
Mining Users Playbacks History for Music

Recommendations

Alexandr Dzuba and Dmitry Bugaychenko

Odnoklassniki LTD,
Saint-Petersburg State University, Russia

alexandr.dzuba@gmail.com

Abstract. This paper presents a set of methods for the analysis of user
activity and data preparation for the music recommender by the exam-
ple of “Odnoklassniki”1 social network. The history of actions is being
analyzed in multiple dimensions in order to find a number of collabora-
tive and temporal correlations as well as to make the overall rankings.
The results of the analysis are being exported in a form of a taste graph
which is then used to generate on-line music recommendations. The taste
graph displays relations between different entities connected with music
(users, tracks, artists, etc.) and consists of the following main parts: user
preferences, track similarities, artists’ similarities, artists’ works and de-
mography profiles.

Keywords: music recommendations, taste graph, item similarity.

1 Introduction

In the sphere of music services there are many ways for data extraction which
can be useful for generating recommendations, especially in a social networks.
Playback history, a user’s profile and metadata of the tracks can give an estimate
of relations between different entities: users, tracks, artists, etc. Taste graph [1]
accumulates these knowledge and helps the recomender to solve different tasks.
Above mentioned objects and its relations serve as vertices and edges of the
graph. It is illustrated in a following way: a user likes an artist, which is similar
to another artist, who has recorded a certain track, and each relation can be
weighted by a quantitative metric, based on data analysis. Such edges construct
numerous chains of edges between the user and unknown tracks.

The paper [3] is proposing the way to make music recommendations by means
of random walk with restarts on a stochastic graph. The walk starts with an
active user being at the graph vertex and continues to the adjacent vertices. The
probability of transition along the edge equals its weight. Thus all weights are
normalized. In addition, there is a high probability of return to the initial vertex
on each walk step. Steady state probability distribution of this walk characterizes
the relatedness of initial user and vertices within the connected component [5].

1 www.ok.ru

P. Perner (Ed.): MLDM 2014, LNAI 8556, pp. 422–430, 2014.
c© Springer International Publishing Switzerland 2014

Mining Users Playbacks History for Music Recommendations 423

However, the application field of this approach is much broader than just its
usage for making the track list recommendation. We can use random walks
to complement existing music collection with the closest tracks. You can also
reorder the given list of songs according to user preferences. Similarity relations
between tracks or artists can be used to cluster the tracks.

We present a set of methods, which are used to construct a taste graph in the
general purpose social network “OK” (www.ok.ru). The main analyzing object
is a history of user activity. It allows to estimate the connection between the user
and the item vertices, as well as to identify collaborative correlations between
the items (tracks and artists). In addition, we analyze a user profile and extract
metadata of music files. Still important notice here is that after the metadata
extraction a number of postprocessing phases is always required.

2 Taste Graph Construction

Each part of the taste graph is created using a separate algorithm. The user
preferences are constructed by aggregating the history of all his playbacks by
means of exponential running average. The artist similarities are calculated in
multiple steps: representative tracks are selected from the set of all artist’s tracks.
Then playbacks for these tracks are being aggregated in order to get a user-
artist matrix. In order to reduce the impact of the sparsity, this matrix is being
converted to an artist-artist matrix by the usage of simple similarity measure.
After that the matrix is being iteratively refined. The track similarity matrix
is constructed, being based on the amount of playbacks from the same user in
the scope of limited time window, which by turn is being discounted by the
overall tracks’ popularity. The relation between artists and their compositions
is calculated by the analysis of the recent activity around the tracks. In order
to avoid the cold-start problem, novel items are being additionally boosted. The
demography profiles are constructed by averaging user preferences in the scope of
a demography group (defined by age, sex and region) and calculating deviations
from the system-wide top. The profiles are used to support new users until the
time when enough statistical data is collected to reliably construct their own
profiles.

