
Gerwin Klein
Ruben Gamboa (Eds.)

 123

LN
CS

 8
55

8

5th International Conference, ITP 2014
Held as Part of the Vienna Summer of Logic, VSL 2014
Vienna, Austria, July 14–17, 2014, Proceedings

Interactive
Theorem Proving

Lecture Notes in Computer Science 8558
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Gerwin Klein Ruben Gamboa (Eds.)

Interactive
Theorem Proving
5th International Conference, ITP 2014
Held as Part of the Vienna Summer of Logic, VSL 2014
Vienna, Austria, July 14-17, 2014
Proceedings

13

Volume Editors

Gerwin Klein
NICTA
Sydney, NSW, Australia
E-mail: gerwin.klein@nicta.com.au

Ruben Gamboa
University of Wyoming
Laramie, WY, USA
E-mail: ruben@uwyo.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08969-0 e-ISBN 978-3-319-08970-6
DOI 10.1007/978-3-319-08970-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942571

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

.

Foreword

In the summer of 2014, Vienna hosted the largest scientific conference in the
history of logic. The Vienna Summer of Logic (VSL, http://vsl2014.at) con-
sisted of twelve large conferences and 82 workshops, attracting more than 2000
researchers from all over the world. This unique event was organized by the Kurt
Gödel Society and took place at Vienna University of Technology during July
9 to 24, 2014, under the auspices of the Federal President of the Republic of
Austria, Dr. Heinz Fischer.

The conferences and workshops dealt with the main theme, logic, from three
important angles: logic in computer science, mathematical logic, and logic in
artificial intelligence. They naturally gave rise to respective streams gathering
the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)
• 27th IEEE Computer Security Foundations Symposium (CSF)
• 30th International Conference on Logic Programming (ICLP)
• 7th International Joint Conference on Automated Reasoning (IJCAR)
• 5th Conference on Interactive Theorem Proving (ITP)
• Joint meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th ACM/IEEE Symposium on Logic in Computer
Science (LICS)

• 25th International Conference on Rewriting Techniques and Applications
(RTA) joint with the 12th International Conference on Typed Lambda Cal-
culi and Applications (TLCA)

• 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT)

• 76 FLoC Workshops
• FLoC Olympic Games (System Competitions)

VIII Foreword

Mathematical Logic

• Logic Colloquium 2014 (LC)
• Logic, Algebra and Truth Degrees 2014 (LATD)
• Compositional Meaning in Logic (GeTFun 2.0)
• The Infinity Workshop (INFINITY)
• Workshop on Logic and Games (LG)
• Kurt Gödel Fellowship Competition

Logic in Artificial Intelligence

• 14th International Conference on Principles of Knowledge Representation
and Reasoning (KR)

• 27th International Workshop on Description Logics (DL)
• 15th International Workshop on Non-Monotonic Reasoning (NMR)
• 6th International Workshop on Knowledge Representation for Health Care
2014 (KR4HC)

The VSL keynote talks which were directed to all participants were given by
Franz Baader (Technische Universität Dresden), Edmund Clarke (Carnegie Mel-
lon University), Christos Papadimitriou (University of California, Berkeley) and
Alex Wilkie (University of Manchester); Dana Scott (Carnegie Mellon Univer-
sity) spoke in the opening session. Since the Vienna Summer of Logic contained
more than a hundred invited talks, it would not be feasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only
scientific talks, poster sessions and panels, but also two distinctive events. One
was the award ceremony of the Kurt Gödel Research Prize Fellowship Competi-
tion, in which the Kurt Gödel Society awarded three research fellowship prizes
endowed with 100.000 Euro each to the winners. This was the third edition of
the competition, themed Logical Mind: Connecting Foundations and Technology
this year.

The 1st FLoC Olympic Games formed the other distinctive event and were
hosted by the Federated Logic Conference (FLoC) 2014. Intended as a new FLoC
element, the Games brought together 12 established logic solver competitions
by different research communities. In addition to the competitions, the Olympic
Games facilitated the exchange of expertise between communities, and increased
the visibility and impact of state-of-the-art solver technology. The winners in
the competition categories were honored with Kurt Gödel medals at the FLoC
Olympic Games award ceremonies.

Organizing an event like the Vienna Summer of Logic was a challenge. We
are indebted to numerous people whose enormous efforts were essential in mak-
ing this vision become reality. With so many colleagues and friends working
with us, we are unable to list them individually here. Nevertheless, as rep-
resentatives of the three streams of VSL, we would like to particularly ex-
press our gratitude to all people who helped to make this event a success:
the sponsors and the Honorary Committee; the Organization Committee and

Foreword IX

the local organizers; the conference and workshop chairs and Program Commit-
tee members; the reviewers and authors; and of course all speakers and partici-
pants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought
that started in Ancient Greece and flourished in the city of Gödel, Wittgenstein
and the Vienna Circle. The heroes of our intellectual past shaped the scientific
world-view and changed our understanding of science. Owing to their achieve-
ments, logic has permeated a wide range of disciplines, including computer sci-
ence, mathematics, artificial intelligence, philosophy, linguistics, and many more.
Logic is everywhere – or in the language of Aristotle, ����� ����	 �
���� ����	��

July 2014 Matthias Baaz
Thomas Eiter
Helmut Veith

Preface

This volume contains the papers presented at ITP 2014: 5th International Con-
ference on Interactive Theorem Proving held during July 13–16, 2014 in Vienna,
as part of the Federated Logic Conference (FLoC, July 10–24, 2014), which was
part of the Vienna Summer of Logic (July 9–24, 2014).

ITP 2014 was the 5th conference on Interactive Theorem Proving and related
areas, ranging from theoretical foundations to implementation aspects and ap-
plications in program verification, security, and formalization of mathematics.
The inaugural meeting of ITP was held during 11–14 July 2010 in Edinburgh,
Scotland, as part of the Federated Logic Conference (FLoC, 9–21 July 2010).
ITP is the evolution of the TPHOLs conference series to the broad field of in-
teractive theorem proving. TPHOLs meetings took place every year from 1988
until 2009.

There were 59 submissions to ITP 2014, each of which was reviewed by at
least three Program Committee members. The Committee decided to accept 35
papers, 4 of which were rough diamonds. The program also included invited talks
by Anna Slobodova, Rod Chapman, and Peter Sewell.

We would like to thank the co-chairs of the Vienna Summer of Logic (Matthias
Baaz, Thomas Eiter, Helmut Veith), the FLoC general chair (Moshe Vardi), all
the other members of the VSL and FLoC Organizing Committee, and David
Pichardie, who was kind enough to take care of ITP’s satellite workshops. We
gratefully acknowledge the support of VSL’s partners and sponsors, including TU
Wien, IST Austria, Universität Wien, Stadt Wien, Austrian Airlines, the Fed-
eral Ministry of Science Research and Economy, the University of Manchester,
Cateringkultur, Vienna Convention Bureau, Elsevier’s Artificial Intelligence, Eu-
ropean Association for Computer Science Logic, Blacklane Limousines, Fraun-
hofer, OrbiTeam, Rigorous Systems Engineering, and College Publications. We
also gratefully acknowledge the support of FLoC’s sponsors: Microsoft Research,
ARM, and NEC. And we extend a special thanks to ITP’s sponsors: NICTA,
and HappyJack Software.

Next year’s conference will be held in Nanjing, China. The site was chosen by
the ITP Steering Committee in consultation with the broader ITP community.

May 2014 Gerwin Klein
Ruben Gamboa

Organization

Program Committee

Jeremy Avigad Carnegie Mellon University, USA
Lennart Beringer Princeton University, USA
Yves Bertot Inria, France
Thierry Coquand Chalmers University, Sweden
Amy Felty University of Ottawa, Canada
Ruben Gamboa University of Wyoming, USA
Georges Gonthier Microsoft Research, USA
Elsa Gunter University of Illinois at Urbana-Champaign,

USA
John Harrison Intel Corporation, UK
Matt Kaufmann University of Texas at Austin, USA
Gerwin Klein NICTA and UNSW, Australia
Alexander Krauss Technische Universität München, Germany
Ramana Kumar University of Cambridge, UK
Joe Leslie-Hurd Intel Corporation, UK

Assia Mahboubi Inria - École polytechnique, France
Panagiotis Manolios Northeastern University, USA
Magnus O. Myreen University of Cambridge, UK
Tobias Nipkow Technische Universität München, Germany
Michael Norrish NICTA and ANU, Australia
Sam Owre SRI International, USA
Christine Paulin-Mohring Université Paris-Sud, France
Lawrence Paulson University of Cambridge, UK
David Pichardie Inria Rennes - Bretagne Atlantique, France
Lee Pike Galois Inc., USA
Jose-Luis Ruiz-Reina University of Seville, Spain
Julien Schmaltz Open University of the Netherlands,

The Netherlands
Bas Spitters Radboud University Nijmegen,

The Netherlands
Sofiene Tahar Concordia University, Canada
René Thiemann University of Innsbruck, Austria
Laurent Théry Inria, France
Christian Urban King’s College London, UK
Tjark Weber Uppsala University, Sweden
Makarius Wenzel Université Paris-Sud 11, France

XIV Organization

Additional Reviewers

Aravantinos, Vincent
Baelde, David
Blanchette, Jasmin Christian
Cachera, David
Chamarthi, Harsh Raju
Demange, Delphine
Dunchev, Cvetan
Helali, Ghassen
Hölzl, Johannes
Jain, Mitesh
Joosten, Sebastiaan
Kaliszyk, Cezary
Keller, Chantal
Khan-Afshar, Sanaz
Kiniry, Joe
Mahmoud, Mohamed Yousri
Martin-Mateos, Francisco-Jesus

Matichuk, Daniel
Murray, Toby
Rager, David
Ravitch, Tristan
Rubio, Julio
Sewell, Thomas
Siddique, Umair
Tankink, Carst
Tassi, Enrico
Tomb, Aaron
Urbain, Xavier
Verbeek, Freek
Wang, Yuting
Winkler, Sarah
Winwood, Simon
Ziliani, Beta

Abstracts of Invited Talks

Microcode Verification – Another Piece

of the Microprocessor Verification Puzzle�

Jared Davis, Anna Slobodova, and Sol Swords

Centaur Technology, Inc.

{jared,anna,sswords}@centtech.com

Abstract. Despite significant progress in formal hardware verification in
the past decade, little has been published on the verification of microcode.
Microcode is the heart of every microprocessor and is one of the most com-
plex parts of the design: it is tightly connected to the huge machine state,
written in an assembly-like language that has no support for data or con-
trol structures, and has little documentation and changing semantics. At
the same time it plays a crucial role in the way the processor works.

We describe themethod of formal microcode verification we have devel-
oped for an x86-64 microprocessor designed at Centaur Technology.While
the previous work on high and low level code verification is based on an un-
verifiedabstractmachinemodel, our approach is tightly connectedwith our
effort to verify the register-transfer level implementation of the hardware.
The same microoperation specifications developed to verify implementa-
tion of the execution units are used to define operational semantics for the
microcode verification.

While the techniques used in the described verification effort are not in-
herently new, to our knowledge, our effort is the first interconnection of
hardware andmicrocode verification in context of an industrial size design.
Both our hardware and microcode verifications are done within the same
verification framework.

Are We There Yet? 20 Years of Industrial
Theorem Proving with SPARK�

Roderick Chapman and Florian Schanda

Altran UK Limited, 22 St Lawrence Street, Bath BA1 1AN, United Kingdom

roderick.chapman@gmail.com, florian.schanda@altran.com

Abstract. This paper presents a retrospective of our experiences with
applying theorem proving to the verification of SPARK programs, both
in terms of projects and the technical evolution of the language and tools
over the years.

* The full versions of these papers are available within this book.

Retrofitting Rigour

Peter Sewell

University of Cambridge
Peter.Sewell@cl.cam.ac.uk,

http://www.cl.cam.ac.uk/users/pes20/

Abstract. We rely on an enormous number of software components,
which continue to be developed —as they have been since the 1940s—
by methods based on a test-and-debug cycle and informal-prose specifi-
cations. Replacing this legacy infrastructure and development practices
wholesale is not (and may never be) feasible, so if we want to improve
system quality by using mathematically rigorous methods, we need a
strategy to do so incrementally. A first step is to focus on the more sta-
ble extant interfaces: processor architectures, programming languages,
and key APIs, file formats, and protocols. By characterising these with
new precise abstractions, we can start to retrofit rigour into the system,
using those (1) to improve existing components by testing, (2) as in-
terfaces for replacement formally verified components, and (3) simply to
gain understanding of what the existing behavioural interfaces are. Many
issues arise in building such abstractions and in establishing confidence
in them. To validate them against existing systems, they must be made
executable, not necessarily in the conventional sense but as test oracles,
to check whether observed behaviour of the actual system is admitted
by the specification. The appropriate treatment of loose specification is
key here, and varies from case to case. To validate them against the
intent of the designers, they must be made broadly comprehensible, by
careful structuring, annotation, and presentation. And to support formal
reasoning by as broad a community as possible, they must be portable
into a variety of reasoning tools. Moreover, the scale of real-world spec-
ifications adds further engineering concerns. This talk will discuss the
issues of loose specification and some lessons learnt from developing and
using our Ott and Lem lightweight specification tools, which are aimed
at supporting all these pre-proving activities (and which target multiple
theorem provers).

Acknowledgements. Ott and Lem have been developed in joint work with
Francesco Zappa Nardelli, Scott Owens, Dominic Mulligan, Thomas Tuerk,
Kathryn Gray, and Thomas Williams, and with feedback from many other users.
I acknowledge funding from EPSRC grants EP/H005633 (Leadership Fellowship)
and EP/K008528 (REMS Programme Grant).

Table of Contents

Invited Papers

Microcode Verification – Another Piece of the Microprocessor
Verification Puzzle . 1

Jared Davis, Anna Slobodova, and Sol Swords

Are We There Yet? 20 Years of Industrial Theorem Proving
with SPARK . 17

Roderick Chapman and Florian Schanda

Regular Papers

Towards a Formally Verified Proof Assistant . 27
Abhishek Anand and Vincent Rahli

Implicational Rewriting Tactics in HOL . 45
Vincent Aravantinos and Sofiène Tahar

A Heuristic Prover for Real Inequalities . 61
Jeremy Avigad, Robert Y. Lewis, and Cody Roux

A Formal Library for Elliptic Curves in the Coq Proof Assistant 77
Evmorfia-Iro Bartzia and Pierre-Yves Strub

Truly Modular (Co)datatypes for Isabelle/HOL . 93
Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler,
Lorenz Panny, Andrei Popescu, and Dmitriy Traytel

Cardinals in Isabelle/HOL . 111
Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel

Verified Abstract Interpretation Techniques for Disassembling Low-level
Self-modifying Code . 128

Sandrine Blazy, Vincent Laporte, and David Pichardie

Showing Invariance Compositionally for a Process Algebra for Network
Protocols . 144

Timothy Bourke, Robert J. van Glabbeek, and Peter Höfner

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) . . . 160
Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, and
Enrico Tassi

XX Table of Contents

From Operational Models to Information Theory; Side Channels in
pGCL with Isabelle . 177

David Cock

A Coq Formalization of Finitely Presented Modules 193
Cyril Cohen and Anders Mörtberg

Formalized, Effective Domain Theory in Coq . 209
Robert Dockins

Completeness and Decidability Results for CTL in Coq 226
Christian Doczkal and Gert Smolka

Hypermap Specification and Certified Linked Implementation Using
Orbits . 242

Jean-François Dufourd

A Verified Generate-Test-Aggregate Coq Library for Parallel Programs
Extraction . 258

Kento Emoto, Frédéric Loulergue, and Julien Tesson

Experience Implementing a Performant Category-Theory Library
in Coq . 275

Jason Gross, Adam Chlipala, and David I. Spivak

A New and Formalized Proof of Abstract Completion 292
Nao Hirokawa, Aart Middeldorp, and Christian Sternagel

HOL with Definitions: Semantics, Soundness, and a Verified
Implementation . 308

Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens

Verified Efficient Implementation of Gabow’s Strongly Connected
Component Algorithm . 325

Peter Lammich

Recursive Functions on Lazy Lists via Domains and Topologies 341
Andreas Lochbihler and Johannes Hölzl

Formal Verification of Optical Quantum Flip Gate 358
Mohamed Yousri Mahmoud, Vincent Aravantinos, and Sofiène Tahar

Compositional Computational Reflection . 374
Gregory Malecha, Adam Chlipala, and Thomas Braibant

An Isabelle Proof Method Language . 390
Daniel Matichuk, Makarius Wenzel, and Toby Murray

Proof Pearl: Proving a Simple Von Neumann Machine Turing
Complete . 406

J Strother Moore

Table of Contents XXI

The Reflective Milawa Theorem Prover Is Sound (Down to the Machine
Code That Runs It) . 421

Magnus O. Myreen and Jared Davis

Balancing Lists: A Proof Pearl . 437
Guyslain Naves and Arnaud Spiwack

Unified Decision Procedures for Regular Expression Equivalence 450
Tobias Nipkow and Dmitriy Traytel

Collaborative Interactive Theorem Proving with Clide 467
Martin Ring and Christoph Lüth

On the Formalization of Z-Transform in HOL . 483
Umair Siddique, Mohamed Yousri Mahmoud, and Sofiène Tahar

Universe Polymorphism in Coq . 499
Matthieu Sozeau and Nicolas Tabareau

Asynchronous User Interaction and Tool Integration
in Isabelle/PIDE . 515

Makarius Wenzel

Rough Diamonds

HOL Constant Definition Done Right . 531
Rob Arthan

Rough Diamond: An Extension of Equivalence-Based Rewriting 537
Matt Kaufmann and J Strother Moore

Formal C Semantics: CompCert and the C Standard 543
Robbert Krebbers, Xavier Leroy, and Freek Wiedijk

Mechanical Certification of Loop Pipelining Transformations:
A Preview . 549

Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie

Author Index . 555

Microcode Verification – Another Piece

of the Microprocessor Verification Puzzle

Jared Davis, Anna Slobodova, and Sol Swords

Centaur Technology, Inc.
{jared,anna,sswords}@centtech.com

Abstract. Despite significant progress in formal hardware verification
in the past decade, little has been published on the verification of mi-
crocode. Microcode is the heart of every microprocessor and is one of
the most complex parts of the design: it is tightly connected to the huge
machine state, written in an assembly-like language that has no support
for data or control structures, and has little documentation and chang-
ing semantics. At the same time it plays a crucial role in the way the
processor works.

We describe the method of formal microcode verification we have de-
veloped for an x86-64 microprocessor designed at Centaur Technology.
While the previous work on high and low level code verification is based
on an unverified abstract machine model, our approach is tightly con-
nected with our effort to verify the register-transfer level implementation
of the hardware. The same microoperation specifications developed to
verify implementation of teh execution units are used to define opera-
tional semantics for the microcode verification.

While the techniques used in the described verification effort are not
inherently new, to our knowledge, our effort is the first interconnection
of hardware and microcode verification in context of an industrial size
design. Both our hardware and microcode verifications are done within
the same verification framework.

1 Introduction

Microprocessor design is a complex effort that takes hundreds of man-years.
Verification of the microprocessor design remains the bottleneck of the design
process. It consumes an increasing amount of resources and deploys more and
more sophisticated methods including high-performance simulators and formal
technology. There are many aspects to verifying the correctness of a micropro-
cessor based system. In this paper, we will discuss only functional verification.
Most of the papers about microprocessor verification are solely concerned with
the verification of hardware. We will focus on the verification of microcode which
is the heart and soul of a microprocessor.

While the external interface to a microprocessor is mandated by its Instruc-
tion Set Architecture (ISA), its internal behavior is governed by some processor-
specific microarchitecture. For instance, contemporary x86 processors externally

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014

2 J. Davis, A. Slobodova, and S. Swords

support a wealth of instructions, sizes, and modes that take thousands of pages
to describe (see Intel R©64 and IA32 Architecture Software Developer Manuals).
For performance reasons, implementations of modern x86 processors have a fron-
tend that translates x86 instructions into simpler microoperations (uops), and
a backend for executing these uops (Figure 1). Microcode (ucode) bridges the
external world of Complex Instruction Set Computing and the internal world of
Reduced Instruction Set Computing.

Fig. 1. Processor Backend: uops from the front-end are renamed, placed into the re-
order buffer, and given to the reservation station of the appropriate execution unit.
Each uop executes once its unit and operands become available. Results are forwarded
among the execution units and also sent back to the reorder buffer, where they remain
until retirement.

While simple and common x86 instructions are often translated into a single
uop, more complex or obscure operations are implemented as ucode programs
that are stored in a microcode ROM. Microcode programs are responsible for
many complex features that a processor provides, e.g., they are used to imple-
ment transcendental functions, hardware virtualization, processor initialization,
security features, and so on. Accordingly, their correctness is critical.

Microcode Verification 3

Unfortunately, there are many challenges to verifying microcode programs.
Microcode verification can be seen as an instance of hardware/software co-
verification, with all of the associated challenges.Whether using formal or testing-
based methods, validation involves understanding both the micro-architecture
and the microcode program, neither of which is easy.

Microcode is a very primitive, low-level language without even basic control
constructs or data structures. At the same time, ucode programs are designed for
efficiency rather than verification. During the design effort, not only are ucode
programs frequently updated, but the very microcode language is extended with
new operations and features. Even as the end of an effort nears and the hardware
design is frozen, ucode programs continue to change—indeed, ucode patches
become the preferred way of fixing bugs and adding or removing features.

The formal verification team at Centaur Technology applies formal methods to
problems in various stages of the design process, including equivalence checking
of transistor level and Register-Transfer Level (RTL) designs. In the area of the
RTL verification, we have applied symbolic simulation supported by SAT-based
and BDD-based technology to verify execution of individual microoperations in
assigned execution units [1–3]. All of this verification has been carried out within
the ACL2 system [4].

This paper presents our approach to formally verifying microcode routines
for a new x86-64 processor in development at Centaur Technology. Our methods
draw inspiration from the work of many published sources, but our work differs
from each of these works in one or more aspects listed below:

i Our target is microcode – a language below the ISA level;

ii Our verification is done on an industrial scale design – an implementation
of a fully x86-64 compatible microprocessor. In addition, it is done on a live
project that undergoes continuous changes on the specification and imple-
mentation levels.

iii Our formal model of the microarchitecture is based on the specifications
used in the RTL proofs. To our knowledge this is the first such interconnec-
tion of hardware and ucode verification done on a microarchitecture of such
complexity.

Section 2 describes our formal ACL2 model of the processor’s microarchitec-
tural state and uop execution semantics. Our model can be run as a high-speed
microcode simulator (around 250k uops/sec), and is also designed to achieve
good reasoning performance in the theorem prover.

Section 3 gives a sketch of our approach to verifying microoperation sequences
and loops, and how those can be composed to achieve correctness theorems
about parts of code that constitutes subroutines. The sequential composition of
the blocks is based on exploiting the power of the simplification engine within a
theorem prover.

Section 4 describes the degree to which our abstract machine model has been
proven to correspond to the actual hardware implementations. Parts of our model
are contrived, but significant parts are directly based on specification functions

4 J. Davis, A. Slobodova, and S. Swords

that have a mechanically proven correspondence to the Verilog modules of our
processor.

Section 5 summarizes related work. Finally, Section 6 concludes the paper
with comments about our future work.

2 Microcode Modeling

Microcode originates as a text program. Figure 2 shows an example of a mi-
crocode program.

clr pram:

MVIG.S64 g0, 0; g0 = 0
clr loop:

STORE PRAM g0, ADR, 0; PRAM[ADR] = g0
ADDIG.S64 ADR, ADR, 8; ADR = ADR + 8
NLOOPE.S64 g8, 1, ret; g8--; if !g8 goto ret
JMP ALL clr loop; goto clr loop
ret:

JLINK ; return

Fig. 2. A microcode routine that zeroes an area of PRAM memory. Here g0 and g8 are
64-bit registers. ADR is an alias to the 64-bit register g9. Labels like clr pram, clr loop
and ret are resolved into ROM addresses by the assembler.

Figure 3 shows the relation between the model and hardware. An assembler
translates microcode program into a binary image which is stored on the chip in a
ROM. When executing microcode, the microtranslator unit fetches instructions
from the ROM and translates them into backend uops that are then executed.

Our model consists of four parts described in more details below:

– Microcode - a constant representing the entire ROM image.
– Microcode translator - a function that maps ROM instructions into back-

end uops, plus a ucode sequencing instruction that determines the control
flow after the uops’ execution.

– State - a data structure representing the microarchitectural state.
– Operational semantics for backend uops, defining their effects on the

state.

To build the microcode ROM, the source code files are collected and processed
by a microcode assembler. The assembler converts each instruction into its binary
encoding, producing a binary image that captures every ucode routine. When
the processor is manufactured, this image is embedded into its ucode ROM.
We extended the microcode assembler to produce, besides the ROM image and
other debugging and statistical information it already generated, a Lisp/ACL2

Microcode Verification 5

Fig. 3. Connections between our model and the processor implementation

model of the ucode listing which can be conveniently loaded into our verification
framework. This way, our model of the microcode program stays up-to-date as
microcode routines or the assembler itself are changed.

The microcode translator functionality is derived by means of symbolic simu-
lation from the RTL design of the microtranslator unit. A mapping from inputs
representing a ROM instruction to outputs representing a sequence of backend
uops and control flow information is represented by a set of (Boolean) formulas.
For execution speed, we precompute a specialized version of these formulas for
each instruction in the ROM and store them into a hash table. Some instructions’
translations depend on the machine state (e.g. the current mode of operation), so
the specialization does not always yield a final, concrete result, but only simpler
formulas. In those cases, we finish the translation at execution time. To execute
a single ROM instruction, we look up that instruction’s specialized translation
formula and evaluate that formula by substituting in any relevant state bits. The
obtained sequence of uops and the control information is interpreted with respect
to defined semantics which determines the next state, including the value of the
program counter. Automatically deriving the micro-translator functionality from
the actual RTL keeps this part of the model up-to-date.

The machine state is represented as a tuple containing essential machine vari-
ables such as the program counter, the stack, various sets of registers (e.g.,
the x86 general-purpose registers are in a field called gregs and the SSE media

6 J. Davis, A. Slobodova, and S. Swords

registers are in mregs) and scratch memories. Parts of the state correspond to
registers defined by the x86 architecture, but much of it is specific to the concrete
micro-architecture of the project. A machine state may be a running, halting,
or divergent state, where a divergent state is used to represent the result of a
program that never terminates. These three types of states are distinguished by
the value of the program counter; a natural number indicates a running state.

We describe the effect of each uop as a transformation of the state, in the usual
interpreter semantics style. For instance, the effect of the XADD uop is modeled
by the function

xadd -def (uop, s) → s ′,

where s and s ′ are current and transformed states, resp., and uop represents a
particular instance of a microoperation with all relevant information – operands,
operand size, flag information, unit where the uop is executed, etc.:

dest g9 src width 64 opcode XADD

src1 g8 dest width 64 exec unit int
src2 8 write flags? no

A function like xadd -def interprets this information, e.g., for the instruction
above it would extract the value of gregs[8] and interpret it as 64-bit value, add
it to src2, store the result in gregs[9], and not update any flags.
Semantic functions for all types of uops are combined into a universal uop defi-
nition:

μop-def (uop, s)
def
=⎧⎪⎪⎨

⎪⎪⎩
xadd -def (uop, s) if uop.type is XADD

xsub-def (uop, s) if uop.type is XSUB

.
error (s) otherwise

To model the execution of consecutive steps from a state s , we use an approach
by Ray and Moore [5,6]. We first define the function run(n, s) which returns the
new state after executing n steps:

run(n, s)
def
=

{
s if n = 0
run(n− 1, step(s)) otherwise

Note that step executes one ROM instruction that can consist of several uops.
Its definition and connection to our hardware verification proofs are explained
in more detail in Section 4.

Finally, we can define run∗ : s → s , which runs the machine until it enters
a halting state. If the program does not terminate, then logically it returns the
divergent state ⊥ (whereas the actual execution of run∗ would never terminate).
This avoids the need to explicitly determine how many steps a program takes
and allows us to pursue partial correctness results without proving termination
(see run-measure in Section 3).

run∗(s) def
=

⎧⎨
⎩

s if halting(s)
run∗(step(s)) if ¬divergent(s)
⊥ otherwise

Microcode Verification 7

The next section will explain how we reason about this model. Then, in Section
4, we will explain the relationship between this model and the hardware design.

3 Microcode Verification

Before describing our verification methodology, we need to explain our verifi-
cation objective. Unlike higher level languages, microcode does not have any
nice control structures like for loops, while loops, if-then-else constructs, etc,
and there is no such entity as a main program in microcode. It consists of a
sequence of micro operations residing in a ROM. Figure 2 shows an example
of a microcode snippet. Microoperations can move values between registers and
to/from scratch memory, and can manipulate values by means of arithmetic and
logical operations. Loops are implemented with conditional and unconditional
jumps. Microcode is written for efficiency and would not please the eye of any
programmer.

Our objective in microcode verification is to characterize the effect of execut-
ing microcode from an entry point to an exit point on the machine state. In
order to do this, we incrementally verify blocks of code and compose the theo-
rems into theorems about larger blocks. We have defined a macro def-uc-block
that supports verification of a general block of code, and a macro def-uc-loop
that supports reasoning about loops.

3.1 Def-uc-block

We use the def-uc-block macro to specify blocks of straight-line code and to
compose together previously defined blocks (including loops). The user specifies:

1. start -pc as an initial value for the program counter;
2. block -precondition as a state predicate;
3. run-block , a function that executes the machine model until the end of block

is reached. This may be a simple application of the universal run function
for a given number of steps, or as a combination of run and applications of
previously defined blocks.

4. block -specification that describes the machine state after execution of this
block (the post-state). This definition is in terms of updates to the start-
state. As a consequence, those parts of the state that remain unchanged are
left out of the description of the change. While we need to keep track of
the changing values in some registers and memories, other parts of the state
are used as temporary storage and become irrelevant for the final result. To
avoid precisely characterizing these don’t care values, we copy them from
the actual post-state (produced by run-block) into the specification state,
making their equivalence trivial. This is known as wormhole abstraction [7]).

For the code in Figure 2, the verification could start with the definition of
def-uc-block with the arguments described in Figure 4.

8 J. Davis, A. Slobodova, and S. Swords

name: clr loop last
pc: get-label (clr loop)
run: run(4, s)

precondition: Let adr = s.gregs [9], cnt = s.gregs [8] in
addr -ok(adr) ∧ (cnt = 1) ∧
¬empty(s.retstack)

specification: Let adr = s.gregs [9], val = s.gregs [0] in {
s = pram-store(val , adr , s);
s.gregs [8] = 0;
s.gregs [9] = adr + 8;
return stack -pop(s);

}

Fig. 4. def-uc-block example (last run through the loop): get-label translates a label
into initial value of the program counter. Running the block takes 4 steps. In the
precondition, addr -ok identifies valid address to the PRAM memory. While g9 is used
as a pointer to memory, g8 is a counter that controls the loop. The loop terminates
when the counter clears. The specification describes the state update caused by the
last run through the loop: the value of g0 is stored in the PRAM at address specified
by g9, g8 is decremented, g9 is incremented by the size of the written entry, and the
program counter is set to the value on the top of the return stack.

The expansion of the macro defines all the functions above and automatically
proves some theorems about them. For instance, the run-block function has to
satisfy following properties:

R1: run∗(run-block(s)) = run∗(s)
applying run∗ to the post-state brings us to the same state as applying
run∗ to the start state.

R2: halting(s) =⇒ run-block(s) = s
run-block will not advance from a halting state.

R3: divergent(s) =⇒ run-block(s) = ⊥
Whenever we get into a divergent state, we converge into the ⊥ state.

R4: ¬divergent(run∗(s)) =⇒ ¬divergent(run-block (s))
If run∗ terminates, then run-block terminates.

R5: run-block makes progress in the termination of run∗:

¬halting(s) ∧ ¬divergent(run-block(s))
=⇒
run-measure(run-block(s)) < run-measure(s)

where run-measure is a non-executable function whose value is the mini-
mum number of steps needed to bring the machine to a halting state, if
that exists, and zero otherwise. It is defined as a Skolem witnessing function
using the ACL2 feature defchoose.

Microcode Verification 9

R6: run-measure(run-block (s)) ≤ run-measure(s)
A weaker monotonic condition.

For the block -precondition predicate we have an option to do a simple vacuity
check. It exploits a symbolic simulator [8] that converts an ACL2 object that is
defined over a finite domain into a symbolic object encoded as an And-Inverter
Graph. Finding a state that satisfies the precondition is thus transformed into
satisfiability of a Boolean formula, which we then translate into CNF and solve
using an off-the-shelf SAT solver [9].

The main result of the def-uc-block expansion is the correctness theorem:

Theorem 1 (block-correct).

s .pc = start -pc ∧ block -precondition(s)
=⇒

run-block(s) = block -specification(s , run-block(s))

Theorem block-correct is the crucial point of the verification. We have two
distinct methods for proving this theorem for each block.

– We can use bit-level symbolic execution [8], which computes a Boolean for-
mula representing the correctness condition and attempts to solve it using
a SAT solver. This is preferred for short blocks whose correctness proofs do
not depend on much mathematics. This method is largely automatic (though
it can be tuned with rules that determine how to process certain functions),
and in many cases can either quickly prove the desired theorem or produce
a counterexample showing a difference between the spec and the actual be-
havior of the routine. However, this method suffers from capacity limitations
and is also difficult to debug in cases where a proof times out or otherwise
fails.

– We can use ACL2’s native proof engines, together with a litany of hints and
rules that optimize its behavior on this sort of problem. E.g., we instruct the
prover to only open the definition of run if the program counter of the state
can be determined.

Both methods support composition of blocks, and both also support wormhole
abstraction, obviating the need to specify and spend proof effort on don’t-care
fields of the state.

3.2 Def-uc-loop

Although there is no explicit loop construct in the microcode, loops do appear in
the code in various forms. Macro def-uc-loop supports their verification. Through
the arguments to this macro, the user specifies:

1. start -pc, an initial value for the program counter
2. loop-precondition , a starting state predicate
3. loop-specification , the loop’s effect on the machine state

10 J. Davis, A. Slobodova, and S. Swords

4. measure, a term used in the proof of termination of the loop (e.g, value of a
register that serves as a counter).

5. done, a condition (state predicate) that is satisfied upon entering the last
execution of the loop.

6. run-last , run function for the execution of the last time through the loop.
7. run-next, run function for the execution of any but the last time trough the

loop.

def-uc-loop also supports proving partial correctness for loops that may not ter-
minate; in these cases, the measure may be omitted.

Execution of a def-uc-loop is usually preceded by two executions of def-uc-
block that specify the effect of executing one round of the loop. In particular, the
two cases describe the run-last block (executed under the precondition done(s)∧
loop-precondition(s)) and the run-next block (under the precondition ¬done(s)∧
loop-precondition(s)). Figure 5 shows an example of def-uc-loop arguments for
the code on Figure 2.

Expansion of the macro defines a function run-loop that repeatedly executes
run-next until the done condition first holds, then finishes by executing run-last .
Properties R1–R6 are proved for run-loop, and the correctness theorem has
exactly the same form as the correctness theorem for def-uc-block:

Theorem 2 (loop-correct).

s .pc = start -pc ∧ loop-precondition(s)
=⇒

run-loop(s) = loop-specification(s , run-loop(s))

This theorem is proved using induction defined by the scheme of the run-loop
function and the two block-correct theorems for the run-next and run-last func-
tions. The proof may be done either using ACL2’s built-in proof engines or by
applying our bit-level proof engine separately to the base case and induction
step.

4 Hardware Connection

We would like our microcode model to be useful both for ad-hoc testing of
microcode routines and for carrying out formal proofs of correctness about these
routines. The closer the model is to the actual processor, the stronger the results
of tests and proofs. Figure 3 shows the corresponding parts of our model and the
processor implementation. Dark blue parts were proved to match dark orange
parts of the hardware model.

We derive our instruction listing from the same microcode assembler that
also produces the content of ROM, and we model the microcode decoder by
effectively simulating the RTL of Micro-translator, as described in Section 2.
Thus, our model of the translation from the text microcode into uops has a
strong connection to the real design of the processor’s frontend.

Microcode Verification 11

name: clr loop
pc: get-label(clr loop)
measure: s.gregs [8]
done: s.gregs [8] = 1
run-last: run-clr -loop-last(s)
run-next: run-clr -loop-next(s)

precondition: Let adr = s.gregs [9], cnt = s.gregs [8] in
addr -ok(adr · (cnt − 1)) ∧ (cnt > 0) ∧
¬empty(s.retstack)

specification: Let adr = s.gregs [9], val = s.gregs [0],
cnt = s.gregs [8], idx = adr ÷ 8 in {

s = clr -pram-k(idx , idx + cnt , val , s);
s.gregs [8] = 0;
s.gregs [9] = adr + 8 · cnt ;
return stack -pop(s);

}

Fig. 5. def-uc-loop example: The measure (the value of g8) will decrease with each run
through the loop. The precondition assures that the last address to which we write
is within a boundary and that the starting value of g8 is positive, assuring termina-
tion. The run function is composed from two previously defined run functions (run-
clr loop last s) and (run-clr loop but last s). The specification describes the state upon
termination of the loop: clr -pram-k(start , end , val , s) copies value from g0 throughout
PRAM [start : end − 1]; g8 is set to 0; g9 is set to point at the address followed by the
last written address; and the program counter is set to the value from the top of the
return stack.

As for the backend, our model is a significant abstraction of the actual proces-
sor, which is depicted in Figure 1. For instance, we abstract away out-of-order
execution of the micro operations. Consequently, things that appear very sim-
ple in our model, say, “get the current value in register g0,” are actually quite
complicated, involving, e.g., the register aliasing table, the reservation stations,
forwarding, the reorder buffer, etc. This said, significant parts of our model do
have a strong connection to the real hardware design. In previous work [1–3] we
described how we have developed an RTL-level verification framework within
ACL2, and used it to prove that our execution units for integer, media, and
floating point instructions implement desired operations. This previous work
means that, for many uops, we have a specification function, written in ACL2,
that functionally matches the execution of the uop in a particular unit. Thanks
to regression proofs, we can be quite confident that these specifications remain
up-to-date.

Now we can sketch how the step function is defined. It takes a state of our
abstract machine and returns the state of the machine after executing the ROM
instruction pointed to by the current PC (s .pc). The extraction of the ROM
instruction (get -rom-inst) is a simple lookup in the constant *ucode* – a list

12 J. Davis, A. Slobodova, and S. Swords

representing the content of the ROM. It will then lookup the pre-computed for-
mula for the result of running the micro-translator unit on this instruction. The
hash table lookup returns a sequence of uops and additional sequencer infor-
mation in the form of symbolic formulas (sym uops , sym seq). These formulas
are pretty simple, depending on a few variables whose values can be extracted
from the current state. exec uops executes the sequence of uops by repeatedly
applying μop-def (see Section 2) one by one. μop-def is directly connected to
the proofs of hardware. In case of a conditional jump instruction, it also decides
whether the branch is taken. The function next -pc will determine the value of
the next PC which completes the execution of one instruction.

step : s → s ′ = {
inst = get -rom-inst(s .pc, ∗ucode∗)
(sym uops , sym seq) = lookup-uxlator (inst)
(uops, useq) = eval (s , sym uops , sym seq)
(branch taken, s) = exec-uops(uops, s)
s .pc = next -pc(s , useq, branch taken)

}
It is important to note that our model is defined in extensible way. It allows us

to relatively seamlessly move the boundary between the parts that are validated
and those that are contrived.

5 Related Work

Our work builds upon countless ideas and advancements in microprocessor and
machine code verification published over decades. Our contributions are in com-
bining these advances and using them in an industrial setting, and in connecting
methods for software and hardware verification under one unifying framework.

Operational semantics as a formalization of the meaning of programs was
introduced in the 60s by McCarthy [10]. Early applications can be found in
a technical report by van Wijngaarden et al. describing ALGOL68 [11]. Since
then, structural operational semantics has been extensively used for mechanical
verification of complex programs using various theorem provers: ACL2 and its
predecessor NQTHM [12–14]; Isabelle/HOL [15]; and PVS [16]. Smith and Dill
used operational semantics along with domain specific simplifications using a
SAT solver and ACL2 for automatic equivalence checking of object code imple-
mentations of block ciphers [17]. More recent attempts to formalize operational
semantics of complex ISAs come from Goel and Hunt [18] for x86, and Fox et al.
for ARM [19]. All these papers model languages on the ISA level or above, and
their operational semantics is not supported by any further verification. Wild-
ing et al. [20] made use of the executability of ACL2 functions to validate their
model by extensive testing against the hardware.

Many papers have discussed methodology for verifying the correctness of a
microprocessor’s microarchitecture with respect to its ISA [21, 22]. While these
defined crucial concepts and methods for bridging the two different abstraction

Microcode Verification 13

levels, they did not go beyond theoretical models of small to moderate size.
Even the more comprehensive machine verification project described by Hunt
[23], which includes some simple microcode verification connected to top-down
hardware verification, does not have the complexity and dimensions of industrial
scale designs.

Some work has been published by researchers from Intel R© on verification
of backward compatibility of microcode [24, 25]. The idea is based on creating
symbolic execution paths, storing them in a database and using them either for
testing or for checking assertions. This work differs from ours in several aspects.
First, it is not connected to hardware verification. Their operational semantics
of microcode is defined through a translation to an intermediate language with
predefined operational semantics. There is no direct connection of this semantics
to what is actually implemented in the hardware. Second, their approach uses
SAT/SMT, while we are using mostly theorem prover and symbolic simulator
that is built-in and verified within the prover. Finally, the verification objectives
of our work are very different: while we compare the effect of running a microcode
routine to a fully or partially defined specification that can be written on a high
abstraction level, their objective is to compare the behavior of two microcode
routines for backward compatibility.

Since the beginning of the computing era, the correctness of programs has been
on the minds of great computer scientists like Floyd [26], Hoare [27], Manna [28],
etc. The first papers concerned with program verification were based on asser-
tions, but at that point, researchers weren’t equipped with high-level mechanized
proof systems. Matthews et al. [29] merged the idea of operational semantics with
assertion verification. Their work is closest to our verification approach. Both
our approach and that of Matthews et al. decompose the program into blocks
separated by cutpoints. The difference is that Matthews et al. use the inductive
invariant approach: a set of cutpoint/assertion pairs is defined and the goal is
to prove a global invariant of the form:

∀i (pc(s) = cutpoint i) ⇒ assertion i(s).

In our approach, we characterize (fully or partially) the effect of running each
block (a sequence of operations between two cutpoints) on the state, then se-
quentially compose blocks together to build up a characterization of the effect of
a full microcode routine on the state. These two approaches have been shown to
be logically equivalent (in sufficiently expressive logic) [5]. Wormhole abstraction
has been introduced in [7]. The target of [7, 29] is a slightly higher level of ma-
chine code. The main difference to our work is that their operational semantics
remains unverified.

Last year, a paper by Alex Horn, Michael Tautschig and others [30] demon-
strated validation of firmware and hardware interfaces on several interesting
examples. Their work differs from ours in several aspects: Their methods re-
quire both hardware and software to be described in the same language (C or
SystemC); the hardware is much simpler than a microprocessor; and the main
method used for verification is model-checking.

14 J. Davis, A. Slobodova, and S. Swords

6 Conclusion and Future Work

We presented an approach to microcode verification that is tightly connected
to ongoing hardware verification. Since our RTL and microcode proofs are done
within the same system, we are able to reuse the functions specifying hardware
behavior to model microoperations. While the microcode model is far from being
completely verified, our methodology has the flexibility to move the boundary
between proved and contrived parts of the model as we achieve more of its
validation.

We tried our approach on several microcode routines. One routine, that was a
representative of arithmetic operation routines, was a 54-instruction microcode
routine that performs unsigned integer division of a 128-bit dividend by a 64-bit
divisor, storing the 64-bit quotient and remainder. We proved the correctness of
this routine using 11 def-uc-block forms. Of these, five specified the behavior of
low-level code blocks, and the rest primarily composed these sub-blocks together
according to the control flow.

Another example was a verification of one of the critical algorithms that run as
a part of the machine bring-up process. The algorithm deals with decompression
of strings. The processor reads a an input that is a concatenation of compressed
strings of variable lengths and places it in scratch memory. The main routine runs
in a loop where one round identifies the beginning of the next compressed sub-
string and converts it back to uncompressed form. The beginning and the type of
a compressed substring is identified by its header. The decompression algorithm is
implemented in about 800 lines of code. Its logical structure contains several loops
(including nested loops) and many subroutines. A handful of designated registers
keep track of pointers to scratch memory, positions within strings, counters, and
currently processed strings, and many more are used as temporary value holders.
The correctness proof of the decompression uses about 50 def-uc-block/def-uc-loop
structures. Since the algorithm and its implementation were frequently changing
(adding new compression types, changing storage location, etc.), it was important
to have automated support for the detection of these changes.

The main difference between our work and work done in academia is that we
have to deal with a real contemporary industrial design that is not only very
complex and sparsely documented, but also is constantly changing: both the
hardware model and microcode are constantly updated. This requires automa-
tion to detect the changes and (wherever possible) make the relevant adjust-
ments to proofs. Our automation includes regularly building the design model
and running a regression suite for both hardware and microcode proofs.

Even though our microcode verification methodology is based on the powerful
rewriting capabilities of the ACL2 theorem proving system [4], the approach
could be applied using other rewriting systems as well.

In the future we would like to expand our verification effort to cover more of
the critical microcode, e.g. in security-related areas. We also would like to pursue
a more systematic approach to the verification of ISA instructions, connecting
our specifications to a formal model of x86 such as the one one developed by
Goel and Hunt [18].

Microcode Verification 15

Acknowledgement. We would like to thank Warren Hunt for comments on
the first draft of this paper.

References

1. Hunt Jr., W.A., Swords, S.: Centaur Technology media unit verification. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 353–367. Springer,
Heidelberg (2009)

2. Hunt Jr., W.A., Swords, S., Davis, J., Slobodova, A.: Use of Formal Verification at
Centaur Technology. In: Hardin, D. (ed.) Design and Verification of Microprocessor
Systems for High-Assurance Applications, pp. 65–88. Springer (2010)

3. Slobodova, A., Davis, J., Swords, S., Hunt Jr., W.: A flexible formal verification
framework for industrial scale validation. In: Proceedings of the 9th IEEE/ACM
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE), Cambridge, UK, pp. 89–97. IEEE/ACM (July 2011)

4. Kaufmann, M., Moore, J.S., Boyer, R.S.: ACL2 version 6.1 (2013),
http://www.cs.utexas.edu/~moore/acl2/

5. Ray, S., Moore, J.S.: Proof styles in operational semantics. In: Hu, A.J., Martin,
A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 67–81. Springer, Heidelberg (2004)

6. Moore, J.S.: Proving theorems about Java and the JVM with ACL2. In: Models,
Algebras and Logic of Engineering Software, pp. 227–290 (2003)

7. Hardin, D.S., Smith, E.W., Young, W.D.: A robust machine code proof framework
for highly secure applications. In: Proceedings of the Sixth International Workshop
on the ACL2 Theorem Prover and its Applications, pp. 11–20. ACM (2006)

8. Swords, S., Davis, J.: Bit-blasting ACL2 theorems. In: ACL2 2011. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 70, pp. 84–102 (2011)

9. Davis, J., Swords, S.: Verified AIG algorithms in ACL2. In: Proceedings of ACL2
Workshop (2013)

10. McCarthy, J.: Towards a mathematical Scioence of computation. In: Information
Processing Congress, vol. 62, pp. 21–28. North-Holland (1962)

11. van Wijngaarden, A., Mailloux, B., Peck, J., Koster, C., Sintzoff, M., Lindsey, C.,
Meertens, L., Fisker, R.G.: Revised report on the algorithmic language ALGOL 68
(1968)

12. Boyer, R., Moore, J.: Mechanized formal reasoning about programs and computing
machines. In: Automated Reasoning and its Applications: Essays in Honor of Larry
Woss, pp. 141–176 (1996)

13. Greeve, D., Wilding, M., Hardin, D.: High-speed, analyzable simulators. In: Kauf-
mann, M., Moore, J.S., Manolios, P. (eds.) Computer-Aided Reasoning: ACL2 Case
Studies, pp. 89–106. Kluwer Academic Publishers (2000)

14. Yu, Y.: Automated proofs of object code for a widely used microprocessor. PhD.
Thesis (1992)

15. Strecker, M.: Formal verification of a Java compiler in Isabelle. In: Voronkov, A.
(ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 63–77. Springer, Heidelberg (2002)

16. Hamon, G., Rushby, J.: An operational semantics for stateflow. In: Wermelinger,
M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 229–243. Springer,
Heidelberg (2004)

17. Smith, E., Dill, D.: Automatic formal verification of Block Cipher implementations.
In: Cimatti, A., Jones, R. (eds.) Proceedings of the Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 45–51. IEEE/ACM (2008)

http://www.cs.utexas.edu/~moore/acl2/

16 J. Davis, A. Slobodova, and S. Swords

18. Goel, S., Hunt Jr., W.A.: Automated code proofs on a formal model of the X86.
In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 222–241.
Springer, Heidelberg (2013)

19. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

20. Wilding, M., Greeve, D., Richards, R., Hardin, D.: Formal verification of partition
management of the AAMP7G microprocessor. In: Hardin, D. (ed.) Design and
Verification of Microprocessor Systems for High-Assurance Applications, pp. 175–
192. Springer (2010)

21. Cyrluk, D.: Microprocessor verification in pvs. A methodology and simple example.
(February 1994), http://www.csl.sri.com/papers/csl-93-12/

22. Sawada, J., Hunt Jr., W.: Verification of FM9801: An out-of-order microprocessor
model with speculative execution, exceptions, and program-modifying capability.
J. of Formal Methods in System Design 20(2), 187–222 (2002)

23. Hunt Jr., W.A.: FM8501: A Verified Microprocessor. LNCS, vol. 795. Springer,
Heidelberg (1994)

24. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman,
E., Tiemeyer, A., Vardi, M.Y., Zuck, L.D.: Formal verification of backward com-
patibility of microcode. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 185–198. Springer, Heidelberg (2005)

25. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT
in symbolic execution of microcode. In: Proceedings of the 2010 Conference on
Formal Methods in Computer-Aided Design (FMCAD), Austin, TX, pp. 121–128,
FMCAD Inc (2010)

26. Floyd, R.: Assigning meanings to programs. In: Mathematical Aspects of Computer
Science, Proceeings of Symposia in Applied Mathematics, vol. XIX, pp. 19–32.
American Mathematical Society (1967)

27. Hoare, C.: An axiomatic basis to computer programming. Communications of the
ACM 12, 576–583 (1969)

28. Manna, Z.: The correctness of programs. Journal of Computer and System Sci-
ences 3, 119–127 (1969)

29. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification Condition Generation
Via Theorem Proving. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 362–376. Springer, Heidelberg (2006)

30. Horn, A., Tautschnig, M., Val, C., Liang, L., Mehlham, T., Grundy, J., Kroening,
D.: Formal co-validation of low-level hardware/software interfaces. In: Jobstman,
B., Ray, S. (eds.) Proceedings of the Formal Methods in Computer-Aided Design
(FMCAD), pp. 121–128. ACM/IEEE (2013)

http://www.csl.sri.com/papers/csl-93-12/

Are We There Yet? 20 Years of Industrial

Theorem Proving with SPARK

Roderick Chapman and Florian Schanda

Altran UK Limited, 22 St Lawrence Street, Bath BA1 1AN, United Kingdom
roderick.chapman@gmail.com, florian.schanda@altran.com

Abstract. This paper presents a retrospective of our experiences with
applying theorem proving to the verification of SPARK programs, both
in terms of projects and the technical evolution of the language and tools
over the years.

Keywords: Formal Methods, Program Verification, Theorem Proving,
SPARK.

1 Introduction

This paper reflects on our experience with proving properties of programs written
in SPARK[2] - a programming language and verification toolset that we have
designed, maintained, sold, and used with some success for nearly 20 years.

2 Projects and Technologies

The following sections present a retrospective on the use of theorem proving in
SPARK, roughly alternating between technical developments in the language
and tools and the experiences of various projects, coming from both our own
experience and that of a selection of external SPARK users in industry.

2.1 Early Days - 1987ish

It all started in about 1987. Our predecessors at the University of Southampton
and then PVL had designed and implemented a Hoare-logic based verification
system for a subset of Pascal[9]. Their next goal seemed almost absurdly bold - to
design a programming language and verification system that would offer sound
verification for non-trivial programs, but be scalable and rich enough to write
“real world” embedded critical systems. The base language chosen was Ada83,
and through judicious subsetting, semantic strengthening, and the addition of
contracts, SPARK (the “SPADE Ada Ratiocinative Kernel” - we kid you not)
was born, with a first language definition appearing in March 1987.

The highest priority design goal was the provision of soundness in all forms of
verification. This led to a need for a completely unambiguous dynamic semantics,

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 17–26, 2014.
c© Springer International Publishing Switzerland 2014

18 R. Chapman and F. Schanda

so that the results of verification would be reliable for all compilers and target
machines, and so that all valid SPARK programs would be valid Ada programs
with the same meaning and also, at a stroke, removing the need for us to produce
a “special” compiler for SPARK.

The toolset consisted of three main tools

– The Examiner. This consists of a standard compiler-like “front-end”, fol-
lowed by various analyses that check the language subset, aliasing rules,
data- and information-flow analysis, then (finally) generation of verification
conditions (VCs) in a language called FDL - a typed first-order logic that
has a relatively simple mapping from SPARK. The VCs generated include
those for partial correctness with respect to preconditions, postconditions
and loop-invariants, but also (lots of) VCs for “type safety” such as the
freedom from buffer overflow, arithmetic overflow, division by zero and so
on.

– The Checker. This is an interactive proof assistant for FDL. It emerged from
of one of the team’s PhD research[19]. Written in PROLOG.

– The Simplifier1. This is an heuristic, pattern-matching theorem prover, based
on the same core inference engine as the Checker. It started out as a way of
literally “Simplifying” VCs (a bit) before the real fun could start with the
Checker, but as we will see, it grew substantially in scope and power over
the years.

2.2 SHOLIS Project

Our first attempt at serious proof of a non-trivial system came with the SHO-
LIS project in 1995, by which time PVL and the SPARK technology had been
acquired by Praxis (now Altran UK). This was the first effort to meet the re-
quirements of the (then) rather onerous Interim version of the UK’s Def-Stan
00-55 for critical software at Integrity Level “SIL4”.

SHOLIS is a system that assists Naval crew with the safe operation of heli-
copters at sea, advising on safety limits (for example incident wind vector on the
flight deck, and ship’s roll and pitch) for particular operations such as landing,
in-air refuelling, crew transfer and so on.

The SHOLIS software[16] comprised about 27 kloc (logical) of SPARK code,
54 kloc of information-flow contracts, and 29 kloc of proof contracts, plus some
tiny fragments of assembly language to support CPU start-up and system boot.
There was no operating system and no COTS libraries of any kind - a significant
simplification at this level of integrity, and a programming model that SPARK
was explicitly designed to support.

The SHOLIS code generated nearly 9000 VCs, of which 3100 were for func-
tional and safety properties, and 5900 for type safety. Of the 9000 total, 6800
(75.5%) were proven automatically by the Simplifier, with the remaining 2200
being “finished off” using the interactive Checker.

1 Not to be confused with Greg Nelson’s better-known Simplify prover.

Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK 19

The experience was painful. Computing resource was scarce; one UNIX server
(shared by the whole company) was used for all the proof work. Simplification
times for a single subprogram were measured in hours or days.

A key output was the identification of the need to support state abstraction
and refinement in SPARK proofs. This mechanism is used in SPARK to control
the volume of states that are visible, and hence has a direct impact on the
complexity and size of contracts and the “postcondition explosion” problem.
This was implemented (too late for SHOLIS), but had a major impact on later
projects.

2.3 C130J Project

The Lockheed-Martin C130J is the most recent generation of the enormously
successful “Hercules” military transport aircraft. The Mission Computer appli-
cation software is written in SPARK, and was subject to a large verification
effort in the UK as part of the acquisition of the aircraft by the UK RAF.

Verification consisted of full-blown SPARK analysis, including verification of
partial correctness for most critical functions with respect to the system’s func-
tional specification, which was expressed using the “Parnas Tables”[20] notation.

Unusually, the “proof” component of the work was performed in the UK in
the late 1990s after the formal testing (to meet the objectives of DO-178B Level
A) of the Mission Computer.

Results from the development phase of the project are best reported in [18]
while the results of the later proof work (and comparisons of the SPARK code
with other systems and programming languages) can be found in [13].

2.4 Improving the VCG and Simplifier

Both the SHOLIS and C130J projects led to a serious analysis of how we could
improve the completeness of the Simplifier. Analysis identified a number of key
areas where improvement was sorely needed:

– Tactics for unwrapping and instantiation of universally quantified conclu-
sions, especially those that commonly arise from arrays in SPARK.

– Modular (aka “unsigned”) arithmetic - very common in low-level device
driver code, ring buffers, cryptographic algorithms and so on.

– Tracking the worst-case ranges of integer expressions.

These were implemented in 2002. We also spent effort on improving the VC
Generator (VCG) itself - it turns out it’s only too easy for the VCG to produce a
VC that omits some vital hypothesis so that no prover could prove it, no matter
how clever. Ever more detailed and precise modelling of the language semantics
inside the VCG continues to this day.

Finally, we noted one other factor that critically impacted the usefulness of
the proof system - the “proof friendliness” of the code under analysis. This
seemed to correlate with common software engineering guidance - simplicity, low

20 R. Chapman and F. Schanda

information-flow coupling, and proper use of abstraction to control the name-
and state-space of any one subprogram. In short - we were learning how to write
provable programs, so we started to set a goal for projects to “hit” a particular
level of automatic proof (e.g. 95% of VCs discharge automatically), making the
proof a design-level challenge rather than a retrospective slog.

2.5 Tokeneer Project

Tokeneer is an NSA-funded demonstrator of high-security software engineering.
We were given a clean-sheet to work from, so the project deployed various forms
of formal methods, including a system specification and security properties in Z,
and implementation in SPARK[1].

This was the first time we had attempted to prove non-trivial security prop-
erties of a software system with SPARK. Owing to the budget, the system was
small (only about 10 kloc logical, producing 2623 VCs), but critically, 2513 of
those were proven automatically (95.8%), with only 43 left to the Checker and
67 discharged by review (i.e. we looked at them really hard).

Unusually (and some years later, in 2008) the NSA granted a licence that
effectively allowed a fully “open source” release of the entire Tokeneer project
archive. It remains the focus of various research efforts[28].

2.6 Speeding Up and Going FLOSS

With the emergence of cheap multi-core CPUs, we implemented an obvious
improvement to the Simplifier in 2007 - the ability to run the prover on several
VCs at once in parallel. It turns out the VCG generates lots of small, simple VCs
which are completely independent of one another, so are ripe for parallelization.
This almost wasn’t a conscious design goal in 1990ish, but came as a pleasantly
surprising benefit.

The results are dramatic. On a modern (2013-era) quad-core machine, the
entire SHOLIS software can be re-proven from scratch in about 11 minutes,
with only 440 undischarged VCs (compare with weeks and 2200 undischarged
VCs in the original project).

Secondly, in 2009 we took the dramatic step, in partnership with AdaCore,
to “go open source”, with the entire toolset moving to a FLOSS development
model and GPL licence, as a way of promoting interest, teaching and research
with the language.

2.7 User-Defined Rules

In response to customer demand, we implemented an approach for users to
write and “insert” additional rules or lemmas into the Simplifier to “help” it
with particularly tricky VCs, or in areas where its basic reasoning power proved
insufficient.

This approach opens an obvious soundness worry (users can write non-sensical
rules), but does offer an attractive middle-ground between the onerous use of the

Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK 21

Checker and the rather relaxed idea of just “eyeballing” the undischarged VCs
to see if they look OK. Additionally, a single well-written rule can be written
once but used thousands of times by the Simplifier, so the effort to get the rules
right should pay off. Finally, the Checker be used to verify the soundness of a
user-defined rule from first principles if required.

2.8 iFACTS Project - Scaling Up

Starting in 2006, the implementation of the NATS iFACTS system is the most
ambitious SPARK project to date.

iFACTS augments the tools available to en-route air-traffic controllers in the
UK. In particular, it supplies electronic flight-strip management, trajectory pre-
diction, and medium-term conflict detection for the UK’s en-route airspace,
giving controllers a substantially improved ability to plan ahead and predict
conflicts in a sector[21].

The project has a formal functional specification (again expressed mostly in
Z), and the majority of the code (about 250 kloc logical lines of code, as counted
by GNATMetric) is implemented in SPARK. Figure 1 illustrates that the pro-
portion of SPARK contracts is minor compared to the bulk of the executable
code and comments (and whitespace).

Blank

116k

13%

Comment

171k

19%

SPARK Contracts

74k

8%

Executable Code

529k (250 kloc logical)

60%

Fig. 1. Project size in physical lines of code (counted with wc -l)

Proof concentrates on type-safety, but not functional correctness, since the
system has stringent requirements for reliability and availability - in short, the
software must be proven “crash proof”.

The current operational build produces 152927VCs, of which 151026 (98.76%)
are proven entirely automatically by the Simplifier alone. User-defined rules are
used for another 1701 VCs, with only 200 proved “by review”. This remains the
highest “hit rate” for automatic proof with SPARK that we have ever encoun-
tered.

22 R. Chapman and F. Schanda

The proof is reconstructed daily (and overnight), and developers are under
standing orders that all code changes must prove OK before code can be com-
mitted into the CM system. Developers who “break the proof” receive a terse
notification the following morning.

2.9 Reaching Out - SMT and Counterexamples

Licensing SPARK under the GPL has also made it much easier to collaborate
with academia, and we have seen two useful improvements for SPARK 2005 as
a result of this.

Alternative Provers. The existing automatic theorem prover for SPARK was
good (98.76% on well written code), but due to its nature had difficulties dis-
charging certain VCs. Paul Jackson from the University of Edinburgh has written
Victor[15], a translator and prover driver to allow SMT solvers to be used with
SPARK. As SMT solvers are fundamentally different from rewrite systems such
as the Simplifier, they are able to easily discharge many of the VCs the Simplifier
cannot deal with.

For some projects, such as SPARKSkein, using a modern SMT solver allowed
100% of all VCs to be discharged automatically. Victor is now shipped with
SPARK.

Counterexamples. The existing SPARK proof tools were all geared towards
proving VCs. As a consequence it was difficult (and thus time-consuming, and
thus expensive) to distinguish between true VCs that could not be proved due
to prover limitations and false VCs due to specification or programming errors.

Riposte [24] is the counter-example generator for SPARK that was developed
under a joint project with Martin Brain (University of Bath, now Oxford). This
tool provides helpful counter-examples, and can even be used as a proof tool as
it is sound, so the lack of a counter-example guarantees none exist (although the
tool is incomplete, so sometimes a counter-example might be generated where
none exists).

2.10 SPARKSkein Project - Fast, Formal, Nonlinear

In 2010, we implemented the Skein[25] hash algorithm in SPARK. The goal was
to show that a “low-level” cryptographic algorithm like Skein could be imple-
mented in SPARK, be subject to a complete proof of type safety, be readable
and “obviously correct” with respect to the Skein mathematical specification,
and also be as fast or faster than the reference implementation offered by the
designers, which is implemented in C.

The proofs of type safety turned out to be quite tricky. Firstly, finding the
correct loop invariants proved difficult, and this was compounded by the plethora
of modular types and non-linear arithmetic in the VC structures. Of the 367
VCs, 23 required use of the Checker to complete the proof - not bad but these

Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK 23

still required a substantial effort to complete. Full results from the project are
reported in [7]. All sources, proofs and tests have been released under GPL and
can be obtained here[26].

One final unexpected side-effect was the discovery of a subtle corner-case bug
in the designers’ C implementation (an arithmetic overflow, which leads to a
loop iterating zero times, which leads to an undefined output).

2.11 CacheSimp - Speeding Up Even More

In an industrial context, verification time is not just a number, it has a signif-
icant qualitative effect on how verification tools are used and thus on project
management. If verification takes 4 hours, then a developer has to organise their
working day around this activity. If the same activity can be done in 30 minutes
or less then this has a significant and positive impact on how the tools are used
(and often mistakes are found much earlier).

Figure 2 shows that a single proof run of iFACTS takes around 3 hours (green
line with squares) on a fast desktop computer, regardless of how big the actual
change is (blue bars). We implemented a very simple caching system [6] in around
250 lines of code using memcached [12], where each invocation of the proof tools
first checks if the result is already known. As the memcached server was run on a
separate computer accessible to all developers, this system was both incremental
and distributed, leading to an average 29-fold speedup (red line with circles) and
a strong correlation to the size of the change.

Fig. 2. Results showing the effects of using a simple caching system

2.12 Reaching Out - Interactive Provers

One particular SPARK user, secunet, kept pushing the boundaries of what was
reasonable to achieve using automated verification, and what was expressible
using the simple first order logic constructs available in SPARK annotations.
Stefan Berghofer (from secunet) implemented a plug-in for Isabelle/HOL that
allows one to express much richer properties using SPARK proof functions [4]

24 R. Chapman and F. Schanda

and complete the proof in Isabelle. They have kindly released their work under
a free software license, including a fully verified big-number library which they
have used to implement RSA. Given the recent OpenSSL “Heartbleed”[17] bug,
this importance of this contribution should not be underestimated.

2.13 Muen Project

This project[27] span off from the work of secunet. Muen is a FLOSS separtion-
kernel for the x86 64 architecture, but unusually, almost the entire kernel is
written in SPARK - something we might have considered impossible some years
ago. The kernel code is subject to an automated proof of type-safety. We look
forward to further results from this group.

3 Future Trends

This final section reflects on two topics - the future of SPARK, and the role
that theorem-proving evidence can play in the wider context of regulation and
acceptance of critical software.

3.1 Technologies and Languages - SPARK 2014

Despite many positive experiences, SPARK and the use of the proof tools remain
a challenge for many customers - the “adoption hurdle” is often perceived as
too high. Secondly, it became clear to us that improving the Simplifier had
become a game of diminishing returns, and it was time to move to more modern
proof technologies. Finally, the arrival of Ada 2012 brought contracts into the
mainstream Ada syntax, so it was time to “reboot” both the language design
and underlying technologies.

Since 2012, we have been working with AdaCore to produce SPARK 2014.
The language is based on Ada 2012, and uses its native “aspect” notation for
all contracts. The language subset permitted is much larger, including variant
records, generic units, dynamic types, and so on. The new toolset is based on the
full GNAT Pro Ada front-end (part of the GCC family), a new information-flow
analysis engine (based on analysis of program-dependence graphs[11,14]), and a
new proof system that uses the Why3 language and VCG[5] and modern SMT
solvers such as Alt-Ergo[8] and CVC4[3]. The new tools also bring a significant
improvement in the area of floating point verification: where the old tools used
an unsound model using real numbers, the new tools employ a sound encoding;
current versions use an axiomatised rounding function. We feel that a transition
to the upcoming SMTLIB floating-point standard will bring many benefits, in
particular preliminary experiments (with the University of Oxford) using SMT
solvers implementing ACDL [10] have shown promise.

SPARK 2014 also (perhaps unusually) takes the step of unifying the dynamic
(i.e. run-time) and static (i.e. for proof) semantics of contracts, so that they can
be proved, or tested at run-time (as in, say, Eiffel), or both - providing some

Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK 25

interesting possibilities for mixing verification styles and/or mixing languages
(i.e. programs partly written in SPARK, Ada, C, or anything else) in a single
program.

Both the “Pro” (supported) and “GPL” (free, unsupported) versions of the
SPARK 2014 toolset will be available before this conference.

3.2 Assurance and Acceptance for Critical Systems

Over the years, both customers and regulators have taken a variety of stances on
the use of strong static analysis and theorem proving in critical software. Some
regulators remain sceptical, perhaps owing to the novelty of the idea or the
perceived unreliability (i.e. unsoundness) of common “bug finding” style static
analysis tools.

The future looks bright, though, in the aerospace with the advent of DO-
178C[22] and its formal methods supplement DO-333[23] which explicitly allows
“formal methods” as a combination of an unambiguous language and analysis
methods which can be shown to be sound. Additionally, DO-178C allows later
verification activities (e.g. testing) to be reduced or eliminated if it can be argued
that formal analytical approaches have met the required verification objective(s).
This supports (we hope) a strong economic incentive for the adoption of more
formal and static approaches.

We look forward to the day when software will be delivered with its proofs,
which can be re-generated at will by the customer or regulator, perhaps even by
diverse verification tools. That would surely move us towards a claim to being a
true engineering discipline.

References

1. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.:
Engineering the Tokeneer enclave protection software. In: 1st IEEE International
Symposium on Secure Software Engineering (March 2006)

2. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran
Praxis (2012)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Berghofer, S.: Verification of dependable software using SPARK and isabelle. In:
SSV, pp. 15–31 (2011)

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland, pp. 53–64 (August 2011),
http://proval.lri.fr/publications/boogie11final.pdf

6. Brain, M., Schanda, F.: A lightweight technique for distributed and incremental
program verification. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 114–129. Springer, Heidelberg (2012)

7. Chapman, R., Botcazou, E., Wallenburg, A.: SPARKSkein: A formal and fast refer-
ence implementation of skein. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS,
vol. 7021, pp. 16–27. Springer, Heidelberg (2011)

http://proval.lri.fr/publications/boogie11final.pdf

26 R. Chapman and F. Schanda

8. Conchon, S., Contejean, E., Kanig, J.: Ergo: A theorem prover for polymorphic
first-order logic modulo theories (2006), http://ergo.lri.fr/papers/ergo.ps

9. Cullyer, W., Goodenough, S., Wichmann, B.: The choice of computer languages
for use in safety-critical systems. Software Engineering Journal 6(2), 51–58 (1991)

10. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: POPL,
pp. 143–154 (2013)

11. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987),
http://doi.acm.org/10.1145/24039.24041

12. Fitzpatrick, B., et al.: Memcached - a distributed memory object caching system
(2003), http://memcached.org

13. German, A.: Software static code analysis lessons learned. Crosstalk 16(11) (2003)
14. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.

In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Lan-
guage Design and Implementation, PLDI 1988, pp. 35–46. ACM, New York (1988),
http://doi.acm.org/10.1145/53990.53994

15. Jackson, P.B., Passmore, G.O.: Proving SPARK verification conditions with smt
solvers. Technical Report, University of Edinburgh (2009)

16. King, S., Hammond, J., Chapman, R., Pryor, A.: Is proof more cost-effective than
testing? IEEE Transactions on Software Engineering 26(8), 675–686 (2000)

17. Mehta, N.: Cve-2014-0160 (April 2014)
18. Middleton, P., Sutton, J.: Lean Software Strategies: Proven Techniques for Man-

agers and Developers. Productivity Press (2005)
19. O’Neill, I.: Logic Programming Tools and Techniques for Imperative Program Ver-

ification. Ph.D. thesis, University of Southampton (1987)
20. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured

programs. IEEE Transactions on Software Engineering 20(12), 948–976 (1994)
21. Rolfe, M.: How technology is transforming air traffic management,

http://nats.aero/blog/2013/07/how-technology-is-transforming-

air-traffic-management

22. RTCA: DO-178C: Software considerations in airborne systems and equipment cer-
tification (2011)

23. RTCA: DO-333: Formal methods supplement to do-178c and do-278a (2011)
24. Schanda, F., Brain, M.: Using answer set programming in the development of

verified software. In: ICLP (Technical Communications), pp. 72–85 (2012)
25. Schneier, B., Ferguson, N., Lucks, S., Whiting, D., Bellare, M., Kohno, T., Walker,

J., Callas, J.: The skein hash function family. Submission to NIST (Round 3) (2010)
26. http://www.skein-hash.info

27. http://muen.codelabs.ch

28. Woodcock, J., Aydal, E.G., Chapman, R.: The Tokeneer Experiments. In: Reflec-
tions on the Work of CAR Hoare, pp. 405–430. Springer (2010)

http://ergo.lri.fr/papers/ergo.ps
http://doi.acm.org/10.1145/24039.24041
http://memcached.org
http://doi.acm.org/10.1145/53990.53994
http://nats.aero/blog/2013/07/how-technology-is-transforming-air-traffic-management
http://nats.aero/blog/2013/07/how-technology-is-transforming-air-traffic-management
http://www.skein-hash.info
http://muen.codelabs.ch

Towards a Formally Verified Proof Assistant

Abhishek Anand and Vincent Rahli

Cornell University, Ithaca, NY, USA

Abstract. This paper presents a formalization of Nuprl’s metatheory
in Coq. It includes a nominal-style definition of the Nuprl language, its
reduction rules, a coinductive computational equivalence, and a Curry-
style type system where a type is defined as a Partial Equivalence Rela-
tion (PER) à la Allen. This type system includes Martin-Löf dependent
types, a hierarchy of universes, inductive types and partial types. We
then prove that the typehood rules of Nuprl are valid w.r.t. this PER
semantics and hence reduce Nuprl’s consistency to Coq’s consistency.

1 Introduction

Trustworthiness of Proof Assistants. In order to trust a proof checked by a
proof assistant, we have to trust many aspects of both its theory and imple-
mentation. Typically, the core of a proof assistant consists of a proof checking
machinery which ensures that proof terms are indeed proofs of the correspond-
ing statements. In constructive type theories such as the ones implemented in
Agda [10], Coq [9], and Nuprl [4], this is accomplished with typechecking rules,
which are derived from a semantic model, e.g., a computational model based on
an applied λ-calculus. Parts of these theories have been formally described in
various documents [37,7,3,15,24,36].

This is not a completely satisfactory state of affairs because: (1) It is possible
to overlook inconsistencies between the different parts formalized on paper; and
(2) Mistakes are possible in these large proofs (often spanning hundreds of pages)
which are never carried out in full details. For example, we at least once added an
inconsistent rule to Nuprl even after extensive discussions regarding its validity.
A Bug that lead to a proof of False was found in Agda’s typechecker1. Recently,
the Propositional Extensionality axiom was found to be inconsistent with Coq2.
However, consistency of Propositional Extensionality is a straightforward conse-
quence of Werner’s proof-irrelevant semantics [37] of the Prop universe. Werner
allows only structurally recursive definitions while Coq’s termination analyzer
seems to be more permissive. A similar bug was discovered in Agda3.

Fortunately, proof assistants have matured enough [26,19] that we can con-
sider formalizing proof assistants in themselves [8], or in other proof assistants.
1 https://lists.chalmers.se/pipermail/agda/2012/003700.html
2 See https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html for

more details. We do not use this axiom in our development.
3 https://lists.chalmers.se/pipermail/agda/2014/006252.html

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 27–44, 2014.
c© Springer International Publishing Switzerland 2014

https://lists.chalmers.se/pipermail/agda/2012/003700.html
https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
https://lists.chalmers.se/pipermail/agda/2014/006252.html

28 A. Anand and V. Rahli

By Tarski’s undefinability theorem, these rich logics cannot formalize their own
semantics. However, because Martin-Löf’s type theories are stratified into cu-
mulative universes, it is plausible that a universe can be modeled in a higher
universe of the same theory. Even better, universes of two equally powerful the-
ories can be interleaved so that universes up to a level i of one of the theories
could be modeled using at most universes up to level i + 1 of the other theory,
and vice-versa. The latter approach seems likely to catch more mistakes if the
two theories and their implementations are not too closely correlated.

Also, some type theories are proof-theoretically stronger than others. For ex-
ample, Agda supports inductive-recursive definitions and can likely prove Nuprl
and the predicative fragment of Coq consistent. Among other things, this paper
also illustrates how one can define Nuprl’s entire hierarchy of universes in Agda.
Advantages of a Mechanized Metatheory. A mechanized metatheory can guide
and accelerate innovation. Currently, developers of proof assistants are reluctant
to make minor improvements to their proof assistants. Many questions have to
be answered. Is the change going to make the theory inconsistent? Is it going
to break existing developments? If so, is there a way to automatically transform
developments of the old theory to the new one while preserving the semantics?
A mechanized metatheory can be used to confidently answer these questions.
Moreover, we would no longer have to sacrifice efficiency for simplicity.
Mechanized Formalization of Nuprl. Therefore, this paper tackles the task
of formalizing Nuprl in Coq. We chose Coq over other constructive proof
assistants [10] because of its powerful tactic mechanism, and over other non-
constructive proof assistants [32] because of the convenience of extracting pro-
grams from proofs for free. The two theories differ in several ways. While Coq
(like Agda) is based on an intensional type theory with intrinsic typing, Nuprl
is based on an extensional one with extrinsic typing. Also, over the years Nuprl
has been extended with several expressive types not found in Coq, e.g., quo-
tient types [4]; refinement types [4]; intersection and union types [24]; partial
types [15]; and recursive types [28]. Partial types enable principled reasoning
about partial functions (functions that may not converge on all inputs). This is
better than the approach of Agda4 and Idris [11] where one can disable termi-
nation checking and allow oneself to accidentally prove a contradiction.

Following Allen [3] we implement W types (which can be used to encode in-
ductive types [2] in an extensional type theory like Nuprl) instead of Mendler’s
recursive types, therefore making the entire Nuprl metatheory predicatively jus-
tifiable as evidenced by our illustrative Agda model in Sec. 5. Mendler’s recursive
types can construct the least fixpoint of an arbitrary monotone endofunction (not
necessarily strictly positive) in a Nuprl universe. Formalizing this notion seems
to require an impredicative metatheory. Our current system includes a hierarchy
of universes, function types, partial types, and we also extend Allen’s work to
include parametrized W types (similar to parametrized inductive types [33]).

Our formalization of Nuprl’s metatheory in Coq proceeds as follows in three
steps: (1) We define an inductive type of Nuprl terms. This definition is
4 http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.AgdaVsCoq

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.AgdaVsCoq

Towards a Formally Verified Proof Assistant 29

parametrized by a collection of operators and makes it possible to add new
constructs without changing the core definitions. We then define substitution
and α-equality and prove several of their properties. (2) We define Nuprl’s lazy
computation system and a coinductive computational approximation relation
that was defined and proved to be a congruence by Howe [21]. We formalize
this proof as well as the domain theoretic properties that were used by Crary
to justify some typehood rules about partial types [15]. We then define a com-
putational equivalence relation [21] which plays a key role in the definition of
our type system. (3) Following Allen’s approach, we define types as PERs. This
definition determines which closed terms denote equal types and which closed
terms are equal members of types. Finally, we define Nuprl’s sequents and prove
the validity of many inference rules. We also show that using induction-recursion
in Agda results in a more intuitive and simple definition of Nuprl’s type system.

Nuprl

U0

U1

Coq w/o Prop

U0

U1

U2

Agda

U0

Coq w/ Prop

Prop

U0

 func_choice

We describe below the key details of each of
these steps. More details can be found in our tech-
nical report or in our publicly available code [5]. A
key aspect of this formalization is that it gives us
a verified trusted core of Nuprl. Although one can
use Nuprl’s tactics to prove typehood properties5,
these tactics can only use the above mentioned
rules in the end. Moreover, this work tackles the task of formally describing in a
unified framework all the extensions and changes that were made to Nuprl’s type
theory since CTT86 [14] and since Allen’s PER semantics [3]. The core of this
work is a formalization of [21,3,15,24]. Unlike previous works, we pin down three
precise metatheories that can model (parts of) Nuprl. This is best illustrated by
the figure above. An arrow from a Nuprl universe A to some universe B means
that the PERs of types in A can be defined as relations in the universe B. As
expected of large mechanized formalizations like ours, we found at least one mi-
nor mistake in one of these extensions. With the help of the original author, we
were able to fix this proof in our formalization.

2 Uniform Term Model and Computation System

We use a nominal approach (bound variables have names) to define Nuprl terms.
This definition closely matches the way terms are represented in Nuprl’s current
implementation. It is also very close to definitions used in paper descriptions of
Nuprl [21]. Many alternative approaches have been discussed in the literature.
See [6] for a survey. However, our choice avoided the overhead of translating the
paper definitions about Nuprl to some other style of variable bindings.

We often show colored code6: blue is used for inductive types, dark red for con-
structors of inductive types, green for defined constants, functions and lemmas,
red for keywords and some notations, and purple for variables.
5 Nuprl has never had a typechecker. It relies on customizable tactics to do typechecking.
6 Some of the colored items are hyperlinked to the place they are defined, either in

this document, in the standard library, or in our publicly available code.

30 A. Anand and V. Rahli

Inductive NVar : Set :=
| nvar : nat → NVar.

Inductive Opid : Set :=
| Can : CanonicalOp → Opid
| NCan : NonCanonicalOp → Opid.

Inductive NTerm : Set :=
| vterm: NVar → NTerm
| oterm: Opid → list BTerm → NTerm
with BTerm : Set :=
| bterm: (list NVar) → NTerm → BTerm.

Fig. 1. Uniform Term Model

Fig. 1 defines NTerm, the type of Nuprl terms. Variable bindings are made
explicit by the simultaneously defined BTerm type. bterm takes a list of variables
lv and a term nt and constructs a bound term. Intuitively, a variable that is
free in nt gets bound to its first occurrence in lv , if any. The rest of our term
definition is parametrized by a collection of operators Opid. We divide our Opids
into two groups, CanonicalOps and NonCanonicalOps (see [5, Sec. 2.1] for their
definitions). This distinction is only relevant for defining the computation system
and its properties. Intuitively, an operator constructs a term from a list BTerm.
For example, oterm (Can NLambda) [bterm [nvar 0] (vterm (nvar 0))] represents a
λ-term of the form λx.x. Nuprl has a lazy computation system and any NTerm
of the form (oterm (Can)) is already in canonical form and is called a value.

Not all the members of NTerm are well-formed: (nt wf t) asserts that t is
well-formed. For example, a well-formed λ-term must have exactly one bound
term as an argument. Moreover, that bound term must have exactly one bound
variable. Fig. 2 compactly describes the syntax of an illustrative subset of the
language that we formalized. There, v ranges over values. There is a member
of CanonicalOp for each clause of v . For example, the constructor Nint of type
Z → CanonicalOp corresponds to the first clause that denotes integers. In Fig. 2,
vt ranges over the values that represent types. A term t is either a variable, a
value, or a non-canonical term represented as (oterm (NCan)) in our term
model. These have arguments (marked in boxes) that are said to be principal. As
mentioned below, principal arguments are subterms that have to be evaluated
to a canonical form before checking whether the term itself is a redex or not.

We next define our simultaneous substitution function (lsubst) and α-equality
(alpha eq and alpha eq bterm). As expected of a nominal approach to variable
bindings, we spent several weeks proving their properties that were required
to formalize Nuprl. One advantage is that these and many other definitions
and proofs [5, Sec. 2.2] apply to any instantiation of Opid in which equality is
decidable. This considerably simplifies the process of extending the language.

We formalize Nuprl’s computation system by defining a one step computation
function [5, Sec. 3.1] on NTerm. When evaluating a non-canonical term, it first
checks whether one of the principal arguments is non-canonical. If so, it recur-
sively evaluates it. The interesting cases are when all the principal arguments
are canonical. Fig. 2 compactly describes these cases for an illustrative subset of
the formalized system.

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#Opid
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#NonCanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#Opid
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#NonCanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#NLambda
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#Nint
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Numbers.BinNums.html#Z
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://www.nuprl.org/html/Nuprl2Coq/v1/html/substitution.html#lsubst
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq_bterm

Towards a Formally Verified Proof Assistant 31

v ::= vt (type) | inl(t) (left injection) | Ax (axiom)
| i (integer) | inr(t) (right injection) | 〈t1, t2〉 (pair)
| λx .t (lambda) | sup(t1, t2) (supremum)

vt ::= Z (integer type) | x:t1 → t2 (function type)
| x : t1 × t2 (product type) | t2 = t ∈ t1 (equality type)
| Base (base type) | t (partial type)
| ∪x : t1.t2 (union type) | ∩x:t1.t2 (intersection type)
| t1//t2 (quotient type) | t1 + t2 (disjoint union type)
| {x : t1 | t2} (set type) | W(x:t1, t2) (W type)

t ::= x (variable) | v (value)
| t1 t2 (application) | fix(t) (fixpoint)
| let x := t1 in t2 (call-by-value) | let x , y = t1 in t2 (spread)
| case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)
| if t1 =Z t2 then t3 else t4 (integer equality)

(λx .F) a → F [x\a]
let x , y = 〈t1, t2〉 in F → F [x\t1; y\t2]

fix(v) → v fix(v)
let x := v in t → t [x\v]

case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G → F [x\t]
case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G → G[y\t]
if i1 =Z i2 then t1 else t2 → t1, if i1 = i2
if i1 =Z i2 then t1 else t2 → t2, if i1
= i2

Fig. 2. Syntax (top) and operational semantics (bottom) of Nuprl

Definition olift (R : NTerm → NTerm → [univ]) (x y :NTerm) : [univ] :=
nt wf x × nt wf y ×
∀ sub: Substitution, wf sub sub → programs [lsubst x sub, lsubst y sub]

→ R (lsubst x sub) (lsubst y sub).

Definition blift (R: NTerm → NTerm → [univ]) (bt1 bt2 : BTerm): [univ] :=
{lv: (list NVar) × {nt1,nt2 : NTerm × R nt1 nt2

× alpha eq bterm bt1 (bterm lv nt1) × alpha eq bterm bt2 (bterm lv nt2) }}.

Definition lblift (R: NTerm → NTerm → [univ]) (l r : list BTerm): [univ] :=
length l = length r × ∀ n : nat, n < length l → blift R (l [n]) (r [n]).

Fig. 3. Lifting operations. The notation { : × } denotes sigma types (sigT)

3 Computational Approximation and Equivalence

When we define the type system in Sec. 6, we want it to respect many
computational relations. For example, most type systems satisfy the subject
reduction property. In Agda, Coq and Nuprl, if t reduces to t’ , and t is in some
type T , then t and t’ are equal in T . In addition, it is useful to have our types
respect a congruence that contains the computation relation. For example,
Coq has a notion of definitional equality which is a congruence. In Nuprl, we have

http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq_bterm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/alphaeq.html#alpha_eq_bterm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#length
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic.html#:type scope:x '=' x
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#length
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Peano.html#:nat scope:x '<' x
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#length
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#selectbt
http://coq.inria.fr/V8.1/stdlib/Coq.Init.Specif.html#sigT

32 A. Anand and V. Rahli

CoInductive approx : (tl tr :NTerm) : [univ] :=
| approx fold: close compute approx tl tr → approx tl tr .

CoInductive approx aux (R : NTerm → NTerm → [univ]) (tl tr : NTerm): [univ] :=
| approx fold: close compute (approx aux R \2/ R) tl tr → approx aux R tl tr .

Definition approx := approx aux (fun : NTerm ⇒ False).

Fig. 4. Computational approximation

a computation equivalence ∼ [21], which is a coinductively defined congruence
that permits more powerful equational reasoning. For example, all diverging
programs are equivalent under ∼. The same holds for all programs that generate
an infinite stream of zeroes. Howe first defines a preorder approx on closed terms,
proves that it is a congruence and finally defines t1 ∼ t2 as approx t1 t2 ×
approx t2 t1 . We first define olift, blift, lblift in Fig. 3. These will be used to lift a
binary relation on closed NTerms to one on terms that are not necessarily closed,
to BTerms, and to lists of BTerms, respectively. Note that programs l asserts that
every member of l is both well-formed and closed; wf sub sub asserts that the
range of the substitution sub consists of well-formed terms; t ⇓ tv asserts that
t converges to the value tv [5, Sec. 3.1]. t ⇓ asserts that t converges to some
value. Although the notation [univ] currently stands for Type, most of our
development works unchanged if we change it to Prop.

One can think of approx as the greatest fixpoint of the following operator on
binary relations:

Definition close compute (R: NTerm → NTerm → [univ]) (tl tr : NTerm): [univ]:=
programs [tl , tr] × ∀ (c : CanonicalOp) (tls : list BTerm),

(tl ⇓ oterm (Can c) tls)
→ {trs : list BTerm × (tr ⇓ oterm (Can c) trs)× lblift (olift R) tls trs }.

One could now directly define approx as at the top of Fig. 4, where \2/ denotes
disjunction of binary relations. However, this approach would require using the
cofix tactic of Coq for proving the properties of approx. Unfortunately, cofix
does very conservative productivity checking [23] and often rejects our legitimate
proofs. So we use parametrized coinduction [23] to define it in a slightly indirect
way (the next two items in Fig. 4). With this technique, we only need to use
cofix once to prove a “coinduction-principle” [5, Sec. 3.2] for approx and use
that principle for the coinductive proofs about approx. Howe then proves that
(olift approx) (abbreviated as approx open) is a congruence [21]:

Theorem approx open congruence : ∀ (o : Opid) (lbt1 lbt2 : list BTerm),
lblift approx open lbt1 lbt2
→ nt wf (oterm o lbt2) → approx open (oterm o lbt1) (oterm o lbt2).

The proof is not easy. He first defines another relation approx star, which con-
tains approx open and which is a congruence by definition. Then he proves that
approx star implies approx open. This proof assumes that all Opids satisfy a con-
dition called extensionality. We formalize his proof and prove that all the Opids

http://coq.inria.fr/stdlib/Coq.Init.Logic.html#False
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/computation3.html#computes_to_value
http://www.nuprl.org/html/Nuprl2Coq/v1/html/computation3.html#hasvalue
http://www.nuprl.org/html/Nuprl2Coq/v1/html/opid.html#CanonicalOp
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x 'x26' x 'x7D'
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#list
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms.html#nt_wf
http://www.nuprl.org/html/Nuprl2Coq/v1/html/approx_star.html#approx_star
http://www.nuprl.org/html/Nuprl2Coq/v1/html/approx_star.html#approx_star

Towards a Formally Verified Proof Assistant 33

T type iff T≡T
t∈T iff t≡t∈T

T1≡T2 if T1 ⇓ T ′
1 ∧ T2 ⇓ T ′

2 ∧ T ′
1≡T ′

2

t1≡t2∈T if t1 ⇓ t′1 ∧ t2 ⇓ t′2 ∧ T ⇓ T ′ ∧ t′1≡t′2∈T ′

t1≡t2∈Base iff t1 ∼ t2
Ax≡Ax∈(a = b ∈ A) iff (a = b ∈ A) type ∧ a≡b∈A

t1≡t2∈A iff (A) type ∧ (t1⇓ ⇐⇒ t2⇓) ∧ (t1⇓ ⇒ t1≡t2∈A)
f1≡f2∈x:A → B iff (x:A → B) type

∧ ∀a1, a2. a1≡a2∈A ⇒ f1(a1)≡f2(a2)∈B[x\a1]
sup(a1, f1)≡sup(a2, f2)∈W(x:A,B)

iff (W(x:A,B)) type ∧ a1≡a2∈A
∧ ∀b1, b2. b1≡b2∈B[x\a1] ⇒ f1(b1)≡f2(b2)∈W(A:x,B)

Base≡Base
(a1 = a2 ∈ A)≡(b1 = b2 ∈ B) iff A≡B

∧ (a1≡b1∈A ∨ a1 ∼ b1) ∧ (a2≡b2∈A ∨ a2 ∼ b2)

A≡B iff A≡B ∧ (∀a. a∈A ⇒ a⇓)
x1:A1 → B1≡x2:A2 → B2 iff A1≡A2

∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]
W(x1:A1, B1)≡W(x2:A2, B2) iff A1≡A2

∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]

Fig. 5. Informal definition of a core part of a Nuprl universe

of the current Nuprl system are extensional. Hence, we obtain that approx open,
approx and ∼ are congruences [5, Sec. 3.2.1].
Domain Theoretic Properties. The preorder approx has interesting domain the-
oretic properties [15] such as compactness and the least upper bound principle.
Let ⊥ be fix(λx .x). It is the least element (up to ∼) w.r.t. approx, i.e., for
any closed term t , approx ⊥ t . The least upper bound principle says that for
any terms G and f , G(fix(f)) is the least upper bound of the (approx) chain
G(f n(⊥)) for n ∈ N. Compactness says that if G(fix(f)) converges, then there
exists a natural number n such that G(f n(⊥)) converges. We formalized proofs
of both these properties [5, Sec. 3.3]. Crary used compactness to justify his fix-
point induction principle. It provides an important way for proving that a term
of the form fix(f) is in a partial type [5, Sec. 5.2]. We have used the least upper
bound principle to justify some untyped computational equivalences that are
useful for automatic optimization of Nuprl extracts [34].

4 PER Semantics

We now define Nuprl’s type system. Several semantics have been proposed for
Nuprl over the years, such as: Allen’s PER semantics [3,15]; Mendler’s adapta-
tion of Allen’s PER semantics [28]; and Howe’s set-theoretic semantics [22]. In
this paper, we use Allen’s PER semantics because it can be defined predicatively.
Also, the various additions made to Nuprl over the years have been validated
using this semantics. Allen’s method determines which closed terms are types

http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

34 A. Anand and V. Rahli

and which closed terms are equal members of types, therefore, defining types as
PERs. A PER is symmetric and transitive, but not necessarily reflexive. Partial-
ity is required because the domain of these relations is the entire collection of
closed terms, and not just the members of the type. We say that t is a member
of type T when the PER definition of T relates t and t.

Fig. 5 informally presents a core part of Nuprl’s type system à la Crary, which
can be made formal using induction-recursion (where equality in W types has
to be defined inductively). We write T1≡T2 to mean that T1 and T2 are equal
types, and a≡b∈T to mean that a and b are equal in type T . Allen designed his
semantics to work with systems that have an extensional type equality (meaning
that two types T and S are equal if for all t and s, t≡s∈T iff t≡s∈S) and suggests
a way to deal with type systems that have a more intensional type equality, such
as Nuprl. For example, two true equality types such as 0 = 0 ∈ N and 1 = 1 ∈ N
are not equal types in Nuprl even though they have the same PER. Also, note
that type equality in Nuprl is coarser than computational equivalence (∼). For
example (λx.((x + 1) − 1) = λx.x ∈ N → N) and (λx.x = λx.x ∈ N → N)
are equal equality types, but the two terms are not computationally equivalent
because λx.((x+1)− 1) gets stuck when applied to a term that is not a number
while λx.x does not. Crary [15] provides a formal account of the adaptation
of Allen’s semantics to deal with systems that have non-fully extensional type
equality (he adds a few type constructors and leaves off the W types). Following
Crary, our type system defines which terms denote equal types instead of simply
defining which terms denote types as in Allen’s semantics.

As mentioned by Allen, simple induction mechanisms such as the one of Coq
are not enough to provide a straightforward definition of Nuprl’s semantics,
where one would define typehood and member equality by mutual induction [3,
Sec. 4.2]. The problem is that in the inductive clause that defines the depen-
dent function types, the equality predicate occurs at a non-strictly-positive po-
sition. Allen suggests that the definition should however be valid because it
is “half-positive”. This is what induction-recursion, as implemented in Agda,
achieves [17,18]. Instead of making that induction-recursion formal, the approach
taken by Allen was to define ternary relations between types and equalities.

This trick of translating a mutually inductive-recursive definition to a single
inductive definition has been formally studied by Capretta [13]. He observes that
this translation is problematic when the return type of the function mentions a
predicative universe. Indeed, we experienced the same problem while formalizing
Allen’s definition in a precise metatheory like Coq. In particular, we can only
predicatively formalize a finite number of universes of Nuprl in Coq. This is not
surprising given the results of Setzer that intensional and extensional versions
of various dependent type theories have the same proof theoretic strength [35].

We will first explain how induction-recursion can be used to define the type
system in an intuitive way. Although the inductive-recursive definition is easier
to understand and lets us predicatively prove Nuprl’s consistency, Agda lacks
a tactic language, which is critical to automate many otherwise tedious proofs.
Therefore, we chose Coq over Agda and used Allen’s trick to define Nuprl’s type

http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

Towards a Formally Verified Proof Assistant 35

mutual
data equalType (n : N) (iUnivs : Vec PER n)

(T1 T2 : NTerm) : Set where

PINT : { _ : T1 ⇓ mk_Int}
{ _ : T2 ⇓ mk_Int}
→ (equalType n iUnivs T1 T2)

PFUN : {A1 B1 A2 B2 : NTerm} {v1 v2 : NVar}
{ _ : T1 ⇓ (mk_Fun A1 v1 B1)}
{ _ : T2 ⇓ (mk_Fun A2 v2 B2)}
(pA : equalType n iUnivs A1 A2)
(pB : (a1 a2 : NTerm)

(pa : equalInType iUnivs pA a1 a2)
→ equalType n iUnivs

(subst B1 v1 a1)
(subst B2 v2 a2))

→ (equalType n iUnivs T1 T2)
PUNIV : (m : Fin n)

{ _ : T1 ⇓ (mk_Univ (toN m))}
{ _ : T2 ⇓ (mk_Univ (toN m))}

→ (equalType n iUnivs T1 T2)

equalInType : {T1 T2 : NTerm} {n : N}
(iUnivs : Vec PER n)
(teq : equalType n iUnivs T1 T2)

→ PER

equalInType iUnivs PINT t t’ =∑
Z (ń n

→ (t ⇓ (mk_int n))
× t’ ⇓ (mk_int n))

equalInType iUnivs (PFUN pA pB) t t’ =
(a1 a2 : NTerm)
(pa : equalInType iUnivs pA a1 a2)

→ equalInType iUnivs
(pB a1 a2 pa)
(mk_apply t a1)
(mk_apply t’ a2)

equalInType iUnivs (PUNIV m) T1 T2 =
lookup m iUnivs T1 T2

Fig. 6. Agda Inductive-Recursive definition

system. At first, this purely inductive definition in Sec. 6 might seem overly com-
plicated. However, it can be understood as applying Capretta’s general recipe [13]
to the inductive-recursive definition.

5 An Inductive-Recursive Approach

Crary first presents an intuitive definition of Nuprl’s type system in the style
of Fig. 5 and asserts that it is not a valid inductive definition. Then he uses
Allen’s trick to convert it to a purely inductive definition [15, page 51]. Using
induction-recursion [18], this section shows that the definitions in Fig. 5 are
meaningful. Moreover, we show how to define the entire predicative hierarchy
of universes of Nuprl in the first universe of Agda’s predicative hierarchy. This
is not surprising, given that induction-recursion is known to increase the proof
theoretic strength of type theories [18]. As mentioned above, because Agda does
not have a tactic machinery necessary for our proof automation, this definition
is only for illustrative purposes. We define universes having only integers and
dependent function types ([5, Sec. 4.1] has more types, e.g., W types).

In Fig. 6, where , where PER is NTerm→NTerm→Set, equalType inductively
defines which types are equal and equalInType recursively defines which terms
are equal in a type7. These definitions refer to each other and are simultaneously
defined using the mutual keyword. Both definitions are parametrized by a number

7 For brevity, we ignore the issue of closedness of terms here.

36 A. Anand and V. Rahli

n and iUnivs, a vector of PERs of size n. The idea is that we have already defined
the first n universes by now and the PER defined by (equalType n iUnivs) will
serve as the equality of types in the next universe. The mth member (where
m < n) of iUnivs is the already constructed PER that determines which two
terms denote equal types in the mth universe. Given an evidence that T1 and
T2 are equal types in this universe, equalInType returns the PER of this type.
Note that equalInType is structurally recursive on its argument teq. Note also
that equalInType occurs at a negative position in the PFUN clause, but this is
allowed since equalInType is defined by structural recursion and not induction.

6 An Inductive Approach Based on Allen’s Semantics

6.1 Metatheory

Now, we return to Coq, where induction-recursion is not yet implemented. As
mentioned above, all the Coq definitions presented so far would typecheck either
in Prop or Type. This is not true about the definition of the type system. As
mentioned above, we define two metatheories of Nuprl in Coq. One uses its
predicative Type hierarchy. This metatheory uses n+ 1 Coq universes to model
n Nuprl universes. Because universe polymorphism is still under development in
Coq, this currently requires that we duplicate the code at each level, which is
impractical. Hence, we have only verified this translation for n = 3, and we will
not discuss that metatheory further [5, Sec. 4.3].

The other metatheory uses Coq’s Prop impredicative universe with the
FunctionalChoice on axiom8 ([5, Sec. 4.2.3] explains why this axiom is needed).
In this metatheory, we can model all of Nuprl’s universes. Also, it allows us
to justify some principles that a classical mathematician might wish to have.
For example, in the Prop model, using the law of excluded middle for mem-
bers of Prop (known to be consistent with Coq8), following Crary [15] we have
proved [5, Sec. 5.2] that the following weak version of the law of excluded middle
is consistent with Nuprl: ∀P : Ui. ↓(P + (P → Void)). Because the computa-
tional content of the disjoint union is erased (using the squashing operator ↓),
one cannot use this to construct a magical decider of all propositions.

6.2 Type Definitions

This section illustrates our method by defining base, equality, partial, function,
and W types. As mentioned above, types are defined as PERs on closed terms.
A CTerm is a pair of an NTerm and a proof that it is closed. Let per stand for
CTerm → CTerm → Prop. A type system is defined below as a candidate type
system that satisfies some properties such as symmetry and transitivity of the
PERs, where a candidate type system is an element of the type cts, which we
define as CTerm → CTerm → per→ Prop. Given a cts c, c T1 T2 eq asserts

8 http://coq.inria.fr/cocorico/CoqAndAxioms

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Logic.ChoiceFacts.html#FunctionalChoice_on
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/cocorico/CoqAndAxioms

Towards a Formally Verified Proof Assistant 37

that T1 and T2 are equal types in the type system c and eq is the PER that
determines which terms are equal in these types.

We now define the PER constructors (of the form per TyCon) for each type
constructor TyCon of Nuprl’s type theory. Intuitively, each per TyCon is a mono-
tonic operator that takes a candidate type system ts and returns a new candidate
type system where all the types compute to terms of the form (TyCon T1 . . .Tn)
where T1 , . . . , Tn are types of ts .

In the definitions below we use { : , } for propositional existential types
(i.e., ex from the standard library). Also, we use Nuprl term constructors of the
form mkc TyCon. We omit their definitions as they should be obvious. Finally,
for readability we sometimes mix Coq and informal mathematical notations.
Base. The values of type Base (suggested by Howe [21]) are closed terms and its
equality is computational equivalence. In the following definition, ts is not used
because Base does not have any arguments:
Definition per base (ts : cts) T1 T2 (eq : per) : Prop :=

T1 ⇓ Base × T2 ⇓ Base × ∀ t t’ , eq t t’ ⇔ t ∼ t’ .

Equality. Unlike Coq, Nuprl has primitive equality types which reflect the
metatheoretical PERs as propositions that users can reason about. Note that
Uniqueness of Identity Proofs, aka UIP, holds for Nuprl, i.e., Ax is the unique
canonical inhabitant of equality types.
Definition per eq (ts : cts) T1 T2 (eq : per) : Prop :=

{A, B, a1, a2, b1, b2 : CTerm , {eqa : per
, T1 ⇓ (mkc equality a1 a2 A) × T2 ⇓ (mkc equality b1 b2 B)
× ts A B eqa × (eqa \2/ ∼) a1 b1 × (eqa \2/ ∼) a2 b2
× (∀ t t’ , eq t t’ ⇔ (t ⇓ Ax × t’ ⇓ Ax × eqa a1 a2)) }}.

This definition differs from the one present in earlier Nuprl versions, where
(eqa \2/ ∼) was simply eqa. This means that t ∈ T is now a type when T is
a type and t is in Base. In earlier versions of Nuprl [15] (as well as in other
type theories [36]) membership was a non-negatable proposition, i.e., t ∈ T was
not a proposition unless it was true. This change allows us to reason in the
theory about a wider range of properties that could previously only be stated
in the metatheory. For example, we can now define the subtype type A � B as
λx.x ∈ A → B because λx.x is in Base. Sec. 6.3 shows how we had to change
the definition of a type system in order to cope with this modification.
Partial Type. Given a type T that has only converging terms, we form the partial
type T (see Fig. 5). Equal members of T have the same convergence behaviour,
and if either one converges, they are equal in T .
Definition per partial (ts : cts) T1 T2 (eq : per) : Prop :=

{A1, A2 : CTerm , {eqa : per
, T1 ⇓ (mkc partial A1) × T2 ⇓ (mkc partial A2)
× ts A1 A2 eqa × (∀ a, eqa a a → a⇓)
× (∀ t t’ , eq t t’ ⇔ ((t⇓ ⇔ t’⇓) × (t⇓ → eqa t t’))) }}.

Type Family. Allen [3] introduces the concept of type families to define dependent
types such as function types and W types. A type family TyCon is defined as
a family of types B parametrized by a domain A. In the following definition

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic.html#ex
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_base
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_base
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_axiom
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_equality
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_equality
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_axiom
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_axiom
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_partial
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_partial

38 A. Anand and V. Rahli

per-fam(eqa) stands for (∀ (a a’ : CTerm) (p : eqa a a’), per), which is the
type of PERs of type families over a domain with PER eqa; and CVTerm l is
the type of terms with free variables contained in l .
Definition type family TyCon (ts : cts) T1 T2 eqa (eqb : per-fam(eqa)) : Prop:=

{A, A’ : CTerm , {v, v’ : NVar , {B : CVTerm [v] , {B’ : CVTerm [v’] ,
T1 ⇓ (TyCon A v B) × T2 ⇓ (TyCon A’ v’ B’)
× ts A A’ eqa
× (∀ a a’ , ∀ e : eqa a a’ , ts (B [v\a]) (B’ [v’\a’]) (eqb a a’ e))}}}}.

Equalities of type families in our formalization (such as eqb above) are five
place relations, while they are simply three place relations in Allen’s and Crary’s
formalizations. This is due to the fact that conceptually ∀ (a’ : CTerm) and
∀ (p : eqa a a’) could be turned into intersection types because eqb only depends
on the fact that the types are inhabited and does not make use of the inhabitants.
Dependent Function. Dependent function types are defined so that functional
extensionality is a trivial consequence.
Definition per func (ts : cts) T1 T2 (eq : per) : Prop :=

{eqa : per, {eqb : per-fam(eqa)
, type family mkc function ts T1 T2 eqa eqb
× (∀ t t’ , eq t t’ ⇔

(∀ a a’ (e : eqa a a’), eqb a a’ e (mkc apply t a) (mkc apply t’ a’)))}}.

W. We define W types, by first inductively defining their PERs called weq [3]:
Inductive weq (eqa : per) (eqb : per-fam(eqa)) (t t’ : CTerm) : Prop :=
| weq cons :

∀ (a f a’ f ’ : CTerm) (e : eqa a a’),
t ⇓ (mkc sup a f)
→ t’ ⇓ (mkc sup a’ f ’)
→ (∀ b b’ , eqb a a’ e b b’ → weq eqa eqb (mkc apply f b) (mkc apply f ’ b’))
→ weq eqa eqb t t’ .

Definition per w (ts : cts) T1 T2 (eq : per) : Prop :=
{eqa : per, {eqb : per-fam(eqa) ,
type family mkc w ts T1 T2 eqa eqb × (∀ t t’ , eq t t’ ⇔ weq eqa eqb t t’)}}.

Our technical report [5, Sec. 4.2] extends W types to parametrized W types and
uses them to define parametrized inductive types (e.g., vectors).

6.3 Universes and Nuprl’s Type System

Universes. As Allen [3] and Crary [15] did, we now define Nuprl’s universes
of types, and finally Nuprl’s type system. First, we inductively define a close
operator on candidate type systems. Given a candidate type system cts , this
operator builds another candidate type system from ts that is closed w.r.t. the
type constructors defined above:
Inductive close (ts : cts) (T T’ : CTerm) (eq : per) : Prop :=

| CL init : ts T T’ eq → close ts T T’ eq
| CL base : per base (close ts) T T’ eq → close ts T T’ eq
| CL eq : per eq (close ts) T T’ eq → close ts T T’ eq
| CL partial : per partial (close ts) T T’ eq → close ts T T’ eq

http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CVTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CVTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CVTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/substitution.html#substc
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_function
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_sup
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_sup
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_apply
http://www.nuprl.org/html/Nuprl2Coq/v1/html/raw/terms2.html#mkc_w
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm

Towards a Formally Verified Proof Assistant 39

| CL func : per func (close ts) T T’ eq → close ts T T’ eq
| CL w : per w (close ts) T T’ eq → close ts T T’ eq .

We define U(i), the Nuprl universe type at level i, by recursion on i ∈ N:
Fixpoint univi (i : nat) (T T’ : CTerm) (eq : per) : Prop :=

match i with
| 0 ⇒ False
| S n ⇒ (T ⇓ (U(n)) × T’ ⇓ (U(n))

× ∀ A A’ , eq A A’ ⇔ {eqa : per, close (univi n) A A’ eqa})
{+} univi n T T’ eq end.

Finally, we define univ, the collection of all universes, and the Nuprl type
system as follows:
Definition univ (T T’ : CTerm) (eq : per) := {i : nat , univi i T T’ eq}.
Definition nuprl := close univ.

We can now define t1≡t2∈T as {eq : per , nuprl T T eq × eq t1 t2} and
T≡T ′ as {eq : per , nuprl T T ′ eq}.
Type System. Let us now prove that nuprl is a type system, i.e., that it is a
candidate type system ts that satisfies the following properties [3,15]:

1. uniquely valued : ∀ T T’ eq eq’ , ts T T’ eq → ts T T’ eq’ → eq ⇐2⇒ eq’ .
2. equality respecting: ∀ T T’ eq eq’ , ts T T’ eq → eq ⇐2⇒ eq’ → ts T T’ eq’ .
3. type symmetric: ∀ eq , symmetric (fun T T’ ⇒ ts T T’ eq).
4. type transitive: ∀ eq , transitive (fun T T’ ⇒ ts T T’ eq).
5. type value respecting: ∀ T T’ eq , ts T T eq → T ∼ T’ → ts T T’ eq .
6. term symmetric: ∀ T eq , ts T T eq → symmetric eq .
7. term transitive: ∀ T eq , ts T T eq → transitive eq .
8. term value respecting: ∀ T eq , ts T T eq → ∀ t t’ , eq t t → t ∼ t’ → eq t t’ .

A type system uniquely defines the PERs of its types. The last six properties
state that ≡ ∈ and ≡ are PERs that respect computational equivalence.
This definition differs from Crary’s [15] as follows: (1) We added condition 2 be-
cause Allen and Crary consider equivalent PERs to be equal and we decided not
to add the propositional and function extensionality axioms; (2) We strength-
ened conditions 5 and 8 by replacing ⇓ with ∼. This seemed necessary to obtain
a strong enough induction hypothesis when proving that our new definition of
per eq preserves the type system properties [5, Sec. 4.2]. These properties and
the congruence of ∼ allow us to do computation in any context in sequents.

Finally, the following lemma corresponds to Crary’s Lemma 4.13 [15]: For all
i ∈ N, univi i is a type system; and the following theorem corresponds to Crary’s
Lemma 4.14 [15]: univ and nuprl are type systems.

6.4 Sequents and Rules

In Nuprl, one reasons about the nuprl type system types using a sequent calcu-
lus, which is a collection of rules that captures many properties of the nuprl type
system and its types. For example, for each type we have introduction and elim-
ination rules. This calculus can be extended as required by adding more types

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic.html#False
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#S
http://www.nuprl.org/html/Nuprl2Coq/v1/html/terms2.html#CTerm
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#symmetric
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#transitive
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#symmetric
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Relations.Relation_Definitions.html#transitive
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv
http://www.nuprl.org/html/Nuprl2Coq/v1/html/cequiv.html#cequiv

40 A. Anand and V. Rahli

and/or rules. This section presents the syntax and semantics of Nuprl’s sequents
and rules. We then prove that these rules are valid w.r.t. the above semantics,
and therefore that Nuprl is consistent. This paper provides a safe way to add
new rules by allowing one to formally prove their validity, which is a difficult
task without the help of a proof assistant9.
Syntax of Sequents and Rules. Sequents are of the form h1, . . . , hn � T �ext t�,
where t is the extract/evidence of T , and where an hypothesis h is either of the
form x : A (non-hidden) or of the form [x : A] (hidden). Such a sequent states
that T is a type and t is a member of T . A rule is a pair of a sequent and a list of
sequents, which we write as (S1 ∧ · · · ∧ Sn) ⇒ S. To understand the necessity
of hidden hypotheses, let us consider the following intersection introduction rule:

H , [x : A] � B[x] �ext e� ∧ H � A = A ∈ Ui ⇒ H � ∩a:A.B[a] �ext e�

This rule says that to prove that ∩a:A.B[a] is true with extract e, one has to
prove that B[x] is true with extract e, assuming that x is of type A. The meaning
of intersection types requires that the extract e be the same for all values of A,
and is therefore called the uniform evidence of ∩a:A.B[a]. The fact that x is
hidden means that it cannot occur free in e (but can occur free in B). The same
mechanism is required to state the rules for, e.g., subset types or quotient types.
Semantics of Sequents and Rules. Several definitions for the truth of sequents
occur in the Nuprl literature [14,15,24]. Among these, Kopylov [24]’s definition
was the simplest. We provide here an even simpler definition and we have proved
in Coq that all these definitions are equivalent [5, Sec. 5.1]. The semantics we
present uses a notion of pointwise functionality [15, Sec. 4.2.1], which says that
each type in a true sequent must respect the equalities of the types on which it
depends. This is captured by formula 1 below for the hypotheses of a sequent,
and by formula 2 for its conclusion. For the purpose of this discussion, let us
ignore the possibility that some hypotheses can be hidden.

Let H be a list of hypotheses of the form x1 : T1, . . . , xn : Tn, let s1 be a
substitution of the form (x1 �→ t1, . . . , xn �→ tn), and let s2 be a substitution of
the form (x1 �→ u1, . . . , xn �→ un).
Similarity. Similarity lifts the notion of equality in a type (i.e., ≡ ∈) to lists
of hypotheses. We say that s1 and s2 are similar in H , and write s1≡s2∈H , if
for all i ∈ {1, . . . , n}, ti≡ui∈Ti[x1\t1; · · · ;xi−1\ti−1]. Let s∈H be s≡s∈H .
Equal Hypotheses. The following notion of equality lifts the notion of equality
between types (i.e., ≡) to lists of hypotheses. We say that the hypotheses H
are equal w.r.t. s1 and s2, and write s1(H)≡s2(H), if for all i ∈ {1, . . . , n},
Ti[x1\t1; · · · ;xi−1\ti−1]≡Ti[x1\u1; · · · ;xi−1\ui−1].
Hypotheses Functionality. We say that the hypotheses H are pointwise func-
tional w.r.t. the substitution s, and write H@s if

∀s′. s≡s′∈H ⇒ s(H)≡s′(H) (1)
9 Howe [22] writes: “Because of this complexity, many of the Nuprl rules have not

been completely verified, and there is a strong barrier to extending and modifying
the theory.”

Towards a Formally Verified Proof Assistant 41

Truth of Sequents. We say that a sequent of the form H � T �ext t� is true if

∀s1, s2. s1≡s2∈H ∧H@s1 ⇒ T [s1]≡T [s2] ∧ t[s1]≡t[s2]∈T [s1] (2)

In addition the free variables of t have to be non-hidden in H .
Validity of Rules. A rule of the form (S1 ∧ · · · ∧ Sn) ⇒ S is valid if assuming
that the sequents S1, . . . , Sn are true then the sequent S is also true.
Consistency. Using the framework described in this paper we have currently
verified over 70 rules, including the usual introduction and elimination rules to
reason about the core type system presented above in Sec. 6.2 [5, Sec. 5.2].

A Nuprl proof is a tree of sequents where each node corresponds to the ap-
plication of a rule. Because we have proved that the above mentioned rules are
correct, using the definition of the validity of a rule, and by induction on the
size of the tree, this means that the sequent at the root of the tree is true w.r.t.
the above PER semantics. Hence, a proof of False, for any meaningful definition
of False, i.e., a type with an empty PER such as (0 = 1 ∈ Z), would mean that
the PER is in fact non-empty, which leads to a contradiction.
Building a Trusted Core of Nuprl. Using our proofs that the Nuprl rules are
correct, and the definition of the validity of rules, we can then build a verified
proof refiner (rule interpreter) for Nuprl. Our technical report [5, Sec. 5.3] illus-
trates this by presenting a Ltac based refiner in Coq that allows one to prove
Nuprl lemmas. These proofs are straightforward translations of the correspond-
ing Nuprl proofs and we leave for future work the automation of this translation.
An appealing use of such a tool is that it can then be used as Nuprl’s trusted
core which checks that proofs are correct, i.e., if the translation typechecks in
Coq, this means that the Nuprl proof is correct.

7 Related Work

Perhaps the closest work to ours is that of Barras [7]. He formalizes Werner’s [37]
set theoretic semantics for a fragment of Coq in Coq by first axiomatizing the
required set theory in Coq. While this fragment has the Peano numbers, induc-
tive types are missing. Werner’s semantics assumes the existence of inaccessible
cardinals to give denotations to the predicative universes of Coq as sets. In ear-
lier work, Barras and Werner [8] provide a deep embedding of a fragment of Coq
that excludes universes and inductive types. They thereby obtain a certified
typechecker for this fragment.

Similarly, Harrison [20] verified: (1) a weaker version of HOL Light’s kernel
(with no axiom of infinity) in HOL Light (a proof assistant based on classical
logic); and (2) HOL Light in a stronger variant of HOL light (by adding an
axiom that provides a larger universe of sets). Myreen et al. are extending this
work to build a verified implementation of HOL Light [31] using their verified
ML-like programming language called CakeML [25]. They fully verified CakeML
in HOL4 down to machine code. Similarly, Myreen and Davis formally proved
the soundness of the Milawa theorem prover [30] (an ACL2-like theorem prover)
which runs on top of their verified Lisp runtime called Jitawa [29]. Both these

42 A. Anand and V. Rahli

projects go further by verifying the implementations of the provers down to
machine code. Also, Nuprl’s logic is different from those of HOL and Milawa,
e.g., HOL does not support dependent types and Milawa’s logic is a first-order
logic of total, recursive functions with induction.

Also, Buisse and Dybjer [12] partially formalize a categorical model of an
intensional Martin-Löf type theory in Agda.

Uses of induction-recursion to define shallow embeddings of hierarchies of
Martin-Löf universes have often been described in the literature [17,27]. How-
ever, because we have a deep embedding, our inductive-recursive definition is
parametrized over the already defined terms. This deep-embedding approach is
required for our goal of extracting an independent correct by construction proof
assistant. Also, the extensionality of Nuprl complicates our definitions a bit. For
example, we have to define equality of types instead of just typehood. Daniels-
son [16] uses induction-recursion to define a deep embedding of a dependently
typed language that does not have universes and inductive types.

8 Future Work and Acknowledgments

As future work, we want to formalize a tactic language and build a user (Emac-
s/NetBeans) interface for our verified Nuprl version, based on the code extracted
from our Coq development. Also, we plan to add a way to directly write inductive
definitions (possibly parametrized and/or mutual) and have a formally verified
and transparent translation to our formalized parametrized W types. Finally, we
plan to formalize a typechecker for a large part of Nuprl.

We thank the Coq and Agda mailing lists’ members for helping us with various
issues while using these tools. We thank Mark Bickford, Robert L. Constable,
David Guaspari, and Evan Moran for their useful comments as well as Jason
Gross from whom we learned that Agda allows inductive-recursive definitions.

References

1. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998.
Springer, Heidelberg (2013)

2. Abbott, M., Altenkirch, T., Ghani, N.: Representing nested inductive types using
W-types. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 59–71. Springer, Heidelberg (2004)

3. Allen, S.F.: A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD
thesis, Cornell University (1987)

4. Allen, S.F., Bickford, M., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L., Moran,
E.: Innovations in computational type theory using Nuprl. J. Applied Logic 4(4),
428–469 (2006), http://www.nuprl.org/

5. Anand, A., Rahli, V.: Towards a formally verified proof assistant. Technical report,
Cornell University (2014), http://www.nuprl.org/html/Nuprl2Coq/

6. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: POPL 2008, pp. 3–15. ACM (2008)

http://www.nuprl.org/
http://www.nuprl.org/html/Nuprl2Coq/

Towards a Formally Verified Proof Assistant 43

7. Barras, B.: Sets in Coq, Coq in sets. Journal of Formalized Reasoning 3(1), 29–48
(2010)

8. Barras, B., Werner, B.: Coq in Coq. Technical report, INRIA Rocquencourt (1997)
9. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.

Springer (2004), http://coq.inria.fr/
10. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – A functional lan-

guage with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel,
M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009),
http://wiki.portal.chalmers.se/agda/pmwiki.php

11. Brady, E.: Idris —: systems programming meets full dependent types. In: 5th ACM
Workshop Programming Languages meets Program Verification, PLPV 2011, pp.
43–54. ACM (2011)

12. Buisse, A., Dybjer, P.: Towards formalizing categorical models of type theory in
type theory. Electr. Notes Theor. Comput. Sci. 196, 137–151 (2008)

13. Capretta, V.: A polymorphic representation of induction-recursion (2004),
http://www.cs.ru.nl/~venanzio/publications/induction_recursion.ps

14. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing mathematics with the Nuprl proof development
system. Prentice-Hall, Inc., Upper Saddle River (1986)

15. Crary, K.: Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, Ithaca, NY (August 1998)

16. Danielsson, N.A.: A formalisation of a dependently typed language as an inductive-
recursive family. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS,
vol. 4502, pp. 93–109. Springer, Heidelberg (2007)

17. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log. 65(2), 525–549 (2000)

18. Dybjer, P., Setzer, A.: Induction-recursion and initial algebras. Ann. Pure Appl.
Logic 124(1-3), 1–47 (2003)

19. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A.,
Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In: ITP
2013, [1], pp. 163–179

20. Harrison, J.: Towards Self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006)

21. Howe, D.J.: Equality in lazy computation systems. In: Proceedings of Fourth IEEE
Symposium on Logic in Computer Science, pp. 198–203. IEEE Computer Society
(1989)

22. Howe, D.J.: Semantic foundations for embedding HOL in Nuprl. In: Wirsing, M.,
Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 85–101. Springer, Heidelberg
(1996)

23. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: POPL 2013, pp. 193–206. ACM (2013)

24. Kopylov, A.: Type Theoretical Foundations for Data Structures, Classes, and Ob-
jects. PhD thesis, Cornell University, Ithaca, NY (2004)

25. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL 2014, pp. 179–192. ACM (2014)

26. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL 2006, pp. 42–54. ACM (2006)

http://coq.inria.fr/
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.cs.ru.nl/~venanzio/publications/induction_recursion.ps

44 A. Anand and V. Rahli

27. McBride, C.: Hier soir, an OTT hierarchy (2011),
http://sneezy.cs.nott.ac.uk/epilogue/?p=1098

28. Mendler, P.F.: Inductive Definition in Type Theory. PhD thesis, Cornell University,
Ithaca, NY (1988)

29. Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 265–280. Springer, Heidelberg (2011)

30. Myreen, M.O., Davis, J.: The reflective milawa theorem prover is sound (Down to
the machine code that runs it). In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS
(LNAI), vol. 8558, pp. 413–428. Springer, Heidelberg (2014)

31. Myreen, M.O., Owens, S., Kumar, R.: Steps towards verified implementations of
hol light. In: ITP 2013 [1], pp. 490–495

32. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

33. Paulin-Mohring, C.: Inductive definitions in the system Coq - rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993)

34. Rahli, V., Bickford, M., Anand, A.: Formal program optimization in Nuprl using
computational equivalence and partial types. In: ITP 2013, [1], pp. 261–278

35. Setzer, A.: Proof theoretical strength of Martin-Löf Type Theory with W-type and
one universe. PhD thesis, Ludwig Maximilian University of Munich (1993)

36. I.A.S. The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Univalent Foundations (2013)

37. Werner, B.: Sets in types, types in sets. In: Ito, T., Abadi, M. (eds.) TACS 1997.
LNCS, vol. 1281, pp. 530–546. Springer, Heidelberg (1997)

http://sneezy.cs.nott.ac.uk/epilogue/?p=1098

Implicational Rewriting Tactics in HOL

Vincent Aravantinos1 and Sofiène Tahar2

1 Software & Systems Engineering, Fortiss GmbH,
Guerickestraße 25, 80805, Munich, Germany
vincent.aravantinos@fortiss.org

http://www.fortiss.org/en
2 Electrical and Computer Engineering Dept., Concordia University,

1455 De Maisonneuve Blvd. W., Montreal, Canada
tahar@ece.concordia.ca

http://hvg.ece.concordia.ca

Abstract. Reducing the distance between informal and formal proofs in interac-
tive theorem proving is a long-standing matter. An approach to this general topic
is to increase automation in theorem provers: indeed, automation turns many
small formal steps into one big step. In spite of the usual automation methods,
there are still many situations where the user has to provide some information
manually, whereas this information could be derived from the context. In this pa-
per, we characterize some very common use cases where such situations happen,
and identify some general patterns behind them. We then provide solutions to
deal with these situations automatically, which we implemented as HOL Light
and HOL4 tactics. We find these tactics to be extremely useful in practice, both
for their automation and for the feedback they provide to the user.

1 Introduction

Interactive theorem proving has well-known benefits: it allows to build a formal proof with
the help of a computer ensuring the proof is correct. It does not have the restrictions of au-
tomated theorem proving since it can appeal to the user’s creativity through interaction. But
this interaction is also the shortcoming of interactive theorem proving: the user is forced
to make explicit some formal steps that are obvious to a human. Thus, automation of these
steps, when possible, relieves the user from many tedious manipulations. These complex
manipulations are one of the essential reasons why interactive theorem proving is not so
popular in practical applications. Thus automation is a key ingredient to bring formal rea-
soning to a wider audience by making it closer to intuitive reasoning.

In interactive theorem proving, the main tool for automation of reasoning is decision or
semi-decision procedures [18,25]: e.g., for propositional reasoning [10], linear arithmetic
reasoning [8], reasoning modulo various theories [5], or even first-order [12] or higher-
order reasoning [16]. These have been an independent subject of research for many years
with several of the corresponding progresses being transfered to interactive theorem proving,
either by direct implementation or by call to external tools [24]. But decision procedures are
useful only to conclude goals: the user must resort to interaction with the theorem prover
if the goal is too complex to be proven by a decision procedure (which is the case of most
goals). (S)he still has access however to another kind of automation: rewriting.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 45–60, 2014.
c© Springer International Publishing Switzerland 2014

http://www.fortiss.org/en
http://hvg.ece.concordia.ca

46 V. Aravantinos and S. Tahar

Rewriting enables automation of equality reasoning: given a theorem stating an equality
t = u and a term v which contains a subterm matching t, rewriting replaces this subterm
by the corresponding instantiation of u (we refer to [3,21] for details). An extremely useful
generalization is conditional rewriting [9] (often called “simplification” in the HOL Light
[14] and HOL4 [29] communities): given a theorem whose statement has the form p ⇒
l = r, conditional rewriting replaces, in a term t, any subterm matching l, if the condition
p can be proven automatically for the corresponding instantiation. (Conditional) rewriting
may not prove goals as complex as the ones proven by some decision procedure, but it can
be used at any step of a proof, even if it does not terminate this proof: it simply allows to
make progress in the proof, which is an extremely useful feature in an interactive context.
However, (conditional) rewriting still requires regularly some user explicit input could be
automated as we show now.

Example 1. Consider the following goal (for clarity, we use mathematical notations instead
of HOL Light ASCII text to represent mathematical expressions): ∀x, y, z. prime y ∧ xy >

z ∧ x− y = 5 ∧ x2 − y2 = z2 ∧ 0 < z ∧ 0 < y ⇒ x
xy = y where prime y indicates that y is

a prime number.
Assume that the immediate objective of the user is to rewrite x

x into 1. To do so, (s)he
calls the rewriting tactic with the theorem � ∀x. x
= 0 ⇒ x

x = 1. This of course does not
work since this theorem is not purely equational: one must here use conditional rewriting in
order to get rid of the condition x
= 0. However which theorems should be provided here in
order to prove x
= 0 automatically? In this goal, this follows from the fact that x.y > z and
0 < z: therefore x.y > 0; thus x.y
= 0, and hence x
= 0. This proof is not mathematically
difficult, however it requires a lot of thought from the user before being able to come up
with the tactic call which will accomplish the intended action, since (s)he basically needs
to mentally build a formal proof. Once this is done, one can apply conditional rewriting
with the following theorems: � ∀x. x
= 0 ⇒ x

x = 1, � ∀x, y. x > y ⇔ y < x,
� ∀x, y. x < y ∧ y < z ⇒ x < z, � ∀x. 0 < x ⇒ 0
= x, � ∀x, y. x.y < 0 ∧ 0 < y ⇒
0 < x.

The whole process is extremely tedious. Even more embarrassing: this process is about
building mentally a formal proof whereas helping such a task is precisely what an interac-
tive theorem prover is made for! Therefore, there can of course be mistakes in this proof,
or omission of some intermediate theorems when calling the tactic. In addition, this is a
situation where the user is forced to interrupt the flow of his/her proof in order to adapt this
proof to the tool at use: that is precisely the sort of situation leading a user to conclude that
interactive theorem proving is counter-intuitive, tedious to use, and therefore to maybe give
up on using it. Finally, notice that the simplifier might also simply not be able to deal with
the sort of reasoning involved in the proof. In all these cases, nothing happens: the tactic
does not apply any change to the goal and the user is left with no clue which of the above
flaws is the reason for the lack of progress.

To avoid this, a simpler and more frequently used approach is to simply assert x
= 0, and
prove it as an independent subgoal. This allows to get rid of all the above flaws: proving this
condition is done under the control of the theorem prover, which helps the user with the goal
and tactic mechanism, thus providing some useful feedback while avoiding any mistake in
the formal proof. In addition, one can use complex reasoning that is out of reach for the
conditional rewriter of HOL Light or HOL4. However, this approach forces the user to write
manually the subgoal x
= 0. Manually writing explicit information in a script is extremely
fragile with respect to proof change: if ever x is renamed in the original goal, then the proof
script has to be updated; similarly if an earlier modification changes the situation into the

Implicational Rewriting Tactics in HOL 47

exact same one, but with a non-trivial expression instead of x; in other cases, some change
of prior definitions, or the removal of some assumptions might all as well lead to necessary
updates of the subgoal. Finally, all these updates are even more tedious when the subgoal
is big (also entailing more potential typing errors), which happens frequently in real-life
situations.1

In this paper we target precisely this sort of problem. We characterize frequent situa-
tions presenting similar problems and provide solutions to them. This includes the problem
mentioned in the above example and others, more or less frequent where the user also has
to explicitly write some information which could be derived automatically by the theorem
prover. Note that the forms of reasoning which we address in this paper are actually simple:
they are much simpler than any decision procedures. But it is precisely because they are
simple, that it is necessary and useful to automatize them.

The rest of the paper is organized as follows: Section 2 presents our solution to the prob-
lem of Example 1. Section 3 describes the underlying algorithm. Section 4 proposes several
refinements to our solution. Section 5 presents solutions to other situations presenting the
same sort of proof-engineering defects. Finally Section 6 discusses the related work and
Section 7 concludes the paper.

This work is entirely implemented in HOL Light and HOL4. The HOL Light version has
been integrated in the official distribution of HOL Light and the sources for HOL4 can be
publicly found at [1]. Both implementations come with a manual providing technical details
to use the tactics.

2 Implicational Rewriting

This section deals precisely with the situation presented in Example 1. Terms and substitu-
tions are defined as usual, with tσ denoting the application of the substitution σ to the term
t. For terms t, u, v, the notation t[u/v] denotes the term obtained from t by replacing all oc-
currences of v by u. A formula is any term of type boolean. For a formula of the form φ∧ψ

(resp. ¬φ, ∀x.φ) we say that φ and ψ (resp. φ, resp. φ) are direct subformulas of the formula,
and similarly for the other connectives and quantifier. The subformulas of a formula are de-
fined by transitive closure of the relation “is a direct subformula“. An atomic subformula is
a subformula whose head symbol is not a logical connective or quantifier. Given a formula
φ, a subformula ψ occurs positively (resp. negatively) in φ if it occurs in the scope of an even
(resp. odd) number of negations or implication premisses2. The fact of occurring positively
or negatively is called the polarity of the subformula.

Consider again the Example 1. In this example, implicational rewriting consists in replac-
ing in the conclusion the atom x
= 0 ∧ x

xy = y (and only this atom, not the top formula) by
1.y = y, i.e., x

x is replaced by 1, and the conjunction with x
= 0 is added to the atom. In case
this atom was occurring negatively in the goal (e.g., the same goal but with x

xy
= y) then
x
xy
= y would have been replaced by ¬(x
= 0 ⇒ x

xy = y). Formally, this is generalized as
follows:

1 We do not claim that every explicitly-written subgoal is a bad practice w.r.t. proof engineering:
many subgoals provide important high-level information which is out of reach for automation.
However, the problem here is that this subgoal could be automatically generated. So the user
should not be left with the burden of writing it.

2 For simplicity, we do not consider formulas with equivalences, even though it is easily handled
in practice, e.g., by rewriting φ ⇔ ψ into (φ ⇒ ψ) ∧ (ψ ⇒ φ).

48 V. Aravantinos and S. Tahar

Definition 1 (Implicational Rewriting). Consider a goal with conclusion c. Then, we call
implicational rewriting by th any tactic replacing one or more atomic subformula A of c by:

pσ1 ∧ · · · ∧ pσk � A[rσ1/lσ1] . . . [rσk/lσk] (1)

where σ1, . . . , σk are the matching substitutions of some subterms of A matching l and
where � = ∧ (resp. ⇒) if A occurs positively (resp. negatively) in c.

Note that the definition leaves a lot of freedom about the strategy to use for the rewrite: not
all subterms need to be rewritten, and we do not specify which subterms should be rewritten
in priority. In the following, IRth(c) denotes some function implementing the specification
of Definition 1.

The first property of IR is that it replaces indeed some term matching l by the corre-
sponding instantiation of r. But the tactic would be useless if it was not sound:

Theorem 1 (Soundness). For every goal of conclusion c and every theorem th, it holds that
IRth(c) ⇒ c.

Contrarily to (conditional) rewriting, the resulting goal only entails the initial goal, but is
not equivalent to it: this can be seen both as a weakness (one needs to backtrack if the
result becomes not provable anymore) or as a strength (many more possible inferences are
accessible for reasoning). Note that the case distinction about the polarity in Definition 1 is
capital for this theorem to hold.

An essential property of implicational rewriting, as opposed to conditional rewriting, is
that it provides feedback to the user about the condition that is required to be proven: where
the user is left with a simply unchanged goal when conditional rewriting cannot prove the
side condition, implicational rewriting provides instead the precise condition instantiation
which has to be proven. In addition, since this condition now appears in the goal, the the
theorem prover can be used to prove it, exactly as if the condition had been stated explicitly
as a subgoal by the user.

Note that there exists an easier solution to the problem presented in Example 1: given
a goal having a subterm matching l, replace lσ by rσ and introduce automatically a new
subgoal stating pσ. This is the approach of [30] in HOL Light, or of the force function of
ACL2. It is also very similar to [15] in HOL4: the only difference with the latter is that pσ
is added as a conjunction on top of the overall formula (and not at the level of the atom as
implicational rewriting does) instead of being stated as a separate subgoal. Similar tactics
are also available in Coq and Isabelle. This approach will be called dependent rewriting in
the following, according to [15]. Table 1 sums up the different approaches (with only one
rewriting for presentational reasons), where g � g′ denotes a tactic turning a goal g into g′,
an expression φ[t] in g means that t occurs in φ, then the expression φ[t′] in g′ denotes φ in
which this occurrence is replaced by t′.

So the major difference between implicational and dependent rewriting is the fact that
the latter applies deeply. We argue now that this is not a cosmetic feature but actually has a
high impact on the compositionality of the tactic.

Example 2. Consider a goal g : ∀x, y. P x y ⇒ x
x ∗ y = y, where P x y is a big expression

entailing in particular that x
= 0. With implicational rewriting, using the theorem � ∀x. x
=
0 ⇒ x

x = 1, we obtain immediately the goal: ∀x, y. P x y ⇒ x
= 0∧1∗y = y. Instead, with
dependent rewriting, the tactic will try to replace the goal by g′ : x
= 0 ∧ ∀x, y. P x y ⇒
1∗y = y. But this does not work since x
= 0 is not in the scope of ∀x. Therefore g′
⇒ g and
the tactic application is not valid. Consequently, with dependent rewriting, one must first

Implicational Rewriting Tactics in HOL 49

Table 1. Definitions of the different sorts of rewriting
Definition Condition

Rewriting c[lσ] � c[rσ] if � l = r

Conditional rewriting c[lσ] � c[rσ] if � p ⇒ l = r and � p

Dependent rewriting c[lσ] � pσ ∧ c[rσ] if � p ⇒ l = r

Implicational rewriting c[A[lσ]] � c[pσ ∧ / ⇒ A[rσ]] if A occurs pos./neg. in c

remove the quantifiers using the adequate tactics (GEN_TAC in HOL4 and HOL Light), and
then only can apply dependent rewriting. We then obtain the goal x
= 0∧ (P x y ⇒ 1 ∗ y =

y). However, this is still not satisfying because the new goal is not provable: indeed x
= 0

derives from P x y, but since x
= 0 is not “in the scope” of P x y, it cannot be proven.
Therefore, even though the tactic is valid, it is of no help for the proof. Consequently, one
must first discharge the hypothesis P x y in the assumptions before applying the dependent
rewrite, yielding finally the goal x
= 0 ∧ 1.y = y.

As the example demonstrates, a lot of book-keeping manipulations are necessary with
dependent rewriting but not with implicational rewriting. But it gets even worse when one
starts to try proving x
= 0: if P is complex, it will also itself probably require some rewrites,
however this is not possible in a simple way since P x y is now in the assumptions. So
a first option is to put the assumption back in the goal (tedious when goals have many
assumptions), which actually amounts to manually doing what implicational rewriting does
automatically.

A second option is to rethink the flow of the proof and give up on using dependent rewrit-
ing. This is what happens most commonly in practice: one will try, from the initial goal, to
find a proof of x
= 0 from P x y, apply the corresponding tactics, and finally use condi-
tional rewriting. Note in addition that the proof of x
= 0 must be done in forward reasoning
since x
= 0 does not appear in the goal: this makes the process even harder since interactive
provers do not emphasize this type of reasoning. This is unless the user decides to set man-
ually the subgoal x
= 0 with the flaws already mentioned in Example 1. As we can see, all
the intended benefits of using dependent rewriting are lost whatever is the chosen option and
we get back precisely to the situation that was described in Example 1: the user is forced to
rethink his/her proof against his/her original intuition; (s)he cannot use automation and has
to input data manually, with all the proof-engineering problems already mentioned.

Even though this is a toy example, it is representative of an extremely frequent situa-
tion when using dependent rewrite. Actually this tactic seems to be seldom used in HOL4,
maybe showing that these flaws prevent it from being useful in practice. Table 3 sums up the
advantages of the different approaches.

3 Implementation

Let th be a theorem of the form � ∀x1, . . . , xk. p ⇒ l = r. In this section, we provide an
implementation of implicational rewriting by th, called IR. This implementation requires
the following steps:

1. go through the atoms of the goal, keeping track of their polarity;
2. for each atom, go through its subterms;
3. for each subterm ti matching l with substitution σi, replace it by rσi while keeping

track of the matching substitution σi;

50 V. Aravantinos and S. Tahar

Table 2. Pros & cons of the different sorts of rewriting

replaces lσ by rσ conditional
equations

no need to prove
the condition

compositionality

Rewriting �
Cond. rewr. � �
Dep. rewr. � � �
Imp. rewr. � � � �

4. reconstitute the atom with the replaced subterms;
5. add the conjunction pσ1 ∧ pσ2 ∧ . . . ;
6. reconstitute the complete goal.

In addition, to obtain a valid tactic, the process should not just generate a formula φ, but also
a proof that this formula entails the conclusion of the initial goal c. To do so, we actually
generate a theorem � φ ⇒ c (which holds if the implementation satisfies the specification
of Definition 1, by Theorem 1).

Steps 2, 3, and 4 are implemented by a function IRCth (for Implicational Rewriting
Conversion) which takes an atom A as input and returns a theorem pσ1, . . . , pσk � A =

A[rσ1/lσ1] . . . [rσk/lσk]
3: IRCth is a recursive function defined by case analysis on the

structure of A:

IRCth(t)
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� p ⇒ l = r

pσ � lσ = rσ

if t has the form lσ

for some substitution σ

� t = t
if t is a variable or a constant

Γ � u = v

Γ � t = λx.v

if t has the form λx.u

and IRCth(u) = Γ � u = v

Γ1 � t1 = u1 Γ2 � t2 = u2

Γ1 ∪ Γ2 � t1t2 = u1u2

if t has the form t1t2,

IRCth(t1) = Γ1 � t1 = u1

and IRCth(t2) = Γ2 � t2 = u2

We impose that when the first rule and another can be applied, the first rule always has prior-
ity, and, if necessary, that th is renamed in order to avoid captures (i.e., so as not to contain
any variable which is bound in the rewritten term). Since IRCth must return a theorem, we
present not only the resulting theorem but also the proof that allows to obtain it: for instance,
the third rule means that IRCth(λx.u) calls first IRCth(u); this recursive call must have the
form Γ � u = v, from which can thus be deduced Γ � λx.u = λx.v. Note that, in the
end, the function only returns this latter theorem, i.e., the result of the inference and not the
inference itself, contrarily to what the definition of IRCmight suggest: this is done only for
explanation purposes. The provided inferences are intended to give a clue to the reader about
the way to obtain the result, but do not correspond to some precise inference rule: however
all of them can be easily implemented using functions provided by both HOL Light and
HOL4.

IRCth can actually be seen as a usual rewriting by th. In practice, we therefore make use
of conversions [23] to implement these steps (i.e., functions which, given a term t returns a
theorem of the form � t = u).

3 Note that, in HOL, equality among booleans is just the same as equivalence.

Implicational Rewriting Tactics in HOL 51

Step 5 is then easily obtained from this result by propositional reasoning. The corre-
sponding function is called AIR (for Atomic Implicational Rewriting) and exists both in a
positive form AIR+ and in a negative form AIR−: it is up to the function which calls AIR

to determine the adequate form according to the context (positive or negative atom). 4

AIR+
th(A)

def
=

Γ � A = A′

� (
∧

φ∈Γ

φ) ∧A′ ⇒ A
AIR−

th(A)
def
=

Γ � A = A′

� A ⇒ (
(
∧

φ∈Γ

φ) ⇒ A′)

where Γ � A = A′ be the result of IRCth(A).
Finally, steps 1 and 6 are achieved by IRπ

th(φ), where φ is the intended conclusion of the
goal to be implicationally rewritten and π ∈ {+,−} is a polarity:

IRπ
th(φ)

def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AIRπ(φ) if φ is atomic

� φ1 ⇒ ψ1

� ¬ψ1 ⇒ ¬φ1

if π = + (resp. −),

φ is a negation ¬φ1 (resp. ¬ψ1),

and IRπ
th(φ1)(resp. ψ1) = � φ1 ⇒ ψ1

� ψ1 ⇒ φ1 � ψ2 ⇒ φ2

� ψ1 ∧ ψ2 ⇒ φ1 ∧ φ2

if π = + (resp. −),

φ is a conjunction φ1 ∧ φ2 (resp. ψ1 ∧ ψ2),

IRπ
th(φ1)(resp. ψ1) = � ψ1 ⇒ φ1,

and IRπ
th(φ2)(resp. ψ2) = � ψ2 ⇒ φ2

� ψ1 ⇒ φ1

� ∀ψ1 ⇒ ∀φ1

if π = + (resp. −),

φ is a quantifed formula ∀φ1 (resp. ∀ψ1),

and IRπ
th(φ1)(resp. ψ1) = � ψ1 ⇒ φ1

� φ1 ⇒ ψ1 � ψ2 ⇒ φ2

� (ψ1 ⇒ ψ2) ⇒ (φ1 ⇒ φ2)

if π = + (resp. −),

φ is an implic. φ1 ⇒ φ2 (resp. ψ1 ⇒ ψ2),

IRπ
th(φ1)(resp. ψ1) = � φ1 ⇒ ψ1,

and IRπ
th(φ2)(resp. ψ2) = � ψ2 ⇒ φ2

Disjunction is handled like conjunction, simply replacing ∨ by ∧,

and exist. quantification like univ. quantification, replacing ∀ by ∃.

where π is defined as +
def
= − and − def

= +. As in the definition of IRC, not only we give the
conclusion of the resulting theorem but also the (big-step) inference rule used to derive this
theorem from the recursive calls. We call IRC “implicational conversions” because the rules
are very similar to conversions, except that implication is used instead of equality.

At the top-level, only the positive polarity is used: in the end, IR+
th returns a theorem of

the form � φ′ ⇒ φ where φ′ is the implicationally rewritten version of φ. So, given a goal
of conclusion c, one can call IR+

c and apply the Modus Ponens tactic – i.e., the tactic which,
given a goal of conclusion c and a theorem c′ ⇒ c, turns c into c′ – to the result. We can
prove that this tactic indeed implements implicational rewriting:

4 In practice, a distinction has to be made between the assumptions introduced by IRC and the
assumptions that come from the original goal. This is easy to achieve but not presented for
readability.

52 V. Aravantinos and S. Tahar

Theorem 2. For every theorem th and every formula φ, the tactic consisting in applying
Modus Ponens to IR+

th(φ) implements implicational rewriting by th.

4 Refinements

In this section, we investigate a few refinements of implicational rewriting.

4.1 Theorems Introducing Variables

A usual problem with rewriting is how to handle theorems that introduce new variables
when applying the rewrite, i.e., theorems of the form � l = r, where r contains variables
not occurring in l. Consider for instance the rewriting of the term y + 0 by the theorem
� 0 = x−x: since x does not appear in y+0, what sense would it have to replace 0 by x−x?
And what if the original term indeed contains x, e.g., if we rewrite x + 0 instead of y + 0?
Shall the rewrite replace 0 by x−x or rename x to avoid a possibly unintended capture? This
problem is usually considered to be rare enough that it is not worth considering: since x does
not occur in the original term, the user simply should avoid rewriting with these theorems.
However, it can make sense to apply such a rewrite, e.g., it can be useful to replace 0 by
x− x if, in the context of the proof, one wants to apply a theorem about substractions.

With implicational rewriting, this situation is even more frequent since new variables can
also come from the condition of the theorem:

Example 3. Consider for example that one wants to prove ∀s, ·, x, y, z, t. P ⇒ ((x · y) ·
z) · t = x · (y · (z · t)), where P is an irrelevant premise. We assume that P entails in
particular the predicate group (s, ·), which states the usual group axioms for the operation
· over s. A first step is to (implicationally) rewrite the goal with the associativity theorem
� ∀g, op, x, y, z. group (g, op)∧x ∈ g∧y ∈ g∧z ∈ g ⇒ op (op x y) z = op (x(op y z)). This
yields: ∀s, ·, x, y, z, t. P ⇒ group (g, ·) ∧x ∈ g∧y ∈ g∧z ∈ g∧(x ·(y ·z))·t = x ·(y ·(z ·t)).
Here, the new variable g has been introduced in the goal whereas it does not have any
meaning there. As a consequence, the goal is not provable anymore.

What happens is that matching op (op x y) z (the l.h.s. of the associativiy theorem) indeed
provides instantiations for op, x, y and z, but it does not provide any instantiation for g. But in
practice, the user usually knows the instantiation of g, or will find it out later on in the course
of the proof. Therefore, a satisfying solution would apply the rewrite but would still leave to
the user the possibility to instantiate g manually. We achieve this by detecting automatically
variables that are introduced by the rewrite, then applying the rewrite, and finally quantifying
existentially over the introduced variables. In the above example, one would obtain the goal:
∀s, ·, x, y, z, t. P ⇒ ∃g. group (g, ·) ∧x ∈ g∧y ∈ g∧ z ∈ g∧ (x · (y ·z)) · t = x · (y · (z · t)).
In our first example, y + 0 would be replaced by ∃x. y + (x − x). This solution allows
to maintain the provability of the goal, while preserving the advantages of (implicational)
rewriting.

Formally, this consists simply in replacing the expression (1) of Definition 1 by ∃x1, . . . ,
xk. pτσ1∧· · ·∧pτσk�A[rτσ1/lσ1] . . . [rτσk/lσk], where x1, . . . , xk denote all the variables
introduced by the theorem � pτ ⇒ lτ = rτ (i.e., formally, variables occurring in rτ and
pτ but not in lτ) and where τ is a renaming substitution used to avoid potential captures
between the variables of the goal and the variables that occur in r and p but not in l. The
proof of Theorem 1 still applies: only the base case of the induction slightly changes.

Implicational Rewriting Tactics in HOL 53

This refinement is implemented by modifying IRC so that the introduced variables are
renamed to avoid possible captures; then by modifying AIR so that the function adds the re-
quired existential quantifications over these newly introduced variables. Note that the quan-
tification’s scope is only the premise (resp. conclusion) of the resulting theorem in the posi-
tive (resp. negative) case.

4.2 Preprocessing and Postprocessing

Preprocessing the input theorems to allow more theorems than just those of the form ∀x1, . . . ,
xk. p ⇒ l = r is a simple way to allow many improvements. For instance, purely equational
theorems ∀x1, . . . , xk. l = r can be turned into ∀x1, . . . , xk. � ⇒ l = r, which entails that
implicational rewrite can also be used as a substitute to standard rewriting.

In addition, some further preprocessing allows to accept theorems of the form p ⇒ c

(resp. p ⇒ ¬c) by turning them into p ⇒ c = � (resp. p ⇒ c = ⊥). Note that this is
commonly used in HOL4 and HOL Light for usual rewriting. For implicational rewriting, it
also means that it can be used as a substitute for the (matching) Modus Ponens tactic, i.e.,
the tactic which, given a theorem of the form ∀x1, . . . , xk. p ⇒ c and a goal of the form
cσ for some substitution σ, generates the goal pσ. Indeed, in such a situation, implicational
rewriting turns the goal cσ into � (thanks to the described preprocessing) and adds the
conjunct pσ. We thus obtain the goal pσ ∧ � which is equivalent to what is obtained by the
matching Modus Ponens. However, implicational rewriting is then even more powerful than
this tactic since it is able to apply this sort of reasoning deeply (the lack of this feature is a
common criticism).

However, this latter solution is a little bit unsatisfying since it yields pσ ∧ � instead of
the expected pσ. Of course it is trivial to get rid of � here, but it would obviously be better
to achieve this automatically. This is easily done by maintaining a set of basic rewriting
theorems containing commonly used propositional facts like ∀p. p∧� ⇔ p, or �∧� ⇔ �.
Again, similar solutions are used for rewriting in HOL4 and HOL Light. In order to do
this rewriting on the fly, implicational rewriting must be adapted to be able to rewrite with
several theorems. Since the current definitions already handle multiple rewrites with the
same theorem, it is trivial to extend them to deal with several theorems simply by considering
a set of theorems instead of just one.

Finally, theorems of the form ∀x1, . . . , xk. p ⇒ ∀y1, . . . , yn. l = r (i.e., additional quan-
tifiers appear before the equation) can also be handled at no cost (all definitions adapt triv-
ially).

4.3 Taking the Context into Account

Example 4. Consider the goal ∀x, y. x
= 0 ⇒ x
x ∗ y = y. Applying implicational rewriting

with � ∀x. x
= 0 ⇒ x
x = 1 yields the goal ∀x, y. x
= 0 ⇒ x
= 0 ∧ 1 ∗ y = y. The context

obviously entails the inner x
= 0, but one still needs additional manual reasoning to obtain
∀x, y. x
= 0 ⇒ 1 ∗ y = y.

Therefore a further refinement is to modify implicational rewriting so that the context is
taken into account. This can be handled by adding the contextual hypotheses to the set of
usable theorems, while going down the theorem. This means that, e.g., in the positive case
of the implicational rule of IR’s definition (fourth case), the formula φ1 is added to the set of
theorems that can be used by the recursive call to compute ψ2 from φ2. Similar treatments

54 V. Aravantinos and S. Tahar

can be applied in the negative case and for conjunction. This is overall similar to what is done
in usual rewriting to handle the context, see, e.g., [23] for a sketch of these ideas. However
these additions require a particular care in order, in particular, to avoid recomputing the
same contexts several times, see. Many solutions exist, see, e.g., the source codes of HOL4,
HOL Light or Isabelle. Note that this allows to get rid of many of the introduced conditions
automatically, exactly like conditional rewrite does. Therefore implicational rewriting can
also often be used as a replacement for conditional rewriting.

In the end, all these refinements (including efficient use of the context) are implemented
in one single tactic called IMP_REWRITE_TAC: this tactic takes a list of theorems and applies
implicational rewriting with all of them repeatedly until no more application is possible.
Note that all these refinements are not just small user-friendly improvements: they also im-
prove again the compositionality of the tactic by allowing to chain seamlessly implicational
rewrites of many theorems. Since, as shown in the above refinements, this tactic subsumes
rewriting, conditional rewriting, and Modus Ponens tactics, it integrates very well in the
usual tactic-style proving workflow: one can use just one tactic to cover all the other cases,
plus the ones that were not covered before. In practice, this combination happens to be
extremely powerful: many proof steps can be turned into only one call to this tactic with
several theorems. For instance, the tactic has been extensively used for months to develop in
particular the work presented in [19,20,27]. In particular, the library presented in [20] was
completely rewritten using implicational rewriting, which showed a dramatic reduction of
its code size. In addition the time taken to prove new theorems was also much reduced due
to the relevant feedback provided by the tactic.

The main improvements we foresee for the above refinement process are regarding per-
formance. This could probably benefit from all the optimizations that already exist for usual
rewriting, e.g., [22]. Another easy possible refinement would be to allow implicational
rewriting in the assumptions instead of the conclusion of the goal. This should be easily
achieved simply by considering the reverse implication.

5 Other Interaction-Intensive Situations

In this section, we tackle the automation of situations that present the same loopholes as the
ones that motivated our development of implicational rewriting, i.e., situations where the
user has to input manually some information that could be computed automatically by the
theorem prover, leading to fragility of proof scripts and tediousness of the interaction.

5.1 Contextual Existential Instantiation

Consider a slight variation of Example 3:

Example 5. Let be the goal ∀s, ·, x, y, z, t. group (s, ·) ⇒ ((x·y)·z)·t = x·(y·(z ·t)). Apply-
ing implicational rewriting now yields: ∀s, ·, x, y, z, t. group (s, ·) ⇒ ∃sg. group (sg, ·) ∧
(x · (y · z)) · t = x · (y · (z · t)). The usual solution is then to strip the quantifiers and
discharge group (s, ·) to obtain ∃sg. group (sg, ·) ∧ (x · (y · z)) · t = x · (y · (z · t))
as a conclusion. Then one can provide explicitly the witness s for sg in order to obtain:
group (s, ·) ∧ (x · (y · z)) · t = x · (y · (z · t)).

Implicational Rewriting Tactics in HOL 55

Here, the user must provide explicitly a witness. In this example, the witness is just the
one character s, but in other situations it can be big complex terms. Therefore, the same
reproaches can be applied to this situation as those that gave raise to implicational rewriting
(fragility of the script, tediousness for the user, etc.). However, once again, it is a situation
where the context could be used by the theorem prover to find the witness by itself: it is easy
to go through all the assumptions and find an atom which matches an atom of the conclusion
(e.g., in the above example, group (s, ·) matches group (sg, ·)).

One can even instantiate existential quantifications that appear deep in the goal instead
of just as the top connective. Then, not only the assumptions, but also the context of the
formula can be used. This was implemented in a tactic called HINT_EXISTS_TAC, of which a
preliminary version has already been integrated into HOL4. As shown in the above example,
this sort of situation can also happen when using implicational rewriting, therefore this tactic
is also integrated transparently in IMP_REWRITE_TAC.

Note that the underlying algorithm shares some common structure with the one of impli-
cational rewriting. More precisely, IR can actually be reused only changing the base call to
AIR. For space reasons, we refer to the source code in [1] for the details of the implementa-
tion.

5.2 Cases Rewrite

Implicational rewriting can be seen as a situation where the user has a at his/her disposal
a theorem � ∀x1, . . . , xk. p ⇒ c and is ready to accept whatever it takes to make use of
the information provided by c. Since this cannot be done at no cost, implicational rewriting
accepts to do it, at the condition to add the necessary instantiation of p. When one uses
implicational rewriting, one makes the underlying assumption that (s)he will have the ability
to prove p later on.

But, sometimes, we do not want to make such a strong assumption; instead, we want to
split the proof by considering both what happens if p holds and what happens if p does not
hold. In such cases, the usual solution is to explictly use a case-split tactic to consider two
branches of the proof: one where p holds, and one where ¬p holds. But, once again, the user
has to explicitly state some information which is possibly verbose, fragile and tedious, when
the prover could do the same automatically by retrieving the relevant information from the
theorem � ∀x1, . . . , xk. p ⇒ c.

This yields cases rewriting which requires also a theorem of the form � ∀x1, . . . , xk. p ⇒
l = r (or � ∀x1, . . . , xk. p ⇒ c with preprocessing) and looks for an atom A with a subterm
matching l (say with substitution σ). However, unlike implicational rewriting, it does not
replace A by pσ∧A[rσ/lσ] or pσ ⇒ A[rσ/lσ], but rather by (pσ ⇒ A[rσ/lσ])∧(¬pσ ⇒ A).
This was implemented in the tactic CASES_REWRITE_TAC. We refer to the manual of [1] for
more details.

5.3 Target Rewrite

Example 6 ([2]). Consider the goal ∀n,m. SUC n ≤ SUC m ⇒ n ≤ m. Assume we
already proved that the predecessor function is monotonic: � ∀n,m. n ≤ m ⇒ PRE n ≤
PRE m and that the predecessor is the left inverse of the successor: � ∀n. PRE (SUC n) =

n. A natural proof would start by replacing n ≤ m byPRE (SUC n) ≤ PRE (SUC m). But
rewriting with � ∀n. n = PRE (SUC n) will obviously not terminate. So we should rewrite
the goal only once (as allowed by the HOL4 and HOL Light tactic ONCE_REWRITE_TAC). But

56 V. Aravantinos and S. Tahar

this rewrites everywhere, yielding: ∀n,m.PRE (SUC (SUC n)) ≤ PRE (SUC (SUC m))

⇒ PRE (SUC n) ≤ PRE (SUC m). Instead, we have to use a special tactic allowing to
state precisely that we want to rewrite only in the conclusion of the implication, and only
once (e.g., GEN_REWRITE_TAC in HOL Light and HOL4), or more elaborate solutions like
[13] in Coq). This requires to provide explicitly to the prover which part of the goal has to
be rewritten: so, exactly as in the previous situations, the user has to provide explicitly some
information which is very unintuitive and very dependent on the current shape of the goal.
Thus, once again, this solution is both fragile and tedious to the user.

In this example, the important information is actually not the location of the rewrite, but the
objective that the user has in mind. And this objective is to rewrite the goal in order to use
the theorem � ∀n,m. n ≤ m ⇒ PRE n ≤ PRE m. Generally, when one wants to apply
a precisely located rewrite with a theorem, the underlying objective is to get a goal which
allows the use of another theorem. So we define target rewriting which takes two theorems
as input: the one used for the rewrite (called supporting theorem) and the one that we intend
to use after the rewrite (called target theorem). Very naively, the tactic simply explores all
the possible rewrites of the goal using the supporting theorem until one of these rewrites
yields a term which can be rewritten by the target theorem.

Example 7. In Example 6, the supporting theorem is � ∀n. n = PRE (SUC n) and the
target theorem is � ∀n,m. n ≤ m ⇒ PRE n ≤ PRE m. The list of all possible 1-step
rewrites explored by the tactic is the following:

1 ∀n,m. PRE (SUC (SUC n)) ≤ SUC m ⇒ n ≤ m

2 ∀n,m. SUC n ≤ PRE (SUC (SUC m)) ⇒ n ≤ m

3 ∀n,m. SUC n ≤ SUC m ⇒ PRE (SUC n) ≤ m

4 ∀n,m. SUC n ≤ SUC m ⇒ n ≤ PRE (SUC m)

Then the list of possible 2-step rewrites is enumerated as follows:

1 ∀n,m. PRE (SUC (SUC n)) ≤ PRE (SUC (SUC m)) ⇒ n ≤ m

2 ∀n,m. PRE (SUC (SUC n)) ≤ SUC m ⇒ PRE (SUC n) ≤ m

3 ∀n,m. PRE (SUC (SUC n)) ≤ SUC m ⇒ n ≤ PRE (SUC m)

4 ∀n,m. SUC n ≤ PRE (SUC (SUC m)) ⇒ PRE (SUC n) ≤ m

5 ∀n,m. SUC n ≤ PRE (SUC (SUC m)) ⇒ n ≤ PRE (SUC m)

6 ∀n,m. SUC n ≤ SUC m ⇒ PRE (SUC n) ≤ PRE (SUC m)

Here the tactic stops because the last rewrite allows to apply the target theorem.

Because of the exhaustive enumeration, this tactic can of course be extremely costly. Still,
in the numerous practical cases where its execution time is reasonable, it is tremendously
helpful since the user does not have to provide explicit information anymore: the only ad-
ditional effort is to step back and look a step ahead in the intended proof to know which
theorem shall be used afterwards. Many concrete situations happen to match this use case
pattern. For instance, associativity-commutativity (AC) rewriting [28] is a particular case of
it:

Example 8. Consider the goal a+(b ∗ c+−a)+ a = b ∗ c+ a [13]. A standard proof of this
goal is to first rearrange the innermost addition into a+(−a+b∗c)+a = b∗c+a by carefully
using the commutativity of addition and then using the theorem � ∀x y. x+(−x+y) = y to
conclude. Instead, one can just use target rewriting with the AC of addition as the supporting
theorem and � ∀x y. x+ (−x+ y) = y as the target theorem.

Implicational Rewriting Tactics in HOL 57

We called this tactic TARGET_REWRITE_TAC. It is actually able to take several supporting
theorems as input (though, of course, more supporting theorems means more possibilities
to explore, and thus a bigger execution time). In addition, it actually does not work with
rewriting but with implicational rewriting, which allows to use implicational theorems as
supporting theorems.

6 Related Work

In proof theory, applying reasoning deep in a goal is the precise focus of deep inference [7].
At first sight, it can hardly be said that implicational rewriting shares more than a conceptual
relation to deep inference though, but some of the benefits can be seen as similar since in
both cases the fact of reasoning deep allows to get rid of some “bureaucratic” manipulations.
If considering sets of clauses instead of arbitrary formulas, implicational rewriting turns out
to be very close to superposition [4]. Since formulas are normalized, superposition does not
need to consider the polarity of the formula where it applies, therefore it actually corresponds
only to the negative case of implicational rewriting. Studying this connection in detail to
improve our implementation is part of future work.

As already mentioned, the implementation of IR can be seen as a particular form of
rewriting where implication is used instead of equality. This is very similar to the “conse-
quence conversions” in HOL4 [33], and more generally can be seen as a particular case of
rewriting with preorders [17,32], where the used preorders are both ⇒ and ⇐ used in an
interleaved way. Taking the context into account builds on top of several implementations
serving similar ideas. Conceptually, one can find many connections with “window infer-
ence” [26].

Target rewriting is very close to the “smart matching” tactic of Matita [2]: this tactic
uses as supporting theorems the whole database of already proven equational theorems and
the target theorem is provided explicitly like in our approach. It uses a sophisticated imple-
mentation of superposition instead of our naive approach which just enumerates all possible
rewrites, thus making it much more efficient. However it uses only equational theorems as
supporting theorems, whereas target rewriting also accepts implicational theorems: this was
particularly useful in, e.g., [20], where most theorems are prefixed by assumptions. In ad-
dition, smart matching only tries to match the top goal, whereas target rewriting also works
deeply, with the same advantages as for implicational rewriting: no need to use book-keeping
tactics, and therefore more compositionality. This is made possible precisely because we use
implicational rewriting instead of matching Modus Ponens as is done for smart matching.
However, this has of course a much bigger impact on the performance. The perfect solution
would probably lie in between: using superposition to make target rewriting more efficient,
or extending smart matching with ideas of target rewriting.

Conceptually, both smart matching and target rewriting are connected to deduction mod-
ulo [11] since they are essentially about making a distinction between the “important” steps
of a proof and the ones that are just “glue” between the important steps: in our context, this
glue is the use of supporting theorems; in the context of smart application, it is the use of the
available equational knowledge base; and in deduction modulo, it is “calculation” steps as
opposed to deduction steps. However, to the best of our knowledge, there is no tool similar
to target rewriting or smart matching making use of deduction modulo.

Finally, as explained earlier, AC-rewriting can be seen as a special case of target rewriting.
Many works have been devoted to this, e.g., in HOL90 [28], or more recently in Coq [6].

58 V. Aravantinos and S. Tahar

The advantage of these works is that they are of course more efficient, since they deal with
a very special case. But they are much less general, and therefore not as useful as target
rewriting.

7 Conclusion

We presented in this paper some tactics to reduce human interaction in interactive theorem
provers. Their objective is not to provide the automation of intricate reasoning that the user
could not achieve by him/herself, but rather to assist him/her in some quite simple but fre-
quent reasoning tasks. The most important of our tactics is implicational rewriting, whose
core idea was presented in detail. We argued how a big advantage of it is that it allows for
a better composionality thus making it extremely useful in practice. We presented an im-
plementation of implicational rewriting as well as some refinements improving further its
usefulness. Finally we covered a few other tactics pursuing similar objectives of reducing
the tediousness of human interaction and the fragility of proof scripts. The objective of this
latter aspect is also to improve human interaction, but in a longer term perspective: when
proof scripts are robust to change, they make the development of theories easier, and thus
improve the user experience.

In practice, many proofs are surprisingly sequences of calls to IMP_REWRITE_ TAC inter-
leaved with a few calls to TARGET_REWRITE_TAC, and only rarely other tactics. Of course,
in cases where human creativity is really required, some subgoals or lemmas are set, but
this is to be expected when reasoning in higher-order logic. Apart from these cases, one can
observe that these tactics serve the purpose they were designed for: many reasoning tasks
which are simple for a human become simple with the theorem prover. In the end, the only
reproach which can be made to this approach is that removing most explicitly set subgoals
reduces the readability of the proof scripts. We argue instead that the purpose of a proof
script is not to mimic usual mathematical proofs: the information that can be found auto-
matically should be found out by the machine. Tools like Proviola [31] can still be used in
order to provide some valuable feedback to the user.

Acknowledgements. The author thanks L. Liu, M. Y. Mahmoud and G. Helali from Con-
cordia University for their feedback after extensive use of this work, as well as N. Peltier
from the Laboratory of Informatics of Grenoble, and the contributors of the hol-info mailing
list for fruitful discussions.

References

1. Aravantinos, V.: Implicational Conversions for HOL Light and HOL4 (2013),
https://github.com/aravantv/impconv,
https://github.com/aravantv/impconv/HOL4-impconv (respectively)

2. Asperti, A., Tassi, E.: Smart Matching. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F.,
Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI),
vol. 6167, pp. 263–277. Springer, Heidelberg (2010)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1999)
4. Bachmair, L., Ganzinger, H.: Rewrite-Based Equational Theorem Proving with Selection and

Simplification. Journal of Logical Computation 4(3), 217–247 (1994)
5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In:

Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
825–885. IOS Press (2009)

https://github.com/aravantv/impconv
https://github.com/aravantv/impconv/HOL4-impconv

Implicational Rewriting Tactics in HOL 59

6. Braibant, T., Pous, D.: Tactics for Reasoning Modulo AC in Coq. In: Jouannaud, J.-P., Shao,
Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg (2011)

7. Brünnler, K., Tiu, A.F.: A Local System for Classical Logic. In: Nieuwenhuis, R., Voronkov,
A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001)

8. Cooper, D.C.: Theorem Proving in Arithmetic Without Multiplication. Machine Intelli-
gence 7, 91–99 (1972)

9. Brand, D., Darringer, J., Joyner, W.: Completeness of Conditional Reductions. Research Re-
port RC-7404, IBM (1978)

10. Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for Theorem-Proving. Com-
munications of the ACM 5(7), 394–397 (1962)

11. Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Automated Rea-
soning 31(1), 33–72 (2003)

12. Fitting, M.: First-Order Logic and Automated Theorem Proving. Texts and Monographs in
Computer Science. Springer (1990)

13. Gonthier, G., Tassi, E.: A Language of Patterns for Subterm Selection. In: Beringer, L., Felty,
A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 361–376. Springer, Heidelberg (2012)

14. Harrison, J.: The HOL Light System Reference (2013),
http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.html

15. Homeier, P.V.: HOL4 source code (2002), http://ww.src/1/dep_rewrite.sml
16. Huet, G.P.: A Mechanization of Type Theory. In: International Joint Conference on Artificial

Intelligence, pp. 139–146. William Kaufmann (1973)
17. Inverardi, P.: Rewriting for preorder relations. In: Lindenstrauss, N., Dershowitz, N. (eds.)

CTRS 1994. LNCS, vol. 968, pp. 223–234. Springer, Heidelberg (1995)
18. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Texts in

Theoretical Computer Science. An EATCS Series. Springer (2008)
19. Liu, L., Hasan, O., Aravantinos, V., Tahar, S.: Formal Reasoning about Classified Markov

Chains in HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 295–310. Springer, Heidelberg (2013)

20. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of Infinite Dimension Linear
Spaces with Application to Quantum Theory. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM
2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)

21. Mayr, R., Nipkow, T.: Higher-Order Rewrite Systems and Their Confluence. Theoretical
Computer Science 192(1), 3–29 (1998)

22. Norrish, M.: Rewriting Conversions Implemented with Continuations. Journal of Automated
Reasoning 43(3), 305–336 (2009)

23. Paulson, L.C.: A Higher-Order Implementation of Rewriting. Science of Computer Program-
ming 3(2), 119–149 (1983)

24. Paulson, L.C., Blanchette, J.C.: Three Years of Experience with Sledgehammer, a Practical
Link Between Automatic and Interactive Theorem Provers. In: IWIL@LPAR. EPiC Series,
vol. 2, pp. 1–11 (2010)

25. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier and MIT
Press (2001)

26. Robinson, P.J., Staples, J.: Formalizing a Hierarchical Structure of Practical Mathematical
Reasoning. Journal of Logical Computation 3(1), 47–61 (1993)

27. Siddique, U., Aravantinos, V., Tahar, S.: Formal Stability Analysis of Optical Resonators. In:
Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 368–382. Springer,
Heidelberg (2013)

28. Slind, K.: AC Unification in HOL90. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS,
vol. 780, pp. 436–449. Springer, Heidelberg (1994)

http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.html
http://ww.src/1/dep_rewrite.sml

60 V. Aravantinos and S. Tahar

29. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar,
S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)

30. Solovyev, A.: SSReflect/HOL Light manual. Flyspeck project (2012)
31. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A Tool for Proof Re-animation.

In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P.
(eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 440–454. Springer, Hei-
delberg (2010)

32. Türk, T.: HOL4 source code (2006), http://src/simp/src/congLib.sml
33. Türk, T.: HOL4 source code (2008), http://src/1/ConseqConv.sml

http://src/simp/src/congLib.sml
http://src/1/ConseqConv.sml

A Heuristic Prover for Real Inequalities

Jeremy Avigad, Robert Y. Lewis, and Cody Roux

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract. We describe a general method for verifying inequalities
between real-valued expressions, especially the kinds of straightforward
inferences that arise in interactive theorem proving. In contrast to ap-
proaches that aim to be complete with respect to a particular language
or class of formulas, our method establishes claims that require heteroge-
neous forms of reasoning, relying on a Nelson-Oppen-style architecture in
which special-purpose modules collaborate and share information. The
framework is thus modular and extensible. A prototype implementation
shows that the method is promising, complementing techniques that are
used by contemporary interactive provers.

