
Completeness and Decidability Results

for CTL in Coq

Christian Doczkal and Gert Smolka

Saarland University, Saarbrücken, Germany
{doczkal,smolka}@ps.uni-saarland.de

Abstract. We prove completeness and decidability results for the tem-
poral logic CTL in Coq/Ssreflect. Our basic result is a constructive proof
that for every formula one can obtain either a finite model satisfying the
formula or a proof in a Hilbert system certifying the unsatisfiability of
the formula. The proof is based on a history-augmented tableau system
obtained as the dual of Brünnler and Lange’s cut-free sequent calculus
for CTL. We prove the completeness of the tableau system and give a
translation of tableau refutations into Hilbert refutations. Decidability
of CTL and completeness of the Hilbert system follow as corollaries.

1 Introduction

We are interested in a formal and constructive metatheory of the temporal logic
CTL [6]. We start with the definitions of formulas, models, and a satisfiability
relation relating models and formulas. The models are restricted such that the
satisfiability relation is classical. We then formalize a Hilbert proof system and
prove it sound for our models. Up to this point everything is straightforward.
Our basic result is a constructive proof that for every formula one can obtain
either a finite model satisfying the formula or a derivation in the Hilbert system
certifying the unsatisfiability of the formula. As corollaries of this result we
obtain the completeness of the Hilbert system, the finite model property of CTL,
and the decidability of CTL.

Informal and classical proofs of our corollaries can be found in Emerson and
Halpern’s work on CTL [7,5]. Their proofs are of considerable complexity as
it comes to the construction of models and Hilbert derivations. As is, their
completeness proof for the Hilbert system is not constructive and it is not clear
how to make it constructive.

Brünnler and Lange [3] present a cut-free sequent system for CTL satisfying a
finite subformula property. Due to the subformula property, the sequent system
constitutes a decision method for formulas that yields finite counter-models for
non-valid formulas. The sequent system is non-standard in that formulas are
annotated with histories, which are finite sets of formulas. Histories are needed
to handle eventualities (e.g., until formulas) with local rules.

We base the proof of our main result on a tableau system that we obtain by
dualizing Brünnler and Lange’s sequent system. This is the first tableau system

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 226–241, 2014.
c© Springer International Publishing Switzerland 2014

Completeness and Decidability Results for CTL in Coq 227

for CTL employing only local rules. Existing tableau methods for CTL [7,5]
combine local rules with global model checking of eventualities. Given a formula,
the tableau system either constructs a finite model satisfying the formula or a
tableau refutation. We give a translation from tableau refutations to Hilbert
refutations, thereby showing the completeness of the Hilbert system and the
soundness of the tableau system. The translation is compositional in that it is
defined by structural recursion on tableau refutations. For the translation it is
essential that the tableau system has only local rules.

With our results it should not be difficult to obtain formal and construc-
tive proofs of the soundness and completeness of Brünnler and Lange’s original
system.

The standard definition [5] of the satisfiability relation of CTL employs in-
finite paths, which are difficult to handle in a constructive setting. We avoid
infinite paths by capturing the semantics of eventualities with induction and the
semantics of co-eventualities with coinduction.

Our formal development consists of about 3500 lines of Coq/Ssreflect. There
are three subtasks of considerable complexity. One complex subtask is the con-
struction of finite models from intermediate structures we call demos. Our demos
play the role of the pseudo-Hintikka structures in Emerson [5] and are designed
such that they go well with the tableau system. Another complex subtask is
the construction of a demo from the tableau-consistent clauses in a subformula
universe. Finally, the translation of tableau refutations to Hilbert refutations is
of considerable complexity, in particular as it comes to the application of the
induction axioms of the Hilbert system.

Given the practical importance of CTL and the complex proofs of the meta-
theoretic results for CTL, we think that the metatheory of CTL is an interesting
and rewarding candidate for formalization. No such formalization exists in the
literature. In previous work [4] we have prepared this work by proving related
results for a weaker modal logic. As it comes to eventualities, which are responsi-
ble for the expressiveness and the complexity of the logic, our previous work only
captured the simplest eventuality saying that a state satisfying a given formula
is reachable.

Our development is carried out in Coq [13] with the Ssreflect [9] extension.
We build a library for finite sets on top of Ssreflect’s countable types and use it
to capture the subformula property. We also include a fixpoint theorem for finite
sets and use it to show decidability of tableau derivability.

In each section of the paper, we first explain the mathematical ideas behind the
proofs and then comment briefly on the difficulties we faced in the formalization.
For additional detail, we refer the reader to Coq development.1

2 CTL in Coq

Wedefine the syntax and semantics of CTL as we use it in our formalization.We fix
a countable alphabetAP of atomic propositions p and define formulas as follows:

1 http://www.ps.uni-saarland.de/extras/itp14.

http://www.ps.uni-saarland.de/extras/itp14

228 C. Doczkal and G. Smolka

s, t := p | ⊥ | s → t | AX s | A(sU t) | A(sR t)

We define the remaining propositional connectives using → and ⊥. We also use
the following defined modal operators: EX s ≡ ¬AX¬s, A+(sU t) ≡ AXA(sU t),
E(sU t) ≡ ¬A(¬sR¬t), E+(sU t) ≡ EXE(sU t), E(sR t) ≡ ¬A(¬sU¬t), and
EG t ≡ E(⊥R t).

