 C y1.t/C y2.t/C y3.t/C : : :C yn.t/ (17)

where y0 is a constant and,

y1.t/ D
Z 1

�1
d� h1.�1/x.t � �1/ (18)

y2.t/ D
Z 1

�1

Z 1

�1
d�1d�2 h2.�1; �2/x.t � �1/x.t � �2/ (19)

and the general term is

yn.t/ D
Z 1

�1
: : :

Z 1

�1
d�1d�2 : : : d�n hn.�1; �2 : : : �n/x.t��1/x.t��2/ : : : x.t��n/

(20)

This is essentially a generalisation of the standard Taylor series to the case of
functionals, i.e. mappings between functions. The generalised coefficients of the
series hn are the nth-order Volterra kernels, and these can be thought of as multi-
dimensional, or higher-order, impulse response functions [7]. The series provides a
representation of a given functional or system y.t/ D SŒx.t/�, which is insensitive
to the input x.t/, provided that the system is time-invariant and contains only
analytic nonlinearities [24].
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The Volterra series is thus a time-domain representation for nonlinear systems.
As in the case of linear systems, a dual frequency-domain representation exists
which can give a clearer perspective of system behaviour in some respects.
For a linear system, Eq. (16) shows how to compute the response y.t/ for any
input x.t/, given the system impulse response function h.t/. The corresponding
frequency-domain expression is simply obtained by taking the Fourier transform of
both sides, noting that the RHS is a convolution. The result is

Y.!/ D H.!/X.!/ (21)

where

H.!/ D
Z 1

�1
d! e�i!th.t/ (22)

is the system Frequency Response Function, and Y.!/ and X.!/ have similar
definitions. By direct extension of the linear case, the higher-order FRFs (HFRFs)
Hn.!1; : : : ; !n/ can be defined as the multi-dimensional Fourier transforms of the
kernels,

Hn.!1; : : : ; !n/ D
Z C1

�1
: : :

Z C1

�1
d�1 : : : d�nhn.�1; : : : ; �n/e�i.!1�1C:::C!n�n/

(23)

with inverse

hn.�1; : : : ; �n/D 1

.2�/n

Z C1

�1
: : :

Z C1

�1
d!1 : : : d!nHn.!1; : : : ; !n/eCi.!1�1C:::C!n�n/

(24)

It is then a straightforward matter to obtain the frequency-domain dual of
expression (17),

Y.!/ D Y1.!/C Y2.!/C Y3.!/C : : : (25)

where

Y1.!/ D H1.!/X.!/ (26)

Y2.!/ D 1

2�

Z C1

�1
d!1H2.!1; ! � !1/X.!1/X.! � !1/ (27)

Y3.!/ D 1

.2�/2
�

Z C1

�1

Z C1

�1
d!1d!2H3.!1; !2; ! � !1 � !2/X.!1/X.!2/X.! � !1 � !2/ (28)
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The interpretation of these quantities is well established, a description can be
found in [8]. If the equations of motion are known for a system, the method of
harmonic probing can be used in order to compute the HFRFs [9]. Harmonic probing
for the Gaussian process NARX models is discussed in the next section and the
technique is illustrated using the Duffing oscillator system in Eq. (15); the exact
results in this case are well known as [8],

H1.!/ D 1

�m!2 C ic! C k
(29)

H2.!1; !2/ D �k2H1.!1/H1.!2/H1.!1 C !2/ (30)

and,

H3.!1; !2; !3/ D �1

6
H1.!1 C !2 C !3/�

f4k2 .H1.!1/H2.!2; !3/CH1.!2/H2.!3; !1/CH1.!3/H2.!1; !2//C

6k3H1.!1/H1.!2/H1.!3/g (31)

In order to see the important structure in the HFRFs, it is often sufficient
to plot only the leading diagonal, i.e. H2.!; !/. This format also allows simple
comparisons between the functions.

5 Harmonic Probing of the GP NARX Model

If the governing equations of motion are known, the HFRFs of a system can be
obtained analytically by the use of the harmonic probing algorithm, introduced by
Bedrosian and Rice [9]. Although this was originally designed for continuous-time
systems, the algorithm was extended to the type of discrete-time systems considered
here by Billings and Tsang [4].