1 Introduction

Comparing measurements is fundamental to the sciences, and so it is not surpris-
ing that ordering, bounding, and optimizing real-valued expressions is central to
mathematics. A host of computational methods have been developed to support
such reasoning, using symbolic or numeric methods, or both. For example, there
are well-developed methods of determining the satisfiability or unsatisfiability
of linear inequalities [31,32], polynomial inequalities [6], nonlinear inequalities
involving functions that can be approximated numerically [17], [25], and in-
equalities involving convex functions [9]. The “satisfiability modulo theories”
framework [5], [27], provides one way of integrating such methods with ordinary
logical reasoning and proof search; integration with resolution theorem proving
methods has also been explored [1], [30]. Interactive theorem provers like Isabelle
[28] and HOL Light [19] now incorporate various such methods, either construct-
ing correctness proofs along the way, or reconstructing them from appropriate
certificates. (For a small sample, see [8], [10], [20], [23].) Such systems provide
powerful tools to support interactive theorem proving. But, frustratingly, they
often fail when it comes to fairly routine calculations, leaving users to carry out
explicit calculations painstakingly by hand. Consider, for example, the following
valid implication:

0 < x < y, u < v ⇒ 2u+ exp(1 + x+ x4) < 2v + exp(1 + y + y4)

The inference is not contained in linear arithmetic or even the theory of real-
closed fields. The inference is tight, so symbolic or numeric approximations to the
exponential function are of no use. Backchaining using monotonicity properties
of addition, multiplication, and exponentiation might suggest reducing the goal

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 61–76, 2014.
c© Springer International Publishing Switzerland 2014

62 J. Avigad, R.Y. Lewis, and C. Roux

to subgoals 2u < 2v and exp(1 + x+ x4) < exp(1 + y + y4), but this introduces
some unsettling nondeterminism. After all, one could just as well reduce the goal
to

– 2u < exp(1 + y + y4) and exp(1 + x+ x4) < 2v, or
– 2u+ exp(1 + x+ x4) < 2v and 0 < exp(1 + y + y4), or even
– 2u < 2v + 7 and exp(1 + x+ x4) < exp(1 + y + y4)− 7.

And yet, the inference is entirely straightforward. With the hypothesis u < v in
mind, you probably noticed right away that the terms 2u and 2v can be com-
pared; similarly, the comparison between x and y leads to comparisons between
x4 and y4, then 1 + x+ x4 and 1 + y + y4, and so on.

The method we propose is based on such heuristically guided forward rea-
soning, using properties of addition, multiplication, and the function symbols
involved. As is common for resolution theorem proving, we try to establish the
theorem above by negating the conclusion and deriving a contradiction. We then
proceed as follows:

– Put all terms involved into a canonical normal form. This enables us to recog-
nize terms that are the same up to a scalar multiple, and up to associativity
and commutativity of addition and multiplication.

– Iteratively call specialized modules to learn new comparisons between sub-
terms, and add these new comparisons to a common “blackboard” structure,
which can be accessed by all modules.

The theorem is verified when any given module derives a contradiction using
this common information. The procedure fails, on the other hand, when none of
the modules can learn anything new. We will see in Section 6 that the method is
far from complete, and may not even terminate. On the other hand, it is flexible
and extensible, and easily verifies a number of inferences that are not obtained
using more principled methods. As a result, it provides a useful complement to
more conventional approaches.

We have thus far designed and implemented modules to learn comparisons
from the additive and multiplicative structure of terms, as well as a module
to instantiate axioms involving general functions. The additive and multiplica-
tive modules have two different implementations, with different characteristic
strengths and weaknesses. The first uses a natural but naive Fourier-Motzkin
elimination, and the second uses more refined geometric techniques. Our proto-
type implementation, written in Python, is available online:

https://github.com/avigad/polya

We have named the system “Polya,” after George Pólya, in recognition of his
work on inequalities as well as his thoughtful studies of heuristic methods in
mathematics (e.g. [18], [29]).

The general idea of deriving inequalities by putting terms in a normal form
and combining specialized modules is found in Avigad and Friedman [3], which
examines what happens when the additive and multiplicative fragments of real

https://github.com/avigad/polya

A Heuristic Prover for Real Inequalities 63

arithmetic are combined. This is analogous to the situation handled by SMT
solvers, with the added twist that the languages in question share more than
just the equality symbol. Avigad and Friedman show that the universal frag-
ment remains decidable even if both theories include multiplication by rational
constants, while the full first-order theory is undecidable. The former decidabil-
ity result, however, is entirely impractical, for reasons discussed there. Rather,
it is the general framework for combining decision procedures and the use of
canonical normal forms that we make use of here.

2 The Framework

2.1 Terms and Canonical Forms

We wish to consider terms, such as 3(5x+ 3y + 4xy)2f(u+ v)−1, that are built
up from variables and rational constants using addition, multiplication, integer
powers, and function application. To account for the associativity of addition
and multiplication, we view sums and products as multi-arity rather than binary
operations. We account for commutativity by imposing an arbitrary ordering on
terms, and ordering the arguments accordingly.

Importantly, we would also like to easily identify the relationship between
terms t and t′ where t = c · t′, for a nonzero rational constant c. For example, we
would like to keep track of the fact that 4y + 2x is twice x + 2y. Towards that
end, we distinguish between “terms” and “scaled terms”: a scaled term is just
an expression of the form c · t, where t is a term and c is a rational constant. We
refer to “scaled terms” as “s-terms” for brevity.

Definition 1. We define the set of terms T and s-terms S by mutual recursion:

t, ti ∈ T := 1 | x |
∑

i si |
∏

i t
ni

i | f(s1, . . . , sn)
s, si ∈ S := c · t .

Here x ranges over a set of variables, f ranges over a set of function symbols,
c ∈ Q, and ni ∈ Z.

Thus we view 3(5x+3y+4xy)2f(u+ v)−1 as an s-term of the form 3 · t, where t
is the product t21t

−1
2 , t1 is a sum of three s-terms, and t2 is the result of applying

f to the single s-term 1 · (u+ v).
Note that there is an ambiguity, in that we can also view the coefficient 3 as

the s-term 3 · 1. This ambiguity will be eliminated when we define a notion of
normal form for terms. The notion extends to s-terms: an s-term is in normal
form when it is of the form c · t, where t is a term in normal form. (In the special
case where c = 0, we require t to be the term 1.) We also refer to terms in normal
form as canonical, and similarly for s-terms.

To define the notion of normal form for terms, we fix an ordering≺ on variables
and function symbols, and extend that to an ordering on terms and s-terms. For
example, we can arbitrarily set the term 1 to be minimal in the ordering, then

64 J. Avigad, R.Y. Lewis, and C. Roux

variables, then products, then sums, and finally function applications, recursively
using lexicographic ordering on the list of arguments (and the function symbol)
within the latter three categories. The set of terms in normal form is then defined
inductively as follows:

– 1, x, y, z, . . . are terms in normal form.

–
∑

i=1...n ci · ti is in normal form provided c1 = 1, each ti is in normal form,
and t1 ≺ t2 ≺ . . . ≺ tn.

–
∏

i t
ni

i is in normal form provided each ti is in normal form, and 1 �= t1 ≺
t2 ≺ . . . ≺ tn.

– f(s1, . . . , sn) is in normal form if each si is.

The details are spelled out in Avigad and Friedman [3]. That paper provides
an explicit first-order theory, T , expressing commutativity and associativity of
addition and multiplication, distributivity of constants over sums, and so on,
such that the following two properties hold:

1. For every term t, there is a unique s-term s in canonical form, such that T
proves t = s.

2. Two terms t1 and t2 have the same canonical normal form if and only if T
proves t1 = t2.

For example, the term 3(5x+ 3y + 4xy)2f(u+ v)−1 is expressed canonically as
75 · (x + (3/5) · y + (4/5) · xy)2f(u + v)−1, where the constant in the additive
term 5x+ 3y + 4xy has been factored so that the result is in normal form.

The two clauses above provide an axiomatic characterization of what it means
for terms to have the same canonical form. As discussed in Section 7, extending
the reach of our methods requires extending the notion of a canonical form to
include additional common operations.

2.2 The Blackboard

We now turn to the blackboard architecture, which allows modules to share
information in a common language. To the addition module, multiplication is
a black box; thus it can only make sense of additive information in the shared
pool of knowledge. Conversely, the multiplication module cannot make sense of
addition. But both modules can make sense of information in the form t1 < c ·t2,
where t1 and t2 are subterms occurring in the problem. The blackboard enables
modules to communicate facts of this shape.

When the user asserts a comparison t > 0 to the blackboard, t is first put
in canonical form, and names t0, t1, t2, . . . are introduced for each subterm. It is
convenient to assume that t0 denotes the canonical term 1. Given the example
in the last section, the method could go on to define

t1 := x, t2 := y, t3 := t1t2, t4 := t1 + (3/5) · t2 + (4/5) · t3,
t5 := u, t6 := v, t7 := t5 + t6, t8 = f(t7), t9 := t24t

−1
8

A Heuristic Prover for Real Inequalities 65

In that case, 75 ·t9 represents 3(5x+3y+4xy)2f(u+v)−1. Any subterm common
to more than one term is represented by the same name. Separating terms in
this way ensures that each module can focus on only those definitions that are
meaningful to it, and otherwise treat subterms as uninterpreted constants.

Now any comparison s �� s′ between canonical s-terms, where �� denotes any
of <,≤, >,≥,=, or �=, translates to a comparison citi �� cjtj , where ti and tj
name canonical terms. But this, in turn, can always be expressed in one of the
following ways:

– ti �� 0 or tj �� 0, or
– ti �� c · tj , where c �= 0 and i < j.

The blackboard therefore maintains the following data:

– a defining equation for each ti, and
– comparisons between named terms, as above.

Note that this means that, a priori, modules can only look for and report com-
parisons between terms that have been “declared” to the blackboard. This is a
central feature of our method: the search is deliberately constrained to focus on
a small number of terms of interest. The architecture is flexible enough, how-
ever, that modules can heuristically expand that list of terms at any point in the
search. For example, our addition and multiplication modules do not consider
distributivity of multiplication over addition, beyond multiplication of rational
scalars. But if a term x(y + z) appears in the problem, a module could heuris-
tically add the identity x(y + z) = xy + xz, adding names for the new terms as
needed.

Blackboard
Additive
Module

Multiplicative
Module

Axiom
Instantiation

Fig. 1. The Blackboard Architecture

To verify an implication, the user asserts the hypotheses to the blackboard,
together with the negation of the conclusion. Individual modules then take turns
learning new comparisons from the data, and asserting them to the blackboard
as well, until a contradiction is obtained, or no further conclusions can be drawn.
The setup is illustrated by Figure 1. Notice that this is essentially the Nelson-
Oppen architecture [5], [27], in which (disjoint) theories communicate by means

66 J. Avigad, R.Y. Lewis, and C. Roux

of a shared logical symbol, typically equality. Here, the shared language is instead
assumed to contain the list of comparisons <,≤, >,≥,=, �=, and multiplication
by rational constants.

Now suppose a module asserts an inequality like t3 < 4t5 to the blackboard.
It is the task of the central blackboard module to check whether the assertion
provides new information, and, if so, to update its database accordingly. The task
is not entirely straightforward: for example, the blackboard may already contain
the inequality t3 < 2t5, but absent sign information on t3 or t5, this does not
imply t3 < 4t5, nor does the converse hold. However, if the blackboard includes
the inequalities t3 < 2t5 and t3 ≤ 7t5, the new assertion is redundant. If, instead,
the blackboard includes the inequalities t3 < 2t5 and t3 ≤ 3t5, the new inequality
should replace the second of these. A moment’s reflection shows that at most
two such inequalities need to be stored for each pair ti and tj (geometrically,
each represents a half-plane through the origin), but comparisons between ti or
tj and 0 should be counted among these.

There are additional subtleties: a weak inequality such as t3 ≤ 4t5 paired with
a disequality t3 �= 4t5 results in a strong inequality; a pair of weak inequalities
t3 ≤ 4t5 and t3 ≥ 4t5 should be replaced by an equality; and, conversely, a new
equality can subsume previously known inequalities.

3 Fourier-Motzkin

The Fourier-Motzkin algorithm is a quantifier-elimination procedure for the the-
ory of the structure 〈R, 0,+, <〉, that is, the real numbers as an additive ordered
group. Nothing changes essentially if we add to the language of that theory the
constant 1 and scalar multiplication by c, for each rational c. Here we see that
the method can be used to infer comparisons between variables from additive
data, and that this can be transported to the multiplicative setting as well.

3.1 The Fourier-Motzkin Additive Module

The Fourier-Motzkin additive module begins with the comparisons ti �� c · tj
stored in the blackboard, where �� is one of ≤, <,≥, >,= (disequalities are not
used). It also makes use of comparisons ti �� 0, and all definitions ti =

∑
j cjtkj

in which the right-hand side is a sum. The goal is to learn new comparisons of
the form ti �� c · tj or ti �� 0. The idea is simple: to learn comparisons between
ti and tj , we need only eliminate all the other variables. For example, suppose,
after substituting equations, we have the following three inequalities:

3t1 + 2t2 − t3 > 0

4t1 + t2 + t3 ≥ 0

2t1 − t2 − 2t3 ≥ 0

Eliminating t3 from the first two equations we obtain 7t1 + 3t2 > 0, from which
we can conclude t1 > (−3/7)t2. Eliminating t3 from the last two equations

A Heuristic Prover for Real Inequalities 67

we obtain 10t1 + t2 ≥ 0, from which we can conclude t1 ≥ (−1/10)t2. More
generally, eliminating all the variables other than ti and tj gives the projection
of the convex region determined by the constraints onto the i, j plane, which
determines the strongest comparisons for ti and tj that are implied by the data.

Constants can be represented using the special variable t0 = 1, which can be
treated as any other variable. Thus eliminating all variables except for ti and t0
yields all comparisons between ti and a constant.

The additive module simply carries out the elimination for each pair i, j. In
general, Fourier-Motzkin elimination can require doubly-exponential time in the
number of variables. With a bit of cleverness, one can use previous eliminations
to save some work, but for a problem with n subterms, one is still left with
O(n2)-many instances of Fourier-Motzkin with up to n variables in each. It is
interesting to note that for the examples described in Section 6, the algorithm
performs reasonably well. In Section 4, however, we describe a more efficient
approach.

3.2 The Fourier-Motzkin Multiplicative Module

The Fourier-Motzkin multiplication module works analogously: given compar-
isons ti �� c · tj or ti �� 0 and definitions of the form ti =

∏
j t

nj

kj
, the module

aims to learn comparisons of the first two forms. The use of Fourier-Motzkin
here is based on the observation that the structure 〈R, 0,+, <〉 is isomorphic to
the structure 〈R+, 1,×, <〉 under the map x �→ ex. With some translation, the
usual procedure works to eliminate variables in the multiplicative setting as well.
In the multiplicative setting, however, several new issues arise.

First, the multiplicative module only makes use of terms ti which are known to
be strictly positive or strictly negative. The multiplicative module thus executes
a preprocessing stage which tries to infer new sign information from the available
data.

Second, the inequalities that are handled by the multiplicative module are
different from those handled by the additive module, in that terms can have a
rational coefficient. For example, we may have an inequality 3t22t5 > 1; here,
the multiplicative constant 3 would correspond to an additive term of log 3 in
the additive procedure. This difference makes it difficult to share code between
the additive and multiplicative modules, but the rational coefficients are easy to
handle.

Finally, the multiplicative elimination may produce information that cannot
be asserted directly to the blackboard, such as a comparison t2i < 3t2j or t

3
i < 2t2j .

In that case, we have to pay careful attention to the signs of ti and tj and their
relation to ±1 to determine which facts of the form ti �� c · tj can be inferred.
We compute exact roots of rational numbers when possible, so a comparison
t2i < 9t2j translates to ti < 3tj when ti and tj are known to be positive. As a last

resort, faced with a comparison like t2i < 2t2j , we use a rational approximation

of
√
2 to try to salvage useful information.

68 J. Avigad, R.Y. Lewis, and C. Roux

4 Geometric Methods

Although the Fourier-Motzkin modules perform reasonably well on small prob-
lems, they are unlikely to scale well. The problem is that many of the inequalities
that are produced when a single variable is eliminated are redundant, or sub-
sumed by the others. Thus, by the end of the elimination, the algorithm may be
left with hundreds or thousands of comparisons of the form ti �� c·tj , for different
values of c. Some optimizations are possible, such as using simplex based meth-
ods (e.g. [14]) to filter out some of the redundancies. In this section, however, we
show how methods of computational geometry can be used to address the prob-
lem more directly. On many problems in our test suite, performance is roughly
the same. But on some problems of moderate complexity we have found our im-
plementation of the geometric approach to be faster than the Fourier-Motzkin
approach by a factor of five, with the most notable improvement occurring in
problems where the ratio of learned comparisons to number of variables is high.

4.1 The Geometric Additive Module

Geometric methods provide an alternative perspective on the task of eliminating
variables. A linear inequality c ≤

∑k
i=1 ci · ti determines a half-space in Rk+1;

when c = 0, as in the homogenized inequalities in our current problem, the
defining hyperplane of the half-space contains the origin. A set of n homogeneous
inequalities determines an unbounded pyramidal polyhedron in Rk with vertex
at the origin, called a “polyhedral cone.” (Equalities, represented as (k − 1)-
dimensional hyperplanes, simply reduce the dimension of the polyhedron.) The
points inside this polyhedron represent solutions to the inequalities. The problem
of determining the strongest comparisons between ti and tj then reduces to
finding the maximal and minimal ratios of the i-th and j-th coordinates of
points inside the polyhedron.

We use the following well-known theorem of computational geometry (see [33,
Section 1.1]):

Theorem 1. A subset P ⊆ Rk is a sum of a convex hull of a finite point set
and a conical combination of vectors (a V-polyhedron) if and only if it is an
intersection of closed half-spaces (an H-polyhedron).

A description of a V-polyhedron is said to be a V-representation of the polyhe-
dron, and similarly for H-polyhedrons; there are a number of effective methods
to convert between representations.

The comparisons and additive equalities stored in the central blackboard es-
sentially describe an H-representation of a polyhedron. After constructing the
corresponding V-representation, it is easy to pick out the implied comparisons
as follows. For every pair of variables ti and tj , project the set of vertices to
the titj plane by setting all the other coordinates to 0. If there is anything to
be learned, all (nonzero) vertices must fall in the same halfplane; find the two
outermost points (as in Figure 2b) and compute their slopes to the origin. These

A Heuristic Prover for Real Inequalities 69

x

z

y

(a) A polyhedral cone in R3, defined by
three half-spaces

x

y

(b) Projected to the xy plane, the poly-
hedron implies x ≥ 2y and x ≥ − 1

3
y

Fig. 2. Variable elimination by geometric projection

slopes determine the coefficients c in two comparisons ti �� c · tj, and the relative
position of the two vertices determine the inequality symbols in place of ��.

We chose to use Avis’ lrs implementation of the reverse-search algorithm [4] to
carry out the geometric computations. Vertex enumeration algorithms typically
assume convexity of the polyhedron: that is, all inequalities are taken to be
weak. As it is essential for us to distinguish between > and ≥, we use a trick
taken from Dutertre and de Moura [14, Section 5]. Namely, given a set of strict

inequalities {0 <
∑k

i=1 c
m
i · ti : 0 ≤ m ≤ n}, we introduce a new variable δ

with constraints 0 ≤ δ and {δ ≤
∑k

i=1 c
m
i · ti : 0 ≤ m ≤ n}, and generate the

corresponding polyhedron. If, in the vertex representation, every vertex has a
zero δ-coordinate, then the inequalities are only satisfiable when δ = 0, which
implies that the system with strict inequalities is unsatisfiable. Otherwise, a
comparison ti �� c · tj is strict if and only if every vertex on the hyperplane
ti = c · tj has a zero δ coordinate, and weak otherwise.

4.2 The Geometric Multiplicative Module

Aswith the Fourier-Motzkinmethod,multiplicative comparisons 1 ≤
∏k

i=1 t
ei
i can

behandled ina similarmanner, by restricting to termswithknownsign information
and taking logarithms. Once again, there is a crucial difference from the additive
setting: taking the logarithm of a comparison c · ti · t−1

j �� 1 with c �= 1, one is
left with an irrational constant log c, and the standard computational methods for
vertex enumerations cannot perform exact computations with these terms.

To handle this situation we introduce new variables to represent the loga-
rithms of the prime numbers occurring in these constant terms. Let p1, . . . , pl
represent the prime factors of all constant coefficients in such a problem, and
for each 1 ≤ i ≤ l, let qi be a variable representing log pi. We can then rewrite
each c · ti · t−1

j �� 1 as pd0
1 · . . . · pdl

l · ti · t−1
j �� 1. Taking logarithms of all such

inequalities produces a set of additive inequalities in k + l variables.
In order to find the strongest comparisons between ti and tj , we can no longer

project to the titj plane, but instead look at the titjq1 . . . ql hyperplane. The sim-
ple arithmetical comparisons to find the two strongest comparisons are no longer

70 J. Avigad, R.Y. Lewis, and C. Roux

applicable; we face the harder problem of converting the vertex representation of a
polyhedron to a half-space representation. This problem is dual to the conversion
in the opposite direction, and the same computational packages are equipped to
solve it. Experimentally, we have found Fukuda’s cdd implementation ofMotzkin’s
double description method [15] to be faster than lrs for this procedure.

5 Arbitrary Function Symbols

The inferences captured by the addition and multiplication modules constitute
a fragment of the theory of real-closed fields, roughly, that theory “minus” the
distributivity of multiplication over addition [3]. Recall, however, that we have
also included arbitrary function symbols in the language. An advantage to our
framework is that we do not have to treat function terms as uninterpreted con-
stants; rather, we can seamlessly add modules that (partially) interpret these
symbols and learn relevant inequalities concerning them.

To start with, a user may wish to add axioms asserting that a particular
function f is nonnegative, monotone, or convex. For example, the following axiom
expresses that f is nondecreasing:

∀x, y. x ≤ y → f(x) ≤ f(y)

Given such an axiom, Polya’s function module searches for useful instantiations
during the course of a search, and may thus learn useful information.

Specifically, given a list of universal axioms in variables v1 . . . vn, the instan-
tiation module searches for relevant assignments vi �→ ci · tji , where each ci is
a constant and each tji is a subterm in the given problem. Each axiom is then
instantiated with these assignments, and added to the central blackboard as a
set of disjunctive clauses. As the search progresses, elements of these clauses are
refuted; when only one remains, it is added to the blackboard, as a new piece of
information available to all the modules.

The task is a variant of the classic matching problem, but there are at least
three aspects of our framework that present complications. First, given that we
consider terms with a rational scalar multiplicative constant, the algorithm has to
determine those values. So, in the example above, x and y can be instantiated to
an s-term c · ti for any c, when such an instantiation provides useful information.
Second, we need to take into account the associativity and commutativity of
operations like addition and multiplication, so, for example, a term f(x+ y) can
be unified with a term f(ti + tj + tk) found in the blackboard in multiple ways.
Finally, although the framework is built around the idea of restricting attention
to subterms occurring in the original problem, at times it is useful to consider
new terms. For example, given the axiom

∀x, y. f(x+ y) ≤ f(x) + f(y) ,

it is clearly a good idea to instantiate x and y to ti and tj, respectively, whenever
f(ti + tj), f(ti), and f(tj) all appear in the blackboard, even if the term f(ti)+
f(tj) does not.

A Heuristic Prover for Real Inequalities 71

In short, we wish to avoid difficult calculations of rational constants, expensive
matching up to associativity and commutativity (see e.g. [11]), and unrestrained
creation of new terms, while at the same time making use of potentially useful
instantiations. The solution we adopted is to use function terms to trigger and
constrain the matching process, an idea commonly used by SMT solvers [12] [27].
Given a universal axiom (∀v1 . . . vn)F (v1, . . . , vn), F is first converted into clausal
normal form, and each clause F ′ is treated separately. We take the trigger set
of F ′ to be the set of all functional subterms contained in F . A straightforward
unification procedure finds all assignments that map each trigger element to
a (constant multiple of a) problem term, and these assignments are used to
instantiate the full clause F ′. The instantiated clause is asserted to the central
blackboard, which checks for satisfied and falsified literals.

For u a term containing unification variables {vi} and σ an assignmentmapping
vi �→ ci · tji , the problem of matching σ(u) to a problem term tj is nontrivial: the
matching must be done modulo equalities stored in the blackboard. For example,
if t1 = t2 + t3, t4 = 2t3 − t5, and t6 = f(t1 + t4), then given the assignment
{v1 �→ t2−t5, v2 �→ 3t3}, the term u = f(v1+v2) should bematched to t6.We thus
combine a standard unification algorithm, which suggests candidate assignments
to the variables occurring in an axiom,withGaussian elimination over additive and
multiplicative equations, to find the relevant matching substitutions.

The function module thus provides a general and natural scheme for incorpo-
rating axioms. It is flexible enough to integrate other methods for matching ax-
ioms and triggering the creation of new problem terms. We expect to achieve bet-
ter performance for special function symbols, however, by refining the notion of
canonical normal form. For example, we can handle the associative-commutative
function min(c1 ·t1, . . . , cn ·tn) by sorting the arguments according to the ordering
on terms and scaling so that c1 = ±1. Similarly, we can assume that in any sub-
term |c·t|, we have c = 1. We intend to explore use for normal forms for arbitrary
powers and logarithms, making use of ideas from [26]. Moreover, special-purpose
modules can be used to contribute more refined information and inferences. For
example, we expect that such a special-purpose module is needed to effectively
manage the additive and multiplicative nature of the exponentiation, e.g. under
the identity exp(

∑
i ci · ti) =

∏
i exp(ti)

ci .

6 Examples

The current distribution of Polya includes a number of examples that are de-
signed to illustrate the method’s strengths, as well as some of its weaknesses.
For comparison, we verified a number of these examples in Isabelle, trying to use
Isabelle’s automated tools as much as possible. These include “auto,” an internal
tableau theorem prover which also invokes a simplifier and arithmetic reasoning
methods, and Sledgehammer [24], [8], which heuristically selects a body of facts
from the local context and background library, and exports it to various provers.
We also sent some of the inferences directly to the SMT solver Z3 [13].

72 J. Avigad, R.Y. Lewis, and C. Roux

To start with, Polya handles inferences involving linear real inequalities, which
are verified automatically by many interactive theorem proving systems. It can
also handle purely multiplicative inequalities such as

0 < u < v < 1, 2 ≤ x ≤ y ⇒ 2u2x < vy2, (1)

which are not often handled automatically. It can solve problems that combine
the two, like these:

x > 1 ⇒ (1 + y2)x > 1 + y2 (2)

0 < x < 1 ⇒ 1/(1− x) > 1/(1− x2) (3)

0 < u, u < v, 0 < z, z + 1 < w ⇒ (u+ v + z)3 < (u+ v + w)5 (4)

It also handles inferences that combine such reasoning with axiomatic properties
of functions, such as:

(∀x. f(x) ≤ 1), u < v, 0 < w ⇒ u+ w · f(x) < v + w (5)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, x < y ⇒ u+ f(x) < v + f(y) (6)

Isabelle’s auto and Sledgehammer fail on all of these but (5) and (6), which are
proved by resolution theorem provers. Sledgehammer can verify more compli-
cated variants of (5) and (6) by sending them to Z3, but fails on only slightly
altered examples, such as:

(∀x. f(x) ≤ 2), u < v, 0 < w ⇒ u+ w · (f(x) − 1) < v + w (7)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, 1 < v, x ≤ y ⇒
u+ f(x) ≤ v2 + f(y)

(8)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, 1 < w, 2 < s,
(w + s)/3 < v, x ≤ y ⇒ u+ f(x) ≤ v2 + f(y)

(9)

Z3 gets most of these when called directly, but also fails on (8) and (9). Moreover,
when handling nonlinear equations, Z3 “flattens” polynomials, which makes a
problem like (4) extremely difficult. It takes Z3 a couple of minutes when the
exponents 3 and 5 in that problem are replaced by 9 and 19, respectively. Polya
verifies all of these problems in a fraction of a second, and is insensitive to the
exponents in (4). It is also unfazed if any of the variables above are replaced by
more complex terms.

Polya has no problem with examples such as

0 < x < y, u < v ⇒ 2u+ exp(1 + x+ x4) < 2v + exp(1 + y + y4), (10)

mentioned in the introduction. Sledgehammer verifies this using resolution, and
slightly more complicated examples by calling Z3 with the monotonicity of exp.
Sledgehammer restricts Z3 to linear arithmetic so that it can reconstruct proofs
in Isabelle, so to verify (10) it provides Z3 with the monotonicity of the power
function as well. When called directly on this problem with this same informa-
tion, however, Z3 resorts to nonlinear mode, and fails.

A Heuristic Prover for Real Inequalities 73

Sledgehammer fails on an example that arose in connection with a formaliza-
tion of the Prime Number Theorem, discussed in [2]:

0 ≤ n, n < (K/2)x, 0 < C, 0 < ε < 1 ⇒
(
1 +

ε

3(C + 3)

)
· n < Kx (11)

Z3 verifies it when called directly. Sledgehammer also fails on these [3]:

0 < x < y ⇒ (1 + x2)/(2 + y)17 < (1 + y2)/(2 + x)10 (12)

(∀x, y. x < y →exp(x) < exp(y)),

0 < x < y ⇒ (1 + x2)/(2 + exp(y)) ≥ (2 + y2)/(1 + exp(x)) .
(13)

Z3 gets (12) but not (13). Neither Sledgehammer nor Z3 get these:

(∀x, y. f(x+ y) = f(x)f(y)), a > 2, b > 2 ⇒ f(a+ b) > 4 (14)

(∀x, y. f(x+ y) = f(x)f(y)), a+ b > 2, c+ d > 2 ⇒ f(a+ b+ c+ d) > 4
(15)

Polya verifies all of the above easily.
Let us consider two examples that have come up in recent Isabelle formaliza-

tions by the first author. Billingsley [7, page 334] shows that if f is any function
from a measure space to the real numbers, the set of continuity points of f is
Borel. Formalizing the proof involved verifying the following inequality:

i ≥ 0, |f(y)− f(x)| < 1/(2(i+ 1)),

|f(z)− f(y)| < 1/(2(i+ 1)) ⇒ |f(x)− f(y)| < 1/(i+ 1) . (16)

Sledgehammer and Z3 fail on this, while Polya verifies it given only the triangle
inequality for the absolute value.

The second example involves the construction of a sequence f(m) in an inter-
val (a, b) with the property that for every m > 0, f(m) < a + (b − a)/m. The
proof required showing that f(m) approaches a from the right, in the sense that
for every x > a, f(m) < x for m sufficiently large. A little calculation shows that
m ≥ (b − a)/(x − a) is sufficient. We can implicitly restrict the domain of f to
the integers by considering only arguments �m�; thus the required inference is

(∀m. m > 0 → f(�m�) < a+ (b − a)/�m�),
a < b, x > a, m ≥ (b − a)/(x− a) ⇒ f(�m�) < x . (17)

Sledgehammer and Z3 do not capture this inference, and the Isabelle formaliza-
tion was tedious. Polya verifies it immediately using only the information that
�x� ≥ x for every x.

When restricted to problems involving linear arithmetic and axioms for func-
tion symbols, the behavior of Z3 and Polya is similar, although Z3 is vastly more
efficient. As the examples above show, Polya’s advantages show up in problems
that combine multiplicative properties with either linear arithmetic or axioms.
In particular, Z3 procedures for handling nonlinear problems do not incorporate
axioms for function symbols.

74 J. Avigad, R.Y. Lewis, and C. Roux

Of course, Polya fails on wide classes of problems where other methods suc-
ceed. It is much less efficient than the best linear solvers, for example, and so
should not be expected to scale to large industrial problems. Because the multi-
plicative module only takes advantage of equations where the signs of all terms
are known, Polya fails disappointingly on the trivial inference

x > 0, y < z ⇒ xy < xz . (18)

But the problem is easily solved given a mechanism for splitting on the signs of y
and z (see the discussion in the next section). Another shortcoming, in contrast to
methods which begin by flattening polynomials, is that Polya does not, a priori,
make use of distributivity at all, beyond the distributivity of multiplication by
a rational constant over addition. Any reasonable theorem prover for the theory
of real closed fields can easily establish

x2 + 2x+ 1 ≥ 0, (19)

which can also be obtained simply by writing the left-hand side as (x+1)2. But,
as pointed out by Avigad and Friedman [3], the method implemented by Polya
is, in fact, nonterminating on this example.

We also tried a number of these problems with MetiTarski [1], which com-
bines resolution theorem proving with procedures for real-closed fields as well as
symbolic approximations to transcendental function. We found that MetiTarski
does well on problems in the language of real-closed fields, but not with axioms
for interpreted functions, nor with the examples with exp above.

For problems like these, time constraints are not a serious problem. Polya
solves a suite of 51 problems, including all the ones above, in about 2 seconds
on an ordinary desktop using the polytope packages, and in about 5.5 seconds
using Fourier-Motzkin. Test files for Isabelle, Z3, and MetiTarski, as well as more
precise benchmark results, can be found in the distribution.

7 Conclusions and Future Work

One advantage of the method described here is that it should not be difficult
to generate proof certificates that can be verified independently and used to
construct formal derivations within client theorem provers. For procedures using
real closed fields, this is much more difficult; see [23] [20].

Another interesting heuristic method, implemented in ACL2, is described in
[21]. We have not carried out a detailed comparison, but the method is consid-
erably different from ours. (For example, it flattens polynomial terms.)

We envision numerous extensions to our method. One possibility is to im-
plement case splitting and conflict-driven clause learning (CDCL) search, as do
contemporary SMT solvers. For example, recall that the multiplicative routines
only work insofar as the signs of subterms are known. It is often advantageous,
therefore, to split on the signs on subterms. More generally, we need to imple-
ment mechanisms for backtracking, and also make the addition and multiplica-
tion modules incremental.

A Heuristic Prover for Real Inequalities 75

There are many ways our implementation could be optimized, and, of course,
we would gain efficiency by moving from Python to a compiled language like
C++. We find it encouraging, however, that even our unoptimized prototype
performs well on interesting examples. It seems to us to be more important,
therefore, to explore extensions of these methods, and try to capture wider classes
of inequalities. This includes reasoning with exponents and logarithms; reasoning
about the integers as a subset of the reals; reasoning about common functions,
such as trigonometric functions; and heuristically allowing other natural moves in
the search, such as flattening or factoring polynomials, when helpful. We would
also like to handle second-order operators like integrals and sums, and integrate
better with external theorem proving methods.

We emphasize again that this method is not designed to replace conventional
methods for proving linear and nonlinear inequalities, which are typically much
more powerful and efficient in their intended domains of application. Rather, our
method is intended to complement these, capturing natural but heterogeneous
patterns of reasoning that would otherwise fall through the cracks. What makes
the method so promising is that it is open-ended and extensible. Additional
experimentation is needed to determine how well the method scales and where
the hard limitations lie.

Acknowledgment. We are grateful to Leonardo de Moura and the anonymous
referees for helpful corrections, information, and suggestions.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Prover for the Elemen-
tary Functions. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M.,
Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp.
217–231. Springer, Heidelberg (2008)

2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Trans. Comput. Logic 9(1), 2 (2007)

3. Avigad, J., Friedman, H.: Combining decision procedures for the reals. Log. Meth-
ods Comput. Sci. 2(4), 4:4, 42 (2006)

4. Avis, D.: Living with lrs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG
1998. LNCS, vol. 1763, pp. 47–56. Springer, Heidelberg (2000)

5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisability modulo theories.
In: Biere, A., et al. (eds.) Handbook of Satisability, pp. 825–885. IOS Press (2008)

6. Basu, S., Pollack, R., Roy, M.: Algorithms in real algebraic geometry. Springer
(2003)

7. Billingsley, P.: Probability and measure, 3rd edn. John Wiley & Sons Inc. (1995)
8. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT

Solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS
(LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

9. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press
(2004)

10. Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J.
Autom. Reasoning 41(1), 33–59 (2008)

11. Contejean, E.: A Certified AC Matching Algorithm. In: van Oostrom, V. (ed.) RTA
2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)

76 J. Avigad, R.Y. Lewis, and C. Roux

12. de Moura, L., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

13. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

15. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M.,
Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

16. Garling, D.J.H.: Inequalities: a journey into linear analysis. Cambridge University
Press, Cambridge (2007)

17. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfia-
bility over the reals. In: Gramlich, B., et al. (eds.) IJCAR, pp. 286–300 (2012)

18. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press,
Cambridge (1988), Reprint of the 1952 edition

19. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

20. Harrison, J.: Verifying Nonlinear Real Formulas Via Sums of Squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

21. Hunt Jr., W.A., Krug, R.B., Moore, J.: Linear and nonlinear arithmetic in ACL2.
In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 319–333.
Springer, Heidelberg (2003)

22. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: A new
algorithm for the projection of polytopes in halfspace representation. Technical
report, Department of Engineering, University of Cambridge (March 2004)

23. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arith-
metic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314.
Springer, Heidelberg (2005)

24. Meng, J., Paulson, L.: Lightweight relevance filtering for machine-generated reso-
lution problems. J. Applied Logic 7(1), 41–57 (2009)

25. Moore, R., Kearfott, R., Cloud, M.: Introduction to interval analysis. Society for
Industrial and Applied Mathematics (SIAM) (2009)

26. Moses, J.: Algebraic simplification: A guide for the perplexed. Communications of
the ACM 14, 527–537 (1971)

27. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM
Transactions of Programming Languages and Systems 1, 245–257 (1979)

28. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

29. Polya, G.: How to solve it. Princeton University Press, Princeton (1945)
30. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., et al. (eds.) ESCoR: Em-

pirically Successful Computerized Reasoning 2006. CEUR Workshop Proceedings,
pp. 18–33 (2006)

31. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. Communications of the ACM 8, 4–13 (1992)

32. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)
33. Ziegler, G.: Lectures on polytopes. Springer (1995)

A Formal Library for Elliptic Curves

in the Coq Proof Assistant

Evmorfia-Iro Bartzia1 and Pierre-Yves Strub2

1 INRIA Paris-Rocquencourt, France
iro.bartzia@inria.fr

2 IMDEA Software Institute, Spain
pierre-yves@strub.nu

Abstract. A preliminary step towards the verification of elliptic curve
cryptographic algorithms is the development of formal libraries with the
corresponding mathematical theory. In this paper we present a formaliza-
tion of elliptic curves theory, in the SSReflect extension of the Coq proof
assistant. Our central contribution is a library containing many of the
objects and core properties related to elliptic curve theory. We demon-
strate the applicability of our library by formally proving a non-trivial
property of elliptic curves: the existence of an isomorphism between a
curve and its Picard group of divisors.

1 Introduction

The design of cryptographic algorithms is a complicated task. Besides functional
correctness, cryptographic algorithms need to achieve contradictory goals such
as efficiency and side channel resistance. Faulty implementations of algorithms
may endanger security [4]. This is why formal assurance about their correctness
is essential. Our motivation is to develop libraries that allow the formal verifica-
tion of asymmetric cryptographic algorithms. As of today, the work on formal
verification of security protocols has been assuming that the cryptographic li-
braries correctly implement all algorithms [2]. The first step towards the formal
verification of cryptographic algorithms is the development of libraries that for-
mally express the corresponding mathematical theory. In this paper we present
a formal library for elementary elliptic curve theory that will enable formal anal-
ysis of elliptic-curve algorithms.

Elliptic curves have been used since the 19th century to approach a wide
range of problems such as the fast factorization of integers and the search for
congruent numbers. In the 20th century, researchers have regained interest in
elliptic curves because of their applications in cryptography, first suggested in
1985 independently by Neal Koblitz [14] and Victor Miller [15]. Their use in
cryptography relies principally on the existence of a group law that is a good
candidate for public key cryptography, as its Discrete Logarithm Problem is
hard relatively to the size of the parameters used. Elliptic curves also allow
the definition of digital signatures and of new cryptographic primitives, such
as identity-based encryption [17], based on bilinear (Weil and Tate) pairings.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 77–92, 2014.
© Springer International Publishing Switzerland 2014

78 E.-I. Bartzia and P.-Y. Strub

The mathematics of elliptic curves used in cryptography start from defining the
group law and continue to theory from algebraic geometry [9].

Because our formalization involves algebraic structures such as rings and
groups, polynomials, rational functions and matrices, we use the SSReflect ex-
tension [11] of the Coq proof-assistant [19] and its mathematical components
library [1]. The Coq development can be found on the second author website
(http://pierre-yves.strub.nu/).

Contributions. This paper presents an attempt to formalize non-trivial objects
of algebraic geometry such as elliptic curves, rational functions and divisors.
Our library is designed in such a way that will enable formal proofs of func-
tional correctness of elliptic-curve algorithms. We validate the applicability of
our theory by formally proving the Picard theorem, i.e. that an elliptic curve
is structurally equivalent with its Picard group of divisors. Our formalization
follows an elementary proof from Guillot [12] and Charlap [5].

Paper Outline. In sections 2 to 4, we present a formal proof of the following
proposition, referred later as the Picard theorem:

The set of points of an elliptic curve together with its operation
is isomorphic to its Picard group of divisors.

We first define the two structures - namely the elliptic curve (Section 2) and
the Picard group (Section 3) - and then prove that there exists a group iso-
morphism between them. In contrast to the definition of an elliptic curve, which
goes smoothly, the definition of the Picard group involves several steps and forms
the main matter of this paper. By construction, the Picard group of divisors is
equipped with a group structure. In Section 4, we prove that the two structures
are isomorphic. By transport of structure, the set of points of an elliptic curve
together with its operation forms a group. In Section 5 and 6, we discuss related
and future work.

2 Formalizing Elliptic Curves

An elliptic curve is a special case of a projective algebraic curve that can be
defined as follows:

Definition 1. Let K be a field. Using an appropriate choice of coordinates, an
elliptic curve E is a plane cubic algebraic curve E(x, y) defined by an equation of
the form:

E: y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6

where the ai’s are in K and the curve has no singular point (i.e. no cusps or
self-intersections). The set of points, written E(K), is formed by the solutions
(x, y) of E augmented by a distinguished point O (called point at infinity):

http://pierre-yves.strub.nu/

A Formal Library for Elliptic Curves in the Coq Proof Assistant 79

x

y

P

QQ

P �Q

P +Q

(a) y2 = x3 + x

x

y

(b) y2 = x3 − x+ 2

Fig. 1. Catalog of Elliptic Curves Graphs

E(K) = {(x, y) ∈ K | E(x, y)} ∪ {O}

Figure 1 provides graphical representations of such curves in the real plane.

When the characteristic of K is different from 2 and 3, the equation E(x, y)
can be simplified into its Weierstrass form:

y2 = x3 + ax+ b.

Moreover, such a curve does not present any singularity if Δ(a, b) = 4a3+27b2

— the curve’s discriminant — is not equal to 0. Our work lies in this setting.

The parametric type ec represents the points on a specific curve. It is param-
eterized by a K : ecuFieldType — the type of fields with characteristic not in
{2, 3} — and a E : ecuType — a record that packs the curve parameters a and
b along with a proof that Δ(a, b) �= 0. An inhabitant of the type ec is a point
of the projective plane (represented by the type point), along with a proof that
the point is on the curve.

������ ecuType := { A : K; B : K; _ : 4 * A^3 + 27 * B^2 != 0 }.

���	�
��� point := EC_Inf | EC_In � K & K.

��
�
��� "(x, y)" := (EC_In x y).

�����
��� oncurve (p : point) :=

� p �� (x, y)
��� y^2 == x^3 + A * x + B ���� true.

���	�
��� ec : ���� := EC p � oncurve p.

The points of an elliptic curve can be equipped with a structure of an abelian
group. We give here a geometrical construction of the law. Let P and Q be points
on the curve E and l be the line that goes through P and Q (or that is tangent
to the curve at P if P = Q). By the Bezout theorem, counting multiplicities, l
intersects E at a third point, denoted by P �Q. The sum P +Q is the opposite

80 E.-I. Bartzia and P.-Y. Strub

of P �Q, obtained by taking the symmetric of P �Q with respect to the x axis.
Figure 1 highlights this construction. To sum up:

1. O is defined to be the neutral element: ∀P. P +O = O + P = P ,
2. the opposite of a point (xP , yP) (resp. O) is (xP ,−yP) (resp. O), and
3. if three points are collinear, their sum is equal to O.

This geometrical definition can be translated into an algebraic setting, obtain-
ing polynomial formulas for the definition of the law. Having such polynomial
formulas leads to the following definitions:

�����
��� neg (p : point) :=

� p �� (x, y)
��� (x, -y) ���� EC_Inf.

�����
��� add (p1 p2 : point) :=

��
 p1 := � oncurve p1
��� p1 ���� EC_Inf ��

��
 p2 := � oncurve p2
��� p2 ���� EC_Inf ��

��
�� p1, p2 ��
�

| EC_Inf, _ => p2 | _, EC_Inf => p1

| (x1, y1), (x2, y2) =>

� x1 == x2
��� ... ����

��
 s := (y2 - y1) / (x2 - x1) ��

��
 xs := s^2 - x1 - x2 ��

(xs, - s * (xs - x1) - y1)

���.

Note that these definitions do not directly work with points on the curve, but
instead on points of the projective plane (points that do not lie on the curve are
projected to O). We then prove that these operations are internal to the curve
and lift them to E :

����� addO (p q : point): oncurve (add p q).

�����
��� addec (p1 p2 : ec) : ec := EC p1 p2 (addO p1 p2).

We link back this algebraic definition to its geometrical interpretation. First,
we define a function line: given two points P,Q on the curve, it returns the
equation ux + vy + c = 0 of the line (PQ) intersecting the curve at P and Q
(resp. the equation of the tangent to the curve at P if P = Q). We then show
that, if (PQ) is not parallel to the y axis (i.e. is not intersecting the curve at
O), then (PQ) is intersecting E exactly at P , Q and −(P + Q) = P � Q as
defined algebraically. This proof mainly relies on Vieta’s formulas that relate
the coefficients of a polynomial to sums and products of its roots. Although only
a specific instance of Vieta’s formulas is needed, we formalized the general ones:

Lemma 1 (Vieta’s formulas). For any polynomial p =
∑

i≤n aiX
i with roots

x1, . . . , xn, over an algebraically closed field, we have:

∀k. σk(x1, . . . , xn) = (−1)k · an−k

an

where σk is the kth-elementary symmetrical polynomial.

A Formal Library for Elliptic Curves in the Coq Proof Assistant 81

3 The Picard Group of Divisors

From now on, let E be a smooth elliptic curve with equation y2 = x3+ax+b over
the field K. We assume that K is not of characteristic 2, nor 3. Related to this
curve, we assume two Coq parameters K : ecuFieldType and E : ecuType K.
We now move to the construction of the Picard group Pic(E). This construction
is split into several steps:

1. We start by constructing two objects: the field of rational functions K(E)
over E and the group of E-divisors Div(E), i.e. the set of formal sums over
the points of E . From Div(E) we construct Div0(E) which is the subgroup of
zero-degree divisors.

2. We attach to each rational function f ∈ K(E) a divisor Div(f) (called prin-
cipal divisor) that characterizes f up to a scalar multiplication. This allows
us to define the subgroup Prin(E) of Div(E), namely the group of principal
divisors. The quotient group Div0(E)/Prin(E) forms the Picard group.

3.1 The Field of Rational Functions K(E)
We denote the ring of bivariate polynomials over K by K[x, y].

Definition 2. The ring K[E] of polynomials over the curve is defined as the
quotient ring of K[x, y] by the prime ideal 〈y2 − (x3 + ax + b)〉. The field K(E)
is defined as the field of fractions of the integral domain K[E].

In other words, K[E] is defined as the quotient of K[x, y] by the following
equivalence relation ∼:

p ∼ q if and only if ∃k ∈ K[x, y] such that p− q = k(y2 − x3 − ax− b).

Since the polynomials y2 and x3+ax+b are identified inK[E], we can associate,
to any equivalence class of K[E], a canonical representative of the form p1y+ p2
(p1, p2 ∈ K[x]), obtained by iteratively substituting y2 by x3 + ax + b in any
element of the equivalence class. As such, instead of going through the path of
formalizing ideals and ring quotients, we give a direct representation of K[E]
solely based on {poly K}, the type of univariate polynomials over K:

���	�
��� ecring := ECRing � {poly K} * {poly K}.

��
�
��� "[ecp p1 *Y + p2]" := (ECRing p1 p2).

�������� ecring_val (p : ecring) := ��
: ECRing p := p �� p.

The type ecring is simply a copy of {poly K} * {poly K}, an element
([ecp p1 *Y + p2] : ecring) representing the class of the polynomial p1y +
p2 ∈ K[E]. We explicitly define the addition and multiplication, that are compat-
ible with the one induced by the ring quotient, on the canonical representatives.

82 E.-I. Bartzia and P.-Y. Strub

For instance:

(p1y + p2)(q1y + q2) = p1q1y
2 + (p1q2 + q1p2)y + p2q2

= (p1q2 + q1p2)y + (p1q1(x
3 + ax+ b) + p2q2)

leads to:

��
�
��� XPoly := ’X^3 + A *: ’X + B.

�����
��� dotp (p q : ecring) := p.2 * q.2 + (p.1 * q.1) * Xpoly.

�����
��� mul (p q : ecring) := [ecp p.1*q.2 + p.2*q.1 *Y + dotp p q].

where .1 and .2 resp. stand for the first and second projections.

The set K[E], as a ring quotient by a prime ideal, is an integral domain. As
such, we are able to equip the type ecring with an integralDomain struc-
ture, proving all the required axioms of the structure. We can then use the
fraction [6] library to built the type {fraction ecring} representing K(E),
the field of fractions over K[E].

3.2 Order and Evaluation of Rational Functions

In complex analysis, the zeros and poles of functions, and their order of van-
ishing are notions related to analytic functions and their Laurent expansion;
while in abstract algebra, they refer to algebraic varieties and discrete valua-
tion rings [9]. For our formalization, we follow the more elementary definitions
given in [12]. More precisely, the evaluation of a function f ∈ K(E) at a point
P = (xP , yP) ∈ E is defined as follows:

Definition 3. A rational function f ∈ K(E) is said to be regular at P = (xP , yP)
if there exists a representative g/h of f such that h(xP , yP) �= 0. If f is regular at

P , the evaluation of f at P is the value f(P) = g(xP ,yP)
h(xP ,yP) , which is independent

of the representative of f . If f is not regular at P , then P is called a pole of f
and the evaluation of f at P is defined as f(P) = ∞.

However, such a definition cannot be formalized as-is. Instead, we rely on the
following extra notions allowing us to decompose any rational function in some
canonical representative:

Definition 4. A function u ∈ K(E) is called a uniformizer at P ∈ E(K) if
i) u(P) = 0, and ii) every non-zero function f ∈ K(E) can be written in the
form f = uvg with g(P) �= 0,∞ and v ∈ Z.

The exponent v is independent from the choice of the uniformizer and is called
the order of f at P , a quantity denoted by ordf (P).

Lemma 2. There exists a uniformizer for every point on the curve.

To get an intuition of the previous definitions, one can make a parallel with
the notion of multiplicity for roots of univariate polynomials or with the notion
of zeros and poles in K(x), the field of plain rational functions.

A Formal Library for Elliptic Curves in the Coq Proof Assistant 83

For instance, let us first consider the ring of polynomials K[x]. Let p be a
polynomial in K[x] and r be an element of K. We can factorize p as p = (x−r)mq
such that m ∈ N and q(r) �= 0. The exponent m is the multiplicity of p at r. The
multiplicity of r is 1 for the polynomial factor (x−r). Evaluation and multiplicity
are closely related: r is a root of p iff m > 0.

In an analogous way, we can consider the field of fractions K(E). Let P be
in E and f in K(E). Then, one can always write f in the form f = uvg with
v ∈ Z uniquely defined and P neither a zero nor a pole of g (g(P) �= 0,∞).
The exponent v is the order of f at P . (Here, the function u corresponds to the
polynomial factor (x − r) for univariate polynomials) If v > 0 then P is a zero
for f , and if v < 0 then P is a pole for f .

As said, the given definition of evaluation is not constructive. However, the
proof of Lemma 2 is constructive and gives all the necessary material to define
these notions. Let P be a point on the curve. For every f ∈ K[E] (of type ecring)
we explicitly give the decomposition f = uvP (n/d) such that n(P), d(P) �= 0, and
uP is a fixed rational function depending solely on P :

�����
��� unifun (P : point) : {fraction ecring} :=

��
�� P ��
�

| (x, y) => � y == 0
��� [ecp 1 *Y + 0] ���� [ecp 0 *Y + (’X - x)]

| EC_Inf => [ecp 0 *Y + X] / [ecp 1 *Y + 0]

���.

�����
��� poly_order (f : ecring) (P : point) :=

��
�� P ��
�

| EC_Inf => ��
 d := (degree f).-1 ��

(-d, (’X^d * f, [ecp 1 *Y + 0]^d)).

| (x, y) => ...

and then prove that the decomposition is correct and unique:

�����
��� uniok (f u : fraction ecring) (p : point) o (n d : ecring) :=

��
�� p ��
�

| (x, y) => [&& f == u^o * (n // d), n.[x, y] != 0 & d.[x, y] != 0]

| EC_Inf => ...

����� poly_order_correct:

����� (f : ecring) (p : point), f != 0 -> oncurve p ->

��
: (o, (g1, g2)) := poly_order f p ��

uniok (unifun p) f p o g1 g2.

����� uniok_uniq:

����� f p, f != 0 -> oncurve p ->

����� o1 o2 n1 n2 d1 d2,

uniok (unifun p) f p o1 n1 d1

-> uniok (unifun p) f p o2 n2 d2

-> (o1 == o2) && (n1 // d1 == n2 // d2).

84 E.-I. Bartzia and P.-Y. Strub

We then lift these definitions to the quotient {fraction ecring}, and prove
that all the lifted functions are stable by taking the quotient, allowing us to lift all
the proved properties overK[E] toK(E) (i.e. from ecring to {fraction ecring}).
For instance, the order on {fraction ecring} is defined as:

�����
��� orderf (f : {ratio ecring}) p : int :=

� \n_f == 0
��� 0 ���� (poly_order \n_f p).1 - (poly_order \d_f p).1.

�����
��� order (f : {fraction ecring}) p := orderf (repr f) p.

We can then formalize Definition 3 by a simple case analysis over the order,
relying on the decomposition of rational functions we have just formalized:

�����
��� eval (f : {fraction ecring}) p :=

��
�� p, order f p ��
�

| _, Posz _.+1 => 0

| _, Negz _ => [inf]

| (x, y), Posz 0 => (decomp f ecp).1.[x,y] / (decomp f ecp).2.[x,y]

| EC_Inf, _ => ...

���.

Due to the lack of space, we cannot give much details on the whole formal-
ization of valuation theory, and move to the key lemma of this section:

Lemma 3. A rational function f ∈ K(E) has a finite number of poles and zeros.
Moreover, assuming that K is algebraically closed,

∑
P∈E(ordP (f)) = 0.

This lemma will be central when moving to the construction of the isomor-
phism between an elliptic curve and its Picard group.

3.3 Principal Divisors

From now on, we assume that K is algebraically closed.

Principal divisors are introduced as a tool for describing the zeros and poles
of rational functions on an elliptic curve:

Definition 5 (Principal divisors). Given f ∈ K(E), f �= 0, the principal
divisor Div(f) of f is defined as the formal (finite) sum:

Div(f) =
∑

P∈E(ordP (f))(P).

Note that Div(f) is well defined because a rational function has only finitely
many zeros and poles. We write Prin(E) for the set of principal divisors.

The set Prin(E) forms a subgroup of Div(E), the set of formal sums over E , a
notion that we define now.

Definition 6. A divisor on an elliptic curve E is a formal sum of points

A Formal Library for Elliptic Curves in the Coq Proof Assistant 85

D =
∑

P∈E nP (P),

where nP ∈ Z, only finitely many nonzero. In other words, a divisor is any
expression taken in the free abelian group generated over E(K). The domain of
D is dom(D) = {P | nP �= 0}, and its degree is deg(D) =

∑
P∈E nP . For any

point P , the coefficient of P in D is coeff(P,D) = nP .
We write Div(E) for the set of divisors on E, and Div0(E) its subgroup com-

posed of divisors of degree 0.

The set of divisors on E is an abelian group. The zero divisor is the unique
divisor with all its coefficient set to 0, whereas the sum of two divisors is defined
as the point-wise addition.

Based on the quotient libraries of SSReflect, we develop the theory of free
abelian groups. Let T be a type. We first define the type of pre-free group as the
collection of all sequences s of type int * T s.t. no pair of the form (0, _) can
appear in s and for any z : T, a pair of the form (_, z) can appear at most
once in s.

�����
��� reduced (D : seq (int * T)) :=

(uniq [seq zx.2 | zx <- D])

&& (all [pred zx | zx.1 != 0] D).

������ prefreeg : ���� := mkPrefreeg {

seq_of_prefreeg : seq (int * T);

_ : reduced seq_of_prefreeg

}.

The intent of prefreeg is to give a unique representation of a free-group
expression, up to the order of the coefficients. For instance, if D = k1x1 + · · ·+
knxn (with all the xi’s pairwise distinct and all the ki’s in Z∗), then the reduced
sequence s = [:: (k_1, x_1), ..., (k_n, x_n)], or any sequence equal up
to a permutation to s, is a valid representation of D. The type freeg of free-
groups is then obtained by quotienting prefreeg by the perm_eq equivalence
relation.

From there, we equip the type freeg with a group structure (the operation is
noted additively), and define all the usual notions related to free groups (domain,
coefficient, degree, ...). For instance, assume G : zmodType (G is a Z-module)
and f : T -> G. Then, f defines a unique group homomorphism from freeg to
G that can be defined as follows:

�����
��� prelift (D : seq (int * T)) : G :=

\sum_(x <- D) (f x.2) * x.1.

�����
��� lift (s : prefreeg T) : G := prelift s.

�����
��� fglift (D : {freeg T}) := lift (repr D).

One can check that the fglift function defines the homomorphism∑
(z,x)∈D zf(x)

86 E.-I. Bartzia and P.-Y. Strub

The coefficient coeff and degree deg functions can be then defined as:

�����
��� coeff (t : T) (D : {freeg T}) :=

fglift (� x => (x == t)) D.

�����
��� deg (D : {freeg K}) : int :=

fglift (� x => 1) D.

The Group of Principal Divisors. Returning to principal divisors, one can
now check that Prin(E) is a subgroup of Div0(E). Indeed, i) deg(divf) = 0
by Lemma 3, and ii) since the order function is multiplicative (ordp(f/g) =
ordp(f)− ordp(g)), we have div(f/g) = div(f)− div(g).

Moreover, it is now clear that the coefficients associated in Div(f), to each
point P , is the order of the function f at P , highlighting the fact that a divisor
wraps up the zeros and poles of f .

Formally, we define principal divisors for polynomials on the curve with the
function ecdivp:

�����
��� ecdivp (f : ecring) : {freeg (point)} :=

\sum_(p <- ecroots f)

<< (order f (p.1, p.2)) * (p.1, p.2) >>

+ << order f EC_Inf * EC_Inf >>.

where << z * P >> stands for the divisor z(P) and the function ecroots takes
a polynomial of K[E] and returns the list of its finite zeros:

�����
��� ecroots f : seq (K * K) :=

��
 forx := 	� x =>

��
 sqrts := roots (’X^2 - (’X^3 + A *: ’X + B).[x]) ��

[seq (x, y) | y <- sqrts & f.[x, y] == 0]

��

undup (flatten ([seq forx x | x <- roots (norm f)])).

The function ecroots relies on norm(f), a polynomial in K[x] associated to
f that has the following property: (x, y) is a zero of f if and only if x is a zero
of norm(f) and y2 = x3 + ax+ b.

Next, we lift the definition of principal divisors to K(E), prove its correctness
and recast the key Lemma 3 (deg_ecdiv_eq0):

��
�
��� "\n_f" := (numerator f).

��
�
��� "\d_f" := (denominator f).

�����
��� ecdiv_r (f : {ratio ecring}) :=

� \n_f == 0
��� 0 ���� (ecdivp \n_f) - (ecdivp \d_f).

�����
��� ecdiv := lift_fun1 {fraction ecring} ecdiv_r.

A Formal Library for Elliptic Curves in the Coq Proof Assistant 87

����� ecdiv_coeffE (f : {fraction ecring}) p:

coeff p (ecdiv f) = order f p.

����� deg_ecdiv_eq0 (f : {fraction ecring}): deg (ecdiv f) = 0.

3.4 Divisor of a Line

Before moving to the definition of the Picard group, we characterize the divisors
of some specific rational functions. These divisors will later help formalize the
construction of the Picard group:

Definition 7. A line l ∈ K(E) is any rational function of the form l(x, y) =
ax+ by + c with a, b, c ∈ K not all zero.

For instance, if (PQ) is the line intersecting the curve at P and Q, then we
know that (PQ) intersects E at exactly three points (counting multiplicities):
P , Q and P � Q. Assuming that P , Q and P � Q are all finite, these three
points are the unique zeros of the rational function l associated to (PQ) and
Div(l) = (P)+(Q)+(P�Q)−3(O). This relation still holds when one or several of
these three points are equal toO. For instance, Div(x− xP) = (P)+(−P)−2(O),
where x− xP is the line intersecting E at P , −P and O.

3.5 The Picard Group

Definition 8. The Picard group Pic(E) is the group quotient Div0(E)/Prin(E).
Note that the degree is well defined on the divisor class group since if D1 =
D2 +Div(f) then degD1 = degD2 + deg(Div(f)) = degD2 + 0 = degD2.

In other words, Pic(E) is defined as the quotient of Div0(E) by the following
equivalence relation ∼:

D1 ∼ D2 if and only if ∃f ∈ K(E) such that div(f) = D1 −D2.

a notion that we formalize as follows:

�����
��� ecdeqv D1 D2 :=

(����
� f : {fraction ecring}, ecdiv f = D1 - D2).

��
�
��� "D1 :~: D2" := (ecdeqv D1 D2).

We do not give a direct construction of Pic(E) but instead prove that any
class of Pic(E) can be represented by a divisor of the form (P)− (O).

The construction of this representative is based on a procedure called Linear
Reduction. Assume that P and Q are two finite points of E(K). We know that
the divisor of the line l intersecting E at P and Q is Div(l) = (P) + (Q) +
(P �Q)− 3(O). Likewise, the divisor of the line l′ intersecting E at P �Q and
−(P �Q) (= P +Q) is Div(l′) = (P +Q) + (P �Q)− 2(O). Hence,

88 E.-I. Bartzia and P.-Y. Strub

Div(l/l′) = Div(l)−Div(l′)
= (P) + (Q)− (P +Q)− (O)

and, (P) + (Q) ∼ (P +Q) + (O).

Iterating this procedure, we can reduce any divisor of the form:

(P1) + · · ·+ (Pn)− (Q1)− · · · − (Qk) + r(O)

to an equivalent one (P) − (Q) + r′(O), with r′ ∈ Z. Using one more time
the same construction, one can show that (P) − (Q) + n′(O) is equivalent to
(P −Q) + n′′(O) where n′, n′′ ∈ Z.

The lr function formally defines the linear reduction procedure:

�����
��� fgpos (D : {freeg K}) :=

\sum_(p <- dom D | coeff p D > 0) coeff p D.

�����
��� fgneg (D : {freeg K}) :=

\sum_(p <- dom D | coeff p D < 0) -(coeff p D).

�����
��� lr_r (D : {freeg point}) :=

��
 iter p n := iterop _ n + p EC_Inf ��

\sum_(p <- dom D | p != EC_Inf) (iter p ‘|coeff p D|).

�����
��� lr (D : {freeg point}) : point :=

��
: (Dp, Dn) := (fgpos D, fgneg D) ��

lr_r Dp - lr_r Dn.

����� ecdeqv_lr D: all oncurve (dom D) ->

D :~: << lr D >> + << deg D - 1 *g EC_Inf >>.

where (Dp, Dn) := (fgpos D, fgneg D) is the decomposition of D into its
negative and positive parts.

The lemma ecdeqv_lr states that any divisor is equivalent to a divisor of the
form (P) + (degD − 1)(O). In the context of Pic(E), this means that any class
contains a divisor of the form (P)−(O) (recall that Pic(E) is a group quotient of
Div0(E) — the divisors of degree 0). In the next section, we end the construction
of the Picard group by proving that at most one such representative can be found
in each class of Pic(E).

4 Linking Pic(E) to E(K)

In this section, we finish our formal construction of the Picard group and prove
the existence of an isomorphism between Pic(E) and E(K). We start by defining
a canonical representative for the classes of Pic(E):

Lemma 4. For every class of Pic(E), there exists a unique representative of the
form (P)− (O) with P ∈ E(K).

A Formal Library for Elliptic Curves in the Coq Proof Assistant 89

From Section 3.5, we already know that each class of Pic(E) contains one such
representative. Assume now that (P)−(O) and (Q)−(O) are two representatives
of a class of Pic(E) with P �= Q. Such an assumption allows us to find a rational
function h ∈ K(E) s.t. every rational function f ∈ K(E) can be expressed as
a polynomial fraction of h. This implies that K(E) and K(x) are isomorphic.
However, since K(E) is a field extension of degree 2 of K(x), such an h cannot
exist. Hence, P = Q:

����� lr_uniq: << p >> :~: << q >> -> p = q.

The Picard group can now be formally defined as the set of divisors of the
form (P)− (O). It remains to prove the existence of a bijection between Pic(E)
and E(K). Namely, the function

φ : E(K) → Pic(E)
P �→ [(P)− (O)]

is our isomorphism. Indeed, φ is clearly bijective and from the results of Section 3:

φ(P1)− φ(P2) = [(P1)− (O)]− [(P2)− (O)] = [(P1)− (P2)]
= [(P1 − P2)− (O)] = φ(P1 − P2).

In our formalization, we directly use the linear reduction function lr in place
of φ−1. For instance, we prove that lr commutes with the curve operations and
maps (P)− (O) to P ∈ K(E):

����� lrB: ����� (D1 D2: {freeg point},

deg D1 = 0 -> all oncurve (dom D1) ->

deg D2 = 0 -> all oncurve (dom D2) ->

lr (D1 - D2) = lr D1 - lr D2.

����� lrpi: ����� p : point,

oncurve p -> lr (<<p>> - <<EC_Inf>>) = p.

This allows us to transport the structure from Pic(E) to E(K), proving that
E(K) is a group.

5 Related Work

Hurd et al. [13] formalize elliptic curves in higher order logic using the HOL-4
proof assistant. Their goal is to create a “gold-standard” set of elliptic curve
operations mechanized in HOL-4, which can be used afterwards to verify ec-
algorithms for scalar multiplication. They define datatypes to represent elliptic
curves on arbitrary fields (in both projective and affine representation), rational
points and the elliptic curve group operation, although they do not provide
a proof that the operation indeed satisfies the group properties. In the end,
they state the theorem that expresses the functional correctness of the ElGamal
encryption scheme for elliptic curves.

90 E.-I. Bartzia and P.-Y. Strub

Smith et al. [18] use the Verifun proof assistant to prove that two represen-
tations of an elliptic curve in different coordinate systems are isomorphic. Their
theory applies to elliptic curves on prime fields. They define data structures for
affine and projective points and the functions that compute the elliptic curve
operations in affine and Jacobian coordinates. In their formalization there is no
datatype for elliptic curves, an elliptic curve is a set of points that satisfy a set of
conditions. They define the transformation functions between the two systems of
coordinate and prove that for elliptic curve points the transformation functions
commute with the operations and that both representations of elliptic curves in
affine or Jacobian coordinates are isomorphic.

Théry [20] present a formal proof that an elliptic curve is a group using the
Coq proof assistant. The proof that the operation is associative relies heavily on
case analysis and requires handling of elementary but subtle geometric trans-
formations and therefore uses computer-algebra systems to deal with non-trivial
computation. In our development, we give a different proof of the associativity of
the elliptic curve group law: we define an algebraic structure (the Picard group
of divisors) and proceed to prove that the elliptic curve is isomorphic to this
structure. Our formalization is more structural than [20] in the sense that it
involves less computation and the definition of new algebraic structures.

As in [13] and [18] we wish to develop libraries that will enable the formal
analysis of elliptic curve algorithms and our proofs follow textbook mathematics.
As in [20], we give a formal proof of the group law for elliptic curves. Neverthe-
less, the content of our development is quite different from the related work.
To the extent of our knowledge this is the first formalization of divisors and
rational functions of a curve, which are objects of study of algebraic geome-
try. Such libraries may allow the formalization of non-trivial algorithms that
involve divisors (such as the Miller algorithm for pairings [16]), isogenies (such
as [3], [8]) or endomorphisms on elliptic curves (such as the GLV algorithm for
scalar multiplication [10]).

6 Future Work

This paper presents a formalization of the elementary elliptic curve theory in the
SSReflect extension of Coq. Our central result is the formal proof of the Picard
theorem which is a structure theorem for elliptic curves. A direct implication
of this theorem is the associativity of the elliptic curve group operation. Our
development includes generic libraries formalizing divisors and rational functions
that are designed to enable the formal verification of elliptic curve cryptographic
algorithms. Our formalization required 10k lines of code out of which 6.5k lines
were required for the proof of the Picard theorem. The SSReflect features and
methodology for the formalization of algebraic structures have been very helpful
to our development.

The proof layout follows the ones that can be found in most graduate text
books about smooth algebraic curves, but instantiated to the case of elliptic
curves. Generalizing our development should not deeply change the general struc-
ture, but will certainly require the development of a lot of background theory:

A Formal Library for Elliptic Curves in the Coq Proof Assistant 91

affine spaces, multinomials, rational maps, ring quotients, valuation rings, formal
differentials, ... to name some of them.

To further validate our development, we are working on the formal proof of
correctness of an implementation of the GLV algorithm [10]. The GLV algo-
rithm is a non-generic scalar multiplication algorithm that uses endomorphisms
on elliptic curves to accelerate computation. It is composed of three independent
algorithms: parallel exponentiation, decomposition of the scalar, computation of
endomorphisms on elliptic curves. The third algorithm involves background from
algebraic geometry that can be provided by the rational functions’ libraries pre-
sented in this paper. We aim to generate a certified implementation of the GLV
algorithm based on the methodology described in [7]. Another algorithm that
would be interesting to formalize is the Miller algorithm for bilinear pairings [16],
which would rely on our divisors’ library to compute pairings by evaluating linear
functions on divisors.

In the development presented in this paper, we chose to represent elliptic
curves in an affine coordinate system. However, projective, Jacobian and other
coordinate systems are widely used in practice mainly for reasons of efficiency.
Indeed, nowadays the search of optimal coordinate-systems is an active domain
of research in elliptic curve cryptography. Future work is to extend our libraries
to isomorphic coordinate representations in order to allow formal analysis of
algorithms in different coordinate systems. Furthermore, in our development we
treat elliptic curves on fields with characteristic different from 2 and 3 although
in cryptography binary fields are used often. Generalizing our development to
more general curves is a natural extension.

Acknowledgements. We thank Philippe Guillot and Benjamin Smith for their
discussions on the theory of elliptic curves. We also thank Cyril Cohen, Assia
Mahboubi and all the SSReflect experts for spending time explaining the inter-
nals of the SSReflect libraries. Finally, we thank Karthikeyan Bhargavan, Cătălin
Hriţcu, Robert Kunnemann, Alfredo Pironti, Ben Smyth for their feedback and
discussions on this paper.

References

1. The mathematical components project,
http://www.msr-inria.fr/projects/mathematical-components/

2. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol imple-
mentations: a survey. In: Formal Aspects of Computing, pp. 1–25 (2012)

3. Brier, E., Joye, M.: Fast point multiplication on elliptic curves through isogenies.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643,
pp. 43–50. Springer, Heidelberg (2003)

4. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and
elimination of an ecc-related software bug attack. Cryptology ePrint Archive, Re-
port 2011/633 (2011), http://eprint.iacr.org/

5. Charlap, L.S., Robbins, D.P.: Crd expository report 31 an elementary introduction
to elliptic curves (1988)

http://www.msr-inria.fr/projects/mathematical-components/
http://eprint.iacr.org/

92 E.-I. Bartzia and P.-Y. Strub

6. Cohen, C.: Pragmatic quotient types in Coq. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213–228. Springer, Heidelberg
(2013)

7. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational
algebra in coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 83–98. Springer, Heidelberg (2012)

8. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny de-
compositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

9. Fulton, W.: Algebraic curves - an introduction to algebraic geometry (reprint vrom
1969). Advanced book classics. Addison-Wesley (1989)

10. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

11. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, INRIA (2008)

12. Guillot, P.: Courbes Elliptiques, une présentation élémentaire pour la cryptogra-
phie. Lavoisier (2010)

13. Hurd, J., Gordon, M., Fox, A.: Formalized elliptic curve cryptography. High Con-
fidence Software and Systems (2006)

14. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

15. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

16. Miller, V.S.: Short programs for functions on curves. IBM Thomas J. Watson
Research Center (1986)

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

18. Smith, E.W., Dill, D.L.: Automatic formal verification of block cipher implemen-
tations. In: FMCAD, pp. 1–7 (2008)

19. The Coq development team. The Coq Proof Assistant Reference Manual Version
8.4 (2013), http://coq.inria.fr

20. Théry, L.: Proving the group law for elliptic curves formally. Technical Report
RT-0330, INRIA (2007)

http://coq.inria.fr

Truly Modular (Co)datatypes for Isabelle/HOL

Jasmin Christian Blanchette1, Johannes Hölzl1, Andreas Lochbihler2,
Lorenz Panny1, Andrei Popescu1,3, and Dmitriy Traytel1

1 Fakultät für Informatik, Technische Universität München, Germany
2 Institute of Information Security, ETH Zurich, Switzerland

3 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania

Abstract. We extended Isabelle/HOL with a pair of definitional commands for
datatypes and codatatypes. They support mutual and nested (co)recursion through
well-behaved type constructors, including mixed recursion–corecursion, and are
complemented by syntaxes for introducing primitively (co)recursive functions
and by a general proof method for reasoning coinductively. As a case study, we
ported Isabelle’s Coinductive library to use the new commands, eliminating the
need for tedious ad hoc constructions.

1 Introduction

Coinductive methods are becoming widespread in computer science. In proof assistants
such as Agda, Coq, and Matita, codatatypes and coinduction are intrinsic to the log-
ical calculus [2]. Formalizations involving programming language semantics, such as
the CompCert verified C compiler [17], use codatatypes to represent potentially infinite
execution traces. The literature also abounds with “coinductive pearls,” which demon-
strate how coinductive methods can lead to nicer solutions than traditional approaches.

Thus far, provers based on higher-order logic (HOL) have mostly stood on the side-
lines of these developments. Isabelle/HOL [24, Part 1; 25] provides a few manually
derived codatatypes (e.g., lazy lists) in the Coinductive entry of the Archive of Formal
Proofs [18]. This library forms the basis of JinjaThreads [19], a verified compiler for
a Java-like language, and of the formalization of the Java memory model [21]. The
manual constructions are heavy, requiring hundreds of lines for each codatatype.

Even in the realm of datatypes, there is room for improvement. Isabelle’s datatype
package was developed by Berghofer and Wenzel [4], who could draw on the work of
Melham [23], Gunter [11, 12], Paulson [28], and Harrison [14]. The package supports
positive recursion through functions and reduces nested recursion through datatypes to
mutual recursion, but otherwise allows no nesting. It must reject definitions such as

datatype α treeFS = TreeFS α (α treeFS fset)

where fset designates finite sets (a non-datatype). Moreover, the reduction of nested to
mutual recursion makes it difficult to specify recursive functions truly modularly.

We introduce a definitional package for datatypes and codatatypes that addresses the
issues noted above. The key notion is that of a bounded natural functor (BNF), a type
constructor equipped with map and set functions and a cardinality bound (Section 2).
BNFs are closed under composition and least and greatest fixpoints and are expressible
in HOL. Users can register well-behaved type constructors such as fset as BNFs.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 93–110, 2014.
© Springer International Publishing Switzerland 2014

94 J.C. Blanchette et al.

The BNF-based datatype and codatatype commands provide many conveniences
such as automatically generated discriminators, selectors, map and set functions, and
relators (Sections 3 and 4). Thus, the command

codatatype (lset: α) llist (map: lmap rel: lrel) =
lnull: LNil | LCons (lhd: α) (ltl: α llist)

defines the type α llist of lazy lists over α, with constructors LNil :: α llist and LCons ::
α⇒ α llist ⇒ α llist, a discriminator lnull :: α llist ⇒ bool, selectors lhd :: α llist ⇒ α
and ltl :: α llist ⇒ α llist, a set function lset :: α llist ⇒ α set, a map function lmap ::
(α⇒ β) ⇒ α llist ⇒ β llist, and a relator lrel :: (α⇒ β⇒ bool) ⇒ α llist ⇒ β llist ⇒
bool. Intuitively, the codatatype keyword indicates that the constructors can be applied
repeatedly to produce infinite values—e.g., LCons 0 (LCons 1 (LCons 2 . . .)).

Nesting makes it possible to mix recursion and corecursion arbitrarily. The next com-
mands introduce the types of Rose trees with finite or possibly infinite branching (list
vs. llist) and with finite or possibly infinite paths (datatype vs. codatatype):

datatype α tree = Tree (lab: α) (sub: α tree list)
datatype α treeω = Treeω (labω: α) (subω: α treeω llist)
codatatype α ltree = LTree (llab: α) (lsub: α ltree list)
codatatype α ltreeω = LTreeω (llabω: α) (lsubω: α ltreeω llist)

Primitively (co)recursive functions can be specified using primrec and primcorec
(Sections 5 and 6). The function below constructs a possibly infinite tree by repeatedly
applying f :: α⇒ α llist to x. It relies on lmap to construct the nested llist modularly:

primcorec iterate_�ltreeω :: (α⇒ α llist)⇒ α⇒ α ltreeω where
iterate_�ltreeω f x = LTreeω x (lmap (iterate_�ltreeω f) (f x))

An analogous definition is possible for α ltree, using list’s map instead of lmap.
For datatypes that recurse through other datatypes, and similarly for codatatypes,

old-style mutual definitions are also allowed. For the above example, this would mean
defining iterate_�ltreeω by mutual corecursion with iterate_�ltreesω :: (α⇒ α llist) ⇒
α llist ⇒ α ltreeω llist. Despite its lack of modularity, the approach is useful both for
compatibility and for expressing specifications in a more flexible style. The package
generates suitable (co)induction rules to facilitate reasoning about the definition.

Reasoning coinductively is needlessly tedious in Isabelle, because the coinduct
method requires the user to provide a witness relation. Our new coinduction method
eliminates this boilerplate; it is now possible to have one-line proofs by coinduction
auto (Section 7). To show the package in action, we present a theory of stream proces-
sors, which combine a least and a greatest fixpoint (Section 8). In addition, we describe
our experience porting the Coinductive library to use the new package (Section 9). A
formal development accompanies this paper [6].

The package has been part of Isabelle starting with version 2013. The implementa-
tion is a significant piece of engineering, at over 18 000 lines of Standard ML code and
1 000 lines of Isabelle formalization. The features described here are implemented in
the development repository and are expected to be part of version 2014. (In the current
implementation, the BNF-based datatype command is suffixed with _new to avoid a
clash with the old package.) The input syntax and the generated constants and theorems
are documented in the user’s manual [7].

Truly Modular (Co)datatypes for Isabelle/HOL 95

2 Low-Level Constructions

At the lowest level, each (co)datatype has a single unary constructor. Multiple curried
constructors are modeled by disjoint sums (+) of products (×). A (co)datatype defi-
nition corresponds to a fixpoint equation. For example, the equation β = unit+α×β
specifies either (finite) lists or lazy lists, depending on which fixpoint is chosen.

Bounded natural functors (BNFs) are a semantic criterion for where (co)recursion
may appear on the right-hand side of an equation. The theory of BNFs is described in a
previous paper [33] and in Traytel’s M.Sc. thesis [32]. We refer to either of these for a
discussion of related work. Here, we focus on implementational aspects.

There is a large gap between the low-level view and the end products presented to
the user. The necessary infrastructure—including support for multiple curried construc-
tors, generation of high-level characteristic theorems, and commands for specifying
functions—constitutes a new contribution and is described in Sections 3 to 6.

Bounded Natural Functors. An n-ary BNF is a type constructor equipped with a map
function (or functorial action), n set functions (or natural transformations), and a car-
dinal bound that satisfy certain properties. For example, llist is a unary BNF. Its relator
lrel extends binary predicates over elements to binary predicates over lazy lists:

lrel R xs ys = (∃zs. lset zs ⊆ {(x, y) | R x y} ∧ lmap fst zs = xs ∧ lmap snd zs = ys)

Additionally, lbd bounds the number of elements returned by the set function lset; it
may not depend on α’s cardinality. To prove that llist is a BNF, the greatest fixpoint
operation discharges the following proof obligations:1

lmap id= id lmap (f ◦ g) = lmap f ◦ lmap g
∧

x. x ∈ lset xs =⇒ f x = g x

lmap f xs = lmap g xs|lset xs| ≤o lbd lset ◦ lmap f = image f ◦ lset
ℵ0 ≤o lbd lrel R �•�• lrel S � lrel (R �•�• S)

(The operator ≤o is a well-order on ordinals [8], � denotes implication lifted to binary
predicates, and �•�• denotes the relational composition of binary predicates.) Internally,
the package stores BNFs as an ML structure that combines the functions, the basic
properties, and derived facts such as lrelR �•�• lrel S = lrel (R�•�• S), lrel (op=)= (op=),
and R � S =⇒ lrel R � lrel S.

Given an n-ary BNF, the n type variables associated with set functions, and on which
the map function acts, are live; any other variables are dead. The notation σ 〈α |Δ〉
stands for a BNF of type σ depending on the (ordered) list of live variables α and the
set of dead variables Δ. Nested (co)recursion can only take place through live variables.

A two-step procedure introduces (co)datatypes as solutions to fixpoint equations:

1. Construct the BNFs for the right-hand sides of the equations by composition.
2. Perform the least or greatest fixpoint operation on the BNFs.

Whereas codatatypes are necessarily nonempty, some datatype definitions must be
rejected in HOL. For example, codatatype α stream = SCons (shd: α) (stl: α stream),

1 The list of proof obligations has evolved since our previous work [33]. The redundant cardi-
nality condition |{xs | lset xs ⊆ A}| ≤o (|A|+2)lbd has been removed, and the preservation of
weak pullbacks has been reformulated as a simpler property of the relator.

96 J.C. Blanchette et al.

the type of infinite streams, can be defined only as a codatatype. In the general BNF
setting, each functor must keep track of its nonemptiness witnesses [9].

The Fixpoint Operations. The LFP operation constructs a least fixpoint solution
τ1, . . . , τn to n mutual fixpoint equations βj = σj. Its input consists of n BNFs sharing
the same live variables [32, 33]:

LFP : n (m+ n)-ary BNFs σj 〈α, β |Δ j〉 →
• n m-ary BNFs τj 〈α |Δ1 ∪ ·· · ∪ Δn〉 for newly defined types τj

• n constructors ctor_�τj :: σj[β �→ τ]⇒ τj

• n iterators iter_�τj :: (σ1 ⇒ β1)⇒ ··· ⇒ (σn ⇒ βn)⇒ τj ⇒ βj

• characteristic theorems including an induction rule

(The fixpoint variables βj are harmlessly reused as result types of the iterators.) The
contract for GFP, the greatest fixpoint, is identical except that coiterators and coinduct-
ion replace iterators and induction. The coiterator coiter_�τj has type (β1 ⇒σ1)⇒···⇒
(βn ⇒ σn)⇒ βj ⇒ τj. An iterator consumes a datatype, peeling off one constructor at
a time; a coiterator produces a codatatype, delivering one constructor at a time.

LFP defines algebras and morphisms based on the equation system. The fixpoint, or
initial algebra, is defined abstractly by well-founded recursion on a sufficiently large
cardinal. The operation is defined only if the fixpoint is nonempty. In contrast, GFP
builds a concrete tree structure [33]. This asymmetry is an accident of history—an ab-
stract approach is also possible for GFP [30].

Nesting BNFs scales much better than the old package’s reduction to mutual recur-
sion [32, Appendix B]. On the other hand, LFP and GFP scale poorly in the number of
mutual types; a 12-ary LFP takes about 10 minutes of CPU time on modern hardware.
Reducing mutual recursion to nested recursion would circumvent the problem.

The ML functions that implement BNF operations all adhere to the same pattern:
They introduce constants, state their properties, and discharge the proof obligations
using dedicated tactics. About one fifth of the code base is devoted to tactics. They rely
almost exclusively on resolution and unfolding, which makes them fast and reliable.

Methodologically, we developed the package in stages, starting with the formaliza-
tion of a fixed abstract example β= (α, β, γ)F0 and γ= (α, β, γ)G0 specifying α F and
α G. We axiomatized the BNF structure and verified the closure under LFP and GFP
using structured Isar proofs. We then expanded the proofs to detailed apply scripts [6].
Finally, we translated the scripts into tactics and generalized them for arbitrary m and n.

The Composition Pipeline. Composing functors together is widely perceived as be-
ing trivial, and accordingly it has received little attention in the literature, including
our previous paper [33]. Nevertheless, an implementation must perform a carefully or-
chestrated sequence of steps to construct BNFs (and discharge the accompanying proof
obligations) for the types occurring on the right-hand sides of fixpoint equations. This
is achieved by four operations:

COMPOSE : m-ary BNF σ 〈α |Δ〉 and m n-ary BNFs τi 〈β |Θi〉 →
n-ary BNF σ[α �→ τ] 〈β |Δ ∪ Θ1 ∪ ·· · ∪ Θm〉

KILL : m-ary BNF σ 〈α |Δ〉 and k ≤ m →
(m− k)-ary BNF σ 〈αk+1, . . . , αm |Δ ∪ {α1, . . . , αk}〉

Truly Modular (Co)datatypes for Isabelle/HOL 97

LIFT : m-ary BNF σ 〈α |Δ〉 and n fresh type variables β →
(m+ n)-ary BNF σ 〈β, α |Δ〉

PERMUTE : m-ary BNF σ 〈α |Δ〉 and permutation π of {1, . . . ,m} →
m-ary BNF σ 〈απ(1), . . . , απ(m) |Δ〉

COMPOSE operates on BNFs normalized to share the same live variables; the other op-
erations perform this normalization. Traytel’s M.Sc. thesis [32] describes all of them
in more detail. Complex types are proved to be BNFs by applying normalization fol-
lowed by COMPOSE recursively. The base cases are manually registered as BNFs. These
include constant α 〈|α〉, identity α 〈α |〉, sum α+β 〈α, β |〉, product α×β 〈α, β |〉, and
restricted function space α⇒β 〈β |α〉. Users can register further types, such as those
introduced by the new package for non-free datatypes [31].

As an example, consider the type (α⇒ β) + γ×α. The recursive calls on the argu-
ments to + return the BNFs α⇒β 〈β |α〉 and γ×α 〈γ, α |〉. Since α is dead in α⇒ β, it
must be killed in γ×α as well. This is achieved by permuting α to be the first variable
and killing it, yielding γ×α 〈γ |α〉. Next, both BNFs are lifted to have the same set of
live variables: α⇒β 〈γ, β |α〉 and γ×α 〈β, γ |α〉. Another permutation ensures that the
live variables appear in the same order: α⇒β 〈β, γ |α〉. At this point, the BNF for +
can be composed with the normalized BNFs to produce (α⇒β) + γ×α 〈β, γ |α〉.

The compositional approach to BNF construction keeps the tactics simple at the
expense of performance. By inlining intermediate definitions and deriving auxiliary
BNF facts lazily, we were able to address the main bottlenecks. Nevertheless, Brian
Huffman has demonstrated in a private prototype that a noncompositional, monolithic
approach is also feasible and less heavy, although it requires more sophisticated tactics.

Nested-to-Mutual Reduction. The old datatype command reduces nested recursion
to mutual recursion, as proposed by Gunter [11]. Given a nested datatype specification
such as α tree = Tree α (α tree list), the old command first unfolds the definition of list,
resulting in the mutual specification of trees and “lists of trees,” as if the user had entered

datatype α tree=Tree α (α treelist) and α treelist =Nil |Cons (α tree)(α treelist)

In a second step, the package translates all occurrences of α treelist into the more palat-
able α tree list via an isomorphism. As a result, the induction principle and the input
syntax to primrec have an unmistakable mutual flavor.

For compatibility, and for the benefit of users who prefer the mutual approach, the
new package implements a nested-to-mutual reduction operation, N2M, that constructs
old-style induction principles and iterators from those produced by LFP:

N2M : n (m+ n)-ary BNFs σj 〈α, β |Δ j〉 and n (new-style) datatypes τj →
• n iterators n2m_�iter_�τj :: (σ1 ⇒ β1)⇒ ··· ⇒ (σn ⇒ βn)⇒ τj ⇒ βj

• characteristic theorems including an induction rule

Like LFP and GFP, the N2M operation takes a system of equations βj = σj given as
normalized BNFs. In addition, it expects a list of datatypes τj produced by LFP that
solve the equations and that may nest each other (e.g., α tree and α tree list). The oper-
ation is dual for codatatypes; its implementation is a single ML function that reverses
some of the function and implication arrows when operating on codatatypes.

98 J.C. Blanchette et al.

The primrec and primcorec commands invoke N2M when they detect nested
(co)datatypes used as if they were mutual. In addition, datatype_compat relies on
N2M to register new-style nested datatypes as old-style datatypes, which is useful
for interfacing with existing unported infrastructure. In contrast to Gunter’s approach,
N2M does not introduce any new types. Instead, it efficiently composes artifacts of the
fixpoint operations: (co)iterators and (co)induction rules. By giving N2M a similar in-
terface to LFP and GFP, we can use it uniformly in the rest of the (co)datatype code.
The description below is admittedly rather technical, because there is (to our knowl-
edge) no prior account of such an operation in the literature.

As an abstract example that captures most of the complexity of N2M, let (α, β)F0

and (α, β)G0 be arbitrary BNFs with live type variables α and β. Let α F be the LFP of
β= (α, β)F0 and αG be the LFP of β= (α, βF)G0 (assuming they exist).2 These two
definitions reflect the modular, nested view: First α F is defined as an LFP, becoming
a BNF in its own right; then α G is defined as an LFP using an equation that nests F.
The resulting iterator for α G, iter_�G, has type ((α, γF)G0 ⇒ γ) ⇒ α G ⇒ γ, and its
characteristic equation recurses through the F components of G using map_�F.

If we instead define αGM (! α G) and αGFM (! αG F) together in the old-style,
mutually recursive fashion as the LFP of β = (α, γ)G0 and γ = (β, γ)F0, we obtain
two iterators with the following types:

iter_�GM :: ((α, γ)G0 ⇒ β)⇒ ((β, γ)F0 ⇒ γ)⇒ α GM ⇒ β
iter_�GFM :: ((α, γ)G0 ⇒ β)⇒ ((β, γ)F0 ⇒ γ)⇒ α GFM ⇒ γ

These are more flexible: iter_�GFM offers the choice of indicating recursive behavior
other than a map for the α GFM components of αGM. The gap is filled by N2M, which
defines mutual iterators by combining the standard iterators for F and G. It does not
introduce any new types αGM and α GFM but works with the existing ones:

n2m_�iter_�G :: ((α, γ)G0 ⇒ β)⇒ ((β, γ)F0 ⇒ γ)⇒ α G ⇒ β
n2m_�iter_�G_�F :: ((α, γ)G0 ⇒ β)⇒ ((β, γ)F0 ⇒ γ)⇒ α G F ⇒ γ
n2m_�iter_�G g f = iter_�G (g ◦map_�G0 id (iter_�F f))
n2m_�iter_�G_�F g f = iter_�F (f ◦map_�F0 (n2m_�iter_�G g f) id)

N2M also outputs a corresponding mutual induction rule. For each input BNF, the
operation first derives the low-level relator induction rule—a higher-order version of
parallel induction on two values of the same shape (e.g., lists of the same length):∧

x x′. rel_�G0 P (rel_�F R) x x′ =⇒ R (ctor_�G x) (ctor_�G x′)

rel_�G P � R∧
y y′. rel_�F0 R S y y′ =⇒ S (ctor_�F y) (ctor_�F y′)

rel_�F R � S

The binary predicates R and S are the properties we want to prove on α G and α G F.
The left-hand sides of the of lifted implications � ensure that the two values related by
R or S have the same shape. The binary predicate P relates α elements. The antecedents
of the rules are the induction steps. The left-hand sides of the implications =⇒ are the

2 It may help to think of these types more concretely by taking

F := list G := tree (α, β)F0 := unit+α×β (α, β)G0 := α×β

Truly Modular (Co)datatypes for Isabelle/HOL 99

induction hypotheses; they ensure that R and S hold for all parallel, direct subterms
with types α G and α G F of the values for which we need to prove the step.

The relators are compositional, enabling a modular proof of the mutual relator in-
duction rule from the above rules and relator monotonicity of G0 and F0:∧

x x′. rel_�G0 P S x x′ =⇒ R (ctor_�G x) (ctor_�G x′)∧
y y′. rel_�F0 R S y y′ =⇒ S (ctor_�F y) (ctor_�F y′)

rel_�G P � R ∧ rel_�F (rel_�G P) � S

The standard induction rule is derived by instantiating P :: α⇒ α′ ⇒ bool with equality,
followed by some massaging. Coinduction is dual, with =⇒ and � reversed.

3 Types with Free Constructors

Datatypes and codatatypes are instances of types equipped with free constructors. Such
types are useful in their own right, regardless of whether they support induction or
coinduction; for example, pattern matching requires only distinctness and injectivity.

We have extended Isabelle with a database of freely constructed types. Users can
enter the free_constructors command to register custom types, by listing the construc-
tors and proving exhaustiveness, distinctness, and injectivity. In exchange, Isabelle gen-
erates constants for case expressions, discriminators, and selectors—collectively called
destructors—as well as a wealth of theorems about constructors and destructors. Our
new datatype and codatatype commands use this functionality internally.

The case constant is defined via the definite description operator (ι)—for example,
case_�list n c xs = (ιz. xs = Nil ∧ z = n ∨ (∃y ys. xs = Cons y ys ∧ z = c y ys)). Syntax
translations render case_�list n c xs as an ML-style case expression.

Given a type τ constructed by C1, . . . ,Cm, its discriminators are constants is_�C1, . . . ,
is_�Cm :: τ⇒ bool such that is_�Ci (Cj x̄) if and only if i = j. No discriminators are needed
if m = 1. For the m = 2 case, Isabelle generates a single discriminator and uses its
negation for the second constructor by default. For nullary constructors Ci, Isabelle can
be told to use λx. x = Ci as the discriminator in the theorems it generates.

In addition, for each n-ary constructor Ci :: τ1 ⇒ ··· ⇒ τn ⇒ τ, n selectors un_�Cij ::
τ⇒ τj extract its arguments. Users can reuse selector names across constructors. They
can also specify a default value for constructors on which a selector would otherwise be
unspecified. The example below defines four selectors and assigns reasonable default
values. The mid selector returns the third argument of Node2 x l r as a default:

datatype α tree23 =
Leaf (defaults left: Leaf mid: Leaf right: Leaf)

| Node2 (val: α) (left: α tree23) (right: α tree23) (defaults mid: λx l r. r)
| Node3 (val: α) (left: α tree23) (mid: α tree23) (right: α tree23)

4 (Co)datatypes

The datatype and codatatype commands share the same input syntax, consisting of
a list of mutually (co)recursive types to define, their desired constructors, and optional
information such as custom names for destructors. They perform the following steps:

100 J.C. Blanchette et al.

1. Formulate and solve the fixpoint equations using LFP or GFP.
2. Define the constructor constants.
3. Generate the destructors and the free constructor theorems.
4. Derive the high-level map, set, and relator theorems.
5. Define the high-level (co)recursor constants.
6. Derive the high-level (co)recursor theorems and (co)induction rules.

Step 1 relies on the fixpoint and composition operations described in Section 2 to
produce the desired types and low-level constants and theorems. Step 2 defines high-
level constructors that untangle sums of products—for example, Nil= ctor_�list (Inl ())
and Cons x xs = ctor_�list (Inr (x, xs)). Step 3 amounts to an invocation of the free_
constructors command described in Section 3. Step 4 reformulates the low-level map,
set, and relator theorems in terms of constructors; a selection is shown for α list below:

list.map: map f Nil= Nil map f (Cons x xs) = Cons (f x) (map f xs)

list.set: set Nil= {} set (Cons x xs) = {x} ∪ set xs

list.rel_inject: rel R Nil Nil rel R (Cons x xs) (Cons y ys)←→ R x y ∧ rel R xs ys

Datatypes and codatatypes differ at step 5. For an m-constructor datatype, the high-
level iterator takes m curried functions as arguments (whereas the low-level version
takes one function with a sum-of-product domain). For convenience, a recursor is de-
fined in terms of the iterator to provide each recursive constructor argument’s value both
before and after the recursion. The list recursor has type β⇒ (α⇒ α list ⇒ β⇒ β)⇒
α list ⇒ β. The corresponding induction rule has one hypothesis per constructor:

list.rec: rec_�list n cNil= n rec_�list n c (Cons x xs) = c x xs (rec_�list n c xs)

list.induct:
P Nil

∧
x xs. P xs =⇒ P (Cons x xs)

P t

For nested recursion beyond sums of products, the map and set functions of the type
constructors through which recursion takes place appear in the high-level theorems:

treeω.rec: rec_�treeω f (Treeω x ts) = f x (lmap (λt. (t, rec_�treeω f t)) ts)

treeω.induct:

∧
x ts. (

∧
t. t ∈ lset ts =⇒ P t) =⇒ P (Treeω x ts)

P t

As for corecursion, given an m-constructor codatatype, m− 1 predicates sequentially
determine which constructor to produce. Moreover, for each constructor argument, a
function specifies how to construct it from an abstract value of type α. For corecursive
arguments, the function has type α⇒ τ+α and returns either a value that stops the
corecursion or a tuple of arguments to a corecursive call. The high-level corecursor
presents such functions as three arguments stop ::α⇒ bool, end ::α⇒ τ, and continue ::
α⇒ α, abbreviated to s, e, c below. Thus, the high-level corecursor for lazy lists has the
type (α⇒ bool)⇒ (α⇒ β)⇒ (α⇒ bool)⇒ (α⇒ β llist)⇒ (α⇒ α)⇒ α⇒ β llist:

llist.corec: n a =⇒ corec_�llist n h s e c a = LNil
¬ n a =⇒ corec_�llist n h s e c a =

LCons (h a) (if s a then e a else corec_�llist n h s e c (c a))

Truly Modular (Co)datatypes for Isabelle/HOL 101

Nested corecursion is expressed using the map functions of the nesting type construc-
tors. The coinduction rule uses the relators to lift a coinduction witness R. For example:

ltree.corec: corec_�ltree l s a =

LTree (l a) (map (case_�sum (λt. t) (corec_�ltree l s)) (s a))

ltree.coinduct:
R t u

∧
t u. R t u =⇒ llab t = llab u ∧ rel R (lsub t) (lsub u)

t = u

5 Recursive Functions

Primitively recursive functions can be defined by providing suitable arguments to the
recursors. The primrec command automates this process: From recursive equations
specified by the user, it synthesizes a recursor-based definition.

The main improvement of the new implementation of primrec over the old one is its
support for nested recursion through map functions [27]. For example:

primrec height_�treeFS :: α treeFS ⇒ nat where
height_�treeFS (TreeFS _ T) = 1+

⊔
fset (fimage height_�treeFS T)

In the above,α treeFS is the datatype constructed byTreeFS ::α⇒α treeFS fset ⇒α treeFS

(Section 1),
⊔

N stands for the maximum of N, fset injects α fset into α set, and the
map function fimage gives the image of a finite set under a function. From the specified
equation, the command synthesizes the definition

height_�treeFS = rec_�treeFS (λ_ TN. 1+
⊔

fset (fimage snd TN))

From this definition and the treeFS.rec theorems, it derives the original specification as a
theorem. Notice how the argument T :: α treeFS fset becomes TN :: (α treeFS × nat) fset,
where the second pair components store the result of the corresponding recursive call.

Briefly, constructor arguments x are transformed as follows. Nonrecursive arguments
appear unchanged in the recursor and can be used directly. Directly or mutually recur-
sive arguments appear as two values: the original value x and the value y after the
recursive call to f. Calls f x are replaced by y. Nested recursive arguments appear as a
single argument but with pairs inside the nesting type constructors. The syntactic trans-
formation must follow the map functions and eventually apply fst or snd, depending on
whether a recursive call takes place. Naked occurrences of x without map are replaced
by a suitable “map fst” term; for example, if the constant 1 were changed to fcard T in
the specification above, the definition would have fcard (fimage fst TN) in its place.

The implemented procedure is somewhat more complicated. The recursor generally
defines functions of type α treeFS ⇒ β, but primrec needs to process n-ary functions that
recurse on their jth argument. This is handled internally by moving the jth argument to
the front and by instantiating β with an (n− 1)-ary function type.

For recursion through functions, the map function is function composition (◦). In-
stead of f ◦ g, primrec also allows the convenient (and backward compatible) syntax
λx. f (g x). More generally, λx1 . . . xn. f (g x1 . . . xn) expands to (op ◦ (. . . (op ◦ f) . . .)) g.

Thanks to the N2M operation described in Section 2, users can also define mutually
recursive functions on nested datatypes, as they would have done with the old package:

102 J.C. Blanchette et al.

primrec height_�tree :: α tree ⇒ nat and height_�trees :: α tree list ⇒ nat where
height_�tree (Tree _ ts) = 1 + height_�trees ts

| height_�trees Nil = 0
| height_�trees (Cons t ts) = height_�tree t % height_�trees ts

Internally, the following steps are performed:

1. Formulate and solve the fixpoint equations using N2M.
2. Define the high-level (co)recursor constants.
3. Derive the high-level (co)recursor theorems and (co)induction rules.

Step 1 produces low-level constants and theorems. Steps 2 and 3 are performed by the
same machinery as when declaring mutually recursive datatypes (Section 4).

6 Corecursive Functions

The primcorec command is the main mechanism to introduce functions that produce
potentially infinite codatatype values; alternatives based on domain theory and topol-
ogy are described separately [22]. The command supports three competing syntaxes, or
views: destructor, constructor, and code. Irrespective of the view chosen for input, the
command generates the characteristic theorems for all three views [27].

The Destructor View. The coinduction literature tends to favor the destructor view,
perhaps because it best reflects the duality between datatypes and codatatypes [1, 16].
The append function on lazy lists will serve as an illustration:

primcorec lapp :: α llist ⇒ α llist ⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lnull (lapp xs ys)

| lhd (lapp xs ys) = lhd (if lnull xs then ys else xs)
| ltl (lapp xs ys) = (if lnull xs then ltl ys else lapp (ltl xs) ys)

The first formula, called the discriminator formula, gives the condition on which LNil
should be produced. For an m-constructor datatype, up to m discriminator formulas can
be given. If exactly m− 1 formulas are stated (as in the example above), the last one is
implicitly understood, with the complement of the other conditions as its condition.

The last two formulas, the selector equations, describe the behavior of the function
when an LCons is produced. They are implicitly conditional on ¬ lnull xs ∨ ¬ lnull ys.
The right-hand sides consist of ‘let’, ‘if’, or ‘case’ expressions whose leaves are either
corecursive calls or arbitrary non-corecursive terms. This restriction ensures that the
definition qualifies as primitively corecursive. The selector patterns on the left ensure
that the function is productive and hence admissible [16].

With nesting, the corecursive calls appear under a map function, in much the same
way as for primrec. Intuitive λ syntaxes for corecursion via functions are supported.
The nested-to-mutual reduction is available for corecursion through codatatypes.

Proof obligations are emitted to ensure that the conditions are mutually exclusive.
These are normally given to auto but can also be proved manually. Alternatively, users
can specify the sequential option to have the conditions apply in sequence.

Truly Modular (Co)datatypes for Isabelle/HOL 103

The conditions need not be exhaustive, in which case the function’s behavior is left
underspecified. If the conditions are syntactically detected to be exhaustive, or if the
user enables the exhaustive option and discharges its proof obligation, the package
generates stronger theorems—notably, discriminator formulas with ←→ instead of =⇒.

The Constructor View. The constructor view can be thought of as an abbreviation for
the destructor view. It involves a single conditional equation per constructor:

primcorec lapp :: α llist ⇒ α llist ⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil

| _ =⇒ lapp xs ys = LCons (lhd (if lnull xs then ys else xs))
(if lnull xs then ltl ys else lapp (ltl xs) ys)

The wildcard _ stands for the complement of the previous conditions.
This view is convenient as input and sometimes for reasoning, but the equations are

generally not suitable as simplification rules since they can loop. Compare this with the
discriminator formulas and the selector equations of the destructor view, which can be
safely registered as simplification rules.

The Code View. The code view is a variant of the constructor view in which the con-
ditions are expressed using ‘if’ and ‘case’ expressions. Its primary purpose is for inter-
facing with Isabelle’s code generator, which cannot cope with conditional equations.

The code view that primcorec generates from a destructor or constructor view is
simply an equation that tests the conditions sequentially using ‘if’:

lapp xs ys = (if lnull xs ∧ lnull ys then LNil
else LCons(lhd(if lnull xs then ys else xs))(if lnull xs then ltl ys else lapp(ltl xs)ys))

If the cases are not known to be exhaustive, an additional ‘if’ branch ensures that the
generated code throws an exception when none of the conditions are met.

The code view has a further purpose besides code generation: It provides a more flex-
ible input format, with nested ‘let’, ‘if’, and ‘case’ expressions outside the constructors,
multiple occurrences of the same constructors, and non-corecursive branches without
constructor guards. This makes the code view the natural choice for append:

primcorec lapp :: α llist ⇒ α llist ⇒ α llist where
lapp xs ys = (case xs of LNil⇒ ys | LCons x xs ⇒ LCons x (lapp xs ys))

The package reduces this specification to the following constructor view:

lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil
_ =⇒ lapp xs ys = LCons (case xs of LNil⇒ lhd ys | LCons x _ ⇒ x)

(case xs of LNil⇒ ltl ys | LCons _ xs ⇒ lapp xs ys)

In general, the reduction proceeds as follows:

1. Expand branches t of the code equation that are not guarded by a constructor to the
term (case t of C1 x̄1 ⇒ C1 x̄1 | · · · | Cm x̄m ⇒ Cm x̄m), yielding an equation χ.

2. Gather the conditions Φi associated with the branches guarded by Ci by traversing
χ, with ‘case’ expressions recast as ‘if’s.

3. Generate the constructor equations
∨

Φi x̄ =⇒ f x̄ = Ci (un_�Ci1 χ) . . . (un_�Cij χ),
taking care of moving the un_�Cij’s under the conditionals and of simplifying them.

104 J.C. Blanchette et al.

For the append example, step 1 expands the ys in the first ‘case’ branch to the term
(case ys of LNil⇒ LNil | LCons y ys ⇒ LCons y ys).

Finally, although primcorec does not allow pattern matching on the left-hand side,
the simps_of_case command developed by Gerwin Klein and Lars Noschinski can be
used to generate the pattern-matching equations from the code view—in our example,
lapp LNil ys = ys and lapp (LCons x xs) ys = LCons x (lapp xs ys).

7 Coinduction Proof Method

The previous sections focused on the infrastructure for defining coinductive objects.
Also important are the user-level proof methods, the building blocks of reasoning. The
new method coinduction provides more automation over the existing coinduct, follow-
ing a suggestion formulated in Lochbihler’s Ph.D. thesis [20, Section 7.2]. The method
handles arbitrary predicates equipped with suitable coinduction theorems. In particular,
it can be used to prove equality of codatatypes by exhibiting a bisimulation.

A coinduction rule for a codatatype contains a free bisimulation relation variable R
in its premises, which does not occur in the conclusion. The coinduct method crudely
leaves R uninstantiated; the user is expected to provide the instantiation. However, the
choice of the bisimulation is often canonical, as illustrated by the following proof:

lemma
assumes infinite (lset xs)
shows lapp xs ys = xs

proof (coinduct xs)
def [simp]: R ≡ λ l r. ∃xs. l = lapp xs ys ∧ r = xs ∧ infinite (lset xs)
with assms show R (lapp xs ys) xs by auto

fix l r assume R l r
then obtain xs where l = lapp xs ys ∧ r = xs ∧ infinite (lset xs) by auto
thus lnull l = lnull r ∧ (¬ lnull l −→¬ lnull r −→ lhd l = lhd r ∧ R (ltl l) (ltl r))
by auto

qed

The new method performs the steps highlighted in gray automatically, making a one-
line proof possible: by (coinduction arbitrary: xs) auto.

In general, given a goal P =⇒ q t1 . . . tn, the method selects the rule q.coinduct and
takes λz1 . . . zn. ∃x1 . . . xm. z1 = t1 ∧ ·· · ∧ zn = tn ∧ P as the coinduction witness R. The
variables xi are those specified as being arbitrary and may freely appear in P, t1, . . . , tn.
After applying the instantiated rule, the method discharges the premise R t1 . . . tn by re-
flexivity and using the assumption P. Then it unpacks the existential quantifiers from R.

8 Example: Stream Processors

Stream processors were introduced by Hancock et al. [13] and have rapidly become the
standard example for demonstrating mixed fixpoints [1, 3, 10, etc.]. Thanks to the new
(co)datatype package, Isabelle finally joins this good company.

Truly Modular (Co)datatypes for Isabelle/HOL 105

A stream processor represents a continuous transformation on streams—that is, a
function of type α stream ⇒ β stream that consumes at most a finite prefix of the in-
put stream before producing an element of output. The datatype sp1 captures a single
iteration of this process. The codatatype spω nests sp1 to produce an entire stream:

datatype (α, β, δ) sp1 = Get (α⇒ (α, β, δ) sp1) | Put β δ
codatatype (α, β) spω = SP (unSP: (α, β, (α, β)spω) sp1)

Values of type sp1 are finite-depth trees with inner nodes Get and leaf nodes Put. Each
inner node has |α| children, one for each possible input α. The Put constructor car-
ries the output element of type β and a continuation of type δ. The definition of spω
instantiates the continuation type to a stream processor (α, β) spω.

The semantics of spω is given by two functions: run1 recurses on sp1 (i.e., consumes
an sp1), and runω, corecurses on stream (i.e., produces a stream, defined in Section 2):

primrec run1 :: (α, β, δ) sp1 ⇒ α stream ⇒ (β× δ)×α stream where
run1 (Get f) s = run1 (f (shd s)) (stl s)
run1 (Put x q) s = ((x, q), s)

primcorec runω :: (α, β) spω⇒ α stream ⇒ β stream where
runω q s = (let ((x, q′), s′) = run1 (unSP q) s in SCons x (runω q′ s′))

These definitions illustrate some of the conveniences of primrec and primcorec. For
run1, the modular way to nest the recursive call of run1 through functions would rely
on composition—i.e., (run1 ◦ f) (shd s) (stl s). The primrec command allows us not
only to expand the term run1 ◦ f to λx. run1 (f x) but also to β-reduce it. For runω, the
constructor view makes it possible to call run1 only once, assign the result in a ‘let’,
and use this result to specify both arguments of the produced constructor.

The stream processor copy outputs the input stream:

primcorec copy :: (α, α) spω where copy= SP (Get (λa. Put a copy))

The nested sp1 value is built directly with corecursion under constructors as an alterna-
tive to the modular approach: copy= SP (map_�sp1 id (λ_. copy) (Get (λa. Put a ()))).
The lemma runω copy s = s is easy to prove using coinduction and auto.

Since stream processors represent functions, it makes sense to compose them:

function ◦1 :: (β, γ, δ)sp1⇒(α, β, (α, β)spω)sp1⇒(α, γ, δ×(α, β)spω)sp1 where
Put b q ◦1 p = Put b (q, SP p)
Get f ◦1 Put b q = f b ◦1 unSP q
Get f ◦1 Get g = Get (λa. Get f ◦1 g a)

by pat_completeness auto
termination by (relation lex_�prod sub sub) auto

primcorec ◦ω :: (β, γ) spω⇒ (α, β) spω⇒ (α, γ) spω where
unSP (q ◦ω q′) =map_�sp1 (λb. b) (λ(q, q

′). q ◦ω q′) (unSP q ◦1 unSP q′)

The corecursion applies ◦ω nested through the map function map_�sp1 to the result of
finite preprocessing by the recursion ◦1. The ◦1 operator is defined using function,
which emits proof obligations concerning pattern matching and termination.

106 J.C. Blanchette et al.

Stream processors are an interesting example to compare Isabelle with other proof
assistants. Agda does not support nesting, but it supports the simultaneous mutual def-
inition of sp1 and spω with annotations on constructor arguments indicating whether
they are to be understood coinductively [10]. Least fixpoints are always taken before
greatest fixpoints, which is appropriate for this example but is less flexible than nesting
in general. PVS [26] and Coq [5] support nesting of datatypes through datatypes and
codatatypes through codatatypes, but no nontrivial mixtures.3

9 Case Study: Porting the Coinductive Library

To evaluate the merits of the new definitional package, and to benefit from them, we
have ported existing coinductive developments to the new approach. The Coinductive
library [18] defines four codatatypes and related functions and comprises a large col-
lection of lemmas. Originally, the codatatypes were manually defined as follows:

• extended naturals enat as datatype enat = enat nat | ∞;
• lazy lists α llist using Paulson’s construction [29];
• terminated lazy lists (α, β) tllist as the quotient of α llist× β over the equivalence

relation that ignores the second component if and only if the first one is infinite;
• streams α stream as the subtype of infinite lazy lists.

Table 1 presents the types and the evaluation’s statistics. The third column gives the
lines of code for the definitions, lemmas, and proofs that were needed to define the
type, the constructors, the corecursors, and the case constants, and to prove the free
constructor theorems and the coinduction rule for equality. For enat, we kept the old
definition because the datatype view is useful. Hence, we still derive the corecursor and
the coinduction rules manually, but we generate the free constructor theorems with the
free_constructors command (Section 3), saving 6 lines. In contrast, the other three
types are now defined with codatatype in 33 lines instead of 774, among which 28
are for tllist because the default value for TNil’s selector applied to TCons requires
unbounded recursion. However, we lost the connection between llist, tllist, and stream,
on which the function definitions and proofs relied. Therefore, we manually set up the
Lifting and Transfer tools [15]; the line counts are shown behind plus signs (+).

The type definitions are just a small fraction of the library; most of the work went
into proving properties of the functions. The fourth column shows the number of lem-
mas that we have proved for the functions on each type. There are 36% more than
before, which might be surprising at first, since the old figures include the manual type
constructions. Three reasons explain the increase. First, changes in the views increase
the counts. Coinductive originally favored the code and constructor views, following
Paulson [29], whereas the new package expresses coinduction and other properties in
terms of the destructors (Sections 4 and 6). We proved additional lemmas for our func-
tions that reflect the destructor view. Second, the manual setup for Lifting and Transfer

3 In addition, Coq allows modifications of the type arguments under the constructors (e.g., for
powerlists α plist = α+ (α×α) plist), which Isabelle/HOL cannot support due to its more
restrictive type system.

Truly Modular (Co)datatypes for Isabelle/HOL 107

Table 1. Statistics on porting Coinductive to the new package (before → after)

Lines of code Number Lines of code
Codatatype Constructors for definition of lemmas per lemma

enat 0 | eSuc enat 200 → 194 31 → 57 8.42 → 5.79
α llist LNil | LCons α (α llist) 503 → 3 527 → 597 9.86 → 6.44
(α, β) tllist TNil β | TCons α ((α, β) tllist) 169 → 28+120 121 → 200 6.05 → 4.95
α stream SCons α (α stream) 102 → 2+ 96 64 → 159 3.11 → 3.47

Total 974 → 227+216 743 → 1013 8.60 → 5.65

accounts for 36 new lemmas. Third, the porting has been distributed over six months
such that we continuously incorporated our insights into the package’s implementation.
During this period, the stream part of the library grew significantly and tllist a little.
(Furthermore, primcorec was not yet in place at the time of the porting. It is now used,
but the gains it led to are not captured by the statistics.)

Therefore, the absolute numbers should not be taken too seriously. It is more instruc-
tive to examine how the proofs have changed. The last column of Table 1 gives the
average length of a lemma, including its statement and its proof; shorter proofs indicate
better automation. Usually, the statement takes between one and four lines, where two
is the most common case. The port drastically reduced the length of the proofs: We now
prove 36% more lemmas in 11% fewer lines.

Two improvements led to these savings. First, the coinduction method massages the
proof obligation to fit the coinduction rule. Second, automation for coinduction proofs
works best with the destructor view, as the destructors trigger rewriting. With the code
and constructor style, we formerly had to manually unfold the equations, and pattern-
matching equations obtained by simps_of_case needed manual case distinctions.

The destructor view also has some drawbacks. The proofs rely more on Isabelle’s
classical reasoner to solve subgoals that the simplifier can discharge in the other styles,
and the reasoner often needs more guidance. We have not yet run into scalability issues,
but we must supply a lengthy list of lemmas to the reasoner. The destructor style falls
behind when we leave the coinductive world. For example, the recursive function lnth ::
nat ⇒ α llist ⇒ α returns the element at a given index in a lazy list; clearly, there are no
destructors on lnth’s result type to trigger unfolding. Since induction proofs introduce
constructors in the arguments, rewriting with pattern-matching equations obtained from
the code view yields better automation. In summary, all three views are useful.

10 Conclusion

Codatatypes and corecursion have long been missing features in proof assistants based
on higher-order logic. Isabelle’s new (co)datatype definitional package finally addresses
this deficiency, while generalizing and modularizing the support for datatypes. Within
the limitations of the type system, the package is the most flexible one available in
any proof assistant. The package is already highly usable and is used not only for the
Coinductive library but also in ongoing developments by the authors. Although Isabelle
is our vehicle, the approach is equally applicable to the other provers in the HOL family.

108 J.C. Blanchette et al.

For future work, our priority is to integrate the package better with other Isabelle
subsystems, including the function package (for well-founded recursive definitions), the
Lifting and Transfer tools, and the counterexample generators Nitpick and Quickcheck.
Another straightforward development would be to have the package produce even more
theorems, notably for parametricity. There is also work in progress on supporting more
general forms of corecursion and mixed recursion–corecursion. Finally, we expect that
BNFs can be generalized to define non-free datatypes, including nominal types, but this
remains to be investigated.

Acknowledgment. Tobias Nipkow and Makarius Wenzel encouraged us to implement
the new package. Florian Haftmann and Christian Urban provided general advice on
Isabelle and package writing. Brian Huffman suggested simplifications to the inter-
nal constructions, many of which have yet to be implemented. Stefan Milius and Lutz
Schröder found an elegant proof to eliminate one of the BNF assumptions. René Thie-
mann contributed precious benchmarks from his IsaFoR formalization, helping us opti-
mize the BNF operations. Sascha Böhme, Lars Hupel, Tobias Nipkow, Mark Summer-
field, and the anonymous reviewers suggested many textual improvements.

Blanchette is supported by the Deutsche Forschungsgemeinschaft (DFG) project
Hardening the Hammer (grant Ni 491/14-1). Hölzl is supported by the DFG project
Verification of Probabilistic Models (grant Ni 491/15-1). Popescu is supported by the
DFG project Security Type Systems and Deduction (grant Ni 491/13-2) as part of the
program Reliably Secure Software Systems (RS3, priority program 1496). Traytel is
supported by the DFG program Program and Model Analysis (PUMA, doctorate pro-
gram 1480). The authors are listed alphabetically.

References

1. Abel, A., Pientka, B.: Wellfounded recursion with copatterns: A unified approach to termi-
nation and productivity. In: Morrisett, G., Uustalu, T. (eds.) ICFP 2013, pp. 185–196. ACM
(2013)

2. Asperti, A., Ricciotti, W., Coen, C.S., Tassi, E.: A compact kernel for the calculus of induc-
tive constructions. Sādhanā 34, 71–144 (2009)

3. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: Morrisett,
G., Uustalu, T. (eds.) ICFP 2013, pp. 197–208. ACM (2013)

4. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—Lessons learned in formal-logic
engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs
1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer
(2004)

6. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Formalization
accompanying this paper (2014),
http://www21.in.tum.de/~blanchet/codata_impl.tar.gz

7. Blanchette, J.C., Panny, L., Popescu, A., Traytel, D.: Defining (co)datatypes in Isabelle/HOL
(2014),http://isabelle.in.tum.de/dist/Isabelle/doc/datatypes.pdf

8. Blanchette, J.C., Popescu, A., Traytel, D.: Cardinals in Isabelle/HOL. In: Klein, G., Gamboa,
R. (eds.) ITP 2014. LNCS (LNAI), vol. 8558, pp. 111–127. Springer, Heidelberg (2014)

http://www21.in.tum.de/~blanchet/codata_impl.tar.gz
http://isabelle.in.tum.de/dist/Isabelle/doc/datatypes.pdf

Truly Modular (Co)datatypes for Isabelle/HOL 109

9. Blanchette, J.C., Popescu, A., Traytel, D.: Witnessing (co)datatypes (2014),
http://www21.in.tum.de/~blanchet/wit.pdf

10. Danielsson, N.A., Altenkirch, T.: Subtyping, declaratively. In: Bolduc, C., Desharnais, J.,
Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 100–118. Springer, Heidelberg (2010)

11. Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In: Claesen,
L.J.M., Gordon, M.J.C. (eds.) TPHOLs 1992. IFIP Transactions, vol. A-20, pp. 561–568.
North-Holland (1993)

12. Gunter, E.L.: A broader class of trees for recursive type definitions for HOL. In: Joyce, J.J.,
Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 141–154. Springer, Heidelberg (1994)

13. Hancock, P., Ghani, N., Pattinson, D.: Representations of stream processors using nested
fixed points. Log. Meth. Comput. Sci. 5(3) (2009)

14. Harrison, J.: Inductive definitions: Automation and application. In: Schubert, E.T., Windley,
P.J., Alves-Foss, J. (eds.) TPHOLs 1995. LNCS, vol. 971, pp. 200–213. Springer, Heidelberg
(1995)

15. Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in Isa-
belle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146.
Springer, Heidelberg (2013)

16. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bull. EATCS 62, 222–
259 (1997)

17. Leroy, X.: A formally verified compiler back-end. J. Autom. Reas. 43(4), 363–446 (2009)
18. Lochbihler, A.: Coinductive. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal

Proofs (2010), http://afp.sf.net/entries/Coinductive.shtml
19. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP 2010.

LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010)
20. Lochbihler, A.: A Machine-Checked, Type-Safe Model of Java Concurrency: Language, Vir-

tual Machine, Memory Model, and Verified Compiler. Ph.D. thesis, Karlsruher Institut für
Technologie (2012)

21. Lochbihler, A.: Making the Java memory model safe. ACM Trans. Program. Lang.
Syst. 35(4), 12:1–12:65 (2014)

22. Lochbihler, A., Hölzl, J.: Recursive functions on lazy lists via domains and topologies. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS (LNAI), vol. 8558, pp. 341–357. Springer,
Heidelberg (2014)

23. Melham, T.F.: Automating recursive type definitions in higher order logic. In: Birtwistle, G.,
Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verification and Automated Theo-
rem Proving, pp. 341–386. Springer (1989)

24. Nipkow, T., Klein, G.: Concrete Semantics: A Proof Assistant Approach. Springer (to ap-
pear), http://www.in.tum.de/~nipkow/Concrete-Semantics

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

26. Owre, S., Shankar, N.: A brief overview of PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 22–27. Springer, Heidelberg (2008)

27. Panny, L.: Primitively (Co)recursive Function Definitions for Isabelle/HOL. B.Sc. thesis
draft, Technische Universität München (2014)

28. Paulson, L.C.: A fixedpoint approach to implementing (co)inductive definitions. In: Bundy,
A. (ed.) CADE 1994. LNCS, vol. 814, pp. 148–161. Springer, Heidelberg (1994)

29. Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. J. Log. Com-
put. 7(2), 175–204 (1997)

http://www21.in.tum.de/~blanchet/wit.pdf
http://afp.sf.net/entries/Coinductive.shtml
http://www.in.tum.de/~nipkow/Concrete-Semantics

110 J.C. Blanchette et al.

30. Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theor. Comput. Sci. 249, 3–80
(2000)

31. Schropp, A., Popescu, A.: Nonfree datatypes in Isabelle/HOL: Animating a many-sorted
metatheory. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 114–130.
Springer, Heidelberg (2013)

32. Traytel, D.: A Category Theory Based (Co)datatype Package for Isabelle/HOL. M.Sc. thesis,
Technische Universität München (2012)

33. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for
higher-order logic: Category theory applied to theorem proving. In: LICS 2012, pp. 596–605.
IEEE (2012)

Cardinals in Isabelle/HOL

Jasmin Christian Blanchette1, Andrei Popescu1,2, and Dmitriy Traytel1

1 Fakultät für Informatik, Technische Universität München, Germany
2 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania

Abstract. We report on a formalization of ordinals and cardinals in Isabelle/HOL.
A main challenge we faced is the inability of higher-order logic to represent or-
dinals canonically, as transitive sets (as done in set theory). We resolved this into
a “decentralized” representation that identifies ordinals with wellorders, with all
concepts and results proved to be invariant under order isomorphism. We also
discuss two applications of this general theory in formal developments.

1 Introduction

Set theory is the traditional framework for ordinals and cardinals. Axiomatizations such
as Zermelo–Fraenkel (ZF) and von Neumann–Bernays–Gödel (NBG) permit the def-
inition of ordinals as transitive sets well ordered by membership as the strict relation
and by inclusion as the nonstrict counterpart. Ordinals form a class Ord which is itself
well ordered by membership. Basic constructions and results in the theory of ordinals
and cardinals make heavy use of Ord, employing definitions and proofs by transfinite
recursion and induction. In short, Ord conveniently captures the notion of wellorder.

The situation is quite different in higher-order logic (HOL, Section 2). There is no
support for infinite transitive sets, since the type system permits only finite iterations
of the powerset. Consequently, membership cannot be used to implement ordinals and
cardinals. Another difficulty is that there is no single type that can host a complete
collection of canonical representatives for wellorders.

A natural question to ask is: Can we still develop in HOL a theory of cardinals?
The answer depends on the precise goals. Our criterion for the affirmative answer is
the possibility to prove general-purpose theorems on cardinality for the working math-
ematician, such as: Given any two types, one can be embedded into the other; given any
infinite type, the type of lists over it has the same cardinality; and so on.

We present a formalization in Isabelle/HOL [14] that provides such general-purpose
theorems, as well as some more specialized results and applications. We follow a “de-
centralized” approach, identifying ordinals with arbitrary wellorders and developing all
the concepts up to (order-preserving) isomorphism (Section 3). Cardinals are defined,
again up to isomorphism, as the minimum ordinals on given underlying sets (Section 4).

The concepts are more abstract than in set theory: Ordinal equality is replaced by a
polymorphic relation =o stating the existence of an order isomorphism, and member-
ship is replaced by a polymorphic operator ≤o stating the existence of a strict order
embedding (with a nonstrict counterpart ≤o). This abstract view takes more effort to
maintain than the concrete implementation from set theory (Section 5), since all the de-
fined operations need to be shown compatible with the new equality and most of them

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 111–127, 2014.
c© Springer International Publishing Switzerland 2014

112 J.C. Blanchette, A. Popescu, and D. Traytel

need to be shown monotonic with respect to the new ordering. For example, |A|, the
cardinal of A, is defined as some cardinal order on A and then proved to be isomorphic
to any cardinal order on A; similarly, r1 +c r2, the sum of cardinals r1 and r2, is defined
as the cardinal of the sum of r1’s and r2’s fields, before it is proved compatible with =o

and ≤o. Moreover, since the collection of all ordinals does not fit in one type, we must
predict the size of the constructed objects and choose suitably large support types.

Our development validates the following thesis:

The basics of cardinals can be developed independently of membership-based
implementation details and the existence of large classes from set theory.

This was not clear to us when we started formalizing, since we could not find any
textbook or formal development that follows this abstract approach. Most introductions
to cardinals rely quite heavily on set theory, diving at will into the homogeneous ether
provided by the class of all ordinals.1

The initial infrastructure and general-purpose theorems were incorporated in the
Archive of Formal Proofs [19] in 2009, together with thorough documentation, but was
not otherwise published. Since then, the formalization has evolved to help specific ap-
plications: Cofinalities and regular cardinals were added for a formalization of syntax
with bindings [20] (Section 6), and cardinal arithmetic was developed to support Isa-
belle’s new (co)datatype package [24] (Section 7). Moreover, Breitner employed our
cardinal infrastructure to formalize free group theory [2].

Most of the theory of cardinals is already included in the 2012 edition of Isabelle,
but some features will be available starting with the forthcoming 2014 release.

Related Work. Ordinals have been developed in HOL before. Harrison [7] formalized
ordinals in HOL88 and proved theorems such as Zermelo, Zorn, and transfinite induc-
tion. Huffman [11] formalized countable ordinals in Isabelle/HOL, including arithmetic
and the Veblen hierarchies; the countability assumption made it possible to fix a type
of ordinals. Recently, Norrish and Huffman [15] independently redeveloped in HOL4
much of our theory of ordinals and beyond, covering advanced ordinal arithmetic in-
cluding Cantor normal form. In contrast to them, we see the ordinals mostly as a step-
ping stone toward the cardinals and concentrate on these.

Whereas the HOL-based systems have extensive support for finite cardinal reason-
ing, general cardinals have received little attention. The only account we are aware of is
part of the HOL Light library [9], but it employs cardinals only as “virtual objects” [4],
not defining a notion of cardinal but directly relating sets via injections and bijections.

Beyond HOL, Paulson and Grabczewski [17] have formalized some ordinal and
cardinal theory in Isabelle/ZF following the usual set-theoretic path, via the class of
ordinals with membership. Their main objective was to formalize several alternative
statements of the axiom of choice, and hence they preferred constructive arguments for
most of the cardinal theory. In our development, Hilbert’s choice operator (effectively
enforcing a bounded version of the axiom of choice) is pervasive.

1 Notable exceptions are Taylor’s category-theory-oriented foundation for ordinals [23] and
Forster’s implementation-independent analysis of ordinals and cardinals [4]. The latter was
brought to our attention by an anonymous reviewer.

Cardinals in Isabelle/HOL 113

2 Higher-Order Logic

Isabelle/HOL implements classical higher-order logic with Hilbert choice, the axiom of
infinity, and rank-1 polymorphism. HOL is based on Church’s simple type theory [3].
It is the logic of Gordon’s system of the same name [5] and of its many successors.
HOL is roughly equivalent to ZF without support for classes and with the axiom of
comprehension taking the place of the axiom of replacement. We refer to Nipkow and
Klein [13, Part 1] for a modern introduction.

Types in HOL are either atomic types (e.g., unit, nat, and bool), type variables α, β,
or fully applied type constructors (e.g., nat list and nat set). The binary type construc-
tors α→ β, α+ β, and α× β for function space, disjoint sum, and product are written
in infix notation. All types are nonempty. New types can be introduced by carving out
nonempty subsets of existing types. A constant c of type τ is indicated as c : τ.

The following types and constants from the Isabelle library are heavily used in our
formalization. UNIV : α set is the universe set, the set of all elements of type α. 0 and
Suc are the constructors of the type nat. Elements of the sum type are constructed by
the two embeddings Inl : α→ α+β and Inr : β→ α+β.

The function id :α→α is the identity. f • A is the image of A :α set through f :α→ β,
i.e., the set { f a. a ∈ A}. The predicates inj_on f A and bij_betw f A B state that f :
α→ β is an injection on A : α set and that f : α→ β is a bijection between A : α set and
B : β set. The type (α×α) set of binary relations on α is abbreviated to α rel. Id : α rel
is the identity relation. Given r : α rel, Field r : α set is its field (underlying set), i.e., the
union between its domain and its codomain: {a. ∃b. (a,b) ∈ r} ∪ {b. ∃a. (a,b) ∈ r}.
The following predicates operate on relations, where A : α set and r : α rel:

REFLEXIVE refl_on A r ≡ r ⊆ A×A ∧ ∀x∈A. (x, x) ∈ r
TRANSITIVE trans r ≡ ∀abc. (a,b) ∈ r ∧ (b,c) ∈ r → (a,c) ∈ r
ANTISYMMETRIC antisym r ≡ ∀ab. (a,b) ∈ r ∧ (b,a) ∈ r → a = b
TOTAL total_on A r ≡ ∀(a∈A) (b∈A). a �=b → (a,b)∈ r ∨ (b,a)∈ r
WELLFOUNDED wf r ≡ ∀P. (∀a. (∀b. (b,a) ∈ r → P b)→ P a)→ (∀a. P a)
PARTIAL ORDER partial_order_on A r ≡ refl_on A r ∧ trans r ∧ antisym r
LINEAR ORDER linear_order_on A r ≡ partial_order_on A r ∧ total_on A r
WELLORDER well_order_on A r ≡ linear_order_on A r ∧ wf (r− Id)

If r is a partial order, then r− Id is its associated strict partial order. Some of the above
definitions are slightly nonstandard, but they can be proved equivalent to standard ones.
For example, well-foundedness is given here a higher-order definition useful in proofs
as an induction principle, while it is usually equivalently defined as the nonexistence of
infinite chains a : nat→ α with (a (Suc i), a i) ∈ r for all i.

Note that refl_on A r (and hence well_order_on A r) implies Field r = A. We abbre-
viate well_order_on (Field r) r to Wellorder r and well_order_on UNIV r to wellorder r.

3 Ordinals

This section presents some highlights of our formalization of ordinals. In a break with
tradition, we work with abstract ordinals—i.e., with wellorders—making no assumption
about their underlying implementation.

114 J.C. Blanchette, A. Popescu, and D. Traytel

3.1 Infrastructure

We represent a wellorder as a relation r : τ rel, where τ is some type. Although some of
the lemmas below hold for arbitrary relations, we generally assume that r, s, and t range
over wellorders. The following operators are pervasive in our constructions: under r a is
the set of all elements less than or equal to a, or “under” a, with respect to r; underS r a
gives the elements strictly under a. We call these under- and strict-under-intervals:

under : α rel→ α→ α set underS : α rel→ α→ α set
under r a ≡ {b | (b,a) ∈ r} underS r a ≡ {b | (b,a) ∈ r∧b �= a}

A wellorder is a linear order relation r such that its strict version, r− Id, is a well-
founded relation. Well-founded induction and recursion are well supported by Isabelle’s
library. We define slight variations of these notions tailored for wellorders.

Lemma 1. If ∀a∈Field r. (∀a′ ∈underS r a. P a′)→ P a, then ∀a∈Field r. P a.

When proving a property P for all elements of r’s field, wellorder induction allows us
to show P for fixed a ∈ Field r, assuming P holds for elements strictly r-smaller than a.

Wellorder recursion is similar, except that it allows us to define a function f on
Field r instead of to prove a property. For each a ∈ Field r, we assume f already de-
fined on underS r a and specify f a. This is technically achieved by a “wellorder recur-
sor” operator wo_recr : ((α→ β) → α→ β) → α→ β and an admissibility predicate
adm_wor : ((α→ β)→ α→ β)→ bool defined by

adm_wor H ≡ ∀ f g a. (∀a′ ∈underS r a. f a′ = g a′)→ H f a = H g a

A recursive definition is represented by a function H : (α→ β) → α→ β, where H f
maps a to a value based on the values of f on underS r a. A more precise type for H
would be ∏a∈Field r (underS r a → β)→ β, but this is not possible in HOL. Instead, H
is required to be admissible, i.e., not dependent on the values of f outside underS r a.
The defined function wo_rec H is then a fixpoint of H on Field r.

Lemma 2. If adm_wor H, then ∀a∈Field r. wo_recr H a = H (wo_recr H) a.

An (order) filter on r, also called an initial segment of r if r is a wellorder, is a subset A
of r’s field such that whenever A contains a, it also contains all elements under a:

ofilter : α rel→ α set→ bool
ofilter r A ≡ A ⊆ Field r ∧ (∀a∈A. under r a ⊆ A)

Both the under- and the strict-under-intervals are filters of r. Moreover, every filter of r
is either its whole field or a strict-under-interval.

Lemma 3. (1) ofilter r (under r a) ∧ ofilter r (underS r a);
(2) ofilter r A ←→ A = Field r ∨ (∃a ∈ Field r. A = underS r a).

3.2 Embedding and Isomorphism

Wellorder embeddings, strict embeddings, and isomorphisms are defined as follows:

embed, embedS, iso : α rel→ β rel→ (α→ β)→ bool
embed r s f ≡ ∀a∈Field r. bij_betw f (under r a) (under s (f a))

Cardinals in Isabelle/HOL 115

embedS r s f ≡ embed r s f ∧ ¬ bij_betw f (Field r) (Field s)
iso r s f ≡ embed r s f ∧ bij_betw f (Field r) (Field s)

We read embed r s f as “ f embeds r into s.” It is defined by stating that for all a ∈
Field r, f establishes a bijection between the under-intervals of a in r and those of f a
in s. The more conventional definition (stating that f is injective, order preserving, and
maps Field r into a filter of s) is derived as a lemma:

Lemma 4. embed r s f ←→ compat r s f ∧ inj_on f (Field r) ∧ ofilter s (f • Field r),
where compat r s f expresses order preservation of f (∀a b. (a,b)∈ r → (f a, f b)∈ s).

Every embedding is either an (order) isomorphism or a strict embedding (i.e., iso r s f ∨
embedS r s f), depending on whether f is a bijection. These notions yield the following
relations between wellorders:

≤o,≤o,=o : (α rel×β rel) set
≤o ≡ {(r, s). Wellorder r ∧Wellorder s ∧ (∃ f . embed r s f)}
≤o ≡ {(r, s). Wellorder r ∧Wellorder s ∧ (∃ f . embedS r s f)}
=o ≡ {(r, s). Wellorder r ∧Wellorder s ∧ (∃ f . iso r s f)}

We abbreviate (r, s) ∈ ≤o to r ≤o s, and similarly for ≤o and =o. These notations are
fairly intuitive; for example, r ≤o s means that r is smaller than or equal to s, in that it
can be embedded in s. The relations are also well behaved.

Theorem 5. The following properties hold:

(1) r =o r
(2) r =o s → s =o r
(3) r =o s ∧ s =o t → r =o t
(4) r ≤o r
(5) r ≤o s ∧ s ≤o t → r ≤o t

(6) ¬ r ≤o r
(7) r ≤o s ∧ s ≤o t → r ≤o t
(8) r ≤o s ←→ r ≤o s ∨ r =o s
(9) r =o s ←→ r ≤o s ∧ s ≤o r

If we restrict the types of these relations from (α rel×β rel) set to (α rel) rel (by taking
β= α), we obtain that =o is an equivalence (1–3) and ≤o is a preorder (4–5). Moreover,
≤o is the strict version of ≤o with respect to =o (6–8). If we think of =o as the equality,
≤o becomes a partial order (9) and ≤o a strict partial order.

The above relations establish an order between the wellorders similar to the standard
one on the class of ordinals but distributed across types and, as a consequence, only up
to isomorphism. What is still missing is a result corresponding to the class of ordinals
being itself well ordered. To this end, we first show that ≤o is total.

Theorem 6. r ≤o s ∨ s ≤o r.

Proof idea. In textbooks, totality of ≤o follows from the fact that every wellorder is
isomorphic to an ordinal and that the class of ordinals Ord is totally ordered. To show
the former, one starts with a wellorder r and provides an embedding of r into Ord.

In our distributed setting, we must start with two wellorders r : α rel and s : β rel,
without a priori knowing which one is larger, hence which should embed which. Our
proof proceeds by defining a function by transfinite recursion on r that embeds r into s
if r ≤o s and that is the inverse of an embedding of s into r otherwise. '%
This total order is a wellorder. Equivalently, its strict counterpart ≤o is well founded.

116 J.C. Blanchette, A. Popescu, and D. Traytel

Theorem 7. wf (≤o : (α rel) rel).

Theorems 5, 6, and 7 yield that for any fixed type, its wellorders are themselves well
ordered up to isomorphism. This paves the way for introducing cardinals.

3.3 Ordinal Arithmetic

Most textbooks define operations on ordinals (sum, product, exponentiation) by trans-
finite recursion. Yet these operations admit direct, nonrecursive definitions, which are
particularly suited to arbitrary wellorders. In Holz et al. [10], these direct definitions are
presented as “visual” descriptions.

We define the ordinal sum +o by concatenating the two argument wellorders r and s
such that elements of Field r come below those of Field s:

+o : α rel→ β rel→ (α+β) rel
r +o s ≡ (Inl⊗ Inl) • r ∪ (Inr⊗ Inr) • s ∪ {(Inl x, Inr y). x ∈ Field r ∧ y ∈ Field s}

In the above, the operator ⊗ : (α1 → β1) → (α2 → β2) → (α1 ×α2 → β1 × β2) is the
map function for products: (f1 ⊗ f2) (a1,a2) = (f1 a1, f2 a2).

Similarly, ordinal multiplication ×o is defined as the anti-lexicographic ordering on
the product type:

×o : α rel→ β rel→ (α×β) rel
r ×o s ≡ {((x1,y1),(x2,y2)). x1, x2 ∈ Field r ∧ y1,y2 ∈ Field s ∧

(y1 �= y2 ∧ (y1,y2) ∈ s ∨ y1 = y2 ∧ (x1, x2) ∈ r)}

For ordinal exponentiation r ^o s, the underlying set consists of the functions of finite
support from Field s to Field r. Assuming f �= g, the finite support ensures that there
exists a maximum z ∈ Field s (with respect to s) such that f z �= g z. We make f smaller
than g if (f z, g z) ∈ r:

^o : α rel→ β rel→ (β→ α) rel
r ^o s ≡ {(f ,g). f ,g ∈ FinFunc (Field s) (Field r) ∧

(f = g ∨ (let z =maxs{x∈Field s. f x �= g x} in (f z, g z) ∈ r))}

The definition rests on the auxiliary notion of a function of finite support from B : α set
to A : β set. FinFunc B A carves out a suitable subspace of the total function space β→ α
by requiring that functions are equal to a particular unspecified value ⊥ outside their
intended domains. In addition, finite support means that only finitely many elements of
B are mapped to elements other than the minimal element 0r of the wellorder r:

Func, FinFunc : β set→ α set→ (β→ α) set
Func B A ≡ { f . f • B ⊆ A ∧ (∀x /∈B. f x =⊥)}
FinFunc B A ≡ Func B A ∩ { f . finite {x∈B. f x �= 0r}}

All three constructions yield wellorders. Moreover, they satisfy various arithmetic
properties, including those listed below.

Theorem 8. (1) Wellorder (r +o s); (2) Wellorder (r ×o s); (3) Wellorder (r ^o s).

Lemma 9 (Lemma 1.4.3 in Holz et al. [10]). Let 0 be the empty wellorder and 1 be
the singleton wellorder. The following properties hold:

Cardinals in Isabelle/HOL 117

(1) 0 +o r =o r =o r +o 0
(2) s ≤o r +o s
(3) s ≤o t → r +o s ≤o r +o t

(4) (r +o s) +o t =o r +o (s +o t)
(5) r ≤o s → r +o t ≤o s +o t

(6) 0 ×o r =o 0 =o r ×o 0
(7) (r ×o s)×o t =o r ×o (s ×o t)
(8) r ≤o s → r ×o t ≤o s ×o t

(9) 1 ×o r =o r =o r ×o 1
(10) r ×o (s +o t) =o r ×o s +o r ×o t
(11) 0 ≤o r ∧ s ≤o t → r ×o s ≤o r ×o t

(12) 0 ≤o r → 0 ^o r =o 0
(13) (r ^o s) ^o t =o r ^o (s ×o t)
(14) r ≤o s → r ^o t ≤o s ^o t
(15) 1 ≤o r → s ≤o r ^o s

(16) 1 ^o r =o 1
(17) r ^o s +o t =o r ^o s ×o r ^o t
(18) 1 ≤o r ∧ s ≤o t → r ^o s ≤o r ^o t

An advantage of the standard definitions of these operations by transitive recursion is
that the above arithmetic facts can then be nicely proved by corresponding transfinite
induction. With direct definitions, we aim as much as possible at direct proofs via the
explicit indication of suitable isomorphisms or embeddings, as in the definitions of
=o, ≤o, and ≤o. This approach works well for the equations (=o-identities) and for
right-monotonicity properties of the operators (where one assumes equality on the left
arguments and ordering of the right arguments). For example, to prove 0≤o r ∧ s≤o t →
r ×o s ≤o r ×o t, we use the definition of ≤o to obtain from s ≤o t a strict embedding f
of s into t. The desired strict embedding of r ×o s into r ×o t is then id⊗ f .

In contrast, left-monotonicity properties such as r ≤o s → r ×o t ≤o s ×o t no longer
follow smoothly, because it is not clear how to produce an embedding of r ×o t into
s ×o t from one of r into s. An alternative characterization of ≤o is called for:

Lemma 10. r ≤o s ←→ Wellorder r ∧Wellorder s ∧ (∃ f . ∀a∈Field r. f a ∈ Field s ∧
f • underS r a ⊆ underS s (f a)).

Thus, to show r ≤o s, it suffices to provide an order embedding, which need not be
a wellorder embedding (an embedding of Field r as a filter of s). This dramatically
simplifies the proof. To show the left-monotonicity property r ×o t ≤o s ×o t assuming
an embedding f of r into s, the obvious order embedding f ⊗ id meets the requirements.
Surprisingly, this technique is not mentioned in the textbooks.

Right-monotonicity holds for both ≤o and ≤o, whereas left-monotonicity holds only
for ≤o. This is fortunate in a sense, because Lemma 10 is not adaptable to ≤o.

4 Cardinals

With the ordinals in place, we can develop a theory of cardinals, which endows HOL
with many conveniences of cardinality reasoning, including basic cardinal arithmetic.

4.1 Bootstrapping

We define cardinal orders on a set (or cardinals) as those wellorders that are minimal
with respect to =o. This is our HOL counterpart of the standard definition of cardinals
as “ordinals that cannot be mapped one-to-one onto smaller ordinals” [10, p. 42]:

card_order_on A r ≡ well_order_on A r ∧ (∀s. well_order_on A s → r ≤o s)

118 J.C. Blanchette, A. Popescu, and D. Traytel

We abbreviate card_order_on (Field r) r to Card_order r and card_order_on UNIV r to
card_order r. By definition, card_order_on A r implies A = Field r, allowing us to write
Card_order r when we want to omit A.

Cardinals are useful to measure sets. There exists a cardinal on every set, and it is
unique up to isomorphism.

Theorem 11. (1) ∃r. card_order_on A r;
(2) card_order_on A r ∧ card_order_on A s → r =o s.

We define the cardinality of a set |_| : α set→ α rel using Hilbert’s choice operator to
pick an arbitrary cardinal order on A: |A| ≡ εr. card_order_on A r. The order exists
and is irrelevant by Theorem 11. We can prove that the cardinality operator behaves as
expected; in particular, it is monotonic. We can also connect it to the more elementary
comparisons in terms of functions.

Lemma 12. The following properties hold:

(1) card_order_on A |A|
(2) Field |A|= A

(3) A ⊆ B → |A| ≤o |B|
(4) r ≤o s → |Field r| ≤o |Field s|

Lemma 13. The following equivalences hold:

(1) |A|=o |B| ←→ (∃ f . bij_betw f A B)
(2) |A| ≤o |B| ←→ (∃ f . inj_on f A ∧ f • A ⊆ B)
(3) A �= /0 → (|A| ≤o |B| ←→ (∃g. A ⊆ g • B))

Lemma 13, in conjunction with Theorem 6, allows us to prove the following interesting
order-free fact for the working mathematician, mentioned in Section 1.

Theorem 14. Given any two types σ and τ, one is embeddable in the other: There
exists an injection either from σ to τ or from τ to σ.

4.2 Cardinality of Set and Type Constructors

We analyze the cardinalities of several standard type constructors: α+β (disjoint sum),
α×β (binary product), α set (powertype), and α list (lists). In the interest of generality,
we consider the homonymous set-based versions of these constructors, which take the
form of polymorphic constants:

+ : α set→ β set→ (α+β) set × : α set→ β set→ (α×β) set
A+ B ≡ {Inl a | a ∈ A} ∪ {Inr b | b ∈ B} A× B ≡ {(a,b) | a ∈ A ∧ b ∈ B}

Pow : α set→ (α set) set lists : α set→ (α list) set
Pow A ≡ {X | X ⊆ A} lists A ≡ {as | set as ⊆ A}

(Such operators can be generated automatically from the specification of a (co)datatype,
as we will see in Section 7.) The cardinalities of these operators are compatible with
isomorphism and embedding.

Cardinals in Isabelle/HOL 119

Lemma 15. Let K be any of +, ×, Pow, and lists, let n ∈ {1,2} be its arity, and let θ
be either =o or ≤o. If ∀i∈{1, . . . ,n}. |Ai| θ |Bi|, then |K A1 . . . An| θ |K B1 . . . Bn|.

Lemma 16. The following orderings between cardinalities hold:

(1) |A| ≤o |A+ B|
(2) |A+ B| ≤o |A× B| if both A and B have at least two elements
(3) |A| ≤o |Pow A|
(4) |A| ≤o |lists A|

If one of the involved sets is infinite, some embeddings collapse to isomorphisms.

Lemma 17. Assuming infinite A, the following equalities between cardinals hold:

(1) |A×A|=o |A|
(2) |A|=o |lists A|
(3) |A+ B|=o (if A ≤o B then |A| else |B|)
(4) B �= /0 → |A× B|=o (if A ≤o B then |A| else |B|)

The formalization of property (1) required a significant effort. Its proof relies on the
so-called bounded product construction, which is extensively discussed by Paulson and
Grabczewski [17] in the context of Isabelle/ZF.

In Isabelle/HOL, the Cartesian product is a special case of the indexed sum (or dis-
joint union) operator:

∑ : α set→ (α→ β set)→ (α×β) set
∑ A f ≡ ⋃a∈A

⋃
b∈ f a {(a,b)}

We write ∑a∈A f a for ∑ A f . The properties of × given above carry over to ∑. In
addition, ∑ can be used to prove cardinality bounds of indexed unions:

Lemma 18. (1) |⋃a∈A f a| ≤o |∑a∈A f a|;
(2) infinite B ∧ |A| ≤o |B| ∧ (∀a∈A. | f a| ≤o |B|) → |⋃a∈A f a| ≤o |B|.

4.3 ℵ0 and the Finite Cardinals

Our ℵ0 is the standard order≤ : nat rel on natural numbers, which we denote by natLeq.
It behaves as expected of ℵ0; in particular, it is ≤o-minimal among infinite cardinals.
Proper filters of natLeq are precisely the finite sets of the first consecutive numbers.

Lemma 19. (1) infinite A ←→ natLeq≤o |A|; (2) Card_order natLeq;
(3) Card_order r ∧ infinite (Field r) → natLeq≤o r;
(4) ofilter natLeq A ←→ A = (UNIV : nat set) ∨ (∃n. A = {0, . . . ,n}).

The finite cardinals are obtained as restrictions of natLeq: natLeq_on n ≡ natLeq ∩
{0, . . . ,n}×{0, . . .,n}. These behave like the finite cardinals (up to isomorphism):

Lemma 20. (1) card_order (natLeq_on n); (2) finite A ∧ |A|=o |B| → finite B;
(3) finite A ←→ (∃n. |A|=o natLeq_on n).

For finite cardinalities, we prove backward compatibility with the preexisting cardinal-
ity operator card : α set→ nat, which maps infinite sets to 0:

120 J.C. Blanchette, A. Popescu, and D. Traytel

Lemma 21. Assuming finite A ∧ finite B:

(1) |A|=o |B| ←→ card A = card B (2) |A| ≤o |B| ←→ card A ≤ card B

The card operator has extensive library support in Isabelle. It is still the preferred car-
dinality operator for finite sets, since it refers to numbers with order and equality rather
than the more bureaucratic order embeddings and isomorphisms.

cardSuc preserves finiteness and behaves as expected for finite cardinals:

Lemma 22. (1) Card_order r → (finite (cardSuc r) ←→ finite (Field r));
(2) cardSuc (natLeq_on n) =o natLeq_on (Suc n).

4.4 Cardinal Arithmetic

To define cardSuc r, the successor of a cardinal r : α rel, we first choose a type that is
large enough to contain a cardinal greater than r, namely, α set. The successor cardinal
is then defined as a cardinal that is greater than r and that is ≤o-minimal among all
cardinals on the chosen type α set:

isCardSuc : α rel→ (α set) rel→ bool
isCardSuc r s ≡ Card_order s ∧ r ≤o s ∧

(∀t : (α set) rel. Card_order t ∧ r ≤o t → s ≤o t)

The choice of the second argument’s type, together with Theorem 7, ensures that such
a cardinal exists:

Lemma 23. ∃s. isCardSuc r s.

This allows us to define the function cardSuc : α rel → (α set) rel that yields an arbi-
trary successor cardinal of its argument r: cardSuc r ≡ εs. isCardSuc r s. The chosen
cardinal is really a successor cardinal:

Lemma 24. isCardSuc r (cardSuc r)

To obtain the desired characteristic properties of successor cardinals in full generality,
we must prove that cardSuc r is minimal not only among the cardinals on α set but
among all cardinals. This is achieved by a tedious process of making isomorphic copies.

Theorem 25. Assuming Card_order (r : α rel) and Card_order (s : β rel):

(1) r ≤o cardSuc r (2) r ≤o s → cardSuc r ≤o s

Finally, we prove that cardSuc is compatible with isomorphism and is monotonic.

Theorem 26. Assuming Card_order r and Card_order s:

Cardinals in Isabelle/HOL 121

(1) cardSuc r =o cardSuc s ←→ r =o s (2) cardSuc r ≤o cardSuc s ←→ r ≤o s

In summary, we first introduced the successor in a type-specific manner, asserting min-
imality within a chosen type, since HOL would not allow us to proceed more generally.
Then we proved the characteristic property in full generality, and finally we showed that
the notion is compatible with =o and ≤o.

This approach is certainly more bureaucratic than the traditional set theoretic con-
structions, but it achieves the desired effect. The same technique is used to introduce
all the standard cardinal operations (e.g, +c : α rel→ β rel→ (α+β) rel), for which we
prove the basic arithmetic properties.

Lemma 27 (Lemma 1.5.10 in Holz et al. [10]). The following properties hold:

(1) (r +c s) +c t =o r +c (s +c t) (2) r +c s =o s +c r

(3) (r ×c s)×c t =o r ×c (s ×c t)
(4) r ×c s =o s ×c r
(5) r ×c 0 =o 0

(6) r ×c 1 =o r
(7) r ×c (s +c t) =o r ×c s +c r ×c t

(8) r ^c (s +c t) =o r ^c s ×c r ^c t
(9) (r ^c s) ^c t =o r ^c (s ×c t)

(10) (r ×c s) ^c t =o r ^c t ×c s ^c t
(11) ¬ r =o 0 → r ^c 0 =o 1 ∧ 0 ^c r =o 0

(12) r ^c 1 =o r
(13) 1 ^c r =o 1
(14) r ^c 2 =o r ×c r

(15) r ≤o s ∧ t ≤o u → r +c t ≤o s +c u
(16) r ≤o s ∧ t ≤o u ∧ ¬ t =o 0 → r ^c t ≤o s ^c u

(17) r ≤o s ∧ t ≤o u → r ×c t ≤o s ×c u

Another useful cardinal operation is the maximum of two cardinals, cmax r s, which is
well defined by the totality of ≤o. Thanks to Lemma 17(1), it behaves like both sum
and product for infinite cardinals:

Lemma 28. (infinite (Field r) ∧ Field s �= /0) ∨ (infinite (Field s) ∧ Field r �= /0) →
cmax r s =o r +c s =o r ×c s.

4.5 Regular Cardinals

A set A : α set is cofinal for r : α rel, written cofinal A r, if ∀a∈Field r. ∃b ∈ A. a �= b ∧
(a,b)∈ r; and r is regular, written regular r, if ∀A. A⊆ Field r ∧ cofinal A r → |A|=o r.

Regularity is a generalization of the property of natLeq of not being “coverable” by
smaller cardinals—indeed, no finite set A of numbers fulfills ∀m. ∃n∈ A. m < n. The
infinite successor cardinals are further examples of regular cardinals.

Lemma 29. (1) regular natLeq;
(2) Card_order r ∧ infinite (Field r) → regular (cardSuc r).

A property of regular cardinals useful in applications is the following: Inclusion of a set
of smaller cardinality in a union of a chain indexed by the cardinal behaves similarly to
membership, in that it amounts to inclusion in one of the sets in the chain.

122 J.C. Blanchette, A. Popescu, and D. Traytel

Lemma 30. Assume Card_order r, regular r, ∀i j. (i, j) ∈ r → A i ⊆ A j, |B| ≤o r, and
B ⊆⋃i∈Field r A i. Then ∃i∈Field r. B ⊆ A i.

Finally, regular cardinals are stable under unions. They cannot be covered by a union of
sets of smaller cardinality indexed by a set of smaller cardinality.

Lemma 31. Assuming Card_order r, regular r, |I| ≤o r, and ∀i∈ I. |A i| ≤o r, we have
|⋃i∈ I A i| ≤o r.

We also proved the converse: The above property is not only necessary but also suffi-
cient for regularity.

5 Discussion of the Formalization

Figure 1 shows the main theory structure of our development. The overall development
amounts to about 14 000 lines of scripts, excluding the applications. We also formal-
ized many basic facts about wellorders and (order-)isomorphic transfer across bijec-
tions. When we started, Isabelle’s library had extensive support for orders based on
type classes [6]. However, working with the wellorder type class was not an option,
since we need several wellorders for the same type—for example, the cardinal of a type
is defined as the minimum of all its wellorders.

Reasoning about the modified version of equality and order (=o, ≤o, and ≤o) was
probably the most tedious aspect of the formalization effort. The standard Isabelle proof
methods (auto, blast, etc.) are optimized for reasoning about actual equality and order.
Some of the convenience could be recovered via an appropriate setup; for example,
declaring these relations as transitive enables calculational reasoning in Isar [1].

For the initial version of the formalization, developed in 2009, Isabelle’s Sledgeham-
mer tool for deploying external automatic theorem provers [16] did not help much. The
proofs required a careful combination of facts on orders and isomorphic transfer, and
Sledgehammer was not as powerful as it is today. In contrast, cardinal arithmetic was
developed later and largely automated in this way.

Throughout the paper, we have illustrated our effort to adapt the theory of cardinals
to the HOL types, doing without a canonical class of ordinals ordered by membership.
Another limitation of HOL is its inability to quantify over types except universally and
at the statements’ top level. A notorious example originates from the formalizations
of the FOL completeness theorem (e.g., Harrison [8]): A sentence is provable if and
only if it is true in all models. The ‘if’ direction is not expressible in HOL, because
the right-hand side quantifies over all carrier types of all models, which amounts to an
existential type quantification at the top of the formula. But one can express and prove
a stronger statement: Based on the language cardinality, one fixes a witness type so that
satisfaction in all models on that type already ensures provability. Our formalization
abounds in such apparently inexpressible statements. One example is the definition of
the successor cardinal from Section 4.4. Another is the claimed converse of Lemma 31.
Each time, we needed to select a suitable witness type in an ad hoc fashion.

Cardinals in Isabelle/HOL 123

Wellorder_Relation (Section 3.1)

Wellorder_Embedding (Section 3.2)

Constructions_on_Wellorders (Section 3.2)

��������
�����

Ordinal_Arithmetic (Section 3.3) Cardinal_Order_Relation (Section 4)

��������
�����

Syntax with bindings (Section 6) Cardinal_Arithmetic (Section 4.4)

(Co)datatype package (Section 7)

Fig. 1. Theory structure

6 Application: Syntax with Bindings

Popescu has formalized a general theory of syntax with bindings, parameterized over
a binding signature with possibly infinitary operation symbols [20–22]. Cardinals were
crucially needed for supporting infinitary syntax.

We illustrate the problem and solution on an example. Let index and var be types
representing indices and variables, and consider the freely generated type of terms

datatype term = Var var | Lam var term | Sum (index→ term)

Thus, a term is either (an injection of) a variable, a λ-abstraction, or an indexed sum of
a family of terms. The standard operators of free variables fvars : term → var set and
capture-avoiding substitution _[_/_] : term→ term→ var→ term are defined below:

fvars (Var x) = {x} (Var x)[s/y] = (if x = y then s else Var x)
fvars (Lam x t) = fvars t−{x} (Lam x t)[s/y] = (let x′ = pickFresh [Var y, s]
fvars (Sum f) =

⋃
i∈ I fvars (f i) in Lam x′ (t[x′/x][s/y]))

(Sum f)[s/y] = Sum (λi. (f i)[s/y])

To avoid capture, the Lam case of substitution renames the variable x to x′. The new
name is chosen by the pickFresh operator, which takes a list of terms ts as argument
and returns some variable not occurring freely in ts. But how can we be sure that such
a choice exists? The standard solution of making the type var infinite does not suffice
here: The Sum constructor introduces possibly infinite branching on index, and there-
fore fvars t may return an infinite set of variables, potentially even UNIV.

Fortunately, the essence of the standard solution can be generalized to the infinitary
situation. Finitely branching syntax relies on the observation that no n-ary constructor
violates the finiteness of the set of free variables, since a finite union of finite sets is
finite. Lemma 31 generalizes this notion to regular cardinals. Hence, we simply need to
define var so that it has a regular cardinal greater than index: var = cardSuc |index|.

Lemma 32. regular |var| ∧ |index| ≤o |var| → (∀t. |fvars t| ≤o |var|).

Proof idea. By structural induction on t, using Lemma 31. '%

124 J.C. Blanchette, A. Popescu, and D. Traytel

After passing this milestone, a theory of substitution and free variables proceeds simi-
larly to the finitary case [20]. Most current frameworks for syntax with bindings, includ-
ing nominal logic [12,18], assume finiteness of the syntactic objects. Regular cardinals
provide a foundation for an infinitary generalization.

7 Application: Bounded Functors and the (Co)datatype Package

Isabelle’s new (co)datatype package draws on both category theory and cardinal the-
ory. It maintains a class of functors with additional structure, called bounded natural
functors (BNFs), for which it constructs initial algebras (datatypes) and final coalge-
bras (codatatypes). The category theory underlying the package is described in Traytel
et al. [24]; here, we focus on the cardinality aspects.

BNFs are type constructors equipped with functorial actions, n natural transforma-
tions, and a cardinality bound. A unary BNF consists of a type constructor α F, a
constant Fmap : (α→ β) → α F → β F, a constant Fset : α F → α set that is natu-
ral with respect to F, and a cardinal Fbd such that ∀x. |Fset x| ≤o Fbd. We define
Fin : α set→ (α F) set, the set-based version of F, by Fin A = {x | Fset x ⊆ A}—this is
a common generalization of the specific set-based operators from Section 4.2.

An algebra for F is a triple A = (T, A : T set, s : T F→T) (where T is a type) such
that ∀x∈ Fin A. s x ∈ A. The condition ensures that s is a function from Fin A to A,
and we allow ourselves to write s : Fin A → A. The set A is the carrier of A , and s is
the structural map of A. The structural map models the operations of the algebra. For
example, if α F= unit+α×α, an algebra A consists of a set A : T set with a constant
and a binary operation on it, encoded as s : unit+α×α→ α.

This notion accommodates standard algebraic constructions. One forms the product
∏i∈I Ai of a family of algebras (of type T) by taking the product of the carrier sets and
defining the structural map s : Fin (∏i∈ I Ai)→ ∏i∈ I Ai as s x = (si (Fmap proji x))i∈ I .
A stable part of A is any set A′ ⊆ A such that ∀x∈Fin A′. s x∈ A′. Since the intersection
of stable parts is a stable part, we can define an algebra Min(A), the minimal algebra
of A , by taking its carrier to be the intersection of all stable parts and its structural map
to be (the restriction of) s. This corresponds to the notion of subalgebra generated by /0.
A morphism between two algebras A and A ′ is a function h : A → A′ that commutes
with the structural maps, in that ∀x∈Fin A. h (s x) = s′ (Fmap h x).

Building the initial algebra of F (an algebra such that for any algebra A , there exists
precisely one morphism between it and A) can be naively attempted as follows: First
we take R =∏{A |A algebra}, the product of all algebras. Given an algebra A , there
must exist a morphism h from R to A —the corresponding projection. The restriction
of h to Min(R) is then the desired unique morphism from Min(R) to A , and Min(R)
is our desired initial algebra.

This naive approach fails since we cannot construct the product of all algebras in
HOL—and even if we could, it would not be an algebra itself due to its size. Fortunately,
it suffices to define the morphism h from R not to A but to Min(A). Hence, we can
take R as the product of all minimal algebras and consider only a complete collection
of representatives (up to isomorphism). This is where the bound on F comes into play.
If we know that all minimal algebras of all algebras had cardinality smaller than a given

Cardinals in Isabelle/HOL 125

bound r0, we can choose a type T0 of cardinality r0 and define R as the product of all
algebras on T0: R = ∏{A | A = (T0, A : T0 set, s : T0 F→ T0) algebra}. A suitable
cardinal bound is r0 = 2 ^c k, where k = cardSuc (Fbd +c |Fin (Field Fbd)|). To prove
this, we first establish the following consequence of the BNF boundedness property:2

Lemma 33. |A| ≥o 2 → |Fin A| ≤o |A| ^c k.

Theorem 34. For all algebras A, let M be the carrier of Min(A). Then |M| ≤o 2 ^c k.

Proof idea. The definition of Min(A) performs a construction of M “from above,” as
an intersection, yielding no cardinality information. We must produce an alternative
construction “from below,” exploiting the internal structure of F. Let N =

⋃
i∈Fieldk Ni,

where each Ni is defined by wellorder recursion as follows: Ni =
⋃

j∈underSk i s • Fin Nj.
We first prove that N is a stable part of A , and hence M ⊆ N. Let x ∈ Fin N. Then
Fset x ⊆ N =

⋃
i∈Fieldk Ni, and since k is regular by Lemma 29(2), we use Lemma 30 to

obtain i ∈ Field k such that Fset x ⊆ Ni (i.e., x ∈ Fin Ni). Hence, s x ∈ Nsucc k i ⊆ N, as
desired. Conversely, N ⊆ M follows by wellorder induction. Thus, we have M = N. The
inequality |N| ≤o 2 ^c k follows by wellorder induction, using Lemma 33 and cardinal
arithmetic to keep the passage from Ni to Fin Ni bounded. Knowing |Ni| ≤o 2 ^c k, we
obtain |Fin Ni| ≤o |Ni| ^c k ≤o (2 ^c k) ^c k =o 2 ^c (k ×c k) =o 2 ^c k. '%

Cardinal arithmetic is also used throughout the package for showing that the various
constructions on BNFs (composition, initial algebra, and final coalgebra) yield BNFs.

8 Conclusion

We have formalized in Isabelle/HOL a theory of cardinals, proceeding locally and ab-
stractly, up to wellorder isomorphism. The theory has been applied to reason about
infinitary objects arising in syntax with bindings and (co)datatypes.

We hope our experiment will be repeated by the other HOL provers, where a theory
of cardinals seems as useful as in any other general-purpose framework for mathemat-
ics. Indeed, the theory provides working mathematicians with the needed injections and
bijections (e.g., between lists over an infinite type, or the square of an infinite type, and
the type itself) without requiring them to perform awkward encodings.

An open question is whether the quotient construction performed by Norrish and
Huffman (briefly discussed in the introduction) would have helped the cardinal formal-
ization. With their approach, we would still need to change the underlying type of car-
dinals to accommodate for increasingly large sizes. HOL offers no way to reason about
arbitrary cardinals up to equality, so isomorphism appears to be the right compromise.

Acknowledgment. Tobias Nipkow made this work possible. Stefan Milius and Lutz
Schröder contributed an elegant proof of Lemma 33. The anonymous reviewers sug-
gested many improvements to the paper. Blanchette is supported by the DFG (Deutsche

2 Initially, we had maintained a slight variation of this property as an additional BNF require-
ment [24, Section 4], not realizing that it is redundant. Removing it has simplified the package
code substantially.

126 J.C. Blanchette, A. Popescu, and D. Traytel

Forschungsgemeinschaft) project Hardening the Hammer (grant Ni 491/14-1). Popescu
is supported by the DFG project Security Type Systems and Deduction (grant Ni 491/
13-2) as part of the program Reliably Secure Software Systems (RS3, priority program
1496). Traytel is supported by the DFG program Program and Model Analysis (PUMA,
doctorate program 1480). The authors are listed alphabetically regardless of individual
contributions or seniority.

References

1. Bauer, G., Wenzel, M.: Calculational reasoning revisited (An Isabelle/Isar experience). In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 75–90. Springer,
Heidelberg (2001)

2. Breitner, J.: Free groups. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal
Proofs (2011), http://afp.sf.net/entries/Free-Groups.shtml

3. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2), 56–68 (1940)
4. Forster, T.E.: Reasoning about Theoretical Entities. World Scientific (2003)
5. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press (1993)
6. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride,

C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)
7. Harrison, J.: The HOL wellorder library (1992),

http://www.cl.cam.ac.uk/~jrh13/papers/wellorder-library.html
8. Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey, M. (eds.)

TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998)
9. The HOL Light theorem prover (2014),

http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
10. Holz, M., Steffens, K., Weitz, E.: Introduction to Cardinal Arithmetic. Birkhäuser Advanced

Texts. Birkhäuser (1999)
11. Huffman, B.: Countable ordinals. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of

Formal Proofs (2005), http://afp.sf.net/entries/Ordinal.shtml
12. Huffman, B., Urban, C.: Proof pearl: A new foundation for Nominal Isabelle. In: Kaufmann,

M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg (2010)
13. Nipkow, T., Klein, G.: Concrete Semantics: A Proof Assistant Approach. Springer (to ap-

pear), http://www.in.tum.de/~nipkow/Concrete-Semantics
14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-

berg (2002)
15. Norrish, M., Huffman, B.: Ordinals in HOL: Transfinite arithmetic up to (and beyond) ω1. In:

Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 133–146.
Springer, Heidelberg (2013)

16. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S., Ter-
novska, E. (eds.) IWIL 2010. EPiC Series, vol. 2, pp. 1–11. EasyChair (2012)

17. Paulson, L.C., Grabczewski, K.: Mechanizing set theory. J. Autom. Reasoning 17(3), 291–
323 (1996)

18. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2),
165–193 (2003)

19. Popescu, A.: Ordinals and cardinals in HOL. In: Klein, G., Nipkow, T., Paulson, L. (eds.)
Archive of Formal Proofs (2009),
http://afp.sf.net/entries/Ordinals_and_Cardinals.shtml

http://afp.sf.net/entries/Free-Groups.shtml
http://www.cl.cam.ac.uk/~jrh13/papers/wellorder-library.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://afp.sf.net/entries/Ordinal.shtml
http://www.in.tum.de/~nipkow/Concrete-Semantics
http://afp.sf.net/entries/Ordinals_and_Cardinals.shtml

Cardinals in Isabelle/HOL 127

20. Popescu, A.: Contributions to the theory of syntax with bindings and to process algebra.
Ph.D. thesis, University of Illinois at Urbana-Champaign (2010)

21. Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution.
In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) ICFP 2011, pp. 346–358. ACM (2011)

22. Popescu, A., Gunter, E.L., Osborn, C.J.: Strong normalization of System F by HOAS on top
of FOAS. In: LICS 2010, pp. 31–40. IEEE (2010)

23. Taylor, P.: Intuitionistic sets and ordinals. J. Symb. Log. 61(3), 705–744 (1996)
24. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for

higher-order logic: Category theory applied to theorem proving. In: LICS 2012, pp. 596–
605. IEEE (2012)

Verified Abstract Interpretation Techniques for
Disassembling Low-level Self-modifying Code∗

Sandrine Blazy1, Vincent Laporte1, and David Pichardie2

1 Université Rennes 1, IRISA, Inria
2 ENS Rennes, IRISA, Inria

Abstract Static analysis of binary code is challenging for several rea-
sons. In particular, standard static analysis techniques operate over con-
trol flow graphs, which are not available when dealing with self-modifying
programs which can modify their own code at runtime. We formalize in
the Coq proof assistant some key abstract interpretation techniques that
automatically extract memory safety properties from binary code. Our
analyzer is formally proved correct and has been run on several self-
modifying challenges, provided by Cai et al. in their PLDI 2007 paper.

