

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

1

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_1

Prediction of the Performance of Web Based Systems

Dariusz Caban and Tomasz Walkowiak

Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-320 Wrocław, Poland
{dariusz.caban,tomasz.walkowiak}@pwr.edu.pl

Abstract. Complex Web based information systems are organized as a set of
component services, communicating using the client-server paradigm. The per-
formance prediction of such systems is complicated by the fact that the service
components are strongly inter-dependent. To overcome this issue, it is proposed
to use simulation techniques. Extensions to the available network simulation
tools are proposed to support this. The authors present the results of multiple
experiments with web-based systems, which were conducted to develop a mod-
el of client-server interactions adequately describing the relationship between
the server response time and resource utilization. This model was implemented
in the simulation tools and its accuracy verified against a testbed system confi-
guration.

Keywords: complex information systems, Web based systems, performance as-
sessment, network simulation.

1 Introduction

Accurate prediction of the performance of a web based system, by means of simula-
tion, is in general quite unlikely: there are too many factors that can affect it. Moreo-
ver, a lot of these factors are unpredictable, being specific to some unique software
feature. This can be overcome in case of predictions made when the system is already
production deployed. In this situation, a lot of system information can be collected on
the running system. This information can be used to fine tune the simulation models.

Of course, normally this is not useful – the performance can be directly measured
in the running system, with no need to recourse to simulation [8]. Sometimes, it is
necessary to change the deployment of a running system, either to overcome changes
in the demand for service or to overcome some dependability or security issues [3].
Redeployment of service components onto the available hosts changes the workload
of the various servers. In consequence some of them are over-utilized and cannot
handle all the incoming requests, or handle them with an unacceptable response delay.
It is very difficult to predict these side-effects. One of the feasible approaches is to
use simulation techniques: to study what are the possible effects of such a change.

Available network simulators are usually capable of analyzing the impact of recon-
figuration on the accessability of the services, the settings of the network devices and
on security [5,6]. The simulators can predict transmission delays and traffic conges-
tions – that is natural, since it is their primary field of application. They have a very

5

2 D. Caban and T. Walkowiak

limited capability to simulate tasks processing by the host computers. It is proposed to
overcome this limitation by implementing an empirically validated model of service
responses that takes into account the computing resources needed to process requests,
models that predict processing delays dependent on the number of concurrently ser-
viced requests [13,14].

The main part of this presentation is dedicated to determining these models and
demonstrating their accuracy. We also present some insight into the metrics that are
used to characterize the performance of web based systems.

2 Web Based Systems

We consider a class of information systems that is based on web interactions, both at
the system – human user (client) interface and between the various distributed system
components. This is fully compliant with the service oriented architecture, though it
does not imply the use of protocols associated with SOA systems. On the other hand,
the applicability of the model is certainly not limited to the service oriented systems.
In fact, it encompasses practically all the system architectures utilizing the request-
response interactions.

2.1 Simple Web Server Architecture

The simplest example of a web based system consists of a single service, handling a
stream of requests coming from multiple clients via Internet. There are three impor-
tant aspects to modeling this class of systems: infrastructure hosting the service, han-
dling of service requests, client expectations and behavior. All of these have signifi-
cant impact on the observed system performance.

Host and Network Resources
The service is deployed on a computing host which is connected to the client machine
via a network. This deployment determines specific resources available to the service,
both in terms of communication throughput and computing power. This deployment
has a very significant impact on the service performance, especially the response
time.

There is just one communication parameter of significance – the maximum
throughput derived from the link bandwidths and the protocols in use. In most prac-
tical situations, that we have analyzed, this factor has a very limited impact on the
web based systems. In modern installations, the computing resources usually deter-
mine the system performance.

The computing resources that need to be considered include the processor speed,
available memory, storage interfacing capabilities. Moving a service from one loca-
tion to another, the available resources change. In consequence, the service perfor-
mance is affected. This is usually determined by benchmarking the service. To some
extent, it can be observed via monitoring of the production system.