The formulas of CTL are interpreted over transition systems where the states
are labeled with proposition symbols. Unlike most of the literature on CTL [5,7,1],
where the semantics of CTL formulas is defined in terms of infinite paths, we
define the semantics of CTL using induction and coinduction. Our semantics is
classically equivalent to the standard infinite path semantics but better suited
for a constructive formalization.

Let W be a type, R : W → W → Prop a relation, and P,Q : W → Prop
predicates. We require that R is serial, i.e., that every w : W has some R-
successor. We define the eventuality AU (“always until”) inductively as:

Qw

AURP Qw

P w ∀v.Rw v =⇒ AURP Qv

AURP Qw

Further, we define AR (“always release”) coinductively.

Qw P w

ARRP Qw
===========

Qw Rw v ARRP Qv

ARRP Qw
============================

Now let L : AP → W → Prop be a labeling function. We evaluate CTL formulas
to predicates on W :

eval p = Lp eval (s → t) = λw.eval s w =⇒ eval t w

eval ⊥ = λ .False eval (AX s) = λw.∀v.Rw v =⇒ eval t v

eval (A(sU t)) = AUR (eval s) (eval t)

eval (A(sR t)) = ARR (eval s) (eval t)

We say w satisfies a formula s, written w |= s, if we have eval s w. Similar to [4],
we consider as models only those serial transition systems (W,R,L) for which

∀s∀w ∈ W.w |= s ∨ w 	|= s (1)

is provable. When M is a model, we write →M for the transition relation of M
and w ∈ M if w is a state of M.

Note that having to prove (1) severely restricts our ability to construct infinite
models. However, since CTL has the small model property it suffices to construct
finite models for our completeness results. For these models (1) is easy to prove.
Formalizing models this way allows us to reason about the classical object logic
CTL without assuming any classical axioms.

The Hilbert axiomatization we use in our formalization is a variant of the
Hilbert system given by Emerson and Halpern [7]. The rules and axioms of the
Hilbert axiomatization are given in Figure 1. We write
 s if s is provable from
the axioms and call a proof of ¬s a Hilbert refutation of s.

Completeness and Decidability Results for CTL in Coq 229

K s → t → s
S ((u → s → t) → (u → s) → u → t)

DN ((s → ⊥) → ⊥) → s
N AX(s → t) → AX s → AX t
U1 t → A(sU t)
U2 s → AXA(sU t) → A(sU t)
R1 A(sR t) → t
R2 A(sR t) → (s → ⊥) → AXA(sR t)
AX AX⊥ → ⊥

s s → t

t
MP

s

AX s
Nec

t → u s → AXu → u

A(sU t) → u
AUind

u → t u → (s → ⊥) → AX u

u → A(sR t)
ARind

Fig. 1. Hilbert Axiomatization of CTL

Theorem 2.1. If
 s then w |= s for all models M and states w ∈ M.

Proof. Induction on the derivation of
 s, using (1) for the cases corresponding
to DN and ARind. ��
We are now ready to state our basic theorem.

Theorem 2.2 (Certifying Decision Method). For every formula we can
construct either a finite model or a Hilbert refutation.

3 A History-Based Tableau System for CTL

The tableau system we use as the basis for our certifying decision method em-
ploys signed formulas [11]. A signed formula is either s+ or s− where s is a
formula. Signs bind weaker than formula constructors, so s → t+ is to be read as
(s → t)+. We write σ for arbitrary signs and σ for the sign opposite to σ. A state
satisfies a signed formula sσ if it satisfies sσ� where s+� = s and s−� = ¬s.

We refer to positive until formulas and negative release formulas as eventuali-
ties. For the eventuality A(sR t)− to be satisfied at a state, there must be a path
from this state to a state satisfying ¬t that satisfies ¬s on every state along the
way.

A clause is a finite set of signed formulas and a history is a finite set of clauses.
The letters C and D range over clauses and the letter H ranges over histories.
For the rest of this paper, sets are always assumed to be finite. An annotated
eventuality is a formula of the form

A(sUHt)+ | A+(sUHt)+ | A(sRH t)− | A+(sRH t)−

230 C. Doczkal and G. Smolka

An annotation is either an annotated eventuality or the empty annotation “·”.
The letter a ranges over annotations. An annotated clause is a pair C|a of a
clause C and an annotation a.