1 Introduction

Abstract interpretation [9] provides advanced static analysis techniques with
strong semantic foundations. It has been applied on a large variety of program-
ming languages. Still, specific care is required when adapting these techniques to
low-level code, specially when the program to be analyzed comes in the form of
a sequence of bits and must first be disassembled. Disassembling is the process
of translating a program from a machine friendly binary format to a textual
representation of its instructions. It requires to decode the instructions (i.e., un-
derstand which instruction is represented by each particular bit pattern) but
also to precisely locate the instructions in memory. Indeed instructions may be
interleaved with data or arbitrary padding. Moreover once encoded, instructions
may have various byte sizes and may not be well aligned in memory, so that a
single byte may belong to several instructions.

To thwart the problem of locating the instructions in a program, one must fol-
low its control flow. However, this task is not easy because of the indirect jumps,
whose targets are unknown until runtime. A static analysis needs to know precisely
enough the values that the expression denoting the jump target may evaluate to.
In addition, instructions may be produced at runtime, as a result of the very exe-
cution of the program. Such programs are called self-modifying programs; they are
commonly used in security as an obfuscation technique, as well as in just-in-time
compilation. Analyzing a binary code is mandatory when this code is the only avail-
able part of a software. Most of standard reverse engineering tools (e.g., IDA Pro)
cannot disassemble and analyze self-modifying programs. In order to disassemble
∗ This work was supported by Agence Nationale de la Recherche, grant number ANR-
11-INSE-003 Verasco.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 128–143, 2014.
c© Springer International Publishing Switzerland 2014

Verified Abstract Interpretation Techniques 129

and analyze such programs, one must very precisely understand which instructions
are written and where. And for all programs, one must check every single memory
write to decide whether it modifies the program code.

Self-modifying programs are also beyond the scope of the vast majority of for-
mal semantics of programming languages. Indeed a prerequisite in such semantics
is the isolation and the non-modification of code in memory. Turning to verified
static analyses, they operate over toy languages [5, 16] or more recently over
realistic C-like languages [18, 3], but they assume that the control-flow graph
is extracted by a preliminary step, and thus they do not encompass techniques
devoted to self-modifying code.

In this paper, we formalize with the Coq proof assistant, key static analysis
techniques to predict the possible targets of the computed jumps and make pre-
cise which instructions alter the code and how, while ensuring that the other
instructions do not modify the program. Our static analysis techniques rely on
two main components classically used in abstract interpretation, abstract do-
mains and fixpoint iterators, that we detail in this paper. The complete Coq
development is available online [8].

Our formalization effort is divided in three parts. Firstly, we formalize a small
binary language in which code is handled as regular mutable data. Secondly, we
formalize and prove correct an abstract interpreter that takes as input an initial
memory state, computes an over-approximation of the reachable states that may
be generated during the program execution, and then checks that all reachable
states maintain memory safety. Finally, we extract from our formalization an
executable OCaml tool that we run on several self-modifying challenges, provided
by Cai et al. [6].

The paper makes the following contributions.
– We push further the limit in terms of verified static analysis by tackling

the specific challenge of binary self-modifying programs, such as fixpoint
iteration without control-flow graph and simple trace partitioning [12].

– We provide a complementary approach to [6] by automatically inferring the
required state invariants that enforce memory safety. Indeed, the axiomatic
semantics of [6] requires programs to be manually annotated with invariants
written in a specific program logic.

The remainder of this paper is organized as follows. First, Section 2 briefly
introduces the static analysis techniques we formalized. Then, Section 3 details
our formalization: it defines the semantics of our low-level language and details
our abstract interpreter. Section 4 describes some improvements that we made
to the abstract interpreter, as well as the experimental evaluation of our im-
plementation. Related work is discussed in Section 5, followed by concluding
remarks.

2 Disassembling by Abstract Interpretation

We now present the main principles of our analysis on the program shown in Fig-
ure 1. It is printed as a sequence of bytes (on the extreme left) as well as under a

130 S. Blazy, V. Laporte, and D. Pichardie

disassembled form (on the extreme right) for readability purposes. This program,
as we will see, is self-modifying, so these bytes correspond to the initial content
of the memory from addresses 0 to 11. The remaining of the memory (addresses
in ��232;�1� � �12; 232 � 1�), as well as the content of the registers, is unknown
and can be regarded as the program input.

All our example programs target a machine operating over a low-level memory
made of 232 cells, eight registers (R0, . . . R7), and flags — boolean registers that
are set by comparison instructions. Each memory cell or register stores a 32 bits
integer value, that may be used as an address in the memory. Programs are
stored as regular data in the memory; their execution starts from address zero.
Nevertheless, throughout this paper we write the programs using the following
custom syntax. The instruction cst v � r loads register r with the given value v;
cmp r, r’ denotes the comparison of the contents of registers r and r’; gotoLE d
is a conditional jump to d, it is taken if in the previous comparison the content
of r’ was less than or equal to the one of r; goto d is an unconditional jump to d.
The instruction load *r � r’ and store r’ � *r denote accesses to memory
at the address given in register r; and halt r halts the machine with as final
value the content of register r.

The programming language we consider is inspired from x86 assembly; notably
instructions have variable size (one or two bytes, e.g., the length of the instruction
stored at line 1 is two bytes) and conditional jumps rely on flags. In this setting,
a program is no more than an initial memory state, and a program point is
simply the address of the next instruction to execute.

Initial program Possible final program Initial assembly listing

07000607 07000607 0: cmp R6, R7
03000000 03000000 1: gotoLE 5
00000005 00000004 2:
00000000 00000000 3: halt R0
00000100 00000100 4: halt R1
09000000 09000000 5: cst 4 � R0
00000004 00000004 6:
09000002 09000002 7: cst 2 � R2
00000002 00000002 8:
05000002 05000002 9: store R0 � *R2
04000000 04000000 10: goto 1
00000001 00000001 11:

Fig. 1. A self-modifying program: as a byte sequence (left); after some execution steps
(middle); assembly source (right)

In order to understand the behavior of this program, one can follow its code
as it is executed starting from the entry point (byte 0). The first instruction
compares the (statically unknown) content of two registers. This comparison
modifies only the states of the flags. Then, depending on the outcome of this

Verified Abstract Interpretation Techniques 131

comparison, the execution proceeds either on the following instruction (stored at
byte 3), or from byte 5. Executing the block from byte 5 will modify the byte 2
belonging to the gotoLE instruction (highlighted in Figure 1); more precisely it
will change the jump destination from 5 to 4: the store R0 � *R2 instruction
writes the content of register R0 (namely 4) in memory at the address given in
register R2 (namely 2). Notice that a program may directly read from or write to
any memory cell: we assume that there is no protection mechanism as provided
by usual operating systems. After the modification is performed, the execution
jumps back to the modified instruction, jumps to byte 4 then halts, with final
value the content of register R1.

This example highlights that the code of a program (or its control-flow graph)
is not necessarily a static property of this program: it may vary as the program
runs. To correctly analyze such a program, one must discover, during the fixpoint
iteration, the two possible states of the instruction at locations 1 and 2 and its
two possible targets. More specially, we need at least to know, for each program
point (i.e., memory location), which instructions may be decoded from there
when the execution reaches this point. This in turn requires to know what are
the values that the program operates on. We therefore devise a value analysis
that computes, for each reachable program point (i.e., in a flow sensitive way)
an over-approximation of the content of the memory and the registers, and the
state of the flags when the execution reaches that point.

The analysis relies on a numeric abstract domain N� that provides a representa-
tion for sets of machine integers (γN � N� � P�int�) and abstract arithmetic op-
erations. Relying on such a numeric domain, one can build abstract transformers
that model the execution of each instruction over an abstract memory that maps
locations (i.e., memory addresses1 and registers) to abstract numeric values. An
abstract state is then a mapping that attaches such an abstract memory to each
program point of the program, and thus belongs to addr �

�
�addr 	 reg� � N�

�
.

To perform one abstract execution step, from a program point pp and an ab-
stract memory state m� that is attached to pp, we first enumerate all instructions
that may be decoded from the set γN�m��pp��. Then for each of such instructions,
we apply the matching abstract transformer. This yields a new set of successor
states whose program points are dynamically discovered during the fixpoint it-
eration.

The abstract interpretation of a whole program iteratively builds an approx-
imation executing all reachable instructions until nothing new is learned. This
iterative process may not terminate, since there might be infinite increasing
chains in the abstract search space. As usual in abstract interpretation, we accel-
erate the iteration using widening operations [9]. Once a stable approximation
is finally reached, an approximation of the program listing or control-flow graph
can be produced.

To illustrate this process, Figure 2 shows how the analysis of the program
from Figure 1 proceeds. We do not expose a whole abstract memory but only
the underlying control-flow graph it represents. On this specific example, three

1 Type addr is a synonym of int, the type of machine integers.

132 S. Blazy, V. Laporte, and D. Pichardie

0 A a a a a a a a a a
1 � A a a a a C c c c
2 � � � � � � � � � �
3 � � A A A A A C C c
4 � � � � � � � B b b
5 � � A a a a a a a a
6 � � � � � � � � � �
7 � � � A a a a a a a
8 � � � � � � � � � �
9 � � � � A a a a a a

10 � � � � � B b b b b
11 � � � � � � � � � �

41

0 3

5

7 9

10

41

0 3

5

7 9

10

41

0 3

5

7 9

10

a b c

Fig. 2. Iterative fixpoint computation

different graphs are encountered during the analysis. For each program point pp,
we represent a node with same name and link it with all the possible successor
nodes according to the decoding of the set γN�m��pp��. The array shows the con-
struction of the fixpoint: each line represents a program point and the columns
represent the iterations of the analysis. In each array cell lies the name of the
control-flow graph representing the abstract memory for the given program point
during the given iteration; a dot stands for an unreachable program point. The
array cells whose content is in upper case highlight the program points that need
to be analyzed: they are the worklist.

Initially, at iteration 0, only program point 0 is known to be reachable and the
memory is known to exactly contain the program, denoted by the first control-
flow graph. The only successor of point 0 is point 1 and it is updated at the next
iteration. After a few iterations, point 9 is reached and the abstract control-flow
graph a is updated into a control-flow graph b that is propagated to point 10.
After a few more iterations, the process converges.

In addition to a control-flow graph or an assembly listing, more properties
can be deduced from the analysis result. We can prove safety properties about
the analyzed program, like the fact that its execution is never stuck. Since the
semantics only defines the good behaviors of programs, unsafe programs reach
states that are not final and from which no further execution step is possible
(e.g., the byte sequence at current program point is not the valid encoding of an
instruction).

The analysis produces an over-approximation of the set of reachable states.
In particular, a superset of the reachable program points is computed, and for
each of these program points, an over-approximation of the memory state when
the execution reaches this program point is available. Thus we can check that
for every program point that may be reached, the next execution step from
this point cannot be stuck. This verification procedure is formally verified, as
described in the following section.

Verified Abstract Interpretation Techniques 133

3 Formalization

The static analyzer is specified, programmed and proved correct using the Coq
proof assistant. This involves several steps that are described in this section:
first, define the semantics of a binary language, then design abstract domains
and abstract transformers, as well as write a fixpoint iterator, and lastly state
and prove soundness properties about the results of the static analysis.

3.1 Concrete Syntax and Semantics

The programming language in which are written the programs to analyze is for-
malized using the syntax shown on Figure 3. So as to model a binary language,
we introduce a decoding function dec (mem: (addr � int)) (pp: int) : option
(instruction * nat) that given a memory mem (i.e., a function from addresses to
values) and an address pp yields the instruction stored from this address along
with its byte size. Since not all integer sequences are valid encodings, this decod-
ing may fail (hence the option type2). In order to be able to conveniently write
programs, there is also a matching encoding function. However the development
does not depend on it at all.

Inductive reg := R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7.
Inductive flag := FLE | FLT | FEQ.
Inductive instruction :=
(* arithmetic *)
| ICst (v:int) (dst:reg) | ICmp (src dst: reg)
| IBinop (op: int_binary_operation) (src dst: reg)
(* memory *)
| ILoad (src dst: reg) | IStore (src dst: reg)
(* control *)
| IGoto (tgt: addr) | IGotoInd (r: reg) | IGotoCond (f: flag) (tgt: addr)
| ISkip | IHalt (r: reg).

Fig. 3. Language syntax

The language semantics is given as a small-step transition relation between
machine states. A machine state may be �pp, f, r, m� where pp is the current
program point (address of the next instruction to be executed), f is the current
flag state, r is the current register state, and m is the current memory. Such
a tuple is called a machine configuration (type machine_config). Otherwise, a
machine state is �v� , meaning that the program stopped returning the value v.

The semantics is defined as a set of rules of the following shape:
dec m pp = ��i, z��

�pp, f, r, m�� �pp’, f’, r’, m’�
.

2 Values of type option A are either None or �a� with a a value of type A.

134 S. Blazy, V. Laporte, and D. Pichardie

The premise states that decoding the bytes in memory m from address pp yields
the instruction i whose size in memory is z. Then each rule describes how to ex-
ecute a particular instruction at program point pp in memory m with flag state f
and register state r. In each case, most of the state is kept unchanged. Instruc-
tions that are not branching proceed their execution at program point pp+z (since
z is the size of this instruction once encoded). The whole set of rules can be found
in the Coq development [8]. We describe only some of them. Instruction ICmp
rs rd updates the flag state according to the comparison of the values held by
the two involved registers. Conditional jump instruction IGotoCond c v jumps
to address v or falls through to pp+z depending on the current state of flag c.
Indirect jump instruction IGotoInd rd proceeds at the program point found in
register rd.

Finally, we define the semantics
P� of a program P as the set of states that are
reachable from an initial state, with current program point zero and memory P
(where �Æ denotes the reflexive-transitive closure of the small-step relation).

P� � s � �f r, �0, f, r, P��Æ s�

3.2 Abstract Interpreter
In order to analyze programs, we build an abstract interpreter, i.e., an executable
semantics that operates over abstract elements, each of them representing many
concrete machine configurations. Such an abstract domain provides operators
that model basic concrete operations: read a value from a register, store some
value at some address in memory, and so on. The static analyzer then computes a
fixpoint within the abstract domain, that over-approximates all reachable states
of the analyzed program.

We first describe our abstract domain before we head to the abstract semantics
and fixpoint computation. An abstract memory domain is a carrier type along
with some primitive operators whose signatures are given in Figure 4. The ab_num
type refers to a numeric abstract domain, as described in [3]: we only require
that this type is equipped with a concretization to sets of machine integers and
abstract transformers corresponding to arithmetic operations.

The carrier type ab_mc is equipped with a lattice structure. An object of
this type represents a set of concrete machine states, as described by the prim-
itive gamma. It can be queried for the values stored in some register (var) or
at some known memory address (load_single); these operators return an ab-
stract numeric value. Other operators enable us to alter an abstract state, like
assign that sets the contents of a register to a given abstract numeric value, and
store_single that similarly updates the memory at a given address.

All these operators obey some specifications. As an example, the load_sound
property states that given a concrete state m in the concretization of an abstract
state ab, the concrete value stored at any address a in m is over-approximated
by the abstract value returned by the matching abstract load. The γ symbol is
overloaded through the use of type classes: its first occurrence refers to the con-
cretization from the abstract memory domain (the gamma field of record mem_dom)
and its second occurrence is the concretization from the numeric domain ab_num.

Verified Abstract Interpretation Techniques 135

Record mem_dom (ab_num ab_mc: Type) :=
{ as_wl: weak_lattice ab_mc
; var: ab_mc � reg � ab_num
; load_single: ab_mc � addr � ab_num
; store_single: ab_mc � addr � ab_num � ab_mc
; assign: ab_mc � reg � ab_num � ab_mc
(* more abstract operators omitted *)
; gamma: gamma_op ab_mc machine_config
; as_adom : adom ab_mc machine_config as_wl gamma
; load_sound: � ab:ab_mc, � m: machine_config,

m � γ(ab) �� a:addr, m(a) � γ(load_single ab a)
(* more properties omitted *) }.

Fig. 4. Signature of abstract memory domains (excerpt)

Such an abstract memory domain is implemented using two maps: from reg-
isters to abstract numeric values to represent the register state and from values
to abstract numeric values to represent the memory.

Record ab_machine_config :=
{ ab_reg: Map [reg, ab_num] ; ab_mem: Map [addr, ab_num] }.

To prevent the domain of the ab_mem map from infinitely growing, we bound
it by a finite set computed before the analysis: the analysis will try to compute
some information only for the memory addresses found in this set [1]. The content
of this set does not alter its soundness: the values stored at addresses not in it
are unknown and the analyzer makes no assumptions about them. On the other
hand, the success of the analysis and its precision depend on it. In particular,
the analyzed set must cover the whole code segment.

As a second layer, we build abstract transformers over any such abstract do-
main. Consider for instance the abstract load presented in Figure 5; it is used to
analyze any ILoad instruction (T denotes a record of type mem_dom ab_num ab_mc).
The source address may not be exactly known, but only represented by an ab-
stract numeric value a. Since any address in γ(a) may be read, we have to query
all of them and take the least upper bound of all values that may be stored
at any of these addresses:

�
T.(load_single) m x � x � γ�a��. However the set

of concrete addresses may be huge and care must be taken: if the size of this
set exceeds some threshold, the analysis gives up on this load and yields top,
representing all possible values.

We build enough such abstract transformers to be able to analyze any in-
struction (function ab_post_single, shown in Figure 6). This function returns a
list of possible next states, each of which being either Hlt v (the program halts
returning a value approximated by v) or Run pp m (the execution proceeds at pro-
gram point pp in a configuration approximated by m) or GiveUp (the analysis is
too imprecise to compute anything meaningful). The computed jump (IGotoInd)
also has a dedicated abstract transformer (inlined in Figure 6): in order to know
from where to continue the analysis, we have to enumerate all possible targets.

136 S. Blazy, V. Laporte, and D. Pichardie

Inductive botlift (A:Type) : Type := Bot | NotBot (x:A).
Definition load_many (m: ab_mc) (a: ab_num) : botlift ab_num :=

match concretize_with_care a with
| Just addr_set 	 IntSet.fold

(λ acc addr, acc
 NotBot (T.(load_single) m addr)) addr_set Bot
| All 	 NotBot top end.

Fig. 5. Example of abstract transformer

Inductive ab_post_res := Hlt(v:ab_num) | Run(pp:addr)(m:ab_mc) | GiveUp.
Definition ab_post_single (m:ab_mc) (pp:addr) (instr:instruction * nat)

: list ab_post_res := match instr with
| (IHalt rs, z) 	 Hlt (T.(var) m rs) :: nil
| (ISkip, z) 	 Run (pp + z) m :: nil
| (IGoto v, z) 	 Run v m :: nil
| (IGotoInd rs, z) 	 match concretize_with_care (T.(var) m rs) with

| Just tgt 	 IntSet.fold (λ acc addr, Run addr m :: acc) tgt nil
| All 	 GiveUp :: nil end

| (IStore rs rd, z) 	
Run (pp + z) (store_many m (T.(var) m rd) (T.(var) m rs)) :: nil

| (ILoad rs rd, z) 	 match load_many m (T.(var) m rs) with
| NotBot v 	 Run (pp + z) (T.(assign) m rd v) :: nil
| Bot 	 nil end

| (ICmp rs rd, z) 	 Run (pp + z) (T.(compare) m rs rd) :: nil
| (ICst v rd, z) 	 Run (pp + z) (T.(assign) m rd v) :: nil

(* ... *) end.
Definition ab_post_many (pp: addr) (m:ab_mc) : list ab_post_res :=

match abstract_decode_at pp m with
| Just instr 	 flat_map (ab_post_single m pp) instr
| All 	 GiveUp :: nil end.

Fig. 6. Abstract small-step semantics (excerpt)

Then, function ab_post_many performs one execution step in the abstract. To
do so, we first need to identify what is the next instruction, i.e., to decode in the
abstract memory from the current program point. This may require to enumerate
all concrete values that may be stored at this address. Therefore this abstract
decoding either returns a set of possible next instructions or gives up. In such a
case, the whole analysis will abort since the analyzed program is unknown.

Finally, the abstract semantics is iteratively applied until a fixpoint is reached
following a worklist algorithm as the one found in [1, § 3.4]. However there
may be infinite ascending chains, so to ensure termination we need to apply
widening operators instead of regular joins frequently enough during the search.
In our setting, with no control-flow graph available, the widening is applied on
every back edge, but the implementation makes it easy to try different widening
strategies. So as to convince Coq that the analysis indeed terminates, we rely

Verified Abstract Interpretation Techniques 137

on a counter (known as fuel) that obviously decreases at each iteration; when it
reaches zero, the analyzer must give up.

To enhance the precision, we have introduced three more techniques: a dedi-
cated domain to abstract the flag state, a partitioning of the state space, and a
use of abstract instructions. They will be described in the next section.

3.3 Soundness of the Abstract Interpreter

We now describe the formal verification of our analyzer. The soundness property
we ensure is that the result of the analysis of a program P over-approximates
its semantics
P�. This involves on one hand a proof that the analysis result is
indeed a fixpoint of the abstract semantics and on the other hand a proof that
the abstract semantics is correct with respect to the concrete one.

The soundness of the abstract semantics is expressed by the following lemma,
which reads: given an abstract state ab and a concrete one m in the concretization
of ab, for each concrete small-step m � m’, there exists a result ab’ in the
list ab_post_single m.(pc) ab that over-approximates m’. Our use of Coq type
classes enables us to extensively overload the γ notation and write this statement
in a concise way as follows.
Lemma ab_post_many_correct :
� (m:machine_config) (m’:machine_state) (ab:ab_mc),

m � γ(ab)� m � m’ � m’ � γ(ab_post_single m.(pc) ab).

The proof of this lemma follows from the soundness of the various abstract
domains (as load_sound in Figure 4), transformers and decoder.
Lemma abstract_decode_at_sound : � (m:machine_config)(ab:ab_mc)(pp:addr),

m � γ(ab)� dec m.(mc_mem) pp � γ(abstract_decode_at pp ab).

The proof that the analyzer produces a fixpoint is not done directly. Instead,
we rely on a posteriori verification: we do not trust the fixpoint computation and
instead program and prove a checker called validate_fixpoint. Its specification,
proved thanks to the previous lemma, reads as follows.
Lemma validate_correct : � (P: memory) (dom: list addr) (E: AbEnv),

validate_fixpoint P dom E = true � �P� γ(E).

Going through this additional programming effort has various benefits: a di-
rect proof of the fixpoint iterator would be very hard; we can adapt the iteration
strategy, optimize the algorithm and so on with no additional proof effort.

This validation checks two properties of the result E: that it over-approximates
the initial state; and that it is a post-fixpoint of the abstract semantics, i.e., for
each abstract state in the result, performing one abstract step leads to abstract
states that are already included in the result. These properties, combined to the
soundness of the abstract semantics, ensure the conclusion of this lemma.

Finally we pack together the iterator and the checker with another operation
performed on sound results that checks for its safety. The resulting analysis
enjoys the following property: if, given a program P, it outputs some result, then
that program is safe.

138 S. Blazy, V. Laporte, and D. Pichardie

Theorem analysis_sound : � (P: memory) (dom: list addr) (fuel: nat)
(ab_num: num_dom_index), analysis ab_num P dom fuel � None � safe P.

The arguments of the analysis program are the program to analyze, the list
of addresses in memory to track, the counter that enforces termination and the
name of the numeric domain to use. We provide two numeric domains: intervals
with congruence information and finite sets.

4 Case Studies and Analysis Extensions
The extraction mechanism of Coq enables us to generate an OCaml program
from our development and to link it with a front-end. Hence we can automatically
analyze programs and prove them safe. This section shows the behavior of our
analyzer on chosen examples, most of them taken from [6] (they have been
rewritten to fit our custom syntax). All examples are written in an assembly-
like syntax with some syntactic sugar: labels refer to byte offsets in the encoded
program, the enc(I) notation denotes the encoding of the instruction I. The
study of some examples highlights the limits of the basic technique presented
before and suggests to refine the analyzer as we describe below. The source code
of all the examples that are mentioned thereafter is available on the companion
web site [8].

4.1 Basic Example
The multilevel runtime code generation program of Figure 7 is a program that,
when executed, writes some code to line gen on and runs it; this generated pro-
gram, in turn, writes some more code at line ggen and runs it. Finally execution
starts again from the beginning. Moreover, at each iteration, register R6 is incre-
mented.

The analysis of such a program follows its concrete execution and exactly
computes the content of each register at each program point. It thus correctly
tracks what values are written and where, so as to be able to analyze the program
as it is generated.

However, when the execution reaches program point loop again, both states
that may lead to that program point are merged. And the analysis of the loop
body starts again. After the first iteration, the program text is exactly known,
but each iteration yields more information about the dynamic content of reg-
ister R6. Therefore we apply widening steps to ensure the termination of the
analysis. Finally, the set of reachable program points is exactly computed and
for each of them, we know what instruction will be executed from there.

Many self-modifying programs are successfully analyzed in a similar way: op-
code modification, code obfuscation, and code checking [8].

4.2 A First Extension: Dealing with Flags
The example program in Figure 8 illustrates the abstract domain for the flags.
This program stores the content of R0 in an array (stored in memory from ad-
dress �128 to address �96) at the offset given in register R1. Before that store,

Verified Abstract Interpretation Techniques 139

cst 0 � R6
cst 1 � R5

loop: add R5 � R6
cst gen � R0
cst enc(store R1 � *R2) � R1
store R1 � *R0
cst enc(goto R2) � R1
cst gen + 1 � R0
store R1 � *R0
cst ggen � R2
cst loop � R0
cst enc(goto R0) � R1
goto gen

gen: skip
skip

ggen: skip

Fig. 7. Multilevel Runtime Code Generation

cst -128 � R6
add R6 � R1
cmp R6, R1
gotoLT ko
cst -96 � R7
cmp R1, R7
gotoLE ko
store R0 � *R1

ko:halt R0

Fig. 8. Array bounds
check

checks are performed to ensure that the provided offset lies inside the bounds of
the array. The destination address is compared against the lowest and highest
addresses of the array; if any of the comparisons fails, then the store is bypassed.

To properly analyze this program, we need to understand that the store does
not alter the code. When analyzing a conditional branch instruction, the abstract
state is refined differently at its two targets. However, the only information we
have is about one flag, whereas the comparison that sets this flag operated on
the content of registers. We therefore need to keep the link between the flags
and the registers.

To this end, we extend our ab_machine_config record with a field containing an
optional pair of registers ab_reg: option (reg * reg). It enables the analyzer to
remember which registers were involved in the last comparison (the None value is
used when this information is unknown). With such information available, even
though the conditional jump is not directly linked to the comparison operation,
we can gain some precision in the various branches.

Indeed, when we assume that the first conditional branch is not taken, the
flag state is abstracted by the pair �(R6,R1)� , so we refine our knowledge about
register R1: its content is not less than the �128. Similarly, when we assume that
the second conditional branch is not taken, the abstract flag state is �(R1,R7)� ,
so we can finally infer that the content of register R1 is in the bounds.

This extension of the abstract domain increases a lot the precision of the
analyzer on some programs, yet has little impact on the formalization: we need
to explain its lattice structure (top element, order and least upper bound) and
define its concretization. Then it enables us to program more precise primitives
(namely compare and assume) that we must prove correct. No other part of the
development is modified.

140 S. Blazy, V. Laporte, and D. Pichardie

4.3 A Second Extension: Trace Partitioning

Some self-modifying programs store in the same memory space various pieces
of their code. Successfully analyzing such programs requires not to merge these
different code fragments, i.e., we need to distinguish in the execution which code
is being run: flow sensitivity is not enough. To this end we use a specific form of
trace partitioning [12] that makes an analysis sensitive to the value of a particular
memory location.

Consider as an example the polymorphic program [8] that we briefly describe
below. Polymorphism here refers to a technique used by for instance viruses that
change their code while preserving their behavior, so as to hide their presence.
The main loop of this program repeatedly adds forty-two to register R3. However,
it is obfuscated in two ways. First, the source code initially contains a jump
to some random address. But this instruction will be overwritten before it is
executed. Second, this bad instruction is written back, but at a different address.
So when the execution reaches the beginning of the loop, the program stored in
memory is one of two different versions, both featuring the unsafe jump.

When analyzing this program, the abstract state computed at the beginning
of the loop must over-approximate the two program versions. Unfortunately it
is not possible to analyze the mere superposition of both versions, in which
the unsafe jump may occur. The two versions can be distinguished through, for
instance, the value at address 12. We therefore prevent the merging of any two
states that disagree on the value stored at this address. Two different abstract
states are then computed at each program point in the loop, as if the loop were
unrolled once.

More generally, the analysis is parametrized by a partitioning criterion
δ: ab_mc�int that maps abstract states to values (the criterion used in this
example maps an abstract state m to the value stored at address 12 in all con-
crete states represented by m; or to an arbitrary constant if there may be many
values at this address). No abstract states that differ according to this criterion
are merged. Taking a constant criterion amounts to disabling this partitioning.
The abstract interpreter now computes for each program point, a map from crite-
rion values to abstract states (rather than only one abstract state). Given such
an environment E, a program point pp, and a value v, if there is an abstract
state m such that E�pp��v� � �m�, then δ�m� � v. Such an environment E
represents the following set of machine configurations:

γ�E� � c � machine_config � �v, c � γ �E�c.pc��v���

To implement this technique, we do not need to modify the abstract domain,
but only the iterator and fixpoint checker. The worklist holds pairs (program
point, criterion value) rather than simple program points, and the iterator and
fixpoint checker (along with its proof) straightforwardly adapted. The safety
checker does not need to be updated since we can forget the partitioning before
applying the original safety check.

Verified Abstract Interpretation Techniques 141

Thanks to this technique, we can selectively enhance the precision of the
analysis and correctly handle challenging self-modifying programs: control-flow
modification, mutual modification, and code encryption [8]. However, the analyst
must manually pick a suitable criterion for each program to analyze.

4.4 A Third Extension: Abstract Decoding

The program in Figure 9 computes the nth Fibonacci number in register R2,
where n is an input value read from address �1 and held in register R0. There
is a for-loop in which register R1 goes from 1 to n and some constant value is
added to register R2. The trick is that the actual constant (which is encoded as
part of an instruction and is stored at the address held in R6) is overwritten at
each iteration by the previous value of R2.

When analyzing this program, we cannot infer much information about the
content of the patched cell. Therefore, we cannot enumerate all instructions
that may be stored at the patched point. So we introduce abstract instructions:
instructions that are not exactly known, but of which some part is abstracted by
a suitable abstract domain. Here we only need to abstract values using a numeric
domain. With such a tool, we can decode in the abstract: the analyzer does not
recover the exact instructions of the program, but only the information that
some (unknown) value is loaded into register R4, which is harmless (no stores
and no jumps depend on it).

This self-modifying code pattern, in which only part of an instruction is over-
written occurs also in the vector dot product example [8] where specialized mul-
tiplication instructions are emitted depending on an input vector.

The techniques presented here enable us to automatically prove the safety of
various self-modifying programs including almost all the examples of [6]. Out of
twelve, only two cannot be dealt with. The self-replicating example is a program
that fills the memory with copies of itself: the code, being infinite, cannot be
represented with our abstract domain. The bootloader example does not fit in the
considered machine model, as it calls BIOS interrupts and reads files. Our Coq
development [8] features all the extensions along with their correctness proofs.

cst -1 � R7
load *R7 � R0
cst key+1 � R6
cst 1 � R1
cst 1 � R2

loop: cmp R1, R0

gotoLE last
cst 1 � R7
add R7 � R1
cst 0 � R3
add R2 � R3

key: cst 0 � R4

add R4 � R2
store R3 � *R6
goto loop

last: halt R2

Fig. 9. Fibonacci

142 S. Blazy, V. Laporte, and D. Pichardie

5 Related Work

Most of the previous works on mechanized verification of static analyzes fo-
cused on standard data-flow frameworks [13] or abstract interpretation for small
imperative structured languages [5, 16]. In a previous work [3], we formally ver-
ified a value analysis for an intermediate language of the Compcert C compiler
toolchain. The current work shares the same notion of abstract numerical do-
main but develops its own notion of memory abstraction, dynamic control-flow
graph reconstruction and trace partitioning.

The current work formalizes more advanced abstract interpretation techniques,
targeting self-modifying low-level code, and is based on several recent non-verified
static analyses. A large amount of work was done by Balakrishnan et al. in this
area [1]. Control-flow graph reconstruction was specially studied by Kinder et
al. [12] and Bardin et al. [2]. Still, these works are unsound with respect to self-
modifying code. Bonfante et al. provide a paper-and-pencil operational semantics
for self-modifying programs [4].

Our current work tackles a core subset of a self-modifying low-level pro-
gramming language. More realistic formalizations of x86 semantics were pro-
posed [15, 14, 11] but none of them handles the problem of disassembling self-
modifying programs. Our work complements other verification efforts of low-
level programs [7, 6, 10] based on program logics. While we provide automatic
inference of loop invariants, they are able to handle more expressive correctness
properties.

6 Conclusion and Perspectives

This work provides the first verified static analyis for self-modifying programs. In
order to tackle this challenge, we formalized original techniques such as control-
flow graph reconstruction and partitioning. We formalized these techniques on a
small core language but we managed to verify ten out of twelve of the challenges
proposed in [6].

An important further work is to scale these technique on more realistic Coq
language models [14, 11]. Developing directly an analyzer on these representa-
tions may be a huge development task because of the number of instructions to
handle. One strategy could be to relate on a good intermediate representation
such as the one proposed by Rocksalt [14]. Our current work does not consider
the specific challenge of call stack reconstruction [1] that may require some form
of verified alias analysis [17]. This is an important place for further work.

References

[1] Balakrishnan, G., Reps, T.W.: WYSINWYX: What you see is not what you eXe-
cute. ACM Trans. Program. Lang. Syst. 32(6) (2010)

[2] Bardin, S., Herrmann, P., Védrine, F.: Refinement-Based CFG Reconstruction
from Unstructured Programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011.
LNCS, vol. 6538, pp. 54–69. Springer, Heidelberg (2011)

Verified Abstract Interpretation Techniques 143

[3] Blazy, S., Laporte, V., Maroneze, A., Pichardie, D.: Formal Verification of a C
Value Analysis Based on Abstract Interpretation. In: Logozzo, F., Fähndrich, M.
(eds.) SAS 2013. LNCS, vol. 7935, pp. 324–344. Springer, Heidelberg (2013)

[4] Bonfante, G., Marion, J.Y., Reynaud-Plantey, D.: A Computability Perspective
on Self-Modifying Programs. In: SEFM, pp. 231–239 (2009)

[5] Cachera, D., Pichardie, D.: A Certified Denotational Abstract Interpreter. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 9–24. Springer,
Heidelberg (2010)

[6] Cai, H., Shao, Z., Vaynberg, A.: Certified Self-Modifying Code. In: PLDI, pp.
66–77. ACM (2007)

[7] Chlipala, A.: Mostly-automated verification of low-level programs in computa-
tional separation logic. In: PLDI. ACM (2011)

[8] Companion website, http://www.irisa.fr/celtique/ext/smc
[9] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

[10] Jensen, J., Benton, N., Kennedy, A.: High-Level Separation Logic for Low-Level
Code. In: POPL. ACM (2013)

[11] Kennedy, A., et al.: Coq: The world’s best macro assembler? In: PPDP, pp. 13–24.
ACM (2013)

[12] Kinder, J.: Towards static analysis of virtualization-obfuscated binaries. In:
WCRE, pp. 61–70 (2012)

[13] Klein, G., Nipkow, T.: A Machine-Checked Model for a Java-Like Language, Vir-
tual Machine and Compiler. ACM TOPLAS 28(4), 619–695 (2006)

[14] Morrisett, G., et al.: RockSalt: better, faster, stronger SFI for the x86. In: PLDI,
pp. 395–404 (2012)

[15] Myreen, M.O.: Verified just-in-time compiler on x86. In: POPL, pp. 107–118. ACM
(2010)

[16] Nipkow, T.: Abstract Interpretation of Annotated Commands. In: Beringer, L.,
Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 116–132. Springer, Heidelberg
(2012)

[17] Robert, V., Leroy, X.: A Formally-Verified Alias Analysis. In: Hawblitzel, C.,
Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg
(2012)

[18] Stewart, G., Beringer, L., Appel, A.W.: Verified heap theorem prover by paramod-
ulation. In: ICFP, pp. 3–14. ACM (2012)

http://www.irisa.fr/celtique/ext/smc

Showing Invariance Compositionally
for a Process Algebra for Network Protocols

Timothy Bourke1,2, Robert J. van Glabbeek3,4, and Peter Höfner3,4

1 Inria Paris-Rocquencourt, France
2 Ecole normale supérieure, Paris, France

3 NICTA, Sydney, Australia
4 Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. This paper presents the mechanization of a process algebra
for Mobile Ad hoc Networks and Wireless Mesh Networks, and the de-
velopment of a compositional framework for proving invariant proper-
ties. Mechanizing the core process algebra in Isabelle/HOL is relatively
standard, but its layered structure necessitates special treatment. The
control states of reactive processes, such as nodes in a network, are mod-
elled by terms of the process algebra. We propose a technique based on
these terms to streamline proofs of inductive invariance. This is not suf-
ficient, however, to state and prove invariants that relate states across
multiple processes (entire networks). To this end, we propose a novel
compositional technique for lifting global invariants stated at the level
of individual nodes to networks of nodes.

1 Introduction and Related Work

The Algebra for Wireless Networks (AWN) is a process algebra developed for
modelling and analysing protocols for Mobile Ad hoc Networks (MANETs) and
Wireless Mesh Networks (WMNs) [6, §4]. This paper reports on both its mech-
anization in Isabelle/HOL [15] and the development of a compositional frame-
work for showing invariant properties of models.1 The techniques we describe
are a response to problems encountered during the mechanization of a model
and proof—presented elsewhere [4]—of an RFC-standard for routing protocols.
Despite the existence of extensive research on related problems [18] and several
mechanized frameworks for reactive systems [5,10,14], we are not aware of other
solutions that allow the compositional statement and proof of properties relating
the states of different nodes in a message-passing model—at least not within the
strictures imposed by an Interactive Theorem Prover (ITP).

But is there really any need for yet another process algebra and associated
framework? AWN provides a unique mix of communication primitives and a
treatment of data structures that are essential for studying MANET and WMN
protocols with dynamic topologies and sophisticated routing logic [6, §1]. It
supports communication primitives for one-to-one (unicast), one-to-many (group-
cast), and one-to-all (broadcast) message passing. AWN comprises distinct layers
1 The Isabelle/HOL source files can be found in the Archive of Formal Proofs [3].

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 144–159, 2014.
© Springer International Publishing Switzerland 2014

Showing Invariance Compositionally for a Process Algebra 145

for expressing the structure of nodes and networks. We exploit this structure, but
we also expect the techniques proposed in Sections 3 and 4 to apply to similar
layered modelling languages. Besides this, our work differs from other mech-
anizations for verifying reactive systems, like UNITY [10], TLA+ [5], or I/O
Automata [14] (from which we drew the most inspiration), in its explicit treat-
ment of control states, in the form of process algebra terms, as distinct from data
states. In this respect, our approach is close to that of Isabelle/Circus [7], but it
differs in (1) the treatment of operators for composing nodes, which we model
directly as functions on automata, (2) the treatment of recursive invocations,
which we do not permit, and (3) our inclusion of a framework for compositional
proofs. Other work in ITPs focuses on showing traditional properties of pro-
cess algebras, like, for instance, the treatment of binders [1], that bisimulation
equivalence is a congruence [9,11], or properties of fix-point induction [20], while
we focus on what has been termed ‘proof methodology’ [8], and develop a com-
positional method for showing correctness properties of protocols specified in
a process algebra. Alternatively, Paulson’s inductive approach [16] can be ap-
plied to show properties of protocols specified with less generic infrastructure.
But we think it to be better suited to systems specified in a ‘declarative’ style
as opposed to the strongly operational models we consider.

Structure and contributions. Section 2 describes the mechanization of AWN.
The basic definitions are routine but the layered structure of the language and
the treatment of operators on networks as functions on automata are relatively
novel and essential to understanding later sections. Section 3 describes our mech-
anization of the theory of inductive invariants, closely following [13]. We exploit
the structure of AWN to generate verification conditions corresponding to those
of pen-and-paper proofs [6, §7]. Section 4 presents a compositional technique
for stating and proving invariants that relate states across multiple nodes. Ba-
sically, we substitute ‘open’ Structural Operational Semantics (SOS) rules over
the global state for the standard rules over local states (Section 4.1), show the
property over a single sequential process (Section 4.2), ‘lift’ it successively over
layers that model message queueing and network communication (Section 4.3),
and, ultimately, ‘transfer’ it to the original model (Section 4.4).

2 The Process Algebra AWN

AWN comprises five layers [6, §4]. We treat each layer as an automaton with
states of a specific form and a given set of transition rules. We describe the layers
from the bottom up over the following sections.

2.1 Sequential Processes

Sequential processes are used to encode protocol logic. Each is modelled by a
(recursive) specification Γ of type ’p ⇒ (’s, ’p, ’l) seqp, which maps process names
of type ’p to terms of type (’s, ’p, ’l) seqp, also parameterized by ’s, data states,
and ’l, labels. States of sequential processes have the form (ξ, p) where ξ is a data
state of type ’s and p is a control term of type (’s, ’p, ’l) seqp.

146 T. Bourke, R.J. van Glabbeek, and P. Höfner

{l}[[u]] p ’l ⇒ (’s ⇒ ’s) ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
{l}〈g〉 p ’l ⇒ (’s ⇒ ’s set) ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
{l}unicast(sip, smsg) . p � q ’l ⇒ (’s ⇒ ip) ⇒ (’s ⇒ msg) ⇒ (’s, ’p, ’l) seqp ⇒

(’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
{l}broadcast(smsg) . p ’l ⇒ (’s ⇒ msg) ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
{l}groupcast(sips, smsg) . p ’l ⇒ (’s ⇒ ip set) ⇒ (’s ⇒ msg) ⇒ (’s, ’p, ’l) seqp ⇒

(’s, ’p, ’l) seqp
{l}send(smsg) . p ’l ⇒ (’s ⇒ msg) ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
{l}receive(umsg) . p ’l ⇒ (msg ⇒ ’s ⇒ ’s) ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
{l}deliver(sdata) . p ’l ⇒ (’s ⇒ data) ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
p1 ⊕ p2 (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp ⇒ (’s, ’p, ’l) seqp
call(pn) ’p ⇒ (’s, ’p, ’l) seqp

(a) Term constructors for (’s, ’p, ’l) seqp.

ξ’ = u ξ

((ξ, {l}[[u]] p), τ , (ξ’, p))∈ seqp-sos Γ
((ξ, p), a, (ξ’, p’))∈ seqp-sos Γ

((ξ, p ⊕ q), a, (ξ’, p’))∈ seqp-sos Γ

((ξ, Γ pn), a, (ξ’, p’))∈ seqp-sos Γ
((ξ, call(pn)), a, (ξ’, p’))∈ seqp-sos Γ

((ξ, q), a, (ξ’, q’))∈ seqp-sos Γ
((ξ, p ⊕ q), a, (ξ’, q’))∈ seqp-sos Γ

((ξ, {l}unicast(sip, smsg) . p � q), unicast (sip ξ) (smsg ξ), (ξ, p))∈ seqp-sos Γ

((ξ, {l}unicast(sip, smsg) . p � q), ¬unicast (sip ξ), (ξ, q))∈ seqp-sos Γ

(b) SOS rules for sequential processes: examples from seqp-sos.

Fig. 1. Sequential processes: terms and semantics

Process terms are built from the constructors that are shown with their types2
in Figure 1a. The inductive set seqp-sos, shown partially in Figure 1b, contains
one or two SOS rules for each constructor. It is parameterized by a specification
Γ and relates triples of source states, actions, and destination states.

The ‘prefix’ constructors are each labelled with an {l}. Labels are used to
strengthen invariants when a property is only true in or between certain states;
they have no influence on control flow (unlike in [13]). The prefix constructors are
assignment, {l}[[u]] p, which transforms the data state deterministically according
to the function u and performs a τ action, as shown in Figure 1b; guard/bind,
{l}〈g〉 p, with which we encode both guards, 〈λξ. if g ξ then {ξ} else ∅〉 p, and
variable bindings, as in 〈λξ. {ξ(|no := n|) | n < 5}〉 p;3 network synchronizations,
receive/unicast/broadcast/groupcast, of which the rules for unicast are characteristic
and shown in Figure 1b—the environment decides between a successful unicast i m
and an unsuccessful ¬unicast i; and, internal communications, send/receive/deliver.

The other constructors are unlabelled and serve to ‘glue’ processes together:
choice, p1 ⊕ p2, takes the union of two transition sets; and, call, call(pn), affixes
a term from the specification (Γ pn). The rules for both are shown in Figure 1b.
2 Leading abstractions are omitted, for example, λl fa p. {l}[[u]] p is written {l}[[u]] p.
3 Although it strictly subsumes assignment we prefer to keep both.

Showing Invariance Compositionally for a Process Algebra 147

We introduce the specification of a simple ‘toy’ protocol as a running example:

ΓToy PToy = labelled PToy (receive(λmsg’ ξ. ξ (| msg := msg’ |)). {PToy-:0}

[[λξ. ξ (|nhip := ip ξ|)]] {PToy-:1}

(〈is-newpkt〉 {PToy-:2}

[[λξ. ξ (|no := max (no ξ) (num ξ)|)]] {PToy-:3}

broadcast(λξ. pkt(no ξ, ip ξ)). Toy() {PToy-:4,5}

⊕ 〈is-pkt〉 {PToy-:2}

(〈λξ. if num ξ ≥ no ξ then {ξ} else {}〉 {PToy-:6}

[[λξ. ξ (|no := num ξ|)]] {PToy-:7}

[[λξ. ξ (|nhip := sip ξ|)]] {PToy-:8}

broadcast(λξ. pkt(no ξ, ip ξ)). Toy() {PToy-:9,10}

⊕ 〈λξ. if num ξ < no ξ then {ξ} else {}〉 {PToy-:6}

Toy()))) , {PToy-:11}

where PToy is the process name, is-newpkt and is-pkt are guards that unpack the
contents of msg, and Toy() is an abbreviation that clears some variables before
a call(PToy). The function labelled associates its argument PToy paired with a
number to every prefix constructor. There are two types of messages: newpkt
(data, dst), from which is-newpkt copies data to the variable num, and pkt (data,
src), from which is-pkt copies data into num and src into sip.

The corresponding sequential model is an automaton—a record4 of two fields:
a set of initial states and a set of transitions—parameterized by an address i:

ptoy i = (|init = {(toy-init i, ΓToy PToy)}, trans = seqp-sos ΓToy|) ,
where toy-init i yields the initial data state (|ip = i, no = 0, nhip = i, msg = SOME
x. True, num = SOME x. True, sip = SOME x. True|). The last three variables are
initialized to arbitrary values, as they are considered local—they are explicitly
reinitialized before each call(PToy). This is the biggest departure from the original
definition of AWN; it simplifies the treatment of call, as we show in Section 3.1,
and facilitates working with automata where variable locality makes little sense.

2.2 Local Parallel Composition

Message sending protocols must nearly always be input-enabled, that is, nodes
should always be in a state where they can receive messages. To achieve this, and
to model asynchronous message transmission, the protocol process is combined
with a queue model, qmsg, that continually appends received messages onto an

(s, a, s’)∈ S
∧
m. a
= receive m

((s, t), a, (s’, t))∈ parp-sos S T
(t, a, t’)∈T

∧
m. a
= send m

((s, t), a, (s, t’))∈ parp-sos S T

(s, receive m, s’)∈ S (t, send m, t’)∈T
((s, t), τ , (s’, t’))∈ parp-sos S T

Fig. 2. SOS rules for parallel processes: parp-sos

4 The generic record has type (’s, ’a) automaton, where the type ’s is the domain of
states, here pairs of data records and control terms, and ’a is the domain of actions.

148 T. Bourke, R.J. van Glabbeek, and P. Höfner

(s, groupcast D m, s’)∈ S

(s i

R, (R ∩ D):*cast(m), s’ iR)∈ node-sos S

(s, receive m, s’)∈ S

(s i

R, {i}¬∅:arrive(m), s’ iR)∈ node-sos S

(s i

R, ∅¬{i}:arrive(m), s i

R)∈ node-sos S (s i

R, connect(i, i’), s i

R ∪ {i’}
)∈ node-sos S

Fig. 3. SOS rules for nodes: examples from node-sos

internal list and offers to send the head message to the protocol process:
ptoy i 〈〈 qmsg. The local parallel operator is a function over automata:

s 〈〈 t = (|init = init s × init t, trans = parp-sos (trans s) (trans t)|) .
The rules for parp-sos are shown in Figure 2.

2.3 Nodes

At the node level, a local process np is wrapped in a layer that records its address i
and tracks the set of neighbouring node addresses, initially Ri:

〈i : np : Ri〉 = (|init = {s i

Ri
| s∈ init np}, trans = node-sos (trans np)|) .

Node states are denoted s i

R. Figure 3 presents rules typical of node-sos. Output
network synchronizations, like groupcast, are filtered by the list of neighbours
to become *cast actions. The H¬K:arrive(m) action—in Figure 3 instantiated as
∅¬{i}:arrive(m), and {i}¬∅:arrive(m)—is used to model a message m received by
nodes in H and not by those in K. The connect(i, i’) adds node i’ to the set of
neighbours of node i; disconnect(i, i’) works similarly.

2.4 Partial Networks

Partial networks are specified as values of type net-tree, that is, as a node 〈i; Ri〉
with address i and a set of initial neighbours Ri, or a composition of two net-trees
p1 ‖ p2. The function pnet maps such a value, together with the process np i to
execute at each node i, here parameterized by an address, to an automaton:

pnet np 〈i; Ri〉 = 〈i : np i : Ri〉
pnet np (p1 ‖p2) = (|init = {s1� s2 | s1 ∈ init (pnet np p1) ∧ s2 ∈ init (pnet np p2)},

trans = pnet-sos (trans (pnet np p1)) (trans (pnet np p2))|) ,
The states of such automata mirror the tree structure of the network term; we
denote composed states s1� s2. This structure, and the node addresses, remain
constant during an execution. These definitions suffice to model an example three
node network of toy processes:

pnet (λi. ptoy i 〈〈 qmsg) (〈A; {B}〉 ‖ 〈B; {A, C}〉 ‖ 〈C; {B}〉) .
Figure 4 presents rules typical of pnet-sos. There are rules where only one node

acts, like the one shown for τ , and rules where all nodes act, like those for *cast
and arrive. The latter ensure—since qmsg is always ready to receive m—that a
partial network can always perform an H¬K:arrive(m) for any combination of H
and K consistent with its node addresses, but that pairing with an R:*cast(m)
restricts the possibilities to the one consistent with the destinations in R.

Showing Invariance Compositionally for a Process Algebra 149

(s, R:*cast(m), s’)∈ S (t, H¬K:arrive(m), t’)∈T H ⊆ R K ∩ R = ∅
(s � t, R:*cast(m), s’� t’)∈ pnet-sos S T

(s, H¬K:arrive(m), s’)∈ S (t, H’¬K’:arrive(m), t’)∈T
(s � t, (H ∪ H’)¬(K ∪ K’):arrive(m), s’� t’)∈ pnet-sos S T

(s, τ , s’)∈ S
(s � t, τ , s’� t)∈pnet-sos S T

Fig. 4. SOS rules for partial networks: examples from pnet-sos

2.5 Complete Networks

The last layer closes a network to further interactions with an environment; the
*cast action becomes a τ and H¬K:arrive(m) is forbidden:

closed A = A(|trans := cnet-sos (trans A)|) .
The rules for cnet-sos are straight-forward and not presented here.

3 Basic Invariance

This paper only considers proofs of invariance, that is, properties of reachable
states. The basic definitions are classic [14, Part III].

Definition 1 (reachability). Given an automaton A and an assumption I over
actions, reachable A I is the smallest set defined by the rules:

s∈ init A
s∈ reachable A I

s∈ reachable A I (s, a, s’)∈ trans A I a
s’∈ reachable A I

Definition 2 (invariance). Given an automaton A and an assumption I, a
predicate P is invariant, denoted A ||= (I →) P, iff ∀ s∈ reachable A I. P s.

We state reachability relative to an assumption on (input) actions I. When I is
λ-. True, we write simply A ||= P.

Definition 3 (step invariance). Given an automaton A and an assumption I,
a predicate P is step invariant, denoted A ||≡ (I →) P, iff

∀ a. I a −→ (∀ s∈ reachable A I. ∀ s’. (s, a, s’)∈ trans A −→ P (s, a, s’)) .

Our invariance proofs follow the compositional strategy recommended in [18,
§1.6.2]. That is, we show properties of sequential process automata using the
induction principle of Definition 1, and then apply generic proof rules to succes-
sively lift such properties over each of the other layers. The inductive assertion
method, as stated in rule inv-b of [13], requires a finite set of transition schemas,
which, together with the obligation on initial states yields a set of sufficient ver-
ification conditions. We develop this set in Section 3.1 and use it to derive the
main proof rule presented in Section 3.2 together with some examples.

150 T. Bourke, R.J. van Glabbeek, and P. Höfner

3.1 Control Terms

Given a specification Γ over finitely many process names, we can generate a
finite set of verification conditions because transitions from (’s, ’p, ’l) seqp terms
always yield subterms of terms in Γ . But, rather than simply consider the set
of all subterms, we prefer to define a subset of ‘control terms’ that reduces
the number of verification conditions, avoids tedious duplication in proofs, and
corresponds with the obligations considered in pen-and-paper proofs. The main
idea is that the ⊕ and call operators serve only to combine process terms: they
are, in a sense, executed recursively by seqp-sos to determine the actions that
a term offers to its environment. This is made precise by defining a relation
between sequential process terms.

Definition 4 (�Γ). For a (recursive) specification Γ , let �Γ be the smallest
relation such that (p1 ⊕ p2) �Γ p1, (p1 ⊕ p2) �Γ p2, and (call(pn)) �Γ Γ pn.

We write �Γ
∗ for its reflexive transitive closure. We consider a specification to

be well formed, when the inverse of this relation is well founded:

wellformed Γ = wf {(q, p) | p �Γ q} .

Most of our lemmas only apply to well formed specifications, since otherwise
functions over the terms they contain cannot be guaranteed to terminate. Neither
of these two specifications is well formed: Γ a(1) = p ⊕ call(1); Γ b(n) = call(n + 1).

We will also need a set of ‘start terms’—the subterms that can act directly.

Definition 5 (sterms). Given a wellformed Γ and a sequential process term p,
sterms Γ p is the set of maximal elements related to p by the reflexive transitive
closure of the �Γ relation5:

sterms Γ (p1 ⊕ p2) = sterms Γ p1 ∪ sterms Γ p2,
sterms Γ (call(pn)) = sterms Γ (Γ pn), and,
sterms Γ p = {p} otherwise.

We also define ‘local start terms’ by stermsl (p1 ⊕ p2) = stermsl p1 ∪ stermsl p2
and otherwise stermsl p = {p} to permit the sufficient syntactic condition that a
specification Γ is well formed if call(pn’) /∈ stermsl (Γ pn).

Similarly to the way that start terms act as direct sources of transitions, we
define ‘derivative terms’ giving possible active destinations of transitions.

Definition 6 (dterms). Given a wellformed Γ and a sequential process term p,
dterms p is defined by:

dterms Γ (p1 ⊕ p2) = dterms Γ p1 ∪ dterms Γ p2,
dterms Γ (call(pn)) = dterms Γ (Γ pn),
dterms Γ ({l}[[u]] p) = sterms Γ p,
dterms Γ ({l}unicast(sip, smsg) . p � q) = sterms Γ p ∪ sterms Γ q, and so on.

5 This characterization is equivalent to {q | p �Γ
∗ q ∧ (� q’. q �Γ q’)}. Termination

follows from wellformed Γ , that is, wellformed Γ =⇒ sterms-dom (Γ , p) for all p.

Showing Invariance Compositionally for a Process Algebra 151

These derivative terms overapproximate the set of reachable sterms, since they do
not consider the truth of guards nor the willingness of communication partners.

These auxiliary definitions lead to a succinct definition of the set of control
terms of a specification.

Definition 7 (cterms). For a specification Γ , cterms is the smallest set where:

p∈ sterms Γ (Γ pn)
p∈ cterms Γ

pp∈ cterms Γ p∈ dterms Γ pp
p∈ cterms Γ

It is also useful to define a local version independent of any specification.

Definition 8 (ctermsl). Let ctermsl be the smallest set defined by:
ctermsl (p1 ⊕ p2) = ctermsl p1 ∪ ctermsl p2,
ctermsl (call(pn)) = {call(pn)},
ctermsl ({l}[[u]] p) = {{l}[[u]] p} ∪ ctermsl p, and so on.

Including call terms ensures that q∈ stermsl p implies q∈ ctermsl p, which facilitates
proofs. For wellformed Γ , ctermsl allows an alternative definition of cterms,

cterms Γ = {p | ∃ pn. p∈ ctermsl (Γ pn) ∧ not-call p} . (1)

While the original definition is convenient for developing the meta-theory, due to
the accompanying induction principle, this one is more useful for systematically
generating the set of control terms of a specification, and thus, we will see, sets
of verification conditions. And, for wellformed Γ , we have as a corollary

cterms Γ = {p | ∃ pn. p∈ subterms (Γ pn) ∧ not-call p ∧ not-choice p} , (2)

where subterms, not-call, and not-choice are defined in the obvious way.
We show that cterms over-approximates the set of reachable control states.

Lemma 1. For wellformed Γ and automaton A where control-within Γ (init A) and
trans A = seqp-sos Γ , if (ξ, p)∈ reachable A I and q∈ sterms Γ p then q∈ cterms Γ .

The predicate control-within Γ σ = ∀ (ξ, p)∈σ. ∃ pn. p∈ subterms (Γ pn) serves to
state that the initial control state is within the specification.

3.2 Basic Proof Rule and Invariants

Using the definition of invariance (Definition 2), we can state a basic property
of an instance of the toy process:

ptoy i ||= onl ΓToy (λ(ξ, l). l∈ {PToy-:2..PToy-:8} −→ nhip ξ = ip ξ) , (3)

This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is,
after the assignment of PToy-:1 until before the assignment of PToy-:8, the values
of nhip and ip are equal; onl Γ P, defined as λ(ξ, p). ∀ l∈ labels Γ p. P (ξ, l), extracts
labels from control states.6 Invariants like these are solved using a procedure
whose soundness is justified as a theorem. The proof exploits (1) and Lemma 1.
6 Using labels in this way is standard, see, for instance, [13, Chap. 1], or the ‘assertion

networks’ of [18, §2.5.1]. Isabelle rapidly dispatches all the uninteresting cases.

152 T. Bourke, R.J. van Glabbeek, and P. Höfner

Theorem 1. To prove A ||= (I →) onl Γ P, where wellformed Γ , simple-labels Γ ,
control-within Γ (init A), and trans A = seqp-sos Γ , it suffices
(init) for arbitrary (ξ, p)∈ init A and l∈ labels Γ p, to show P (ξ, l), and,
(step) for arbitrary p∈ ctermsl (Γ pn), but not-call p, and l∈ labels Γ p, given

that p∈ sterms Γ pp for some (ξ, pp)∈ reachable A I, to assume P (ξ, l)
and I a, and then for any (ξ’, q) such that ((ξ, p), a, (ξ’, q))∈ seqp-sos Γ
and l’∈ labels Γ q, to show P (ξ’, l’).

Here, simple-labels Γ = ∀ pn. ∀ p∈ subterms (Γ pn). ∃! l. labels Γ p = {l}: each control
term must have exactly one label, that is, ⊕ terms must be labelled consistently.

We incorporate this theorem into a tactic that (1) applies the introduc-
tion rule, (2) replaces p∈ ctermsl (Γ pn) by a disjunction over the values of
pn, (3) applies Definition 8 and repeated simplifications of Γ s and eliminations
on disjunctions to generate one subgoal (verification condition) for each control
term, (4) replaces control term derivatives, the subterms in Definition 6, by fresh
variables, and, finally, (5) tries to solve each subgoal by simplification. Step 4
replaces potentially large control terms by their (labelled) heads, which is im-
portant for readability and prover performance. The tactic takes as arguments
a list of existing invariants to include after having applied the introduction rule
and a list of lemmas for trying to solve any subgoals that survive the final simpli-
fication. There are no schematic variables in the subgoals and we benefit greatly
from Isabelle’s parallel_goals tactical [22].

In practice, one states an invariant, applies the tactic, and examines the re-
sulting goals. One may need new lemmas for functions over the data state or
explicit proofs for difficult goals. That said, the tactic generally dispatches the
uninteresting goals, and the remaining ones typically correspond with the cases
treated explicitly in manual proofs [4].

For step invariants, we show a counterpart to Theorem 1, and declare it to the
tactic. Then we can show, for our example, that the value of no never decreases:

ptoy i ||≡ (λ((ξ, -), -, (ξ’, -)). no ξ ≤ no ξ’) .

4 Open Invariance

The analysis of network protocols often requires ‘inter-node’ invariants, like

wf-net-tree n =⇒ closed (pnet (λi. ptoy i 〈〈 qmsg) n) ||=
netglobal (λσ. ∀ i. no (σ i) ≤ no (σ (nhip (σ i)))) , (4)

which states that, for any net-tree with disjoint node addresses (wf-net-tree n),
the value of no at a node is never greater than its value at the ‘next hop’—the
address in nhip. This is a property of a global state σ mapping addresses to
corresponding data states. Such a global state is readily constructed with:

netglobal P = λs. P (default toy-init (netlift fst s)),
default df f = (λi. case f i of None ⇒ df i | Some s ⇒ s), and

netlift sr (s i

R) = [i �→ fst (sr s)]
netlift sr (s � t) = netlift sr s ++ netlift sr t .

Showing Invariance Compositionally for a Process Algebra 153

The applications of fst elide the state of qmsg and the protocol’s control state.7
While we can readily state inter-node invariants of a complete model, showing

them compositionally is another issue. Sections 4.1 and 4.2 present a way to
state and prove such invariants at the level of sequential processes—that is, with
only ptoy i left of the turnstile. Sections 4.3 and 4.4 present, respectively, rules
for lifting such results to network models and for recovering invariants like (4).

4.1 The Open Model

Rather than instantiate the ’s of (’s, ’p, ’l) seqp with elements ξ of type state, our
solution introduces a global state σ of type ip ⇒ state. This necessitates a stack of
new SOS rules that we call the open model ; Figure 5 shows some representatives.

The rules of oseqp-sos are parameterized by an address i and constrain only
that entry of the global state, either to say how it changes (σ’ i = u (σ i)) or that
it does not (σ’ i = σ i). The rules for oparp-sos only allow the first sub-process to
constrain σ. This choice is disputable: it precludes comparing the states of qmsgs
(and any other local filters) across a network, but is also simplifies the mechanics
and use of this layer of the framework.8 The sets onode-sos and opnet-sos need
not be parameterized since they are generated inductively from lower layers.
Together they constrain subsets of elements of σ. This occurs naturally for rules
like those for arrive and *cast, where the synchronous communication serves as a
conjunction of constraints on sub-ranges of σ. But for others that normally only
constrain a single element, like those for τ , assumptions (∀ j
= i. σ’ j = σ j) are
introduced here and later dispatched (Section 4.4). The rules for ocnet-sos, not
shown, are similar—elements not addressed within a model may not change.

The stack of operators and model layers described in Section 2 is refashioned
to use the new transition rules and to distinguish the global state, which is
preserved as the fst element across layers, from the local state elements which
are combined in the snd element as before.

For instance, a sequential instance of the toy protocol is defined as
optoy i = (|init = {(toy-init, ΓToy PToy)}, trans = oseqp-sos ΓToy i|) ,

combined with the standard qmsg process using the operator
s 〈〈i t = (|init = {(σ, (sl, tl)) | (σ, sl)∈ init s ∧ tl ∈ init t},

trans = oparp-sos i (trans s) (trans t)|) ,
and lifted to the node level via the open node constructor
〈i : onp : Ri〉o = (|init = {(σ, s i

Ri
) | (σ, s)∈ init onp}, trans = onode-sos (trans onp)|) .

Similarly, to map a net-tree term to an open model we define:
opnet onp 〈i; Ri〉 = 〈i : onp i : Ri〉o
opnet onp (p1 ‖p2) = (|init = {(σ, s1� s2) | (σ, s1)∈ init (opnet onp p1)

∧ (σ, s2)∈ init (opnet onp p2)
∧ net-ips s1 ∩ net-ips s2 = ∅},

trans = opnet-sos (trans(opnet onp p1)) (trans(opnet onp p2))|) .
7 The formulation here is a technical detail: sr corresponds to netlift as np does to pnet.
8 The treatment of the other layers is completely independent of this choice.

154 T. Bourke, R.J. van Glabbeek, and P. Höfner

σ’ i = u (σ i)
((σ, {l}[[u]] p), τ , (σ’, p))∈ oseqp-sos Γ i

((σ, p), a, (σ’, p’))∈ oseqp-sos Γ i
((σ, p ⊕ q), a, (σ’, p’))∈ oseqp-sos Γ i

σ’ i = σ i
((σ, {l}unicast(sip, smsg) . p � q), unicast (sip (σ i)) (smsg (σ i)), (σ’, p))∈ oseqp-sos Γ i

(a) Sequential processes: examples from oseqp-sos.

((σ, s), receive m, (σ’, s’))∈ S (t, send m, t’)∈T
((σ, (s, t)), τ , (σ’, (s’, t’)))∈ oparp-sos i S T

(b) Parallel processes: example from oparp-sos.

((σ, s), receive m, (σ’, s’))∈ S

((σ, s i

R), {i}¬∅:arrive(m), (σ’, s’ iR))∈ onode-sos S

((σ, s),τ, (σ’, s’))∈ S ∀ j
= i. σ’ j = σ j

((σ, s i

R),τ, (σ’, s’
i

R))∈ onode-sos S

(c) Nodes: examples from onode-sos.

((σ, s), H¬K:arrive(m), (σ’, s’))∈ S ((σ, t), H’¬K’:arrive(m), (σ’, t’))∈T
((σ, s � t), (H ∪ H’)¬(K ∪ K’):arrive(m), (σ’, s’� t’))∈ opnet-sos S T

(d) Partial networks: example from opnet-sos.

Fig. 5. SOS rules for the open model (cf. Figures 1, 2, 3, and 4)

This definition is non-empty only for well-formed net-trees (net-ips gives the set
of node addresses in the state of a partial network). Including such a constraint
within the open model, rather than as a separate assumption like the wf-net-tree
n in (4), eliminates an annoying technicality from the inductions described in
Section 4.3. As with the extra premises in the open SOS rules, we can freely ad-
just the open model to facilitate proofs but each ‘encoded assumption’ becomes
an obligation to be discharged in the transfer lemma of Section 4.4.

An operator for adding the last layer is also readily defined by
oclosed A = A(|trans := ocnet-sos (trans A)|) ,

giving all the definitions necessary to turn a standard model into an open one.

4.2 Open Invariants

The basic definitions of reachability and invariance, Definitions 1–3, apply to
open models, but constructing a compositional proof requires considering the
effects of both synchronized and interleaved actions of possible environments.

Definition 9 (open reachability). Given an automaton A and assumptions S
and U over, respectively, synchronized and interleaved actions, oreachable A S U
is the smallest set defined by the rules:

(σ, p)∈ init A
(σ, p)∈ oreachable A S U

(σ, p)∈ oreachable A S U U σ σ’
(σ’, p)∈ oreachable A S U

(σ, p)∈ oreachable A S U ((σ, p), a, (σ’, p’))∈ trans A S σ σ’ a
(σ’, p’)∈ oreachable A S U

Showing Invariance Compositionally for a Process Algebra 155

In practice, we use restricted forms of the assumptions S and U, respectively,

otherwith E N I σ σ’ a = (∀ i. i /∈ N −→ E (σ i) (σ’ i)) ∧ I σ a , (5)
other F N σ σ’ = ∀ i. if i∈N then σ’ i = σ i else F (σ i) (σ’ i) . (6)

The former permits the restriction of possible environments (E) and also the
extraction of information from shared actions (I). The latter restricts (F) the
effects of interleaved actions, which may only change non-local state elements.

Definition 10 (open invariance). Given an automaton A and assumptions S
and U over, respectively, synchronized and interleaved actions, a predicate P is
an open invariant, denoted A |= (S, U →) P, iff ∀ s∈ oreachable A S U. P s.

It follows easily that existing invariants can be made open: most invariants can
be shown in the basic context but still exploited in the more complicated one.

Lemma 2. Given an invariant A ||= (I →) P where trans A = seqp-sos Γ , and any
F, there is an open invariant A’ |= (λ- -. I, other F {i} →) (λ(σ, p). P (σ i, p)) where
trans A’ = oseqp-sos Γ i, provided that init A = {(σ i, p) | (σ, p)∈ init A’}.

Open step invariance and a similar transfer lemma are defined similarly. The
meta theory for basic invariants is also readily adapted, in particular,

Theorem 2. To show A |= (S, U →) onl Γ P, in addition to the conditions and
the obligations (init) and (step) of Theorem 1, suitably adjusted, it suffices,

(env) for arbitrary (σ, p)∈ oreachable A S U and l∈ labels Γ p, to assume both
P (σ, l) and U σ σ’, and then to show P (σ’, l).

This theorem is declared to the tactic described in Section 3.2 and proofs proceed
as before, but with the new obligation to show invariance over interleaved steps.

We finally have sufficient machinery to state (and prove) Invariant (4) at the
level of a sequential process:

optoy i |= (otherwith nos-inc {i} (orecvmsg msg-ok), other nos-inc {i} →)
(λ(σ, -). no (σ i) ≤ no (σ (nhip (σ i)))) , (7)

where nos-inc ξ ξ’ = no ξ ≤ no ξ’, orecvmsg applies its given predicate to receive
actions and is otherwise true, msg-ok σ (pkt (data, src)) = (data ≤ no (σ src)),
and msg-ok σ (newpkt (data, dst)) = True. So, given that the variables no in the
environment never decrease and that incoming pkts reflect the state of the sender,
there is a relation between the local node and the next hop. Similar invariants
occur in proofs of realistic protocols [4].

4.3 Lifting Open Invariants

The next step is to lift Invariant (7) over each composition operator of the open
model. We mostly present the lemmas over oreachable, rather than those for open
invariants and step invariants, which follow more or less directly.

156 T. Bourke, R.J. van Glabbeek, and P. Höfner

The first lifting rule treats composition with the qmsg process. It mixes ore-
achable and reachable predicates: the former for the automaton being lifted, the
latter for properties of qmsg. The properties of qmsg—only received messages are
added to the queue and sent messages come from the queue—are shown using
the techniques of Section 3.

Lemma 3 (qmsg lifting). Given (σ, (s, (q, t)))∈ oreachable (A 〈〈i qmsg) S U,
where predicates S = otherwith E {i} (orecvmsg R) and U = other F {i}, and provided
(1) A |≡ (S, U →) (λ((σ, -), -, (σ’, -)). F (σ i) (σ’ i)), (2) for all ξ, ξ’, E ξ ξ’ implies
F ξ ξ’, (3) for all σ, σ’, m, ∀ j. F (σ j) (σ’ j) and R σ m imply R σ’ m, and, (4) F is
reflexive, then (σ, s)∈ oreachable A S U and (q, t)∈ reachable qmsg (recvmsg (R σ)),
and furthermore ∀m∈ set q. R σ m.

The key intuition is that every message m received, queued, and sent by qmsg sat-
isfies R σ m. The proof is by induction over oreachable. The R’s are preserved when
the external environment acts independently (3, 4), when it acts synchronously
(2), and when the local process acts (1, 3).

The rule for lifting to the node level adapts assumptions on receive actions
(orecvmsg) to arrive actions (oarrivemsg).

Lemma 4 (onode lifting). If, for all ξ and ξ’, E ξ ξ’ implies F ξ ξ’, then given
(σ, s i

R)∈ oreachable (〈i : A : Ri〉o) (otherwith E {i} (oarrivemsg I)) (other F {i}) it follows
that (σ, s)∈ oreachable A (otherwith E {i} (orecvmsg I)) (other F {i}).

The sole condition is needed because certain node-level actions—namely connect,
disconnect, and ∅¬{i}:arrive(m)—synchronize with the environment (giving E ξ ξ’)
but appear to ‘stutter’ (requiring F ξ ξ’) relative to the underlying process.

The lifting rule for partial networks is the most demanding. The function
net-tree-ips, giving the set of addresses in a net-tree, plays a key role.

Lemma 5 (opnet lifting). Given (σ, s � t)∈ oreachable (opnet onp (p1 ‖p2)) S U,
where S = otherwith E (net-tree-ips (p1 ‖p2)) (oarrivemsg I), U = other F (net-tree-ips
(p1 ‖ p2)), and E and F are reflexive, for arbitrary p i of the form 〈i : onp i : R〉o,
p i |≡ (λσ -. oarrivemsg I σ, other F {i} →) (λ((σ, -), a, (σ’, -)). castmsg (I σ) a), and
similar step invariants for E (σ i) (σ’ i) and F (σ i) (σ’ i), then it follows that both
(σ, s)∈ oreachable (opnet onp p1) S1 U1 and (σ, t)∈ oreachable (opnet onp p2) S2 U2,
where S1 and U1 are over p1, and S2 and U2 are over p2.

The proof is by induction over oreachable. The initial and interleaved cases are
trivial. For the local case, given open reachability of (σ, s) and (σ, t) for p1 and
p2, respectively, and ((σ, s � t), a, (σ’, s’� t’))∈ trans (opnet onp (p1 ‖p2)), we must
show open reachability of (σ’, s’) and (σ’, t’). The proof proceeds by cases of a.
The key step is to have stated the lemma without introducing cyclic dependen-
cies between (synchronizing) assumptions and (step invariant) guarantees. For a
synchronizing action like arrive, Definition 9 requires satisfaction of S1 to advance
in p1 and of S2 to advance in p2, but the assumption S only holds for addresses
j /∈ net-tree-ips (p1 ‖p2). This is why the step invariants required of nodes only
assume oarrivemsg I σ of the environment, rather than an S over node address {i}.

Showing Invariance Compositionally for a Process Algebra 157

This is not unduly restrictive since the step invariants provide guarantees for
individual local state elements and not between network nodes. The assumption
oarrivemsg I σ is never cyclic: it is either assumed of the environment for paired
arrives, or trivially satisfied for the side that *casts. The step invariants are lifted
from nodes to partial networks by induction over net-trees. For non-synchronizing
actions, we exploit the extra guarantees built into the open SOS rules.

The rule for closed networks is similar to the others. Its important function
is to eliminate the synchronizing assumption (S in the lemmas above), since
messages no longer arrive from the environment. The conclusion of this rule has
the form required by the transfer lemma of the next section.

4.4 Transferring Open Invariants

The rules in the last section extend invariants over sequential processes, like
that of (7), to arbitrary, open network models. All that remains is to transfer
the extended invariants to the standard model. We do so using a locale [12]
openproc np onp sr where np has type ip ⇒ (’s, ’m seq-action) automaton, onp has
type ip ⇒ ((ip ⇒ ’g) × ’l, ’m seq-action) automaton, and sr has type ’s ⇒ ’g × ’l. The
automata use the actions of Section 2.1 with arbitrary messages (’m seq-action).

The openproc locale relates an automaton np to a corresponding ‘open’ automa-
ton onp, where sr splits the states of the former into global and local components.
Besides two technical conditions on initial states, this relation requires assum-
ing σ i = fst (sr s), σ’ i = fst (sr s’) and (s, a, s’)∈ trans (np i), and then showing
((σ, snd (sr s)), a, (σ’, snd (sr s’)))∈ trans (onp i)—that is, that onp simulates np.
For our running example, we show openproc ptoy optoy id, and then lift it to the
composition with qmsg, using a generic relation on openproc locales.

Lemma 6 (transfer). Given np, onp, and sr such that openproc np onp sr, then
for any wf-net-tree n and s∈ reachable (closed (pnet np n)) (λ-. True), it follows that
(default (someinit np sr) (netlift sr s), netliftl sr s)

∈ oreachable (oclosed (opnet onp n)) (λ- - -. True) U.

This lemma uses two openproc constants: someinit np sr i chooses an arbitrary
initial state from np (SOME x. x∈ (fst ◦ sr) ‘ init (np i)), and

netliftl sr (s i

R) = (snd (sr s)) i

R

netliftl sr (s � t) = (netliftl sr s) � (netliftl sr t) .

The proof of the lemma ‘discharges’ the assumptions incorporated into the
open SOS rules. An implication from an open invariant on an open model to an
invariant on the corresponding standard model follows as a corollary.

Summary. The technicalities of the lemmas in this and the preceding section
are essential for the underlying proofs to succeed. The key idea is that through
an open version of AWN where automaton states are segregated into global and
local components, one can reason locally about global properties, but still, using
the so called transfer and lifting results, obtain a result over the original model.

158 T. Bourke, R.J. van Glabbeek, and P. Höfner

5 Concluding Remarks

We present a mechanization of a modelling language for MANET and WMN
protocols, including a streamlined adaptation of standard theory for showing
invariants of individual reactive processes, and a novel and compositional frame-
work for lifting such results to network models. The framework allows the state-
ment and proof of inter-node properties. We think that many elements of our
approach would apply to similarly structured models in other formalisms.

It is reasonable to ask whether the basic model presented in Section 2 could
not simply be abandoned in favour of the open model of Section 4.1. But we
believe that the basic model is the most natural way of describing what AWN
means, proving semantic properties of the language, showing ‘node-only’ invari-
ants, and, potentially, for showing refinement relations. Having such a reference
model allows us to freely incorporate assumptions into the open SOS rules,
knowing that their soundness must later be justified.

The Ad hoc On-demand Distance Vector (AODV) case study. The
framework we present in this paper was successfully applied in the mechanization
of a proof of loop freedom [6, §7] of the AODV protocol [17], a widely-used
routing protocol designed for MANETs, and one of the four protocols currently
standardized by the IETF MANET working group. The model has about 100
control locations across 6 different processes, and uses about 40 functions to
manipulate the data state. The main property (loop freedom) roughly states
that ‘a data packet is never sent round in circles without being delivered’. To
establish this property, we proved around 400 lemmas. Due to the complexity of
the protocol logic and the length of the proof, we present the details elsewhere [4].
The case study shows that the presented framework can be applied to verification
tasks of industrial relevance.

Acknowledgments. We thank G. Klein and M. Pouzet for support and com-
plaisance, and M. Daum for participation in discussions. Isabelle/jEdit [21],
Sledgehammer [2], parallel processing [22], and the TPTP project [19] were in-
valuable.

NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre
of Excellence Program.

References

1. Bengtson, J., Parrow, J.: Psi-calculi in Isabelle. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 99–114. Springer,
Heidelberg (2009)

2. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS
(LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

3. Bourke, T.: Mechanization of the Algebra for Wireless Networks (AWN). In:
Archive of Formal Proofs (2014), http://afp.sf.net/entries/AWN.shtml

http://afp.sf.net/entries/AWN.shtml

Showing Invariance Compositionally for a Process Algebra 159

4. Bourke, T., van Glabbeek, R.J., Höfner, P.: A mechanized proof of loop freedom
of the (untimed) AODV routing protocol. See authors’ webpages (2014)

5. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties
with the TLA+ proof system. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 142–148. Springer, Heidelberg (2010)

6. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M.,
Tan, W.L.: A process algebra for wireless mesh networks used for mod-
elling, verifying and analysing AODV. Technical Report 5513, NICTA (2013),
http://arxiv.org/abs/1312.7645

7. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: A process specification and
verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012)

8. Fokkink, W., Groote, J.F., Reniers, M.: Process algebra needs proof methodology.
EATCS Bulletin 82, 109–125 (2004)

9. Göthel, T., Glesner, S.: An approach for machine-assisted verification of Timed
CSP specifications. Innovations in Systems and Software Engineering 6(3), 181–
193 (2010)

10. Heyd, B., Crégut, P.: A modular coding of UNITY in COQ. In: Goos, G., Hartma-
nis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 251–266. Springer, Heidelberg (1996)

11. Hirschkoff, D.: A full formalisation of π-calculus theory in the Calculus of Con-
structions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp.
153–169. Springer, Heidelberg (1997)

12. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - A sectioning concept for
Isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 149–165. Springer, Heidelberg (1999)

13. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer
(1995)

14. Müller, O.: A Verification Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, TU München (1998)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

16. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Computer Security 6(1-2), 85–128 (1998)

17. Perkins, C.E., Belding-Royer, E.M., Das, S.R.: Ad hoc on-demand distance vector
(AODV) routing. RFC 3561 (Experimental), Network Working Group (2003)

18. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge Tracts in Theor. Comp. Sci., vol. 54. CUP
(2001)

19. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Automated Reasoning 43(4), 337–362 (2009)

20. Tej, H., Wolff, B.: A corrected failure divergence model for CSP in Isabelle/HOL.
In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp.
318–337. Springer, Heidelberg (1997)

21. Wenzel, M.: Isabelle/jEdit – A prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS, vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

22. Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
418–434. Springer, Heidelberg (2013)

http://arxiv.org/abs/1312.7645

A Computer-Algebra-Based Formal Proof

of the Irrationality of ζ(3)

Frédéric Chyzak1, Assia Mahboubi1, Thomas Sibut-Pinote2, and Enrico Tassi1

1 Inria, France
2 ENS de Lyon, France

Abstract. This paper describes the formal verification of an irrational-
ity proof of ζ(3), the evaluation of the Riemann zeta function, using the
Coq proof assistant. This result was first proved by Apéry in 1978, and
the proof we have formalized follows the path of his original presenta-
tion. The crux of this proof is to establish that some sequences satisfy
a common recurrence. We formally prove this result by an a posteriori
verification of calculations performed by computer algebra algorithms in
a Maple session. The rest of the proof combines arithmetical ingredients
and some asymptotic analysis that we conduct by extending the Mathe-
matical Components libraries. The formalization of this proof is complete
up to a weak corollary of the Prime Number Theorem.

1 Introduction

The irrationality status of the evaluations of the Riemann ζ-function at positive
odd integers is a long-standing challenge of number theory. To date, ζ(3) is the
only one known to be irrational, although recent advances obtained by Rivoal [19]
and Zudilin [24] showed that one at least of the numbers ζ(5), . . . , ζ(11) must
be irrational. The number ζ(3) is sometimes referred to as the Apéry constant,
after Roger Apéry who first proved that it is irrational [3]. As reported by van
der Poorten [21], Apéry announced this astonishing result by giving a rather
obscure lecture that raised more skepticism than enthusiasm among the audience.
His exposition indeed involved a number of suspicious assertions, proclaimed
without a proof, among which was a mysterious common recurrence for two
given sequences (see Lemma 2). After two months of work, however, Cohen,
Lenstra, and van der Poorten completed, with the help of Zagier, a verification
of Apéry’s proof.

Theorem 1 (Apéry, 1978). The constant ζ(3) is irrational.

Almost at the same time, symbolic computation was emerging as a scientific
area of its own, getting fame with the Risch algorithm [18] for indefinite integra-
tion. It gradually provided efficient computer implementations and got attention
in experimental mathematics. Beside commutative algebra, differential and re-
currence equations remained a central research topic of computer algebra over
the years. In particular, the sequences used by Apéry in his proof belong to a class

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 160–176, 2014.
c© Springer International Publishing Switzerland 2014

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 161

of objects well known to combinatorialists and computer-algebraists. Following
seminal work of Zeilberger’s [22], algorithms have been designed and imple-
mented in computer-algebra systems, which are able to obtain linear recurrences
for these sequences. For instance the Maple packages gfun and Mgfun (both dis-
tributed as part of the Algolib [2] library) implement these algorithms, among
other. Basing on this implementation, Salvy wrote a Maple worksheet [20] that
follows Apéry’s original method but interlaces Maple calculations with human-
written parts, illustrating how parts of this proof, including the discovery of
Apéry’s mysterious recurrence, can be performed by computations.

In the present paper, we describe a formal proof of Theorem 1, based on a
Maple session, in the Coq proof assistant. The computer-algebra system is used
in a skeptical way [15], to produce conjectures that are a posteriori proved for-
mally. Alternative proofs are known for Theorem 1, as for instance the elegant
one proposed by Beukers [5] shortly after Apéry. Our motivation however was
to devise a protocol to obtain formal proofs of computer-algebra-generated re-
currences in a systematic way. Interestingly, this work challenges the common
belief in the computer-algebra community that such an a posteriori checking
can be automatized. In addition to the formal verification of these computer-
algebra-produced assertions, we have also machine-checked the rest of the proof
of irrationality, which involves both elementary number theory and some asymp-
totic analysis. The latter part of the proof essentially consists in a formal study
of the asymptotic behaviors of some sums and of tails of sums. Our formal proof
is complete, up to a weak corollary of the repartition of prime numbers that we
use as an assumption.

In Section 2, we outline a proof of Theorem 1. Section 3 presents the al-
gorithms which are run in the Maple session we base on. Section 4 describes
the formalization of the formal proof we obtain from the data produced by the
computer-algebra system. Section 5 provides some concluding remarks and some
perspectives for future work.

Our Maple and Coq scripts will be found at http://specfun.inria.fr/

zeta-of-3/.

2 From Apéry’s Recurrence to the Irrationality of ζ(3)

In this section, we outline the path we have followed in our formalization, high-
lighting the places where we resorted to more elementary variants than Salvy
or van der Poorten. In particular, Section 2.3 describes a simple argument we
devised to simplify the proof of asymptotic considerations.

2.1 Overview

In all what follows, a Cauchy real (number) x is a sequence of rational numbers
(xn)n∈N for which there exists a function mx : Q → N, such that for any ε > 0
and any indices i and j, having i ≥ mx(ε) and j ≥ mx(ε) implies |xi − xj | ≤ ε.

Proposition 1. The sequence zn =
∑n

m=1
1

m3 is a Cauchy real.

http://specfun.inria.fr/zeta-of-3/
http://specfun.inria.fr/zeta-of-3/

162 F. Chyzak et al.

The Cauchy real of Proposition 1 is our definition for ζ(3). Consider the two
sequences a and b of rational numbers defined as:

an =
n∑

k=0

(
n
k

)2(
n+k

k

)2
, bn = anzn +

n∑

k=1

k∑

m=1

(−1)m+1(n
k

)2(
n+k

k

)2

2m3
(

n
m

)(
n+m

m

) . (1)

Introducing the auxiliary sequences of real numbers:

δn = anζ(3) − bn, σn = 2�3nδn, for �n the lcm of the integers 1, . . . , n, (2)

the proof goes by showing that the sequence (σn)n∈N has positive values and
tends to zero. Now if ζ(3) was a rational number, then for n large enough,
every σn would be a (positive) integer, preventing σ from tending to zero.

2.2 Arithmetics, Number Theory

We extend the usual definition of binomial coefficients
(

n
k

)
for n, k ∈ N to n, k ∈ Z

by enforcing the Pascal triangle recurrence
(

n+1
k+1

)
=

(
n

k+1
)

+
(

n
k

)
for all n, k ∈ Z.

Although this extension is not required by the present proof, it spares us some
spurious considerations about subtraction over N. Binomial coefficients being
integers, an is also an integer for any nonnegative n ∈ N.

An important property of the sequence (bn)n∈N is that for any n ∈ N, the
product 2�3nbn is an integer. Therefore if ζ(3) were a rational number, then
�nζ(3), and hence σn = 2�3n(anζ(3) − bn), would be an integer for n larger than
the denominator of ζ(3). We follow the argument described by Salvy in [20], and
show that each summand in the double sum defining bn has a denominator that
divides 2�3n: after a suitable re-organization in the expression of the summand,
which uses standard properties of binomial coefficients, this follows easily from
the following slightly less standard property of theirs:

Lemma 1. For any integers i, j, n such that 1 ≤ j ≤ i ≤ n, j
(

i
j

)
divides �n.

Lemma 1 is considered as folklore in number theory. Its proof consists in showing
that for any prime p, the p-valuation of j

(
i
j

)
is smaller than the one of �n.

Standard presentations of Apéry’s proof make use of the asymptotic bound
�n = en (1+o(1)), which is a corollary of the distribution of the prime numbers.
A bound 3n is however tight enough for our purpose and has been proved by
several independent and elementary proofs, for instance by Hanson [13] and
Feng [11]. However, we have not yet formalized any proof of this ingredient,
which is completely independent from the rest of the irrationality proof. More
precisely, our formal proof is parametrized by the following assumption:

Proposition 2. There exists two positive rationals K and r, with r3 < 33, such
that for any large enough integer n, �n < Krn.

2.3 Consequences of Apéry’s Recurrence

The Cauchy sequence (bn/an)n∈N tends to ζ(3), thus δn tends to zero. In this
section, we prove that it does so fast enough to compensate for �3n, while being
positive. The starting point is Apéry’s recurrence, (3) below:

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 163

Lemma 2. For n ≥ 0, the sequences (an)n∈N and (bn)n∈N satisfy the same
second-order recurrence:

(n + 2)3yn+2 − (17n2 + 51n + 39)(2n + 3)yn+1 + (n + 1)3yn = 0. (3)

Salvy’s worksheet [20] demonstrates in particular how to obtain this common
recurrence by Maple calculations, performed by the Algolib library [2]. Following
van der Poorten [21], we next use Lemma 2 (and initial conditions) to obtain a
closed form of the Casoratian wn = bn+1an − bnan+1. Indeed, we prove wn =

6
(n+1)3 for n ≥ 2. From this, we prove that δn, and hence σn, is positive for any

n ≥ 2. We also use the closed form to estimate the growth of δ in terms of a.
The result is that there exists a positive rational number K such that δn ≤ K

an

for large enough n. Finally, the zero limit of σn follows from Proposition 2, the
behaviour of δ, and Lemma 3 below, which quantifies that a grows fast enough.

Lemma 3. 33n ∈ O(an).

Proof. Introduce the sequence ρn = an+1/an and observe that ρ51 > 33. We
now show that ρ is increasing. Define rational functions α and β so that the
conclusion of Lemma 2 for an rewrites to an+2−α(n)an+1+β(n)an = 0 for n ≥ 0.
Now, for any n ∈ N, introduce the homography hn(x) = α(n) − β(n)

x , so that
ρn+1 = hn(ρn). Let xn be the largest root of x2 − α(n)x + β(n). The result
follows by induction on n from the fact that h([1, xn]) ⊂ [1, xn] and from the
observation that ρ2 ∈ [1, x2]. �	

3 Algorithms on Sequences in Computer Algebra

Lemma 2 is the bottleneck in Apéry’s proof. Both sums an and bn in there are

instances of parametrised summation: they follow the pattern Fn =
∑β(n)

k=α(n) fn,k

in which the summand fn,k, potentially the bounds, and thus the sum, depend on
a parameter n. This makes it appealing to resort to the algorithmic paradigm of
creative telescoping, which was developed for this situation in computer algebra.

In order to operate on sequences, computer algebra substitutes implicit rep-
resentations for explicit representations in terms of named sequences (factorial,
binomial, etc). This is the topic of Section 3.1. A typical example of parametrised
summation by this approach is provided by the identity

∑n
k=0

(
n
k

)
= 2n: from

an encoding of the summand
(

n
k

)
by the recurrences

(
n + 1

k

)

= n + 1
n + 1 − k

(
n

k

)

,

(
n

k + 1

)

= n − k

k + 1

(
n

k

)

, (4)

deriving the relation, with finite difference with respect to k in right-hand side,

(
n + 1

k

)

− 2
(

n

k

)

=
((

n + 1
k + 1

)

−
(

n

k + 1

))

−
((

n + 1
k

)

−
(

n

k

))

(5)

is sufficient to derive the explicit form 2n, as will be explained below.

164 F. Chyzak et al.

3.1 Recurrences as a Data Structure for Sequences

The implicit representation fruitfully introduced by computer algebra to deal
with sequences are systems of linear recurrences. In this spirit, ∂-finite sequences
are algebraic objects that model mathematical sequences and enjoy nice algo-
rithmic properties. Notably, the finiteness property of their definition makes
algorithmic most operations under which the class of ∂-finite sequences is stable.

A ∂-finite sequence (see [6] for a complete exposition of the subject) is
an element of a module over the non-commutative ring A of skew polynomi-
als in the indeterminates Sn and Sk, with coefficients in the rational-function
field Q(n, k), and commutation rule Si

nSj
kc(n, k) = c(n + i, k + j)Si

nSj
k. A

skew polynomial P =
∑

(i,j)∈I pi,j(n, k)Si
nSj

k ∈ A acts on a “sequence” f by

(P · f)n,k =
∑

(i,j)∈I pi,j(n, k)fn+i,k+j , where subscripts denote evaluation. For

example for fn,k =
(

n
k

)
, the recurrences (4) once rewritten as equalities to zero

can be represented as P · f = 0 for P = Sn − n+1
n+1−k and P = Sk − n−k

k+1 ,
respectively.

To any ∂-finite sequence f , one associates the set of skew polynomials that
annihilate it. This set, {P ∈ A : P · f = 0} is a left ideal of A, named the
annihilating ideal of f , and denoted ann f . A non-commutative extension of the
usual Gröbner-basis theory is available, together with algorithmic analogues.
In this setting, a good representation of a ∂-finite sequence is obtained as a
Gröbner basis of ann f for a suitable ordering on the monomials in Sn and Sk. For
the example of fn,k =

(
n
k

)
, a Gröbner basis consists of both already-mentioned

skew polynomials encoding (4). In general, a Gröbner basis provides us with a
(vectorial) basis of the quotient module A/ ann f . This basis can be explicitly
written in the form B = {fn+i,k+j}(i,j)∈U , where the finite set U of indices is
given as the part under the classical stair shape of the Gröbner-basis theory.
Given a Gröbner basis GB for ann f , the normal form NF(p, GB) is unique for
any p ∈ A. Again in the binomial example, the finite set is U = {(0, 0)}, and
normal forms are rational functions.

This is the basis of algorithms for a number of operations under which the
∂-finite class is stable, which all process by looking for enough dependencies
between normal forms: application of an operator, addition, product. The case
of summing a sequence (fn,k) into a parametrised sum Fn =

∑n
k=0 fn,k is more

involved: it performs according to the method of creative telescoping [23], in two
stages. First, an algorithmic step determines pairs (P, Q) satisfying

P · f = (Sk − 1)Q · f (6)

with P ∈ A′ and Q ∈ A, where A′ is the subalgebra Q(n)〈Sn〉 of A. To continue
with our example fn,k =

(
n
k

)
, Eq. (5) can be recast into this framework by

choosing P = Sn − 2 and Q = Sn − 1. Second, a systematic but not fully
algorithmic step follows: summing (6) for k between 0 and n + degSn

P yields

(P · F)n = (Q · f)k=n+degSn
P+1 − (Q · f)k=0. (7)

Continuing with our binomial example, summing (5) (or its equivalent form (6))
for k from 0 to n + 1 (and taking special values into account) yields

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 165

Table 1. Construction of an and bn: At each step, the Gröbner basis named in col-
umn GB, which annihilates the sequence given in explicit form, is obtained by the
corresponding operation on ideals, with input(s) given on the last column

step explicit form GB operation input(s)

1 cn,k =
(
n
k

)2(n+k
k

)2
C direct

2 an =
∑n

k=1 cn,k A creative telescoping C

3 dn,m = (−1)m+1

2m3(n
m)(n+m

m) D direct

4 sn,k =
∑k

m=1 dn,m S creative telescoping D

5 zn =
∑n

m=1
1

m3 Z direct

6 un,k = zn + sn,k U addition Z and S

7 vn,k = cn,kun,k V product C and U

8 bn =
∑n

k=1 vn,k B creative telescoping V

∑n+1
k=0

(
n+1

k

) − 2
∑n

k=0
(

n
k

)
= 0, a special form of (7) with right-hand side cancel-

ing to zero. The formula (7) in fact assumes several hypotheses that hold not so
often in practice; this will be formalized by Eq. (8) below.

3.2 Apéry’s Sequences are ∂-finite Constructions

The sequences a and b in (1) are ∂-finite: they have been announced to be
solutions of (3). But more precisely, they can be viewed as constructed from
“atomic” sequences by operations under which the class of ∂-finite sequences is
stable. This is summarised in Table 1.

Both systems C and D are first-order systems obtained directly as easy con-
sequences of (4); they consist respectively of expressions for cn+1,k and cn,k+1
in terms of cn,k and of expressions for dn+1,k and dn,k+1 in terms of dn,k. The
case of Z is almost the same: it is not a parametrised summation but an indef-
inite summation. A (univariate, second-order) recurrence is easily obtained for
it, without referring to any creative telescoping.

For each of C, D, and V , which undergo a summation operation, we obtain
creative-telescoping pairs (P, Q): one for C for a set U = {(0, 0)}; one for V for
a set U = {(0, 0), (1, 0), (0, 1)}; four for D for the same set. In all cases, we have
had our computer-algebra program (informally) ensure that the corresponding P
cancels the sum. For C and V , the single P thus obtained is (trivially) a Gröbner
basis of the annihilating ideal of A or B, respectively. But for D, the four P have
to be recombined, leading to three operators.

It should be observed that Gröbner bases is the only data used by computer-
algebra algorithms in the program above, including when simplifying the right-
hand side in (7) and in its generalization to come, Eq. (8) below. For instance,
computer algebra computes the system V from the systems C and U alone,
without resorting to any other knowledge of particular values of c and u in
Table 1, and so does our formal proof to verify that the pointwise product xy is
annihilated by V whenever C and U respectively annihilate sequences x and y.

166 F. Chyzak et al.

In other words, although a ∂-finite sequence is fully determined by a system of
recurrences and sufficiently many initial conditions (that is, values of ui,j for
small values of i and j), we do not maintain those values along our proofs.

Our formal proof as well models each sequence by a system of recurrences
obtained solely from the operators of the Gröbner basis. We hence bet that
the computer-algebra implementation of the algorithmic operations of addition,
product, and summation, as well as the parts of our Maple script relying on less
algorithmic operations do not take decisions based on private knowledge they
could have on their input, viewed as a specific solution to the recurrence system
used to encode it. Would the implementation do so without letting us know,
then our a posteriori verification would have required guessing an appropriate
description of this additional knowledge, like operators for specializations of the
sequences. Fortunately, the Mgfun package we used has the wanted property.

3.3 Provisos and Sound Creative Telescoping

Observe the denominators in (4): they prevent the rules to be used, respectively
when k = n + 1 and k = −1. For example, one can “almost prove” Pascal’s
triangle rule by
(

n + 1
k + 1

)

−
(

n

k + 1

)

−
(

n

k

)

=
(

n + 1
n − k

n − k

k + 1
− n − k

k + 1
− 1

) (
n

k

)

= 0 ×
(

n

k

)

= 0,

but this requires k �= −1 and k �= n. Therefore, this does not prove Pascal’s rule
for all n and k. The phenomenon is general: computer algebra is unable to take
denominators into account. This incomplete modelling of sequences by algebraic
objects may cast doubt on these computer-algebra proofs, in particular when it
comes to the output of creative-telescoping algorithms.

By contrast, in our formal proofs, we augmented the recurrences with provisos
that restrict their applicability. In this setting, we validate a candidate identity
like the Pascal triangle rule by a normalization modulo the elements of a Gröbner
basis plus a verification that this normalization only involves legal instances of
the recurrences. In the case of creative telescoping, Eq. (6) takes the form:

(n, k) /∈ Δ ⇒ (P · f ,k)n = (Q · f)n,k+1 − (Q · f)n,k, (8)

where Δ ⊂ Z2 guards the relation and where f ,j denotes the univariate sequence
obtained by specializing the second argument of f to j. Thus our formal analogue
of Eq. (7) takes this restriction into account and has the shape

(P · F)n =
(

(Q · f)n,n+β+1 − (Q · f)n,α

)
+

r∑

i=1

i∑

j=1
pi(n) fn+i,n+β+j

+
∑

α≤k≤n+β ∧ (n,k)∈Δ

(P · f ,k)n − (Q · f)n,k+1 + (Q · f)n,k,

(9)

for F the sequence with general term Fn =
∑n+β

k=α fn,k. The proof of identity (9)
is a straightforward reordering of the terms of the left-hand side, (P · F)n =

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 167

∑r
i=0 p(n) Fn+i, after unfolding the definition of F and applying relation (8)

everywhere allowed in the interval α ≤ k ≤ n + β. The first part of the right-
hand side is the usual difference of border terms, already present in Eq. (7). The
middle part is a collection of terms that arise from the fact that the upper bound
of the sum defining Fn depends linearly on n and that we do not assume any
nullity of the summand outside the summation domain. The last part, which
we will call the singular part, witnesses the possible partial domain of validity
of relation (8). The operator P is a valid recurrence for the sequence F if the
right-hand side of Eq. (9) normalizes to zero, at least outside of an algebraic
locus that will guard the recurrence.

4 Formal Proof of the Common Recurrence

This section describes the computer-algebra-aided formal proof of Lemma 2,
based on a Maple session implementing the program described in Table 1.

4.1 Generated Operators, Hand-Written Provisos, and Formal
Proofs

For each step in Table 1, we make use of the data computed by the Maple
session in a systematic way. Figure 1 illustrates this pattern on the example of
step 7. As mentioned in Section 3.3, we annotate each operator produced by the
computer-algebra program with provisos (see below) and turn it this way into a
conditional recurrence predicate on sequences. To each sequence in the program
corresponds a file defining the corresponding conditional recurrences, for instance
annotated_recs_c, annotated_recs_u, and annotated_recs_v for c, u, and v,
respectively. More precisely these files contain all the operators obtained by the
Maple script for a given sequence, not only the Gröbner basis. We use rounded
boxes to depict the files that store the definitions of these predicates. These
are generated by the Maple script which pretty-prints its output in Coq syntax,
with the exception of the definition of provisos. Throughout this section, a maple
leaf tags the files that are generated by our Maple script. Yet automating these
annotations is currently out of reach.

In our formal proof, each step in Table 1 consists in proving that some condi-
tional recurrences on a composed sequence can be proved from some conditional
recurrences known for the arguments of the operation. We use square boxes to
depict the files that store these formal proofs. The statement of the theorems
proved in these files are composed from the predicates defined in the round boxes:
a dashed line points to (predicates used to state) conclusions and a labelled solid
line points to (predicates used to state) hypotheses.

4.2 Definitions of Conditional Recurrence Predicates

All files defining the conditional recurrence predicates obtained from the opera-
tors annihilating sequences of the program share the same structure. An excerpt

168 F. Chyzak et al.

Fig. 1. Proving that V is C × U

of the generated part of the file annotated_recs_c is displayed on Listing 1.1.
The constants Sn, Sk, and CT_premise are recurrences predicates, defined in
terms of a bound variable c. Constants Sn and Sk are elements of the Gröbner
basis. The definition of these recurrences is named to reflect the term it rewrites,
e.g., the left-hand sides in (4): these names are the result of pretty-printing the
(skew) monomial that encodes these left-hand sides, the prefix S standing for
“shift”. For example Sn is the name of a recurrence defining cn+1,k, while SnSk

would be for cn+1,k+1. Rewriting a given term with such an equation makes the
term decrease for the order associated with the Gröbner basis. Another part of
the file defines the recurrences obtained from a creative-telescoping pair (P, Q)
generated for the purpose of the summation defining the sequence a.

(* Coefficients of every recurrence, P, and Q. *)

Definition Sn00 n k := (n + 1 + k)2 / (-n - 1 + k)2.

Definition Sk00 n k := (-n + k)2 * (n + 1 + k)2 / (k + 1)4.

Definition P0 n := (n + 1)3.

...

(* Conditional recurrences. *)

Definition Sn c := ∀ n k, precond.Sn n k → c (n + 1) k = Sn00 n k * c n k

Definition Sk c := ∀ n k, precond.Sk n k → c n (k + 1) = Sk00 n k * c n k

(* Operators P and Q. *)

Definition P c n := P0 n * c n + P1 n * c (n + 1) + P2 n * c (n + 2).

...

(* Statement P = Δk Q. *)

Definition CT_premise c := ∀ n k, precond.CT_premise n k →
P (c � k) n = Q c n (k + 1) - Q c n k.

Listing 1.1. Generated part of annotated rec c

Observe that these generated definitions feature named provisos that are in
fact placeholders. In the preamble of the file, displayed on Listing 1.2, we provide
by a manual annotation a concrete definition for the proviso of each recurrence
defined in the generated part. Observe however that part of these definitions can
be inferred from the coefficients of the recurrences. For example the k �= n + 1
condition in precond.Sn, the proviso of recurrence Sn, is due to the denominator
(−n − 1 + k)2 of the coefficient (Sn00n k).

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 169

Module precond.

Definition Sn n k := (k �= n + 1) ∧ (n �= -1).

Definition Sk n k := (k + 1 �= 0) ∧ (n �= 0).

Definition CT_premise n k := (n ≥ 0) ∧ (k ≥ 0) ∧ (k < n).

End precond.

Listing 1.2. Hand-written provisos in annotated rec c

In the last part of the file, see Listing 1.3, a record collects the elements of the
Gröbner basis C. Maple indeed often produces a larger set of annihilators for
a given sequence, for instance CT_premise in Listing 1.1 is related to a creative
telescoping pair but not to the Gröbner basis. Also, the Gröbner basis can be
obtained by refining a first set of annihilators, which happens at step 4 of Table 1.

(* Choice of recurrences forming a Groebner basis. *)

Record Annihilators c := { Sn : Sn c; Sk : Sk c }.

Listing 1.3. Selection of a Gröbner basis

4.3 Formal Proofs of a Conditional Recurrence

We take as a running example the file ops_for_a, which models step 2 in Table 1.
This file proves theorems about an arbitrary sequence c satisfying the recurrences
in the Gröbner basis displayed on Listing 1.3, and about the sequence a by
definite summation over c.

Require Import annotated_recs_c.

Variables (c : int → int → rat) (ann_c : Annihilators c).

Theorem P_eq_Delta_k_Q : CT_premise c. Proof. ... Qed.

Let a n := \sum_(0 ≤ k < n + 1) c n k.

The formal proof of lemma P_eq_Delta_k_Q is an instance of Eq. 8. Using this
property, we prove that the sequence a verifies a conditional recurrence asso-
ciated to the operator P . As suggested in Section 3.1, this proof consists in
applying the lemma punk.sound_telescoping, which formalizes a sound creative
telescoping and in normalizing to zero the resulting right-hand side of Eq. 9. List-
ing 1.4 displays the first lines of the corresponding proof script, which select and
name the three components of the right-hand side of Eq. 9, with self-explanatory
names. The resulting proof context is displayed on Listing 1.5.

Theorem recApery_a n (nge2 : n ≥ 2) : P a n = 0.

Proof.

rewrite (punk.sound_telescoping P_eq_Delta_k_Q).

set boundary_part := (X in X + _ + _).

set singular_part := (X in _ + X + _).

set overhead_part := (X in _ + _ + X).

Listing 1.4. Begining of a proof of sound creative telescoping

170 F. Chyzak et al.

boundary_part := Q c n (n + 1) - Q c n 0

singular_part := \sum_(0 ≤ i < n + 1 | precond.CT_premise n i)

P (c � i) n - (Q c n (i + 1) - Q c n i)

overhead_part := \sum_(0 ≤ i < degree P)

\sum_(0 ≤ j < i) Pi n * c (n + i) (n + j + 1)

============================

boundary_part + singular_part + overhead_part = 0

Listing 1.5. Corresponding goal

In Listing 1.5, (c � i) denotes the expression (fun x => c x i), Pi denotes the
i-th coefficient of the polynomial P, and degree P the degree of P (two in this
specific case). Note that we have access to degree P because in addition to the
definition displayed on Listing 1.1, we also have at our disposal a list represen-
tation [:: P0; P1] of the same operator.

The proof of the goal of Listing 1.5, proceeds in three steps. The first step
is to inspect the terms in singular_part and to chase ill-formed denominators,
like n − n. These can arise from the specialisations, like k = n, induced when
unrolling the definition of (the negation of) precond.CT_premise. In our formal-
ization, a division by zero is represented by a conventional value: we check that
these terms vanish by natural compensations, independently of the convention,
and we keep only the terms in singular_part that represent genuine rational
numbers. The second step consists in using the annihilator ann_c of the sum-
mand to reduce the resulting expression under the stairs of the Gröbner basis.
In fact, this latter expression features several collections of terms, that will be
reduced to as many independent copies of the stairs. In the present example, we
observe two such collections: (i) terms that are around the lower bound (n, 0) of
the sum, of the form cn,0, . . . cn,s; (ii) terms that are around the upper bound
(n, n) of the summation, of the form cn,n, . . . , cn,n+s for a constant s. The
border terms induce two such collections but there might be more, depending
in particular on the shape of the precond.CT_premise proviso. For example, the
sum

∑n
k=0(−1)k

(
n
k

)(3k
n

)
= (−3)n leads to a proviso involving n = 3k + 1 and

similar terms: an additional category of terms around (n, n/3) drifts away from
both (n, 0) and (n, n) when n grows.

============================

P2 n * c (n + 2) n + P1 n * c (n + 1) n +

P0 n * c n n + Q00 n n * c n n + P1 n * c (n + 1) (n + 1) +

P2 n * c (n + 2) (n + 1) + P2 n * c (n + 2) (n + 2) = 0

Listing 1.6. Terms around the upper bound

The collection of terms around the upper bound in our running example is dis-
played on Listing 1.6. The script of Listing 1.7 reduces this collection under the
stairs of ann_c, producing the expression displayed on Listing 1.8. The premise
of each rule in this basis being an integer linear arithmetic expression, we check
its satisfiability using our front-end intlia to the lia proof command [4], which
automates the formal proof of first-order formulae of linear arithmetics.

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 171

rewrite (ann_c.Sk (n + 2) (n + 1)); last by intlia.

rewrite (ann_c.Sk (n + 2) n); last by intlia.

rewrite (ann_c.Sk (n + 1) n); last by intlia.

rewrite (ann_c.Sn (n + 1) n); last by intlia.

rewrite (ann_c.Sn n n); last by intlia.

set cnn := c n n.

Fail set no_more_c := c _ _.

Listing 1.7. Reduction modulo the Gröbner basis of c

============================

P2 n * Sn00 (n + 1) n * Sn00 n n * cnn + P1 n * Sn00 n n * cnn +

P0 n * cnn + Q00 n n * cnn + P1 n * Sk00 (n + 1) n * Sn00 n n * cnn +

P2 n * Sk00 (n + 2) n * Sn00 (n + 1) n * Sn00 n n * cnn +

P2 n * Sk00 (n + 2) (n + 1) * Sk00 (n + 2) n *

Sn00 (n + 1) n * Sn00 n n * cnn = 0

Listing 1.8. Rational function with folded coefficients

The third and last step consists in checking that the rational-function coef-
ficient of every remaining evaluation of c is zero. For this purpose, we start by
unfolding the definitions of the coefficients P2, Sn0. Previous steps kept them
carefully folded as these values play no role in the previous normalizations but
can lead to pretty large expressions if expanded, significantly slowing down any
other proof command. The resulting rational function is proved to be zero by a
combination of the field [10] and lia [4] proof commands. The former reduces
the rational equation into a polynomial one between the cross product of two
rational functions. This equation is then solved by the ring proof command [17].
The algebraic manipulations performed by field produce a set of non-nullity
conditions for the denominators. These are solved by the lia proof command.
To this end, our Maple script generates rational fractions with factored denom-
inators, that happen to feature only linear factors in these examples.

4.4 Composing Closures and Reducing the Order of B

Figure 2 describes the global dependencies of the files proving all the steps in
Table 1. In order to complete the formal proof of Lemma 2, we verify formally in
file algo_closures that each sequence involved in the construction of an and bn is
a solution of the corresponding Gröbner system of annotated recurrence, starting
from cn, dn, and zn and applying the lemmas proved in the ops_for_* files all
the way to the the final conclusions of ops_for_a and ops_for_b. This proves that
an is a solution of the recurrence (3) but provides only a recurrence of order four
for bn. In file reduce_order, we prove that b as well satisfies the recurrence (3)
using four evaluations b0, b1, b2, b3 that we compute in file initial_conds.

172 F. Chyzak et al.

Fig2. Formal proofs of Table 1 Fig 3. Formal proof of Lemma 2

5 Conclusion

5.1 Formally Proving the Consequences of Apéry’s Recurrence

The present paper focuses on the computer-algebra-aided part of our formal-
ization. Another significant part of it addresses the asymptotic study of some
sequences of rational numbers. Formalizing this part of the proof requires in-
troducing a type with more inhabitants than just rational numbers, for it deals
with the properties of limits of sequences, notably the constant ζ(3) itself: we
hence need to include at least computable real numbers. The construction of
Cauchy reals proposed by Cohen in his PhD [8] turned out to perfectly suit our
needs, although we had to enrich the existing library with a few basic properties.
Indeed, we use the type of Cauchy real numbers mostly to state our theorems,
like Theorem 1, but the proofs only involve reasoning with rational values of the
sequences. We also benefited from the proof commands provided by Cohen [8]
to postpone the definition of “large enough” bounds or moduli of convergence.

The proof of Lemma 3 however involves non-rational real numbers that are
not defined as converging sequences but as roots of polynomials. We resort in
this case to Cohen’s construction of real algebraic numbers [7] and benefit con-
structively from the decidability of comparison relations. Navigating between
the different natures of numbers this irrationality proof features, integer, ratio-
nal numbers, real algebraic numbers, and Cauchy reals was made possible by the
genericity of the core Mathematical Component libraries [1].

The proof of the same Lemma 3 involves two computational steps, namely
the observations that ρ51 > 33 and that ρ2 ∈ [1, x2]. These numbers are rather
large: for instance the normalized fraction ρ51 features integers with more than 70
digits. The issue here is to obtain a formal proof of these facts that both fits with
the rest of the proof of Lemma 3 and does not take ages to compute. We used
the CoqEAL [9] library and the framework it provides for writing parametric
code which can be executed either symbolically, in abstract parts of a proof,
or with appropriate data structures for efficient computations. The programs
that implement the computation of ρn and xn are very short and boil down to
evaluating a (rather small) rational fraction defined recursively. At this place and

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 173

when computing evaluations of the sequence (see Section 4.4), computations use
(interpreted) binary integer arithmetics and are almost instantaneous.

5.2 Asymptotic Behavior of lcm(1, . . . , n)

We plan to complete our irrationality proof by providing a formal proof of Propo-
sition 2 following the proof of Hanson [13]. This involves considerations of ele-
mentary number theory as well as asymptotic-analysis studies that are rather
similar to the ones we dealt with in the present work. The Prime Number The-
orem has been machine-checked by Harrison [14] in HOL-Light. We considered
importing this result into Coq by using the automated translation tool devel-
oped by Keller and Werner [16]. Unfortunately, according to Keller, the import
of such an involved proof is currently beyond reach because of its size.

5.3 Formal Proofs on Objects of Size Typical of Computer Algebra

The size of the mathematical objects in our formalization makes the interactive
writing of proof scripts quite unusual and challenging. For example, the recur-
rence P · y = 0 of order four satisfied by the sequence b spans over 8,000 lines
when pretty-printed. Both proofs of the fact P · b = 0, named recApery_b in our
formalization, and of its premise P · v = (Sk − 1)Q · v, named P_eq_Delta_k_Q,
end by normalizing rational functions to 0. Figure 4 reports on the size of the
polynomials that occur in these proofs, together with the amount of time needed
by Coq’s field proof command to check that the rational functions are zero.

lemma lines terms # of digits time
avg max (seconds)

P_eq_Delta_k_Q 1006 1714 6 13 247
recApery_b 7811 18602 2 13 179

Fig 4. Statistics about the polynomials in ops_for_b and their normalization

These objects can be easily manipulated by a computer-algebra system: Maple
normalizes P · b to zero in less than 2 seconds. Coq, in its latest stable version
(8.4pl3), takes roughly 4 minutes, but of course it produces and checks a formal
proof of such normalization. To achieve this reasonable timing, we contributed
to version 8.4pl3 a patch to substantially improve the performances of rational-
function normalization: in Coq 8.4pl2 the very same recurrence requires a bit
less than one hour to be normalized to zero.

Navigating expressions of size typical of computer algebra. Under the circum-
stances described above, where the goal to be proved cannot even be displayed,
the need for uncommon proof commands arises. The pattern matching facilities
offered by the set command [12] can be used to probe the goal for a subterm of
the shape u (n + _) (k + _), or to identify all the occurrences of a closed terms.

174 F. Chyzak et al.

Unfortunately not all uncommon needs are easily satisfiable with standard
proof commands. A typical one is to invoke a computer-algebra system to re-
arrange an expression in order decide how to proceed with the proof. This was
performed by hand, massaging text files to accommodate the small syntactic
differences between the syntax of Coq and Maple. This task has been automated
in the past in the Coq-Maple bridge developed by Delahaye and Mayero [10],
for the purpose of enhancing proof automation in Coq. We foresee to generalise
this work by allowing arbitrary Maple commands to let one explore algebraic
expressions, and not necessarily prove the correctness of the results.

Proof-language implementation. The size of the mathematical expressions poses
additional efficiency challenges when combined with the ability of the Coq logic
to identify terms up to computation. For example a pattern like (3 * _) is
matched by searching for the head symbol * verbatim, but its non-wildcard
argument, 3 here, is compared taking computation into account. Given the size
of the expressions, the fast filtering performed on the head symbol is not sufficient
to discard enough false positives. Comparing two terms up to computation often
triggers a full normalization before failing and this is an expensive operation.

The definitions of integer and rational numbers that are part of the Math-
ematical Components library are designed for the purpose of a comprehensive
library of theorems, and not for fast computations: this makes the aforemen-
tioned pattern-matching operation often intractable. The commonly accepted
idea of having two representations of the same concept, one good for reasoning
and one good for computing, linked by a morphism does not work for expressions
of this size, as switching from one representation to the other one relies again
on pattern matching to push the morphism through the huge expression. For
instance, we had to craft boilerplate code, which carefully controls computations
and use locked casts for large constant numbers, in order to make the field and
lia tactic work on these data-structures.

One possible work-around would be to have available, in the proof language,
two distinct pattern-matching facilities: one that eases reasoning steps by identi-
fying terms up to computation, and another one that performs a dumb syntactic
comparison and is efficient even when applied to large, homogeneous expressions.

5.4 Theoretical and Practical Limitations of Data Structures

Algebraic rewriting with provisos An obstruction to turning our approach into a
complete protocol is that we do not know how to determine the provisos other
than by trial and error. This is connected to the fact that recurrences that have
well understood rewriting properties when forming a Gröbner basis (a priori) lose
all this nice structure when decorated with provisos. We do not understand what
the new critical pairs have to be and how to ensure we give ourselves complete
information with our selection of rules-with-provisos that simply lift a Gröbner
basis. To the best of our knowledge, there is no literature on the topic yet.

We have been lucky with the few cases in the present formalization, in that
we could just guide our reduction by the usual strategy of division by a Gröbner

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 175

basis: all implied integer premises could be solved, without us understanding
why they would.

Polynomial data structures. Manipulating polynomials in computer algebra is
made natural by the ease to keep them in collected form, whether automatically
or by easy-to-call procedures. On the other hand, our treatment of recurrences
amounts mostly to collecting polynomials and skew polynomials, through the
encoding suggested in Section 3.1. A (skew) polynomial data structure, with
computational product and division, and the corresponding theory, would help
keeping goals tidy and more manageable, especially during the rewriting steps.
In particular, the current strategy of reserving the call to field to the end is
certainly a cause of blow-up of the goals and inefficiency of the computations.

In addition, making it generic with respect to the nature of skew-polynomial
commutation would provide similar functionality for both recurrence and differ-
ential equations, paving the way to the formalization of integral identities by a
known differential counterpart to creative telescoping.

5.5 Building on Top of State-of-the-art Libraries

It was a help to have at our disposal the broad scope of the Mathematical
Components library. It was a cause for trouble, too. This research started as an
interdisciplinary activity: half of the authors were newcomers to formal proofs.
As a matter of fact understanding the sophisticated design of the library turned
out to be a very arduous task for them.

We can identify in the combined use of implicit coercions, notations, and
structure inference the major source of complexity. Their formalization activity
was additionally hindered by the fact that various features of the Coq system
do not interact well with the design patterns employed in the Mathematical
Components library. The most notable example being search, that is almost
ineffective in the context of the algebraic hierarchy.

We believe such problems could be alleviated by: introductory material specific
to the Mathematical Components library and written with newcomers in mind;
a “teaching/debug”mode in which type inference explicates steps at the desired
level of detail; finally a proper searching facility.

References

[1] Mathematical Components Libraries. Version 1.4. For Coq 8.4pl3 (2013),
http://www.msr-inria.fr/projects/mathematical-components

[2] Algolib. Version 17.0. For Maple 17 (2013), http://algo.inria.fr/libraries/

[3] Apéry, R.: Irrationalité de ζ(2) et ζ(3). In: Astérisque, vol. 61. Société Mathéma-
tique de France (1996)

[4] Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In: Al-
tenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007)

http://www.msr-inria.fr/projects/mathematical-components
http://algo.inria.fr/libraries/

176 F. Chyzak et al.

[5] Beukers, F.: A note on the irrationality of ζ(2) and ζ(3). Bull. London Math.
Soc. 11(3), 268–272 (1979)

[6] Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves mul-
tivariate identities. J. Symbolic Comput. 26(2), 187–227 (1998)

[7] Cohen, C.: Construction of real algebraic numbers in Coq. In: Beringer, L., Felty,
A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012)

[8] Cohen, C.: Formalized algebraic numbers: construction and first-order theory. PhD
thesis, École polytechnique (November 2012)

[9] Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Heidelberg
(2013)

[10] Delahaye, D., Mayero, M.: Dealing with algebraic expressions over a field in Coq
using Maple. J. Symb. Comput. 39(5), 569–592 (2005)

[11] Feng, B.-Y.: A simple elementary proof for the inequality dn < 3n. Acta Math.
Appl. Sin. Engl. Ser. 21(3), 455–458 (2005)

[12] Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system, RR-6455. Version 12 (2013)

[13] Hanson, D.: On the product of the primes. Canad. Math. Bull. 15, 33–37 (1972)
[14] Harrison, J.: Formalizing an analytic proof of the Prime Number Theorem. Journal

of Automated Reasoning 43, 243–261 (2009)
[15] Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. J.

Automat. Reason. 21(3), 279–294 (1998)
[16] Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson,

L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010)
[17] Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in

Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005)

[18] Risch, R.H.: The solution of the problem of integration in finite terms. Bull. Amer.
Math. Soc. 76, 605–608 (1970)

[19] Rivoal, T.: Propriétés diophantiennes de la fonction zéta de Riemann aux entiers
impairs. PhD thesis, Université de Caen (2001)

[20] Salvy, B.: An Algolib-aided version of Apéry’s proof of the irrationality of ζ(3)
(2003), http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

[21] van der Poorten, A.: A proof that Euler missed: Apéry’s proof of the irrationality
of ζ(3). Math. Intelligencer 1(4), 195–203 (1979), An informal report

[22] Zeilberger, D.: A holonomic systems approach to special functions identities. J.
Comput. Appl. Math. 32(3), 321–368 (1990)

[23] Zeilberger, D.: The method of creative telescoping. J. Symbolic Comput. 11(3),
195–204 (1991)

[24] Zudilin, V.V.: One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. Uspekhi
Mat. Nauk 56(4(340)), 149–150 (2001)

http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

From Operational Models to Information Theory;
Side Channels in pGCL with Isabelle

David Cock

NICTA and University of New South Wales, Australia
David.Cock@nicta.com.au

Abstract. In this paper, we formally derive the probabilistic security
predicate (expectation) for a guessing attack against a system with side-
channel leakage, modelled in pGCL. Our principal theoretical contri-
bution is to link the process-oriented view, where attacker and system
execute particular model programs, and the information-theoretic view,
where the attacker solves an optimal-decoding problem, viewing the sys-
tem as a noisy channel. Our practical contribution is to illustrate the
selection of probabilistic loop invariants to verify such security proper-
ties, and the demonstration of a mechanical proof linking traditionally
distinct domains.

1 Introduction

This paper presents a formally-verified proof of the optimality of a Bayesian
attack against an interactive system with side-channel leakage. This is an un-
surprising result from a security and machine-learning perspective, and would
typically just be assumed. Formalising the proof, however, requires effort. The
point, of course, is that the proof is straightforward exactly where it should be,
in the mechanical plugging-together of pieces, but interesting (or difficult), only
where it must be, namely in choosing a model that faithfully represents our in-
tuitive understanding of the problem, and in the ‘creative moment’ of choosing
an appropriate loop invariant. The result itself will be unsurprising to anybody
familiar with information theory or machine learning, but is the critical step
in linking this typically mathematical field with the more pragmatic world of
concrete operational semantics. As we will briefly detail in the final section of
this paper, and as we have presented elsewhere(Cock, 2014), we can then apply
the tools of one domain to the other, to tease out deeper theoretical results.

The contribution of this paper is a worked mechanical proof that conducting
an optimal guessing attack, in the presence of side-channel leakage, reduces to an
optimal decision problem on a corresponding noisy channel, expressed in purely
probabilistic terms, with all artefacts of the operational model eliminated. This
model, in turn, is carefully selected to make the connection to the intuitive secu-
rity property as clear as possible, but also flexible enough to incorporate realistic-
scale systems in the manner demonstrated in our previous work(Cock, 2013). To
reiterate, a straightforward proof of such a cross-cutting result, requiring deep

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 177–192, 2014.
c© Springer International Publishing Switzerland 2014

178 D. Cock

thought only at those points where it really should, demonstrates that the in-
frastructure of mechanisation is mature enough to allow us to transfer a security
result from a detailed, fully-implemented system, through a probabilistic oper-
ational semantics(Cock, 2012), to a fully probabilistic or information-theoretic
setting.

1.1 Side Channels and Guessing Attacks

The context of this work is our ongoing project(Cock, 2014) to demonstrate
that we can transfer probabilistic information-flow properties from an ab-
stract information-theoretic model, down to a concrete verified implementa-
tion, leveraging an existing correctness proof (for example that of the seL4
microkernel(Klein et al., 2009)). Previously(Cock, 2013), we demonstrated that
the top-level result of that refinement proof could be embedded in the probabilis-
tic language pGCL(McIver and Morgan, 2004), and lemmas about the abstract
specification lifted into a probabilistic context. We now demonstrate that we
can take one further step, and lift a probabilistic security property away from
implementation details entirely, and reason solely at an abstract level.

The reason that this approach works, and that we are able to claim that it
is applied to a real system is precisely the embedding result just mentioned. We
were able to take the top-level specification of seL4, and embed it into pGCL
in such a way that annotations of the original specification are preserved, and
the refinement orders correspond. Therefore, any refinement-sound result on the
probabilistic specification (such as that shown in this paper), is preserved by the
full seL4 refinement stack and therefore applies to the low-level kernel imple-
mentation.

This security property is derived from our threat model : A guessing attack,
against a system with a side channel. We define a side channel to be any infor-
mation provided by the system to a client that a) depends on a secret, and b) is
not allowed by the system’s specification.

As a motivating example, consider an authentication system in which the
client supplies some shared secret (for example a password) to the system in
order to prove its identity. The system must compare the supplied secret to
its stored version, and then either grant or deny access. Such a system has
some degree of unavoidable leakage: a malicious client can guess secrets one-
by-one and (assuming the set is finite), must eventually get the right one. In
practice, we hope that the space of secrets is sufficiently large that such an attack
is impractical. More interesting is whether the system leaks anything beyond
this unavoidable amount, and to what extent any such additional side-channel
leakage increases the vulnerability of the system (or the attacker’s chance of
success).

This leakage might be in the form of variable runtime, power consumption,
radiation, or any other property not covered by the system’s specification. We
assume that continuous channel values are measured with some finite precision by
the attacker, and are thus effectively quantised into some finite set of outputs. A
common property of such side-channel outputs is that they are stochastic: there

From Operational Models to Information Theory 179

is no functional relation between the secret and the observed side-channel value.
There may, however, exist some probabilistic relationship.

If there were a functional relation between the secret, S ∈ S, and observation
o ∈ O, i.e. we are able to find some F :: S ⇒ O ⇒ bool, such that1

∀S. ∃!o. F S o

then we could proceed to reason about whether any information about S is
leaked by revealing o. In particular, if F is invariant under changing S, or
∀S S′ o. F S o = F S′ o, then we can say with confidence that o gives no
information about S.

In the probabilistic case, in general, no such relation exists and we must be
satisfied with a probabilistic relationship, the conditional probability P :: S ⇒
O ⇒ [0, 1], where:

∀S.
∑
o

P S o = 1

Here, we interpret P S o as the probability of producing observation o, assuming
that the secret is S, for which we write P [o|S], or ‘the probability of o given S’.

Note that exactly the same invariance reasoning applies: if ∀S S′ o. P S o =
P S′ o i.e. the distribution of outcomes does not depend on S, then observing
o tells the attacker nothing about S. Note also that if we define the boolean
embedding operator « · » :: (α⇒ bool) ⇒ α⇒ [0, 1] by:

«Q»S = if Q S then 1 else 0

then we can view a functional relation (λS o. F S o) as the special case of a
probabilistic relation (λS o. «F S» o) which, for each S, assigns 100% probability
to exactly one o.

Given a non-injective relation, (or overlapping distributions), the attacker will
generally not be able to determine the secret with certainty: As long as at least
two secrets can produce the observed output with non-zero probability, then both
are possible. In the probabilistic case however (and in contrast to the functional
case), the attacker may be able to distinguish possible secrets by likelihood. All
other things being equal, if secret S produces the observed output o with greater
conditional probability than S′ i.e. P [o|S] > P [o|S′], then S is a more likely
candidate than S′.

Intuitively, if the attacker wants to use the secret that it has guessed, say to
attempt to authenticate, then it should use the one that it considers to be most
likely to be correct, in order to maximise its probability of success. The attacker
thus needs to order possible secrets by P [S|o], or the probability that the secret
is S, having observed o. In order to calculate this, however, the attacker needs
to know P [S], or the prior probability of a given secret: even if P [o|S] > P [o|S′],
and so S is more likely that S′ on the basis of the evidence, if the secret is
overwhelmingly more likely to be S′ than S in the first case (perhaps S′ is the

1 The Isabelle/HOL syntax ∃!x. P x reads ‘there exists a unique x satisfying P ’.

180 D. Cock

password ‘12345’), then even given the evidence it may still be more likely than
S, albeit less so than initially.

The calculation of this inverse conditional probability P [S|o], from the forward
probability P [o|S], is made via Bayes’ rule:

P [S|o] = P [o, S]

P [o]

This states that the probability of the hypothesis (that the secret is S) given
the evidence (that o was observed), is the joint probability of the hypothesis and
the evidence (P [o, S] = P [o|S]P [S]), divided by the probability of the evidence
(P [o], or the likelihood of observing o across all secrets).

Thus, as P [o] does not depend on S, the most likely secret (given that we
have observed o), is that which maximises P [o, S]. Selecting S so as to max-
imise P [o, S] in this way is known as the maximum a posteriori (MAP) rule:
selecting the hypothesis with the highest a posteriori (after the fact) probability.
In information theory, this is the optimal solution to the decoding problem: If
the conditional probability P [o|S] summarises the channel matrix of some noisy
channel, i.e. P [o|S] is the probability that symbol o is received, when S is trans-
mitted, the decoding problem is that faced by the receiver: to choose the most
likely transmitted symbol with which to decode each received symbol. This is
exactly analogous to the challenge facing an attacker attempting to guess the se-
cret given a side-channel observation, and both are solved optimally if the MAP
rule is observed.

There is one way, however, in which the attacker is not like the receiver on a
noisy channel: where the receiver is passively listening to the output, and making
a best-effort reconstruction of the input, the attacker is actively probing the
system, and has a second source of information in knowing whether it manages
to authenticate, or is refused. The additional leakage implies that the most-
likely secret (on the current evidence) is not necessarily the right one to guess.
In particular, the attacker should never guess the same thing twice: if it’s been
refused once, it’ll be refused again.

The criterion for success is also slightly different. In the noisy channel example,
the decoder is successful if it chooses the correct S, and fails otherwise: there are
no second chances. In the authentication example, however, if the attacker fails
on its first guess (as it will most likely do), it can simply try again. Given a finite
space of secrets therefore, an attacker that does not repeat guesses is guaranteed
to eventually guess correctly. The trick is, of course, that in a large enough
space, the chance of doing so in any practical timeframe is essentially zero.
The security measure is therefore not ‘the probability that the attacker guesses
correctly’ (which is 100%, eventually), but ‘the probability that the attacker
guesses correctly in no more than n tries ’. The parameter n can then be set
to an appropriate value for the system in question. For example, a login service
may allow only n attempts before blacklisting a particular client, in which case
we are asking for the probability that the system is compromised before the
countermeasure (blacklisting) kicks in.

From Operational Models to Information Theory 181

1.2 What the Proof Shows

The proof in Section 2 shows that what we expect, based on the informal rea-
soning above is, in fact, exactly what we get. As previously described, the bulk
of the proof is relatively mechanical but, thanks to mechanisation, rather short.
The interesting points, on which we will focus, are, again as already mentioned:
in establishing the faithfulness of the formal model to the above intuitive de-
scription, and in the choice of loop invariant, given which the rest of the result
follows straightforwardly.

The last thing we must mention before diving in is our two major assumptions,
which are implicit in the above discussion, and in our choice of model, but need
to be stated explicitly:

– We assume that multiple observations are independent, given the secret.
The underlying assumption is that there is no lasting effect between two
invocations: the result of one probe has no influence on the result of the
next:

P (o, o′|S) = P (o|S)P (o′|S) (1)

This assumption could be lifted, for example by moving to an n-Markov
model, which should be expressible in the same framework, if this turns out
to be necessary in modelling a real system. For simplicity however, we start
with the ‘0-Markov’, or independent case.

– We assume that the side-channel output (o) depends only on the secret (S),
and not on the attacker-supplied input.
This assumption is more important, and more limiting, than the first. It is
easy to construct systems where side-channel output depends on attacker-
supplied input, and in making this assumption, we are excluding them from
consideration. Such fully-dynamic attacks are the subject of current research,
and there is as yet no elegant information-theoretic interpretation. We must
thus be content for now with our partially-dynamic attack, where the at-
tacker’s actions may be dynamically determined, but the conditional proba-
bilities are not.

1.3 An Overview of pGCL

The probabilistic imperative language pGCL is a descendent of GCL(Dijkstra,
1975), that incorporates both classical nondeterminism and probability. Com-
mon primitives are provided, including:

– Sequential composition: a ; ; b, or “do a then b”.
– Variable update: x :=(λs. e s), or “update variable x, with the value of ex-

pression e in the current state, s”.
– Looping: do G −→ body od, or “execute body for as long as G (the guard)

holds”.

We may also make both classically nondeterministic and probabilistic choices,
which we present here in the form of choices over values:

182 D. Cock

– Unconstrained (demonic) choice: any x, or “assign any value to variable x”.
– Constrained (probabilistic) choice: any x at (λs v. P s v), or “choose value
v, with probability P (which may depend on the state), and assign it to
variable x”.

– Constrained name binding (let expressions): bind n at (λs v. P s v) in a n.
This is almost equivalent to the previous operation, but instead of modifying
the state, simply binds the name n, which parameterises the program a. As
indicated, this is simply a probabilistic let expression.

Expectations. In pGCL, we are no longer constrained to reasoning about
boolean predicates on the state (pre- and post-conditions, for example), but can
now consider any bounded, non-negative real-valued function (an expectation).
We can annotate program fragments just as in GCL:

Q � wp a R

Traditionally, we would read this predicate-entailment relation as a Hoare triple:
if Q holds initially, then R will hold after executing a. The literal meaning being
that Q implies the weakest precondition of R. In pGCL, both Q and R are
real-valued, and implication is replaced by pointwise comparison. The weakest
precondition is replaced by the weakest pre-expectation, such that the equation
now reads: Q is everywhere lower than the weakest preexpectation of R.

The action of programs is defined such that the weakest preexpectation of
R is the expected value of R after executing a, or the sum over all possible
states s of R s, weighted by the probability of ending in state s. If R is the
probability function associated with some predicate i.e. R is 1 whenever the
predicate holds, and 0 otherwise, then the weakest preexpectation is now the
probability, calculated in the initial state, that the predicate holds in the final
state (the expected value of a probability is itself a probability). In this case, the
above annotation states that the probability that the predicate holds finally, if
we begin in state s is at least Q s. The embedding, in the above fashion, of a
predicate S as an expectation is written «S».

Note that if Q s is 1, this reduces to the classical case: If Qs is true (has
probability 1), then Rs will hold (with probability at least2 1.).

Invariants. A loop invariant in pGCL is an expectation that is preserved by
every iteration of the loop:

I ∗ «G» � wp body I

In the standard (non-probabilistic) setting, this states that if the invariant I and
guardG hold before the body executes, the invariant still holds afterwards. In our
probabilistic setting, we instead have that (as G is {0, 1}-valued), the probability
2 The healthiness conditions for the underlying semantics ensures that the probability

is in fact exactly one.

From Operational Models to Information Theory 183

of establishing I from any state where the loop body executes (satisfying G), is
at least I, or that I is a fixed point of the guarded loop body. This seemingly
weaker condition in fact suffices to provide a full annotation of the loop (see
Lemma 1).

Further Information. This summary of pGCL is incomplete, and covers only
those elements essential to the following exposition. For full details of the lan-
guage and its formal semantics, the interested reader is directed to
McIver and Morgan (2004), or for details of the mechanisation in Isabelle/HOL
to Cock (2012, 2013).

2 The Proof

To model the system, we fix two distributions: the prior distribution on secrets,
P [S], and the conditional distribution of observation-given-secret, P [o ′|S]. We
assume throughout that these are valid distributions:

∑
S∈UNIV . P [S] = 1 0 ≤ P [s]∑

o ′∈UNIV . P [o ′|S] = 1 0 ≤ P [S |o ′]

We capture these, and the assumption that both the space of secrets and of
observations is finite, in an Isabelle local theory (locale).

2.1 Modelling the Guessing Attack

The state of the attack after some number of guesses (perhaps 0) is simply the list
of observations that the attacker has made so far, or O. In order to capture the
system’s (probabilistic) choice of secret, and the attacker’s choice of strategy,
however, we add two extra state components: S — the secret, and τ — the
strategy. The system state is thus represented by the following record3:

record (′s , ′o) attack-state =
S :: ′s
O :: ′o list
τ :: ′o list ⇒ ′s

The use of a record as the state type allows us to take advantage of the
field-update syntax introduced in our previous work(Cock, 2013).

We model the attack as a loop, with the attacker making one guess and one
observation per iteration. This specification of a single iteration of the loop body
demonstrates the syntax for probabilistically binding a name (without updating
the state), and updating a single state component as if it were a variable:
3 A tuple with named fields.

184 D. Cock

body ≡
bind obs at (λs . P [obs |S s]) in
O := (λs . obs · (O s))

The full attack has three phases: first the attacker decides on a strategy,
knowing both the distribution on secrets (P [S]), and the conditional probability
of observations, given secrets (P [o ′|S]). This is expressed as an unconstrained
nondeterministic choice (any), in a context where the names P-s and P-os are
already bound (these are the underlying constants corresponding to the syntax
P [S] and P [o ′|S]).

Next, the system generates a secret at random, according to the distribution
P [S], expressed using a probabilistically-constrained choice4. It is critical that
this step comes after the first, as otherwise the attacker could simply choose a
strategy where τ s [] = S s. Semantically, we avoid this as the value S s is only
bound after the choice of τ .

Finally, starting with an empty observation list, the attacker probes the sys-
tem, collecting observations, until it terminates by guessing correctly. Note that
there is no guarantee that this loop terminates, for example if the attacker re-
peats an incorrect guess again and again. We will detail shortly how this affects
the formalisation, as it interacts with our definition of vulnerability.

The full attack is expressed in pGCL as follows:

attack =
any τ ;;
any S at (λs S . P [S]) ;;
O:= [] ;;
do G −→ body od

where

G s = (τ s (O s) �= S s)

We now need a security predicate: a judgement on states, declaring them ei-
ther secure or insecure. While a predicate in pGCL can take any (non-negative)
real value, we begin by cleanly distinguishing secure states. Our security predi-
cate is thus the embedding of a boolean predicate, and therefore takes only the
values 0 (for insecure) and 1 (for secure). Under the action of the above pro-
gram (interpreted as an expectation transformer), this 0,1-valued predicate (in
the postcondition) is transformed to its expected value: the value of the weakest
pre-expectation is (a lower bound on) the probability that we end in a secure
state. The complement is therefore the probability of compromise, if the system
begins in that state.
4 The alternatives in a probabilistic choice need not sum to 1: the remainder of the

probability is assigned to a nondeterministic choice among all possibilities. Thus,
any branch is taken with at least the specified probability, and perhaps more. In this
way, nondeterministic choice is a special case of (sub-)probabilistic choice, where all
branches have probability 0.

From Operational Models to Information Theory 185

We consider the system to be secure in its final state if the attacker has guessed
correctly: τ s (O s) = S s, but has taken at least n incorrect guesses to do so:
n < |O s | ∧ (∀ i≤n. τ s (tail i (O s)) �= S s).

The first of these conditions may appear odd, in that we are asserting that
the system is only secure if the attacker knows the secret! The technical reason
is that this term is the negation of the loop guard, G. The trick, and the reason
that we can safely include this conjunct, is that this predicate is only applied
to final states i.e those where the loop has terminated, which, by definition,
only occurs once the guard is invalidated. This term thus only ever appears in a
conjuction with the guard, leaving us with a term of the form « G » s ∗ « G »
s ∗ x, which simply collapses to « G » s ∗ x, the security predicate.

If the attacker has not yet guessed correctly, then our definition of secu-
rity depends not only on this predicate, but also on the interpretation on non-
terminating programs, which we will address shortly.

secure n s =
« λs . τ s (O s) = S s » s ∗
« λs . n < |O s | ∧ (∀ i≤n. τ s (tail i (O s)) �= S s) » s

Finally, we define vulnerability as the complement of security: the prior vul-
nerability is the probability that the system will end in an insecure state, given
at most (n) guesses. This is, of course, the complement of the probability that
the system ends in a secure state, thus the definition:

V n n = 1 − wlp attack (secure n) (SOME x . True)

The term SOME x . True is the Hilbert choice on the universal set. This
simply expresses our intention that the vulnerability does not depend on the
initial state.

Our definition of vulnerability is made in this slightly roundabout fashion
(‘the complement of the likelihood of success’, rather than simply ‘the likelihood
of failure’), in order to ensure that it is preserved under refinement.

It is a well-recognised problem(Morgan, 2006) that many security properties
(for example noninterference) are not preserved under refinement: a nondeter-
ministic choice is refined by any of its branches, in particular, a nondeterministic
choice of guess, is refined by the program that simply guesses the correct secret
on the first try. The same problem does not occur with probabilistic choice in
pGCL: it is already maximal in the refinement order. This is clearer on inspecting
the destruction rule for refinement:

prog � prog ′ nneg P
wp prog P s ≤ wp prog ′ P s

Here we see that for any non-negative expectation P, and any initial state s, a
refinement assigns at least as high a value (or probability, in the case of a boolean
post-expectation) to the pre-expectation as the original program did. Thus, by
phrasing our postcondition as ‘the system is secure’, any refinement will only

186 D. Cock

increase the probability of remaining secure, and thus decrease vulnerability.
If we instead chose ‘the system is compromised’, then refinement would work
against us: a refinement could have greater vulnerability than its specification.

The final wrinkle is that, while refinement now acts in the ‘right’ direc-
tion, nontermination doesn’t. Under the strict semantics (wp), the weakest pre-
expectation of any postcondition in an initial state from which the program
diverges is 0—the probability of terminating and establishing the postcondition
is zero. The solution to this dilemma is to switch to the liberal semantics (wlp).
Here we ask for the probability of establishing the postcondition if terminat-
ing, rather then establishing it and terminating, as in the strict case. The only
difference between the two is in the treatment of non-terminating programs. In
particular the refinement order on terminating programs is unaffected, and thus
our property is still preserved by refinement. This choice also matches our in-
tuitive expectation: if the attacker never guesses the secret (either because it
repeats failed guesses, or because either party fails or enters an infinite loop and
stops responding), the system is secure.

Having established that the model meets our expectations, we turn to the
second of the two instances in which cleverness is required: annotating the loop.

2.2 Annotating the Attack Loop

Annotating a probabilistic loop is very similar to annotating a classical loop:
Any invariant, combined with the guard, gives an annotation, via the loop rule:

Lemma 1. If the expectation I is an invariant of the loop do G −→ body od:

« G » s ∗ I s ≤ wlp body I s

then the following annotation holds for the loop itself:

I s ≤ wlp do G −→ body od (λs . « N G » s ∗ I s) s (2)

Proof. See McIver and Morgan (2004)

The verification challenge is also the same: to find an invariant that is simul-
taneously strong enough to imply the desired postcondition, and weak enough to
be established by the given precondition. Here, we take a well-known tactic from
conventional invariant selection, and modify it to suit a probabilistic setting.

The trick is to split the invariant into a conjunction of two parts: a predicate
that represents the intended postcondition, as it would look in the current state,
and a separate predicate that ‘prunes’ the set of future traces. The first half
is chosen so that it evaluates to the postcondition (in our case the security
predicate) in any terminating state, and the second to only allow traces that
preserve the first half. Given that we are manipulating probabilities, and not
truth values, we use a product rather than a conjunction. The result is equivalent,
as a glance at the truth table will demonstrate5. The first ‘conjunct’ (the portion
5 Note that multiplication is not the only choice that preserves boolean conjunction:

the ‘probabilistic conjunction’ p .& q ≡ max 0 (p + q − 1) would also work, and

From Operational Models to Information Theory 187

on the left-hand side of the product) is thus logically equivalent to our security
predicate.

The right conjunct is rather different, however. Rather than choosing a pred-
icate that prunes the undesired traces, we instead take the weighted sum over
all traces (lists of observations), of the probability that the given trace preserves
the first conjunct. The weight assigned to a trace is in turn the probability of it
occurring which, by the assumption of independence (Equation 1), is simply the
product of the conditional probability of each observation, given the secret. We
thus construct our invariant as the sum over all possible futures, weighted by the
probability of establishing the postcondition.

Note that the syntax
∑

l [..n]. f l refers to the sum over all lists of length n,
and R b to the embedding of a boolean value as either 0 or 1:

I n s =
(
∏

i=0 ..min n |O s |. R (τ s (tail i (O s)) �= S s))
∗ (
∑

ol [..n − |O s |].∏
i = |O s | + 1 .. n.

P [((ol @ (O s)) ! (n−i))|(S s)]
∗ R (τ s (tail i (ol @ (O s))) �= S s))

The proof that this is indeed an invariant is straightforward (with full details
of this and all other proofs available in the accompanying theory source).

Lemma 2. The expectation I is an invariant of the loop do G −→ body od i.e.:

« G » s ∗ I n s ≤ wlp body (I n) s

Proof. By unfolding. '%

Moreover, the combination of the invariant and the guard is precisely the
security predicate:

« N G » s ∗ I n s =
« λs . τ s (O s) = S s » s ∗
« λs . n < |O s | ∧ (∀ i≤n. τ s (tail i (O s)) �= S s) » s

Thus, applying Lemma 1, we have:

I n s ≤ wlp do G −→ body od (secure n) s (3)

is used in other parts of the pGCL formalisation. The reason for instead choosing
multiplication is that we will later manipulate it algebraically to create a product of
probabilities.

188 D. Cock

2.3 Annotating the Initialisation

The loop initialisation (assigning the empty list of observations) is annotated
just as in a classical setting, by instantiating the pre-expectation, and thus:

Lemma 3 (Initialisation).∑
ol [..n]. (

∏
i = 1 ..n. P [ol[n − i]|S s]) ∗

(
∏

i = 0 ..n. R (τ s (tail i ol) �= S s))
≤ wlp (O := [] ;;

do G −→ body od)
(secure n) s

Proof. By instantiating Equation 3, we have:

R (τ s [] �= S s) ∗
(
∑

ol [..n].
∏

i = 1 ..n. P [ol[n − i]|S s] ∗ R (τ s (tail i ol) �= S s))
≤ wlp (O := [] ;;

do G −→ body od)
(secure n) s

whence we rearrange the pre-expectation by splitting the product and distributing
over the summation:

R (τ s [] �= S s) ∗
(
∑

ol [..n].
∏

i = 1 ..n. P [ol[n − i]|S s] ∗ R (τ s (tail i ol) �= S s)) =
(
∑

ol [..n]. (
∏

i = 1 ..n. P [ol[n − i]|S s]) ∗
(
∏

i = 0 ..n. R (τ s (tail i ol) �= S s)))

at which point the result follows. '%

Making the choice over secrets, this becomes the weighted sum:∑
S . P [S] ∗

(
∑

ol [..n]. (
∏

i = 1 ..n. P [ol[n − i]|S]) ∗
(
∏

i = 0 ..n. R (τ s (tail i ol) �= S)))

We manipulate this expression to produce a sum of probabilities, by first
defining the guess set (Γ) of a strategy—the set of all guesses produced by
terminal sublists of the given list of observations:

σtr σ [] = [([], σ [])] |
σtr σ (o ′ · os) = (o ′ · os , σ (o ′ · os)) · σtr σ os
Γ σ ol = snd ‘ set (σtr σ ol)

We can now annotate the entire attack, including the nondeterministic choice
of strategy:

From Operational Models to Information Theory 189

Lemma 4 (The Attack). We have:

(
�

x . 1 − (
∑

ol [..n].
∑

S∈Γ x ol . P [ol ,S])) ≤ wlp attack (secure n) s

Proof. We begin by noting that the pre-expectation of the choice over secrets:∑
S . P [S] ∗

(
∑

ol [..n]. (
∏

i = 1 ..n. P [ol[n − i]|S]) ∗
(
∏

i = 0 ..n. R (σ (tail i ol) �= S)))

can be rewritten (by changing the order of summation, and distributing multipli-
cation) to:∑

ol [..n].
∑

S . P [S] ∗ (
∏

i = 1 ..n. P [ol[n − i]|S]) ∗
(
∏

i = 0 ..n. R (σ (tail i ol) �= S))

We then note that the innermost product is simply the joint probability of the
secret and the list of observations, and thus we have:∑

ol [..n].
∑

S . P [ol ,S] ∗ (
∏

i = 0 ..n. R (σ (tail i ol) �= S))

Finally, we note that by the definition of Γ , if |ol | = n then

((
∏

i = 0 ..n. R (σ (tail i ol) �= S)) = 0) = (S ∈ Γ σ ol)

and thus we have

1 − (
∑

ol [..n].
∑

S∈Γ σ ol . P [ol ,S])

as the reworked precondition for the choice over secrets. The result then follows
from the definition of nondeterministic choice as the infimum over the branches.

'%

2.4 The Top-Level Theorem

Our ultimate result then follows:

Theorem 1. The vulnerability of the system is bounded above by a sum over
the joint probability of the full list of observations, and the set of the attacker’s
guesses for all initial sublists of observations (intermediate states), maximised
over possible choices of strategy.

V n n ≤ (
⊔

x .
∑

ol [..n].
∑

S∈Γ x ol . P [ol ,S])

Proof. Follows from Lemma 4, the definition of V n and the algebraic properties
of the infimum. '%

From this theorem, a number of facts are immediately apparent. First, as
every term in the sum is non-negative, vulnerability is (weakly) monotonic in
the size of the guess set. Thus (assuming that there are enough distinct secrets
for it to be possible), a strategy that repeats can be extended into a non-repeating
strategy (by replacing repeated guesses with fresh secrets), with at least as high a

190 D. Cock

vulnerability. Thus we need only consider non-repeating strategies in calculating
the supremum.

Secondly, and more importantly, for any strategy, vulnerability is a sum of
the joint probability of a list of observations and a guess. It is thus obvious
that a strategy that maximises this, also maximises vulnerability. This is, of
course, the MAP strategy that we introduced in Section 1.2. In fact, the above
prohibition on repeating strategies can be rephrased in terms of distributions:
the optimal strategy maximises the joint probability over the distribution where
the probability of any secret that has already been guessed is set to zero (and
the rest scaled appropriately).

We have now come full circle, eliminating our operational model entirely, and
finishing with a formulation solely in terms of the statistical properties of the
system that, as we see, matches our expectations. Importantly, we didn’t assume
anything about the optimality of the non-repeating MAP strategy: it fell out as
a consequence of the model.

3 Using the Result

We conclude with a sketch to illustrate how this result fits into the overall theory,
and provides the connection between the operational and information-theoretic
models.

As indicated at the end of Section 2, the pen-and-paper proof picks up at
Theorem 1, establishing the optimality of the MAP strategy. Given this, we are
able to establish a number of results extant in the literature. For example V1,
or the chance of compromise in a single guess, is simply the probability of the
most likely secret:

V1 = max
S
P [[], S]

= max
S
P [S]

This is closely related to the min-entropy measure (H∞), which has recently
begun to supplant Shannon entropy in the formal analysis of vulnerability to
information leakage(Smith, 2009). Specifically:

H∞(P) = − log2(max
S
P [S]) = − log2 V1

From this, we synthesise a leakage measure, or a bound on how vulnerability
changes over time, by analogy with the min-leakage: L∞ = H∞(P1)−H∞(P2).
We estimate the rate of leakage by the ratio of the vulnerability given 2 guesses,
to that given only 1. This multiplicative measure becomes additive, once we
rephrase it in terms of entropy:

From Operational Models to Information Theory 191

L =
V2
V1

log2 L = log2
V2
V1

= log2 V2 − log2 V1

= H∞(P1)−H∞(P2)

Ultimately, we extend the model to allow nondeterministic choice not only over
strategies, but also over the distributions P [S] and P [o|S] themselves, taken from
two sets, QS and QoS respectively. Thanks to our definition of vulnerability, this
is equivalent to asking for the greatest (strictly, supremum) vulnerability over
all distributions in QS and QoS .

A particularly interesting case occurs when QS is the set of all distributions
of Shannon entropy H1, and QoS the set of all conditional distributions with
channel capacity C. We thus express the worst case vulnerability, given that
we only know the Shannon entropy of the distribution (this is not generally
straightforward to calculate, see Smith (2009)). Moreover, on average (assuming
that the space of secrets is large enough that the effect of the individual yes/no
answers is small), the entropy remaining after a single guess is just H − C. We
thus iterate the model, recalculating Vn, this time setting QS to the set of all
distributions of entropy H − C.

Finally, consider what happens to the vulnerability as we varyQS . As the size of
the set increases, the supremum is taken overmore possibilities, and thus we should
expect the vulnerability to increase. Likewise, smaller sets should give lower vul-
nerability. This is indeed precisely what we see as, from the semantics of nondeter-
minism in pGCL, the choice over some S ⊆ T is a refinement of the choice over T .
Recall that a refinement assigns a higher value to every state than the original pro-
gram and thus, as it appears negated in our definition of vulnerability, the choice
over a smaller set gives a lower vulnerability, and vice versa.

We thus see that the order on the vulnerability bounds is determined by the
subset order on the set of distributions. In particular, this gives us a complete
lattice of bounds, since V1 ∅ = 0 (by definition) and V1 * = 1 (this includes
every distribution that assigns 100% probability to a single secret, which the
attacker will then guess with certainty). We thus link the refinement order on
our operational models, with a (dual) order on this complete lattice of bounds.
For the full derivation see Cock (2014).

4 Related Work

This work draws on our own previous work on the mechanisation of probabilistic
reasoning, together with results in both the programming-language semantics
and the security literature.

We build on our own previous work in mechanising(Cock, 2012) the pGCL se-
mantics of McIver and Morgan (2004), and in demonstrating the feasibility of car-
rying probabilistic results down to real systems by incorporating large existing

192 D. Cock

proof results(Cock, 2013; Klein et al., 2009). We extend this by demonstrating that
we can take the approach one step further: into the domain of information theory.

The concept of entropy, and the solution to the optimal decoding problem both
date to the earliest years of information theory(Shannon, 1948), while the shift
to min-entropy in the security domain largely follows the insight of Smith (2009)
that the single-guess vulnerability of a distribution is only loosely connected to
its Shannon entropy. The further generalisation of this idea is a subject of active
research(Espinoza and Smith, 2013; Alvim et al., 2012; McIver et al., 2010). Our
own previous work include the rigorous evaluation of the guessing attack as a
threat model(Cock, 2014).

Acknowledgements. NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research Council through
the ICT Centre of Excellence Program.

References

Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information
leakage using generalized gain functions. In: 25th CSF, pp. 265–279. IEEE (2012),
doi:10.1109/CSF.2012.26

Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. In: 7th SSV, Syd-
ney, Australia, pp. 1–10 (November 2012), doi:10.4204/EPTCS.102.15

Cock, D.: Practical probability: Applying pGCL to lattice scheduling. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 311–327.
Springer, Heidelberg (2013)

Cock, D.: Leakage in Trustworthy Systems. PhD thesis, School Comp. Sci. & Engin.,
Sydney, Australia (2014)

Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. CACM 18(8), 453–457 (1975), doi:10.1145/360933.360975, ISSN 0001-0782

Espinoza, B., Smith, G.: Min-entropy as a resource. Inform. & Comput. 226, 57–75
(2013), doi:10.1016/j.ic.2013.03.005, ISSN 0890-5401.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
seL4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT, USA, pp. 207–220.
ACM (October 2009), doi:10.1145/1629575.1629596

McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Springer (2004), doi:10.1007/b138392, ISBN 978-0-387-40115-7

McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in proba-
bilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235. Springer,
Heidelberg (2010)

Morgan, C.: The shadow knows: Refinement of ignorance in sequential programs. In:
Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer, Heidelberg
(2006)

Shannon, C.E.: A mathematical theory of communication. In: The Bell Syst. Techn.
J. (1948), doi:10.1145/584091.584093, Reprinted in SIGMOBILE Mobile Computing
and Communications Review 5(1), 3–55 (2001)

Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

A Coq Formalization

of Finitely Presented Modules

Cyril Cohen and Anders Mörtberg

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg, Sweden

{cyril.cohen,anders.mortberg}@cse.gu.se

Abstract. This paper presents a formalization of constructive module
theory in the intuitionistic type theory of Coq. We build an abstraction
layer on top of matrix encodings, in order to represent finitely presented
modules, and obtain clean definitions with short proofs justifying that
it forms an abelian category. The goal is to use it as a first step to get
certified programs for computing topological invariants, like homology
groups and Betti numbers.

Keywords: Formalization of mathematics, Homological algebra, Con-
structive algebra, Coq, SSReflect.

1 Introduction

Homological algebra is the study of linear algebra over rings instead of fields, this
means that one considers modules instead of vector spaces. Homological tech-
niques are ubiquitous in many branches of mathematics like algebraic topology,
algebraic geometry and number theory. Homology was originally introduced by
Henri Poincaré in order to compute topological invariants of spaces [23], which
provides means for testing whether two spaces cannot be continuously deformed
into one another. This paper presents a formalization1 of constructive module
theory in type theory, using the Coq proof assistant [7] together with the Small
Scale Reflection (SSReflect) extension [12], which provides a potential core of
a library of certified homological algebra.

A previous work, that one of the authors was involved in, studied ways to
compute homology groups of vector spaces [18,17] in Coq. When generalizing
this to commutative rings the universal coefficient theorem of homology [15]
states that most of the homological information of an R-module over a ring R
can be computed by only doing computations with elements in Z. This means
that if we were only interested in computing homology it would not really be
necessary to develop the theory of R-modules in general, but instead do it for Z-
modules which are well behaved because any matrix can be put in Smith normal
form. However, by developing the theory for general rings it should be possible

1 The formal development is at: http://perso.crans.org/cohen/work/fpmods/

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 193–208, 2014.
c© Springer International Publishing Switzerland 2014

http://perso.crans.org/cohen/work/fpmods/

194 C. Cohen and A. Mörtberg

to implement and reason about other functors like cohomology, Ext and Tor as
in the Homalg computer algebra package [3].

In [13], Georges Gonthier shows that the theory of finite dimensional vector
spaces can be elegantly implemented in Coq by using matrices to represent
subspaces and morphisms, as opposed to an axiomatic approach. The reason
why abstract finite dimensional linear algebra can be concretely represented by
matrices is because any vector space has a basis (a finite set of generators with
no relations among the generators) and any morphism can be represented by
a matrix in this canonical basis. However, for modules over rings this is no
longer true: consider the ideal (X,Y) of k[X,Y], it is a module generated by X
and Y which is not free because XY = Y X . This means that the matrix-
based approach cannot be directly applied when formalizing module theory.
This is why we restrict our attention to finitely generated modules that are
finitely presented, that is, modules with a finite number of generators and a finite
number of relations among these. In constructive module theory one usually
restricts attention to this class of modules and all algorithms can be described
by manipulating the presentation matrices [10,14,20,22]. This paper can hence
be seen as a generalization of the formalization of Gonthier to modules over rings
instead over fields.

At the heart of the formalization of Gonthier is an implementation of Gaus-
sian elimination which is used in all subspace constructions. Using it we can
compute the kernel which characterizes the space of solutions of a system of
linear equations. However when doing module theory over arbitrary rings, there
is no general algorithm for solving systems of linear equations. Because of this
we restrict our attention to modules over coherent and strongly discrete rings,
as is customary in constructive algebra [20,22], which means that we can solve
systems of equations.

The main contributions of this paper are the representation of finitely pre-
sented modules over coherent strongly discrete rings (Sect. 2), basic operations
on these modules (Sect. 3) and the formalization that the collection of these
modules and morphisms forms an abelian category (Sect. 4), which means that
it is a suitable setting for developing homological algebra. We have also proved
that, over elementary divisor rings (i.e. rings with an algorithm to compute the
Smith normal form of matrices), it is possible to test if two finitely presented
modules represent isomorphic modules (Sect. 5). (Examples of such rings include
principal ideal domains, in particular Z and k[X] where k is a field).

2 Finitely Presented Modules

As mentioned in the introduction, a module is finitely presented if it can be
given by a finite set of generators and relations. This is traditionally expressed
as:

Definition 1. An R-module M is finitely presented if there is an exact se-
quence:

A Coq Formalization of Finitely Presented Modules 195

Rm1 Rm0 M 0M π

Recall that Rm is the type of m-tuples of elements in R. More precisely, π
is a surjection and M a matrix representing the m1 relations among the m0

generators of the module M. This means that M is the cokernel of M :

M ! coker(M) = Rm0/im(M)

Hence a module has a finite presentation if it can be expressed as the cokernel
of a matrix. As all information about a finitely presented module is contained in
its presentation matrix we will omit the surjection π when giving presentations
of modules.

Example 1. The Z-module Z⊕ Z/2Z is given by the presentation:

Z Z2 Z⊕ Z/2Z 0

(
0 2

)

because if Z ⊕ Z/2Z is generated by (e1, e2) there is one relation, namely
0e1 + 2e2 = 2e2 = 0.

Operations on finitely presented modules can now be implemented by ma-
nipulating the presentation matrices, for instance if M and N are finitely pre-
sented R-modules given by presentations:

Rm1 Rm0 M 0 Rn1 Rn0 N 0M N

the presentation of M⊕N is:

Rm1+n1 Rm0+n0 M⊕N 0

⎛
⎝M 0

0 N

⎞
⎠

We have represented finitely presented modules in Coq using the datastruc-
ture of matrices from the SSReflect library which is defined as:

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

(* With notations: *)

(* ’M[R]_(m,n) = matrix R m n *)

(* ’rV[R]_m = ’M[R]_(1,m) *)

(* ’cV[R]_m = ’M[R]_(m,1) *)

where ’I_m is the type ordinal m which represents all natural numbers smaller
than m. This type has exactly m inhabitants and can be coerced to the type of
natural numbers, nat. Matrices are then represented as finite functions over the
finite set of indices, which means that dependent types are used to express well-
formedness. Finitely presented modules are now conveniently represented using
a record containing a matrix and its dimension:

196 C. Cohen and A. Mörtberg

Record fpmodule := FPModule {

nbrel : nat;

nbgen : nat;

pres : ’M[R]_(nbrel, nbgen)

}.

The direct sum of two finitely presented modules is now straightforward to
implement:

Definition dsum (M N : fpmodule R) :=

FPModule (block_mx (pres M) 0 0 (pres N)).

Here block_mx forms the block matrix consisting of the four submatrices. We
now turn our attention to morphisms of finitely presented modules.

2.1 Morphisms

As for vector spaces we represent morphisms of finitely presented modules using
matrices. The following lemma states how this can be done:

Lemma 1. If M and N are finitely presented R-modules given by presentations:

Rm1 Rm0 M 0 Rn1 Rn0 N 0M N

and ϕ : M → N a module morphism then there is a m0 × n0 matrix ϕG and
a m1 × n1 matrix ϕR such that the following diagram commutes:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

ϕR ϕG ϕ

N

For a proof of this see Lemma 2.1.25 in [14]. This means that morphisms
between finitely presented modules can be represented by pairs of matrices. The
intuition why two matrices are needed is that the morphism affects both the
generators and relations of the modules, hence the names ϕG and ϕR.

In order to be able to compute for example the kernel of a morphism of
finitely presented modules we need to add some constraints on the ring R since,
in general, there is no algorithm for solving systems of equations over arbitrary
rings. The class of rings we consider are coherent and strongly discrete which
means that it is possible to solve systems of equations. In Homalg these are
called computable rings [2] and form the basis of the system.

2.2 Coherent and Strongly Discrete Rings

Given a ring R (in our setting commutative but it is possible to consider non-
commutative rings as well [2]) we want to study the problem of solving linear
systems over R. If R is a field we have a nice description of the space of solutions

A Coq Formalization of Finitely Presented Modules 197

by a basis of solutions. Over an arbitrary ring R there is in general no basis. For
instance over the ring R = k[X,Y, Z] where k is a field, the equation pX+ qY +
rZ = 0 has no basis of solutions. It can be shown that a generating system of
solutions is given by (−Y,X, 0), (Z, 0,−X), (0,−Z, Y). An important weaker
property than having a basis is that there is a finite number of solutions which
generate all solutions.

Definition 2. A ring is (left) coherent if for any matrix M it is possible to
compute a matrix L such that:

XM = 0 ↔ ∃Y.X = Y L

This means that L generates the module of solutions of XM = 0, hence L is
the kernel of M . For this it is enough to consider the case whereM has only one
column [20]. Note that the notion of coherent rings is not stressed in classical
presentations of algebra since Noetherian rings are automatically coherent, but
in a computationally meaningless way. It is however a fundamental notion, both
conceptually [20,22] and computationally [3].

Coherent rings have previously been represented in Coq [8], the only differ-
ence is that in the previous presentation, composition was read from right to left,
whereas here we adopt the SSReflect convention that composition is read in
diagrammatic order (i.e. left to right).

In the development, coherent rings have been implemented using the design
pattern of [11], using packed classes and the canonical structure mechanism to
help Coq automatically infer structures. As matrices are represented using de-
pendent types denoting their size this needs to be known when defining coherent
rings. In general the size of L cannot be predicted, so we include an extra function
to compute this:

Record mixin_of (R : ringType) : Type := Mixin {

dim_ker : forall m n, ’M[R]_(m,n) -> nat;

ker : forall m n (M : ’M_(m,n)), ’M_(dim_ker M,m);

_ : forall m n (M : ’M_(m,n)) (X : ’rV_m),

reflect (exists Y, X = Y *m ker M) (X *m M == 0)

}.

Here *m denotes matrix multiplication and == is the boolean equality of ma-
trices, so the specification says that this equality is equivalent to the existence
statement. An alternative to having a function computing the size would be to
output a dependent pair but this has the undesirable behavior that the pair has
to be destructed when stating lemmas about it, which in turn would make these
lemmas cumbersome to use as it would not be possible to rewrite with them
directly.

An algorithm that can be implemented using ker is the kernel modulo a set

of relations, that is, computing ker(Rm M−→ coker(N)). This is equivalent to
computing an X such that ∃Y,XM + Y N = 0, which is the same as solving
(X Y)(M N)T = 0 and returning the part of the solution that corresponds

198 C. Cohen and A. Mörtberg

to XM . In the paper this is written as kerN (M) and in the formalization as N.-

ker(M). Note that this is a more fundamental operation than taking the kernel
of a matrix as XM = 0 is also equivalent to ∃Y,X = Y ker0(M)

In order to conveniently represent morphisms we also need to be able to solve
systems of the kind XM = B where B is not zero. In order to do this we need
to introduce another class of rings that is important in constructive algebra:

Definition 3. A ring R is strongly discrete if membership in finitely gener-
ated ideals is decidable and if x ∈ (a1, . . . , an) there is an algorithm computing
w1, . . . , wn such that x =

∑
i aiwi.

Examples of such rings are multivariate polynomial rings over fields with
decidable equality (via Gröbner bases) and Bézout domains (for instance Z
and k[X] with k a field).

If a ring is both coherent and strongly discrete it is not only possible to solve
homogeneous systems XM = 0 but also any system XM = B where B is an
arbitrary matrix with the same number of columns as M . This operation can be
seen as division of matrices as:

Lemma dvdmxP m n k (M : ’M[R]_(n,k)) (B : ’M[R]_(m,k)) :

reflect (exists X, X *m M = B) (M %| B).

Here %| is notation for the function computing a particular solution to XM =
B, returning None in the case no solution exists. We have developed a library of
divisibility of matrices with lemmas like

Lemma dvdmxD m n k (M : ’M[R]_(m,n)) (N K : ’M[R]_(k,n)) :

M %| N -> M %| K -> M %| N + K.

which follow directly from dvdmxP. This can now be used to represent mor-
phisms of finitely presented modules and the division theory of matrices gives
short and elegant proofs about operations on morphisms.

