
Advances in Intelligent Systems and Computing 307

Dependability Problems
of Complex Information
Systems

Wojciech Zamojski
Jarosław Sugier Editors

Advances in Intelligent Systems and Computing

Volume 307

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

Wojciech Zamojski · Jarosław Sugier
Editors

Dependability Problems
of Complex Information
Systems

ABC

Editors
Wojciech Zamojski
Institute of Computer Engineering, Control

and Robotics
Wrocław University of Technology
Wrocław
Poland

Jarosław Sugier
Institute of Computer Engineering, Control

and Robotics
Wrocław University of Technology
Wrocław
Poland

ISSN 2194-5357 ISSN 2194-5365 (electronic)
ISBN 978-3-319-08963-8 ISBN 978-3-319-08964-5 (eBook)
DOI 10.1007/978-3-319-08964-5

Library of Congress Control Number: 2014943647

Springer Cham Heidelberg New York Dordrecht London

c© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased and honoured to present the monograph on Dependability problems
of complex information systems that includes some original approaches to the selected
problems of complex systems dependability.

Contemporary technical systems are integrated compositions of technical, infor-
mation, organization, software and human (users, administrators and management)
resources. Their complexity stems from the applied technical and organizational struc-
tures (comprising both hardware and software resources), but even more, from the
complexity of the information processes (processing, monitoring, management, etc.)
realized in their operational environment. With system resources being dynamically al-
located to the on-going tasks, the flow of system events comprising incoming and/or
on-going tasks, management decisions, system faults, defensive system reactions, etc.
is modelled as a deterministic or/and probabilistic event stream.

Complexity and multiplicity of processes, their concurrency and their reliance on the
in-system intelligence (human and artificial) significantly impedes the construction of
strict mathematical models and limits the evaluation of adequate system measures. In
many cases, analysis of modern complex systems is confined to quantitative studies (e.g.
Monte Carlo simulations) which prevent development of appropriate methods of system
design and selection of policies for system exploitation. Security and confidentiality of
information processing introduce further complications into the system models and the
evaluation methods.

The three basic concepts characterizing the newest approach to modelling and eval-
uation of dependability properties of contemporary systems are discussed in the mono-
graph:

– modelling of the system and its components,
– tasks (functionalities) performed by the system,
– dependability of the system, which is understood as the correct realization of the

tasks in the system and in its environment.

Systems - Complex Systems - Computer Systems
Components of the considered class of systems include devices (hardware), procedures
for task realization (software), procedures for the system management

VI Preface

(operating/management system), and people (users, administrators, operators, service
technicians). The system performs tasks set by the users. Each task is defined as the
performance of some work or service on time under the prevailing operating condi-
tions. The necessary system resources are allocated to tasks. The process of system
resources allocation is dynamic and depends on various system events, such as start of
a new task, end of a running one, device failure, program error, decision of the man-
agement system, human fault, etc. The system operates in an environment that also is a
source of events, such as hostile attacks on the system.

In these terms we define the model of a complex system that can be used to describe
a number of modern entities: computer systems, logistics of a discrete transport system,
or even such complex systems as a network of web services.

Tasks - Functionalities
A complex system described above, or more precisely its mathematical model, is built
to meet specific user-generated tasks. User requests determine the tasks to be realized.
In turn, these tasks are realized by invoking a sequence of functionalities necessary to
achieve the desired effect. To perform these functions, the system allocates appropriate
resources.

Involvement of system resources and system functionalities in the task is time-
varying and depends on various system events.

Reliability - Performability - Dependability
The system is reliable if the user tasks are carried out according to the requirements.
Complexity of the system structures enables the correct execution of tasks with differ-
ent efficiencies. Damages to equipment (hardware) and faults (due to software or human
errors) interfere with the correct execution of tasks. In many cases, the system incorpo-
rates some measures (hardware redundancy, functional redundancy, time redundancy,
repair teams or reconfiguration capabilities) to improve system efficient operation and
to minimize its losses caused by faults.

Reliability theory focuses on the elements represented as operational/inoperational
blocks. In this approach, system is described by a series-parallel structure. Some years
ago, an extension to this reliability model was introduced by including consideration
of the functional and performance properties of the system components. In this way
the class of functional-reliability models was defined. Performability measures reflect
both the functional and performance properties (perform-), and reliability (ability) of
the system. In recent years, the term "dependability" has become popular, becoming
a better known replacement of performability.

Dependability tries to deal with all the mentioned above challenges by employing a
multi-disciplinary approach to theory, technology and maintenance of systems working
in a real (and very often unfriendly) environment. Dependability studies investigate
the system as a multifaceted and sophisticated amalgamation of technical, information
and also human resources concentrating on efficient realization of services in such an
environment.

The monograph consists of 11 chapters, representing different approaches to the
modeling, analysis and evaluation of the dependability properties of the complex

Preface VII

information systems. We hope that the collected works will be valuable to scientists,
researchers, practitioners and students who work on problems of dependability. We
would like to express our sincere gratitude to the authors of the selected works for their
excellent research approach and results.

We are very grateful to the Wrocław University of Technology for their support and
funding, which made this monograph possible. It sums up the long years of research
initiated at Wrocław by Professor Wojciech Zamojski, aimed at adapting the reliabil-
ity approach to complex computer-based systems. A substantial part of the monograph
presents the results of research done under his guidance within the project N N516
475940 “Dependability improvement of complex information systems by reconfigura-
tion”, supported by the Polish National Science Centre.