We give the semantics of annotated clauses by interpreting clauses, histories,
and annotations as formulas. If an object with an associated formula appears
in the place of a formula, it is to be interpreted as its associatend formula. The
associated formula of a clause C is

∧
sσ∈Csσ�. The associated formula of a

history H is the formula
∧

C∈H ¬C. The associated formula of an annotation is
defined as follows:

af(·) = �
af(A(sUHt)+) = A((s ∧H)U (t ∧H))

af(A+(sUHt)+) = A+((s ∧H)U (t ∧H))

af(A(sRH t)−) = E((¬s ∧H)U (¬t ∧H))

af(A+(sRH t)−) = E+((¬s ∧H)U (¬t ∧H))

The meaning of an annotated eventuality can be understood as follows: a state
satisfies A(sUHt)+ if it satisfies A(sU t) without satisfying any clause from H
along the way. For A(sRH t)− we push the negation introduced by the sign down
to s and t before adding the history. A state satisfies the annotated clause C|a,
if it satisfies the formula C ∧ a.

The request of a clause is the set RC := { s+ | AX s+ ∈ C }. The request of
annotations is defined such that r (A+(sUHt)) = A(sUHt) and r a = · for all
other annotations. The intuition behind requests is that if a state satisfies C|a,
then every successor state must satisfy RC|r a.

Our tableau calculus derives unsatisfiable clauses. The rules of the calculus can
be found in Figure 2. The notation C, sσ is to be read as C∪{sσ}. If C, sσ appears
in the conclusion of a rule, we refer to C as the context and to sσ as the active
formula. The tableau system is essentially dual to the sequent calculus CT [3].
While CT derives valid disjunctions, our tableau calculus derives unsatisfiable
conjunctions. Aside from syntactic changes, the main difference between CT and
the tableau calculus is that in CT all the rules carry the proviso that the active
formula in the conclusion does not appear in the context. We impose no such
restriction. The reason for this is simply convenience. Our completeness proof
does not rely on this added flexibility.

The history mechanism (last two rows in Figure 2) works by recording all
contexts encountered while trying to fulfill one eventuality. If a context reappears
further up in the derivation, we can close this branch since every eventuality that
can be fulfilled, can be fulfilled without going through cycles. If all branches lead
to cycles, the eventuality cannot be fulfilled and the clause is unsatisfiable.

In our formalization, we do not argue soundness of the tableau system directly
using models. Instead, we show the following translation theorem:

Theorem 3.1. If C|a is tableau derivable, then
 ¬(C ∧ a).

Corollary 3.2. If C|a is tableau derivable, then C|a is unsatisfiable.

Completeness and Decidability Results for CTL in Coq 231

C, p+, p−|a C,⊥+|a
C, s−|a C, t+|a

C, s → t+|a →+
C, s+, t−|a
C, s → t−|a →−

RC|r a
C|a X

RC, u−|r a
C,AXu−|a AX− RC|A(sUHt)−

C|A+(sUHt)−
R+

H

C, t+|a C, s+,A+(sU t)+|a
C,A(sU t)+|a U+

C, t−, s−|a C, t−,A+(sU t)−|a
C,A(sU t)−|a U−

C, s+, t+|a C, t+,A+(sR t)+|a
C,A(sR t)+|a R+

C, t−|a C, s−,A+(sR t)−|a
C,A(sR t)−|a R−

C|A(sU ∅t)
+

C,A(sU t)+|· A∅
C, t+|· C, s+|A+(sUH,Ct)

+

C|A(sUHt)+
AH

C|A(sUH,Ct)
+ A

C|A(sR∅ t)
−

C,A(sR t)−|· R∅
C, t−|· C, s−|A+(sRH,C t)−

C|A(sRH t)−
RH

C|A(sRH,C t)
R

Fig. 2. Tableau System for CTL

We defer the proof of Theorem 3.1 to Section 6.
Even though it is not part of our formal development, we still argue soundness

of the tableau system informally (and classically) to give some intuition how the
history mechanism works. Soundness of all the rules except AH and RH is easy
to see. The case for AH is argued (in the dual form) by Brünnler and Lange [3].
So we argue soundness of RH here. Assume that C|A(sRH t)− is satisfiable and
C, t−|· is unsatisfiable. Then the situation looks as follows:

•
C ∧ E(¬s ∧H U¬t ∧H)

◦
C

◦
¬C

•
¬t ∧H ∧ ¬C

¬s ∧H

There exists some state satisfying C ∧E(¬s∧H U¬t∧H). Hence, there exists a
path satisfying ¬s ∧H at every state until it reaches a state satisfying ¬t ∧H .
Since C, t−|· is unsatisfiable, this state must also satisfy ¬C. Therefore, the path
consists of at least 2 states. The last state on the path that satisfies C (left
circle) also satisfies ¬s and E+((¬s ∧ H ∧ ¬C)U (¬t ∧ H ∧ ¬C)) and therefore
C, s−|A+(sRH,C t)−.

Note that, although the RH rule looks similar to the local rule R−, the sound-
ness argument is non-local; if there is state satisfying the conclusion of the rule,
the state satisfying one of the premises may be arbitrarily far away in the model.