2.3 Finitely Presented Modules Over Coherent Strongly Discrete
Rings

Morphisms between finitely presented R-modules M and N can be represented
by a pair of matrices. However when R is coherent and strongly discrete it suffices
to only consider the ϕG matrix as ϕR can be computed by solving XN =MϕG,
which is the same as testing N | MϕG. In Coq this means that morphisms
between two finitely presented modules can be implemented as:

Record morphism_of (M N : fpmodule R) := Morphism {

matrix_of_morphism : ’M[R]_(nbgen M,nbgen N);

_ : pres N %| pres M *m matrix_of_morphism

}.

(* With notation: *)

(* ’Mor(M,N) := morphism_of M N *)

A Coq Formalization of Finitely Presented Modules 199

Using this representation we can define the identity morphism (idm) and com-
position of morphisms (phi ** psi) and show that these form a category. We
also define the zero morphism (0) between two finitely presented modules, the
sum (phi + psi) of two morphisms and the negation (- phi) of a morphism, re-
spectively given by the zero matrix, the sum and the negation of the underlying
matrices. It is straightforward to prove using the divisibility theory of matrices
that this is a pre-additive category (i.e. the hom-sets form abelian groups).

However, morphisms are not uniquely represented by an element of type
’Mor(M,N), but it is possible to test if two morphisms ϕ ψ : M → N are equal
by checking if ϕ− ψ is zero modulo the relations of N .

Definition eqmor (M N : fpmodule R) (phi psi : ’Mor(M,N)) :=

pres N %| phi%:m - psi%:m.

(* With notation: *)

(* phi %= psi = eqmor phi psi *)

As this is an equivalence relation it would be natural to either use the Coq

setoid mechanism [4,24] or quotients [6] in order to avoid applying symmetry,
transitivity and compatibility with operators (e.g. addition and multiplication)
by hand where it would be more natural to use rewriting. We have begun to
rewrite the library with quotients as we would get a set of morphisms (instead
of a setoid), which is closer to the standard category theoretic notion.

3 Monomorphisms, Epimorphisms and Operations on
Morphisms

A monomorphism is a morphism ϕ : B → C such that whenever there are
ψ1, ψ2 : A → B with ψ1ϕ = ψ2ϕ then ψ1 = ψ2. When working in pre-additive
categories the condition can be simplified to, whenever ψϕ = 0 then ψ = 0.

Definition is_mono (M N : fpmodule R) (phi : ’Mor(M,N)) :=

forall (P : fpmodule R) (psi : ’Mor(P, M)),

psi ** phi %= 0 -> psi %= 0.

It is convenient to think of monomorphisms B → C as defining B as a subob-
ject of C, so a monomorphism ϕ :M → N can be thought of as a representation
of a submodule M of N . However, submodules are not uniquely represented
by monomorphisms even up to equality of morphisms (%=). Indeed, multiple
monomorphisms with different sources can represent the same submodule. Al-
though “representing the same submodule” is decidable in our theory, we chose
not to introduce the notion of submodule, because it is not necessary to develop
the theory.

Intuitively monomorphisms correspond to injective morphisms (i.e. with zero
kernel). The dual notion to monomorphism is epimorphism, which intuitively
corresponds to surjective morphism (i.e. with zero cokernel). For finitely pre-
sented modules, mono- (resp. epi-) morphisms coincide with injective (resp. sur-
jective) morphisms, but this is not clear a priori. The goal of this section is to

200 C. Cohen and A. Mörtberg

clarify this by defining when a finitely presented module is zero, showing how to
define kernels and cokernels, and explicit the correspondence between injective
(resp. surjective) morphisms and mono- (resp. epi-) morphisms.

3.1 Testing if Finitely Presented Modules Are Zero

As a finitely presented module is the cokernel of a presentation matrix we have
that if the presentation matrix of a module is the identity matrix of dimension n×
n the module is isomorphic to n copies of the zero module. Now consider the
following diagram:

Rm0 Rm0 0m0 0

Rm1 Rm0 M 0

Im0

X Im0

M

which commutes if ∃X,XM = Im0 , i.e. when M | Im0 . Hence this gives a
condition that can be tested in order to see if a module is zero or not.

3.2 Defining the Kernel of a Morphism

In order to compute the kernel of a morphism the key observation is that there
is a commutative diagram:

0

Rk1 Rk0 ker(ϕ) 0

Rm1 Rm0 M 0

Rn1 Rn0 N 0

kerM (κ)

X kerN (ϕG)=κ

M

ϕR ϕG ϕ

N

It is easy to see that κ is a monomorphism, which means that the kernel is a
submodule of M as expected. In Coq this is easy to define:

Definition kernel (M N : fpmodule R) (phi : ’Mor(M,N)) :=

mor_of_mx ((pres N).-ker phi).

Where mor_of_mx takes a matrix K with as many columns as N and builds a
morphism from kerN (K) to M . Using this it is possible to test if a morphism is
injective:

A Coq Formalization of Finitely Presented Modules 201

Definition injm (M N : fpmodule R) (phi : ’Mor(M,N)) :=

kernel phi %= 0.

We have proved that a morphism is injective if and only if it is a monomor-
phism:

Lemma monoP (M N : fpmodule R) (phi : ’Mor(M,N)) :

reflect (is_mono phi) (injm phi).

Hence we can define monomorphisms as:

Record monomorphism_of (M N : fpmodule R) := Monomorphism {

morphism_of_mono :> ’Mor(M, N);

_ : injm morphism_of_mono

}.

(* With notation: *)

(* ’Mono(M,N) = monomorphism_of M N *)

The reason why we use injm instead of is_mono is that injm is a boolean predicate,
which makes monomorphisms a subtype of morphisms, thanks to Hedberg’s
theorem [16].

3.3 Defining the Cokernel of a Morphism

The presentation of the cokernel of a morphism can also be found by looking at
a commutative diagram:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

Rm0+n1 Rn0 coker(ϕ) 0

0

M

ϕR ϕG ϕ

N

X In0

⎛
⎝ϕG

N

⎞
⎠

Note that the canonical surjection onto the cokernel is given by the identity
matrix. The fact that this is a morphism is clear as X may be

(
0 In1

)
. However,

before defining this we can define the more general operation of quotienting a
module by the image of a morphism by stacking matrices:

Definition quot_by (M N : fpmodule R) (phi : ’Mor(M, N)) :=

FPModule (col_mx (pres N) phi)

202 C. Cohen and A. Mörtberg

Now the cokernel is the canonical surjection from N onto quot_by phi. Since
it maps each generator to itself, the underlying matrix is the identity matrix.

Definition coker : ’Mor(N, quot_by) :=

Morphism1 (dvd_quot_mx (dvdmx_refl _)).

We can now test if a morphism is surjective by comparing the cokernel of phi
with the zero morphism, which coincides with epimorphisms:

Definition surjm (M N : fpmodule R) (phi : ’Mor(M,N)) :=

coker phi %= 0.

Lemma epiP (M N : fpmodule R) (phi : ’Mor(M,N)) :

reflect (is_epi phi) (surjm phi).

Now we have algorithms deciding both if a morphism is injective and surjective
we can easily test if it is an isomorphism:

Definition isom (M N : fpmodule R) (phi : ’Mor(M,N)) :=

injm phi && surjm phi.

A natural question to ask is if we get an inverse from this notion of isomor-
phism. In order to show this we have introduced the notion of isomorphisms that
take two morphisms and express that they are mutual inverse of each other, in
the sense that given ϕ : M → N and ψ : N → M then ϕψ = 1M modulo the
relations in M . Using this we have proved:

Lemma isoP (M N : fpmodule R) (phi : ’Mor(M,N)) :

reflect (exists psi, isomorphisms phi psi) (isom phi).

Hence isomorphisms are precisely the morphisms that are both mono and epi.
Note that this does not mean that we can decide if two modules are isomorphic,
what we can do is testing if a given morphism is an isomorphism or not.

3.4 Defining Homology

The homology at N is defined as the quotient ker(ψ)/im(ϕ), in

M N K where ϕψ = 0.
ϕ ψ

As ϕψ = 0, we have that im(ϕ) ⊂ ker(ψ) so the quotient makes sense and we
have an injective map ι : im(ϕ) → ker(ψ). The homology at N is the cokernel
of this map. We can hence write:

Hypothesis mul_phi_psi (M N K : fpmodule R) (phi : ’Mor(M,N))

(psi : ’Mor(N,K)) : phi ** psi %= 0.

Definition homology (M N K : fpmodule R) (phi : ’Mor(M,N))

(psi : ’Mor(N,K)) := kernel psi %/ phi.

Where %/ is a notation for taking the quotient of a monomorphism by a morphism
with the same target.

A Coq Formalization of Finitely Presented Modules 203

In the next section, we show that these operations satisfy the axioms of abelian
categories.

4 Abelian Categories

As mentioned in the end of Sect. 2 the collection of morphisms between two
finitely presented modules forms an abelian group. This means that the cate-
gory of finitely presented modules and their morphisms is a pre-additive cat-
egory. It is easy to show that the dsum construction provides both a product
and coproduct. This means that the category is also additive.

In order to show that we have a pre-abelian category we need to show that
morphisms have both a kernel and cokernel in the sense of category theory. A
morphism ϕ : A → B has a kernel κ : K → A if κϕ = 0 and for all ψ : Z → A
with ψϕ = 0 the following diagram commutes:

Z A B

K

0

ψ

∃!ζ

ϕ

κ

This means that any morphism with ψϕ = 0 factors uniquely through the
kernel κ. The dual statement for cokernels state that any morphism ψ with
ϕψ = 0 factors uniquely through the cokernel of ϕ. The specification of the
kernel can be written.

Definition is_kernel (M N K : fpmodule R) (phi : ’Mor(M,N))

(k : ’Mor(K,M)) :=

(k ** phi %= 0) *

forall L (psi : ’Mor(L,M)),

reflect (exists Y, Y ** k %= psi) (psi ** phi %= 0).

We have proved that our definition of kernel satisfies this specification:

Lemma kernelP (M N : fpmodule R) (phi : ’Mor(M,N)) :

is_kernel phi (kernel phi).

We have also proved the dual statement for cokernels. The only properties left
in order to have an abelian category is that every mono- (resp. epi-) morphism
is normal which means that it is the kernel (resp. cokernel) of some morphism.
We have shown that if ϕ is a monomorphism then its cokernel satisfies the
specification of kernels:

Lemma mono_ker (M N : fpmodule R) (phi : ’Mono(M,N)) :

is_kernel (coker phi) phi.

This means that ϕ is a kernel of coker(ϕ) if ϕ is a monomorphism, hence
are all monomorphisms normal. We have also proved the dual statement for
epimorphisms which means that we indeed have an abelian category.

204 C. Cohen and A. Mörtberg

It is interesting to note that many presentations of abelian categories say that
phi is kernel(coker phi), but this is not even well-typed as:

M N C

K

ϕ coker(ϕ)

ker(coker(ϕ))

One cannot just subtract ϕ and ker(coker(ϕ)) as they have different sources.
This abuse of language is motivated by the fact that kernels are limits which are
unique up to unique isomorphism which is why many authors speak of the kernel
of a morphism. However, in order to express this formally we need to exhibit the
isomorphism between M and K explicitly and insert it in the equation.

Note that if we introduced a notion of submodule, we could have defined the
kernel as a unique submodule of N . The reason is that the type of submodules
ofN would be the quotient of monomorphisms into N by the equivalence relation
which identifies them up to isomorphism.

5 Smith Normal Form

As mentioned before, it is in general not possible to decide if two presentations
represent isomorphic modules, even when working over coherent strongly dis-
crete rings. When the underlying ring is a field it is possible to represent a finite
dimensional vector space in a canonical way as they are determined up to iso-
morphism by their dimension (i.e. the rank of the underlying matrix) which can
be computed by Gaussian elimination [13]. A generalization of this is the class
of rings, called elementary divisor rings by Kaplansky [19], where any matrix is
equivalent to a matrix in Smith normal form. Recall that a matrixM is equivalent
to a matrix D if there exist invertible matrices P and Q such that PMQ = D.

Definition 4. A matrix is in Smith normal form if it is a diagonal matrix of
the form: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 · · · · · · 0
. . .

...
0 dk 0 · · · 0
... 0 0

...
...

...
. . .

...
0 · · · 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where di | di+1 for 1 � i < k.

The connection between elementary divisor rings and finitely presented mod-
ules is that the existence of a Smith normal form for the presentation matrix
gives us:

A Coq Formalization of Finitely Presented Modules 205

Rm1 Rm0 M 0

Rm1 Rm0 D 0

M

P−1 Q ϕ

D

Now ϕ is an isomorphism as P and Q are invertible. In order to represent
this in Coq we need to represent diagonal matrices. For this we use the function
diag_mx_seq. It is a function that takes two numbersm and n, a list s and returns
a matrix of type ’M[R]_(m,n) where the elements of the diagonal are the elements
of s. It is defined as follows:

Definition diag_mx_seq m n (s : seq R) :=

\matrix_(i < m, j < n) (s‘_i *+ (i == j :> nat)).

This means that the ith diagonal element of the matrix is the ith element of
the list and the rest are zero. Now ifM is a matrix, our algorithm for computing
the Smith normal form should return a list s and two matrices P and Q such
that:

1. s is sorted by division and its length is less than m and n,
2. P *m M *m Q = diag_mx_seq m n s and
3. P and Q are invertible.

Any elementary divisor ring is coherent as the existence of an algorithm com-
puting Smith normal form implies that we can compute kernels. Hence we only
need to assume that R is a strongly discrete elementary divisor ring to be able
to consider finitely presented modules over R. As P is invertible it is obvious
that Q defines a morphism from M to diag_mx_seq m n s. Also P^-1 defines a
morphism in the other direction that is inverse to P which means that M and
diag_mx_seq m n s are isomorphic.

Bézout Domains

We now assume that all rings have explicit divisibility, that is, we can decide
if a | b and moreover produce x such that b = xa. Two elements a and b are
associate if a | b and b | a. Since we are working over integral domains, a and b
are associate if and only if there exists a unit u ∈ R such that a = bu.

Definition 5. An integral domain R is a Bézout domain if every finitely gen-
erated ideal is principal (generated by a single element).

This is equivalent to requiring that R has a GCD operation and a function
computing the elements of the Bézout identity. This means that given a and b
one can compute x and y such that xa+ by and gcd(a, b) are associate.

We have formalized a proof that Bézout domains of Krull dimension less than
or equal to 1 (in particular principal ideal domains like Z and k[X] with k
a field) are elementary divisor rings, however as this paper is concerned with

206 C. Cohen and A. Mörtberg

finitely presented modules we do not go into the details of this proof here. The
reason why we restrict our attention to rings of Krull dimension less than or
equal to 1 is that it is still an open problem whether all Bézout domains are
elementary divisor rings or not [21].

Combining this with finitely presented modules we get a constructive general-
ization to the classification theorem of finitely generated modules over principal
ideal domains. This theorem states that any finitely presented R-module M over
a principal ideal domain R can be decomposed into a direct sum of a free module
and cyclic modules, that is, there exists n ∈ N and elements d1, . . . , dk ∈ R such
that:

M ! Rn ⊕R/(d1)⊕ · · · ⊕R/(dk)

with the additional property that di | di+1 for 1 � i < k.
In [5], it is formally proved in Coq that the Smith normal form is unique up

to multiplication by units for rings with a GCD operation. This means that for
any matrix M equivalent to a diagonal matrix D in Smith normal form, each
of the diagonal elements of the Smith normal form of M will be associate to
the corresponding diagonal element in D. This implies that the decomposition
of finitely presented modules over elementary divisor rings is unique up to mul-
tiplication by units. This also gives a way for deciding if two finitely presented
modules are isomorphic.

6 Conclusions and Future Work

In this paper we have presented a formalization of the category of finitely pre-
sented modules over coherent strongly discrete rings and shown that it is an
abelian category. The fact that we can represent everything using matrices makes
is possible for us to reuse basic results on these when building the abstraction
layer of modules on top. The division theory of matrices over coherent strongly
discrete rings makes it straightforward for us to do reasoning modulo a set of
relations.

It is not only interesting that we have an abelian category because it provides
us with a setting to do homological algebra, but also because it is proved in [9]
that in order to show that abelian groups (and hence the category of R-modules)
form an abelian category in Coq one needs the principle of unique choice. As
our formalization is based on the Mathematical Components hierarchy [11] of
algebraic structures, we inherit a form of axiom of choice in the structure of
discrete rings. However, we speculate that this axiom is in fact not necessary
for our proof that the category of finitely presented modules over coherent
strongly discrete rings is abelian.

In Homotopy Type Theory [25] there is a distinction between pre-categories
and univalent categories (just called categories in [1]). A pre-category is a cat-
egory where the collection of morphisms forms a set in the sense of homotopy
type theory, that is, they satisfy the uniqueness of identity proofs principle. Our

A Coq Formalization of Finitely Presented Modules 207

category of finitely presented modules satisfy the uniqueness of morphism equiv-
alence (phi %= psi) proofs (by Hedberg’s theorem [16]), but morphisms form a
setoid instead of a set. If we quotiented morphisms by the equivalence relation
on morphisms we would get a set, and thus our category of finitely presented
modules would become a pre-category.

A univalent category on the other hand is a pre-category where the equality
of objects coincides with isomorphism. As we have shown that for elementary
divisor rings there is a way to decide isomorphism, we speculate that we would
also get a univalent category by quotienting modules by isomorphisms. It would
be interesting to develop these ideas further and define the notion of univalent
abelian category and study its properties. Note that in Homotopy Type Theory,
it may be no longer necessary to have the decidability of the equivalence relation
to form the quotient, so we would not need to be in an elementary divisor ring
to get a univalent category.

Since we have shown that we have an abelian category it would now be very
interesting to formally study more complex constructions from homological al-
gebra. It would for instance be straightforward to define resolutions of modules.
We can then define define the Hom and tensor functors in order to get derived
functors like Tor and Ext. It would also be interesting to define graded objects
like chain complexes and graded finitely presented modules, and prove that they
also form abelian categories.

Acknowledgments. The authors are grateful to Bassel Mannaa for his com-
ments on early versions of the paper, and to the anonymous reviewers for their
helpful comments.

References

1. Ahrens, B., Kapulkin, C., Shulman, M.: Univalent categories and the Rezk com-
pletion (2013), http://arxiv.org/abs/1303.0584 (preprint)

2. Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homolog-
ical algebra and an alternative approach to localization. J. Algebra Appl. 10(2),
269–293 (2011)

3. Barakat, M., Robertz, D.: homalg – A Meta-Package for Homological Algebra. J.
Algebra Appl. 7(3), 299–317 (2008)

4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional
Programming 13(2), 261–293 (2003)

5. Cano, G., Dénès, M.: Matrices à blocs et en forme canonique. JFLA - Journées
Francophones des Langages Applicatifs (2013)

6. Cohen, C.: Pragmatic Quotient Types in Coq. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213–228. Springer, Heidelberg
(2013)

7. Coq development team: The Coq Proof Assistant Reference Manual, version 8.4.
Tech. rep., Inria (2012)

8. Coquand, T., Mörtberg, A., Siles, V.: Coherent and strongly discrete rings in type
theory. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 273–
288. Springer, Heidelberg (2012)

http://arxiv.org/abs/1303.0584

208 C. Cohen and A. Mörtberg

9. Coquand, T., Spiwack, A.: Towards constructive homological algebra in type the-
ory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CAL-
CULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 40–54. Springer, Heidelberg (2007)

10. Decker, W., Lossen, C.: Computing in Algebraic Geometry: A Quick Start using
SINGULAR. Springer (2006)

11. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

12. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq sys-
tem. Tech. rep., Microsoft Research INRIA (2009)

13. Gonthier, G.: Point-Free, Set-Free Concrete Linear Algebra. In: van Eekelen, M.,
Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–
118. Springer, Heidelberg (2011)

14. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd
edn (2007)

15. Hatcher, A.: Algebraic Topology, 1st edn. Cambridge University Press (2001),
http://www.math.cornell.edu/~hatcher/AT/AT.pdf

16. Hedberg, M.: A Coherence Theorem for Martin-Löf’s Type Theory. Journal of
Functional Programming 8(4), 413–436 (1998)

17. Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., Siles, V.: Towards a
certified computation of homology groups for digital images. In: Ferri, M., Frosini,
P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 49–57.
Springer, Heidelberg (2012)

18. Heras, J., Coquand, T., Mörtberg, A., Siles, V.: Computing persistent homology
within Coq/SSReflect. ACM Transactions on Computational Logic 14(4), 26 (2013)

19. Kaplansky, I.: Elementary divisors and modules. Transactions of the American
Mathematical Society 66, 464–491 (1949)

20. Lombardi, H., Quitté, C.: Algèbre commutative, Méthodes constructives: Modules
projectifs de type fini. Calvage et Mounet (2011)

21. Lorenzini, D.: Elementary divisor domains and bézout domains. Journal of Alge-
bra 371(0), 609–619 (2012)

22. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra.
Springer (1988)

23. Poincaré, H.: Analysis situs. Journal de l’ École Polytechnique 1, 1–123 (1895)
24. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formal-

ized Reasoning 2(1), 41–62 (2009)
25. The Univalent Foundations Program: Homotopy Type Theory: Univa-

lent Foundations of Mathematics. Institute for Advanced Study (2013),
http://homotopytypetheory.org/book/

http://www.math.cornell.edu/~hatcher/AT/AT.pdf
http://homotopytypetheory.org/book/

Formalized, Effective Domain Theory in Coq

Robert Dockins

Portland State University, Portland, Oregon, USA
rdockins@pdx.edu

Abstract. I present highlights from a formalized development of do-
main theory in the theorem prover Coq. This is the first development
of domain theory that is effective, formalized and that supports all the
usual constructions on domains. In particular, I develop constructive
models of both the unpointed profinite and the pointed profinite do-
mains. Standard constructions (e.g., products, sums, the function space,
and powerdomains) are all developed. In addition, I build the machinery
necessary to compute solutions to recursive domain equations.

1 Introduction and Related Work

The term “domain theory” refers to a class of mathematical techniques that are
used to develop computational models suitable for reasoning about the semantics
of general purpose programming languages. Proofs done in domain theory often
have an elegant, compositional nature, and the much of the modern thinking
about programming languages (especially functional languages) can be traced
to domain-theoretic roots. Domain theory has a long lineage, starting from the
classic work of Dana Scott on continuous lattices [22]. Domain theory was inten-
sively studied in the 1970’s and 80’s, producing far more research than I have
space here to review; see Abramsky and Jung’s account for a good overview and
further sources [2].

Unfortunately, using domain theory for language semantics requires special-
ized mathematical knowledge. Many proofs that are purely “domain theoretic”
in nature must be done before domain theory can be used on a language problem
of interest. Furthermore, the wealth of academic literature on domain theory is
actually a liability in some ways: the sheer volume of knowledge on the subject
and the myriad minor variations can be overwhelming to the novice.

It would thus be desirable to package up the difficult mathematics underlying
domain theory into a library of facts and constructions that can be pulled off the
shelf and used by those interested in programming languages, but not in domain
theory per se. Such a library should choose, from among the many varieties and
presentations in the literature, a selection of domain theoretic techniques that
are suitable for practical use. The development of domain theory described in
this paper is my attempt to develop such a library for the Coq proof assistant.

My own effort is far from the first attempt to make domain theory more
accessible. One of the earliest mechanical proof systems, Milner’s Logic for
Computable Functions (LCF) [15,16], is a syntactic presentation of a logic for

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 209–225, 2014.
c© Springer International Publishing Switzerland 2014

210 R. Dockins

reasoning about functions defined via least-fixed-point semantics in Scott do-
mains.1

In terms of the mathematics formalized, the most closely related work is prob-
ably the formalization of bifinite domains in Isabelle/HOL by Brian Huffman
[13], building on the HOLCF system by Müller et al. [17]. One major difference
between this work and that of Huffman, besides the choice of theorem prover, is
that my development of domain theory is effective. There are two different senses
in which this statement is true. First, the objects and constructions in the theory
are effective; I formalize categories of effective algebraic domains (whose bases
are countable and have decidable ordering), similar to those considered by Egli
and Constable [9]. Second, the metalogic in which these constructions and proofs
are carried out is the purely constructive metalogic of Coq with no additional
axioms. As a result, I can forgo the explicit development of recursive function
theory, relying instead on the innate “effectiveness” of functions definable in type
theory. In contrast, HOL is a classical logic with strong choice principles. There
are also some differences in the proof strategy — Huffman uses definitions of
bifinite domains based on finitary deflations, whereas I use properties of Plotkin
orders. I found it difficult to obtain appropriately constructive definitions of
deflations, whereas Plotkin orders proved more amenable to constructive treat-
ment. In addition, the uniform presentation of pointed and unpointed domains
I used (discussed below) is novel.

In the Coq community, the most closely-related work appears to be the de-
velopment of constructive complete partial orders (CPOs) by Benton et al. [7],
which is based on earlier work by Paulin-Mohring [18]. The CPOs built by Ben-
ton et al. are constructive; however, they lack bases and thus are not actually
domains according to the usage of the term used by some authors [2]. This line of
work develops a constructive version of the lift construction by using coinductive
ε-streams. In contrast, the main tool I use for achieving effective constructions is
the enumerable set. Proofs using enumerable sets are, in my opinion, both easier
to understand and easier to develop than those based on coinductive structures
(cofix, with its syntactic guardedness condition, is especially troublesome).

My development of domain theory is able to handle some constructions that
Benton et al. cannot handle; for example, they report difficulty defining the
smash product, which presents no problem for me. Powerdomains can also be
constructed in my system, whereas they cannot be on basic CPOs.

The main contribution of this paper is a formalization of the pointed profinite
and unpointed profinite domains, together with common operations on them like
products, sums, function space, and powerdomains. I also build the machinery
necessary to solve recursive domain equations. The constructions and proofs
largely follow the development of the profinite domains given by Carl Gunter
in his thesis [12]; however, all the constructions are modified to be “effectively
given,” similar to [9].

The primary novelty of my approach is related to proof-engineering advances
that both clarify and simplify portions of the proof. The main instance of this is

1 Milner [16] credits the design of LCF to an unpublished note of Dana Scott.

Formalized, Effective Domain Theory in Coq 211

a unification of the constructions for the pointed profinite domains (those with
a least element) and the unpointed profinite domains (those not necessarily con-
taining a least element). These two categories of domains are very similar; in
my proof development, this similarity is aggressively exploited by constructing
both categories of domains at the same time as two instantiations of a single
parametrized construction. Common operations on domains (sums, products,
function space, powerdomains) are also constructed uniformly for both cate-
gories. This saves a great deal of otherwise redundant work and highlights the
tight connection between these categories of domains. This unification is made
possible by a minor deviation from the usual definitions dealing with algebraic
domains and compact elements, as explained later in this paper.

A second proof-engineering advance is the fact that I do not formalize do-
mains in the usual way (as a subcategory of complete partial orders with Scott-
continuous functions), but instead develop the category formed by the bases of
profinite domains with approximable relations as arrows. This category is equiv-
alent to the category of profinite domains via ideal completion. I can save some
effort because rather than building constructions on CPOs as well as on their
bases, I need only perform constructions on bases. With the notable exception of
the function space, constructions on the bases of algebraic domains are simpler
than corresponding constructions on CPOs (especially in the pointed case). This
formalization of profinite domains via their bases (the Plotkin orders) mirrors
the development of Scott domains via the Scott information systems [25]. I am
not aware of any mechanized development of Scott information systems.

The goal of this work is ultimately to provide a solid foundation of domain
theoretic constructions and theorems that can be used for practical program
semantics in Coq. My focus on constructive mathematics, however, stems from
a personal philosophy that values constructive methods per se; this perspective
is especially well-justified for domain theory, which aims to be a mathematical
model of computation. Nonetheless, I derive a practical benefit, which is that
my development of domain theory asserts no additional axioms at all over the
base metatheory of Coq — this makes my development compatible with any
axiomatic extension of Coq, even unusual ones (say, anticlassical extensions).

In this paper, I will explain the high-level ideas of the proof and present the
main definitions. The interested reader is encouraged to consult the formal proof
development for details; it may be found at the author’s website.2 Knowledge
of Coq is not required to understand the main ideas of this paper; however, a
novice grasp of category theory concepts will be required for some sections.

2 Basic Definitions

We start with a key difference between my proof development and textbook
references on domain theory. Usually, domain theory is concerned with certain
classes of partial orders : types equipped with an order relation that is transitive,
reflexive and antisymmetric. I will be working instead with the preorders : types

2 http://rwd.rdockins.name/domains/

http://rwd.rdockins.name/domains/

212 R. Dockins

equipped with an order relation that is merely reflexive and transitive. The
antisymmetry condition is dropped. This leads us to working with setoids, sets
equipped with an equivalence relation, and setoid homomorphisms, functions
that respect setoid equivalence. Using setoids is a common technique in Coq
because quotients are not readily available [5].

Definition 1 (Setoid). Suppose A is a type, and ≈ is a binary relation on A.
We say 〈A,≈〉 is a setoid provided ≈ is reflexive, transitive and symmetric.

Throughout this paper (and the vast majority of the formal proof), the only
notion of equality we will be interested in is the ≈ relation of setoids. In the
formal proof, many of the definitions require axioms stating that various oper-
ations preserve ≈ equality. In this paper, I will elide such axioms and concerns
about the preservation of equality.

Definition 2 (Preorder). Suppose A is a type and � is a binary relation on A.
We say 〈A, �〉 is a preorder provided � is reflexive and transitive. Furthermore,
we automatically assign to A a setoid where x ≈ y iff x � y ∧ y � x.

Every preorder automatically induces a setoid; because we work up to ≈, we
obtain “antisymmetry on preorders” by convention.

Definition 3 (Finite set). Suppose 〈A,�〉 is a preorder.3 Then we can con-
sider the type list A to be a preorder of finite sets of A. We say that an element
x is in the finite set l, and write x ∈ l provided ∃x′. In x′ l ∧ x ≈ x′. Here In
refers to the Coq standard library predicate for list membership. We can then
equip finite sets with the inclusion order where l1 ⊆ l2 iff ∀x. x ∈ l1 → x ∈ l2.

Note that finite set membership is defined so that it respects ≈ equality.
The difference between unpointed directed-complete partial orders (which

might not have a least element) and pointed DCPOs (those having a least ele-
ment) can be expressed entirely in terms of whether certain finite sets are allowed
to be empty or not. Likewise, the Scott-continuous functions are distinguished
from the strict Scott-continuous functions; and the profinite domains from the
pointed profinite domains. Therefore, we make the following technical definition
that allows us to uniformly state definitions that are valid in both settings.

Definition 4 (Conditionally inhabited). Suppose A is a preorder, l is a
finite set of A and h is a boolean value. Then we say l is conditionally inhabited
and write inhh l provided either h = false or h = true ∧ ∃x. x ∈ l.

When h is false, l need not be inhabited; however, when h is true, inhh l
requires l to be inhabited. This strange little definition turns out to be the key
to achieving a uniform presentation of pointed and unpointed domains.

3 It suffices to suppose A is a setoid, but the objects of interest are always preorders,
so this is mildly simpler. Likewise for the enumerable sets below.

Formalized, Effective Domain Theory in Coq 213

Definition 5 (Enumerable set). Suppose A is a preorder. Then the functions
N → option A are enumerable sets of A. If X is an enumerable set and x is an
element of A, we write x ∈ X iff ∃x′ n. X(n) = Some x′ ∧x ≈ x′. As with finite
sets, we write X ⊆ Y iff ∀x. x ∈ X → x ∈ Y .

Here N is the Coq standard library type of binary natural numbers and
option A is an inductive type containing either Some x for some x in A or
the distinguished element None. If we interpret Coq’s metalogic as a construc-
tive logic of computable functions then the enumerable sets defined here are
a good analogue for the recursively enumerable sets (recall a set is recursively
enumerable iff it is the range of a partial recursive function). I avoid using the
terms recursive or recursively enumerable so as not to invoke the machinery of
recursive function theory, which I have not explicitly developed.

Throughout this development of domain theory, the enumerable sets will fill
in where, in more classical presentations, “ordinary” sets would be. The use of
enumerable sets is one of the primary ways I achieve an effective presentation of
domain theory. In the rest of this paper, I will freely use set-comprehension no-
tation when defining sets; the diligent reader may wish to verify for himself that
sets so defined are actually represented by some concrete enumeration function.

Definition 6 (Directed set). Suppose A is a preorder, h is a boolean value,
and X is an enumerable set of A. We say that X is directed (or h-directed),
and write directedh X, if every finite subset l ⊆ X where inhh l has an upper
bound in X.

This definition differs from the standard one. My definition agrees when h =
false; but when h = true, only the inhabited finite subsets must have upper
bounds in X . As a consequence, when h = false, directedh X implies X is
nonempty (because the empty set must have an upper bound in X); but when
h = true, directedh X holds even when X is empty (in which case the condition
holds vacuously because there are no finite inhabited subsets of the empty set).

Definition 7 (Directed-complete partial order). Suppose A is a preorder
and let h be a boolean value. Let

⊔
X be an operation that, for every h-directed

enumerable set X of A, calculates the least upper bound of X. Then we say 〈A,
⊔
〉

is a directed-complete partial order (with respect to h). The category of directed-
complete partial orders is named DCPOh when paired with the Scott-continuous
functions.

Definition 8 (Scott-continuous function). Suppose A and B are in DCPOh

and f : A→ B is a function from A to B. Then we say f is Scott-continuous if
f is monotone and satisfies the following for all h-directed sets X:

f(
⊔
X) �

⊔
(image f X)

Pause once again to reflect on the role of the parameter h. When h = false
the empty set is not considered directed, and thus may not have a supremum;

214 R. Dockins

this gives unpointed DCPOs. On the other hand when h = true, the empty
set must have a supremum, which is a fortiori the least element of the DCPO.
Likewise for Scott-continuous functions, h = false gives the standard Scott-
continuous functions on unpointed DCPOs; whereas h = true gives the strict
Scott-continuous functions on pointed DCPOs.

Next we move on to definitions relating to algebraic domains. The main tech-
nical definition here is the “way below” relation, which gives rise to the compact
elements.

Definition 9 (Way-below, compact element). Suppose A is in DCPOh

and let x and y be elements of A. Then we say x is way-below y (and write
x/ y) provided that, for every h-directed set X where y �

⊔
X, there exists x′

such that x � x′ and x′ ∈ X. An element x of A is compact if x/ x.

This is the standard statement of the way-below relation (also called the
“order of approximation”) and compact elements, except that we have specified
the h-directed sets instead of the directed sets. With h = false, this is just the
standard definition of way-below and compact elements for unpointed DCPOs.
However, when h = true it means that the least element of a pointed DCPO
is not compact (because X may be the empty set). Although readers already
familiar with domain theory may find this puzzling, it actually is quite good, as
it simplifies constructions on pointed domains (see §4).

Definition 10 (Effective preorder). Suppose A is a preorder. Then we say
A is an effective preorder provided it is equipped with a decision procedure for
�A and an enumerable set containing every element of A.

In order to ensure that all the constructions we want to perform can be done
effectively, we need to limit the scope of our ambitions to the effective preorders
and effective domains.

Definition 11 (Effective algebraic domain). Suppose A is in DCPOh. A
is an algebraic domain provided that for all x in A, the set {b | b/ x ∧ b/ b}
is enumerable, h-directed and has supremum x. A is furthermore called effective
if the set of compact elements is enumerable, and the / relation is decidable on
compact elements.

Said another way, a DCPO is an algebraic domain if every element arises as
the supremum of the set of compact elements way-below it. The set of compact
elements of an algebraic domain is also called the basis.4 Note that an effective
domain is not necessarily an effective preorder; merely its basis is effective.

Definition 12 (Basis). Suppose A is an effective algebraic domain. Then let
basis(A) be the preorder consisting of the compact elements of A, with / as the
ordering relation. Note that / is always transitive; furthermore, / is reflexive
on the compact elements of A by definition. basis(A) is an effective preorder
because A is an effective domain.

4 The more general class of continuous domains may have a basis that is distinct from
the set of compact elements; I do not consider continuous domains.

Formalized, Effective Domain Theory in Coq 215

The compact elements of an effective algebraic domain form an effective pre-
order. Furthermore, the basis preorder uniquely (up to isomorphism) determines
an algebraic domain.

Definition 13 (Ideal completion). Suppose A is an effective preorder. We
say an enumerable subset X of A is an ideal provided it is h-directed and down-
ward closed with respect to �A. Let ideal(A) be the preorder of ideals of A ordered
by subset inclusion. Then ideal(A) is a DCPO (with enumerable set union as the
supremum operation) and an effective algebraic domain.

The proof that ideal(A) is an algebraic domain is standard (see [2, §2.2.6]), as
is the following theorem.

Theorem 1. The effective algebraic domains are in one-to-one correspondence
with their bases. In particular A is isomorphic to ideal(basis(A)) for all algebraic
domains A and B is isomorphic (as a preorder) to basis(ideal(B)) for all effective
preorders B.

This justifies our position, in the rest of this paper, of considering just the
bases of domains rather than algebraic domains per se. Although the formal
proofs we develop will involve only bases and certain kinds of approximable
relations between bases, the reader may freely draw intuition from the more
well-known category of algebraic domains and Scott-continuous functions.

3 Profinite Domains and Plotkin Orders

The profinite domains are fairly well-known. They are very closely related to
Plotkin’s category SFP (Sequences of Finite inductive Posets) [20]. In fact, when
limited to effective bases, the category of pointed profinite domains has the same
objects as SFP; SFP, however, is equipped with the nonstrict continuous func-
tions, whereas the pointed profinite domains are equipped with the strict con-
tinuous functions. Unpointed profinite domains are the largest cartesian closed
full subcategory of algebraic domains with countable bases [14], which justifies
our interest in them. I suspect that the pointed profinite domains are likewise
the largest monoidal closed subcategory of countably-based pointed algebraic
domains when considered with strict continuous functions.5

My development of the profinite domains (more properly, their bases: the
Plotkin orders) roughly follows the strategy found in chapter 2 of Gunter’s thesis
[12], incorporating some modifications due to Abramsky [1]. In addition, I have
modified some definitions to make them more constructive and to incorporate
the h parameter for selecting pointed or unpointed domains.

The central concept in this strategy is the Plotkin order. Plotkin orders are
preorders with certain completeness properties based on minimal upper bounds.

5 A nearby result holds: the pointed profinite domains are the largest cartesian closed
category of countably-based algebraic domains when considered with the nonstrict
continuous functions.

216 R. Dockins

Definition 14 (Minimal upper bound). Suppose A is a preorder, and let X
be a set of elements of A. We say m is a minimal upper bound of X provided
that m is an upper bound for X; and for every other upper bound of X, m′ where
m′ � m, we have m ≈ m′.

Note that minimal upper bounds are subtly different than least upper bounds.
There may be several distinct minimal upper bounds (MUBs) of a set; in con-
trast, least upper bounds (AKA suprema) must be unique (up to ≈ as usual).

Definition 15 (MUB complete preorder). Suppose A is a preorder. Then
we say A is MUB complete if for every finite subset l of elements of A where
inhh l and where z is an upper bound of l, there exists a minimal upper bound
m of l with m � z.

In a MUB-complete preorder every finite set bounded-above by some z has a
minimal upper bound below z. Here we merely assert the desired MUB to exist,
but it can actually be computed when A is an effective Plotkin order.

Definition 16 (MUB closed set). Suppose A is a preorder and X is a subset
of A. We say X is MUB closed if for every finite subset l ⊆ X with inhh l, every
minimal upper bound of l is in X.

Definition 17 (Plotkin order). Suppose A is a preorder, and let Θ be an
operation (called the MUB closure) from finite sets of A to finite sets of A. Then
we say 〈A,Θ〉 is a Plotkin order (with respect to h) provided the following hold
for all finite sets l of A:

1. A is MUB complete;
2. l ⊆ Θ(l);
3. Θ(l) is MUB closed; and
4. Θ(l) is the smallest set satisfying the above.

Note that for a given preorder A, Θ is uniquely determined when it exists. As
such, we will rarely give Θ explicitly, preferring instead simply to assert that a
suitable Θ can be constructed.

Some of the constructions we wish to do require additional computational
content from domain bases; we therefore require them to be effective preorders
in addition to being Plotkin. Thus, the effective Plotkin preorders will be the
domain structures we are interested in. However, it still remains to define the ar-
rows between domains. Unlike the usual case with concrete categories, the arrows
between domains are not functions, but certain kinds of relations. These approx-
imable relations, however, induce functions on ideal completions in a unique way
(see [12, §2.1]), so they nonetheless behave very much like functions.

Definition 18 (Approximable relation). Let A and B be effective Plotkin
orders, and let R ⊆ A × B be an enumerable relation (i.e., enumerable set of
pairs). Then we say R is an approximable relation provided the following hold:

Formalized, Effective Domain Theory in Coq 217

– x � x′ ∧ y′ � y ∧ (x, y) ∈ R implies (x′, y′) ∈ R; and
– the set {y | (x, y) ∈ R} is h-directed for all x.

These requirements seem mysterious at first, but they are precisely what is
required to ensure that approximable relations give rise to Scott-continuous func-
tions via the ideal completion construction.

Theorem 2. Suppose A is an effective Plotkin order. Then {(x, y) | y �A x} is
an approximable relation; call it idA.

Suppose A, B, and C are effective Plotkin orders; let R be an approximable
relation from A to B and S be an approximable relation from B to C. Then
the composed relation S ◦ R ≡ {(x, z) | ∃y. (x, y) ∈ R ∧ (y, z) ∈ S} is an
approximable relation.

Definition 19 (PLTh). Let h be a boolean value. Then PLTh is the category
whose objects are the effective Plotkin orders (with parameter h) and whose ar-
rows are the approximable relations (again with h). The previous theorem gives
the construction for the identity and composition arrows; the associativity and
unit axioms are easily proved.

PLTfalse is equivalent to the category of unpointed profinite domains with
Scott-continuous functions and PLTtrue is equivalent to the category of pointed
profinite domains with strict Scott-continuous functions via the ideal completion
construction discussed above.

Definition 20 (Undefined relation). Let A and B be objects of PLTtrue. Let
⊥ ≡ ∅ be the empty approximable relation between A and B. ⊥ corresponds to
the undefined function that sends every argument to the least element of B.

Note that, while ⊥ ≡ ∅ is a perfectly valid approximable relation in PLTtrue,
the empty relation is not an approximable relation in PLTfalse (unless A is
empty). This is because of the second property of approximable relations, which
requires {y | (x, y) ∈ R} to be h-directed for each x. The empty set is h-directed
for h = true, but not for h = false. Further, note that in PLTtrue, f ◦⊥ ≈ ⊥ ≈
⊥ ◦ g, so composition is strict on both sides.

4 Constructions on Plotkin Orders

Now that we have defined the category of effective Plotkin orders, we can begin
to build some of the standard constructions: products, sums and the function
space. Our strategy of unifying pointed and unpointed domains will now begin
to pay dividends, as these constructions need be performed only once.

Definition 21 (Unit and empty orders). Let 0 represent the empty preorder.
It is easy to see that 0 is effective and Plotkin. Let 1 represent the unit preorder,
having a single element; 1 is also effective and Plotkin.

218 R. Dockins

Definition 22 (Products). Suppose A, B and C are effective Plotkin orders
with parameter h. Then A×B (product preorder) is an effective Plotkin preorder
with parameter h. Set π1 ≡ {((x, y), x′) | x′ � x} and π2 ≡ {((x, y), y′) | y′ � y}.
Suppose f : C → A and f : C → B are approximable relations. Then set
〈f, g〉 ≡ {(z, (x, y)) | (z, x) ∈ f ∧ (z, y) ∈ g}. π1 and π2 represent pair projections
and 〈f, g〉 is the paring operation.

Theorem 3. The product construction is the categorical product in PLTfalse.
In addition, 1 is the terminal object; making PLTfalse a cartesian category. In
PLTfalse, the product is denoted A×B.

Theorem 4. The product construction is not the categorical product inPLTtrue.
It is instead the “smash” product, or the strict pair; we denote the smash product
as A⊗B. Although not the categorical product, ⊗ gives PLTtrue the structure of a
symmetric monoidal category, with 1 as the unit object.

In PLTtrue, π1, π2 and 〈f, g〉 are all still useful operations; they are just not
the projection and pairing arrows for the categorical product. They are instead
“strict” versions that satisfy laws like 〈x,⊥〉 ≈ ⊥ and π1 ◦ 〈x, y〉 � x.

Definition 23 (Sums). Suppose A, B and C are effective Plotkin preorders
with parameter h. Then A + B (disjoint sum) is an effective Plotkin preorder
with parameter h. Set ι1 ≡ {(x, inl x′) | x′ � x} and ι2 ≡ {(y, inr y′) | y′ � y}.
Suppose f : A → C and f : B → C are approximable relations. Then set
[f, g] ≡ {(inl x, z) | (x, z) ∈ f} ∪ {(inr y, z) | (y, z) ∈ g}. ι1 and ι2 are the sum
injections and [f, g] is the case analysis operation.

Theorem 5. In PLTfalse, the above sum construction is the categorical coprod-
uct, which we denote A+B. In addition, 0 is the initial object. Thus PLTfalse

is a cocartesian category.

Theorem 6. In PLTtrue, the sum construction above gives the “coalesced sum,”
which identifies the bottom elements of the two objects; it is denoted A⊕B. Like
+, ⊕ is the the categorical coproduct in PLTtrue. Furthermore 0 serves as the
initial object. Thus PLTtrue is also a cocartesian category.

Theorem 7. In PLTtrue, the empty preorder 0 is also the terminal object.

This series of results reveals some deep connections between the structure
PLTfalse and PLTtrue. Not only are × and ⊗ intuitively closely related, they
are literally the same construction. Likewise for + and ⊕. This coincidence goes
even further; the “function space” construction in both categories is likewise
the same. This construction is based on the concept of “joinable” relations. My
definition is a minor modification of the one given by Abramsky [1].

Definition 24 (Joinable relation). Suppose A and B are objects of PLTh.
Let R be a finite set of pairs in A × B. We say R is a joinable relation if the
following hold:

Formalized, Effective Domain Theory in Coq 219

– inhh R; and
– for all finite sets G with G ⊆ R and inhh G, and for all x where x is a

minimal upper bound of image π1 G, there exists y where y is an upper
bound of image π2 G and (x, y) ∈ R.

Unfortunately, this definition is highly technical and difficult to motivate,
except by the fact that it yields the expected exponential object. The rough idea
is that R is supposed to be a finite fragment of an approximable relation. The
complicated second requirement ensures that joinable relations are “complete
enough” that the union of a directed collection of joinable relations makes an
approximable relation and that we can compute finite MUB closures.

Definition 25 (Function space). Suppose A and B are objects of PLTh.
The joinable relations from A to B form a preorder where we set G � H iff
∀x y. (x, y) ∈ G→ ∃x′ y′. (x′, y′) ∈ H ∧x′ � x∧y � y′. Moreover, this preorder
is effective and Plotkin; we denote it by A⇒ B.

Now, suppose f : C × A → B is an approximable relation.6 Then curry f :
C → (A ⇒ B) and app : (A ⇒ B) × A → B are approximable relations as
defined below:

curry f ≡ {(c, R) | ∀x y. (x, y) ∈ R→ ((c, x), y) ∈ f}
app ≡ {((R, x), y) | ∃x′ y′. (x′, y′,) ∈ R ∧ x′ � x ∧ y � y′}

The proof that the function space construction forms a Plotkin order is one
of the most involved proofs in this entire development. My proof takes elements
from those of Gunter [12] and Abramsky [1]. The reader may consult the formal
proof development for details.

Theorem 8. ⇒ is the exponential object in PLTfalse and makes PLTfalse into
a cartesian closed category.

Theorem 9. In PLTtrue, ⇒ constructs the exponential object with respect to ⊗
and makes PLTtrue a monoidal closed category. In PLTtrue, we use the symbol
� instead of ⇒.

Here is a huge payoff for our strategy of giving uniform constructions for
PLTh; the proofs and constructions leading to ⇒ and the MUB closure prop-
erties are technical and lengthy. Furthermore, the pointed and unpointed cases
differ only in a few localized places. With this proof strategy, these difficult
proofs need only be done once.

5 Lifting and Adjunction

One standard construction we have not yet seen is “lifting,” which adds a new
bottom element to a domain. In our setting, lifting is actually split into two

6 Note, here × refers generically to the product construction in PLTh, not just the
categorical product of PLTfalse.

220 R. Dockins

pieces: a forgetful functor from pointed to unpointed domains, and a lifting
functor from unpointed to pointed domains. These functors are adjoint, which
provides a tight and useful connection between these two categories of domains.

However, working with bases instead of algebraic domains per se causes an
interesting inversion to occur. When working with PLTh instead of profinite
domains as such, the functor that is the forgetful functor and the one that
actually does lifting exchange places.

First let us consider the functor that passes from pointed domains (PLTtrue)
to unpointed domains (PLTfalse). This is the one usually known as the forgetful
functor; it forgets the fact that the domains are pointed and that the functions
are strict.

Definition 26 (“Forgetful” functor). Suppose A is an object of PLTtrue.
Then let option A be the preorder that adjoins to A a new bottom element, None.
Then option A is an element of PLTfalse. Furthermore, suppose f : A → B
is an approximable relation in PLTtrue. Then g : option A → option B is an
approximable relation in PLTfalse defined by:

g ≡ {(x,None)} ∪ {(Some x, Some y) | (x, y) ∈ f}.

These operations produce a functor U : PLTtrue → PLTfalse.

Why is adding a new element the right thing to do? Recall from earlier that
our definition of the way-below relation and compact elements excludes the bot-
tom element of pointed domains, in contrast to the usual definitions. When we
consider the bases of pointed domains, the bottom element is implicit; is is the
empty set of basis elements (which is an ideal when h = true) that represents
bottom. It is because the bottom element is implicit that makes all the construc-
tions from the previous section work uniformly in both categories.

When passing to unpointed domains, the empty set is no longer directed and
the implicit bottom element must become explicit. This is why the forgetful
functor actually adds a new basis element. In contrast, the “lifting” functor
is more like a forgetful functor in that there is nothing really to do. Passing
from unpointed to pointed domains automatically adds the new implicit bottom
element, so the basis does not change.

Definition 27 (“Lifting” functor). Suppose A is an object of PLTfalse; then
A is also an object of PLTtrue. Furthermore, if f : A → B is an approximable
relation in PLTfalse then f is also an approximable relation in PLTtrue. These
observations define a functor L : PLTfalse → PLTtrue.

Theorem 10. The lifting functor L is left adjoint to the forgetful functor U .

Said another way, the adjunction between L and U means that there is a
one-to-one correspondence between the strict PLTtrue arrows L(X) → Y and
the nonstrict PLTfalse arrows X → U(Y). This adjunction induces a structure
on PLTh that is a model of dual intuitionistic linear logic (DILL) [6,4], which
can be used to combine the features of strict and nonstrict computation into a
nice, unified theory.

Formalized, Effective Domain Theory in Coq 221

6 Powerdomains

Powerdomains provide operators on domains that are analogues to the standard
powerset operation on sets [20]; powerdomains can be used to give semantics to
nondeterminism and to set-structured data (like relational tables). Each of the
three standard powerdomains operations (upper, lower and convex) [2] can be
constructed in both PLTfalse and in PLTtrue, for a total of six powerdomain
operators. Again, our uniform presentation provides a significant savings in work.

Definition 28 (Powerdomains). Suppose X is an element of PLTh. Let the
finite h-inhabited sets of X be the elements of the powerdomain. The preorder
on domain elements is one of the following: �	 for the lower powerdomain, �

for the upper powerdomain, and �� for the convex powerdomain.

a �	 b ≡ ∀x ∈ a. ∃y ∈ b. x �X y

a �
 b ≡ ∀y ∈ b. ∃x ∈ a. x �X y

a �� b ≡ a �	 b ∧ a �
 b

In each case, the resulting preorder is effective and Plotkin, making it again an
object of PLTh.

Of these, the most mathematically natural (that is, most like the powerset op-
eration) is probably the convex powerdomain in unpointed domains (PLTfalse).
Unlike the convex powerdomain in pointed domains, the unpointed version has
a representation for the empty set.

7 Solving Recursive Domain Equations

To get a usable domain for semantics, we frequently want to be able to solve
recursive domain equations. Indeed, much of the impetus for domain theory was
originally motivated by the desire to build a semantic models for the lambda
calculus [22]. The classic example is the simple recursive equationD ∼= (D ⇒ D).

My approach to this problem is the standard one, which is to take bilimits of
continuous functors expressed in categories of embedding-projection pairs [21].
The main advantage of this technique is that it turns mixed-variance functors
on PLTh (like the function space) into covariant functors on the category of
EP-pairs. Such covariant functors can then be handled via standard fixpoint
theorems. Furthermore, isomorphisms constructed in categories of EP-pairs yield
isomorphisms in the base category.

Thus, we need to construct the category of EP-pairs over PLTh. However, it
is significantly more convenient to work in a different, but equivalent category:
the category of basis embeddings. To the best of my knowledge, this category
has not been previously defined.

Definition 29 (Basis embedding). Suppose A and B are objects of PLTh

and let f be a function (N.B., not a relation) from A to B. Then we say f is a
basis embedding if the following hold:

222 R. Dockins

– a �A b iff f(a) �B f(b) (f is monotone and reflective);
– for all y, the set {x | f(x) �B y} is h-directed.

Let BEh represent the category of effective Plotkin orders with basis embeddings
as arrows.

Every basis embedding gives rise to an embedding-projection pair in PLTh,
and likewise every EP-pair gives rise to a basis embedding7; these are further-
more in one-to-one correspondence. This is sufficient to show that BEh and the
category of EP-pairs on PLTh are equivalent categories.

Now we can use a standard fixpoint theorem (essentially, the categorical ana-
logue of Kleene’s fixpoint theorem) to build least fixpoints of continuous functors.
Continuous functors are those that preserve directed colimits [2].

Theorem 11. Suppose C is a category with initial object 0 that has directed
colimits for all directed systems, and let F : C → C be a continuous functor.
Then F has an initial algebra D and D ∼= F (D).

When combined with the next theorem, this allows us to construct fixpoints
of functors in BEtrue, the category basis embeddings over pointed domains.

Theorem 12. BEh has directed colimits for all directed systems.

In fact, PLTtrue is in the class of CPO-algebraically ω-compact categories
[10, §7], which are especially well-behaved for building recursive types.8

We cannot apply the same strategy to BEfalse, because the category of em-
beddings over unpointed domains fails to have an initial object. However, this is
not a problem, because we can import constructions from BEtrue into BEfalse

by passing through the adjoint functors L and U . Passing through L may add
“extra” bottom elements, but it does so in places that are consistent with stan-
dard practice (e.g., the canonical model for lazy λ-calculus [3]). Indeed, this
setup partially explains why those extra bottoms appear.

The following theorems allow us to find fixpoint solutions to recursive domain
equations for many interesting functors by building up continuous functors from
elementary pieces.

Theorem 13. The identity and constant functors are continuous.

Theorem 14. The composition of two continuous functors is continuous.

Theorem 15. ×, + and ⇒ extend to continuous functors on BEfalse.

Theorem 16. ⊗, ⊕ and � extend to continuous functors on BEtrue.

Theorem 17. The forgetful functor U : BEtrue → BEfalse is continuous.

7 Surprisingly, (to me, at least) this can be done in an entirely constructive way using
an indefinite description principle that can be proved for enumerable sets.

8 This is not yet formalized; initial attempts have triggered universe consistency issues
for which I have yet to find a solution.

Formalized, Effective Domain Theory in Coq 223

Theorem 18. The lifting functor L : BEfalse → BEtrue is continuous.

Theorem 19. The lower, upper and convex powerdomains are all continuous.

Now we can construct a wide variety of interesting recursive semantic domains
for both pointed and unpointed domains. For example, we can construct the
domain D ∼= (D � D), representing eager λ-terms; and we can also construct
E ∼= L(U(E) ⇒ U(E)), the canonical model of lazy λ-terms. Furthermore,
algebraic data types in the style of ML or Haskell can be constructed using
combinations of sums and products. Sophisticated combinations of strict and
nonstrict features can be built using the adjunction functors U and L, and
nondeterminism may be modeled using the powerdomains.

8 Implementation

The entire proof development consists of a bit over 30KLOC, not including
the examples. This includes a development of some elementary category theory
and the fragments of set theory we need to work with finite and enumerable
sets. The proof development has been built using Coq version 8.4; it may be
found at the author’s personal website.9 The development includes examples
demonstrating soundness and adequacy for four different systems (the simply-
typed SKI combinator calculus with and without fixpoints, and the simply-typed
λ-calculus with and without fixpoints). Additional examples are in progress.

9 Conclusion and Future Work

I have presented a high-level overview of a formal development of domain theory
in the proof assistant Coq. The basic trajectory of the proof follows lines well-
established by prior work. My presentation is fully constructive and mechanized
— the first such presentation of domain theory based on profinite domains. I show
how some minor massaging of the usual definitions leads to a nice unification for
most constructions in pointed and unpointed domains. The system is sufficient
to build denotational models for a variety of programming language semantics.

Currently I have no explicit support for parametric polymorphism. Polymor-
phism requires fairly complex machinery, and I have not yet undertaken the task.
There seem to be two possible paths forward: one approach is explained by Paul
Taylor in his thesis [23]; the other is the PILLY models of Birkedal et al. [8]. This
latter method has the significant advantage that it validates the parametricity
principle, which underlies interesting results like Wadler’s free theorems [24]. I
hope to build one or both of these systems for polymorphism in the future.

The Coq formalization of Benton et al. [7] uses a more modern method for
building recursive domains based on locally-continuous bifunctors in compact
categories [11]. Their approach has some advantages; Pitts’s invariant relations
[19], especially, provide useful reasoning principles for recursively defined do-
mains. I hope to incorporate these additional techniques in future work.

9 http://rwd.rdockins.name/domains/

http://rwd.rdockins.name/domains/

224 R. Dockins

References

1. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic 51,
1–77 (1991)

2. Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Computer
Science, vol. 3, pp. 1–168. Clarendon Press (1994)

3. Abramsky, S., Ong, C.-H.L.: Full abstraction in the lazy lambda calculus. Infor-
mation and Computation 105, 159–267 (1993)

4. Barber, A.: Linear Type Theories, Semantics and Action Calculi. Ph.D. thesis,
Edinburgh University (1997)

5. Barthe, G., Capretta, V.: Setoids in type theory. Journal of Functional Program-
ming 13(2), 261–293 (2003)

6. Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995)

7. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009)

8. Birkedal, L., Møgelberg, R., Petersen, R.: Domain-theoretical models of parametric
polymorphism. Theoretical Computer Science 288, 152–172 (2007)

9. Egli, H., Constable, R.L.: Computability concepts for programming language se-
mantics. Theoretical Computer Science 2, 133–145 (1976)

10. Fiore, M.P.: Axiomatic Domain Theory in Categories of Partial Maps. Ph.D. thesis,
University of Edinburgh (1994)

11. Freyd, P.: Remarks on algebraically compact categories. In: Applications of Cat-
egories in Computers Science. London Mathematical Society Lecture Note Series,
vol. 177, pp. 95–106. Cambridge University Press (1991)

12. Gunter, C.: Profinite Solutions for Recursive Domain Equations. Ph.D. thesis,
Carnegie-Mellon University (1985)

13. Huffman, B.: A purely definitional universal domain. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 260–275.
Springer, Heidelberg (2009)

14. Jung, A.: Cartesian Closed Categories of Domains. Ph.D. thesis, Centrum voor
Wiskunde en Informatica, Amsterdam (1988)

15. Milner, R.: Logic for computable functions: Description of a machine implementa-
tion. Tech. Rep. STAN-CS-72-288, Stanford University (May 1972)

16. Milner, R.: Models of LCF. Tech. Rep. STAN-CS-73-332, Stanford (1973)
17. Müller, O., Nipkiw, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.

Journal of Functional Programming 9 (1999)
18. Paulin-Mohring, C.: A constructive denotational semantics for Kahn networks. In:

From Semantics to Computer Sciences. Essays in Honour of G. Kahn. Cambridge
University Press (2009)

19. Pitts, A.M.: Relational properties of domains. Information and Computation 127
(1996)

20. Plotkin, G.D.: A powerdomain construction. SIAM J. of Computing 5, 452–487
(1976)

21. Plotkin, G., Smyth, M.: The category theoretic solution of recursive domain equa-
tions. Tech. rep., Edinburgh University (1978)

Formalized, Effective Domain Theory in Coq 225

22. Scott, D.: Outline of a mathematical theory of computation. Tech. Rep. PRG02,
OUCL (November 1970)

23. Taylor, P.: Recursive Domains, Indexed Category Theory and Polymorphism.
Ph.D. thesis, University of Cambridge (1986)

24. Wadler, P.: Theorems for free! In: Intl. Conf. on Functional Programming and
Computer Architecture (1989)

25. Winskell, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press (1993)

Completeness and Decidability Results

for CTL in Coq

Christian Doczkal and Gert Smolka

Saarland University, Saarbrücken, Germany
{doczkal,smolka}@ps.uni-saarland.de

Abstract. We prove completeness and decidability results for the tem-
poral logic CTL in Coq/Ssreflect. Our basic result is a constructive proof
that for every formula one can obtain either a finite model satisfying the
formula or a proof in a Hilbert system certifying the unsatisfiability of
the formula. The proof is based on a history-augmented tableau system
obtained as the dual of Brünnler and Lange’s cut-free sequent calculus
for CTL. We prove the completeness of the tableau system and give a
translation of tableau refutations into Hilbert refutations. Decidability
of CTL and completeness of the Hilbert system follow as corollaries.

1 Introduction

We are interested in a formal and constructive metatheory of the temporal logic
CTL [6]. We start with the definitions of formulas, models, and a satisfiability
relation relating models and formulas. The models are restricted such that the
satisfiability relation is classical. We then formalize a Hilbert proof system and
prove it sound for our models. Up to this point everything is straightforward.
Our basic result is a constructive proof that for every formula one can obtain
either a finite model satisfying the formula or a derivation in the Hilbert system
certifying the unsatisfiability of the formula. As corollaries of this result we
obtain the completeness of the Hilbert system, the finite model property of CTL,
and the decidability of CTL.

Informal and classical proofs of our corollaries can be found in Emerson and
Halpern’s work on CTL [7,5]. Their proofs are of considerable complexity as
it comes to the construction of models and Hilbert derivations. As is, their
completeness proof for the Hilbert system is not constructive and it is not clear
how to make it constructive.

Brünnler and Lange [3] present a cut-free sequent system for CTL satisfying a
finite subformula property. Due to the subformula property, the sequent system
constitutes a decision method for formulas that yields finite counter-models for
non-valid formulas. The sequent system is non-standard in that formulas are
annotated with histories, which are finite sets of formulas. Histories are needed
to handle eventualities (e.g., until formulas) with local rules.

We base the proof of our main result on a tableau system that we obtain by
dualizing Brünnler and Lange’s sequent system. This is the first tableau system

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 226–241, 2014.
c© Springer International Publishing Switzerland 2014

Completeness and Decidability Results for CTL in Coq 227

for CTL employing only local rules. Existing tableau methods for CTL [7,5]
combine local rules with global model checking of eventualities. Given a formula,
the tableau system either constructs a finite model satisfying the formula or a
tableau refutation. We give a translation from tableau refutations to Hilbert
refutations, thereby showing the completeness of the Hilbert system and the
soundness of the tableau system. The translation is compositional in that it is
defined by structural recursion on tableau refutations. For the translation it is
essential that the tableau system has only local rules.

With our results it should not be difficult to obtain formal and construc-
tive proofs of the soundness and completeness of Brünnler and Lange’s original
system.

The standard definition [5] of the satisfiability relation of CTL employs in-
finite paths, which are difficult to handle in a constructive setting. We avoid
infinite paths by capturing the semantics of eventualities with induction and the
semantics of co-eventualities with coinduction.

Our formal development consists of about 3500 lines of Coq/Ssreflect. There
are three subtasks of considerable complexity. One complex subtask is the con-
struction of finite models from intermediate structures we call demos. Our demos
play the role of the pseudo-Hintikka structures in Emerson [5] and are designed
such that they go well with the tableau system. Another complex subtask is
the construction of a demo from the tableau-consistent clauses in a subformula
universe. Finally, the translation of tableau refutations to Hilbert refutations is
of considerable complexity, in particular as it comes to the application of the
induction axioms of the Hilbert system.

Given the practical importance of CTL and the complex proofs of the meta-
theoretic results for CTL, we think that the metatheory of CTL is an interesting
and rewarding candidate for formalization. No such formalization exists in the
literature. In previous work [4] we have prepared this work by proving related
results for a weaker modal logic. As it comes to eventualities, which are responsi-
ble for the expressiveness and the complexity of the logic, our previous work only
captured the simplest eventuality saying that a state satisfying a given formula
is reachable.

Our development is carried out in Coq [13] with the Ssreflect [9] extension.
We build a library for finite sets on top of Ssreflect’s countable types and use it
to capture the subformula property. We also include a fixpoint theorem for finite
sets and use it to show decidability of tableau derivability.

In each section of the paper, we first explain the mathematical ideas behind the
proofs and then comment briefly on the difficulties we faced in the formalization.
For additional detail, we refer the reader to Coq development.1

2 CTL in Coq

Wedefine the syntax and semantics of CTL as we use it in our formalization.We fix
a countable alphabetAP of atomic propositions p and define formulas as follows:

1 http://www.ps.uni-saarland.de/extras/itp14.

http://www.ps.uni-saarland.de/extras/itp14

228 C. Doczkal and G. Smolka

s, t := p | ⊥ | s→ t | AX s | A(sU t) | A(sR t)

We define the remaining propositional connectives using → and ⊥. We also use
the following defined modal operators: EX s ≡ ¬AX¬s, A+(sU t) ≡ AXA(sU t),
E(sU t) ≡ ¬A(¬sR¬t), E+(sU t) ≡ EXE(sU t), E(sR t) ≡ ¬A(¬sU¬t), and
EG t ≡ E(⊥R t).

The formulas of CTL are interpreted over transition systems where the states
are labeled with proposition symbols. Unlike most of the literature on CTL [5,7,1],
where the semantics of CTL formulas is defined in terms of infinite paths, we
define the semantics of CTL using induction and coinduction. Our semantics is
classically equivalent to the standard infinite path semantics but better suited
for a constructive formalization.

Let W be a type, R : W → W → Prop a relation, and P,Q : W → Prop
predicates. We require that R is serial, i.e., that every w : W has some R-
successor. We define the eventuality AU (“always until”) inductively as:

Qw

AURP Qw

P w ∀v.Rw v =⇒ AURP Qv

AURP Qw

Further, we define AR (“always release”) coinductively.

Qw P w

ARRP Qw
===========

Qw Rw v ARRP Qv

ARRP Qw
============================

Now let L : AP →W → Prop be a labeling function. We evaluate CTL formulas
to predicates on W :

eval p = Lp eval (s→ t) = λw.eval s w =⇒ eval t w

eval ⊥ = λ .False eval (AX s) = λw.∀v.Rw v =⇒ eval t v

eval (A(sU t)) = AUR (eval s) (eval t)

eval (A(sR t)) = ARR (eval s) (eval t)

We say w satisfies a formula s, written w |= s, if we have eval s w. Similar to [4],
we consider as models only those serial transition systems (W,R,L) for which

∀s∀w ∈ W.w |= s ∨ w �|= s (1)

is provable. When M is a model, we write →M for the transition relation of M
and w ∈ M if w is a state of M.

Note that having to prove (1) severely restricts our ability to construct infinite
models. However, since CTL has the small model property it suffices to construct
finite models for our completeness results. For these models (1) is easy to prove.
Formalizing models this way allows us to reason about the classical object logic
CTL without assuming any classical axioms.

The Hilbert axiomatization we use in our formalization is a variant of the
Hilbert system given by Emerson and Halpern [7]. The rules and axioms of the
Hilbert axiomatization are given in Figure 1. We write � s if s is provable from
the axioms and call a proof of ¬s a Hilbert refutation of s.

Completeness and Decidability Results for CTL in Coq 229

K s → t → s
S ((u → s → t) → (u → s) → u → t)

DN ((s → ⊥) → ⊥) → s
N AX(s → t) → AX s → AX t
U1 t → A(sU t)
U2 s → AXA(sU t) → A(sU t)
R1 A(sR t) → t
R2 A(sR t) → (s → ⊥) → AXA(sR t)
AX AX⊥ → ⊥

s s → t

t
MP

s

AX s
Nec

t → u s → AXu → u

A(sU t) → u
AUind

u → t u → (s → ⊥) → AX u

u → A(sR t)
ARind

Fig. 1. Hilbert Axiomatization of CTL

Theorem 2.1. If � s then w |= s for all models M and states w ∈ M.

Proof. Induction on the derivation of � s, using (1) for the cases corresponding
to DN and ARind. '%

We are now ready to state our basic theorem.

Theorem 2.2 (Certifying Decision Method). For every formula we can
construct either a finite model or a Hilbert refutation.

3 A History-Based Tableau System for CTL

The tableau system we use as the basis for our certifying decision method em-
ploys signed formulas [11]. A signed formula is either s+ or s− where s is a
formula. Signs bind weaker than formula constructors, so s→ t+ is to be read as
(s→ t)+. We write σ for arbitrary signs and σ for the sign opposite to σ. A state
satisfies a signed formula sσ if it satisfies �sσ� where �s+� = s and �s−� = ¬s.

We refer to positive until formulas and negative release formulas as eventuali-
ties. For the eventuality A(sR t)− to be satisfied at a state, there must be a path
from this state to a state satisfying ¬t that satisfies ¬s on every state along the
way.

A clause is a finite set of signed formulas and a history is a finite set of clauses.
The letters C and D range over clauses and the letter H ranges over histories.
For the rest of this paper, sets are always assumed to be finite. An annotated
eventuality is a formula of the form

A(sUHt)
+ | A+(sUHt)

+ | A(sRH t)
− | A+(sRH t)

−

230 C. Doczkal and G. Smolka

An annotation is either an annotated eventuality or the empty annotation “·”.
The letter a ranges over annotations. An annotated clause is a pair C|a of a
clause C and an annotation a.

We give the semantics of annotated clauses by interpreting clauses, histories,
and annotations as formulas. If an object with an associated formula appears
in the place of a formula, it is to be interpreted as its associatend formula. The
associated formula of a clause C is

∧
sσ∈C�sσ�. The associated formula of a

history H is the formula
∧

C∈H ¬C. The associated formula of an annotation is
defined as follows:

af(·) = *
af(A(sUHt)

+) = A((s ∧H)U (t ∧H))

af(A+(sUHt)
+) = A+((s ∧H)U (t ∧H))

af(A(sRH t)
−) = E((¬s ∧H)U (¬t ∧H))

af(A+(sRH t)
−) = E+((¬s ∧H)U (¬t ∧H))

The meaning of an annotated eventuality can be understood as follows: a state
satisfies A(sUHt)

+ if it satisfies A(sU t) without satisfying any clause from H
along the way. For A(sRH t)

− we push the negation introduced by the sign down
to s and t before adding the history. A state satisfies the annotated clause C|a,
if it satisfies the formula C ∧ a.

The request of a clause is the set RC := { s+ | AX s+ ∈ C }. The request of
annotations is defined such that r (A+(sUHt)) = A(sUHt) and r a = · for all
other annotations. The intuition behind requests is that if a state satisfies C|a,
then every successor state must satisfy RC|r a.

Our tableau calculus derives unsatisfiable clauses. The rules of the calculus can
be found in Figure 2. The notation C, sσ is to be read as C∪{sσ}. If C, sσ appears
in the conclusion of a rule, we refer to C as the context and to sσ as the active
formula. The tableau system is essentially dual to the sequent calculus CT [3].
While CT derives valid disjunctions, our tableau calculus derives unsatisfiable
conjunctions. Aside from syntactic changes, the main difference between CT and
the tableau calculus is that in CT all the rules carry the proviso that the active
formula in the conclusion does not appear in the context. We impose no such
restriction. The reason for this is simply convenience. Our completeness proof
does not rely on this added flexibility.

The history mechanism (last two rows in Figure 2) works by recording all
contexts encountered while trying to fulfill one eventuality. If a context reappears
further up in the derivation, we can close this branch since every eventuality that
can be fulfilled, can be fulfilled without going through cycles. If all branches lead
to cycles, the eventuality cannot be fulfilled and the clause is unsatisfiable.

In our formalization, we do not argue soundness of the tableau system directly
using models. Instead, we show the following translation theorem:

Theorem 3.1. If C|a is tableau derivable, then � ¬(C ∧ a).

Corollary 3.2. If C|a is tableau derivable, then C|a is unsatisfiable.

Completeness and Decidability Results for CTL in Coq 231

C, p+, p−|a C,⊥+|a
C, s−|a C, t+|a

C, s → t+|a →+
C, s+, t−|a
C, s → t−|a →−

RC|r a
C|a X

RC, u−|r a
C,AXu−|a AX− RC|A(sUHt)−

C|A+(sUHt)−
R+

H

C, t+|a C, s+,A+(sU t)+|a
C,A(sU t)+|a U+

C, t−, s−|a C, t−,A+(sU t)−|a
C,A(sU t)−|a U−

C, s+, t+|a C, t+,A+(sR t)+|a
C,A(sR t)+|a R+

C, t−|a C, s−,A+(sR t)−|a
C,A(sR t)−|a R−

C|A(sU ∅t)
+

C,A(sU t)+|· A∅
C, t+|· C, s+|A+(sUH,Ct)

+

C|A(sUHt)+
AH

C|A(sUH,Ct)
+ A

C|A(sR∅ t)
−

C,A(sR t)−|· R∅
C, t−|· C, s−|A+(sRH,C t)−

C|A(sRH t)−
RH

C|A(sRH,C t)
R

Fig. 2. Tableau System for CTL

We defer the proof of Theorem 3.1 to Section 6.
Even though it is not part of our formal development, we still argue soundness

of the tableau system informally (and classically) to give some intuition how the
history mechanism works. Soundness of all the rules except AH and RH is easy
to see. The case for AH is argued (in the dual form) by Brünnler and Lange [3].
So we argue soundness of RH here. Assume that C|A(sRH t)

− is satisfiable and
C, t−|· is unsatisfiable. Then the situation looks as follows:

•
C ∧ E(¬s ∧H U¬t ∧H)

◦
C

◦
¬C

•
¬t ∧H ∧ ¬C

¬s ∧H

There exists some state satisfying C ∧E(¬s∧H U¬t∧H). Hence, there exists a
path satisfying ¬s ∧H at every state until it reaches a state satisfying ¬t ∧H .
Since C, t−|· is unsatisfiable, this state must also satisfy ¬C. Therefore, the path
consists of at least 2 states. The last state on the path that satisfies C (left
circle) also satisfies ¬s and E+((¬s ∧ H ∧ ¬C)U (¬t ∧ H ∧ ¬C)) and therefore
C, s−|A+(sRH,C t)

−.
Note that, although the RH rule looks similar to the local rule R−, the sound-

ness argument is non-local; if there is state satisfying the conclusion of the rule,
the state satisfying one of the premises may be arbitrarily far away in the model.

As noted by Brünnler and Lange [3], the calculus is sound for all annotated
clauses but only complete for clauses with the empty annotation. Consider the

232 C. Doczkal and G. Smolka

clause ∅|A(pU {{p+}}p)+. The clause is underivable, but its associated formula
is equivalent to the unsatisfiable formula A((p ∧ ¬p)U (p ∧ ¬p)). To obtain a
certifying decision method, completeness for history-free clauses is sufficient.

3.1 Decidability of Tableau Derivability

For our certifying decision method, we need to show that tableau derivability
is decidable. The proof relies on the subformula property, i.e., the fact that
backward application of the rules stays within a finite syntactic universe. We call
a set of signed formulas subformula closed, if it satisfies the following conditions:

S1. If (s→ t)σ ∈ F , then {sσ, tσ} ⊆ F .
S2. If AX sσ ∈ F , then sσ ∈ F .
S3. If A(sU t)σ ∈ F , then {sσ, tσ,A+(sU t)σ} ⊆ F .
S4. If A(sR t)σ ∈ F , then {sσ, tσ,A+(sR t)σ} ⊆ F .

It is easy to define a recursive function ssub that computes for a signed formula
sσ a finite subformula closed set containing sσ. The subformula closure of a
clause C is defined as sfc C :=

⋃
s∈C ssub s and is always a subformula closed

extension of C. Now let F be a subformula closed set. The annotations for F ,
written A(F), consist of · and eventualities from F annotated with histories
H ⊆ P(F), where P(F) is the powerset of F . We define the universe for F as
U(F) := P(F)×A(F).

Lemma 3.3. 1. If F is subformula closed, the set U(F) is closed under back-
ward application of the tableau rules.

2. For every annotated clause C|a there exists a subformula closed set F , such
that C|a ∈ U(F).

3. Derivability of annotated clauses is decidable.

Proof. Claim (1) follows by inspection of the individual rules. For (2) we reason
as follows: If a = ·, we take F to be sfc C. If a = A(sUHt), one can show that
C|A(sUHt) ∈ U(sfc (C,A(sU t) ∪

⋃
D∈H D)). All other cases are similar.

For (3) consider the annotated clause C|a. By (2) we know that C|a ∈ U(F)
for some F . We now compute the least fixpoint of one-step tableau derivability
inside U(F). By (1) the annotated clause C|a is derivable iff it is contained in
the fixpoint. '%

3.2 Finite Sets in Coq

To formalize the tableau calculus and the decidability proof, we need to formalize
clauses and histories. The Ssreflect libraries [8] contain a library for finite sets.
However, the type of sets defined there requires that the type over which the
sets are formed is a finite type, i.e., a type with finitely many elements. This is
clearly not the case for the type of signed formulas.

We want a library providing extensional finite sets over countable types (e.g.,
signed formulas) providing all the usual operations including separation ({ x ∈

Completeness and Decidability Results for CTL in Coq 233

A | p x }), replacement ({ f x | x ∈ A }), and powerset. We could not find a
library satisfying all our needs, so we developed our own.

Our set type is a constructive quotient over lists. We use the choice operator
provided by Ssreflect to define a normalization function that picks some canonical
duplicate-free list to represent a given set. This normalization function is the
main primitive for constructing sets. On top of this we build a library providing
all the required operations. Our lemmas and notations are inspired by Ssreflect’s
finite sets and we port most of the lemmas that apply to the setting with infinite
base types. We instantiate Ssreflect’s big operator library [2], which provides us
with indexed unions.

Our library also contains a least fixpoint construction. For every bounded
monotone function from sets to sets we construct its least fixpoint and show the
associated induction principle. This is used in the formalization of Lemma 3.3
to compute the set of derivable clauses over a given subformula universe.

4 Demos

We now define demos. In the completeness proof of the tableau calculus, demos
serve as the interface between the model construction and the tableau system.
Our demos are a variant of the pseudo-Hintikka structures used by Emerson [5].
Instead of Hintikka clauses, we use literal clauses and the notion of support [10].

A signed formula is a literal, if it is of the form pσ, ⊥σ, or AX sσ. A literal
clause is a clause containing only literals. A literal clause is locally consistent if
it contains neither ⊥+ nor both p+ and p− for any p. A clause supports a signed
formula, written C 	 sσ, if

C 	 l ⇐⇒ l ∈ C if l is a literal

C 	 (s→ t)+ ⇐⇒ C 	 s− ∨ C 	 t+

C 	 (s→ t)− ⇐⇒ C 	 s+ ∧ C 	 t−

C 	 A(sU t)+ ⇐⇒ C 	 t+ ∨ (C 	 s+ ∧ C 	 A+(sU t)+)

C 	 A(sU t)− ⇐⇒ C 	 t− ∧ (C 	 s− ∨ C 	 A+(sU t)−)

C 	 A(sR t)+ ⇐⇒ C 	 t+ ∧ (C 	 s+ ∨ C 	 A+(sR t)+)

C 	 A(sR t)− ⇐⇒ C 	 t− ∨ (C 	 s− ∧ C 	 A+(sR t)−)

We define C 	D := ∀sσ ∈ D. C 	 sσ.
A fragment is a finite, rooted, and acyclic directed graph labeled with literal

clauses. If G is a fragment, we write x ∈ G to say that x is a node of G and
x →G y if there is a G-edge from x to y. A node x ∈ G is internal if it has
some successor and a leaf otherwise. If x ∈ G, we write Λx for the literal clause
labeling x. We also write xroot for the root of a graph if the graph can be inferred
from the context. A fragment is nontrival if its root is not a leaf.

We fix some subformula closed set F for the rest of this section. and write
L for the set of locally consistent literal clauses over F . We also fix some set
D ⊆ L. Let L ∈ D be a clause. A fragment G is a D-fragment for L if:

234 C. Doczkal and G. Smolka

F1. If x ∈ G is a leaf, then Λx ∈ D and Λx ∈ L otherwise.
F2. The root of G is labeled with L.
F3. If x→G y, then Λy 	R(Λx).
F4. If x ∈ G is internal and AX s− ∈ Λx, then x →G y and Λy 	R(Λx), s

− for
some y ∈ G.

A D-fragment G for L is a D-fragment for L and u if whenever L	 u then:

E1. If u = A(sU t)+, then L	t+ or Λx	s+ for every internal x ∈ G and Λy	t+
for all leaves y ∈ G.

E2. If u = A(sR t)−, then L	 t− or Λx 	 s− every internal x ∈ G and Λy 	 t−
for some y ∈ G.

Note that if u is an eventuality and L	u, then u is fulfilled in every D-fragment
for L and u. The conditions L 	 t+ in (E1) and L 	 t− in (E2) are required
to handle the case of an eventuality that is fulfilled in L and allow for the
construction of nontrivial fragments in this case. A demo for D is an indexed
collection of nontrivial fragments (G(u, L))u∈F ,L∈D where each G(u, L) is a D-
fragment for L and u.

4.1 Demos to Finite Models

Assume that we are given some demo (G(u, L))u∈F ,L∈D. We construct a model
M satisfying all labels occurring in the demo. If F is empty, there is nothing to
show, so we can assume that F is nonempty.

The states of M are the nodes of all the fragments in the demo, i.e., every
state of M is a dependent triple (u, L, x) with u ∈ F , L ∈ D, and x ∈ G(u, L).
A state (u, L, x) is labeled with atomic proposition p iff p+ ∈ Λx.

To define the transitions of M, we fix an ordering u0, . . . , un of the signed
formulas in F . We write ui+1 for the successor of ui in this ordering. The suc-
cessor of un is taken to be u0. The transitions of M are of two types. First, we
lift all the internal edges of the various fragments to transitions in M. Second, if
x is a leaf in G(ui, Lj) that is labeled with L, we add transitions from (ui, Lj, x)
to all successors of the root of G(ui+1, L). Thus, the fragments in the demo can
be thought of as arranged in a matrix as shown in Figure 3 where the Li are
the clauses in D. Note that every root has at least one successor, since demos
contain only nontrivial fragments. Thus, the resulting transition system is serial
and hence a model. We then show that every state of M satisfies all signed
formulas it supports.

Lemma 4.1. If (u, L, x) ∈ M and Λx 	 sσ, then (u, L, x) |= �sσ�.

Proof. The proof goes by induction on s. We sketch the case for A(sU t)+. The
case for A(sR t)− is similar and all other cases are straightforward.

Let w = (ui, Lj, x) ∈ M and assume Λx 	A(sU t)+. By induction hypothesis
it suffices to show AUM s t w where

AUM s t w := AU (→M) (λ(, , y).Λy 	 s+) (λ(, , y).Λy 	 t+)w

Completeness and Decidability Results for CTL in Coq 235

G(u0, L0) G(u0, L1) · · · G(u0, Ln)

G(u1, L0) G(u1, L1) · · · G(u1, Ln)

...
...

...

G(un, L0) G(un, L1) · · · G(un, Ln)

Fig. 3. Matrix of Fragments

To show AUM s t w it suffices to show AUM s t (ui+1, L, xroot) for all L satisfying
L	A(sU t)+ since by (F3) the property of supporting A(sU t)+ gets propagated
down to the leaves of G(ui, Lj) on all paths that do not support t+ along the
way.

Without loss of generality, we can assume A(sU t)+ ∈ F . Thus, we can prove
AUM s t (ui+1, L, xroot) by induction on the distance from ui+1 to A(sU t)+ ac-
cording to the ordering of F . If ui+1 = A(sU t)+, we have AUM s t (ui+1, L, xroot)
by (E1). Otherwise, the claim follows by induction, deferring to the next row of
the matrix as we did above. '%

Theorem 4.2. If (Gu,L)u∈F,L∈D is a demo for D, there exists a finite model
satisfying every label occurring in (Gu,L)u∈F,L∈D.

4.2 Formalizing the Model Construction

Our representation of fragments is based on finite types. We represent finite la-
beled graphs as relations over some finite type together with a labeling function.
We then represent fragments using clause labeled graphs with a distinguished
root element.

We turn the finite set F × D into a finite type I. Except for the transitions
connecting the leaves of one row to the next row, the model is then just the
disjoint union of a collection of graphs indexed by I. Let G : I → graph be such
a collection. We lift the internal edges of G by defining a predicate

liftEdge : (Σi:I.G i) → (Σi:I.G i) → bool

on the dependent pairs of an index and a node of the respective graph satisfying

236 C. Doczkal and G. Smolka

liftEdge (i, x) (i, y) ⇐⇒ x→G i y

i �= j =⇒ ¬liftEdge (i, x) (j, y)

The definition of liftEdge uses dependent types in a form that is well supported
by Ssreflect.

Our model construction differs slightly from the construction used by Emerson
and Halpern [5]. In Emerson’s handbook article, every leaf of a fragment is
replaced by the root with the same label on the next level. Thus, only the internal
nodes of every fragment become states of the model. This would amount to using
a Σ-type on the vertex type of every dag. In our model construction, we connect
the leaves of one row to the successors of the equally labeled root of the next
row, thus, avoiding a Σ-type construction. This makes use of the fact that CTL
formulas cannot distinguish different states that have the same labels and the
same set of successors.

5 Tableaux to Demos

An annotated clause is consistent if it is not derivable, and a clause C is consis-
tent if C|· is consistent. Let F be a subformula closed set. We now construct a
demo for the consistent literal clauses over F . We define

D := {L ⊆ F | L consistent, L literal }

We now have to construct for every pair (u, L) ∈ F ×D a nontrivial D-fragment
for L and u. We will construct a demo, where all the fragments are trees. To
bridge the gap between the tableau, which works over arbitrary clauses, and
D-fragments, which are labeled with literal clauses only, we need the following
lemma:

Lemma 5.1. If C|a ∈ U(F) is consistent, we can construct a literal clause
L ⊆ F such that L	 C and L|a is consistent.

Proof. The proof proceeds by induction on the total size of the non-literal for-
mulas in C. If this total size is 0, then C is a literal clause and there is noth-
ing to show. Otherwise there exists some non-literal formula uσ ∈ C. Thus
C|a = C \ {uσ}, uσ|a and we can apply the local rule for uσ. Consider the
case where uσ = s → t+. By rule →+ we know that C \ {s → t+}, s−|a or
C \ {s → t+}, t+ is consistent. In either case we obtain a literal clause L sup-
porting C by induction hypothesis. The other cases are similar.

Before we construct the fragments, we need one more auxiliary definition

R− C := RC, {RC, s− | AX s− ∈ C }

The set of clauses R−C serves the dual purpose of the request RC. It contains
all the clauses that must be supported at the successors of C to satisfy (F4).

The demo for D consists of three kinds of fragments. The easiest fragments
are those for a pair (u, L) where L �	u or u is not an eventuality. In this case, a
D-fragment for L is also a D-fragment for L and u.

Completeness and Decidability Results for CTL in Coq 237

Lemma 5.2. If L ∈ D, we can construct a nontrivial D-fragment for L.

Proof. By assumption L|· is consistent. According to rules X and AX−, C|· is
consistent for every clause C ∈ R−L. Note that there is at least one such clause.
By Lemma 5.1, we can obtain for every C ∈ R−L some clause LC ∈ D. The D-
fragment for L consists of a single root labeled with L and one successor labeled
with LC for every C ∈ R−L. '%

Next, we deal with the case of a pair (A(sU t)+, L) where L	A(sU t)+. This is
the place where we make use of the history annotations.

Lemma 5.3. If C|A(sUHt)
+ ∈ U(F) is consistent, we can construct a D-

fragment G for L such that Λx 	 s+ for every internal node x ∈ G and Λy 	 t+
for all leaves y ∈ G where L is some clause supporting C,A(sU t)+.

Proof. Induction on the slack of H , i.e., the number of clauses from P(F) that
are not in H . Since C|A(sUHt)

+ is consistent, we know C /∈ H . According to
rule AH, there are two cases to consider:

– C, t+|· ∈ U(F) is consistent: By Lemma 5.1 we obtain a literal clause L such
that L	C, t+ and L|· is consistent. The trivial fragment with a single node
labeled with L satisfies all required properties.

– C, s+|A+(sUH,Ct)
+ ∈ U(F) is consistent: By Lemma 5.1 we obtain a literal

clause L such that L	C, s+ and L|A+(sUH,Ct)
+ is consistent. In particu-

lar, L,A+(sU t)+ is locally consistent and supports C as well as A(sU t)+.
By induction hypothesis, we obtain a D-fragment for every clause in R−L.
Putting everything together, we obtain a D-fragment for L,A+(sU t)+ sat-
isfying all required properties '%

Lemma 5.4. If L ∈ D, we can construct a nontrivial D-fragment for L and
A(sU t)+.

Proof. Without loss of generality we can assume that L	s+ and A+(sU t)+ ∈ L.
All other cases are covered by Lemma 5.2. Using rules X, AX−, and A∅, we
show for every C ∈ R−L that C|A(sU ∅t)+ is a consistent clause in U(F). By
Lemma 5.3 we obtain a D-fragment for every such clause. Putting a root labeled
with L on top as in the proof of Lemma 5.2, we obtain a nontrivial D-fragment
for L and A(sU t)+ as required. '%

Lemma 5.5. If L ∈ D, we can construct a nontrivial D-fragment for L and
A(sR t)−.

The proof of Lemma 5.5 is similar to the proof of Lemma 5.4 and uses a similar
auxiliary lemma.

Theorem 5.6. 1. There exists a D-demo.

2. If C|· is consistent, then w |= C for some finite model M with w ∈ M.

238 C. Doczkal and G. Smolka

Note that by Theorem 4.2 all the locally consistent labels of the internal nodes of
the constructed fragments are satisfiable and hence must be consistent. However,
at the point in the proof of Lemma 5.3 where we need to show local consistency
of L,A+(sU t) from consistency of L|A+(sUHt) showing local consistency is all
we can do.

All fragments constructed in this section are trees. In the formalization, we
state the lemmas from this section using an inductively defined tree type, leaving
the sets of nodes and edges implicit. Thus, trees can be composed without up-
dating an edge relation or changing the type of vertices. Even using this tailored
representation, the formalization of Lemma 5.3 is one of the most complex parts
of our development.

For Theorem 5.6, we convert the constructed trees to rooted dags. To convert
a tree T to a dag, we turn the list of subtrees of T into a finite type and use this
as the type of vertices. We then add edges from every tree to its immediate sub-
trees. This construction preserves all fragment properties even though identical
subtrees of T are collapsed in into a single vertex.

6 Tableau Refutations to Hilbert Refutations

We now return to the proof of Theorem 3.1. For this proof, we will translate the
rules of the tableau calculus to lemmas in the Hilbert calculus. For this we need
a number of basic CTL lemmas. The lemmas to which we will refer explicitly
can be found in Figure 4. In formulas, we let sUHt abbreviate (s∧H)U (t∧H).

We present the translation lemmas for the rules AH and RH. Given the non-
local soundness argument sketched in Section 3, it should not come as a surprise
that the translation of both rules requires the use of the corresponding induction
rule from the Hilbert axiomatization. For both lemmas we use the respective
induction rule in dualized form as shown in Figure 4.

Lemma 6.1. If � t→ ¬C and � E+(sUH,Ct) → s→ ¬C,then
� ¬(C ∧ E(sUHt)).

Proof. Assume we have (a) � t → ¬C and (b) � E+(sUH,Ct) → s → ¬C. By
propositional reasoning, it suffices to show

� E(sUHt) → ¬C ∧ E(sUH,Ct)

Applying the EUind rule leaves us with two things to prove. The first one is
� t ∧H → ¬C ∧ E(sUH,Ct) and can be shown using (a) and E1. The other is

� s ∧H → EX(¬C ∧ E(sUH,Ct)) → ¬C ∧ E(sUH,Ct)

The second assumption can be weakened to E+(sUH,Ct). Thus, we also have
¬C by assumption (b). Finally, we obtain E(sUH,Ct) using Lemma E2. '%

Lemma 6.2. If � C → ¬t and � C → s→ ¬A+(sUH,Ct), then
� ¬(C ∧ A(sUHt)).

Completeness and Decidability Results for CTL in Coq 239

A1 � A(sU t) ↔ t ∨ s ∧A+(sU t)
A2 � EG¬t → ¬A(sU t)
A3 � A((s ∧ u)U (t ∧ u)) → u
E1 � t → E(sU t)
E2 � s → E+(sU t) → E(sU t)
AE � AX s → EX t → EX(s ∧ t)

EUind If � t → u and � s → EX u → u, then � E(sU t) → u
EGind If � u → s and � u → EXu, then � u → EG s

Fig. 4. Basic CTL Lemmas

Proof. Assume we have (a) � C → ¬t and (b) � C → s → ¬A+(sUH,Ct). We
set u := ¬t∧A+(sUHt)∧¬A+(sUH,Ct). We first argue that it suffices to show
(1) � u→ EG¬t. Assume we have C and A(sUHt). By (a) we also know ¬t and
thus we have s ∧H and A+(sUHt) by A1. Using (b) and (1), we obtain EG¬t
which contradicts A(sUHt) according to A2.

We show (1) using the EGind rule. Showing � u → ¬t is trivial so it re-
mains to show � u → EXu. Assume u. By Lemma AE we have EX(A(sUHt) ∧
¬A(sUH,Ct)). It remains to show

� A(sUHt) ∧ ¬A(sUH,C t) → u

We reason as follows:

1. A(sUHt) assumption
2. ¬A(sUH,Ct) assumption
3. ¬t ∨ ¬H ∨ C 2, A1
4. ¬s ∨ ¬H ∨ C ∨ ¬A+(sUH,Ct) 2, A1
5. H 1,A3
6. ¬t 3, 5, (a)
7. s ∧ A+(sUHt) 1,6,A1

8. ¬A+(sUH,Ct) 4, 5, 7, (b)

This finishes the proof. '%

Proof (of Theorem 3.1). Let C|a be derivable. We prove the claim by induction
on the derivation of C|a. All cases except those for the rules RH and AH are
straightforward. The former follows with Lemma 6.1 the latter with Lemma 6.2.

'%

To formalize this kind of translation argument, we need some infrastructure
for assembling Hilbert proofs as finding proofs in the bare Hilbert system can be
a difficult task. We extend the infrastructure we used in our previous work [4] to
CTL. We use conjunctions over lists of formulas to simulate context. We also use
Coq’s generalized (setoid) rewriting [12] with the preorder { (s, t) | � s→ t }.

Putting our results together we obtain a certifying decision method for CTL.

240 C. Doczkal and G. Smolka

Proof (of Theorem 2.2). By Lemma 3.3, derivability of the clause s+|· is decid-
able. If s+|· is derivable we obtain a proof of ¬s with Theorem 3.1. Otherwise,
we obtain a finite model satisfying s with Theorem 5.6 and Theorem 4.2. By
Theorem 2.1, the two results are mutually exclusive. '%

Corollary 6.3 (Decidability). Satisfiability of formulas is decidable.

Corollary 6.4 (Completeness). If ∀M.∀w ∈ M.w |= s, then � s.

7 Conclusion

Our completeness proof for the tableau calculus differs considerably from the
corresponding completeness proof for the sequent system given by Brünnler and
Lange [3]. Their proof works by proving the completeness of another more restric-
tive sequent calculus which is ad-hoc in the sense that it features a rule whose
applicability is only defined for backward proof search. We simplify the proof by
working directly with the tableau rules and by using the model construction of
Emerson [5].

The proof of Theorem 3.1 relies on the ability to express the semantics of
history annotations in terms of formulas. This allows us to show the soundness
of the tableau calculus by translating the tableau derivations in a compositional
way. While this works well for CTL, this is not necessarily the case for other
modal logics. As observed previously [4], the tableau system for CTL can be
adapted to modal logic with transitive closure (K+). However, K+ cannot express
the “until” operator used in the semantics of annotated eventualities. It therefore
appears unlikely that the individual rules of a history-augmented tableau system
for K+ can be translated one by one to the Hilbert axiomatization. The tableau
system we used to obtain a certifying decision method for K+ [4] uses a complex
compound rule instead of the more fine-grained history annotations employed
here. Thus, even though the logic CTL is more expressive than K+, the results
presented here do not subsume our previous results.

An alternative to our construction of a certifying decision method could be to
replace the tableau calculus with a pruning-based decision procedure like the one
described by Emerson and Halpern [7]. In fact Emerson and Halpern’s complete-
ness proof for their Hilbert axiomatization of CTL is based on this algorithm.
While their proof is non-constructive, we believe that it can be transformed into
a constructive proof. In any case, we believe that the formal analysis of our
history-augmented tableau calculus is interesting in its own right.

The proofs we present involve a fair amount of detail, most of which is omitted
in the paper for reasons of space. Having a formalization thus not only ensures
that the proofs are indeed correct, but also gives the reader the possibility to
look at the omitted details.

Completeness and Decidability Results for CTL in Coq 241

For our formal development, we profit much from Ssreflect’s handling of count-
able and finite types. Countable types form the basis for our set library and finite
types are used heavily when we assemble the fragments of a demo into a finite
model. Altogether our formalization consists of roughly 3500 lines. The included
set library consists of about 700 lines, the remaining lines are split almost evenly
over the proofs of Theorems 3.1, 5.6, and 4.2 and the rest of the development.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: Mo-

hamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
86–101. Springer, Heidelberg (2008)

3. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log. Al-
gebr. Program. 76(2), 216–225 (2008)

4. Doczkal, C., Smolka, G.: Constructive completeness for modal logic with transitive
closure. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 224–
239. Springer, Heidelberg (2012)

5. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Formal Models and Sematics (B), vol. B, pp.
995–1072. Elsevier (1990)

6. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)

7. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

8. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formal-
isation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

9. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Research Report RR-6455, INRIA (2008),
http://hal.inria.fr/inria-00258384/en/

10. Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventualities.
In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 240–254. Springer,
Heidelberg (2010)

11. Smullyan, R.M.: First-Order Logic. Springer (1968)
12. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formal-

ized Reasoning 2(1) (2009)
13. The Coq Development Team, http://coq.inria.fr

http://hal.inria.fr/inria-00258384/en/
http://coq.inria.fr

Hypermap Specification and Certified Linked

Implementation Using Orbits

Jean-François Dufourd

ICUBE, Université de Strasbourg et CNRS,
Pôle API, Boulevard S. Brant, BP 10413, 67412 Illkirch, France

jfd@unistra.fr

Abstract. We propose a revised constructive specification and a cer-
tified hierarchized linked implementation of combinatorial hypermaps
using a general notion of orbit. Combinatorial hypermaps help to prove
theorems in algebraic topology and to develop algorithms in computa-
tional geometry. Orbits unify the presentation at conceptual and concrete
levels and reduce the proof effort. All the development is formalized and
verified in the Coq proof assistant. The implementation is easily proved
observationally equivalent to the specification and translated in C lan-
guage. Our method is transferable to a great class of algebraic specifica-
tions implemented into complex data structures with hierarchized linear,
circular or symmetric linked lists, and pointer arrays.

1 Introduction

We propose a revised constructive specification and a certified hierarchized linked
implementation of 2-dimensional combinatorial hypermaps using a general no-
tion of orbit. Combinatorial hypermaps [8] are used to algebraically describe
meshed topologies at any dimension. They have been formalized to interactively
prove great mathematical results, e.g. the famous Four-Colour theorem [20] or
the discrete Jordan curve theorem [10], with the help of a proof assistant. They
are also at the root of the certification of functional algorithms in computational
geometry, e.g. Delaunay triangulation [14]. Once implemented, hypermaps (or
derivatives) are a basic data structure in geometric libraries, e.g. Topofil [2] or
CGAL [27]. Orbits, whose formal study is presented in [12], allow us to deal with
trajectories, at conceptual and concrete levels. A precise correspondence between
hypermaps and their linked implementation remained a challenge which we have
decided to address. The novalties of this work are:

- An entire development formalized and verified in the Coq proof assistant [1].
Nothing is added to its higher-order calculus, except the axiom of extensionality
and another one for address generation of new allocated memory cells. The first
says that two functions are equal if they are equal at any point, and the second
that an address generated for a block allocation is necessarily fresh and non-null;

� This work was supported in part by the French ANR project GALAPAGOS.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 242–257, 2014.
c© Springer International Publishing Switzerland 2014

Hypermap Specification and Certified Linked Implementation Using Orbits 243

- An extensive use of orbits, which nicely unifies and simplifies the presentation
of specifications and linked implementations and reduces the proof effort;
- An intricate pointer implementation in a general simple memory model, and
concrete operations described in a functional form which is easy to translate in
a ”true” programming language, e.g. in C;
- A proof of observational equivalence between specification and pointer imple-
mentation thank to morphisms.

The underlying method is transferable to a great class of complex data struc-
tures with hierarchized linear, circular or symmetric lists, and pointer arrays.
That is greatly due to the unification provided by orbits. In Sect. 2, we recall
the orbit formalization. In Sect. 3 and 4, we present and specify the hypermaps.
In Sect. 5, we formalize the general memory model, then we describe in Sect.
6 the linked implementation. In Sect. 7, we prove the observational equivalence
between specification and implementation. We discuss related work in Sect. 8
and conclude in Sect. 9. The whole formalization process is described but the
proof scripts are out of the scope of this article. The Coq development, including
ref. [12] and orbit library files, may be downloaded [11].

2 Orbits for Functions in Finite Domains

General Definitions and Properties. In Coq, all objects are strongly typed,
Prop is the type of propositions, and Type can be viewed as the “type of types”
[1]. We work in a context composed of: X:Type, any type whose built-in equality
= is equipped with eqd X, a decision function, exc X:X, an element chosen as
exception, f:X -> X, any total function on X, and D, a finite (sub)domain of X
never containing exc X. For technical reasons, D is described as a finite list of
type list X with no repetitive element. We write In z l when z occurs in the
list l, nil for the empty list, and ~ for not. For any z:X and k >= 0, we consider
zk := Iter f k z, the k-th iterate of z by f (with z0 := z). Since D is finite,
during the iteration process calculating zk, a time necessarily comes where zk

goes outside D or encounters an iterate already met [12].

Definition 1. (Orbital sequence, length, orbit, limit, top)
(i) The orbital sequence of z by f at the order k >= 0, denoted by orbs k z, is
the list containing z(k-1), ..., z1, z0, written from first to last elements.
(ii) The length of z’s orbit by f w.r.t D, denoted by lorb z, is the least integer
p such that ~ In zp D or In zp (orbs p z).
(iii) The orbit of z by f w.r.t. D is orbs (lorb z) z, in short orb z.
(iv) The limit of z by f w.r.t. D, is zp − or z(lorb z) −, in short lim z.
(v) When In z D, the top of z by f w.r.t. D is z(lorb z - 1), in short top z.

So, an orbit is a bounded list without repetition, possibly empty, which can be
viewed as a finite set when it is more convenient. Necessarily the shape of z’s orbit
(Fig. 1(Left)) is: (i) empty when ~ In z D; (ii) a line when ~ In (lim z) D,

244 J.-F. Dufourd

z z= p

z z= p

z p

z p

ComponentsShapes

z
p−1

z

top
circuit

lim

zp−1

limtop

top

lim

D

z

z

1

1

z

z

p−1

z

z

z
z

p

p

p−1

p−1z

z

tree
circuit

trees

D
empty shape

line

crosier

Fig. 1. Orbit Shapes (for 4 positions of z) / Components (for 2 positions of z)

what is denoted by the predicate inv_line z; (iii) a crosier when In (lim z)

(orb z) what is denoted by inv_crosier z; (iv) a circuit when lim z = z,
what is denoted by inv_circ z. An empty orbit is a line and a circuit as well,
and a circuit is a crosier, since lim z = z entails In (lim z) (orb z). The
existence of an orbital path from z to t, i.e. the fact that t is in z’s orbit, is
written expo z t, where expo is a binary reflexive transitive relation, which is
symmetric only if z’s shape is a circuit. A lot of lemmas express the variation of
lorb, orb and lim along z’s orbit, depending on its shape [11]. In fact, (D, f)

forms a functional graph whose connected components are trees or circuits with
grafted trees in D. Fig. 1(Right) shows components for two positions of z in D.

When the orbit of z is a non-empty circuit or z has exactly one f-predecessor
in D, the definition of an inverse for f, denoted by f 1 z, is immediate (see
[11]). That is the case for any z having an f-predecessor in D when f is partially
injective w.r.t. D in the following sense (Here, -> denotes the implication):

forall z t, In z D -> In t D -> f z <> exc X -> f z = f t -> z = t

That is the usual injection characterization for f, but only with f z <> exc X to
fully capture the features of linked lists in memories. In this case, the orbit shapes
are only lines and circuits, and the connected components only (linear) branches
and circuits. The branch of z is obtained by prolongation of z’s orbit with the
f-ancestors of z in D (Fig. 2(a)). When f is a partial injection, its inverse f 1

enjoys expected properties, e.g. f 1 (f z) = f (f 1 z) = z and orbit shape
similarities with f [11]. Fig. 2(b) shows the inversion of a branch connected
component (Fig. 2(a)) of z. The previous notions are given in a context, in fact
a Coq section, where X, f and D are variables. Outside the section, each notion is
parameterized by X, f and D. For instance, lorb z becomes lorb X f D z and
is usable for any type, function and domain. This is necessary when f or D are
changing as in what follows.

Hypermap Specification and Certified Linked Implementation Using Orbits 245

1f_

1f_

1f_

1f_

1f_

1f_

D

z

zp−1

= zp
top

bot

circuit

z

f

z

D D
(a) (b)

f

lim = exc X

f

f

f

f

top

line

(c)

lim

top

bot

line

bot

lim

branch

branch

Fig. 2. (a) Branch containing z / (b) Inversion / (c) Closure

So, when f is partially injective, if we want to work only with circuits, we
can close all the “open orbits”, in fact the branches. This operation (Fig. 2(c)),
which modifies f but not D, uses top (Sect. 2) and bot (Fig. 2(a,b)):

Definition bot f D z := top (f_1 X f D) D z.

Definition Cl f D z := if In_dec X z D then if In_dec X (f z) D then f z else bot f D z else z.

In Cl f D, all the orbits are circuits and the reachability expo is symmetrically
obtained from this for f. Now, we outline orbit updating operations.

• Addition/deletion. An addition inserts a new element a in D, while the
(total) function f:X -> X remains the same. We require that ~ In a D, we pose
Da := a :: D and a1 := f a. Regarding the orbit variation, for any z:X, two
cases arise: (i) When lim D f z <> a, the orbit of z is entirely preserved; (ii)
Otherwise, great changes can occur (See [12]). But, if we suppose that ~ In a1 D

(Fig. 3(Left)), which corresponds to most practical cases, z’s new orbit is the
previous one completed by a only. The ”inverse” operation is the deletion of an
element a from D. Regarding the orbit variation for any z:X, two cases arise: (i)

z

line

z

1

a = zj
D

D_a

a1

z

z1

p−1

z

line

a1 = pza

D

Da

Fig. 3. Addition (Left)/Deletion (Right) effect on an orbit

246 J.-F. Dufourd

When In a (orb D f z), z’s orbit is cut into a line with limit a (Fig. 3(Right),
where D_a:= remove D a); (ii) Otherwise it is entirely preserved.

• Mutation. A mutation modifies the image by f of an element u, i.e. f u, into
an element, named u1, while all the other elements, and D, are unchanged. The
new function, named Mu f u u1, is defined by:

Definition Mu(f:X->X)(u u1:X)(z:X):X := if eqd X u z then u1 else f z.

If u is not in D nothing important occurs. If u is in D, two cases arise to determine
the new orbits of u1 and u (Fig. 4): (i) When ~ In u (orb f D u1), the orbit
of u1 does not change and the new orbit of u is this of u1 plus u itself (Fig.
4(Case A)); (ii) Otherwise, the mutation closes a new circuit which, say, starts
from u1, goes to u by the old path, then goes back to u1 in one step (Fig. 4(Case
B)). Then, the new orbit of any z:X can be obtained similarly. Different cases
arise depending on the respective positions of z, u1 and u (See [12]).

u

u1

u

u1

D

Case A Case B

circuit

line

Mutation

u

circuit

u

u1

line

Case A Case B

line

u1 D

f u f u

f uf u

Fig. 4. Mutation: Cases A and B

• Transposition. A transposition consists in exchanging the images by f of two
elements which must belong to circuits. In fact, just one element, u, and its new
successor, u1, are provided in the transposition, whose definition is:

Definition Tu(f:X->X)(D: list X)(u u1:X)(z:X):X :=
if eqd X u z then u1 else if eqd X (f_1 X f D u1) z then f u else f z.

The definition also says that the new successor of f_1 X f D u1, i.e. u1’s pre-
decessor, is f u, i.e. the old u’s successor, and that nothing is changed for the
other elements (Fig. 5). In the case where u1 = f u, the transposition has no
effect. This operation is usable if u and u1 are in the same circuit or not (Fig. 5,
Left and Right). Intuitively, in the first case, the unique circuit is split into two
circuits, and, in the second case, the two circuits are merged into a unique one.
That is the intuition, but the formal proof of these facts is far from being easy.
Of course, for any z, it is proved that z’s orbit (and connected components) are
not modified by Tu if it contains neither u nor f_1 X f D u1.

Hypermap Specification and Certified Linked Implementation Using Orbits 247

(merge)u1

f u

−1

u

u1

f u

f u1

u D D

Transposition

(split)

u1

−1
−1

f u1 f u1 f u1
−1

u1u

Transposition
f u f u

u D D

Fig. 5. Split (Left) and merge (Right)

3 Combinatorial Hypermaps

Combinatorial hypermaps [8] describe space subdivision topologies at any di-
mension. We focus to the dimension 2, and surface subdivisions, like in [20,10].

Definition 2. (Hypermap)
A (2-dimensional combinatorial) hypermap, M = (D,α0, α1), is an algebraic
structure where D is a finite set, the elements of which are called dart, and
α0, α1 are permutations on D, being indexed by a dimension, 0 or 1.

Fig. 6(Left) shows a hypermap with D = {1, ..., 16} and α0, α1 given by a
table. It is embedded in the plane, its darts being represented by half-Jordan
arcs (labeled by the darts) which are oriented from a bullet to a small transverse
stroke. It z is a dart, α0 z shares z’s stroke, α1 z shares z’s bullet. A hypermap
describes surface subdivision topologies, the cells of which can be defined by
orbits, where X = dart, the type of the darts, and D ⊂ dart in Def. 1.

Definition 3. (Hypermap orbits)
Let M = (D,α0, α1) be a hypermap and z ∈ D any dart in M . The edge (resp.
vertex, face) of z is the orbit of z by α0 (resp. α1, φ = α−1

1 ◦ α−1
0) w.r.t. D.

11

13

14

15

10

9
16

12
1

2

3

4

5

6
7 8

1 2 4 5 10 11

α1

D
α0 2

14 15 16
1

2

5

1 7

7

5

6

8 4
10

 166 11
9 12

10

14
1312

13 16 15

3

3
3

4
6 7 8

8
9

11

13 12 15 14 9

1
2

3

4

5

6

Right: Coding the left hypermap Left: An example hypermap embedded in the plane

Fig. 6. 2-combinatorial hypermap and partial coding in Coq

Since α0, α1 and φ are bijections on D, then, for any z ∈ D, the orbits of z by
them w.r.t. D are circuits. It is the same for their inverses − α−1

0 , α−1
1 and φ−1

− which are also defined over all D. So, in this cyclic case, if t is in z’s orbit by

248 J.-F. Dufourd

f , t’s orbit and z’s orbit may be identified into a unique circuit, defined modulo
a cyclic permutation. So, the common orbit only counts for 1 in the number of
orbits by f . In fact, these cyclic orbits modulo permutation correspond exactly to
the connected components generated by f in D. Cells and connected components
(w.r.t. {α0, α1}) can be counted to classify hypermaps according to their Euler
characteristic, genus and planarity [9,12].

4 Hypermap Coq Formalization

Preliminaries. For simplicity, dart is the Coq library type nat of the natural
numbers. The eq dart dec decision function of dart equality is eq nat dec, the
decision function of nat equality, and the dart exception is nild := 0. Then,
the dimensions are the two constants zero and one of the dim enumerated type,
a simple case of inductive type.

Free Maps. As in [9,10,14], the 2-dimensional combinatorial hypermap specifi-
cation begins with the inductive definition of a type, called fmap, of free maps,
i.e. without any constraint:

Inductive fmap:Type :=
V : fmap | I : fmap->dart->fmap | L : fmap->dim->dart->dart->fmap.

It has three constructors: V, for the empty − or void − free map; I m x, for the
insertion in the free map m of an isolated dart x; and L m k x y, for the linking
at dimension k of the dart x to the dart y: y becomes the k-successor of x, and x

the k-predecessor of y. Any hypermap can be built by using these constructors,
i.e. viewed as a term combining V, I and L. For instance, the six-darts part m2
(Fig. 6(Right), with k-links by L being symbolized by small circle arcs) of the
hypermap of Fig. 6(Left) is built by:

m1 := I (I (I (I (I (I V 1) 2) 3) 4) 5) 6.
m2 := L (L (L (L (L m1 zero 4 2) zero 2 5) one 1 2) one 2 3) one 6 5.

Observers. Some observers (or selectors) can be easily defined on fmap. So, the
existence in a free map m of a dart z is a predicate defined by structural induction
on fmap by (True (resp. False) is the predicate always (resp. never) satisfied):

Fixpoint exd(m:fmap)(z:dart){struct m}: Prop :=
match m with V => False | I m0 x => x = z \/ exd m0 z | L m0 _ _ _ => exd m0 z end.

The k-successor, pA m k z, of any dart z in m is similarly defined. It is nild if
m is empty or contains no k-link from z. A similar definition is written for pA 1

m k z, the k-predecessor. To avoid returning nild in case of exception, A and
A 1, closures of pA and pA 1, are defined in a mutual recursive way ([11]). They
exactly simulate the expected behavior of the αk permutations (Def. 2).

Hypermaps. To build (well-formed) hypermaps, I and L must be used only
when the following preconditions are satisfied. Then, the invariant inv_hmap m,
inductively defined on m, completely characterizes the hypermaps [11]:

Hypermap Specification and Certified Linked Implementation Using Orbits 249

Definition prec_I (m:fmap)(x:dart) := x <> nild /\ ~ exd m x .
Definition prec_L (m:fmap)(k:dim)(x y:dart) :=

exd m x /\ exd m y /\ pA m k x = nild /\ pA_1 m k y = nild /\ A m k x <> y.
Fixpoint inv_hmap(m:fmap):Prop:= match m with

V => True | I m0 x => inv_hmap m0 /\ prec_I m0 x
| L m0 k0 x y => inv_hmap m0 /\ prec_L m0 k0 x y end.

When m is a well-formed hypermap, the last constraint of prec_L, A m k x <> y,
entails that, for any z, the orbit for pA m k and pA 1 m k are never closed,
i.e. are never circuits, and always remain lines (Sect. 2). For instance, our m2

example respects these preconditions and satisfies inv_hmap m2, so the circle
arcs in Fig. 6(Right) do not form full circles. This choice is motivated by normal
form considerations allowing inductive proofs of topological results [9,10].

Hypermap properties. When inv_hmap m is satisfied, it is proved that A m

k and A 1 m k are inverse bijective operations. Then, considering the function
m2s m which sends the free map m into its support “set” − or instead finite list,
it is proved that pA m k and A m k are partial injections on m2s m. So, for any
dart z, the orbit of z for pA m k w.r.t. m2s m always is a line (ended by nild). It
is proved that A m k is really the closure of pA m k in the orbit meaning (Sect.
2), so the orbits for A m k and A 1 m k are circular:

Theorem inv_line_pA: forall m k z, inv_hmap m -> inv_line dart (pA m k) (m2s m) z.
Theorem A_eq_Cl: forall m k, inv_hmap m -> A m k = Cl dart (pA m k) (m2s m).
Theorem inv_circ_A: forall m k z, inv_hmap m -> inv_circ dart (A m k) (m2s m) z.
Lemma A_1_eq_f_1: forall m k z,

inv_hmap m -> exd m z -> A_1 m k z = f_1 dart (A m k) (m2s m) z.

x1

x

y

y_1

Split m one x y m

x

x1
y

y_1

y1

y x

y2
y3

x1

x2

x

x2

x1

Merge m one x y

y3

y2

y1

y

Fig. 7. Split (Left) and Merge (Right) at dimension one

Then, orbit results on connectivity [11] for A m k, A 1 m k and their compositions
apply, allowing recursive definitions of the numbers of edges, vertices, faces.
The number of connected components, w.r.t. {A m zero, A m one}, is defined
similarly. All this leads to an incremental definition of the Euler characteristic,
to the Genus theorem and to full constructive planarity criteria [9,11].

250 J.-F. Dufourd

High-level Operations. Operations to break a k-link, delete an (isolated) dart,
and shift the hole of a k-orbit, are specified inductively. They preserve the hyper-
map invariant. Finally, Split m k x y splits an orbit for A m k into two parts
and Merge m k x y merges two distinct orbits for A m k (Fig. 7 for k:= one).
For both, the goal is to insert a new k-link from x to y, while restoring the
consistency of the resulting hypermap. The two operations correspond exactly
with an orbit transposition (Sect. 2):

Lemma A_Split_eq_Tu: forall m k x y,
inv_hmap m -> prec_Split m k x y -> A (Split m k x y) k = Tu dart (A m k) (m2s m) x y.

Lemma A_Merge_eq_Tu: forall m k x y,
inv_hmap m -> prec_Merge m k x y -> A (Merge m k x y) k = Tu dart (A m k) (m2s m) x y.

5 General Memory Model

Goal We want to derive imperative programs using “high-level” C type facil-
ities, i.e. typedef. So, in our memory C manager simulation, we avoid “low-
level” features − bits, bytes, words, registers, blocks, offsets, etc − as in projects
about compilers or distributed systems [21,6]. In C, an allocation is realized by
malloc(n) where n is the byte-size of the booked area. A C macro, we call
MALLOC(T), hides the size and allows us to allocate an area for any object of
type T and to return a pointer (of type (T *)) on this object:

#define MALLOC(T) ((T *) malloc(sizeof(T)))

Our (simple) memory model simulates it, with natural numbers as potential
addresses and the possibility to always obtain a fresh address to store any object.

Coq Formalization. In Coq, the address type Addr is nat, with the exception
null equal to 0. In a Coq section, we first declare variables: T:Type, for any type,
and undef, exception of type T. Then we define a memory generic type Mem T, for
data of type T, inductively with two constructors: initm, for the empty memory;
and insm M a c, for the insertion in the memory M at the address a of an object
c:T. It is easy to recursively define valid M a, the predicate which expresses
that a is a valid address (i.e. pointing to a stored object) in M, and dom M, the
validity domain of M, a finite address set − or instead, list. A precondition derives
for insm and an invariant inv_Mem M for each memory M. Finally, the parameter
function adgen returns a fresh address from a memory, since it satisfies the axiom
adgen_axiom, which is the second and last one (after extensionality) of our full
development. This mechanism looks like the axiom of choice introduction which
does not affect Coq’s consistency:

Variables (T:Type) (undef:T).
Inductive Mem: Type:= initm : Mem | insm : Mem -> Addr -> T -> Mem.
Fixpoint valid(M:Mem)(z:Addr): Prop :=

match M with initm => False | insm M0 a c => a = z \/ valid M0 z end.
Definition prec_insm M a := ~valid M a /\ a <> null.
Parameter adgen: Mem -> Addr.
Axiom adgen_axiom: forall(M:Mem), let a := adgen M in ~valid M a /\ a <> null.

Hypermap Specification and Certified Linked Implementation Using Orbits 251

Memory Operations. The allocation of a block for an object of type T (recall
that T is an implicit parameter) is defined by (%type forces Coq to consider * as
the Cartesian type product):

Definition alloc(M:Mem):(Mem * Addr)%type:= let a := adgen M in (insm M a undef, a).

It returns a pair composed of a new memory and a fresh address for an allo-
cated block containing undef. It formalizes the behavior of the above MALLOC.
The other operations, which are “standard”, are proved conservative w.r.t. to
inv_Mem: load M z returns the data at the address z if it is valid, undef other-
wise; free M z releases, if necessary, the address z and its corresponding block
in M; and mut M z t changes in M the value at z into t.

6 Hypermap Linked Implementation

Linked cell memory As usual in geometric libraries, we orient the implemen-
tation toward linked cells. First, at each dart is associated a structure of type
cell, defined thanks to a Coq Record scheme. So, a dart is itself represented
by an address. Then, the type Mem, which was parameterized by T, is instanti-
ated into Memc to contain cell data. In the following, all the generic memory
operations are instantiated like Memc, with names suffixed by “c”:

Record cell:Type:= mkcell { s : dim -> Addr; p : dim -> Addr; next : Addr }.
Definition Memc := Mem cell.

So, s and p are viewed as functions, in fact arrays indexed by dim, to represent
pointers to the successors and predecessors by A, and next is a pointer, intended
for a next cell, used for hypermap full traversals (e.g., see Fig. 8 or 9).

Main linked list A 2-dimensional hypermap is represented by a pair (M, h),
where M is such a memory and h the head pointer of a singly-linked linear list of
cells representing exactly the darts of the hypermap. The corresponding type is
called Rhmap. Then, a lot of functions are defined for this representation. Their
names start with “R”, for “Representation”, and their meaning is immediate:

Definition Rhmap := (Memc * Addr)%type.
Definition Rnext M z := next (loadc M z).
Definition Rorb Rm := let (M, h) := Rm in orb Addr (Rnext M) (domc M) h.
Definition Rlim Rm := let (M, h) := Rm in lim Addr (Rnext M) (domc M) h.
Definition Rexd Rm z := In z (Rorb Rm).
Definition RA M k z := s (loadc M z) k.
Definition RA_1 M k z := p (loadc M z) k.

So, Rnext M z gives the address of z’s successor in the list, Rorb Rm and Rlim Rm

are z’s orbit and limit for Rnext M w.r.t. domc M when Rm = (M, h). Operations
Rexd, RA and RA_1 are intended to be the representations of exd, A and A_1 of
the hypermap specification. However, this will have to be proved.

Invariants and Consequences. To manage well-defined pointers and lists,
our hypermap representation must be restricted. We have grouped constraints
in a representation invariant, called inv_Rhmap, which is the conjunction of
inv_Rhmap1 and inv_Rhmap2 dealing with orbits:

252 J.-F. Dufourd

Definition inv_Rhmap1 (Rm:Rhmap) := let (M, h) := Rm in
inv_Memc M /\ (h = null \/ In h (domc M)) /\ lim Addr (Rnext M) (domc M) h = null.

Definition inv_Rhmap2 (Rm:Rhmap) := let (M, h) := Rm in
forall k z, Rexd Rm z ->

inv_circ Addr (RA M k) (Rorb Rm) z /\ RA_1 M k z = f_1 Addr (RA M k) (Rorb Rm) z.
Definition inv_Rhmap (Rm:Rhmap) := inv_Rhmap1 Rm /\ inv_Rhmap2 Rm.

For a hypermap representation Rm = (M,h): (i) inv_Rhmap1 Rm prescribes that
M is a well-formed cell memory, h is null or in M, and the limit of h by Rnext M

w.r.t. the domain of M is null. Therefore, the corresponding orbit, called Rorb

Rm, is a line; (ii) inv_Rhmap2 Rm stipulates that, for all dimension k, and address
z in Rorb Rm, the orbit of z by RA M k w.r.t. Rorb Rm is a circuit, and RA 1 M

k z is the inverse image of z for RA M k.
So, for any address z in Rorb Rm, i.e. of a cell in the main list, we immediately

have that RA and RA_1 are inverse operations and that the orbit of z by RA_1 M k

w.r.t. Rorb Rm is also a circuit. Consequently, for k = zero or one, the fields (s
k) and (p k) are inverse pointers which determine doubly-linked circular lists,
each corresponding to a hypermap edge or vertex, which can be traversed in
forward and backward directions. Moreover, these lists are never empty, and, for
each k and direction, they determine a partition of the main simply-linked list.

User Operations. Now, a complete kernel of user concrete operations may be
defined, exactly as in geometric libraries, e.g. Topofil [2], preserving inv_Rhmap

and hiding dangerous pointer manipulations. We “program” it by using Coq
functional forms whose translation in C is immediate.

• Firstly, RV returns an empty hypermap representation in any well-formed cell
memory M. So, no address z points in the representation:

Definition RV(M:Memc): Rhmap := (M, null).
Lemma Rexd_RV: forall M z, inv_Memc M -> ~ Rexd (RV M) z.

• Secondly, RI Rm inserts at the head of Rm = (M, h) a new cell whose generated
address is x, initializes it with convenient pointers (ficell x initializes s’s and
p’s pointers with x), and returns the new memory, M2, and head pointer, x. Fig.
8 illustrates RI when Rm is not empty:

Definition RI(Rm:Rhmap):Rhmap :=
let (M, h) := Rm in
let (M1, x) := allocc M in
let M2 := mutc M1 x (modnext (ficell x) h) in (M2, x).

nexts zero s one

p onep zerohx

nexts zero s one

p onep zero

x x x x null

RI Rm:h

nexts zero s one

p onep zero

null

Rm:

Fig. 8. Operation RI: Inserting a new dart in Rm (Left) giving RI Rm (Right)

Hypermap Specification and Certified Linked Implementation Using Orbits 253

Numerous properties are proved by following the state changes simulated by the
variables assignments. Of course, RI does what it should do: adding a new cell
pointed by x, and creating new fixpoints at x for RA and RA_1 at any dimension.
The corresponding orbits of x are loops, while the other orbits are unchanged
(eq Addr dec is the address comparison):

Lemma Rorb_RI: Rorb (RI Rm) = Rorb Rm ++ (x :: nil).

Lemma Rexd_RI: forall z, Rexd (RI Rm) z <-> Rexd Rm z \/ z = adgenc M.

Lemma RA_RI: forall k z, RA (fst (RI Rm)) k z = if eq_Addr_dec x z then x else RA M k z.

Lemma RA_1_RI: forall k z, RA_1 (fst (RI Rm)) k z = if eq_Addr_dec x z then x else RA_1 M k z.

Proofs use in a crucial way properties of orbit operations (Sect. 2): Rnext, RA
and RA 1 can be viewed through additions and mutations in orbits, e.g.:

Lemma Rnext_M2_Mu: Rnext M2 = Mu Addr (Rnext M) z_1 (Rnext M z).
Lemma RA_M2_Mu: forall k, RA M2 k = Mu Addr (RA M k) x x.

• Thirdly, RL m k x y performs a transposition involving the orbits of x and y

at dimension k. It replaces, for function RA Rm k, the successor of x by y, and
the successor of RA_1 m k y by RA m k x, and also modifies the predecessors
consistently. This operation, which is the composition of four memory mutations,
is illustrated in Fig. 9 for k:= one. It is proved that the expected missions of
RL are satisfied, for Rexd, RA m k and RA_1 m k. So, the orbits for RA m k and
RA_1 m k remains circuits, and RL realizes either a merge or a split. The proofs
extensively use relations established with the orbit operations, particularly with
the generic orbit Tu transposition (Sect. 2), e.g., M6 being the final memory state:

Lemma RA_M6_eq_Tu: RA M6 k = Tu Addr (RA M k) (Rorb (M,h)) x y.

• Fourthly, RD Rm z H achieves a deletion of the pointer x (which must be a
fixpoint for RA and RA 1) and a deallocation of the corresponding cell, if any.
The additional formal parameter H is a proof of inv_Rhmap1 Rm, which is used
to guarantee the termination of x’s searching in Rm. Indeed, in the general case,
one has to find x_1, the predecessor address of x in the linked list, thanks to a
sequential search. It is proved that, after RD, x is always invalid, and Rnext, RA
and RA_1 are updated conveniently. Once again, the proofs [11] rely on properties
of orbit deletion and mutation (Sect. 2).

next

p onep zero

nexts zero s one

y_k
p zero

s zero

xk

y_k

xk

next

p onep zero

nexts zero s one

x

s zero

p zero

y

x

y

RL Rm k x y:

next

p onep zero
y

nexts zero s one

y_k
p zero

s zero

y_k

y

next

p onep zero
xk

nexts zero s one

s zero

p zero

xk

x

x

Rm:

Fig. 9. Operation RL: Transposing two darts of Rm (Left) giving Rm k x y (Right)

254 J.-F. Dufourd

7 Equivalence Hypermap Specification / Implementation

Abstraction Function. We want to go from a hypermap representation, Rm,
to its meaning − its semantics − in terms of hypermap specification by an ab-
straction function. From a user’s viewpoint, the construction of Rm is realized
exclusively from a well-formed memory M throughout RV, RI, RL and RD calls,
satisfying the preconditions. That is expressed by a predicate, called CRhmap Rm,
which is inductively defined (for technical reasons of recursion principle genera-
tion) in Type [11]. If Rm satisfies CRhmap Rm, then it is proved to be a consistent
hypermap representation. Then, the abstraction function, called Abs, is recur-
sively defined by a matching on a proof CRm of this predicate, m0 := Abs Rm0

H0 being the result from the previous hypermap, Rm0, in the recursion, if any:

Fixpoint Abs (Rm: Rhmap) (CRm : CRhmap Rm) {struct CRm}: fmap :=
match CRm with

CRV M H0 => V
| CRI Rm0 H0 => let m0 := Abs Rm0 H0 in I m0 (adgenc (fst Rm0))
| CRL Rm0 k x y H0 H1 => let m0 := Abs Rm0 H0 in

if expo_dec Addr (RA (fst Rm0) k) (Rorb Rm0) x y
then if eqd Addr (A m0 k x) y then m0 else Split m0 k x y
else Merge m0 k x y

| CRD Rm0 x Inv H0 H1 => let m0 := Abs Rm0 H0 in D m0 x.
end.

So, we prove that Abs leads to a real abstract hypermap, with an exact correspon-
dence between exd, A and A_1 of Abs Rm CRm and Rexd, RA and RA_1 of Rm.

Representation Function. Conversely, we go from a hypermap to its repre-
sentation in a given memory M. However, the mapping is possible only if the
darts correspond to addresses which would be generated by successive cell allo-
cations from M. So, the representation function Rep returns from a hypermap a
pair (Rm, Pm), where Rm:Rhmap is a hypermap representation and Pm:Prop is a
proposition saying if the preceding property is satisfied or not:

Fixpoint Rep (M:Memc)(m:fmap): (Rhmap * Prop)%type :=
match m with

V => (RV M, True)
| I m0 x t p => let (Rm0, P0) := Rep M m0 in (RI Rm0 t p, P0 /\ x = adgenc (fst Rm0))
| L m0 k x y => let (Rm0, P0) := Rep M m0 in (RL Rm0 k x y, P0)

end.

Consequently, the representation into Rm succeeds if and only if Pm is satisfied. In
this case, Rm satisfies inv_Rhmap, with an exact correspondence between exd, A
and A_1 of m and Rexd, RA and RA_1 of Rm. These results make Abs and Rep mor-
phisms. So, we have an observational equivalence specification-representation.

8 Related Work and Discussion

Static Proofs of Programs. They are mostly rooted in Floyd-Hoare logic,
which evaluates predicates over a variable stack and a memory heap throughout
program running paths. To overcome difficulties of conjoint local and global
reasoning, Reynolds’s separation logic [26] considers heap regions − combined
by ∗, a conjunction operator −, to link predicates to regions. In fact, predicates

Hypermap Specification and Certified Linked Implementation Using Orbits 255

often refer to underlying abstract data types. Then, the reasoning concerns at
the same time low- and high-level concepts, which is quite difficult to control.
These approaches are rather used to prove isolated already written programs.

Algebraic Specification. To specify and correctly implement entire libraries,
we prefer starting with a formal specification, then deriving an implementa-
tion, and proving they correspond well. So, like [3,24,23,17,7], we find it better
to specify with inductive datatype definitions in the spirit of algebraic speci-
fications [28]. They must be constrained by preconditions inducing datatype
invariants. Of course, definitions and proofs by structural induction must be
supplemented by Nœtherian definitions and reasoning, to deal with termination
problems. Memory and Programming Models. To implement, we focus on

C, in which our geometric programs are mostly written [2]. Here, fine storage
considerations [21,6] are not necessary: A simple “type-based” memory model
is good enough. Coq helps to simulate C memory management, expressions and
commands at high level, following the “good rules” of structured (sequential)
programming. Moreover, we try to converge to tail-recursive definitions, which
are directly translatable into C loops. Of course, additional variant parameters
to deal with termination, e.g. in RD, must be erased, as in the Coq extraction
mechanism [1].

Separation and Collision. Burstall [4] defines list systems to verify linked list
algorithms. Bornat [3] deals with address sequences like in our orbits. Mehta
and Nipkow propose relational abstractions of linear or circular linked lists with
some separation properties in Hoare logic embedded in Isabelle/HOL [24]. These
questions are systematized in separation logic [26,25] which is well suited to dis-
tributed or embedded systems [18] and to composite data structures [17]. Enea et
al. propose a separation logic extension for program manipulating “overlaid” and
nested linked lists [16]. They introduce, ∗w, a field separating conjunction oper-
ator to compose structures sharing some objects. Their examples turn around
nested singly-linked lists and list arrays. In fact, our orbit notion seems sufficient
for all singly- or doubly-linked linear or cyclic data structures, at several levels,
and predicates can be expressed by using Coq logic. Separation is expressed
by disjunction of orbits, whereas collision (and aliasing) is described by their
coalescence, orbits often playing the role of heaps in separation logic.

Hypermap Specification. To specify hypermaps [8] in Coq/SSReflect, Gonthier
et al. [20] adopt an observational viewpoint with a definition similar to Def. 2
(Sect. 3). So, they quickly have many properties on permutations. Their final
result, i.e. the proof of the Four-Colour theorem, is resounding [20]. Our ap-
proach is constructive, starting from a free inductive type, which is constrained
into a hypermap type. It complicates the true beginning but favors structural
induction, algorithms and verifications in discrete topology [9,10,14].

Dedicated Proof Systems. The Ynot project is entirely based on Coq [15,22]:
Higher-order imperative programs (with pointers) are constructed and verified
in a Coq specific environment based on Hoare Type Theory, separation logic,

256 J.-F. Dufourd

monads, tactics and Coq to OCaml extraction. Thanks to special annotations,
proof obligations are largely automated. Our approach is more pragmatic and
uses Coq, and orbits, without new logic features. The proofs are interactive, but
specification and implementation are distinct, their links being morphisms, and
the simulated imperative programs are close to C programs. Many verification
platforms, e.g. Why3 [19] or Frama-C [5], are based on Hoare logic, and federate
solvers, mainly SAT and SMT, often in first-order logic. The Bedrock system by
Chlipala [6] is adapted to implementation, specification and verification of low-
level programs. It uses Hoare logic, separation logic and Coq to reason about
pointers, mostly automatically. However, it cannot tolerate any abstraction be-
yond that of assembly languages (words, registers, branching, etc).

9 Conclusion

We presented a study in Coq for the entire certified development of a hypermap
library. We follow a data refinement by algebraic specifications and reuse at
each stage orbit features [12]. To certify pointer implementations, we use only
Coq on a simple memory model, instead of Hoare logic and separation logic.
The Coq development for this hypermap application − including the memory
model, contains about 9,000 lines (60 definitions, 630 lemmas and theorems) [11].
It imports a Coq generic orbit library [12] reusable to certify implementations
with singly- or doubly-linked lists, alone, intermixed or nested.

In the future, we will generalize orbit results, in extension of [13], to deal
with general trees or graphs. Then, we will try to establish an accurate relation
with separation logic, where orbits could provide the basis of new predicates
on complex structures. The fragment of C which we cover by Coq must be
precised to characterize reachable programs and develop a translator to C. The
use of automatic provers, often jointed in platforms is questionnable. It would
be interesting to carry orbit notions in their specification languages, e.g. ACSL
in Frama-C [5]. At high level, we will investigate 3-dimensional hypermaps to
deal with 3D functional or imperative computational geometry programs, like
the 3D Delaunay triangulation which remains a formidable challenge.

References

1. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

2. Bertrand, Y., Dufourd, J.-F., Françon, J., Lienhardt, P.: Algebraic Specification
and Development in Geometric Modeling. In: Gaudel, M.-C., Jouannaud, J.-P.
(eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 75–89.
Springer, Heidelberg (1993)

3. Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

4. Burstall, R.M.: Some Techniques for Proving Correctness of Programs which Alter
Data Structures. Machine Intelligence 7, 23–50 (1972)

5. CEA-LIST and INRIA-Saclay-Proval Team. Frama-C Project (2013),
http://frama-c.com/about.html

6. Chlipala, A.: Mostly-Automated Verification of Low-level Programs in Computa-
tional Separation Logic. In: Int. ACM Conf. PLDI 2011, pp. 234–245 (2011)

http://frama-c.com/about.html

Hypermap Specification and Certified Linked Implementation Using Orbits 257

7. Conway, C.L., Barrett, C.: Verifying Low-Level Implementations of High-Level
Datatypes. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 306–320. Springer, Heidelberg (2010)

8. Cori, R.: Un code pour les graphes planaires et ses applications. Soc. Math. de
France, Astérisque 27 (1970)

9. Dufourd, J.-F.: Polyhedra genus theorem and Euler formula: A hypermap-
formalized intuitionistic proof. Theor. Comp. Science 403(2-3), 133–159 (2008)

10. Dufourd, J.-F.: An Intuitionistic Proof of a Discrete Form of the Jordan Curve
Theorem Formalized in Coq with Combinatorial Hypermaps. J. of Automated
Reasoning 43(1), 19–51 (2009)

11. Dufourd, J.-F.: Hmap Specification and Implementation - On-line Coq Develop-
ment (2013), http://dpt-info.u-strasbg.fr/~jfd/Hmap.tar.gz

12. Dufourd, J.-F.: Formal Study of Functional Orbits in Finite Domains. Submitted
to TCS, 40 pages (2013)

13. Dufourd, J.-F.: Dérivation de l’Algorithme de Schorr-Waite par une Méthode
Algébrique. In: JFLA 2012, INRIA, hal-00665909, Carnac, 15 p. (February 2012)

14. Dufourd, J.-F., Bertot, Y.: Formal Study of Plane Delaunay Triangulation. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 211–226.
Springer, Heidelberg (2010)

15. Chlipala, A., et al.: Effective Interactive Proofs for Higher-Order Imperative pro-
grams. In: ICFP 2009, pp. 79–90 (2009)

16. Enea, C., Saveluc, V., Sighireanu, M.: Compositional Invariant Checking for Over-
laid and Nested Linked Lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 129–148. Springer, Heidelberg (2013)

17. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape Analysis for Composite Data Structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

18. Marti, N., Affeldt, R.: Formal Verification of the Heap Manager of an Operating
System Using Separation Logic. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 400–419. Springer, Heidelberg (2006)

19. Filliâtre, J.-C.: Verifying Two Lines of C with Why3: An exercise in program
verification. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS,
vol. 7152, pp. 83–97. Springer, Heidelberg (2012)

20. Gonthier, G.: Formal Proof - the Four Color Theorem. Notices of the AMS 55(11),
1382–1393 (2008)

21. Leroy, X., Blazy, S.: Formal Verification of a C-like Memory Model and Its Uses
for Verifying Program Transformations. J. of Autom. Reas. 41(1), 1–31 (2008)

22. Malecha, G., Morrisett, G.: Mechanized Verification with sharing. In: Cavalcanti,
A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255,
pp. 245–259. Springer, Heidelberg (2010)

23. Marché, C.: Towards Modular Algebraic Specifications for Pointer Programs: A
Case Study. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud
Festschrift. LNCS, vol. 4600, pp. 235–258. Springer, Heidelberg (2007)

24. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information
and Computation 199(1-2), 200–227 (2005)

25. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. ACM
TOPLAS 31(3) (2009)

26. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
LICS 2002, pp. 55–74 (2002)

27. CGAL Team. Computational Geometry Algorithms Library Project, Chapter 27:
Combinatorial Maps (2013), http://www.cgal.org

28. Wirsing, M.: Algebraic Specification. In: Handbook of TCS, vol. B. Elsevier/MIT
Press (1990)

http://dpt-info.u-strasbg.fr/~jfd/Hmap.tar.gz
http://www.cgal.org

A Verified Generate-Test-Aggregate Coq Library

for Parallel Programs Extraction

Kento Emoto1, Frédéric Loulergue2, and Julien Tesson3

1 Kyushu Institute of Technology, Japan
emoto@ai.kyutech.ac.jp

2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
Frederic.Loulergue@univ-orleans.fr

3 Université Paris Est, LACL, UPEC, France
Julien.Tesson@univ-paris-est.fr

Abstract. The integration of the generate-and-test paradigm and semi-
rings for the aggregation of results provides a parallel programming
framework for large scale data-intensive applications. The so-called GTA
framework allows a user to define an inefficient specification of his/her
problem as a composition of a generator of all the candidate solutions,
a tester of valid solutions, and an aggregator to combine the solutions.
Through two calculation theorems a GTA specification is transformed
into a divide-and-conquer efficient program that can be implemented
in parallel. In this paper we present a verified implementation of this
framework in the Coq proof assistant: efficient bulk synchronous parallel
functional programs can be extracted from naive GTA specifications. We
show how to apply this framework on an example, including performance
experiments on parallel machines.

Keywords: List homomorphism, functional programming, automatic
program calculation, semi-ring computation, bulk synchronous paral-
lelism, Coq.

1 Introduction

Nowadays parallel architectures are everywhere. However parallel programming
is still reserved to experienced programmers. There is an urgent need of pro-
gramming abstractions, programming methodologies as well as support for the
verification of parallel applications, in particular for distributed memory models.
Our goal is to provide a framework to ease the systematic development of cor-
rect parallel programs. We are particularly interested in large scale data-intensive
applications.

Such a framework should provide programming building blocks whose seman-
tics is easy to understand for users. These building blocks should come with
an equational theory that allows to transform programs towards more efficient
versions. These more efficient versions should be parallelisable in a transparent
way for the user.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 258–274, 2014.
c© Springer International Publishing Switzerland 2014

A Verified Generate-Test-Aggregate Coq Library 259

GTA (generate-test-aggregate) [4,3] provides such a framework, integrating
the generate-and-test paradigm and semi-rings for the aggregation of results.
Through two calculation theorems a GTA specification is transformed into an
efficient program. It can then be implemented in parallel as a composition of al-
gorithmic skeletons [1] which can be seen as higher-order functions implemented
in parallel.

In this paper we present a verified implementation of the framework in the
Coq proof assistant. The contributions of this paper are:

– the formalisation of the GTA paradigm in the Coq proof assistant,
– the proof of correctness of the program transformations,
– an application of the framework to produce a parallel program for the knap-

sack problem and experiments with its execution on parallel machines.

We first present the generate-test-aggregate paradigm (Section 2), and its for-
malisation in Coq including the proof of the calculation theorems (Section 3).
We then explain how to obtain a parallel code from the result of a program
calculation using Coq extraction mechanism (Section 4). In Section 5 we de-
scribe experiments performed on parallel machines. Comparison with related
work (Section 6) and conclusion (Section 7) follow.

2 GTA: Generate, Test and Aggregate

We briefly review the Generate-Test-and-Aggregate (GTA) paradigm [4,3]. It
has been proposed as an algorithmic way to synthesise efficient programs from
naive specifications (executable naive programs) in the following GTA form.

GTAspec = aggregate ◦ test ◦ generate

In this section we first give a simple example of how to specify naive algorithms
in the GTA form. We give a clear but inefficient specification of the knapsack
problem following this structure.

The knapsack problem is to fill a knapsack with items, each of certain non-
negative value and weight, such that the total value of packed items is maximal
while adhering to a weight restriction of the knapsack. For example, if the max-
imum total weight of our knapsack is 3kg and there are three items ($10, 1kg),
($20, 2kg), and ($30, 2kg) then the best we can do is to pick the selection ($10,
1kg), ($30, 2kg) with total value $40 and weight 3kg because all selections with
larger value exceed the weight restriction.

The function knapsack , which takes as input a list of value-weight pairs (both
positive integers) and computes the maximum total value of a selection of items
not heavier than a total weight W , can be written in the GTA form:

knapsack W = maxvalue ◦ validWeight W ◦ subs

The function subs is the generator. From the given list of pairs it computes all
possible selections of items, that is, all 2n sublists if the input list has length n.

260 K. Emoto, F. Loulergue, and J. Tesson

The function validWeight W = filterB((<=W)◦weight) is the tester. It discards
all generated sublists whose total weight exceeds W and keeps the rest. The
function maxvalue is the aggregator. From the remaining sublists adhering to
the weight restriction it computes the maximum of all total values.

The function subs can be defined as follows:

subs = fold right (λ x s.(�[]� 1 �[x]�)×++ s) (�[]�)

The result of the generator subs is a bag of lists which we denote using � and
�. The symbol 1 denotes bag union, e.g., �[], [x]� = �[]� 1 �[x]�, and ×++ the
lifting of list concatenation to bags, concatenating every list in one bag with
every list in the other. Here is an example application of subs: subs [1, 3, 3] =
�[], [1]�×++�[], [3]�×++�[], [3]� = �[], [1], [1, 3], [1, 3], [1, 3, 3], [3], [3], [3, 3]�.We took
the liberty to reorder bag elements lexicographically because bags are unordered
collections. Note that elements may occur more than once as witnessed by [1, 3].

The function validWeight is filter operation filterB with a predicate to check
the weight restriction in which we use weight = fold right (λ(v, w)s.w + s) 0 to
find the total weight of a given item list:

validWeight = filterB ((<= w) ◦ weight)

Here, it is easily seen that weight satisfies the follwoing three equations:

weight [] = 0
weight [(v, w)] = w
weight (xs ++ ys) = weight xs + weight ys

It simply replaces list constructors [] and ++ with 0 and +. A function satisfy-
ing three equations of this form is called monoid homomorphism. Note that a
monoid is a mathematical structure made of an associative binary operator with
its identity element: The constructors and operators in the equations describe
monoids.

Finally, the aggregator maxvalue computes the maximum of summing up the
values of each list in a bag using the maximum operator ↑, which is defined as
a recursive function (natural fold operation) on bags:

maxvalue �� = −∞
maxvalue �l� = fold right (λ(v, w)s.v + s) 0 l
maxvalue (b 1 b′) = maxvalue b ↑ maxvalue b′

It is easily seen that maxvalue satisfies the following five equations; it simply
replaces constructors 1, ×++, �[]� and �� with ↑, +, 0 and −∞, respectively. A
function satisfying five equations of this form is called semiring homomorphism.
Note that a semiring is a mathematical structure of a monoid; a commutative
monoid and a distributivity law over the operators of those monoids. The con-
structors and operators in the following equations form a semiring.

A Verified Generate-Test-Aggregate Coq Library 261

maxvalue �� = −∞
maxvalue �[]� = 0
maxvalue �[(v, w)]� = v
maxvalue (b 1 b′) = maxvalue b ↑ maxvalue b′

maxvalue (b×++ b
′) = maxvalue b+maxvalue b′

Now, we have defined a naive program, i.e., a GTA specification of the problem.
Next, let us consider an efficient algorithm knapsack ′ to solve the problem.

The GTA provides two theorems to derive mechanically such an efficient program
from a GTA specification, but we start with the derived efficient program to
understand what the theorems do. We will see the theorems later.

We may use linear dynamic programming of the following form that repeatedly
updates a map denoted by using { and }, in which each entry w �→ v means that
there is a selection of items with the best total value v with the total weight w:

knapsack ′ W = π ◦ fold right (λ(v, w)m.({0 �→ 0}⊕W {w �→ v})⊗W m) {0 �→ 0}

Here, ⊕W merges two maps by taking the maximum value of two entries of the
same weight, while ⊗W makes every possible combination of entries of two maps
and merges the results by ⊕W . The post-process function π extracts the final
result from the final map.

For example, we have knapsack ′ 3 [] = π({0 �→ 0}) = 0. Here, the map
{0 �→ 0} means that we have one selection with the best total value 0 and the
total weight 0 since we have no item, and π extracts the only value 0 as the final
answer. Similarly, we have knapsack ′ 3 [(30, 2)] = π({0 �→ 0, 2 �→ 30}) = 30. The
map {0 �→ 0, 2 �→ 30} represents the selection possibilities about the item (30, 2):
either it is selected (entry 2 �→ 30 that results in the best value 30 with total
weight 2), or not (0 �→ 0). The work of ⊗3 can be seen clearly in the following
sub-computation in knapsack ′ 3 [(10, 1), (20, 2), (30, 2)] = π({0 �→ 0, 1 �→ 10, 2 �→
30, 3 �→ 40, �→ 60}) = 40. Here, represents entries with “more than 3” to be
ignored by π, and thus a map has at most 5 entries.

{0 �→ 0, 1 �→ 10} ⊗3 ({0 �→ 0, 2 �→ 20} ⊗3 {0 �→ 0, 2 �→ 30})
= {0 �→ 0, 1 �→ 10} ⊗3 ({(0 + 0) �→ (0 + 0)} ⊕3 {(2 + 0) �→ (20 + 0)}

⊕3 {(0 + 2) �→ (0 + 30)} ⊕3 {(2 + 2) �→ (20 + 30))}
= {0 �→ 0, 1 �→ 10} ⊗3 ({0 �→ 0} ⊕3 {2 �→ 20} ⊕3 {2 �→ 30} ⊕3 { �→ 50})
= {0 �→ 0, 1 �→ 10} ⊗3 {0 �→ 0, 2 �→ 30, �→ 50}
= {(0+0) �→ (0+0)} ⊕3 {(1+0) �→ (10+0)} ⊕3 {(0+2) �→ (0+30)} ⊕3 · · ·
= {0 �→ 0, 1 �→ 10, 2 �→ 30, 3 �→ 40, �→ 60}

It should be noted that fold right used in knapsack ′ is parallelisable because of
the associativity of the operator ⊗W .

We have got two programs knapsack and knapsack ′ to solve the knapsack
problem. What is the relationship between these two? Comparing subs and
knapsack ′ we can find that both subs and knapsack ′ can be written with a
new function poly subs f (⊕) (⊗) ı⊕ ı⊗ = fold right (λxm.(ı⊗ ⊕ f x)⊗m) ı⊗:

262 K. Emoto, F. Loulergue, and J. Tesson

subs = poly subs (λx.�[x]�) (1) (×++) (��) (�[]�)
knapsack ′ W = π ◦ poly subs (λ(v, w).{w �→ v}) (⊕W) (⊗W) ({}) ({0 �→ 0})

Here, poly subs is polymorphic over the result type of semiring operators ⊕ and
⊗, and subs is an instantiation of this polymorphic function with the constructors
1 and ×++. Such a generator is called a polymorphic semiring generator.

Now, we are ready to see the fusion theorems for mechanical derivation of
knapsack ′ from knapsack . The GTA provides two theorems, namely, semiring-
fusion and filter-embedding. The filter-embedding gives a way to derive the op-
erators into ⊕W and ⊗W on maps, while the semiring-fusion gives a way to
substitute these operators into the generator.

Theorem 1 (Filter Embedding [4]). Given a monoid homomorphism mhom,
a semiring homomorphism agg, and a function ok, there exist a function π and
a semiring homomorphism agg ′ and the following equation holds:

agg ◦ filterB (ok ◦mhom) = π ◦ agg ′

Theorem 2 (Semiring Fusion [4]). Given a semiring homomorphism agg,
which replaces the constructors with f , ⊕, ⊗, ı⊕, and ı⊗, and a polymorphic
semiring generator gen, the following equation holds:

agg ◦ gen (λx→ �[x]�) (1) (×++) (��) (�[]�) = gen f (⊕) (⊗) ı⊕ ı⊗

These two theorems derive knapsack ′ from knapsack as follows. Here, maxvalue′

is a semiring homomorphism that replaces the constructors with λ(v, w).{w �→
v}, ⊕W , ⊗W , {} and {0 �→ 0}, and is mechanically derived from maxvalue and
validWeight W by the filter-embedding.

knapsack W = maxvalue ◦ validWeight W ◦ subs
= { Filter-embedding }
π ◦maxvalue′ ◦ subs

= { Semiring-fusion }
π ◦ poly subs (λ(v, w).{w �→ v}) (⊕W) (⊗W) ({}) ({0 �→ 0})

= knapsack ′ W

It should be noted that by using GTA one can easily develop an efficient
parallel programs to solve many variants of problems such as a statistics probelm
to find a most likely sequence of hidden events [7], a combinatorial problem to
find the best period (contiguous subsequence) in a time series [2], and so on [3],
by simply defining testers to specify variant problems with additional conditions.

3 Verified GTA Library

In this section we introduce our verified GTA library with an automatic fusion
mechanism that allows a user to get an efficient Coq code freely from his/her
naive Coq code in the GTA form. The library mainly consists of three parts: user
interface, proof of the fusion theorems, and the automatic fusion mechanism.

A Verified Generate-Test-Aggregate Coq Library 263

3.1 User Interface: Writing Your Naive Code

This part defines a variety of items used to define a GTA specification as a Coq
program, which includes axiomatization of the bag (i.e., multi-set) data structure
and mathematical properties of components in a GTA specification.

Bag Axiomatisation. Since in a GTA specification a generator produces a bag
of lists, we need a bag data structure in Coq to define a GTA specification. We
axiomatised the bag data structure as a module type, and implemented a module
of this type by using the list data structure as its underlying structure. A bag
module has three constructors: empty for an empty bag, singleton to make a
singleton bag of the given element, and union (1 in the mathematical notation)
to merge two bags. It is also equipped with a decidable equivalence relation,
under which the usual semantics of bags (multi-sets) holds, and the natural fold
operation homB respecting the equivalence relation. Interested readers may refer
to the source code [15]. We also defined a module that, using the constructors and
fold operation, implements computations on bags, such as map, filter, operator
×++ (mapB, filterB, and cross in Coq code), and function singleBag to make
a bag of a singleton list of the given element. In addition, we showed properties
of these operators, such as the semiring properties of the operators union and
cross with their identities empty and nilBag (a bag of nil).

Generators. The first component of a GTA specification is a generator that pro-
duces a bag of lists and has to be an instance with 1 and ×++ of a polymorphic
function over the result type of semiring operators ⊕ and ⊗. Figure 1 shows
Coq code related to generators. The polymorphism condition for each genera-
tor is captured by an instance of typeclass isSemiringPolymorphicGenerator,
which connects a generator gen and its polymorphic function pgen. The type-
class also has a field to show fusable property based on the polymorphism. We
omit the details here, but the concept is that a polymorphic function determines
computation structure independent of given arguments. This could be shown by
the free theorem [17] about Coq, but Coq cannot prove such a property about
himself. Thus, the library asks a user to show the property by hand. We may
provide tactics to support this part because such a proof can be systematic. It
is planed in our future work.

For example, the generator subs in Section 2 for the knapsack problem can
be defined as an instance of the polymorphic function poly_subs as follows. We
can show its fusable condition by a simple induction.

Fixpoint poly_subs

(V:Type) (f:T→V) (oplus otimes:V→V→V) (ep et :V) (l:list T) :=

match l with
| nil ⇒ et

| a::l’ ⇒ otimes (oplus (f a) et) (poly_subs f oplus otimes ep et l’)

end.
Definition subs := poly_subs singleBag union cross empty nilBag.

Global Program Instance subs_is_polymorphic_generator

: isSemiringPolymorphicGenerator subs (@poly_subs).

264 K. Emoto, F. Loulergue, and J. Tesson

Definition semiringPolymorphicType (B : Type) : Type
:= ∀{V:Type} (f : T →V) (oplus : V→V→V) (otimes : V→V→V) (ep et : V), list B →V.

Class isSemiringPolymorphicGenerator ‘{A : Type}
(gen : list A →bag (list T)) (pgen : semiringPolymorphicType A) := {
SemiringGenEquiv : ∀l, gen l = pgen (bag (list T)) singleBag union cross empty nilBag l;
isSemiringPolymorphicGenerator_Polymorphism : (∗ snip ∗)

}.

Fig. 1. Formalization of polymorphic semiring generators

Next Obligation.

apply Build_isSemiringPolymorphicFunction.

induction l.

- unfold poly_subs. simpl. reflexivity.

- simpl. intros. rewrite IHl. reflexivity.

Defined.

Testers. The second component is a tester to discard invalid lists in the bag
produced by a generator. Figure 2 shows Coq code related to testers. To be
successfully fused by the theorems, a tester has to be a filter and its predicate
is a composition (denoted by :o: in the code) of a simple decidable predicate
and a monoid homomorphism. These conditions are straightforwardly captured
by typeclasses isHomomorphicFilter and isMonoidHomomorphism.

For example, the tester validWeight in Section 2 for the knapsack problem
can be defined by using the filter filterB on bags as follows. Here, decidability
of its predicate (named weightOk) is also defined to be used by filterB.

Inductive Item := item : nat →nat →Item.

Definition getVal i := match i with item v _ ⇒ v end.
Definition getWeight i := match i with item _ w ⇒ w end.
Definition atmost (w:nat) := fun a ⇒ a <= w.

Definition weight (l:list Item):= fold_right (fun a w⇒ getWeight a+w) 0 l.

Definition weightOk (w:nat) := atmost w :o: weight.

Lemma atmost_dec (w:nat): ∀(a:nat), {atmost w a}+{∼atmost w a}.(∗ snip ∗)
Lemma weightOk_dec (w:nat):

∀(l:list Item), {weightOk w l}+{∼weightOk w l}.(∗ snip ∗)
Definition validWeight (w:nat) := filterB (weightOk w) (weightOk_dec w).

For successful fusion we also need an instance of isMonoidHomomorphism as
well as the Proper instance of atmost, while we do not need an instance of
isHomomorphicFilter because validWeight is directly defined by fitlerB:

Program Instance proper_atmost: Proper (eq=⇒ eq=⇒ iff) atmost.(∗ snip ∗)
Program Instance weightOk_monoidHom:

isMonoidHomomorphism (T:=Item) weight getWeight plus 0. (∗ snip ∗)
Note that for the performance of the final fused program it is better to finitise

the domain of the monoid homomorphism (e.g., to use the finite set {n : N |
n ≤ w} as the domain) before applying fusions. This can be done by hand or

A Verified Generate-Test-Aggregate Coq Library 265

Context ‘{eqDecT : @EqDec T eqT equivT} ‘{eqDecM : @EqDec M eqM equivM}.
(∗ Monoid is a class to hold a monoid operator with its identity ∗)
Class isMonoidHomomorphism (h : list T →M) (f : T →M) (oplus : M →M →M) (e : M) := {
isMH_Monoid : Monoid oplus e;
isMH_CondAppend : ∀x y, h (app x y) === oplus (h x) (h y);
isMH_CondSingle: ∀a, h (a::nil) === f a;
isMH_CondNil: h nil === e;
isMH_proper_oplus: Proper (eqM =⇒ eqM =⇒ eqM) oplus;
isMH_proper_f: Proper (eqT =⇒ eqM) f
}.
(∗ ‘‘dec comp f g dec f’’ derives decidability of (f :o: g) from that of f, namely, dec f . ∗)
Class isHomomorphicFilter (tes : bag (list T) →bag (list T)) (mhom : list T →M) (h : T →M)
(odot : M →M →M) (e : M) (ok : M →Prop) (dec : ∀m : M, {ok m} + {∼ ok m}) := {
isHF_isMonoidHomomorphism: isMonoidHomomorphism (eqT:=eqT) mhom h odot e;
isHF_spec: ∀b:bag(list T),tes b === filterB(ok:o:mhom)(dec_comp mhom ok dec)b;
isHF_proper_ok: Proper (eqM =⇒ iff) ok
}.

Fig. 2. Formalization of monoid homomorphisms and homomorphic filters

even by an automatic mechanism in some cases. We omit this here for the space
limitation, but the experiment was conducted on the finitised version. Interested
readers may refer to papers [4,3] and the source code [15].

Aggregators. The final component is an aggregator to make a summary using
semiring operators from lists passing testers. Figure 3 shows Coq code related to
aggregators. To be fused by the semiring-fusion, an aggregator has to be a semir-
ing homomorphism. This is captured by typeclass isSemiringHomomorphism

saying that the given function agg is a semiring homomorphism made of the
function f , the operators oplus and otimes with ep as zero and et as one. The
library provides a simple way to make a semiring homomorphism: Given semiring
operators, nested fold operation semiringHom is the semiring homomorphism.

For example, the aggregator maxvalue in Section 2 to find the maximum sum
value can be defined by using the fold operation semiringHom with predefined
semiring semiring_max’_plus’ of the max and plus operators with the minus
infinity (i.e., the zero of the semiring):

Definition maxvalue

:= semiringHom (fun a:Item⇒ Num(getVal a)) semiring_max’_plus’.

Now, we have got a GTA specification as a naive Coq program, and we can
check its correctness by running it with a small example:

Definition knapsack (w : nat) := maxvalue :o: validWeight w :o: subs.

Definition items := [item 10 1; item 20 2; item 30 2].

Eval compute in (knapsack 3 items).

(∗ = Num 40 : nat minf ∗)

This is basically all that a user has to do in the GTA paradigm. The rest is to
call an interface function (a field of a specific class) to trigger automatic fusion,
which is shown later.

266 K. Emoto, F. Loulergue, and J. Tesson

Context ‘{S : Type} ‘{eqDecS : @EqDec S eqS equivS} ‘{eqDecT : @EqDec T eqT equivT}.
(∗ eqBag is the equivalence relation given in a Bag module, taking an equivalence relation on elements.∗)
(∗ Semiring is a typeclass to hold semiring operators with identities. ∗)
Class isSemiringHomomorphism (agg:bag(list T)→S)(f:T→S)(oplus otimes:S→S→S)(ep et:S):={
isSH_Semiring : Semiring oplus otimes ep et;
isSH_CondUnion : ∀x y, agg (union x y) === oplus (agg x) (agg y);
isSH_CondCross : ∀x y, agg (cross x y) === otimes (agg x) (agg y);
isSH_CondSingle : ∀a, agg (singleBag a) === f a;
isSH_CondEmpty : agg (empty) === ep;
isSH_CondNil : agg (nilBag) === et;
isSH_proper_f : Proper (eqT =⇒ eqS) f;
isSH_proper_oplus : Proper (eqS =⇒ eqS =⇒ eqS) oplus;
isSH_proper_otimes : Proper (eqS =⇒ eqS =⇒ eqS) otimes;
isSH_proper : Proper (eqBag (list T) =⇒ eqS) agg

}.

(∗ short−hand to make a semiring homomorphism, i.e., nested fold operations ∗)
Definition semiringHom (f : T →S) ‘(semiring : Semiring oplus otimes ep et)
:= homB oplus (fold_right (fun a r ⇒ otimes (f a) r) et) ep.

Global Program Instance semiringHom_is_semiringHomomorphism
‘{semiring : Semiring oplus otimes ep et}
‘{proper_oplus : Proper (eqS =⇒ eqS =⇒ eqS) oplus }
‘{proper_otimes : Proper (eqS =⇒ eqS =⇒ eqS) otimes }
‘{proper_f : Proper (eqT =⇒ eqS) f}
: isSemiringHomomorphism (semiringHom f oplus otimes ep et semiring) f oplus otimes ep et.

Fig. 3. Formalization of semiring homomorphisms

3.2 The Core: Proof of the GTA Fusion Theorems

The core of the library is proof of two fusion theorems, namely, the semiring-
fusion and filter-embedding (Theorems 2 and 1). These fusion theorems give
mechanical rules to transform a GTA specification (naive program) into an effi-
cient program, whose automatic mechanism will be shown later.

The filter-embedding fusion transforms a composition of a tester and an ag-
gregator into a new aggregator followed by a simple projection function. This
eliminates the tester from a GTA specification. Since the new aggregator uses a
semiring (so-called monoid semiring [12]) on finite maps, we need formalization
of finite maps to formalise this theorem. Coq’s standard library has formaliza-
tion of maps, but it requires a module for each key type to show its decidability,
which prevents us from an automatic optimisation mechanism that may change
the key type. Therefore, we reformalised maps as a module type, in which the
decidability of keys is given as an instance of a specific typeclass while functions
and properties are the same as the standard library except for additional in-
duction principles. The library also provides a list-based implementation of the
module type. Interested readers may refer to the source code [15].

On top of the map formalisation we proved properties of the semiring on
maps, which is the most crucial and difficult part of proving the filter-embedding.
We also introduced disjoint-sum version of maps whose semiring properties are
easily shown, and used an equivalence correspondence between the original and
disjoint maps to prove the difficult part clearly. Interested readers may find a
formalisation of the disjoint-sum maps in paper [12].

A Verified Generate-Test-Aggregate Coq Library 267

Context ‘{S : Type} ‘{eqDecS : @EqDec S eqS equivS}.

Theorem filterEmbeddingFusion
‘(shomAgg : isSemiringHomomorphism agg f oplus otimes ep et)
‘(homFilter : isHomomorphicFilter tes mhom h odot e ok dec)

:∀ l,(agg:o:tes) l === (postproc ok dec ep oplus :o:
semiringHom(embed oplus h f)(monoid_semiring_of shomAgg homFilter))l.

Theorem semiringFusion
‘(polyGen : isSemiringPolymorphicGenerator A gen pgen)
‘(shomAgg : isSemiringHomomorphism agg f oplus otimes ep et)
: ∀l, (agg :o: gen) l === (pgen S f oplus otimes ep et) l.

Fig. 4. Two fusion theorems of the GTA

Once the properties of the semiring are shown, the filter-embedding the-
orem can be shown straightforwardly as the previous papers [4,3] did. The
proof of semiring fusion is also straightforward once we are given an instance
of isSemiringPolymorphicGenerator. Figure 4 shows the theorems proved in
Coq, in which postproc is a simple projection function to extract the final result
from a map and monoid_semiring_of is the semiring on maps built from the
semiring in the aggregator agg and the monoid in the tester tes.

3.3 Automatic Fusion Mechanism

To allow a user to get an efficient Coq code freely from his/her naive GTA
specification, the library implements an automatic fusion mechanism based on
the typeclass mechanism. He/she can get efficient code by calling the function
fuse on his/her specification as follows.

Definition knapsack’ (w : nat) := fused (f := knapsack w).

The automatic fusion mechanism is implemented by instances of two classes
Fusion and Fuser shown in Fig. 5. Instances of Fusion form knowledge database
of fusion, i.e., a set of function triples (consumer , producer , fused) such that
consumer ◦ producer is equivalent to fused , while the instance fuser of Fuser
triggers a search to find an instance of Fusion that gives the result fused of
fusing the given function composition f = consumer ◦ producer . Figure 5 shows
some of these instances, including fusion knowledge of the theorems in Fig. 4.

For example, the above call of fused on knapsack eventually finds the instance
comp_l_fuser. It first calls fused on maxvalue :o: validWeight to get their
fused result, and then calls another fused on the composition of the result and
subs. The first call finds the instance filterEmbeddingFusionInstance to fuse
maxvalue and validWeight, and returns a composition of postproc with the
new aggregator, namely, semiringHomwith the semiring operators on maps. The
latter call finds the instance semiringFusionInstanceWithPP to get the final
fused result equivalent to the efficient program shown in Section 2. It is worth
noting that the mechanism works for multiple testers in a GTA specification,
although it may take longer time to finish the fusion.

268 K. Emoto, F. Loulergue, and J. Tesson

Class Fusion ‘{eqDec : EqDec D} ‘(producer : B →C) ‘(consumer : C →D) (fused : B →D)
:= { fusion_spec : ∀b, consumer (producer b) === fused b }.

Class Fuser ‘{eqDec : EqDec D} ‘(f : B →D) := { fused : B →D; fuser_spec : ∀
b, f b === fused b }.

(∗ An instance of Fuser to trigger a search for Fusion instances ∗)
Global Program Instance fuser ‘{fusion : Fusion producer consumer _fused}
: Fuser (consumer :o: producer) := { fused := _fused }.

(∗ A fuser for multiple compositions: fused ((f . g) . h) = fused (fused (f . g) . h) ∗)
Global Program Instance comp_l_fuser
‘{fusion_gf : @Fusion D R equiv0 eqDec B C g f fg}
‘{fusion_hgf : @Fusion D R equiv0 eqDec A B h fg fgh}
: Fusion h (f :o: g) fgh. (∗ snip proof. ∗)

Global Program Instance filterEmbeddingFusionInstance (∗ Knowledge of the filter−embedding ∗)
‘{shomAgg : isSemiringHomomorphism agg f oplus otimes ep et}
‘{homFilter : isHomomorphicFilter tes mhom h odot e ok dec}
: Fusion (bag (list T)) (bag (list T)) tes agg
((postproc ok dec ep oplus)
:o: (semiringHom (embed oplus h f) (monoid_semiring_of shomAgg homFilter))).

Global Program Instance semiringFusionInstanceWithPP (∗ A variant of the semiring−fusion ∗)
‘{polyGen : isSemiringPolymorphicGenerator A gen pgen}
‘{shomAgg : isSemiringHomomorphism agg f oplus otimes ep et}
‘{pp : S →X} (∗ projection function after an aggregator ∗)
: Fusion gen (pp :o: agg) (pp :o: pgen S f oplus otimes ep et).

Fig. 5. Instances for automatic fusion mechanism

4 Extraction of Certified Efficient Parallel Code

The result of the fusion mechanism described in the previous section, is an
instance of poly_subs. This function could actually be proven equivalent to
a composition of a map and a reduce on lists. These two combinators could
themselves be proven to correspond (in a sense we will describe later) to parallel
implementations of map and reduce on distributed lists. In this way we obtain a
parallel version of poly_subs and therefore of the knapsack’ function. In order
to do so, we need to be able to write (data) parallel programs in Coq.

Bulk Synchronous Parallel ML or BSML is a purely functional programming
language [8]. It is currently implemented as a library for OCaml, on top of
any C MPI [13] implementation. It thus allows execution on a wide variety of
parallel architectures and is especially well suited as an extraction target for Coq
development.

In BSML, the underlying architecture is supposed to be a Bulk Synchronous
Parallel (BSP) [16] computer. It is an abstract architecture as, with the help
of a software layer, any general purpose parallel computer can be seen as a
BSP computer. Such a computer is a distributed memory architecture: a set of p
processor-memory pairs, connected through a network that allows point-to-point
communications, together with a global synchronisation unit. A BSP program
is executed as a sequence of super-steps, each one divided into (at most) three
successive and logically disjointed phases: (a) Each processor uses its local data

A Verified Generate-Test-Aggregate Coq Library 269

(only) to perform sequential computations and to request data transfers to/from
other nodes; (b) the network delivers the requested data transfers; (c) a global
synchronisation barrier occurs, making the transferred data available for the
next super-step.

BSML primitives are shallowly embedded in Coq. Their specifications are
given in a module type PRIMITIVES. In this module, a partial description of a
BSP architecture is as follows:

Section Processors.