The Editors

Wojciech Zamojski
Jarosław Sugier

Contents

Prediction of the Performance of Web Based Systems 1
Dariusz Caban, Tomasz Walkowiak

Modelling Uncertain Aspects of System Dependability with Survival
Signatures . 19
Frank P.A. Coolen, Tahani Coolen-Maturi

Improving the Dependability of Distributed Surveillance Systems Using
Diverse Redundant Detectors . 35
Francesco Flammini, Nicola Mazzocca, Alfio Pappalardo,
Concetta Pragliola, Valeria Vittorini

Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 55
Oleksii Starov, Sergiy Vilkomir, Anatoliy Gorbenko,
Vyacheslav Kharchenko

Agent Approach to Network Systems Dependability Analysis in Case of
Critical Situations . 73
Jacek Mazurkiewicz

Model Transformation for Multi-objective Architecture Optimisation of
Dependable Systems . 91
Zhibao Mian, Leonardo Bottaci, Yiannis Papadopoulos,
Septavera Sharvia, Nidhal Mahmud

Optimization in CIS Systems . 111
Czeslaw Smutnicki

X Contents

Metascheduling Strategies in Distributed Computing with Non-dedicated
Resources . 129
Victor Toporkov, Alexey Tselishchev, Dmitry Yemelyanov,
Petr Potekhin

Improvement of Dependability of Complex Web Based Systems by
Service Reconfiguration . 149
Tomasz Walkowiak, Dariusz Caban

Functional-Reliability Model of a Services System with Path
Reconfiguration Ability . 167
Wojciech Zamojski, Jarosław Sugier

Author Index . 189

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

1

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_1

Prediction of the Performance of Web Based Systems

Dariusz Caban and Tomasz Walkowiak

Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-320 Wrocław, Poland
{dariusz.caban,tomasz.walkowiak}@pwr.edu.pl

Abstract. Complex Web based information systems are organized as a set of
component services, communicating using the client-server paradigm. The per-
formance prediction of such systems is complicated by the fact that the service
components are strongly inter-dependent. To overcome this issue, it is proposed
to use simulation techniques. Extensions to the available network simulation
tools are proposed to support this. The authors present the results of multiple
experiments with web-based systems, which were conducted to develop a mod-
el of client-server interactions adequately describing the relationship between
the server response time and resource utilization. This model was implemented
in the simulation tools and its accuracy verified against a testbed system confi-
guration.

Keywords: complex information systems, Web based systems, performance as-
sessment, network simulation.

1 Introduction

Accurate prediction of the performance of a web based system, by means of simula-
tion, is in general quite unlikely: there are too many factors that can affect it. Moreo-
ver, a lot of these factors are unpredictable, being specific to some unique software
feature. This can be overcome in case of predictions made when the system is already
production deployed. In this situation, a lot of system information can be collected on
the running system. This information can be used to fine tune the simulation models.

Of course, normally this is not useful – the performance can be directly measured
in the running system, with no need to recourse to simulation [8]. Sometimes, it is
necessary to change the deployment of a running system, either to overcome changes
in the demand for service or to overcome some dependability or security issues [3].
Redeployment of service components onto the available hosts changes the workload
of the various servers. In consequence some of them are over-utilized and cannot
handle all the incoming requests, or handle them with an unacceptable response delay.
It is very difficult to predict these side-effects. One of the feasible approaches is to
use simulation techniques: to study what are the possible effects of such a change.

Available network simulators are usually capable of analyzing the impact of recon-
figuration on the accessability of the services, the settings of the network devices and
on security [5,6]. The simulators can predict transmission delays and traffic conges-
tions – that is natural, since it is their primary field of application. They have a very

5

2 D. Caban and T. Walkowiak

limited capability to simulate tasks processing by the host computers. It is proposed to
overcome this limitation by implementing an empirically validated model of service
responses that takes into account the computing resources needed to process requests,
models that predict processing delays dependent on the number of concurrently ser-
viced requests [13,14].

The main part of this presentation is dedicated to determining these models and
demonstrating their accuracy. We also present some insight into the metrics that are
used to characterize the performance of web based systems.

2 Web Based Systems

We consider a class of information systems that is based on web interactions, both at
the system – human user (client) interface and between the various distributed system
components. This is fully compliant with the service oriented architecture, though it
does not imply the use of protocols associated with SOA systems. On the other hand,
the applicability of the model is certainly not limited to the service oriented systems.
In fact, it encompasses practically all the system architectures utilizing the request-
response interactions.

2.1 Simple Web Server Architecture

The simplest example of a web based system consists of a single service, handling a
stream of requests coming from multiple clients via Internet. There are three impor-
tant aspects to modeling this class of systems: infrastructure hosting the service, han-
dling of service requests, client expectations and behavior. All of these have signifi-
cant impact on the observed system performance.

Host and Network Resources
The service is deployed on a computing host which is connected to the client machine
via a network. This deployment determines specific resources available to the service,
both in terms of communication throughput and computing power. This deployment
has a very significant impact on the service performance, especially the response
time.