As noted by Brünnler and Lange [3], the calculus is sound for all annotated
clauses but only complete for clauses with the empty annotation. Consider the

232 C. Doczkal and G. Smolka

clause ∅|A(pU {{p+}}p)+. The clause is underivable, but its associated formula
is equivalent to the unsatisfiable formula A((p ∧ ¬p)U (p ∧ ¬p)). To obtain a
certifying decision method, completeness for history-free clauses is sufficient.

3.1 Decidability of Tableau Derivability

For our certifying decision method, we need to show that tableau derivability
is decidable. The proof relies on the subformula property, i.e., the fact that
backward application of the rules stays within a finite syntactic universe. We call
a set of signed formulas subformula closed, if it satisfies the following conditions:

S1. If (s → t)σ ∈ F , then {sσ, tσ} ⊆ F .
S2. If AX sσ ∈ F , then sσ ∈ F .
S3. If A(sU t)σ ∈ F , then {sσ, tσ,A+(sU t)σ} ⊆ F .
S4. If A(sR t)σ ∈ F , then {sσ, tσ,A+(sR t)σ} ⊆ F .

It is easy to define a recursive function ssub that computes for a signed formula
sσ a finite subformula closed set containing sσ. The subformula closure of a
clause C is defined as sfc C :=

⋃
s∈C ssub s and is always a subformula closed

extension of C. Now let F be a subformula closed set. The annotations for F ,
written A(F), consist of · and eventualities from F annotated with histories
H ⊆ P(F), where P(F) is the powerset of F . We define the universe for F as
U(F) := P(F)×A(F).

Lemma 3.3. 1. If F is subformula closed, the set U(F) is closed under back-
ward application of the tableau rules.

2. For every annotated clause C|a there exists a subformula closed set F , such
that C|a ∈ U(F).

3. Derivability of annotated clauses is decidable.

Proof. Claim (1) follows by inspection of the individual rules. For (2) we reason
as follows: If a = ·, we take F to be sfc C. If a = A(sUHt), one can show that
C|A(sUHt) ∈ U(sfc (C,A(sU t) ∪⋃

D∈H D)). All other cases are similar.
For (3) consider the annotated clause C|a. By (2) we know that C|a ∈ U(F)

for some F . We now compute the least fixpoint of one-step tableau derivability
inside U(F). By (1) the annotated clause C|a is derivable iff it is contained in
the fixpoint. ��

3.2 Finite Sets in Coq

To formalize the tableau calculus and the decidability proof, we need to formalize
clauses and histories. The Ssreflect libraries [8] contain a library for finite sets.
However, the type of sets defined there requires that the type over which the
sets are formed is a finite type, i.e., a type with finitely many elements. This is
clearly not the case for the type of signed formulas.

We want a library providing extensional finite sets over countable types (e.g.,
signed formulas) providing all the usual operations including separation ({ x ∈

Completeness and Decidability Results for CTL in Coq 233

A | p x }), replacement ({ f x | x ∈ A }), and powerset. We could not find a
library satisfying all our needs, so we developed our own.

Our set type is a constructive quotient over lists. We use the choice operator
provided by Ssreflect to define a normalization function that picks some canonical
duplicate-free list to represent a given set. This normalization function is the
main primitive for constructing sets. On top of this we build a library providing
all the required operations. Our lemmas and notations are inspired by Ssreflect’s
finite sets and we port most of the lemmas that apply to the setting with infinite
base types. We instantiate Ssreflect’s big operator library [2], which provides us
with indexed unions.

Our library also contains a least fixpoint construction. For every bounded
monotone function from sets to sets we construct its least fixpoint and show the
associated induction principle. This is used in the formalization of Lemma 3.3
to compute the set of derivable clauses over a given subformula universe.

4 Demos

We now define demos. In the completeness proof of the tableau calculus, demos
serve as the interface between the model construction and the tableau system.
Our demos are a variant of the pseudo-Hintikka structures used by Emerson [5].
Instead of Hintikka clauses, we use literal clauses and the notion of support [10].

A signed formula is a literal, if it is of the form pσ, ⊥σ, or AX sσ. A literal
clause is a clause containing only literals. A literal clause is locally consistent if
it contains neither ⊥+ nor both p+ and p− for any p. A clause supports a signed
formula, written C � sσ, if

C � l ⇐⇒ l ∈ C if l is a literal

C � (s → t)+ ⇐⇒ C � s− ∨ C � t+

C � (s → t)− ⇐⇒ C � s+ ∧ C � t−

C � A(sU t)+ ⇐⇒ C � t+ ∨ (C � s+ ∧ C � A+(sU t)+)

C � A(sU t)− ⇐⇒ C � t− ∧ (C � s− ∨ C � A+(sU t)−)

C � A(sR t)+ ⇐⇒ C � t+ ∧ (C � s+ ∨ C � A+(sR t)+)

C � A(sR t)− ⇐⇒ C � t− ∨ (C � s− ∧ C � A+(sR t)−)

We define C �D := ∀sσ ∈ D. C � sσ.
A fragment is a finite, rooted, and acyclic directed graph labeled with literal

clauses. If G is a fragment, we write x ∈ G to say that x is a node of G and
x →G y if there is a G-edge from x to y. A node x ∈ G is internal if it has
some successor and a leaf otherwise. If x ∈ G, we write Λx for the literal clause
labeling x. We also write xroot for the root of a graph if the graph can be inferred
from the context. A fragment is nontrival if its root is not a leaf.