 Prediction of the Performance of Web Based Systems 3

It should be noted that the service performance is affected not only when it is re-
deployed on a different host. Similar effect is observed, when multiple applications
are deployed on the same host. In this case the computing resources are shared by the
services, affecting their performance. When trying to predict the web system characte-
ristics, this factor has also to be accounted for.

Client – Server Interactions
The basis of operation of all the web oriented systems is the interaction between a
client and a server. This is in the form of a sequence of requests and responses: the
client sends a request for some data to the server and, after some delay, the server
responds with the required data. The time that elapses from the moment the client
sends the request until it receives the response is called the response time.

The response time depends on a number of different factors. As already discussed,
it depends on the service deployment and sharing of resources. Just as significantly,
specific requests may require different amount of processing. A typical workload is a
mixture of different requests. A common approach to load (traffic) generation tech-
niques is based on determining the proportion of the various tasks in a typical server
workload, and then mixing the requests in the same proportion [7, 12]. Thus, even in
the simple situation, where the response is generated locally by the server, it has an
unpredictable, random factor.

Actually, the server response time is strongly related to the client behaviour, as de-
termined by the request-response interaction. Such factors as connection persistence,
session tracking, client concurrency or client patience/think times have a documented
impact on the reaction. For example, it has been shown in [10] that if user will not
receive answer for the service in less than 10 seconds he or she will probably resign
from active interaction with the service and will be distracted by other ones.

Let’s consider the model used in these simple interactions in more detail. The sim-
plest approach is adopted by the software used for server/service benchmarking, i.e. to
determine the performance of computers used to run some web application. In this
case, it is a common practice to bombard the server with a stream of requests, reflect-
ing the statistics of the software usage (the proportion of the different types of re-
quests, periods of burst activity, think times, etc.). Sophisticated examples of these
models of client-server interaction are documented in the industry standard bench-
marks, such as the retired SPECweb2009 [12].

The important factor in this approach is the lack of any feedback between the rate
of requests and the server response times. In other words, the client does not wait for
the server response, but proceeds to send further requests even if the response is de-
layed. Fig. 1 shows the results of experiments performed on a typical server applica-
tion exposed to this type of traffic. Fig. 1 a) presents the changes in the response time,
depending on the rate of requests generation. It should be noted that the system is
characterized by three distinct ranges in the requests rate.

Up to approximately 35 requests per second, the response time very slowly in-
creases with the rate of requests. This is the underutilization range, where the server
processing is not fully utilized: the processor is mainly idle and handles requests im-
mediately on arrival. There is a gradual increase in the response time due to the
increased probability of requests handling overlapping.

4 D. Caban and T. Walkowiak

Fig. 1. The performance of an off-the-shelf web service under varying rates of incoming client
requests: a) the upper graph shows the response time, b) the lower – the erroneous responses

When the requests rate is higher the processor is fully utilized, the requests are
queued and processed concurrently. The increase in the response time is caused by the
concurrently handled requests. This range is very narrow, since any significant in-
crease in average requests rate causes the service to be overloaded. Further increase in
the request rate does not increase the number of correctly handled ones. Thus, the
response time remains almost constant. On the other hand, the percentage of requests
handled incorrectly increases proportionately to the request rate. This is illustrated in
Fig. 1 b).

Client Models Reflecting Human Reactions
The real behaviour of clients differs significantly from the model discussed so far. In
fact, the client sends a burst of related requests to the server, then it waits for the serv-
er to respond and, after some “think” time for disseminating the response, sends a
new request. Fig. 2 illustrates the timing diagram of such a client.

0

5

10

15

20

25

30

0 50 100 150 200

Re
sp

on
se

 ti
m

e
[s

]

rate of requests generation [1/s]

0

20

40

60

80

100

0 50 100 150 200

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s
ha

nd
le

d
in

co
rr

ec
tl

y
[%

]

rate of requests generation [1/s]

 Prediction of the Performance of Web Based Systems 5

 ←⎯ Response time ⎯→ ←⎯ Response time ⎯→

Sending
request

Waiting for
response

Receiving
response

Think
time

Sending
request

Waiting for
response

Receiving
response

…

Fig. 2. Client traffic model reflecting request-response sequence and think time

This type of model is implemented in a number of traffic generators available both
commercially and in open-source (Apache JQuery, Funkload). The workload is cha-
racterized by the number of concurrent clients, sending requests to the server. The
actual requests rate depends on the response time and the think time. The model im-
plies that the request rate decreases when the service responds with longer delays (i.e.
from the client perspective, the time it waits for the response increases).

