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Abstract. Data mining problems and tools are linked to the task of extracting 
important regularities (patterns) from multivariate data sets. In some cases, flat 
patterns can be located on vertexical planes in a multidimensional data space. 
Vertexical planes are linked to vertices in parameter space. Patterns located on 
vertexical planes can be discovered in large data sets through minimization of 
the convex and piecewise linear (CPL) criterion functions.  
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1 Introduction 

Data mining tasks are aimed at discovering useful patterns in large data sets [1], [2], 
[3]. The term patterns stands for  various types of regularities in an explored data set, 
such as decision rules, trends, or models of interactions. The extracted patterns are 
used in solving many practical problems linked, e.g.  to medical diagnosis support, 
economic forecasting, marketing, fraud detection or to scientific discoveries.    

Data sets can typically be represented as clouds of points in a multidimensional 
feature space. Clustering algorithms belong to the most powerful tools of data mining 
[2]. The K-means algorithms constitute the most popular and successful paradigm in 
clustering applications. The basic idea in the K-means algorithm is linked to partition-
ing of a given set C of m objects (points) into K subsets Ck centered around the class 
prototypes in the form of central points, which had been computed (defined) earlier. 
In the next step, the class prototypes are modified in accordance with the obtained 
subsets Ck. These steps are repeated until the central points are stabilized in the suc-
cessive steps. The K-means algorithm has been generalized to the form of K-means, 
K-planes or K-models [4], [5]. In these approaches the concept of central points has 
been replaced by central models, e.g. in the form of planes in multivariate feature 
space.  

Central planes can have the form of vertexical planes based on vertices in 
parameter space. ″Flat patterns″ located on the main vertexical planes can be discov-
ered in large data sets through minimization of the convex and piecewise linear (CPL) 
criterion functions [6]. Analytical and computational properties of the method of main 
vertexical planes discovering through minimization of the CPL criterion functions are 
analyzed in the presented article.  
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2 Hyperplanes and Vertices in the Parameter Space 

Let us assume that the data set C contains m feature vectors xj[n] = [xj1,...,xjn]
T belong-

ing to a given n-dimensional feature space F[n] (xj[n] ∈ F[n]): 

 C = {xj[n]},  where  j = 1,...,m (1) 

Components xji of the feature vector xj[n] can be treated as the numerical results of 
n standardized examinations of a given object Oj (xji∈{0,1} or xji∈R).  

We can assume without limitation that the feature space F[n] is equal to the  
n-dimensional space of real numbers Rn (F[n] = Rn). Each feature vector xj[n] can be 
treated as a point in the space Rn . 

Each of m feature vector xj[n] from the set C (1) defines the below hyperplane hj in 
the parameter space Rn (w[n] ∈ Rn): 

                        (∀xj[n] ∈ C)          hj =  {w[n]: xj[n]Tw[n]  =  1}                               (2) 

Each unit vector ei[n] = [0,…,1,…,0]T defines the below hyperplane hi
0 in the pa-

rameter space Rn: 
                 

                  (∀i∈{1,…,n})         hi
0  = {w[n]: ei[n]Tw[n] = 0} =                                  (3) 

                                                         = {w[n]: wi = 0}                          
      
Let us consider a set Sk of n linearly independent feature vectors xj[n] (j∈Jk) and 

unit vectors ei[n] (i∈Ik).   
 

                                    Sk = {xj[n]: j∈Jk} ∪ {ej[n]: i∈Ik}                                         (4) 
 

The k-th vertex wk[n] in the parameter space Rn is the intersection point of n 
hyperplanes hj (2) or hi

0 (3) defined by the vectors xj[n] (j∈Jk) and ei[n] (i∈Ik) from 
the set Sk (4). The intersection point wk[n] can be given by the below linear equations: 

 

                                               (∀j∈Jk)     wk[n]Txj[n] =  1                                         (5) 
and     

                                                (∀i∈Ik)    wk[n]Tei[n] =  0                                          (6) 
 

The equations (5) and (6) can be given in the below matrix form: 
 

                                         Bk[n] wk[n] = 1′[n] = [1,…,1,0,…,0]T                                (7) 
 

where Bk[n] is the square matrix, the k-th basis linked to the vertex wk[n]: 
 

                               Bk[n] = [xj(1)[n],...,xj(n′)[n],ei(n′+1)[n],...,ei(n)[n]]T                            (8) 
 

and 
 

                                                 wk[n] = Bk[n]-11′[n]                                                 (9) 
 

The number of the subsets Sk (4) and the bases Bk[n] (8) could be very large. The 
same vertex wk[n] can be determined by (9) more than one base Bk[n].   
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Definition 1: The rank rk (1 ≤ rk ≤ n) of the vertex wk[n] (9) is defined as the number 
of the feature vectors xj[n] (j∈Jk (5)) in the base Bk[n] (8) linked (9) to this vertex.   