We fix some subformula closed set F for the rest of this section. and write
L for the set of locally consistent literal clauses over F . We also fix some set
D ⊆ L. Let L ∈ D be a clause. A fragment G is a D-fragment for L if:

234 C. Doczkal and G. Smolka

F1. If x ∈ G is a leaf, then Λx ∈ D and Λx ∈ L otherwise.
F2. The root of G is labeled with L.
F3. If x →G y, then Λy �R(Λx).
F4. If x ∈ G is internal and AX s− ∈ Λx, then x →G y and Λy �R(Λx), s

− for
some y ∈ G.

A D-fragment G for L is a D-fragment for L and u if whenever L� u then:

E1. If u = A(sU t)+, then L�t+ or Λx�s+ for every internal x ∈ G and Λy�t+

for all leaves y ∈ G.
E2. If u = A(sR t)−, then L� t− or Λx � s− every internal x ∈ G and Λy � t−

for some y ∈ G.

Note that if u is an eventuality and L�u, then u is fulfilled in every D-fragment
for L and u. The conditions L � t+ in (E1) and L � t− in (E2) are required
to handle the case of an eventuality that is fulfilled in L and allow for the
construction of nontrivial fragments in this case. A demo for D is an indexed
collection of nontrivial fragments (G(u, L))u∈F ,L∈D where each G(u, L) is a D-
fragment for L and u.

4.1 Demos to Finite Models

Assume that we are given some demo (G(u, L))u∈F ,L∈D. We construct a model
M satisfying all labels occurring in the demo. If F is empty, there is nothing to
show, so we can assume that F is nonempty.

The states of M are the nodes of all the fragments in the demo, i.e., every
state of M is a dependent triple (u, L, x) with u ∈ F , L ∈ D, and x ∈ G(u, L).
A state (u, L, x) is labeled with atomic proposition p iff p+ ∈ Λx.

To define the transitions of M, we fix an ordering u0, . . . , un of the signed
formulas in F . We write ui+1 for the successor of ui in this ordering. The suc-
cessor of un is taken to be u0. The transitions of M are of two types. First, we
lift all the internal edges of the various fragments to transitions in M. Second, if
x is a leaf in G(ui, Lj) that is labeled with L, we add transitions from (ui, Lj, x)
to all successors of the root of G(ui+1, L). Thus, the fragments in the demo can
be thought of as arranged in a matrix as shown in Figure 3 where the Li are
the clauses in D. Note that every root has at least one successor, since demos
contain only nontrivial fragments. Thus, the resulting transition system is serial
and hence a model. We then show that every state of M satisfies all signed
formulas it supports.

Lemma 4.1. If (u, L, x) ∈ M and Λx � sσ, then (u, L, x) |= sσ�.
Proof. The proof goes by induction on s. We sketch the case for A(sU t)+. The
case for A(sR t)− is similar and all other cases are straightforward.

Let w = (ui, Lj, x) ∈ M and assume Λx �A(sU t)+. By induction hypothesis
it suffices to show AUM s t w where

AUM s t w := AU (→M) (λ(, , y).Λy � s+) (λ(, , y).Λy � t+)w

Completeness and Decidability Results for CTL in Coq 235

G(u0, L0) G(u0, L1) · · · G(u0, Ln)

G(u1, L0) G(u1, L1) · · · G(u1, Ln)

...
...

...

G(un, L0) G(un, L1) · · · G(un, Ln)

Fig. 3. Matrix of Fragments

To show AUM s t w it suffices to show AUM s t (ui+1, L, xroot) for all L satisfying
L�A(sU t)+ since by (F3) the property of supporting A(sU t)+ gets propagated
down to the leaves of G(ui, Lj) on all paths that do not support t+ along the
way.

Without loss of generality, we can assume A(sU t)+ ∈ F . Thus, we can prove
AUM s t (ui+1, L, xroot) by induction on the distance from ui+1 to A(sU t)+ ac-
cording to the ordering of F . If ui+1 = A(sU t)+, we have AUM s t (ui+1, L, xroot)
by (E1). Otherwise, the claim follows by induction, deferring to the next row of
the matrix as we did above. ��
Theorem 4.2. If (Gu,L)u∈F,L∈D is a demo for D, there exists a finite model
satisfying every label occurring in (Gu,L)u∈F,L∈D.

4.2 Formalizing the Model Construction

Our representation of fragments is based on finite types. We represent finite la-
beled graphs as relations over some finite type together with a labeling function.
We then represent fragments using clause labeled graphs with a distinguished
root element.