This model assumes that the proportion of tasks in a workload does not change
significantly due to response delays and error-responding. It does not assume any
information on the semantics of client-server interactions. In effect, this produces a
mix of tasks, in no way connected to the aims of the clients. The description of client
behaviour can be improved if we have a semantic model of client impatience, i.e. how
the client reacts to waiting for a server response. Currently, this is modeled very sim-
plistically by setting a threshold delay, after which the client stops waiting for the
server response and starts another request. A more sophisticated approach would have
to identify the changing client perspective caused by the problems in accessing a ser-
vice, e.g. a client may reduce the number of queries on products, before deciding to
make a business commitment, or on the other hand, he may abandon the commitment.
These decisions could significantly influence the workload proportions.

Fig. 3. Average service response when interacting with various number of concurrent clients

Fig. 3 shows how the response time depends on the number of concurrent clients.
In this case we have set the “think” time to 0, i.e. a new request is generated by the
client directly on receiving the response to a previous one. Quite interestingly, the

0
5

10
15
20
25
30
35
40

0 100 200 300 400 500 600 700A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

[s
]

Number of concurrent users

6 D. Caban and T. Walkowiak

server operates practically only in the normal utilization range, until it reaches the
maximum number of clients that it can handle correctly (roughly 300 clients in
Fig. 3).

2.2 Distributed Web Services Architecture

So far, the considered model consisted just of one service, handling all the end-user
requests. In a more complex system, the clients interact multiple front-end business
services. Furthermore, these services request assistance from other services when
computing responses. These interactions determine a network of complementary ser-
vices (called service components), which communicate with each other using the
request-response paradigm.

Service Choreography
The system analysis has to consider the various tasks initiated by the client. In a typi-
cal web application, these tasks can exercise the server resources in a wildly varied
manner: some will require serving of static web pages, some will require server-side
computation, yet others will initiate database transactions or access to remote web
applications.

It is assumed that the analyzed web services are described by the choreography de-
scription, using one of the formal languages developed for this purpose (we consider
WS-CDL and BPEL [11,14] descriptions). This description determines all the se-
quences of requests and responses performed by the various service components,
described in the choreography. Fig. 4 presents a very simple example of service cho-
reography. It should be noted that the choreography determines the sequences of re-
quests and responds at all the interfaces between the service components.

Fig. 4. An example of a simple service choreography

 Prediction of the Performance of Web Based Systems 7

It also places some constraints on the client model. In 2.1, we have assumed that
the client sends a random mixture of requests to the web system. Fig. 4 shows that in
this specific example the “ShowMainPage” request is followed by the “PerformList”
one. Thus, it is not just a random sequence of them. In this approach, the random
mixing is performed on the alternative system usage scenarios, instead.

The model of request-response sequences, formulated for client-service communi-
cation, is also applicable to interactions between the web service components. In this
case one component becomes the client of another. The same timing phenomena can
be observed. The client component usually has a built-in response time-out period
which corresponds to the end-user impatience time. The significant difference is that,
in this case, the choreography description defines the reaction of the client compo-
nent. Thus, the client impatience model is fully determined, derived from this descrip-
tion.

System Deployment
The service components are deployed on a network of computers. This underlying
communication and computing hardware is abstracted as a collection of in-
terconnected computing hosts. System configuration is determined by the deployment
of service components onto the hosts. This corresponds to the subsets of services
located at each one. The deployment clearly affects the system performance, as it
changes the communication and computational requirements imposed on the infra-
structure.