It can be noted that the rank rk of the vertex wk[n] = [wk,1,…,wk,n]
T (9) is equal to the 

number of its nonzero components wk,i (wk,i ≠ 0). 
 

Definition 2: The vertex wk[n] of the rank rk is degenerated when more than rk  
hyperplanes hj (2)  pass (5) through it.  

Let us note that the degenerated vertex wk[n] can be defined (9) by at least two 
different matrices Bk[n] and Bk'[n] (Bk[n] ≠ Bk'[n] and wk[n] = wk'[n]).  
 

Definition 3: The degree of degeneration of the vertex wk[n] (9) of the rank  rk is de-
fined as the number dk = mk - rk, where mk is the number of such feature vectors xj[n] 
(xj[n] ∈ C) from the set C (1), which define the hyperplanes hj (2) passing through 
this vertex (wk[n]Txj[n] =  1).  

The degree of degeneration dk of the vertex wk[n] (9) can be also seen as the  
number of different bases Bk'[n] (8) linked (9) to this vertex. The degree  
of degeneration of the vertex wk[n] (9) can be defined also in a different way, for  
example as dk′ = (mk - rk) / (m - rk). It could be seen that 0 ≤ dk′ ≤ 1. 

3 Hyperplanes and Planes in the Feature Space 

The hyperplanes H(w[n],θ) in the feature space F[n] are usually defined in the below  
manner [2]: 

 H(w[n], θ) = {x[n]: w[n]Tx[n] = θ} (10) 

where w[n] = [w1,…,wn]
T is the weight vector (w[n] ∈ Rn) and θ is the threshold         

(θ ∈ R1). 
The weight vector w[n] is perpendicular to H(w[n],θ) and determines the orienta-

tion of this hyperplane. Changing the threshold θ causes a parallel displacement 
(shift) of  the hyperplane H(w[n],θ)  (2). The dimension of  the hyperplane H(w[n],θ)  
(10) is equal to n – 1. 

The vertex wk[n] (9) of the rank rk allows to define the (rk - 1) - dimensional ver-
texical plane Pk(xj(1)[n],…, xj(rk)[n]) in the feature space F[n] as the linear combination 
of rk (5) feature vectors xj(i)[n] belonging to the basis Bk[n] (8):     

                     Pk(xj(1)[n],…,xj(rk)[n]) =  {x[n]: x[n] =  α1 xj(1)[n] +…+ αk xj(rk)[n]}    (11) 

where j(i)∈Jk (5) and  rk parameters αi (αi ∈ R1) fulfill the below condition: 

             α1 +…+ αrk = 1                                                  (12) 

If the vertex wk[n] (9) has the rank rk = n, then the vertexical plane (11) has the di-
mension equal to (n - 1), similarly to the hyperplane H(w[n],θ) (2). We can note that 
not every hyperplane H(w[n],θ) (2) can be represented as Pk(xj(1)[n],…, xj(n)[n]) (11)  
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but the opposite statement is true. Every vertexical hyperplane Pk(xj(1)[n],…, xj(n)[n]) 
(11) can be represented as H(w[n],θ) (2). 

Remark 1: The formula (11) without the condition (12) defines such an rk - dimen-
sional plane Pk(xj(1)[n],…, xj(rk)[n]) in the feature space F[n] which passes through the 
point zero 0[n] (origin).     

The line Lk(xj(1)[n],xj(2)[n]) in the feature space F[n] can be treated as the one-
dimensional plane Pk(xj(1)[n], xj(2)[n]) (11) spanned by two different vectors xj(1)[n] 
and xj(2)[n] (xj(1)[n] ≠ xj(2)[n]) by using only one parameter α (α∈R1 ): 

 

             Lk(xj(1)[n],xj(2)[n]) = {x[n]: x[n] =  xj(1)[n] + α (xj(2)[n] - xj(1)[n])} = (13) 
                                         = {x[n]: x[n] =  (1 - α) xj(1)[n] + α xj(2)[n]} 

 

One feature vector xj[n] allows to define the line L0(x[n]) passing through the point 
0[n] (origin) of the feature space F[n]: 

 

                        L0(xj(1)[n])   =  {x[n]: x[n] =  α xj(1)[n]}, where α∈R1                                   (14) 
 

Remark 2: If two feature vectors xj(1)[n] and xj(2)[n] are linearly dependent            
(xj(2)[n]= c xj(1)[n], where c ∈ R1), then the line L(xj(1)[n],xj(2)[n]) (13) passes through 
the origin, and the equation (13) can be reduced to (14). 
 