We turn the finite set F × D into a finite type I. Except for the transitions
connecting the leaves of one row to the next row, the model is then just the
disjoint union of a collection of graphs indexed by I. Let G : I → graph be such
a collection. We lift the internal edges of G by defining a predicate

liftEdge : (Σi:I.G i) → (Σi:I.G i) → bool

on the dependent pairs of an index and a node of the respective graph satisfying

236 C. Doczkal and G. Smolka

liftEdge (i, x) (i, y) ⇐⇒ x →G i y

i 	= j =⇒ ¬liftEdge (i, x) (j, y)
The definition of liftEdge uses dependent types in a form that is well supported
by Ssreflect.

Our model construction differs slightly from the construction used by Emerson
and Halpern [5]. In Emerson’s handbook article, every leaf of a fragment is
replaced by the root with the same label on the next level. Thus, only the internal
nodes of every fragment become states of the model. This would amount to using
a Σ-type on the vertex type of every dag. In our model construction, we connect
the leaves of one row to the successors of the equally labeled root of the next
row, thus, avoiding a Σ-type construction. This makes use of the fact that CTL
formulas cannot distinguish different states that have the same labels and the
same set of successors.

5 Tableaux to Demos

An annotated clause is consistent if it is not derivable, and a clause C is consis-
tent if C|· is consistent. Let F be a subformula closed set. We now construct a
demo for the consistent literal clauses over F . We define

D := {L ⊆ F | L consistent, L literal }
We now have to construct for every pair (u, L) ∈ F ×D a nontrivial D-fragment
for L and u. We will construct a demo, where all the fragments are trees. To
bridge the gap between the tableau, which works over arbitrary clauses, and
D-fragments, which are labeled with literal clauses only, we need the following
lemma:

Lemma 5.1. If C|a ∈ U(F) is consistent, we can construct a literal clause
L ⊆ F such that L� C and L|a is consistent.

Proof. The proof proceeds by induction on the total size of the non-literal for-
mulas in C. If this total size is 0, then C is a literal clause and there is noth-
ing to show. Otherwise there exists some non-literal formula uσ ∈ C. Thus
C|a = C \ {uσ}, uσ|a and we can apply the local rule for uσ. Consider the
case where uσ = s → t+. By rule →+ we know that C \ {s → t+}, s−|a or
C \ {s → t+}, t+ is consistent. In either case we obtain a literal clause L sup-
porting C by induction hypothesis. The other cases are similar.

Before we construct the fragments, we need one more auxiliary definition

R− C := RC, {RC, s− | AX s− ∈ C }
The set of clauses R−C serves the dual purpose of the request RC. It contains
all the clauses that must be supported at the successors of C to satisfy (F4).

The demo for D consists of three kinds of fragments. The easiest fragments
are those for a pair (u, L) where L 	�u or u is not an eventuality. In this case, a
D-fragment for L is also a D-fragment for L and u.

Completeness and Decidability Results for CTL in Coq 237

Lemma 5.2. If L ∈ D, we can construct a nontrivial D-fragment for L.

Proof. By assumption L|· is consistent. According to rules X and AX−, C|· is
consistent for every clause C ∈ R−L. Note that there is at least one such clause.
By Lemma 5.1, we can obtain for every C ∈ R−L some clause LC ∈ D. The D-
fragment for L consists of a single root labeled with L and one successor labeled
with LC for every C ∈ R−L. ��

Next, we deal with the case of a pair (A(sU t)+, L) where L�A(sU t)+. This is
the place where we make use of the history annotations.

Lemma 5.3. If C|A(sUHt)+ ∈ U(F) is consistent, we can construct a D-
fragment G for L such that Λx � s+ for every internal node x ∈ G and Λy � t+

for all leaves y ∈ G where L is some clause supporting C,A(sU t)+.

Proof. Induction on the slack of H , i.e., the number of clauses from P(F) that
are not in H . Since C|A(sUHt)+ is consistent, we know C /∈ H . According to
rule AH, there are two cases to consider:

– C, t+|· ∈ U(F) is consistent: By Lemma 5.1 we obtain a literal clause L such
that L�C, t+ and L|· is consistent. The trivial fragment with a single node
labeled with L satisfies all required properties.

– C, s+|A+(sUH,Ct)
+ ∈ U(F) is consistent: By Lemma 5.1 we obtain a literal

clause L such that L�C, s+ and L|A+(sUH,Ct)
+ is consistent. In particu-

lar, L,A+(sU t)+ is locally consistent and supports C as well as A(sU t)+.
By induction hypothesis, we obtain a D-fragment for every clause in R−L.
Putting everything together, we obtain a D-fragment for L,A+(sU t)+ sat-
isfying all required properties ��

Lemma 5.4. If L ∈ D, we can construct a nontrivial D-fragment for L and
A(sU t)+.