There is just one communication parameter of significance – the maximum
throughput derived from the link bandwidths and the protocols in use. In most prac-
tical situations, that we have analyzed, this factor has a very limited impact on the
web based systems. In modern installations, the computing resources usually deter-
mine the system performance.

The computing resources that need to be considered include the processor speed,
available memory, storage interfacing capabilities. Moving a service from one loca-
tion to another, the available resources change. In consequence, the service perfor-
mance is affected. This is usually determined by benchmarking the service. To some
extent, it can be observed via monitoring of the production system.

 Prediction of the Performance of Web Based Systems 3

It should be noted that the service performance is affected not only when it is re-
deployed on a different host. Similar effect is observed, when multiple applications
are deployed on the same host. In this case the computing resources are shared by the
services, affecting their performance. When trying to predict the web system characte-
ristics, this factor has also to be accounted for.

Client – Server Interactions
The basis of operation of all the web oriented systems is the interaction between a
client and a server. This is in the form of a sequence of requests and responses: the
client sends a request for some data to the server and, after some delay, the server
responds with the required data. The time that elapses from the moment the client
sends the request until it receives the response is called the response time.

The response time depends on a number of different factors. As already discussed,
it depends on the service deployment and sharing of resources. Just as significantly,
specific requests may require different amount of processing. A typical workload is a
mixture of different requests. A common approach to load (traffic) generation tech-
niques is based on determining the proportion of the various tasks in a typical server
workload, and then mixing the requests in the same proportion [7, 12]. Thus, even in
the simple situation, where the response is generated locally by the server, it has an
unpredictable, random factor.

Actually, the server response time is strongly related to the client behaviour, as de-
termined by the request-response interaction. Such factors as connection persistence,
session tracking, client concurrency or client patience/think times have a documented
impact on the reaction. For example, it has been shown in [10] that if user will not
receive answer for the service in less than 10 seconds he or she will probably resign
from active interaction with the service and will be distracted by other ones.

Let’s consider the model used in these simple interactions in more detail. The sim-
plest approach is adopted by the software used for server/service benchmarking, i.e. to
determine the performance of computers used to run some web application. In this
case, it is a common practice to bombard the server with a stream of requests, reflect-
ing the statistics of the software usage (the proportion of the different types of re-
quests, periods of burst activity, think times, etc.). Sophisticated examples of these
models of client-server interaction are documented in the industry standard bench-
marks, such as the retired SPECweb2009 [12].

The important factor in this approach is the lack of any feedback between the rate
of requests and the server response times. In other words, the client does not wait for
the server response, but proceeds to send further requests even if the response is de-
layed. Fig. 1 shows the results of experiments performed on a typical server applica-
tion exposed to this type of traffic. Fig. 1 a) presents the changes in the response time,
depending on the rate of requests generation. It should be noted that the system is
characterized by three distinct ranges in the requests rate.

Up to approximately 35 requests per second, the response time very slowly in-
creases with the rate of requests. This is the underutilization range, where the server
processing is not fully utilized: the processor is mainly idle and handles requests im-
mediately on arrival. There is a gradual increase in the response time due to the
increased probability of requests handling overlapping.

4 D. Caban and T. Walkowiak

Fig. 1. The performance of an off-the-shelf web service under varying rates of incoming client
requests: a) the upper graph shows the response time, b) the lower – the erroneous responses

When the requests rate is higher the processor is fully utilized, the requests are
queued and processed concurrently. The increase in the response time is caused by the
concurrently handled requests. This range is very narrow, since any significant in-
crease in average requests rate causes the service to be overloaded. Further increase in
the request rate does not increase the number of correctly handled ones. Thus, the
response time remains almost constant. On the other hand, the percentage of requests
handled incorrectly increases proportionately to the request rate. This is illustrated in
Fig. 1 b).

Client Models Reflecting Human Reactions
The real behaviour of clients differs significantly from the model discussed so far. In
fact, the client sends a burst of related requests to the server, then it waits for the serv-
er to respond and, after some “think” time for disseminating the response, sends a
new request. Fig. 2 illustrates the timing diagram of such a client.

0

5

10

15

20

25

30

0 50 100 150 200

Re
sp

on
se

 ti
m

e
[s

]

rate of requests generation [1/s]

0

20

40

60

80

100

0 50 100 150 200

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s
ha

nd
le

d
in

co
rr

ec
tl

y
[%

]

rate of requests generation [1/s]

 Prediction of the Performance of Web Based Systems 5

 ←⎯ Response time ⎯→ ←⎯ Response time ⎯→

Sending
request

Waiting for
response

Receiving
response

Think
time

Sending
request

Waiting for
response

Receiving
response

…

Fig. 2. Client traffic model reflecting request-response sequence and think time

This type of model is implemented in a number of traffic generators available both
commercially and in open-source (Apache JQuery, Funkload). The workload is cha-
racterized by the number of concurrent clients, sending requests to the server. The
actual requests rate depends on the response time and the think time. The model im-
plies that the request rate decreases when the service responds with longer delays (i.e.
from the client perspective, the time it waits for the response increases).