Theorem 1: The feature vector xj[n] defines hyperplane hj (2) which passes through 
the vertex wk[n] (9) of the rank rk if and only if the vector xj[n] is situated on the     
(rk-1)-dimensional vertexical plane Pk(xj(1)[n],…,xj(rk)[n]) (11), where j(i)∈Jk (5).  

 

Proof: Each vector xj(i)[n] belonging to the basis Bk[n] (8) fulfils the equation 
wk[n]Txj(i)[n] = 1 (5). If the point xj[n] is situated on the (rk - 1)-dimensional vertexical 
plane Pk(xj(1)[n],…, xj(rk)[n]) (11) then it satisfies the equation xj[n] = α1xj(1)[n] +…+ 
αkxj(rk)[n], where α1 +…+ αrk = 1 (6). Therefore, the condition wk[n]Txj[n] = 1 results.  

Any feature vector xj[n] can be represented as the linear combination of the basis 
vectors xj(i)[n] (j(i)∈Jk) (5) and ej[n] (i∈Ik) (6). The basis unit vectors ej[n] fulfill the 
condition wk[n]Tei[n] = 0 (6). Therefore, if the equation wk[n]Txj[n] = 1 holds for some 
vector xj[n], then the condition (6) implies that this vector is situated on the vertexical 
plane Pk(xj(1)[n],…,xj(rk)[n]) (11) in the feature space F[n].  

We are interested in discovering such a vertexical plane Pk(xj(1)[n],…, xj(rk)[n]) (11) 
which would contain especially numerous feature vectors xj[n] (1).  
 
Definition 4: The vertexical plane Pk(xj(1)[n],…, xj(rk)[n]) (11) that includes mk feature 
vectors xj[n] from the data set C (1) is called the main vertexical plane if and only if 
the number mk is  large in comparison to the rank rk (Definition 2) of the vertex wk[n] 
(at least  mk >  rk). 

 

Supposition I: Discovering main vertexical planes Pk(xj(1)[n],…, xj(rk)[n]) (11) in the 
feature space F[n] can be based on the detection and examination of the vertices wk[n] 
(9) with a high degree of degeneration rk (Definition 3).  
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4 Convex and Piecewise Linear (CPL) Criterion Functions 

Let us consider a convex and piecewise linear (CPL) penalty functions ϕj(w) defined 
in the below manner on the feature vectors xj[n] from the data set C (1) [6]: 

 

  (∀xj[n] ∈ C (1)) 
                                                       1 - w[n]Txj[n]        if    w[n]Txj[n] ≤ 1 

                                ϕj(w[n]) =                                                                                 (15) 
                                                       w[n]Txj[n] - 1        if    w[n]Txj[n] > 1      

 

The penalty functions ϕj(w) are equal to the absolute values |1 - w[n]Txj[n]|. 
The criterion function Φm(w[n]) is defined as the weighted sum of the penalty 

functions ϕj(w[n]) defined by feature vectors xj[n] from the subset Cm (Cm ⊂ C): 
 

Φm(w[n]) =  Σ αj ϕj(w[n])                                            (16) 
                                                          i∈Jm 

where Jm = {j: xj[n] ∈ Cm} and the positive parameters αj (αj > 0) in the below 
function Φm(w[n]) can be treated as the prices of particular feature vectors xj[n]. The 
standard choice of the parameters αj values is one: 

 

 (∀j ∈ Jm )  αj = 1.0                                            (17) 
 

The criterion function Φm(w[n]) (16) is convex and piecewise linear as the sums of 
the CPL functions αjϕj(w[n]) (15). It can be proved that the minimal value of the  
function Φm(w[n]) can be found in one of the vertices wk[n] (9) [7]: 

 

                     (∃wk
*[n])   (∀w[n])   Φm(w[n]) ≥ Φm(wk

*[n]) =  Φm
* ≥ 0                     (18) 

 

The basis exchange algorithms which are similar to the linear programming allow 
to find efficiently the minimum Φm(wk

*[n]) of the criterion functions Φm(w[n]) (16) 
even in the case of large, multidimensional data subsets Cm (Cm ⊂ C) (1) [8]. 

 

Theorem 2: The minimal value Φm(wk
*[n]) (18) of the criterion function Φm(w[n]) 

(16) is equal to zero (Φm(wk
*[n]) = 0), if and only if all the feature vectors xj[n] from 

the subset Cm (Cm ⊂ C (1)) are situated on a hyperplane H(w[n],θ) (10) with θ ≠ 0. 
 