The problem of predicting the impact of configuration changes is not trivial. Di-
rectly, response times depend on the concurrent load of each host. The greater the
number of concurrently handled requests at a host, the slower is the response
processing (due to resource sharing). If all resources of a host are already dedicated, a
new request has to be queued further increasing the response times. These response
delays from one service component propagate to others, affecting both their response
times and the workload (numbers of handled requests).

In fact, this is the main application field of the system performance simulation
techniques.

3 System Performance Characteristics

There are various approaches to characterizing the quality of the web based systems.
Basically, the performance can be assessed in three aspects: their capability to provide
responses in the desired timespan, the capability to respond correctly (with possibly
few errors), and the ability to handle large, cumulated workloads. We consider the
measures directly relating to these service properties.

3.1 Average Service Response Time

The response time is defined as the time that elapses from the moment a client starts
sending a request until the response is complete transmitted back to it. This was

8 D. Caban and T. Walkowiak

already discussed in 2.1. The service as a whole is characterized by the response times
observed from the user perspective only, i.e. responses to requests sent by the end-
user clients.

The average response time is computed over a mixture of user requests, characte-
ristic for the system workload. If the system responds with an error code, the response
time is excluded from computing the average. These are not taken into account to
prevent false observation of responses speed-up, when the system is overloaded and
responding with multiple errors.

The average response time strongly depends on the rate of service requests, as illu-
strated in Fig. 1 and 3. In case of web services consisting of multiple distributed com-
ponents, this interdependence is similar in character though different in the observed
ranges and scales. To obtain a single value characteristic, a typical request rate has to
be used for assessment.

3.2 Service Availability

Availability is normally defined as the probability that a system is operational at a
specific time instant [1]. This implies that the system may break down and become
inoperational, which is certainly applicable to the web based systems. In these consid-
erations, we assume that the system is operational when we compute its performance
characteristics. For this reason, the term “service availability” may be misleading in
this case. Instead, we consider availability to be the probability that a request is cor-
rectly responded to. It is assessed as the number of properly handled requests nok
expressed as a percentage of all the requests n over a sufficiently long time of
operation t :

)(
)(lim tn

tn

t

okA
∞→

= (1)

This yields a common understanding of availability used in the web services commu-
nity.

The service availability changes with the rate of requests sent to the system. Until
the system becomes overloaded the number of error responses should be negligible. It
implies that the service availability needs to be assessed for a typical workload, simi-
larly to the response time.

3.3 Maximum System Throughput

The maximum system throughput is defined as the maximum value of incoming re-
quests rate that can properly be handled. This can be determined by:

─ assuming specific threshold values of the response time and service availability;
─ assessing the two request rates corresponding to these thresholds;
─ finding the minimum of the two request rates.

 Prediction of the Performance of Web Based Systems 9

Such approach is not very convenient, since it always requires a clear understand-
ing of the acceptable threshold values. In practical terms, this is always viewed with
some uncertainty. A simpler technique, though sacrificing some precision, is to fix the
maximum throughput at the value of requests rate midpoint in the range between un-
der- and over-utilization. This value is also very near the point, where service availa-
bility begins to decrease rapidly (Fig. 1b).

4 Performance Prediction Using Network Simulation
Techniques

There is a large number of network simulators available on the market, both open-
source (ns3, Omnet+, SSFNet) and commercial. Most of them are based on the pack-
age transport model – simulation of transport algorithms and package queues [5,6].
What they lack is a comprehensive understanding of the computational demands
placed on the service hosts, and how it impacts the system performance. For this
reason, they cannot be directly used to predict the impact of service components dep-
loyment on system performance. The simulators need to be extended, by writing spe-
cial purpose queuing models for predicting tasks processing time, based on resource
consumption [2,13].

Response time prediction in simulators is based on the proper models of the end-
user clients, service components, processing hosts (servers), network resources. The
client models generate the traffic, which is transmitted by the network models to the
various service components. The components react to the requests by doing some
processing locally, and by querying other components for the necessary data (this is
determined by the system choreography, which parameterizes both the client models
and the service component models). The request processing time at the service com-
ponents is not fixed, though. It depends on the number of other requests being han-
dled concurrently and on the loading of other components deployed on the same
hosts.