Parameter bsp_p : nat. (∗ the number p of processors ∗)
Axiom bsp_pLtZero: 0 < bsp_p. (∗ we have at least one processor ∗)
Definition processor : Type := { pid: nat | pid < bsp_p }.

End Processors.

BSML is based on a distributed data structure, named parallel vector. In
OCaml its abstract type is ’a par, and in Coq we have par: Type →Type. We
write informally 〈 v0 , . . . , vp−1 〉 a value of this type. There is one value per
processor of the BSP computer, and nesting is not allowed: These values should
be “sequential”, i.e. they cannot be or contain parallel vectors. BSML offers a
global view of a parallel program: It looks like a sequential program but manip-
ulates parallel vectors. The implementation however is a parallel composition of
sequential communicating programs.

There are four primitives to deal with parallel vectors. Their signatures and
informal semantics follows:

mkpar:(processor→A)→par A

proj:par A→processor→A

apply:par(A→B)→ par A→par

put:par(processor→A)→par(processor→A)

mkpar f = 〈 f 0 , . . . , f (p− 1) 〉
apply 〈 f0 , . . . , fp−1 〉 〈 v0 , . . . , vp−1 〉 = 〈 f0 v0 , . . . , fp−1 vp−1 〉
proj 〈 v0 , . . . , vp−1 〉 = λi→ vi
put 〈 f0 , . . . , fp−1 〉 = 〈λj → fj 0 , . . . , λj → fj (p− 1) 〉

mkpar is used to create parallel vectors whose values are given by a function f .
The function f should be a sequential function, i.e. it should not call any of the
BSML primitives. proj is its inverse. apply denotes the pointwise application of
a parallel vector of functions to a parallel vector of values. put is used to exchange
data between processors. In the input parallel vector of functions, each function
encodes the messages to be sent to other processors. (fi j) is the message to be
sent by processor i to processor j. In BSML OCaml implementation the first
constant constructor of a type is considered as the “empty” message and incurs
no communication cost. The functions in the output vector encode received
messages. If the input and output vectors are thought as matrices (each of the p
functions can produce p values when applied to the p processor names), put is
matrix transposition. Note that at a given processor there is no way to directly
access the value held by another processor: put is needed. Both proj and put

require a full BSP super-step to be evaluated. mkpar and apply are evaluated
during the computation phase of a super-step.

270 K. Emoto, F. Loulergue, and J. Tesson

Module List.
Include Coq.Lists.List.
Definition reduce ‘(op:A →A →A) ‘{m: Monoid A op e} := fun l ⇒ fold_left op l e.

End List.
Module MR (Import Bsml : PRIMITIVES).
Program Definition map ‘(f:A→B)‘(v:par(list A)) : par(list B) :=
apply (mkpar (fun _⇒ List.map f)) v.

Program Definition reduce ‘(op:A →A →A)‘{m: Monoid A op e}(v:par(list A)) : A :=
List.reduce op (List.map (proj (apply (mkpar (fun _⇒ List.reduce op)) v)) processors).

End MR.

Fig. 6. Parallel map and reduce

In order to formalise this semantics in Coq, we need an “observer” function
that is able to get the values held in a parallel vector, for which extensional
equality implies equality:

Parameter get:∀ A: Type, par A→processor→A.

Axiom par_eq:∀(A:Type)(v w:par A),(∀(i:processor),get v i=get w i)→v=w.

It is then straightforward to formalise the semantics. For example:

Parameter put: ∀vf:par(processor→A),

{ X: par(processor→A) | ∀i j: processor, get X i j = get vf j i }.

Verified algorithmic skeletons. If we think of a parallel vector of lists par(list A)

as a distributed list, a parallel BSML implementation of map and reduce is shown
in Figure 6, where Monoid is a type class for monoids, and processors is the
list of all the processors. We proved that these parallel implementations of map
and reduce are correct with respect to their sequential counter-parts, i.e:

list A

par(list A)

list B

par(list B)
map f

List.map f

join join

list A

par(list A)

A

reduce op

List.reduce op

join

where join transforms a distributed list to the sequential list it represents:

Definition join ‘(v:par(list A)):list A:= List.flat_map (get v) processors.

These correspondences are stored in instances of type classes, so that when
the user requires the parallelisation of a composition of sequential functions for
which there exist corresponding parallel implementations, it is done automat-
ically. We use this feature of our framework to parallelise the outcome of the
fusion mechanism.

Code extraction. Using the extraction mechanism of Coq, for example on the
module MR of Figure 6, we obtain an OCaml functor that need to be applied to
an implementation of the (extraction of the) module type PRIMITIVES. Actually,

A Verified Generate-Test-Aggregate Coq Library 271

(a) Execution Time (b) Speedup

Fig. 7. Execution Time and Speedup for the parallel execution of the extracted pro-
gram

the BSML library for OCaml provides several implementations of a module type
named BSML, including a MPI-based parallel one.

This module type almost contains the extracted module type PRIMITIVES.
The only difference is that in the extracted module, the type processor is nat
but in BSML it is int. We thus provide a wrapper module BsmlNat that per-
forms conversions between processor representations. This conversion is correct
as far as the processor name remains below 230 − 1 (1073741823) or 262 − 1
(4611686018427387903), depending on the architecture.

BSML implementations in OCaml and C are not formally verified yet. How-
ever we implemented a sequential version of the module type PRIMITIVES in Coq
(using Coq vectors for implementing par). After extraction this provides a veri-
fied reference sequential implementation. It could be used to test the unverified
implementations of BSML in OCaml.

5 Experiment Results

The experiments were conducted on a shared memory machine containing 4
processors with 12 computer cores each (thus a total of 48 cores) and 64GB of
memory. On each processors, there is two NUMA nodes, each node connecting
6 cores. On this particular architecture, we noticed in other experiments that
there is a performance loss when there is active communication at the same time
on the two NUMA nodes of one processor. The operating system is Ubuntu, the
used languages and libraries are: Open MPI 1.5, BSML 0.5, and OCaml 3.12.1.

We extracted the parallel version of the knapsack’ program in Section 3.3.
We then measured the scalabity of this programs run in parallel. Figure 7(a)
shows timings for computations on different number of elements for a knapsack
with a capacity of 30. The list contains elements of random weight and value
(always lesser than 10). The computation time grows linearly with the number
of elements. In the sequential case (poly_subs implementation), for lists over
200,000 the program fails due to stack overflow, as poly_subs is non tail recur-
sive. For the parallel version however, the map we use is a tail recursive one. It
is therefore possible to consider much bigger input lists. Figure 7(b) shows the

272 K. Emoto, F. Loulergue, and J. Tesson

mean (over 30 measures) relative (i.e. the reference implementation is the same
program but executed with only one core) speedup for a computation over a list
of 10,000,000 elements.

VerifiedGTA is one of the component of the SyDPaCC system. The full de-
velopment (version “ITP2014”) is available at the web [15].

6 Related Work

To our knowledge SyDPaCC [6], on which VerifiedGTA is based, is the only
framework, that makes possible the extraction of compilable and scalable parallel
programs from a development in a proof assistant.

Among the work on formal semantics for BSP computations, the only one used
to generate actual programs is LOGS [18]. In this approach, parallel programs are
built by composing sequential programs in parallel whereas we adopt a global
view. The GTA specifications required from the user are much simpler than
LOGS specifications, but less general. To our knowledge no part of LOGS is
formally verified. BSP-Why [5] is an extension of Why2 for the verification of
imperative BSP programs but it does not support program derivation.

The style of programming we follow is polymorphic. Mu et al. provides a
framework for polytypic programming and program transformation in Coq [11].
Expressiveness is very interesting but it would be a challenge to provide corre-
spondence between polytypic sequential functions and parallel ones.

Lupinski et al. [9] formalised the semantics of a skeletal parallel programming
language. This work is based on a deep embedding: one formalisation provides
the high-level semantics of the skeletons, another one provides a model of the im-
plementation in Join-calculus. From this model an implementation of the skele-
tons in JoCaml is designed. The semantics of BSML being purely functional, it is
possible to have a shallow embedding in Coq, and then to write BSML programs
in Coq and finally extract OCaml/BSML programs. Neither BSML, nor JoCaml
implementations have been proved correct with respect to their calculi.

Swierstra [14] formalised mutable arrays in Agda, and added explicit distri-
butions to these arrays. He can then write and reason on algorithms on these
distributed arrays. The two main examples are a distributed map, and a dis-
tributed sum. In BSML the distribution of parallel vectors is fixed. On the other
hand, it is possible to defined a higher-level data structure on top of parallel vec-
tor and consider various distributions of the data structure in parallel vectors.
BSML in Coq remains purely functional. It would be possible to consider parallel
vectors of mutable arrays, and even extract such BSML imperative programs to
OCaml as it was done for imperative programs by Malecha et al. [10].

7 Conclusion and Future Work

The verified GTA library in Coq allows to derive and extract an efficient Bulk
Synchronous Parallel ML program from a naive program definition (a specifica-
tion) as a composition of a generator, a tester and an aggregator. We experi-
mented an extracted application on two parallel architectures.

A Verified Generate-Test-Aggregate Coq Library 273

Future work includes a specialisation of the framework for the case where the
monoid of map keys is finite. This allows to replace the finite maps by tuples
(or arrays) for which we have direct access to elements. We are also interested
in extending the framework to handle GTA programs on other structures than
lists, such as trees and graphs.

Acknowledgements. This work was partially supported by JSPS (KAKENHI
Grant Number 24700025), ANR (ANR-2010-INTB-0205-02) and JST (10102704).

References

1. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press (1989), http://homepages.inf.ed.ac.uk/mic/Pubs

2. Corra, R.C., Farias, P.M., de Souza, C.P.: Insertion and sorting in a sequence of
numbers minimizing the maximum sum of a contiguous subsequence. Journal of
Discrete Algorithms 21, 1–10 (2013)

3. Emoto, K., Fischer, S., Hu, Z.: Filter-embedding semiring fusion for programming
with MapReduce. Formal Aspects of Computing 24(4-6), 623–645 (2012)

4. Emoto, K., Fischer, S., Hu, Z.: Generate, Test, and Aggregate – A Calculation-
based Framework for Systematic Parallel Programming with MapReduce. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 254–273. Springer, Heidelberg (2012)

5. Gava, F., Fortin, J., Guedj, M.: Deductive Verification of State-Space Algorithms.
In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 124–138.
Springer, Heidelberg (2013)

6. Gesbert, L., Hu, Z., Loulergue, F., Matsuzaki, K., Tesson, J.: Systematic Develop-
ment of Correct Bulk Synchronous Parallel Programs. In: International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT),
pp. 334–340. IEEE (2010)

7. Ho, T.J., Chen, B.S.: Novel extended viterbi-based multiple-model algorithms for
state estimation of discrete-time systems with markov jump parameters. IEEE
Transactions on Signal Processing 54(2), 393–404 (2006)

8. Loulergue, F., Hains, G., Foisy, C.: A Calculus of Functional BSP Programs. Sci-
ence of Computer Programming 37(1-3), 253–277 (2000)

9. Lupinski, N., Falcou, J., Paulin-Mohring, C.: Sémantique d’une langage de
squelettes (2012), http://www.lri.fr/~paulin/Skel/article.pdf

10. Malecha, G., Morrisett, G., Wisnesky, R.: Trace-based verification of imperative
programs with i/o. J. Symb. Comput. 46(2), 95–118 (2011)

11. Mu, S.-C., Ko, H.-S., Jansson, P.: Algebra of programming using dependent types.
In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp.
268–283. Springer, Heidelberg (2008)

12. Otto, F., Sokratova, O.: Reduction relations for monoid semirings. Journal of Sym-
bolic Computation 37(3), 343–376 (2004)

13. Snir, M., Gropp, W.: MPI the Complete Reference. MIT Press (1998)
14. Swierstra, W.: More dependent types for distributed arrays. Higher-Order and

Symbolic Computation 23(4), 489–506 (2010)

http://homepages.inf.ed.ac.uk/mic/Pubs
http://www.lri.fr/~paulin/Skel/article.pdf

274 K. Emoto, F. Loulergue, and J. Tesson

15. SyDPaCC Home Page, http://traclifo.univ-orleans.fr/SyDPaCC
16. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),

103 (1990)
17. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International

Conference on Functional Programming Languages and Computer Architecture,
pp. 347–359. ACM (1989)

18. Zhou, J., Chen, Y.: Generating C code from LOGS specifications. In: Van Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 195–210. Springer,
Heidelberg (2005)

http://traclifo.univ-orleans.fr/SyDPaCC

Experience Implementing

a Performant Category-Theory Library in Coq

Jason Gross, Adam Chlipala, and David I. Spivak

Massachusetts Institute of Technology, Cambridge, MA, USA
jgross@mit.edu, adamc@csail.mit.edu, dspivak@math.mit.edu

Abstract. We describe our experience implementing a broad category-
theory library in Coq. Category theory and computational performance
are not usually mentioned in the same breath, but we have needed sub-
stantial engineering effort to teach Coq to cope with large categorical
constructions without slowing proof script processing unacceptably. In
this paper, we share the lessons we have learned about how to repre-
sent very abstract mathematical objects and arguments in Coq and how
future proof assistants might be designed to better support such rea-
soning. One particular encoding trick to which we draw attention al-
lows category-theoretic arguments involving duality to be internalized
in Coq’s logic with definitional equality. Ours may be the largest Coq
development to date that uses the relatively new Coq version developed
by homotopy type theorists, and we reflect on which new features were
especially helpful.

Keywords: Coq, category theory, homotopy type theory, duality, per-
formance.

1 Introduction

Category theory [14] is a popular all-encompassing mathematical formalism that
casts familiar mathematical ideas from many domains in terms of a few unifying
concepts. A category can be described as a directed graph plus algebraic laws
stating equivalences between paths through the graph. Because of this spar-
tan philosophical grounding, category theory is sometimes referred to in good
humor as “formal abstract nonsense.” Certainly the popular perception of cat-
egory theory is quite far from pragmatic issues of implementation. This paper
is an experience report on an implementation of category theory that has run
squarely into issues of design and efficient implementation of type theories, proof
assistants, and developments within them.

It would be reasonable to ask, what would it even mean to implement “formal
abstract nonsense,” and what could the answer have to do with optimized execu-
tion engines for functional programming languages? We mean to cover the whole
scope of category theory, which includes many concepts that are not manifestly
computational, so it does not suffice merely to employ the well-known folklore
semantic connection between categories and typed functional programming [19].

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 275–291, 2014.
c© Springer International Publishing Switzerland 2014

276 J. Gross, A. Chlipala, and D.I. Spivak

Instead, a more appropriate setting is a computer proof assistant. We chose to
build a library for Coq [24], a popular system based on constructive type theory.

One might presume that it is a routine exercise to transliterate categorical
concepts from the whiteboard to Coq. Most category theorists would probably
be surprised to learn that standard constructions “run too slowly,” but in our
experience that is exactly the result of experimenting with näıve first Coq imple-
mentations of categorical constructs. It is important to tune the library design
to minimize the cost of manipulating terms and proving interesting theorems.

This design experience is also useful for what it reveals about the consequences
of design decisions for type theories themselves. Though type theories are gen-
erally simpler than widely used general-purpose programming languages, there
is still surprising subtlety behind the few choices that must be made. Homotopy
type theory [25] is a popular subject of study today, where there is intense in-
terest in designing a type theory that makes proofs about topology particularly
natural, via altered treatment of equality. In this setting and others, there re-
main many open questions about the consequences of type theoretical features
for different sorts of formalization. Category theory, said to be “notoriously hard
to formalize” [9], provides a good stress test of any proof assistant, highlighting
problems in usability and efficiency.

Formalizing the connection between universal morphisms and adjunctions pro-
vides a typical example of our experience with performance. A universal mor-
phism is a construct in category theory generalizing extrema from calculus. An
adjunction is a weakened notion of equivalence. In the process of rewriting our li-
brary to be compatible with homotopy type theory, we discovered that cleaning
up this construction conceptually resulted in a significant slow-down, because
our first attempted rewrite resulted in a leaky abstraction barrier and, most im-
portantly, large goals (Section 4.2). Plugging the holes there reduced goal sizes
by two orders of magnitude1, which led to a factor of ten speedup in that file
(from 39s to 3s), but incurred a factor of three slow-down in the file where we
defined the abstraction barriers (from 7s to 21s). Working around slow projec-
tions of Σ types (Section 2.5) and being more careful about code reuse each gave
us back half of that lost time.

For reasons that we present in the course of the paper, we were unsatisfied
with the feature set of released Coq version 8.4. We wound up adopting the Coq
version under development by homotopy type theorists [22], making critical use
of its stronger universe polymorphism (Section 2.2) and higher inductive types
(Section 2.4). We hope that our account here provides useful data points for proof
assistant designers about which features can have serious impact on proving
convenience or performance in very abstract developments. The two features
we mentioned earlier in the paragraph can simplify the Coq user experience
dramatically, while a number of other features, at various stages of conception
or implementation by Coq team members, can make proving much easier or
improve proof script performance by orders of magnitude, generally by reducing
term size (Section 4.2): primitive record projections (Section 2.5), internalized

1 The word count of the larger of the two relevant goals went from 163,811 to 1,390.

Experience Implementing a Performant Category-Theory Library in Coq 277

proof irrelevance for equalities (Section 4.2), and η rules for records (Section 3.1)
and equality proofs (Section 3.2).

Although pre-existing formalizations of category theory in proof assistants
abound [1, 6, 15, 17, 18, 20, 23], we chose to implement our library [10] from
scratch. Beginning from scratch allowed the first author to familiarize himself
with both category theory and Coq, without simultaneously having to familiarize
himself with a large pre-existing code base. Additionally, starting from scratch
forced us to confront all of the decisions involved in designing such a library, and
gave us the confidence to change the definitions of basic concepts multiple times
to try out various designs, including fully rewriting the library at least three
times. Although this paper is much more about the design of category theory
libraries in general than our library in particular, we include a comparison of
our library [10] with selected extant category theory libraries in Section 5. At
present, our library subsumes many of the constructions in most other such
Coq libraries, and is not lacking any constructions in other libraries that are
of a complexity requiring significant type checking time, other than monoidal
categories.

We begin our discussion in Section 2 considering a mundane aspect of type
definitions that has large consequences for usability and performance. With the
expressive power of Coq’s logic Gallina, we often face a choice of making pa-
rameters of a type family explicit arguments to it, which looks like universal
quantification; or of including them within values of the type, which looks like
existential quantification. As a general principle, we found that the universal or
outside style improves the user experience modulo performance, while the exis-
tential or inside style speeds up type checking. The rule that we settled on was:
inside definitions for pieces that are usually treated as black boxes by further
constructions, and outside definitions for pieces whose internal structure is more
important later on.

Section 3 presents one of our favorite design patterns for categorical construc-
tions: a way of coaxing Coq’s definitional equality into implementing proof by
duality, one of the most widely known ideas in category theory. In Section 4,
we describe a few other design choices that had large impacts on usability and
performance, often of a few orders of magnitude. Section 5 wraps up with a grid
comparison of our library with others.

2 Issues in Defining the Type of Categories

We have chosen to use the outside style when we care more about the definition
of a construct than about carrying it around as an opaque blob to fit into other
concepts. The first example of this choice comes up in deciding how to define
categories.

2.1 Dependently Typed Morphisms

In standard mathematical practice, a category C can be defined [2] to consist of:

278 J. Gross, A. Chlipala, and D.I. Spivak

– a class ObC of objects
– for all objects a, b ∈ ObC , a class HomC(a, b) of morphisms from a to b
– for each object x ∈ ObC , an identity morphism 1x ∈ HomC(x, x)
– for each triple of objects a, b, c ∈ ObC , a composition function ◦ : HomC(b, c)×

HomC(a, b) → HomC(a, c)

satisfying the following axioms:

– associativity: for composable morphisms f , g, h, we have f◦(g◦h) = (f◦g)◦h.
– identity: for any morphism f ∈ HomC(a, b), we have 1b ◦ f = f = f ◦ 1a

Following [25], we additionally require our morphisms to be 0-truncated (to
have unique identity proofs). Without this requirement, we have a standard pre–
homotopy type theory definition of a category.

We might2 formalize the definition in Coq (if Coq had mixfix notation) as:

Record Category :=

{ Ob : Type;

Hom : Ob → Ob → Type;

◦ : ∀ {a b c}, Hom b c → Hom a b → Hom a c;

1 : ∀ {x}, Hom x x;

Assoc : ∀ a b c d (f : Hom c d) (g : Hom b c) (h : Hom a b),

f ◦ (g ◦ h) = (f ◦ g) ◦ h;

LeftId : ∀ a b (f : Hom a b), 1 ◦ f = f;

RightId : ∀ a b (f : Hom a b), f ◦ 1 = f;

Truncated : ∀ a b (f g : Hom a b) (p q : f = g), p = q }.

We could just as well have replaced the classes HomC(a, b) with a single class
of morphisms HomC , together with functions defining the source and target of
each morphism. Then it would be natural to define morphism composition to
take a further argument, a proof of equal domain and codomain between the mor-
phisms. Users of dependent types are aware that explicit manipulation of equality
proofs can complicate code substantially, often to the point of obscuring what
would be the heart of an argument on paper. For instance, the algebraic laws
associated with categories must be stated with explicit computation of equality
proofs, and further constructions only become more involved. Additionally, such
proofs will quickly bloat the types of goals, resulting in slower type checking.
For these reasons, we decided to stick with the definition of Category above,
getting more lightweight help from the type checker in place of explicit proofs.

2.2 Complications from Categories of Categories

Some complications arise in applying the last subsection’s definition of categories
to the full range of common constructs in category theory. One particularly
prominent example formalizes the structure of a collection of categories, showing
that this collection itself may be considered as a category.

2 The definition we actually use has some additional fields; see, e.g., Section 3.1.

Experience Implementing a Performant Category-Theory Library in Coq 279

The morphisms in such a category are functors, maps between categories
consisting of a function on objects, a function on hom-types, and proofs that
these functions respect composition and identity [2, 14, 25].

The näıve concept of a “category of all categories,” which includes even itself,
leads into mathematical inconsistencies, which manifest as universe inconsistency
errors in Coq. The standard resolution is to introduce a hierarchy of categories,
where, for instance, most intuitive constructions are considered small categories,
and then we also have large categories, one of which is the category of small
categories. Both definitions wind up with literally the same text in Coq, giving:

Definition SmallCat : LargeCategory :=

{| Ob := SmallCategory;

Hom C D := SmallFunctor C D; ... |}.

It seems a shame to copy-and-paste this definition (and those of Category,
Functor, etc.) n times to define an n-level hierarchy. Coq 8.4 and some earlier
versions support a flavor of universe polymorphism that allows the universe of a
definition to vary as a function of the universes of its arguments. Unfortunately,
it is not natural to parametrize Cat by anything but a universe level, which does
not have first-class status in Coq anyway. We found the connection between
universe polymorphism and arguments to definitions to be rather inconvenient,
and it forced us to modify the definition of Category so that the record field
Ob changes into a parameter of the type family. Then we were able to use the
following slightly awkward construction:

Definition Cat_helper I ObOf (CatOf : ∀ i : I, Category (ObOf i))

: Category I

:= {| Hom C D := Functor (CatOf C) (CatOf D); ... |}.

Notation Cat := (Cat_helper {T : Type & Category T} projT1 projT2).

Now the definition is genuinely reusable for an infinite hierarchy of sorts of
category, because the Notation gives us a fresh universe each time we invoke it,
but we have paid the price of adding extra parameters to both Category and
Cat helper, and this seemingly innocent change produces substantial blow-up in
the sizes of proof goals arising during interesting constructions. So, in summary,
we decided that the basic type theoretical design of Coq 8.4 did not provide very
good support for pleasing definitions that can be reasoned about efficiently.

This realization (and a few more that will come up shortly) pushed us to
become early adopters of the modified version of Coq developed by homotopy
type theorists [22]. Here, an established kind of more general universe poly-
morphism [8], previously implemented only in NuPRL, is available, and the
definitions we wanted from the start work as desired.

2.3 Arguments vs. Fields

Unlike most of our other choices, there is a range of possibilities in defining
categories, with regards to arguments (on the outside) and fields (on the inside).
At one extreme, everything can be made a field, with a type Category whose

280 J. Gross, A. Chlipala, and D.I. Spivak

inhabitants are categories. At the other extreme, everything can be made an
argument to a dummy function. Some authors [23] have chosen the intermediate
option of making all of the computationally relevant parts (objects, morphisms,
composition, and the identity morphism) arguments and the irrelevant proofs
(associativity and left and right identity) fields. We discussed in Section 2.2 the
option of parametrizing on just the type of objects. We now consider pros and
cons of other common options; we found no benefits to the “outside” extreme.

Everything on the Inside. Once we moved to using the homotopy type the-
orists’ Coq with its broader universe polymorphism, we decided to use fields for
all of the components of a category. Switching from the version where the types
of objects and morphisms were parameters brought a factor of three speed-up
in compilation time over our whole development. The reason is that, at least
in Coq, the performance of proof tree manipulations depends critically on their
size (Section 4.2). By contrast, the size of the normal form of the term does not
seem to matter much in most constructions; see Section 3 for an explanation
and the one exception that we might have found. By using fields rather than
parameters for the types of objects and morphisms, the type of functors goes
from

Functor : ∀ (obC : Type) (obD : Type)

(homC : obC → obC → Type) (homD : obD → obD → Type),

Category obC homC → Category obD homD → Type

to

Functor : Category → Category → Type

The corresponding reduction for the type of natural transformations is even more
remarkable, and with a construction that uses natural transformations multiple
times, the term size blows up very quickly, even with only two parameters. If we
had more parameters (for composition and identity), the term size would blow
up even more quickly.

Usually, we do not care what objects and morphisms a particular category
has; most of our constructions take as input arbitrary categories. Thus, there is
a significant performance benefit to having all of the fields on the inside and so
hidden from most theorem statements.

Relevant Things on the Outside. One of the main benefits to making all of
the relevant components arguments, and requiring all of the fields to satisfy proof
irrelevance, is that it allows the use of type-class resolution without having to
worry about overlapping instances. Practically, this choice means that it is easier
to get Coq to infer automatically the proofs that given types and operations as-
semble into a category, at least in simple cases. Although others [23] have found
this approach useful, we have not found ourselves wishing we had type-class

Experience Implementing a Performant Category-Theory Library in Coq 281

resolution when formalizing constructions, and there is a significant computa-
tional cost of exposing so many parameters in types. The “packed classes” of
Ssreflect [7] alleviate this problem by combining this approach with the previous
one, at the slight cost of more verbosity in initial definitions.

2.4 Equality

Equality, which has recently become a very hot topic in type theory [25] and
higher category theory [13], provides another example of a design decision where
most usage is independent of the exact implementation details. Although the
question of what it means for objects or morphisms to be equal does not come
up much in classical 1-category theory, it is more important when formalizing
category theory in a proof assistant, for reasons seemingly unrelated to its impor-
tance in higher category theory. We consider some possible notions of equality.

Setoids. A setoid [5] is a carrier type equipped with an equivalence relation;
a map of setoids is a function between the carrier types and a proof that the
function respects the equivalence relations of its domain and codomain. Many
authors [11, 12, 15, 18] choose to use a setoid of morphisms, which allows for
the definition of the category of set(oid)s, as well as the category of (small) cate-
gories, without assuming functional extensionality, and allows for the definition
of categories where the objects are quotient types. However, there is significant
overhead associated with using setoids everywhere, which can lead to slower
compile times. Every type that we talk about needs to come with a relation and
a proof that this relation is an equivalence relation. Every function that we use
needs to come with a proof that it sends equivalent elements to equivalent ele-
ments. Even worse, if we need an equivalence relation on the universe of “types
with equivalence relations,” we need to provide a transport function between
equivalent types that respects the equivalence relations of those types.

Propositional Equality. An alternative to setoids is propositional equality,
which carries none of the overhead of setoids, but does not allow an easy for-
mulation of quotient types, and requires assuming functional extensionality to
construct the category of sets.

Intensional type theories like Coq’s have a built-in notion of equality, often
called definitional equality or judgmental equality, and denoted as x ≡ y. This
notion of equality, which is generally internal to an intensional type theory and
therefore cannot be explicitly reasoned about inside of that type theory, is the
equality that holds between βδιζη-convertible terms.

Coq’s standard library defines what is called propositional equality on top of
judgmental equality, denoted x = y. One is allowed to conclude that proposi-
tional equality holds between any judgmentally equal terms.

Using propositional equality rather than setoids is convenient because there is
already significant machinery made for reasoning about propositional equalities,
and there is much less overhead. However, we ran into significant trouble when

282 J. Gross, A. Chlipala, and D.I. Spivak

attempting to prove that the category of sets has all colimits, which amounts to
proving that it is closed under disjoint unions and quotienting; quotient types
cannot be encoded without assuming a number of other axioms.

Higher Inductive Types. The recent emergence of higher inductive types al-
lows the best of both worlds. The idea of higher inductive types [25] is to allow
inductive types to be equipped with extra proofs of equality between construc-
tors. They originated as a way to allow homotopy type theorists to construct
types with non-trivial higher paths. A very simple example is the interval type,
from which functional extensionality can be proven [21].3 The interval type con-
sists of two inhabitants zero : Interval and one : Interval, and a proof
seg : zero = one. In a hypothetical type theory with higher inductive types,
the type checker does the work of carrying around an equivalence relation on each
type for us, and forbids users from constructing functions that do not respect
the equivalence relation of any input type. For example, we can, hypothetically,
prove functional extensionality as follows:

Definition f_equal {A B x y} (f : A → B) : x = y → f x = f y.

Definition functional_extensionality {A B} (f g : A → B)

: (∀ x, f x = g x) → f = g

:= λ (H : ∀ x, f x = g x)

⇒ f_equal (λ (i : Interval) (x : A)

⇒ match i with

| zero ⇒ f x

| one ⇒ g x

| seg ⇒ H x

end)

seg.

Had we neglected to include the branch for seg, the type checker
should complain about an incomplete match; the function λ i : Interval

⇒ match i with zero ⇒ true | one ⇒ false end of type Interval →
bool should not typecheck for this reason.

The key insight is that most types do not need any special equivalence rela-
tion, and, moreover, if we are not explicitly dealing with a type with a special
equivalence relation, then it is impossible (by parametricity) to fail to respect
the equivalence relation. Said another way, the only way to construct a function
that might fail to respect the equivalence relation would be by some eliminator
like pattern matching, so all we have to do is guarantee that direct invocations
of the eliminator result in functions that respect the equivalence relation.

As with the choice involved in defining categories, using propositional equality
with higher inductive types rather than setoids derives many of its benefits from
not having to deal with all of the overhead of custom equivalence relations in
constructions that do not need them. In this case, we avoid the overhead by
making the type checker or the metatheory deal with the parts we usually do

3 This assumes a computational interpretation of higher inductives, an open problem.

Experience Implementing a Performant Category-Theory Library in Coq 283

not care about. Most of our definitions do not need custom equivalence relations,
so the overhead of using setoids would be very large for very little gain. We plan
to use higher inductive types4 to define quotients, which are necessary to show
the existence of certain functors involving the category of sets. We also currently
use higher inductive types to define propositional truncation [25], which we use
to define what it means for a function to be surjective, and prove that in the
category of sets, being an isomorphism (an invertible morphism) is equivalent
to being injective and surjective.

2.5 Records vs. Nested Σ Types

In Coq, there are two ways to represent a data structure with one constructor
and many fields: as a single inductive type with one constructor (records), or
as a nested Σ type. For instance, consider a record type with two type fields A
and B and a function f from A to B. A logically equivalent encoding would be
ΣA. ΣB. A→ B. There are two important differences between these encodings
in Coq.

The first is that while a theorem statement may abstract over all possible
Σ types, it may not abstract over all record types, which somehow have a less
first-class status. Such a limitation is inconvenient and leads to code duplication.

The far more pressing problem, overriding the previous point, is that nested
Σ types have horrendous performance, and are sometimes a few orders of mag-
nitude slower. The culprit is projections from nested Σ types, which, when un-
folded (as they must be, to do computation), each take almost the entirety of
the nested Σ type as an argument, and so grow in size very quickly. Matthieu
Sozeau is currently working on primitive projections for records for Coq, which
would eliminate this problem by eliminating the arguments to the projection
functions.5

3 Internalizing Duality Arguments in Type Theory

In general, we have tried to design our library so that trivial proofs on paper
remain trivial when formalized. One of Coq’s main tools to make proofs trivial
is the definitional equality, where some facts follow by computational reduction
of terms. We came up with some small tweaks to core definitions that allow a
common family of proofs by duality to follow by computation.

Proof by duality is a common idea in higher mathematics: sometimes, it is
productive to flip the directions of all the arrows. For example, if some fact
about least upper bounds is provable, chances are that the same kind of fact
about greatest lower bounds will also be provable in roughly the same way, by
replacing “greater than”s with “less than”s and vice versa.

Concretely, there is a dualizing operation on categories that inverts the direc-
tions of the morphisms:

4 We fake these in Coq using Yves Bertot’s Private Inductive Types extension [4].
5 We eagerly await the day when we can take advantage of this feature in our library.

284 J. Gross, A. Chlipala, and D.I. Spivak

Notation "C op" := ({| Ob := Ob C; Hom x y := Hom C y x; ... |}).

Dualization can be used, roughly, for example, to turn a proof that Carte-
sian product is an associative operation into a proof that disjoint union is an
associative operation; products are dual to disjoint unions.

One of the simplest examples of duality in category theory is initial and termi-
nal objects. In a category C, an initial object 0 is one that has a unique morphism
0 → x to every object x in C; a terminal object 1 is one that has a unique mor-
phism x → 1 from every object x in C. Initial objects in C are terminal objects
in Cop. The initial object of any category is unique up to isomorphism; for any
two initial objects 0 and 0′, there is an isomorphism 0 ∼= 0′. By flipping all of
the arrows around, we can prove, by duality, that the terminal object is unique
up to isomorphism. More precisely, from a proof that an initial object of Cop is
unique up to isomorphism, we get that any two terminal objects 1′ and 1 in C,
which are initial in Cop, are isomorphic in Cop. Since an isomorphism x ∼= y in
Cop is an isomorphism y ∼= x in C, we get that 1 and 1′ are isomorphic in C.

It is generally straightforward to see that there is an isomorphism between a
theorem and its dual, and the technique of dualization is well-known to category
theorists, among others. We discovered that, by being careful about how we
defined things, we could make theorems be judgmentally equal to their duals!
That is, when we prove a theorem

initial ob unique : ∀ C (x y : Ob C),

is initial ob x → is initial ob y → x ∼= y,

we can define another theorem

terminal ob unique : ∀ C (x y : Ob C),

is terminal ob x → is terminal ob y → x ∼= y

as

terminal ob unique C x y H H’ := initial ob unique Cop y x H’ H.

Interestingly, we found that in proofs with sufficiently complicated types, it can
take a few seconds or more for Coq to accept such a definition; we are not sure
whether this is due to peculiarities of the reduction strategy of our version of
Coq, or speed dependency on the size of the normal form of the type (rather
than on the size of the unnormalized type), or something else entirely.

In contrast to the simplicity of witnessing the isomorphism, it takes a signifi-
cant amount of care in defining concepts, often to get around deficiencies of Coq,
to achieve judgmental duality. Even now, we were unable to achieve this ideal for
some theorems. For example, category theorists typically identify the functor cat-
egory Cop → Dop (whose objects are functors Cop → Dop and whose morphisms
are natural transformations) with (C → D)op (whose objects are functors C → D
and whose morphisms are flipped natural transformations). These categories are
canonically isomorphic (by the dualizing natural transformations), and, with the
univalence axiom [25], they are equal as categories! But we have not found a way
to make them definitionally equal, much to our disappointment.

Experience Implementing a Performant Category-Theory Library in Coq 285

3.1 Duality Design Patterns

One of the simplest theorems about duality is that it is involutive; we have that
(Cop)op = C. In order to internalize proof by duality via judgmental equality,
we sometimes need this equality to be judgmental. Although it is impossible in
general in Coq 8.4 (see dodging judgmental η on records below), we want at least
to have it be true for any explicit category (that is, any category specified by
giving its objects, morphisms, etc., rather than referred to via a local variable).

Removing Symmetry. Taking the dual of a category, one constructs a proof
that f ◦ (g ◦ h) = (f ◦ g) ◦ h from a proof that (f ◦ g) ◦ h = f ◦ (g ◦ h). The
standard approach is to apply symmetry. However, because applying symmetry
twice results in a judgmentally different proof, we decided instead to extend the
definition of Category to require both a proof of f ◦ (g ◦ h) = (f ◦ g) ◦ h and
a proof of (f ◦ g) ◦ h = f ◦ (g ◦ h). Then our dualizing operation simply swaps
the proofs. We added a convenience constructor for categories that asks only
for one of the proofs, and applies symmetry to get the other one. Because we
formalized 0-truncated category theory, where the type of morphisms is required
to have unique identity proofs, asking for this other proof does not result in any
coherence issues.

Dualizing the Terminal Category. To make everything work out nicely, we
needed the terminal category, which is the category with one object and only
the identity morphism, to be the dual of itself. We originally had the terminal
category as a special case of the discrete category on n objects. Given a type
T with uniqueness of identity proofs, the discrete category on T has as objects
inhabitants of T , and has as morphisms from x to y proofs that x = y. These
categories are not judgmentally equal to their duals, because the type x = y is
not judgmentally the same as the type y = x. As a result, we instead used the
indiscrete category, which has unit as its type of morphisms.

Which Side Does the Identity Go On? The last tricky obstacle we en-
countered was that when defining a functor out of the terminal category, it is
necessary to pick whether to use the right identity law or the left identity law to
prove that the functor preserves composition; both will prove that the identity
composed with itself is the identity. The problem is that dualizing the func-
tor leads to a road block where either concrete choice turns out to be “wrong,”
because the dual of the functor out of the terminal category will not be judgmen-
tally equal to another instance of itself. To fix this problem, we further extended
the definition of category to require a proof that the identity composed with
itself is the identity.

Dodging Judgmental η on Records. The last problem we ran into was the
fact that sometimes, we really, really wanted judgmental η on records. The η rule
for records says any application of the record constructor to all the projections
of an object yields exactly that object; e.g. for pairs, x ≡ (x1, x2) (where x1

286 J. Gross, A. Chlipala, and D.I. Spivak

and x2 are the first and second projections, respectively). For categories, the η
rule says that given a category C, for a “new” category defined by saying that
its objects are the objects of C, its morphisms are the morphisms of C, . . . , the
“new” category is judgmentally equal to C.

In particular, we wanted to show that any functor out of the terminal category
is the opposite of some other functor; namely, any F : 1 → C should be equal
to (F op)op : 1 → (Cop)op. However, without the judgmental η rule for records,
a local variable C cannot be judgmentally equal to (Cop)op, which reduces to
an application of the constructor for a category. To get around the problem, we
made two variants of dual functors: given F : C → D, we have F op : Cop → Dop,
and given F : Cop → Dop, we have F op′

: C → D. There are two other flavors
of dual functors, corresponding to the other two pairings of op with domain and
codomain, but we have been glad to avoid defining them so far. As it was, we
ended up having four variants of dual natural transformation, and are very glad
that we did not need sixteen. We look forward to Coq 8.5, when we will hopefully
only need one.

3.2 Moving Forward: Computation Rules for Pattern Matching

While we were able to work around most of the issues that we had in internalizing
proof by duality, things would have been far nicer if we had more η rules. The η
rule for records is explained above. The η rule for equality says that the identity
function is judgmentally equal to the function f : ∀x y, x = y → x = y defined by
pattern matching on the first proof of equality; this rule is necessary to have any
hope that applying symmetry twice is judgmentally the identity transformation.
Matthieu Sozeau is currently working on giving Coq judgmental η for records
with one or more fields, though not for equality.

Section 4.1 will give more examples of the pain of manipulating pattern match-
ing on equality. Homotopy type theory provides a framework that systematizes
reasoning about proofs of equality, turning a seemingly impossible task into a
manageable one. However, there is still a significant burden associated with rea-
soning about equalities, because so few of the rules are judgmental.

We are currently attempting to divine the appropriate computation rules for
pattern matching constructs, in the hopes of making reasoning with proofs of
equality more pleasant.6

4 Other Design Choices

A few other pervasive strategies made non-trivial differences for proof perfor-
mance or simplicity.

6 See https://coq.inria.fr/bugs/show_bug.cgi?id=3179 and https://coq.inria

.fr/bugs/show_bug.cgi?id=3119.

https://coq.inria.fr/bugs/show_bug.cgi?id=3179
https://coq.inria.fr/bugs/show_bug.cgi?id=3119
https://coq.inria.fr/bugs/show_bug.cgi?id=3119

Experience Implementing a Performant Category-Theory Library in Coq 287

4.1 Identities vs. Equalities; Associators

There are a number of constructions that are provably equal, but which we found
more convenient to construct transformations between instead, despite the in-
creased verbosity of such definitions. This is especially true of constructions
that strayed towards higher category theory. For example, when constructing
the Grothendieck construction of a functor to the category of categories, we
found it easier to first generalize the construction from functors to pseudofunc-
tors. The definition of a pseudofunctor results from replacing various equalities
in the definition of a functor with isomorphisms (analogous to bijections between
sets or types), together with proofs that the isomorphisms obey various coher-
ence properties. This replacement helped because there are fewer operations on
isomorphisms (namely, just composition and inverting), and more operations on
proofs of equality (pattern matching, or anything definable via induction); when
we were forced to perform all of the operations in the same way, syntactically,
it was easier to pick out the operations and reason about them.

Another example was defining the (co)unit of adjunction composition, where
instead of a proof that F ◦ (G ◦H) = (F ◦G) ◦H , we used a natural transforma-
tion, a coherent mapping between the actions of functors. Where equality-based
constructions led to computational reduction getting stuck at casts, the con-
structions with natural transformations reduce in all of the expected contexts.

4.2 Opacity; Linear Dependence of Speed on Term Size

Coq is slow at dealing with large terms. For goals around 175,000 words long7,
we have found that simple tactics like apply f equal take around 1 second
to execute, which makes interactive theorem proving very frustrating.8 Even
more frustrating is the fact that the largest contribution to this size is often
arguments to irrelevant functions, i.e., functions that are provably equal to all
other functions of the same type. (These are proofs related to algebraic laws like
associativity, carried inside many constructions.)

Opacification helps by preventing the type checker from unfolding some def-
initions, but it is not enough: the type checker still has to deal with all of the
large arguments to the opaque function. Hash-consing might fix the problem
completely.

Alternatively, it would be nice if, given a proof that all of the inhabitants of
a type were equal, we could forget about terms of that type, so that their sizes
would not impose any penalties on term manipulation. One solution might be
irrelevant fields, like those of Agda, or implemented via the Implicit CiC [3, 16].

4.3 Abstraction Barriers

In many projects, choosing the right abstraction barriers is essential to reducing
mistakes, improving maintainability and readability of code, and cutting down

7 When we had objects as arguments rather than fields (see Section 2.3), we encoun-
tered goals of about 219,633 words when constructing pointwise Kan extensions.

8 See also https://coq.inria.fr/bugs/show_bug.cgi?id=3280.

https://coq.inria.fr/bugs/show_bug.cgi?id=3280

288 J. Gross, A. Chlipala, and D.I. Spivak

on time wasted by programmers trying to hold too many things in their heads
at once. This project was no exception; we developed an allergic reaction to
constructions with more than four or so arguments, after making one too many
mistakes in defining limits and colimits. Limits are a generalization, to arbitrary
categories, of subsets of Cartesian products. Colimits are a generalization, to
arbitrary categories, of disjoint unions modulo equivalence relations.

Our original flattened definition of limits involved a single definition with 14
nested binders for types and algebraic properties. After a particularly frustrating
experience hunting down a mistake in one of these components, we decided
to factor the definition into a larger number of simpler definitions, including
familiar categorical constructs like terminal objects and comma categories. This
refactoring paid off even further when some months later we discovered the
universal morphism definition of adjoint functors. With a little more abstraction,
we were able to reuse the same decomposition to prove the equivalence between
universal morphisms and adjoint functors, with minimal effort.

Perhaps less typical of programming experience, we found that picking the
right abstraction barriers could drastically reduce compile time by keeping details
out of sight in large goal formulas. In the instance discussed in the introduction,
we got a factor of ten speed-up by plugging holes in a leaky abstraction barrier!9

5 Comparison of Category-Theory Libraries

We present here a table comparing the features of various category-theory li-
braries. Our library is the first column. Gray dashed check-marks () indicate
features in progress. Library [18] is in Agda; the rest are in Coq. A check-mark
with n stars (*) indicates a construction taking 20n seconds to compile on a
64-bit server with a 2.40 GHz CPU and 16 GB of RAM.

Construction [10] [15] [20] [18] [1]

Mostly automated (with custom Ltac) �
Uses HoTT � �
Uses type classes �
Setoid of morphisms � � �
Uses higher inductive types �
Assumes UIP or equivalent �
Category of sets � � � �
Initial/Terminal objects � � � � �
(co)limits � � � �
(co)limit functor �
(co)limit adjoint to Δ �
Fully faithful functors � � �
Essentially surjective functors � � � �

9 See https://github.com/HoTT/HoTT/commit/eb0099005171 for the exact change.

https://github.com/HoTT/HoTT/commit/eb0099005171

Experience Implementing a Performant Category-Theory Library in Coq 289

Construction [10] [15] [20] [18] [1]

Unit-Counit Adjunctions � � � � �
Hom Adjunctions � �
Universal morphism adjunctions � �
Adjoint composition laws �********** �**********10

Monoidal categories �********** �**********

Enriched categories �**********

2-categories �**********

Category of (strict) categories � � �
Hom functor � � � � �
Profunctors � �
Pseudofunctors �**********

Kan extensions � � �
Pointwise Kan extensions

CDE ∼= CD×E ; (C × D)E ∼= CE ×DE �**********

Adjoint Functor Theorem �**********

Yoneda � � �**********�
dep. product (oplax lim F : C → Cat) �
dep. sum (oplax colim F : C → Cat) �********** �**********

(/) functor (CA)op × CB → Cat/A×B �**********

Rezk completion �
Mean lines per file 78 126 133 98 407

Total compilation time 490s 517s 21s 717s 62s11

Total time w/o monoidal 490s 43s 21s 579s 62s

Median file compilation time 0.3s 0.4s 0.1s 1.5s 0.9s

Total number of files 147 36 105 143 13

Total number of definitions 578 214 995 396 367

In summary, our library includes many constructions from past formalizations,
plus a few rather complex new ones. We test the limits of Coq by applying mostly
automated Ltac proofs for these constructions, taking advantage of ideas from
homotopy type theory and extensions built to support such constructions. In
most cases, we found that term size had the biggest impact on speed. We have
summarized our observations on using new features from that extension and on
other hypothetical features that could make an especially big difference in our
development, and we hope these observations can help guide the conversation
on the design of future versions of Coq and other proof assistants.

Acknowledgments. This work was supported in part by the MIT big-
data@CSAIL initiative, NSF grant CCF-1253229, ONR grant N000141310260,

10 The use of proof-irrelevant fields speeds up this construction significantly in Agda.
11 Nearly 75% of the time in this library is spent on properties of functor composition.

Nearly 50% of this time is spent closing sections, for an as-yet unknown reason.

290 J. Gross, A. Chlipala, and D.I. Spivak

and AFOSR grant FA9550-14-1-0031. We also thank Benedikt Ahrens, Daniel
R. Grayson, Robert Harper, Bas Spitters, and Edward Z. Yang for feedback on
this paper.

References

1. Ahrens, B., Kapulkin, C., Shulman, M.: Univalent categories and the Rezk com-
pletion. In: ArXiv e-prints (March 2013)

2. Awodey, S.: Category theory, 2nd edn. Oxford University Press
3. Barras, B., Bernardo, B.: The implicit calculus of constructions as a programming

language with dependent types. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS,
vol. 4962, pp. 365–379. Springer, Heidelberg (2008)

4. Bertot, Y.: Private Inductive Types: Proposing a language extension (April 2013),
http://coq.inria.fr/files/coq5_submission_3.pdf

5. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill series in higher
mathematics. McGraw-Hill (1967)

6. Formalizations of category theory in proof assistants. MathOverflow, http://mat
hoverflow.net/questions/152497/formalizations-of-category-theory-in-p

roof-assistants

7. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical
Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

8. Harper, R., Pollack, R.: Type checking with universes. Theoretical Computer Sci-
ence 89(1), 107–136 (1991), ISSN: 0304-3975

9. Harrison, J.: Formalized mathematics. TUCS technical report. Turku Centre for
Computer Science (1996) ISBN: 9789516508132

10. HoTT/HoTT Categories, https://github.com/HoTT/HoTT/tree/master/theorie
s/categories

11. Huet, G., Säıbi, A.: Constructive category theory. In: Proof, Language, and Inter-
action, pp. 239–275. MIT Press (2000)

12. Krebbers, R., Spitters, B., van der Weegen, E.: Math Classes
13. Leinster, T.: Higher Operads, Higher Categories. Cambridge Univ. Press
14. Mac Lane, S.: Categories for the working mathematician
15. Megacz, A.: Category Theory Library for Coq. Coq, http://www.cs.berkeley.ed

u/~megacz/coq-categories/

16. Miquel, A.: The Implicit Calculus of Constructions. In: Abramsky, S. (ed.) TLCA
2001. LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001)

17. O’Keefe, G.: Towards a readable formalisation of category theory. Electronic Notes
in Theoretical Computer Science 91, 212–228 (2004)

18. Peebles, D., Vezzosi, A., Cook, J.: copumpkin/categories, https://github.com/c
opumpkin/categories

19. Pierce, B.: A taste of category theory for computer scientists. Tech. rep.
20. Säıbi, A.: Constructive Category Theory, http://coq.inria.fr/pylons/pylons/

contribs/view/ConCaT/v8.4

21. Shulman, M.: An Interval Type Implies Function Extensionality, http://homotop
ytypetheory.org/2011/04/04

http://coq.inria.fr/files/coq5_submission_3.pdf
http://mathoverflow.net/questions/152497/formalizations-of-category-theory-in-proof-assistants
http://mathoverflow.net/questions/152497/formalizations-of-category-theory-in-proof-assistants
http://mathoverflow.net/questions/152497/formalizations-of-category-theory-in-proof-assistants
https://github.com/HoTT/HoTT/tree/master/theories/categories
https://github.com/HoTT/HoTT/tree/master/theories/categories
http://www.cs.berkeley.edu/~megacz/coq-categories/
http://www.cs.berkeley.edu/~megacz/coq-categories/
https://github.com/copumpkin/categories
https://github.com/copumpkin/categories
http://coq.inria.fr/pylons/pylons/contribs/view/ConCaT/v8.4
http://coq.inria.fr/pylons/pylons/contribs/view/ConCaT/v8.4
http://homotopytypetheory.org/2011/04/04
http://homotopytypetheory.org/2011/04/04

Experience Implementing a Performant Category-Theory Library in Coq 291

22. Sozeau, M., et al.: HoTT/coq, https://github.com/HoTT/coq
23. Spitters, B., van der Weegen, E.: Developing the algebraic hierarchy with type

classes in Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 490–493. Springer, Heidelberg (2010)

24. The Coq Proof Assistant. INRIA, http://coq.inria.fr
25. The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-

tions of Mathematics (2013)

https://github.com/HoTT/coq
http://coq.inria.fr

A New and Formalized Proof

of Abstract Completion�

Nao Hirokawa1, Aart Middeldorp2, and Christian Sternagel2

1 JAIST, Japan
hirokawa@jaist.ac.jp

2 University of Innsbruck, Austria
{aart.middeldorp,christian.sternagel}@uibk.ac.at

Abstract. Completion is one of the most studied techniques in term
rewriting. We present a new proof of the correctness of abstract comple-
tion that is based on peak decreasingness, a special case of decreasing
diagrams. Peak decreasingness replaces Newman’s Lemma and allows us
to avoid proof orders in the correctness proof of completion. As a result,
our proof is simpler than the one presented in textbooks, which is con-
firmed by our Isabelle/HOL formalization. Furthermore, we show that
critical pair criteria are easily incorporated in our setting.

1 Introduction

Knuth and Bendix’ completion procedure [11] is a landmark result in term rewrit-
ing. Given an equational system E and a reduction order, the completion pro-
cedure aims to construct a complete (terminating and confluent) term rewrite
system that is equivalent to E , thereby providing a general solution to the valid-
ity problem. Completion has had significant impact on various areas of computer
science, in particular automated theorem proving.

The completion process is non-trivial and showing its correctness is a chal-
lenge [8]. Bachmair, Dershowitz, and Hsiang [4] introduced abstract inference
rules that capture the essence of completion and introduced a new proof tech-
nique based on proof orders and persistent sets. This became the de facto stan-
dard and has been adopted in textbooks on term rewriting [1,17]. Very recently,
this proof was further simplified for finite runs and formalized in Isabelle/HOL
by Sternagel and Thiemann [16]. Still, we do not hesitate to point to the in-
tricacy of these proofs, especially when practical critical pair criteria [2,3] are
incorporated in completion.

Contribution. In this paper we present a new and formalized correctness proof
of abstract completion for finite runs. We introduce a new confluence criterion
for abstract rewriting, which we name peak decreasingness, allowing us to ab-
stract from proof orders in order to obtain a simple and elementary proof of the

� Supported by JSPS KAKENHI Grant Number 25730004 and the Austrian Science
Fund (FWF) projects I963 and J3202.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 292–307, 2014.
c© Springer International Publishing Switzerland 2014

A New and Formalized Proof of Abstract Completion 293

correctness of completion. Moreover the proof incorporates a critical pair crite-
rion: it suffices to consider prime critical pairs. Our formalization was conducted
using Isabelle/HOL [12].

Formalization. Our formalization is available as part of IsaFoR (an Isabelle/HOL
formalization of rewriting) version 2.14.1 To have a look at the actual for-
malization visit IsaFoR’s website and follow the link Mercurial repository un-
der Downloads. Alternatively you can download the provided *.tgz file. Either
way, all the relevant theory files are to be found in the subdirectory IsaFoR/.
The content of this paper comprises the following theory files: Renaming for-
malizes permutations and permutation types, and proves useful facts about
them; Renaming_Interpretations gives permutation type instances for terms,
rules, substitutions, TRSs, etc., i.e., allows us to apply permutations to them;
Peak_Decreasingness defines labeled conversions and peak decreasingness, and
contains the proof that the latter implies confluence; CP defines overlaps, critical
peaks, and critical pairs, and proves the critical pair lemma as well as the fact
that for finite TRSs only finitely many representatives of critical pairs have to
be considered; Prime_Critical_Pairs defines prime critical pairs and proves an
important result about peaks that allows us to restrict to prime critical pairs for
fairness; Abstract_Completion defines the inference rules of abstract comple-
tion, and proves their soundness; finally Completion_Fairnessproves soundness
of abstract completion when restricting fairness to prime critical pairs. For the
benefit of a general audience we present all the proofs in the following on a high
level and using standard mathematical notation. Nevertheless the proofs are ex-
actly along the lines of our formalization and from time to time we sprinkle the
text with comments directed at Isabelle initiates. But those are not essential for
understanding.

Organization. The remainder of the paper is organized as follows. In the next
section we recall some rewriting preliminaries. In Section 3 we discuss our for-
malization of variable renamings. Peak decreasingness is introduced in Section 4.
The critical pair lemma, or rather: a formalized critical peak lemma, is the sub-
ject of Section 5. Our new correctness proof for abstract completion is presented
in full detail in Section 6. Related work is discussed in Section 7 before we
conclude in Section 8.

2 Preliminaries

We assume familiarity with term rewriting and all that (e.g., [1]) and only shortly
recall notions that are used in the following. An abstract rewrite system (ARS
for short) A is a set A, also called the carrier, equipped with a binary relation
→. Sometimes we partition the binary relation into parts according to a set I of
indices (or labels). Then we write A = 〈A, {→α}α∈I〉 where we denote the part
of the relation with label α by →α, i.e., → =

⋃
α∈I →α. In our formalization

1 http://cl-informatik.uibk.ac.at/software/ceta

http://cl-informatik.uibk.ac.at/software/ceta

294 N. Hirokawa, A. Middeldorp, and C. Sternagel

ARSs are just relations which are represented by sets of pairs in Isabelle/HOL,
i.e., of type (α× α) set, and their carrier is given implicitly by the type α.

Terms are defined inductively as follows: a term is either a variable x from the
set V or is constructed by applying a function symbol f ∈ F to a list of argument
terms f(t1, . . . , tn). Here F is called the signature. The set of all terms built over
F and V is denoted by T (F ,V). In our formalization terms are represented by
the datatype

datatype (α, β) term = Var β | Fun α ((α, β) term list)

that is, the signature as well as the set of variables is given implicitly by the type
parameters α and β, respectively. The set of variables of a term t is denoted by
Var(t) (this is easily extended to rules, term rewrite systems, etc.). Positions
are finite lists of positive natural numbers where the empty position (or root
position) is denoted by ε. The set of positions of a term t is denoted by Pos(t) and
partitioned into function positions PosF and variable positions PosV . Positions
are partially ordered by the prefix order, i.e., p � q if p is a prefix of q (we
also say that p is above q). Two positions p and q for which neither p � q nor
q � p are called parallel, denoted by p ‖ q. Whenever p � q, by q \ p we denote
position q without its prefix p. The subterm of t at position p is denoted by t|p
and replacing this term by s is denoted by t[s]p.

A substitution is a mapping σ from variables to terms such that its domain
{x ∈ V | σ(x) �= x} is finite. Applying a substitution to a term is written tσ.

A pair of terms (s, t) is sometimes considered an equation, then we write
s ≈ t, and sometimes a (rewrite) rule, then we write s → t. In the latter case
we assume that the left-hand side is not a variable and that the variables of the
right-hand side t are all contained in the left-hand side s. This assumption we
call the variable condition.

A set E of equations is called an equational system (ES for short) and a set
R of rules a term rewrite system (TRS for short). In the following we assume
the variable condition for all rules of a TRS. Sets of pairs of terms induce a
rewrite relation by closing their components under contexts and substitutions.
More precisely the rewrite relation of R, denoted by →R, is defined inductively
by s→R t whenever there are a rule �→ r ∈ R, a position p, and a substitution
σ such that s|p = �σ and t = s[rσ]p. In the following we sometimes drop R
in →R if it is clear from the context. Moreover, individual steps are sometimes
annotated with additional information (the employed rule, the corresponding
position, etc.).

A binary relation → is well-founded (or terminating) if it does not admit any
infinite descending sequence a1 → a2 → a3 → · · · . A well-founded order that
is closed under contexts and substitutions is called a reduction order. Thus a
reduction order that strictly orients all rules of a TRS establishes termination
of the induced rewrite relation.

A New and Formalized Proof of Abstract Completion 295

3 Renaming Variables

This section is not essential for understanding the remainder of the paper. How-
ever, it addresses a typical problem that arises when formalizing proofs involving
variable renaming. Thus it is mostly interesting for users of proof assistants.

One thing that is often neglected or treated implicitly in paper proofs is
renaming of variables, which is often necessary to make sure that two given
objects do not contain any common variables. While on the one hand, this is
clearly not good enough for a formalization using a proof assistant; on the other
hand, a thorough treatment quickly leads to tedious reasoning (which is typically
left as an exercise in textbooks; see for example the proof of the statement that
two most general unifiers only differ by a renaming in [17, Chapter 2] and [1,
Chapter 4]).

We aim for a setup that allows us to argue along the lines of a paper proof
also in its formalization. The advantage of doing so is that not only the result is
certified to be correct, but also the proof itself. Moreover, simulating the implicit
reasoning used in a paper proof should be as painless as possible.

To this end it turns out that a slight modification of a previous Isabelle/HOL
formalization of permutations and permutation types by Urban et al. [9,18] is
very useful. Here a permutation (also called renaming) is just a bijective function
f such that {x | f(x) �= x} is finite, and a permutation type is a type whose
elements support applying a permutation to them. The mentioned modification
consists in parameterizing permutation types over the type of atoms (which we
call variables in the following) in addition to the type of elements (which may be
terms, substitutions, rules, TRSs, etc.) To make this possible we have to switch
from Isabelle’s type classes to locales and therefore to reformalize a theory of
permutations (thankfully, most proofs are not much different from the type class
version). Moreover many useful results only hold under the assumption that we
have an infinite set of variables, e.g., that we can always rename the variables of
two finite objects apart. This we express in Isabelle by demanding that the type
of variables is in the type class infinite (whose only assumption says that the
universe of all values of the corresponding type be infinite). Permutation types
are expressed as follows in Isabelle (see theory Renaming):

locale pt =
fixes · :: (α :: infinite) perm ⇒ β ⇒ β
assumes id · x = x and (π1 ◦ π2) · x = π1 · (π2 · x)

where id is the empty permutation, ◦ denotes function composition, and π · x
denotes applying the renaming π to the element x. Also note that α :: infinite
requires the type α to contain infinitely many elements. Associated with each
permutation type is the notion of support. Since we will not give any more
details about permutation types, suffice it to say that for permutation types
whose elements have finite support, this notion corresponds to the set of free
variables.

The most important result about finitely supported permutation types for our
purposes is that we can always find a permutation π which makes the support

296 N. Hirokawa, A. Middeldorp, and C. Sternagel

of x disjoint from a given finite set of variables. Intuitively, this means that we
can always rename variables apart.

After a general theory of renamings we have to create concrete instances for
terms, rules, substitutions, TRSs, etc. (see theory Renaming_Interpretations).
Using this machinery we have formalized the following results (the interested
reader is referred to the formalization for proofs).

Lemma 1. Let σ and τ be substitutions.2

1. If σ′ and τ ′ are substitutions with σσ′ = τ and ττ ′ = σ then there is a
renaming π such that π · σ = τ .

2. If σ and τ are two most general unifiers of a set of equations, then they are
variants of each other.

In the remainder, whenever we say that a term t is a variant of a term u,
what we formally mean is that there is a permutation π such that π · t = u. Of
course, this also works for rules, substitutions, TRSs, etc.

4 Peak Decreasingness

In this section we present the abstract result that replaces Newman’s Lemma in
the proof of the correctness of abstract completion.

Definition 2. An ARS A = 〈A, {→α}α∈I〉 is peak decreasing if there exists a
well-founded order > on I such that for all α, β ∈ I the inclusion

α← · →β ⊆ ∗←−−→
∨αβ

holds. Here ∨αβ denotes the set {γ ∈ I | α > γ or β > γ} and if J ⊆ I then −→
J

denotes the union of all −→
γ

with γ ∈ J and
∗←→
J

denotes a conversion consisting
of −→

J
steps.

Peak decreasingness is a special case of decreasing diagrams [13], which is
known as a powerful confluence criterion. Correctness of decreasing diagrams
has been formally verified in Isabelle/HOL by Zankl [20] and it should in prin-
ciple be possible to obtain our results on peak decreasingness as a special case.
However, for the sake of simplicity we present its easy direct proof (which we
also formalized in order to verify its correctness). We denote by M(J) the set
of all multisets over a set J .

Lemma 3. Every peak decreasing ARS is confluent.

Proof. Let > be a well-founded order on I which shows that the ARS A =
〈A, {→α}α∈I〉 is peak decreasing. With every conversion C in A we associate the
multiset MC consisting of the labels of its steps. These multisets are compared
by the multiset extension >mul of >, which is a well-founded order on M(I).

2 Finiteness of substitution domains is used (only) for this lemma (in this paper).

A New and Formalized Proof of Abstract Completion 297

We prove ↔∗ ⊆ ↓ by well-founded induction on >mul. Consider a conversion C
between a and b. We either have a ↓ b or a↔∗ · ← · → · ↔∗ b. In the former case
we are done. In the latter case there exist labels α, β ∈ I and multisets Γ1, Γ2 ∈
M(I) such that MC = Γ1 1{α, β}1Γ2. By the peak decreasingness assumption
there exists a conversion C′ between a and b such that MC′ = Γ1 1 Γ 1 Γ2 with
Γ ∈ M(∨αβ). We obviously have {α, β} >mul Γ and hence MC >mul MC′ . We
obtain a ↓ b from the induction hypothesis. '%

What we informally state as with every conversion we associate the multiset
of the labels of its steps in the proof above is formalized as an inductive predicate

� defined by the rules

a
�{} a
α ∈ I a

α←→ b b
�M c

a
�M�{α} c

together with the fact that for all a and b, we have a ↔∗ b if and only if there
is a multiset M such that a
�M b. (This predicate is called conv in theory
Peak_Decreasingness.)

5 Critical Pair Lemma

Completion is based on critical pair analysis. In this section we present a version
of the critical pair lemma that incorporates primality. The correctness proof is
based on peak decreasingness.

Definition 4. An overlap of a TRS R is a triple 〈�1 → r1, p, �2 → r2〉 satisfying
the following properties:

– there are renamings π1 and π2 such that π1 · (�1 → r1), π2 · (�2 → r2) ∈ R,
– Var(�1 → r1) ∩ Var(�2 → r2) = ∅,
– p ∈ PosF (�2),
– �1 and �2|p are unifiable,
– if p = ε then �1 → r1 and �2 → r2 are not variants.

In general this definition may lead to an infinite set of overlaps, since there
are infinitely many possibilities of taking variable disjoint variants of rules. For-
tunately it can be shown (and has been formalized) that overlaps that originate
from the same two rules are variants of each other (see theory CP). Overlaps give
rise to critical peaks and pairs.

Definition 5. Suppose 〈�1 → r1, p, �2 → r2〉 is an overlap of a TRS R. Let σ be
a most general unifier of �1 and �2|p. The term �2σ[�1σ]p = l2σ can be reduced
in two different ways:

�2σ[�1σ]p = �2σ

�2σ[r1σ]p r2σ

�1 → r1
p

�2 → r2
ε

298 N. Hirokawa, A. Middeldorp, and C. Sternagel

We call the quadruple (�2σ[r1σ]p, p, �2σ, r2σ) a critical peak and the equation
�2σ[r1σ]p ≈ r2σ a critical pair of R, obtained from the overlap. The set of all
critical pairs of R is denoted by CP(R).

In our formalization we do not use an arbitrary most general unifier in the
above definition. Instead we use the most general unifier that is computed by
the formalized unification algorithm that is part of IsaFoR (thereby removing one
degree of freedom and making it easier to show that only finitely many critical
pairs have to be considered for finite TRSs).

A critical peak (t, p, s, u) is usually denoted by t
p←− s ε−→ u. It can be shown

(and has been formalized) that different critical peaks and pairs obtained from
two variants of the same overlap are variants of each other. Since rewriting is
equivariant under permutations, it is enough to consult finitely many critical
pairs or peaks for finite TRSs (one for each pair of rules and each appropriate
position) in order to conclude rewriting related properties (like joinability or
fairness, see below) for all of them.

We present a variation of the well-known critical pair lemma for critical peaks
and its formalized proof. The slightly cumbersome statement is essential to avoid
gaps in the proof of Lemma 9 below.

Lemma 6. Let R be a TRS. If t R
p1←− s p2−→R u then one of the following holds:

(a) t ↓R u,
(b) p2 � p1 and t|p2

p1\p2←−−− s|p2

ε−→ u|p2 is an instance of a critical peak,

(c) p1 � p2 and u|p1

p2\p1←−−− s|p1

ε−→ t|p1 is an instance of a critical peak.

Proof. Consider an arbitrary peak t p1,�′1→r′1,σ
′
1
← s →p2,�2→r2,σ2 u. If p1 ‖ p2

then t →p2,�2→r2,σ2 t[r2σ2]p2 = u[r′1σ
′
1]p1 p1,�′1→r′1,σ

′
1
← u. If the positions of the

contracted redexes are not parallel then one of them is above the other. Without
loss of generality we assume that p1 � p2. Let p = p1 \ p2. Moreover, let π be a
permutation such that �1 → r1 = π · (�′1 → r′1) and �2 → r2 have no variables
in common. Such a permutation exists since we only have to avoid the finitely
many variables of �2 → r2 and assume an infinite set of variables. Furthermore,
let σ1 = π−1 · σ′1. We have t = s[r1σ1]p1 = s[�2σ2[r1σ1]p]p2 and u = s[r2σ2]p2 .
We consider two cases depending on whether p ∈ PosF(�2) in conjunction with
the fact that whenever p = ε then �1 → r1 and �2 → r2 are not variants, is true
or not.

– Suppose p ∈ PosF(�2) and p = ε implies that �1 → r1 and �2 → r2 are
not variants. Let σ′(x) = σ1(x) for x ∈ Var(�1 → r1) and σ′(x) = σ2(x),
otherwise. The substitution σ′ is a unifier of �2|p and �1: (�2|p)σ′ = (�2σ2)|p =
�1σ1 = �1σ

′. Then 〈�1 → r1, p, �2 → r2〉 is an overlap. Let σ be a most general

unifier of �2|p and �1. Hence �2σ[r1σ]p
p←− �2σ ε−→ r2σ is a critical peak and

there exists a substitution τ such that σ′ = στ . Therefore

�2σ2[r1σ1]p = (�2σ[r1σ]p)τ
p←− (�2σ)τ

ε−→ (r2σ)τ = r2σ2

and thus (b) is obtained.

A New and Formalized Proof of Abstract Completion 299

– Otherwise, either p = ε and �1 → r1, �2 → r2 are variants, or p /∈ PosF(�2).
In the former case it is easy to show that r1σ1 = r2σ2 and hence t = u. In the
latter case, there exist positions q1, q2 such that p = q1q2 and q1 ∈ PosV(�2).
Let �2|q1 be the variable x. We have σ2(x)|q2 = �1σ1. Define the substitution
σ′2 as follows:

σ′2(y) =

{
σ2(y)[r1σ1]q2 if y = x

σ2(y) if y �= x

Clearly σ2(x) →R σ′2(x), and thus r2σ2 →∗ r2σ′2. We also have

�2σ2[r1σ1]p = �2σ2[σ
′
2(x)]q1 →∗ �2σ′2 → r2σ

′
2

Consequently, t→∗ s[r2σ′2]p2
∗← u. Hence, (c) is concluded. '%

An easy consequence of the above lemma is that for every peak t R← s→R u
we have t ↓R u or t ↔CP(R) u. It might be interesting to note that in our
formalization of the above proof we do actually not need the fact that left-hand
sides of rules are not variables.

Definition 7. A critical peak t
p←− s ε−→ u is prime if all proper subterms of s|p

are in normal form. A critical pair is called prime if it is derived from a prime
critical peak. We write PCP(R) to denote the set of all prime critical pairs of a
TRS R.

Below we prove that non-prime critical pairs need not be computed. In the
proof we use a new ternary relation on terms. It expresses the condition under
which a conversion between two terms is considered harmless (when it comes to
proving confluence of terminating TRSs). This relation is also used in the new
correctness proof of abstract completion that we present in the next section.

Definition 8. Given a TRS R and terms s, t, and u, we write t s u if s→+
R t,

s→+
R u, and t ↓R u or t↔PCP(R) u.

Lemma 9. Let R be a TRS. If t
p←− s ε−→ u is a critical peak then t 2

s u.

Proof. First suppose that all proper subterms of s|p are in normal form. Then
t ≈ u ∈ PCP(R) and thus t s u. Since also u s u, we obtain the desired t 2

s u.
This leaves us with the case that there is a proper subterm of s|p that is not
in normal form. By considering an innermost redex in s|p we obtain a position
q > p and a term v such that s

q−→ v and all proper subterms of s|q are in normal
form. Now, if v

q←− s ε−→ u is an instance of a critical peak then v →PCP(R) u.
Otherwise, v ↓R u by Lemma 6, since q �� ε. In both cases we obtain v s u.
Finally, we analyze the peak t

p←− s q−→ v by another application of Lemma 6.

1. If t ↓R v, we obtain t s v and thus t 2
s u, since also v s u.

2. Since p < q, only the case that v|p
q\p←−− s|p ε−→ t|p is an instance of a critical

peak remains. Moreover, all proper subterms of s|q are in normal form and
thus we have an instance of a prime critical peak. Hence t ↔PCP(R) v and
together with v s u we conclude t 2

s u. '%

300 N. Hirokawa, A. Middeldorp, and C. Sternagel

Corollary 10. Let R be a TRS. If t R← s→R u then t 2
s u.

Proof. From Lemma 6, either t ↓R u and we are done, or t R← s→R u contains
a (possibly reversed) instance of a critical peak. By Lemma 9 we conclude the
proof, since rewriting is closed under substitutions and contexts. '%

The following result is due to Kapur et al. [10, Corollary 4].

Corollary 11. A terminating TRS is confluent if and only if all its prime crit-
ical pairs are joinable.

Proof. Let R be a terminating TRS such that PCP(R) ⊆ ↓R. We label rewrite
steps by their starting term and we claim that R is peak decreasing. As well-
founded order we take > = →+

R. Consider an arbitrary peak t R← s →R u.
Lemma 10 yields a term v such that t s v s u. From the assumption PCP(R) ⊆
↓R we obtain t ↓R v ↓R u. Since s→+

R v, all steps in the conversion t ↓R v ↓R u
are labeled with a term that is smaller than s. Since the two steps in the peak
receive the same label s, peak decreasingness is established and hence we obtain
the confluence of R from Lemma 3. The reverse direction is trivial. '%

Note that unlike for ordinary critical pairs, joinability of prime critical pairs
does not imply local confluence.

Example 12. Consider the following TRS R:

f(a) → b f(a) → c a → a

The set PCP(R) consists of the pairs f(a) ≈ b and f(a) ≈ c, which are trivially
joinable. But R is not locally confluent because the peak b R← f(a) →R c is not
joinable.

6 Abstract Completion

The abstract completion procedure for which we give a new and formalized
correctness proof is presented in the following definition.

Definition 13. The inference system KB operates on pairs consisting of an ES
E and a TRS R over a common signature F . It consists of the following six
inference rules:

deduce
E ,R

E ∪ {s ≈ t},R if s R← · →R t compose
E ,R1 {s→ t}
E ,R∪ {s→ u} if t→R u

E 1 {s ≈ t},R
E ,R∪ {s→ t} if s > t

E 1 {s ≈ t},R
E ∪ {u ≈ t},R if s→R u

orient simplify
E 1 {s ≈ t},R
E ,R∪ {t→ s} if t > s

E 1 {s ≈ t},R
E ∪ {s ≈ u},R if t→R u

delete
E 1 {s ≈ s},R

E ,R collapse
E ,R1 {t→ s}
E ∪ {u ≈ s},R if t→R u

A New and Formalized Proof of Abstract Completion 301

Here > is a fixed reduction order on T (F ,V).
Inference rules for completion were introduced by Bachmair, Dershowitz, and

Hsiang in [4]. The version above differs from most of the inference systems in the
literature (e.g. [2,3]) in that we do not impose any encompassment restriction in
collapse. The reason is that only finite runs will be considered here (cf. [16]).

We write (E ,R) for the pair E ,R when it increases readability. We write
(E ,R) �KB (E ′,R′) if (E ′,R′) can be obtained from (E ,R) by applying one of
the inference rules of Definition 13.

According to the following lemma the equational theory induced by E ∪ R is
not affected by application of the inference rules of KB. This is well-known, but
our formulation is new and paves the way for a simple correctness proof.

Lemma 14. Suppose (E ,R) �KB (E ′,R′).

1. If s −−−→
E∪R

t then s
=−−→
R′

· =−−−−→
E′∪R′

· =←−−
R′
t.

2. If s −−−−→
E′∪R′

t then s
∗←−−→

E∪R
t.

Proof. By inspecting the inference rules of KB we easily obtain the following
inclusions:

deduce
E ∪R ⊆ E ′ ∪R′ E ′ ∪R′ ⊆ E ∪R ∪←−

R
· −→

R
orient
E ∪R ⊆ E ′ ∪R′ ∪ (R′)−1 E ′ ∪R′ ⊆ E ∪R ∪ E−1

delete
E ∪R ⊆ E ′ ∪R′ ∪= E ′ ∪R′ ⊆ E ∪R
compose
E ∪R ⊆ E ′ ∪R′ ∪−−→

R′
· ←−−

R′
E ′ ∪R′ ⊆ E ∪R ∪ −→

R
· −→

R
simplify
E ∪R ⊆ E ′ ∪R′ ∪−−→

R′ · −→
E′ ∪−→

E′ · ←−−
R′ E ′ ∪R′ ⊆ E ∪R ∪←−

R
· −→

E
∪ −→

E
· −→

R
collapse
E ∪R ⊆ E ′ ∪R′ ∪−−→

R′
· −→

E′
E ′ ∪R′ ⊆ E ∪R ∪←−

R
· −→

R
Consider for instance the collapse rule and suppose that s ≈ t ∈ E ∪ R. If
s ≈ t ∈ E then s ≈ t ∈ E ′ because E ⊆ E ′. If s ≈ t ∈ R then either s ≈ t ∈ R′

or s →R u with u ≈ t ∈ E ′ and thus s →R′ · →E′ t. This proves the inclusion
on the left. For the inclusion on the right the reasoning is similar. Suppose that
s ≈ t ∈ E ′ ∪ R′. If s ≈ t ∈ R′ then s ≈ t ∈ R because R′ ⊆ R. If s ≈ t ∈ E ′

then either s ≈ t ∈ E or there exists a rule u → t ∈ R with u →R s and thus
s R← · →R t.

Since rewrite relations are closed under contexts and substitutions, the inclu-
sions in the right column prove statement (2). Because each inclusion in the left
column is a special case of

E ∪ R ⊆ =−−→
R′

· =−−−−→
E′∪R′

· =←−−
R′

also statement (1) follows from the closure under contexts and substitutions of
rewrite relations. '%

302 N. Hirokawa, A. Middeldorp, and C. Sternagel

Corollary 15. If (E ,R) �∗
KB (E ′,R′) then ∗←−−→

E∪R
=

∗←−−−→
E′∪R′

. '%

The next lemma states that termination of R is preserved by applications of
the inference rules of KB. It is the final result in this section whose proof refers
to the inference rules.

Lemma 16. If (E ,R) �∗
KB (E ′,R′) and R ⊆ > then R′ ⊆ >.

Proof. We consider a single step (E ,R) �KB (E ′,R′). The statement of the lemma
follows by a straightforward induction proof. Observe that deduce, delete, and
simplify do not change the set of rewrite rules and henceR′ = R ⊆ >. For collapse
we have R′ � R ⊆ >. In the case of orient we have R′ = R ∪ {s → t} with
s > t and hence R′ ⊆ > follows from the assumption R ⊆ >. Finally, consider
an application of compose. So R = R′′ 1 {s→ t} and R′ = R′′ ∪ {s→ u} with
t →R u. We obtain s > t from the assumption R ⊆ >. Since > is a reduction
order, t > u follows from t →R u. Transitivity of > yields s > u and hence
R′ ⊆ > as desired. '%

To guarantee that the result of a finite KB derivation is a complete TRS
equivalent to the initial E , KB derivations must satisfy the fairness condition
defined below. Fairness requires that prime critical pairs of the final TRS Rn

which were not considered during the run are joinable in Rn.

Definition 17. A run for a given ES E is a finite sequence

E0,R0 �KB E1,R1 �KB · · · �KB En,Rn

such that E0 = E and R0 = ∅. The run fails if En �= ∅. The run is fair if

PCP(Rn) ⊆ ↓Rn
∪

n⋃
i=0

↔Ei

The reason for writing ↔Ei instead of Ei in the definition of fairness is that
critical pairs are ordered, so in a fair run a (prime) critical pair s ≈ t of Rn may
be ignored by deduce if t ≈ s was generated, or more generally, if s↔Ei t holds
at some point in the run. Non-prime critical pairs can always be ignored.

According to the main result of this section (Theorem 20), a completion pro-
cedure that produces fair runs is correct. The challenge is the confluence proof
of Rn. We show that Rn is peak decreasing by labeling rewrite steps (not only
in Rn) with multisets of terms. As well-founded order on these multisets we take
the multiset extension of >.

Definition 18. Let → be a rewrite relation and M a finite multiset of terms.
We write s

M−→ t if s → t and there exist terms s′, t′ ∈ M such that s′ � s and
t′ � t. Here � denotes the reflexive closure of the given reduction order >.

Lemma 19. Let (E ,R) �KB (E ′,R′). If s M←−−→
E∪R

∗ t and R′ ⊆ > then s
M←−−−→

E′∪R′
∗ t.

A New and Formalized Proof of Abstract Completion 303

Proof. We consider a single (E ∪ R)-step from s to t. The statement of the
lemma follows then by induction on the length of the conversion between s and
t. According to Lemma 14(1) there exist terms u and v such that

s
=−−→
R′
u

=−−−−→
E′∪R′

v
=←−−
R′
t

We claim that the (non-empty) steps can be labeled by M . There exist terms
s′, t′ ∈ M with s′ � s and t′ � t. Since R′ ⊆ >, s � u and t � v and thus also
s′ � u and t′ � v. Hence

s
M−−→
R′

= u
M−−−−→

E′∪R′
= v = M←−−

R′
t

and thus also s
M←−−−→

E′∪R′
∗ t. '%

After these preliminaries we are ready for the main result of this section. A
TRS R is called a representation of an ES E if ↔∗

R and ↔∗
E coincide.

Theorem 20. For every fair non-failing run γ

E0,R0 �KB E1,R1 �KB · · · �KB En,Rn

the TRS Rn is a complete representation of E.

Proof. We have En = ∅. From Corollary 15 we know that↔∗
E = ↔∗

Rn
. Lemma 16

yields Rn ⊆ > and hence Rn is terminating. It remains to prove that Rn is
confluent. Let

t
M1←−−
Rn

s
M2−−→
Rn

u

From Lemma 10 we obtain t 2
s u. Let v s w appear in this sequence (so t = v

or w = u). We obtain

(v, w) ∈ ↓Rn
∪

n⋃
i=0

↔Ei

from the definition of s and fairness of γ. We label all steps between v and w
with the multiset {v, w}. Because s > v and s > w we have M1 >mul {v, w}
and M2 >mul {v, w}. Hence by repeated applications of Lemma 19 we obtain a
conversion in Rn between v and w in which each step is labeled with a multiset
that is smaller than both M1 and M2. It follows that Rn is peak decreasing. '%

A completion procedure is a program that generates KB runs. In order to
ensure that the final outcome Rn is a complete representation of the initial ES,
fair runs should be produced. Fairness requires that prime critical pairs of Rn

are considered during the run. Of course, Rn is not known during the run, so
to be on the safe side, prime critical pairs of any R that appears during the run
should be generated by deduce. (If a critical pair is generated from a rewrite
rule that disappears at a later stage, it can be safely deleted from the run.) In
particular, there is no need to deduce equations that are not prime critical pairs.
So we may strengthen the condition s R← · →R t of deduce to s ≈ t ∈ PCP(R)
without affecting Theorem 20.

304 N. Hirokawa, A. Middeldorp, and C. Sternagel

7 Related Work

Formalizations of the Critical Pair Lemma. There is previous work on formaliz-
ing the Critical Pair Lemma. The first such formalization that we are aware of is
by Ruiz-Reina et al. in ACL2 [15]. Details of the formalization are not presented
in the paper, however, the authors state the following:

The main proof effort was done to handle noncritical (or variable) over-
laps. It is interesting to point out that in most textbooks and surveys
this case is proved pictorially. Nevertheless, in our mechanical proof [it]
turns out to be the most difficult part and it even requires the design of
an induction scheme not discovered by the heuristics of the prover.

In contrast our proof of Lemma 6 handles the variable overlap case rigorously
but still without excessive complexity (also in the formalization).

Another formalization of the Critical Pair Lemma was conducted by Galdino
and Ayala-Rincón in PVS [7]. Here renamings are handled as substitutions sat-
isfying further restrictions. While this was also our first approach in our own
formalization, it leads to rather cumbersome proof obligations where basically
the same kind of proofs have to be done for every object that we want to per-
mute, i.e., terms, rules, substitutions, TRSs, etc. Most of those obligations can
be handled in the abstract setting of permutation types once and for all and thus
freely carry over to any concrete instance. Moreover the obtained set of critical
pairs is infinite but there is no formalized proof that it suffices to look at only
finitely many representatives for finite TRSs.

The latest formalization of the Critical Pair Lemma we are aware of is by
Sternagel and Thiemann in Isabelle/HOL [16]. It consists of a rather involved
proof. Moreover, it is restricted to strings and relies on concrete renaming func-
tions. Thus it is not so convenient to use in an abstract setting. A big advantage,
however, is that this formalization is executable and the obtained set of critical
pairs is finite (for finite TRSs) by construction. The good news is that it should
be possible to prove the soundness of the same executable function also via our
abstract formalization, which would combine the advantages of executability and
an abstract theory.

Soundness of Completion. Bachmair et al. [4] consider an infinite fair run to
characterize the output system as the pair (E∞,R∞) of the persistent sets :

E∞ =
⋃
i�0

⋂
j�i

Ei R∞ =
⋃
i�0

⋂
j�i

Ri

When proving confluence of R∞, conversions s1 ↔ · · · ↔ sn in E∞ ∪ R∞ are
compared by comparing the corresponding multisets {cost(si, si+1) | i < n}
using the proof order given by

(
(>mul, ·	, >)lex

)
mul. Here the function cost is

defined as

cost(s, t) =

⎧⎪⎨
⎪⎩
({s, t}, –, –) if s↔E∞ t

({s}, �, t) if s→R∞ t

({t}, �, s) if t→R∞ s

A New and Formalized Proof of Abstract Completion 305

Table 1. Comparison between existing Isabelle/HOL formalizations

∼ LoI new ∼ LoI [16]

renaming (+ interpretations) 2000 –
peak decreasingness 400 –
critical peak/pair lemma 300 300
soundness of completion 600 1600

longest proof 80 900
soundness with PCPs 120 –

where – is an arbitrary fixed element. Whenever a conversion contains a local
peak, one can find a conversion that is smaller in the proof order. In this way
confluence is obtained.

Sternagel and Thiemann [16] observed that the encompassment restriction in
the collapse inference rule is unnecessary for finite runs. Based on this observation
they simplified the cost function (for runs of length n) to

cost(s, t) =

⎧⎪⎨
⎪⎩
({s, t}, –) if s↔E∞ t

({s}, n− o(�→ r)) if s→�→r t and �→ r ∈ R∞
({t}, n− o(�→ r)) if t→�→r s and �→ r ∈ R∞

where o(� → r) denotes the highest i � n such that � → r ∈ Ri. The proof
order is

(
(>mul, >N)lex

)
mul. In our new proof the second ingredient of the cost is

replaced by mathematical induction in Lemma 19, and the proof order is hidden
behind the abstract notion of peak decreasingness.

For a more detailed comparison between our current formalization and the one
of Sternagel and Thiemann consult Table 1, where we compare Lines of Isabelle
code (LoI for short). A general theory of renamings (plus special instances for
terms, rules, TRSs, etc.) is a big part of our formalization and not present in
the previous formalization at all. However this theory should be useful in future
proofs. Moreover, its absence restricts the previous work to strings as variables.
Peak decreasingness is also exclusive to our formalization. Concerning the critical
pair lemma, both formalizations are approximately the same size, but note that
our formalization is concerned with critical peaks instead of critical pairs (which
is more general and actually needed in later proofs). As for soundness of abstract
completion, our new formalization is drastically shorter (both columns include
all definitions and intermediate lemmas that are needed for the final soundness
result). Another interesting observation might be that in our new formalization of
soundness the longest proof (confluence of the final TRS via peak decreasingness)
is a mere 80 LoI, whereas the longest proof in the previous formalization is more
than 900 LoI long (and concerned with the fact that applying an inference rule
strictly decreases the cost). Finally, on top of the previous result the soundness
of completion via prime critical pairs is an easy extension.

In the literature (e.g. [2,3]) critical pair criteria (like primality) are formulated
as fairness conditions for completion, and correctness proofs are a combination of

306 N. Hirokawa, A. Middeldorp, and C. Sternagel

proof orders and a confluence criterion known as connected-below due to Winkler
and Buchberger [19]. Our new approach avoids this detour.

8 Conclusion

In this paper we presented a new and formalized correctness proof of abstract
completion which is significantly simpler than the existing proofs in the lit-
erature. Unlike earlier formalizations of the critical pair lemma and abstract
completion, our formalization follows the paper proof included in this paper.
This was made possible by extending IsaFoR with an abstract framework for
handling variable renamings inspired by and based on a previous formalization
for Nominal Isabelle.

Furthermore, our formalization of completion is the first that incorporates
critical pair criteria. The key to the simple proof is the notion of peak decreas-
ingness, a very mild version of the decreasing diagrams technique for proving
confluence in the absence of termination.

There are several important variations of completion. We anticipate that
the presented approach can be adapted for them, in particular ordered com-
pletion [5].

Acknowledgments. We want to give special thanks to the team around Sledge-
hammer and Nitpick [6] two indispensable Isabelle tools, the former increasing
productivity while proving by a factor of magnitude, and the latter often pointing
out slightly wrong statements that could cost hours, if not days, of a formaliza-
tion attempt.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

2. Bachmair, L.: Canonical Equational Proofs. Birkhäuser (1991)
3. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof

orderings. Journal of the ACM 41(2), 236–276 (1994), doi:10.1145/174652.174655
4. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: Proc.

1st IEEE Symposium on Logic in Computer Science, pp. 346–357 (1986)
5. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Resolution of Equations in Algebraic

Structures: Completion without Failure, vol. 2, pp. 1–30. Academic Press (1989)
6. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Is-

abelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS,
vol. 6989, pp. 12–27. Springer, Heidelberg (2011), doi:10.1007/978-3-642-24364-6 2

7. Galdino, A.L., Ayala-Rincón, M.: A formalization of the Knuth-Bendix(-Huet)
critical pair theorem. Journal of Automated Reasoning 45(3), 301–325 (2010),
doi:10.1007/s10817-010-9165-2

8. Huet, G.: A complete proof of correctness of the Knuth-Bendix completion
algorithm. Journal of Computer and System Sciences 23(1), 11–21 (1981),
doi:10.1016/0022-0000(81)90002-7

http://dx.doi.org/doi:10.1145/174652.174655
http://dx.doi:10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/s10817-010-9165-2
http://dx.doi.org/10.1016/0022-0000(81)90002-7

A New and Formalized Proof of Abstract Completion 307

9. Huffman, B., Urban, C.: A new foundation for Nominal Isabelle. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg
(2010), doi:10.1007/978-3-642-14052-5 5

10. Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need be con-
sidered in the Knuth-Bendix completion procedure. Journal of Symbolic Compu-
tation 6(1), 19–36 (1988), doi:10.1016/S0747-7171(88)80019-1

11. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297 (1970)

12. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002), doi:10.1007/3-540-45949-9

13. van Oostrom, V.: Confluence by decreasing diagrams. Theoretical Computer Sci-
ence 126(2), 259–280 (1994), doi:10.1016/0304-3975(92)00023-K

14. van Raamsdonk, F. (ed.): Proc. 24th International Conference on Rewriting Tech-
niques and Applications. Leibniz International Proceedings in Informatics, vol. 21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)

15. Ruiz-Reina, J.-L., Alonso, J.-A., Hidalgo, M.-J., Mart́ın-Mateos, F.-J.: Formal
proofs about rewriting using ACL2. Annals of Mathematics and Artificial Intel-
ligence 36(3), 239–262 (2002), doi:10.1023/A:1016003314081

16. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In: van Raamsdonk [14], pp. 287–302,
doi:10.4230/LIPIcs.RTA.2013.287

17. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

18. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in Nominal Is-
abelle. Logical Methods in Computer Science 8(2), 465–476 (2012),
doi:10.2168/LMCS-8(2:14)2012

19. Winkler, F., Buchberger, B.: A criterion for eliminating unnecessary reductions in
the Knuth-Bendix algorithm. In: Proc. Colloquium on Algebra, Combinatorics and
Logic in Computer Science. Colloquia Mathematica Societatis J. Bolyai, vol. II, 42,
pp. 849–869 (1986)

20. Zankl, H.: Decreasing diagrams – formalized. In: van Raamsdonk [14], pp. 352–367,
doi:10.4230/LIPIcs.RTA.2013352

http://dx.doi:10.1007/978-3-642-14052-5_5
http://dx.doi.org/10.1016/S0747-7171(88)80019-1
http://dx.doi:10.1007/3-540-45949-9
http://dx.doi.org/10.1016/0304-3975(92)00023-K
http://dx.doi.org/10.1023/A:1016003314081
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.287
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.4230/LIPIcs.RTA.2013352

HOL with Definitions: Semantics, Soundness,

and a Verified Implementation

Ramana Kumar1, Rob Arthan2, Magnus O. Myreen1, and Scott Owens3

1 Computer Laboratory, University of Cambridge, UK
2 School of EECS, Queen Mary, University of London, UK

3 School of Computing, University of Kent, UK

Abstract. We present a mechanised semantics and soundness proof for
the HOL Light kernel including its definitional principles, extending Har-
rison’s verification of the kernel without definitions. Soundness of the
logic extends to soundness of a theorem prover, because we also show
that a synthesised implementation of the kernel in CakeML refines the
inference system. Our semantics is the first for Wiedijk’s stateless HOL;
our implementation, however, is stateful: we give semantics to the stateful
inference system by translation to the stateless. We improve on Harri-
son’s approach by making our model of HOL parametric on the universe
of sets. Finally, we prove soundness for an improved principle of con-
stant specification, in the hope of encouraging its adoption. This paper
represents the logical kernel aspect of our work on verified HOL imple-
mentations; the production of a verified machine-code implementation
of the whole system with the kernel as a module will appear separately.

1 Introduction

In this paper, we present a mechanised proof of the soundness of higher-order
logic (HOL), including its principles for defining new types and new polymorphic
constants, and describe production of a verified implementation of its inference
rules. This work is part of a larger project, introduced in our rough diamond last
year [11], to produce a verified machine-code implementation of a HOL prover.
This paper represents the top half of the project: soundness of the logic, and a
verified implementation of the logical kernel in CakeML [7].

What is the point of verifying a theorem prover and formalising the semantics
of the logic it implements? One answer is that it raises our confidence in the
correctness of the prover. A prover implementation usually sits at the centre of
the trusted code base for verification work, so effort spent verifying the prover
multiplies outwards. Secondly, it helps us understand our systems (logical and
software), to the level of precision possible only via formalisation. Finally, a theo-
rem prover is a non-trivial piece of software that admits a high-level specification
and whose correctness is important: we see it as a catalyst for tools and methods
aimed at developing complete verified systems, readying them for larger systems
with less obvious specifications.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 308–324, 2014.
c© Springer International Publishing Switzerland 2014

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 309

The first soundness proof we present here is for Wiedijk’s stateless HOL [16],
in which terms carry their definitions; by formalising we hope to clarify the
semantics of this system. We then show that traditional stateful HOL, where
terms are understood in a context of definitions, is sound by a translation to the
stateless inference system.

We build on Harrison’s proof of the consistency of HOL without definitions [4],
which shares our larger goal of verifying concrete HOL prover implementations,
and advance this project by verifying an implementation of the HOL Light [5]
kernel in CakeML, an ML designed to support fully verified applications. We
discuss the merits of Harrison’s model of set theory defined within HOL, and
provide an alternative not requiring axiomatic extensions.

Our constant specification rule generalises the one found in the various HOL
systems, adding support for implicit definitions with fewer constraints and no
new primitives. We lack space here to justify its design in full detail, but refer
to a proposal [2] by the second author. We hope our proof of its soundness will
encourage its adoption.

The specific contributions of this paper are:

– a formal semantics for Wiedijk’s stateless HOL (§4), against a new specifi-
cation of set theory (§3),

– a proof of soundness (§4.2) for stateless HOL, including type definitions, a
new rule for constant specification, and the three axioms used in HOL Light,

– a proof of soundness for stateful HOL by translation to stateless (§5), and
– a verified implementation of the HOL Light kernel in CakeML (§6) that

should be a suitable basis for a verified implementation of the prover in
machine-code.

All our definitions and proofs have been formalised in the HOL4 theorem prover
[14] and are available from https://cakeml.org.1

2 Approach

At a high level, our semantics and verified implementation fit together as follows.

Set Theory Specification

Stateless HOL Inference Rules

Stateful HOL Inference Rules

Monadic Kernel Functions

Implementation in CakeML

HOL semantics soundness proof

translation containment proof

refinement proof

automatic refinement proofsynthesis

1 Specifically, the hol-light directory of https://github.com/xrchz/vml.

https://cakeml.org
https://github.com/xrchz/vml

310 R. Kumar et al.

The overall theorems we obtain are about evaluating the CakeML implemen-
tations of the HOL Light kernel functions in CakeML’s operational semantics.
For each kernel function, we prove that if the function is run in a good state
on good arguments, it terminates in a good state and produces good results.
Here “good” refers to our refinement invariants. In particular, a good value of
type “thm” must refine a sequent in stateful HOL that translates to a sequent
in stateless HOL that is valid according to the set-theoretic semantics.

We prove these results by composing the four proof layers in the diagram.
Starting from the top, the HOL semantics interprets stateless HOL sequents in
set theory, from which we obtain a definition of validity. The soundness proof
says that each of the stateless HOL inference rules preserves validity of sequents.

In stateless HOL, defined types and terms carry syntactic tags describing
their definitions, whereas in stateful HOL there is a context of definitions that
is updated when a new definition is made. Our translation from stateful to
stateless takes the definitions from the context and inlines them into the tags.
Our containment proof then shows that whenever the stateful system proves a
sequent, the stateless system proves the translation of the sequent.

As outlined in our rough diamond [11], we define shallowly-embedded HOL
functions, using a state-exception monad, for each of the HOL Light kernel
functions. These “monadic kernel functions” are written following the original
OCaml code closely, then we prove that they implement the stateful inference
rules. Specifically, if one of these functions is applied to good arguments, it
terminates with a good result; any theorem result must refine a sequent that is
provable in the stateful system.

Finally, using the method developed by Myreen and Owens [10] we synthe-
sise CakeML implementations of the monadic kernel functions. This automatic
translation from shallowly- to deeply-embedded code is proof-producing, and we
use the certificate theorems to complete the refinement proof.

In the context of our larger project, the next steps include: a) proving, against
CakeML’s semantics, that our implementation of the kernel can be wrapped in
a module to protect the key property, provability, of values of type “thm”; and
b) using CakeML’s verified compiler to generate a machine-code implementation
of the kernel embedded in an interactive read-eval-print loop that is verified to
never print a false theorem.

3 Set Theory

A rigorous but informal account of the semantics of HOL, due to Pitts, is given
in the HOL4 documentation [12]. It assigns meanings to HOL constructs in a
universe of sets satisfying Zermelo’s axioms. We wish to do the same with a
semantics developed using conservative extensions in HOL. Gödel’s second in-
completeness theorem implies that we cannot actually define a model of Zermelo
set theory. However, we can define what properties such a model must have and
for us this is sufficient. It is convenient to separate out the axioms of choice
and infinity. A specification along these lines was developed previously by one
of us [1] but without any formal proofs. We begin by defining a predicate

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 311

is_set_theory (mem :U -> U -> bool)

that says whether a membership relation defined on some universe U (repre-
sented by a type variable) satisfies the Zermelo axioms other than choice and
infinity, namely the axioms of extensionality, separation (a.k.a. comprehension or
specification), power set, union, and pairing. As we are working in HOL, we can
use propositional functions in place of the metavariables required in a first-order
presentation:

Definition 1 (Specification of Set Theory Axioms)

is_set_theory mem ⇐⇒
extensional mem ∧ (∃ sub. is_separation mem sub) ∧
(∃ power. is_power mem power) ∧ (∃ union. is_union mem union) ∧
∃ upair. is_upair mem upair

extensional mem ⇐⇒
∀ x y. x = y ⇐⇒ ∀ a. mem a x ⇐⇒ mem a y

is_separation mem sub ⇐⇒
∀ x P a. mem a (sub x P) ⇐⇒ mem a x ∧ P a

is_power mem power ⇐⇒
∀ x a. mem a (power x) ⇐⇒ ∀ b. mem b a ⇒ mem b x

is_union mem union ⇐⇒
∀ x a. mem a (union x) ⇐⇒ ∃ b. mem a b ∧ mem b x

is_upair mem upair ⇐⇒
∀ x y a. mem a (upair x y) ⇐⇒ a = x ∨ a = y

A relation mem satisfying the above axioms is sufficient to define the se-
mantics of HOL without Hilbert choice or the axiom of infinity, that is, for the
(polymorphic) simply typed λ-calculus with equality. For the remaining features
of HOL, we need two more parameters: a choice function, and a distinguished
infinite set for the individuals. We specify a complete model as follows.2

Definition 2 (Specification of a Model for HOL)

is_model (mem,indset,ch) ⇐⇒
is_set_theory mem ∧ is_infinite mem indset ∧ is_choice mem ch

is_choice mem ch ⇐⇒ ∀ x. (∃ a. mem a x) ⇒ mem (ch x) x
is_infinite mem s ⇐⇒ infinite {a | mem a s }

3.1 Derived Concepts

In order to reuse Harrison’s proofs [4] as much as possible, we define various
constructions above our set theory model and prove the same theorems he did
to characterise them. These theorems form the interface to set theory above
which one can give a semantics to HOL. To save space, we do not list them all.

For function spaces, function application, and abstraction of a HOL function,
we use the standard set-theoretic method of identifying functions with their

2 infinite (p :α -> bool) abbreviates ¬FINITE p, with finiteness defined induc-
tively for sets-as-predicates in HOL4’s library.

312 R. Kumar et al.

graphs. For Booleans we define a distinguished set of two elements and name its
members. We often use abbreviations to hide the mem argument to a function,
for example funspace s t below actually abbreviates funspace0 mem s t .

� is_set_theory mem ⇒
(∀ f s t.

((∀ x. mem x s ⇒ mem (f x) t) ⇒
mem (abstract s t f) (funspace s t)) ∧

∀ x. mem x s ∧ mem (f x) t ⇒ apply (abstract s t f) x = f x) ∧
∀ x. mem x boolset ⇐⇒ x = true ∨ x = false

3.2 Consistency

We wish to know that is_model is not an empty predicate, to protect against
simple mistakes in the definition, and because the existence of a model will be
an assumption on our soundness theorems. Since actually building a model in
HOL would allow HOL to prove its own consistency, we will have to settle for
something less. However, we wish to avoid axiomatic extensions if possible.

We tried using Harrison’s construction [4] as witness, but unfortunately it
uses what amounts to a type system to define a coherent notion of membership
in terms of injections into a universe. (Harrison calls the types “levels”.) For
simplicity and familiarity our is_set_theory characterises an untyped set the-
ory. In particular, we need extensionality to hold for all sets, while in Harrison’s
model empty sets of distinct types are distinct.

So instead we use a standard encoding of the hereditarily finite sets in HOL
as natural numbers, which takes the universe to be the natural numbers, and
mem n m to hold if the mth bit in the binary numeral for n is 1. With this
model, we can introduce, by conservative extension, a universe type that satisfies
is_set_theory, and, under the assumption that it contains an infinite set, that
it satisfies is_model too. To be able to consistently assume the existence of
infinite sets, the universe type has a free type variable.

Specifically, we define the universe as an arbitrary subset of α + num for which
a suitable membership relation exists. We prove the existence of such a subset,
namely all the numbers in the right of the sum, by using the standard encoding,
which it is straightforward to show satisfies the set-theoretic axioms. Thus, we
prove the following:

� ∃ (P :α + num -> bool) (mem :α + num -> α + num -> bool).

is_set_theory_pred P mem

where is_set_theory_pred P is like is_set_theory but with all quantifica-
tion relativised to P . We then feed this theorem into HOL4’s constant and type
specification machinery to derive a new type α V for our universe, and its mem-
bership relation V_mem. Our main lemma follows directly:

� is_set_theory V_mem

There is a natural choice function for non-empty sets in the standard encoding
of finite sets, namely, the most significant bit in the binary numeral. But there

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 313

are no infinite sets, so, as we would expect from Gödel’s second incompleteness
theorem at this point, no model for the set of individuals.

Now we use the facts that our specification of (V_mem :α V -> α V -> bool)

is loose—the only things that can be proved about it come from is_set_theory

and not the specific construction of the model—and the type α V, being para-
metric, has no provable cardinality bound. Hence if τ is an unspecified type, it is
consistent to assume that τ V includes infinite sets. We specify V_indset as an
arbitrary infinite set under the assumption that one exists. We can then prove
our desired theorem:

Theorem 1 (Example Model)

� (∃ I . is_infinite V_mem I) ⇒
is_model (V_mem,V_indset,V_choice)

An alternative to the general is_model characterisation of a suitable set-
theoretic model is to define a particular universe of sets and then prove that
it has all the desired properties. This is the approach taken by Harrison [4],
who constructs by conservative extension a monomorphic type V equipped with
a membership relation satisfying a typed analogue of our is_set_theory. V is
countably infinite and it would be inconsistent to assert that it is a model of
the axiom of infinity. Harrison observes that one could adapt his formalisation
to give a model of the axiom of infinity using a non-conservative extension. Our
approach allows us to work by conservative extension while remaining consistent
with an assumption of the axiom of infinity.

4 Stateless HOL

Traditional implementations of HOL are stateful because they support the defini-
tion of new type and term constants by updating a context. Wiedijk [16] showed
that this is not necessary if defined constants carry their definitions with them.
Since there is no state, it was an appealing target for extension of Harrison’s
definitionless semantics [4].

4.1 Inference System

The distinguishing feature of stateless HOL syntax is the presence of tags,
const_tag and type_op, on constants and types, containing information about
how they were defined or whether they are primitive. Because of these tags, the
datatypes for terms and types are mutually recursive.

term = Var of string * type

| Const of string * type * const_tag

| Comb of term * term

| Abs of string * type * term

type = Tyvar of string | Tyapp of type_op * type list

type_op = Typrim of string * num | Tydefn of string * term

314 R. Kumar et al.

const_tag = Prim

| Defn of num * (string × term) list * term

| Tyabs of string * term

| Tyrep of string * term

With the Typrim name arity and Prim tags we can build up HOL’s primi-
tive type operators and constants without baking them into the syntax, as the
following abbreviations show.

Bool for Tyapp (Typrim "bool" 0) []

Ind for Tyapp (Typrim "ind" 0) []

Fun x y for Tyapp (Typrim "fun" 2) [x; y]
Equal ty for Const "=" (Fun ty (Fun ty Bool)) Prim

Select ty for Const "@" (Fun (Fun ty Bool) ty) Prim

s === t for Comb (Comb (Equal (typeof s)) s) t

We will explain the tags for non-primitives when we describe the definitional
rules, after introducing the inference system. We use similar notation to Har-
rison [4] wherever possible, for example we define well-typed terms and prove
� welltyped tm ⇐⇒ tm has_type (typeof tm), and we define the fol-
lowing concepts: closed tm, indicating that tm has no free variables; tvars tm
and tyvars ty collecting the type variables appearing in a term or type, and
tyinst tyin ty instantiating type variables in a type.

We were able to reuse most of Harrison’s stateful HOL rules for the stateless
HOL inference system, defining provable sequents3 inductively with a few sys-
tematic modifications. Changes were required to handle the fact that stateless
syntax permits terms whose definitions are unsound because their tags do not
meet the side-conditions required by the definitional principles. Therefore, we
also define predicates picking out good types and terms, in mutual recursion
with the provability relation.

For the most part, we define good terms implicitly as those appearing in
provable sequents. We also need rules for the primitives, and for (de)constructing
good terms and types. A few examples are shown:

hs |- c
member t (c::hs)

term_ok t

type_ok ty1
type_ok ty2

type_ok (Fun ty1 ty2)

term_ok (Comb t1 t2)

term_ok t1

term_ok tm
tm has_type ty

type_ok ty

We continue by specifying the inference rules as in [4], but restricted to good
terms and types. For example, REFL, ASSUME, and INST TYPE:

term_ok t

[] |- t === t

term_ok p
p has_type Bool

[p] |- p

hs |- c
every type_ok (map fst tyin)

map (INST tyin) hs |- INST tyin c

To finish the inference system, we add the rules that extend Harrison’s system
– the principles of definition and the axioms.

3 We write the relation we define as hs |- c. By contrast � p refers to theorems
proved in HOL4.

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 315

Type Definitions. To define a new type in HOL, one chooses an existing type,
called the representing type, and defines a subset via a predicate. HOL types are
non-empty, so the principle of type definition requires a theorem as input that
proves that the chosen subset of the representing type is non-empty.

In the stateless syntax for types, the tag Tydefn name p is found on a de-
fined type operator. It contains the name of the new type and the predicate for
which a theorem of the form [] |- Comb p w was proved as evidence that the
representing type is inhabited.

The rule for defining new types also introduces two new constants representing
injections between the new type and the representing type. In the syntax, these
constants are tagged by Tyabs name p or Tyrep name p, with the name of
the new type and the predicate as above defining the subset of the representing
type. To show that these constants are injections and inverses, the rule produces
two theorems. We show the complete provability clause for one of the theorems
below.

closed p ∧ [] |- Comb p w ∧ rty = domain (typeof p) ∧
aty = Tyapp (Tydefn name p) (map Tyvar (sort (tvars p))) ⇒

[] |-

Comb (Const abs (Fun rty aty) (Tyabs name p))
(Comb (Const rep (Fun aty rty) (Tyrep name p))

(Var x aty)) === Var x aty

Because the new type and the two new constants appear in this theorem, there
is no need to explicitly give rules showing that they are type_ok and term_ok.

Constant Specifications. Wiedijk [16] follows HOL Light in only admitting
an equational definitional principle as a primitive, unlike other implementations
of HOL which also provide a principle of constant specification that takes a
theorem of the form ∃x1, . . . , xk·P and introduces new constants c1, . . . , ck with �
P [c1/x1, . . . , ck/xk] as their defining axiom. This is subject to certain restrictions
on the types of the ci. (The constant specification principle is supported in HOL
Light, but as a derived rule, which, unfortunately, introduces an additional, less
abstract form of the defining axiom.)

A disadvantage of this principle is that it presupposes a suitable definition
of the existential quantifier, whereas we wish to give the semantics of the HOL
language and use conservative extensions to define the logical operators. Our
new constant specification mechanism overcomes this disadvantage and is less
restrictive about the types of the new constants. See [2] for a fuller discussion of
the new mechanism and the motivation for it. We describe it in mathematical
notation rather than HOL4 syntax because the formalisation makes unwieldy
but uninsightful use of list operations, since the rule may introduce multiple
constants.

Given a theorem of the form {x1 = t1, . . . , xn = tn} |-p, where the free
variables of p are contained in {x1, . . . , xn}, we obtain new constants {c1, . . . , cn}
and a theorem |- p[c1/x1, . . . , cn/xn]. The side-conditions are that the variables
x1, . . . , xn are distinct and the type variables of each ti are contained in its type.

316 R. Kumar et al.

In the stateless syntax, we use the tag Defn i xts p for the ith constant
introduced by this rule when it is applied to the theorem with hypotheses
map (λ (x,t). Var x (typeof t) === t) xts and conclusion p,

Since the rule allows new constants to be introduced without appearing in any
new theorems, we also add a clause for the new constants asserting
term_ok (Const x ty (Defn i xts p)).

Axioms. We include the three mathematical axioms—ETA AX (not shown),
SELECT AX, and INFINITY AX—in our inference system directly:

p has_type (Fun ty Bool) ∧ h |- Comb p w ⇒
h |- Comb p (Comb (Select ty) p)

[] |-

EXISTS "f" (Fun Ind Ind)

(AND (ONE_ONE Ind Ind (Var "f" (Fun Ind Ind)))

(NOT (ONTO Ind Ind (Var "f" (Fun Ind Ind)))))

Here EXISTS, AND, and so forth are abbreviations for defined constants in stateless
HOL, and are built up following standard definitions of logical constants. For
example,

NOT =

Comb

(Const1 "~" (Fun Bool Bool)

(Abs "p" Bool (IMPLIES (Var "p" Bool) FALSE)))

where Const1 name ty rhs abbreviates

Const name ty (Defn 0 [(name,rhs)] (Var name (typeof rhs) === rhs))

and shows how the rule for new specification subsumes the traditional rule for
defining a constant to be equal to an existing term.

4.2 Semantics

Just as we reused much of the inference system, we were able to reuse most
of Harrison’s proofs in establishing soundness of the stateless HOL inference
system, again with systematic modifications. The main change, apart from our
extensions, is that our semantics uses inductive relations rather than functions.

The purpose of the semantics is to interpret sequents. Subsidiary concepts in-
clude valuations interpreting variables and semantic relations interpreting types
and terms. We differ from Harrison stylistically in making type and term val-
uations finite maps with explicit domains (he uses total functions). We briefly
describe the proposition expressed by each piece of the semantics as follows:

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 317

type_valuation τ τ maps type variables to non-empty sets
typeset τ ty mty (ty :type) is interpreted by (mty :U) in τ
term_valuation τ σ σ maps each variable to an element of the inter-

pretation of its type
semantics σ τ tm mtm (tm :term) is interpreted by (mtm :U) in τ

and σ
type_has_meaning ty ty has semantics in all closing valuations
has_meaning tm tm has semantics in all closing valuations, and

a pair of closing valuations exists
hs |= c c::hs are meaningful terms of type Bool, and,

in all closing valuations where the semantics of
each of the hs is true, so is the semantics of c

We prove that semantics σ τ and typeset τ are functional relations. Sup-
porting definitions led us to prefer relations for two reasons. First, the semantics
of defined constants in general requires type instantiation, and it is easier to
state the condition it should satisfy than to calculate it explicitly. Second, de-
fined types and constants are given semantics in terms of entities supplied by
side-conditions on the definitional rules, so it is convenient to assume they hold.
It made sense for Harrison to use total functions because without definitions, all
terms (including ill-typed ones) can be handled uniformly.

Our inductive relations are mutually recursive: Harrison’s had one-way de-
pendency because the meaning of equality, for example, depends on the type.
For definitions, we need the other way too because the meaning of a defined type
depends on the term used to define it.

Another difference stems from our semantics being parametric on the choice
of set theory model, (mem,indset,ch). We always use the free variables mem ,
indset , and ch for the model, and we often leave these arguments implicit in our
notation. So, for example, typeset τ ty mty above is actually an abbreviation
for typeset0 (mem,indset,ch) τ ty mty.

A final addition we found helpful, especially for defined constants, is a treat-
ment of type instantiation and variable substitution that is not complicated by
the possibility of variable shadowing.

Now let us look at the new parts of the semantics in detail.

Semantics of Defined Types. A type operator is defined by a predicate on
an existing type called the representing type. Its semantics is the subset of the
representing type where the predicate holds, which must be non-empty.

We define a relation inhab τ p rty mty to express that the subset of the
type rty carved out by the predicate p is non-empty and equal to mty. The
semantics of rty and p are with respect to τ (and the empty term valuation).
Then we formally define the semantics of an applied type operator as follows:

318 R. Kumar et al.

closed p ∧ p has_type (Fun rty Bool) ∧ length (tvars p) = length args ∧
pairwise (typeset τ) args ams ∧
(∀ τ.

type_valuation τ ∧ set (tvars p) ⊆ dom τ ⇒
∃mty. inhab τ p rty mty) ∧

inhab (sort (tvars p) ⇒ ams) p rty mty ⇒
typeset τ (Tyapp (Tydefn op p) args) mty

The purpose of the type arguments is to provide interpretations for type vari-
ables appearing in the predicate, hence in the first argument to inhab we bind4

sort (tvars p) to the interpretations of the arguments. The penultimate
premise, requiring that p carve a non-empty subset of rty for any closing τ ,
is necessary to ensure that a badly defined type does not accidentally get se-
mantics when applied to arguments that happen to produce a non-empty set.

Type definition also introduces two new constants, and they are given seman-
tics as injections between the representing type and the subset carved out of
it. We only show the rule for the function to the new type, which makes an
arbitrary choice in case its argument is not already in the subset. (The other is
the inclusion function.)

typeset τ (Tyapp (Tydefn op p) args) maty ∧ p has_type (Fun rty Bool) ∧
pairwise (typeset τ) args ams ∧ τ i = sort (tvars p) ⇒ ams ∧
typeset τ i rty mrty ∧ semantics ⊥ τ i p mp ∧
tyin = sort (tvars p) ⇒ args ⇒

semantics σ τ
(Const s (Fun (tyinst tyin rty) (Tyapp (Tydefn op p) args))

(Tyabs op p))
(abstract mrty maty (λ x. if Holds mp x then x else ch maty))

The type definition rule returns two theorems about the new constants, as-
serting that they form a bijection between the new type and the subset of the
representing type defined by the predicate. It is straightforward to prove this
rule sound since the semantics simply interprets the new type as the subset to
which it must be in bijection.

Substitution and Instantiation. In Harrison’s work, proving soundness for
the two inference rules (INST TYPE and INST) that use type instantiation and
term substitution takes about 60% of the semantics.ml proof script by line
count. These operations are complicated because they protect against unin-
tended variable capture, e.g. instantiating α with bool in λ (x :bool). (x :α)
triggers renaming of the bound variable. Since the semantics of defined constants
uses type instantiation, we sought a simpler implementation.

The key observation is that there is always an α-equivalent term—with dis-
tinct variable names—for which instantiation is simple, and the semantics should
be up to α-equivalence anyway. For any term tm and finite set of names s , we
define fresh_term s tm as an arbitrary α-equivalent term with bound variable
names that are all distinct and not in s .

4 ks ⇒ vs is the finite map binding ks pairwise to vs .

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 319

We define unsafe but simple algorithms, simple_inst and simple_subst,
which uniformly replace (type) variables in a term, ignoring capture. Then, under
conditions that can be provided by fresh_term, namely, that bound variable
names are distinct and not in the set of names appearing in the substitution,
it is straightforward to show that simple_subst and simple_inst behave the
same as the capture-avoiding algorithms, VSUBST and INST.

The inference rules use the capture-avoiding algorithms since they must cope
with terms constructed by the user, but when we prove their soundness we first
switch to a fresh term then use the simple algorithms. The theorems enabling this
switch say that substitution (not shown) and instantiation respect α-equivalence:

� welltyped t1 ∧ ACONV t1 t2 ⇒ ACONV (INST tyin t1) (INST tyin t2)

To prove these theorems, we appeal to a variable-free encoding of terms using de
Bruijn indices. We define versions of VSUBST and INST that operate on de Bruijn
terms, and prove that converting to de Bruijn then instantiating is the same as
instantiating first then converting. The results then follow because α-equivalence
amounts to equality of de Bruijn terms.

Semantics of Defined Constants. The semantics of the ith constant de-
fined by application of our principle for new specification on {x1 = t1, . . . , xn =
tn} |-p can be specified as the semantics of the term ti. This choice might con-
strain the constant more than the predicate p does, but the inference system
guarantees that all knowledge about the constant must be derivable from p.
When ti is polymorphic, we need to instantiate its type variables to match the
type of the constant. The relevant clause of the semantics is as follows.

i < length eqs ∧ EL i eqs = (s,ti) ∧ t = fresh_term ∅ ti ∧ welltyped t ∧
closed t ∧ set (tvars t) ⊆ set (tyvars (typeof t)) ∧
tyinst tyin (typeof t) = ty ∧ semantics ⊥ τ (simple_inst tyin t) mt ⇒

semantics σ τ (Const s ty (Defn i eqs p)) mt

To prove our new constant specification principle sound, we may assume
{x1 = t1, . . . , xn = tn} |-p and need to show |- p[c1/x1, . . . , cn/xn]. Given the
semantics above and the interpretation of sequents, this reduces to proving the
correctness of substitution, which we need to prove anyway for the INST rule.

Axioms, Soundness and Consistency. The axioms do not introduce new
kinds of term or type, so do not affect the semantics. We just have to characterise
the constants in the axiom of infinity using the semantics for defined constants.
Since our interpretation of functions is natural, mapping functions to their graphs
in the set theory, the soundness proofs for the axioms are straightforward.

We have described how we prove soundness for each of our additional inference
rules (that is, for definitions and axioms). We prove soundness for all the other
inference rules by adapting Harrison’s proofs, with improvements where possible
(e.g. for substitution and instantation). Using the proofs for each rule, we obtain
the main soundness theorem by induction on the inference system.

320 R. Kumar et al.

Theorem 2 (Soundness of Stateless HOL)

� is_model (mem,indset,ch) ⇒
(∀ ty. type_ok ty ⇒ type_has_meaning ty) ∧
(∀ tm. term_ok tm ⇒ has_meaning tm) ∧
∀ hs c. hs |- c ⇒ hs |= c

It is then straightforward to prove that there exist both provable and unprov-
able sequents (VARIANT here creates a distinct name by priming):

Theorem 3 (Consistency of Stateless HOL)

� is_model (mem,indset,ch) ⇒
[] |- Var x Bool === Var x Bool ∧
¬([] |- Var x Bool === Var (VARIANT (Var x Bool) x Bool) Bool)

5 From Stateful Back to Stateless

The previous sections have explained the semantics and soundness proof for
stateless HOL. Our overall goal is to prove the soundness of a conventional
stateful implementation, so we formalise a stateful version of HOL (our rough
diamond contains a brief overview [11]) and give it semantics by translation into
the stateless version.

The only significant difference between the stateful and stateless versions is
that the stateless carries definitions of constants as tags on the terms and types.
The translation from the stateful version, which has an explicit global context,
simply inlines all the appropriate definitions into the terms and types.

We define this translation from stateful to stateless HOL using inductively
defined relations for translation of types and terms. The translation of stateful
sequents into stateless sequents is defined as the following relation.

seq_trans ((defs,hs ′),c′) (hs,c) ⇐⇒
pairwise (term defs) hs ′ hs ∧ term defs c′ c

Here defs is the global context in which the stateful theorem sequent has been
proved, and term is the translation relation for terms. The definition of term

(and type similarly) is straightforward and omitted due to space constraints.
We prove, by induction on the stateful inference system, that any sequent that

can be derived in the stateful version can be translated into a provable stateless
sequent.

Theorem 4 (Stateful HOL contained in stateless HOL)

� (type_ok defs ty ′ ⇒ ∃ ty. type defs ty ′ ty ∧ type_ok ty) ∧
(term_ok defs tm ′ ⇒ ∃ tm. term defs tm ′ tm ∧ term_ok tm) ∧
((defs,hs ′) |- c′ ⇒ ∃ hs c. seq_trans ((defs,hs ′),c′) (hs,c) ∧ hs |- c)

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 321

6 Verifying the Kernel in CakeML

To construct a verified CakeML implementation of the stateful HOL inference
rules, we take the implementation of the HOL Light kernel (extended with
our constant specification principle) and define each of its functions in HOL4
using a state-and-exception monad. Using previously developed proof automa-
tion [10], these monadic functions are automatically turned into deep embeddings
(CakeML abstract syntax) that are proved to implement the original monadic
functions.

It only remains to show the following connection between the computation
performed by the monadic functions, and the inference system for stateful HOL
from §5: any computation on good types, terms and theorems will produce good
types, terms and theorems according to stateful HOL. A type, term or theorem
sequent is “good” if it is good according to type_ok, term_ok, or (|-) from
stateful HOL. Here hol_tm, hol_ty and hol_defs translate into the implemen-
tation’s representations.

� TYPE defs ty ⇐⇒ type_ok (hol_defs defs) (hol_ty ty)
� TERM defs tm ⇐⇒ term_ok (hol_defs defs) (hol_tm tm)

� THM defs (Sequent asl c) ⇐⇒
(hol_defs defs,map hol_tm asl) |- hol_tm c

The prover’s state s implements logical context defs , if STATE s defs holds. We
omit the definition of STATE.

For each monadic function, we prove that good inputs produce good output.
For example, for the ASSUME function, we prove that, if the input is a good term
and the state is good, then the state will be unchanged on exit and if the function
returned something (via HolRes) then the return value is a good theorem:

� TERM defs tm ∧ STATE s defs ∧ ASSUME tm s = (res,s ′) ⇒
s ′ = s ∧ ∀ th. res = HolRes th ⇒ THM defs th

We prove a similar theorem for each function in the kernel, showing that they
implement the stateful inference rules correctly. As another example, take the
new rule for constant specification: we prove that if the state is updated then
the state is still good and the returned theorem is good.

� THM defs th ∧ STATE s defs ⇒
case new_specification th s of

(HolRes th,s ′) ⇒ ∃ d. THM (d ::defs) th ∧ STATE s ′ (d ::defs)
| (HolErr msg,s ′) ⇒ s ′ = s

By expanding the definition of THM in these theorems, then applying Theorems 4
and 2, we see that each monadic function implements a valid deduction according
to the semantics of HOL. We then compose with the automatically synthesised
certificate theorem for the CakeML implementation, to finish the proof about
the CakeML implementation of the kernel. The automatically proved certificate
theorem for the monadic new_specification function is shown below. These
certificate theorems are explained in Myreen and Owens [10].

322 R. Kumar et al.

� DeclAssum ml_hol_kernel_decls env ⇒
EvalM env (Var (Short "new_specification"))

((PURE HOL_KERNEL_THM_TYPE -M-> HOL_MONAD HOL_KERNEL_THM_TYPE)

new_specification)

7 Related Work

For classical higher-order logic, apart from Harrison’s mechanisation [4] of the
semantics that we extend here, Krauss and Schropp [6] have also formalised a
translation to set theory automatically producing proofs in Isabelle/ZF.

Considering other logics, Barras [3] has formalised a reduced version of the
calculus of inductive constructions, the logic used by the Coq proof assistant,
giving it a semantics in set theory and formalising a soundness proof in Coq itself.
The approach is modular, and Wang and Barras [15] have extended the frame-
work and applied it to the calculus of constructions plus an abstract equational
theory.

Myreen and Davis [9] formalised Milawa’s ACL2-like first-order logic and
proved it sound using HOL4. This soundness proof for Milawa produced a top-
level theorem which states that the machine-code which runs the prover will
only print theorems that are true according to the semantics of the Milawa
logic. Since Milawa’s logic is weaker than HOL, it fits naturally inside HOL
without encountering any delicate foundational territory such as the assumption
on Theorem 1.

Other noteworthy prover verifications include a simple first-order tableau
prover by Ridge and Margetson [13] and a SAT solver algorithm with many
modern optimizations by Marić [8].

8 Conclusion

CakeML In the context of the CakeML project overall (https://cakeml.org),
our verified implementation of the HOL Light kernel is an important milestone:
the first verified application other than the CakeML compiler itself. This vali-
dates both the methodology of working in HOL4 and using automated synthesis
to produce verified programs, and the usefulness of the CakeML language for a
substantial application. At this point we have a verified compiler, and a verified
application to run on it. What remains to be done is the creation of reasoning
tools for CakeML programs that do not fit nicely into the HOL4 logic. In par-
ticular, we want to establish that arbitrary – possibly malicious – client code
that constructs proofs using the verified HOL Light kernel cannot subvert the
module-system enforced abstraction that protects the kernel and create false
theorems.

Reflections on Stateless HOL. Our choice to use stateless HOL was moti-
vated by a desire to keep the soundness proof simple and close to Harrison’s
by avoiding introduction of a context for definitions. We avoided the context,

https://cakeml.org

HOL with Definitions: Semantics, Soundness, and a Verified Implementation 323

but stateless HOL did introduce some significant complications: the inference
system and semantics both become mutually recursive, and care must be taken
to avoid terms with no semantics. The dependence of typeset on semantics is
necessary for type definitions, but it could perhaps be factored through a con-
text. Similarly, the move to relations instead of functions seems reasonable given
the side-conditions on the definitional rules, but one could instead use a total
lookup function to get definitions from a context.

Overall it is not clear that stateless HOL saved us any work and it is clear that
it led to some loss of abstraction in our formalisation. Separating the context
from the representation of types and terms is closer to the standard approaches
adopted in the mathematical logic literature and would help to separate concerns
about the conservative extension mechanisms (which we expect to be loosely
specified) from concerns about the semantics of types and terms (which we expect
to be deterministic functions of the context). After submitting this paper, we
experimented with a formalisation of the semantics using a separate context,
and would now recommend the context-based approach as simpler and more
expressive.

Acknowledgements. We thank Mike Gordon, John Harrison, Roger Jones,
Michael Norrish, Konrad Slind, and Freek Wiedijk for useful discussions and
feedback. The first author acknowledges support from Gates Cambridge. The
third author was funded by the Royal Society, UK.

References

1. Arthan, R.: HOL formalised: Semantics,
http://www.lemma-one.com/ProofPower/specs/spc002.pdf

2. Arthan, R.: HOL constant definition done right. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS (LNAI), vol. 8558, pp. 531–536. Springer, Heidelberg (2014)

3. Barras, B.: Sets in Coq, Coq in sets. J. Formalized Reasoning 3(1) (2010)
4. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N.

(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006)

5. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009), http://www.cl.cam.ac.uk/~jrh13/hol-light/

6. Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set
theory. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
323–338. Springer, Heidelberg (2010)

7. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Principles of Prog. Lang. (POPL). ACM Press (2014)

8. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010)

9. Myreen, M.O., Davis, J.: The reflective Milawa theorem prover is sound (Down to
the machine code that runs it). In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS
(LNAI), vol. 8558, pp. 421–436. Springer, Heidelberg (2014)

http://www.lemma-one.com/ProofPower/specs/spc002.pdf
http://www.cl.cam.ac.uk/~jrh13/hol-light/

324 R. Kumar et al.

10. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. Journal of Functional Programming FirstView (January
2014)

11. Myreen, M.O., Owens, S., Kumar, R.: Steps towards verified implementations of
HOL Light. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 490–495. Springer, Heidelberg (2013), “Rough Diamond” section

12. Norrish, M., Slind, K., et al.: The HOL System: Logic, 3rd edn.,
http://hol.sourceforge.net/documentation.html

13. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

14. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

15. Wang, Q., Barras, B.: Semantics of intensional type theory extended with decidable
equational theories. In: CSL. LIPIcs, vol. 23, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2013)

16. Wiedijk, F.: Stateless HOL. In: Types for Proofs and Programs (TYPES). EPTCS,
vol. 53 (2009)

http://hol.sourceforge.net/documentation.html

Verified Efficient Implementation of Gabow’s

Strongly Connected Component Algorithm

Peter Lammich

Technische Universität München
lammich@in.tum.de

Abstract. We present an Isabelle/HOL formalization of Gabow’s algo-
rithm for finding the strongly connected components of a directed graph.
Using data refinement techniques, we extract efficient code that performs
comparable to a reference implementation in Java. Our style of formal-
ization allows for reusing large parts of the proofs when defining variants
of the algorithm. We demonstrate this by verifying an algorithm for the
emptiness check of generalized Büchi automata, reusing most of the ex-
isting proofs.

1 Introduction

A strongly connected component (SCC) of a directed graph is a maximal subset
of mutually reachable nodes. Finding the SCCs is a standard problem from graph
theory with applications in many fields [27, Chap. 4.2].

There are several algorithms to partition the nodes of a graph into SCCs, the
main ones being the Kosaraju-Sharir algorithm [28], Tarjan’s algorithm [29], and
the class of path-based algorithms [25,22,7,4,9].

In this paper, we present the verification of Gabow’s path-based SCC algo-
rithm [9] within the theorem prover Isabelle/HOL [24]. Using refinement tech-
niques and efficient verified data structures, we extract Standard ML (SML) [21]
code from the formalization. Our verified algorithm has a performance compa-
rable to a reference implementation in Java, taken from Sedgewick and Wayne’s
textbook on algorithms [27, Chap. 4.2].

Our main interest in SCC algorithms stems from the fact that they can be
used for the emptiness check of generalized Büchi automata (GBA), a problem
that arises in LTL model checking [30,10,6]. Towards this end, we extend the
algorithm to check the emptiness of generalized Büchi automata, reusing many
of the proofs from the original verification.

Contributions and Related Work. Up to our knowledge, we present the first
mechanically verified SCC algorithm, as well as the first mechanically verified
SCC-based emptiness check for GBA. Path-based algorithms have already been
regarded for the emptiness check of GBAs [26]. However, we are the first to
use the data structure proposed by Gabow [9].1 Finally, our development is

1 Although called Gabow-based algorithm in [26], a union-find data structure is used
to implement collapsing of nodes, while Gabow proposes a different data structure [9,
pg. 109].

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 325–340, 2014.
c© Springer International Publishing Switzerland 2014

326 P. Lammich

a case study for using the Isabelle/HOL Monadic Refinement and Collection
Frameworks [14,19,17,18] to engineer a verified, efficient implementation of a
quite complex algorithm, while keeping proofs modular and reusable.

This development is part of the Cava project [8] to produce a fully verified
LTL model checker. The current Cava model checker converts GBAs to stan-
dard Büchi automata, and uses an emptiness check based on nested depth first
search [5,23]. Using GBAs directly typically yields smaller search spaces, thus
making tractable bigger models and/or more complex properties [6].

The Isabelle source code of the formalization described in this paper is publicly
available [15].

Outline. The rest of this paper is organized as follows: In Section 2, we recall
Gabow’s SCC algorithm and present our extension for the emptiness check of
generalized Büchi automata. Moreover, we briefly introduce the Isabelle/HOL
Refinement and Collection Frameworks. Section 3 presents the formalization
of the abstract algorithm, Section 4 presents the refinement to Gabow’s data
structure, and Section 5 presents the refinement to executable code. Finally,
Section 6 reports on performance benchmarks and Section 7 contains conclusions
and directions of future work.

2 Preliminaries

In this section, we present the preliminaries of our formalization. Subsection 2.1
recalls Gabow’s algorithm and GBAs. Subsection 2.2 outlines our verification
approach based on the Isabelle/HOL Refinement and Collection Frameworks.

2.1 Path-Based Strongly Connected Component Algorithms

Let G = (V,E) be a finite directed graph over nodes V and edges E ⊆ V ×V . A
strongly connected component (SCC) is a maximal set of nodes U ⊆ V , such that
all nodes in U are mutually reachable, i. e. for all u, v ∈ U , there is a directed
path from u to v.

A path based SCC algorithm is a depth first search (DFS) through the graph
that, whenever it finds a back edge, contracts all nodes in the cycle closed by
this edge [9]. To distinguish contracted nodes from nodes of the original graph,
we refer to the former ones as c-nodes.

The algorithm starts with the original graph and a path that consists of a
single arbitrary node. In each step, an edge starting at the end of the path
is selected. If it leads back to a c-node on the path, all c-nodes on the cycle
formed by this back edge and the path are collapsed. If the edge leads to an
unfinished c-node, this node is appended to the path. Otherwise, the edge is
ignored. If all edges from the end of the path have already been considered, the
last c-node is removed from the path and marked as finished. At this point, the
last c-node represents an SCC of the original graph. If the path becomes empty,
the algorithm is repeated for another unfinished node, until all nodes have been
finished.

Verified Efficient Implementation of Gabow’s SCC Algorithm 327

Implementation. The problem when implementing this algorithm is to keep track
of the collapsed nodes in the graph efficiently. Initially, general set merging algo-
rithms were proposed for identifying the collapsed nodes [25,22]. The idea of [9]
(variants of it are also used in [7,4]) is to represent the current path by two stacks:
A stack S that contains nodes of the original graph, and a boundary stack B that
contains indexes into the first stack, which represent the boundaries between the
collapsed nodes. For example, to represent the path [{a, b}, {c}, {d, e}], one uses
S = [a, b, c, d, e] and B = [0, 2, 3]. Moreover, the (partial) index map I maps each
node on S to its index. I is also used to represent nodes that belong to finished
c-nodes, by mapping them to a special value (e. g. a negative number).

Collapsing is always due to a back edge (u, v), where u is in the last c-node
of the path. Thus, it can be implemented by looking up the index I v of v, and
then popping elements from B until its topmost element is less than or equal to
I v. Appending a new c-node to the path is implemented by pushing it onto S
and its index onto B. Removing the last c-node from the path is implemented
by popping elements from S until its length becomes top B, and then popping
the topmost element from B.

With this data structure, the algorithm runs in time O(|V |+ |E|), i. e. linear
time in the size of the graph [9].

For our main purpose, i. e. LTL model checking, we generalize the algorithm
to only consider the part of the graph that is reachable from a set of start nodes
V0 ⊆ V . This is easily achieved by only repeating the algorithm for unfinished
nodes from V0.

Generalized Büchi Automata. Generalized Büchi Automata (GBA) [30] have
been introduced as a generalization of Büchi automata (BA) [3] that allows for
more efficient automata based LTL model checking [31].

A GBA is a finite directed graph (V,E) with a set of initial nodes V0 ⊆ V ,
a finite set of acceptance classes C, and a map F : V → 2C . As we are only
interested in emptiness, we need not consider an alphabet.

An accepting run is an infinite path starting at a node from V0, such that a
node from each acceptance class occurs infinitely often on that path. A GBA is
non-empty, if it has an accepting run. As the GBA is finite, this is equivalent
to having a reachable accepting cycle, i. e. a cyclic, finite path with at least one
edge that contains nodes from all acceptance classes. Obviously, a graph has a
reachable accepting cycle iff it has a reachable non-trivial SCC that contains
nodes from all acceptance classes. Here, an SCC is called non-trivial, if there is
at least one edge between its nodes.

To decide emptiness, we don’t need to compute all SCCs first: As the c-nodes
on the path are always subsets of SCCs, we can report ,,non-empty” already
if the last c-node on the path contains nodes from all acceptance classes, after
being collapsed (i. e. becoming non-trivial). This way, the algorithm reports non-
emptiness as soon as it has seen all edges of an accepting cycle.

To implement this check efficiently, we store the set of acceptance classes
for each c-node on the path. This information can be added to the B stack, or
maintained as a separate stack. On collapsing, the sets belonging to the collapsed

328 P. Lammich

c-nodes are joined. This adds a factor of |C| to the run time. However, |C| is
typically small, such that the sets can be implemented efficiently, e. g. as bit
vectors.

2.2 Refinement Based Program Verification in Isabelle/HOL

Our formalization is done in four main steps, using Isabelle/HOL [24]:

1. Verification of the abstract path-based algorithm.
2. Refinement to Gabow’s data structure.
3. Refinement to efficient data structures (e. g. arrays, hash tables).
4. Extraction of Standard ML code.

The key advantage of this approach is that proofs in one step are not influenced
by proofs in the other steps, which greatly reduces the complexity of the whole
development, and makes more complex developments possible in the first place.

With its refinement calculus [1] that is based on a nondeterminism monad [32],
the Monadic Refinement Framework [19,17] provides a concise way to phrase
the algorithms and refinements in Steps 1–3. The Isabelle Collection Frame-
work [14,16] contributes the efficient data structures. Moreover, we use the Au-
toref tool [18] to add some automation in Step 3. Finally, we use the Isabelle/HOL
code generator [11,12] in Step 4. In the following, we briefly recall these tech-
niques.

Isabelle/HOL. Isabelle/HOL [24] is a theorem prover for higher order logic.
The listings contained in this paper are actual Isabelle/HOL source, sometimes
slightly polished for better readability. We quickly review some non-standard syn-
tax used in this paper: Functions are defined by sequential pattern matching, us-
ing ≡ as defining equation operator. Theorems are written as [[P1,. . . ,Pn]] =⇒ Q,
which is syntactic sugar for P1 =⇒ . . . =⇒ Pn =⇒ Q.

Program Refinement. The Monadic Refinement Framework represents programs
as a monad over the type ’a nres = res ’a set | fail. A result res X means that
the program nondeterministically returns a value from the set X, and the result
fail means that an assertion failed. The subset ordering is lifted to results:

res X ≤ res Y ≡ X ⊆ Y | ≤ fail ≡ True | ≤ ≡ False

Intuitively, m ≤ m’ (m refines m′) means that all possible values of m are also
possible values of m’. Note that this ordering yields a complete lattice on results,
with smallest element res {} and greatest element fail. The monad operations
are then defined as follows:

return x ≡ res {x}
bind (res X) f ≡ Sup {f x | x∈X} | bind fail f ≡ fail

Intuitively, return x is the result that contains the single value x, and bind m f
is sequential composition: Choose a value from m, and apply f to it.

Verified Efficient Implementation of Gabow’s SCC Algorithm 329

As a shortcut to specify values satisfying a given predicate Φ, we define
spec Φ ≡ res {x | Φ x}. Moreover, we use a Haskell-like do-notation, and de-
fine a shortcut for assertions:

assert Φ ≡ if Φ then return () else fail

Recursion is defined by a fixed point:

rec B x ≡ do {assert (mono B); gfp B x}

As we use the greatest fixed point, a non-terminating recursion causes the result
to be fail. This matches the notion of total correctness. Note that we assert
monotonicity of the recursive function’s body B, which typically follows by con-
struction [13]. On top of the rec primitive, we define loop constructs like while
and foreach.

In a typical development based on stepwise refinement, one specifies a series
of programs m1 ≤ . . . ≤ mn, such that mn has the form spec Φ, where Φ is the
specification, and m1 is the final implementation. In each refinement step (from
mi+1 to mi), some aspects of the program are refined.

Example 1. Given a finite set S of sets, the following specifies a set r that con-
tains at least one element from every non-empty set in S:

sel3 S ≡ do {assert (finite S); (spec r. ∀s ∈ S. s �= {} −→ r ∩ s �= {})}

This specification can be implemented by iteration over the outer set, adding an
arbitrary element from each non-empty inner set to the result:

sel2 S ≡ do {
assert (finite S);
foreach S (λs r.
if s={} then return r else do {x←spec x. x∈s; return (insert x r)}

) {} }

Using the verification condition generator (VCG) of the monadic refinement
framework, it is straightforward to show that sel2 is a refinement of sel3:

lemma sel2 S ≤ sel3 S
unfolding sel2 def sel3 def
by (refine rcg foreach rule[where I=λit r. ∀s∈S − it. s �={} −→ r∩s �={}])
auto

As constructs used in monadic programs are monotonic, sel3 can be replaced by
sel2 in a bigger program, yielding a correct refinement.

Data Refinement. In a typical refinement based development, one also wants
to refine the representation of data. For example, we need to refine the abstract
path by Gabow’s data structure. A data refinement is specified by a single-valued
refinement relation between concrete and abstract values. Equivalently, it can
be expressed by an abstraction function from concrete to abstract values and
an invariant on concrete values. A prototypical example is implementing sets by

330 P. Lammich

distinct lists, i. e. lists that contain no duplicate elements. Here, the refinement
relation 〈R〉list set rel relates a distinct list to the set of its elements, where the
elements are related by R.

Given a refinement relation R, we define the function ⇓R to map results over
the abstract type to results over the concrete type:

⇓R (res A) ≡ res {c | ∃a ∈ A. (c,a) ∈ R} | ⇓R fail ≡ fail

Thus, m1 ≤ ⇓R m2 states that m1 is a refinement of m2 w. r. t. the refinement
relation R, i. e. all concrete values in m1 correspond to abstract values in m2.

The Monadic Refinement Framework implements a refinement calculus [1]
that is used by the VCG for refinement proofs. Moreover, the Autoref tool [18]
can be used to automatically synthesize the concrete program and the refinement
proof, guided by user-adjustable heuristics to find suitable implementations of
abstract data types. For the algorithm sel2 from Example 1, Autoref generates
the implementation

sel1 Xi ≡ foldl
(λσ x. if is Nil x then σ else let xa = hd x in glist insert op = xa σ) [] Xi

and proves the theorem

(Xi1, X1) ∈ 〈〈Id〉list set rel〉list set rel =⇒
return (sel1 Xi1) ≤ ⇓〈Id〉list set rel (sel2 X1)

By default, Autoref uses the Isabelle Collection Framework [14,16], which pro-
vides a large selection of verified collection data structures.

Code Generation. After the last refinement step, one typically has arrived at
a deterministic program inside the executable fragment of Isabelle/HOL. The
code generator [11,12] extracts this program to Standard ML code. For example,
it generates the following ML function for sel1:

fun sel1 xi =
List.foldl (fn sigma ⇒ fn x ⇒
(if Autoref Bindings HOL.is Nil x then sigma
else let val xa = List.hd x;

in Impl List Set.glist insert Arith.equal nat xa sigma
end)) [] xi;

3 Abstract Algorithm

In this section, we describe our formalization of the abstract path based algo-
rithm for finding SCCs. The goal is to formalize two variants of the algorithm,
one for computing a list of SCCs, and another for emptiness check of GBAs,
while sharing common parts of the proofs. For this purpose, we first define a
skeleton algorithm that maintains the path through the graph, but does not
store the found SCCs. This skeleton algorithm helps us finding invariants that

Verified Efficient Implementation of Gabow’s SCC Algorithm 331

skeleton ≡ do {
let D = {};
foreachouter invar V0 (λv0 D0. do {
if v0 /∈D0 then do {
let (p,D,pE) = initial v0 D0;

(p,D,pE) ← whileinvar v0 D0 (λ(p,D,pE). p
= []) (λ(p,D,pE). do {
(vo,(p,D,pE)) ← select edge (p,D,pE);
case vo of
Some v ⇒ do {
if v ∈ ⋃

set p then return (collapse v (p,D,pE))
else if v/∈D then return (push v (p,D,pE))
else return (p,D,pE)

}
| None ⇒ return (pop (p,D,pE))

}) (p,D,pE);
return D

} else
return D0

}) D
}

Listing 1.1. Skeleton of a path-based algorithm

hold in all path-based algorithms, and can be used as a starting point for defining
the actual algorithms. Listing 1.1 displays the code of the skeleton algorithm.2 It
formalizes the path-based algorithm sketched in Section 2.1: First, we initialize
the set D of finished nodes. Then, we iterate over the root nodes V0 of the graph,
and for each unfinished one, we start the inner loop of the search algorithm,
which runs until the path becomes empty again. In the inner loop, we addition-
ally keep track of the current path p and a set pE of pending edges, i. e. edges
that have not yet been explored and start from nodes on the path. For better
manageability of the proofs, we have defined constants for the basic operations:

initial v0 D0 ≡ ([{v0}], D0, E ∩ {v0} × UNIV)
select edge (p,D,pE) ≡ do {

e ← select (pE ∩ last p × UNIV);
case e of
None ⇒ return (None,(p,D,pE))

| Some (u,v) ⇒ return (Some v, (p,D,pE − {(u,v)}))
}

collapse v (p,D,pE) ≡ let i=idx of p v in (take i p @ [
⋃
set (drop i p)],D,pE)

where idx of p v ≡ THE i. i<length p ∧ v∈p!i
push v (p, D, pE) ≡ (p @ [{v}], D, pE ∪ E ∩ {v} × UNIV)
pop (p, D, pE) ≡ (butlast p, last p ∪ D, pE)

2 Shortened a bit by removing some assert-statements.

332 P. Lammich

These constants are defined over the whole state (p,D, pE) of the inner loop,
even if they only work on parts of it. This allows for nicer refinement proofs, as
operations on the abstract state are refined to operations on the concrete state,
without exposing the inner structure of the states, which differs on the concrete
and abstract domain. Note that this also results in a more modular correctness
proof, as invariant preservation can be shown separately for each operation.

We briefly explain the operations: The initial operation initializes the state
for the inner loop with a path that consists of the single node v0. The select edge
operation checks if there is a pending edge from the end of the path. If there
is no such edge, it returns None and does not change the state. Otherwise, it
removes the edge from the set of pending edges, and returns its target node.
The operation collapse first determines the index of the node on the path, and
then collapses the corresponding suffix of the path. The operation push appends
a new node to the path, and the operation pop removes the last node from the
path.

3.1 Invariants

Correctness of while and foreach loops is proved by establishing a loop invariant.
Moreover, we have to show that the body of a while loop transforms states within
a well-founded relation, and that the set iterated over by a foreach loop is finite.

We specify invariants for the skeleton algorithm and show that they are pre-
served by the operations inside the loop. The invariants and the preservation
lemmas are then reused for the actual algorithms. In Listing 1.1, the loops are
annotated with their invariants, such that the VCG sees them.

The invariant of the outer loop depends on the nodes it still to be iterated over,
and on the finished nodes D. It states that (1) we only iterate over start nodes,
(2) nodes that we have already iterated over are finished, (3) finished nodes are
reachable, and (4) edges from finished nodes lead to finished nodes again. The
invariant is formalized using the locale mechanism of Isabelle/HOL [2]:

locale outer invar = digraph loc + fixes it and D
assumes 1: it⊆V0 and 2: V0 − it ⊆ D and 3: D⊆E∗‘‘V0 and 4: E‘‘D ⊆ D

Here, digraph loc defines a finite directed graph, represented by its edge rela-
tion E and a set of initial nodes V0. The set V of nodes is implicitly fixed
to the universal set UNIV, and thus not explicitly mentioned in the formaliza-
tion. Moreover, r∗ denotes the reflexive transitive closure of a relation r, and
r‘‘s = {y. ∃x∈s. (x,y)∈r} denotes the image of a set s under a relation r.

The invariant invar v0 D0 (p,D,pE) of the inner loop is more complex. We only
sketch its main idea here, and refer the reader to the actual formalization [15]
for more details. The main parts of the inner loop’s invariant are:

(1) Edges from finished nodes lead to finished nodes; nodes on the path are not
finished; non-pending edges from the path lead either to nodes on the path
or to finished nodes.

(2) Only pending edges may go back on the path.
(3) The nodes inside a c-node on the path are mutually reachable.

Verified Efficient Implementation of Gabow’s SCC Algorithm 333

(1) is a standard invariant for DFS. (2) ensures that all cycles that have
already been seen are collapsed, and (3) ensures that the c-nodes on the path
are always subsets of SCCs. In particular, when a c-node is popped from the
path, it has no pending edges left. Then, it easily follows from the invariant that
this c-node is a maximal set of mutually reachable nodes, i. e. an SCC.

We now apply the VCG to the skeleton algorithm, after unfolding the def-
inition of select edge. This leaves us with proof obligations to show invariant
preservation for each of the operations in the loop. These are proved as separate
lemmas, to be reused later. For example, we prove for the pop operation:

invar pop: [[invar v0 D0 (p, D, pE); p �= []; pE ∩ last p × UNIV = {}]]
=⇒ invar v0 D0 (pop (p, D, pE))

To show termination of the inner loop, we define an edge to be visited if it is
not pending and starts at a finished node, or at a node on the path. We then show
that, in each step, either the set of visited edges grows, or it remains the same
and the path length decreases. Technically, we define a well-founded relation over
the state of the while loop and show that the operations are compatible with it.
These verification conditions are also proved as separate lemmas.

3.2 Computing the SCCs

In a next step, we extend the skeleton algorithm to actually compute a list of
SCCs of the graph. We define the algorithm compute SCC by replacing the state-
ment return (pop (p,D,pE)) in Listing 1.1 with return (last p#l,pop (p,D,pE)),
and pass the list l through the inner and outer loop, initializing it to the empty
list.

In order to specify the intended result, we first define a strongly connected
component as a maximal mutually connected set of nodes:

is scc E U ≡ U×U⊆E∗ ∧ (∀U’. U’⊃U −→ ¬ (U’×U’⊆E∗))

Then, we define the intended result as a list that covers all reachable nodes and
contains SCCs in (reverse) topological order:

compute SCC spec ≡ spec l.⋃
set l = E∗‘‘V0 ∧ (∀U∈set l. is scc E U)

∧ (∀i j. i<j ∧ j<length l −→ l!j × l!i ∩ E∗ = {})

Next, we extend the invariant of the skeleton algorithm. The invariant ex-
tension is the same for the inner and outer invariant, and states that the list
computed so far (1) covers exactly the finished nodes and (2) contains SCCs in
(3) reverse topological order. The new invariants can be elegantly defined using
the locale mechanism of Isabelle/HOL:

locale cscc invar ext = digraph loc + fixes l D
assumes 1:

⋃
set l = D and 2: ∀U∈set l. is scc E U

and 3:
∧
i j. [[i<j; j<length l]] =⇒ l!j × l!i ∩ E∗ = {}

334 P. Lammich

locale cscc outer invar = outer invar + cscc invar ext
locale cscc invar = invar + cscc invar ext

In order to prove the algorithm correct, we have to show that the extended
invariant is preserved. We add the following rule to the VCG:

cscc invarI: [[invar v0 D0 s; invar v0 D0 s =⇒ cscc invar ext (l, s)]]
=⇒ cscc invar v0 D0 (l, s)

We also add the analogous rule cscc outer invarI for the outer loop’s invariant.
These rules split a proof of the extended invariant into a proof of the original
invariant and a proof of the invariant extension.

As we already have proved lemmas for the verification conditions concerning
invar, we only have to prove lemmas for the invariant extension. For example,
for finishing a node, we prove

cscc invar pop: [[cscc invar v0 D0 (l, p, D, pE); invar v0 D0 (pop (p, D, pE));
p �= []; pE ∩ last p × UNIV = {}]]
=⇒ cscc invar ext (last p # l, pop (p, D, pE))

The other operations, i. e. collapse and push, have not been modified at
all, and also do not change the parts of the state that the invariant ex-
tension depends on. Thus, proving preservation of the invariant extension
for these operations is straightforward. Moreover, the termination argument
from the skeleton algorithm can be reused. Finally, we prove the theorem
compute SCC ≤ compute SCC spec, which states that the SCC algorithm be-
haves according to its specification. This is straightforward, using the VCG with
the invariant preservation lemmas from the skeleton algorithm together with the
new ones for the invariant extension.

While the formalization of the skeleton algorithm and the invariants requires
about 1300 lines of proof text, the extension to compute SCCs requires only
about 300 lines.

3.3 Emptiness Check for GBA

The extension to check for emptiness of GBAs is more complex, but is formalized
in the same way. We sketch the extension here very briefly, and refer the reader
to the actual formalization [15] for details.

Starting from the skeleton algorithm, we extend the collapse operation to
check whether the collapsed c-node contains nodes from all acceptance classes.
If so, we break the loop immediately and return the result for non-emptiness. It
contains the two sets

⋃
butlast p and last p, which can be used to reconstruct the

accepting run: The path reaching the accepting cycle only contains nodes from
the first set, the accepting cycle itself only contains nodes from the second set.

The invariant for the outer loop is extended to state that there is no accepting
cycle within finished nodes. The invariant of the inner loop is extended to state
that there is no accepting cycle over visited edges. The extension of the skeleton
algorithm to GBA emptiness check requires about 700 lines of proof text.

Verified Efficient Implementation of Gabow’s SCC Algorithm 335

4 Implementation Using Gabow’s Data Structure

In the last section, we described the verification of the abstract path based
algorithm. In this section, we describe the refinement to Gabow’s data structure,
which was already sketched in Section 2.2.

We implement the stack S and the boundary stack B by lists of nodes and
natural numbers, respectively. The index map I is implemented as a function
from nodes to node state option, where

node state = DONE | STACK nat

Finished nodes are mapped to Some DONE, nodes on the stack are mapped to
Some (STACK j), where j is the index of the node in S, and nodes not yet seen
are mapped to None.

We additionally use the pending stack P to store the pending edges. P contains
entries of the form nat × node set. An entry (j,succs) means that the edges
{S!j} × succs are pending. The pending stack only contains entries with non-
empty second component, and the entries are always sorted by first component.
Thus, the last entry (j,succs) of P contains the pending edges for the last node
on S that has pending edges left. By comparing j to last B, one efficiently checks
whether this node belongs to the last collapsed node on the path. Also, pushing
a new node is efficiently implemented by pushing an entry for its successors, if
any, onto P . The invariant for Gabow’s data structure is, again, formalized as a
locale, based on the locale GS, which fixes (S,B, P, I):

locale GS invar = GS +
(∗1∗) assumes sorted B and distinct B and set B ⊆ {0..<length S}
(∗2∗) and S �=[] =⇒ B�=[] ∧ B!0=0 and distinct S
(∗3∗) and (I v = Some (STACK j)) ←→ (j<length S ∧ v = S!j)
(∗4∗) and sorted (map fst P) and distinct (map fst P)
(∗5∗) and set P ⊆ {0..<length S}×{x. x�={}}
Intuitively, Line 1 states that the boundary stack is sorted, distinct, and contains
valid indexes into S. Line 2 states that a non-empty stack implies a non-empty
boundary stack with the first boundary being 0, and that S is distinct. Line 3
states that the index map is consistent with the stack. Finally, Lines 4 and 5
state that the first elements of the pending edge stack are sorted and distinct,
and that the pending edge stack contains valid indexes into the stack and no
empty successor sets.

To map concrete to abstract states, we define (in the locale GS):

seg start i ≡ B!i
seg end i ≡ if i+1 = length B then length S else B!(i+1)
seg i ≡ {S!j | j. seg start i ≤ j ∧ j < seg end i}

p α ≡ map seg [0..<length B]
D α ≡ {v. I v = Some DONE}
pE α ≡ { (u,v) . ∃j I. (j,I)∈set P ∧ u = S!j ∧ v∈I }
GS α ≡ (p α,D α,pE α)

336 P. Lammich

Here, GS α is the abstraction function, mapping the concrete state (S,B, P, I)
(fixed by the locale GS) to its corresponding abstract state. Finally, we define
GS rel as the refinement relation induced by GS α and GS invar. Similarly, we
define oGS rel for the state of the outer loop.

Next, we provide concrete versions of the operations and show that they refine
their abstract counterparts. For example, for the pop operation, we define (in
GS):

pop impl ≡ do {
I ← mark as done (seg start (|B| − Suc 0)) (seg end (|B| − Suc 0)) I;
return (take (last B) S, butlast B, I, P) }

Here, mark as done l u marks the nodes in {S!i | l≤ i ∧ i<u} as finished. We
show the following refinement lemma:

pop refine: [[((S,B,I,P), p, D, pE) ∈ GS rel; p �= []; pE ∩ last p × UNIV = {}]]
=⇒ pop impl (S,B,I,P) ≤ ⇓GS rel (return (pop (p, D, pE)))

After having defined the other operations, and shown similar lemmas for them,
we finally define skeleton impl and show that it refines skeleton. Exploiting the
automation provided by the Refinement Framework, this is straightforward:

theorem skeleton impl ≤ ⇓oGS rel skeleton
unfolding skeleton impl def skeleton def
by (refine rcg skeleton refines)
(vc solve (nopre) solve: asm rl I to outer simp: skeleton refine simps)

4.1 Refinement of SCC Computation and GBA Emptiness Check

In order to implement the actual algorithm for computing a list of SCCs, the
only thing we have to add is a function that builds a set out of the last segment of
S. This set is added to the output list upon finishing a c-node. This extension is
straightforward, and, all together, the formalization requires less than 100 lines.
It completely reuses what is already proved for the skeleton algorithm.

The refinement for the GBA emptiness check is more complicated. For better
manageability, it is split into two steps: In the first step, the sets of acceptance
classes for each c-node on the path are explicitly maintained in a list A, and the
check after the collapse operation is refined to use A. Proving refinement is quite
simple as only redundant information is added. In the second step, we refine the
algorithm to use Gabow’s data structure.

For a clearer structure of the formalization, we decided to define new constants
for the operations of the emptiness check algorithm, which use the operations
from the skeleton, and add the new functionality for keeping track of A. For
the collapse operation, we have to compute idx of v twice: Once in the original
collapse operation, and a second time for updating A. Thus, we add another
refinement step to refine this operation to an optimized version that computes
idx of v only once. Note that this refinement is limited to the collapse operation,
and does not affect the overall proof.

Verified Efficient Implementation of Gabow’s SCC Algorithm 337

All together, the implementation of the emptiness check requires 900 lines of
proof text. Using the refinement framework, we have broken down the formal-
ization into small, manageable steps: First, we introduced the list A, then we
introduced Gabow’s data structure, and for the collapse operation, we added an
additional optimization step. If we would have done all these in one big step, we
would have ended up with a complicated formalization, which is hard to main-
tain or change. In contrast, our approach has already proven its flexibility: In a
first version, we had only formalized the inner loop of the algorithms. Thus, we
could only handle graphs where all nodes are reachable from a single node v0.
Later, we added the outer loop without any major problems.

5 Refinement to Efficient Standard ML Code

In order to generate efficient SML code, we first have to decide for the data
structures used to implement the stacks S, B, and P , and the map I. We re-
sort to the large selection of verified data structures provided by the Isabelle
Collection Framework [14,16]: For the stacks, we use arrays with dynamic resiz-
ing, which have an amortized constant time per operation. For the index map
I, we also use an array, assuming the nodes to be natural numbers.3 Once we
have fixed the refinement relations, the Autoref tool [18] synthesizes and proves
correct the refined versions of the algorithms automatically. Finally, the code
generator [11,12] is used to extract the SML code.

For computing the SCCs, we encode the output as a list of distinct lists. This
is adequate as we only prepend items to the output, which is a constant time
operation. Moreover, when extracting an SCC from the path, we know that each
node occurs at most once on the path. Thus, building a distinct list of these
nodes can be done in linear time. When adding a corresponding assertion to the
program, the Autoref tool performs this optimization automatically.

For the GBA emptiness check, we represent the acceptance classes C by nat-
ural numbers in the range {0..<|C|}, and use bitvectors to implement the sets
of acceptance classes that are stored on the stack.

6 Benchmarks

We have benchmarked the extracted code against a reference implementation
of Gabow’s algorithm in Java, taken from Sedgewick and Wayne’s book on al-
gorithms [27] and slightly adapted to work with an explicit set of root nodes.
To produce the input graphs, we used a random graph generator, also taken
from [27], and let it produce graphs with the number of edges |E| in the range

from 105 to 106. Each graph has |V | = �6
√
|E|� nodes, and � |V |

10 � SCCs. The
results of the benchmark are displayed in Figure 1, using a log-log scale where

3 This choice is adequate for comparison with the Java reference implementation,
which also uses an array for I . For model checking, a hash table is more adequate,
which can be used by changing only a few lines of the formalization.

338 P. Lammich

the y-axis is the required time to determine the lists of SCCs in milliseconds, and
the x-axis is the number of edges. We compiled the extracted code with PolyML
5.5.1 and MLton 20130715, and used Java 7 for the reference implementation.
All tests where performed on an x86/64 linux platform.

Fig. 1. Benchmarking of extracted code
against Java reference Implementation

All implementations scale linearly
with the graph size. On first glance,
our implementation looks slightly
faster than the Java reference imple-
mentation. However, performance in
Java is very unpredictable, in partic-
ular due to just in time compilation
taking place in parallel to program ex-
ecution. Thus, we have modified the
Java implementation to allow it to
”warm up” with a few graphs, be-
fore we started the measurement. This
ensures that the JIT compiler has
gathered enough statistics about the
program and actually finished com-
pilation. The ”Java*” - line displays
the results for the modified program,
which are roughly one order of magnitude better, but required some non-obvious
modification to the Java program, exploiting intimate knowledge of the JIT com-
piler.

7 Conclusion

We have presented a verification of two variants of Gabow’s algorithm: Compu-
tation of the strongly connected components of a graph, and emptiness check of
a generalized Büchi automaton. We have extracted efficient code with a perfor-
mance comparable to a reference implementation in Java.

We have modularized the formalization in two directions: First, we share most
of the proofs between the two variants of the algorithm. Second, we use a stepwise
refinement approach to separate the algorithmic ideas and the correctness proof
from implementation details. Sharing of the proofs reduced the overall effort of
developing both algorithms. Using a stepwise refinement approach allowed us
to formalize an efficient implementation, without making the correctness proof
complex and unmanageable by cluttering it with implementation details.

Our development approach is independent of Gabow’s algorithm, and can be
reused for the verification of other algorithms.

Current and Future Work. Currently, we are integrating our algorithm into the
Cava [8] verified LTL model checker. We expect a considerable improvement in
checking speed. Moreover, fine-tuning of the used data structures, e. g. using
bit vectors and machine words instead of the currently used arbitrary precision

Verified Efficient Implementation of Gabow’s SCC Algorithm 339

integers may give some performance improvements. The foundations for using
those low-level data structures in Isabelle/HOL have recently been laid [20].

Acknowledgement. We thank the anonymous reviewers for their helpful com-
ments.

References

1. Back, R.J., von Wright, J.: Refinement Calculus — A Systematic Introduction.
Springer (1998)

2. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In:
Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp.
31–43. Springer, Heidelberg (2006)

3. Büchi, J.R.: On a Decision Method in Restricted Second-Order Arithmetic. In:
International Congress on Logic, Methodology, and Philosophy of Science, pp. 1–
11. Stanford University Press (1962)

4. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks on the
random access computer. Algorithmica 15(6), 521–549 (1996)

5. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods in System De-
sign 1(2/3), 275–288 (1992)

6. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for
generalized Büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 169–184. Springer, Heidelberg (2005)

7. Dijkstra, E.W.: A Discipline of Programming, ch. 25. Prentice Hall (1976)
8. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:

A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

9. Gabow, H.N.: Path-based depth-first search for strong and biconnected compo-
nents. Information Processing Letters 74(3-4), 107–114 (2000)

10. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tarjan’s
algorithm. Theor. Comput. Sci. 345(1), 60–82 (2005)

11. Haftmann, F.: Code Generation from Specifications in Higher Order Logic. Ph.D.
thesis, Technische Universität München (2009)

12. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

13. Krauss, A.: Recursive definitions of monadic functions. In: Proc. of PAR, vol. 43,
pp. 1–13 (2010)

14. Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg
(2010)

15. Lammich, P.: Formalization of Gabow’s algorithm, Isabelle Theories,
http://www21.in.tum.de/~lammich/isabelle/gabow

16. Lammich, P.: Collections Framework. In: Archive of Formal Proofs formal proof
development (December 2009), http://afp.sf.net/entries/Collections.shtml

17. Lammich, P.: Refinement for monadic programs. In: Archive of Formal Proofs
formal proof development (2012),
http://afp.sf.net/entries/Refine_Monadic.shtml

http://www21.in.tum.de/~lammich/isabelle/gabow
http://afp.sf.net/entries/Collections.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml

340 P. Lammich

18. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013)

19. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012)

20. Lochbihler, A.: Native word. Archive of Formal Proofs Formal proof development
(September 2013), http://afp.sf.net/entries/Native_Word.shtml

21. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). MIT Press (1997)

22. Munro, I.: Efficient determination of the transitive closure of a directed graph.
Information Processing Letters 1(2), 56–58 (1971)

23. Neumann, R.: A framework for verified depth-first algorithms. In: McIver, A.,
Höfner, P. (eds.) Proc. of the Workshop on Automated Theory Exploration (ATX
2012), pp. 36–45. EasyChair (2012)

24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

25. Purdom Jr., P.: A transitive closure algorithm. BIT Numerical Mathematics 10(1),
76–94 (1970)

26. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based empti-
ness checks for generalized Büchi automata. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 668–682. Springer, Heidelberg
(2013)

27. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley Professional
(2011)

28. Sharir, M.: A strong-connectivity algorithm and its applications in data flow anal-
ysis. Computers & Mathematics with Applications 7(1), 67–72 (1981)

29. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

30. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115, 1–37 (1994)

31. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the 1st Symposium on Logic in Computer Science,
pp. 322–331 (1986)

32. Wadler, P.: Comprehending monads. In: Mathematical Structures in Computer
Science, pp. 61–78 (1992)

http://afp.sf.net/entries/Native_Word.shtml

Recursive Functions on Lazy Lists

via Domains and Topologies

Andreas Lochbihler1 and Johannes Hölzl2

1 Institute of Information Security, ETH Zurich, Switzerland
andreas.lochbihler@inf.ethz.ch

2 Institut für Informatik, TU München, Germany
hoelzl@in.tum.de

Abstract. The usual definition facilities in theorem provers cannot han-
dle all recursive functions on lazy lists; the filter function is a prime
counterexample. We present two new ways of directly defining functions
like filter by exploiting their dual nature as producers and consumers.
Borrowing from domain theory and topology, we define them as a least
fixpoint (producer view) and as a continuous extension (consumer view).
Both constructions yield proof principles that allow elegant proofs. We
expect that the approach extends to codatatypes with finite truncations.

1 Introduction

Coinductive datatypes (codatatypes for short) are popular in theorem provers
[4,5,8,16,18,20], especially to formalise different forms of computation. Possibly
infinite (lazy) lists, the most prominent example, are used to e.g. model traces of
finite and infinite executions [17]. Today, Isabelle/HOL has a definitional package
to construct codatatypes and define primitively corecursive functions [5].

codatatype α llist = [] | α · α llist

Yet, not all functions of interest are primitively corecursive; and the definition
facilities based on well-founded recursion [13,21] cannot handle them either,
when they produce infinite codatatype values by infinite corecursion. Hence,
such functions have to be defined by other means. In this paper, we consider
recursive functions that are notoriously hard to define [8], because their recursive
specification does not uniquely determine them. In particular, we focus on the
best-known example lfilter given by the specification (spec).1

lfilter P [] = []
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

(spec)

Eq. (spec) is not primitively corecursive, as no constructor guards the second
recursive call. Neither can well-founded recursion handle it, as an infinite list xs

1 We prefix functions on lazy lists with l to distinguish them from their counterpart
on finite lists; variables for lazy lists carry overbars xs, for finite lists underbars xs.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 341–357, 2014.
c© Springer International Publishing Switzerland 2014

342 A. Lochbihler and J. Hölzl

lfilter P (lfilter Q xs) = lfilter (λx. P x ∧Q x) xs (conj)

lset (lfilter P xs) = lset xs ∩ {x |P x } (lset)

lfilter P xs = [] ←→ ∀x ∈ lset xs.¬P x (nil)

ldistinct xs −→ ldistinct (lfilter P xs) (ldistinct)

lrel R xs ys ∧ (∀x y.R x y −→ (P1 x ←→ P2 y))
−→ lrel R (lfilter P1 xs) (lfilter P2 ys)

(lrel)

Fig. 1. Proven properties of lfilter

causes infinite recursion. Nor does (spec) fully specify lfilter: for P = (λ .False)
and xs = x · x · x · . . . the infinite repetition of some x e.g. (spec) collapses to
the vacuous condition lfilter P xs = lfilter P xs, i.e. lfilter P xs could be any lazy
list.

As HOL functions are total anyway, HOL users often “totalise” a function
with a partial specification such that proving becomes easier. Following this
tradition, we want to define lfilter such that lfilter P xs = [] whenever xs contains
no elements satisfying P . This way, equations like (conj) and (lset) in Fig. 1
hold unconditionally, even if xs is infinite and none of its elements satisfies P
(and Q).

Of course, lfilter can be defined in an ad hoc fashion (see §5), but this has
two drawbacks. First, one must come up with another construction for each
new function. Second, such constructions typically lack a proof principle. Thus,
proofs get cluttered with construction details as the definition must be unfolded.

In this work, we present two approaches to defining functions such as lfilter.
They are inspired by two views on specifications like (spec). First, we can think
of lfilter as corecursively producing a list lazily, i.e. a function of type β⇒α llist
for some state type β; when another element is requested, it calls itself with an
updated state. Borrowing ideas from domain theory, we turn α llist into a com-
plete partial order, lift it point-wise to β⇒ α llist, and take the least fixpoint of
the functional associated with (spec) for lfilter (§2). Alternatively, we can also
view lfilter as recursively consuming a lazy list, i.e. a function of type α llist⇒β for
some result type β. In §3, we therefore define lfilter on finite lists by (primitive)
recursion and continuously extend it to infinite lists via topological limits.

Clearly, the two approaches require more machinery than ad hoc construc-
tions. But more importantly, both approaches yield proof principles: either struc-
tural induction on lazy lists and fixpoint induction (§2.3) or uniqueness of limits
and convergence on a closed set (§3.2). They allow elegant proofs with a high
degree of automation. To show them in action, we prove the five exemplary prop-
erties listed in Fig. 1. Since lfilter both produces and consumes a lazy list, it is a
good example to compare the two approaches. We do so in §4.