Proof: Let us suppose that all the feature vectors xj[n] from the subset Cm are situated 
on some hyperplane H(w′[n],θ′) (10) with θ′ ≠ 0: 

 

                                                    (∀xj[n]∈Cm)   w′[n]Txj[n] = θ′                                       (19) 
 

From this  
 

                                                  (∀xj[n]∈Cm)   (w′[n] / θ′)Txj[n] = 1                                    (20) 
 

The above equations mean that functions ϕj(w′[n] / θ′)  (15) are equal to zero in the 
point (w′[n] / θ′):    

 

                                                  (∀xj[n]∈Cm)   ϕj(w′[n] / θ′)  = 0                                                 (21) 
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so  
                                                          Φm(w′[n] / θ′) =  0                                                   (22) 

 

On the other hand, if the criterion function Φm(w′[n]) (16) is equal to zero in some 
point w′[n], then each of the penalty functions ϕj(w′[n]) (15) has to be equal to zero:      

 

                                                         (∀xj[n]∈Cm)   ϕj(w′[n]) = 0                                              (23) 
or 

                                                        (∀xj[n]∈Cm)  w′[n]Txj[n] = 1                                             (24) 
 

The above equations mean that each feature vector xj[n] from the subset Cm is located 
on the hyperplane H(w′[n], 1) (10). ë 

Taking into account that the minimal value (18) of the criterion function Φm(w[n]) 
(16) can be located in one of the vertices wk[n] (9), the Theorem 2 can be reformu-
lated in the below manner: 

 

Theorem 2′: The minimal value Φm(wk
*[n]) (18) of the criterion function Φm(w[n]) 

(16) is equal to zero (Φm(wk
*[n]) = 0), if and only if all the feature vectors xj[n] from 

the subset Cm (Cm ⊂ C (1)) are situated on some vertexical plane Pk(xj(1)[n],…, xj(l)[n]) 
(11) (12) which does not pass through the point zero 0[n] (origin). 

 

The below theorem characterizes the invariance property of the value Φk(wk
*[n]):  

 

Theorem 3: The minimal value Φm(wk
*[n]) (18) of the criterion function Φm(w[n]) 

(16) does not depend on linear, non-singular data transformations of the feature 
vectors xj[n] from the subset Cm (Cm ⊂ C (1)): 

 

                                                          Φm′(wk′[n]) =  Φm(wk
*[n])                                            (25) 

 

where Φm′(wk′[n]) is the minimal value of the criterion functions Φm′(w[n]) (16) 
defined on the transformed feature vectors xj′[n]: 

 

                                                          (∀xj[n] ∈ Cm)   xj′[n] = A[n] xj[n]                                           (26) 
 

where A[n] is a non-singular matrix of dimension (n x n)  (A-1[n] exists). 
 

Proof: The values ϕj′(w[n]) of the penalty function ϕj(w[n]) (15) in a point w′[n]  are 
defined in the below manner on the transformed feature vectors xj′[n] (26): 

 

                (∀xj′[n]∈Cm)  ϕj′((w′[n]) = |1 - w′[n]Txj′[n]| = |1 - w′[n]TA[n]xj[n]|                (27) 
 

If we take 
 

                                                       wk′[n] = (A[n]T)-1 wk
*[n]                                           (28) 

 

we obtain the below result 
 

                                      (∀xj[n]∈Cm)  ϕj′(wk′[n]) = ϕj(wk
*[n])                                    (29) 

 

The above equations mean that the value Φm′(wk′[n]) of the criterion functions 
Φm′(w[n]) (16) defined in the point wk′[n] (28) on the transformed feature vectors 
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xj′[n] (26) is equal to the minimal value Φm(wk
*[n]) (18) of the criterion function 

Φm(w[n]) (16) defined on the feature vectors xj[n].                                               

The minimal value Φm(wk
*[n]) (18) of the criterion function Φm(w[n]) (16) can be 

characterized by two below monotonocity properties: 
 

i. The positive monotonocity property due to reduction of  feature vectors xj[n] 
Neglecting some feature vectors xj[n] cannot result in an increase of the minimal 
value Φm(wm

*[n]) (19) of the criterion function Φm(w[n]) (17): 
 

                                     (Cm′ ⊂  Cm)   (Φm′
* ≤  Φm

*)                                        (30) 
 

where the symbol Φm′
* stands for the minimal value (18) of the criterion function 

Φm′(w[n]) (16) defined on the elements xj[n] of the subset Cm′ (xj[n] ∈ Cm′). 
 

The relation (30) can be justified by the remark that neglecting some feature vec-
tors xj[n] results in neglecting some non-negative components αj ϕj(w[n]) (15) in the 
criterion function Φm(w[n]) (16). 