The emphasis on different parts is placed due to practical point of view be-
cause it allows different parts of the taste graph to be constructed independently
and to be combined afterwards. As will be stated below we assume that after
determining the edges weights normalization and balancing will be made [1].
All weights are normalized in order to produce a stochastic system. Balancing
function β is used to manage impact of different factors on the overall result.
This function can be changed at the runtime without re-creation of the graph,
what increases the flexibility of the system. We supplement the graph with the
balancing vertex θ in order to compensate impact of nodes with small amount
of outgoing edges. When the amount of edges for v ∈ V is below limit, an edge
from v to θ is being added to take away weights from the existing edges. Next,
we describe the basis on which each part of the graph is made and the methods
for edge weighting.

424 A. Dzuba and D. Bugaychenko

All the computations are implemented in Java using Apache Hadoop and Ma-
hout. The daily audience of the www.ok.ru is more than 40 million users mainly
from the Russian Federation, Eastern Europe and Middle Asia, but despite the
huge volume of statistics to be analyzed, taste graph is updated on a daily basis.
In combination with the on-line storage for the today’s user actions it allows to
generate relevant recommendations.

2.1 User Preferences

User preferences consist of two parts, the preference for artists and the preference
for tracks, which are based on the calculation of playbacks by the user. However,
in practice, we often face the situation when once many times listened artists or
tracks which are not popular anymore, are still being invariably placed at the
top of recommendations because of the big amount of past playbacks. We use
exponential moving average to update our preferences:

pref0(u, i) = plays0(u, i)

preft(u, i) = α · playst(u, i) + (1 − α) · preft−1(u, i)
(1)

where playst(u, i) is the number of artist or track i listenings by user u within a t-
th month and α ∈ (0, 1) is a constant smoothing factor. No further action is being
done regarding preferences, except the application of the balancing function,
which helps to manage the impact of similarities of different types.

2.2 Demography Profiles

The demography profile is used to avoid the cold start problem for new users.
When pref(u) = {i|pref(u, i) �= 0} contains not enough elements we use demo-
graphic group vertex as a start of random walks. Demographic groups U1, . . . Uk

are disjoint subsets of users U , formed from the profiles with the same values of
demographic characteristics (gender, age, region).

dpi =
∑

u∈Up

pref(u, i) (2)

In order to extract demographical identity from some group we can compute
deviations of top group preferences from the system-wide top swt, where swti =∑

u∈U prefs(u, i)

prefs(Up) =
topn(d

p)

‖topn(dp)‖1 − topn(swt)

‖topn(swt)‖1 (3)

Above mentioned profiles do not have incoming edges in the graph, therefore
as soon as the user gathers enough preferences for independent recommendations,
these profiles do not affect the random walks.

Mining Users Playbacks History for Music Recommendations 425

2.3 Track Similarities

The standard way of similarities determination is to calculate the collaborative
correlations between items based on user ratings. Such methods are established
on some similarity measure (usually variations of the Pearson correlation co-
efficient [2]). Within this approach we need to calculate the metric between
hundreds of thousands and millions of tracks, represented by ratings vectors. Al-
gorithms for distributed computation of similar items, such as jobs in the library
Apache Mahout, can be time saving, but having a large music catalog and lots
of users, demands a powerful machine cluster for timely statistics updating. In
order to reduce computational cost we use track temporal correlations instead
of similarity measure.

Assume pui,j is an amount of tracks i and j listenings by the user u in the scope
of limited time window. Denote by pi,j the sum of pui,j from all users. pi,j reflects
how well the tracks are listened together, but this is not enough to conclude that
i and j are similar. We need to subtract the popularity of the similar track in
order to get pure temporal correlations ti,j :

ti,j =
pi,j

N∑
j=1

pi,j

− bij , (4)

where bij is a baseline of the track j adopted to similarity with track i. If

pj =
N∑
i=1

pi,j and T i = {k|pi,k �= 0} then

bij =
pj

N∑
j=1

pj · 1T i(j)

(5)

Thus for calculating similar tracks we normalize rows of P = {pi,j}Ni,j=1

and B = {pj · 1T i(j)}Ni,j=1 and compute the temporal correlation matrix T =

{ti,j}Ni,j=1 = N −B.

2.4 Artist Similarities

In case of artists we do not have the problem of big data, what enables the
one to use more complex algorithms. Unlike the classical approach [6], where a
distance metric between vectors of user ratings is calculated during similar items
searching, we start with a vector of artists’ common playbacks.