Before proceeding, it is necessary to determine the explicit form of the GP
NARX model. First of all, one observes, following [17], that the GP is essentially an
expansion in terms of basis functions fixed by the covariance kernel and the training
data, the predicted output y� corresponding to a new input x� is given by

y� D
NX

iD1

ai k.x�; xi / (32)

where according to Eq. (8),

a D Œk.X; X/C �2
nI ��1y (33)
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and this is fixed by the training data. If one adopts the squared exponential
covariance function of (10), one arrives at the GP NARX form,

yi D �2
f

NX

jD1

aj exp

(

� 1

2l2

" nyX

kD1

.yi�k � vjk/2 C
nxX

mD0

.xi�m � uj m/2

#)

(34)

where the matrix V D fvij g is formed from the first ny columns of the matrix X

and U D fuij g is formed from the remaining nx C 1 columns of X .
Note that this expression is essentially that of the radial basis function neural

network considered in [11]; this means that the HFRFs derived in that paper are
applicable here. However, the analysis here presents a more direct approach in terms
of homogeneous ARX and NARX model coefficients at each polynomial order; the
expressions here also correct some typographical errors in [11]. The first issue which
arises is that the function in (34) must be expanded as a polynomial in order to
apply harmonic probing. As observed in [11], direct expansion means that the term
of order n will contain powers of all orders up to n and this makes it impossible
to group linear terms, etc. The solution is simple, a trivial rearrangement yields the
more amenable form,

yiD�2
f

N�pX

jD1

aj �j exp

(

� 1

2l2

" nyX

kD1

.y2
i�k�2vjkyi�k/C

nxX

mD0

.x2
i�m�2uj mxi�m/

#)

(35)

where

�j D exp

(

� 1

2l2

" nyX

kD1

v2
jk C

nxX

mD0

u2
j m

#)

(36)

Now, the basis of the harmonic probing method is to examine the response of the
system to certain very simple inputs. In order to identify H1.!/, for example, the
system is “probed” with the single harmonic,

x
p
i D ei˝t (37)

Substituting this expression into the Volterra series (17), the corresponding
response is [8]

y
p
i D H1.˝/ei˝t CH2.˝; ˝/e2i˝t CH3.˝; ˝; ˝/e3i˝t C : : : (38)

Now, consider the consequences of substituting the expressions (37) and (38) into
the network function (35) and expanding it as a polynomial. None of the higher-
order terms in (38) can combine in any way to generate a component at the
fundamental frequency of excitation ˝ . As a result, if the coefficient of ei˝t is
extracted from the resulting expression, the only HFRF which can appear is H1.˝/;
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thus, the expression can be rearranged to give an analytical expression for H1.
In fact, one need to only consider the linear terms in the expansion in order to extract
H1, so one essentially considers the ARX model,

yi D �2
f

N�pX

jD1

aj �j

l2

( nyX

kD1

vjkyi�k C
nxX

mD0

uj mxi�m

)

(39)

Changing the order of summation here results in the standard ARX form,

yi D
nyX

jD1

˛j yi�j C
nxX

jD0

ˇj xi�j (40)

where

˛j D
�2

f

l2

N�pX

iD1

ai �ivij (41)

ˇj D
�2

f

l2

N�pX

iD1

ai �iuij (42)

Harmonic probing of this expression is straightforward; one substitutes the
probing expressions (37) and (38) into (40) and collects together all the coefficients
of ei˝t . In doing this, account must be taken of the effect of time-delays on the
harmonic signals, this is straightforward to compute as

xi�k D �kxi D �kei˝t D e�ki˝�tei˝t (43)

yi�k D �kyi D �kH1.˝/ei˝t D e�ki˝�tH1.˝/ei˝t (44)

where � is the backward shift operator. The result of the calculation is

H1.˝/ D
Pnx

jD0 ˇj e�ij�t˝

1 �Pny

jD1 ˛j e�ij�t˝
(45)

with the ˛j and ˇj as defined in Eqs. (41) and (42).
The extraction of H2 is a little more complicated, this requires probing with two

independent harmonics, so,

x
p
i D ei˝1t C ei˝2t (46)

The standard computation using based on (17) shows that the corresponding
response is [8]



330 K. Worden et al.

y
p
i D H1.˝1/e

i˝1t CH1.˝2/e
i˝2t C 2H2.˝1; ˝2/e

i.˝1C˝2/t C : : : (47)

The argument proceeds as for H1; if these expressions are substituted into the
network function (35), the only HFRFs to appear in the coefficient of the sum
harmonic ei.˝1C˝2/t are H1 and H2, where H1 is already known from Eq. (45).
As before, the coefficient can be rearranged to give an expression for H2 in terms
of the GP parameters and H1. The only terms in the expansion of (35) which are
relevant for the calculation are those at first and second-order. The calculation is
straightforward but tedious and yields

H2.˝1; ˝2/ D AC B C C

D
(48)

where

A D
nyX

kD1

nyX

lD1

˛kl H1.˝1/H1.˝2/
�
e�i˝1k�t :e�i˝2l�t C e�i˝2k�t :e�i˝1l�t

	
(49)