 

ii. The negative monotonicity property due to reduction of features xi  
The reduction of the feature space F[n] to F ′[n′] by neglecting some features xi 
cannot result in a decrease of the minimal value Φk(wk

*[n]) (18) of the criterion 
function Φk(w[n]) (16): 

 

                          (F ′[n′] ⊂  F[n])   (Φm′ ≥  Φm
*)                                          (31) 

 

where the symbol Φm′ stands for the minimal value (18) of the criterion function  
Φm(w[n′]) (16) defined on the reduced vectors xj′[n′] (xj′[n′]∈F′[n′], n′ < n). The 
relation (31) results from the fact that the neglecting  some features xi is equivalent to 
imposing additional constraints ″wi = 0″ in the parameter space Rn.. 

5 Procedure of the Main Vertexical Planes Discovering  

The feature vector xj[n] is included in the vertexical plane P(xj(1)[n],…,xj(rk)[n]) (11) if 
the below equation holds:  

                     xj[n] =  αj,1 xj(1)[n] +…+ αj,rk xj(rk)[n]                   (32) 

with the condition (12): 
 

                               αj,1 +…+ αj,rk =1                                                (33) 
 

Definition 4: The vertexical plane Pk(xj(1)[n],…, xj(rk)[n]) (11) that includes mk feature 
vectors xj[n] from the data set C (1) is called  the main vertexical plane if and only if 
the number mk is a large in comparison with to the rank rk (Definition 2) of the vertex 
wk[n] (at least  mk >  rk). 
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The below multistage Procedure Vertex is proposed for discovering the main ver-
tical plane Pm(xj(1)[n],…,xj(rk)[n]) (11) on the basis of the data set Cm = C (1): 

 

                                                               Procedure Vertex                                                    (34) 
 

i. Find the minimal value Φm(wk
*[n]) (18) and the optimal vertex wk

*[n] of the 
criterion function Φm(w[n]) (16) defined on elements xj[n of the subset Cm  

ii. If Φm(wk
*[n]) = 0, then the Procedure Vertex is stopped in the optimal vertex 

wk
*[n], otherwise the next step is executed 

iii. Find the vector xj'[n] in the feature subset Cm with the highest value of the 
penalty function ϕj(w[n]) (15) in the optimal vertex wk

*[n] (18)   
 

                                             (∀xj[n]∈Cm)  ϕj'(wk
*[n]) ≥ ϕj(wk

*[n])                              (35) 
 

or with the parameters αj (16) taking into account: 
 

                                       (∀xj[n]∈Cm)  αj'ϕj'(wk
*[n]) ≥ αj ϕj(wk

*[n])                             (36) 
 

   iv.       Remove the feature vector xj'[n] from the subset Cm (Cm →  Cm / { xj'[n] })   
                 and go to the step i. 

 

It can be proved that the Procedure Vertex is stopped in the optimal vertex wk
*[n] 

(18) of the rank rk after finite number of steps. This property is based on the Theorem 
2 and on the monotonocity property (30).  

Let the symbol Cm
* stand for optimal subset of feature vectors xj[n] which is ob-

tained when the Procedure Vertex is stopped.  
 
Remark 3: The degree of degeneration dk of the optimal vertex wk

*[n] (18)  
(Definition 3) is equal to the difference between the number mk of elements xj[n] of  
the optimal subset Cm

* and the  rank rk of this vertex (Definition 2): 
 

                        dk = mk -  rk                                                (37) 
 

In accordance with the Definition 4, the main vertexical plane Pk(xj(1)[n],…, 
xj(rk)[n]) (11) based on the optimal vertex wk

*[n] (18) of the rank rk should contain 
especially numerous feature vectors xj[n] (1) or, in other words, should have a high 
value of the degree of degeneration dk (37).   

There is no guarantee that the optimal vertex wk
*[n] (18) resulting from the  Proce-

dure Vertex (34) will define the main vertexical plane Pk(xj(1)[n],…, xj(rk)[n]) (11) with 
the highest value of the degree of degeneration dk (37). Modifications to the Proce-
dure Vertex (34) could allow to find the plane Pk(xj(1)[n],…, xj(rk)[n]) (11) with a 
higher degree of degeneration dk (37). One of these modification would be to replace 
the  rule (35) in the step iii. with the below rule: 

 

iii'.  Find such feature vector xj'[n] (xj'[n]∈Cm) which when removed from the          
        subset Cm causes the largest decrease Δj(wk

*[n]) of the minimal value  
        Φm(wk

*[n]) (18) of the criterion function Φm(w[n]) (16): 
 

                                               (∀xj[n]∈Cm)  Δj'(wk
*[n]) ≥ Δj(wk

*[n])                                         (38) 
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The Procedure Vertex (34) may allow for discovering more than one vertexical 
plane Pm(xj(1)[n],…,xj(rk)[n]) (11) from a data set C (1) in subsequent cycles l. The 
optimal subset Cm(1)

* is found during the first cycle (l = 1) of the Procedure Vertex 
(34), which began on the full data set C1 = C (1). The second cycle (l = 2) (34) begins 
on the reduced data set C2 =  C1  / Cm(1)

* and allows to find the optimal subset Cm(2)
*. 