In this paper, we focus on lfilter, but we have defined more functions on lazy
lists this way. Our approach simplifies their (formerly ad hoc) definitions and the
proofs in an existing codatatype library [16]. We expect that our approach gen-
eralises to a large class of codatatypes (§6) and can be ported to other systems.

Recursive Functions on Lazy Lists via Domains and Topologies 343

2 The Producer View: Least Fixpoints

In this section, we formalise lfilter as the least fixpoint solution to (spec). This
construction views lfilter as a function that produces a lazy list. First, we define
lfilter as a least fixpoint (§2.2) borrowing ideas from domain theory (introduced
in §2.1). Next, we set up the infrastructure for the induction proofs (§2.3). Fi-
nally, we show how to prove the five properties of lfilter (§2.4) listed in Fig. 1.

2.1 Background on Orders and Fixpoints

In this section, we review some domain theory formalised in plain HOL [14].
An order ≤ for a given type is a binary relation that is reflexive, transitive,

and antisymmetric. Given an order ≤, a chain Y is a set whose elements are
all related in ≤ (predicated by chain (≤) Y). An order ≤ on some type α and
a function

∨
:: α set ⇒ α form a chain-complete partial order (ccpo) iff

∨
Y

denotes the least upper bound (lub) of every chain Y w.r.t. ≤, i.e. for all Y with
chain (≤) Y , if x ∈ Y , then x ≤

∨
Y , and whenever x ≤ z for all x ∈ Y , then∨

Y ≤ z. As the empty set is a chain, every ccpo has a least element bottom
⊥ =
∨
∅. For example, the type of sets α set ordered by inclusion ⊆ forms a ccpo

with lub
⋃
Y and bottom ∅. An order ≤ is lifted pointwise to functions: f ↑≤ g

denotes ∀x. f x ≤ g x. Analogously, the lub ↑
∨
Y on a chain Y of functions

is determined pointwise: ↑
∨
Y x =

∨
{f x. f ∈ Y }. If (

∨
,≤) is a ccpo, so is

(↑
∨
, ↑≤). Similarly, ≤×≤′ orders pairs component-wise according to ≤ and ≤′,

resp.; and (
∨
×
∨′)Y = (

∨
(π1 ‘Y),

∨′(π2 ‘Y)) computes the lub component-wise.
Here, π1 and π2 are the projections, and f ‘ A denotes the image of the set A
under the function f . If (

∨
,≤) and (

∨′
,≤′) are ccpos, so is (

∨
×
∨′
,≤×≤′).

A function f is monotone w.r.t. ≤ and ≤′ (written mono (≤) (≤′) f) iff
f x ≤′ f y for all x, y with x ≤ y. A monotone function f is (order) contin-
uous w.r.t. (

∨
,≤) and (

∨′,≤′) iff it preserves lubs of non-empty chains (writ-
ten mcont (

∨
,≤) (

∨′
,≤′) f). Formally, f (

∨
Y) =

∨′
(f ‘ Y) for all Y with

chain (≤) Y and Y �= ∅. A continuous function f is strict iff it propagates ⊥, i.e.
f (
∨
∅) =

∨′∅. A predicate P is admissible (written adm (
∨
,≤) P) iff P (

∨
Y)

for all non-empty chains Y such that P x for all x ∈ Y . Admissibility is closed
under composition with continuous functions, i.e. if adm (

∨
,≤) (λx. P x) and

mcont (
∨′
,≤′) (

∨
,≤) f , then adm (

∨′
,≤′) (λx. P (f x)).

Let F :: α ⇒ α be a monotone function on a ccpo (
∨
,≤). Then, by the

Knaster-Tarski fixpoint theorem, F has a least fixpoint fixp (
∨
,≤) F , which is

given by the lub of the transfinite iteration of F starting at ⊥.

2.2 Definition

As mentioned in §1, we define lfilter P as the least fixpoint of the functional
associated to the specification (spec); since lfilter passes the predicate P un-
changed to the recursive calls, we treat it as a fixed parameter. Thus, we obtain
the functional FP :: (α llist⇒ α llist)⇒ (α llist⇒ α llist) given by

FP f xs = (case xs of [] ⇒ [] | x · xs′ ⇒ if P x then x · f xs′ else f xs′) (1)

344 A. Lochbihler and J. Hölzl

For the Knaster-Tarski fixpoint theorem, we need a ccpo on α llist⇒ α llist for
which FP is monotone. It suffices to provide one for α llist and lift it point-wise to
functions with codomain α llist. We choose the prefix order �, which (2) defines
coinductively. The least upper bound

⊔
:: α llist set⇒α llist is given by primitive

corecursion (3). Here, lhd and ltl return the head and tail of a lazy list, resp.;
and the definite descriptor ιx. P x denotes the unique x such that P x if it exists
and is unspecified otherwise. We show the ccpo properties for (

⊔
,�) by (rule or

structural) coinduction.

[] � ys
======

xs � ys
x · xs � x · ys============= (2)

⊔
Y = (if Y ⊆ {[]} then []

else let Y ′ = {xs ∈ Y. xs �= []} in (ιx. x ∈ lhd ‘ Y ′) ·
⊔
(ltl ‘ Y ′)) (3)

The prefix order is a natural choice, as it makes the constructor · mono-
tone in the recursive argument. Monotonicity is crucial for the existence of the
fixpoint (see below). Moreover, the least element [] carries the least information
possible. In fact, � corresponds to the approximation order on the domain of
infinite streams, when we interpret [] as “undefined”, the additional value that
each domain contains. In this view, a finite lazy list represents the set of all its
extensions at the end, and this set shrinks when we extend it.

Now, we define lfilter as the least fixpoint of FP in the ccpo (↑
⊔
, ↑�) using

the partial-function package by Krauss [14]. Given the specification (spec)
as input, it constructs the functional FP , proves monotonicity, defines lfilter as
the least fixpoint, and derives (spec) and a fixpoint induction rule (4) from the
definition. The monotonicity proof decomposes the functional syntactically into
primitive operations and uses their monotonicity properties. For FP , we provide
the monotonicity theorem for · as a hint, which follows directly from (2).

This completes our first definition of lfilter. After some preparations (§2.3),
we prove in §2.4 that lfilter is in fact the desired solution for (spec).

2.3 Preparations for Proofs by Induction

Least fixpoints and the ccpo structure on lazy lists provide two induction proof
principles, which we review now. Every least fixpoint definition generates an in-
duction rule; the one for lfilter is shown in (4). The second premise requires that
the statement Q to be proved holds for the least function λ . [] where the fixpoint
iteration starts; and in the inductive step (third premise), some underapprox-
imation f replaces the function lfilter P . Admissibility (first premise) ensures
that Q is preserved when taking the lub of the iteration for the fixpoint.

adm (↑
⊔
, ↑�) Q Q (λ . []) ∀f.Q f ∧ f ↑� lfilter P −→ Q (FP f)

Q (lfilter P)
(4)

Fixpoint induction corresponds to the producer view, as it assumes nothing
about the parameter; rather, f in the inductive step returns a prefix of lfilter P .

Recursive Functions on Lazy Lists via Domains and Topologies 345

Alternatively, structural induction over a lazy list (5) is available. The induc-
tive cases (second and third premise) yield that the property P holds for all finite
lists (predicate lfinite). Admissibility (first premise) ensures that P also holds for
the whole list xs, as all finite prefixes of xs form a chain with lub xs. Clearly,
structural induction takes the consumer point of view, because in typical use
cases, it acts on a variable xs that a function takes as argument.

adm (
⊔
,�) P P [] ∀x xs. lfinite xs ∧ P xs −→ P (x · xs)

P xs
(5)

Both induction principles require that the inductive statement is admissible.
Müller et al. [19] have already noted in the context of Isabelle’s LCF formal-
isation HOLCF that admissibility is often harder to prove than the inductive
steps. Huffman [12] describes the syntax-directed approach to automate these
proofs. Proof rules such as (6) first decompose the statement into atoms along
the logical connectives. Others then separate each atom into a predicate and its
arguments (interpreted as a function of the induction variable). If the arguments
are continuous, it suffices to show admissibility of the predicate; HOLCF includes
admissibility rules for comparisons and (in)equalities. This approach works well
in practice, because all HOLCF functions are continuous by construction.

adm (
∨
,≤) (λx.¬P x) adm (

∨
,≤) (λx.Q x)

adm (
∨
,≤) (λx. P x −→ Q x)

(6)

We have proved a similar set of syntax-directed proof rules. They achieve a
comparable degree of automation for discharging admissibility conditions. How-
ever, they require some manual setup, in particular continuity proofs. We will
discuss this now at three examples, namely lfilter, lmap and lset.

First, we prove that lfilter P is continuous. This will allow us later to switch
from the producer to the consumer view, i.e. from (4) to (5). As we have defined
lfilter P as a least fixpoint, we can leverage the general result that least fixpoints
preserve monotonicity and continuity (Thm. 1).

Theorem 1 (Least fixpoints preserve monotonicity and continuity).
Let (
∨
,≤) be a ccpo, let F :: (β⇒α)⇒ (β⇒α) satisfy mono (↑≤) (↑≤) F . If F

preserves monotonicity (continuity), then F ’s least fixpoint is monotone (contin-
uous). Formally, let g abbreviate fixp (↑

∨
, ↑≤) F . If mono (≤′) (≤) (F f) for all

f with mono (≤′) (≤) f , then mono (≤′) (≤) g. If mcont (
∨′
,≤′) (

∨
,≤) (F f)

for all f with mcont (
∨′
,≤′) (

∨
,≤) f , then mcont (

∨′
,≤′) (

∨
,≤) g.

Hence, it suffices to show that FP in (1) is monotone and continuous in xs
provided that f is so, too. Like for admissibility, we follow a syntax-directed
decomposition approach, as continuity is preserved under function composition.
We prove rules that decompose the expression into individual functions and then
show that they themselves are continuous. Unfortunately, control constructs like
case and if are in general neither monotone nor continuous if the branching term
depends on the argument. In (1), this is the case for the case combinator.

346 A. Lochbihler and J. Hölzl

As we frequently prove functions on α llist strict, we derive a specialised
continuity rule (7) (and an analogous monotonicty rule) for an arbitrary ccpo
(
∨
,≤) with bottom ⊥. (It cannot handle non-strict functions like ++ defined in

(27).)

∀x.mcont (
⊔
,�) (

∨
,≤) (λys. f x ys (x · ys))

mcont (
⊔
,�) (

∨
,≤) (λxs. case xs of [] ⇒ ⊥ | x · ys⇒ f x ys xs)

(7)

By (7), it suffices to show for all x that λys. if P x then x · f ys else f ys is
monotone and continuous if f already is. Note that the branching condition P x
no longer depends on the bound variable ys, so it suffices to prove that the
individual branches are monotone and continuous; rule (8) formalises this.

mcont (
∨
,≤) (

∨′
,≤′) f mcont (

∨
,≤) (

∨′
,≤′) g

mcont (
∨
,≤) (

∨′
,≤′) (λx. if c then f x else g x)

(8)

Finally, we are left with proving that λys. x ·f ys and λys. f ys are monotone
and continuous, which follows immediately from · and f being so. Although this
proof seems lengthy on paper, it is a one-liner in Isabelle, as its rewriting engine
performs the decomposition automatically thanks to the setup outlined above.

The above illustrates how to prove continuity of functions defined in terms
of fixp. Other functions are defined by other means, but we want to prove them
continuous, too. For example, the codatatype packages defines lmap f , which
applies f to all elements of a lazy list (9), and lset, which converts a lazy list
to the set of its elements, but not in terms of fixp. The easiest way to prove
continuity is to show that they are the least fixpoint of the functionals in (10)
and (11), resp. Then, we reuse Thm. 1 and our machinery from above.

lmap f [] = [] lmap f (x · xs) = f x · lmap f xs (9)

Mf g xs = (case xs of [] ⇒ [] | x · ys⇒ f x · g ys) (10)

S f xs = (case xs of [] ⇒ ∅ | x · ys⇒ {x} ∪ f ys) (11)

The proofs for lmap f = fixp (↑
⊔
, ↑�) Mf and lset = fixp (↑

⋃
, ↑⊆) S fall into two

parts: (i) monotonicity of Mf and S is shown by partial-function’s monotonic-
ity prover and (ii) the actual fixpoint equation by the proof principle associated
with the definition (structural coinduction for lmap; lset requires two separate
directions with induction on lset and fixpoint induction, resp.). Monotonicity is
needed to unfold the fixpoint property in the (co)inductive steps.

2.4 Proving the Properties

With all these preparations in place, we now show how they yield concise proofs
for the properties of interest. We start with (nil), i.e. that the least fixpoint
indeed picks the desired solution for (spec). First, we illustrate the obvious ap-
proach of proving the two directions separately. From right to left, given ¬P x
for all x ∈ lset xs, we must show lfilter P xs = [], or, equivalently, lfilter P xs � [].

Recursive Functions on Lazy Lists via Domains and Topologies 347

Structural coinduction does not work here, as (spec) may recurse forever, but
fixpoint induction is good at proving upper bounds, [] in our case. Admissibility
of λf. ∀xs. (∀x ∈ lset xs.¬P x) −→ f xs � [] follows directly from decomposition
and admissibility of comparisons. In contrast, from left to right by contraposi-
tion, we have to prove the non-trivial lower bound [] � lfilter P xs under the
assumption P x for some x ∈ lset xs. Fixpoint induction cannot do this, so we
resort to other proof principles. Fortunately, induction on x ∈ lset xs is available,
and the cases are solved automatically by rewriting.

Alternatively, we can switch to the consumer view and prove (nil) directly
by induction on xs using (5). Rewriting solves the inductive cases. Regarding
admissibility of λxs. lfilter P xs = [] ←→ ∀x ∈ lset xs.¬P x, the rules decom-
pose it into four atoms: λxs. lfilter P xs �= [] and λxs. lfilter P xs = [] and
λxs. ∀x ∈ lset xs.¬P x and λxs. ∃x ∈ lset xs. P x. For the (in)equalities and
bounded quantifiers, we have admissibility rules, and their arguments lfilter P
and lset are continuous by §2.3. Therefore, this proof of (nil) is automatic.

lemma lfilter P xs = [] ←→ ∀x ∈ lset xs.¬P x by(induction xs) simp-all

Next, we prove property (conj) from the introduction. Taking the consumer
view, the proof is a one-liner by induction on xs plus rewriting, because we have
already shown that lfilter P is continuous. Fixpoint induction can also prove
(conj), but the two directions “�” and “5” must be shown separately. Moreover,
we still need continuity of lfilter P for admissibility, because when going from
left to right, we have to replace lfilter Q in the context ∀xs. lfilter P (• xs) �

Property (lset) is similar to (conj). We show it by induction on xs; admissi-
bility requires continuity of lset, lfilter, and ∩. Fixpoint induction is also possible.

In the remainer of this section, we prove two more properties with user-defined
predicates. The predicate ldistinct denotes that all elements of a lazy list are
distinct, and the relator lrel R xs ys lifts a binary relation R point-wise to the
lazy lists xs and ys. The rules below define them coinductively.

ldistinct []
=========

x /∈ lset xs ldistinct xs

ldistinct (x · xs)
========================= (12)

lrel R [] []
=========

R x y lrel R xs ys

lrel R (x · xs) (y · ys)
===================== (13)

Proofs by induction require admissibility of the statement. As ldistinct is a
new predicate, we prove admissibility directly by unfolding the definition and by
coinduction on ldistinct. The proof for lrel is similar. Moreover, we also show that
non-distinctness is admissible; this follows from prefixes of distinct lists being dis-
tinct. Now, we are ready to show properties (ldistinct) and (lrel) from Fig. 1.

Taking the consumer view, we show (ldistinct) by induction on xs; as xs
occurs in the assumptions, rule (6) requires that the negated assumption, i.e.
non-distinctness, be admissible, too (there is no rule for negation). The inductive
steps are solved automatically, as we can rewrite lset (lfilter P xs) with (lset).

Alternatively, we can also take the producer view, i.e. fixpoint induction on
lfilter. This demonstrates another limitation of fixpoint induction: recall that

348 A. Lochbihler and J. Hölzl

fixpoint induction replaces lfilter P by some underapproximation f , i.e. we cannot
use (lset) for rewriting lset (f xs). Fortunately, we get f ↑� lfilter P in the
inductive step and derive lset (f xs) ⊆ lset xs by monotonicity of lset. Otherwise,
we would have had to re-prove (lset) simultaneously in the inductive step.
This modularity problem frequently arises with fixpoint induction: all required
properties of a function have to be threaded through one big induction, which
incurs losses in proof automation and processing speed.

Finally, consider (lrel). Note that the property of not being related in lrel
is not admissible. This means that the decomposition rules do not work if the
induction variable under lrel in an assumption. Thus, we cannot induct over xs
(unless we prove admissibility manually, but we would rather not). We use fix-
point induction instead. Yet, the two occurrences of lfilter in (lrel) have different
types. As (4) replaces only occurrences of the same type, we resort to parallel
fixpoint induction. The general parallel fixpoint induction rule for two ccpos
(
∨
,≤) and (

∨′,≤′) with least elements ⊥ and ⊥′ and two monotone functionals
F and G is shown below. Since the projections π1 and π2 are monotone and
continuous, the parallel fixpoint induction proof becomes fully automatic again.

adm (
∨
×
∨′,≤×≤′) (λx. P (π1 x) (π2 x)) P ⊥⊥′ ∀x y. P x y−→P (F x) (G y)

P (fixp (
∨
,≤) F) (fixp (

∨′
,≤′) G)

3 The Consumer View: Continuous Extensions

Some proofs about lfilter in §2.4 already took the consumer point of view. Now,
we do so also for defining lfilter. In general, we first define a function on finite
lists α list and then extend it to lazy lists. For the running example, we first
define filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists using primitive recursion
(14). Then, we define lfilter as the continuous extension of filter (15).

filter P [] = []
filter P (x · xs) = (if P x then x · filter P xs else filter P xs)

(14)

lfilter P xs =
⊔
{�filter P �ys�� | ys ∈ ↓xs} (15)

where ↓xs = { ys | lfinite ys ∧ ys � xs } denotes the set of finite prefixes of xs,
� � embeds finite lists in lazy lists, and � � is its inverse. This construction yields
the same function as the least fixed point in §2.2—see §3.4 for the proofs.

Why do we call this a continuous extension? To generalise this construction
method, we introduce a topology on lazy lists with two properties (§§3.2, 3.3).
First, every chain of finite lists “converges” towards a lazy (possibly finite) list.
Second, every lazy list can be “approximated” by a set of finite lists. Hence,
continuous extensions are unique if they exist. So, we extend a function f ::
α list⇒ β to a function lf :: α llist⇒ β by picking the continuous one. This also
explains why this is the consumer view: the codatatype is an argument to the
function, and the codomain is an arbitrary topology. For unique extensions, the
codomain must be a T2 topology.

Recursive Functions on Lazy Lists via Domains and Topologies 349

3.1 Topology in Isabelle/HOL

This section summarises the formalisation of topologies in Isabelle/HOL [11].2

A topology is specified by the open sets (predicate open). In a topology, the
whole space must be open (its elements are called points), and binary intersection
and arbitrary union must preserve openness. A predicate P is a neighbourhood of
a point x if it holds on an open set which contains x. A punctured neighbourhood
P of x (written P at x) is a neighbourhood of x which not necessary holds on x.
A point x is discrete iff {x} is open. A topology is called a T2 space, if for every
two points x �= y there exists two disjoint neighbourhoods Px at x and Py at y.

A function f converges on a point x (written f
x−−−−→ y) iff for all open sets

Y around y the predicate λx. f x ∈ Y is a punctured neighbourhood of x. The
function f is continuous at x iff f

x−−−−→ f x. Clearly, convergence is meaningless
for discrete points x, as {x} is open. Also, each f is then continuous at x.

A set is closed iff its complement is open, a predicate P is closed iff {x | P x}
is closed. Closedness of predicates is preserved under composition with con-
tinuous functions. Convergence on a closed set (16) is our main proof princi-
ple. If the predicate P ◦ f is a punctured neighbourhood of x and P is closed
(closed {x | P x}), then P also holds at the point x itself, unless x is discrete.

¬ open {x} f
x−−−−→ y closed {x | P x} P ◦ f at x

P y
(16)

3.2 Topology on a Chain-Complete Partial Order

In this section, we introduce a topology for ccpos. In the ccpo topology, an
open set is not accessible from outside, i.e. whenever the least upper bound of a
non-empty chain is in the open set, then their intersection is not empty (17).

open S ←→ (∀C. chain C −→ C �= ∅ −→
∨
C ∈ S −→ C ∩ S �= ∅) (17)

It differs from the usual Scott topology only in that open sets need not be upward
closed. We omit this condition for two reasons: (i) we need a T2 space, but the
Scott topology is not, and (ii) finite lists should be discrete, i.e. open {xs} if xs
is finite. Every ccpo topology is a T2 space, since open as defined in (17) fulfills
the topology axioms and separation of points.

As mentioned in §3.1, convergence f x−−−−→ y ignores the value of f at the
point x. Thus, if x is discrete, convergence is meaningless at this point. To avoid
this issue, we introduce variants of convergence and punctured neighbourhood.3

f
x−−−−→′ y ←→ if open {x} then f x = y else f

x−−−−→ y (18)

P at′ x←→ if open {x} then P x else P at x

2 As the topology formalisation relies on type classes, we now switch to type classes for
ccpos, too. Hence, we no longer write the ccpo (

∨
,≤) as a parameter for constants

like adm and mcont. Instead, it is taken from the type class.
3 The formalisation of convergence in Isabelle/HOL uses topological filters for the
argument, as described in [11]. The punctured neighbourhoods at and at′ are topo-
logical filters, but for a shorter presentation we avoid their introduction.

350 A. Lochbihler and J. Hölzl

For continuity, both limits are equivalent: f
x−−−−→ f x iff f

x−−−−→′ f x. For at′

we get a stronger variant of (16) as proof principle: No matter if x is discrete,
the closed predicate P holds on x if P is a punctured neighbourhood of x.

closed {x | P x} P at′ x
P x

(19)

When the convergence limit exists, we select it with definite description:
Lim f x = ιy. f

x−−−−→′ y. As a ccpo topology is a T2 space, the limit is unique.

3.3 Constructing lfilter

As lazy lists are a ccpo, they also form a ccpo topology as described in §3.2. We
first observe that the finite lists are dense in this topology, i.e. every lazy list is the
limit of a sequence of finite lists. Moreover, a lazy list is discrete iff it is finite:
open {xs} ←→ lfinite xs. This yields a nice characterization of at′ (20), from
which we easily derive that at′ behaves as expected on the constructor · (21).

P at′ xs←→ ∃ys ∈ ↓xs. ∀zs ∈ ↓xs. ys � zs −→ P zs (20)

(λys. x · ys) xs−−−−→′ x · xs
(λzs. f (x · zs)) xs−−−−→′ y

f
x·xs−−−−→′ y

(21)

Hence, at′ behaves as expected on finite and infinite lists. Thus, we define
lfilter P xs as the limit of filter P :

lfilter P xs = Lim (λys. �filter P �ys��) xs (22)

Before proving lfilter’s properties, we must prove that it continuously extends
filter. Extension (23) shows that they coincide on finite lists. This follows from
(18) and uniqueness of limits by unfolding the definitions of lfilter and Lim.

lfinite xs −→ lfilter P xs = �filter P �xs�� (23)

Then, we show that lfilter is continuous everywhere (25). It suffices to show that
the limit exists, as uniqueness of limits then ensures continuity. To that end, we
prove the theorem (24): if a function f is monotone on all finite lazy lists, then
it converges on xs to the lub of the image of xs’s finite prefixes under f . This
also completes the proof, as filter is monotone. Our initial definition (15) follows
from these rules.

∀ys zs. ys � zs ∧ lfinite zs −→ f ys ≤ f xs
f

xs−−−−→′ ∨(f ‘ ↓xs) (24)

lfilter P
xs−−−−→′ lfilter P xs (25)

Recursive Functions on Lazy Lists via Domains and Topologies 351

3.4 Proving with Topology

In this section, we prove that the definition in (22) satisfies the specification
(spec) and the properties from Fig. 1. In general, reasoning about lfilter first
reduces the property on lazy lists to a property on finite lists. The characteri-
sation of at′ on lazy lists (20) yields the following proof principle. It is derived
from (19) by taking ys = [] as witness for the existential quantifier in (20).

closed {xs | P xs} ∀zs ∈ ↓xs. P zs
P xs

(26)

This proof rule splits a goal P xs into two subgoals: (i) closed {xs | P xs} and
(ii) ∀zs ∈ ↓xs. P zs. Closedness is usually proved automatically in two steps.
First, P xs is decomposed into an atomic predicate and functions. These are
then shown closed and continuous using pre-proven theorems such as closedness
of equality in a T2 space (§3.1) and continuity of lfilter (25). In subgoal (ii), ↓xs
consists only of finite lists. Hence, we have indeed reduced the statement from
arbitrary lazy lists to their finite subset. This goal is proved either by induction
on lfinite zs, or by rewriting with equations like (23) into functions over finite
lists. For proving the specification (spec) and the properties (conj, lset), this
approach suffices. We also use it to show that our two definitions of lfilter from
(§2.2) and (22) are equivalent.

Note that the second goal keeps the prefix relation between zs and xs. Cru-
cially, this maintains the relation of subgoal (ii) to further assumptions that
are not part of the predicate P . When we prove (ldistinct), we operate only
on the conclusion ldistinct (lfilter P xs). Closedness (subgoal (i)) follows from
ldistinct being closed and lfilter being continuous by preservation of closedness
under composition with continuous functions. Subgoal (ii) is

ldistinct xs −→ ∀zs ∈ ↓xs. ldistinct (lfilter P zs).

As prefixes of distinct lists are distinct, it suffices to show the following for all zs.

ldistinct zs −→ lfinite zs −→ ldistinct (lfilter P zs)

Existing lemmas about filter and ldistinct suffice to show this, but induction on
lfinite zs would work, too.

Property (nil) is more complicated. The statement is not a closed predicate,
so we cannot easily reduce it to finite lists. Instead we prove the direction from
left to right using (lset), and the converse using our approach from above.

4 Comparison

In this section, we compare our approaches least fixpoints (§2) and continuous ex-
tensions (§3) in five respects: the requirements on the codatatype and on the type
of the function, the role of monotonicity, proof principles, and proof elegance.

352 A. Lochbihler and J. Hölzl

Ccpo Structure on the Codatatype. Both approaches require a ccpo structure on
the codatatype. As monotonicity is crucial for definitions and proofs (see below),
functions of interest (and the constructors in particular) should be monotone.
For lazy lists, the prefix order with [] as the least element is a natural choice. The
extended naturals enat = 0 | eSuc enat are a ccpo under the usual ordering ≤.
Even terminated lazy lists given by (α, β) tllist = TNil β | TCons α ((α, β) tllist)
form a useful ccpo under the prefix ordering extended with TNil b as least element
for any user-specified, but fixed b. Yet, we have not found useful ccpos for co-
datatypes without finite values like infinite lists α stream = Stream α (α stream).

Type Restrictions on Function Definitions. For recursive definitions, the two
approaches pose different requirements on the function. Least fixpoints need
the ccpo on the codomain whereas the domain can be arbitrary. Therefore, this
works for functions that produce a codatatype value such as iterate below. In
contrast, they cannot handle functions that only consume a codatatype value
such as lsum, which sums over a lazy list. Dually, continuous extensions require
a ccpo topology on the domain whereas the codomain can be any T2 space.
This works for functions that consume a codatatype value such as lsum, but this
approach cannot define producers such as iterate.

iterate f x = x · iterate f (f x)

sum [] = 0 sum (x · xs) = x+ sum xs lsum xs = Lim sum xs

Monotonicity. To derive the recursive specification from the definition, we have
to show well-definedness for both approaches. For least fixpoints, the associated
functional must be monotone, i.e. recursion may only occur in monotone con-
texts. For example, this approach cannot handle lmirror, because concatenation
++ is not monotone in its first argument, which contains the recursive call.

[] ++ ys = ys (x · xs) ++ ys = x · (xs++ ys) (27)

lmirror [] = [] lmirror (x · xs) = x · (lmirror xs++ [x]) (28)

This shows how the choice of ccpo determines what functions can be defined. The
partial-function package [14] automates the monotonicity proof and derives
the recursive specification. Note that the defined function need not be monotone
itself; we can e.g. define ++ as a least fixpoint for (27).

Continuous extensions need a different form of monotonicity. To derive the
recursive equations of the continuous extension, we must show that the limit
exists. By (24), it suffices to show that the function (not the functional) is
monotone. Thus, we cannot define lmirror as a continuous extension, either. This
time, the problem is not with ++, but rather lmirror, which is not monotone.

Another difference to least fixpoints is that the function need not be con-
tinuous at all points, as the continuous extension is defined pointwise. This is
essential for functions like lsum that are well-defined only on a subset of its
parameters such as the lists of positive real numbers extended with infinity.

Recursive Functions on Lazy Lists via Domains and Topologies 353

Proof Principles. The main advantage of our approaches over ad hoc construc-
tions like in [16] is that they bring their own proof principles: fixpoint induction
(4) and structural induction (5), convergence on a closed set (19). They all re-
quire admissibility of the induction statement, since closed {x | P x} in a ccpo
topology coincides with adm (

∨
,≤) P—just unfold the definition of open sets

(17) to see this. The two notions of continuity are closely related, too. Monotonic-
ity and order continuity imply convergence in the ccpo topology. The converse
does not hold; this reflects difference between the point-wise flavour of continu-
ous extensions and the function-as-a-whole style of least fixpoints.

Convergence on a closed set (26) and structural induction on lazy lists (5) take
the consumer view, i.e. they only work for functions that consume a codatatype
value. Interestingly, the former generalises the latter. Convergence keeps the
bound zs ∈ ↓xs. In comparison, structural induction relaxes the bound zs ∈ ↓xs
to lfinite zs and inlines the induction on lfinite zs. More abstractly, (5) reduces the
statement directly to an induction on the finite subset of lazy lists. In contrast,
the topological approach translates it to a corresponding statement on the type
of finite lists by rewriting with identites such as (23)—the latter is then typically
shown by induction.

Fixpoint induction has no counterpart in continuous extensions, as it is a
proof principle for producers. It is harder to use than induction on lazy lists, see
§2.4 for examples. In particular, fixpoint induction cannot show non-trivial lower
bounds. However, it allows to prove properties such as (lrel) where the other
principles fail. In fact, we have not yet been able to prove (lrel) by topological
means, as we are not yet able to handle general predicates over two variables.

Proof Elegance. As a rough measure of proof elegance, we take the size of proofs
for the five properties in Fig. 1. In the fixpoint approach, they all consist of just
two steps: (i) the induction method generates the admissibility condition and
the inductive cases, and (ii) an automatic proof method solves them immedi-
ately. Similarly, the topological approach first applies the proof principle (19)
and then solves the subgoals. The level of automation is similar, except when we
have to show the statement on finite lists by induction, which does not happen
automatically. In summary, proving (conj, lset,nil, ldistinct) takes between
2 and 5 steps with an average of 2.75. For comparison, the former ad hoc con-
struction of lfilter in [16] requires for proving the properties in Fig. 1 between 2
and 35 steps each with an average of 13—not even counting any of the auxiliary
lemmas such as (30).

5 Related Work

Functions on Codatatypes. Devillers et al. [8] compare different formalisa-
tions of lazy lists that were available in 1997. They note the general difficulty of
defining lfilter and lconcat—given by (29)—and proving their properties.

lconcat [] = [] lconcat (xs · xss) = xs++ lconcat xss (29)

354 A. Lochbihler and J. Hölzl

In [20], Paulson describes the construction of codatatypes in Isabelle and the
primitively corecursive definition of the well-known functions lmap and ++ with
coinduction as proof principle for equality. He notes that he did not know of a
natural formalisation for lconcat in HOL. Later, he defined lfilter using an in-
ductive search predicate (file LFilter.thy distributed with Isabelle until 2009).
Thus, all proofs about lfilter need corresponding lemmas about the search pred-
icate. For example, his 72-line proof of (conj) needs seven auxiliary lemmas.
For comparison, ours is one line—our preparations are not negligible, but we
reuse monotonicity and continuity in many lemmas. In Coq, Bertot [4] relies on
a similar search predicate; he transforms non-local properties like sortedness into
local ones to simplify proofs.

Matthews [18] presents a framework to define corecursive functions via con-
tractions for converging equivalence relations (CER) over a well-founded relation,
Gianantonio and Miculan generalise CERs to complete ordered families of equiv-
alences (COFE) [10]. CERs and COFEs require uniqueness of the specification
and therefore yield a proof principle for equality. To prove contraction for lfilter,
Matthews needs an inductive search predicate similar to Paulson’s, and a search
function that returns the first index of an element satisfying P .

Charguéraud [7] formalised the optimal fixpoint (OFP) combinator in Coq. It
allows to define a large class of recursive functions, but it cannot pick any par-
ticular solution if the specification is not unique. This is arguably closer to the
specification, but it complicates proofs: for the OFP of (spec), e.g. (lset) holds
only if xs is finite or P holds for infinitely many elements of xs. For proof prin-
ciples, he relies on a generalisation of COFEs, as the OFP does not provide any.

The Coinductive library [16], developed by the first author, includes functions
on lazy lists and lemmas about them. The approach in this paper simplifies the
definitions of and proofs about lfilter and similar functions. Previously, their def-
inition was rather involved; lfilter was defined as the corecursive unfolding of
ldropWhile; ldropWhile depended on ltakeWhile, llength, and ldrop; and ldrop on
further functions. The auxiliary functions have some value of their own, so the
overhead was limited. Yet, the theorems about lfilter (like those in Fig. 1) needed
other theorems about the auxiliary functions. Thus, definitions and proofs both
lacked elegance. The proof of (conj) e.g. required the specialised lemma (30).

lhd (ldropWhile P (lfilter Q xs)) = lhd (ldropWhile (λx. P x ∨ ¬Q x) xs) (30)

Domain-Theoretic Approaches. Formalisations of domain theory and Scott’s
logic of computable functions (LCF) exist in HOL [1], Coq [3], and Isabelle/HOL
[12]. They provide facilities to define domains and (non-terminating) recursive
functions as least fixpoints as well as sophisticated proof automation. They sup-
port embedding of ordinary functions into LCF, but not the converse.

Although domains and codatatypes both contain infinite values, they are dif-
ferent, as all domains contain the value “undefined”. Coinductive lists e.g. either
end with [] or are infinite. In contrast, LCF lists can also end with undefined,
e.g. filtering an infinite list whose elements all violate the predicate returns “un-
defined” instead of []. Thus, coinductive lists are almost isomorphic to infinite

Recursive Functions on Lazy Lists via Domains and Topologies 355

streams in HOLCF, except that the domain package additionally requires that
the element type α forms a ccpo, too.

Undefinedness plays a central role in LCF: it conceptually represents all values,
as monotonicity and continuity permit replacing undefined with a more specific
value. This is sensible in modelling functional programs, but also complicates
the theorem statements and their proofs (see e.g. [6]). Being based on HOL, our
approach need not treat [] specially and can therefore deal with non-continuous
functions, too. Our choice of topology reflects this, too. In our ccpo topology,
finite values x are discrete, i.e., open {x}. In contrast, all Scott-open sets S are
upward closed, i.e. if S contains x, then S contains all elements greater than x,
too. Hence, our topology is finer than the Scott topology, so more functions are
continuous, e.g. lsum on lists with a finite number of negative elements.

Two works have applied basic domain theory for defining recursive functions in
HOL. First, Agerholm [2] suggested to define arbitrary recursive function as the
least fixpoint in a domain by lifting the function’s codomain; when termination
has been shown, his tool then casts the function back to plain HOL. Hence, our
application with infinite recursion is out of scope. Second, Krauss [14] realised
that a tail-recursive or monadic function can be defined as a least fixpoint,
because its syntactic structure ensures monotonicity. He formalised the relevant
concepts in Isabelle and implemented the partial-function package. To our
knowledge, this has only been used for the option and state-exception monads.
We re-use and extend his work to define non-monadic functions on codatatypes.

Topology for Domain Theory. We do not know of any formalisation that
defines recursive functions using topology except for Lester [15]. He formalises the
Scott topology of a directed complete partial order in PVS and uses it to prove
the existence of the fixpoint operator. Friedrich [9] formalises the Scott topology
in Isabelle/HOL to characterise liveness and security properties topologically.

6 Beyond lfilter and Lazy Lists

We have described how to use domain theory and topology to define recursive
functions on codatatypes. The presentation has focused on the function lfilter, as
it illustrates the main ideas well and allows us to compare the approaches. But
they are not restricted to it. We have used them with the same ccpo to define
lconcat (29), ldropWhile (31), and ldrop (32) and to prove numerous lemmas.
These functions pose the same challenge of unbounded, unproductive recursion
as lfilter. In addition, the definition of lconcat relies on ++ being monotone (and
continuous in the topological approach) in the second argument, which contains
the recursive call, and ldrop shows that we handle multiple parameters.

ldropWhile P [] = []
ldropWhile P (x · xs) = (if P x then ldropWhile P xs else x · xs) (31)

ldrop 0 xs = xs ldrop n [] = [] ldrop (eSuc n) (x·xs) = ldrop n xs (32)

356 A. Lochbihler and J. Hölzl

In terms of automating the definitions and proofs, we have used only standard
Isabelle tools so far. Hence, we have not yet reached the level of sophisticated
packages such as HOLCF [12]. Indeed, our approaches offer more flexibility, as
they use the full function space and allow non-continuous functions to some
extent. Better automation of the function definitions is left as future work.

It is not yet clear which codatatypes can be turned into useful ccpos. Clearly,
it should be possible for codatatypes with finite truncations, i.e. whenever there
is a non-recursive constructor. Then, this constructor can cut off a possibly
infinite subtree and thus serve as bottom element. Possibly-infinite lists (α llist
and (α, β) tllist) and binary trees (α tree = Leaf | Node α (α tree) (α tree)) fall in
this class. Conversely, if the codatatype contains only infinite values, e.g. infinite
lists (α stream), a general approach seems impossible. Codatatypes with nested
recursion such as α rtree = Tree α (α rtree llist) will be more challenging. Working
out the precise boundaries of the approach is left as future work. We hope that
such insights will lead to automated constructions of ccpos for codatatypes.

Acknowledgements. J.C. Blanchette, J. Breitner, O. Maric, D. Traytel, and
the anonymous reviewers suggested many textual improvements. A. Popescu
helped generalising our topology on lazy lists to ccpos. Hölzl is supported by
DFG grant Ni 491/15-1.

References

1. Agerholm, S.: LCF examples in HOL. In: Melham, T.F., Camilleri, J. (eds.) HUG
1994. LNCS, vol. 859, pp. 1–16. Springer, Heidelberg (1994)

2. Agerholm, S.: Non-primitive recursive function definitions. In: Schubert, E.T.,
Alves-Foss, J., Windley, P. (eds.) HUG 1995. LNCS, vol. 971, pp. 17–31. Springer,
Heidelberg (1995)

3. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009)

4. Bertot, Y.: Filters on coInductive streams, an application to Eratosthenes’ sieve. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Heidelberg
(2005)

5. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS (LNAI), vol. 8558, pp. 93–110. Springer, Heidelberg (2014)

6. Breitner, J., Huffman, B., Mitchell, N., Sternagel, C.: Certified HLints with Is-
abelle/HOLCF-Prelude. In: Haskell and Rewriting Techniques, HART (2013)

7. Charguéraud, A.: The optimal fixed point combinator. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 195–210. Springer, Heidelberg (2010)

8. Devillers, M., Griffioen, D., Müller, O.: Possibly infinite sequences in theorem prov-
ers: A comparative study. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997.
LNCS, vol. 1275, pp. 89–104. Springer, Heidelberg (1997)

9. Friedrich, S.: Topology. Archive of Formal Proofs, Formal proof development
(2004), http://afp.sf.net/entries/Topology.shtml

http://afp.sf.net/entries/Topology.shtml

Recursive Functions on Lazy Lists via Domains and Topologies 357

10. Di Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive
definitions. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp.
148–161. Springer, Heidelberg (2003)

11. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical
analysis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013)

12. Huffman, B.: HOLCF’11: A Definitional Domain Theory for Verifying Functional
Programs. PhD thesis, Portland State University (2012)

13. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reasoning 44(4), 303–336 (2010)

14. Krauss, A.: Recursive definitions of monadic functions. In: PAR 2010. EPTCS,
vol. 43, pp. 1–13 (2010)

15. Lester, D.R.: Topology in PVS: continuous mathematics with applications. In:
AFM 2007, pp. 11–20. ACM (2007)

16. Lochbihler, A.: Coinductive. Archive of Formal Proofs, Formal proof development
(2010), http://afp.sf.net/entries/Coinductive.shtml

17. Lochbihler, A.: Making the Java memory model safe. ACM Trans. Program. Lang.
Syst. 35(4), 12:1–12:65 (2014)

18. Matthews, J.: Recursive function definition over coinductive types. In: Bertot, Y.,
Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
vol. 1690, pp. 73–90. Springer, Heidelberg (1999)

19. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
J. Funct. Program. 9, 191–223 (1999)

20. Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. J.
Logic Comput. 7(2), 175–204 (1997)

21. Slind, K.: Function definition in higher-order logic. In: von Wright, J., Harrison,
J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 381–397. Springer,
Heidelberg (1996)

http://afp.sf.net/entries/Coinductive.shtml

Formal Verification of Optical Quantum

Flip Gate

Mohamed Yousri Mahmoud1, Vincent Aravantinos2, and Sofiène Tahar1

1 Electrical and Computer Engineering Dept., Concordia University,
1455 De Maisonneuve Blvd. W., Montreal, Canada

{mo solim,tahar}@ece.concordia.ca
http://hvg.ece.concordia.ca

2 Software and Systems Engineering, Fortiss GmbH,
Gürickestraße 25, 80805, Munich, Germany

aravantinos@fortiss.org

http://www.fortiss.org/en

Abstract. Quantum computers are promising to efficiently solve hard
computational problems, especially NP problems. In this paper, we pro-
pose to tackle the formal verification of quantum circuits using theorem
proving. In particular, we focus on the verification of quantum comput-
ing based on coherent light, which is typically light produced by laser
sources. We formally verify the behavior of the quantum flip gate in HOL
Light: we prove that it can flip a zero-quantum-bit to a one-quantum-bit
and vice versa. To this aim, we model two optical devices: the beam split-
ter and the phase conjugating mirror and prove relevant properties about
them. Then by cascading the two elements and utilizing these properties,
the complete model of the flip gate is formally verified. This requires the
formalization of some fundamental mathematics like exponentiation of
linear transformations.

Keywords: Quantum optics, Quantum flip gate, Beam splitter, Phase
conjugating mirror, Theorem proving, HOL Light.

1 Introduction

Classical computers (i.e., Turing machines) inefficiently solve hard computational
problems, e.g., NP and NP-complete problems. In 1980, Feynman proposed a
new machine model which uses quantum mechanics: the quantum computer [4].
This model showed that it can solve some hard problems in polynomial time:
a well known example is Shor’s algorithm for integer factorization [11]. This
result has great consequences on computational theory in general, and security
of systems in particular: quantum cryptography became a hot area of research
where powerful and secure systems are developed. In addition, limitations are
arising in the everlasting quest for more powerful classical computers: power
dissipation problems, density limitations, and all their workarounds like multi-
core systems. This all shows how important quantum computers could be in the
future.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 358–373, 2014.
c© Springer International Publishing Switzerland 2014

http://hvg.ece.concordia.ca
http://www.fortiss.org/en

Formal Verification of Optical Quantum Flip Gate 359

The quantum computer model proposed by Feynman consists of a new notion
of a bit, called quantum bit (abbreviated as qbit), and a set of universal quantum
gates, e.g., the flip gate (the quantum counterpart of the classical NOT gate)
and the Hadamard gate [17]. A quantum circuit is made of a collection of these
gates and qbits. Different means and technologies can be used to implement
this model, such as: superconducting circuits [1], ion traps [6], quantum dots
[12] and optical circuits [8]. Optical circuits and ion traps are today the most
promising ones since they can realize the highest number of bits in laboratory,
till now [9]. In this work, we focus on optical circuits which serve as the basis of
several implementations of quantum computers, e.g., [19] and [10]. A major task
for each of these implementations is to make sure that it satisfies the proposed
specifications in the original mathematical model. This verification process is of
course very different from its counterpart for classical computers.

For quantum mechanics, and more specifically quantum optics, the avail-
able verification methods are lab-simulation and paper-and-pencil, the latter
is assisted by numerical methods or computer algebra systems (“CAS”). In lab-
simulation, the systems are simulated physically in an optical laboratory, i.e., a
physical system is set up, whose basic components have properties similar to the
ones of the intended system. It is then assumed that this simulation system will
behave in a way similar to the actual system to be verified. Note that using com-
puters for the simulation of quantum systems is so complex that it cannot be ef-
ficient enough to verify a complete system [4]. In the paper-and-pencil approach,
the whole verification process is done by modeling the system and proving– using
existing physics knowledge– that the system satisfies its specifications. However,
this process is handled by a human and is thus very error-prone, particularly
when the system is very large and especially when considering the complex
mathematics that one has to deal with in quantum mechanics. Thus, computer
methods are used to help the human and decrease the risk of errors: numeri-
cal methods (typically Matlab [20]) and Computer Algebra Systems (“CAS”,
typically Mathematica [3]). Both are used to help the simplification and genera-
tion of intermediate mathematical steps. However, these tools are not sufficient:
they cannot fully substitute for the paper-and-pencil approach since they can-
not mathematically express the whole model of the system. Moreover, they are
also error-prone because of the numerical approximations and heuristics used in
their computations. This is particularly true for complex computations involved
in quantum mechanics. Therefore, we propose to use the theorem proving for
the verification of quantum optical computers.

As a first step towards our ultimate goal, in this paper, we focus on the
formalization of quantum computers implemented by coherent light (typically
laser light). In particular, we formally verify the behavior of one of the universal
quantum gates in this implementation, the flip gate. To this end, we have to
consider the formalization of both physical and mathematical aspects. Mathe-
matically, we implement the quantum operator exponentiation which is similar
to exponentiation, but in infinite-dimension linear spaces. We then use this as
well as some preliminary work presented in [13] and [14] to develop the theory of

360 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

coherent light. Coherent light is at the essential basis of two important optical
elements: the beam splitter and the phase conjugate mirror, from which the flip
gate can finally be built. This development demonstrates the theoretical feasi-
bility of our approach: starting from the formalization of some abstract theory,
we progressively build a model for concrete implementation of a practical quan-
tum gate and verify that it has the expected behavior. This work was completely
implemented in HOL Light, the sources are available at [15].

The rest of the paper is organized as follows: Section 2 gives preliminaries about
quantum optics and quantum computers, and recalls the formalization of some of
the foundational notions. Section 3 presents the formal development of the expo-
nentiation of quantum operators. Section 4 describes the coherent light formaliza-
tion and Section 5 deals with the flip gate verification and the formalization of the
required devices. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we briefly introduce some notions of quantum computers and
quantum optics, in particular optical coherent light. We then give more details
about quantum operators that are useful in quantum optics, specifically when
implementing a flip gate. We finally give the basic formal mathematical defini-
tions that are used in our formalization.

2.1 Quantum Systems

A quantum system is fully described with a so-called quantum state, generally
noted |ψ〉. Mathematically, a quantum state is a square integrable complex-
valued function whose square integration is equal to one. Square integrable
complex-valued functions form an inner product space whose product 〈f |g〉 is
the integration of the multiplication of f by the conjugate of g.

For every system there is a (finite or infinite) set of quantum states |ψ1〉, |ψ2〉,
. . . , called basis states, which have the property that every state of the system
can be expressed as a linear combination of them, i.e., for every state |ψ〉 of the
system, there are complex numbers c1, c2, . . . such that:

|ψ〉 =
∑

i=1,2,...

|ci| ∗ |ψi〉 (1)

where
∑

|ci|2 = 1.
An example of such a system is the basic component of the quantum com-

puter: the quantum bit (or qbit). Similar to classical bits, a quantum bit is a
quantum system with two basis states |0〉 and |1〉. However, contrary to its classi-
cal counterpart, the state of a qbit is not only |0〉 or |1〉, but can be a mix thereof.
Indeed, such a state can be expressed as |ψ〉 = α|0〉+β|1〉, where |α|2+ |β|2 = 1
(according to Equation (1)).

Another example of a quantum system is light: in quantum optics, light is con-
sidered as a stream of particles called photons, in contrast to the classical theory

Formal Verification of Optical Quantum Flip Gate 361

that considers light as an electromagnetic wave. As a quantum system, light has
an infinite countable set of basis states |0〉, |1〉, . . . , called Fock states. Light in
a fock state |n〉 contains n photons. Light is said to be coherent if the number
of photons in the light stream (at any time instant) is probabilistically Poisson

distributed, i.e., the probability of having n photons is: P (N = n) = |α|n e−|α|

n!
for some complex number α. The modulus of |α| represents the expected number
of observed photons. The coherent light is then in the quantum state |α〉 which
can be decomposed according to Equation (1) as follows:

|α〉 = e−
|α|2
2

∑
n=0

αn√
n!
|n〉 (2)

The essential idea of using quantum optics, and more specifically coherent
light, to implement quantum computers is to realize the states |0〉 and |1〉 by the
states |0〉 and |α〉 of light, respectively.

2.2 Quantum Operators

Similar to classical physics, the state of a system can evolve over time. Actually,
in the case of quantum physics, it can also evolve just by being observed. In
any case, the evolution of a state must be a function mapping the state to
another one. Since states are functions themselves, such a function is actually an
operator. These operators are even restricted to be linear transformations over
the state space.

In order to compute with qbits, one needs operators applied to them. As for
classical circuits, this is achieved through gates. The quantum computer model
is made of nine such gates, which we will not detail here since our focus in
this paper is only one: the quantum flip gate. The flip gate (or Pauli-X gate) is
equivalent to the classical NOT gate: applying it to |0〉 yields |1〉 and vice versa.
However, due to its quantum nature, it is capable of much more: for any α, β,
α|0〉+ β|1〉 is turned into α|1〉+ β|0〉.

In the case of optics, there are two basic quantum operators: the creator and
annihilator operators. The creator operator is defined by:

â†|n〉 =
√
n+ 1|n+ 1〉 (3)

and the annihilator by:

â|n〉 =
√
n|n− 1〉 (4)

As their names suggest, the annihilator â decreases the number of photons by
one (i.e., destroys a photon) and the creator â† increases it by one. Note that
the resulting quantum state is not exactly the demoted one, since it is scalar-
multiplied by

√
n+ 1 and

√
n, respectively. However, scalar multiplication actu-

ally does not change a quantum state behavior. Thereby, the resulting state still
has n− 1 photons.

362 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

Solving Equation (3) as a recurrence relation, we obtain a general represen-
tation of any fock state |n〉:

|n〉 = (â†)n |0〉√
n!

(5)

where |0〉 is called vacuum state since it does not contain any photon. Note here
that the power notation used in (â†)n means the application of the creation
operator n times (recall that quantum operators are functions).

According to Equations (2) and (5), we can re-express coherent states in terms
of the vacuum state and creation operator:

|α〉 = e−
|α|2
2

(∑
n=0

(αâ†)n

n!

)
|0〉 (6)

Note that, for a linear operator a†, (αâ†)n = αn(â†)n.
This allows us to introduce the displacement operatorD(α), which is essential

for the implementation of the flip gate:

|α〉 = D(α)|0〉 (7)

Here, D(α) = eαâ
†
e−α∗â e[αâ

†,−α∗â], where ∗ denotes the scalar multiplication
with quantum operators, ∗∗ denotes the multiplication between quantum op-
erators, and [op1, op2] = op1 ∗ ∗ op2 − op2 ∗ ∗ op1. The proof of Equation (7)
can be found in the literature, e.g., in [16]. Note the use of exponentiation over
operators, which is defined as follows:

eÔ =
∑
i=0

Ôi

i!
(8)

Though defined similarly to the classical exponential, its properties are very
different.

The importance of the displacement operator is that it can be physically
realized by a quantum optical device called a beam splitter [18]. Therefore it
is an essential ingredient in the implementation of quantum computers using
coherent light, as we will see in Section 5.

2.3 Quantum State Space Formalization

After presenting the essential quantum physics notions, we now briefly review
the formalization of inner product spaces which was presented in [13].

First, since a quantum state is a complex-valued function, we defined a HOL
type for that: cfun = A → complex, where cfun stands for complex function.
A is a type variable, allowing our formalization to be used to model both finite-
dimension systems like quantum computers, and infinite-dimension systems like
quantum light.

Additions and scalar multiplications are defined easily as the corresponding
point-wise operations, which allows us to characterize the notion of linear sub-
space as follows:

Formal Verification of Optical Quantum Flip Gate 363

Definition 1
is cfun subspace (spc : cfun → bool) ⇔
∀x y. x IN spc ∧ y IN spc ⇒
x+ y IN spc ∧ (∀a. a%x IN spc) ∧ cfun zero IN spc

where cfun zero is the constantly null function, and % denotes the scalar mul-
tiplication. The notion of inner space is then defined as follows:

Definition 2
is inner space ((s, inprod) : (qs → bool)× (cfun → cfun → complex))⇔

is cfun subspace s ∧
∀x. x ∈ s ⇒

real (inprod x x) ∧ 0 ≤ real of complex (inprod x x) ∧
(inprod x x = Cx(0) ⇔ x = qs zero) ∧
∀y. y ∈ s ⇒
cnj (inprod y x) = inprod x y ∧
(∀a. inprod x (a%y) = a ∗ (inprod x y)) ∧
∀z. z ∈ s ⇒
inprod (x+ y) z = inprod x z + inprod y z

where real x states that the complex value x has no imaginary part, and
real of complex is a function converting a complex number into a real one
(if it is real).

Once these bases are set, we can define the notion of operator over an inner
space. This is achieved by first defining the type cop = cfun → cfun. A linear
operator is then characterized as follows:

Definition 3
is linear cop (op : cop) ⇔
∀x y. op (x+ y) = op x+ op y ∧ ∀a. op (a % x) = a % (op x)

In addition, quantum operators must satisfy the property of being self-adjoint:

Definition 4
is self adjoint (s, inprod) op ⇔

is inner space (s, inprod) ⇒
is linear cop op ∧
∀x y. inprod x (op y) = inprod (op x) y

As seen in the previous section, exponentiation of operators requires their
infinite summation. We first define infinite summation over functions:

Definition 5
cfun sums innerspc f l s ⇔

cfun lim innerspc (λn. cfun sum (s INTER (0..n)) f) l sequentially

which formalizes the fact that limn→∞
∑n

i=0 fi = l: INTER is the sets intersection
operator, cfun lim is the notion of limit defined for quantum states, cfun sum

is finite summation over quantum states, and sequentially means that the

364 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

summation index will be increased sequentially, i.e., 1,2,3,.. More details about
implementing infinite summation and related notions are presented in [14].

In practice it is more convenient to actually retrieve the limit in a functional
way. To do so we use the Hilbert choice operator @ as follows:

Definition 6
cfun infsum innerspc s f = @l. cfun sums innerspc f l s

This is useful only at the condition that the sum is convergent, which we express
by the following predicate:

Definition 7
cfun summable innerspc s f = ∃l. cfun sums innerspc f l s

In conjunction with infinite summation, bounded operators are of particu-
lar importance. Indeed, the application of a bounded operator commutes with
infinite summation: i.e., for a bounded operator cop:

cop (cfun infsum f s) = cun infsum (λn. cop (fn)) s.

Bounded operators are defined as follows:

Definition 8
is bounded (s, inprod) h ⇔ is inner space (s, inprod)

⇒ is closed by s h ∧ ∃B. 0 < B∧
(∀x. x IN s ⇒ cfun norm inprod (h x))) ≤ B ∗ cfun norm inprod x)))

where is closed by s h ⇔ ∀x.x IN s ⇒ h x IN s, and cfun norm inprod x =√
real of complex (inprod x x). A linear operator h is bounded if for all x the

norm of h x is lower or equal to the norm of x up to multiplication by a scalar
B. Note that B does not depend on x.

3 Quantum Operator Exponentiation

Quantum operator exponentiation is essential for the formalization of the dis-
placement operator. In order to tackle the exponentiation, we have first to con-
sider the infinite summation over quantum operators, which is done simply by
using the pointwise infinite summation over complex functions:

Definition 9
cop sums (s, inprod) f l set ⇔ ∀x. x IN s ⇒

cfun sums (s, inprod) (λn.(f n) x) (l x) set

This definition is an easy adaptation of the cfun case: the only differences are
the types of f, l, and set, and the fact that the pointwise definition is restricted
to the values that belong to the inner space. This latter point is very important
since this summation might not exist for some operators, if defined over the
complete extension of cfun: for instance, many sequences of square-integrable
functions do not have a limit that remains square-integrable.

Similarly to cfun infsum and cfun summable, we then define cop infsum and
cop summable:

Formal Verification of Optical Quantum Flip Gate 365

Definition 10
cop infsum innerspc s f = @l. cop sums innerspc f l s

cop summable innerspc s f = ∃l. cop sums innerspc f l s

Finally, we can use cop infsum to define quantum operator exponentiation ac-
cording to Equation (8):

Definition 11
cop exp innerspc (op : cfun → cfun) ⇔

cop infsum innerspc (from 0) (λn. 1!n % (op pow n))

where from 0 denotes the set N. We prove many properties about the exponen-
tiation but we will present in detail the proof of only one of them, and will only
mention the end result for others. We start by proving that cop exp (cop zero)

= I, which is the scalar counterpart of e0 = 1. To do so, we first need to provide
the property using the predicate definition, i.e., cop sums, as follows:

Theorem 1
∀is. is inner space is ⇒

cop sums innerspc (λn. 1!n % (cop zero pow n)) I (from 0)

where cop zero = λx : cfun. cfun zero is the operator constantly equal to
cfun zero. In addition, we recall that I is the identity operator (to ease the
understanding, one can remark that it corresponds to the identity matrix in a
finite dimension vector space). We then use the uniqueness of cop infsum to
re-express the property in terms of cop exp. The unicity theorem is as follows:

Theorem 2
∀s inprod f set l x.

x IN s ∧ cop sums (s, inprod) f l set ⇒
(cop infsum (s, inprod) set f) x = l x

It states that if the summation has a limit, then this limit is unique. Therefore it
is also equal to cop infsum (s,inprod) set f on the considered inner space,
since the definition of cop infsum is precisely to be any of these limits. Note that
we cannot ensure that cop infsum (s,inprod) set f and l are equal since we
do not know how they affect elements outside s. This is not a restriction, on the
contrary: it ensures that our theory indeed has a non-trivial model. If this was
not the case, the inner space of square-integrable functions could not be used
with our formalization.

In the end, we obtain the following theorem stating indeed the intended prop-
erty:

Theorem 3
∀s inprod x.

x IN s ∧ is inner space(s, inprod)⇒
cop exp (s, inprod) cop zero x = x

Another important property is the commutativity of exponentiation with the
scalar multiplication of its argument:

366 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

Theorem 4
∀s inprod a x.

x IN s ∧ is inner space(s, inprod)⇒
(cop exp(s, inprod) (λy.a%y)) x = cexp a%x

The scalar counterpart of this theorem is the e(a.1) = ea.1: indeed the identity
plays here the role of the unity. Note that this result shows the compatibility of
our definitions with the ones defined in HOL Light for infinite dimension linear
spaces.

Like for the scalar exponentiation, cop exp is not a linear function over oper-
ators. However, a property which has no counterpart for scalars is the linearity
of cop exp op (which is an operator). This property is essential to the devel-
opment of the flip gate: indeed, it allows to generalize the effect of the gate on
basis states |0〉 and |1〉 to any mixed state c1 |0〉+ c2|1〉. It also helps a lot in the
intermediate steps of many proofs, by allowing to move in and out scalar values
multiplied by states, i.e., cop exp op(a % x) = a%(cop exp op x). The linearity
of cop exp op is however true only on the concerned inner space. Therefore, we
need a definition which is relaxed w.r.t. Definition 3:

Definition 12
is set linear cop s (op : cop) ⇔

∀x y. x IN s ∧ y IN s ⇒ op (x + y) = op x+ op y ∧
∀a. op(a % x) = a % (op x)

The linearity of cop exp op can then be proved, as long as op is itself a linear
operator:

Theorem 5
∀s inprod op.

cop summable innerspc (from 0) (λn. 1!n % (op pow n)∧is linear cop op⇒
is set linear cop s (cop exp (s, inprod) op)

This concludes our formalization of operators exponentiation.

4 Coherent Light Formalization

In this section, the formal definition of the coherent state of light is presented,
which we then re-express in terms of the displacement operator (according to the
presentation of Section 2.2). This is carried out in three steps: 1) quantum light
formalization, 2) formalization of fock states (which are the basis of quantum
optics states space), and 3) coherent states formalization.

4.1 Single Mode

The basic building block of formalizing light in quantum theory is the formal
development of electromagnetic fields [2]: Quantum physics studies a light stream
as an electromagnetic field. Such a field can be reduced to the superposition of
several single-mode (i.e., single resonance frequency) fields. The formal definition
of a single-mode filed is as follows:

Formal Verification of Optical Quantum Flip Gate 367

Definition 13
is sm ((sp, cs, H), ω, vac)⇔
is qsys (sp, cs, H) ∧ 0 < ω ∧ ∃q p. cs = [q; p]
∧ ∀t.is observable sp (p t) ∧ is observable sp(q t)

∧ H t = ω2

2
%((q t) pow 2) + 1

2
%((p t) pow 2)

∧is qst sp vac ∧ is eigen pair (H t) (vac, planck∗ω
2

)

A single-mode field is characterized by five elements: sp is the quantum states
space of the field; cs lists the elementary observables of the mode, p and q are
the canonical coordinates of the field, out of which we build the creator and
annihilator operators; H is expressing the amount of energy inside the field; ω is
the resonance frequency; and vac refers to the vacuum state. More details about
is sm can be found in [13].

As explained in Section 2.2, a single-mode field in a fock state (or photon
number state) |n〉 is a light stream containing exactly n photons. These states
are crucial because they form the basis of the single-mode quantum states space,
and they are widely used in the development of quantum cryptography systems.
According to Equation 5, we can formally define a fock state as follows:

Definition 14
let (((s, inprod), cs, H), ω, vac) = sm in

fock sm 0 = vac ∧ fock sm (SUC n) =
get qst inprod (creat of sm sm (fock sm n)))

where get qst returns the normalized version of a vector, i.e., the vector divided
by its norm. This is to ensure that the norm of the resulting quantum state is
equal to one. Using this definition and the infinite summation, a coherent state
can be defined as follows:

Definition 15
coherent sm α =
let sm = ((s, inprod), cs, H), ω, vac in

exp(− |α|2)
2

)% cfun infsum (s, inprod) (from 0) (λn. α
n√
n!
%(fock sm n))

where α is the state parameter (recall that the number of photons in a coherent
stream is Poisson distributed with expectation |α|2). Note that Definition 15
corresponds to Equation (2).

As usual, we will often need to be able to tell when the sum in the above
definition is convergent. We define therefore the predicate coherent summable:

Definition 16
coherent summable sm α⇔

let (((s, inprod), cs, H), ω, vac) = sm in

cfun summable (s, inprod) (from 0) (λn. α
n√
!n
%(fock sm n))

We refer the reader to [14] for more details about the formalization of fock and
coherent states.

The implementation of quantum coherent computer is based on the idea of
expressing coherent beams in terms of the displacement operator, since it can

368 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

be easily realized using an optical beam splitter. Let us first give the formal
definition of the displacement operator:

Definition 17
disp sm α =
let qspc = (qspc of sm sm) in

(cop exp qspc (α % creat of sm sm)
1
∗ ∗

cop exp qspc (−(cnj v) % a of sm sm)
2
∗ ∗

cop exp qspc ((v % creat of sm sm) com ((cnj v) % a of sm sm))
3

where op1 com op2 = op1 ** op2 - op2 ** op1 (called the commutator of
op1 and op2), and creat of sm and a of sm are functions that return the creator
and annihilator operators, respectively.

To express a coherent state in terms of the displacement operator, we study
the effect of this operator on the vacuum state: the underlined operator 3 in Def-
inition 17 will collapse to a scalar value because creat of sm sm com (a of sm

sm) = I; and since the two other operators are linear, we can get this scalar
outside. The next step is to study the effect of the underlined operator 2 on
the vacuum state. The following theorem shows that it actually acts like the
identity:

Theorem 6
∀s inprod cs H ω vac.

let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ exp summable (qspc of sm sm) (α % a of sm sm)
⇒ cop exp (qspc of sm sm) (α % a of sm sm) vac = vac

where qspc of sm returns the corresponding quantum states space of a given
field. Thus the resulting state is again vac. It only remains to establish the
effect of the underlined operator 1:

Theorem 7
∀s inprod cs H ω vac α.

let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ (∀m. creat of sm sm (fock sm m) �= cfun zero)
∧ exp summable (qspc of sm sm) (α creat of sm sm)
∧ cfun summable (s, inprod) (from 0)(λn.α pow n√

!n
% fock sm n)

⇒ cop exp (qspc of sm sm) (α % creat of sm sm) vac =
cfun infsum (s, inprod) (from 0)(λn. a pow n√

!n
% fock sm n)

which corresponds almost to the definition of coherent light (see Definition 15): it
differs only by multiplication with a scalar value. One then just needs to combine
these results in order to obtain the final expression of coherent light in terms of
the displacement operator:

Theorem 8
∀s inprod s H ω vac α.
let sm = ((s, inprod), cs, H), ω, vac in

Formal Verification of Optical Quantum Flip Gate 369

is sm sm ∧ exp summable (qspc of sm sm) (cnj(−α) %a of sm sm)
∧ (∀n.creat of sm sm (fock sm n) �= cfun zero))
∧ cfun summable (s, inprod) (from 0)(λn.α pow n√

!n
% fock sm n)

is sm sm ∧ exp summable (qspc of sm sm) (α creat of sm sm)
⇒ coherent sm α = (disp sm α) vac

In the next section, we will see how this expression of coherent states helps in
the development of the quantum flip gate.

5 Quantum Flip Gate Verification

In this section we detail the implementation of the optical flip gate [19], and
explain the idea behind it. Recall that |vac〉 and |α〉 are meant to implement the
qbits |0〉 and |1〉, respectively. The specification of a flip gate is that it should
turn c1 |vac〉 + c2 |α〉 into c1 |α〉 + c2 |vac〉, for all c1, c2 ∈ C. The intended
implementation of the gate is represented in Figure 1. First a beam splitter

Beam Splitter Mirror
D(-)

Fig. 1. Flip gate optical implementation

realizes a −α displacement operator. Then a phase conjugating mirror generates
a beam identical to the input beam but with a reverse phase, which yields an
output of | − α〉 for an input of |α〉.

We start by demonstrating the effect of the proposed optical flip gate on each
optical qbit separately. Then, we generalize the result to any mixed qbit by using
the linearity of the gate.

We start by formalizing the phase conjugating mirror as follows:

Definition 18
mirror sm =

let sm = ((s, inprod), cs, H), ω, vac in

cop exp (s, inprod) (iπ % n of sm sm)

We will see later that applying such quantum operator to a coherent beam
result in the same beam in the reverse direction (i.e., the input beam is |α〉 and
the output is | −α〉. This is exactly what a phase conjugating mirror does. Note
that we use again quantum operator exponentiation.

The following property is the key to verify that the mirror implements phase
shifting:

370 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

Theorem 9
∀s inprod cs H ω vac θ n.
let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ exp summable (qspc of sm sm) (iθ % n of sm sm)
∧ creat of sm sm (fock sm n) �= cfun zero

⇒ cop exp (qspc of sm sm) (iθ % n of sm sm)
1
(fock sm n) =

(cexp (iθ) pow m) % (fock sm n)
2

The underlined expression 1 is called a phase shifter operator. It is a general-
ization of the behavior of the phase conjugating mirror, except it considers any
angle θ instead of just π. Theorem 9 shows the effect of such an operator on
fock states: the underlined expression 2 shows that it generates the same state
but shifted by θ. By specifying θ = π, we can then easily prove the effect of the
mirror on coherent states:

Theorem 10
∀s inprod cs H ω vac α.

let sm = (((s, inprod), cs, H), ω, vac) in
is sm sm ∧ cfun summable (s, inprod) (from0) (λn. α

n√
!n

% fock sm n)

∧ mirror summable sm ∧ is bounded (qspc of sm sm) (mirror sm)
∧ (∀n.creat of sm sm (fock sm n) �= cfun zero))

⇒ mirror sm (coherent sm α) = coherent sm (−α)

where mirror summable is similar to the summable notions defined before: we
define a new predicate only for simplicity. The purpose of this predicate is to
ensure that the mirror operator exists.

The former theorem proves that the mirror indeed behaves as expected when
applied to the qbit |1〉. We now show that it is also the case for |0〉, i.e., for the
vacuum state vac:

Theorem 11
∀s inprod cs H ω vac.

let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ coherent summable sm 0

⇒ coherent sm 0 = vac

Combined with the previous theorem, this confirms that the vac state is un-
changed by the mirror.

We now complete the formalization by the beam splitter, which is modeled
by the displacement operator. In case that the input to the beam splitter is
vac then the output will be coherent sm (−α) according to Theorem 8. For
coherent sm α input, it results in vac according to the following theorem:

Theorem 12
∀s inprod cs H ω vac α.
let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ (∀b.exp summable (s, inprod) (b%a of sm sm))
∧ (∀m. creat of sm sm (fock sm m) �=cfun zero) ∧ coherent summable sm α

Formal Verification of Optical Quantum Flip Gate 371

∧ exp summable (qspc of sm sm) (α creat of sm sm)
∧ is bounded (s, inprod) (a of sm sm) ∧ (coherent sm α �= cfun zero)
∧ (∀x op. is linear cop op ∧ x IN s ⇒

(cop exp (s, inprod) (−op) ∗ ∗ cop exp (s, inprod) (op)) x = x)
⇒ disp sm (−α) (coherent sm α) = vac

The last conjunction in the premises shows an assumed property about exponen-
tiation of quantum operators. Such property requires the proof of a the general
theorem of Baker-Campbell-Hausdorff [7] 1. A major step towards proving The-
orem 12 is to evaluate the effect of cop exp (a of sm sm) on coherent beams.
The following theorem shows such effect:

Theorem 13
∀s inprod cs H ω vac α.

let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ exp summable (s, inprod) (cnj α%a of sm sm)
∧ (∀m. creat of sm sm (fock sm m) �=cfun zero) ∧ coherent summable sm α
∧ is bounded (s, inprod) (a of sm sm) ∧ (coherent sm α �= cfun zero)

⇒ cop exp (qspc of sm sm) ((cnj α)%a of sm sm) (coherent sm α) =
cexp((norm α)2)%(coherent sm α)

Now, we have all ingredients to construct the flip gate and verify its behavior.
The formal definition of the flip gate is made through the cascading of the mirror
and beam splitter elements. This is defined as an operators’ multiplication (i.e.,
function composition):

Definition 19
flip gate α sm = (mirror sm) ∗ ∗ (disp sm (−α))

Based on above definition and using Theorems 10-12, we prove the correction
of the gate behavior in one single theorem as follows:

Theorem 14
∀s inprod cs H ω vac α.

let sm = ((s, inprod), cs, H), ω, vac in

is sm sm ∧ exp summable (∀b. (s, inprod) (b%a of sm sm)
∧ (∀m. creat of sm sm (fock sm m) �= cfun zero)
∧ (∀b. coherent summable sm b)
∧ (∀c. cfun summable (s, inprod) (from 0) (λn.(cn√

!n
)%fock sm n))

∧ (∀d. exp summable (s, inprod) (%. creat of sm sm (0)))
∧ is bounded (s, inprod) (a of sm sm)
∧ (coherent sm α �= cfun zero)∧
∧ (cop exp (s, inprod) (−op) ∗ ∗ cop exp (s, inprod) (op)) x = x)
∧ mirror summable sm ∧ is bounded (qspc of sm sm) (mirror sm)

⇒ (flip gate α sm) (coherent sm α) = vac

∧ (flip gate α sm) vac = coherent sm α

1 The proof of the Baker-Campbell-Hausdorff theorem is very complex and requires a
lot of prerequisites that are not available in HOL Light. The formal verification of
this theorem in HOL Light is part of our future work.

372 M.Y. Mahmoud, V. Aravantinos, and S. Tahar

In a nutshell, Theorem 14 proves that a coherent beam |α〉 (|vac〉) passes through
a beam splitter, which in turn generates |vac〉 (|−α〉), then the beam experiences
a mirror which reflects it in the opposite direction to generate |vac〉 (|α〉). Hence,
we have the realization of the quantum flip gate. Note that given the linearity of
the optical elements, this result generalizes for any mixed state c1∗|α〉+c2∗|vac〉.

6 Conclusion

Quantum optics explores extremely useful phenomena and properties of light
as a stream of photons. However, the analysis of quantum optical systems is
complex. Traditional analysis techniques – simulation in optical laboratories,
paper-and-pencil, numerical methods, and computer algebra systems – suffer
from many problems: safety, cost, lack of expressiveness, human error. We believe
that the proposed formalization of quantum optics can contribute to propose an
alternative tackling these limitations.

Coherent light (or states) is an essential notion in quantum optics since it
eases the analysis of many quantum systems. One of the most interesting appli-
cations of coherent light is quantum computers. Coherent states are proposed
to model quantum bits [19], by taking |vac〉 and |α〉 as |0〉 and |1〉, respectively.
Many quantum gates were implemented based on this model. In this paper, we
considered the quantum flip gate, which converts δ|0〉 + β|1〉 into β|0〉 + δ|1〉.
We verified the behavior of this gate, which requires many formalization tasks.
We started by developing the required mathematical foundations, in particular
summation over quantum operators and exponentiation of quantum operators.
Then we presented the formal definition of coherent beam, and expressed co-
herent states in terms of the displacement operator, which can be physically
implemented as a beam splitter. The gate itself consists of a phase conjugating
mirror along with a beam splitter. Therefore, we formalized the mirror and a
displacement operator (or, equivalently, a beam splitter) and proved the required
theorems to verify the gate behavior.

In the future, we plan to formalize other gates and handle other quantum
computer implementations, for example the one based on squeezed states (a
special case of coherent light). We also plan to extend our work to multi-mode
systems, which are very useful for complicated quantum gates, in particular those
that use the phenomena of entailment and teleportation [5].

References

1. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042
(2008)

2. Dirac, P.A.M.: The fundamental equations of quantum mechanics. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 109(752),
642–653 (1925)

3. Feagin, J.M.: Quantum Methods with Mathematica. Springer (2002)
4. Feynman, R.: Simulating physics with computers. International Journal of Theo-

retical Physics 21, 467–488 (1982)

Formal Verification of Optical Quantum Flip Gate 373

5. Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement: A Hybrid
Approach to Optical Quantum Information Processing. Wiley (2011)

6. Haeffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Physics
Reports 469(4), 155–203 (2008)

7. Hall, B.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduc-
tion. Graduate Texts in Mathematics. Springer (2003)

8. Jennewein, T., Barbieri, M., White, A.G.: Single-photon device requirements for
operating linear optics quantum computing outside the post-selection basis. Jour-
nal of Modern Optics 58(3-4), 276–287 (2011)

9. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.:
Quantum computers. Nature 464, 45–53 (2010)

10. Li, Y., Browne, D.E., Kwek, L.C., Raussendorf, R., Wei, T.: Thermal states as
universal resources for quantum computation with always-on interactions. Physical
Review Letter 107, 060501 (2011)

11. Lomonaco, S.J.: Quantum Computation: A Grand Mathematical Challenge for the
Twenty-first Century and the Millennium. American Mathematical Society (2002)

12. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Physical
Review A 57, 120–126 (1998)

13. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension
linear spaces with application to quantum theory. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)

14. Mahmoud, M.Y., Tahar, S.: On the quantum formalization of coherent light in
HOL. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 128–
142. Springer, Heidelberg (2014)

15. Mahmoud, M.Y., Aravantinos, V.: Formal verification of optical quantum flip gate
- HOL Light script,
http://hvg.ece.concordia.ca/projects/qoptics/flipgate.html

16. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge Univer-
sity Press (1995)

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010)

18. Paris, M.G.A.: Displacement operator by beam splitter. Physical Letters A 217(2-
3), 78–80 (1996)

19. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum com-
putation with optical coherent states. Physical Review A 68, 042319 (2003)

20. Tan, S.M.: A computational toolbox for quantum and atomic optics. Journal of
Optics B: Quantum and Semiclassical Optics 1(4), 424 (1999)

http://hvg.ece.concordia.ca/projects/qoptics/flipgate.html

Compositional Computational Reflection

Gregory Malecha1, Adam Chlipala2, and Thomas Braibant3

1 Harvard University SEAS, Cambridge, MA, USA
gmalecha@cs.harvard.edu

2 MIT CSAIL, Cambridge, MA, USA
adamc@csail.mit.edu

3 INRIA, Rocquencourt, France
thomas.braibant@inria.fr

Abstract. Current work on computational reflection is single-minded;
each reflective procedure is written with a specific application or scope in
mind. Composition of these reflective procedures is done by a proof-
generating tactic language such as Ltac. This composition, however, comes
at the cost of both larger proof terms and redundant preprocessing. In this
work, we propose a methodology for writing composable reflective
procedures that solvemany small tasks in a single invocation.The key tech-
nical insights are techniques for reasoning semantically about extensible
syntax in intensional type theory. Our techniques make it possible to
compose sound procedures and write generic procedures parametrized by
lemmas mimicking Coq’s support for hint databases.

Keywords: Computational reflection, automation, Coq, verification.

1 Introduction

Imperative program verification requires orchestrating many different reasoning
procedures. For it to scale to more sophisticated languages and larger programs,
these procedures must be efficient. When using a proof assistant, a popular way
to achieve good performance is with computational reflection [2], a technique for
discharging proof obligations by running verified programs implemented in the
proof assistant’s logic.

While individually these procedures are fast, composing them relies on non-
reflective, proof-generating tactic languages like Ltac [7]. While simple and flex-
ible, this method is expensive. The brunt of the cost of computational reflection
is in setting up the procedure and constructing the proof term; the actual com-
putation is often relatively cheap. Composing many small reflective procedures
requires paying this price for many moderately sized proof obligations rather
than once for the entire goal.

To achieve this composition without returning to the non-reflective world,
high-level reflective procedures must support extension to reason about domain-
specific problems. Tactic-based languages support patterns such as higher-order
tactics and hint databases that allow extending automation after the fact. For
example, Coq’s autorewrite tactic is based on hint databases that package

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 374–389, 2014.
c© Springer International Publishing Switzerland 2014

Compositional Computational Reflection 375

u
se
r

p
re
d
ic
a
te

re
fi
n
em

en
t

h
in
ts

co
m
b
in
e

h
in
ts

q
u
a
n
ti
fi
ed

in
va
ri
a
n
ts

prove using hints

Specification & Implementation

Definition bstM : bmodule := {
bfunction "lookup"("s", "k", "tmp") [lookupS]
"s" ←∗ "s";;
[∀ s, ∀ t,
PRE[V] bst’ s t (V "s") ∗ mallocHeap
POST[R] � (V "k" ∈ s) \is R � ∗

bst’ s t (V "s") ∗ mallocHeap]
While ("s" �= 0) {
"tmp" ←∗ "s" + 4;;
If ("k" = "tmp") {
Return 1 (* Key matches! *)

} else {
If ("k" < "tmp") {
"s" ←∗ "s" (* Lower key *)

} else {
"s" ←∗ "s" + 8 (* Higher key *)

}
}

};;
Return 0

}.

Domain-Specific Hints & Proof

(* Representation predicate for BSTs *)
Definition bst (s : set) (p : W) :=

� freeable p 2 � ∗ ∃ t, ∃ r, ∃ junk,
p �→ r ∗ (p +̂ $4) �→ junk ∗ bst’ s t r.

(* A standard tree refinement hint *)
Theorem nil_fwd : ∀ s t (p : W), p = 0 →
bst’ s t p =⇒ � s � empty ∧ t = Leaf �.

Proof. destruct t; sepLemma. Qed.
(* . . .more hints. . . *)

(* Combine the hints into a package. *)
Definition hints : HintDatabase.
prepare (nil_fwd, bst_fwd, cons_fwd)

(nil_bwd, bst_bwd, cons_bwd).
Defined.

(* Prove partial correctness. *)
Theorem bstMOk : moduleOk bstM.
Proof. vcgen; abstract (sep hints; auto). Qed.

Fig. 1. Verified implementation of binary search trees implementing finite-set “lookup”

together a collection of rewrites and associated tactics to solve side conditions.
These features, however, have not made their way to reflective procedures.

In this work, we focus on building extensible reflective procedures that perform
many reasoning steps in a single invocation. Figure 1 demonstrates the degree
of automation that we achieve applying our techniques to program verification
in Bedrock [4], a Coq [6] library for low-level, imperative programming. Note
that the implementation is completely separated (with the exception of loop
invariants) from the automated verification. Effective automation for verifying
such a program requires simultaneously reasoning about abstract predicates,
low-level machine words, and high-level sets. To that end, our automation (sep)
is written modularly and composed into large reflective procedures. Reasoning
for problem-specific constructs is incorporated via HintDatabases that are con-
structed completely automatically from both fully verified reflective procedures
(similar to Ltac’s Hint Extern) and guarded rewriting lemmas (similar to Ltac’s
Hint Rewrite . . . using . . .). The latter of these is constructed completely auto-
matically from standard lemmas like nil_fwd above, which drastically lowers the
overhead of applying our automation to reason about new abstract predicates.

In the rest of the paper we discuss the techniques that we have developed to
support that kind of sophisticated reasoning reflectively. We begin with a short
primer on computational reflection (Section 2) before discussing our technical
contributions, which correspond to the features of our reflective procedures:

– Our proof procedures reason extensively about two forms of variables (Sec-
tion 3.2): variables introduced by existential quantifiers in the goal and uni-
fication variables introduced by Ltac before our reflective procedures run.

– Our proof procedures reason semantically about an open-ended set of sym-
bols and types (Section 3.3). Our approach allows us to build independent

376 G. Malecha, A. Chlipala, and T. Braibant

Inductive sexpr := (* syntactic separation logic formulas *)
| Star (l r : sexpr) | Opaque (p : nat) | Emp.

Fixpoint sexprD (ps : list hprop) (s : sexpr) : hprop :=
match s with
| Star l r ⇒ sexprD ps l ∗ sexprD ps r
| Opaque f ⇒ nth_with_default (default := � False �) ps f
| Emp ⇒ ∅
end.

Definition check_entailment (l r: sexpr): bool := (* reflective procedure *)

Theorem check_entailment_sound : ∀ ps lhs rhs, (* soundness proof *)
check_entailment lhs rhs = true →
sexprD ps lhs � sexprD ps rhs. (* separation-logic entailment *)

Listing 1. A reflective entailment checker for propositional separation logic

procedures for reasoning about different domains, such as lists and bit-
vectors, and compose them after the fact.

– Finally, our proof procedures are easy to customize and extend without know-
ing about the details of reflection. One drawback of reflective verification has
been the need to write and verify programs in order to extend the automa-
tion. Combining the above techniques, we have built a more elementary
interface that allows users to construct verified hint databases from Coq
theorems completely automatically and pass them to generic reflective au-
tomation that applies the theorems (Section 3.4).

After presenting our technical contributions, we evaluate the performance and
power of our automation (Section 4) and discuss related work (Section 5). Our
techniques are implemented in the MirrorShard library that lays the foundation
for the Bedrock automation. Both repositories are available online.

https://github.com/gmalecha/mirror-shard/

https://github.com/gmalecha/bedrock-mirror-shard/

2 Simple Entailment: A Computational Reflection Primer

Before diving into the novel bits, we sketch the high-level approach of computa-
tional reflection. We use entailment checking in a toy fragment of propositional
separation logic [16] as our running example. Separation logic describes the pro-
gram state compositionally by splitting it into disjoint pieces using the separating
conjunction (notated ∗), which has the empty state (notated ∅) as its unit. For
example, the formula P ∗Q∗R∗∅ states that the entire program state can be di-
vided into three disjoint parts described respectively by the opaque propositions
P , Q, and R.

The first step in using computational reflection is to define a syntactic (called
“reified”) representation of formulas (sexpr); Listing 1 shows the code. The
denotation function (sexprD) formalizes its meaning. Star and Emp represent ∗
and ∅ respectively; while Opaque n, for some index n, represents an uninterpreted
proposition in the ps environment, e.g. P , Q, and R above. This indirection

https://github.com/gmalecha/mirror-shard/
https://github.com/gmalecha/bedrock-mirror-shard/

Compositional Computational Reflection 377

provides a decidable equality on sexpr, which allows us to detect (conservatively)
when two opaque propositions are equal. When ps does not contain a value for
an index, our denotation function uses �False�, a contradictory assertion.

Next we write a function (check_entailment) that determines whether the
entailment is provable. Our simple algorithm erases all ∅ terms and crosses com-
mon terms off both sides of the entailment. If both sides wind up empty, then the
entailment is provable. In order to use the procedure to prove an entailment, we
prove a derived proof rule (the Coq theorem check_entailment_sound). The
premise to this inference rule asserts that the function returns true, which can be
checked efficiently by running the computation. If the result is true, the premise
is justified by the reflexivity of equality. Notice that arbitrary entailments can
be proved using this theorem by (1) reifying their syntax into the sexpr type
and (2) applying the theorem with the quantifiers instantiated appropriately.

3 Composing Procedures

The entailment checker in the previous section is a good start, but it is not up to
the challenges of program verification. Throughout this section we discuss how
our technical contributions enable us to take it from a toy decision procedure to
an extensible entailment checker capable of proving complex goals.

3.1 Syntax

Before we present our technical contributions, we set the stage with some more
conventional elements of our syntax (shown in Listing 2).

The biggest inadequacy of the syntax presented in Section 2 is the represen-
tation of predicates. To illustrate the problem, consider the proposition p �→ x,
expressing that the pointer p points to the value x. In the previous syntax this
formula might be represented as Opaque 1, making it impossible to determine
equivalence with p+ 0 �→ x, which would be reified using a different index, e.g.
as Opaque 2, since the terms are not syntactically equal.

To address this problem, we replace Opaque n with Pred n xs where xs is a list
of arguments to the nth predicate. Because these arguments are not separation-
logic formulas, we introduce a second syntactic category (expr) to represent
them. We could stop here if all arguments to predicates were e.g. machine words,
which would be quite restrictive. To enable expr to represent expressions of an
open set of types, we introduce a third syntactic category for types (typ) and an
associated denotation function (typD). This denotation function shows up in the
return type of exprD, which determines the meaning of a syntactic expression
at a given (syntactic) type. When the expression does not have the given type,
exprD returns None, signaling a type error.

Our new syntax also supports constants using the Const constructor of expr.
While constants are special cases of 0-ary function symbols, distinguishing them
allows our reflective procedures to compute with them. The price that we pay
for this flexibility is an additional parameter (ts, introduced by the Variable

378 G. Malecha, A. Chlipala, and T. Braibant

Inductive typ := tyProp | tyType (idx : nat). (* type syntax *)
Variable ts : list Type. (* remaining definitions are parametrized by ts *)
Definition typD (t : typ) : Type :=

match t with
| tyProp ⇒ Prop
| tyType i ⇒ nth_with_default (default := Empty_set) ts i
end.

Inductive expr := (* expression syntax *)
| Func (f : nat) (args : list expr) | Equal (t : typ) (l r : expr)
| Const (t : typ) (val : typD t) | Var (idx : nat) | UVar (idx : nat).

Definition env := list { t : typ & typD t }. (* variable environments *)

Record func := (* syntactic functions *)
{ Args: list typ; Range: typ; Impl: fold_right (→) (typD Range) (map typD Args) }

Definition exprD (fs: fenv) (us vs: env) (e: expr) (t: typ)
: option (typD t) := . . .

Inductive sexpr := (* separation logic syntax *)
| Star (l r:sexpr) | Pred (p: nat) (args:list expr) | Emp | Inj (p: expr)
| Exists (t : typ) (s : sexpr).

Record pred := (* syntactic separation logic predicates *)
{ PArgs : list typ ; PImpl : fold_right (→) hprop (map typD PArgs) }.

Definition sexprD (fs : fenv) (ps : penv) (us vs : env) (e : sexpr) : hprop := . . .

Listing 2. Our three-level, extensible syntax & its denotation.

line) to expr and sexpr to represent the type environment. Beyond constants,
we also support injecting propositions into separation-logic formulas using Inj

and polymorphic equality using Equal in expr. The latter is important since
our extensible function environment does not support polymorphic definitions,
an issue we discuss in more detail in Section 4.3.

The final syntactic forms are for binders and are discussed in the next section.

3.2 Binders and Unification Variables

Existential quantification is common in verification conditions for functional cor-
rectness, especially when reasoning about data abstraction. As a result, quanti-
fier support is essential to fully reflective reasoning.

Our syntax supports existential quantifiers in separation-logic formulas using
the Exists constructor. Syntactically, variables are represented using de Bruijn
indices, and the environment (vs : env) is encoded as a list of dependent pairs
of values and their syntactic types. The denotation of an existential quantifier
prepends the quantified value to the variable environment, while the denotation
of a variable looks up the value and checks it against the expected type.

The final syntactic form, UVar, represents Coq unification variables, which
are placeholders for currently unknown terms. Our procedures determine appro-
priate values for these variables using a reflective unification procedure coded
in Gallina. As we will see in Section 3.4, our ability to implement unification
reflectively is a powerful feature of our approach.

Compositional Computational Reflection 379

p,q, r : word (1)
?1 : word
=======================
p �→ q ∗ ∃ x, q �→ x
� p �→ ?1 ∗ ∃ y, ?1 �→ y ∗ ∃ z, r �→ z

p,q, r : word (3)
?1 : word
=======================
∀ x, ∃ y, ∃ z, ?1 = q ∧ y = x ∧

(p �→ q ∗ q �→ x
� p �→ q ∗ q �→ x ∗ r �→ z)

p,q, r : word (2)
?1 : word
=======================
∀ x, ∃ y, ∃ z,

(p �→ q ∗ q �→ x
� p �→ ?1 ∗ ?1 �→ y ∗ r �→ z)

p,q, r : word (4)
x : word (* from [∀ x] *)
?2 : word (* from [∃ z] *)
=======================
p �→ q ∗ q �→ x
� p �→ q ∗ q �→ x ∗ r �→ ?2

Fig. 2. Representation of quantifiers and unifications as they pass through our verifi-
cation procedures: (a) initial goal; (b) result of lifting quantifiers; (c) direct output of
the unification procedure; (d) after simplification with Ltac

Figure 2 shows how our reflective procedures manipulate quantifiers and uni-
fication variables that occur in entailments. Note that while we show each step
as an individual goal, all of the steps except the last are performed within a
single reflective call.
Box (1) A simple entailment that might be passed to our reflective checker. As
in Coq, unification variables are prefixed with question marks. For clarity, we
include them explicitly above the line, implicitly representing their contexts as
the identifiers that occur above them1. For example, the term used to instantiate
?1 can mention any of p, q, and r.
Box (2) The normal form that our procedures use lifts quantifiers to the top.
Existentials to the left are introduced as Vars that are universally quantified,
while those to the right are represented as UVars and are existentially quantified.
Here, the leading quantifiers are represented syntactically as lists of types, and
the denotation function interprets them with the appropriate quantifiers.
Box (3) The result of unification is an instantiation of the unification variables.
Semantically, this instantiation is a conjunction of equations, each between a
unification variable and its instantiation. Here we see that ?1 was unified with q,
and the value of the existentially quantified y has been chosen to be the newly
introduced x.
Box (4) From here we cannot go any further reflectively, since unification vari-
ables only exist at the meta-level and thus cannot be manipulated in Coq’s logic
Gallina. Post-processing with Ltac cleans up the goal in Box (3) to look like the
goal in Box (4). In particular, universally quantified variables are pulled into
the context; unification variables are constructed for leading existentials using
eexists; and instantiations are side-effected into the proof state by solving leading
equations using reflexivity2.

1 The context of unification variables is not given to our procedures. They make the
simplifying assumption that all terms are available in all contexts.

2 If our reflective procedure instantiates a unification variable using terms outside of
its context, reflexivity will fail, leaving the (likely unsolvable) goal to the user.

380 G. Malecha, A. Chlipala, and T. Braibant

3.3 Compositional Semantic Reasoning

Only a small subset of operators are explicit in the syntax; the rest are rep-
resented by Func and Pred. For example, when we reason about the expres-
sion Star x y, the denotation, eliding the environments, is sexprD x ∗ sexprD

y. However, when we reason about the expression Func 0 [x;y] , the denotation
becomes, again eliding the environments and the error-handling code, (getFunc
fs 0) (exprD x) (exprD y). To reason about the latter, we must express our en-
vironment assumptions as premises to the soundness proof.

To explain our technique for expressing these constraints, we introduce the
following simple procedure for reasoning about the commutativity of addition.

Definition prove_plus_comm ts (e : expr ts) : bool :=
match e with

| Equal 1 (Func 0 [x ; y]) (Func 0 [y’ ; x’]) ⇒ expr_eq x x’ && expr_eq y y’
| _ ⇒ false

end.

Already this procedure makes the assumption that nat is at type index 1 and
plus is at function index 0. We could prove this procedure sound for the envi-
ronments [bool;nat] and [plus], but this proof would not be useful for extended
environments. To develop reflective procedures independently and link them to-
gether after the fact, we need a compositional way to express these assumptions.

Our approach is to use a computational, rather than propositional, constraint
formulation. To express constraints computationally, we quantify over an arbi-
trary environment and compute a derived environment that manifestly satisfies
the constraints and is otherwise exactly the same as the original. The following
function derives an environment from e that is guaranteed to satisfy c.

Fixpoint applyC (T: Type) (d : T) (c: constraints T) (e: list T) : list T :=
match c with

| nil ⇒ e

| Any :: c’ ⇒ hd_with_default (default := d) e :: applyC T d c’ (tl e)
| Exact v :: c’ ⇒ v :: applyC T d c’ (tl e)
end.

To see applyC in action, we return to our example and declare the type
environment constraints for the commutativity prover. Note that by using Any

in position 0, we allow other procedures to choose a meaning for tyType 0.

Let TC : constraints Type := [Any; Exact nat].

Next we state the constraints for the function environment, which requires a
syntactic representation of the plus function. Since the type of this syntac-
tic representation depends on the type environment, we apply our technique,
parametrizing by an arbitrary environment and retrofitting it with our con-
straints via applyC. In code:

Definition plus_fn (ts : list Type) : func (applyC TC ts) :=
{ Args := [tyType 1; tyType 1] ; Range := tyType 1 ; Impl := plus }.

Compositional Computational Reflection 381

This term type checks because applyC and typD reduce, making the following
equations hold definitionally.

typD(applyCTC ts)(tyType 1) ≡ typD (hd d ts :: nat :: tl (tl ts)) (tyType 1) ≡ nat

The essential enabling property of applyC is that when c is a cons cell, the result
is syntactically a cons cell and is not blocked by a match on e.

If we had stated the property propositionally and proved the equality, then
Impl would require an explicit cast, like so.

Definition plus_fn_bad ts (pf : TC |= ts) : func ts := (* |= is ‘holds on’ *)

{ Args := [tyType 1; tyType 1] ; Range := tyType 1
; Impl := match compatible_reduces pf in _ = t return t → t → t with

| eq_refl ⇒ plus end }.

Reasoning about casts in intensional type theory is difficult because the dis-
criminee of the match must reduce to a constructor before the match can be
eliminated. This behavior blocks conversion, making “seemingly equal” terms
unequal. Our technique, on the other hand, does not even manifest the cast.

Using these definitions, we can prove the soundness of our simple commuta-
tivity prover using the following theorem statement.

Let FC ts : constraints (function (applyC TC ts)) := [Exact (plus_fn ts)].
Theorem prove_plus_comm_sound

: ∀ (ts : list Type), let ts’ := applyC TC ts in

∀ (fs : functions ts’), let fs’ := applyC FC fs in

∀ e1 e2, WellTyped ts’ fs’ e1 (tyType 1) → WellTyped ts’ fs’ e2 (tyType 1) →
prove_plus_comm e1 e2 = true →
exprD ts’ fs’ e1 (tyType 1) =nat exprD ts’ fs’ e1 (tyType 1).

With this formulation, getFunc fs’ 0 reduces to plus, making the proof follow
from the commutativity of plus; a simple proof for a simple property.

∀ fs, let fs’ := applyC FC fs in (getFunc fs’ 0) x y = (getFunc fs’ 0) y x

≡ ∀ fs, x + y = y + x

The fact that applyC c l = l when c |= l justifies the completeness of the
technique. Any theorem that is provable with the propositional formulation is
also provable with our computational formulation.

Composition. applyC’s computational properties make it well-suited for compo-
sition. When two constraints are compatible, i.e. they do not specify different
values for any index, applyC commutes definitionally.

applyCC1 (applyCC2 e) ≡ applyCC2 (applyCC1 e)

We can leverage this property for easy composition of functions and proofs
without needing to reason about casts. For example, suppose we have two func-
tions (analogously proofs) phrased using applyC, say p1 and p2, with different,
but compatible, constraints TC1 and TC2. Composing each function with the
application of the other’s constraints gives us the following:

382 G. Malecha, A. Chlipala, and T. Braibant

(fun ts ⇒ p1 (applyC TC2 ts)) : ∀ ts, expr (applyC TC1 (applyC TC2 ts)) → bool

(fun ts ⇒ p2 (applyC TC1 ts)) : ∀ ts, expr (applyC TC2 (applyC TC1 ts)) → bool

Since these types are definitionally equal, we can interchange the terms, for ex-
ample, adding them to the same list or composing them via a simple disjunction
without the need for explicit proofs or explicit casts:

Definition either ts (p1 p2 : expr ts → bool) (e : expr ts) : bool := p1 e || p2 e.

Packaging. To simplify passing provers around, we package them with their
constraints and their soundness proofs using Coq’s dependent records3.

Record HintDatabase :=
{ Types : constraints Type

; Funcs : ∀ ts, constraints (func (applyC Types ts))
; Prover : ∀ ts, ProverT (applyC Types ts)
; Prover_sound : ∀ ts fs,
ProverOk (applyC Types ts) (applyC (Funcs ts) fs) (Prover ts) }.

The first two fields represent the constraints for the type and function envi-
ronments, with the latter phrased using our technique. The Prover field would
contain the functional prover code, e.g. prove_sum_comm wrapped in our prover
interface. The final field, Prover_sound, would contain the proof that the pro-
cedure is sound, derived from prove_sum_comm_sound.

To invoke a reflective procedure with a particular hint database, we rely on
Ltac to handle the constraints. For example, the top-level soundness lemma for
cancellation has the following form:

Theorem Apply_cancel_sound ts (fs : fenv ts)
(prover : ProverT ts) (prover_ok : ProverOk ts fs prover)

: ∀ (lhs rhs : sexpr ts) (us vs : env ts), . . .

To apply such a theorem, our reification process projects out the constraints
from the hint database and uses them as base environments when constructing
the syntactic terms. We can then instantiate the prover and its soundness proof
to work on the extended environments (distinguished using primes) by simple
application.

Apply_cancel_sound ts’ fs’
(hints.(Prover) ts’ : ProverT ts’ (*≡ProverT (applyC hints.(Types) ts’)*))
(hints.(Prover_sound) ts’ fs’ : ProverOk ts’ fs’) . . .

Taking a closer look at the types we notice that the definition of applyC justifies
the type assertions for the final two arguments. For example, the third argument
actually has type ProverT (applyC hints.(Types) ts’), but since we construct
ts’ to retain the entries of hints.(Types), this type is definitionally equal to
ProverT ts’.
3 The HintDatabase record in MirrorShard contains an additional field for the con-
straints on the predicate environment, but our example does not require it.

Compositional Computational Reflection 383

3.4 Generic Extension with Reified Lemmas

Writing and verifying reflective procedures can be cumbersome. For example,
when verifying linked data structures like lists, the automation often requires
rewriting by a separation-logic entailment. If each new entailment lemma re-
quired writing and verifying a new reflective procedure, users would spend more
time building automation than using it. In Ltac, the sort of generic procedure we
want is provided by the parametrized tacticals rewrite or autorewrite. In this
section we show how the techniques from the previous two sections allow us to
implement a generic, reflective rewriting procedure for separation-logic formulas
that is parametrized by a list of lemmas to rewrite with.

As with all reflective tasks, the first hurdle is the representation. The variable-
related features from Section 3.2 provide a simple way to represent lemmas.

Record lemma (ts : list Type) := (* Example: *)

{ Foralls : list typ (* ∀ x ls, *)

; Hyps : list (expr ts) (* x = 0 → *)

; Lhs : sexpr ts ; Rhs : sexpr ts }. (* llist x ls � ls = nil ! *)

Definition lemmaD ts (fs : fenv ts) (ps : penv ts) (l : lemma) : Prop :=
forallEach ts l.(Foralls) (fun vs ⇒
implEach ts fs nil vs l.(Hyps)
(sexprD ts fs ps nil vs l.(Lhs) � sexprD ts fs ps nil vs l.(Rhs))).

The function lemmaD translates a reified lemma statement into a Gallina propo-
sition. Here, forallEach introduces universal quantifiers for the given types,
packaging the quantified variables into an environment (vs) that it passes to the
continuation. This environment is then used as the variable environment for the
premises (denoted using implEach) and the conclusion.

We reduce the problem of determining when a lemma can be used to a uni-
fication problem. Our procedure replaces the universally quantified Vars in the
lemma statement with UVars, setting up a unification “pattern.” This pattern
is then passed to the unification procedure that we mentioned in Section 3.2.
If unification succeeds, we get a substitution that we can use to instantiate the
lemma. Using provers like prove_plus_comm from the previous section allows us
to discharge the premises. If all of the premises are discharged, we can replace
the candidate term completely reflectively. Our rewriting procedure is able to
rewrite in the premise and in the conclusion reusing mostly the same code and
proofs in both cases.

The most difficult part of the proof lies in justifying the existence of values
for the quantified variables. The unification procedure returns the expressions
to use but, in order to support finding them incrementally, it only guarantees
that they are well-typed in the environment that contains the new unification
variables. Justifying that these expressions do not mention the new unification
variables requires reasoning about the acyclicity of the instantiation, which is
guaranteed by the occurs check in the unification algorithm. While complex, this
proof is done once and used whenever we need to type-theoretically strengthen
the result of unification.

384 G. Malecha, A. Chlipala, and T. Braibant

ReflectiveLtac
VC Gen

Higher-Order
Reasoning

Symbolic
Execution

Entailment
Checking

Higher-Order
Reasoning

Theory Prover

Percent of time per phase

VCGen SymEval Entail. Ltac

0

20

40

60

80

5.04 6.72

16.59

71.65

Fig. 3. Verification process and the breakdown of verification time

To make rewriting hints easy to use, we have completely automated the con-
struction of syntactic lemmas and their composition into (an extended version
of) the hint databases described in the previous section. These extended hint
databases carry two lists of lemmas, one for forward rewriting and the other for
backward rewriting, as well as their corresponding proof terms.

4 Evaluation and Discussion

The techniques in Sections 3.2-3.4 form the core insights of the MirrorShard
framework. In this section we discuss our results applying this framework to
verify programs written in the Bedrock system. We begin with an overview of the
end-to-end verification process before justifying our claims from the introduction
about the benefits of building broader reflective procedures.

We restrict our evaluation to a collection of data structure libraries including a
memory allocator, linked-list operations, sets implemented as unsorted lists and
binary trees, and queues. Together, these constitute approximately 355 lines of
code that generate 253 verification conditions. The source code to these examples
is found in the examples directory of our bedrock-mirror-shard repository.

4.1 The Verification Procedure

The end-to-end automation that verifies an entire Bedrock module is broken
down into three independent, reflective tasks (verification condition generation,
symbolic execution, and entailment checking) punctuated by Ltac-based higher-
order reasoning. Figure 3 shows the overall process. We focus on the latter two
tasks that, combined, apply to a single verification condition. Each verification
condition assumes a precondition and that a particular code path is followed.
The obligation is to show either that the code runs without errors (progress) or
finishes in a state satisfying some postcondition (preservation). We focus on the
second case since it is more interesting.

To solve a preservation verification condition, symbolic execution runs to com-
pute the (strongest) postcondition of the path under the precondition. Next, an
Ltac tactic runs to determine the postcondition. We use Ltac because we may re-
quire non-trivial higher-order reasoning (for instance, if the postcondition comes

Compositional Computational Reflection 385

from the spec of a first-class function being called). This step reduces the goal to
a separation-logic entailment that is discharged by our entailment checker. Be-
cause higher-order function specifications may involve nested assertions about
specifications for other functions, entailment checking and the Ltac for higher-
order reasoning run in a loop. Finally, user-defined Ltac runs to discharge any
side conditions that could not be solved by our reflective procedures. In practice,
these side conditions tend to be the pure parts of specifications, e.g. reasoning
about Coq’s length function when verifying its Bedrock implementation.

Figure 3 shows how the verification time is distributed between the different
phases across our data-structure examples. Note that while our reflective proce-
dures end up doing most, if not all, of the heavy lifting, almost three-quarters
of our verification time is spent running Ltac, suggesting that while we could
further optimize our reflective procedures, the biggest improvements would come
from making more of the verification reflective.

4.2 Reflective Performance

Previous work [2,11] has demonstrated the performance and scaling benefits
of reflective automation, and our work enjoys similar benefits. More central to
our thesis is the benefit of reflective composition and user extension, which we
evaluate in the context of symbolic execution.

Consider the following path through the length function for linked lists:

assume(∗(Sp+4)
= 0); (* not at the end of the list *)

∗(Sp+8) := ∗(Sp+8) + 1 ; (* increment the length counter *)

Rv := ∗(Sp+4) ; (* get the next pointer *)

∗(Sp+4) = ∗Rv (* update "current" *)

The references from the stack pointer Sp are to local variables. Sp+8 is the
location of the length counter, and Sp+4 is the location of the “current” pointer.
The first line is the result of knowing that the conditional comparing current to
null returned false, implying that evaluation is not at the end of the list, which
justifies the memory dereference on the last line where the code reads the next

pointer of the current linked-list cell (∗∗(Sp+4)).
In order to exploit this information during symbolic execution, our symbolic

executor uses the following hint, provided in a hint database:

Lemma llist_cons_fwd : ∀ ls (p : W), p
= 0
→ llist ls p � ∃ x, ∃ ls’, ls = x :: ls’ ! ∗ ∃ p’, (p �→ x, p’) ∗ llist ls’ p’.

This lemma is fed to the reflective rewriting framework discussed in Section 3.4,
which exposes the �→ predicate that symbolic execution knows how to interpret4.

Without this mechanism, we could achieve the same automation by run-
ning an Ltac loop bouncing between our reflective symbolic execution and the
autorewrite tactic to perform this rewriting. In the above example, this loop

4 Not just �→ but also some other “base” predicates are interpreted by independent,
user-defined reflective procedures that plug into our symbolic execution framework.

386 G. Malecha, A. Chlipala, and T. Braibant

0.5 1 1.5

Loop

1-Shot

Time (s)

SymEval1

Autorewrite

SymEval2

Fig. 4. Performance of 1-shot symbolic execution versus Ltac composition using
autorewrite on the small example goal

would call symbolic execution, which would get stuck on the final instruction,
falling back on autorewrite to expose the cons cell, enabling a second call to
symbolic evaluation to complete the task.

Figure 4 shows how the loop approach compares to our fully reflective pro-
cedure (1-Shot). Using the latter, the entire symbolic execution takes 0.39 sec-
onds, less than half the amount of time (0.89 seconds) taken by autorewrite

to perform just the rewriting. Overall the reflective composition results in a
4.6x speedup over the Ltac-based composition on this goal, translating into 44
seconds when applied to the entire linked-list module.

While our reflective rewriter is not as powerful as autorewrite, it is cus-
tomizable in the same way. Further, because it is written in Gallina rather than
hardcoded inside Coq, we can extend it with smarter unification that, for exam-
ple, can reason about provable rather than just definitional equality.

4.3 Limitations and Future Work

MirrorShard’s success as the core automation for Bedrock is strong evidence
for its expressivity. However, the expressivity of Coq’s logic limits the power of
reflective procedures.

MirrorShard’s computational formulation of constraints relies crucially on
constants in certain places, for example the indices of types. For example, while
it is easy to write a procedure that is sound for any environment where nat is
located at position 1, it is more difficult to write a procedure parametrized by x

that is sound for any environment where nat is at position x. While it is possible
to manipulate proofs explicitly and achieve the latter degree of parametrization,
in this work we have opted for the simpler solution. As we expand the ideas and
techniques beyond separation logic, developing more parametrized procedures
will likely become more important.

MirrorShard’s syntax does not support a general notion of binders, only ex-
istential quantifiers in separation-logic formulas. While this limitation has not
been problematic for entailment checking and symbolic execution, it prevents us
from reasoning about e.g. inline functions and match expressions. Supporting a
general notion of binder may provide a way to automate reflectively some of the
tasks that we currently accomplish in Ltac, increasing the scope of reflection and
further improving performance.

Compositional Computational Reflection 387

While binders should be within our grasp, restrictions of the logic put other
features, like general support for polymorphic types, farther out of reach. Type
functions can be encoded for special fixed arities, but a general solution allow-
ing arbitrary arities requires universe polymorphism. Universe polymorphism as
described by Harper and Pollack [12] is slated for Coq 8.5 and will solve some
of these issues.

Finally, general value-dependent types pose an even greater problem. The
MirrorShard representation stratifies the type and term languages, but truly
dependent types would require these to be unified, making the type of the de-
notation function mention itself in the style of very dependent functions [13].

5 Related Work

MirrorShard is not the first verified implementation of separation-logic automa-
tion, but it is the first to support modular user extension. Marti and Affeldt [15]
implemented a verified version of Smallfoot [1], and Stewart et al. [17] verified a
more sophisticated heap theorem prover based on paramodulation. Both of these
systems are limited to the standard points-to and singly-linked list predicates,
and extending either to support user-defined abstract predicates with equations
would likely require a considerable overhaul of both the procedure and its proof.

While program verification is our application, our technical contributions are
our techniques for phrasing, composing, and extending reflective procedures and
their proofs. The applicability of these techniques extends well beyond program
verification. Several projects have built large, generic reflective procedures. In his
PhD thesis, Lescuyer [14] describes a reflective implementation of an SMT solver.
While he also uses an environment-based representation, he is unable to reason
about it semantically. As a result, it is not clear how to support first-class hint
databases or include additional theories that need to reason semantically about
symbols represented using the environment. Our work also supports quantifiers.

Similar to our rewriting engine is the work by Braibant and Pous on reasoning
modulo associativity and commutativity [3]. Like Lescuyer, they specialize their
procedures for reasoning semantically about a fixed set of symbols (in their
case an abstract commutative, associative operator), which removes the need to
reason about multiple types or multiple operators. Our techniques support both.

Recent work by Claret et al. [5] on posterior simulation for reflective proofs
aims to make it easier to write reflective procedures by supporting side effects
and branching proof search efficiently. This goal is complementary to our own
work and offers a method of automatic caching for results of the (potentially
large) proof searches that our extensible procedures enable. This caching may
become essential if reflective procedures begin to rely heavily on speculation.

In the wider sphere of proof automation, Mtac [18] proposes a monadic lan-
guage for writing Gallina terms that are run during program elaboration. Un-
like MirrorShard, Mtac supports dependent and polymorphic types; however, its
support for binder manipulation is less sophisticated. For example, it does not
appear to be possible to apply lemmas without knowing their types a priori,
making it difficult to parametrize by lemmas that are applied automatically.

388 G. Malecha, A. Chlipala, and T. Braibant

The Ssreflect tactic library [10] has become a popular alternative to Ltac.
Ssreflect provides a higher-level tactic language and support for “small-scale”
reflection. The tactics aim to make it easier to refactor proofs and lemmas, but
it is still focused on smaller reasoning steps. This approach avoids the need to
compose reflective procedures but requires more effort by the user to determine
and perform the appropriate reasoning explicitly.

One of the core problems that we overcome in our formulation is the expres-
sion problem. Our concrete syntax is similar to that of Garillot and Werner [9],
though their work does not suggest any methods for achieving semantic reason-
ing, which is essential to reasoning about actual terms. Delaware et al. [8] recently
proposed another solution to this problem using Church encodings. While useful
for reasoning about the metatheoretic properties of programming languages, it is
not clear that Church encodings completely solve the issues that arise in compu-
tational reflection. In particular, representing terms as functions can make them
costly to compute with and type check.

6 Conclusions

In this work we presented three novel techniques for building extensible reflective
procedures in Coq. First, we presented a reflected representation of unification
variables and existential quantifiers, which we reason about using a verified unifi-
cation algorithm. Our second technique is a simple encoding of extensible syntax
suitable for computational reflection, plus a formulation of constraints that al-
lows reasoning about this representation without any runtime overhead. Our
third technique is a method for building first-class, reflected hint databases that
can be used by reflective procedures.

These techniques form the core technical insights of MirrorShard, a reusable
Coq library for reflective procedures about separation logic. The extensibility of
these procedures allows them to reason about broader problems by reflectively
orchestrating general and domain-specific reasoning. Our evaluation shows that
this approach can provide a significant speedup over performing the extensible
reasoning in a hybrid of reflective procedures and Ltac.

Acknowledgments. The authors thank Patrick Hulin and Edward Z. Yang
for their contributions to the MirrorShard implementation. We received help-
ful feedback on this paper from: Andrew W. Appel, Jesper Bengtson, Josiah
Dodds, Georges Gonthier, Daniel Huang, Andrew Johnson, Jacques-Henri Jour-
dan, Scott Moore, Greg Morrisett, and Kenneth Roe. This work has been
supported in part by a Facebook Fellowship, an NSF Graduate Research Fel-
lowship, NSF grant CCF-1253229, AFRL under agreement FA8650-10-C-7090,
and DARPA under agreement number FA8750-12-2-0293. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

Compositional Computational Reflection 389

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

2. Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997)

3. Braibant, T., Pous, D.: Tactics for reasoning modulo AC in Coq. In: Jouannaud, J.-
P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg
(2011)

4. Chlipala, A.: The Bedrock structured programming system: Combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: Proc.
ICFP, pp. 391–402. ACM (2013)

5. Claret, G., del Carmen González Huesca, L., Régis-Gianas, Y., Ziliani, B.:
Lightweight proof by reflection using a posteriori simulation of effectful compu-
tation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 67–83. Springer, Heidelberg (2013)

6. Coq Development Team. The Coq proof assistant reference manual, version 8.4
(2012)

7. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

8. Delaware, B., d.S. Oliveira, B.C., Schrijvers, T.: Meta-theory a la carte. SIGPLAN
Not. 48(1), 207–218 (2013)

9. Garillot, F., Werner, B.: Simple types in type theory: Deep and shallow encodings.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 368–382.
Springer, Heidelberg (2007)

10. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq System. Rapport de recherche RR-6455, INRIA (2008)

11. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proc.
ICFP (2002)

12. Harper, R., Pollack, R.: Type checking with universes. Theoretical Computer Sci-
ence 89(1), 107–136 (1991)

13. Hickey, J.J.: Formal objects in type theory using very dependent types. In: Foun-
dations of Object Oriented Languages 3 (1996)

14. Lescuyer, S.: Formalisation et développement d’une tactique réflexive pour la
démonstration automatique en Coq. Thèse de doctorat, Université Paris-Sud (Jan-
uary 2011)

15. Marti, N., Affeldt, R.: A certified verifier for a fragment of separation logic. Com-
puter Software 25(3), 135–147 (2008)

16. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. LICS, pp. 55–74. IEEE Computer Society (2002)

17. Stewart, G., Beringer, L., Appel, A.W.: Verified heap theorem prover by paramod-
ulation. In: Proc. ICFP (2012)

18. Ziliani, B., Dreyer, D., Krishnaswami, N., Nanevski, A., Vafeiadis, V.: Mtac: A
monad for typed tactic programming in Coq. In: Proc. ICFP (2013)

An Isabelle Proof Method Language

Daniel Matichuk1,2, Makarius Wenzel3, and Toby Murray1,2

1 NICTA, Sydney, Australia�
2 School of Computer Science and Engineering, UNSW, Sydney, Australia
3 Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France

CNRS, Orsay, F-91405, France

Abstract. Machine-checked proofs are becoming ever-larger, presenting an in-
creasing maintenance challenge. Isabelle’s most popular language interface, Isar,
is attractive for new users, and powerful in the hands of experts, but has previ-
ously lacked a means to write automated proof procedures. This can lead to more
duplication in large proofs than is acceptable. In this paper we present Eisbach, a
proof method language for Isabelle, which aims to fill this gap by incorporating
Isar language elements, thus making it accessible to existing users. We describe
the language and the design principles on which it was developed. We evaluate its
effectiveness by implementing some tactics widely-used in the seL4 verification
stack, and report on its strengths and limitations.

1 Introduction

Machine-checked proofs, developed using interactive proof assistants, present an in-
creasing maintenance challenge as they become ever larger. For instance, the proofs
and specifications that accompany the formally verified seL4 microkernel now com-
prise 480,000 lines of Isabelle/HOL [9], while Isabelle’s Archive of Formal Proofs
http://afp.sf.net now comprises over 900,000 lines. Each of these developments is up-
dated to ensure it runs with each new Isabelle release. Large proofs about living software
implementations present the additional maintenance challenge of having to be updated
as the software to which they apply evolves over time, as is the case with seL4.

The Isabelle proof assistant [15, §6] provides various languages for different pur-
poses, which sometimes overlap and sometimes complement each other. Most com-
monly used is the Isar language for theory specifications and structured proofs [14].
Isabelle/Isar sits alongside Isabelle/ML, which exposes the full power of system im-
plementation and extension, including the ability to implement new sub-languages of
the Isabelle framework. Isar itself is devoid of computation, but it may appeal to ar-
bitrarily complex proof tools from the library: so-called proof methods. These are are
usually implemented in Isabelle/ML. Isabelle/ML is integrated into the formal context
of Isabelle/Isar, and supports referring to logical entities or Isar elements via antiquota-
tions [13]. While this makes it reasonably easy to access the full power of ML in proofs,
the vast majority of Isabelle theories are written solely in Isar: the AFP comprises just
50 ML files, as compared to 1663 Isar (.thy) files only 6 of which embed ML code.

� NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 390–405, 2014.
c© Springer International Publishing Switzerland 2014

http://afp.sf.net

An Isabelle Proof Method Language 391

The Isar proof language does not support proof procedure definitions directly, but this
hasn’t prevented large verifications from being completed: the seL4 proofs rely mainly
on two custom tactics. This can be partly explained by the power of existing proof tools
in Isabelle/HOL. However, it has arguably led to more duplication in these proofs than
is acceptable; managing duplication has been a challenge for the seL4 proofs in [1].
This duplication makes proof maintenance difficult, and highlights the barrier to entry
when implementing proof tools in Isabelle/ML. If automation can be expressed at a high
level, a wider class of users can maintain and extend domain-specific proof procedures,
which are often more maintainable than long proof scripts.

In this paper, we present a proof method language for Isabelle, called Eisbach, that
allows writing proof procedures by appealing to existing proof tools with their usual
syntax. The new Isar command method-definition allows proof methods to be com-
bined, named, and abstracted over terms, facts and other methods. Eisbach is inspired
by Coq’s Ltac [4], and includes similar features such as matching on facts and the cur-
rent goal. However, Eisbach’s matching behaves differently to Ltac’s, especially with
respect to backtracking (see Section 3.5). Eisbach continues the Isabelle philosophy
of exposing carefully designed features to the user while leaving more sophisticated
functionality to Isabelle/ML: small snippets of ML may be easily included on demand.
Eisbach benefits from general Isabelle concepts, while easing their exposure to users:
pervasive backtracking, the structured proof context with named facts, and attributes to
declare hints for proof tools.

The following simple example defines a new proof method which identifies a list in
the conclusion of the current subgoal and applies the default induction principle to it
with the existing method induct. All newly emerging subgoals are solved with fastforce,
with additional simplification rules given as argument.

method-definition induct-list facts simp =
(match ?concl in ?P (?x :: ′a list) ⇒ (induct ?x �→ fastforce simp: simp))

Now induct-list can be called as a proof method to prove simple properties about lists.

lemma length (xs @ ys) = length xs + length ys by induct-list

The primary goal of Eisbach is to make writing proofs more productive, to avoid
duplication, and thereby lower the costs of proof maintenance. Its design principles are:

– To be easy to use for beginners and experts.
– To expose limited functionality, leaving complex functionality to Isabelle/ML.
– Seamless integration with other Isabelle languages.
– To continue Isar’s principle of readable proofs, creating readable proof procedures.

We begin in Section 2 by recalling some concepts of Isabelle and Isar. Section 3
then presents Eisbach, via a tour of its features in a tutorial style, concluding with
the development of a solver for first order logic. We describe Eisbach’s design and
implementation in Section 4, before evaluating it in Section 5 by implementing the two
most widely-used proof methods of the seL4 verification stack, and comparing them
against their original implementations. Section 6 then surveys related work on proof
programming languages, to put Eisbach in proper context. In Section 7 we compare
Eisbach to Coq’s Ltac and Mtac before considering future work and concluding.

392 D. Matichuk, M. Wenzel, and T. Murray

2 Some Isabelle Concepts

Isabelle was originally introduced as yet another Logical Framework by Paulson [12],
to allow rapid prototyping of implementations of inference systems, especially versions
of Martin-Löf type theory. Some key concepts of current Isabelle can be traced back to
this heritage, although today most applications are done exclusively in the object-logic
Isabelle/HOL, and the general system framework has changed much in 25 years.

Isabelle/Pure is a minimal version of higher-order logic, which serves as general
framework for Natural Deduction (with arbitrary nesting of rules). There are Pure con-
nectives for universal parameters

∧
x. �, premises A =⇒ �, and a notion of schematic

variables ?x (stripped outermost parameters). The Pure connectives outline inference
rules declaratively, for example conjunction introduction A =⇒ B =⇒ A ∧ B or well-
founded induction wf r =⇒ (

∧
x. (
∧

y. (y, x) ∈ r =⇒ P y) =⇒ P x) =⇒ P a.
Isabelle/HOL is a rich library of logical theories and tools on top of Isabelle/Pure. It

is the main workhorse for big applications, but is subsumed by the general concepts of
Isabelle, so w.l.o.g. it is subsequently not explained further.

The logical framework of Isabelle/Pure is augmented by extra-logical infrastructure
of Isabelle/Isar, which provides the general setting for structured reasoning. The actual
Isar proof language [14] is merely an application of that: it provides particular expres-
sions for human-readable proofs within the generic framework. Some of the underlying
concepts of Isabelle architecture are outlined below, as relevant for Eisbach.

Fact. While the inference kernel operates on thm entities (as in LCF or HOL), Isabelle
users always encounter results as thm list, which is called fact. This represents the idea
of multiple results, without auxiliary conjunctions to encode it within the logic. There is
notation to append facts, or to project sub-lists, without any formal reasoning involved.

Goal State. Following [12], the LCF goal state as auxiliary ML data structure is given
up, and replaced by a proven theorem that states that the current subgoals imply the
main conclusion. Goal refinement means to infer forwards on the negative side of some
implication, so it appears like backwards reasoning. The proof starts with the trivial
fact C =⇒ C and concludes with zero subgoals =⇒ C, i.e. C outright. Administra-
tive goal operations, e.g. shuffling of subgoals or restricted subgoal views, work by
elementary inferences involving =⇒ in Isabelle/Pure. While outermost implications
represent subgoals, outermost goal parameters correspond to schematic variables (or
meta-variables), but the latter aspect is subsequently ignored for simplicity.

Tactic. Isabelle tactics due to [12] follow the idea behind LCF tactics, but implement
the backwards refinement more directly in the logical framework, without replaying
tactic justifications (as still seen in HOL or Coq today). This avoids the brittle concen-
tration of primitive inferences at qed-time. Moreover, backtracking is directly built-in,
by producing an unbounded lazy list of results, instead of just zero or one. LCF-style
tacticals are easily recovered, by composing functions that map a goal state to a se-
quence of subsequent goal states. Rich varieties of combinators with backtracking are
provided, although modern-time proof tools merely use a more focused vocabulary.

Subgoal Structure. An intermediate goal state with n open subgoals has the form
H1 =⇒ ... Hn =⇒ C, each with its own substructure H = (

∧
x. A x =⇒ B x), for

An Isabelle Proof Method Language 393

zero or more goal parameters (here x) and goal premises (here A x). Following [12],
this local context is implicitly taken into account when natural deduction rules are com-
posed by lifting, higher-order unification, and backward chaining. Isar users encounter
this operation frequently in the proof method rule, and the rule attributes OF or THEN.

Other proof tools may prefer direct access to hypothetical terms and premises, when
inspecting a subgoal. In Isabelle today the concept of subgoal focus achieves that: the
proof context is enriched by a fixed term x and assumed fact A x, and the subgoal
restricted to B x. After refining that, the result is retrofitted into the original situation.

Proof Context. Motivated by the Isar proof language [14], the structured proof context
provides general administrative structure, to complement primitive thm values of the
inference kernel. The idea is to provide a first-class representation in ML, of open situ-
ations with hypothetical terms (fixed variable x) and assumptions (hypothetical fact A);
Hindley-Milner type discipline with schematic polymorphism is covered as well. Proof
contexts are not restricted to this logical core, but may contain arbitrary tool-specific
context data. A typical example is the standard environment of facts (see above), which
manages both static and dynamic entries: a statically named fact is interchangeable with
its thm list as plain value, but a dynamic fact is a function depending on the context.

Attributes. Facts and contexts frequently occur together, and may modify each other
by means of attributes (which have their own syntax in Isar). A rule attribute modifies
a fact depending on the context (e.g. fact [of t] to instantiate term variables), and a
declaration attribute modifies the context depending on a fact (e.g. fact [simp] to add
Simplifier rules to the context). Such declarations for automated proof tools also work
in hypothetical contexts, with fixed x and assumed A x. There is standard support to
maintain named collections of dynamic facts, with attributes to add or delete list entries.

3 Eisbach

3.1 Isar Proof Methods

Eisbach provides the ability to write automated reasoning procedures to non-expert
users of Isabelle, specifically users only familiar with the use of Isabelle/Isar [14].

Isar is a document-oriented proof language, focusing on producing and presenting
human-readable formal proofs. Such proofs are a structured argument about why a
claim is true, with invocations to proof methods to decompose a claim into multiple
goals or to solve outstanding proof goals. For the purposes of this paper, proof method
invocations come in two forms: structured and unstructured.

The structured form is “by method1 method2”, where the initial method1 performs
the main structural refinement of the goal, and the terminal (optional) method2 may
solve emerging subgoals; the proof is always closed by implicit assumption steps to
finish-off trivial subgoals. For example, “by (induct n) simp-all” splits-up a problem by
induction and solves it by simplification, or “by (rule impI)” applies a single rule and
expects the remaining goal state to be trivial up to unification.

The unstructured form is “apply method”, which applies the proof method to the
goal without insisting the proof be completed; further apply commands may follow

394 D. Matichuk, M. Wenzel, and T. Murray

to continue the proof, until it is eventually concluded by the command done (without
implicit steps for closing). After one or two apply steps, the foreseeable structure of
the reasoning is usually lost, and the Isar proof text degenerates into a proof script:
understanding it later typically requires stepping through its intermediate goal states.

The method expressions above may combine basic proof methods using Isar’s method
combinators. Unlike former tacticals, there is only a minimalistic repertoire for repeated
application, alternative choice, and sequential composition (with backtracking). Such
methods are used in-place, to address a particular proof problem in a given situation.

Eisbach allows compound proof methods to be named, and extend the name space
of basic methods accordingly. Method definitions may abstract over parameters: terms,
facts, or other methods. Additionally, Eisbach provides an expressive matching facility
that can be used to manage control flow and perform proof goal analysis via unification.

Subsequently, we will follow the development of a small first order logic solver in
Eisbach, gradually increasing its scope and demonstrating the main language elements.

3.2 Combinators and Backtracking

There are four combinators in Isar. Firstly, “,” is sequential composition of two methods
with implicit backtracking: “meth1,meth2” applies meth1, which may produces a set of
possible results (new proof goals), before applying meth2 to all results produced by
meth1. Effectively this produces all results in which the application of meth1 followed
by meth2 is successful.

At the end of each apply command, the first successful result from all those produced
is retained.

The second Isar combinator is “|”, alternative composition: “meth1|meth2” tries
meth1 and falls through to meth2 when meth1 fails (yields no results). The third combi-
nator “?” is a unary combinator that suppresses failure: meth? returns the original proof
state when meth fails, rather than failing. Lastly, “+” is a unary combinator for repeated
method application: meth+ repeatedly applies meth until meth fails, at which point it
yields the proof state obtained before the final failing invocation of meth.

A typical method invocation might look as follows:

lemma P ∧ Q −→ P by ((rule impI, (erule conjE)?) | assumption)+

Which, informally, says: “Apply the implication introduction rule, followed by op-
tionally eliminating any conjunctions in the assumptions. If this fails, solve the goal
with an assumption. Repeat this action until it is unsuccessful.”

As well as the above lemma, this invocation will prove the correctness a small class
of propositional logic tautologies. With the method-definition command we can define
a proof method that makes the above functionality available generally.

method-definition prop-solver1 = ((rule impI, (erule conjE)?) | assumption)+

lemma P ∧ Q ∧ R −→ P by prop-solver1

3.3 Abstraction

We can abstract this method over its introduction and elimination rules to make it more
generally applicable. The facts keyword declares fact parameters for use in the method.

An Isabelle Proof Method Language 395

These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ∧ Q −→ P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim

method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ∧ Q −→ P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification ∀ x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: ′a ⇒ bool and y :: ′a =
(erule allE [where P = Q and x = y])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma ∀ x. P x =⇒ P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ �→”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals

396 D. Matichuk, M. Wenzel, and T. Murray

produced by the first. This is necessary to handle cases where the number of subgoals
produced by a method cannot be known statically.

lemma True ∧ True ∧ True by (intro conjI �→ rule TrueI)

To more usefully exploit Isabelle’s backtracking, the explicit requirement that a
method solve all produced subgoals is frequently useful. This can easily be written as
a higher-order method using “ �→”. The methods keyword denotes method parameters
that are other proof methods to be invoked by the method being defined.

method-definition solve methods m = (m �→ fail)

Given some method-argument m, solve m applies the method m and then fails when-
ever m produces any new unsolved subgoals – i.e. when m fails to completely discharge
the goal it was applied to.

With these simple features we are ready to write our first non-trivial method. Re-
turning to the first order logic example, the following method definition applies various
rules with their canonical methods.

method-definition prop-solver facts [intro] [dest] [elim] [subst] =
(assumption
| rule intro | drule dest | erule elim | subst subst | subst (asm) subst |
(erule notE �→ solve prop-solver))+

The only non-trivial part of this method definition is the final alternative (erule notE
�→ solve prop-solver). Here, in the case that all other alternatives fail, the method takes
one of the assumptions ¬ P of the current goal and eliminates it with the rule notE,
causing the goal to be proved to become P. The method then recursively invokes itself
on the remaining goals. The job of the recursive call is to demonstrate that there is a
contradiction in the original assumptions (i.e. that P can be derived from them). Note
this recursive invocation is applied with the solve method to ensure that a contradiction
will indeed be shown. In the case where a contradiction cannot be found, backtracking
will occur and a different assumption ¬ Q will be chosen for elimination.

After declararing some standard rules to the context, e.g. (P =⇒ False) =⇒ ¬ P as
[intro] and ¬ ¬ P =⇒ P as [dest], the prop-solver becomes capable of solving non-trivial
propositional tautologies.

lemma (A ∨ B) ∧ (A −→ C) ∧ (B −→ C) −→ C by prop-solver

3.5 Matching

Matching allows the user to introspect the goal state, and to implement more explicit
control flow. When performing a match, the user provides a term or fact collection ts to
match against, along with a collection of pattern-method pairs (p,m): roughly speaking,
when the pattern p matches any member of ts, the inner method m will be executed with
schematic variables mentioned in p appropriately instantiated. In the case of matching
against a fact collection, an optional name may be given for each pattern, which will be
bound to the fact that was successfully matched out of term ts. The special term ?concl
is always defined to be the conclusion of the first subgoal, and the special fact prems is
always defined to be the premises of the first subgoal. Using either in the term t allows

An Isabelle Proof Method Language 397

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in ∃ x. ?Q x ⇒
(match prems in U: Q ?y ⇒ (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern ∃ x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =⇒ ∃ x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =⇒ ∃ x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until a
match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ∧ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ∧ ?Q ⇒ fail ?R ⇒ prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4], which
will attempt all patterns in a match before failing. This means that the failure of an inner
method that is executed after a successful match does not, in Ltac, cause the entire
match to fail, whereas it does in Eisbach. In Eisbach the distinction is important due
to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

398 D. Matichuk, M. Wenzel, and T. Murray

method-definition foo1 =
((match ?concl in ?P ∧ ?Q ⇒ fail) | (match ?concl in ?R ⇒ prop-solver))

Note that matching can be performed against arbitrary terms or facts, with ?concl
and prems being special cases. For example, we could match out of a given set of facts
to locate rules with matching assumptions and conclusions.

method-definition match-rules facts my-facts =
(match my-facts in U: ?P =⇒ ?Q and U ′: Q =⇒ ?R
⇒ (rule U [THEN U ′]))

This example demonstrates use of the and keyword, which chains patterns linearly.
First, a fact matching ?P =⇒ ?Q is found and named U. Then, having bound Q from the
pattern, a fact matching Q =⇒ ?R is matched from my-facts. If patterns are matched,
then U and U ′ are bound to local facts and the method body is executed.

lemma
assumes f 1: A =⇒ B and f 2: B =⇒ C
shows A =⇒ C by (match-rules my-facts: f 1 f 2)

3.6 Example

We complete our tour of the features of Eisbach by extending the propositional logic
solver presented earlier to first-order logic. The following method instantiates univer-
sally quantified assumptions by simple guessing, relying on backtracking to find the
correct instantiation. Specifically, it instantiates assumptions of the form ∀ x. ?P x by
finding some type-correct term y by matching other assumptions against ?H ?y, using
type annotations to ensure that the types match correctly. The use of the previously de-
fined elim-all method here ensures that the same assumption that was matched is the
one that will be eliminated. The same matching is also performed against the conclusion
to find possible instantiations there too.

method-definition guess-all =
(match prems in U: ∀ x. ?P (x :: ′a) ⇒
(match prems in ?H (?y :: ′a) ⇒
(elim-all P y)

| match ?concl in ?H (?y :: ′a) ⇒
(elim-all P y)))

The higher order pattern ?H ?y is used to find arbitrary subterms y within the premises
or conclusion of the current goal. It makes use of Isabelle/Pure’s workhorse of higher
order unification (although matching involves pattern-matching only). While such a
pattern-match need not bind all variables to be valid, to avoid trivial matches, Eisbach
considers only those matches that bind all variables mentioned in the pattern.

The inner-match must be duplicated over both the premises and conclusion because
of the logical distinction between facts (the premises) and terms (the conclusion). This
might look strange to users of Coq’s Ltac, where these notions are identified; however,
it does not limit the expressivity of Eisbach.

Similar to our previous solve-ex method, we introduce a method which attempts
to guess at an appropriate witness for an existential proof. In this case, however, the

An Isabelle Proof Method Language 399

method simply guesses the witness based on terms found in the current premises, again
using higher order matching as in the guess-all method above.

method-definition guess-ex =
(match ?concl in
∃ x. ?P (x :: ′a) ⇒
(match prems in ?H (?x :: ′a) ⇒

(rule exI [where x = x and P = P])))

These methods can now be combined into a surprisingly powerful first order solver.

method-definition fol-solver =
((guess-ex | guess-all | prop-solver) �→ solve fol-solver)

The use of solve here on the recursive call to the method ensures that the recursive
subgoals are solved. Without it, the recursive call could potentially prematurely termi-
nate and leave the goal in an unsolvable state (due to an incorrect guess for a quantifier
instantiation).

After declaring some standard rules in the context, this method is capable of solving
various standard problems.

lemma (∀ x. P x) ∧ (∀ x. Q x) =⇒ (∀ x. P x ∧ Q x)
and ∃ x. (P x −→ (∀ x. P x))
and (∃ x. ∀ y. R x y) −→ (∀ y. ∃ x. R x y)
by fol-solver+

4 Design and Implementation

A core design goal of Eisbach is a seamless integration with other Isabelle languages,
notably Isar, ML, and object-logics. The primary motivation clearly being to make it
accessible to existing Isabelle/Isar users, with a secondary objective of both forward
and backward compatibility.

4.1 Static Closure of Concrete Syntax

Isabelle provides a rich selection of powerful proof methods, each with its own parser
and invocation style. Additionally, Isabelle’s theorem attributes, which perform context
and fact transformations, have their own parsers of arbitrary complexity. Rather than
re-write these tools to support Eisbach, we exploited an existing feature of the Isabelle
parsing framework whereby tokens have values (types, terms and facts) assigned to
them implicitly during parsing.

This implicit value assignment mechanism is the main workhorse of Eisbach, allow-
ing it to embed most Isar syntax as uninterpreted token lists. Eisbach then simply serves
as an interpretation environment: when a proof method is applied Eisbach instantiates
these token values appropriately based on the supplied arguments to the method or re-
sults of matching, and then executes the resulting method body.

Although this presents some technical challenges and requires some minor modifi-
cations to Isar, this proves to be a very effective solution to performing this kind of

400 D. Matichuk, M. Wenzel, and T. Murray

language extension. The necessity of this patching will ideally disappear as the design
and implementation principles of Eisbach mature, and thus motivate the incorporation
of appropriate concepts into core Isabelle.

4.2 Subgoal Focusing

In Isabelle there is a logical distinction between universally quantified parameters (such
as x in

∧
x. P x) and arbitrary-but-fixed terms (such as x in P x). A subgoal in the former

form does not allow the x to be explicitly referenced (for example, my-fact [where y =
x] does not produce a valid theorem). To deal with this, a set of so-called “improper”
methods (like rule-tac) have traditionally been used, which are aware of this peculiarity.

It is important to note that premises within a subgoal are not local facts. In a struc-
tured Isar proof, assumptions are stated explicitly in the text via assumes or assume and
are accessible to attributes etc. In contrast, the local prefix

∧
x. A x =⇒ � of a subgoal

is not accessible to structured reasoning yet.
To allow the user to write methods that can operate directly on subgoal structure, we

decided to expose Isabelle’s subgoal focusing to Eisbach. Focusing creates a new goal
out of a given subgoal, but with its parameters lifted into fixed variables and premises
into local assumptions. This allows for uniform treatment of the goal state when match-
ing and parameter passing. In Eisbach, focusing is implicitly triggered whenever the
special term ?concl or special fact prems are mentioned. Focusing causes these names
to be bound to the conclusion and premises of the current subgoal, respectively.

To support its use in Eisbach, the existing subgoal focusing was enriched to be more
generally applicable. Premises, while turned into a local fact, still remain part of the
goal. This allows methods like erule to still remove premises from the goal.

5 Application and Evaluation

To evaluate Eisbach we re-implemented two existing proof methods: wp and wpc, which
are VCGs currently released as part of the AutoCorres framework [8]. They were used
extensively in the full functional correctness proof of seL4 [10] for both invariant and re-
finement proofs. They were originally designed for performing “weakest-precondition”
style reasoning against a shallowly embedded monadic Hoare logic [3]. The intelli-
gence of these methods lies in their large collection of stored facts, and have proven to
be more generally useful in other projects [11].

Together these two methods comprise 500 lines of Isabelle/ML, and 60 lines of
Isabelle/Isar for setup. However, they may be implemented in Eisbach almost trivially.

The Eisbach implementation of wp degenerates into the structured application of
some dynamic facts: wp supplies facts about monadic functions (e.g. Hoare triples),
wp-comb contains decomposition rules for postconditions, and wp-split splits goals
across monadic binds.

method-definition wp facts [wp] [wp-comb] [wp-split] =
((rule wp | (rule wp-comb, rule wp)) | rule wp-split)+

An Isabelle Proof Method Language 401

This obscures some details from the original implementation, in particular that the
collection of wp rules grows quite large and relying exclusively on rule resolution to
apply it is costly. This suggests potential improvements to Eisbach, such as allowing
facts in the context to be explicitly indexed.

The Eisbach implementation of wpc is slightly more involved. It makes use of a
simple custom attribute get-split, defined in Isabelle/ML, to retrieve the case-split rule
for a given term; such rules are used to decompose case distinctions on datatypes. The
apply-split method applies the retrieved case-split rule, specialized to the current goal.

method-definition apply-split for f =
(match [[get-split f]] in U: ?P and TERM ?x ⇒
(match ?concl in ?R f ⇒
(rule U [THEN iffD2, of x R])))

We defined another higher-order method repeat-new to repeatedly apply a provided
method m to all produced subgoals.

method-definition repeat-new methods meth = (meth �→ (repeat-new meth)?)

This method is then used in conjunction with worker lemmas to produce one subgoal
for each constructor.

method-definition wpc ′ for f facts [wpc-helper] =
(apply-split f ,
rule wpc-helperI,
repeat-new (rule wpc-processors) �→ (rule wpc-helper))

Finally, wpc matches the underlying monadic function out of the current Hoare triple
subgoal.

method-definition wpc =
(match ?concl in {|?P|} ?f {|?Q|} ⇒ (wpc ′ f) {|?P|} ?f {|?Q|},{|?E|} ⇒ (wpc ′ f))

Together, combined with a large body of existing lemmas, these methods calculate
weakest-precondition style proof obligations for the monadic Hoare logic of [3]. Addi-
tionally, with appropriate lemmas and some additional match conditions for wpc, these
methods are easily extended to other calculi such as that from [11].

To evaluate the effectiveness of these re-implemented methods, we re-ran the invari-
ant proofs for the seL4 abstract functional specification using them in place of their
original implementations. These proofs constitute about 60,000 lines, including whites-
pace and comments. About 100 lines of Isabelle/ML were required to maintain syntactic
compatibility, and an approximately 0.5% change to the proof text itself was required
to resolve cases where proofs relied on quirky behaviour of the original methods in
very specific situations. The total running time for the proof increased from 8 minutes
to 19 minutes (run on an i7 quad-core 2.8Ghz iMac with 8GB of memory), indicating
that there is certainly room for optimization, but also that the overhead introduced by
Eisbach is not insurmountable.

See https://bitbucket.org/makarius/method definition/get/6f90e104b1a4.zip for the
full sources for these methods, with the implementation of Eisbach, the monadic Hoare
logic from AutoCorres and several non-trivial examples.

https://bitbucket.org/makarius/method_definition/get/6f90e104b1a4.zip

402 D. Matichuk, M. Wenzel, and T. Murray

6 Related Work

The relation of proofs versus programs, proof languages versus programming languages,
and ultimately the quest for adequate proof programming languages opens a vast space
of possibilities that have emerged in the past decades, but the general problem is still
not settled satisfactorily. Different interactive provers have their own cultural traditions
and approaches, and there is often some confusion about basic notions and terminol-
ogy. Subsequently we briefly sketch important lines of programmable interactive proof
assistants in the LCF tradition, which includes the HOL family, Coq, and Isabelle itself.

The original LCF proof assistant [7] has pioneered a notion of tactics and tacticals
(i.e. operators on tactics) that can be still seen in its descendants today. An LCF tactic
is a proof strategy that reduces a goal state to zero or more subgoals that are sufficient
to solve the problem. Tactics work in the opposite direction than inferences of the core
logic, which take known facts to derive new ones.

This duality of backward reasoning from goals versus forward reasoning from facts is
reconciled by tactic justifications: a tactic both performs the goal reduction and records
an inference for the inverse direction. At the very end of a tactical proof, all justifica-
tions are composed like a proof tree, to produce the final theorem. This could result
in a late failure to finish the actual proof, e.g. due to programming errors in the tactic
implementation.

ML was invented for LCF as the Meta Language to implement tactics and other
tools around the core logical engine. Proofs are typically written as ML scripts, but
the activity of building up new theory content and associated tactics is often hard to
distinguish from mere application of existing tools from some library. The bias towards
adhoc proof programming is much stronger than in, for instance, Isabelle theories today.

The HOL family [15, §1] continues the LCF tradition with ML as the main inte-
grating platform for all activities of theory and tool development (using Standard ML
or OCaml today). Due to the universality of ML, it is of course possible to implement
different interface languages on the spot. This has been done as various “Mizar modes”
to imitate the mathematical proof language of Mizar [15, §2], or as “SSReflect for HOL
Light” that has emerged in the Flyspeck project, inspired by SSReflect for Coq [5].

The HOL family has the advantage that explorations of new possibilities are easy to
get started on the bare-bones ML top-level interface. HOL Light is particularly strong
in its minimalistic approach. In contrast, Isabelle tools need to take substantial system
infrastructure and common conveniences for end-users into account.

Coq [15, §4] started as another branch of the LCF family in 1985, but with quite
different answers to old questions of how proofs and programs are related. While the
HOL systems have replaced LCF’s Logic of Computable Functions by simply-typed
classical set-theory (retaining the key role of the Meta Language), Coq has internal-
ized computational aspects into its type-theoretic logical environment. Consequently,
the OCaml substrate of Coq is mainly seen as the system implementation language, and
has become difficult to access for Coq users. Implementing some Coq plug-in requires
separate compilation of OCaml modules which are then linked with the toplevel appli-
cation. An alternative is to drop into an adhoc OCaml shell interactively, but this only
works for the bytecode compiler, not the native compiler (preferred by default).

An Isabelle Proof Method Language 403

Since Coq can be understood as a dependently-typed functional programming lan-
guage in its own right, it is natural to delegate more and more proof tool development
into it, to achieve a grand-unified formal system eventually. A well-established ap-
proach is to use computational reflection in order to turn formally specified and proven
proof procedures into inferences that don’t leave any trace in the proof object. Recent
work on Mtac [16] even incorporates a full tactic programming language into Coq itself.

Ltac is the untyped tactic scripting language for Coq [4], and has been success-
fully applied in large Coq theory developments [2]. It has familiar functional language
elements, such as higher order functions and let-bindings. However, it contains imper-
ative elements as well, namely the implicit passing of the proof goal as global state.
The main functionality of Ltac is provided by a match construct for performing both
goal and term analysis. Matching performs proof search through implicit backtracking
across matches, attempting multiple unifications and falling through to other patterns
upon failure. Although syntactically similar to the match keyword in the term language
of Coq, Ltac tactics have a different formal status than Coq functions. Although this
serves to distinguish logical function application from on-line computation, it can re-
sult in obscure type errors that happen dynamically at run-time.

Mtac is a recently developed typed tactic language for Coq [16]. It follows an ap-
proach of dependently-typed functional programming: the behaviour of Mtactics may
be characterized within the logical language of the prover. Mtac is notable by taking
the existing language and type-system of Coq (including type-inference), and merely
adds a minimal collection of monadic operations to represent impure aspects of tac-
tical programming as first-class citizens: unbounded search, exceptions, and matching
against logical syntax. Thus the formerly separate aspect of tactical programming in
Ltac is incorporated into the logical language of Coq, which is made even more expres-
sive to provide a uniform basis for all developments of theories, proofs, and proof tools.
Thanks to strong static typing, Mtac avoids the dynamic type errors of Ltac.

This mono-cultural approach is quite elegant for Coq, but it relies on the inherent
qualities of the Coq logic and its built-in computational world-view. In contrast, the
greater LCF family has always embraced multiple languages that serve different pur-
poses: classic LCF-style systems are more relaxed about separating logical foundations
from computation outside of it (potentially with access to external tools and services).
Eisbach continues this philosophy. In Isabelle, the art of integrating different languages
into one system (not one logic) is particularly emphasized: standard syntactic devices
for quotation and anti-quotation support embedded sub-languages.

SSReflect [5] is the common label for various tools and techniques for proof engi-
neering in Coq that have emerged from large verification projects by G. Gonthier. This
includes a sophisticated proof scripting language that provides fine-grained control
over moves within the logical subgoal structure, and nested contexts for single-step
equational reasoning. Actual small-scale reflection refers to implementation techniques
within Coq, for propositional manipulations that could be done in HOL-based sys-
tems by more elementary means; the experimental SSReflect for HOL-Light re-uses
the proof scripting language and its name, but without doing any reflection.

SSReflect emphasizes concrete proof scripts for particular problems, not general
proof automation. Scripts written by an expert of SSReflect can be understood by the

404 D. Matichuk, M. Wenzel, and T. Murray

same, without stepping through the sequence of goal states in the proof assistant. Gen-
eral tools may be implemented nonetheless, by going into the Coq logic. The SSReflect
toolbox includes specific support for generic theory development based on canonical
structures. More recent work combines that approach with ideas behind Mtac, to inter-
nalize a generic proof programming language into Coq, in analogy to the well-known
type-class approach of Haskell, see [6].

7 Conclusion and Future Work

In this paper we have presented Eisbach, a high-level language for writing proof meth-
ods in Isabelle/Isar. It supports familiar Isar language elements, such as method combi-
nators and theorem attributes, as well as being compatible with existing Isabelle proof
methods. An expressive match construct enables the use of higher-order matching
against facts and subgoals to provide control flow. We showed that existing methods
used in large-scale proofs can be easily implemented in Eisbach. The resulting imple-
mentations are far smaller, and easier to understand.

Of the proof programming languages mentioned in Section 6, Eisbach purposefully
resembles Coq’s Ltac most closely. However, it seamlessly integrates with core Isabelle
technologies (fact collections, pervasive backtracking, subgoal focusing) to allow pow-
erful methods to be easily and succinctly written. When building on top of Isabelle/Isar,
it made most sense to implement an untyped proof programming language, rather than
trying to emulate ideas from languages like Mtac. This is because we wanted Eisbach
to be able to invoke existing Isar proof methods, which are untyped. While the ab-
sence of typed proof procedures hasn’t hindered the development of large-scale proofs,
the ability to annotate proof methods with information about how they are expected to
transform the proof state is potentially attractive. Although higher order methods can
approximate run-time method contracts, we would be free to implement arbitrary
contract specification languages because proof methods exist outside the logic of
Isabelle/Pure, however this avenue of inquiry remains unexplored.

The evaluation demonstrates that Eisbach can already be effectively used to write
real-world proof tools, however it still lacks some important features. Firstly, some
debugging features are planned, beyond the current solution of manually printing in-
termediate goal states. Traces of matches and method applications will be presented,
ideally with some level of interaction from the user. Additionally more structured lan-
guage elements would provide a more natural integration with Isar (e.g. explicit subgoal
production and addressing). We would also like Eisbach to support parallel evaluation
by default. Method combinators outline a certain structure that should be used as a par-
allel skeleton wherever possible. For example, �→ could use a parallel version of the
underlying tactical THEN_ALL_NEW, analogous to the existing PARALLEL_GOALS tacti-
cal of Isabelle/ML. Ultimately we plan to include Eisbach in a future Isabelle release,
with the aim of it becoming the primary means of writing proof methods.

An Isabelle Proof Method Language 405

Acknowledgements. We would like to thank Gerwin Klein, who was involved in the
discussions on the design of Eisbach and who provided early feedback on this paper.
Thanks also to Peter Gammie, Magnus Myreen, and Thomas Sewell for feedback on
drafts of this paper.

References

[1] Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in managing
large-scale proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wen-
zel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 32–48. Springer, Heidelberg
(2012)

[2] Chlipala, A.: Mostly-automated verification of low-level programs in computational sepa-
ration logic. ACM SIGPLAN Notices 46(6), 234 (2011)

[3] Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refine-
ment. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170,
pp. 167–182. Springer, Heidelberg (2008)

[4] Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A. (eds.)
LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)

[5] Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized
Reasoning 3(2) (2010)

[6] Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation
less ad hoc. J. Funct. Program. 23(4), 357–401 (2013)

[7] Gordon, M.J., Milner, R., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer,
Heidelberg (1979)

[8] Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified abstraction
of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 99–115. Springer,
Heidelberg (2012)

[9] Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.:
Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer
Systems (TOCS) (to appear)

[10] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an OS kernel. In: SOSP, Big Sky, MT, USA, pp. 207–220. ACM (October
2009)

[11] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for oper-
ating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679,
pp. 126–142. Springer, Heidelberg (2012)

[12] Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic and
Computer Science. Academic Press (1990)

[13] Wenzel, M., Chaieb, A.: SML with antiquotations embedded into Isabelle/Isar. In: Carette,
J., Wiedijk, F. (eds.) Workshop on Programming Languages for Mechanized Mathematics
(PLMMS 2007), Hagenberg, Austria (June 2007)

[14] Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal proof docu-
ments. PhD thesis, Technische Universität München (2002)

[15] Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer,
Heidelberg (2006)

[16] Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a monad for
typed tactic programming in Coq. In: Morrisett, G., Uustalu, T. (eds.) ICFP. ACM (2013)

Proof Pearl: Proving a Simple

Von Neumann Machine Turing Complete

J Strother Moore

Dept. of Computer Science, University of Texas, Austin, TX, USA
moore@cs.utexas.edu

http://www.cs.utexas.edu

Abstract. In this paper we sketch an ACL2-checked proof that a simple
but unbounded Von Neumann machine model is Turing Complete, i.e.,
can do anything a Turing machine can do. The project formally revisits
the roots of computer science. It requires re-familiarizing oneself with the
definitive model of computation from the 1930s, dealing with a simple
“modern” machine model, thinking carefully about the formal statement
of an important theorem and the specification of both total and partial
programs, writing a verifying compiler, including implementing an X86-
like call/return protocol and implementing computed jumps, codifying
a code proof strategy, and a little “creative” reasoning about the non-
termination of two machines.

Keywords: ACL2, Turing machine, Java Virtual Machine (JVM), ver-
ifying compiler.

1 Prelude

I have often taught an undergraduate course at the University of Texas at Austin
entitled A Formal Model of the Java Virtual Machine. In the course, students
are taught how to model sophisticated computing engines and, to a lesser extent,
how to prove theorems about such engines and their programs with the ACL2
theorem prover [5]. The course starts with a pedagogical (“toy”) JVM-like model
which the students elaborate over the semester towards a more realistic model,
which is then compared to an accurate JVM model[9]. The pedagogical model
is called M1: a stack based machine providing a fixed number of registers (JVM’s
“locals”), an unbounded operand stack, and an execute-only program providing
the following bytecode instructions ILOAD, ISTORE, ICONST, IADD, ISUB, IMUL,
IFEQ, GOTO, and HALT, with unbounded arithmetic.

This set of opcodes was chosen to allow students to easily implement and
verify some simple M1 programs. On the last class day before Spring Break,
2012, the students complained that it was very hard to program M1; that in fact,
it was “probably impossible” to do “real computations” with it because it lacks
a “less than” comparator and procedures!1

1 Such judgements are obviously naive and ill-informed; any machine with a branch-
if-0, a little arithmetic, and some accessible infinite resource is Turing Complete.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 406–420, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.utexas.edu

Proving a Simple Von Neumann Machine Turing Complete 407

My response was “Well, M1 can do anything a Turing machine do.” But on
my way home that evening, I felt guilty:

M1 is a pedagogical device, designed to introduce formal modeling to
the students and inculcate the idea that expectations on hardware and
software can often be formalized and proved. I shouldn’t just say it’s
Turing Complete. I should show them how we can prove it with the tools
they’re using.

Fortunately, I had Spring Break ahead of me and thus was born this project.

2 Source Files

The complete set of scripts for this project are part of ACL2’s Community Books.
See the Community Books link on the ACL2 home page [6]. After downloading
and installing the books visit models/jvm/m1/. See the README file there. Ref-
erences to *.lisp files below are for that directory. If you have a running ACL2
session you could (include-book "models/jvm/m1/find-k!" :dir :system)

and (in-package "M1") to inspect everything with ACL2 history commands.
This paper is a guide.

3 Related Work

Turing Completeness proofs for various computational models have been a staple
of computer science since the time of Turing and Church. Mechanically checked
proofs of other important theorems in meta-mathematics (the Church-Rosser
theorem, the Cook-Levin theorem, and Gödel’s First Incompleteness Theorem)
are less common but have been done with several provers. Here I focus on me-
chanically checked formal proofs of the computational completeness of a pro-
gramming language.

As far as I am aware, the first and only such proof was done in 1984 [2], when
Boyer and I proved that Pure Lisp was Turing Complete, using the prover that
would become Nqthm. We were asked to prove completeness by a reviewer of
[3], in which we proved that the halting problem for Pure Lisp was undecidable;
the reviewer objected that we had not proved Pure Lisp Turing Complete.

An important distinction between [2] and the present work is that the “sus-
pect” computational model in the former is the lambda calculus with general
recursion (Pure Lisp), whereas here it is a very simple Von Neumann machine
(or imperative programming language) similar to the contemporary JVM and
its bytecode language [8].

While I’m unaware of other mechanically checked proofs that a given pro-
gramming language is Turing Complete, this work also involves proofs of prop-
erties of low-level assembly code and a verifying compiler. This tradition goes
back at least as far as the mechanically checked proof of a compiler by Milner
and Weyhrauch in 1972 [10]. Highlights of subsequent systems verification work

408 J.S. Moore

involving such mechanically checked reasoning include the “CLI verified (hard-
ware/software) stack” of [1], and of course the even more realistic results of the
seL4 microkernel [7] and VCC projects [4]. But even with a verified program one
must prove that the specification is Turing Complete.

4 Turing Machines

The present work uses the same Turing machine model as [2] (ported from
Nqthm to ACL2) which was accepted by the reviewers of that paper. The model
is based on Rogers’ classic [12] formalization. A Turing machine description,
tm, (sometimes called an “action table”) is a finite list of 4-tuples or cells,
〈stin, sym, op, stout〉. Rogers represents a tape as a pair of half tapes, each being
a (finite but extensible) list of 0s and 1s. The concatenation of these two half
tapes corresponds to the intuitive notion of a tape (extensible in both directions)
with a read/write head “in the middle.” Rogers shows one may start with an
extensible finite tape. The read/write head is thought of as positioned on the
first symbol on the right half. The interpretation of each cell in description tm is
“if, while in state stin, sym is read from the tape, perform operation op on the
tape and enter state stout.” Here, stin and stout are symbolic state names, sym
is 0 or 1, and op is one of four values meaning write a 0, write a 1, shift left, or
shift right. The machine halts when the current state and symbol read from the
tape do not match any stin and sym in tm.

We define tmi (“Turing machine interpreter”) to take a Turing machine state
name, tape, and a Turing machine description and a number of steps, n. Tmi
returns either nil (“false”) meaning the machine did not reach a halted state in
n steps, or the final tape produced after n steps. By our choice of tape represen-
tation, a tape can never be nil and so the function tmi indicates whether the
computation halted in n steps and the final tape if it did halt. See the definition
tmi in tmi-reductions.lisp. I will colloquially refer to tmi as our “official”
model of Turing machines.

In our official model, Turing machine descriptions and cells are lists con-
structed with cons, state names are Lisp symbols (e.g., Q1, LP, TEST), “symbols”
on the tape are integers 0 or 1, and operations are Lisp objects 0, 1, L, or R. See
the definition of *rogers-program* in tmi-reductions.lisp for an example.

5 M1

M1 is defined in a similar style but takes an M1 state and a number of steps. An
M1 state contains a program counter (“pc”), a list of integers denoting register
values, a stack of integers, and a program; all components of an M1 state are
represented with lists, symbols and numbers in the obvious way. The integers
are unbounded, the stack may grow without bound. An arbitrary number of
registers may be provided but the number of allocated registers never grows
larger than the largest register index used in the program. Programs are finite
and fixed (“execute only”).

Proving a Simple Von Neumann Machine Turing Complete 409

Programs are lists of the instructions as described below. The notation “reg[i]”
denotes the contents of register (JVM local variable) i. “reg[i] ← v” denotes
assignment to a register; “pc← v” denotes assignment to the program counter.
The notation “. . . , x, y, a ⇒ . . . , v” describes the manipulation of the stack as
per [8] and means that three objects, x, y, and a, are popped from the stack
(with a being the topmost) and v is pushed in their place. That portion of the
stack (“. . .”) deeper than x is unaffected. The first six instructions below always
increment the pc by 1, i.e., pc← pc+ 1 is implicit.

instruction stack description
(ILOAD n) : . . . ⇒ . . . , reg[n]
(ISTORE n) : . . . , v ⇒ . . . reg[n] ← v
(ICONST k) : . . . ⇒ . . . , k
(IADD) : . . . , x, y ⇒ . . . , x+ y
(ISUB) : . . . , x, y ⇒ . . . , x− y
(IMUL) : . . . , x, y ⇒ . . . , x× y
(GOTO d) : . . . ⇒ . . . pc← pc+ d
(IFEQ d) : . . . , v ⇒ . . . pc← pc+ (if v = 0 thend else1)
(HALT) : . . . ⇒ . . . no change to state
Note that by not changing the state, the HALT instruction causes the machine

to stop. We consider an M1 state halted if the pc points to a HALT instruction.
To step an M1 state the instruction at pc in the program is fetched and executed

as described above. We define (M1 s n) to step state s n times and return the
final state. See m1.lisp for complete details of the M1 model.

An example of an M1 program to compute the factorial of register 0 and leave
the result on top of the stack is:

program pc pseudo-code

’((ICONST 1) ; 0

(ISTORE 1) ; 1 reg[1] ← 1
(ILOAD 0) ; 2

(IFEQ 10) ; 3 if reg[0] = 0, then jumpto 13
(ILOAD 1) ; 4

(ILOAD 0) ; 5

(IMUL) ; 6

(ISTORE 1) ; 7 reg[1] ← reg[1]× reg[0]
(ILOAD 0) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 0) ; 11 reg[0] ← reg[0]− 1
(GOTO -10) ; 12 jumpto 2
(ILOAD 1) ; 13

(HALT)) ; 14 haltwith reg[1] on top of stack

This program runs forever (never reaches the HALT) if reg[0] is negative.
If we require as a precondition that reg[0] is a natural number, a statement

of total correctness can be paraphrased as: If s is an M1 state with pc 0, the
natural number n in reg[0] and the list above as the program, then there exists

410 J.S. Moore

a natural number i such that (M1 s i) is a halted state with n! on top of the
stack.

To state and prove such a theorem it is convenient to define a witness for
the existentially quantified i. This witness is delivered by a user-defined clock
function that takes n as an argument and returns a natural number.

The ACL2 Community Books directory models/jvm/m1/ contains many ex-
ample M1 programs along with machine checked proofs of their correctness via
such clock functions and other methods2.

6 The Correspondence Conventions

To state Turing equivalence I followed the approach of [2]. Paraphrasing it into
the M1 setting, I set up a correspondence between official Turing machine rep-
resentations of certain objects (e.g., machine descriptions and state names) and
their M1 representations. The former are composed of lists, symbols, and integers;
the latter are strictly numeric.

Consider an arbitrary cell, 〈stin, sym, op, stout〉, in a Turing machine descrip-
tion tm. Given that tm contains only a finite number of state name symbols, we
can allocate a unique natural to each and represent these naturals in binary in a
field of width w (which depends on the number of state names in tm). We could
represent each of the four possible op as naturals in 2 bits but we allocate 3 bits.
Let the numeric encodings of the four elements of cell be st′in, sym

′, op′, st′out,
respectively. Then the encoded cell is cell′ = st′in+2wsym′+2w+1op′+2w+4st′out.

Using this convention we can represent a list of cells, tm, as follows. The empty
list is represented as an encoded “cell” of 0s with op′ = 4 (using the otherwise
unnecessary 3rd bit of op′). We call this value nnil. A non-empty list whose
first cell is represented by cell′ and whose remaining elements are recursively
represented by tail is represented by cell′ + 24+2wtail.

The tape (which, recall, also encodes the read/write head “in the middle”)
is represented on M1 as two natural numbers, one specifying (via its binary
expansion) the contents of the tape and the other specifying the head position
(via the number of bits in the left-half tape). Henceforth I use these conventions:

level variable value
Official tm : a Turing machine description

st : a Turing machine state name
tape : a Turing machine tape (with encoded head)

M1 w : width of a state symbol encoding req’d by st and tm
nnil : the marked encoded “cell” (op′ = 4) (wrt w)
tm′ : the M1 (numeric) representation of tm (wrt w and nnil)
st′ : the M1 (numeric) representation of st
tape′ : the M1 (numeric) representation of tape contents
pos′ : the M1 (numeric) representation of the head position
s0 : the initial M1 state described below

2 See [11].

Proving a Simple Von Neumann Machine Turing Complete 411

The initial M1 state s0 is an M1 state with program counter 0, thirteen registers
set to 0, the stack in which st′, tape′, pos′, tm′, w, and nnil have been pushed,
and finally, as the program, a certain, fixed list of M1 instructions. That list of
M1 instructions, called Ψ and described below, is (allegedly) a Turing machine
interpreter in the programming language of M1. Note that s0 does not specify
how long the Turing machine is to run.

The macro with-conventions in theorems-a-and-b.lisp formally defines
these conventions. The macro binds the ACL2 variable s 0 (aka s0) to the value
above, in terms of the variables tm, st, and tape. Technically, it binds w, nnil,
tm′, st′, tape′, and pos′ as specified in terms of tm, st, and tape, and binds s 0

in terms of those auxiliary variables.

7 Theorems Proved

The discussion in [2] requires us to prove:
Theorem A. If tmi runs forever on st, tape, and tm then M1 runs forever on

s0. More precisely, we phrase this in the contrapositive and say that if M1 halts
on s0 in i steps then there exists a j such that tmi halts in j steps.

Theorem B. If tmi halts on st, tape, and tm in n steps, there exists a k such
that M1 halts on s0 in k steps and computes the corresponding tape.

(defthm theorem-A

(with-conventions

(implies (natp i)

(let ((s f (m1 s 0 i)))

(implies

(haltedp s f)

(tmi st tape tm (find-j st tape tm i))))))

:hints . . .)

(defthm theorem-B

(with-conventions

(implies (and (natp n)

(tmi st tape tm n))

(let ((s f (M1 s 0 (find-k st tape tm n))))

(and (haltedp s f)

(equal (decode-tape-and-pos

(top (pop (stack s f)))

(top (stack s f)))

(tmi st tape tm n)))))))

Note that when the tmi expressions are used as literals (e.g., in the conclusion
of theorem-A and the hypothesis of theorem-B) it is equivalent to asserting
termination (non-nil returned value) of the tmi run. When tmi is used in the
equality, we know the value is a tape and the equality checks the correspondence
with what M1 computes.

412 J.S. Moore

In formalizing these statements there is an opportunity to subvert our goal
by defining a devious sense of correspondence! The correspondence has access
to the full power of the logic and could, for example, compute the right answer
from tm, st, and tape and encode it into s 0. The correspondence above is not
“devious.”

It remains to explain the fixed M1 program, Ψ , and the witness functions
find-j and find-k which constructively establish the existence of the step
counts mentioned in the informal statements of the theorems. But first, it is
convenient to refine tmi into a function that operates on the kind of data M1

has: numbers.

8 Refinement

We refine the official definition of tmi into a function named tmi3 and verify
that it corresponds to tmi modulo the representational issues. The proof is done
in several steps which successively implement the change of representations of
tm and tape.

– tmi1 is like tmi but for a renamed tm with numeric state names
– tmi2 is like tmi1 but for tm′, w and nnil
– tmi3 is like tmi2 but for tape′ and pos′

This concludes with the theorem tmi3-is-tmi in tmi-reductions.lisp. It
is tmi3 we will implement on M1.

9 The M1 Program Ψ

Key to our proof is the definition of an M1 program Ψ for interpreting arbitrary
Turing machine descriptions on a given starting state and tape. Ψ either runs
forever or HALTs; and when it halts, the representation of the official final tape
can be recovered from the M1 state.

Given the limited instruction set of M1, it is necessary to implement some
simple arithmetic utilities as M1 programs. Ψ is then the concatenation of all
these programs together with “glue code” permitting procedure call and return.

name stack description
LESSP : . . . , x, y ⇒ . . . , v v = (if x < y then 1 else0)
MOD : . . . , x, y ⇒ . . . , (x mod y)
FLOOR : . . . , x, y, a ⇒ . . . , (a+ �x/y�)
LOG2 : . . . , x, a ⇒ . . . , (a+ log2(x))
EXPT : . . . , x, y, a ⇒ . . . , (a+ xy)
We underline program names to help the reader; MOD names an M1 program,

mod names an ACL2 function3. For brevity, the descriptions above do not include
the effects of these programs on the pc or registers. In addition, certain obvious

3 ACL2 is case insensitive; formally MOD is ’MOD.

Proving a Simple Von Neumann Machine Turing Complete 413

preconditions obtain (e.g., for FLOOR, all operands are natural numbers and y is
non-0).

With these primitives and subroutine call/return it is not difficult to define
slightly higher level M1 programs for accessing encoded Turing machine descrip-
tions, states, and tapes. The names below are all prefixed with ‘n’ because these
functions are the numeric correspondents of functions in the official model of tmi.
In the following, cell′ is the numeric encoding of some cell 〈stin, sym, op, stout〉,
st′in, sym

′, op′, st′out are the corresponding numeric encodings, tm is assumed
non-empty (and so its car is a cell with encoding car′ and its cdr is a list of
cells with encoding cdr′, and tm′ is not nnil), w is the width of the state symbol
encoding, and nnil is the marked cell.

name : stack description
NST-IN : . . . , cell′, w ⇒ . . . , st′in
NSYM : . . . , cell′, w ⇒ . . . , sym′

NOP : . . . , cell′, w ⇒ . . . , op′

NST-OUT : . . . , cell′, w ⇒ . . . , st′out
NCAR : . . . , tm′, w ⇒ . . . , car′

NCDR : . . . , tm′, w ⇒ . . . , cdr′

With these programs we can implement M1 programs for implementing the
numeric version of tmi.

NCURRENT-SYM : . . . , tape′, pos′ ⇒ . . . , sym′

Description: sym′ is the symbol at position pos′ of tape′

NINSTR1 : . . . , a, b, tm′, w, nnil⇒ . . . , cell′

Description: cell′ is the first encoded cell in tm with st′in = a and sym′ = b,
if any, or -1 if no such cell exists

NEW-TAPE2 : . . . , op′, tape′, pos′ ⇒ . . . , tape′nx, pos
′
nx

Description: op′ is the encoding of a tape operation; tape′nx and pos′nx are
produced by performing that operation on tape′ and pos′

TMI3 : . . . , st′, tape′, pos′, tm′, w, nnil ⇒ . . . , tape′nx, pos
′
nx

Description: This is the M1 program that interprets the Turing machine tm
with initial state st and input tape tape′ and pos′. The program returns the
tape′nx and pos′nx representing the final tape if the machine halts, or runs forever
otherwise.

Note that “tmi3” is both the name of an M1 program and of a function defined
in ACL2 as part of our refinement of tmi to the M1 representations. However,
the program TMI3 takes the six arguments listed above, while the function tmi3

takes an additional argument: the number of steps to take, n4. The program
TMI3 may run forever. The function tmi3 is total.

MAIN : . . . , st′, tape′, pos′, tm′, w, nnil ⇒ . . . , tape′nx, pos
′
nx

4 Actually, the function tmi3 takes six, not seven, arguments because it does not need
nnil: it is determined from w.

414 J.S. Moore

Description: By convention, our compiler starts execution with the MAIN pro-
gram and our MAIN just calls TMI3 above.