The simulator needs a number of parameters that have to be set to get realistic re-
sults. These parameters are attributed to the various models, mentioned above. In the
proposed approach we assume that it is possible to determine the values of these pa-
rameters in a running environment. Thus, the technique has limited usefulness, if
there is no such data (before the system is initially deployed).

The models should be fairly simple, describing the clients and service components.
They should accurately predict changes that may occur when the deployment of ser-
vice components is modified. Then, simulating the target configuration with these
parameters should provide reliable predictions of the web service performance after
redeployment.

4.1 Virtual Testbed Environment

A proper model of client-server interactions is the basis for accurate simulation of the
system. For this reason, a number of testbed experiments have been conducted to

10 D. Caban and T. Walkowiak

capture the realistic timing characteristics that can be abstracted into a simple model.
For this purpose, we have set up a testbed, consisting of a network of virtual machines
running the appropriate servers (Apache, IIS, Tomcat, MySQL). The servers run PHP
scripts, which can accurately mimic service components. The application is exposed
to a stream of requests, generated by a client application (a Python script written by
the authors).

The available processor resources are monitored via the virtualization hypervisor to
ensure that the traffic generation programs do not compete for the resources with the
system software (which would lead to unrealistic results).

4.2 Server Response Prediction

Basic Model
The client-server interaction is paramount to the proper simulation of a complex web
service. The analysis of the behaviour of typical servers led to the formulation of a
basic model that is used in simulation.

Fig. 5. Basic model of a web service

The basic model, as presented in Fig. 5, consists of four elements: the retransmission
buffer, the FIFO style waiting queue, the circular buffer and a set of processors.

The retransmission buffer models the process of establishing TCP connection by a
client if a server is not responding. One can observe that connections are established
within a discrete time delays: 0, 3, 9, 21, .. seconds. This is implementation of the
TCP exponential backoff mechanism, introduced by Jacobson 25 years ago [4] and
analyzed in details in many papers, for example in [9].

In the proposed model, the retransmission buffer is working as follows:

1. If the number of processed requests is larger than a given value maxN then the re-

quest is rejected within a few ms (a random value).
2. The client waits for a given time period (tΔ) for the FIFO (next) queue to accept a

request. If it not accepted, then goes to step 3 then it proceeds to step 3.
3. The timeouts parameters are updated:

 Prediction of the Performance of Web Based Systems 11

stt

tt

dd 32

3

+⋅=
Δ⋅=Δ

. (2)

4. The client is paused for dt seconds.

5. If the time elapsed from the begging of request proceeding is longer than a client

timeout (timeoutt) the request is rejected; if not the client repeats the procedure from

step 2.

The initial values of timeouts are as follows: tΔ =0.0125s, dt =0s.

The waiting queue models requests waiting for execution by the server. It works
according to FIFO regime and has only one parameter: its length (FIFON).

Handling of requests is done by executing a given task or tasks, depending on the
requests. It is done in time sharing manner and modelled by the circular buffer. In
reality concurrent execution is achieved by switching the processors between different
tasks. In general it works as follows:

1. If the circular buffer is not full the request is removed from the end of the waiting
queue and moved to the circular buffer and execution of a task defined by a request
starts.

2. Each task from the circular buffer has access to a processor (from the set of availa-
ble one) for a time slice.

3. The task is finished (and removed from the time sharing buffer) when the sum of
time slices is larger than the execution time required to process the given request.