A possible third cycle (l = 3) begins on the data set set C3 =  C2  / Cm(2)
* and allows to 

find the optimal subset Cm(3)
* and so on. Subsequent cycles l allow to generate the  

sequence of the K optimal subset Cm(l}
* and the optimal vertices wk(l}

*[n] (18): 
 

                             (Cm(1)
*,wk(1)

*[n]), (Cm(2)
*,wk(2)

*[n]),...,(Cm(K)
*,wk(K)

*[n]),                          (39) 
 

As a result, the sequence of the K vertexical planes Pm(l)(xj(1)[n],…,xj(rk)[n]) (11) 
can be generated on the basis of the optimal vertices wk(l}

*[n] (39). The sequence of 
the K vertexical planes Pm(l)(xj(1)[n],…,xj(rk)[n]) (11) allows among others to divide the 
data sets C (1) into K subsets C(l) centered around K planes Pm(l)(xj(1)[n],…,xj(rk)[n]) 
(11). Such procedure can be called as the K – plane clustering.  

The sequence (39) is generated through gradual reduction of the data set C (1) by 
successive removing of the optimal subsets Cm(l)

*. The reduced subsets Cm(l)
* may be 

enlarged in successive cycles l, which could improve generalization power of the 
proposed procedure of the K – plane clustering. For this purpose, the step ii. in the  
Procedure Vertex (34) can be replaced, by the below one with a small, positive para-
meter ε (ε > 0): 

 

ii′.   If Φm(l)(wk
*[n]) ≤  ε, then the Procedure Vertex is stopped in the optimal    

           vertex wk
*[n], in the other case the next step is executed 

 

The Procedure Vertex (34) with the parameter ε equal to zero (ε = 0) generates the 
optimal subset Cm(l)

* constituted by feature vectors xj[n] located precisely on the 
optimal plane Pm(l)(xj(1)[n],…,xj(rk)[n]) (11). If the parameter ε becomes greater than 
zero (ε > 0), then the optimal subset Cm(l)′ may contain both the feature vectors xj[n] 
located on the optimal plane Pm(l)(xj(1)[n],…,xj(rk)[n]) (11) as well as near this plane:  

 

                         Cm(l)′  = {xj[n]: xj[n]∈Cm(l) and Φm(l)(wk
*[n]) ≤ ε}                                (40) 

 

where Φm(l)(wk
*[n]) is the minimal value Φm(l)(wk

*[n]) (18) of the criterion function          
Φm(l)(w[n]) (16) defined on elements xj[n] of the subset Cm(l) (Cm(l) ⊂ C (1)). 

6 Modified CPL Criterion Functions with Feature Costs 

The modified criterion function Ψmλ(w[n]) includes additional CPL penalty functions 
φi(w[n]) in the form of the absolute values |wi|: 

 

           (∀i ∈ {1,…, n}) 
                                          -ei[n]Tw[n]        if   ei[n]Tw[n] < 0 

            φi(w[n])  =  |wi|  =                                                                                      (41) 
                                           ei[n]Tw[n]       if   ei[n]Tw[n]  ≥  0 

 

where ei[n] = [0,…,1,…,0]T are the unit vectors ei[n]. 
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The modified criterion function Ψmλ(w[n]) is a weighted sum of the criterion func-
tion Φm(w[n]) (16) and the cost functions φi(w[n]) (41), where i ∈ I = {1,..., n}: 

 

     Ψmλ(w[n]) = Φm(w[n]) + λ Σ γi φi(w[n]) = Φm(w[n]) + λ Σ γi |wi|                   (42) 
                                                                               i∈I                                                                   i∈I 
where λ is the cost level (λ ≥ 0), γi – is the cost of the feature xi (γi > 0),   
typically γi= 1. 

Similarly as the function Φm(w[n]) (16), the modified criterion function Ψmλ(w[n]) 
(42) is convex and piecewise linear (CPL). The basis exchange algorithms allow to 
find efficiently the minimum Ψmλ(wkλ

*[n]) of the criterion function Ψmλ(w[n]) (42) in 
one of the vertices wk[n] (9) []: 

 

             (∃wkλ
*[n])  (∀w[n])   Ψmλ(w[n]) ≥  Ψmλ(wkλ

*[n])                         (43) 
 

The modified criterion function Ψmλ(w[n]) (42) is used in the relaxed linear 
separability (RLS) method of feature subset selection []. The reduction of unimportant 
features xi in the cost sensitive manner is based in the RLS method on componets wk,i

* 
of the optimal wertex wkλ

*[n] = [wk,1
*,…,wk,n

*]T (43) [9]. 
 