B D
nyX

kD1

nxX

lD0

ˇkl

�
H1.˝1/e

�i˝1k�t :e�i˝2l�t CH1.˝2/e
�i˝2k�t :e�i˝1l�t

	
(50)

C D
nxX

kD0

nxX

lD0

�kl

�
e�i˝1k�t :e�i˝2l�t C e�i˝2k�t :e�i˝1l�t

	
(51)

and,

D D 1 �
nyX

kD1

˛ke�i.˝1C˝2/k�t (52)

The coefficients in the above expressions are given by

˛j m D
�2

f

4l4

N�pX

iD1

ai �i vij vim � ıj m

�2
f

2l2

N�pX

iD1

ai �i (53)

ˇj m D
�2

f

2l4

N�pX

iD1

ai �ivij uim (54)

�j m D
�2

f

4l4

N�pX

iD1

ai �iuij uim � ıj m

�2
f

2l2

N�pX

iD1

ai �i (55)

where ıj m is the standard Kronecker delta.
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Derivation of H3 is considerably more lengthy and requires probing with three
harmonics, the expression is not given here for reasons of space. The following
results section of this paper will present examples of these calculations for H1

and H2.

6 HFRF Results for Case Study System

In this section, the HFRFs for the asymmetric Duffing oscillator system of Eq. (15)
are estimated from the GP NARX model fit to the simulated data. In fact, a subtlety
forces a reanalysis of the data. Usually, if input and output data are known to be
corrupted by noise, best practice demands that a NARMAX model with nonlinear
noise model is fitted to the data in order to avoid the possibility of bias in the
parameter estimates [8]. However, when the HFRFs are to be computed, the noise
model is discarded, leaving a NARX model for harmonic probing. In the case of
the GP model, the noise variance �2

n is essentially built in to the parameter estimates
as it effectively acts as a regularisation parameter in inverting the K.X; X/ matrix to
form the parameters a. In order to mimic the usual practice of discarding the noise
information, the hyperparameter �2

n was set by hand here to a value of 0.0001 and
the training data were regenerated without added noise; this means that the GP could
achieve very low training and test errors. Because of standardisation of the data, the
prescription �2

f D 1:0 was again used and a line search gave a value of l D 11:0.
With these values for the hyperparameters, the parameters a were estimated and the
GP gave an OSA error of 9 � 10�6 and an MPO error of 0.008.

The comparisons between predicted and measured response are not given as the
curves are not distinguishable given the accuracy of the predictions. However, it
is meaningful to give comparisons between the exact HFRFs, given by Eqs. (29)
and (30), and those estimated from the GP. Figure 5 shows a comparison between
the exact and estimated H1.!/; it is clear that the estimate is very accurate indeed.

Figures 6 and 7 show comparisons between the exact and estimated H2 functions
in terms of magnitude and phase, respectively. Because a direct visual comparison
is subjective when the surfaces are displayed, the exact and estimated diagonals
H2.!; !/ are shown in Fig. 8, the accuracy of the estimates is clearly excellent.

7 Conclusions

The main aim of this paper has been to present analytical expressions for the
HFRFs of Gaussian process NARX models specific to the squared exponential
covariance function. The expressions have been validated on simulated data from
an SDOF nonlinear system. The excellent agreement between exact HFRFs and
those extracted from the GP fitted to simulated data confirms that the expressions
are correct. Perhaps more importantly, the results show that it is possible to obtain
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Fig. 5 Gaussian Process estimate of H1.!/ compared to exact result.

Fig. 6 Gaussian Process estimate of H2.!1; !2/ magnitude compared to exact result
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Fig. 7 Gaussian Process estimate of H2.!1; !2/ phase compared to exact result
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accurate estimates of system HFRFs by using GP NARX models. This in itself
is not a surprise as previous work had shown that the HFRFs could be extracted
from neural network NARX models learnt from data. However, the GP form of the
NARX model may have advantages over the previous crisp neural network models
in allowing the computation of confidence intervals for predictions; this may lead to
a means of establishing confidence intervals for the HFRFs and this is a possibility
that is under further investigation. One of the issues raised by the analysis here is
concerned with the fact that the “noise model” in the GP NARX model cannot be
simply discarded as it can in the polynomial NARMAX case. Because of this issue,
the results for the HFRFs presented here were given for noise-free training data and
one might argue that it is therefore no surprise that accurate estimates were obtained.
Further analysis is required in terms of how noise variance is accommodated in the
HFRF estimation; it may be that estimation of the confidence intervals provides the
means of answering this question.
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