In case when just one task is being executed on a given host, the task execution
time depends on the host performance described by the parameter performance(h) and
the task complexity (parameter tc()):

)(

)(
)(

heperformanc

tasktc
tasket = . (3)

In case more than one task being executed concurrently, the algorithm is more
complicated. Let eτττ ,...,, 21 be the time moments when some tasks are starting or

finishing execution on a host h. Let),(τhnumber denote the number of tasks being

processed (active tasks in circular buffer) at time τ on host h, and ncores the number
of processor cores. Therefore, the time when a task finishes its execution has to fulfil
the following rule:

 () ()tasktc
ncoreshnumber

heperformance

k
kk =−

=
−

2
1 /)(

)(ττ . (4)

Therefore, the overall processing time is equal to:

 1)(ττ −= etasket . (5)

12 D. Caban and T. Wa

The drawback of the abo
ber of events when a large
the fact that every new req
being executed at this mom
[13] that prevents the gene
host) was close enough (the

Implementation of this
quest as a sum of times spe
(3,4)).

Basic Model Validation
To verify correctness of the
tion results with real Apac
shown in Fig. 6.

The results are very acc
behaviour of a software co
racterize: the host performa
the length of a wait queue
set to 1000 for most of the w

Fig. 6. The performance of a
line): a) the response time, b) t

alkowiak

ove approach is the fact that it generates an excessive nu
e number of tasks are handled concurrently. This is due
quest changes the estimated time to finish for each requ
ment. Therefore, we have introduced a heuristic algorit
eration of a new event if the previous one (for the sa
e time difference is smaller than some threshold).
model allows calculating the processing time of each

ent in the first two queues and its execution time (equati

e basic model of a web service we have compared simu
che server behavior. The results for concurrent clients

curate considering that we are approximating the comp
omponent with just a few parameters. The parameters c
ance, the task complexity, the length of time sharing buf
and maximum number of processed requests (seems to
web servers).

real Apache web server (dashed line) and simulated one (s
the availability

um-
e to
uest
thm
ame

re-
ions

ula-
are

plex
cha-
ffer,
o be

solid

 Prediction of the Performance of Web Based Systems 13

These parameters could be easily obtained by a simple tests on a real system (the
host performance, the task complexity) or from configuration files of the Apache
server (MaxClients parameters defines the length of the circular buffer) or are prede-
fined by a type of web server (like the length of a wait queue and maximum number
of processed requests).

Fig. 7. Simplified service model

Basic Model Modification

In case of some types of servers, particularly some databases and Microsoft IIS, the
basic model can be simplified. In these servers, it is not necessary to use the retrans-
mission and circular buffers. The servers can be modelled just by one limited length
FIFO queue. In these servers, all requests above the length of the FIFO queue are
rejected immediately. Due to simplicity of the model results of simulation for IIS web
server are very similar to a real system (in case of response time, it is less than 2%).

Fig. 8. The performance of a real MySQL server (solid line) and simulated one (dashed line): a)
the response time, b) the availability

14 D. Caban and T. Walkowiak

In case of database systems, as it can be noticed on Fig. 8, there is a constant in-
crease in response time when the server is overutilized. We propose to model it by
adding a task which consumes some amount of processor power. The execution time
of that additional task is proportional to the number of processed requests:

 consttimeNrequestet _)(⋅= (6)

The results of simulated and real MySQL server response times are presented in
Fig. 8.

4.3 Interaction with Other Services

The operation of all the web based applications is based on the interaction between
services. Therefore it is important to model how services process requests that require
calls to other service components.

In case of services that follow the basic model (for example Apache, Tomcat), ex-
ternal calls have an influence on the circular buffer. When a task is waiting for an
answer from another service (the request thread is in wait state), the place in the circu-
lar buffer is used but the processor is not. Therefore, the number of active requests
(),(τhnumber) is decreased when a requests starts an external call and increased

when the response is received. Such behavior results in a situation that the whole
circular buffer is used, so new requests are waiting in FIFO queue whereas the service
is not using a processor.

In case of the modified model (without circular buffer) like IIS, the requests wait-
ing for external service response are not using the processor. So, new requests from
the FIFO queue can be processed. When the response from the external service ar-
rives, the task is placed in an additional FIFO queue. Therefore, the model for web
services without circular buffer uses two FIFO queues (Fig. 9). The processor is
processing requests from the two queues alternately.