              (wk,i* = 0)  (the i-th feature xi is reduced)                             (44) 
 

The reduction of the i-th feature xi means that the feature vectors xj[n] lose their  
k-th component xj,i. Such components xj,i can be removed without changing the  
location of the optimal vertex wk

*[n] (43) or the values of inner products wk
*[n]Txj[n] 

in the criterion functions Φm(w[n]) (16) or Ψmλ(w[n]) (42).  
The regularization component λΣ γI |wi| used in the function Ψmλ(w[n]) (42) is  

similar to the one used in the Lasso method [10]. The Lasso method was developed in 
the framework of the regression analysis for the model selection purposes. The main 
difference between the Lasso and the RLS methods of feature selection is in the types 
of the basic criterion functions. The basic criterion function used in the Lasso method 
is usually the Last squares type. The basic criterion function used in the RLS method 
is the CPL type. This difference affects, inter alia, the computational techniques used 
for  minimizing the criterion functions.  

7 Oriented Graph Gm Based on Polytopes in Parameter Space 

Feature vectors xj[n] from the subset Cm (Cm ⊂ C (1)) define the hyperplanes hj (2) in 
the parameter space Rn. Similarly, n unit vectors ei[n] define the hyperplanes hi

0  (3). 
The hyperplanes hj (2) and hi

0 (3) divide the parameter space Rn into the disjoined sets 
(convex  polytopes) Pl

 with walls, vertices wk[n] (9), and edges lk,k' which are characte-
rized by the below properties: 
 

     - none of the hyperplanes hj (2) or hi
0  (3) intersect the set Pl                          (45) 

     - each wall of the polytope Pl
 is formed by one hyperplane hj (2) or hi

0 (3)  
     - each wertex wk[n] (9) of the set Pl

  is the intersection point of at least n     
       hyperplanes hj (2) or hi

0 (3)   
     - each edge lk,k'  connects two neighboring vertices wk[n] and wk'[n] of the set Pl

 and    
       can be defined as the intersection of n – 1 hyperplanes hj (2) or hi

0 (3)   
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We can  remark that both the criterion function Φm(w[n]) (16) as well as the mod-
ified criterion function Ψmλ(w[n]) (42) are linear inside of each polytope Pl

  []. The 
gradient ∇Φm(w[n]) of the criterion function Φm(w[n]) (16) inside selected polytope 
Pl

  is constant and can be given by the below expression (w[n]∈Pl): 
 

∇Φm(w[n]) =  Σ αj sj(w[n]) xj[n]                                            (46) 
                                                  j∈ Jm 
 

where 
 

                      sj(w[n]) =  1  if   w[n]Txj[n] > 1  and                                      (47) 
                               sj(w[n]) = -1  if   w[n]Txj[n] < 1 
 

The gradient ∇Ψmλ(w[n]) of the modified criterion function Ψmλ(w[n]) (42) can be 
specified in a similar manner in a point w[n] = [w1,…,wn]

T from the polytope Pl
 : 

 

∇Ψmλ(w[n]) = ∇Φm(w[n]) + λ Σ γi si
0(w[n]) ei[n]                         (48) 

                                                                     i∈ I 
 

where 
 

                         sj
0(w[n]) =  1  if   wi  > 0  and                                      (49) 

                                          sj
0(w[n]) = -1  if   wi  < 0 

   

Remark 5: The gradient ∇Ψmλ(w[n]) of the modified criterion function Ψmλ(w[n]) 
(42) can be reduced to the gradient ∇Φm(w[n]) (46) of the criterion function Φm(w[n]) 
inside each polytope Pl

 by reducing the cost level λ to zero. 
 

    The gradient ∇Ψmλ(w[n]) (48) of the modified criterion function Ψmλ(w[n]) (42)  
allows for the below orientation of the edges lk,k' connecting two neighboring vertices 
wk[n] and wk'[n] of particular polytopes Pl:

  
 

                        lk,k'  = wk'[n] - wk[n]  if  ∇Ψmλ(w[n])T(wk'[n] - wk[n]) < 0  and                (50) 
                lk,k'  = wk[n] - wk'[n]  if  ∇Ψmλ(w[n])T(wk[n] - wk'[n]) < 0 

 

Remark 4: Each edge lk,k' is oriented (50) decreasingly to the criterion function 
Ψmλ(w[n]) (42). This means that the move between two vertices wk[n] and wk'[n] in 
accordance with the edge lk,k' (50) always causes a decrease of the function Ψmλ(w[n]). 