Proof. Without loss of generality we can assume that L�s+ and A+(sU t)+ ∈ L.
All other cases are covered by Lemma 5.2. Using rules X, AX−, and A∅, we
show for every C ∈ R−L that C|A(sU ∅t)+ is a consistent clause in U(F). By
Lemma 5.3 we obtain a D-fragment for every such clause. Putting a root labeled
with L on top as in the proof of Lemma 5.2, we obtain a nontrivial D-fragment
for L and A(sU t)+ as required. ��

Lemma 5.5. If L ∈ D, we can construct a nontrivial D-fragment for L and
A(sR t)−.

The proof of Lemma 5.5 is similar to the proof of Lemma 5.4 and uses a similar
auxiliary lemma.

Theorem 5.6. 1. There exists a D-demo.

2. If C|· is consistent, then w |= C for some finite model M with w ∈ M.

238 C. Doczkal and G. Smolka

Note that by Theorem 4.2 all the locally consistent labels of the internal nodes of
the constructed fragments are satisfiable and hence must be consistent. However,
at the point in the proof of Lemma 5.3 where we need to show local consistency
of L,A+(sU t) from consistency of L|A+(sUHt) showing local consistency is all
we can do.

All fragments constructed in this section are trees. In the formalization, we
state the lemmas from this section using an inductively defined tree type, leaving
the sets of nodes and edges implicit. Thus, trees can be composed without up-
dating an edge relation or changing the type of vertices. Even using this tailored
representation, the formalization of Lemma 5.3 is one of the most complex parts
of our development.

For Theorem 5.6, we convert the constructed trees to rooted dags. To convert
a tree T to a dag, we turn the list of subtrees of T into a finite type and use this
as the type of vertices. We then add edges from every tree to its immediate sub-
trees. This construction preserves all fragment properties even though identical
subtrees of T are collapsed in into a single vertex.

6 Tableau Refutations to Hilbert Refutations

We now return to the proof of Theorem 3.1. For this proof, we will translate the
rules of the tableau calculus to lemmas in the Hilbert calculus. For this we need
a number of basic CTL lemmas. The lemmas to which we will refer explicitly
can be found in Figure 4. In formulas, we let sUHt abbreviate (s∧H)U (t∧H).

We present the translation lemmas for the rules AH and RH. Given the non-
local soundness argument sketched in Section 3, it should not come as a surprise
that the translation of both rules requires the use of the corresponding induction
rule from the Hilbert axiomatization. For both lemmas we use the respective
induction rule in dualized form as shown in Figure 4.

Lemma 6.1. If
 t → ¬C and
 E+(sUH,Ct) → s → ¬C,then

 ¬(C ∧ E(sUHt)).

Proof. Assume we have (a)
 t → ¬C and (b)
 E+(sUH,Ct) → s → ¬C. By
propositional reasoning, it suffices to show

 E(sUHt) → ¬C ∧ E(sUH,Ct)

Applying the EUind rule leaves us with two things to prove. The first one is

 t ∧H → ¬C ∧ E(sUH,Ct) and can be shown using (a) and E1. The other is

 s ∧H → EX(¬C ∧ E(sUH,Ct)) → ¬C ∧ E(sUH,Ct)

The second assumption can be weakened to E+(sUH,Ct). Thus, we also have
¬C by assumption (b). Finally, we obtain E(sUH,Ct) using Lemma E2. ��
Lemma 6.2. If
 C → ¬t and
 C → s → ¬A+(sUH,Ct), then

 ¬(C ∧ A(sUHt)).

Completeness and Decidability Results for CTL in Coq 239

A1 � A(sU t) ↔ t ∨ s ∧A+(sU t)
A2 � EG¬t → ¬A(sU t)
A3 � A((s ∧ u)U (t ∧ u)) → u
E1 � t → E(sU t)
E2 � s → E+(sU t) → E(sU t)
AE � AX s → EX t → EX(s ∧ t)

EUind If � t → u and � s → EX u → u, then � E(sU t) → u
EGind If � u → s and � u → EXu, then � u → EG s

Fig. 4. Basic CTL Lemmas

Proof. Assume we have (a)
 C → ¬t and (b)
 C → s → ¬A+(sUH,Ct). We
set u := ¬t∧A+(sUHt)∧¬A+(sUH,Ct). We first argue that it suffices to show
(1)
 u → EG¬t. Assume we have C and A(sUHt). By (a) we also know ¬t and
thus we have s ∧H and A+(sUHt) by A1. Using (b) and (1), we obtain EG¬t
which contradicts A(sUHt) according to A2.

We show (1) using the EGind rule. Showing
 u → ¬t is trivial so it re-
mains to show
 u → EXu. Assume u. By Lemma AE we have EX(A(sUHt) ∧
¬A(sUH,Ct)). It remains to show

 A(sUHt) ∧ ¬A(sUH,C t) → u

We reason as follows:

1. A(sUHt) assumption
2. ¬A(sUH,Ct) assumption
3. ¬t ∨ ¬H ∨ C 2, A1
4. ¬s ∨ ¬H ∨ C ∨ ¬A+(sUH,Ct) 2, A1
5. H 1,A3
6. ¬t 3, 5, (a)
7. s ∧ A+(sUHt) 1,6,A1

8. ¬A+(sUH,Ct) 4, 5, 7, (b)

This finishes the proof. ��

Proof (of Theorem 3.1). Let C|a be derivable. We prove the claim by induction
on the derivation of C|a. All cases except those for the rules RH and AH are
straightforward. The former follows with Lemma 6.1 the latter with Lemma 6.2.