Using the Artist-Artist input instead of the User-Artist one, we can many
times increase the vectors’ density. This reduces an impact of outliers being
revealed in into the input data on the founded collaborative correlations. Also
this aggregation eliminates the need to work with the high dimension vectors.
The calculations are done in three stages:

1. Pre-filtering of triples (User, Track, PlayCount). We filter the triples with
small values of PlayCount and users with small amount of statistics. Then we

426 A. Dzuba and D. Bugaychenko

keep only the reliable tracks. At this point we throw out the tracks which do
not pass filtering by density from section 3. Finally we group the playbacks
by artist and use the amount of common users as the initial approximation
a0i,j for artist similarity.

2. Iterative calculation of the vector similarity measure between rows of Ak =
{aki,j}Ni,j=1. The best results achieved the Euclidean distance and specifically

aki,j =
1

1 +

√
N∑
l=1

(ak−1
i,l − ak−1

j,l)2

(6)

After each iteration elements of the main diagonal are artificially increased
for a better convergence:

aki,i = α ·
∑

i�=j

aki,j , (7)

where α ∈ (0, 1) is a constant reducing factor.
3. Similarity lists are filtered by the methods described in section 3.

2.5 Artists’ Works

The relations between artists and tracks are selected from the music catalog.
Obviously, if the active user vertex is close to the artist vertex, it is reasonable
to recommend him the most popular tracks of this artist. But artist’s works are
not only representing a way to propagate the recommendations of similar artists
on the tracks, but are also providing a solution for the cold start problem, so
topical for new tracks in a music catalog.

wi = b ·
∑

u∈U

prefs(u, i), (8)

where b > 1 is a novelty boost factor.
Comparing different artists, we can notice large variation in the size of works.

In accordance with a stochasticity of the graph, tracks of artists with lots of
related songs will be suppressed. We take two steps to avoid this suppression.
First, we limit by L the number of adjacent edges with Track-Artist type. Second,
for artists with small number of tracks we simulate existence of entry tracks with
weights which are close to real. Simulation is gained by adding the edge from
the artist j vertex to θ balancing vertex with weight wθ(j). Denote by Wj tracks
of an artist j:

wθ(j) =|Wj | · min
t∈Wj

at · (1

|Wj |+ 1
+

1

|Wj |+ 2
+ . . .

1

L
)

(9)

Mining Users Playbacks History for Music Recommendations 427

9 is a model of hyperbolic popularity decay. As shown in fugure 1, the rating
of most popular tracks decreases like a hyperbola, so we simulate such decay
from the lower track’s position to L.

0 10 20 30 40 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Track position in artist’s works

www.ok.ru average decay

ratings decay for some artist

simulated decay of ratings

Fig. 1. The weights of Artist-Track edges

2.6 Summary

Along with the graph structure described in this chapter, we have following types
of paths from the user to the tracks:

1. User → Track → Track
2. User → Artist → Track
3. User → Artist → Artist → Track

It is clear that if we have high probability of restarting, the tracks of the second
type paths will have much greater impact than tracks reached by the third type
paths (for any balancing function). It reflects real relations between entities, but
most likely the user is already familiar with works of his favorite artists. In order
to increase recommendation novelty we can divide the artist vertex type into
two types: an Artist is connected with a Similar Artist who is by turn connected
with tracks. So paths in the graph become

1. User → Track → Track
2. User → Artist → SimilarArtist → Track

and the difference between these ways can be controled by balancing function.

428 A. Dzuba and D. Bugaychenko

3 Similarity Filtration

The methods of outliers filtering for the lists of similar items are presented
below. Filtration of similarities with insufficient statistics is close to correlation
coefficient shrinkage from [4]. Similarity si,j between items i and j is discounted
like:

ŝi,j =
ni,j − 1

ni,j − 1 + λ ·min(ni, nj)
· si,j , (10)

where ni,j is a number of users who rated both items i and j, nk is a number of
users who rated item k, λ > 0 is small constant. Note that in different situations,
instead of the min(ni, nj) arithmetic or geometric mean can be used. Thus the
selection function requires additional experiments.