10 Verifying Compiler

Writing the sixteen programs above is tedious if done directly. Perhaps the main
problem is that M1 does not support subroutine call and return: M1 operates on
one “flat” program space! Furthermore, the machine does not provide “computed
jumps” like the JVM’s JSR (which pops the stack into the pc). There is a strict
separation of data from pcs. Every GOTO and IFEQ is pc relative, but the distance
skipped is always some constant specified in the instruction. Of course, writing
the programs is only part of the battle: they must also be verified to implement
the ACL2 function tmi3.

I thus decided to write a compiler from a simple “Toy Lisp” subset to M1 code.
The compiler takes as input a system description, containing source code and
specifications for every subroutine.

The verifying compiler is called defsys (see defsys.lisp). Ψ is generated by
the defsys expression in implementation.lisp. Every subroutine to be com-
piled is given a name, a list of :formals, an :input precondition, an :output

specification describing the top of the stack, and the Toy Lisp source :code. It
was sufficient and convenient to support only tail-recursive source code functions.
As illustrated by main below, a subroutine may return multiple values and pro-
vision is made via so-called “ghosts” to model partial programs with total func-
tions. Finally, optional arguments :ld-flg and :edit-commands allow the user
to debug and modify the generated events. Inspection of implementation.lisp
will reveal that three edit commands were used to augment the automatically
generated commands. These generally inserted additional lemmas to prove be-
fore certain automatically generated theorems.

(defsys :ld-flg nil ; debugging aid

:modules

((LESSP :formals (x y)

:input (and (natp x)

(natp y))

:output (if (< x y) 1 0)

:code (IFEQ Y

0

(IFEQ X

1

(LESSP (- X 1) (- Y 1)))))

(MOD :formals (x y)

:input (and (natp x)

(natp y)

(not (equal y 0)))

:output (mod x y)

:code (IFEQ (LESSP X Y)

Proving a Simple Von Neumann Machine Turing Complete 415

(MOD (- X Y) Y)

X))

. . .
(MAIN :formals (st tape pos tm w nnil)

:input (and (natp st)

(natp tape)

(natp pos)

(natp tm)

(natp w)

(equal nnil (nnil w))

(< st (expt 2 w)))

:output (tmi3 st tape pos tm w n)

:output-arity 4

:code (TMI3 ST TAPE POS TM W NNIL)

:ghost-formals (n)

:ghost-base-value (MV 0 st tape pos)))

:edit-commands . . .) ; user-added modifications

Toy Lisp is just the subset of ACL2 composed of variable symbols, quoted
numeric constants, the function symbols +, -, * (primitively supported by M1),
the form (MV a1 . . . an) for returning multiple values, the form (IFEQ a b c)
(which is just ACL2’s (if (equal a 0) b c)), and calls of primitive and defined
Toy Lisp functions.

In addition to producing the M1 object code, the compiler (a) provides a
call/return protocol, (b) links symbolic names to actual pcs (and generates ap-
propriate relative jumps), and (c) produces the ACL2 commands (definitions
and theorems) establishing that the object code is correct with respect to the
Toy Lisp and that the Toy Lisp implements the :output specification.

If the maximum number of registers required by any subroutine’s body is
max, the call/return protocol requires 2max+ 1 registers. We divide them into
max so-called A-registers, max + 1 B-registers. The A-registers are for use by
the subroutine body and the B-registers are used by the call/return protocol.
For simplicity we assume (and check) that the maximum number of registers
used by a subroutine body is equal to the number of input parameters of the
subroutine.

Note that of the sixteen programs sketched above, TMI3 has the most param-
eters: 6. Thus, we need 13 registers.

The basic protocol for calling a subroutine subr of n arguments with argu-
ments a1, . . . , an, is as follows: the caller pushes a1, . . . , an, and the pc to which
subr should return. The caller then jumps to the pc of subr. At that pc, a prelude
for subr pops a1, . . . , an, and pc into the B-registers. It then protects the caller’s
environment by pushing the first n A-registers onto the stack, followed by the
return pc from the B-registers. Finally, it moves the other B-registers (containing
a1, . . . , an) to the first n A-registers5. A symmetric postlude supports returning

5 The only way to move a value from one register to another is via the stack; only the
topmost item on the stack can be accessed per instruction.

416 J.S. Moore

k ≤ n values on the stack. At the conclusion of the postlude, the code jumps to
the return pc.

But how can M1 jump to a pc found on the stack if the ISA firmly separates
“data” from “pcs”? The answer is quite tedious: the compiler keeps track of
every call of each subroutine; the postlude for each subroutine concludes with a
“big switch” which compares the “return pc” (data on the stack) to the known
pc of each call and then jumps to the appropriate pc.

The compiler works in several passes. The first pass compiles the object code
but includes symbolic labels and pseudo-instructions for CALL and RET. The
second pass expands the CALL and RET “instructions” into appropriate sequences
of M1 code. The last pass removes and replaces labels by relative jumps to the
appropriate pcs. The compiler saves the output of the three passes in the ACL2
constants *ccode*, *acode*, and *Psi* respectively. These may be inspected
after the compiler is run.

The key to generating the clock functions is just to count instructions in the
prelude, loop, and postlude of each subroutine.

Defsys generates certain definitions and theorems for each subroutine, admits
the definitions under the logic’s definitional principle, and proves the theorems.
The important ones are noted below for LESSP6. Recall that LESSP takes two
arguments, x and y. The :input condition of the module is that both x and y are
naturals. The :output condition is that 1 or 0 is on top of the stack, depending
on whether x < y. The source :code for the module is shown above. When rpc
is mentioned below it is the return pc from some call of LESSP in Ψ . When s is
mentioned it is an M1 state with program Ψ . Toy Lisp translations to ACL2 have
names beginning with “!”.

Def (!lessp x y): the ACL2 function !lessp is defined

(defun !lessp (x y)

(if (and (natp x) (natp y)) ; :input condition

(if (equal y 0) ; translated Toy Lisp

0

(if (equal x 0)

1 (!lessp (- x 1) (- y 1))))

nil))

Def (lessp-loop-clock x y): defined to compute the number of M1 steps from
the loop in LESSP to the postlude

Def (lessp-clock rpc x y): defined to compute the number of M1 steps to get
from the top of the prelude in LESSP through the return to rpc

Thm lessp-loop-is-!lessp: if the pc in s is at the top of the loop in LESSP,
with x and y (satisfying the stated :input conditions) in the first two A-registers,
then after (lessp-loop-clock x y) steps the pc is at the postlude, all of the A-

6 It is easiest to inspect the results by loading the project into ACL2 (Section 2) typing
(pe ’name), where name is the name of an event mentioned here.

Proving a Simple Von Neumann Machine Turing Complete 417

registers except the first two are unchanged, and (!lessp x y) has been pushed
on the stack

Thm lessp-is-!lessp: if the pc in s is poised at the pc of LESSP and the
stack contains at least three values, x, y, and rpc, where x and y satisfy the
:input conditions on lessp and rpc is a known return pc from LESSP, then after
(lessp-clock rpc x y) steps the pc is rpc, the A-registers are unchanged, and
(!lessp x y) has been pushed onto the stack obtained by popping off x, y, and
rpc

Thm !lessp-spec: if x and y satisfy the :input conditions for lessp, then
(!lessp x y) is as specified by the :output, i.e., it is 1 or 0 depending on
(x < y).

Putting the last two theorems together allows ACL2 to deduce that every
jump to LESSP in Ψ just advances the pc to the return pc, pops the arguments
and the return pc off the stack, and pushes 1 or 0 according to the specification,
without changing the A-registers.

Defsys compiles M1 code and generates and proves analogous definitions and
theorems for every module. Thus, it compiles TMI3 and proves that running that
code produces the results specified by tmi3. The only wrinkle in this story is that
tmi3 takes a step-count argument while the program TMI3 does not. However,
provision is made for this via the user-supplied “ghost” parameters of defsys.
The clock function tmi3-clock and the :code function !tmi3 are augmented by
an additional formal parameter, the user-supplied :ghost-formaln. In recursion
(once per iteration), these functions decrement n and halt if n = 0. No such
parameter exists in the compiled code. But defsys proves that the code, when
run according to tmi3-clock, returns the same result as tmi3 (both wrt n), or
else is left “still running” at the top of its loop.

11 Finishing the Proof

From the theorems in tmi-reductions.lisp we get that the official Turing
machine interpreter, tmi, is equal to tmi3 modulo the representations, for any
Turing step count n.

From implementation.lispwe get theorems about MAIN, its ACL2 analogue,
!main and its :output specification function tmi3. In particular the theorem
main-is-!main tells us that if invoked appropriately and run for main-clock

M1-steps (for exactly n iterations), the result is exactly described by its Lisp
analogue !main: If !main reports halting after n iterations, then the final M1
state has as its pc the return pc of the call of MAIN in Ψ , and the stack contains
same tape and position computed by !main; and if !main reports that it did not
halt (in n iterations) the M1 state is poised at the top of the loop in the TMI3

program.
Meanwhile, !main-spec tells us that !main computes the same thing as tmi3.
Since main-clock starts counting from the pc of MAIN and Ψ just pushes the

return pc, jumps to MAIN, and HALTs, we define (find-k st tape tm n) to be

418 J.S. Moore

just 2 more than main-clock on the corresponding arguments st′, tape′, pos′,
tm′, w, nnil and n.

In theorems-a-and-b.lispwe combine these results in the simulation the-
orem, which states that an M1 run starting in initial state s0 and taking (find-k

st tape tm n) steps is halted precisely if tmi halts in n steps, and furthermore,
that if tmi halts in n steps, then the answer in the final M1 state corresponds to
the tape computed by tmi.

Now we wish to prove theorem A and B. In fact, theorem-B (see page 411)
follows easily from the simulation theorem.

Theorem A (page 411) requires more work. Recall that it deals with the non-
termination of the two machines. Informally, it says that if tmi fails to terminate,
then so does M1. But we phrased it in the contrapositive: if M1 terminates, then
so does tmi.

Here we know that M1 halts on s0 after i steps and we must define find-j

to return a number of steps sufficient to insure that tmi halts. Notice that the
previously defined find-k counts M1-steps and now we seek to count tmi steps.

Two observations are important in defining find-j. The first is a theorem
called find-k-monotonic in theorems-a-and-b.lisp which states that if tmi
has not halted after n steps then (find-k st tape tm n) < (find-k st tape
tm n + 1). This is actually an interesting non-trivial theorem to prove, whose
proof involved the only use of traces in the script.

The second observation is an easy one called m1-stays-halted: once M1 has
halted, it stays halted. Thus, if M1 is halted after i steps it is halted after any
greater number of steps.

We can then define find-j to find a j at which (tmi st tape tm j) is halted
given that we know (M1 s0 i) is halted. The definition searches upwards from
j = 0: if tmi is halted at j, return j; if (find-k st tape tm j) ≥ i, return j;
else search from j + 1.

This is a well-defined function: the recursion terminates because the find-k

expression is growing monotonically and will therefore eventually reach the fixed
i, if the earlier exit is not taken first.

It is easy to see that if M1 is halted at i, then tmi is halted at (find-j st
tape tm i): either find-j returns a j (in the first exit) known to be sufficient
or else it returns a j such that (find-k st tape tm j) ≥ i. But our second
observation above shows that M1 must thus be halted at (find-k st tape tm
j). And if M1 is halted there, then tmi must be halted at j, by the simulation

theorem.
That completes our proof sketch of theorem A.

12 Efficiency Considerations

M1 is an executable operational model which ACL2 can execute at about 500,000
M1 bytecodes/sec. We can therefore run Ψ to simulate Turing machines. The
clock function find-k tells us exactly how long we must run it to simulate a
given tmi run of n steps.

Proving a Simple Von Neumann Machine Turing Complete 419

Consider Rogers’ Turing machine description for doubling the number on the
tape [12]. Suppose the tape starts with Rogers’ representation for 4 on the tape.
Running tmi experimentally reveals it takes 78 Turing steps to reach termination
and compute a tape representing 8. We can use find-k to determine how long
it takes M1 to simulate this computation. And the answer is:

103,979,643,405,139,456,340,754,264,791,057,682,257,947,240,629,585,359,596
or slightly more than 1056 steps!

The primary reason our implementation is so inefficient is that tapes and
Turing machine descriptions are represented as large (bit-packed) integers and
must be unpacked on M1 with programs that use LESSP. But the only way to
answer the question “is x < y?” for two naturals x and y on M1 is to subtract 1
from each until one or the other becomes 0, because the only test M1 programs
can perform is equality against 0. Thus it takes exponential time to unpack7.

The efficiency of our M1 Turing machine interpreter would be much improved
if M1 provided the JVM instruction IFLT (branch if negative) or IF ICMPLT

(branch if x < y). Further improvement could be made by having IDIV (floor),
or bit-packing operations like ISHR (shift right), IAND (bit-wise and), etc., and
perhaps arrays (with IALOAD and IASTORE), to represent the tape. Minor fur-
ther improvements could be had by supporting JSR or even INVOKESTATIC or
INVOKEVIRTUAL to make call/return simpler. All of these features are supported
on our most complete JVM model, M6[9].

Another obvious approach would have been to compile the Turing machine
description tm into an M1 program. Had I done so, the proofs of theorems A and
B would have required proving that the Turing machine compiler was correct
for all possible Turing machine descriptions. By representing Turing machine
descriptions as data to be interpreted, I could limit my compiler’s task to proving
that its output was correct on the 16 Toy Lisp modules discussed. Put succinctly,
it is easier to write a verifying compiler than to verify a compiler.

13 Project History

I developed M1 in 1997 to teach my JVM modeling course, which I subsequently
taught about ten times. While the ISA of M1 changed annually to make home-
works harder or easier, programming M1 and proving correctness of my programs
became almost second nature to me.

The question of M1’s computational power arose in class in March, 2012. I
completed the first version of this proof March 10–18, 2012 after coding Ψ by
hand in 804 M1 instructions and manually typing the specifications and lemmas.
I was helped enormously by the 1984 paper [2] and my experience with M1.

After Spring Break, I gave two talks on the proof: one to the Austin ACL2
research group and one to my undergraduate JVM class. Neither talk went
smoothly and I learned a lot about the difficulty of presenting the work. A few

7 And ACL2 would take exponential time evaluating find-k except for the theorems
in find-k!.lisp.

420 J.S. Moore

weeks later, in early April, 2012, I decided to implement the verifying compiler.
The present version of the proof was polished by April 14, 2012.

14 Conclusion

Aside from the satisfaction of formally revisiting the roots of computer science,
this work allowed me to go back into class after Spring Break and say:

M1 can do anything a Turing machine can do. Here’s a proof.

References

1. Bevier, W., Hunt Jr., W.A., Moore, J.S., Young, W.: Special issue on system ver-
ification. Journal of Automated Reasoning 5(4), 409–530 (1989)

2. Boyer, R.S., Moore, J.S.: A mechanical proof of the turing completeness of pure lisp.
In: Bledsoe, W.W., Loveland, D.W. (eds.) Contemporary Mathematics: Automated
Theorem Proving: After 25 Years, vol. 29, pp. 133–168. American Mathematical
Society, Providence (1984)

3. Boyer, R.S., Moore, J.S.: A mechanical proof of the unsolvability of the halting
problem. Journal of the Association for Computing Machinery 31(3), 441–458
(1984)

4. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

5. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Press, Boston (2000)

6. Kaufmann, M., Moore, J.S.: The ACL2 home page. Dept. of Computer Sciences,
University of Texas at Austin (2014),
http://www.cs.utexas.edu/users/moore/acl2/

7. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an os kernel. In: ACM Symposium on Oper-
ating Systems Principles, pp. 207–220 (October 2009)

8. Lindholdm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. Pren-
tice Hall (1999)

9. Liu, H.: Formal Specification and Verification of a JVM and its Bytecode Verifier.
PhD thesis, University of Texas at Austin (2006)

10. Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic. In:
Machine Intelligence 7, pp. 51–72. Edinburgh University Press (1972)

11. Ray, S., Moore, J.S.: Proof styles in operational semantics. In: Hu, A.J., Martin,
A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 67–81. Springer, Heidelberg (2004)

12. Rogers, H.: A Theory of Recursive Functions and Effective Commputability.
McGraw-Hill (1967)

http://www.cs.utexas.edu/users/moore/acl2/

The Reflective Milawa Theorem Prover Is Sound

(Down to the Machine Code That Runs It)

Magnus O. Myreen1 and Jared Davis2

1 Computer Laboratory, University of Cambridge, UK
2 Centaur Technology, Inc., Austin TX, USA

Abstract. Milawa is a theorem prover styled after ACL2 but with a
small kernel and a powerful reflection mechanism. We have used the
HOL4 theorem prover to formalize the logic of Milawa, prove the logic
sound, and prove that the source code for the Milawa kernel (2,000 lines
of Lisp) is faithful to the logic. Going further, we have combined these
results with our previous verification of an x86 machine-code implemen-
tation of a Lisp runtime. Our top-level HOL4 theorem states that when
Milawa is run on top of our verified Lisp, it will only print theorem
statements that are semantically true. We believe that this top-level the-
orem is the most comprehensive formal evidence of a theorem prover’s
soundness to date.

1 Introduction

Theorem provers like HOL4, Coq, and ACL2 are each meant to reason in some
particular logic, are each written in a programming language like ML, OCaml,
or Lisp, and are each executed by a runtime like Poly/ML, the OCaml system,
or Clozure Common Lisp. If we want to make sure that a theorem prover can
only prove true statements, we should ideally show that:

A. the logic is sound,

B. the theorem prover’s source code is faithful to its logic, and

C. the runtime executes the source code correctly.

In this paper, we explain how we have used the HOL4 theorem prover to establish
these three properties about the Milawa theorem prover.

Milawa [2] is a theorem prover inspired by NQTHM and ACL2. Unlike these
programs it has a small kernel, somewhat like an LCF-style system. This kernel
notably performs reflection and includes a mechanism that modifies the kernel at
runtime. High-level tactics like (conditional) rewriting are added into the kernel
through a sequence of reflective extensions.

Our proofs of A through C for the Milawa prover are the key lemmas in a
single, top-level HOL4 theorem: when the kernel of the Milawa theorem is run
on our verified Lisp runtime, Jitawa [13], it will only ever prove statements that
are true with respect to the semantics of Milawa’s logic. This theorem means,
for instance, that no matter how reflection or any other operation is used, the

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 421–436, 2014.
c© Springer International Publishing Switzerland 2014

422 M.O. Myreen and J. Davis

statement ‘true equals false’ can never be proved. This top-level theorem relates
the semantics of the logic (not just syntactic provability) all the way down to
the concrete x86 machine code.

We believe this work provides the most comprehensive formal evidence of a
theorem prover’s soundness to date, as the combination of these three properties
have, to our knowledge, never before been formally proved for any interactive
theorem prover.

2 Milawa in a Nutshell

Before delving into the details of our formalizations and soundness results, we
start with a high-level description of the Milawa theorem prover.

ACL2-like. Milawa follows the Boyer-Moore tradition of theorem provers. Like
NQTHM and ACL2, its logic is essentially a clean subset of first-order Lisp.
Also like these systems, its top-level loop processes user-provided events. Events
steer the prover process. A user can submit events which, for example, cause the
prover to define a new function or prove a specific theorem. However, Milawa is
simpler than ACL2 in many ways. Milawa is particularly minimalist in its user-
interface and debugging output: it really just processes a list of events, aborting
if any event is unacceptable.

Small kernel. The most important difference between Milawa and ACL2 is that
Milawa has a small logical kernel, somewhat like an LCF-style prover. In contrast,
other Boyer-Moore systems have no cordoned off area for soundness-critical code.
This design means that the authors of ACL2 must program very carefully to
avoid accidentally introducing soundness bugs. But it also means that ACL2 can
make greater leaps in reasoning and perform well on large-scale applications; the
ACL2 design avoids the LCF-bottleneck where all proofs must at runtime boil
down to the primitive inferences of the logic.

Reflection. Milawa was designed to show that it is possible to combine the ben-
efits of a small trusted kernel and, at the same time, avoid the LCF-bottleneck.
Milawa has approximately 2000 lines of soundness-critical Lisp code. This Lisp
code initializes the system and sets up the top-level event handling loop. An
important part of this code is the initial proof checker. This initial proof checker
only accepts proofs that use the primitive inferences of the logic, very much like
an LCF-style kernel. In order to allow larger steps in proofs, Milawa supports a
special event that replaces the prover’s current proof checker with a new, user-
supplied proof checker. For this switch event to be accepted, we must first prove
that the new user-supplied proof checker (which is just a function in the logic
of Milawa) can only prove statements that the initial proof checker could have
proved. The initial proof checker lives within the Milawa logic. Every function
defined in the logic is also defined outside in the underlying Lisp runtime.

The Reflective Milawa Theorem Prover Is Sound 423

Bootstrapping. By (repeatedly) replacing the initial proof checker with new, im-
proved checkers that can make larger leaps in their proofs, we can build a prover
that performs ACL2-style proofs where, e.g., conditional rewriting is treated as
a single inference step. We call the soundness critical code—the initial 2000-line
Lisp program—Milawa’s kernel. The Milawa theorem prover is what this kernel
morphs into after running through a long list of events (the bootstrapping se-
quence) that ultimately installs a powerful, ACL2-like proof checker. This final
proof checker allows for high-level, Boyer-Moore style steps such as rewriting,
case splitting, generalization, cross-fertilization, and so forth.

3 Method

To prove the soundness of Milawa in HOL4, we proceeded as follows.

A. We started by formalizing Milawa’s logic, following closely the detailed prose
description given in Chapter 2 of Davis [2]. We then proved the logic is
sound. This part was largely a routine formalization and soundness proof
(Section 4), but we did hit some surprises involving the termination obliga-
tions Milawa generates (Section 7).

B. Next we turned our attention to the implementation of Milawa’s kernel. Our
task here was to verify these 2,000 lines of Lisp code with respect to the
behavior of Jitawa [13], our verified Lisp runtime. We proved a connection
using the following steps (Section 5).

1. Jitawa’s correctness theorem is stated in terms of a read-eval-print loop
which reads ASCII input. Using rewriting, we evaluated its parser on the
ASCII definition of Milawa’s kernel.

2. Once the ASCII input had been turned into appropriate abstract syntax,
we ran a proof-producing tool [12] to translate deeply embedded Lisp
programs into their ‘obvious’ shallowly embedded counterparts.

3. Given the convenient shallow embeddings, we proved that Milawa’s main
loop maintains an invariant that implies that all proved theorems are true
w.r.t. our semantics of Milawa’s logic.

C. We had already verified our Lisp runtime, Jitawa, as described in a previous
paper [13]. What remained was to connect the results from A and B to
Jitawa’s top-level correctness theorem (Section 6).

The result of combining A, B and C is a top-level theorem (Section 6) that
relates logical soundness all the way down to machine-code execution. We found
mistakes in Milawa’s implementation, but no soundness bugs (Section 7).

4 Milawa’s Logic

We start with a formalization and soundness proof of Milawa’s logic. Milawa
targets a first-order logic of recursive functions with induction up to ε0, similar

424 M.O. Myreen and J. Davis

to the logics of NQTHM and ACL2. The objects of the logic are the natural
numbers, symbols, and conses (ordered pairs) of other objects; we call these
objects S-expressions. The logic has primitive functions for working with S-
expressions like equality checking, addition, cons, car, cdr, etc., whose behavior
is given with axioms. Starting from these primitives, we can define recursive
functions that look like Lisp programs. An introduction to the logic can be
found in Chapter 2 of Davis [2].

The Milawa logic is considerably weaker than popular higher-order logics.
Thanks to this, its soundness can be established using higher-order logic as the
meta-logic. In this section, we explain how we have used the HOL4 system to
formalize the syntax (Section 4.1), semantics (4.3) and rules of inference (4.4) of
the Milawa logic, and to mechanically prove the soundness of its inference rules
(4.5) and definition principle (4.6). In later sections, we connect these soundness
proofs to the theorem prover’s implementation.

4.1 Syntax of Terms and Formulas

We formalize the syntax of the Milawa logic as the following datatype:

sexp ::= Val num | Sym string | Dot sexp sexp S-expression

prim ::= If | Equal | Not | Symbolp | Symbol less
| Natp | Add | Sub | Less | Consp | Cons
| Car | Cdr | Rank | Ord less | Ordp

func ::= PrimitiveFun prim primitive functions
| Fun string user-defined

term ::= Const sexp constant S-expression
| Var string variable
| App func (term list) function application
| LamApp (string list) term (term list) λ formals body actuals

formula ::= ¬formula negation
| formula ∨ formula disjunction
| term = term term equality

These type definitions are not quite enough to capture correct Milawa syntax.
We write separate well-formedness predicates called term ok and formula ok to
formalize the additional requirements. In particular,

– every function application must have correct arity and refer to a known
function with respect to the context (see below), and

– every lambda application must have the same number of formal and actual
parameters, must have distinct formal parameters, and its body may not
refer to variables besides its formal parameters; these requirements make
substitution straightforward.

The term ok and formula ok well-formedness predicates depend on a logical con-
text, π, which will be explained below.

The Reflective Milawa Theorem Prover Is Sound 425

4.2 Context

The definitions of the syntax, semantics and inference rules all depend on infor-
mation regarding user-defined functions. To keep the formalization simple, we
chose to combine all of this information into a single mapping, which we call
the logical context. We model the logical context as a finite partial map π from
function names, of type string, to elements of type:

string list× func body × (sexp list → sexp)

The first component, string list, names the formal parameters for the function.
The second component, func body , gives the syntactic definition for the function.
This func body is usually either (1) the right-hand side of a definition, for an
ordinary function defined by an equation, or (2) a variable name and property,
for a witness (Skolem) function. For reasons that will be explained in Section 4.6,
we also allow the omission of the function body, i.e., a None alternative.

func body ::= Body term concrete term (e.g. recursive function)
| Witness term string property, element name
| None no function body given

Finally, the sexp list → sexp component is an interpretation function, which is
used in the definition of the semantics. These interpretation functions specify
what meaning the semantics is to assign to applications of user-defined func-
tions. In the next section, we will see a well-formedness criteria that relates the
interpretation functions with the syntax in func body .

4.3 Semantics

Next, we define a semantics of Milawa’s formulas. We present these semantics
in a top-down order. Our topmost definition is validity: a Milawa formula p is
valid, written |=π p, if and only if (1) p is syntactically correct w.r.t. the logical
context π and (2) p evaluates to true in π for all variable instantiations i.

(|=π p) = formula okπ p ∧ ∀i. eval formula i π p

We define the evaluation of a formula with respect to a particular variable
instantiation i. Our formula evaluator, eval formula i π, is built on top of a term
evaluator, eval term i π, as follows. The syntax overloading can be confusing in
the following definition. On the left-hand side ¬, ∨ and = are the constructors
for the formula type, while on the right-hand side ¬ and ∨ are the usual Boolean
connectives and = is HOL’s equality predicate.

eval formula i π (¬p) = ¬(eval formula i π p)
eval formula i π (p ∨ q) = eval formula i π p ∨ eval formula i π q
eval formula i π (x = y) = (eval term i π x = eval term i π y)

We define term evaluation with respect to a variable instantiation i. Here
[[v1, . . . , vn] �→ [x1, . . . , xn]] is a function that maps vi to xi, for 1 ≤ i ≤

426 M.O. Myreen and J. Davis

n, and all other variable names to NIL. Below map is a function such that
map f [t1, t2, . . . , tn] = [f t1, f t2, . . . , f tn].

eval term i π (Const c) = c
eval term i π (Var v) = i(v)
eval term i π (App f xs) = eval app (f,map (eval term i π) xs, π)
eval term i π (LambdaApp vs x xs) = let ys = map (eval term i π) xs in

eval term [vs �→ ys] π x

Application of a function to a list of concrete arguments, a list of type sexp list,
is evaluated according the following eval app function. This function evaluates
primitive functions according to eval primitive and user-defined functions accord-
ing to the interpretation function interp stored in the logical context. The inter-
pretation functions will be explained further below.

eval app (PrimitiveFun p, args , π) = eval primitive p args
eval app (Fun name, args , π) = let (, , interp) = π(name) in

interp(args)

We omit the definition of eval primitive, which is lengthy and straightforward,
but note that it is a total function. A few example evaluations:

eval primitive Add [Val 2,Val 3] = Val 5
eval primitive Add [Val 2, Sym "a"] = Val 2
eval primitive Cons [Val 2, Sym "a"] = Dot (Val 2) (Sym "a")

The definitions above constitute the semantics of Milawa. Clearly, this se-
mantics is intimately dependent on the interpretation functions stored inside
the context π. In order to make sure that these interpretation functions are ‘the
right ones’, i.e., correspond to the syntactic definitions of the user-defined func-
tions, we require that the context is well-formed, i.e., satisfies a predicate we will
call context ok.

For a context to be well-formed, any user-defined functions with an entry of
the following form in the logical context π,

π(name) = (formals ,Body body , interp)

must have the interp function return the same value as an evaluation of body with
appropriate instantiations of the formal parameters, i.e., the following defining
equation must be true:

∀i. interp(map i formals) = eval term i π body

Note that this is a non-trivial equation since eval term, which appears on the
right-hand side of the equation, can refer to interp via eval app. Indeed, proving
soundness of the definition principle requires proving that the termination obli-
gations generated by Milawa imply that our interpetation is total (Section 4.6).

A similar condition applies to witness functions. If,

π(name) = (formals ,Witness prop var , interp)

The Reflective Milawa Theorem Prover Is Sound 427

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

∀args .
(∃v. eval term [var :: formals �→ v :: args] π prop �= NIL) =⇒
eval term [var :: formals �→ interp(args) :: args] π prop �= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok π =
(∀name formals body interp.
(π(name) = (formals ,Body body , interp)) =⇒
term okπ body ∧ all distinct formals ∧
list to set (free vars body) ⊆ list to set formals ∧
∀i. interp(map i formals) = eval term i π body) ∧

(∀name formals prop var interp.
(π(name) = (formals ,Witness prop var , interp)) =⇒
term okπ prop ∧ all distinct (var :: formals) ∧
list to set (free vars prop) ⊆ list to set (var :: formals) ∧
∀args .
(∃v. eval term [var :: formals �→ v :: args] π prop �= NIL) =⇒
eval term [var :: formals �→ interp(args) :: args] π prop �= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflexive, symmetric and transitive;
the Less primitive is irreflexive and transitive, etc.

�π a ∨ (b ∨ c)
�π (a ∨ b) ∨ c (associativity)

a ∈ milawa axioms
�π a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to ε0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.

Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

π(name) = (formals ,Body body , interp)
�π App (Fun name) (map Var formals) = body

428 M.O. Myreen and J. Davis

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

∀π p. context ok π ∧ (�π p) =⇒ (|=π p)

We have proved this statement by induction over the inference rules �π. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to ε0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassuring
corollaries. For instance, since |=π T = NIL is false and �π T = T is true we know
that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context π is well-formed, context ok π, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context π, i.e., for any formula p accepted by the kernel, we have
�π p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a �π-proof of the generated termi-
nation obligations is sufficient to imply that a suitable interpretation exists.
Below definition ok requires that certain syntactic conditions are true and that
the termination obligations can be proved.

∀π name formals body .
context ok π ∧ definition ok (name, formals , body , π) =⇒
context ok (π[name �→ (formals , body , new interp π name formals body)])

5 Correctness of Milawa’s Implementation

With logical soundness out of the way, our next goal was to show that the source
code of the Milawa kernel respects the logic’s inference rules.

The Reflective Milawa Theorem Prover Is Sound 429

First, some background: in previous work [13], we introduced the Jitawa Lisp
runtime. Jitawa is able to host the Milawa theorem prover. By this, we mean
that it is able to execute Milawa’s kernel all the way through its bootstrapping
process [2], a long sequence of definitions, proofs and reflective extensions which
ultimately extend the kernel with many high-level proof procedures like those of
NQTHM and ACL2. As part of the Jitawa work, we developed an operational
semantics for the Lisp dialect that Jitawa executes, and proved that the x86
machine code for Jitawa implements this semantics.

Milawa’s kernel is about 2,000 lines of Lisp code. In this section, we explain
how we have proved that this Lisp code is faithful to Milawa’s inference rules
w.r.t. the operational semantics that Jitawa has been proved to implement.

5.1 From ASCII Characters to a Shallow Embedding in HOL4

The top-level Jitawa semantics describes how S-expressions are to be parsed from
an input stream of ASCII characters and then evaluated. One of the simplest
functions in Milawa’s kernel is shown below. This function will be used as a
running example of how we lift Lisp functions into HOL to make interactive
verification manageable.

(defun lookup-safe (a x)

(if (consp x)

(if (equal a (car (car x)))

(if (consp (car x))

(car x)

(cons (car (car x)) (cdr (car x))))

(lookup-safe a (cdr x)))

nil))

When Jitawa reads the ASCII definition of lookup-safe, it parses the lines
above and, as far as its operational semantics is concerned, turns them into a
datatype of the form:

App Define [Const (Sym "LOOKUP-SAFE"),Const (...),Const (...)]

We wrote a custom conversion (based mostly on rewriting) in HOL4 which
parses the source code for Milawa’s 2000-line kernel into abstract datatypes such
as the expression above. The evaluation of the parser happens inside the HOL4
logic, so the result is a theorem of the form string to prog milawa kernel lisp = . . .

When Jitawa evaluates the Define expression from above, a definition for
lookup-safe is added to its list of functions. The new entry is:

function name: "LOOKUP-SAFE"

parameter list: "A", "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])

(If (App (PrimitiveFun Equal) [...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))

(Const (Sym "NIL"))

430 M.O. Myreen and J. Davis

Instead of performing tedious proofs directly over deep embeddings such as
that above, we developed a tool that automatically translates these deep em-
beddings into shallow embeddings and, in the process, proves that the shallow
embeddings accurately describe evaluations of the deep embeddings. The details
of this tool are the subject of a separate paper [12], but the net effect of using
it on lookup-safe is easy to see: we get a simple HOL function,

lookup safe a x = if consp x then
if a = car (car x) then
if consp (car x) then
car x

else cons (car (car x)) (cdr (car x))
else lookup safe a (cdr x)

else Sym "NIL"

and a theorem relating the deep embedding to this shallow embedding, stated
in terms of the application relation ap−→ of Jitawa’s semantics:

. . . =⇒ (Fun "LOOKUP-SAFE", [a, x], state) ap−→ (lookup safe a x, state)

Here state is Jitawa’s mutable state which has, e.g., the I/O streams and the
list of function definitions. The state is not changed by lookup safe because
lookup-safe is a pure function. Extracted impure functions take the state as
input and produce a new state as output, e.g. Milawa’s admit defun function
returns a (value, new-state) pair:

. . . =⇒ (Fun "ADMIT-DEFUN", [cmd , s], state) ap−→ (admit defun cmd s state)

5.2 Milawa’s Proof Checkers and Reflection

The largest and most important pure function in Milawa is its initial proof
checker, proofp. This function is given an appeal (an alleged proof) to check. It
walks through the appeal, checking that each proof step is a valid use of some
inference rule. When Milawa starts, it uses proofp to check alleged proofs of
theorems and termination obligations. But the kernel can later be told to start
using some user-defined function, say new-proofp, to check proofs. Typically new-
proofp can accept “higher level” proofs that use new inference rules beyond the
“base level” rules available in proofp. The kernel will only switch to new-proofp
after establishing its fidelity claim: whenever new-proofp accepts a high-level
proof of φ, there must exist a base-level proof of φ that proofp would accept.

We prove that proofp is faithful to the inference rules of the Milawa logic.
That is, whenever proofp is given well-formed inputs and it returns something
other than NIL, the conclusion of the alleged proof is �π-provable. Here axioms
and thms are lists of formulas, and atbl is an arity table.

∀appeal axioms thms atbl .
appeal syntax ok appeal ∧ atbl ok π atbl ∧
thms inv π thms ∧ thms inv π axioms ∧
proofp appeal axioms thms atbl �= Sym "NIL" =⇒ �π conclusion of appeal

The Reflective Milawa Theorem Prover Is Sound 431

To accommodate the reflective installation of new proof checkers, the invariant
we describe in the next section requires that the property above must always hold
for whatever function is the current proof checker. It turns out that Milawa’s
checks of the fidelity claim are sufficient to show that a new-proofp may only be
installed when it satisfies this property.

5.3 Milawa’s Invariant

As it executes, Milawa’s kernel carries around state with several lists and map-
pings that must be kept consistent. Its program state consists of:

– a list of axioms and definitions,
– a list of proved theorems,
– an arity table for syntax checks (e.g., are all mentioned functions defined?

are they called with the right number of arguments?),
– the name of the current proof checker (proofp, new-proofp, . . .), and
– a function table that lists all the definitions that have been given to the Lisp

runtime, and the names of functions that must be avoided since they have a
special meaning in the runtime (error, print, define, funcall, . . .).

There is also state specific to the Lisp runtime’s semantics:

– its view of how functions have been defined,
– its input and output streams, and
– a special ok flag that records whether an error has been raised.

Finally, for our soundness proof, there is also logical (ghost) state:

– a logical context π must also be maintained.

A key part of our proof was to formalize the invariant that relates these state
elements. For the most part, the dependencies and relationships between the
state components were obvious, e.g. each entry in the function table must have
a corresponding entity inside the runtime’s function table, and since this is a
reflective theorem prover each function in the logic must have an entry in the
runtime’s function table.

A few details were less straightforward. Each layer has its own abstraction
level, e.g. the kernel and runtime allow macros but these are expanded away
in the logic, and the function table uses S-expression syntax but the runtime’s
operational semantics only sees an abstraction of this syntax. There are also
some language mismatches: the logic has primitives (e.g. ordp and ord-<) which
are not primitive in the runtime, and the runtime has several primitives that
are not part of the logic (e.g., funcall, print, error). To further complicate
matters, some of these components can lag behind: the function table starts off
mentioning functions that have not yet been defined in the logic. Such functions
can only be defined using exactly the definition given in the function table,
otherwise the defining event, admit-defun or admit-witness, causes a runtime

432 M.O. Myreen and J. Davis

error. We will explain this invariant in more detail in forthcoming journal article
and/or extensive technical report.

We proved that each event handling function, e.g. admit-thm, admit-defun,
admit-switch etc., maintains the invariant. As a result, the kernel’s top-level
event-handling loop maintains the invariant.

5.4 Theorem: Milawa Is Faithful to Its Logic

Milawa’s kernel reads input, processes it, and then prints output that says
whether it has accepted the proofs and definitions it has been given. In order to
make it clearer what Milawa claims to have proved, we extended Milawa with
a new event, (admit-print φ), which causes φ to be printed if it has already
been proved as a theorem, or else fails. For instance, this new event can print:

(PRINT (THEOREM (PEQUAL* (+ A B) (+ B A))))

We formulate the soundness of Milawa as a guarantee about the possible out-
put: whatever the input, Milawa will only ever print THEOREM lines for formulas
that are true w.r.t. the semantics |=π of the logic. More precisely, we first define
what an acceptable line of output is w.r.t. a given logical context π:

line ok (π, l) = (l = "NIL") ∨
(∃n. (l = "(PRINT (n . . .))") ∧ is number n) ∨
(∃φ. (l = "(PRINT (THEOREM φ))") ∧ context ok π ∧ |=π φ)

We then prove that Milawa’s top-level function, milawa main, only produces out-
put lines that satisfy line ok, assuming that no runtime errors were raised during
execution, i.e., that ok is true. Here compute output (definition omitted) is a
high-level specification of what output lines coupled with their respective logical
context the input cmds produces.

∃ans k output ok.
milawa main cmds init state = (ans , (k, output , ok)) ∧
(ok =⇒ (ans = Sym "SUCCESS") ∧

let result = compute output cmds in
every line line ok result ∧
output = output string result)

This approach works in part because Jitawa’s print function, though used by
Milawa’s kernel, is not made available in the Milawa logic. In other words, a user-
defined function can’t trick us into invalidly printing (PRINT (THEOREM . . .)).

This soundness theorem can be related back to the operational semantics of
Jitawa through the following theorem, which was automatically derived by our
tool for lifting deep embeddings into shallow embeddings:

. . . =⇒ (Fun "MILAWA-MAIN", [input], state) ap−→ (milawa main input state)

The Reflective Milawa Theorem Prover Is Sound 433

6 Top-level Soundness Theorem

Now we are ready to connect the soundness result from above to the top-
level correctness theorem for Jitawa, which was proved in previous work [13].
Jitawa’s top-level correctness theorem is stated in terms of a machine-code Hoare
triple [11] that can informally be read as saying: if Jitawa’s implementation is
started from a state where enough memory is allocated (init state) and the input
stream of ASCII characters holds input for which Jitawa terminates, then either
an error message is reported or a final state described by exec−→ is reached for
which ok is true and output is the final state of the output stream (final state).

{ init state input ∗ pc pc ∗ 〈terminates for input〉 }
pc : code for entire jitawa implementation

{ error message ∨ ∃output . 〈([], input) exec−→ (output , true)〉 ∗ final state output }

Roughly speaking, exec−→ involves parsing some input, evaluating it with ap−→ ,
and printing the result. By manually unrolling exec−→ to reveal the ap−→ relation
for the call of milawa main, it was straightforward to prove our top-level theorem
relating Milawa’s soundness down to the concrete x86 machine code.

This theorem, shown below, can informally be read as follows: if the ASCII
input to Jitawa is the code for Milawa’s kernel followed by a call to Milawa’s
main function on any input input , then the machine-code implementation for
Jitawa will either abort with an error message, or succeed and print line ok
output (according to compute output) followed by SUCCESS. Here strings are
lists of characters, hence the use of list append (++) for strings.

∀input pc.

{ init state (milawa implementation++ "(milawa-main ’input)") ∗ pc pc }
pc : code for entire jitawa implementation

{ error message ∨ (let result = compute output (parse input) in
〈every line line ok result〉 ∗
final state (output string result ++ "SUCCESS")) }

7 Quirks, Bugs and Other Points of Interest

We ran into some surprises during the proof.

Two minor bugs. No soundness bugs were found during our proof, but two
minor bugs were uncovered and fixed. One was a harmless omission in the initial
function arity table. The other allowed definitions with malformed parameter
lists (not ending with nil) to be accepted. We don’t see how these bugs could
be exploited to derive a false statement, but the latter could probably have
lead to undefined behavior when using a Common Lisp runtime, instead of our
verified Lisp runtime.

434 M.O. Myreen and J. Davis

Complication with termination obligations. In its current form, Milawa will only
accept user-defined functions when their termination obligations are proven.
However, the termination obligations can, in some cases, mention the function
that is being defined. For instance, when defining a function like:

f(n, k) = if n = 0 then k else f(n− 1, f(n− 1, k + 1))

Milawa will require that the following termination condition has been proved for
some measure function m:

n �= 0 =⇒ m(n− 1, f(n− 1, k + 1)) <ord m(n, k) ∧
m(n− 1, k + 1) <ord m(n, k)

But note that this statement mentions function f , i.e., f ought to be part of
the logical context π in order for this formula to be well-formed (formula ok).
Milawa’s kernel gets around this problem by checking the proof of such termi-
nation obligations in a half-way state, where the f is acceptable syntax but the
defining equation is not yet available as a theorem. Our formalization of the logic
checks the termination obligations in a similar half-way state: the termination
obligations are checked in a state where the function’s name is available in the
context but the function body is set to None (Section 4.2).

Extensions. Once we had completed the full soundness proof, we took the op-
portunity to step back and consider what part of the system can be made better
without complicating the soundness proof.

Evaluation through reflection: The original version of Milawa only used re-
flection to run the user-defined proof-checkers. However, one can equally well
prove theorems by evaluation in the runtime, since all function defined in the
logic also have a counter-part in the runtime. We have implemented and proved
sound such an event handler (admit-eval).

Support for non-terminating functions: Note that our formalization of Mi-
lawa’s logic only requires that there must exist an interpretation in HOL for
each of the functions living in Milawa’s logic. This means, e.g., that tail-recursive
functions can be admitted without any proof of the termination obligations, be-
cause any tail-recursive function can be defined in HOL without a termination
proof. We have proved that it is sound to extend a context with any recursive
function that passes a simple syntactic check, which tests whether all recursive
calls are in tail position. This extension has not been implemented in the Milawa
kernel because, if it were there, Milawa might not terminate, which composition
with the correctness theorem for our Lisp implementation requires (Section 6).

8 Summary and Related Work

Davis’ dissertation [2] describes how the Milawa theorem prover is constructed
using self-verification from a small trusted kernel. In this paper, we have ex-
plained how we have verified in HOL4 that this kernel is indeed trustworthy.

The Reflective Milawa Theorem Prover Is Sound 435

We have proved that the implementation of the Milawa theorem prover can
never prove a statement that is false when it is run on Jitawa, our verified Lisp
implementation. This theorem goes from the logic all the way down to the ma-
chine code. To the best of our knowledge, this is the most comprehensive formal
evidence of a theorem prover’s soundness to date.

Related Work. The most closely related work is that of Kumar et al. [8] which
aims to verify a similar end-to-end soundness result for a version of the HOL
light theorem prover. Kumar et al. have a verified machine-code implementa-
tion of ML [9] (the dialect is called CakeML) and have an implementation of
the HOL light kernel which has been proved sound w.r.t. a formal semantics
of higher-order logic (HOL). At the time of writing, this CakeML project has
not yet composed the correctness theorem for the ML implementation with the
soundness result for the verified implementation of the HOL light kernel.

Kumar et al. based their semantics of HOL on work by Harrison [5], in which
Harrison formalized HOL and proved soundness of its inference rules. Harrison’s
formalization did not include any definition mechanisms.

A reduced version of the Calculus of Inductive Constructions (CiC), i.e., the
logic implemented by the Coq proof assistant, has also been formalized. Bar-
ras [1] has given reduced CiC a formal semantics in set theory and formalized
a soundness proof in Coq. Recently, Wang and Barras [15] showed that the ap-
proach is modular and applied the framework to the Calculus of Constructions
plus an abstract equational theory.

Milawa’s logic is a simplified variant of the ACL2 logic. The ACL2 logic has
previously been modeled in HOL, most impressively by Gordon et al. [3,4]. In this
work, ACL2’s S-expressions and axioms are formalized as a shallow embedding
in HOL. ACL2’s axioms are proven to be theorems in HOL, and a mechanism
is developed in which proved statements can be transferred between HOL4 and
ACL2. Our work is in many ways cleaner, e.g., Milawa’s S-expressions do not
contain characters, strings or complex rationals, which clutter proofs. As part of
our previous work on the verified Jitawa Lisp implementation, we proved that the
axioms of Milawa (milawa axioms from Section 4.4) are compatible with Jitawa’s
semantics. In the current paper, we went much further: we formalized the logic,
proved soundness of all of Milawa’s inference rules and proved soundness of the
concrete implementation of Milawa w.r.t. Jitawa’s semantics.

Other theorem prover implementations have also been verified. Noteworthy
verifications include Ridge and Margetson [14]’s soundness and completeness
proofs for a simple first-order tableau prover that can be executed in Isabelle/HOL
by rewriting, and the verification of a SAT solver with modern optimizations by
Marić [10]. Marić suggests that his SAT solver can be used as an automatically
Isabelle/HOL-code-generated implementation.

Source Code. Milawa’s soundness proof and all auxiliary files are available at
http://www.cl.cam.ac.uk/~mom22/jitawa/, and the Milawa theorem prover
is available at http://www.cs.utexas.edu/~jared/milawa/Web/.

http://www.cl.cam.ac.uk/~mom22/jitawa/
http://www.cs.utexas.edu/~jared/milawa/Web/

436 M.O. Myreen and J. Davis

Acknowledgments. We thank Thomas Sewell for commenting on drafts of this
paper. The first author was funded by the Royal Society, UK.

References

1. Barras, B.: Sets in Coq, Coq in sets. J. Formalized Reasoning 3(1) (2010)
2. Davis, J.C.: A Self-Verifying Theorem Prover. PhD thesis, University of Texas at

Austin (December 2009)
3. Gordon, M.J.C., Hunt Jr., W.A., Kaufmann, M., Reynolds, J.: An embedding of

the ACL2 logic in HOL. In: International Workshop on the ACL2 Theorem Prover
and its Applications (ACL2), pp. 40–46. ACM (2006)

4. Gordon, M.J.C., Reynolds, J., Hunt Jr., W.A., Kaufmann, M.: An integration of
HOL and ACL2. In: Formal Methods in Computer-Aided Design (FMCAD), pp.
153–160. IEEE Computer Society (2006)

5. Harrison, J.: HOL light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

6. Kaufmann, M., Manolios, P., Strother Moore, J.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers (June 2000)

7. Kaufmann, M., Slind, K.: Proof pearl: Wellfounded induction on the ordinals up
to ε0. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp.
294–301. Springer, Heidelberg (2007)

8. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with Definitions: Seman-
tics, Soundness, and a Verified Implementation. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS (LNAI), vol. 8558, pp. 302–317. Springer, Heidelberg (2014)

9. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Sewell, P. (ed.) Principles of Programming Languages (POPL).
ACM (2014)

10. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50) (2010)

11. Myreen, M.O.: Verified just-in-time compiler on x86. In: Hermenegildo, M.V., Pals-
berg, J. (eds.) Principles of Programming Languages (POPL). ACM (2010)

12. Myreen, M.O.: Functional programs: Conversions between deep and shallow em-
beddings. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 412–417.
Springer, Heidelberg (2012)

13. Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 265–280. Springer, Heidelberg (2011)

14. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

15. Wang, Q., Barras, B.: Semantics of intensional type theory extended with decidable
equational theories. In: Computer Science Logic (CSL). LIPIcs, vol. 23. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik (2013)

Balancing Lists: A Proof Pearl

Guyslain Naves1 and Arnaud Spiwack2

1 Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France
guyslain.naves@lif.univ-mrs.fr

2 Inria Paris-Rocquencourt
Ens, Paris, France

arnaud@spiwack.net

Abstract. Starting with an algorithm to turn lists into full trees which
uses non-obvious invariants and partial functions, we progressively en-
code the invariants in the types of the data, removing most of the burden
of a correctness proof.

The invariants are encoded using non-uniform inductive types which
parallel numerical representations in a style advertised by Okasaki, and
a small amount of dependent types.

1 Introduction

Starting with a list lst, we want to turn it into a binary tree tr of the following
form (in Ocaml):

type α tree =
Node of α tree * α * α tree
Leaf

With the constraints that lst must be the infix traversal of tr and that tr
must be full, in the sense that every level except the last are required to be
completely filled. Such a function turns, in particular, sorted lists into balanced
binary search trees.

There are a number of folklore algorithms to achieve this result in linear
time. Here we consider one of these algorithms, presented in Section 2, which
repeatedly pairs up trees of height h in a list to form a list of trees of height
h + 1. Our interest in this algorithm sprouts from the fact that its correctness
is not obvious; in particular the invariants are complex: the main loop operates
on a list of length 2k − 1 whose elements are alternately of two distinct forms.

In Sections 3 and 4 we show refinements of the algorithm where the invariants
are pushed into the types, leading to a complete and short proof of correctness
in Coq.

2 A Balancing Algorithm

We start by giving a first, simple, implementation of the balancing algorithm.
The heart of the algorithm relies on using an alternating list of length 2k − 1,

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 437–449, 2014.
© Springer International Publishing Switzerland 2014

438 G. Naves and A. Spiwack

where odd-position elements are trees and even-position elements are labels, of
type α (indices starting from 1). A full tree of height k can be decomposed into
the first k−1 levels, containing 2k−1−1 internal nodes, and the kth level, which
contains both nodes and leaves. Thus, the 2k−1 − 1 labels in the alternating list
will be used to label the internal nodes in the k − 1 first levels of the balanced
tree, while the 2k−1 trees, all of height at most one at first, will constitute the
level k.

Though we could encode labels as trees of height one in the alternating list,
we rather use an appropriate type for the sake of readability:

type α tree_or_elt =
Elt of α
Tree of α tree

We decompose the problem into two parts: computing an alternating list of
length 2k−1 from an arbitrary list of labels, and then transforming this alternat-
ing list into a balanced tree. We first show how to solve the second part: turning
an alternating list into a full tree.

Given an alternating list lst, by pairing the trees in lst using only one traversal
of the list, we obtain an alternating list with exactly half as many trees. Each
pairing requires two trees and one label used as a root. In order to build a list
that is alternated, we also need a second label, that is kept as a single element.
This explains why we consider at each step the four first elements of the list.

A single traversal, encoded by pass : α tree_or_elt list → α tree_or_elt_list,
reduces an alternating list of length 2k − 1 � 3 to an alternating list of length
2k−1 − 1. By iterating this process using loop : α tree_or_elt list → α tree, we
reduce the original list to a list of length one, whose one element is a balanced
tree t such that the infix traversal of t is the initial list.

let join left node right = Tree (Node (left, node, right))

let rec pass = function
Tree left :: Elt root :: Tree right :: Elt e :: others →
join left root right :: Elt e :: pass others

[Tree left; Elt root; Tree right] → [join left root right]
_ → assert false

let rec loop = function
[] → Leaf
[Tree t] → t
list → loop (pass list)

Notice how the invariant that alternating lists have length 2k−1 is maintained:
this is because, for k � 2, we have 2k − 1 = 4× (2k−2 − 1) + 3, hence we obtain
an alternating list of length 2× (2k−2 − 1) + 1 = 2k−1 − 1.

It remains to show how to transform a list of labels of length n into an
alternating list of trees and labels. Each of the original trees has height zero

Balancing Lists: A Proof Pearl 439

or one: they are leaves or contain only one label. Because we want a list of
length precisely 2k − 1, for k = 1 + �log2n�, it means we need 2k − 1− n leaves.
This quantity is computed as the variable missing. The function pad computes
the alternating list by creating as many leaves as needed, alternating them with
elements, and once enough leaves are created, promotes all the odd-position
labels into trees.

let complete list =
let n = List.length list in
let rec pow2 i = if i <= n then pow2 (2*i) else i in
let missing = (pow2 1) - n - 1 in
let rec pad missing = function

head::tail when missing <> 0 →
Tree Leaf :: Elt head :: pad (missing - 1) tail

odd::even::others → join Leaf odd Leaf :: Elt even :: pad 0 others
[single] → [join Leaf single Leaf]
[] → []

in
pad missing list

The balancing algorithm balance: α list → α tree is thus given by the com-
position of loop with complete:

let balance list = loop (complete list)

As for the complexity of this algorithm, notice that pass and complete are both
clearly in linear-time in the length of the lists on which they work, while loop
recurses on lists whose length are halved at each recursive step. Hence balance
is a linear-time algorithm.

3 Removing Partial Functions

The loop function of Section 2 relies on the invariant that the list argument has
length 2k−1. Additionally, all the odd-position values must be of the form Tree t,
whereas all the even-position values must be of the form Elt x. If either of these
invariants is broken, we would run into the assert false of pass.

It is not immediately apparent that these properties hold. If it does not take
a tremendous effort to convince oneself that the balance function of Section 2 is
indeed correct, a direct mechanically checked proof would not be very practical.

3.1 Length Invariants

Our goal in this section is to avoid resorting to assert false. In addition to making
sure that balance indeed terminates with a value, it will make it considerably
simpler to implement the balancing algorithm in Coq in Section 4. To achieve this

440 G. Naves and A. Spiwack

goal, it is necessary to have more precise types. Let us focus first on the length
invariants: we will need to define a type which contains exactly the non-empty
lists of length 2k − 1.

A data structure which holds 2k − 1 elements brings complete binary trees
to mind. Even if it is possible – though not necessary convenient – to represent
complete binary trees in Ocaml, they are not the appropriate structure. First,
because complete binary trees are full trees and are, hence, unlikely to serve as
a useful intermediate data structure to build a full tree. Second because there is
a simpler – albeit more exotic – alternative.

Indeed, lists can be seen as decorated unary numbers: there is an element at
each successor. Different kinds of lists can be obtained, more or less systemati-
cally, by varying the numerical representation. This idea goes back to Guibas &
al. in [1] and a fairly thorough exploration can be found in Okasaki [2, Chapters
9&10]. In the simplest cases, the analogous list structure corresponds to a struc-
turally recursive exponentiation algorithm. For regular lists, a list of size n whose
elements have type a can be recursively defined with the following equations:{

a0 = 1
an+1 = a× an

Replacing unary numbers with binary numbers, we obtain the binary exponen-
tiation algorithm: ⎧⎨

⎩
a2

0−1 = 1
a2n = (a2)

n

a2n+1 = a× (a2)
n

Okasaki [2, Chapter 10] uses a non-uniform inductive type to encode the latter
exponentiation algorithm into a type of lists he calls binary lists. We are only
interested in lists of length 2k−1, that is a length written only with the digit 1 in
binary representation. So following Okasaki, but skipping the second equation
above (which corresponds to the digit 0) we define the following non-uniform
inductive type, which we call power lists :

module PowerList = struct

type α t =
Zero
TwicePlusOne of α * (α*α) t

end
This type actually appears in Okasaki [2, Chapter 10] as an introduction to

non-uniform binary lists. Relatedly, Okasaki [3] leverages a tail-recursive binary
exponentiation algorithm to define a type capturing precisely square matrices;
on the other hand, Myers [4] introduced a flavour of list based on skew binary
numbers which are not easily captured as exponentiation.

Although the power lists may look like some sort of trees, it is not a very
accurate depiction. The easiest way to picture how power lists works is to see
TwicePlusOne as a fancy (::), then the lists with, respectively, 1, 3, 7, and 15
elements are as follows:

Balancing Lists: A Proof Pearl 441

– [1]
– [1;(2,3)]
– [1;(2,3);((4,5),(6,7))]
– [1;(2,3);((4,5),(6,7));(((8,9),(10,11)),((12,13),(14,15)))]

Elements appear in order, like in a regular list, but they are packed twice as
tightly after each TwicePlusOne.

Just like with regular lists, there is a map function for power lists. Due to the
non-uniformity it is a little trickier1 than the regular list map: in the recursive
steps, the argument function f needs to process two consecutive elements at a
time.

module PowerList = struct
...

let rec map : α β. (α→β) → α t → β t = fun f → function
Zero → Zero
TwicePlusOne (elt,lst) →
let f’ (x,y) = f x , f y in
TwicePlusOne (f elt , map f’ lst)

end

3.2 Alternation

In Section 2, labels are separated from trees dynamically. The pass function
verifies that trees and labels are interleaved properly, and fails if they are not.

In this section, instead, we consider a variant of α PowerList.t where every
odd position contains a tree, and every even position contains an element. More
generally, we define a type (ω,η) AlternatingPowerList.t where odd positions
have type ω, and even positions have type η. Such a list should have the following
pattern:

– [ω;(η,ω);((η,ω),(η,ω))]

After the first element, which must have type ω, there is no difference between
even and odd positions: indeed, excluding the first element, we are actually
building an (η*ω) PowerList.t. Hence the definition:

module AlternatingPowerList = struct

type (ω,η) t =
Zero
TwicePlusOne of ω * (η*ω) PowerList.t

end
1 The type annotation on PowerList.map informs Ocaml that map is a non-uniform

recursive function. Without the type annotation, Ocaml simply assumes that map is
uniformly recursive and fails to typecheck since f and f’ have different types.

442 G. Naves and A. Spiwack

For brevity, let us write PL and APL for PowerList and AlternatingPowerList
respectively.

Using these alternating power lists, we can define a version of the pass function
free of assert false. Indeed, consider an alternating power list of length at least 3:
it is of the form APL.TwicePlusOne (a, PL.TwicePlusOne ((b,c), lst)), where
lst has type ((η*ω)*(η*ω)) PowerList.t. The pass function of Section 2, as it
happens, manipulates its arguments by groups of four elements: basically, pass
is simply a map over lst.

We hence define the function pass which joins the trees in a list of length
2k+2 − 12, producing a list of length 2k+1 − 1. The function loop is virtually
unchanged from Section 2, except it acts on power lists:

let pass left (root,right) apl =
let join_up ((single,left),(root,right)) =
single, Node (left,root,right)

in
APL.TwicePlusOne (Node (left,root,right) , PL.map join_up apl)

let rec loop : ε. (ε tree,ε) APL.t → ε tree = function
APL.Zero → Leaf
APL.TwicePlusOne (tree,PL.Zero) → tree
APL.TwicePlusOne (tree,PL.TwicePlusOne (pair,apl)) →
loop (pass tree pair apl)

3.3 Padding

Now that there is no more assert false in the code of loop, we need to change
the complete function of Section 2 so that it returns an (α tree,α) APL.t rather
than a list. The heart of this section is a function which turns an α list into an
(α*α tree) PL.t. The final function, which produces an (α tree,α) APL.t is a
simple wrapper around the former.

We want to turn a list lst of length n + 1 into a pair of its first element,
converted into a tree, plus a power list of length 2× (2k−1) � n representing its
tail tail. Each element of the power list is a pair, whose first term is an element,
and its second term is a tree of height at most one. In particular, the length of
the returned power list is always even, so if tail has odd length, we will need
to insert at least a Leaf. This suggests that we may inspect the parity of the
length of tail, and insert an extra element precisely when it is odd. This leads to
a slightly different padding procedure than that of Section 2, in particular the
leaves are not inserted at the same position, but it is inconsequential.

An α list of even length can be turned into an (α*α) list whose length is halved.
This turns out to be interesting for our recursion, since it mimics the inductive
step of power lists. Also, in the case of even length, we need to distinguish the

2 To ensure that its argument list has at least three elements, pass takes the three first
elements as extra arguments. In other words pass t (x,s) l is meant to be read as
pass (APL.TwicePlusOne (t , PL.TwicePlusOne ((x,s),l))).

Balancing Lists: A Proof Pearl 443

empty case from the non-empty case: the former will be turned into the empty
power list APL.Zero while the latter will be turned into a power list of the form
APL.TwicePlusOne((x,y),l), where x and y correspond to the two first elements
of tail. These different cases are represented in the following view:

type α parity =
Empty
Odd of α * (α*α) list
Even of (α*α) * (α*α) list

let pair_up lst =
let succ elt = function

Empty → Odd (elt, [])
Odd (b,pairs) → Even ((elt,b), pairs)
Even (bc,pairs) → Odd (elt, bc::pairs)

in
List.fold_right succ lst Empty

The padding function itself, of_list, is at first sight far from intuitive. Let us
recall that we want to turn a list of labels of arbitrary length, into a power list
of pairs. A label can be thought of as a bit of weight 20, while a pair of labels
would be a bit of weight 21, and so on. At first, all our bits have weight 20 and
consists in one label each. We can build bits of higher weight by pairing up two
bits of the same weight. A bit made up only of labels is called pure. We can also
double the weight of a bit by interlacing leaves with it (with the function pad),
but this gives a bit made of pairs of labels and trees, call them impure. Lastly,
we can also transmute a pure bit into an impure bit of the same weight (with
the function coerce), by replacing odd-position labels by trees of height one.

Each recursive step consists in taking a list of pure bits of the same weight
2k, and outputing exactly one impure bit of size 2k+1, plus a list of pure bits
of weight 2k+1, which is converted recursively. We thus obtain, successively, one
bit of each weight from 21 to 2l, for some l, encoding a list of length 2l+1 − 2, as
expected.

At any recursive step, suppose first that the number of bits of weight 2k is
odd. As we need to compute only bits of weight 2k+1, one of them impure, we
are forced to use pad on one bit, and to pair up the others. Suppose now that
the number of bits of weight 2k is even. In that case, we can pair them all into
bits of weight 2k+1, and then use coerce on one of them to make the impure bit.

The last difficulty is that pad and coerce both depend on the current weight
of the bits, hence we need to update them at each recursive step. pad must add
leaves between every two consecutive labels, in even positions, while coerce must
upgrade every even-position label into a tree of height one. This leads to the
following definition:

444 G. Naves and A. Spiwack

module PowerList = struct
...

let rec of_list : α β. (α→β) → (α*α→β) → α list → β t =
fun pad coerce bits →
let pad’ (x,y) = (pad x, pad y) in
let coerce’ (x,y) = (coerce x, coerce y) in
match pair_up bits with
Empty → Zero
Odd (a,pures)→ TwicePlusOne (pad a, of_list pad’ coerce’ pures)
Even (ab,pures) →
TwicePlusOne (coerce ab, of_list pad’ coerce’ pures)

end

With that function, we can conclude our implementation. Again writing PL
and APL for PowerList and AlternatingPowerList respectively:

module AlternatingPowerList = struct
...

let of_list leaf up id = function
[] → Zero
a::l →
let pad x = id x , leaf in
let coerce (x,y) = id x , up y in
TwicePlusOne (up a, PowerList.of_list pad coerce l)

end

let singleton x = Node(Leaf,x,Leaf)
let balance l =
loop (APL.of_list Leaf singleton (fun e→e) l)

The final function, balance:α list → α tree, implements the same algorithm as
Section 2 without any partial functions.

What we may have lost in this section, compared to the simple algorithm,
is the simplicity of the complexity analysis of the algorithm. The subtleties of
the main functions require a finer analysis. Consider first the function PL.map:
clearly the number of recursive calls depends only logarithmically on the number
of elements in the power list. But each recursive call uses as its first argument
a function twice as complex than the previous one. This leads to the following
inequation over the complexity C(n,m, f) of map, where n is the number of
elements in the power list, m is the size of the elements in the power list, and f
is the complexity of the mapped function:

C(n,m, f) ≤ f(m) + C

(
n− 1

2
, 2m, k �→ 2× f(k/2) +O(1)

)
+O(1)

Balancing Lists: A Proof Pearl 445

From there, it is easy to prove that C(n,m, f) = n.f(m)+O(n), so that PL.map
runs indeed in linear-time, and so is loop. Similarly the complexity of PL.of_list
can be described by a higher-order recursive inequation (almost the same as
above, except that the complexity depends on two functions and the constant
term is replaced by a linear term), whose solution gives also a linear-time com-
plexity.

4 Turning to Coq

There is still a property of the algorithm that the implementation of Section 3
does not make obvious: that the algorithm actually does build full trees. In this
section we shall build into the type of balance that its output is indeed full.

To that effect, we will use Coq rather than Ocaml. Even if it is possible, with
some effort, to represent full trees and implement the algorithm in Ocaml – and
relatively easy in Haskell – a Coq implementation also gives us termination by
construction. Coq forces every recursion to be structural, which will prove to be
rather entertaining.

At a superficial level, a visible difference with the Ocaml implementation is
that Powerlist.t and AlternatingPowerList.t must be decorated with the k such
that the length is 2k − 1: it is the structural recursion parameter of the bal-
ance_powerlist function. Because it makes the code simpler, we will use a recur-
sive definition rather than an inductive one:

Module PowerList.

Fixpoint T (A:Type) (k:nat) :=
match k with
0 ⇒ unit:Type
S k’ ⇒ A ∗ T (A∗A) k’
end.

End PowerList.

We will also need a version where k can be arbitrary. For that purpose we use
Coq’s type of dependent pairs { n:nat & F n}. The constructor for dependent
pairs is written 〈 n , x 〉. The implicit version comes with constructors – tpo
stands for “twice plus one”:

Module PowerList.
...

Definition U (A:Type) := { k:nat & T A k }.
Definition zero {A:Type} : U A := 〈 0 , tt 〉.
Definition tpo {A:Type} (a:A) (l:U (A∗A)) : U A :=
let ’〈k,l〉 := l in
〈 S k , (a,l) 〉.

End PowerList

The definition of AlternatingPowerList.T and AlternatingPowerList.U are similar.

446 G. Naves and A. Spiwack

4.1 Full Trees

To code full trees, we index trees by their height, and specify that leaves can
happen only at height 0 or 1:

Inductive FullTree (A:Type) : nat → Type :=
Leaf0 : FullTree A 0
Leaf1 : FullTree A 1
Node {k:nat} : FullTree A k → A → FullTree A k → FullTree A (S k).

If we omitted the constructor Leaf1, we would have a definition of complete
binary trees: both subtrees of a node are complete binary trees of the same
height. We allow the full trees to be incomplete by letting Leaf1 take the place
of nodes on the last level.

Using the type FullTree A k in place of the type α tree, the functions pass and
balance_powerlist are virtually unmodified3 with respect to Section 3. Only their
types change to reflect the extra information:

Definition pass {A k p} : APL.T (FullTree A (S p)) A (S (S k)) →
APL.T (FullTree A (S (S p))) A (S k).

Fixpoint loop {A k p} : APL.T (FullTree A (S p)) A (S k) →
FullTree A (plus k (S p)) {struct k}.

The algorithm indeed builds only full trees.

4.2 Structural Initialisation

The padding conversion from lists to power lists, in Section 3, is not structural
due to the use of pair_up in the recursive call. To tackle this recursion, we shall
make use of another intermediate structure. What we need, essentially, is that
all the calls to pair_up are pre-calculated, so the intermediate structure will be
like parity except that the calls to (α*α) list are replaced by inductive calls.

As it turns out, this is another non-uniform datatype which corresponds to a
numerical representation. Indeed, any natural number can be written in binary
with digits 1 and 2 (but not 0). In this system, for example, 8 = 1 × 22 + 1 ×
21 + 2 × 20 is represented as 112. Here is the definition, where tpo reads “twice
plus one” and tpt “twice plus two”:

Module BinaryList.

Inductive T (A:Type) : Type :=
zero
tpo (a:A) (l:T (A∗A))
tpt (a b: A) (l:T (A∗A)).

End BinaryList.
3 In fact, as can be seen from its type, loop only handles non-empty alternating power

lists. This is due to a small technicality: the recursive step of loop is the case S (S k),
but Coq does not recognise S k as a structural subterm of S (S k), so the definition
from Section 3 does not verifies Coq’s structural recursion criterion. As a workaround,
the empty case is moved to the balance function.

Balancing Lists: A Proof Pearl 447

To turn a non-empty list into a BinaryList.T, all we need is a function cons of
type A → T A → T A to add an element in front of the list. On the numerical
representation side, it corresponds to adding 1. It behaves like adding 1 in the
usual binary representation, except that 1-s are turned into 2-s without a carry
and 2-s into 1-s while producing a carry:

Module BinaryList.
...

Fixpoint cons {A} (a:A) (l:T A) : T A :=
match l with
zero ⇒ tpo a zero
tpo b l ⇒ tpt a b l
tpt b c l ⇒ tpo a (cons (b,c) l)
end.

Definition of_list {A} (l:list A) : T A :=
List.fold_right cons zero l.

End BinaryList.

Note that while cons takes, in the worst case, logarithmic time with respect
to the length of the list, building a list by repeatedly using cons is still linear.
Indeed, as previously mentioned, cons mimics the successor algorithm for binary
numbers, whose amortized complexity is well-known to be constant.

We also need a function which turns a T (A∗A) into a T A. This is effectively
multiplication by 2. The lack of 0 among the digits4 makes this process recursive.
A simple presentation of the doubling algorithm consists in adding a 0 at the
end of the number, then eliminating the 0 using the following equalities:⎧⎨

⎩
0 = ·
x20 = x12
x10 = x02

In terms of binary lists:

Module BinaryList.
...

Fixpoint twice {A} (l:T (A∗A)) : T A :=
match l with
zero ⇒ zero
tpo (a,b) l ⇒ tpt a b (twice l)
tpt (a,b) cd l ⇒ tpt a b (tpo cd l)
end.

End BinaryList.

We can now write a structurally recursive padding function, using binary
lists as the structural argument. As we do not know in advance the length of
4 The constructor zero represents an empty list of digits.

448 G. Naves and A. Spiwack

the produced list, a PowerList.U is returned. We write BL as a shorthand for
BinaryList:

Module PowerList.
...

Fixpoint of_binary_list {A X} (d:A→X) (f:A∗A→X) (l:BL.T A) : U X :=
match l with
BL.zero ⇒ zero
BL.tpo a l ⇒
tpo (d a) (of_binary_list (d×d) (f×f) l)
BL.tpt a b l ⇒
tpo (f (a,b)) (of_binary_list (d×d) (f×f) l)

end.

End PowerList.
Where g×f is the function which maps (x,y) to (g x,f y).

The rest follows straightforwardly, and we can define the following functions
which conclude the algorithm (BL, PL, and APL stand for BinaryList, PowerList,
and AlternatingPowerList respectively):

Module AlternatingPowerList.
...

Definition of_binary_list {A Odd Even}
(d:Odd) (f:A→Odd) (g:A→Even) (l:BL.T A) : U Odd Even :=

match l with
BL.zero ⇒ zero
BL.tpo a l ⇒
let d’ x := (g x , d) in
tpo (f a) (PL.of_binary_list d’ (g×f) (BL.twice l))
BL.tpt a b l ⇒
let d’ x := (g x , d) in
tpo (f a) (PL.of_binary_list d’ (g×f) (BL.tpo b l))

end.

Definition of_list {A Odd Even}
(d:Odd) (f:A→Odd) (g:A→Even) (l:list A) : U Odd Even :=

of_binary_list d f g (BL.of_list l).

End AlternatingPowerList.

Definition singleton {A:Type} (x:A) : FullTree A 1 :=
Node Leaf0 x Leaf0.

Definition balance {A:Type} (l:list A) : { k:nat & FullTree A k } :=
let ’〈k,l〉 := APL.of_list Leaf1 singleton (fun x⇒x) l in
match k with
0 ⇒ fun _ ⇒ 〈 0 , Leaf0 〉
S k ⇒ fun l ⇒ 〈 plus k 1 , loop l 〉
end l.

Balancing Lists: A Proof Pearl 449

5 Conclusion

The balance function of Section 4 is, by virtue of its type alone, a total function
which turns lists into full binary trees. Yet, to the cost of using intermediary
data-structures, it effectively implements the algorithm of Section 2.

The missing piece is to prove that the infix traversal of balance l is indeed l.
The infix traversal of a (full) tree is represented in Coq with the functions

Fixpoint list_of_full_tree_n {A n} (t:FullTree A n) : list A :=
match t with
Leaf0 ⇒ []
Leaf1 ⇒ []
Node _ t1 x t2 ⇒
list_of_full_tree_n t1 ++ [x] ++ list_of_full_tree_n t2

end.

Definition list_of_full_tree {A} (t:{ k:nat & FullTree A k }) : list A :=
list_of_full_tree_n (projT2 t).

We can then state the theorem:

Theorem balance_preserves_order A (l:list A) :
list_of_full_tree (balance l) = l.

The proof is short and straightforward: we define a traversal function for each
intermediate structure; and state a variant of balance_preserves_order for each
intermediate function. Proving the intermediate lemmas is not difficult and can
be mostly automatised: we use a very simple generic automated tactic, which
discharges most goals. This theorem concludes our easy formal proof of the
balancing algorithm.

References

1. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation
for linear lists. In: Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing, STOC 1977, pp. 49–60. ACM Press, New York (1977)

2. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
3. Okasaki, C.: From fast exponentiation to square matrices. In: Proceedings of the

Fourth ACM SIGPLAN International Conference on Functional Programming,
ICFP 1999, pp. 28–35. ACM Press, New York (1999)

4. Myers, E.W.: An applicative random-access stack. Information Processing Let-
ters 17, 241–248 (1983)

Unified Decision Procedures
for Regular Expression Equivalence

Tobias Nipkow and Dmitriy Traytel

Fakultät für Informatik, Technische Universität München, Germany

Abstract. We formalize a unified framework for verified decision procedures for
regular expression equivalence. Five recently published formalizations of such
decision procedures (three based on derivatives, two on marked regular expres-
sions) can be obtained as instances of the framework. We discover that the two
approaches based on marked regular expressions, which were previously thought
to be the same, are different, and we prove a quotient relation between the au-
tomata produced by them. The common framework makes it possible to compare
the performance of the different decision procedures in a meaningful way.

1 Introduction

Equivalence of regular expressions is a perennial topic in computer science. Recently
it has spawned a number of formalized and verified decision procedures for this task in
interactive theorem provers [3, 6, 10, 19, 21]. Except for the formalization by Braibant
and Pous [6], all these decision procedures operate directly on variations of regular
expressions. Although they (implicitly) build automata, the states of the automata are
labeled with regular expressions, and there is no global transition table but the next-
state function is computable from the regular expressions. The motivation for working
with regular expressions is simplicity: regular expressions are a free datatype which
proof assistants and their users love because it means induction, recursion and equa-
tional reasoning—the core competence of proof assistants and functional programming
languages. Yet all these decision procedures based on regular expressions look very
different. Of course, the next-state functions all differ, but so do the actual decision pro-
cedures and their correctness, completeness and termination proofs. The contributions
of our paper are the following:

– A unified framework (Sect. 3) that we instantiate with all the above approaches
(Sects. 4 and 5). The framework is a simple reflexive transitive closure computation
that enumerates the states of a product automaton.

– Proofs of correctness, completeness and termination that are performed once and
for all for the framework based on a few properties of the next-state function.

– A new perspective on partial derivatives that recasts them as Brzozowski derivatives
followed by some rewriting (Sect. 4).

– The discovery that Asperti’s algorithm is not the one by McNaughton-Yamada [20],
as stated by Asperti [3], but a dual construction which apparently had not been
considered in the literature and which produces smaller automata (Sect. 5).

– An empirical comparison of the performance of the different approaches (Sect. 6).

The discussion of related work is distributed over the relevant sections of the paper.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 450–466, 2014.
© Springer International Publishing Switzerland 2014

Unified Decision Procedures for Regular Expression Equivalence 451

2 Preliminaries

Isabelle/HOL (see [22, Part I] for a recent introduction) is based on Church’s simple
type theory. Types τ are built from type variables α, β, etc. via function types, other
type constructors are written postfix. The notation t :: τ means that term t has type τ.
Types αset and α list are the types of sets and lists of elements of type α. They come
with the following vocabulary: function set (conversion from lists to sets), [] (empty
list), # (list constructor), @ (append), hd (head), tl (tail) and map.

Recursive functions over datatypes are executable, and Isabelle can generate from
them code in functional languages [15]. This includes functions on finite sets [14].
Unless stated otherwise all functions in this paper are executable.

Locales [4] are Isabelle’s tool for modelling parameterized systems. A locale fixes
parameters and states assumptions about them:

locale A = fixes x1 and . . . and xn assumes n1 : P1 x and . . . and nm : Pm x

In the context of the locale A, we can define constants that depend on the parameters xi

and prove properties about those constants using the assumptions Pi (accessed under the
name ni). Parameters can be instantiated: interpretation J: A where x1 = t1 . . . xn = tn.
The command issues proof obligations Pi t (that the user must discharge) and exports
constants and theorems from the locale with xi instantiated to ti. Multiple interpretations
of the same locale are possible; the prefix “J.” disambiguates different instances.

Regular expressions are defined as a recursive datatype:

datatype αrexp = 0 | 1 | A α | αrexp + αrexp | αrexp · αrexp | (αrexp)∗

with the usual (non-executable) semantics L :: αrexp → α lang, where α lang is short
for (α list) set. In concrete regular expressions, we sometimes omit the constructor A
for readability. The recursive function nullable :: αrexp → bool satisfies nullable r ←→
[] ∈ L r. The functions Σ :: αrexp → αset and atoms :: αrexp → α list compute the
set and list of atoms (the arguments of constructor A) in a regular expression. The
(non-executable) left quotient of a language L :: α lang w.r.t. some a :: α is defined by
D a L = {w | a # w ∈ L}. The extension of D from single symbols to words w :: α list
can be expressed as foldD w where fold :: (α→ β→ β)→ α list → β→ β.

3 Regular Expression Equivalence Framework

Regular expression (language) equivalence is usually reduced to (language) equiva-
lence of automata. In principle our framework does the same, except that we construct
the automata on the fly and replace the traditional transition table by computations on
regular-expression-like objects. We start by relating regular expressions and automata.

Left quotients of a regular language L can be understood as states of a deterministic
automaton ML with the initial state L, the transition function D , and the accepting
states being those languages K for which [] ∈ K holds. This automaton (restricted to
reachable states) is finite and minimal by the Myhill-Nerode theorem.1 The following
locale captures this left-quotient-based view of an automaton:

1 Note that the Myhill-Nerode relation ≈L can be defined as v≈L w←→ foldD v L = foldD w L.
The quotient of ML by this relation is isomorphic to ML; hence ML is minimal.

452 T. Nipkow and D. Traytel

locale rexpDA =
fixes ι :: αrexp →σ and L ::σ→ α lang and δ :: α→σ→σ and o ::σ→ bool
assumes ιL: L(ι r) =L r and δL: L(δ a s) =D a (L s) and oL: o s ←→ [] ∈ L s

The parameters ι and L formalize what “regular-expression-like” means: ι r embeds the
regular expression r into a state of type σ, whereas L gives elements of σ a language
semantics, which coincides with the language semantics of regular expressions by the
assumption ιL. The function δ is the symbolic computation of left quotients on σ ac-
cording to δL. It can be regarded as the transition function of an automaton with states
in σ and the initial state ι r. Accepting states of this automaton are given by o.

Let us develop and verify some algorithms in the context of rexpDA. For a start,
regular expression matching is easy to define

match r w = o (fold δ w (ι r))

and prove correct: match r w ←→ w ∈L r.
Now we tackle the equivalence checker. We follow the well-known product automa-

ton construction where language equivalence means o s1 ←→ o s2 for all states (s1, s2)
of the product automaton. Alternatively, one can view this procedure as the construction
of a bisimulation relation between two automata: language equivalence and existence of
a bisimulation coincide for deterministic automata [24]. The set of reachable states of
an automaton can be obtained as the reflexive transitive closure of the start state under
λ p.map (λa. δ a p) as where as :: α list is the alphabet.

We define a reflexive transitive closure operation

rtc :: (α→ bool)→ (α→ α list)→ α→ (α list×αset)option

where type αoption is the datatype None | Some α. It is used to encode whether the
closure is finite (Some is returned) or infinite (None is returned). The function rtc is
defined using a while combinator and is executable (provided its arguments being exe-
cutable); the result Some corresponds to a terminating computation [19]. The definition
can be found in Isabelle/HOL’s library theory While_�Combinator under its full name
rtrancl_�while. The parameters and result of rtc p next start have the following meaning:
Predicate p is a test that stops the closure computation if an element not satisfying p is
found; this is merely an optimization. Function next maps an element to a list of succes-
sors. Of course start is the start element. A result Some (ws, Z) means that the closure
computation terminated with a worklist ws and a set of reachable elements Z. If ws is
empty, Z is the set of all elements reachable from start; otherwise, the computation was
stopped because an element not satisfying p was found. More precisely, we proved

rtc p next start = Some (ws, Z) =⇒
if ws = [] then Z = R ∧ (∀z ∈ Z. p z) else ¬p (hd ws) ∧ hd ws ∈ R

(1)

where R = {(x, y) | y ∈ set (next x)}∗ “ {start} and “ is infix relation application:
r “ {x}= {y | (x, y) ∈ r}.

The state space of the product automaton is computed as follows:

closure :: α list → σ×σ→ ((σ×σ) list× (σ×σ)set)option
closure as = rtc (λ(s, t). o s ←→ o t) (λ(s, t).map (λa. (δ a s, δ a t)) as)

Unified Decision Procedures for Regular Expression Equivalence 453

The predicate λ(s, t). o s ←→ o t stops the computation as soon as a contradiction to
language equality is found. The actual language equivalence checker merely needs to
test if the worklist is empty at the end:

eqv :: αrexp → αrexp → bool
eqv r s = case closure (atoms r @ atoms s) (ι r, ι s) of

Some ([], _)⇒ True
| _ ⇒ False

The alphabet given to closure is the concatenation of the atoms in the two expressions.
Soundness of eqv is an easy consequence of the following property, which in turn

follows from (1):

closure (atoms r @ atoms s) (ι r, ι s) = Some (ws, Z) =⇒
ws = [] ←→ L r = L s

(2)

Theorem 1 (in rexpDA). eqv r s =⇒ L r =L s.

This is a partial correctness statement because it assumes that the call to closure in eqv
returns Some, i.e. terminates.

Termination of closure needs finiteness of the underlying automaton. Therefore we
extend rexpDA with an explicit assumption of finiteness:

locale rexpDFA = rexpDA+
assumes fin: finite {fold δ w (ι r) | w :: α list}

In this context the termination lemma for closure is an easy consequence of fin and the
following termination property of rtc:

finite ({(x, y) | y ∈ set (f x)}∗ “ {x}) =⇒ ∃y. rtc p f x = Some y

Lemma 2 (in rexpDFA). closure as (ι r, ι s) �= None.

Together with (2) this implies completeness of eqv:

Theorem 3 (in rexpDFA). L r =L s =⇒ eqv r s.

This is the end of all considerations about equivalence of regular expressions. The rest
of the paper merely needs to focus on various methods for turning regular expressions
into finite automata in the sense of rexpDFA.

Note that ML defined above constitutes a first valid interpretation of rexpDFA. The
proof of fin requires the Myhill-Nerode theorem.

interpretationM : rexpDFA where
ι r = L r
δ a L = D a L
o L = [] ∈ L
L L = L

This interpretation is not executable because neither its next-step function D (being
based on infinite sets of words defined by a set comprehension) nor the equality on
σ= α lang (which is needed for the closure computation) is executable.

454 T. Nipkow and D. Traytel

4 Derivatives

In 1964, Brzozowski [7] showed how to compute left quotients syntactically—as deriva-
tives of regular expressions. Derivatives have been rediscovered in proof assistants by
Krauss and Nipkow [19] and Coquand and Siles [10]. Our first executable instantiations
of the framework reuse infrastructure from earlier formalizations in Isabelle [19, 26].

A refinement of Brzozowski’s approach, partial derivatives, was introduced by An-
timirov [2] and formalized by Moreira et al. [21] in Coq and by Wu et al. [27] in
Isabelle. Partial derivatives operate on finite sets of regular expressions. They can be
viewed either as a nondeterministic automaton with regular expressions as states or as
the corresponding deterministic automaton obtained by the subset construction.

In the following, we integrate the two notions in our framework and show how
derivatives can be used to simulate partial derivatives without invoking sets explicitly.

4.1 Brzozowski’s Derivatives

Given a letter c and a regular expression r, the (Brzozowski) derivative der :: α →
αrexp → αrexp of r w.r.t. a is defined by primitive recursion:

der _ 0 = 0
der _ 1 = 0
der a (A x) = if x = a then 1 else 0
der a (r + s) = der a r + der a s
der a (r · s) = if nullable r then (der a r · s) + der a s else der a r · s
der a (r∗) = der a r · r∗

It follows by induction on r that the language of the derivative der a r is exactly the
left quotient D a (L r). This property corresponds exactly to the assumption δL of the
locale rexpDA. Hence it suggests the following interpretation:

interpretation rexpDA where
ι r = r δ a r = der a r o r = nullable r L r = L r

Unfortunately, the sound equivalence checker that is produced by this interpretation is
useless in practice, because it will rarely terminate. For example, the automaton con-
structed from the regular expression a∗ is infinite, as all derivatives w.r.t. words an are
distinct: fold der a1 a∗ = 1 · a∗; fold der an+1 a∗ = 0 · a∗ + fold der an a∗.

Fortunately, Brzozowski showed that there are finitely many equivalence classes of
derivatives modulo associativity, commutativity and idempotence (ACI) of the + con-
structor. We prove that the number of distinct derivatives of r modulo ACI is finite:
finite {[fold der w r]∼ | w ∈ (Σ r)∗} where [r]∼ = {s | r ∼ s} denotes the equivalence
class of r and the ACI equivalence ∼ is defined inductively as follows.

r + (s + t)∼ (r + s) + t r + s ∼ s + r r + r ∼ r

r ∼ r r ∼ s
s ∼ r

r ∼ s s ∼ t
r ∼ t

r1 ∼ s1 r2 ∼ s2
r1 + r2 ∼ s1 + s2

r1 ∼ s1 r2 ∼ s2
r1 · r2 ∼ s1 · s2

r ∼ s
r∗ ∼ s∗

Unified Decision Procedures for Regular Expression Equivalence 455

ACI-equivalent regular expressions r ∼ s have the same atoms and same languages,
and their equivalence is preserved by the derivative: der b r ∼ der b s for all b ∈ Σr.
This enables the following interpretation that operates on ACI equivalence classes. We
obtain a first totally correct and complete equivalence checker D∼.eqv in Isabelle/HOL.

interpretation D∼ : rexpDFA where
ι r = [r]∼
δ a [r]∼ = [der a r]∼
o [r]∼ = nullable r
L [r]∼ = L r

[a∗ ·b]∼ [(0 ·a∗) ·b + 1]∼

[(1 ·a∗) ·b + 0]∼

[((0 ·a∗ + 1 ·a∗) ·b + 0) + 0]∼

[((0 ·a∗ + 0 ·a∗) ·b + 1) + 0]∼

[((0 ·a∗ + 0 ·a∗) ·b + 0) + 0]∼

a

b

a
b

a, b

b

a, b

a

a, b

Fig. 1. Derivative automaton modulo ACI for a∗ · b

Technically, the formalization defines a quotient type [18] of “regular expressions
modulo ACI” to represent equivalence classes and uses Lifting and Transfer [17] to lift
operations on regular expressions to operations on equivalence classes. The above pre-
sentation of definitions of the locale parameters by “pattern matching” on equivalence
classes resembles the code generated by Isabelle for quotients (a pseudo-constructor
[14], [_]∼, wraps a concrete representative r), rather than the actual definitions by
Lifting.

Since the equivalence checker must compare equivalence classes, the code gener-
ation for quotients requires an executable equality (i.e. a decision procedure for ∼-
equivalence). We achieve this through an ACI normalization function 〈_〉 that maps a
regular expression r to a canonical representative of [r]∼ by sorting all summands w.r.t.
an arbitrary fixed linear order 7 while removing duplicates. The definition of 〈_〉 em-
ploys a smart (simplifying) constructor ⊕, whose equations are matched sequentially.

〈0〉 = 0
〈1〉 = 1
〈A a〉 = A a
〈r + s〉 = 〈r〉 ⊕ 〈s〉
〈r · s〉 = 〈r〉 · 〈s〉
〈r∗〉 = 〈r〉∗

(r + s)⊕ t = r ⊕ (s ⊕ t)
r ⊕ (s + t) = if r = s then s + t

else if r 7 s then r + (s + t)
else s + (r ⊕ t)

r ⊕ s = if r = s then r
else if r 7 s then r + s else s + r

We obtain an executable decision procedure for ACI equivalence: r ∼ s ←→ 〈r〉 = 〈s〉.
This makes D∼.eqv executable, yielding verified code in different functional program-
ming languages via Isabelle’s code generator. Yet, the performance of the generated
code is disappointing. Fig. 1 shows why: Derivations clutter concrete representatives
with duplicated summands. Further derivation steps perform the same computation re-
peatedly and hence become increasingly expensive. This bottleneck is avoided by taking
canonical ACI-normalized representatives as states yielding a second interpretation.

456 T. Nipkow and D. Traytel

interpretationD : rexpDFA where
ι r = 〈r〉
δ a r = 〈der a r〉
o r = nullable r
L r = L r

a∗ · b 1 + (0 · a∗) · b

0 + (1 · a∗) · b

0 + (0 · a∗ + 1 · a∗) · b

0 + (1 + (0 · a∗) · b)

0 + (0 · a∗) · b

a

b

a

b

a, b

b

a, b

a

a, b

Fig. 2. ACI-normalized derivative automaton for a∗ · b

A few points are worth mentioning here: First, D does not use the quotient type—it
operates directly on canonical representatives and therefore can use structural equality
for comparison (rather than ∼). Second, the interpretations D∼ and D yield structurally
the same automata, although with different labels. Fig. 2 shows the automaton produced
by D for a∗ ·b. This observation—which enables us to reuse the technically involved
proof of D∼.fin to discharge D.fin—relies crucially on our normalization function 〈_〉
being idempotent and well-behaved w.r.t. derivatives:

Lemma 4. We have 〈〈r〉〉 = 〈r〉 and 〈der b〈r〉〉= 〈der b r〉 for all b ∈ Σ r.

The automaton from Fig. 2 shows that the state labels still contain superfluous informa-
tion, notably in the form of 0s and 1s. A coarser relation than ∼-equivalence, denoted
≈, adresses this concern. We omit the straightforward inductive definition of ≈, which
cancels 0s and 1s where possible and takes the associativity of concatenation · into ac-
count. Coarseness ([r]∼ ⊆ [r]≈) together with D∼.fin implies finiteness of equivalence
classes of derivatives modulo ≈: finite {[fold der w r]≈ | w ∈ (Σ r)∗}.

As before, to avoid working with equivalence classes, we use a recursively de-
fined ≈-normalization function 〈〈_〉〉 similar to 〈_〉 (it corresponds to the norm func-
tion from the formalization by Krauss and Nipkow [19]). However, 〈〈_〉〉 (also ≈) is
not well-behaved w.r.t. derivatives: for example, 〈〈der a 〈〈((a + 1) · (a · a)) · b〉〉〉〉 �=
〈〈der a (((a + 1) · (a · a)) · b)〉〉. The normalization would need to take the distributiv-
ity of · over + into account to prevent this disequality, but even with this addition a
formal proof of well-behavedness seems difficult. Furthermore, our evaluation (Sect. 6)
suggests that not too much energy should be invested in finding this proof. Thus, the
following interpretation gives only a partial correctness result.

interpretationN : rexpDA where
ι r = 〈〈r〉〉
δ a r = 〈〈der a r〉〉
o r = nullable r
L r = L r

a∗ · b 1 0
b a, b

a

a, b

Fig. 3. Normalized derivative automaton for a∗ · b

In practice, we did not find an input for which N would construct an infinite automa-
ton. For the example a∗ · b it even yields the minimal automaton shown in Fig. 3.

Unified Decision Procedures for Regular Expression Equivalence 457

4.2 Partial Derivatives

Partial derivatives split certain +-constructors into sets of regular expressions, thus cap-
turing ACI equivalence directly in the data structure. The automaton construction for a
regular expression r starts with the singleton set {r}. More precisely, partial derivatives
pder :: α→ αrexp → (αrexp)set are defined recursively as follows:

pder _ 0 = {}
pder _ 1 = {}
pder a (A x) = if x = a then {1} else {}
pder a (r + s) = pder a r ∪ pder a s
pder a (r · s) = if nullable r then (pder a r8 s) ∪ pder a s else pder a r8 s
pder a (r∗) = pder a r8 r∗

Above, R8 s is used as a shorthand notation for {r · s | r ∈ R}. The definition yields
the characteristic property of partial derivatives by induction on r:

D a (L r) =
⋃

s∈pder a r L s

Following this characteristic property, we can interpret the locale rexpDFA. The au-
tomaton constructed by P for our running example is shown in Fig. 4.

interpretation P: rexpDFA where
ι r = {r}
δ a R =

⋃
r∈R pder a r

o R = ∃r ∈ R. nullable r
L R =

⋃
r∈RL r

{a∗ · b}

{(1 · a∗) · b}

{1} {}
b a, b

a b

a

a, b

Fig. 4. Partial derivative automaton for a∗ · b

The assumptions of rexpDA (inherited by rexpDFA) are easy to discharge. Just as for
Brzozowski derivatives, only the proof of finiteness of the reachable state space P.fin
poses a challenge. We were able to reuse the proof by Wu et al. [27] who show finiteness
when proving one direction of the Myhill-Nerode theorem. Compared with the proof of
D.fin, the formal reasoning about partial derivatives appears to be more succinct.

There is a direct connection between pder and der that seems not to have been cov-
ered in the literature. It is best expressed in terms of a recursive function pset ::αrexp →
(αrexp) set that translates derivatives to partial derivatives: pset (der a r) = pder a r.

pset 0 = {} pset (r + s) = pset r ∪ pset s
pset 1 = {1} pset (r · s) = pset r8 s
pset (A x) = {A x} pset (r∗) = {r∗}

A finite set R of regular expressions can be represented uniquely by a single regular
expression ∑R, a sum ordered w.r.t. 7. Hence, we have ∑pset (der a r) = ∑pder a r,
meaning that we can devise a normalization function 〈〈〈r〉〉〉 = ∑pset r that allows us to
simulate partial derivatives while operating on plain regular expressions. Alternatively,
〈〈〈_〉〉〉 can be defined using smart constructors (with sequentially matched equations):

458 T. Nipkow and D. Traytel

〈〈〈0〉〉〉 = 0
〈〈〈1〉〉〉 = 1
〈〈〈A a〉〉〉 = A a
〈〈〈r + s〉〉〉 = 〈〈〈r〉〉〉 � 〈〈〈s〉〉〉
〈〈〈r · s〉〉〉 = 〈〈〈r〉〉〉 � s
〈〈〈r∗〉〉〉 = r∗

0 � r = 0
(r + s)� t = (r � s)� (s � t)
r � s = s · t

0 � r = r
r � 0 = r
(r + s)� t = r � (s � t)
r � (s + t) = if r = s then s + t

else if r 7 s then r + (s + t)
else s + (r � t)

r � s = if r = s then r
else if r 7 s then r + s

else s + r

This definition allows to contrast the implicit quotienting performed by partial deriva-
tives with the qoutienting modulo ACI equivalence (∼). They turn out to be incompa-
rable: 〈〈〈_〉〉〉 does not simplify the second argument of concatenation · and the argument
of iteration ∗, but erases 0s and uses left distributivity.

Finally, we obtain a last derivative-based interpretation using the characteristic prop-
erty 〈〈〈der b r〉〉〉= ∑(pder b r) and P.fin to discharge the finiteness assumption fin.

interpretation PD : rexpDFA where
ι r = 〈〈〈r〉〉〉
δ a r = 〈〈〈der a r〉〉〉
o r = nullable r
L r = L r

Whenever P yields an automaton for r with states labeled with finite sets of regular
expressions Xi, PD constructs structurally the same automaton for r labeled with ∑ Xi.

5 Marked Regular Expressions

One of the oldest methods for converting a regular expression into an automaton is
based on the idea of identifying the states of the automaton with positions in the regular
expression. Both McNaughton and Yamada [20] and Glushkov [13] mark the atoms
in a regular expression with numbers to identify positions uniquely. In this section,
we formalize two recent reincarnations of this approach due to Fischer et al. [11] and
Asperti [3]. They are based on the realization that in a functional programming setting,
it is most convenient to represent positions in a regular expression by marking some of
its atoms. First we define an infrastructure for working with marked regular expressions.
Then we define and relate both reincarnations in terms of this infrastructure.

Marked regular expressions are formalized by the following type synonym (where
the value True denotes a marked atom)

α mrexp = (bool×α)rexp

We convert easily between rexp and mrexp with the help of map_rexp, the map function
on regular expressions:

strip=map_rexp snd
emtpy_�mrexp=map_rexp (λr. (False, r))

Unified Decision Procedures for Regular Expression Equivalence 459

The language Lm :: αmrexp → α lang of a marked regular expression is the set of words
that start at some marked atom:

Lm 0 = {}
Lm 1 = {}
Lm (A (m, a)) = if m then {[a]} else {}
Lm (r + s) = Lm r ∪Lm s
Lm (r · s) = (Lm r · L (strip s)) ∪Lm s
Lm (r∗) = Lm r · L (strip r)∗

The function final ::αmrexp→ bool tests if some atom at the “end” of a given regular
expression is marked:

final 0 = False
final 1 = False
final (A (m, a)) = m
final (r + s) = (final r ∨ final s)
final (r · s) = (final s ∨ nullable s ∧ final r)
final (r∗) = final r

Marks are moved around a regular expression by two operations. The function read a r
unmarks all atoms in r except a:

read :: α→ α mrexp → α mrexp
read a = map_rexp (λ(m, x). (m ∧ a = x, x))

Its characteristic lemma is that it restricts Lm r to words whose head is a:

Lm (read a r) = {w ∈Lm r | w �= [] ∧ hd w = a}

The function follow m r moves all marks in r to the “next” atom, much like an ε-
closure; the mark m is pushed in from the left:

follow :: bool → α mrexp → α mrexp
follow m 0 = 0
follow m 1 = 1
follow m (A (_, a)) = A (m, a)
follow m (r + s) = follow m r + follow m s
follow m (r · s) = follow m r · follow (final r ∨ m ∧ nullable r) s
follow m (r∗) = (follow (final r ∨ m) r)∗

The characteristic lemma about follow shows that the marks are moved forward, thereby
chopping off the first letter (in the generated language), and that the parameter m indi-
cates whether every “first” atom should be marked:

Lm (follow m r) = {tl w | w ∈Lm r} ∪ (if m then L (strip r) else {})−{[]}

5.1 Mark After Atom

In the work of McNaughton-Yamada-Glushkov, the mark indicates which atom has just
been read, i.e. the mark is located “after” the atom. Therefore the initial state is special

460 T. Nipkow and D. Traytel

because nothing has been read yet. Thus we express the states of the automaton as a
pair of a boolean (True means that nothing has been read yet) and a marked regular
expression. The boolean can be viewed as a mark in front of the automaton. (Alterna-
tively, one could work with an explicit start symbol in front of the regular expression.)
We interpret the locale rexpDFA as follows:

interpretation A : rexpDFA where
ι r = (True, emtpy_�mrexp r)
δ a (m, r) = (False, read a (follow m r))
o (m, r) = (final r ∨ m ∧ nullable r)
L (m, r) = Lm(follow m r) ∪ (if o (m, r) then {[]} else {})

The definition of δ expresses that we first build the ε-closure starting from the marked
atoms (via follow) and then read the next atom. With the characteristic lemmas about
read and follow (and a few auxiliary lemmas), the locale assumptions are easily proved.
This yields our first version of automata based on marked regular expressions.

Finiteness of the reachable part of the state space is proved via the lemma

fold δ w (ι r) ∈ {True, False}×mrexps r

where mrexps :: αrexp → (αmrexp) set maps a regular expression to the finite set of all
its marked variants, i.e. mrexps r = {r′ | strip r′ = r}; its actual recursive definition is
straightforward and omitted.

Now we take a closer look at the work of Fischer et al. [11], which inspired the
preceding formalization. They present a number of (not formally verified) matching
algorithms on marked regular expressions in Haskell that follow McNaughton-Yamada-
Glushkov. This is their basic transition function:

shift :: bool → α mrexp → α→ αmrexp
shift _ 0 _ = 0
shift _ 1 _ = 1
shift m (A (_, x)) c = A (m ∧ (x = c), x)
shift m (r + s) c = shift m r c + shift m s c
shift m (r · s) c = shift m r c · shift (final r ∨ m ∧ nullable r) s c
shift m (r∗) c = (shift (final r ∨ m) r c)∗

A simple induction proves that their shift is our δ:

shift m r x = read x (follow m r)

Thus we have verified their shift function. Fischer et al. optimize shift further, which is
still quadratic due to the calls of the recursive functions final and nullable. They simply
cache the values of final and nullable at all nodes of a regular expression by adding
additional fields to each constructor. We have verified this optimization step as well,
yielding another interpretation A2 (omitted here).

5.2 Mark Before Atom

Instead of imagining the mark to be after an atom, it can also be viewed to be in front of
it, i.e. it marks possible next atoms. This is somewhat dual to the McNaughton-Yamada-
Glushkov construction. It leads to the following interpretation of the rexpDA locale:

Unified Decision Procedures for Regular Expression Equivalence 461

interpretation B : rexpDFA where
ι r = (follow True (emtpy_�mrexp r), nullable r)
δ a (r, m) = let r′ = read a r in (follow False r′, final r′)
o (r, m) = m
L (r, m) = Lm r ∪ (if m then {[]} else {})

The definition of δ expresses that we first read an atom and then build the ε-closure.
The assumptions of rexpDA and rexpDFA are proved easily just like in the previous
interpretation with marked regular expressions.

The interesting point is that this happens to be the algorithm formalized by As-
perti [3]. Although he says that he has formalized McNaughton-Yamada, he actually
formalized the dual algorithm. This is not easy to see because Asperti’s formalization
is considerably more involved than ours, with many auxiliary functions. Strictly speak-
ing, his algorithm is a variation of ours that produces the same automata. The complete
proof of this fact can be found elsewhere [16]. Because of the size of Asperti’s formal-
ization, there is not enough space here to give the detailed equivalence proof. However,
we can take a step towards his formulation and merge follow and read into one function
move :: α→ α mrexp → bool → α mrexp, the analogue of his homonymous function:

move _ 0 _ = 0
move _ 1 _ = 1
move c (A (_, x)) m = A (m, x)
move c (r + s) m = move c r m +move c s m
move c (r · s) m = move c r m · move c s (final1 r c ∨ m ∧ nullable r)
move c (r∗) m = (move c r (final1 r c ∨ m))∗

where final1 is an auxiliary recursive function (not shown here) with the characteristic
property that final1 r c= final (read c r). A simple induction proves that move combines
follow and read as in δ:

move c r m = follow m (read c r)

The function move has quadratic complexity for the same reason as shift. Unfortu-
nately, it cannot be made linear with the same ease as for shift. The problem is that we
need to cache the value of final1 r c in the previous step, before we know c. We solve this
by caching the set of all letters c that make final1 r c true. In the worst case, the whole al-
phabet must be stored in certain inner nodes. However, for an alphabet of fixed size this
guarantees linear time complexity. This optimization constitutes a last interpretationB2.

Even for a fixed alphabet, Asperti’s move has quadratic complexity when faced with
a tower of stars: each recursive call ofmove can trigger a call of a function eclose, which
has linear complexity. Asperti aimed for compact proofs, not maximal efficiency.

5.3 Comparison

The two constructions may look similar, but they do not produce isomorphic automata.
Considering our running example, we display the mark by a “•” before or after the atom.
The two resulting automata are shown in Fig. 5. There are special states that cannot

462 T. Nipkow and D. Traytel

•(a∗ · b)

a∗ · (b•) a∗ · b

(a•)∗ · b

b

a, b

a

b

a

a, b

(•a)∗ · (•b)

(a∗ · b)• a∗ · b

b

a, b

a

a, b

Fig. 5. Marked regular expression automata (A left, B right) for a∗ · b

be denoted by marking atoms only: •r in A’s automaton is the completely unmarked
regular expression that is the initial state and r• in B’s automaton is a final state.

It turns out that the “before” automaton is a homomorphic image of the “after” au-
tomaton. To verify this we specify the homomorphismϕ(m, r) = (followm r, A.o (m, r))
and prove that it preserves initial states and commutes with the transition function:

ϕ(A.ι r) = B.ι r ϕ(A.δ a s) = B.δ a (ϕ s) ϕ(fold A.δ w s) = fold B.δ w (ϕ s)

A direct consequence is that Asperti’s “before” construction always generates automata
with at most as many states as the McNaughton-Yamada-Glushkov construction. For-
mally, in the context of locale rexpDA we have defined an executable computation of
the reachable state space {fold δ w (ι r) | w ∈ (set as)∗} of the automaton:

reachable as r = snd (the (rtc (λ_. True) (λ s.map (λa. δ a s) as) (ι r)))

where r is the initial regular expression, as is the alphabet, and the (Some x) = x.

Theorem 5. |B.reachable as r| ≤ |A.reachable as r| where |_| is the cardinality of a set.

In early drafts of this paper, we only conjectured the above statement and unsuccess-
fully tried to refute it with Isabelle’s Quickcheck facility [8]. Later, Helmut Seidl has
communicated an informal proof using the above homomorphism to us.

Let us abbreviate the statement of Thm. 5 to nb ≤ na. One may think that na is only
slightly larger than nb, but it seems that nb and na are more than a constant summand
apart: for a two-element alphabet Quickcheck could refute na ≤ nb+k even for k = 100.

6 Empirical Comparison

We compare the efficiency w.r.t. both matching and deciding equivalence of the Stan-
dard ML code generated from eight described interpretations: ∼-normalized derivatives
(D), ≈-normalized derivatives (N), partial derivatives (P), derivatives simulating partial
derivatives (PD), mark “after” atom (A), mark “after” atom with caching (A2), mark
“before” atom (B), and mark “before” atom with caching (B2). The interpretation using
the quotient type for derivatives (D∼) is not in this list, as it is clearly superseded by
D. The results of the evaluation, performed on an Intel Core i7-2760QM machine with
8GB of RAM, are shown in Fig. 6. Solid lines depict the four derivative-based algo-
rithms. Dashed lines are used for the algorithms based on marked regular expressions.

The first two tests, MATCH-R and MATCH-L, measure the time required to match
the word an against the regular expression (a + 1)n · an—a standard benchmark also
used by Fischer et al. [11]. The difference between the two tests is the definition

Unified Decision Procedures for Regular Expression Equivalence 463

0 2000 4000
0

2

4

n

T
im

e
(s

)

(MATCH-R)

0 2000 4000
0

2

4

n

T
im

e
(s

)

(MATCH-L)

0 200 400 600
0

2

4

6

8

n

T
im

e
(s

)

(EQ-R)

0 200 400 600
0

2

4

6

8

n
T

im
e

(s
)

(EQ-L)

0 200 400 600 800
0

2

4

n

T
im

e
(s

)

(EQ-RND)

D N P PD B B2 A A2

Fig. 6. Evaluation results

of rn. MATCH-R defines it as the n-fold concatenation associated to the right: r4 =
r · (r · (r · r)), whereas MATCH-L associates to the left: r4 = ((r · r) · r) · r. In both
tests, marked regular expressions outperform derivatives by far. The normalization per-
formed by the derivative-based approaches (required to obtain a finite number of states
for the equivalence check) decelerates the computation of the next state. Marked regular
expressions benefit from a fast next state computation. The test MATCH-L exhibits the
quadratic nature of the unoptimized matchers A and B (their curves are almost identical
and therefore hard to distinguish in Fig. 6). In contrast, A2 and B2 perform equally well
in both tests, A2 being approximately 1.5 times faster due to lighter cache annotations.

The next test goes back to Antimirov [1]: We measure the time (with a timeout of
ten seconds) for proving the equivalence of a∗ and (a0 + . . .+ an−1) · (an)∗. Again
two tests, EQ-R and EQ-L, distinguish the associativity of concatenation in rn. Here,
the derivative-based equivalence checkers (except for D) perform better then the ones
based on marked regular expressions. In particular, both version of partial derivatives,
Pand PD, outperform N—since this example was crafted by Antimirov to demonstrate
the strength of partial derivatives, this is not wholly unexpected. Comparing EQ-R and
EQ-L, the associativity barely influences the runtime.

464 T. Nipkow and D. Traytel

Finally, to avoid bias towards a particular algorithm, we have devised the random-
ized test EQ-RND. There we measure the average time (with a timeout of ten seconds) to
prove the equivalence of r with itself for 100 randomly generated expressions with n in-
ner nodes (+, ·, or ∗). Proving r ≡ r is of course a trivial task, but our algorithms do not
stop the exploration when the state of the product automaton is a pair of two equal states.
This optimization, which is a must for any practical algorithm, is the first step towards
the rewarding usage of bisimulation up to equivalence (or even up to congruence) [5].
Without any such optimization, the task of proving r ≡ r amounts to enumerating all
derivatives of r, which is exactly what we want to compare. To generate random reg-
ular expression we use the infrastructure of SpecCheck [25]—a Quickcheck clone for
Isabelle/ML. For computing the average, a timeout counts as 10 second (although the
actual computation would likely have taken longer)—an approximation that skews the
curves to converge to the margin of 10 seconds. We stopped measuring a method for
increasing n when the average approached 5 seconds.

The results of EQ-RND are summarized as follows: D9 N9 P,PD9 A,A2,B,B2,
where X 9 Y means that Y is an order of magnitude faster than X. The algorithm
P is noticeably slower than PD—avoiding sets reduces the overhead. Among A, A2,
B, B2, Asperti’s unoptimized algorithm B performs best by a narrow margin. Regular
expressions where the caching overhead pays off are rare and therefore not visible in
the randomized test results. The same holds for expressions where B produces much
smaller automata than A (e.g. the counterexample to na ≤ nb + 100 from Subsect. 5.3).

Our evaluation shows that A2 is the best choice for matching. For equivalence check-
ing, the winner is not as clear cut: B (especially when applied to normalized input to
avoid quadratic runtime without caching) and PD seem to be the best choices.

7 Extensions

Brzozowski’s derivatives are easily extendable to regular expressions intersection and
negation—indeed Brzozowski performed the extension right from the start [7]. The
number of such extended derivatives is still finite when quotiented modulo ACI.

We [26] have recently further extended derivatives to regular expressions extended
with projection, obtaining verified decision procedures for the equivalence of those ex-
tended regular expressions and for monadic second-order logics over finite words. The
closure computation and its correctness proof follow Krauss and Nipkow [19].

Extending partial derivatives with intersection and negation is more involved [9]. An
additional layer of sets must be used for intersections, i.e. the states of our automaton
would then be sets of sets of regular expressions. In Sect. 6, we have seen that already
one layer of sets incurs some overhead. Hence, the view on partial derivatives as deriva-
tives followed by some normalization is expected to be even more profitable for the
extension. The extension of partial derivatives with projection is an easy exercise.

It is unclear how to extend marked regular expressions to handle negation and inter-
section. The number of possible markings for a regular expression of alphabetic width n
is 2n. However, there exist regular expressions of alphabetic width n using intersection,
whose minimal automata have 22n

states [12].

Unified Decision Procedures for Regular Expression Equivalence 465

8 Conclusion

We have shown that all the previously published verified decision procedures for equiv-
alence of regular expressions that operate on regular expressions directly can all be ex-
pressed as instances of a generic automaton-inspired framework. The correctness proofs
decompose into a generic part that is proved once and for all in the framework and a
few specific properties that need to be proved for each instance. The framework caters
for a meaningful comparison of the performance of the various instances. Marked reg-
ular expressions are superior on average but partial derivatives can outperform them in
specific cases. The Isabelle theories are available online [23].

Acknowledgment. We thank Andrea Asperti and Sebastian Fischer for commenting on
fine points of their work and Helmut Seidl for contributing an informal proof of Thm. 5.
Jasmin Blanchette, Andrei Popescu and three anonymous reviewers helped to improve
the presentation through numerous suggestions. The second author is supported by the
doctorate program 1480 (PUMA) of the Deutsche Forschungsgemeinschaft (DFG).

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automata constructions.
In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 455–466. Springer, Hei-
delberg (1995)

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions.
Theor. Comput. Sci. 155(2), 291–319 (1996)

3. Asperti, A.: A compact proof of decidability for regular expression equivalence. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 283–298. Springer, Heidelberg (2012)

4. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In: Borwein,
J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 31–43. Springer, Hei-
delberg (2006)

5. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 457–468. ACM (2013)

6. Braibant, T., Pous, D.: An efficient Coq tactic for deciding kleene algebras. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178. Springer, Heidelberg
(2010)

7. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
8. Bulwahn, L.: The new Quickcheck for Isabelle: Random, exhaustive and symbolic testing

under one roof. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 92–108.
Springer, Heidelberg (2012)

9. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended regular expres-
sion. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 179–191. Springer, Heidelberg (2011)

10. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in type the-
ory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 119–134. Springer,
Heidelberg (2011)

11. Fischer, S., Huch, F., Wilke, T.: A play on regular expressions: functional pearl. In: Hudak,
P., Weirich, S. (eds.) ICFP 2010, pp. 357–368. ACM (2010)

12. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expres-
sions. ACM Trans. Comput. Log. 13(1), 4:1–4:19 (2012)

466 T. Nipkow and D. Traytel

13. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53 (1961)
14. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In:

Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115.
Springer, Heidelberg (2013)

15. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume,
M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer,
Heidelberg (2010)

16. Haslbeck, M.: Verified Decision Procedures for the Equivalence of Regular Expressions.
B.Sc. thesis, Department of Informatics, Technische Universität München (2013)

17. Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in Isa-
belle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146.
Springer, Heidelberg (2013)

18. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Chu, W.C., Wong, W.E.,
Palakal, M.J., Hung, C.C. (eds.) SAC 2011, pp. 1639–1644. ACM (2011)

19. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation algebra. J.
Automated Reasoning 49, 95–106 (2012) (published online March 2011)

20. McNaughton, R., Yamada, H.: Regular expressions and finite state graphs for automata. IRE
Trans. on Electronic Comput. EC-9, 38–47 (1960)

21. Moreira, N., Pereira, D., de Sousa, S.M.: Deciding regular expressions (in-)equivalence
in Coq. In: Kahl, W., Griffin, T.G. (eds.) RAMiCS 2012. LNCS, vol. 7560, pp. 98–113.
Springer, Heidelberg (2012)

22. Nipkow, T., Klein, G.: Concrete Semantics. A Proof Assistant Approach. Springer (to ap-
pear), http://www.in.tum.de/~nipkow/Concrete-Semantics

23. Nipkow, T., Traytel, D.: Regular expression equivalence. Archive of Formal Proofs, Formal
proof development (2014),
http://afp.sf.net/entries/Regex_Equivalence.shtml

24. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg
(1998)

25. Schaffroth, N.: A Specification-based Testing Tool for Isabelle’s ML Environment. B.Sc.
thesis, Department of Informatics, Technische Universität München (2013)

26. Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words based on derivatives
of regular expressions. In: Morrisett, G., Uustalu, T. (eds.) ICFP 2013, pp. 3–12. ACM (2013)

27. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based on reg-
ular expressions. J. Automated Reasoning 52, 451–480 (2014)

http://www.in.tum.de/~nipkow/Concrete-Semantics
http://afp.sf.net/entries/Regex_Equivalence.shtml

Collaborative Interactive Theorem

Proving with Clide

Martin Ring1 and Christoph Lüth1,2,

1 Deutsches Forschungszentrum für Künstliche Intelligenz, Bremen, Germany
2 Universität Bremen, FB 3 — Mathematics and Computer Science, Germany

Abstract. This paper introduces Clide, a collaborative web interface
for the Isabelle theorem prover. The interface allows a document-oriented
interaction very much like Isabelle’s desktop interface. Moreover, it allows
users to jointly edit Isabelle proof scripts over the web; editing operations
are synchronised in real-time to all users.

The paper describes motivation, user experience, implementation and
system architecture of Clide. The implementation is based on the theory
of operational transformations; its key concepts have been formalised
in Isabelle, its correctness proven and critical parts of the implementa-
tion on the server are generated from the formalisation, thus increasing
confidence in the system.

1 Introduction

Just like mathematics, interactive theorem proving is at its heart a social ac-
tivity. Mathematical proof is rarely a solitary activity, it is most often done in
collaboration with others. It is thus unfortunate that present theorem prover
interfaces have very much been single-user; a real-time collaborative user inter-
face, where many users can jointly edit the same proof in the vein of the late
Google docs1 should add much to the user experience, enhance productivity and
enable new patterns of interaction between theorem provers and humans. Until
now, there have hardly been real-time collaborative user interface for theorem
provers, so this hypothesis had to remain untested. This paper presents a first
prototype of a real-time collaborative, web-based user interface for a state-of-
the-art interactive theorem prover, Isabelle, allowing us to experiment with the
collaborative user experience.

As the experience with Google docs shows, collaborative user interfaces thrive
when they are available on the web. The web has collaboration built-in, with
many users connecting to a single server, and web interfaces offer eo ipso a lot
of advantages: they are inherently cross-platform, portable and mobile, they re-
quire little installation effort (a recent web browser is enough), and only need
few resources on the user side. Recent advantages in web technology (collec-
tively and somewhat inaccurately known as ‘HTML5’) allow the development of

� Research supported by BMBF grants 01IW10002 (SHIP), 01IW13001 (SPECifIC).
1 Now available as Google Drive.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 467–482, 2014.
c© Springer International Publishing Switzerland 2014

468 M. Ring and C. Lüth

Fig. 1. The Clide user interface: On the left there is a toolbar, on the right a theory
has been opened (above). The Isabelle output, here the current proofstate, is shown in
a separate part of the window; it can also be inlined.

web interfaces of near-desktop quality. The first version of the Clide system [1]
demonstrated a web-based interface for Isabelle; the present work extends this
to a truly collaborative setting. This is not a completely trivial exercise; the
basic problem is keeping the documents synchronised across the different clients
(user interfaces), the server and the theorem prover. Fortunately, well explored
solutions for this problem exist which we could draw on when implementing our
system, namely the theory of operational transformation. We have formalised
the basic algorithms of this theory in Isabelle, and generate parts of our imple-
mentation from this formalisation.

This paper is structured as follows: we first introduce Clide from the users’
perspective, then give the theory and pragmatics of the implementation. We
explain the system architecture and the underlying design decisions, and finish
with conclusions, where we review related and future work.

2 The User Experience

The interface was designed with an emphasis on typography over superfluous
graphics, with a clear arrangement reducing it to the basics such that it does
not distract from the main center of attention, the proof script. Pervasive use of
HTML5 and JavaScript make the interface very responsive; because the entire
user interface is implemented as a single-page application which dynamically
changes views through JavaScript the interaction more resembles a desktop ap-
plication than a web interface of old.

Collaborative Interactive Theorem Proving with Clide 469

Clide organises the user’s work in projects, which are collections of files and
folders. Projects are the basic unit of granularity for sharing. The Clide user
interface has two basic views: the backstage view is the starting point, where
users can review their projects, create new ones, and select a current one, and
the project view, where users can create, edit and delete files and folders in the
current project.

Fig. 1 shows a screenshot of the project view. On the left, there is a (hideable)
tool sidebar, where users can select files, invite collaborators, and access common
editing operations such as cut, copy & paste. The tool sidebar further shows the
other collaborators and their details. In the center of the view, there is the main
file editor, where files are opened in tabs. The editor is based on the CodeMirror
editor, and offers a seamless editing of mathematical text in a web-browser,
with features such as integration of mathematical symbols, Greek letters, and
other Unicode symbols, flexible-width font, super/subscripting and tooltips for
text spans. The interaction with Isabelle is very similar to the Isabelle/jEdit
interface [2]: users edit the theory while Isabelle processes it asynchronously on
the server, sending back the results as they become available. These results can
be the prover’s state, error or warning messages after executing this particular
prover command. The prover messages can be displayed inlined or in a separate
window, which is useful for larger proof states. In addition to the messages, the
inner syntax of the theory as well as special symbol substitutions are annotated
and type information for hovered terms is provided. All these annotations can
be deactivated individually if desired. There is also a chat window which allows
short text messages to be sent to collaborators. The collaboration is unintrusive,
and should be familiar to users of Google docs: each user can see the cursor
of other users and their editing operations, taking effect immediately without
blocking. Users also see the selection area of other users, which is useful for
communication purposes (“Where here is the error?”), and to warn other users
that this area of the file is about to be deleted; this feature can be deactivated
if it gets too intrusive.

A public evaluation version of the system is online at http://clide.

informatik.uni-bremen.de/. The evaluation version features public projects,
which are open to all users of the system (normally not a desirable state of
affairs), which is great to get quickly up and collaborating.

2.1 Use Cases

Collaboration should not be end unto itself. We envisage at least the following
use cases for collaborative theorem proving:

– Scientific collaboration: two (or more) users are working jointly on a proof,
all contributing actively and staying in close contact; collaboration ensures
that all participants know the proof, and can continue working on it. In a
normal situation, collaborators would be sitting around the same machine;
with a collaborative interface this situation can be extended to collaborating
across countries and continents (timezone issues notwithstanding).

http://clide.informatik.uni-bremen.de/
http://clide.informatik.uni-bremen.de/

470 M. Ring and C. Lüth

– Proof review: one user is going through the proof, explicating it to others who
do not contribute actively, but try to understand what is being formalised.
This situation is useful in the classroom, both for lecturers to explain a
proof (while the students can interactively explore it), but possibly also for
teachers to see how students progress and be able to assist them if needed.

– Machine-assisted collaboration: here, other collaborators are software pro-
cesses. A simple example of this is Clide used as a single-user web-interface:
the user still collaborates with Isabelle.

We would be surprised to see massive open online collaboration, where thousands
of people work on one single theory. In this situation, an underlying version man-
agement and revision control system is needed; the ProofPeer project recently
started in Edinburgh is an interesting step in this direction [3].

3 Implementation

Research in the area of computer-supported cooperative work (CSCW) goes back
to the early eighties of the last century. One of the more challenging concerns has
always been real-time activity awareness and coordination [4]. A collaborative
system with these properties requires a mechanism to synchronise the distributed
document states as quickly as possible across all users without loss of information
or diverging documents. This is far from trivial because communication always
involves delays (ranging from usual network delay to temporary failure), and
thus edits will occur concurrently.

If we only consider the insertion of content the problem has a reasonably easy
solution by introducing a partial ordering of concurrently inserted document po-
sitions (e.g. via vector clocks). Problems come with concurrent insertions and
deletions especially if we do not only want state consistency but also basic inten-
tion preservation [5], which is essential for a usable system. The most popular
approach to this problem has been operational transformation (OT) [6].

3.1 The Basics of Operational Transformation

The problem of synchronisation is that we may have situations where two oper-
ations f and g are applied concurrently to the same document D, and we need
to complete the resulting span again with operations f ′, g′ into a common doc-
ument D′ as in (1). Writing applyOp f D for the application of an operation f

•

D

f �

D′

g ′
�

• f

′

�

g �

(1)

to a document D, the completion of (1) is written as

∀D. applyOp g′ (applyOp f D) = applyOp f ′ (applyOp g D). (2)

Collaborative Interactive Theorem Proving with Clide 471

The basic idea behind OT is to solely consider the operations, and not the
documents, and to restrict ourselves to a tractable set of basic operations. Hence,
operations are sequences of basic actions, where an actions is: advance one char-
acter; insert one character; or delete one character. To apply an operation, we
traverse the document and operation simultaneously, and apply the basic ac-
tions. Note that this application is partial; we can only apply an operation to
a document of the appropriate length. We can then transform these operations
against each other, written as transform f g = 〈f ′, g′〉, to obtain the completion
(1); applying first f , then g′ should be the same as first applying g, then f ′.

In order to state (2) point-free, i.e. without referring to a documentD, we need
to define the composition ◦ of two operations. Note that this is not simply the
concatenation of the two sequences of actions; rather, we merge two sequences
into one new sequence which combines the effects of the two operations. We can
then drop the document D from the correctness property (2) and state:

transform f g = 〈f ′, g′〉 =⇒ g′ ◦ f = f ′ ◦ g (3)

The correctness of the composition operation ◦ is stated as

applyOp (g ◦ f) D = applyOp g (applyOp f D) (4)

and together these easily imply (2).

3.2 Formalisation in Isabelle/HOL

We introduce the formalisation of the theory of operational transformation on
which our implementation is based. For reasons of space, we do not show the full
formalisation; we give enough details to show the actual algorithms, but we elide
most lemmas and all Isabelle proofs (most of which are very short anyway).2

We start with the basic concepts. For documents, we keep the actual character
set as a type parameter, actions are as mentioned above, and operations are then
lists of actions:

type synonym ′char document = ′char list

datatype ′char action = Retain | Insert ′char | Delete

type synonym ′char operation = ′char action list

We can now recursively define the application function:

fun applyOp :: ′char operation ⇒ ′char document ⇒ ′char document option

where

applyOp [] [] = Some []

| applyOp (Retain# as) (b# bs) = Option.map (λds. b# ds) (applyOp as bs)

| applyOp (Insert c# as) bs = Option.map (λds. c# ds) (applyOp as bs)

| applyOp (Delete# as) (# bs) = applyOp as bs

| applyOp = None

2 The full theory can be found at http://www.informatik.uni-bremen.de/
~cxl/papers/itp2014-appendix.pdf for reference.

http://www.informatik.uni-bremen.de/~cxl/papers/itp2014-appendix.pdf
http://www.informatik.uni-bremen.de/~cxl/papers/itp2014-appendix.pdf

472 M. Ring and C. Lüth

However, reasoning about this function directly is not straightforward because
of its partiality: applyOp f d is only defined for a document d of a certain
inputLength, given by the number of Retain and Delete actions in that operation.
A straightforward induction on the definition of applyOp would leave us with an
induction assumption where it is not immediate that applyOp is applicable to
its arguments. In order to get around this difficulty, we define the graph of the
function as an inductive set:

inductive set application :: ((′char operation × ′char document) × ′char document)
set where

empty [intro!]: (([],[]),[]) ∈ application

| retain[intro!]: ((a,d),d ′) ∈ application =⇒ ((Retain#a,c#d),c#d ′) ∈ application

| delete[intro!]: ((a,d),d ′) ∈ application =⇒ ((Delete#a,c#d),d ′) ∈ application

| insert [intro!]: ((a,d),d ′) ∈ application =⇒ (((Insert c)#a,d),c#d ′) ∈ application

We can show that application is exactly the graph of applyOp:

lemma applyOpSet : ((a,d),d ′) ∈ application ←→ applyOp a d = Some d ′

The composition of two operations traverses through the two operations and
combines the actions pointwise. In the following definition, the second argument
of the composition is executed after the first one (the other way around as ◦);
so e.g. a delete action first executed is always kept, because nothing can undo
a delete, and an insert action executed second is kept for the same reason. An
insert action followed by a retain is just that insert, and insert followed by delete
cancel each other out:

fun compose :: ′char operation ⇒ ′char operation ⇒ ′char operation option

where

compose [] [] = Some []

| compose (Delete# as) bs = Option.map addDeleteOp (compose as bs)

| compose as (Insert c# bs) =

Option.map (Cons (Insert c)) (compose as bs)

| compose (Retain# as) (Retain# bs) = Option.map (Cons Retain) (compose as bs)

| compose (Retain# as) (Delete# bs) = Option.map addDeleteOp (compose as bs)

| compose (Insert c# as) (Retain# bs) =

Option.map (Cons (Insert c)) (compose as bs)

| compose (Insert # as) (Delete# bs) = compose as bs

| compose = None

The above function uses addDeleteOp to insert a delete action. This is an opti-
misation, where we permute deletes over inserts as much as possible, so we get
contiguous sequences of delete and insert actions, which we can later compress
for transmission. addDeleteOp is defined as follows:

fun addDeleteOp :: ′char operation ⇒ ′char operation

where

addDeleteOp (Insert c#next) = Insert c# addDeleteOp next

Collaborative Interactive Theorem Proving with Clide 473

| addDeleteOp as = Delete#as

The effect of addDeleteOp is to remove the first element of a document:

lemma addDeleteOpValid : applyOp (addDeleteOp a) (c#d) = applyOp a d

Again, in order to be able to show anything about compose we explicitly define
its graph as an inductive set.

inductive set composition :: ((′char operation × ′char operation) × ′char operation)
set where . . .

We leave out the lengthy definition; it follows the recursive definition of compose
just as application follows the definition of applyOp. However, we show that
composition is the graph of the compose operation:

lemma composeSet : ((a,b),ab) ∈ composition ←→ compose a b = Some ab

The first proper result is the correctness of composition (4). It is first shown for
the relation composition (omitted), and then for the function compose:

theorem composeCorrect :

[[compose a b = Some ab; applyOp a d = Some d ′; applyOp b d ′ = Some d ′′]]

=⇒ applyOp ab d = Some d ′′

Finally, we define the transform function, the core algorithm of operational trans-
formation. Recall that the transformation of a and b are two operations a′, b′ such
that a composed with b′ is the same as b composed with a′. The transformation
is defined recursively, with a lengthy case distinction on the first action of each:
e.g., insert actions remain, but cause a retain action to appear in the transformed
operation (in order to keep the inserted character); transforming two retain ac-
tions results in two retain actions; or a retain and a delete transform to a delete
and nothing (reflecting the fact that we either first keep an element, then delete
it, or delete it first, without need for a subsequent action):

fun transform :: ′char operation ⇒ ′char operation ⇒ (′char operation × ′char oper-
ation) option

where

transform [] [] = Some ([], [])

| transform (Insert c#as) bs =

Option.map (λ(at , bt). (Insert c# at , Retain# bt)) (transform as bs)

| transform as (Insert c# bs) =

Option.map (λ(at , bt). (Retain# at , Insert c# bt)) (transform as bs)

| transform (Retain# as) (Retain# bs) =

Option.map (λ(at , bt). (Retain# at , Retain# bt)) (transform as bs)

| transform (Delete# as) (Delete# bs) = transform as bs

| transform (Retain# as) (Delete# bs) =

Option.map (λ(at , bt). (at , Delete# bt)) (transform as bs)

| transform (Delete# as) (Retain# bs) =

Option.map (λ(at , bt). (Delete# at , bt)) (transform as bs)

474 M. Ring and C. Lüth

| transform = None

To our minds, this definition is intricate enough to warrant a formal treatment;
at least, we feel more confident about its correctness having done so. We can
show that the domain of this function is pairs of operations a and b which have
the same input length. To show the main correctness property (3), we define the
graph of transform as an inductive set (we leave out the lengthy definition):

inductive set transformation :: ((′c operation × ′c operation) × (′c operation × ′c
operation)) set where . . .

and show that this is a superset of function graph. With this, we can show
the second main result, the correctness of transformation. This is even slightly
stronger as (3) as it also states that the composition of a and b′ (and implicitly
b and a′) is defined:

theorem transformCorrect : transform a b = Some (a ′,b ′)

=⇒ compose a b ′
= None ∧ compose a b ′ = compose b a ′

Further, we define identity operations ident, which consist only of retain actions,
and show that they are the left and right unit to the composition operator.
Unfortunately because of the optimisation underlying the addDeleteOp function,
these properties only hold up to normalisation, i.e. sorting operations such that
a delete action is never followed immediately by an insert action. Moreover,
transformation against an identity does not change an operation:

lemma transformIdL:

transform (ident (inputLength b)) b = Some (ident (outputLength b), b)

3.3 Implementing Operational Transformation

The previous section showed the formalisation of the core algorithms of opera-
tional transformation. The implementation uses these algorithms to synchronise
document states on one server and many clients. Our implementation follows
the approach by Google [7] which is a simplification of the original algorithms.

The server keeps a single history h = 〈a1, a2, . . . , an〉 which is a sequence of
operations ai. A revision ri refers to the state after operation ai (starting with
initial revision r0). Clients report operations together with a revision number,
〈b, i〉. On receiving 〈b, i〉, the operation b is transformed with respect to all op-
erations aj for i < j ≤ n, resulting in an operation b′, which is appended to the
history, and distributed to all other clients as a remote edit. Additionally, the
client which sent the operation receives an acknowledgment (see Fig. 2). The
correctness property (2) means that all squares in Fig. 2 commute, so the server
only needs to append the transformed operation to its history. The server does
not need to keep track of the actual document states, it is enough to keep track
of the operations.

On the client side, clients need to cater for both local edits (affected by the
user) and remote edits (sent from the server). To this end, the client keeps track
of which operation 〈a, r〉 has last been passed on to the server, and waits for an

Collaborative Interactive Theorem Proving with Clide 475

Client A •
a′
2

� •
a′
3

� •

Server r0
a1 � r1

b

�

a2 � r2

b′
�

a3 � r3

b′′
�

a4 = b′′� r4
a5 = c′′�

==============

r5

Client B •

c

�

a′′
3

� •

c′

�

a′
4

� •

c′′

�==
==
==
==
==
==
==

Fig. 2. History management on the server. Here, the current revision is r3 when client
A sends in operation 〈b, r1〉 and client B sends in 〈c, r2〉. The operation b is transformed
with respect to a3 ◦a2 to b′′, and appended as a4 to the history; similarly, the operation
c is transformed to c′′ with respect to a3 ◦a4. Client A is sent a′

3 ◦a′
2 as the first remote

edit, an acknowledgment, and a5 as a second remote edit, while Client B is sent one
remote edit a′

4 ◦ a′′
3 , and an acknowledgment. In the end, r5 becomes the new current

revision on the server and both clients A, B. Note that we can resolve the convergence
the other way, with first resolving 〈c, r2〉 with respect to a3 (then a4 would be c′), and
then 〈b, r1〉 with respect to c′ ◦ a3 ◦ a2 (the result of which would become a5).

acknowledgment of this operation (we say the operation is pending). If further
local edits occur while waiting, these are buffered. (Note that we only need to
buffer one operation, as we can compose multiple edits.) Once the operation 〈a, r〉
has been acknowledged, the revision is increased, and the buffered operation (if
there is any) is passed on and becomes pending. If a remote edit is received
before the operation 〈a, r〉 has been acknowledged, we know it refers to revision
r, so the operation is transformed with respect to the pending and buffered
operations, applied to the local document, and the revision is increased. In turn,
the remote edit operation transforms the pending and buffered operations (see
Fig. 3). (Note that the client does not receive its own local edits back as remote
edits from the server.)

A huge advantage of our Isabelle formalisation is the ability to generate Scala
code [8] for the composition and transformation of operations which we can use
in the server application. However, we need an implementation of the same algo-
rithms on the client. Unfortunately, due to the restrictions of the web environ-
ment there is no practical alternative to JavaScript as a programming language.
This leads to potentially divergent implementations. Experiments showed that
in principle we can even go one step further and generate the JavaScript code
from Scala with the new Scala.js compiler [9], but until this tool moves out of
the alpha stage we have to rely on a manual port.

476 M. Ring and C. Lüth

• a � • b � • Revision r

•

c

�

a′
� •

c′

�

b′
� •

c′′

�
Revision r + 1

Fig. 3. History management on the client. Operation a is pending, operation b is
buffered. If a remote edit c is received, it is transformed with respect to a and b to c′′,
and applied. a′ and b′ become the new pending and buffered operations. The revision
number r is increased every time a remote edit or acknowledgment is received.

3.4 Further Extensions

In addition to plain text operations we need a mechanism to annotate the doc-
ument state to integrate information like remote cursors and selections, syntax
highlighting, or prover output. The original Google approach was somewhat
cumbersome to allow for rich text editing; here, because we do not require an-
notations to be editable we chose a simpler approach by keeping annotations
separate from the operations. In our implementation, annotations consist of two
types of actions: plain(n) is equivalent to n retain actions, and annotate(n, a) is
equivalent to n retain actions and additionally annotates the document with the
annotation a starting at the current position, and ranging n characters.

This means annotations are operations consisting only of retain actions, with
the side effect of augmenting the document with additional information. Re-
call from above that such operations are identities, hence annotations cannot
interfere with other operations (see Lemma transformIdL in Sect. 3.2). How-
ever, other operations have an effect on annotations, so we have to define how
delete and insert actions interact with annotate(a, n). We chose to simply extend
or shrink the annotation accordingly; this feels like natural behaviour that you
would expect if you type inside an annotation of a collaborator.

This leads to a very straightforward integration of annotations. On the client
side, annotations are transformed with respect to pending and buffered opera-
tions, and only sent on once the pending and buffered operations have been sent
on. On the server side, an incoming annotation 〈a, i〉 is transformed and sent
on to the other clients just as with editing operations, except that the sending
client receives no acknowledgment and the revision number is not increased. An-
notations are identified by their origin and an origin-unique name, and remain
until overridden by a subsequent annotation of the same origin and name.

4 System Architecture

Building a modern web application has become an increasingly complex task.
The demands placed on such an application have grown rapidly over the last
couple of years. To offer an adequate experience to users, the interface must

Collaborative Interactive Theorem Proving with Clide 477

always stay responsive. To be able to handle fluctuating numbers of visitors,
the system needs to be scalable. In addition to these universal demands, our
application involves very expensive computations on the theorem proving side
on one hand, and a highly distributed state due to the real time collaboration
between users on the other. The first version of Clide [1] was scalable, responsive
and resilient, but to properly integrate collaboration, it soon became obvious that
most of the architecture had to be carefully rethought.

For the new iteration of Clide, we chose the Typesafe Reactive Platform [10]
as a basis because it is event-driven and resilient by design, leading to a respon-
sive and scalable application. The platform includes the Akka actor library for
concurrency control [11], the functional relational mapper Slick as an efficient
database integration, and the Play! web framework. The uses of Slick and Play!
are obvious, but Akka became in fact the most important component for Clide,
as it is very well suited for a collaborative architecture.

4.1 Universal Collaboration

To reflect the collaborative nature of the application, instead of offering a spe-
cialised API for plug-ins, we utilise the same API for human and non-human
users. We call this approach universal collaboration. The unification has several
advantages: On one hand it simplifies the core system itself, on the other hand
it also makes it easier to write plug-ins that involve heavy computations (and
thus delays). All the management of distributed asynchronous document states
is achieved in the operational transformation framework. This way plug-ins can
focus on the important aspects — annotating or otherwise contributing con-
tent to documents — in a simple, synchronous manner. Moreover, it is easy for
plug-ins to work together without knowing anything about their respective im-
plementations. It is not even required for plug-ins to run on the same machine
as the server. Neither is it necessary for the server to know anything about the
plug-ins a priori; the plug-ins can actively register with the server via a TCP
connection. Users can choose to invite a plug-in into a project just like they
would with human collaborators.

4.2 The Clide Infrastructure

The Clide infrastructure consists of modules which are loosely coupled, stan-
dalone applications whose actor systems communicate with each other via Akka
remoting. The modules themselves can easily be further divided and distributed
across different machines which leads to great scalability. Fig. 4 shows an ex-
ample setup with several modules connected to the clide-core module. The
modules can be configured to connect to a specific address and are implemented
in a way that they retry until they are connected to an instance of clide-core
and reconnect on network failure or in case the peer is restarted. This way it is
very easy to configure a Clide infrastructure because only a couple of configu-
ration files have to be adjusted. The modules do not have to be started in any
particular order and individual failures do not propagate.

478 M. Ring and C. Lüth

clide-core

clide-web
clide-isabelle

clide-haskell

Akka Remoting

Akka Remoting

Ak
ka

R

em
ot

in
g

WebSocke
t

W
eb

So
ck

et W
ebSocket

WebSocket

...Akka Remoting

Fig. 4. Overview of the system architecture

The purpose of the clide-web module is somewhat special in that it mainly
serves as a translator between JSON messages transmitted via WebSockets and
the internal message representation.WebSockets are a very good fit for the com-
munication between web clients and clide-web because their properties are sim-
ilar to those of message channels connecting actors. WebSockets are full-duplex
and thus allow us to send messages from the server to the client without any
overhead. clide-web directly connects the client with an actor in clide-core;
that way web clients have the same access to all levels of the API as any other
client. The second task of clide-web is to provide the resources of the user inter-
face (HTML, CSS and JavaScript files) to the clients. For the user interface we
utilised the angular.js library which allows for declarative data bindings defined
in HTML code. The client side logic and thus also the client side implementation
of the operational transformation framework are implemented in CoffeeScript,
a language that compiles to JavaScript but compensates for many deficiencies
of that language. Because we only used technology from the HTML5 standard,
it is possible to use the web interface on any modern, HTML5 compliant web
client, i.e. not only on classic computers but also tablets, and given an adapted
user interface even smartphones, or television sets.

4.3 The clide-core API

Fig. 5 shows a simplified view of the internal actor system with instances of all
available types of actors as well as the ownership hierarchy and message flow
indicated. The starting point from the outside world is the UserServer in the
Global API which authenticates users, and acts as a message router. It is also
possible to sign up a new user here.

Each UserActor is responsible for one authenticated user via the Backstage
API. It allows to create and manage projects and access rights. Peers also get
informed about new projects and invitations.

Collaborative Interactive Theorem Proving with Clide 479

UserServer

UserActor A UserActor ...

ProjectActor A ProjectActor ...

SessionActor A SessionActor ...

Global API

Backstage API

FolderActor ASession API

FileActor A FileActor ...FolderActor ...

ownership

message flow

Fig. 5. Actor infrastructure in clide-core

Each project is coordinated by a ProjectActor. It accepts requests from a
UserActor to access a project (after checking the rights), and creates a Session-

Actor for each user accessing the project. The SessionActor provides the Ses-
sion API which is the core API in the sense that it provides the editing and
annotation operations for one client. The ProjectActor coordinates the opera-
tions, distributing them to all clients as described in Sect. 3.3. Access to files and
folders is given by other dedicated child actors of the ProjectActor. Individual
FileActors manage a single file each and are responsible for the server side
operational transformation framework.

4.4 Assistants and Integration with the PIDE Framework

One intriguing aspect of Clide is that collaborators need not be human. We
call such non-human collaborators assistants, and provide a simplified interface
to implement them. It allows easy access to state changes, edit operations and
annotations. An assistant only needs to reference the state on which its actions
are based, the underlying framework takes care of everything else. This way
assistants do not drastically differ from usual plug-ins for IDEs.

There are two ways of building an assistant. The first is to directly use Akka
remoting to communicate with the UserServer via the messages available in
the clide.actors package. However, this requires detailed knowledge of the
messaging protocol which might still be subject to future modifications and in
addition can only be comfortably used from Scala. For this reason there is also
a simpler way: Implementing the AssistantBehavior interface is all it takes to

480 M. Ring and C. Lüth

build an Assistant the easy way. The interface contains a number of abstract
methods which will be called as events occur. The implemented interface can
then be registered with the generic AssistantServer class which will take care
of everything else. All method calls within the interface are synchronized. If a
calculation takes a long time, subsequent modifications to the document as well
as annotation activities (such as cursor movements) will be combined so that
the assistant does not lag behind if many changes occur in a short period of
time. Communicating back is done via the AssistantControls interface which
is supplied to the behavior. A short introduction on implementing assistants as
well as an API reference can also be found on the GitHub project page.

With this simplified framework, the integration of the PIDE framework [2]
(and hence Isabelle) is very straightforward, and a lot of code from Isabelle/jEdit
could be reused in the process of implementing the clide-isabelle module.
When the PIDE framework reports that new information about one of the viewed
theories is available, we translate the prover state, type information, inner syntax
as well as output messages into Clide annotations and report them back to the
assistant framework.

As a case study, we have also implemented an assistant to handle Haskell
files (try inviting Haskell as a collaborator on the web site). It calls the Haskell
compiler for each source file, parse its error and warning messages and passes
them back as annotations. In about two hundred lines of code, we implemented
some usable Haskell assistance.

The integration of native processes into a publicly available web interface
bear a serious security risk which must be considered when implementing an
assistant for Clide. For this reason we start Isabelle in safe mode, disabling all
ML integration because that would grant easy access to the server file system.

5 Conclusions

This paper has introduced Clide, a real-time collaborative web interface for the
Isabelle theorem prover. It combines modern web technologies with the Isabelle
PIDE back-end to offer a user interface which in terms of responsiveness and
display of mathematical notation and symbols equals conventional desktop in-
terfaces for Isabelle, such as Isabelle/jEdit or ProofGeneral. The single-user ex-
perience resembles Isabelle/jEdit, with the user editing documents which are
processed asynchronously on the server in the background, and results appear-
ing as they become available. However, Clide is easier to set up, is mobile, and
most of all offers real-time multi-user collaboration. It implements the theory
of operational transformations; we have formalised the key concepts in Isabelle,
proved its correctness, and derive critical parts of the implementations on the
server side from this theory, thus increasing confidence in the system.

5.1 Related Work

There is a lot of related work in the community of computer-supported
cooperative work (CSCW) [4,12], including of course the theory of operational

Collaborative Interactive Theorem Proving with Clide 481

transformations [13], but to our knowledge, this is the first fully operational
collaborative interface for an interactive theorem prover.

Other web interfaces for theorem provers include Proof Web [14], which is
based on older web technologies and hence not as interactive as Clide. There
are also a number of mathematical wikis (e.g. [15,16,17]) based on interactive
provers such as Mizar or Coq, but they resolve collaboration in the typical wiki-
style, namely by versioning the edited files or pages; users do not edit the same
page at the same time, but instead create different versions.

5.2 Future Work

There are two ways in which this work can be extended. Firstly, there is noth-
ing specific about Isabelle in our framework, except for the fact that the PIDE
framework with its Scala API provides a good foundation of our work: it really
improves interaction if the theorem prover is multi-threaded and asynchronous,
and it helps if everything runs on the same platform. But the system architec-
ture is generic, and could be used to implement a collaborative IDE as well,
because all this needs in the first instance is to replace Isabelle with a compiler
which analyses the code. There is already a simple assistant for Haskell files; the
same approach could be used to integrate batch-based ITPs like HOL4 or HOL-
light. Another possible extension would be a ‘ProofGeneral module’, a generic
implementation of script management.

The second main avenue to pursue would be to add more, and richer, as-
sistants. Systems for Proof General such as ML4PG [18], which uses machine
learning techniques to help the user find similar proofs, could be adapted to our
system, but one could also envisage for example tutoring systems, where the
collaborating machine analyses the users errors, and offers helpful advice when
certain erroneous patterns occur, or assisted document authoring [19], where for
example the collaborating machine suggests an induction scheme based on the
current proof state. Apart from actively contributing assistants, there is also a
surprising benefit of passively listening collaborators: Clide can be used as a sim-
ple API for external applications which can delegate proofs to humans and wait
until the theorem prover agrees and then return. The possibilities are endless,
and we would like think the generic architecture of our system makes it easy to
explore these exciting new avenues of research.

References

1. Lüth, C., Ring, M.: A web interface for Isabelle: The next generation. In: Carette,
J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS
(LNAI), vol. 7961, pp. 326–329. Springer, Heidelberg (2013)

2. Wenzel, M.: Isabelle/jEdit – A prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

3. ProofPeer web page, http://www.proofpeer.net (accessed: January 29, 2014)

http://www.proofpeer.net

482 M. Ring and C. Lüth

4. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In:
Proceedings of the 1992 ACM Conference on Computer-supported Cooperative
Work, CSCW 1992, pp. 107–114. ACM (1992)

5. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
ACM Trans. Comput.-Hum. Interact. 5(1), 63–108 (1998)

6. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD
Rec. 18(2), 399–407 (1989)

7. Wang, D., Mah, A., Lassen, S.: Google Wave operational transformation,
http://www.waveprotocol.org/whitepapers/operational-transform/

operational-transform.html (accessed: January 30, 2014)
8. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In: The-

orem Proving in Higher Order Logics (TPHOLs 2007), Emerging Trends Proceed-
ings, Dept. of Computer Science, University of Kaiserslautern, pp. 128–143 (2007)

9. Doeraene, S.: Scala.js website, http://www.scala-js.org (accessed: January 29,
2014)

10. Typesafe Inc.: Typesafe reactive platform overview,
http://typesafe.com/platform (accessed: January 29, 2014)

11. Wyatt, D.: Akka Concurrency. Artima Press (2013)
12. Greenberg, S., Marwood, D.: Real time groupware as a distributed system: Con-

currency control and its effect on the interface. In: Proc. ACM 1994 Conference on
Computer Supported Cooperative Work, CSCW 1994, pp. 207–217. ACM (1994)

13. Sun, C., Ellis, C.: Operational transformation in real-time group editors: Issues,
algorithms, and achievements. In: Proc. 1998 ACM Conference on Computer Sup-
ported Cooperative Work, CSCW 1998, pp. 59–68. ACM (1998)

14. Kaliszyk, C.: Web interfaces for proof assistants. In: Autexier, S., Benzmüller, C.
(eds.) Proc. of the Workshop on User Interfaces for Theorem Provers (UITP 2006).
ENTCS, vol. 174(2), pp. 49–61 (2007)

15. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: Motivation,
considerations, and initial prototype. In: Autexier, S., Calmet, J., Delahaye, D., Ion,
P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167,
pp. 455–469. Springer, Heidelberg (2010)

16. Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and so-
lutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calcule-
mus/MKM 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)

17. Tankink, C.: Proof in context — web editing with rich, modeless contextual feed-
back. In: Kaliszyk, C., Lüth, C. (eds.) Proc. 10th International Workshop on User
Interfaces for Theorem Provers (UITP 2012). EPTCS, vol. 118, pp. 42–56 (2013)

18. Komendantskaya, E., Heras, J., Grov, G.: Machine learning in Proof General: Inter-
facing interfaces. In: Kaliszyk, C., Lüth, C. (eds.) Proceedings 10th International
Workshop on User Interfaces for Theorem Provers, UITP 2012. EPTCS, vol. 118,
pp. 15–41 (2013)

19. Aspinall, D., Lüth, C., Wolff, B.: Assisted proof document authoring. In: Kohlhase,
M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 65–80. Springer, Heidelberg
(2006)

http://www.waveprotocol.org/whitepapers/operational-transform/operational-transform.html
http://www.waveprotocol.org/whitepapers/operational-transform/operational-transform.html
http://www.scala-js.org
http://typesafe.com/platform

On the Formalization of Z-Transform in HOL

Umair Siddique, Mohamed Yousri Mahmoud, and Sofiène Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

{muh sidd,mo solim,tahar}@ece.concordia.ca

Abstract. System analysis based on difference or recurrence equations
is the most fundamental technique to analyze biological, electronic, con-
trol and signal processing systems. Z-transform is one of the most popu-
lar tool to solve such difference equations. In this paper, we present the
formalization of Z-transform to extend the formal linear system anal-
ysis capabilities using theorem proving. In particular, we use differen-
tial, transcendental and topological theories of multivariate calculus to
formally define Z-transform in higher-order logic and reason about the
correctness of its properties, such as linearity, time shifting and scaling
in z-domain. To illustrate the practical effectiveness of the proposed for-
malization, we present the formal analysis of an infinite impulse response
(IIR) digital signal processing filter.

1 Introduction

In general, dynamics of engineering and physical systems are characterized by
differential equations [18] and difference equations [3] in case of continuous-time
and discrete-time, respectively. The complexity of these equations varies depend-
ing upon the corresponding system architecture (distributed, cascaded, hybrid
etc.), nature of input signals and physical constraints. Transformation analysis is
one of the most efficient technique to mathematically analyze such complex sys-
tems. The main objective of transform method is to reduce complicated system
models (i.e., differential or difference equations) into those of algebraic equa-
tions. Z-transform [12] provides a mechanism to map discrete-time signals over
the complex plane also called z-domain. This transform is a powerful tool to
solve linear difference equations (LDE) by transforming them into algebraic op-
erations in z-domain. Moreover, z-domain representation of LDEs is also used
for the transfer function analysis of corresponding systems. Due to these distinc-
tive features, Z-transform is one of the main core techniques available in physical
and engineering system analysis softwares (e.g., [11,10]) and is widely used in
the design and analysis of signal processing filters [12], electronic circuits [3],
control systems [4], photonic devices [9] and queueing networks [1].

The main idea of Z-transform can be traced back to Laplace, but it was
formally introduced by W. Hurewicz (1947) to solve linear constant coefficient
difference equations [7]. Mathematically, Z-transform can be defined as a function

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 483–498, 2014.
c© Springer International Publishing Switzerland 2014

484 U. Siddique, M.Y. Mahmoud, and S. Tahar

series which transforms a discrete time signal f [n] into a function of a complex
variable z, as follows:

X(z) =

∞∑
n=0

f [n]z−n (1)

where f [n] is a complex-valued function (f : N → R) and the series is defined
for those z ∈ C for which the series is convergent.

The first step in analyzing a difference equation (e.g., xn+1 = kxn(1 − xn))
using Z-transform is to apply Z-transform on both sides of a given equation. Next,
the corresponding z-domain equation is simplified using various properties of z-
transform, such as linearity, scaling and differentiation. The main task is to either
solve the difference equation or to find a transfer function which relates the input
and output of the corresponding system. Once the transfer function is obtained,
it can be used to analyze some important aspects such as stability, frequency
response and design optimization to reduce the number of corresponding circuit
elements such as multipliers and shift registers.

Traditionally, the analysis of linear systems based on Z-transform has been
done using numerical computations and symbolic techniques [11,10]. Both of
these approaches, including paper-and-pencil proofs [12] have some known lim-
itations like incompleteness, numerical errors and human-error proneness. In
recent years, theorem proving has been actively used for both the formalization
of mathematics and the analysis of physical systems. For the latter case, the
main task is to identify and formalize the underlying mathematical theories.
In practice, four fundamental transformation techniques (i.e., Laplace transform
(LT), Z-transform (ZT), Fourier transform (FT), and Discrete Fourier transform
(DFT)) are used in the designing and analysis of linear systems. Interestingly,
Fourier transform and Discrete Fourier transform can be derived from Laplace
transform and Z-transform, respectively. Recently, the formalization of Laplace
transform has been reported in [17] using the multivariate analysis libraries of
HOL Light [6], with an ultimate goal of reasoning about differential equations
and transfer functions of continuous systems. Nowadays, discrete-time linear
systems are widely used in the safety and mission critical domains (e.g., digital
control of avionics systems and biomedical devices). We believe that there is a
dire need of an infrastructure which provides the basis for the formal analysis of
discrete-time systems within the sound core of a theorem prover. To the best of
our knowledge, so far Z-transform has not been formalized which is an important
step towards formal analysis of discrete-time physical and engineering systems.

Our main objective is two-fold: firstly, we aim at extending theorem proving
support for linear system analysis. Secondly, we plan to enrich the current foun-
dations of optics formalization [13,15] to reason about futuristic photonic signal
processing systems [2,9]. In this paper, we propose Z-transform based system
analysis using a higher-order-logic theorem prover. The main idea is to leverage
upon the high expressiveness of higher order logic to formalize Equation (1) and
use it to verify the classical properties of Z-transform within a theorem prover.
These foundations can be built upon to reason about the analytical solutions of
difference equations or transfer functions. As a first step towards our ultimate

On the Formalization of Z-Transform in HOL 485

goal, we present in this paper the higher-order logic formalization of Z-transform
and its associated region of convergence (ROC). Next, we present the formal ver-
ification of its most commonly used properties such as linearity, time delay, time
advance and scaling in z-domain. Consequently, we present the formalization
of linear constant coefficient difference equation along with the formal verifi-
cation of its Z-transform by utilizing the above mentioned properties. In order
to demonstrate the practical effectiveness of the reported work, we present the
formal analysis of an infinite impulse response (IIR) digital signal processing
filter.

Formalization reported in this paper has been developed in the HOL Light
theorem prover due to its rich multivariate analysis libraries [6]. Another moti-
vation of choosing HOL Light is the existing formalization of Laplace transform
and photonic systems which are complementary to achieve our final objective of
analyzing linear systems and integrated optics. The source code of our formaliza-
tion is available for download [14] and can be utilized by other researchers and
engineers for further developments and the analysis of more practical systems.

The rest of the paper is organized as follows: Section 2 describes some fun-
damentals of multivariate analysis libraries of the HOL Light theorem prover.
Sections 3 and 4 present our HOL Light formalization of Z-transform and the
verification of its properties, respectively. In Section 5, we present the analysis
of an IIR filter as illustrative practical application. Finally, Section 6 concludes
the paper and highlights some future directions.

2 Preliminaries

In this section, we provide a brief introduction to the HOL Light formalization
of some core concepts such as vector summation, summability, complex differ-
entiation and infinite summation [5,6]. Our main intent is to introduce the basic
definitions and notations that are going to be used in the rest of the paper.

In the vectors theory formalization, an N-dimensional vector is represented
as an RN column matrix with individual elements as real numbers. All of the
vector operations are then treated as matrix manipulations. Similarly, instead
of defining new type, complex numbers (C) can be represented as R2. Most of
the theorems available in multivariate libraries of HOL Light are verified for
arbitrary functions with a flexible data-type of (RM → RN). Next, we present
the definitions frequently used in our formalization.

First, generalized summation over arbitrary functions is defined as follows:

Definition 1 (Vector Summation)
� ∀ s f. vsum s f = (lambda i. sum s (λ x. f x$i))

where vsum takes two parameters s : A → bool which specifies the set over the
summation occurs and an arbitrary function f : (A → RN). The function sum is
a finite summation over real numbers and accepts f : (A → RN). For example,∑K

i=0 f(i) can be represented as vsum (0..K) f.

486 U. Siddique, M.Y. Mahmoud, and S. Tahar

Next, we present the formal definition of the traditional mathematical expres-
sion
∑∞

i=k f(i) = L, as follows:

Definition 2 (Sums)
� ∀ s f L. (f sums L) s ⇔

((λ n. vsum (s ∩ (0..n)) f) → L) sequentially

where the types of the parameters are: (s : N → bool), (f : N → RN) and (L : RN).
Now, we define the summability of a function (f : N → RN), which indeed

represents that there exist some (L : RN) such that
∑∞

i=k f(i) = L.

Definition 3 (Summability)
� ∀ f s. summable s f ⇔ (∃ L. (f sums L) s)

The limit of an arbitrary function can be defined as follows:

Definition 4 (Limit)
� ∀ f net. lim net f = (@L. (f → L) net)

The function lim is defined using the Hilbert choice operator @ in the functional
form. It accepts a net with elements of arbitrary data-type A and a function
(f : A → RN), and returns (L : RN): , i.e., the value to which f converges at the
given net. In this paper, we are considering only sequential nets, which describes
the sequential evolution of a function, i.e. f(i), f(i+ 1), f(i+ 2),, etc.

Next, we present the definition of an infinite summation which is one the most
fundamental requirement in our development.

Definition 5 (Infinite Summation)
� ∀ f s. infsum s f = (@L. (f sums L) s)

The function infsum is also defined using the Hilbert choice operator @ in the
functional form. It accepts a parameter (s : num → bool) which specifies the
starting point and a function (f : N → RN), and returns (L : RN): , i.e., the value
at which infinite summation of f converges from the given s.

In some situations, it is very useful to specify infinite summation as a limit of
finite summation (vsum). We proved this equivalence in the following theorem:

Theorem 1 (Infinite Summation in Terms of Sequential Limit)
� ∀ s f. infsum s f = lim sequentially (λ k. vsum (s ∩ (0..k)) f))

Next, we present the definition of complex differentiation as follows:

Definition 6 (Complex Differentiation)
� ∀ f f’ net. (f has complex derivative f’) net ⇔

(f has derivative (λx. f’ * x)) net

The function has complex derivative defines the complex derivative in a re-
lational form. Here, (f : C → C) and f’:(C) represent a given function and the
corresponding complex derivative at a given (net : (C)net), respectively. The
function has derivative is a generalized vector derivative. The above defini-
tion can also be described in a functional form as follows:

On the Formalization of Z-Transform in HOL 487

Definition 7 (Complex Differentiation)
� ∀ f x. complex derivative f x =

(@f’. (f has complex derivative f’)) (at x)

Note that, the injection from natural numbers to complex numbers can be
represented by & : N → R. Similarly, the injection from real to complex numbers
is done by Cx : R → C. The real and imaginary parts of a complex number are
represented by Re and Im both with type C → R.

We build upon the above mentioned fundamentals to formalize Z-transform
in the next section.

3 Z-Transform Formalization

The unilateral Z-transform [8] of a discrete time function f [n] can be defined as
follows:

F (z) =
∞∑

n=0

f [n]z−n (2)

where f is a function from N → C and z is a complex variable. Here, the
definition that we consider has limits of summation from n = 0 to n = ∞. On
the other hand, one can consider these limits from n = −∞ to n = ∞ and
such a version of Z-transform is called two-sided or bilateral transform. This
generalization comes at the cost of some complications such as non-uniqueness,
which limits its practicality in engineering systems analysis. On the other hand,
unilateral transform can only be applied to causal functions, i.e., f [n] = 0 for
∀n.n < 0. In practice, unilateral Z-transform is sufficient to analyze most of the
engineering systems because their designs involve only causal signals [16]. For
similar reasons, in [17], the authors formalized the unilateral Laplace transform
rather than the bilateral version.

An essential issue of Z-transform of f [n] is whether the F (z) even exists, and
under what conditions it exists. It is clear from Equation (2) that Z-transform
of a function is an infinite series for each z in the complex plane or z-domain. It
is important to distinguish the values of z for which infinite series is convergent
and the set of all those values is called the region of convergence (ROC). In
mathematics and digital signal processing literature, different definitions of ROC
are considered. For example, one way is to express z in the polar form (z = rejω)
and then the ROC for F (z) includes only those values of r for which the sequence
f [n]r−n is absolutely summable. Unfortunately, to the best of our knowledge, this
claim (i.e., absolute summability, e.g., [12,16]) is incorrect for certain functions,
for example, f [n] = 1

nu[n− 1] for which certain values of z result in convergent
infinite series, but x[n]r−n is not absolutely summable.

Now, we have two distinct choices for defining ROC: first, z values for which
F (z) is finite (or summable) and second, z values for which x[n]z−n is abso-
lutely summable. Most of the textbooks are not rigorous about the choice of
ROC and both of these definitions are widely used in the analysis of engineering

488 U. Siddique, M.Y. Mahmoud, and S. Tahar

systems. In this paper, we use the first definition of ROC, which we can define
mathematically as follows:

ROC = {z ∈ C :
∞∑

n=0

f [n]z−n <∞} (3)

In the above discussion, we mainly highlighted some arbitrary choices of using
the definition of Z-transform and its associated ROC. Now, we can formalize Z-
transform function (Equation 2) in HOL Light, as follows:

Definition 8 (Z-Transform)
� ∀ f z. z transform f z = infsum (from 0) (λ n. f n * z−n)

where the z transform function accepts two parameters: a function f : N → C
and a complex variable z : C. It returns a complex number which represents the
Z-transform of f according to Equation (2).

Next, we present the formal definition of the ROC as follows:

Definition 9 (Region of Convergence)
� ∀ f. ROC f = {z | summable (from 0) (λ n. f n * z−n)}

Here, ROC accepts a function f : N → C and returns a set of values of variable
z for which the Z-transform of f(n) is summable. In order to compute the Z-
transform, it is mandatory to specify the associated ROC. Now, we present two
basic properties of ROC as follows:

Theorem 2 (ROC Linear Combination)
� ∀ z α β f g. z ∈ ROC f ∧ z ∈ ROC g =⇒

z ∈ ROC (λn. α * f n) ∩ ROC (λn. β * g n)

Theorem 3 (ROC Scaling)
� ∀ z α f. z ∈ ROC f =⇒ z ∈ ROC (λn. f n

α)

where Theorem 2 describes that if z belongs to ROC f and ROC g then it also
belongs to the intersection of both ROCs even though the functions f and g are
scaled by complex parameters α and β, respectively. Similarly, Theorem 3 shows
the scaling with respect to complex division by a complex number α.

4 Z-Transform Properties

In this section, we use Definitions 8 and 9 to formally verify some of the classical
properties of Z-transform in HOL Light. The verification of these properties not
only ensures the correctness of our definitions but also plays an important role in
reducing the time required to analyze practical applications, as described later
in Section 5.

On the Formalization of Z-Transform in HOL 489

4.1 Linearity of Z-Transform

The linearity of the Z-transform is a very useful property while handling systems
composed of subsystems with different scaling inputs. Mathematically, it can be
defined as:

If Z(f [n]) z = F (z) with ROC = Rf and Z(g[n]) z = G(z) with ROC = Rg,
then the following holds:

Z(α ∗ f [n]± β ∗ g(n)) z = α ∗ F (z)± β ∗G(z) ROC ⊇ Rf ∩Rg (4)

The Z-transform of a linear combination of sequences is the same linear combi-
nation of the Z-transforms of the individual sequences. We verify this property
as the following theorem:

Theorem 4 (Linearity of Z-Transform)
� ∀ z f g α β. z ∈ ROC f ∩ ROC g =⇒

z transform (λ n. α * f n + α * g n) z =

α * z transform f z + β * z transform g z

where α : C and β : C are arbitrary constants.
The proof of these theorems are based on the linearity of infinite summation

and Theorem 2.

4.2 Shifting Properties

The shifting properties of Z-transform are the most widely used in the analysis
of digital systems and in particular in solving difference equations. In fact, there
are two kinds of possible shifts: left shift (f [n+m]) or time advance and right
shift (f [n−m]) or time delay. The main idea is to express the transform of the
shifted signal ((f [n+m]) or (f [n−m])) in terms of its Z-transform (F (Z)).

Left Shift of a Sequence: If Z(f [n]) z = F (z) and m is a positive integer,
then the left shift of a sequence can be described as follows:

Z(f [n+m]) z = zmF (z)−
m−1∑
n=0

f [n]z−n (5)

We verify this theorem as follows:

Theorem 5 (Left Shift or Time Advance)
� ∀ f z m. z ∈ ROC f ∧ (0 < m) =⇒

z transform (λ n. f (n + m)) z =

zm * (z transform f z) - vsum (0..m - 1) (λ n. f n * z−n)

The verification of this theorem mainly involves properties of complex numbers,
summability of shifted functions and splitting an infinite summation into two
parts as given by the following lemma:

490 U. Siddique, M.Y. Mahmoud, and S. Tahar

Lemma 1 (Infsum Splitting)
� ∀ f n m. summable (from m) f ∧ (m < n) =⇒

infsum (from m) f = vsum (m..n - 1) f + infsum (from n) f

Right Shift of a Sequence: If Z(f [n]) z = F (z), and assuming f(−n) =
0, ∀n = 1, 2, ..,m, then the right shift or time delay of a sequence can be
described as follows:

Z(f [n−m]) z = z−mF (z) (6)

We formally verify the above property as the following theorem:

Theorem 6 (Right Shift or Time Delay)
� ∀ f z m. z ∈ ROC f ∧ (∀ m. is causal f m) =⇒

z transform (λ n. f (n - m)) z = z−m * (z transform f z)

Here, is causal defines the causality of the function f in a relational form
to ensure that f(n− m) = 0, ∀m.n < m. The proof of this theorem also involves
properties of complex numbers along with the following two lemmas:

Lemma 2 (Series Negative Offset)
� ∀ f k l. (f sums l) (from 0) =⇒

((λ n. f (n - k)) sums l) (from k)

Lemma 3 (Infinite Summation Negative Offset)
� ∀ f k. summable (from 0) f =⇒

infsum (from 0) (λ n.if k ≤ n then f (n - k) else Cx(&0))

= infsum (from 0) f

As a direct application of above results, we verify another important property
called first-difference, as follows:

Theorem 7 (First Difference)
� ∀ f. z ∈ ROC f ∧ (∀ m. is causal f m) =⇒

z transform (λ n. f (n) - f(n-1)) z = (1− z−1) * (z transform f z)

4.3 Scaling in Z-Domain

The scaling property of Z-transform plays an important role in the designing of
communication systems, such as the response analysis of modulated signals in
z-domain. If Z(f [n]) z = F (z), then two basic types of scaling can be defined as
below:

Z(Zn
0 f [n]) z = F (

z

Z0
) (7)

Z(ω−nf [n]) z = F (ωz) (8)

If Z0 is a positive real number, then it can be interpreted as shrinking or expand-
ing of the z-domain. If Z0 is a complex with unity magnitude, i.e., z = ejω0 , then
the scaling corresponds to a rotation in the z-plane by an angle of ω0. Indeed,
in communication and signal processing literature, it is interpreted as frequency
shift or translation associated with the modulation in the time-domain.

On the Formalization of Z-Transform in HOL 491

We verify the above theorems in HOL Light as follows:

Theorem 8 (Scaling in z-Domain)
� ∀ f Z0 z. z transform (λ n. Zn0 * f n) z = z transform f (z

Z0
)

Theorem 9 (Scaling in z-Domain (Negative))
� ∀ f ω z. z transform (λ n. ω−n * f n) z = z transform f (ω ∗ z)

The verification of above theorems mainly involves the properties of complex
power.

4.4 Complex Differentiation

The differentiation property of Z-transform is frequently used together with shift-
ing properties to find the inverse transform. Mathematically, it can be expressed
as:

Z(n ∗ f [n]) z = −z ∗ (
∞∑

n=0

d

dz
(f [n]z−n)) (9)

We prove this property in the following theorem:

Theorem 10 (Complex Differentiation)
� ∀ f z. �= Cx(&0) ∧ &0 < Re z ∧ z ∈ (λ n. Cx (&n) * f n)

=⇒ z transform (λ n. Cx (&n) * f n) z =

-z * infsum (from 0) (λ n. complex derivative (λ z. f n * z−n) z)

The proof of the above theorem requires the properties of complex differentiation,
summability and complex arithmetic reasoning.