This model assumes that the proportion of tasks in a workload does not change
significantly due to response delays and error-responding. It does not assume any
information on the semantics of client-server interactions. In effect, this produces a
mix of tasks, in no way connected to the aims of the clients. The description of client
behaviour can be improved if we have a semantic model of client impatience, i.e. how
the client reacts to waiting for a server response. Currently, this is modeled very sim-
plistically by setting a threshold delay, after which the client stops waiting for the
server response and starts another request. A more sophisticated approach would have
to identify the changing client perspective caused by the problems in accessing a ser-
vice, e.g. a client may reduce the number of queries on products, before deciding to
make a business commitment, or on the other hand, he may abandon the commitment.
These decisions could significantly influence the workload proportions.

Fig. 3. Average service response when interacting with various number of concurrent clients

Fig. 3 shows how the response time depends on the number of concurrent clients.
In this case we have set the “think” time to 0, i.e. a new request is generated by the
client directly on receiving the response to a previous one. Quite interestingly, the

0
5

10
15
20
25
30
35
40

0 100 200 300 400 500 600 700A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

[s
]

Number of concurrent users

6 D. Caban and T. Walkowiak

server operates practically only in the normal utilization range, until it reaches the
maximum number of clients that it can handle correctly (roughly 300 clients in
Fig. 3).

2.2 Distributed Web Services Architecture

So far, the considered model consisted just of one service, handling all the end-user
requests. In a more complex system, the clients interact multiple front-end business
services. Furthermore, these services request assistance from other services when
computing responses. These interactions determine a network of complementary ser-
vices (called service components), which communicate with each other using the
request-response paradigm.

Service Choreography
The system analysis has to consider the various tasks initiated by the client. In a typi-
cal web application, these tasks can exercise the server resources in a wildly varied
manner: some will require serving of static web pages, some will require server-side
computation, yet others will initiate database transactions or access to remote web
applications.

It is assumed that the analyzed web services are described by the choreography de-
scription, using one of the formal languages developed for this purpose (we consider
WS-CDL and BPEL [11,14] descriptions). This description determines all the se-
quences of requests and responses performed by the various service components,
described in the choreography. Fig. 4 presents a very simple example of service cho-
reography. It should be noted that the choreography determines the sequences of re-
quests and responds at all the interfaces between the service components.

Fig. 4. An example of a simple service choreography

 Prediction of the Performance of Web Based Systems 7

It also places some constraints on the client model. In 2.1, we have assumed that
the client sends a random mixture of requests to the web system. Fig. 4 shows that in
this specific example the “ShowMainPage” request is followed by the “PerformList”
one. Thus, it is not just a random sequence of them. In this approach, the random
mixing is performed on the alternative system usage scenarios, instead.

The model of request-response sequences, formulated for client-service communi-
cation, is also applicable to interactions between the web service components. In this
case one component becomes the client of another. The same timing phenomena can
be observed. The client component usually has a built-in response time-out period
which corresponds to the end-user impatience time. The significant difference is that,
in this case, the choreography description defines the reaction of the client compo-
nent. Thus, the client impatience model is fully determined, derived from this descrip-
tion.

System Deployment
The service components are deployed on a network of computers. This underlying
communication and computing hardware is abstracted as a collection of in-
terconnected computing hosts. System configuration is determined by the deployment
of service components onto the hosts. This corresponds to the subsets of services
located at each one. The deployment clearly affects the system performance, as it
changes the communication and computational requirements imposed on the infra-
structure.

The problem of predicting the impact of configuration changes is not trivial. Di-
rectly, response times depend on the concurrent load of each host. The greater the
number of concurrently handled requests at a host, the slower is the response
processing (due to resource sharing). If all resources of a host are already dedicated, a
new request has to be queued further increasing the response times. These response
delays from one service component propagate to others, affecting both their response
times and the workload (numbers of handled requests).

In fact, this is the main application field of the system performance simulation
techniques.

3 System Performance Characteristics

There are various approaches to characterizing the quality of the web based systems.
Basically, the performance can be assessed in three aspects: their capability to provide
responses in the desired timespan, the capability to respond correctly (with possibly
few errors), and the ability to handle large, cumulated workloads. We consider the
measures directly relating to these service properties.

3.1 Average Service Response Time

The response time is defined as the time that elapses from the moment a client starts
sending a request until the response is complete transmitted back to it. This was

8 D. Caban and T. Walkowiak

already discussed in 2.1. The service as a whole is characterized by the response times
observed from the user perspective only, i.e. responses to requests sent by the end-
user clients.

The average response time is computed over a mixture of user requests, characte-
ristic for the system workload. If the system responds with an error code, the response
time is excluded from computing the average. These are not taken into account to
prevent false observation of responses speed-up, when the system is overloaded and
responding with multiple errors.

The average response time strongly depends on the rate of service requests, as illu-
strated in Fig. 1 and 3. In case of web services consisting of multiple distributed com-
ponents, this interdependence is similar in character though different in the observed
ranges and scales. To obtain a single value characteristic, a typical request rate has to
be used for assessment.

3.2 Service Availability

Availability is normally defined as the probability that a system is operational at a
specific time instant [1]. This implies that the system may break down and become
inoperational, which is certainly applicable to the web based systems. In these consid-
erations, we assume that the system is operational when we compute its performance
characteristics. For this reason, the term “service availability” may be misleading in
this case. Instead, we consider availability to be the probability that a request is cor-
rectly responded to. It is assessed as the number of properly handled requests nok
expressed as a percentage of all the requests n over a sufficiently long time of
operation t :

)(
)(lim tn

tn

t

okA
∞→

= (1)

This yields a common understanding of availability used in the web services commu-
nity.