 

The oriented graph Gm is defined on the basis of the set of the vertices {wk[n]} (9) and 
the set of the oriented edges {lk,k'} (50):  

 

                                        Gm = ({wk[n]}, {lk,k'})                                        (51) 
 

Remark 5: The oriented graph Gm (51) has no loops [8]. 
 

Any algorithm based on moving between vertices wk[n] of the graph G (52) in 
accordance with the edges lk,k' orientation (50) reaches the optimal vertex wkλ

*[n] (43) 
after a finite number of steps. The oriented graph Gm  (51) with the above properties  
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has been used in the proof of the basis exchange algorithm convergence in a finite 
number of  steps []. These types of algorithms was been used among others for the 
minimization of the criterion functions Φm(w[n]) (16) or Ψmλ(w[n]) (42).  

The modified criterion function Ψmλ(w[n]) (42) can be used for the purpose of re-
ducing  the rank rk (Definition 1) of the optimal vertices wkλ

*[n] (43). We can infer on 
the basis of the formula (42) that an increase of the the cost level λ causes an increase 
of the number of the components wk,i

* of the vector wkλ
*[n] (43) equal to zero  

(wk,i
* = 0). Therefore we can arbitrarily reduce the rank rk of the optimal vertex 

wkλ
*[n] (43) by choosing a sufficiently large value of the parameter λ (42).  

 

Supposition II: Discovering main vertexical planes Pk(xj(1)[n],…, xj(rk)[n]) (11) (12) in 
the feature space F[n] can be based on the detection and examination of vertices wk[n] 
of the oriented graph Gm (51) with a large number of edges lk,k'.  

 

Discovering ″flat patterns″ located on the main vertexical planes Pk(xj(1)[n],…, 
xj(rk)[n]) (11) (12) of different ranks rk allows to design different models of linear 
interactions between features xi or objects xj[n]. Different linear models of  
interactions (relations) between features xi or objects xj[n] of a given ″flat pattern″  
can be determined by using the base matrices Bk[n] (9) linked to vertices wk[n] (9) of 
different ranks rk.  

8 An Example - A Toy Data Set in a Two-Dimensional Feature 
Space  

Feature vectors xj[n] situated on the main vertexical plane Pk(xj(1)[n],…, xj(rk)[n]) (11) 
(12) define the hyperplanes hj (2) passing through the vertex wk[n] (9) of the rank rk, 
which is characterized by a high degree of degeneration dk. Such vertex wk[n] in the  

graph Gm (51) is characterized by a large number of the oriented edges {lk,k'} (50).  
To illustrate this property the artificial data sets shown in the Table 1 have been 

used. The Table 1 contains feature vectors xj[2] situated along three lines (Figure 1). 
The resulting graph Gm (51) contains three degenerated vertices (Figure 2). 

Table 1. The artificial data sets Line I, Line II and Line III of two-dimensional feature vectors  
xj[2] = [xj,1, xj,2]

T (xj[2]∈ R2) 

Number  j Line I 
[xj,1, xj,2] 

Line II 
[xj,1, xj,2] 

Line III 
[xj,1, xj,2] 

1 [-1,  1] [ 2,  1] [ 3, -2] 
2 [  0,  1] [ 0, -1] [ 1,  0] 
3 [  1,  1] [ 1,  0] [ 0,  1] 

 
The sets from the Table  1 are represented on the Figure1 and the Figure2.    
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Fig. 1. Vertexical planes (lines) Pm(xj(1)[2],xj(2)[2]) (11) generated by the data sets  
Line I, Line II and Line III from the Table 1 

 
Fig. 2. Representation of the data sets Line I, Line II and Line III by the graph Gm (51) 
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9 Concluding Remarks 

The main vertexical planes Pk(xj(1)[n],…, xj(rk)[n]) (11) (12) contain ″flat patterns″ in 
the feature space F[n]. The proposed procedure (34) of vertexical planes discovering 
from multivariate data set C (1) is based on the multiple minimization of the of the 
criterion function Φm(w[n]) (16).  

The modified criterion function Ψmλ(w[n]) (42) allows to reduce dimensionality   
rk – 1 of the main vertexical planes Pk(xj(1)[n],…, xj(rk)[n]) (11) (12). Such planes with 
varied dimensionality could be useful, among others, in creating different degree 
models of interaction between features xi or objects xj[n].  

The method of linking the main vertexical planes Pk(xj(1)[n],…, xj(rk)[n]) (11) (12) 
in the feature space F[n] with the degenerated vertices (9) of the oriented graphs Gm 
(51) is also described in the paper. This relationship which is based on common 
vertices  wk[n] (9) could create a bridge between data mining methods and graph 
methods.  Such relationship could be used, for example, in modeling of social 
networks or in the decomposition of mixture models  (e.g. [11]). 
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