4.5 Difference Equation

A difference equation characterizes the behavior of a particular phenomena over
a period of time. Such equations are widely used to mathematically model com-
plex dynamics of discrete-time systems. Indeed, a difference equation provides a
formula to compute the output at a given time, using present and future inputs
and past output as given in the following example:

y[n]− y[n− 1] =

M∑
i=0

αif [n− i] (10)

Here, M is called the order of difference equation and αi represents the list
of input coefficients. For a given M th order difference equation in terms of a
function f [n], its Z-transform is given as follows:

Z(

M∑
i=0

αif [n− i]) z = F (z)
M∑
i=0

αiz
−n (11)

492 U. Siddique, M.Y. Mahmoud, and S. Tahar

We formalize the difference equation as follows:

Definition 10 (Difference Equation)
� ∀ N α lst f x. difference eq M α lst f x =

vsum (0..M) (λ t. EL t α lst * f (x - t)* z−n

The function difference eq accepts the order (M) of the difference equation, a
list of coefficients α lst, a causal function f and the variable x. It utilizes the
functions vsum s f and EL i L, which return the vector summation and the ith

element of a list L, respectively, to generate the difference equation corresponding
to the given parameters.

Next, we verify the Z-transform of the difference equation which is one of the
most powerful results of our formalization as will be demonstrated in Section 5.

Theorem 11 (Z-Transform of Difference Equation)
� ∀ M α lst f x. z ∈ ROC f ∧ z �= Cx(&0) ∧

(∀ m. is causal f m) =⇒
z transform (λx. difference eq M α lst f x) z =

(z transform f z) * (vsum (0..M) (λ n. EL n α lst * z−n))

We prove the above theorem by induction and using Theorems 2 and 4 along with
the following important lemma about the summability of difference equation:

Lemma 4 (Summability of Difference Equation)
� ∀ M α lst f x. z ∈ ROC f ∧ (∀ m. is causal f m)

=⇒ z ∈ ROC (λx. difference eq M α lst f x)

This completes our formalization of the Z-transform and verification of its main
properties, which to the best of our knowledge is the first one in higher-order logic.
We believe that our formalization can be directly utilized in many applications
such as economics, biology, signal processing and control engineering.

5 Application: Formal Analysis of Infinite Impulse
Response Filter

In order to illustrate the utilization and effectiveness of the reported formal-
ization, we apply it to analyze a real-world engineering system, i.e., an infinite
impulse response filter [12].

Digital filters are fundamental components of almost all signal processing and
communication systems. The main functionality of such components are: 1) to
limit a signal within a given frequency band; 2) decompose a signal into multiple
bands; and 3) model the input-output relation of complicated systems such as
mobile communication channels and radar signal processing. The design and
analysis of digital filters mainly involves three steps, i.e., the specification of the
desired properties of the system, modeling using a causal discrete-time system
and realization of overall structure (parallel, cascaded, etc.). Given the filter
specifications in terms of frequency response, the first step is to model the filter

On the Formalization of Z-Transform in HOL 493

using constant coefficient difference equations. The next step is to express it in
the form of transfer function using the Z-transform properties. Consequently,
frequency response analysis and architectural optimization can be performed
based on the given specifications.

An impulse response of a system describes its behaviour under an external
change (mathematically, this describes the system response when the dirac-delta
function is applied as an input [12]). Infinite impulse response (IIR) filters have
an impulse response function which is non-zero over an infinite length of time.
In practice, IIR filters are implemented using the feedback mechanism, i.e., the
present output depends on the present input and all previous input and output
samples. Such an architecture requires delay elements due to the discrete nature
of input and output signals. The highest delay used in the input and the output
function is called the order of the filter.

The time-domain difference equation describing a generalM th order IIR filter,
with N feed forward stages and M feedback stages, is shown in Figure 1.

β0

β1

β2

βN

α 0

α 1

α M

x[n] y[n]

x[n-1]

x[n-2]

x[n-N]

y[n-1]

y[n-2]

y[n-M]

Z -1

Z -1

Z -1

Z -1

Z -1

Z -1

Multiplier Adder

Fig. 1. Generalized Structure of an M th Order IIR Filter

494 U. Siddique, M.Y. Mahmoud, and S. Tahar

Mathematically, it can be described as:

y[n] =

M∑
i=1

αiy[n− i] +
N∑
i=0

βix[n− i] (12)

where αi and βi are input and output coefficients. The output y[n] is a linear
combination of the previous N output samples, the present input x[n] and M
previous input samples. In case of a time-invariant filter, αi and βi are considered
constants (either complex (C) or real (R)) to obtain the filter response according
to the given specifications.

Our main objective is to formally verify the transfer function and frequency
response of an IIR filter which are given as:

H(z) =
Y (z)

X(z)
=

N∑
i=0

βiz
−i

1−
M∑
i=1

αiz
−i

(13)

H(ω) =

√√√√(
N∑
i=0

βicos(iω))
2 + (

N∑
i=0

βisin(iω))
2

√√√√(1 −
M∑
i=1

αicos(iω))
2 + (

M∑
i=1

αisin(iω))
2

∗ exp(j ∗Arg(H(ω))) (14)

where H(z) and H(ω) represent the filter’s transfer function and complex fre-
quency response, respectively. The function Arg(z) represents the argument of
a complex number [12]. Equation 14 can be derived from the transfer function
H(z) by mapping z on the unit circle, i.e., z = exp(j ∗ ω). The parameter ω
represents the angular frequency.

Based on the above description of the IIR filter, our next move is to conduct its
formal analysis, which mainly involves two major steps, i.e., formal description
of the model and underlying constraints followed by the formal verification of
transfer function and frequency response. As a first step, we build the formal
model of the IIR filter using Equation 12.

Definition 11 (IIR Model)
� ∀ x y α lst β lst M N n. IIR MODEL x y α lst β lst M N n ⇔

y n = differen eq α lst y M n +

difference eq β lst x N n ∧ HD α lst = Cx(&0)

The function IIR MODEL defines the dynamics of the IIR structure in a relational
form. It accepts the input and output signals (x, y : N → C), a list of input
and output coefficients (α lst, β lst : (C(list))), the number of feed forward
and feedback stages (N, M) and a variable n, which represents the discrete time.

On the Formalization of Z-Transform in HOL 495

In order to model
∑M

i=1 αiy[n − i] using our definition of difference equation,
we added the constraint that the first element (i.e., HD α lst) of the output
coefficients should be 0.

According to the filter specification, we need to ensure that the input and
output signals should be causal as described in Section 3. Another important
requirement is to ensure that there are no values of z for which denominator is
0, such values are called poles of that transfer function. For the correct operation
of the filter, the region of convergence (ROC) should not include any poles. We
package these conditions in the following definitions:

Definition 12 (Causality Condition)
� ∀ x y. is causal iir x y ⇔

(∀ k. is causal x k) ∧ (∀ k. is causal y k)

Definition 13 (IIR FILTER ROC)
� ∀ x y α lst M.

IIR ROC x y α lst M =

z IN (ROC x ∩ ROC y) DIFF

{z | (Cx(&1) - vsum (1..M) (λ n.EL n α lst ∗ z−n) = Cx(&0)}

Here, the function is causal irr takes two parameters, i.e., input and output,
and ensures that both of them are causal. In Definition 13, IIR ROC specifies the
region of convergence of IIR, which is indeed the intersection of ROC x and ROC

y, excluding all poles of the transfer function. The function DIFF represents the
difference of two sets, i.e., A \ B = {z : z ∈ A ∧ x /∈ B}. Next, we present the
formal verification of the transfer function as given in Equation 13.

Theorem 12 (IIR Transfer Function Verification)
� ∀ x y α lst β lst M N.

z ∈ IIR ROC x y α lst M ∧
z �= Cx(&0) ∧ is causal iir x y ∧
(∀ n. IIR MODEL x y α lst β lst M N n) =⇒
z transform y z

z transform x z
=

vsum (0..N) (λn.EL n β lst ∗ z−n)

1 − (vsum (1..M) (λn.EL n α lst ∗ z−n)

The first and second assumptions describe the region of convergence for the IIR
filter. The second assumption ensures the causality of the filter’s input and out-
put, and the last assumption gives the time-domain model of the given IIR filter.
The proof of this theorem is mainly based on the properties of the Z-transform
such as linearity (Theorem 4), time-delay (Theorem 6) and summability of dif-
ference equation (Lemma 4). This is a very useful result as it greatly simplifies
the reasoning for any given design of IIR. Moreover, this theorem can be used
to reason about many important aspects such as stability and architectural op-
timization. For example, the stability of a given IIR design can be checked by
ensuring that all poles of the transfer function lies inside the unit circle (i.e.,
their magnitude is less than 1).

Next, we verify the frequency response of the filter given in Equation 14 as
follows:

496 U. Siddique, M.Y. Mahmoud, and S. Tahar

Theorem 13 (IIR Frequency Response)
� ∀ x y α lst β lst M N.

z ∈ IIR ROC x y α lst M ∧
z = cexp(ii*ω) ∧ is causal iir x y ∧
(∀ n. IIR MODEL x y α lst β lst M N n) =⇒

let H =
z transform y z

z transform x z
and

num real = vsum (0..N) (λn.EL n β lst ∗ ccos(n ∗ ω)) and

num imag = -vsum (0..N) (λn.EL n β lst ∗ csin(n ∗ ω)) and

den real = 1 − (vsum (1..M) (λn.EL n α lst ∗ ccos(n ∗ ω))) and

den imag = vsum (1..M) (λn.EL n α lst ∗ csin(n ∗ ω)) in

H = Cx(
sqrt[(num real)2 + (num imag)2]

sqrt[(den real)2 + (den imag)2]
) ∗ cexp(Arg(H))

Where sqrt, cexp and Arg represent the real square root (over reals), complex
exponential and argument of a complex number, respectively. The verification of
the above theorem is mainly based on Theorem 14 and tedious complex analysis
involving complex norms and transcendental functions.

Theorems 12 and 13 provide the generic results due to the universal quantifica-
tion over the system parameters such as input and output coefficients (αi and βk,
where i = 0, 1, 2, . . . ,M and k = 1, 2, . . . , N). Next, we utilise these results to for-
mally verify the transfer function and frequency response of a second order low-pass
IIR filter as shown in Figure 2. The input and output coefficients are [0.0605, 0.121,
0.0605] and [1.94,−0.436], respectively. We model this structure as follows:

0.0605

x[n] y[n]

x[n-1]

x[n-2]

y[n-1]

y[n-2]

Z -1

Z -1

Z -1

Z -1
0.121

0.0605

1.194

- 0.436

Fig. 2. Second Order Low-Pass IIR Filter

Definition 14 (Second Order IIR Model)
� α lst = [Cx(&0); Cx(&1194

&1000
);−Cx(&436

&1000
)]

� β lst = [Cx(&605
&10000

); Cx(&121
&1000

); Cx(&605
&10000

)]

� ∀ x y. SECOND ORDER IIR MODEL x y α lst β lst ⇔
∀ n. y n = differen eq α lst y 2 n + difference eq β lst x 2 n

On the Formalization of Z-Transform in HOL 497

Here, SECOND ORDER IIR MODEL accepts the input and output signals, a list of in-
put and output coefficients (defined by α lst, β lst), and returns the difference
equation describing the behaviour of the low-pass IIR filter.

Theorem 14 (Second Order Low-pass IIR Filter Transfer Function)
� ∀ x y z. z ∈ IIR ROC x y α lst 2 ∧

z �= Cx(&0) ∧ is causal iir x y ∧
(SECOND ORDER IIR MODEL x y α lst β lst) =⇒

z transform y z

z transform x z
=

Cx(&605
10000

) + Cx(&121
&1000

) ∗ z−1 + Cx(&605
&10000

) ∗ z−2

Cx(&1)− Cx(&1194
&1000

) ∗ z−1 + Cx(&436
&1000

) ∗ z−2

The verification of the above theorem is based on Theorem 12.
This completes our formal analysis of a generalized IIRfilterwhichdemonstrates

the effectiveness of the proposed theorem proving based approach to reason about
discrete-time linear systems. The availability of the Z-transformproperties greatly
simplified the verification of the transfer function and frequency response. The ver-
ification of the transfer function and frequency response task took around 150 lines
of the HOL Light code and a couple of man-hours each. We believe that reported
formalization demonstrates the maturity of interactive theorem provers.

6 Conclusion and Future Directions

In this paper, we reported the formalization of Z-transform which is one of
the most widely used transform methods in signal processing and communica-
tion theory. We presented the formal definitions of unilateral Z-transform and
its associated region of convergence along with the formal verification of some
important properties such as linearity, time shifting and difference equations.
Finally, in order to demonstrate the effectiveness of the developed formalization,
we presented the formal analysis of a generalized infinite impulse repones fil-
ter. Consequently, we verified the transfer function and frequency response of a
second order low-pass IIR filter.

The utilization of higher-order logic theorem proving in industrial settings
(particularly, physical systems) is always questionable due to the huge amount
of time required to formalize the underlying theories. Another, important factor
is the gap between the theorem proving and engineering communities which
limits its usage in industry. For example, it is hard to find engineers with theorem
proving background and vice-versa. Our reported work can be considered as a one
step towards an ultimate goal of using theorem provers in the design and analysis
of systems from different engineering and physical science disciplines (e.g., signal
processing, control systems, biology, optical and mechanical engineering).

Our immediate future work is the formalization of the uniqueness theorem of
Z-transform [12], which is required to reliably deduce some important properties
of difference equations and discrete-time linear systems. The proof of this the-
orem entails some additional properties of complex differentiation and infinite

498 U. Siddique, M.Y. Mahmoud, and S. Tahar

summations. Another future direction is the formalization of most commonly
used inverse transform techniques like power series method, partial fractions
and the Cauchy’s integral method.

References

1. Alfa, A.S.: Queueing Theory for Telecommunications - Discrete Time Modelling of
a Single Node System. Springer (2010)

2. Binh, L.N.: Photonic Signal Processing: Techniques and Applications. Optical Sci-
ence and Engineering. Taylor & Francis (2010)

3. Elaydi, S.: An Introduction to Difference Equations. Springer (2005)
4. Fadali, S., Visioli, A.: Digital Control Engineering: Analysis and Design. Academic

Press (2012)
5. Harrison, J.: Formalizing Basic Complex Analysis. In: From Insight to Proof:

Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and
Rhetoric, vol. 10(23), pp. 151–165 (2007)

6. Harrison, J.: The HOL Light Theory of Euclidean Space. Journal of Automated
Reasoning 50(2) (2013)

7. Jury, E.I.: Theory and Application of the Z-Transform Method. Wiley (1964)
8. Lathi, B.P.: Linear Systems and Signals. Oxford University Press (2005)
9. Mandal, S., Dasgupta, K., Basak, T.K., Ghosh, S.K.: A Generalized Approach for

Modeling and Analysis of Ring-Resonator Performance as Optical Filter. Optics
Communications 264(1), 97–104 (2006)

10. Mathematica Guide: Signal Processing Related Functions (2014),
http://reference.wolfram.com/mathematica/guide/SignalProcessing.html

11. MathWorks: Signal Processing Toolbox (2014),
http://www.mathworks.com/products/signal/

12. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing.
Prentice Hall (1999)

13. Siddique, U., Aravantinos, V., Tahar, S.: Formal Stability Analysis of Optical Res-
onators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 368–382. Springer, Heidelberg (2013)

14. Siddique, U., Mahmoud, M.Y.: On the Formalization of Z-Transform - HOL Light
Script (2014), http://hvg.ece.concordia.ca/projects/
signal-processing/z-transform.html

15. Siddique, U., Tahar, S.: Towards the Formal Analysis of Microresonators Based
Photonic Systems. In: IEEE/ACM Design Automation and Test in Europe, pp.
1–6 (2014)

16. Sundararajan, D.: A Practical Approach to Signals and Systems. Wiley (2009)
17. Taqdees, S.H., Hasan, O.: Formalization of Laplace Transform Using the Multivari-

able Calculus Theory of HOL-Light. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013)

18. Yang, X.S.: Mathematical Modeling with Multidisciplinary Applications. John Wi-
ley & Sons (2013)

http://reference.wolfram.com/mathematica/guide/SignalProcessing.html
http://www.mathworks.com/products/signal/
http://hvg.ece.concordia.ca/projects/signal-processing/z-transform.html
http://hvg.ece.concordia.ca/projects/signal-processing/z-transform.html

Universe Polymorphism in Coq

Matthieu Sozeau1 and Nicolas Tabareau2

1 Inria Paris, PiR2, Univ Paris Diderot, Sorbonne Paris Cité, F-78153 Le Chesnay
2 Inria Rennes, Laboratoire d’Informatique de Nantes Altantique (LINA)

firstname.surname@inria.fr

Abstract. Universes are used in Type Theory to ensure consistency by
checking that definitions are well-stratified according to a certain hier-
archy. In the case of the Coq proof assistant, based on the predicative
Calculus of Inductive Constructions (pCIC), this hierachy is built from
an impredicative sort Prop and an infinite number of predicative Typei
universes. A cumulativity relation represents the inclusion order of uni-
verses in the core theory. Originally, universes were thought to be floating
levels, and definitions to implicitely constrain these levels in a consistent
manner. This works well for most theories, however the globality of levels
and constraints precludes generic constructions on universes that could
work at different levels. Universe polymorphism extends this setup by
adding local bindings of universes and constraints, supporting generic
definitions over universes, reusable at different levels. This provides the
same kind of code reuse facilities as ML-style parametric polymorphism.
However, the structure and hierarchy of universes is more complex than
bare polymorphic type variables. In this paper, we introduce a conserva-
tive extension of pCIC supporting universe polymorphism and treating
its whole hierarchy. This new design supports typical ambiguity and im-
plicit polymorphic generalization at the same time, keeping it mostly
transparent to the user. Benchmarking the implementation as an exten-
sion of the Coq proof assistant on real-world examples gives encouraging
results.

1 Introduction

Type theories such as the Calculus of Inductive Constructions maintain a uni-
verse hierarchy to prevent paradoxes that appear if one is not careful about the
sizes of types that are manipulated in the language (e.g. Girard’s paradox [1]). To
ensure consistency while not troubling the user with this necessary information,
systems using typical ambiguity were designed. Typical ambiguity lets users write
only anonymous levels (as Type) in the source language, leaving the relationship
between different universes to be implicitly inferred by the system. However, the
globality of levels and constraints in Coq precludes generic constructions on uni-
verses that could work at different levels. Recent developments in homotopy type
theory [2] advocate for an extension of the system with universe polymorphic
definitions that are parametric on universe levels and instantiated at different

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 499–514, 2014.
© Springer International Publishing Switzerland 2014

500 M. Sozeau and N. Tabareau

ones, just like parametric polymorphism is used to instantiate a definition at dif-
ferent types. This can be interpreted as building fresh instances of the constant
that can be handled by the core type checker without polymorphism.

An example of this additional generality is the following. Suppose we define
two universes:

Definition U2 := Type.
Definition U1 := Type : U2.

In the non-polymorphic case but with typical ambiguity, these two definitions
are elaborated as U2 := Typeu : Typeu+1 and U1 := Typev : U2 with a single,
global constraint v < u.

With polymorphism, U2 can be elaborated as a polymorphic constant U2u :=
Typeu : Typeu+1 where u is a bound universe variable. A monomorphic definition
of U1 is elaborated as U1 := Typev : U2u′ (i.e. Typeu′) with a single global
constraint v < u′ for a fresh u′. In other words, U2’s universe is no longer fixed
and a fresh level is generated at every occurrence of the constant. Hence, a
polymorphic constant can be reused at different, incompatible levels.

Another example is given by the polymorphic identity function, defined as:

idu := λ(A : Typeu)(a : A), a : Π(A : Typeu), A→ A

If we apply id to itself, we elaborate an application:

idv (Π(A : Typeu), A→ A) idu : Π(A : Typeu), A→ A

Type-checking generates a constraint in this case, to ensure that the universe
of Π(A : Typeu), A → A, that is u % u + 1 = u + 11, is smaller or equal to
(the fresh) v. It adds indeed a constraint u < v. With a monomorphic id, the
generated constraint u < u would raise a universe inconsistency.

In this paper, we present an elaboration from terms using typical ambigu-
ity into explicit terms which also accomodates universe polymorphism, i.e., the
ability to write a term once and use it at different universe levels. Elaboration
relies on an enhanced type inference algorithm to provide the freedom of typi-
cal ambiguity while also supporting polymorphism, in a fashion similar to usual
Hindley-Milner polymorphic type inference. This elaboration subsumes the ex-
isting universe system of Coq and has been benchmarked favorably against the
previous version. We demonstrate how it provides a solution to a number of
formalization issues present in the original system.

To summarize, our contributions are: (i) The design of a universe polymorphic,
conservative extension of pCIC, able to handle the whole universe hierarchy and
clarifying the inference of universe levels for inductive types. (ii) An elaboration
from a source language with typical ambiguity and implicit polymorphism to
that core calculus, with a clear specification of the necessary changes in unifica-
tion. (iii) An efficient implementation of this elaboration as an extension of the
Coq proof assistant. The efficiency claim is backed by benchmarks on real-world
developments.

1 u " v is the least upper bound of two universes.

Universe Polymorphism in Coq 501

levels i, j, le, lt ∈ N ∪ 0− order O ::= = | < | ≤
universes u, v ::= i | max(

−→
le ,

−→
lt) atomic constraint c ::= i O j

constraints ψ,Θ ::= ε | c ∧ ψ

Fig. 1. Universes

Plan of the Paper. Section 2 introduces the universe structures and a minor
variant with constraint checking of the original core pCIC calculus of Coq.
In section 3, we highlight the features of the source language that have to be
elaborated and present the enrichment of the core calculus with polymorphic
definitions and its conservativity proof. In section 4 we present the elaboration
and focus on the subtle issues due to mixing unification and the cumulativity
subtyping relation. Finally, we discuss performance benchmarks on real-world
examples (§5), and review related and future work (§6).

2 Predicative CIC with Constraint Checking

The current core typechecker implemented in the kernel of Coq produces a set
of universe constraints according to a cumulativity relation while typechecking a
term; this set of constraint is then added to the global universe constraints and
checked for consistency at the end of typechecking. For a standard presentation
of pCIC, see [3]. This design is not suited to support an explicit form of universe
polymorphism, where polymorphic definitions carry explicit universe instances.

In this section, we formulate a presentation of the calculus with constraint
checking instead of constraint generation. For the purpose of this presentation,
we consider a stripped down version of the calculus without Σ and inductive
types, however we’ll detail how our design extends to these in Section 4.4.

The Core Theory. First we introduce the definitions of the various objects
at hand. We start with the term language of a dependent λ-calculus: we have a
countable set of variables x, y, z, and the usual typed λ-abstraction λx : τ, b, à la
Church, application t u, the dependent product type Πx : A.B and a set of sorts
Typeu where u is a universe. Universes are built according to the grammar in
Figure 1. We start from the syntactic category of universe levels which represent
so-called“floating”universe variables i, j, taken from an infinite set of identifiers.
Algebraic universes (or universes) are built from levels and formal least upper

bound expressions max(
−→
le ,

−→
lt) representing a universe i such that

−→
le ≤ i and−→

lt < i. We identify max(i, ε) and i. The successor of a universe level i is noted
i+1 and encoded as max(ε, i). For uniformity, we changed the usual set of sorts
of CIC to a single sort Typei and define the propositional sort Prop � Type0−

with the convention that 0− ≤ i for all i and 0− + 1 = 1. The sort Set is just a
synonym for Type0.

502 M. Sozeau and N. Tabareau

Empty

· �ψ

Decl

Γ �ψ T : s x
∈ Γ

Γ, x : T �ψ

Type

Γ �ψ

Γ �ψ Typei : Typei+1

Var

Γ �ψ (x : T) ∈ Γ

Γ �ψ x : T

App

Γ �ψ t : Πx : A.B Γ �ψ t′ : A

Γ �ψ (t t′) : B{t′/x}

Prod

Γ �ψ A : s Γ, x : A �ψ B : s′ (s, s′, s′′) ∈ R
Γ �ψ Πx : A.B : s′′

Lam

Γ �ψ Πx : A.B : s Γ, x : A �ψ t : B

Γ �ψ λx : A.t : Πx : A.B

Conv

Γ �ψ t : A Γ �ψ B : s A ≤ψ B

Γ �ψ t : B

Fig. 2. Typing judgments for CCU

Universe constraints consist of a conjunction of level (in)equalities which can
be seen as a set of atomic constraints. Consistency of a set of constraints is
written ψ |=, while satisfiability of a constraint is denoted ψ |= uO i. The kernel
only needs to handle constraints of the form uO i where i is a level and u an
algebraic universe, as shown by Herbelin [4].

Although we do not detail its definition, satisfiability is closed under reflexiv-
ity, symmetry and transitivity of =, < and ≤ where applicable. The satisfiability
check is performed using an acyclicity check on the graph generated by the atomic
constraints, in an incremental way. Acyclicity ensures that their is an assignment
of natural numbers to levels that makes the constraints valid (see [5]). We can
hence assume that consistency of constraints is decidable and furthermore that
they model a total order:

Lemma 1 (Decidability of Consistency). If C |=, then for all levels i, j
either C ∧ i ≤ j |= or C ∧ j < i |=.

The typing judgment for this calculus is written Γ �ψ t : T (Fig. 2) where Γ
is a context of declarations Γ ::= · | Γ, x : τ , ψ is a set of universe constraints,
t and T are terms. If we have a valid derivation of this judgment, we say t has
type T in Γ under the constraints ψ. We write Γ � T : s as a shorthand for
Γ � T : Typeu for some universe u and omit the constraints when they are clear
from the context.

The typing rules are standard rules of a PTS with subtyping. The sorting
relation R is defined as:

(s, Prop, Prop) impredicative Prop

(Typeu, Typev, Typeu� v) predicative Type

We formulate the cumulativity and conversion judgments directly in algorith-
mic form using a parameterized judgment T =R

ψ U that can be instantiated

with a relation R. Conversion is denoted T =ψ U � T ==
ψ U and cumulativity

T ≤ψ U � T =≤
ψ U . The rules related to universes are given in Figure 3. The

Universe Polymorphism in Coq 503

R-Type

ψ |= u R i

Typeu =R
ψ Typei

R-Prod

A ==
ψ A′ B =R

ψ B′

Πx : A.B =R
ψ Πx : A′.B′

R-Red

A ↓β=R
ψ B ↓β

A =R
ψ B

Fig. 3. Excerpt of rules for the conversion/cumulativity relation A =R
ψ B

notion of reduction considered here is just the usual β rule, conversion being a
congruence for it.

(λx : τ.t) u→β t[u/x]

We note A ↓β the weak head normal form of A. Note that the R-Red rule
applies only if A and B are not in weak head normal form already. The basic
metatheory of this system follows straightforwardly. We have validity:

Theorem 1 (Validity). If Γ �ψ t : T then there exists s such that Γ �ψ T : s.
If Γ �ψ and x : T ∈ Γ then there exists s such that Γ �ψ T : s.

The subject reduction proof follows the standard proof for ECC[6].

Theorem 2 (Subject Reduction). If Γ �ψ t : T and t→∗
β u then Γ �ψ u : T .

This system enjoys strong normalization and is relatively consistent to the
usual calculus of constructions with universes: we actually have a one-to-one
correspondence of derivations between the two systems, only one of them is
producing constraints (noted Γ �CC t : T 	 ψ) while the other is only checking.

Proposition 1. Suppose ψ |=. If Γ �CC t : T 	 ψ then Γ �ψ t : T . If Γ �ψ t : T
then Γ �CC t : T 	 ψ′ and ψ |= ψ′.

We can freely weaken judgments using larger contexts and constraints.

Proposition 2 (Weakening). Suppose Γ �ψ t : T and ψ |=. If Γ ⊂ Δ and
Δ �ψ then Δ �ψ t : T . If ψ

′ |= ψ and ψ′ |= then Γ �ψ′ t : T .

It also supports a particular form of substitution principle for universes, as
all judgments respect equality of universes. Substitution of universe levels for
universe levels is defined in a completely standard way over universes, terms and
constraints.

Lemma 2 (Level Substitution). If Γ �ψ t : T , ψ |= i = j then t =ψ t[j/i].

3 Predicative CIC with Universe Polymorphic Definitions

To support universe polymorphism in the source language, the core theory de-
fined in Section 2 needs to be extended with the notion of universe polymorphic
definition. This section presents this extension and show that it is conservative
over the pCIC.

504 M. Sozeau and N. Tabareau

Constant-Mono

Σ �d
Ψ Ψ ∪ ψc |= Σ; · �d

Ψ∪ψc
t : τ c /∈ Σ

Σ, (c : ε � t : τ) �d
Ψ∪ψc

Constant-Poly

Same Premisses

Σ, (c :
−→
i �d

ψc
t : τ) �d

Ψ

Fig. 4. Well-formed global environments

Constant Terms indexed by Universes. Our system is inspired by the
design of [7] for the LEGO proof assistant, but we allow arbitrary nesting of
polymorphic constants. That is, pCIC is extended by a new term former c−→u
for referring to a constant c defined in a global environment Σ, instantiating
its universes at −→u . The typing judgment (denoted �d) is made relative to this
environment and there is a new introduction rule for constants:

Constant

(c :
−→
i |= ψc � t : τ) ∈ Σ ψ |= ψc[

−→
u/i]

Σ;Γ �d
ψ c−→u : τ [

−→
u/i]

Universe instances −→u are simply lists of universe levels that instantiate the
universes abstracted in definition c. A single constant can hence be instantiated
at multiple different levels, giving a form of parametric polymorphism. The con-
straints associated to these variables are checked against the given constraints
for consistency, just as if we were checking the constraints of the instantiated
definitions directly. The general principle guiding us is that the use of constants
should be transparent, in the sense that the system should behave exactly the
same when using a constant or its body.

Extending Well-Formedness. Well-formedness of the new global context of
constants Σ has to be checked (Fig. 4). As we are adding a global context
and want to handle both polymorphic and monomorphic definitions (mentioning
global universes), both a global set of constraints Ψ and local universe constraints
ψc for each constant must be handled. When introducing a constant in the
global environment, we are given a set of constraints necessary to typecheck the
term and its type. In the case of a monomorphic definition (Rule Constant-

Mono), we simply check that the local constraints are consistent with the global
ones and add them to the global environment. In Rule Constant-Poly, the

abstraction of local universes is performed. An additional set of universes
−→
i is

given, for which the constant is meant to be polymorphic. To support this, the
global constraints are not augmented with those of ψc but are kept locally to
the constant definition c. We still check that the union of the global and local
constraints is consistent at the point of definition, ensuring that at least one
instantiation of the constant can be used in the environment (but not necessarily
in all of its extensions).

Universe Polymorphism in Coq 505

Extending Conversion. We add a new reduction rule for unfolding constants:

c−→u →δ t[
−→
u/i] when (c :

−→
i |= � t :) ∈ Σ.

It is important to notice that conversion must still be a congruence modulo δ.
The actual strategy employed in the kernel to check conversion/cumulativity of
T and U is to always take the β head normal form of T and U and to do head
δ reductions step-by-step (choosing which side to unfold first according to an
oracle if necessary), as described by the following rules:

R-δ-l
c−→
i
→δ t t −→a =R

ψ u

c−→
i
−→a =R

ψ u

R-δ-r
c−→
i
→δ u t =R

ψ u
−→a

t =R
ψ c−→

i
−→a

This allows to introduce an additional rule for first-order unification of constant
applications, which poses a number of problems when looking at conversion and
unification with universes. The rules for conversion include the following short-
cut rule R-FO that avoids unfolding definitions in case both terms start with the
same head constant.

R-FO

−→as =R
ψ

−→
bs

c−→u
−→as =R

ψ c−→v
−→
bs

This rule not only has priority over the R-δ rules, but the algorithm backtracks
on its application if the premise cannot be derived2.

The question is then, what can be expected on universes? A natural choice is to
allow identification if the universe instances are pointwise equal: ψ |= −→u = −→v .
This is certainly a sound choice, if we can show that it does not break the
principle of transparency of constants. Indeed, due to the cumulativity relation
on universes, we might get in a situation where the δ-normal forms of c−→u

−→as
and c−→v

−→
bs are convertible while ψ �|= −→u = −→v . This is where backtracking is

useful: if the constraints are not derivable, we backtrack and unfold one of the
two sides, ultimately doing conversion on the βδ-normal forms if necessary. Note
that equality of universe instances is forced even if in cumulativity mode.

R-FO’

−→as =R
ψ

−→
bs ψ |= −→u = −→v

c−→u
−→as =R

ψ c−→v
−→
bs

Conservativity over pCIC. There is a straightforward conservativity result
of the calculus with polymorphic definitions over the original one. Below, T ↓δ
denotes the δ-normalization of T , which is terminating as there are no recursive
constants. It leaves us with a term with no constants, i.e., a term of pCIC.

2 This might incur an exponential time blowup, nonetheless this is useful in practice.

506 M. Sozeau and N. Tabareau

Theorem 3 (Conservative Extension). Σ;Γ �d
Ψ t : T ⇒ Γ↓δ �Ψ t↓δ : T ↓δ.

Proof. The proof goes by mutual induction on the typing, conversion and well-
formedness derivations, showing that the three following properties hold:
(1) Σ;Γ �d

Ψ t : T ⇒ Γ↓δ �Ψ t↓δ : T ↓δ
(2) T =R

Ψ U ⇒ T ↓δ =R
Ψ U↓δ

(3) (c :
−→
i �d

ψc
t : τ) ∈ Σ ⇒ for all fresh −→u , Σ; ε �

ψc[
−→
u/i]

(t[
−→
u/i])↓δ : (τ [

−→
u/i])↓δ

'%

4 Elaboration for Universe Polymorphism

This section presents our elaboration from a source level language with typical
ambiguity and universe polymorphism to the conservative extension of the core
calculus presented in Section 3.

4.1 Elaboration

Elaboration takes a source level expression and produces a corresponding core
term together with its inferred type. In doing so, it might use arbitrary heuristics
to fill in the missing parts of the source expression and produce a complete
core term. A canonical example of this is the inference of implicit arguments in
dependently-typed languages: for example, applications of the id constant defined
above do not necessarily need to be annotated with their first argument (the type
A at which we want the identity A→ A), as it might be inferred from the type
of the second argument, or the typing constraint at the point this application
occurs. Other examples include the insertion of coercions and the inference of
type class dictionaries.

To do so, most elaborations do not go from the source level to the core terms
directly, instead they go through an intermediate language that extends the core
language with existential variables, representing holes to be filled in the term.
Existential variables are declared in a context:

Σe ::= ε | Σe ∪ (?n : Γ � body : τ)

where body is empty or a term t which is then called the value of the existential.
In the term, they appear applied to an instance σ of their local context Γ (i.e.

an explicit substitution, checked with judgment Σ;Γ ′ � σ : Γ), which is written
?n[σ]. The corresponding typing rule for the intermediate language is:

Evar

(?n : Γ � : τ) ∈ Σe Σe;Γ
′ � σ : Γ

Σe;Γ
′ � ?n[σ] : τ [

−−−−−→
σi/Γ (i)]

Universe Polymorphism in Coq 507

Elaborating Polymorphic Universes. For polymorphic universes, elabora-
tion keeps track of the new variables, that may be subject to unification, in a
universe context :

Σu, Φ ::= −→us |= C
Universe levels are annotated by a flag s ::= r | f during elaboration, to indicate
their rigid or flexible status. Elaboration expands any occurrence of the anony-
mous Type into a Typei for a fresh, rigid i and every occurrence of the constant
c into a fresh instance cu (−→u being all fresh flexible levels). The idea behind this
terminology is that rigid universes may not be tampered with during elaboration,
they correspond to universes that must appear and possibly be quantified over
in the resulting term. The flexible variables, on the other hand, do not appear
in the source term and might be instantiated during unification, like existential
variables. We will come back to this distinction when we apply minimization
to universe contexts. The Σu context subsumes the context of constraints Ψ we
used during typechecking.

The elaboration judgment is written:

Σ;Σe;Σu;Γ �e t⇐ τ � Σe′ ;Σu′ ;Γ � t′ : τ

It takes the global environment Σ, a set of existentials Σe, a universe context
Σu, a variable context Γ , a source-level term t and a typing constraint τ (in the
intermediate language) and produces new existentials and universes along with
an (intermediate-level) term whose type is guaranteed to be τ .

Most of the contexts of this judgment are threaded around in the obvious
way, so we will not mention them anymore to recover lightweight notations. The
important thing to note here is that we work at the intermediate level only, with
existential variables, so instead of doing pure conversion we are actually using a
unification algorithm when applying the conversion/cumulativity rules.

Typing constraints come from the type annotation (after the :) of a defini-
tion, or are inferred from the type of a constant, variable or existential variable
declared in the context. If no typing constraint is given, it is generated as a fresh
existential variable of type Typei for a fresh i (i is flexible in that case).

For example, when elaborating an application f t, under a typing constraint τ ,
we first elaborate the constant f to a term of functional type fi : ΠA : Typei.B,
then we elaborate t ⇐ Typei � t′, Σu′ . We check cumulativity B[t′/A] ≤Σu′
τ � Σu′′ , generating constraints and returning Σu′′ � fi t

′ : τ .
At the end of elaboration, we might apply some more inference to resolve un-

solved existential variables. When there are no remaining unsolved existentials,
we can simply unfold all existentials to their values in the term and type to
produce a well-formed typing derivation of the core calculus, together with its
set of universe constraints.

4.2 Unification

Most of the interesting work performed by the elaboration actually happens in
the unification algorithm that is used in place of conversion during elaboration.

508 M. Sozeau and N. Tabareau

Elab-R-Type

ψ ∪ u R v |=
Typeu ≡R

ψ Typev � ψ ∪ u R v

Elab-R-Prod

A ≡=
ψ A′ � ψ′ B ≡R

ψ′ B′ � ψ′′

Πx : A.B ≡R
ψ Πx : A′.B′ � ψ′′

Elab-R-Red

A ↓β≡R
ψ B ↓β� ψ′ A or B not in whnf

A ≡R
ψ B � ψ′

Fig. 5. Conversion/cumulativity inference ≡R �

The elaboration rule firing cumulativity is:

Sub

Σ;Σe;Σu;Γ �e t� Σe′ ;Σu′ ;Γ � t′ : τ ′
Σe′ ;Σu′ := (−→us |= ψ);Γ � τ ′ ≤ τ � Σe′′ , ψ

′

Σ;Σe;Σu;Γ �e t⇐ τ � Σe′′ ; (
−→us |= ψ′);Γ � t′ : τ

If checking a term t against a typing constraint τ and t is a neutral term
(variables, constants and casts), then we infer its type τ ′ and unify it with the
assigned type τ .

In contrast to the conversion judgment T ≤ψ U which only checks that con-
straints are implied by ψ, unification and conversion during elaboration (Fig. 5)
can additionally produce a substitution of existentials and universe constraints,
hence we have the judgment Σe′ ;Σu′ := (−→us |= ψ);Γ � T ≤ U � Σe′′ , ψ

′ which
unifies T and U with subtyping, refining the set of existential variables and uni-
verse constraints to Σe′′ and ψ′, so that T ↓Σe′′≤ψ′ U ↓Σe′′ is derivable3. We
abbreviate this judgment T ≤ψ U � ψ′, the environment of existentials Σe, the
set of universe variables −→us and the local environment Γ being inessential for our
presentation.

The rules related to universes follow the conversion judgment, building up
a most general, consistent set of constraints according to the conversion prob-
lem. In the algorithm, if we come to a point where the additional constraint
would be inconsistent (e.g., in rule Elab-R-Type), we backtrack. For the defi-
nition/existential fragment of the intermediate language, things get a bit more
involved. Indeed, in general, higher-order unification of terms in the calculus
of constructions is undecidable, so we cannot hope for a complete unification
algorithm. Barring completeness, we might want to ensure correctness in the
sense that a unification problem t ≡ u is solved only if there is a most general
unifier σ (a substitution of existentials by terms) such that t[σ] ≡βδι u[σ], like
the algorithm defined by Abel et al [8]. This is however not the case of Coq’s
unification algorithm, because of the use of the first-order unification heuristic
that can return less general unifiers. We now present a generalization of that
algorithm to polymorphic universes.

3 T ↓Σ denotes the normalization of term T unfolding existentials defined in Σ.

Universe Polymorphism in Coq 509

First-Order Unification. Consider unification of polymorphic constants. Sup-
pose we are unifying the same polymorphic constant applied to different universe
instances: c−→u ≡ c−→v . We would like to avoid having to unfold the constant each
time such a unification occurs. What should be the relation on the universe levels
then? A simple solution is to force u and v to be equal, as in:

idj Typei ≡ idm ((λA : Typel, A) Typei)

The constraints given by typing only are i < j, l ≤ m, i < l. If we add the
constraint j = m, then the constraints reduce to i < m, i < l, l ≤ m ⇔ i <
l, l ≤ m. The unification did not add any constraint, so it looks most general.
However, if a constant hides an arity, we might be too strict here, for example
consider the definition fibi,j := λA : Typei, A→ Typej and the unification:

fibi,Prop ≤ fibi′,j � i = i′ ∪ Prop = j

Identifying j and Prop is too restrictive, as unfolding would only add a (triv-
ial) constraint Prop ≤ j. The issue also comes up with universes that appear
equivariantly. Unifying idi t ≡ idi′ t

′ should succeed as soon as t ≡ t′, as the
normal forms idi t→∗

βδ t and idi′ t
′ →∗

βδ t
′ are convertible, but i does not have to

be equated with i′, again due to cumulativity. To ensure that we make the least
commitment and generate most general constraints, there are two options. Ei-
ther we find a static analysis that tells us for each constant which constraints are
to be generated for a self-unification with different instances, or we do without
that information and restrict ourselves to unifications that add no constraints.

The first option amounts to decide for each universe variable appearing in a
term, if it appears at least once only in rigid covariant position (the term is an
arity and the universe appears only in its conclusion), in which case adding an in-
equality between the two instances would reflect exactly the result of unification
on the expansions. In general this is expensive as it involves computing (head)-
normal forms. Indeed consider the definition idtypei,k := idk Typek Typei, with
associated constraint i < k. Deciding that i is used covariantly here requires
to take the head normal form of the application, which reduces to Typei itself.
Recursively, this Typei might come from another substitution, and deciding co-
variance would amount to do βδ-normalization, which defeats the purpose of
having definitions in the first place!

The second option—the one that has been implemented—is to restrict first-
order unification to avoid arbitrary choices as much as possible. To do so, uni-
fication of constant applications is allowed only when their universe instances
are themselves unifiable in a restricted sense. The inference rules related to con-
stants are given in Figure 6. The judgment ψ |= i ≡ j � ψ′ (figure 7) formalizes
the unification of universe instances. If the universe levels are already equal ac-
cording to the constraints, unification succeeds (Elab-Univ-Eq). Otherwise, we
allow identifying universes if at least one of them is flexible. This might lead to
overly restrictive constraints on fresh universes, but this is the price to pay for
automatic inference of universe instances.

510 M. Sozeau and N. Tabareau

Elab-R-FO−→as ≡=
ψ

−→
bs � ψ′ ψ′ |= −→u ≡ −→v � ψ′′

c−→u
−→as ≡R

ψ c−→v
−→
bs � ψ′

Elab-R-δ-l
c−→

i
→δ t t −→a ≡R

ψ u � ψ′

c−→
i

−→a ≡R
ψ u � ψ′

Elab-R-δ-r
c−→

i
→δ u t ≡R

ψ u −→a � ψ′

t ≡R
ψ c−→

i
−→a � ψ′

Fig. 6. Unification and constants

Elab-Univ-Eq

ψ |= i = j

ψ |= i ≡ j � ψ

Elab-Univ-Flexible

if ∨ jf ∈ −→us ψ ∧ i = j |=
ψ |= i ≡ j � ψ ∧ i = j

Fig. 7. Unification of universe instances

This way of separating the rigid and flexible universe variables allows to do
a kind of local type inference [9], restricted to the flexible universes. Elabora-
tion does not generate the most general constraints, but heuristically tries to
instantiate the flexible universe variables to sensible values that make the term
type-check. Resorting to explicit universes would alleviate this problem by letting
the user be completely explicit, if necessary. As explicitly manipulated universes
are rigid, the heuristic part of inference does not apply to them. In all practical
cases we encountered, no explicitation was needed though.

4.3 Abstraction and Simplification of Constraints

After computing the set of constraints resulting from type-checking a term, we
get a set of universe constraints referring to undefined, flexible universe variables
as well as global, rigid universe variables. The set of flexible variables can grow
very quickly and keeping them along with their constraints would result in overly
general and unmanageable terms. Hence we heuristically simplify the constraints
by instantiating undefined variables to their most precise levels. Again, this might
only endanger generality, not consistency. In particular, for level variables that
appear only in types of parameters of a definition (a very common case), this
does not change anything. Consider for example: idu Prop True : Prop with
constraint Prop ≤ u. Clearly, identifying u with Prop does not change the type
of the application, nor the normal form of the term, hence it is harmless.

We work under the restriction that some undefined variables can be substi-
tuted by algebraic universes while others cannot, as they appear in the term
as explained in section 3. We also categorize variables according to their global
or local status. Global variables are the ones declared through monomorphic
definitions in the global universe context Ψ .

Universe Polymorphism in Coq 511

Simplification of constraints works in two steps. We first normalize the con-
straints and then minimize them.

Normalization. Variables are partitioned according to equality constraints.
This is a simple application of the Union-Find algorithm. We canonicalize the
constraints to be left with only inequality (<,≤) constraints between distinct
universes. There is a subtlety here, due to the global/local and rigid/flexible
distinctions of variables. We choose the canonical element k in each equivalence
class C to be global if possible, if not rigid, and build a canonizing substitution

of the form
−−→
u/k, u ∈ C \ k that is applied to the remaining constraints. We also

remove the substituted variables from the flexible set θ.

Minimization. For each remaining flexible variable u, we compute its instance
as a combination of the least upper bound (l.u.b.) of the universes below it and
the constraints above it. This is done using a recursive, memoized algorithm,
denoted lub u, that incrementally builds a substitution σ from levels to universes
and a new set of constraints. We start with a consistent set of constraints, which
contains no cycle, and rely on this for termination. We can hence start the
computation with an arbitrary undefined variable.

We first compute the set of direct lower constraints involving the variable,
recursively:

Lu � {(lub l, R, u) | (l, R, u) ∈ Ψ}
If Lu is empty, we directly return u. Otherwise, the l.u.b. of the lower universes

is computed as:

%u � {x | (x, Le,) ∈ Lu} % {x+ 1 | (x, Lt,) ∈ Lu}

The l.u.b. represents the minimal level of u, and we can lower u to it. It does
not affect the satisfiability of constraints, but it can make them more restrictive.
If %u is a level j, we update the constraints by setting u = j in Ψ and σ.
Otherwise, we check if %u has been recorded as the l.u.b. of another flexible
universe j in σ, in which case we also set u = j in Ψ and σ. This might seem
dangerous if j had different upper constraints than u. However, if j has been
set equal to its l.u.b. then by definition j = %u ≤ u is valid. Otherwise we only
remember the equality u = %u in σ, leaving Ψ unchanged. The computation
continues until we have computed the lower bounds of all variables.

This procedure gives us a substitution σ of the undefined universe variables
by (potentially algebraic) universes and a new set of constraints. We then turn
the substitution into a well-formed one according to the algebraic status of each
undefined variable. If a substituted variable is not algebraic and the substitutend
is algebraic or an algebraic level, we remove the pair from the substitution and
instead add a constraint of the form max(. . . , . . .) ≤ u to Ψ . This ensures that
only algebraic universe variables are instantiated with algebraic universes. In the
end we get a substitution σ from levels to universes to be applied to the term

under consideration and a universe context
−→
us′ |= Ψ [σ] containing the variables

512 M. Sozeau and N. Tabareau

that have not been substituted and an associated set of constraints Ψ [σ] that are
sufficient to typecheck the substituted term. We directly give that information
to the kernel, which checks that the constraints are consistent with the global
ones and that the term is well-typed.

4.4 Inductive Types

Polymorphic inductive types and their constructors are treated in much the same
way as constants. Each occurrence of an inductive or constructor comes with a
universe instance used to typecheck them. Conversion and unification for them
forces equality of the instances, as there is no unfolding behavior to account for.
This setup implies that unification of a polymorphic inductive type instantiated
at the same parameters but in two different universes will force their identifi-
cation, i.e., listi True = listProp True will force i = Prop, even though i might
be strictly higher (in which case it would be inconsistent). These conversions
mainly happen when mixing polymorphic and monomorphic code though, and
can always be avoided with explicit uses of Type to raise the lowest level us-
ing cumulativity. Conservativity over a calculus with monomorphic inductives
carries over straightforwardly by making copies of the inductive type.

Inference of Levels. Computing the universe levels of inductive types in the
new system is much cleaner than in the previous version, and also simplifies the
work done in the kernel. Indeed, the kernel gets a declaration of each inductive
type as a record containing the arity and the type of each constructor along with a
universe context. Checking the correctness of the level works in two steps. First
we compute the natural level of the inductive, that is the l.u.b. of the levels
of its constructors (optionally considering parameters as well). If the inductive
has more than one constructor, we also take the l.u.b with Type0 because the
inductive is then naturally a datastructure in Set. We then take the user-given
level and compare it to this natural level. If it is larger or equal then we are
done. If the natural level is strictly higher than the user-given level (typically an
inductive with multiple constructors declared in Prop), then squashing happens:

– If the user-given level is Prop, then we simply restrict eliminations on the
inductive to be compatible with the impredicative, proof-irrelevant charac-
terization of Prop.

– If it is Set, then we allow the definition only if in impredicative Set mode:
the natural level had to include a large type level. In all other cases, the
definition is rejected.

This new way of computing levels results in a clarification of the kernel code.

5 Implementation and Benchmarks

This extension of Coq (http://github.com/mattam82/coq) will be available
in the next major release and supports the formalization of the Homotopy Type

http://github.com/mattam82/coq

Universe Polymorphism in Coq 513

Theory library (HoTT/Coq) from the Univalent Foundations project. It is able
to check for example Voevodsky’s proof that Univalence implies Functional Ex-
tensionality. At the user-level, there is just an additional flag Polymorphic that
can be used to flag polymorphic definitions. Moving from universe inference to
universe checking and adding universe instances on constants required impor-
tant changes in the tactic and elaboration subsystems to properly keep track of
universes. If all definitions are monomorphic, the change is unnoticeable to the
user though. As minimization happens as part of elaboration, it sits outside the
kernel and does not have to be trusted. There is a performance penalty to the
use of polymorphism, which is at least linear in the number of fresh universe
variables produced during a proof. On the standard library of Coq, with all
primitive types made polymorphic, we can see a mean 10% increase in time.
The main issues come from the redundant annotations on the constructors of
polymorphic inductive types (e.g., list) which could be solved by representing
type-checked terms using bidirectional judgments, and the choice of the con-
crete representation of universe constraints during elaboration, which could be
improved by working directly on the graph.

6 Related and Future Work

We have introduced a conservative extensions of the predicative calculus of in-
ductive constructions with universe polymorphic definitions. This extension of
the system enhances the usability of the original system while retaining its per-
formance and clarifying its implementation.

Other designs for working with universes have been developed in systems
based on Martin-Löf type theory. As mentionned previously, we build on the
work of Harper and Pollack [7] who were the first to study the addition of
universe polymorphic definitions (albeit restricted to no nested definitions, and
without considering minimization), and implemented it in LEGO, a system with
cumulativity and typical ambiguity.

The Agda programming language provides fully explicit universe polymor-
phism, making level quantification first-class. This requires explicit quantifica-
tion and lifting of universes (no cumulativity), but instantiation can often be
handled solely by unification. The main difficulty in this setting is that explicit
levels can obfuscate definitions and make development and debugging arduous.
The system is as expressive as the one presented here though.

The Matita proof assistant based on CIC lets users declare universes and con-
straints explicitly [10] and its kernel only checks that user-given constraints are
sufficient to typecheck terms. It has a notion of polymorphism at the library
level only: one can explicitly make copies of a module with fresh universes. In
[11], a similar extension of the Coq system is proposed, with user declarations
and a notion of polymorphism at the module level. Our elaboration system could
be adapted to handle these modes of use, by restricting inference and allowing
users to explicitly declare universes and constraints. This would solve the mod-
ularity issues mentionned by Courant, which currently complicate the separate

514 M. Sozeau and N. Tabareau

compilation and loading of modules which might have incompatible uses of the
same universes. We leave this as future work.

In this study, the impredicative sort Prop is considered a subtype of Typei by
cumulativity. However, this is problematic because we lose precision when typing
polymorphic products, e.g., for emptyi := ∀A : Typei, A. The emptyi definition
has type Typei+1, however the instance emptyProp should be a Prop itself by
impredicativity. To handle this, we would need to have conditional constraints
that would allow lowering a universe if some other was instantiated with Prop,
which would significantly complicate the system. Furthermore, this Prop ⊂ Type

rule causes problems for building proof-irrelevant models (e.g., it does not hold
in [12], and it is still an open problem to build such a model in a system without
judgemental equality, like ECC) and, according to the Homotopy Type Theory
interpretation, has computational content. We did not address this issue in this
work, but we plan to investigate a new version of the core calculus where this
rule would be witnessed as an explicit coercion as in [13].

References

1. Coquand, T.: An analysis of Girard’s Paradox. In: Proceedings of the First Sym-
posium on Logic in Computer Science, HC, vol. 145. IEEE Comp. Soc. Press (June
1986)

2. The Univalent Foundations Program: Homotopy Type Theory: Univalent Founda-
tions for Mathematics, Institute for Advanced Study (2013)

3. The Coq development team: Coq 8.2 Reference Manual. INRIA (2008)
4. Herbelin, H.: Type Inference with Algebraic Universes in the Calculus of Inductive

Constructions (2005) (manuscript)
5. Chan, T.H.: Appendix D. In: An Introduction to the PL/CV2 Programming Logic.

LNCS, vol. 135, pp. 227–264. Springer (1982),
http://dx.doi.org/10.1007/3-540-11492-0

6. Luo, Z.: An Extended Calculus of Constructions. PhD thesis, Department of Com-
puter Science, University of Edinburgh (June 1990)

7. Harper, R., Pollack, R.: Type Checking with Universes. Theor. Comput. Sci. 89(1),
107–136 (1991)

8. Abel, A., Pientka, B.: Higher-Order Dynamic Pattern Unification for Dependent
Types and Records. In: Ong, L. (ed.) TLCA 2001. LNCS, vol. 6690, pp. 10–26.
Springer, Heidelberg (2011)

9. Pierce, B.C., Turner, D.N.: Local Type Inference. ACM Transactions on Program-
ming Languages and Systems 22(1), 1–44 (2000)

10. Asperti, A., Ricciotti, W., Coen, C.S., Tassi, E.: A compact kernel for the calculus
of inductive constructions. Journal Sadhana 34, 71–144 (2009)

11. Courant, J.: Explicit Universes for the Calculus of Constructions. In: Carreño,
V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 115–130.
Springer, Heidelberg (2002)

12. Lee, G., Werner, B.: Proof-irrelevant model of CC with predicative induction and
judgmental equality. Logical Methods in Computer Science 7(4) (2011)

13. Herbelin, H., Spiwack, A.: The Rooster and the Syntactic Bracket. CoRR
abs/1309.5767 (2013)

http://dx.doi.org/10.1007/3-540-11492-0

Asynchronous User Interaction

and Tool Integration in Isabelle/PIDE

Makarius Wenzel

Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
CNRS, Orsay, F-91405, France

Abstract. Historically, the LCF tradition of interactive theorem prov-
ing was tied to the read-eval-print loop, with sequential and synchronous
evaluation of prover commands given on the command-line. This user-
interface technology was adequate when R. Milner introduced his LCF
proof assistant in the 1970-ies, but it severely limits the potential of
current multicore hardware and advanced IDE front-ends.

Isabelle/PIDE breaks this loop and retrofits the read-eval-print phases
into an asynchronous model of document-oriented proof processing. In-
stead of feeding a sequence of individual commands into the prover pro-
cess, the primary interface works via edits over a family of document
versions. Execution is implicit and managed by the prover on its own ac-
count in a timeless and stateless manner. Various aspects of interactive
proof checking are scheduled according to requirements determined by
the front-end perspective on the proof document, while making adequate
use of the CPU resources on multicore hardware on the back-end.

Recent refinements of Isabelle/PIDE provide an explicit concept of
asynchronous print functions over existing proof states. This allows
to integrate long-running or potentially non-terminating tools into the
document-model. Applications range from traditional proof state out-
put (which may consume substantial time in interactive development) to
automated provers and dis-provers that report on existing proof docu-
ment content (e.g. Sledgehammer, Nitpick, Quickcheck in Isabelle/HOL).
Moreover, it is possible to integrate query operations via additional GUI
panels with separate input and output (e.g. for Sledgehammer or find-
theorems). Thus the Prover IDE provides continuous proof processing,
augmented by add-on tools that help the user to continue writing proofs.

1 Introduction

Already 10 years ago, multicore hardware has invaded the consumer market, and
imposed an ever increasing burden on application developers to keep up with
changed rules for Moore’s Law : continued speedup is no longer for free, but has
to be implemented in the application by explicit multi-processing. Isabelle has
started to support parallel proof-processing in batch-mode already in 2006/2007,
and is today routinely using multiple cores, with an absolute speedup factor of
the order of 10 (on 16 cores). See also [17] for the situation of Isabelle2013.

� Research supported by Project Paral-ITP (ANR-11-INSE-001).

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 515–530, 2014.
c© Springer International Publishing Switzerland 2014

516 M. Wenzel

How does parallel processing affect user interaction? After the initial success of
parallel batch-mode in Isabelle, it became clear in 2008 that substantial reforms
are required in the interaction model, to loosen the brakes that are built into
the traditional read -eval -print loop. The following aspects are characteristic to
asynchronous interaction, in contrast to parallel batch processing:

– demand for real-time reactivity (at the order of 10–100ms);
– instantaneous rendering of formal content in GUI components;
– continued edits of theory sources, while the prover is processing them;
– treatment of unfinished or failed proof attempts (error recovery);
– cancellation of earlier attempts that have become irrelevant (interrupts);
– orchestration of add-on proof tools that help in the editing process.

The present paper reports on results of more than 5 years towards asyn-
chronous prover interaction, with recent improvements that integrate add-on
proof tools via asynchronous print functions. All concepts are implemented in the
current Isabelle/PIDE generation of Isabelle2013-2 (December 2013)1. The PIDE
framework is implemented as a combination of Isabelle/ML and Isabelle/Scala,
with Isabelle/jEdit the main application and default user-interface. The manual
[14] provides further explanations and screenshots; the Documentation panel in
Isabelle/jEdit includes some examples that help to get started.

The front-end technology of Isabelle/jEdit imitates the classic IDE approach
seen in Eclipse, NetBeans, IntelliJ IDEA, MS Visual Studio etc. Fresh users of
Isabelle who are familiar with such mainstream IDEs usually manage to get
acquainted quickly, without learning about Emacs and the TTY loop first. In
contrast, seasoned users of ITP systems may have to spend some efforts to
unlearn TTY mode and manual scheduling of proof commands.

Subsequently, we assume some basic acquaintance with the look-and-feel of
Isabelle/jEdit, but explanations of PIDE concepts are meant to extrapolate be-
yond this particular combination of prover back-end and editor front-end. Since
Isabelle had similar starting conditions as other proof assistants several years
ago, like Coq [18, §4], the HOL family [18, §1], PVS [18, §3], or ACL2 [18, §8],
there are no fundamental reasons why such seemingly drastic steps from the
TTY loop to proper IDE interaction cannot be repeated elsewhere. These expla-
nations of PIDE concepts are meant to help other systems to catch up, although
the level of sophistication in Isabelle/PIDE today poses some challenges.

2 PIDE Architecture

PIDE stands for “Prover IDE”: it is the common label for efforts towards ad-
vanced user-interaction in Isabelle since 2009. The main application of the PIDE
framework today is Isabelle/jEdit [13, 14], but there are already some alternative
front-ends: Isabelle/Eclipse by A. Velykis, and Clide by C. Lüth and M. Ring
[7, 8]. An experiment to connect Coq as alternative back-end is reported in [15].

1 http://isabelle.in.tum.de/website-Isabelle2013-2

http://isabelle.in.tum.de/website-Isabelle2013-2

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 517

The general aims of PIDE are to renovate and reform interactive theorem
proving for new generations of users, and to catch up with technological shifts
(multicore hardware). The PIDE approach is document-oriented : all operations
by the user, the editor, the prover, and add-on tools are centered around theory
sources that are augmented by formal markup produced by proof processing.
Document markup for old-school proof assistants is further explained in [11].

The Connectivity Problem. Proof assistants are typically implemented in
functional programming languages (like LISP, SML, OCaml, Haskell) that are
not immediately connected to the outer world. If built-in interface technology
exists, it is typically limited in scope and functionality: e.g. LablGtk for OCaml
uses old GTK 2.x instead of GTK 3.x, and GTK is at home only on Linux.

Even if we could assume the ideal multi-platform GUI framework within our
prover programming environment, what we really need is a viable text editor or
IDE to work with. The Java platform is able to deliver that, e.g. with text editors
like jEdit, full IDEs like Eclipse, NetBeans, IntelliJ IDEA, and web frameworks
like Play (for remote applications). This observation has lead to the following
bilingual approach of PIDE with Scala and ML (figure 1).

private
protocol

API API

Sc
al

a

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala actors

TCP/IP servers

MLScala

JVM bridge

Fig. 1. The bilingual approach of PIDE: Scala and ML connected via private protocol

Here the existing ML prover platform is taken for granted, but its scope ex-
tended into the JVM world with the help of Scala [9]. The manner and style
of strongly-typed higher-order functional programming in ML is continued with
Scala. Both sides happen to provide some tools and libraries for parallel program-
ming with threads, processes, external communication, which serve as starting
point for further PIDE functionality. A private protocol connects the two worlds:
it consists of two independent streams of protocol operations that are a-priori
unsynchronized. The conceptual document-model that is implemented on both
sides is accessible by some public APIs, both in Scala and ML.

It is an important PIDE principle to cut software components at these APIs,
and not the process boundaries with the protocol. API functions in ML or Scala
are statically typed and more abstract than the communication messages of the
implementation. APIs are more stable under continuous evolution than a pub-
lic protocol. The combined Scala and ML sources of Isabelle/PIDE are main-
tained side-by-side within the same code repository: e.g. src/Pure/General/
pretty.scala and src/Pure/General/pretty.ML for classic pretty-printing in

518 M. Wenzel

the style of D.C. Oppen (with support for document markup and font-metrics).
Tools using the PIDE infrastructure may reside in ML (e.g. proof tools that
output document markup), or in Scala (e.g. rendering for particular document
content), or combine both worlds.

PIDE Protocol Layers. Conceptually, the two processes are connected by two
independent streams of protocol functions. These streams are essentially sym-
metric, but input from the editor to the prover is called protocol command, and
output from the prover to the editor is called protocol message. Syntactically,
a protocol function consists of a name and argument list (arbitrary strings).
Semantically, the stream of protocol functions is applied consecutively to a pri-
vate protocol state on each side; there are extensible tables in Isabelle/Scala and
Isabelle/ML to define the meaning for protocol functions.

The arguments of protocol functions usually consist of algebraic datatypes
(tuples and recursive variants). This well-known ML concept is represented in
Scala by case classes [9, §7.2]. The PIDE implementation starts out with raw
byte streams between the processes, then uses YXML transfer syntax for untyped
XML trees [11, §2.3], and finally adds structured XML/ML data representation
via some combinator library. Further details are explained in [15], including
a full implementation on a few pages of OCaml; the Standard ML version is
part of Isabelle/PIDE. This elementary PIDE protocol stack is easily ported to
other functional languages to connect different back-ends, but actual document-
oriented interaction requires further reforms of the prover.

Approximative Rendering of Document-Snapshots. Assume for the mo-
ment that the prover already supports document edits, and knows how to process
partial theory content, while producing feedback of formal checking via messages
(plain text output or markup over the original sources). How does the editor ren-
der that continuous flow of information in its single physical instance of the GUI,
without getting blocked by the prover?

The classic approach of Proof General [3] makes a tight loop around each
prover command, and synchronizes a full protocol round-trip for each transac-
tion. This often leads to situations where the editor is non-reactive, not to speak
of the “locked region” of processed text where the user is not allowed to edit.

PIDE avoids blocking by a notion of document snapshot and convergence of
content, instead of synchronization. See also figure 2.

The editor and the prover are independent processes that exchange informa-
tion monotonically: each side uses its present knowledge to proceed, and propa-
gates results to its counterpart. The front-end ultimately needs to render editor
buffers (painting text with colors, squiggly underlines etc.) by interpreting the
source text with its accumulated markup. The flow of information is as follows:

1. editor knows text T , markup M , and edits ΔT (produced by user)
2. apply edits: T ′ = T +ΔT (immediately in the editor)
3. formal processing of T ′: ΔM after time Δt (eventually in the prover)
4. immediate approximation: M̃ = revert ΔT ; retrieve M ; convert ΔT
5. eventual convergence after time Δt: M ′ =M +ΔM

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 519

Editor Prover

edits

markup

pr
oc

es
si

ng

ap
pr

ox
im

at
io

n

MLScala

t

Fig. 2. Approximation and convergence of markup produced by proof processing

This means the editor is streaming edits as document updates towards the
prover, which processes them eventually to give feedback via semantic markup.
Without waiting for the prover, the document snapshot of the editor uses the
edit-distance over the text to stretch or shrink an old version of markup into the
space of the new text: revert transforms text positions to move before edits, and
convert to move after edits. The PIDE Scala API allows to make a document
snapshot at any time: it remains an immutable value, while other document
processing continues in parallel. Thus GUI painting works undisturbed.

A document snapshot is outdated if the edit-distance is non-empty or there is a
pending “command-exec assignment” by the prover (see also §3). Text shown in
an outdated situation is painted in Isabelle/jEdit with grey background. The user
typically sees that for brief instances of time, while edits are passed through the
PIDE protocol phases. Longer periods of “editor grey-out” (without blocking)
may happen in practice, when the prover is unreactive due to heavy load of ML
threads or during garbage collection of the ML run-time system.

Decoupling the editor and prover in asynchronous PIDE document opera-
tions provides sufficient freedom to schedule heavy-duty proof checking tasks.
The prover is enabled to orchestrate parallel proof processing [17] and addi-
tional diagnostic tools (see also §5). The concrete implementation requires a
fair amount of performance tuning and adjustment of real-time parameters and
delays, to make the user-experience smooth on a given range of hardware: in
Isabelle2013-2 this is done for high-end laptops or work-stations with 2–8 cores.
Continuous proof processing becomes a highly interactive computer game and
thus introduces genuinely new challenges to ITP. Even the graphics performance
of the underlying OS platform becomes a relevant factor, since many GUI details
need to be updated frequently as the editor or prover changes its state.

3 Document Content

The subsequent description of document content refers to data structures man-
aged by a PIDE-compliant prover like Isabelle. This defines declarative outlines
and administrative information for eventual processing: part of that is reported
to the front-end as “command-exec assignment”. Further details of actual exe-
cution management are the sole responsibility of the prover (see §4).

520 M. Wenzel

3.1 Prover Command Transactions

The theory and proof language of Isabelle and other LCF-style systems consists
of a sequence of commands. This accidental structure can be explained histori-
cally and is not challenged here. Existing implementations assume that format,
and PIDE aims to minimize the requirement to rework old tools.

A theory consists of some text that is partitioned into a sequence of command
spans as in Proof General [3]. The Isar proof language [18, §6] demonstrates that
linearity is no loss of generality: block structure may be represented by a depth-
first traversal of the intended tree, using an explicit stack within the proof state.
Note that the superficial linearity of proof documents is in contrast to Mizar
articles [18, §2], and most regular programming languages, but PIDE is focused
on LCF-style proof assistants.

The internal structure of command transactions with distinctive phases of
read, eval, print is discussed further in [16]. For PIDE proof documents, these
phases are elaborated and specifically managed by the system. At first approxi-
mation, a command transaction is a partial function tr from some toplevel state
st0 to st1, with sequential composition of its phases as shown in figure 3.

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

Fig. 3. Sequential scheduling of commands: read, eval, print loop

Looking more closely, the separate phases may be characterized by their re-
lation to the toplevel state that is manipulated here:

tr st0 =
let eval = read () in — read does not require st0
let st1 = eval st0 in — main transition st0 −→ st1
let () = print st1 in st1 — print does not change st1

For PIDE, the actual work done in read, eval, print does not matter, e.g.
commands may put extra syntactic analysis or diagnostic output into eval. The
key requirement is that all operations are purely functional wrt. the toplevel state
seen as immutable value, optionally with observable output via managed message
channels (not physical stdout). These assumptions are violated by traditional
LCF-style provers, including classic Isabelle in the 1990s, so this is an important
starting point for reforms of other proof assistants. Command transactions need
to be clearly isolated, and operate efficiently in a timeless and stateless manner.

A simple document-model would merely maintain a partially evaluated se-
quence of command transactions, and interleave its continued editing and execu-
tion. This could even work within a sequential prover process, with asynchronous
signals for new input, but without multi-threading. On the other hand, explicit
threads can simplify the implementation and provide additional potential for
performance. In fact, the parallel aspect of proof processing [17] turns out rela-
tively simple, compared to the extra entropy and hazards of user-interaction.

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 521

3.2 Document Nodes

Proof documents have additional structure that helps to organize continuous
processing efficiently, to provide quick feedback to the user during editing.

The global structure is that of a theory graph, which happens to be acyclic
due to the foundational order of theory content in LCF-style provers. The node
dependencies are given as a list of imports, cf. the syntax of Isabelle theory
headers “theory A imports B1 . . . Bn”. Parallel traversal of DAGs is a starting
point to gain performance and scalability for big theory libraries.

The local structure of each document node consists of command entries,
perspective and overlays, which are described below.

Node entries are given as a linear sequence of commands (§3.1), but each
command span is interned and represented by a unique command-id. There is a
global mapping from command-id to the corresponding command transaction,
which is updated before applying document edits. This indirection avoids redun-
dant invocation of read in incremental processing of evolving document versions,
since command positions change more often than the content of command spans.

A command-id essentially refers to some function tr on the toplevel state. In
different document versions it may be applied in different situations. A particular
command application tr st0 is called exec and identified via some exec-id, which
serves as a physical transaction identifier of the running command. The exec-id
identifies both the command execution and its result state st1 = tr st0, including
observable output (prover messages are always decorated by the exec-id).

For a given document version, the command-exec assignment relates each
command-id to a list of exec-ids. An empty list means the command is unas-
signed and the prover will not attempt to execute it. A non-empty list refers to
the main eval as head, and additional prints as tail. Coincidence of execs means
that in the overall document history, a command-id has the same exec-id in mul-
tiple versions. This re-use of old execution fragments in new versions typically
happens, when a shared prefix of commands is unaffected by edits applied else-
where (see also figure 4). The prover is free to execute commands from different
document versions, independently of the one displayed by the editor.

The command-exec assignment is vital for the editor to determine which exec
results belong to which command in a particular document version, in order
to display the content to the user. Whenever this information is updated on
the prover side, the editor needs to be informed about it. Edits that are not
yet acknowledged by the corresponding assignment lead to an outdated docu-
ment snapshot (§2). This intermediate situation is now more often visible in
Isabelle/PIDE, because execution is strictly monotonic: while the document is
updated the prover continues running undisturbed, so the PIDE protocol thread
needs to compete with ML worker threads. In the past, execution was canceled
and restarted, but this is in conflict with long-running eval and prints (cf. §5).

Node perspective specifies visible and required commands syntactically within
the document. The set of visible commands is typically determined by open text
windows of the editor. Required commands may be ticked separately by some

522 M. Wenzel

GUI panel (Isabelle/jEdit does that only for document nodes, meaning the last
command entry of a theory.) Visible commands are particularly interesting for
the user and need full execution of read -eval -print. Required commands are only
needed to get there: read -eval is sufficient to produce the subsequent toplevel
state. The set of required commands is implicitly completed wrt. the transitive
closure of node imports and the precedence relation of command entries.

Commands that are neither visible nor required are left unassigned, and thus
remain unevaluated. There is usually a long tail-end of the overall document
that is presently unassigned. Likewise, there is a long import chain, where the
previous assignment is not changed, because edits are typically local to the visible
part. This differentiation of document content by means of the perspective is
important for scalability, in order to support continuous processing of hundreds
of theory nodes, each with thousands of command entries.

Node overlays assign print functions (with arguments) to existing command
entries within the document. The idea is to analyze the toplevel state at the point
after eval via additional prints. Document overlays may be added or deleted,
without changing the underlying sequence of toplevel states.

The prover also maintains a global table of implicit print functions (with
empty arguments), which are added automatically to any visible command in
the current perspective. This may be understood as a mechanism for default
overlays for all commands seen in the document.

Given st1 = eval st0, each print function application print st1 is identified by
a separate exec-id. The observable result of an assigned command is the union
of results from the exec-ids of its eval and all its prints. This union is formed
by the editor whenever it retrieves information from a document snapshot (§2).
It may combine eval and prints stemming from different document versions due
to exec coincidence within the ML process.

3.3 Document Edits

Edits emerge in the editor by inserting or removing intervals of plain text,
but these are preprocessed to operate on command entries with correspond-
ing command-ids (§3.2). Changes of document node dependencies, perspective,
and overlays are represented as edits, too. The PIDE document-model provides
one key operation Document .update to turn a given document version into a new
one, where the edits are syntactically represented as algebraic datatype:

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document .update: version-id → version-id →
(node × edit) list → state → (command-id × exec-id list) list × state

Type edit is given in stylized form above: its constructors take arguments, e.g.
Entries the commands that are inserted or removed. Document .update operates
on a “big” document state, which maintains all accessible versions. This must
not be confused with a “small” toplevel state st for single commands.

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 523

Edits are relative to given document nodes, and can happen simultaneously
when the user opens several theory files or the system completes imports tran-
sitively. While the editor usually shows a few text windows only, the document-
model always works on the whole theory library behind it.

The update assignment (command-id × exec-id list) list is conservative: the
list mentions only those command-ids that change. The result is reported to the
editor to acknowledge the Document .update: until that protocol message arrives,
the editor re-uses the assignment of the old version, and marks any document
snapshots derived from it as outdated (§2).

The prover maintains a command exec assignment for each document ver-
sion, depending on the visible and required commands of the perspective, and
given node overlays: exec-ids for eval and prints are assigned as required. Old
assignments are preserved on a common prefix that is not affected by the edits,
as illustrated in figure 4. Here st2 is the last common exec of the old versus new
version; subsequent execs are removed and new ones assigned.

↗ · · ·
st3 (removed execs)

(shared prefix) ↗
st0 −→ st1 −→ st2

↘
st4 (new execs)

↘ . . .

Fig. 4. Update of command-exec assignment, with shared prefix between versions

The precise manner of exec assignment is up to the prover: it can use further
information about old versions and more structure of the command language.
Earlier observations about the inherent structure of proof documents for paral-
lelization [17, §2.2] apply here as well, but the additional aspect of incremental
editing introduces extra complexity. Current Isabelle/PIDE is still based on the
simple linear model explained above, with some refinements on how the read -
eval -print phases of each command transaction is scheduled. This allows internal
forks of eval and independent prints as illustrated in figure 5.

↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓↓forks ↓↓prints ↓↓forks ↓↓prints ↓↓forks ↓↓prints · · ·

Fig. 5. Parallel scheduling of commands: read, eval, with multiple forks and prints

524 M. Wenzel

4 Execution Management

There is open-ended potential for sophistication of execution management, to
improve parallel performance and reactivity. The subsequent explanations give
some ideas about current Isabelle/PIDE, with its recently introduced ML module
Execution. Its managed Execution.fork now supersedes the earlier approach of
goal forks [17, §3.3].

Prerequisite: Future Values in Isabelle/ML. The underlying abstraction
for parallel ML programming [17, §3.1] is the polymorphic type α future with
operations fork : (unit → α) → α future and join: α future → α to manage evalu-
ation of functional expressions, with optional cancel : α future → unit. Moreover,
promise: unit → α future and fulfill : α future → α → unit allow to create an
open slot for some future result that is closed by external means.

Futures are common folklore in functional programming, but Isabelle/ML
implements particular policies that have emerged over several years in pur-
suit of parallel theorem proving: strict evaluation (spontaneous execution
via thread-pool), synchronous exceptions (propagation within nested task
groups), asynchronous interrupts (cancellation and signaling of tasks), nested
task groups (block structure of parallel program), and explicit dependencies.

Hypothetical Execution. Each document version is associated with an im-
plicit execution process. After document update, the old execution needs to be
turned into a new one, without disturbing active tasks. To this end, Isabelle/PIDE
maintains a lazy execution outline: chains of commands are composed with their
eval and prints as one big expression, which mathematically determines all
prover results beforehand (with corresponding exec-ids).

The scheduling diagram of figure 5 illustrates the local structure of this expres-
sion: each arrow corresponds to some function application. The global structure
has two further dimensions: the DAG of theory nodes and the version history,
so many such filaments of read -eval -print exist simultaneously.

Since Document .update (§3.3) merely performs hypothetical execution, by
manipulating a symbolic expression that consists of lazy memo cells, it is able
to produce the new assignment quickly and report it back to the editor.

Execution Frontiers. Actual execution is an ongoing process of parallel tasks
that force their way through the lazy execution outline. After each document
update, the latest document version is associated with a fresh execution, but
that needs to coexist with older executions with remaining active tasks.

To prevent conflicting attempts to force these lazy values, the PIDE ML
module Execution ensures that at most one execution is formally running, in
the sense defined below. The module manages a separate notion of execution-id,
with the following operations:

Execution.start : unit → execution-id
Execution.discontinue: unit → unit
Execution.running: execution-id → exec-id → bool

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 525

Execution.start () creates a fresh execution-id and makes it the currently running
one. Execution.discontinue () resets that state: a previously running execution-id
cannot become running again. Execution.running execution-id exec-id requests
the exclusive right to explore the given exec-id, which is only granted if the
execution-id is currently running. Moreover, the exec-id is registered for man-
agement of derived execution forks (see below).

Given a document version, the execution frontier is the set of tasks that may
explore its execution outline, guarded by invocations of Execution.running as
shown above. Each PIDE update cycle first invokes Execution.discontinue, then
updates the document content with its execution outline, and then uses Execu-
tion.start to obtain a new running execution-id. Finally, the exploration tasks
are forked as ML futures, with the old execution frontier as tasks dependencies.

Thus the new execution frontier is semantically appended to the old one: the
old frontier cannot explore new transactions and finishes eventually (or diverges),
afterwards the new execution continues without conflict. This approach enables
strictly monotonic execution management: running tasks within the document
execution are never canceled; only those tasks are terminated that become inac-
cessible in the new version (removed commands etc.).

Execution Forks. The running futures of the execution frontier work on com-
mand transactions that are presently accessible, guarded by Execution.running.
This provides a central checkpoint to control access to individual execs within
the given execution outline. After having passed Execution.running successfully,
further future tasks may be managed as follows:

Execution.fork : exec-id → (α → unit) → α future
Execution.cancel : exec-id → unit

Here the exec-id serves as a general handle to arbitrary future forks within
that execution context: it is associated with some future task group for cumu-
lative cancellation. Execution management ensures strict results: forks need to
be joined eventually, and ML exceptions raised in that attempt are accounted
to the transaction context. Thus a command transaction may “fail late” due to
pending execution forks, even though its eval phase has finished superficially,
and subsequent commands are already proceeding from its toplevel state.

Execution.fork provides the main programming interface to forks of figure 5.
The primary application are goal forks in the sense of [17, §3.3], which has
been retrofitted into the new execution concept. Note that the Isabelle/PIDE
document model still lacks the structural proof forking of batch mode: interactive
goal forks are limited to terminal by steps (where Isar proofs spend most of the
time) or derived definitions with internal proofs like datatype, inductive, fun.

Moreover, Execution.fork is now used implicitly for diagnostic commands,
which are marked syntactically to be state preserving, and can thus be forked
immediately in the main evaluation sequence. Such commands are identity func-
tions on the toplevel state, with observable output, and the potential to fail later.
Note that sledgehammer is such a diagnostic command as well, and several
copies put into a theory already causes parallel execution.

526 M. Wenzel

5 Asynchronous Print Functions

Diagnostic command output may happen in the main eval phase, but this has the
disadvantage that linear editing (§3.3) reassigns intermediate execs and thus dis-
rupts the evaluation sequence. PIDE document updates could be made smarter,
but it turns out that separate management of print phases over existing com-
mands is simpler and more flexible. Further observations indicate that print
functions deserve special attention:

– Cumulative print operations consume more space and time than eval : proof
state output is often large and its printing slower than average proof steps.

– Printing depends on document perspective: text that becomes visible re-
quires additional output, but it can be disposed after becoming invisible.

– Printing may fail or diverge, but it needs to be interruptible to enable the
system stopping it.

– Different ways of printing may run in parallel, with specific priorities.

These are notable refinements of the former approach [16, §2.3], which was
restricted to one print as lazy value that was forked eventually; its execution had
to terminate relatively quickly, and the result was always stored persistently.

The current notion of asynchronous print functions allows better manage-
ment of plain proof state output, and more advanced tools to participate in the
continuous document processing. The PIDE ML programming interface accepts
various declarative parameters to provide hints for execution management:

Startup delay: extra time to wait, after the print becomes active. This latency
reduces waste of CPU cycles when the user continues editing and changes
already assigned commands again before printing starts.

Time limit: maximum time spent for a potentially diverging print operation.
Task priority: scheduling parameter for the underlying ML future (for task

queue management). Note that this is not a thread priority: an already
running task of low priority is unaffected by later forks of high priority.

Persistence: keep results produced by print (including observable output), or
delete them when visibility gets lost.

Application (1): Proof State Output. Printing proof states efficiently is
less trivial than it seems. Command-line users do not mind to wait fractions of a
second to see the result after each command, but continuous document process-
ing in PIDE means that maybe 10–100 commands become visible when opening
or scrolling text windows. If printing requires 10–100ms for each command, it
already causes significant slowdown.

Proof states are now printed asynchronously, with the following scheduling
parameters: no startup delay, no time limit, high task priority, no persistence.

The absence of delay and the priority means that the print phase runs ea-
gerly whenever possible, after its corresponding eval has finished. On multi-
ple cores, the ongoing eval sequence proceeds concurrently with corresponding

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 527

prints, resulting in fairly good performance. On a single core, the system adapts
its task scheduling to do the interleaving of eval versus high priority prints se-
quentially: this is important for the user to proceed, but results in considerable
slowdown. The difference can be seen e.g. in the long unstructured proof scripts
of $ISABELLE_HOME/src/HOL/Hoare_Parallel/OG_Hoare.thy, setting in jEdit
Plugin Options / Isabelle / General / Threads to 2 versus 1, restarting proof
processing via File / Reload, scrolling around etc.

Non-persistence is based on the observation that each individual proof state
output is reasonably fast, but its result can be big and needs to be stored in
the document model (in Scala). For commands that lose visible perspective, the
corresponding print is unassigned and the document content eventually disposed
by garbage collection. Thus we conserve Scala/JVM space, by investing extra
ML time to print again later.

Application (2): Automatically Tried Tools. As explained in the manual
[14, §2.7], Isabelle/HOL provides a collection of tools that can prove or dis-
prove goals without user intervention: automated methods (auto, simp, blast
etc.), nitpick, quickcheck, sledgehammer, solve-direct.

In Isabelle Proof General, such tools run synchronously within regular proof
state output, and a tight timeout of 0.5s to guarantee reactivity of the command
loop. This limits the possibilities of spontaneous feedback by the prover to rela-
tively light-weight tools like quickcheck and solve-direct, and even that may
cause cumbersome delays in sequential command processing.

In Isabelle/PIDE automatically tried tools are asynchronous print functions,
with default parameters like this: startup delay = 1s, time limit = 2s, low task
priority, persistence.

Thus tools usually run only after some time of inactivity, and do not compete
directly with the main eval and high-priority prints. Persistence is enabled, since
tools usually take a long time to produce small output: nothing on failure (or
timeout) or a short message on success. In particular, the often unsuccessful
applications are retained and not tried again.

Tool output is marked-up as information message, which is rendered in
Isabelle/jEdit with a blue information icon and blue squiggles for the corre-
sponding goal command. This is non-intrusive information produced in the back-
ground, while the user was pondering the text. Cumulatively, automatically tried
tools can consume significant CPU resources, though. For high-end work-stations
connected to grid power that is rarely a problem, but small mobile devices on
batteries should disable extraneous instrumentation.

Application (3): Query Operations. The idea is to support frequently used
and potentially long-running diagnostic commands via explicit GUI components
in the editor, for example Sledgehammer and Find theorems as explained in [14,
§2.8,§2.9] (with screenshots and minimal examples).

In such situations, Proof General [3] provides a separate command-line to
issue state-preserving commands synchronously: the user first needs to move the
prover focus to some point in the text and then wait while the query is running.

528 M. Wenzel

In Isabelle/PIDE this is now done via asynchronous print functions with ex-
plicit document overlays (§3.2). Arguments are provided by some GUI dialog
box: input causes a document update that changes the corresponding overlay;
the command position is determined from the current focus in the text.

The asynchronous approach allows the user to input the query and start the
operation at any time, while the system schedules the print process to run spon-
taneously after the command that defines its context is evaluated; afterwards
it presents query results as they arrive incrementally. There is also a button
to cancel the process (notably for Sledgehammer). The transitional states of a
pending query are visualized by some “spinning disk” icon (with tooltip).

Isabelle/PIDE provides a hybrid module Query_Operation in ML and Scala.
The ML side accepts a function that takes a toplevel state with arguments and
produces output on some private channel; this interface resembles traditional
command-line tools. Likewise, the Scala side works with conventional event-
based GUI components, without direct exposure to the timeless and stateless
PIDE document model. The implementation of the hybrid Query_Operation

module takes care of the management of different instances for each GUI view,
and keeps the connection to running command execs (for cancellation etc.).

This completes the full round-trip of PIDE concepts: from the sequential
and synchronous read -eval -print loop that connects the user directly to a sin-
gle command execution, over an intermediate document model that is detached
from particular time and space, leading to simple PIDE APIs that recover the
appearance of working directly with some command execution that is connected
to physical GUI elements. The benefit of this detour is that the system infras-
tructure is enabled to manage the details of execution efficiently, for many tools
on many CPU cores, instead of asking the user to do this sequentially by hand.

6 Conclusion and Related Work

The Isabelle/PIDE approach combines user interaction and tool integration into
a uniform document-model. This enables advanced front-end technology in the
style of classic IDEs for mainstream programming languages. It also allows us
to integrate interactive or automatic theorem proving tools to help the user
composing proof documents. The present paper continues earlier explanations
of PIDE concepts [12, 11, 13, 15, 16]. The following improvements are newly
introduced in the current generation of Isabelle/PIDE (December 2013):

– strictly monotonic document update: avoid cancellation and restart of run-
ning command transactions;

– explicit document execution management;
– support for asynchronous print functions, with various execution policies;
– support for document overlays and query operations, with separate GUI

components for input and output.

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE 529

Related Work. Explicit parallelism has been imposed on application devel-
opers before, when classic CISC machines became stagnant in the 1990s, and
workstation clusters were considered a potential solution. A notable experiment
from that time is the Distributed Larch Prover [5]: it delegates proof problems
to CPU nodes, with a central managing process and some Emacs front-end to
organize pending proofs. The report on that early project clearly identities the
need to rethink prover front-ends, when the back-end becomes parallel.

Concerning prover front-ends, the main landmark to improve upon raw TTY
interaction of proof assistants is Proof General by D. Aspinall [3]. It only requires
a classic read -eval -print loop with annotated prompt and undo operation, and
thus implements “proof scripting” within the editor. The user can navigate for-
wards and backwards to move the boundary between the locked region of the
text that is already checked and the remaining part that is presently edited.

The approach of Proof General was so convincing that it has been duplicated
many times, with slightly different technical side-conditions, e.g. in CoqIDE
[18, §4] (OCaml/GTK), Matita [2] (OCaml/GTK), Matitaweb [1] (OCaml web
server). The great success of Proof General 15 years ago made it difficult to
go beyond it. Early attempts by D. Aspinall to formalize its protocol as PGIP
and integrate it with Eclipse [4] have never reached a sufficient level of support
by proof assistants to become relevant to users. Nonetheless, PGEclipse was
an important initiative to point beyond classic TTY and Emacs, into a greater
world of IDE frameworks.

Dafny [6] follows a different approach to connect automated theorem proving
(Boogie and Z3) with Visual Studio as the IDE. Thus it introduces some genuine
user-interaction into a world of automatic SMT solving, bypassing TTY mode.
The resulting application resembles Isabelle/jEdit, while the particular proof
tools and logical foundations of the proof environment are quite different.

Agora [10] is a recent web-centric approach to document-oriented proof au-
thoring, for various existing back-ends like Coq [18, §4] and Mizar [18, §2]. The
main premise of this work is to take the proof assistant as-is and to see how
much added value can be achieved by wrapping web technology around it. C.
Tankink also points beyond classic IDEs, which are in fact already 10–20 years
old. More recent movements on IDE design for programming languages integrate
old and new ideas of direct manipulation of static program text and dynamic
execution side-by-side, and a non-linear document-model of source snippets. A
notable project is http://www.chris-granger.com/lighttable, which is im-
plemented in Clojure and works for Clojure, Javascript, and Python.

Incidently, interactive proof checking has been based on direct access to proof
states from early on, and PIDE already provides substantial support to manage
incremental execution and continuous checking of proof-documents. So further
alignments with such newer IDE approaches would be a rather obvious contin-
uation of what has been achieved so far, but the ITP community also requires
time to get acquainted even with the classic IDE model seen in Isabelle/jEdit.

http://www.chris-granger.com/lighttable

530 M. Wenzel

References

[1] Asperti, A., Ricciotti, W.: A web interface for Matita. In: Jeuring, J., Campbell,
J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012.
LNCS (LNAI), vol. 7362, pp. 417–421. Springer, Heidelberg (2012)

[2] Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Journal of Automated Reasoning 39(2) (2007)

[3] Aspinall, D.: Proof General: A generic tool for proof development. In: Graf, S.,
Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer,
Heidelberg (2000)

[4] Aspinall, D., Lüth, C., Winterstein, D.: A framework for interactive proof. In:
Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS
2007. LNCS (LNAI), vol. 4573, pp. 161–175. Springer, Heidelberg (2007)

[5] Kapur, D., Vandevoorde, M.T.: DLP: A paradigm for parallel interactive theorem
proving (1996)

[6] Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

[7] Lüth, C., Ring, M.: A web interface for Isabelle: The next generation. In: Carette,
J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS,
vol. 7961, pp. 326–329. Springer, Heidelberg (2013)

[8] Ring, M., Lüth, C.: Collaborative interactive theorem proving with Clide. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS (LNAI), vol. 8558, pp. 467–482.
Springer, Heidelberg (2014)

[9] Odersky, M., et al.: An overview of the Scala programming language. Technical
Report IC/2004/64, EPF Lausanne (2004)

[10] Tankink, C.: Documentation and Formal Mathematics — Web Technology meets
Theorem Proving. PhD thesis, Radboud University Nijmegen (2013)

[11] Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI),
vol. 6824, pp. 244–259. Springer, Heidelberg (2011)

[12] Wenzel, M.: Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit.
In: Coen, C.S., Aspinall, D. (eds.) User Interfaces for Theorem Provers (UITP
2010). ENTCS (July 2010)

[13] Wenzel, M.: Isabelle/jEdit – A prover IDE within the PIDE framework. In: Jeur-
ing, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge,
V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg
(2012)

[14] Wenzel, M.: Isabelle/jEdit. Part of Isabelle distribution (December 2013),
http://isabelle.in.tum.de/website-Isabelle2013-2/

dist/Isabelle2013-2/doc/jedit.pdf
[15] Wenzel, M.: PIDE as front-end technology for Coq (2013),

http://arxiv.org/abs/1304.6626
[16] Wenzel, M.: READ-EVAL-PRINT in parallel and asynchronous proof-checking.

In: Kaliszyk, C., Lüth, C. (eds.) User Interfaces for Theorem Provers (UITP 2012).
EPTCS, vol. 118 (2013)

[17] Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp. 418–434. Springer, Heidelberg (2013)

[18] Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/jedit.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/jedit.pdf
http://arxiv.org/abs/1304.6626

HOL Constant Definition Done Right

Rob Arthan

Lemma 1 Ltd./ School of Electronic Engineering and Computer Science,
Queen Mary, University of London, UK

Abstract. This note gives a proposal for a simpler and more powerful
replacement for the mechanisms currently provided in the various HOL
implementations for defining new constants.

1 Introduction

The design of the HOL logic and of its definitional principles [7] evolved in the
late 80s and early 90s. Some form of this design has been implemented in HOL4
[8], HOL Light [3], HOL Zero [1], Isabelle/HOL [6] and ProofPower [2]. While the
definitional principles have stood the test of time in many practical applications,
we believe there is still some room for improvement. This note discusses issues
with the mechanisms for introducing new constants and proposes a new and
more general mechanism that addresses these issues.

2 The Problem

The original Classic HOL provided a mechanism for defining new constants
known as new definition. This worked as follows: given a possibly empty list
of variables x1, . . . , xn and a term t whose free variables are contained in the xi,
it introduced a new constant1 c of the appropriate type and the axiom:

� ∀x1 . . . xn· c x1 . . . xn = t.

This simple mechanism is remarkably powerful but suffered from two significant
shortcomings, both pointed out by Roger Jones2:

RJ1. The mechanism does not support implicit definitions. As one example, it
is pleasant to define the destructors of a data type as the left inverses of the
constructors. Thus one wants to define Pre in terms of Suc by:

Pre(Suc(n)) = n.

1 The details of the mechanism for specifying the names of new constants are not
important for present purposes.

2 At various places in this note, I sketch observations made by other people. The
wording used is mine and not theirs and any misrepresentation is my responsibility.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 531–536, 2014.
c© Springer International Publishing Switzerland 2014

532 R. Arthan

As another example, the exponential function is naturally defined by a dif-
ferential equation:

exp(0) = 1

(Dexp)(x) = exp(x).

In such cases, the mechanism can be used to define constants having the
desired properties, but one has to use the Hilbert choice operator to give
witnesses and then derive the implicit definitions as theorems. This results in
a loss of abstraction and unintended identities, e.g., the naive way of defining
two constants c1 and c2 both with the loose defining property ci ≤ 10 will
result in an extension in which c1 = c2 is provable.

RJ2. The mechanism is unsound. The condition on the free variables of t is
certainly necessary. Without it, we could take t to be a variable, y : N, and
define a new constant c satisfying � ∀y : N· c = y. Specialising this in two
different ways, we could prove both c = 1 and c = 2. However, the condition
is not sufficient. If # is a polymorphic function such that #X is the size
of X when X is a finite set, then we can use the mechanism to define a
constant c : N satisfying the axiom c = #{x : α | x = x}, where α is
a type variable. But then if 1 and 2 denote types with 1 and 2 members
respectively, we can instantiate α to prove both c = #{x : 1 | x = x} = 1
and c = #{x : 2 | x = x} = 2.

The fix for RJ2 was to change new definition so as to check that all type
variables appearing anywhere in the term t also appear in the type of the constant
c that is being defined. HOL Light, HOL Zero, Isabelle/HOL and ProofPower
were all implemented after the problem was known, so they incorporated this
solution from scratch. The fix in Classic HOL was carried forward into HOL4.

A new mechanism, new specification, was introduced to address RJ1.
new specification takes as input a theorem of the form � ∃v1 . . . vn· p and
introduces a list of new constants c1, . . . , cn and the axiom

� p[c1/v1, . . . , cn/vn].

new specification requires that the free variables of p be contained in the vi
and that every type variable appearing anywhere in p also appear in the type
of each new constant ci, thus avoiding reintroducing the problem of RJ2 under
a different guise. The result is conservative and hence sound. It also supports
a very useful range of implicit definitions. However, there are two issues that I
noted during the ProofPower implementation:

RA1. Given new specification, new definition is redundant: what it does
can easily be realised by a derived mechanism that given the list of variables
x1, . . . , xn and the term t, automatically proves:

� ∃y· ∀x1 . . . xn· y x1 . . . xn = t

HOL Constant Definition Done Right 533

and then applies new specification. Unfortunately, in order to prove ex-
istentially quantified statements, one needs a definition of the existential
quantifier, and so new definition seems necessary to avoid a bootstrap-
ping problem. (Since it is only required for bootstrapping, the ProofPower
implementation of new definition only covers the simple case where the
axiom has the form � c = t.)

RA2. The condition on type variables imposed by new specification is
stronger than one would like. It is natural for certain “concrete” structures
to be characterized by more “abstract” properties such as universal mapping
properties. For example, data types can be characterized as initial algebras:

∀(z : α)(s : α→ α)· ∃!f : N → α· f(0) = z ∧ ∀n· f(Suc(n)) = s(f(n)).

However, the above characterization cannot be used as a defining property
for the successor function with new specification. Characterizing objects
by universal properties is endemic in modern mathematics and computer
science, so it is irritating to be compelled to resort to circumlocutions.

In HOL4, ProofPower and HOL Zero, new specification is implemented as
a primitive operation. However, in HOL Light, it is derived. I believe this was
primarily a consequence of the following design goal for HOL Light:

JH1. The primitive inference system for HOL Light should be defined in terms
of language primitives and equality alone and should not depend on the
axiomatization of the logical connectives.

A form of new specification that does not involve existential quantifica-
tion was implemented in early versions of HOL Light. This took as input a
theorem of the form � p t. Later, to simplify the correctness argument for the
system, new specification was re-implemented as a derived operation that
uses the Hilbert choice operator to translate its inputs into a form suitable for
new definition, applies new definition, then derives the desired axiom to be
passed back to the user from the stronger axiom returned by new definition.
Thus HOL Light bypassesRA1, but at the price of a certain inelegance, since we
have to trust the derived rule to discard the axiom returned by new definition.
This became worse when HOL Light was enhanced to address the following ob-
servation of Mark Adams:

MA1. If an LCF style system does not record all the axioms and definitions
that have been introduced, the correctness claim for the system has to be
defined in terms of a state and the sequence of operations which produced
that state. This makes it impossible to implement a proof auditing procedure
that works by analysing the current state of the system.

As a result of MA1 axioms and definitions in HOL Light are now recorded.
The current HOL Light implementation uses a trick to prevent two constants
with the same loose defining property being provably equal. The trick is based
on the following idea: to define c1 and c2 such that c1, c2 ≤ 10, say, define

534 R. Arthan

c1 = (εf · ∀n· f(n) ≤ 10) 1 and c2 = (εf · ∀n· f(n) ≤ 10) 2; then c1 and c2 have
the desired property, but c1 = c2 is not provable. Nonetheless some unintended
identities are still provable that would not be provable if new specification

were implemented as a primitive as in HOL4 or ProofPower.
The equivalent of new specification in Isabelle/HOL is its specification

command. This is implemented using an equational definition and the choice
function, but that definition only exists in a private namespace. Some aspects of
the abstraction offered by new specification are provided by the very popular
locale mechanism in Isabelle.

Quantification over type variables as implemented in HOL-Omega [4] obvi-
ates many of the problems discussed here. However, our present concern is with
improvements that preserve the delightful simplicity of the Classic HOL logic.

3 Proposed Alternative

The proposed alternative is to discard new definition and to adapt and gen-
eralise new specification so that it does not depend on the meaning of the
existential quantifier. The generalised new specification, which we will call
gen new specification, takes as input a theorem of the following form

v1 = t1, . . . , vn = tn � p

where the vi are variables. If all is well, gen new specification will introduce
new constants c1, . . . , cn and the following axiom:

� p[c1/v1, . . . , cn/vn].

gen new specification imposes the following restrictions:

– the vi must be pairwise distinct;
– the terms ti must have no free variables;
– the free variables of p must be contained in the vi;
– any type variable occurring in the type of any subterm of a ti must occur in

the type of the corresponding vi.

There is no restriction on the type variables appearing in p.

Claim 1. gen new specification is conservative and hence sound.

Proof: Assume that a sequent Γ � q containing no instances of the ci is provable
using the axiom � p[c1/v1, . . . , cn/vn] introduced using gen new specification.
We will show how to transform a proof tree with conclusion Γ � q into a proof
tree with the same conclusion that does not use the new axiom. First, by simple
equality reasoning, derive from the theorem v1 = t1, . . . , vn = tn � p that was
passed to new specification, the theorem � p[t1/v1, . . . , tn/vn]. Now replace
each type instance of a ci in the proof tree with the corresponding type instance
of ti and wherever a type instance of the axiom � p[c1/v1, . . . , cn/vn] is used in
the proof tree, replace it with the corresponding type instance of a proof tree for
� p[t1/v1, . . . , tn/vn]. By inspection of the primitive inference rules in [3], if one

HOL Constant Definition Done Right 535

replaces instances of constants in a correct inference by closed terms of the same
type in such a way that assumptions or conclusions of the sequents involved
that were syntactically identical before the replacement remain syntactically
identical, then the result is also a correct inference. As the condition on type
variables imposed by gen new specification guarantees that two instances of a
ci are syntactically identical iff the corresponding instances of ti are syntactically
identical, we have constructed a correct proof tree whose conclusion is Γ � q.

Claim 2. gen new specification subsumes new definition.

Proof: In the simplest case, to define c with axiom � c = t, where t has no free
variables and contains no type variables that do not appear in its type, apply
gen new specification to the axiom v = t � v = t. This is all we need to define
the logical connectives [3].

For the general case, to define c with axiom � ∀x1 . . . xn·c x1 . . . xn = t, take
the axiom v = (λx1 . . . xn· t) � v = (λx1 . . . xn· t), derive v = (λx1 . . . xn· t) �
∀x1 . . . xn· v x1 . . . xn = t from it and then apply gen new specification.

Claim 3. gen new specification subsumes new specification.

Proof: Given the theorem � ∃v1 . . . vn· p, we can derive from it the theorem
v1 = εv1·∃v2 . . . vn·p � ∃v2 . . . vn·p and apply gen new specification to define
a constant c1 with defining axiom � ∃v2 . . . vn·p[c1/v1]. Iterating this process we
can define c2, . . . , cn such that the defining axiom of cn is � p[c1/v1, . . . , cn/vn].
Thus we can achieve the same effect as new specification at the expense of
additional intermediate definitions. This is sufficient to define the constructor
and destructors for binary products.

Once we have binary products, we can simulate n-tuples by iterated pairing.
This means that given the theorem � ∃v1 . . . vn· p, we can derive the theorem
� ∃z· p[π1(z)/v1, . . . , πn(z)/vn] in which the n bound variables v1, . . . , vn have
been collected into a single n-tuple denoted by the fresh variable z (here πi
denotes the projection onto the i-th factor). Now we can derive from that the
theorem v1 = t1, . . . , vn = tn � p where ti is πi(εz· p[π1(z)/v1, . . . , πn(z)/vn]).
Given this theorem as input, gen new specification has exactly the same effect
as new specification given the input theorem � ∃v1 . . . , vn· p.

4 Conclusion

Let me assess the proposed new definitional mechanism gen new specification

against the observations that led to it:

RJ1. By claim 3, the support for implicit definitions is at least as good with
gen new specification as with new specification. In fact it is better:
new specification cannot define new constants f : α → N and n : N with
defining property ∀x· ¬f x = n, but gen new specification can.

RJ2. By claim 1, the proposed alternative is sound. What is more, this proof
has been formalised in HOL4: Ramana Kumar, Scott Owens and Magnus

536 R. Arthan

Myreen have recently completed a formal proof of soundness for the HOL
logic and its definitional principles including gen new specification [5].

RA1. By claim 2, new definition is no longer required. (As seen in the proof
of this claim, the special case needed to define the logical connectives does
not involve any reasoning about them, so there is no bootstrapping issue.)

RA2. The restriction on type variables now applies only to the equations that
give the witnesses to the consistency of the definition. Defining properties
such as initial algebra conditions are supported.

JH1. gen new specification is defined solely in terms of equality and primi-
tive language constructs.

MA1. The unintended identities arising as a result of recording definitions in
HOL Light will not occur if gen new specification is adopted as the prim-
itive mechanism for defining constants.

My conclusion when I wrote the first draft of this note was that the proposal
was well worth adopting. It has recently been implemented in HOL4 and Proof-
Power. In both cases it is a replacement for new definition and the existing
new specification has been retained for pragmatic reasons. The ProofPower
implementation includes an implementation of the proof of claim 3 above and
this completely replaces new specification in the development of many of the
theories supplied with the system, including all the “pervasive” theories such as
the theories of pairs and natural numbers that form part of the logical kernel.

Acknowledgments. I would like to thank the ITP 2014 Programme Chairs,
the referees, Mark Adams, John Harrison, Roger Jones, Ramana Kumar, Mag-
nus Myreen, Scott Owens, Konrad Slind and Makarius Wenzel for their kind
assistance in divers ways in the preparation and publication of this note.

References

1. Adams, M.: HOL Zero, http://www.proof-technologies.com/holzero/
2. Arthan, R., Jones, R.B.: Z in HOL in ProofPower. BCS FACS FACTS (2005-1),

http://www.lemma-one.com/ProofPower/index/

3. Harrison, J.: HOL light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009), http://www.cl.cam.ac.uk/~jrh13/hol-light/

4. Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidel-
berg (2009)

5. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: Semantics,
soundness, and a verified implementation. In: Klein, G., Gamboa, R. (eds.) ITP
2014. LNCS (LNAI), vol. 8558, pp. 308–324. Springer, Heidelberg (2014)

6. Wenzel, M., et al.: The Isabelle/Isar Reference Manual,
http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/isar-ref.pdf

7. Norrish, M., et al.: The HOL System: Logic, 3rd edn.,
http://hol.sourceforge.net/documentation.html

8. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

http://www.proof-technologies.com/holzero/
http://www.lemma-one.com/ProofPower/index/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/isar-ref.pdf
http://hol.sourceforge.net/documentation.html

Rough Diamond: An Extension

of Equivalence-Based Rewriting

Matt Kaufmann and J Strother Moore

Dept. of Computer Science, University of Texas, Austin, TX, USA
{kaufmann,moore}@cs.utexas.edu

http://www.cs.utexas.edu

Abstract. Previous work by the authors generalized conditional rewrit-
ing from the use of equalities to the use of arbitrary equivalence relations.
Such (classic) equivalence-based rewriting automates the replacement of
one subterm by another that may not be strictly equal to it, but is
equivalent to it, where this equivalence is determined automatically to
be sufficient at that subterm occurrence. We extend that capability by
introducing patterned congruence rules in the ACL2 theorem prover, to
provide more control over the occurrences where such a replacement may
be made. This extension enables additional automation of the rewriting
process, which is important in industrial-scale applications. However, be-
cause this feature is so new (introduced January, 2014), we do not yet
have industrial applications to verify its utility, so we present a small
example that illustrates how it supports scaling to large proof efforts.

Keywords: ACL2, rewriting, congruence, equivalence relation.

1 Introduction

A conditional rewrite rule, (P1 ∧ . . . ∧ Pn → L = R), directs an instance of the
term L to be rewritten to the corresponding instance of the term R, provided the
corresponding instances hold for hypotheses P1 through Pn. In previous work [1]
we showed how to generalize conditional rewrite rules to allow an arbitrary
equivalence relation, ∼, in place of =, thus: (P1 ∧ . . .∧Pn → L ∼ R). Key is the
use of proved congruence rules and refinement rules1 to associate, automatically,
an equivalence relation with each call of the rewriter, such that it is sound to
replace a subterm by one that is equivalent. The above generalized rewrite may
then be used when ∼ is a refinement of that equivalence relation. This capability
is implemented in the ACL2 theorem prover [7,6] and has seen substantial use:
as of ACL2 Version 6.4, the community distribution of ACL2 input files [10]
contains more than 1800 instances of congruence rules.

We give a preliminary report on a generalization, patterned congruence rules,
introduced into ACL2 in Version 6.4, January, 2014. At this stage we can only

1 Refinement rules work essentially the same way in this new setting as they did before.
We do not mention them further in this paper.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 537–542, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.utexas.edu

538 M. Kaufmann and J.S. Moore

guess at uptake of this capability by the ACL2 community, although we do expect
it to be used at least by the requester of this feature at Centaur Technology [9].

Our (existing and updated) approach to equivalence-based rewriting differs
from approaches based on the use of quotient structures in higher-order logic,
for example in HOL [3], Isabelle [4], and Coq [2]. To the best of our knowledge,
our approach to first-order equivalence-based rewriting (without quotients) is
the only one that automates the tracking of which equivalences are sufficient to
preserve in a given context.

We begin in Section 2 by presenting a self-contained example to illustrate
our previous work [1]. Section 3 then builds on that example to introduce our
extension to patterned congruence rules, followed by a sketch of the relevant
algorithm and theory in Section 4. We conclude with a few reflections.

The online ACL2 User’s Manual [7] provides user-level introductions to equiv-
alence-based rewriting. See topics EQUIVALENCE, CONGRUENCE, and (for
this new work) PATTERNED-CONGRUENCE.

2 Previous Work

The example below uses traditional syntax. Complete ACL2 input is online [5].
The following recursively-defined equivalence relation holds for two binary

trees when one can be transformed to the other by some sequence of “flips”:
switching left and right children.

t1 ∼ t2 � IF leaf-p(t1) ∨ leaf-p(t2) THEN t1=t2
ELSE (left(t1) ∼ left(t2) ∧ right(t1) ∼ right(t2)) ∨

(left(t1) ∼ right(t2) ∧ right(t1) ∼ left(t2))

When provided a suitable induction scheme, ACL2 automatically proves and
stores the theorem that ∼ is an equivalence relation. We now define a function
that swaps every pair of children in a binary tree (cons is the pairing operation).

mirror(tree) � IF leaf-p(tree) THEN tree
ELSE cons(mirror(right(tree)), mirror(left(tree)))

The equivalence-based rewrite rule below directs the replacement of any in-
stance of the term mirror(x) by the corresponding instance of the term x, in
contexts for which it suffices to preserve equivalence with respect to ∼. Of course,
the ordinary rewrite rule mirror(x) = x is not a theorem!

REWRITE RULE: tree-equiv-mirror
mirror(x) ∼ x

The following function returns the product of the numeric elements of the
fringe of a tree. It provides an example for sound replacement of mirror(x) by x:
ACL2 proves the congruence rule below, stating that the return values are equal
for equivalent inputs of the function tree-product. In general, a congruence
rule states that the return values of a function call are equal (or more generally,
suitably equivalent) when replacing a given argument by one that is equivalent.

Rough Diamond: An Extension of Equivalence-Based Rewriting 539

tree-product(tree) �
IF [tree is a number] THEN tree
ELSE IF leaf-p(tree) THEN 1
ELSE tree-product(left(tree)) * tree-product(right(tree))

CONGRUENCE RULE: tree-equiv-->-equal-tree-product
x ∼ y → tree-product(x) = tree-product(y)

ACL2 can now prove the following theorem automatically by applying rewrite
rule tree-equiv-mirror to the term mirror(x). The congruence rule immedi-
ately above justifies this rewrite. When that rule is instead a rewrite rule, ACL2
is not able to use either it or tree-equiv-mirror to prove the theorem below.

THEOREM: tree-product-mirror
tree-product(mirror(y)) = tree-product(y)

This particular theorem is easy for ACL2 to prove automatically even with-
out congruence rules or the rewrite rule tree-equiv-mirror (though induction
would then be required). But to see the scalability of this approach, imagine that
there are k1 functions like mirror and k2 like tree-product. If we then prove k1
rewrite rules like tree-equiv-mirror and k2 congruence rules like tree-equiv-
-implies-equal-tree-product, then these k1 + k2 rules set us up to perform
automatically all k1 ∗ k2 rewrites like tree-product-mirror.

3 Patterned Congruence Rules

A congruence rule, as discussed above, specifies when a given argument of a
function call may be replaced by one that is suitably equivalent. A patterned
congruence rule generalizes this idea by allowing a specified subterm of that
call, which is not necessarily a top-level argument, to be replaced by one that is
suitably equivalent. The following example is discussed further below.

PATTERNED CONGRUENCE RULE: tree-equiv-->-equal-first-tree-data
x ∼ y → first(tree-data(x)) = first(tree-data(y))

Notice that unlike a “classic” congruence rule, where the replacement of an
equivalent subterm is specified at a specific argument of a function call, here
x is to be replaced by y at a deeper position: a subterm of a subterm of the
call. Indeed, the conclusion of the rule can be an equivalence between complex
patterns, for example: x ∼1 y → f(3, h(u, x), g(u)) ∼2 f(3, h(u, y), g(u)). That
rule justifies replacement of a term x by a term y ∼1 x, within any term of the
form f(3, h(u, x), g(u)) that occurs where it suffices to preserve ∼2.

A patterned congruence rule is thus a formula of the form x ∼inner y →
L ∼outer R, subject to the following requirements. Function symbols ∼inner and
∼outer have been proved to be equivalence relations. L and R are function calls
such that x occurs in L, y occurs in R, and these are the only occurrences of x
and y in the rule. Finally, R is the result of substituting y for x in L.

540 M. Kaufmann and J.S. Moore

This rule enables the automatic rewrite of a subterm of L at the position
of x to a term that is ∼inner-equivalent to x, in any context where it suffices
to preserve ∼outer. We illustrate this process by continuing the example of the
preceding section, this time defining a function that sweeps a tree to collect a list
of results, whose first element is the product of the numeric leaves (as before).
We omit some details; function combine-tree-data(t1,t2) returns a list whose
first element is the product of the first elements from the recursive calls.

tree-data(tr) �
IF [tr is a number] THEN [tr, . . .]
ELSE IF leaf-p(tr) THEN [1, . . .]
ELSE combine-tree-data(tree-data(left(tr)), tree-data(right(tr)))

ACL2 can now automatically prove the patterned congruence rule displayed at
the start of this section, tree-equiv-->-equal-first-tree-data. ACL2 then
proves the theorem below as follows, much as it proves Theorem tree-product-

-mirror in the preceding section. First, the patterned congruence rule informs
the rewriter that it suffices to preserve ∼ when rewriting mirror(y). Hence, the
rewrite rule tree-equiv-mirror (from the preceding section) is used to replace
mirror(y) by y. Also as before, this small example suggests the importance of
(patterned) congruences for scalability, where k1 + k2 rules set us up to perform
automatically k1 ∗ k2 different rewrites.

THEOREM: first-tree-data-mirror
first(tree-data(mirror(y))) = first(tree-data(y))

4 Algorithm Correctness and Patterned Equivalence
Relations

In this section we outline briefly the algorithm implemented in ACL2 for using
pattern-based congruence rules, and we touch on why it is correct. More details,
including discussion of efficiency tricks and addressing of subtle issues (e.g., an
example showing that arguments cannot be rewritten in parallel), are provided
in a long comment in the ACL2 source code [8]. Of special concern is that
ACL2 procedures that manipulate terms must quickly determine the available
equivalences on-the-fly and tend to sweep the terms left-to-right, innermost first.

ACL2 implements classic equivalence-based rewriting by maintaining a gen-
erated equivalence relation, or geneqv : a finite list of function symbols that have
each been proved to be an equivalence relation, representing the smallest equiva-
lence relation containing them all. Rewriting is inside out, so to rewrite a function
call, the rewriter first rewrites each argument of that call. Congruence rules are
employed to compute the geneqv for rewriting each argument.

We have incorporated patterned congruence rules into that algorithm without
changing its basic structure or efficiency (based on timing the ACL2 regression
suite [10]). The key idea is to pass around a list representing so-called patterned
equivalences, or pequivs for short, as defined below. We show how this list is up-
dated as the rewriter dives into subterms, ultimately giving rise to equivalences
to add to the current geneqv.

Rough Diamond: An Extension of Equivalence-Based Rewriting 541

A pequiv is an equivalence relation corresponding to a term L that is a func-
tion call, a variable x that occurs uniquely in L, an equivalence relation ∼, and
a substitution s. The pequiv based on L, x, ∼, and s is the smallest equivalence
relation containing the following relation: a ≈ b if and only if there exist substi-
tutions s1 and s2 extending s that agree on all variables except perhaps x such
that a = L/s1, b = L/s2, and s1(x) ∼ s2(x).

For a natural number k and function call C = f(t1, . . . , tk, . . . , tn), the follow-
ing notation is useful: pre(C) is the list (t1, . . . , tk−1), @(C) is tk, and post(C)
is the list (tk+1, . . . , tn). Now consider the pequiv based on L, x, ∼, and s, and
let u be a term f(u1, . . . , uk, . . . , un), where f is the function symbol of L and
x occurs in the kth argument of L. We define the next equiv as follows when for
some substitution s′ extending s, pre(u) is pre(L)/s′ and post(u) is post(L)/s′.2

Let s′ be the minimal such substitution. There are two cases. If x is an argument
of L then the next equiv is the equivalence relation, ∼. Otherwise the next equiv
is the pequiv based on @(L), x, ∼, and s′.

The ACL2 rewriter maintains a list of pequivs and a geneqv (list of equivalence
relations). Here we outline how those lists change when the rewriter, which is
inside-out, calls itself recursively on a subterm. As before [1], classic congruence
rules are applied to create a geneqv for the subterm; here we focus on how the
list of pequivs contributes to the pequivs and geneqv for the subterm. Consider
a pequiv p based on L, x, ∼, and s, among the list of pequivs maintained as
we are rewriting the term f(u1, . . . , uk, . . . , un), and consider the rewrite of uk.
There are three cases. If the next equiv for p (for position k) is ∼, then ∼ is
added to the geneqv for rewriting uk. If the next equiv for p is a pequiv p′, then
p′ is added to the list of pequivs for rewriting uk. Otherwise the next equiv for
p does not exist, and p is ignored when rewriting uk.

The following two theorems (relative to an implicit first-order theory) justify
this algorithm. The first explains why a congruence rule justifies the sufficiency
of maintaining the corresponding pequiv. The second explains why it suffices to
maintain the next pequiv when rewriting a subterm.

Theorem 1. For a provable patterned congruence rule x ∼inner y → L ∼outer

R, let ∼ be the pequiv based on L, x, ∼inner, and the empty substitution. Then
∼ refines ∼outer, i.e., the following is a theorem: x ∼ y → x ∼outer y.

Theorem 2. Let ∼1 be a pequiv, let u be a term, and assume that the next
equiv, ∼2, exists for ∼1 and k. Let arg be the kth argument of u, let arg′ be a
term, and let u′ be the result of replacing the kth argument of u by arg′. Then
the following is a theorem: arg ∼2 arg

′ → u ∼1 u
′.

5 Reflections

ACL2 development began in 1989. Recent years have seen an increase in indus-
trial application, with regular use at Advanced Micro Devices, Centaur Tech-
nology, Intel, Oracle, and Rockwell Collins, as well as academia and the U.S.

2 We are simplifying the actual condition here, because the rewriter applies to both a
term and a substitution, and this substitution must be applied to post(u).

542 M. Kaufmann and J.S. Moore

Government. In order to support these users, we have been continuously improv-
ing ACL2; in particular, after the December 2012 release of Version 6.0 through
the January 2014 release of Version 6.4, 129 distinct improvements have been
reported in RELEASE-NOTES topics of the online ACL2 User’s Manual [7].

While some of these improvements may present topics of interest to the ITP
community, most are technical and specific to ACL2, as the focus has largely been
on direct support for the user community, in particular industrial users. While
few of these topics are likely candidates for traditional academic publication,
patterned congruence rules seem to us an exception: any modern ITP system
might benefit from them, if it is important to perform rewriting efficiently at the
scale of industrial projects.

Acknowledgments. We thank the reviewers for helpful remarks. This research
was supported by DARPA under Contract No. N66001-10-2-4087 and by For-
restHunt, Inc.

References

1. Brock, B., Kaufmann, M., Moore, J.: Rewriting with equivalence relations in ACL2.
Journal of Automated Reasoning 40(4), 293–306 (2008),
http://dx.doi.org/10.1007/s10817-007-9095-9

2. Cohen, C.: Pragmatic quotient types in Coq. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213–228. Springer, Heidelberg
(2013), http://dx.doi.org/10.1007/978-3-642-39634-2_17

3. Homeier, P.: A design structure for higher order quotients. In: Hurd, J., Melham, T.
(eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/11541868_9

4. Huffman, B., Kunčar, O.: Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-319-03545-1_9

5. Kaufmann, M.: ACL2 demo of (patterned) congruences,
https://acl2-books.googlecode.com/

svn/trunk/demos/patterned-congruences.lisp

6. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, Boston (2000)

7. Kaufmann, M., Moore, J S.: ACL2 home page,
http://www.cs.utexas.edu/users/moore/acl2

8. Kaufmann, M., Moore, J S.: Essay on Patterned Congruences and Equivalences,
in ACL2 source file rewrite.lisp,
https://acl2-devel.googlecode.com/svn/trunk/rewrite.lisp

9. Swords, S.: Personal communication
10. ACL2 Community Books, http://acl2-books.googlecode.com/

http://dx.doi.org/10.1007/s10817-007-9095-9
http://dx.doi.org/10.1007/978-3-642-39634-2_17
http://dx.doi.org/10.1007/11541868_9
http://dx.doi.org/10.1007/978-3-319-03545-1_9
https://acl2-books.googlecode.com/svn/trunk/demos/patterned-congruences.lisp
https://acl2-books.googlecode.com/svn/trunk/demos/patterned-congruences.lisp
http://www.cs.utexas.edu/users/moore/acl2
https://acl2-devel.googlecode.com/svn/trunk/rewrite.lisp
http://acl2-books.googlecode.com/

Formal C Semantics:

CompCert and the C Standard

Robbert Krebbers1, Xavier Leroy2, and Freek Wiedijk1

1 ICIS, Radboud University Nijmegen, The Netherlands
2 Inria Paris-Rocquencourt, France

Abstract. We discuss the difference between a formal semantics of the
C standard, and a formal semantics of an implementation of C that sat-
isfies the C standard. In this context we extend the CompCert semantics
with end-of-array pointers and the possibility to byte-wise copy objects.
This is a first and necessary step towards proving that the CompCert
semantics refines the formal version of the C standard that is being de-
veloped in the Formalin project in Nijmegen.

1 Introduction

The C programming language [2] allows for close control over the machine, while
being very portable, and allowing for high runtime efficiency. This made C among
the most popular programming languages in the world.

However, C is also among the most dangerous programming languages. Due
to weak static typing and the absence of runtime checks, it is extremely easy for
C programs to have bugs that make the program crash or behave badly in other
ways. NULL-pointers can be dereferenced, arrays can be accessed outside their
bounds, memory can be used after it is freed, etc. Furthermore, C programs can
be developed with a too specific interpretation of the language in mind, giving
portability and maintenance problems later.

An interesting possibility to remedy these issues is to reason about C pro-
grams. Static program analysis is a huge step in this direction, but is by nature
incomplete. The use of interactive theorem provers reduces the problem of in-
completeness, but if the verification conditions involved are just generated by
a tool (like Jessie/Why3 [9]), the semantics that applies is implicit. Therefore,
the semantics cannot be studied on its own, and is very difficult to get correct.
For this reason, to obtain the best environment to reason reliably about C pro-
grams, one needs a formal semantics in an interactive theorem prover, like the
Cholera [10], CompCert [6], or Formalin [3,4] semantics.

The CompCert semantics has the added benefit that it has been used in the
correctness proof of the CompCert compiler. Hence, if one uses this compiler,
one can be sure that the proved properties will hold for the generated assembly
code too. However, verification against the CompCert semantics does not give
reliable guarantees when the program is compiled using a different compiler.

The C standard gives compilers considerable freedom in what behaviors to
give to a program [2, 3.4]. It uses the following notions of under-specification:

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 543–548, 2014.
c© Springer International Publishing Switzerland 2014

544 R. Krebbers, X. Leroy, and F. Wiedijk

– Unspecified behavior : two or more behaviors are allowed. For example: order
of evaluation in expressions. The choice may vary for each use.

– Implementation defined behavior : unspecified behavior, but the compiler has
to document its choice. For example: size and endianness of integers.

– Undefined behavior: the standard imposes no requirements at all, the pro-
gram is even allowed to crash. For example: dereferencing a NULL or dangling
pointer, signed integer overflow, and a sequent point violation (modifying a
memory location more than once between two sequence points).

Under-specification is used extensively to make C portable, and to allow com-
pilers to generate fast code. For example, when dereferencing a pointer, no code
has to be generated to check whether the pointer is valid or not. If the pointer
is invalid (NULL or a dangling pointer), the compiled program may do something
arbitrary instead of having to exit with a nice error message.

Like any compiler, CompCert has to make choices for implementation defined
behavior (e.g. integer representations). Moreover, due to its intended use for
embedded systems, CompCert gives a semantics to various undefined behaviors
(such as aliasing violations) and compiles those in a faithful manner.

To verify properties of programs that are being compiled by CompCert, one
can make explicit use of the behaviors that are defined by CompCert but not
by the C standard. On the contrary, the Formalin semantics intends to be a
formal version of the C standard, and therefore should capture the behavior of
any C compiler. A blog post by Regehr [11] shows some examples of bizarre
behavior by widely used compilers due to undefined behavior. Hence, Formalin
has to take all under-specification seriously (even if that makes the semantics
more complex), whereas CompCert may (and even has to) make specific choices.

For widely used compilers like GCC and Clang, Formalin is of course unable to
give any formal guarantees that a correctness proof with respect to its semantics
ensures correctness when compiled. After all, these compilers do not have a
formal semantics. We can only argue that the Formalin semantics makes more
things undefined than the C standard, and assuming these compilers “implement
the C standard”, correctness morally follows.

As a more formal means of validation of the Formalin semantics we intend to
prove that CompCert is a refinement of it. That means, if a behavior is defined by
the Formalin semantics, then the possible behaviors of CompCert match those
of Formalin. As a first step into that direction, we will discuss two necessary
modifications to CompCert as displayed in Figure 1. It is important to notice
that this work is not about missing features in CompCert, but about missing
behaviors of features that are in both CompCert and Formalin.

Note that even the Formalin semantics deviates from the C standard. That is
because the C standard has two incompatible ways to describe data [1, Defect
Report #260]. It uses a low level description of data in terms of bits and bytes
called object representations, but also describes data abstractly in a way that
allows various compiler optimizations. For this reason Formalin errs on the side
of caution: it makes some behaviors undefined that most people consider to be
defined according to the standard.

Formal C Semantics: CompCert and the C Standard 545

C11

Formalin

CompCert C

comparing with
end-of-array pointers

byte-wise pointer copy

subtle
casts

subtle
type

punning

integer overflow [3]

aliasing violations [3]

sequence point
violations [4]

use of dangling block
scope pointers [5]

arithmetic on
pointer bytes

Fig. 1. We extend CompCert C with the behaviors in the shaded area. Each set in this
diagram contains the programs that according to the semantics do not have undefined
behavior. Since C11 is subject to interpretation, we draw it with a dashed line.

For example, in both Formalin and CompCert, adding 0 to a byte from a
pointer object representation is undefined behavior. Both semantics do not just
have numeric bytes, but also use symbolic bytes for pointers and uninitialized
memory (see the definition memval of CompCert in Section 3).

Example. Using CompCert’s reference interpreter, we checked that our exten-
sions of CompCert give the correct semantics to:

void my_memcpy(void *dest, void *src, int n) {

unsigned char *p = dest, *q = src, *end = p + n;

while (p < end) // end may be end-of-array

*p++ = *q++;

}

int main() {

struct S { short x; short *r; } s = { 10, &s.x }, s2;

my_memcpy(&s2, &s, sizeof(struct S));

return *(s2.r);

}

In CompCert 1.12, this program has undefined behavior, for two reasons: the
comparison p < end that involves an end-of-array pointer, and the byte-wise
reads of the pointer s.r. Sections 2 and 3 discuss these issues and their resolution.

Sources. Our extension for end-of-array pointers is included in CompCert since
version 1.13. The sources for the other extension and the Formalin semantics
can be found at http://github.com/robbertkrebbers.

2 Pointers in CompCert

CompCert defines its memory as a finite map of blocks, each block consisting
of an array of symbolic bytes (and corresponding permissions) [7]. Pointers are
pairs (b, i) where b identifies the block, and i the offset into that block.

http://github.com/robbertkrebbers

546 R. Krebbers, X. Leroy, and F. Wiedijk

The C standard’s way of dealing with pointer equality is subtle. Consider the
following excerpt [2, 6.5.9p6]:

Two pointers compare equal if and only if [...] or one is a pointer to one
past the end of one array object and the other is a pointer to the start
of a different array object that happens to immediately follow the first
array object in the address space.

End-of-array pointers are somewhat special, as they cannot be dereferenced, but
their use is common programming practice when looping through arrays.

void inc_array(int *p, int n) {

int *end = p + n;

while (p < end) (*p++)++;

}

Unfortunately, end-of-array pointers can also be used in a way such that the
behavior is not stable under compilation.

int x, y;

if (&x + 1 == &y) printf("x and y are allocated adjacently\n");

Here, the printf is executed only if x and y are allocated adjacently, which may
happen as many compilers allocate x and y consecutively on the stack.

In the CompCert semantics, x and y have disjoint block identifiers, and the
representations of &x + 1 and &y are thus unequal. Compilation does not pre-
serve this inequality as the blocks of x and y are merged during stack allocation.
To ensure preservation of comparisons, the semantics of earlier CompCert ver-
sions (1.12 and before) required pointers used in comparisons to be valid. A
pointer is valid if its offset is strictly within the block bounds. We weakened this
restriction on pointer comparisons slightly:

– Comparison of pointers in the same block is defined only if both are weakly
valid. A pointer is weakly valid if it is valid or end-of-array.

– Comparison of pointers with different block identifiers is defined for valid
pointers only.

Our weakened restriction allows common programming practice of using end-
of-array pointers when looping through arrays possible, but uses as in the sec-
ond example above remain undefined. We believe that the above restriction on
pointer comparisons is more sensible than the naive reading of the C standard
because it is stable under compilation1.

To adapt the compiler correctness proofs we had to show that all compila-
tion passes preserve weak pointer validity and preserve the new definition of
pointer comparisons. Furthermore, we had to modify the definition of memory
injections [8] to ensure that also the offsets of weakly valid pointers remain rep-
resentable by machine integers after each program transformation.

1 Notice that the C standard already makes a distinction between pointers in the same
block and pointers in different blocks, for pointer inequalities < and <= [2, 6.5.8p5].

Formal C Semantics: CompCert and the C Standard 547

3 Bytes in CompCert

CompCert represents integer and floating point values by sequences of numeric
bytes, but pointer values and uninitialized memory by symbolic bytes.

Inductive memval: Type :=

| Undef: memval

| Byte: byte -> memval

| Pointer: block -> int -> nat -> memval

| PointerPad: memval.

When storing a pointer (b, i), the sequence Pointer b i 0, . . . , Pointer b i 3 is
stored, and on allocation of new memory a sequence of Undef bytes is stored
(the constructor PointerPad is part of our extension, and is discussed later).

In the version of CompCert that we have extended, it was only possible to
read a sequence of Pointer bytes as a pointer value. To make byte-wise reading
and writing of pointers possible, we extend values with a constructor Vptrfrag.

Inductive val: Type :=

| Vundef: val

| Vint: int -> val

| Vlong: int64 -> val

| Vfloat: float -> val

| Vptr: block -> int -> val

| Vptrfrag: block -> int -> nat -> val.

Extending the functions that encode and decode values as memval sequences
turned out more subtle than expected. The CompCert compiler back-end must
sometimes generate code that stores and later restores the value of an integer
register in a stack location. To preserve this value, these memory stores and loads
are performed at the widest integer register type, int. For pointer fragments,
the top 3 bytes of the in-memory representation are statically unknown, since
they can result from the sign-extension of the low byte. Therefore, we abstract
these top 3 bytes as the new memval constructor PointerPad.

Arithmetical operations are given undefined behavior on pointer fragments.
Reading a pointer byte from memory, adding 0 to it, and writing it back remains
undefined behavior. It would be tempting give an ad-hoc semantics to such corner
cases, but that will result in a loss of algebraic properties like associativity.

Assignments involve implicit casts, hence char to char casts need to have
defined behavior on pointer fragments to make storing these fragments possible.
Since the CompCert compiler needs the guarantee that the result of a cast is well-
typed (while the CompCert semantics is untyped), neutral casts perform a zero-
or sign-extension instead of being the identity. However, since the top 3 bytes
of the in-memory representation of pointer fragments are statically unknown,
we changed the semantics of a cast from char to char to check whether the
operand is well-typed (which vacuously holds for well-typed programs). If not,
the behavior of the cast is undefined. This has the desired result that char to
char casts can be removed in a later compilation phase.

548 R. Krebbers, X. Leroy, and F. Wiedijk

CompCert 2.2 features a new static analysis that approximates the shapes of
values, including points-to information for pointer values. Our char values hold
more values, and thus this analysis needed some changes. For example, before
our extension, the only pointer values that can be read from a given memory
location are those that were stored earlier at this exact location using a pointer-
wise store. With our extensions, the pointer values thus read can also come from
byte-wise pointer fragments that were stored at overlapping locations.

4 Conclusion and Future Work

The two extensions of CompCert described in this paper succeed in giving a
semantics to behaviors that were previously undefined. These extensions are a
necessary step for cross validation of the CompCert and Formalin semantics.
Our treatment of byte-wise copying of objects containing pointers turned out
to be more involved than suggested in [7], owing to the nontrivial semantics of
casts and changes to the static value analysis. If future versions of CompCert
get a type system, our workaround for casts can be removed.

Another behavior that needs attention in future work is CompCert’s call-by-
reference passing of struct and union values, as discussed in [4]. In this case,
as well as in the byte-wise copying case, the approach followed by Norrish [10]
(namely, representing values as sequences of bytes identical to their in-memory
representations) may provide an alternative solution, but could cause other dif-
ficulties with value analysis and compiler correctness proofs.

Acknowledgments. We thank the reviewers for their helpful comments. This
work was partially supported by NWO and by ANR (grant ANR-11-INSE-003).

References

1. International Organization for Standardization: WG14 Defect Report Summary
(2008), http://www.open-std.org/jtc1/sc22/wg14/www/docs/

2. International Organization for Standardization: ISO/IEC 9899-2011: Programming
languages – C. ISO Working Group 14 (2012)

3. Krebbers, R.: Aliasing Restrictions of C11 Formalized in Coq. In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 50–65. Springer, Heidelberg (2013)

4. Krebbers, R.: An Operational and Axiomatic Semantics for Non-determinism and
Sequence Points in C. In: POPL, pp. 101–112 (2014)

5. Krebbers, R., Wiedijk, F.: Separation Logic for Non-local Control Flow and Block
Scope Variables. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 257–
272. Springer, Heidelberg (2013)

6. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
7. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert Memory Model,

Version 2. Research report RR-7987, INRIA (2012)
8. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for

verifying program transformations. JAR 41(1), 1–31 (2008)
9. Moy, Y., Marché, C.: The Jessie plugin for Deduction Verification in Frama-C,

Tutorial and Reference Manual (2011)
10. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
11. Regehr, J.: (2012), Blog post at http://blog.regehr.org/archives/759

http://www.open-std.org/jtc1/sc22/wg14/www/docs/
http://blog.regehr.org/archives/759

Mechanical Certification of Loop Pipelining

Transformations: A Preview

Disha Puri1, Sandip Ray2, Kecheng Hao1, and Fei Xie1

1 Department of Computer Science, Portland State University,
Portland, OR 97207, USA

2 Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124, USA

Abstract. We describe our ongoing effort using theorem proving to cer-
tify loop pipelining, a critical and complex transformation employed by
behavioral synthesis. Our approach is mechanized in the ACL2 theorem
prover. We discuss some formalization and proof challenges and our early
attempts at addressing them.

Keywords: Behavioral Synthesis, Theorem proving, Electronic System
Level Design, Equivalence Checking.

1 Introduction

Behavioral synthesis is the process of compiling an Electronic System Level
(ESL) specification of a hardware design into RTL. ESL facilitates fast
turnaround time in production of hardware designs by rasing design abstrac-
tion; the designer only specifies the design functionality in a high-level language
(e.g., SystemC, C, C++, etc.), from which RTL is automatically synthesized.
However, its adoption critically depends on our ability to certify that the syn-
thesized design indeed implements the ESL specification. Given the abstraction
difference between ESL and RTL, this certification is non-trivial.

Loop pipelining is a critical transformation implemented in most behavioral
synthesis tools. Unfortunately, it is also one of the most complex transforma-
tions [1]. Furthermore, sequential equivalence checking (SEC) techniques are not
directly applicable for certification of synthesized loop pipelines. In this paper,
we describe how we are using interactive theorem proving (ACL2) to facilitate
this certification. We discuss our early efforts with the proof, some of the chal-
lenges and complexities, and the approaches we are exploring to address them.

This work is a part of a project to develop a scalable certification framework
for behavioral synthesis. The project has been ongoing for some time, with sev-
eral mature components; however, the focus of previous work was on automated
SEC. The work described here is its first serious “foray” in theorem proving.

2 Background and Context

Behavioral Synthesis and an SEC Framework. Behavioral synthesis trans-
formations are classified into three categories: (1) compiler transformations,

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 549–554, 2014.
c© Springer International Publishing Switzerland 2014

550 D. Puri et al.

(2) scheduling (mapping each operation to a clock cycle), and (3) resource allo-
cation and control synthesis (allocating registers to variables, and generating an
FSM to implement the schedule). Loop pipelining is a part of scheduling. Given
the abstraction gap between ESL and RTL, there are no obvious mappings be-
tween internal variables, rendering SEC ineffective. Applying theorem proving
is also challenging: (1) verifying each synthesized design requires prohibitive hu-
man effort; (2) verifying a synthesis tool is infeasible since tool implementations
are proprietary (and closely guarded), in addition to being highly complex.

Previous work [2–4] resulted in the following observations. (1) SEC can
compare RTL with the intermediate representations (IRs) after compiler and
scheduling operations; correspondence between internal variables is preserved,
and identified from resource mappings. (2) While transformation implementa-
tions are proprietary, IRs after successive transformations are available from re-
ports generated during synthesis. (3) IRs are structurally similar across synthesis
tools viz., graphs of operations with explicit control/data flow and schedule. Con-
sequently, a formalization called Clocked Control Data Flow Graph (CCDFG)
was developed for IRs, together with two SEC algorithms, respectively to com-
pare (1) a CCDFG with RTL, and (2) two CCDFGs corresponding to IRs after
each successive transformation. However, the latter is effective only if the differ-
ence between IRs is small. Loop pipelining substantially changes control/data
flow and introduces controls (e.g., to eliminate hazards), making SEC infeasible.

Certifying Loop Pipelining. Our key observation is that it is not necessary to
verify the implementation of any synthesis tool. Instead, we can (1) develop a ref-
erence algorithm A that takes a sequential CCDFG C and generates a pipelined
CCDFG P , (2) use SEC to compare P with the synthesized RTLR, and (3) prove
the correctness of A. The algorithmA can be much simpler than that of any syn-
thesis tool, since it can use the synthesis tool’s report to determine the values of
the key parameters (e.g., pipeline interval, number of iterations pipelined, etc.).
Viability of this flow was justified previously [5] by developing such an algorithm
and using it to compare several synthesized pipelines. However, the algorithm
was not verified (indeed, not formalized), rendering the “certification” flow un-
sound; in fact, we already found errors in that algorithm merely by attempting
formalization. Furthermore, since it was not written with reasoning in mind, it
is a non-trivial target for mechanical proof. Our current work is a deconstruction
of that algorithm, developed from ground up to account for necessary invariants.
Note that we are free to choose any verifiable implementation without losing the
ability to certify designs synthesized by commercial tools.1

3 Pipelinable Loop and Correctness Formalization

Pipelinable Loop. A pipelinable loop [5] is a loop with (1) no nested structures,
(2) one Entry and one Exit block; and (3) no branching between scheduling

1 One caveat is that we must synthesize pipelines using the parameters reported by the
synthesis tool; otherwise we may fail to certify correct designs. We have not found
this to be a problem in practice.

Mechanical Certification of Loop Pipelining 551

Entry: ...

bb1:

%i_1 := phi i32 [%i, bb]

[0, Entry]

%q := icmp eq i32 %i,3

%i := add i32 %i_1,1

%x := add i32 %i,3

br i1 %q, label bb2,

label bb

bb:

%c := add i32 %a,%b

%d := add i32 %c,%x

br label bb1

bb2: ...

(bb_0 (|%c| (add |%a| |%b|)

(bb_1 (|%d| (add |%c| |%x|)

(bb1_0 (|%i_1| ((|%i| bb)
(0 Entry))))

(bb1_1 (|%q| (eq |%i| 3)))
(bb1_2 (|%i| (add |%i_1| 1)))
(bb1_3 (|%x| (add |%i| 3)))
(bb1_4 (br |%q| bb2 bb

S1

S2

Entry

bb2: Exit Loop

bb:

S0

bb1:

S1

(bb_1 (|%d| (add |%c| |%x|)

(bb1_0 (|%i_1| (0)))
(bb1_1 (|%q| (eq |%i| 3)))
(bb1_2 (|%i| (add |%i_1| 1)))
(bb1_3 (|%x| (add|%i| 3))
(bb1_4 (br |%q| bb2 bb))

S0

S1

S2

(bb1_0 (|%i_1| (|%i|)))
(bb1_1 (|%q| (eq |%i| 3)))
(bb1_2 (|%i| (add |%i_1| 1)))
(bb1_3 (|%x| (add|%i| 3))
(bb1_4 (br |%q| bb2 bb))

S0

Entry

bb2

S2

(a) (b) (c)

Fig. 1. (a) Loop in LLVM Assembly (b) Fragment of CCDFG corresponding to loop.
Scheduling step S0 has a φ-statement (c) φ-elimination operation. %i 1 is assigned 0

in S′
0 and %i in S′′

0 .

steps. These restrictions are not for simplifying reasoning, but reflect the kind
of loops that are actually pipelined, e.g., synthesis tools unroll inner loops (by
a compiler transformation) before applying pipelining to the outer loop.

Correctness Statement. Let L be a loop in CCDFG C, and let Lα be the
pipelined implementation generated by our algorithm using pipeline parameters
α. Let V be the set of variables mentioned in L, and U be the set of all variables
in C. Suppose we execute L and Lα from CCDFG states s and s′ respectively,
such that for each variable v ∈ V , the value of v in s is the same as that in
s′, and suppose that the state on termination are f and f ′ respectively. Then
(1) for any v ∈ V , the value of v in f is the same as that in f ′, and (2) for any
v ∈ (U\V), the value of v in f ′ is the same as that in s′.

Remark: Condition (2) is the frame rule which ensures that variables in C that
are not part of the loop are not affected by Lα. The algorithm introduces addi-
tional variables, eg, shadow variables (cf. Section 4). The values of these variables
in f ′ are irrelevant since they are not accessed subsequently.

CCDFG. Formalizing the correctness statement entails defining the semantics
of CCDFG. A CCDFG is a control/data flow graph with a schedule. Control
flow is broken into basic blocks. Instructions in a basic block are grouped into
microsteps that are executed concurrently. A schedule is a grouping of microsteps
which can be completed within one clock cycle. The instruction language we sup-
port is a subset of LLVM [6] which is a front-end for many behavioral synthesis
tools [7, 8]; we support assignment, load, store, bounded arithmetic, bit vectors,
arrays, and pointer manipulations. As is common with ACL2, we use a state-
based operational semantics [9, 10]. Assigning meanings to most instructions is
standard; one exception is the φ-statement “v := phi [σ bb1] [τ bb2]”. If
reached from basic block bb1, it is the same as the assignment statement v :=

552 D. Puri et al.

σ; if reached from bb2, it is the same as v := τ ; the meaning is undefined oth-
erwise. Reasoning about φ-statement is complex since after its execution from
state s, the state reached depends not only on s but previous basic block in the
history. We need to handle it since it is used extensively to implement loop tests.
A key step in loop pipelining is φ-elimination, viz., unrolling the loop once and
replacing the φ-statement with assignment statements (cf. Fig. 1).

4 Algorithm and Proof

Our algorithm includes (1) φ-elimination mentioned above, (2) shadow registers,
and (3) superstep construction. Fig. 2 illustrates steps 2 and 3.

Shadow Registers: Consider the CCDFG in Fig. 1. Here %x is written in step
S0 but read in S2. If the loop is pipelined such that a new iteration is initiated
every cycle, then we must ensure that the write from the S0 step of a subsequent
iteration does not overwrite %x before it is read by the S2 step of the current
iteration. This is achieved by introducing a shadow register %x reg that preserves
a copy of the “old value of %x” and replacing reads of %x to use %x reg.

Superstep Construction: We combine scheduling steps of successive iterations
into “supersteps” which are scheduling steps for the pipeline. Supersteps ac-
count for hazards, viz., if a variable is written in scheduling step S and read
subsequently in S′ then S′ cannot be in a superstep that precedes S. S and S′

can be in a single superstep since we implement data forwarding.

S1

(bb_1 (|%d| (add |%c|
|%x_reg|)))

S0

S2

S0

(bb1_5 (|%x_reg| (|%x|)))

S1

S2

S1

(bb_1 (|%d| (add
|%c|

|%x_reg|)))

S0

(bb1_5 (|%x_reg|
(|%x|)))

S1

S0

(writes |%x|)

S2

(reads |%x|)

Entry

Exit

Pipeline
prologue

Pipeline
full

Pipeline
epilogue

(a) (b) (c)

Fig. 2. (a) CCDFG of Fig. 1 after inserting shadow register %x reg for %x. (b)
Superstep construction. Horizontal arrows represent data forwarding. (c) Pipelined
loop.

Correspondence Relation. Our planned proof involves defining a “correspon-
dence relation” between loops of the sequential and pipelined CCDFGs and
proving that it is preserved across loop iterations. The relation is informally
paraphrased as follows. “Let S be a sequential loop and G be the pipelined loop

Mechanical Certification of Loop Pipelining 553

generated from our algorithm, constituting prologue Gp, full stage Gl, and epi-
logue Ge (cf. Fig 2(c)). Let sl be any state of G poised to execute Gl, and let
k be any number such that the loop of G is not exited in k iterations from sl.
Then executing k iterations of Gl from sl is equivalent to executing k iterations
of S together with a collection of “partially completed” iterations of S.2

Proof Sketch. The invariant, albeit non-trivial, admits a direct proof of the cor-
rectness statement in Section 3. Equivalence of CCDFG states after completing
execution of G and S follows from the fact that the epilogue Ge constitutes the
incomplete scheduling steps of S. To prove that the relation is invariant across
pipeline iterations, note that each new iteration of Gl initiates a new (incom-
plete) iteration of S, and advances incomplete iterations by one scheduling step;
the result follows by rearranging the incomplete iterations, since rearrangement
of scheduling steps produces the same computation in the absence of hazards.
Thus we need to show that our algorithm generates hazard-free pipelines, which
reduces to structural properties of the three components of the algorithm.

5 Current State and Conclusion

As of this writing, we have formalized the correspondence relation, and finished
the proof of key lemmas for φ-elimination and shadow register. We have also
proven an implication chain from the correspondence relation to the correctness
statement. Our current ACL2 script has 156 definitions and 300 lemmas, in-
cluding many lemmas about structural properties of CCDFGs. We admit that
the correspondence relation and the proof sketch above, while rather natural on
hindsight, are outcomes of lessons learned from several false starts.

Microprocessor pipeline verification is a mature research area [11–13]. Our
work, albeit analogous, is different, e.g., we verify an algorithm to generate
pipelines instead of a specific implementation. Also, recent work on translation
validation for software pipelines [1] has parallels to our work. However, their
correctness statement is contingent upon the equivalence of a certain symbolic
simulation of the two designs, and they do not statically identify data hazards.

Use of theorem proving on industrial flows typically involves either compli-
cated reasoning about (optimized) implementations, or abstracting them signifi-
cantly to facilitate proof. In contrast, we apply theorem proving on an algorithm
that generates reference designs for SEC. This permits adjusting the algorithm
(within limits) to suit mechanical reasoning while affording comparison with
actual synthesized artifacts. We have made liberal use of this “luxury”, e.g.,
the three components of our algorithm were conceived from a reflection of our
invariant and proof sketch. Indeed, we are currently refining the definition of su-
perstep construction to facilitate proof of certain structural lemmas. We believe
a similar approach is applicable in other contexts and may provide effective use
of theorem proving without exposing confidential intellectual property.

2 The formalization actually characterizes each incomplete iteration, e.g., if the
pipeline includes d iterations and successive iterations are introduced in consecu-
tive clock cycles, then the i-th iteration has i− 1 incomplete scheduling steps.

554 D. Puri et al.

References

1. Tristan, J.-B., Leroy, X.: A Simple, Verified Validator for Software Pipelining. In:
Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2010), Madrid, Spain, pp. 83–92. ACM (2010)

2. Ray, S., Hao, K., Chen, Y., Xie, F., Yang, J.: Formal Verification for High-
Assurance Behavioral Synthesis. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS,
vol. 5799, pp. 337–351. Springer, Heidelberg (2009)

3. Hao, K., Xie, F., Ray, S., Yang, J.: Optimizing Equivalence Checking for Behavioral
Synthesis. In: Design, Automation and Test in Europe, Dresden, Germany, pp.
1500–1505. IEEE (2010)

4. Yang, Z., Hao, K., Cong, K., Ray, S., Xie, F.: Equivalence Checking for Compiler
Transformations in Behavioral Synthesis. In: Byrd, G., Schenider, K., Chang, N.,
Ozev, S. (eds.) Proceedings of the 31st International Conference on Computer
Design (ICCD 2013), Asheville, NC, USA, pp. 491–494. IEEE (2013)

5. Hao, K., Ray, S., Xie, F.: Equivalence Checking for Behaviorally Synthesized
Pipelines. In: Groeneveld, G., Sciuto, D., Hassoun, S. (eds.) Proceedings of the 49th
International ACM/EDAC/IEEE Design Automation Conference (DAC 2012), San
Francisco, CA, USA, pp. 344–349. ACM (2012)

6. Lattner, C., Adve, V.S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: 2nd ACM/IEEE International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization
(CGO 2004), San Jose, CA, USA, pp. 75–88. IEEE Computer Society (2004)

7. Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., Zhang, Z.: High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on
CAD of Integrated Circuits and Systems 30, 473–491 (2011)

8. Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Anderson, J.H.,
Brown, S., Czajkowski, T.: LegUp: High-level Synthesis for FPGA-based Proces-
sor/Accelerator Systems. In: Wawrzynek, J., Compton, K. (eds.) Proceedings of
the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA 2011), Monterey, CA, USA, pp. 33–36. ACM (2011)

9. Liu, H., Moore, J.S.: Executable JVM Model for Analytical Reasoning: A study.
Science of Computer Programming 57, 253–274 (2005)

10. Boyer, R.S., Moore, J.S.: Mechanized Formal Reasoning about Programs and Com-
puting Machines. In: Veroff, R. (ed.) Automated Reasoning and Its Applications:
Essays in Honor of Larry Wos, pp. 141–176. MIT Press (1996)

11. Burch, J.R., Dill, D.L.: Automatic Verification of Pipelined Microprocessor Con-
trol. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994)

12. Manolios, P.: Correctness of Pipelined Machines. In: Hunt Jr., W.A., Johnson, S.D.
(eds.) FMCAD 2000. LNCS, vol. 1954, pp. 161–178. Springer, Heidelberg (2000)

13. Sawada, J., Hunt Jr., W.A.: Verification of FM9801: An Out-of-Order Micropro-
cessor Model with Speculative Execution, Exceptions, and Program-Modifying Ca-
pability. Formal Methods in Systems Design 20, 187–222 (2002)

Author Index

Anand, Abhishek 27
Aravantinos, Vincent 45, 358
Arthan, Rob 308, 531
Avigad, Jeremy 61

Bartzia, Evmorfia-Iro 77
Blanchette, Jasmin Christian 93, 111
Blazy, Sandrine 128
Bourke, Timothy 144
Braibant, Thomas 374

Chapman, Roderick 17
Chlipala, Adam 275, 374
Chyzak, Frédéric 160
Cock, David 177
Cohen, Cyril 193

Davis, Jared 1, 421
Dockins, Robert 209
Doczkal, Christian 226
Dufourd, Jean-François 242

Emoto, Kento 258

Gross, Jason 275

Hao, Kecheng 549
Hirokawa, Nao 292
Höfner, Peter 144
Hölzl, Johannes 93, 341

Kaufmann, Matt 537
Krebbers, Robbert 543
Kumar, Ramana 308

Lammich, Peter 325
Laporte, Vincent 128
Leroy, Xavier 543
Lewis, Robert Y. 61
Lochbihler, Andreas 93, 341
Loulergue, Frédéric 258
Lüth, Christoph 467

Mahboubi, Assia 160
Mahmoud, Mohamed Yousri 358, 483
Malecha, Gregory 374

Matichuk, Daniel 390
Middeldorp, Aart 292
Moore, J Strother 406, 537
Mörtberg, Anders 193
Murray, Toby 390
Myreen, Magnus O. 308, 421

Naves, Guyslain 437
Nipkow, Tobias 450

Owens, Scott 308

Panny, Lorenz 93
Pichardie, David 128
Popescu, Andrei 93, 111
Puri, Disha 549

Rahli, Vincent 27
Ray, Sandip 549
Ring, Martin 467
Roux, Cody 61

Schanda, Florian 17
Sibut-Pinote, Thomas 160
Siddique, Umair 483
Slobodova, Anna 1
Smolka, Gert 226
Sozeau, Matthieu 499
Spivak, David I. 275
Spiwack, Arnaud 437
Sternagel, Christian 292
Strub, Pierre-Yves 77
Swords, Sol 1

Tabareau, Nicolas 499
Tahar, Sofiène 45, 358, 483
Tassi, Enrico 160
Tesson, Julien 258
Traytel, Dmitriy 93, 111, 450

van Glabbeek, Robert J. 144

Wenzel, Makarius 390, 515
Wiedijk, Freek 543

Xie, Fei 549

	Foreword
	Preface
	Organization
	Abstracts of Invited Talks
	Microcode Verification – Another Pieceof the Microprocessor Verification Puzzle
	Are We There Yet? 20 Years of IndustrialTheorem Proving with SPARK
	Retrofitting Rigour
	Table of Contents
	Invited Papers
	Microcode Verification – Another Pieceof the Microprocessor Verification Puzzle
	1 Introduction
	2 Microcode Modeling
	3 Microcode Verification
	3.1 Def-uc-block
	3.2 Def-uc-loop

	4 Hardware Connection
	5 Related Work
	6 Conclusion and Future Work
	References

	Are We There Yet? 20 Years of IndustrialTheorem Proving with SPARK
	1 Introduction
	2 Projects and Technologies
	2.1 Early Days - 1987ish
	2.2 SHOLIS Project
	2.3 C130J Project
	2.4 Improving the VCG and Simplifier
	2.5 Tokeneer Project
	2.6 Speeding Up and Going FLOSS
	2.7 User-Defined Rules
	2.8 iFACTS Project - Scaling Up
	2.9 Reaching Out - SMT and Counterexamples
	2.10 SPARKSkein Project - Fast, Formal, Nonlinear
	2.11 CacheSimp - Speeding Up Even More
	2.12 Reaching Out - Interactive Provers
	2.13 Muen Project

	3 Future Trends
	3.1 Technologies and Languages - SPARK 2014
	3.2 Assurance and Acceptance for Critical Systems

	References

	Regular Papers
	Towards a Formally Verified Proof Assistant
	1 Introduction
	2 Uniform Term Model and Computation System
	3 Computational Approximation and Equivalence
	4 PER Semantics
	5 An Inductive-Recursive Approach
	6 An Inductive Approach Based on Allen’s Semantics
	6.1 Metatheory
	6.2 Type Definitions
	6.3 Universes and Nuprl’s Type System
	6.4 Sequents and Rules

	7 Related Work
	8 Future Work and Acknowledgments
	References

	Implicational Rewriting Tactics in HOL
	1 Introduction
	2 Implicational Rewriting
	3 Implementation
	4 Refinements
	4.1 Theorems Introducing Variables
	4.2 Preprocessing and Postprocessing
	4.3 Taking the Context into Account

	5 Other Interaction-Intensive Situations
	5.1 Contextual Existential Instantiation
	5.2 Cases Rewrite
	5.3 Target Rewrite

	6 Related Work
	7 Conclusion
	References

	A Heuristic Prover for Real Inequalities
	1 Introduction
	2 The Framework
	2.1 Terms and Canonical Forms
	2.2 The Blackboard

	3 Fourier-Motzkin
	3.1 The Fourier-Motzkin Additive Module
	3.2 The Fourier-Motzkin Multiplicative Module

	4 Geometric Methods
	4.1 The Geometric Additive Module
	4.2 The Geometric Multiplicative Module

	5 Arbitrary Function Symbols
	6 Examples
	7 Conclusions and Future Work
	References

	A Formal Library for Elliptic Curvesin the Coq Proof Assistant
	1 Introduction
	2 Formalizing Elliptic Curves
	3 The Picard Group of Divisors
	3.1 The Field of Rational Functions K(E)
	3.2 Order and Evaluation of Rational Functions
	3.3 Principal Divisors
	3.4 Divisor of a Line
	3.5 The Picard Group

	4 Linking Pic(E) to E(K)
	5 Related Work
	6 Future Work
	References

	Truly Modular (Co)datatypes for Isabelle/HOL
	1 Introduction
	2 Low-Level Constructions
	3 Types with Free Constructors
	4 (Co)datatypes
	5 Recursive Functions
	6 Corecursive Functions
	7 Coinduction Proof Method
	8 Example: Stream Processors
	9 Case Study: Porting the Coinductive Library
	10 Conclusion
	References

	Cardinals in Isabelle/HOL
	1 Introduction
	2 Higher-Order Logic
	3 Ordinals
	3.1 Infrastructure
	3.2 Embedding and Isomorphism
	3.3 Ordinal Arithmetic

	4 Cardinals
	4.1 Bootstrapping
	4.2 Cardinality of Set and Type Constructors
	4.3 N0 and the Finite Cardinals
	4.4 Cardinal Arithmetic
	4.5 Regular Cardinals

	5 Discussion of the Formalization
	6 Application: Syntax with Bindings
	7 Application: Bounded Functors and the (Co)datatype Package
	8 Conclusion
	References

	Verified Abstract Interpretation Techniques for Disassembling Low-level Self-modifying Code
	1 Introduction
	2 Disassembling by Abstract Interpretation
	3 Formalization
	3.1 Concrete Syntax and Semantics
	3.2 Abstract Interpreter
	3.3 Soundness of the Abstract Interpreter

	4 Case Studies and Analysis Extensions
	4.1 Basic Example
	4.2 A First Extension: Dealing with Flags
	4.3 A Second Extension: Trace Partitioning
	4.4 A Third Extension: Abstract Decoding

	5 Related Work
	6 Conclusion and Perspectives
	References

	Showing Invariance Compositionally for a Process Algebra for Network Protocols
	1 Introduction and Related Work
	2 The Process Algebra AWN
	2.1 Sequential Processes
	2.2 Local Parallel Composition
	2.3 Nodes
	2.4 Partial Networks
	2.5 Complete Networks

	3 Basic Invariance
	3.1 Control Terms
	3.2 Basic Proof Rule and Invariants

	4 Open Invariance
	4.1 The Open Model
	4.2 Open Invariants
	4.3 Lifting Open Invariants
	4.4 Transferring Open Invariants

	5 Concluding Remarks
	References

	A Computer-Algebra-Based Formal Proofof the Irrationality of ζ(3)
	1 Introduction
	2 From Ap´ery’s Recurrence to the Irrationality of ζ(3)
	2.1 Overview
	2.2 Arithmetics, Number Theory
	2.3 Consequences of Ap´ery’s Recurrence

	3 Algorithms on Sequences in Computer Algebra
	3.1 Recurrences as a Data Structure for Sequences
	3.2 Ap´ery’s Sequences are ∂-finite Constructions
	3.3 Provisos and Sound Creative Telescoping

	4 Formal Proof of the Common Recurrence
	4.1 Generated Operators, Hand-Written Provisos, and Formal Proofs
	4.2 Definitions of Conditional Recurrence Predicates
	4.3 Formal Proofs of a Conditional Recurrence
	4.4 Composing Closures and Reducing the Order of B

	5 Conclusion
	5.1 Formally Proving the Consequences of Ap´ery’s Recurrence
	5.2 Asymptotic Behavior of lcm(1, . . . ,n)
	5.3 Formal Proofs on Objects of Size Typical of Computer Algebra
	5.4 Theoretical and Practical Limitations of Data Structures
	5.5 Building on Top of State-of-the-art Libraries

	References

	From Operational Models to Information Theory; Side Channels in pGCL with Isabelle
	1 Introduction
	1.1 Side Channels and Guessing Attacks
	1.2 What the Proof Shows
	1.3 An Overview of pGCL

	2 The Proof
	2.1 Modelling the Guessing Attack
	2.2 Annotating the Attack Loop
	2.3 Annotating the Initialisation
	2.4 The Top-Level Theorem

	3 Using the Result
	4 Related Work
	References

	A Coq Formalizationof Finitely Presented Modules
	1 Introduction
	2 Finitely Presented Modules
	2.1 Morphisms
	2.2 Coherent and Strongly Discrete Rings
	2.3 Finitely Presented Modules Over Coherent Strongly Discrete Rings

	3 Monomorphisms, Epimorphisms and Operations on Morphisms
	3.1 Testing if Finitely Presented Modules Are Zero
	3.2 Defining the Kernel of a Morphism
	3.3 Defining the Cokernel of a Morphism
	3.4 Defining Homology

	4 Abelian Categories
	5 Smith Normal Form
	6 Conclusions and Future Work
	References

	Formalized, Effective Domain Theory in Coq
	1 Introduction and Related Work
	2 Basic Definitions
	3 Profinite Domains and Plotkin Orders
	4 Constructions on Plotkin Orders
	5 Lifting and Adjunction
	6 Powerdomains
	7 Solving Recursive Domain Equations
	8 Implementation
	9 Conclusion and Future Work
	References

	Completeness and Decidability Resultsfor CTL in Coq
	1 Introduction
	2 CTL in Coq
	3 A History-Based Tableau System for CTL
	3.1 Decidability of Tableau Derivability
	3.2 Finite Sets in Coq

	4 Demos
	4.1 Demos to Finite Models
	4.2 Formalizing the Model Construction

	5 Tableaux to Demos
	6 Tableau Refutations to Hilbert Refutations
	7 Conclusion
	References

	Hypermap Specification and Certified LinkedImplementation Using Orbits
	1 Introduction
	2 Orbits for Functions in Finite Domains
	3 Combinatorial Hypermaps
	4 Hypermap Coq Formalization
	5 General Memory Model
	6 Hypermap Linked Implementation
	7 Equivalence Hypermap Specification / Implementation
	8 Related Work and Discussion
	9 Conclusion
	References

	A Verified Generate-Test-Aggregate Coq Libraryfor Parallel Programs Extraction
	1 Introduction
	2 GTA: Generate, Test and Aggregate
	3 Verified GTA Library
	3.1 User Interface: Writing Your Naive Code
	3.2 The Core: Proof of the GTA Fusion Theorems
	3.3 Automatic Fusion Mechanism

	4 Extraction of Certified Efficient Parallel Code
	5 Experiment Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Experience Implementinga Performant Category-Theory Library in Coq
	1 Introduction
	2 Issues in Defining the Type of Categories
	2.1 Dependently Typed Morphisms
	2.2 Complications from Categories of Categories
	2.3 Arguments vs. Fields
	2.4 Equality
	2.5 Records vs. Nested Σ Types

	3 Internalizing Duality Arguments in Type Theory
	3.1 Duality Design Patterns
	3.2 Moving Forward: Computation Rules for Pattern Matching

	4 Other Design Choices
	4.1 Identities vs. Equalities; Associators
	4.2 Opacity; Linear Dependence of Speed on Term Size
	4.3 Abstraction Barriers

	5 Comparison of Category-Theory Libraries
	References

	A New and Formalized Proofof Abstract Completion
	1 Introduction
	2 Preliminaries
	3 Renaming Variables
	4 Peak Decreasingness
	5 Critical Pair Lemma
	6 Abstract Completion
	7 Related Work
	8 Conclusion
	References

	HOL with Definitions: Semantics, Soundness,and a Verified Implementation
	1 Introduction
	2 Approach
	3 Set Theory
	3.1 Derived Concepts
	3.2 Consistency

	4 Stateless HOL
	4.1 Inference System
	4.2 Semantics

	5 From Stateful Back to Stateless
	6 Verifying the Kernel in CakeML
	7 Related Work
	8 Conclusion
	References

	Verified Efficient Implementation of Gabow’sStrongly Connected Component Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Path-Based Strongly Connected Component Algorithms
	2.2 Refinement Based Program Verification in Isabelle/HOL

	3 Abstract Algorithm
	3.1 Invariants
	3.2 Computing the SCCs
	3.3 Emptiness Check for GBA

	4 Implementation Using Gabow’s Data Structure
	4.1 Refinement of SCC Computation and GBA Emptiness Check

	5 Refinement to Efficient Standard ML Code
	6 Benchmarks
	7 Conclusion
	References

	Recursive Functions on Lazy Listsvia Domains and Topologies
	1 Introduction
	2 The Producer View: Least Fixpoints
	2.1 Background on Orders and Fixpoints
	2.2 Definition
	2.3 Preparations for Proofs by Induction
	2.4 Proving the Properties

	3 The Consumer View: Continuous Extensions
	3.1 Topology in Isabelle/HOL
	3.2 Topology on a Chain-Complete Partial Order
	3.3 Constructing lfilter
	3.4 Proving with Topology

	4 Comparison
	5 Related Work
	6 Beyondlfilter and Lazy Lists
	References

	Formal Verification of Optical QuantumFlip Gate
	1 Introduction
	2 Preliminaries
	2.1 Quantum Systems
	2.2 Quantum Operators
	2.3 Quantum State Space Formalization

	3 Quantum Operator Exponentiation
	4 Coherent Light Formalization
	4.1 Single Mode

	5 Quantum Flip Gate Verification
	6 Conclusion
	References

	Compositional Computational Reflection
	1 Introduction
	2 Simple Entailment: A Computational Reflection Primer
	3 Composing Procedures
	3.1 Syntax
	3.2 Binders and Unification Variables
	3.3 Compositional Semantic Reasoning
	3.4 Generic Extension with Reified Lemmas

	4 Evaluation and Discussion
	4.1 The Verification Procedure
	4.2 Reflective Performance
	4.3 Limitations and Future Work

	5 Related Work
	6 Conclusions
	References

	An Isabelle Proof Method Language
	1 Introduction
	2 Some Isabelle Concepts
	3 Eisbach
	3.1 Isar Proof Methods
	3.2 Combinators and Backtracking
	3.3 Abstraction
	3.4 Custom Combinators
	3.5 Matching
	3.6 Example

	4 Design and Implementation
	4.1 Static Closure of Concrete Syntax
	4.2 Subgoal Focusing

	5 Application and Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Proof Pearl: Proving a SimpleVon Neumann Machine Turing Complete
	1 Prelude
	2 Source Files
	3 Related Work
	4 Turing Machines
	5 M1
	6 The Correspondence Conventions
	7 Theorems Proved
	8 Refinement
	9 The M1 Program Ψ
	10 Verifying Compiler
	11 Finishing the Proof
	12 Efficiency Considerations
	13 Project History
	14 Conclusion
	References

	The Reflective Milawa Theorem Prover Is Sound
	1 Introduction
	2 Milawa in a Nutshell
	3 Method
	4 Milawa’s Logic
	4.1 Syntax of Terms and Formulas
	4.2 Context
	4.3 Semantics
	4.4 Inference Rules
	4.5 Soundness and Consistency
	4.6 Soundness Preserved by Function Definitions

	5 Correctness of Milawa’s Implementation
	5.1 From ASCII Characters to a Shallow Embedding in HOL4
	5.2 Milawa’s Proof Checkers and Reflection
	5.3 Milawa’s Invariant
	5.4 Theorem: Milawa Is Faithful to Its Logic

	6 Top-level Soundness Theorem
	7 Quirks, Bugs and Other Points of Interest
	8 Summary and Related Work
	References

	Balancing Lists: A Proof Pearl
	1 Introduction
	2 A Balancing Algorithm
	3 Removing Partial Functions
	3.1 Length Invariants
	3.2 Alternation
	3.3 Padding

	4 Turning to Coq
	4.1 Full Trees
	4.2 Structural Initialisation

	5 Conclusion
	References

	Unified Decision Procedures for Regular Expression Equivalence
	1 Introduction
	2 Preliminaries
	3 Regular Expression Equivalence Framework
	4 Derivatives
	4.1 Brzozowski’s Derivatives
	4.2 Partial Derivatives

	5 Marked Regular Expressions
	5.1 Mark After Atom
	5.2 Mark Before Atom
	5.3 Comparison

	6 Empirical Comparison
	7 Extensions
	8 Conclusion
	References

	Collaborative Interactive TheoremProving with Clide
	1 Introduction
	2 The User Experience
	2.1 Use Cases

	3 Implementation
	3.1 The Basics of Operational Transformation
	3.2 Formalisation in Isabelle/HOL
	3.3 Implementing Operational Transformation
	3.4 Further Extensions

	4 System Architecture
	4.1 Universal Collaboration
	4.2 The Clide Infrastructure
	4.3 The clide-core API
	4.4 Assistants and Integration with the PIDE Framework

	5 Conclusions
	5.1 Related Work
	5.2 Future Work

	References

	On the Formalization of Z-Transform in HOL
	1 Introduction
	2 Preliminaries
	3 Z-Transform Formalization
	4 Z-Transform Properties
	4.1 Linearity of Z-Transform
	4.2 Shifting Properties
	4.3 Scaling in Z-Domain
	4.4 Complex Differentiation
	4.5 Difference Equation

	5 Application: Formal Analysis of Infinite Impulse Response Filter
	6 Conclusion and Future Directions
	References

	Universe Polymorphism in Coq
	1 Introduction
	2 Predicative CIC with Constraint Checking
	3 Predicative CIC with Universe Polymorphic Definitions
	4 Elaboration for Universe Polymorphism
	4.1 Elaboration
	4.2 Unification
	4.3 Abstraction and Simplification of Constraints
	4.4 Inductive Types

	5 Implementation and Benchmarks
	6 Related and Future Work
	References

	Asynchronous User Interactionand Tool Integration in Isabelle/PIDE
	1 Introduction
	2 PIDE Architecture
	3 Document Content
	3.1 Prover Command Transactions
	3.2 Document Nodes
	3.3 Document Edits

	4 Execution Management
	5 Asynchronous Print Functions
	6 Conclusion and Related Work
	References

	Rough Diamonds
	HOL Constant Definition Done Right
	1 Introduction
	2 The Problem
	3 Proposed Alternative
	4 Conclusion
	References

	Rough Diamond: An Extensionof Equivalence-Based Rewriting
	1 Introduction
	2 Previous Work
	3 Patterned Congruence Rules
	4 Algorithm Correctness and Patterned Equivalence Relations
	5 Reflections
	References

	Formal C Semantics:CompCert and the C Standard
	1 Introduction
	2 Pointers in CompCert
	3 Bytes in CompCert
	4 Conclusion and Future Work
	References

	Mechanical Certification of Loop PipeliningTransformations: A Preview
	1 Introduction
	2 Background and Context
	3 Pipelinable Loop and Correctness Formalization
	4 Algorithm and Proof
	5 Current State and Conclusion
	References

	Author Index