The service availability changes with the rate of requests sent to the system. Until
the system becomes overloaded the number of error responses should be negligible. It
implies that the service availability needs to be assessed for a typical workload, simi-
larly to the response time.

3.3 Maximum System Throughput

The maximum system throughput is defined as the maximum value of incoming re-
quests rate that can properly be handled. This can be determined by:

─ assuming specific threshold values of the response time and service availability;
─ assessing the two request rates corresponding to these thresholds;
─ finding the minimum of the two request rates.

 Prediction of the Performance of Web Based Systems 9

Such approach is not very convenient, since it always requires a clear understand-
ing of the acceptable threshold values. In practical terms, this is always viewed with
some uncertainty. A simpler technique, though sacrificing some precision, is to fix the
maximum throughput at the value of requests rate midpoint in the range between un-
der- and over-utilization. This value is also very near the point, where service availa-
bility begins to decrease rapidly (Fig. 1b).

4 Performance Prediction Using Network Simulation
Techniques

There is a large number of network simulators available on the market, both open-
source (ns3, Omnet+, SSFNet) and commercial. Most of them are based on the pack-
age transport model – simulation of transport algorithms and package queues [5,6].
What they lack is a comprehensive understanding of the computational demands
placed on the service hosts, and how it impacts the system performance. For this
reason, they cannot be directly used to predict the impact of service components dep-
loyment on system performance. The simulators need to be extended, by writing spe-
cial purpose queuing models for predicting tasks processing time, based on resource
consumption [2,13].

Response time prediction in simulators is based on the proper models of the end-
user clients, service components, processing hosts (servers), network resources. The
client models generate the traffic, which is transmitted by the network models to the
various service components. The components react to the requests by doing some
processing locally, and by querying other components for the necessary data (this is
determined by the system choreography, which parameterizes both the client models
and the service component models). The request processing time at the service com-
ponents is not fixed, though. It depends on the number of other requests being han-
dled concurrently and on the loading of other components deployed on the same
hosts.

The simulator needs a number of parameters that have to be set to get realistic re-
sults. These parameters are attributed to the various models, mentioned above. In the
proposed approach we assume that it is possible to determine the values of these pa-
rameters in a running environment. Thus, the technique has limited usefulness, if
there is no such data (before the system is initially deployed).

The models should be fairly simple, describing the clients and service components.
They should accurately predict changes that may occur when the deployment of ser-
vice components is modified. Then, simulating the target configuration with these
parameters should provide reliable predictions of the web service performance after
redeployment.

4.1 Virtual Testbed Environment

A proper model of client-server interactions is the basis for accurate simulation of the
system. For this reason, a number of testbed experiments have been conducted to

10 D. Caban and T. Walkowiak

capture the realistic timing characteristics that can be abstracted into a simple model.
For this purpose, we have set up a testbed, consisting of a network of virtual machines
running the appropriate servers (Apache, IIS, Tomcat, MySQL). The servers run PHP
scripts, which can accurately mimic service components. The application is exposed
to a stream of requests, generated by a client application (a Python script written by
the authors).

The available processor resources are monitored via the virtualization hypervisor to
ensure that the traffic generation programs do not compete for the resources with the
system software (which would lead to unrealistic results).

4.2 Server Response Prediction

Basic Model
The client-server interaction is paramount to the proper simulation of a complex web
service. The analysis of the behaviour of typical servers led to the formulation of a
basic model that is used in simulation.

Fig. 5. Basic model of a web service

The basic model, as presented in Fig. 5, consists of four elements: the retransmission
buffer, the FIFO style waiting queue, the circular buffer and a set of processors.

The retransmission buffer models the process of establishing TCP connection by a
client if a server is not responding. One can observe that connections are established
within a discrete time delays: 0, 3, 9, 21, .. seconds. This is implementation of the
TCP exponential backoff mechanism, introduced by Jacobson 25 years ago [4] and
analyzed in details in many papers, for example in [9].

In the proposed model, the retransmission buffer is working as follows:

1. If the number of processed requests is larger than a given value maxN then the re-

quest is rejected within a few ms (a random value).
2. The client waits for a given time period (tΔ) for the FIFO (next) queue to accept a

request. If it not accepted, then goes to step 3 then it proceeds to step 3.
3. The timeouts parameters are updated:

 Prediction of the Performance of Web Based Systems 11

stt

tt

dd 32

3

+⋅=
Δ⋅=Δ

. (2)

4. The client is paused for dt seconds.

5. If the time elapsed from the begging of request proceeding is longer than a client

timeout (timeoutt) the request is rejected; if not the client repeats the procedure from

step 2.

The initial values of timeouts are as follows: tΔ =0.0125s, dt =0s.

The waiting queue models requests waiting for execution by the server. It works
according to FIFO regime and has only one parameter: its length (FIFON).

Handling of requests is done by executing a given task or tasks, depending on the
requests. It is done in time sharing manner and modelled by the circular buffer. In
reality concurrent execution is achieved by switching the processors between different
tasks. In general it works as follows:

1. If the circular buffer is not full the request is removed from the end of the waiting
queue and moved to the circular buffer and execution of a task defined by a request
starts.