��

To formalize this kind of translation argument, we need some infrastructure
for assembling Hilbert proofs as finding proofs in the bare Hilbert system can be
a difficult task. We extend the infrastructure we used in our previous work [4] to
CTL. We use conjunctions over lists of formulas to simulate context. We also use
Coq’s generalized (setoid) rewriting [12] with the preorder { (s, t) |
 s → t }.

Putting our results together we obtain a certifying decision method for CTL.

240 C. Doczkal and G. Smolka

Proof (of Theorem 2.2). By Lemma 3.3, derivability of the clause s+|· is decid-
able. If s+|· is derivable we obtain a proof of ¬s with Theorem 3.1. Otherwise,
we obtain a finite model satisfying s with Theorem 5.6 and Theorem 4.2. By
Theorem 2.1, the two results are mutually exclusive. ��
Corollary 6.3 (Decidability). Satisfiability of formulas is decidable.

Corollary 6.4 (Completeness). If ∀M.∀w ∈ M.w |= s, then
 s.

7 Conclusion

Our completeness proof for the tableau calculus differs considerably from the
corresponding completeness proof for the sequent system given by Brünnler and
Lange [3]. Their proof works by proving the completeness of another more restric-
tive sequent calculus which is ad-hoc in the sense that it features a rule whose
applicability is only defined for backward proof search. We simplify the proof by
working directly with the tableau rules and by using the model construction of
Emerson [5].

The proof of Theorem 3.1 relies on the ability to express the semantics of
history annotations in terms of formulas. This allows us to show the soundness
of the tableau calculus by translating the tableau derivations in a compositional
way. While this works well for CTL, this is not necessarily the case for other
modal logics. As observed previously [4], the tableau system for CTL can be
adapted to modal logic with transitive closure (K+). However, K+ cannot express
the “until” operator used in the semantics of annotated eventualities. It therefore
appears unlikely that the individual rules of a history-augmented tableau system
for K+ can be translated one by one to the Hilbert axiomatization. The tableau
system we used to obtain a certifying decision method for K+ [4] uses a complex
compound rule instead of the more fine-grained history annotations employed
here. Thus, even though the logic CTL is more expressive than K+, the results
presented here do not subsume our previous results.

An alternative to our construction of a certifying decision method could be to
replace the tableau calculus with a pruning-based decision procedure like the one
described by Emerson and Halpern [7]. In fact Emerson and Halpern’s complete-
ness proof for their Hilbert axiomatization of CTL is based on this algorithm.
While their proof is non-constructive, we believe that it can be transformed into
a constructive proof. In any case, we believe that the formal analysis of our
history-augmented tableau calculus is interesting in its own right.

The proofs we present involve a fair amount of detail, most of which is omitted
in the paper for reasons of space. Having a formalization thus not only ensures
that the proofs are indeed correct, but also gives the reader the possibility to
look at the omitted details.

Completeness and Decidability Results for CTL in Coq 241

For our formal development, we profit much from Ssreflect’s handling of count-
able and finite types. Countable types form the basis for our set library and finite
types are used heavily when we assemble the fragments of a demo into a finite
model. Altogether our formalization consists of roughly 3500 lines. The included
set library consists of about 700 lines, the remaining lines are split almost evenly
over the proofs of Theorems 3.1, 5.6, and 4.2 and the rest of the development.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: Mo-

hamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
86–101. Springer, Heidelberg (2008)

3. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log. Al-
gebr. Program. 76(2), 216–225 (2008)

4. Doczkal, C., Smolka, G.: Constructive completeness for modal logic with transitive
closure. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 224–
239. Springer, Heidelberg (2012)

5. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Formal Models and Sematics (B), vol. B, pp.
995–1072. Elsevier (1990)

6. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)

7. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

8. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formal-
isation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

9. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Research Report RR-6455, INRIA (2008),
http://hal.inria.fr/inria-00258384/en/

10. Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventualities.
In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 240–254. Springer,
Heidelberg (2010)

11. Smullyan, R.M.: First-Order Logic. Springer (1968)
12. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formal-

ized Reasoning 2(1) (2009)
13. The Coq Development Team, http://coq.inria.fr

http://hal.inria.fr/inria-00258384/en/
http://coq.inria.fr

	Completeness and Decidability Resultsfor CTL in Coq
	1 Introduction
	2 CTLi n Coq
	3 A History-Based Tableau System for CTL
	3.1 Decidability of Tableau Derivability
	3.2 Finite Sets in Coq

	4 Demos
	4.1 Demos to Finite Models
	4.2 Formalizing the Model Construction

	5 Tableaux to Demos
	6 Tableau Refutations to Hilbert Refutations
	7 Conclusion
	References