Fig. 9. Simplified model for services interacting with other components

 Prediction of the Performance of Web Based Systems 15

Fig. 10. Results for two layer web system

4.4 Services Deployed on the Same Host

The deployment of multiple services on the same host leads to time-sharing of proces-
sor time between them. Each of the active service components deployed on a given
hosts gets proportionate access to the processor. To model such situations, we have to
add a time sharing queue presented in 4.2 to all hosts regardless the type of used ser-
vice model.

For the basic model it results in modification of the formula (4) to:

 () ()tasktc
hversnactiveserncoressnumber

heperformance

k
kk =

⋅
−

=
−

2
1)(/)(

)(ττ . (7)

It results in an increase of the time moments eτττ ,...,, 21 since they have to include

changes when the number of active services changes.
In case of the simplified model, the time sharing has to be included in the model in

a similar way as for the basic one, i.e. the time when a task finishes its execution has
to fulfil the following rule:

 () ()tasktc
ncoreshversnactiveser

heperformance

k
kk =−

=
−

2
1 /)(

)(ττ . (8)

0 50 100 150 200 250 300 350 400
0

20

40

60

C
za

s
od

po
w

ie
dz

i [
s]

0 50 100 150 200 250 300 350 400

20
40
60
80

100

D
os

tę
pn

oś
ć

[%
]

Liczba jenoczesnych zapytań

0 50 100 150 200 250 300 350 400
0

20

40
Apache

C
za

s
pr

ze
tw

ar
za

ni
a

0 50 100 150 200 250 300 350 400
0

1

2
MySQL

C
za

s
pr

ze
tw

ar
za

ni
a

symulacja

rzeczywistość

16 D. Caban and T. Walkowiak

To verify the correctness of the proposed modifications in service models we have
performed a set of tests analyzing a simple system with an Apache server and a
MySQL database placed on the same host. Results presented in Fig. 10 show that the
modified models give results that are very close to the real system behavior.

4.5 Models Based on Service Choreography

The key feature during simulation is to calculate the response times to the end users.
The user initiates the communication requesting execution of some tasks on a host.
This may require sending a request to another host or hosts. After executing the task
the host responds to the requesting service, and finally the user receives the response.
Requests and responses of the tasks form a sequence, according to the service choreo-
graphy. Let’s assume that the choreography for some user ci is given in Fig 4. It can
be described in the functional form as:

 ()() ()()4321 ,: ttttu = (9)

i.e. execution of user chorography u consists of execution two tasks t1 and t4, whe-
reas execution of task t1 requires calls to task t2 which calls t3. Fig. 11 presents the
same choreography, with references to the corresponding tasks.

Fig. 11. An example of a service choreography with annotated tasks and hosts deployment

The user request processing time is equal to the time of communication between
hosts on which each task is placed and the time of processing of each task. Therefore,
for the considered choreography (assuming the deployment of tasks to hosts presented
in Fig. 11) the user request processing time is equal to:

() () () () () ()
() () () () () ()

() () ()01
'''

113

431
''

112
''
223

332
'
221

'
110

,,

,,,

,,,)(

hhcomzpthhcom

zpthhcomzpthhcomzpthhcom

zpthhcomzpthhcomzpthhcomuurpt

++

+++++++

+++++=

 (10)

h
0

h
1

h
2

h
3

t
1

t
2 t

3

t
4

 Prediction of the Performance of Web Based Systems 17

where com(hi,hj) is the time of transmitting the requests from host hi to hj, and pt(task)
is the time of processing the task on the given host (i.e. the host that the correspond-
ing service component was deployed to). The processing time consists of the time
spent in server queues and the task execution time. It can be calculated by simulation
using the presented models.

The communication times in the equation (10) correspond to delays introduced by
the network. In almost all modern information systems the local network throughout
is high enough, so there is no relation between the number of tasks being processed in
the system and the network delay. There are exceptions to this rule, especially in me-
dia streaming systems. We propose to model the time of transmitting the requests
from host hi to hj by independent random values:

 ())1.0,(, ⋅= meanmeanTNormalhhdelay ji , (11)

where TNormal() denotes the truncated Gaussian distribution (bounded below 0).