2. Each task from the circular buffer has access to a processor (from the set of availa-
ble one) for a time slice.

3. The task is finished (and removed from the time sharing buffer) when the sum of
time slices is larger than the execution time required to process the given request.

In case when just one task is being executed on a given host, the task execution
time depends on the host performance described by the parameter performance(h) and
the task complexity (parameter tc()):

)(

)(
)(

heperformanc

tasktc
tasket = . (3)

In case more than one task being executed concurrently, the algorithm is more
complicated. Let eτττ ,...,, 21 be the time moments when some tasks are starting or

finishing execution on a host h. Let),(τhnumber denote the number of tasks being

processed (active tasks in circular buffer) at time τ on host h, and ncores the number
of processor cores. Therefore, the time when a task finishes its execution has to fulfil
the following rule:

 () ()tasktc
ncoreshnumber

heperformance

k
kk =−

=
−

2
1 /)(

)(ττ . (4)

Therefore, the overall processing time is equal to:

 1)(ττ −= etasket . (5)

12 D. Caban and T. Wa

The drawback of the abo
ber of events when a large
the fact that every new req
being executed at this mom
[13] that prevents the gene
host) was close enough (the

Implementation of this
quest as a sum of times spe
(3,4)).

Basic Model Validation
To verify correctness of the
tion results with real Apac
shown in Fig. 6.

The results are very acc
behaviour of a software co
racterize: the host performa
the length of a wait queue
set to 1000 for most of the w

Fig. 6. The performance of a
line): a) the response time, b) t

alkowiak

ove approach is the fact that it generates an excessive nu
e number of tasks are handled concurrently. This is due
quest changes the estimated time to finish for each requ
ment. Therefore, we have introduced a heuristic algorit
eration of a new event if the previous one (for the sa
e time difference is smaller than some threshold).
model allows calculating the processing time of each

ent in the first two queues and its execution time (equati

e basic model of a web service we have compared simu
che server behavior. The results for concurrent clients

curate considering that we are approximating the comp
omponent with just a few parameters. The parameters c
ance, the task complexity, the length of time sharing buf
and maximum number of processed requests (seems to
web servers).

real Apache web server (dashed line) and simulated one (s
the availability

um-
e to
uest
thm
ame

re-
ions

ula-
are

plex
cha-
ffer,
o be

solid

 Prediction of the Performance of Web Based Systems 13

These parameters could be easily obtained by a simple tests on a real system (the
host performance, the task complexity) or from configuration files of the Apache
server (MaxClients parameters defines the length of the circular buffer) or are prede-
fined by a type of web server (like the length of a wait queue and maximum number
of processed requests).

Fig. 7. Simplified service model

Basic Model Modification

In case of some types of servers, particularly some databases and Microsoft IIS, the
basic model can be simplified. In these servers, it is not necessary to use the retrans-
mission and circular buffers. The servers can be modelled just by one limited length
FIFO queue. In these servers, all requests above the length of the FIFO queue are
rejected immediately. Due to simplicity of the model results of simulation for IIS web
server are very similar to a real system (in case of response time, it is less than 2%).

Fig. 8. The performance of a real MySQL server (solid line) and simulated one (dashed line): a)
the response time, b) the availability

14 D. Caban and T. Walkowiak

In case of database systems, as it can be noticed on Fig. 8, there is a constant in-
crease in response time when the server is overutilized. We propose to model it by
adding a task which consumes some amount of processor power. The execution time
of that additional task is proportional to the number of processed requests:

 consttimeNrequestet _)(⋅= (6)

The results of simulated and real MySQL server response times are presented in
Fig. 8.

4.3 Interaction with Other Services

The operation of all the web based applications is based on the interaction between
services. Therefore it is important to model how services process requests that require
calls to other service components.

In case of services that follow the basic model (for example Apache, Tomcat), ex-
ternal calls have an influence on the circular buffer. When a task is waiting for an
answer from another service (the request thread is in wait state), the place in the circu-
lar buffer is used but the processor is not. Therefore, the number of active requests
(),(τhnumber) is decreased when a requests starts an external call and increased

when the response is received. Such behavior results in a situation that the whole
circular buffer is used, so new requests are waiting in FIFO queue whereas the service
is not using a processor.

In case of the modified model (without circular buffer) like IIS, the requests wait-
ing for external service response are not using the processor. So, new requests from
the FIFO queue can be processed. When the response from the external service ar-
rives, the task is placed in an additional FIFO queue. Therefore, the model for web
services without circular buffer uses two FIFO queues (Fig. 9). The processor is
processing requests from the two queues alternately.

Fig. 9. Simplified model for services interacting with other components

 Prediction of the Performance of Web Based Systems 15

Fig. 10. Results for two layer web system

4.4 Services Deployed on the Same Host

The deployment of multiple services on the same host leads to time-sharing of proces-
sor time between them. Each of the active service components deployed on a given
hosts gets proportionate access to the processor. To model such situations, we have to
add a time sharing queue presented in 4.2 to all hosts regardless the type of used ser-
vice model.