The second filter is used for filtering outliers. To detect outliers we compute
sum of similarity values to other elements of items list for each element of this
list. In other words, we compute S̃ = S2 where S = {si,j}Ni,j=1 and filter si,j
with small values of s̃i,j .

The third filter is used to remove similar lists containing some exessively
diverse information. As in the case of outliers filtration, we use the similarity to
other list items in terms of the subgraph density defined as

D =
2|E|

|V |(|V | − 1)
(11)

To check similarity set s(i) = {j|si,j �= 0)} we compute a density Di of the
G subgraph, induced by s(i) vertices. Too low values of Di tend to indicate non
reliable list, which will have a negative impact on the recommendations.

After all filterings, items with short similar lists appear. In order to compen-
sate their increased impact on recommendation we use edge to zero balancing
vertex θ. It simulates the presence of missing edges with weights decreasing
linearly from a minimum similarity to a 0.

4 Evaluation

We evaluated the graphs using all our users’ preferences. Tens of millions of
the preferences was splitted into training set and testing set. After that we
constructed the graphs from our similarities and baseline similarities. All the
elements of the testing set assumed as relevant when calculating recall-precision
curves (RPC). Recommendation lists for the users are being compared here. The
lists are generated by using random walks with restarts on the graphs [1].

As a baseline for track similarities, we used a measure from [4], including
items’ baselines and shrunk correlation coefficient. Figure 2 demonstrates good
quality of the method, which has been proposed in section 2.3.

We have chosen the data provided by Last.fm API2 to evaluate similar artists.
The graphs are constructed on the base of various Artist-Artist edges and iden-
tical Artist-Track edges. Results are shown in figure 3.

2 www.lastfm.ru/api/show/artist.getSimilar

Mining Users Playbacks History for Music Recommendations 429

0.2 0.4 0.6 0.8 1

0

1

2

3

·10−2

Recall

P
re
ci
si
o
n

Proposed algorithm

Baseline algorithm

Fig. 2. RPC of the similar tracks

0.2 0.4 0.6 0.8 1

0

1

2

3

4

·10−3

Recall

P
re
ci
si
o
n

Proposed algorithm

Last.fm similars

Fig. 3. RPC of the similar artists

Online experiments confirm the decision about quality. After switch from the
main graph to the baseline graph, users’ activity reduced significantly within
the range of 10%. Thereby all the suggested methods demonstrate the ability
to recommend relevant content with the quality of state-of-art recommendation
methods.

430 A. Dzuba and D. Bugaychenko

5 Conclusion and Future Work

In this paper we presented the set of methods concerning data analysis, used
for evaluation of connections between entities of a music service. The proposed
approach allows to calculate these relations independently and to combine them
in a taste graph, which provides online recommendations and personalization. At
the same time, computational costs for daily graph construction and its updating
can be considered to be rather small.

In future we are going to continue working on the taste graph and to pay
more attention to the following aspects:

Demographical Adjustments. Large demographic groups can spread collab-
orative correlations affecting the recommendations of other groups through-
out the whole system.

Integration of Other Collaborative Data. Introduction of SVD latent fac-
tors to the graph can reduce its size and can make it possible to supplement
it with the relations between users without considerable overheads.

References

1. Bugaychenko, D., Dzuba, A.: Musical recommendations and personalization in a so-
cial network. In: Proceedings of the 7th ACM Conference on Recommender Systems,
pp. 367–370. ACM (2013)

2. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recom-
mendation methods. In: Recommender Systems Handbook, pp. 107–144 (2011)

3. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative rec-
ommendation. In: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2009, pp. 195–202.
ACM, New York (2009)

4. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems
Handbook, pp. 145–186 (2011)

5. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul erdos is
eighty 2(1), 1–46 (1993)

6. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

	Mining Users Playbacks History for Music Recommendations
	1 Introduction
	2 Taste Graph Construction
	2.1 User Preferences
	2.2 Demography Profiles
	2.3 Track Similarities
	2.4 Artist Similarities
	2.5 Artists’ Works
	2.6 Summary

	3 Similarity Filtration
	4 Evaluation
	5 Conclusion and Future Work
	References