5 Conclusions

Performance of the web based information systems is nowadays of utmost importance
[8]. Business relies heavily on the high availability of services. Thus, there is a clear
need of accurate tools for predicting this performance.

The proposed method of prediction, based on customized network simulation, pro-
vides sufficient accuracy. At the same time it does not require very expensive testbed
installations that are often used for this purpose. Thus, it is a very promising tech-
nique.

The simulation models require a limited number of systems parameters. They make
use of knowledge of the service choreography. The approach is particularly well
suited when it is necessary to change the deployment of service components in an
existing installation. Simulating the expected performance before making the modifi-
cations may provide significant guidelines to the choice of optimal reconfiguration.

The technique has limited application to predicting the performance of a system
during its development. In this case, the model parameters cannot be observed. Guess-
ing the values of these parameters does not provide sufficiently accurate information
to perform meaningful simulation.

Acknowledgement. The presented work was funded by the Polish National Science
Centre under grant no. N N516 475940.

References

1. Barlow, R.E.: Engineering Reliability. ASA-SIAM Series on Statistics and Applied Proba-
bility (1998)

2. Caban, D., Walkowiak, T.: Service availability model to support reconfiguration. In: Za-
mojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Complex Sys-
tems and Dependability. AISC, vol. 170, pp. 87–101. Springer, Heidelberg (2012)

18 D. Caban and T. Walkowiak

3. Caban, D., Walkowiak, T.: Preserving continuity of services exposed to security incidents.
In: Proc. The Sixth International Conference on Emerging Security Information, Systems
and Technologies, SECURWARE 2012, Rome, August 19-24, pp. 72–78 (2012)

4. Jacobson, V.: Congestion avoidance and control. ACM CCR 18(4), 314–329 (1988)
5. Lavenberg, S.S.: A perspective on queueing models of computer performance. Perfor-

mance Evaluation 10(1), 53–76 (1989)
6. Liu, J.: Parallel Real-time Immersive Modeling Environment (PRIME), Scalable Simula-

tion Framework (SSF). User’s manual. Colorado School of Mines Dept. of Mathematical
and Computer Sciences, http://prime.mines.edu/

7. Lutteroth, C., Weber, G.: Modeling a Realistic Workload for Performance Testing. In:
12th International IEEE Enterprise Distributed Object Computing Conference (2008)

8. Miller, L.C.: Application Performance Management for Dummies, Riverbed Special edn.
John Wiley & Sons, Hoboken (2013)

9. Mondal, A., Kuzmanovic, A.: Removing Exponential Backoff from TCP. ACM
SIGCOMM Computer Communication Review 38(5), 19–28 (2008)

10. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1994)
11. Pasley, J.: How BPEL and SOA are changing Web services development. IEEE Internet

Computing Magazine 9, 60–67 (2005)
12. SPECweb2009 Release 1.20 Benchmark Design Document version 1.20. SPEC (2010),

http://www.spec.org/web2009/docs/design/SPECweb2009_Design.html
13. Walkowiak, T.: Information systems performance analysis using task-level simulator. In:

Proc. DepCoS – RELCOMEX 2009, pp. 218–225. IEEE Computer Society Press (2009)
14. Walkowiak, T., Michalska, K.: Functional based reliability analysis of web based informa-

tion systems. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T.
(eds.) Dependable Computer Systems. AISC, vol. 97, pp. 257–269. Springer, Heidelberg
(2011)

	Prediction of the Performance of Web Based Systems
	1 Introduction
	2 Web Based Systems
	2.1 Simple Web Server Architecture
	2.2 Distributed Web Services Architecture

	3 System Performance Characteristics
	3.1 Average Service Response Time
	3.2 Service Availability
	3.3 Maximum System Throughput

	4 Performance Prediction Using Network SimulationTechniques
	4.1 Virtual Testbed Environment
	4.2 Server Response Prediction
	4.3 Interaction with Other Services
	4.4 Services Deployed on the Same Host
	4.5 Models Based on Service Choreography

	5 Conclusions
	References