For the basic model it results in modification of the formula (4) to:

 () ()tasktc
hversnactiveserncoressnumber

heperformance

k
kk =

⋅
−

=
−

2
1)(/)(

)(ττ . (7)

It results in an increase of the time moments eτττ ,...,, 21 since they have to include

changes when the number of active services changes.
In case of the simplified model, the time sharing has to be included in the model in

a similar way as for the basic one, i.e. the time when a task finishes its execution has
to fulfil the following rule:

 () ()tasktc
ncoreshversnactiveser

heperformance

k
kk =−

=
−

2
1 /)(

)(ττ . (8)

0 50 100 150 200 250 300 350 400
0

20

40

60

C
za

s
od

po
w

ie
dz

i [
s]

0 50 100 150 200 250 300 350 400

20
40
60
80

100

D
os

tę
pn

oś
ć

[%
]

Liczba jenoczesnych zapytań

0 50 100 150 200 250 300 350 400
0

20

40
Apache

C
za

s
pr

ze
tw

ar
za

ni
a

0 50 100 150 200 250 300 350 400
0

1

2
MySQL

C
za

s
pr

ze
tw

ar
za

ni
a

symulacja

rzeczywistość

16 D. Caban and T. Walkowiak

To verify the correctness of the proposed modifications in service models we have
performed a set of tests analyzing a simple system with an Apache server and a
MySQL database placed on the same host. Results presented in Fig. 10 show that the
modified models give results that are very close to the real system behavior.

4.5 Models Based on Service Choreography

The key feature during simulation is to calculate the response times to the end users.
The user initiates the communication requesting execution of some tasks on a host.
This may require sending a request to another host or hosts. After executing the task
the host responds to the requesting service, and finally the user receives the response.
Requests and responses of the tasks form a sequence, according to the service choreo-
graphy. Let’s assume that the choreography for some user ci is given in Fig 4. It can
be described in the functional form as:

 ()() ()()4321 ,: ttttu = (9)

i.e. execution of user chorography u consists of execution two tasks t1 and t4, whe-
reas execution of task t1 requires calls to task t2 which calls t3. Fig. 11 presents the
same choreography, with references to the corresponding tasks.

Fig. 11. An example of a service choreography with annotated tasks and hosts deployment

The user request processing time is equal to the time of communication between
hosts on which each task is placed and the time of processing of each task. Therefore,
for the considered choreography (assuming the deployment of tasks to hosts presented
in Fig. 11) the user request processing time is equal to:

() () () () () ()
() () () () () ()

() () ()01
'''

113

431
''

112
''
223

332
'
221

'
110

,,

,,,

,,,)(

hhcomzpthhcom

zpthhcomzpthhcomzpthhcom

zpthhcomzpthhcomzpthhcomuurpt

++

+++++++

+++++=

 (10)

h
0

h
1

h
2

h
3

t
1

t
2 t

3

t
4

 Prediction of the Performance of Web Based Systems 17

where com(hi,hj) is the time of transmitting the requests from host hi to hj, and pt(task)
is the time of processing the task on the given host (i.e. the host that the correspond-
ing service component was deployed to). The processing time consists of the time
spent in server queues and the task execution time. It can be calculated by simulation
using the presented models.

The communication times in the equation (10) correspond to delays introduced by
the network. In almost all modern information systems the local network throughout
is high enough, so there is no relation between the number of tasks being processed in
the system and the network delay. There are exceptions to this rule, especially in me-
dia streaming systems. We propose to model the time of transmitting the requests
from host hi to hj by independent random values:

 ())1.0,(, ⋅= meanmeanTNormalhhdelay ji , (11)

where TNormal() denotes the truncated Gaussian distribution (bounded below 0).

5 Conclusions

Performance of the web based information systems is nowadays of utmost importance
[8]. Business relies heavily on the high availability of services. Thus, there is a clear
need of accurate tools for predicting this performance.

The proposed method of prediction, based on customized network simulation, pro-
vides sufficient accuracy. At the same time it does not require very expensive testbed
installations that are often used for this purpose. Thus, it is a very promising tech-
nique.

The simulation models require a limited number of systems parameters. They make
use of knowledge of the service choreography. The approach is particularly well
suited when it is necessary to change the deployment of service components in an
existing installation. Simulating the expected performance before making the modifi-
cations may provide significant guidelines to the choice of optimal reconfiguration.

The technique has limited application to predicting the performance of a system
during its development. In this case, the model parameters cannot be observed. Guess-
ing the values of these parameters does not provide sufficiently accurate information
to perform meaningful simulation.

Acknowledgement. The presented work was funded by the Polish National Science
Centre under grant no. N N516 475940.

References

1. Barlow, R.E.: Engineering Reliability. ASA-SIAM Series on Statistics and Applied Proba-
bility (1998)

2. Caban, D., Walkowiak, T.: Service availability model to support reconfiguration. In: Za-
mojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Complex Sys-
tems and Dependability. AISC, vol. 170, pp. 87–101. Springer, Heidelberg (2012)

18 D. Caban and T. Walkowiak

3. Caban, D., Walkowiak, T.: Preserving continuity of services exposed to security incidents.
In: Proc. The Sixth International Conference on Emerging Security Information, Systems
and Technologies, SECURWARE 2012, Rome, August 19-24, pp. 72–78 (2012)

4. Jacobson, V.: Congestion avoidance and control. ACM CCR 18(4), 314–329 (1988)
5. Lavenberg, S.S.: A perspective on queueing models of computer performance. Perfor-

mance Evaluation 10(1), 53–76 (1989)
6. Liu, J.: Parallel Real-time Immersive Modeling Environment (PRIME), Scalable Simula-

tion Framework (SSF). User’s manual. Colorado School of Mines Dept. of Mathematical
and Computer Sciences, http://prime.mines.edu/

7. Lutteroth, C., Weber, G.: Modeling a Realistic Workload for Performance Testing. In:
12th International IEEE Enterprise Distributed Object Computing Conference (2008)

8. Miller, L.C.: Application Performance Management for Dummies, Riverbed Special edn.
John Wiley & Sons, Hoboken (2013)

9. Mondal, A., Kuzmanovic, A.: Removing Exponential Backoff from TCP. ACM
SIGCOMM Computer Communication Review 38(5), 19–28 (2008)

10. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1994)
11. Pasley, J.: How BPEL and SOA are changing Web services development. IEEE Internet

Computing Magazine 9, 60–67 (2005)
12. SPECweb2009 Release 1.20 Benchmark Design Document version 1.20. SPEC (2010),

http://www.spec.org/web2009/docs/design/SPECweb2009_Design.html
13. Walkowiak, T.: Information systems performance analysis using task-level simulator. In:

Proc. DepCoS – RELCOMEX 2009, pp. 218–225. IEEE Computer Society Press (2009)
14. Walkowiak, T., Michalska, K.: Functional based reliability analysis of web based informa-

tion systems. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T.
(eds.) Dependable Computer Systems. AISC, vol. 97, pp. 257–269. Springer, Heidelberg
(2011)

Modelling Uncertain Aspects of System

Dependability with Survival Signatures

Frank P.A. Coolen1 and Tahani Coolen-Maturi2

1 Department of Mathematical Sciences, Durham University,
Durham, United Kingdom

2 Durham University Business School, Durham University, Durham, United Kingdom
{frank.coolen,tahani.maturi}@durham.ac.uk

Abstract. The survival signature was recently introduced to simplify
quantification of reliability for systems and networks. It is based on the
structure function, which expresses whether or not a system functions
given the status of its components. In this paper, we show how a straight-
forward generalization of the structure function can provide a suitable
tool for scenarios of uncertainty and indeterminacy about functioning of
a system for the next task. We embed this generalization into the sur-
vival signature, leading to a more flexible tool for quantification of the
system reliability and related measures of dependability.

1 Introduction

Mathematical theory of reliability has been well established since the middle
of the twentieth century, with main focus on the functioning of a system given
the functioning, or not, of its components and the structure of the system. The
mathematical concept which is central to this theory is the structure function.
For a system withm components, let state vector x = (x1, x2, . . . , xm) ∈ {0, 1}m,
with xi = 1 if the ith component functions and xi = 0 if not. The labelling
of the components is arbitrary but must be fixed to define x. The structure
function φ : {0, 1}m → {0, 1}, defined for all possible x, takes the value 1 if the
system functions and 0 if the system does not function for state vector x. Mostly
attention is restricted to coherent systems, for which φ(x) is not decreasing in
any of the components of x, so system functioning cannot be improved by worse
performance of one or more of its components. It is usually assumed that φ(0) = 0
and φ(1) = 1, so the system fails if all its components fail and it functions if all
its components function. When functioning of a system is considered over time,
taking into account random failure processes for the system components, the
classical concept of probability is commonly used to quantify system reliability
under uncertainty.

These basic concepts have led to much theory and many successful applica-
tions, for example on system design, inspection and maintenance, and general
risk assessment, for a wide variety of systems and networks. In recent years,
attention has spread from core reliability theory to the wider concept of system
dependability [18]. This encompasses a variety of related concepts in addition

c© Springer International Publishing Switzerland 201 19
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,
Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_2

5

20 F.P.A. Coolen and T. Coolen-Maturi

to reliability, such as availability, maintainability, safety, security, flexibility, re-
silience and integrity of the system and its functioning. While all these have
intuitively clear meanings, the literature has provided different definitions and
interpretations for each, often related to varying application areas, circumstances
and requirements. This wider view of dependability is particularly important
when real-world scenarios are considered, as classical reliability theory is often
based on assumptions made for theoretical convenience but not always justified
in applications.

In this paper, we explore some uncertain or unknown aspects related to a
system’s functioning, and we suggest a simple way for taking these into account
in quantification of reliability of a system. The main idea is that the system may
have to deal with a variety of tasks of different types, which put different require-
ments on the system. We focus then on a specific future task to be performed,
calling it the ‘next task’, and take uncertainty about the type of this task into
account by using probabilities over the different types of tasks, and by generaliz-
ing this to imprecise probabilities. This enables uncertainty and indeterminacy
to be included in the modelling. This approach is very flexible, it can even be
used to include the possibility of a fully unknown type of task, which might for
example be suitable to reflect possible unknown threats to the system.

Section 2 presents the structure function as a, possibly imprecise, probability,
the corresponding use in (lower and upper) survival signatures is presented in
Section 3. The uncertainty with regard to the type of the next task is considered
in Section 4 and illustrated via an example in Section 5. The paper concludes
with a discussion of some related aspects in Section 6, which suggests several
ways in which the concepts proposed in this paper can be used for uncertainty
quantification of aspects of system dependability. The main aim of this paper is
to trigger further research using the flexibility provided by the (lower and upper)
survival signatures.

2 The Structure Function as (Imprecise) Probability

The first proposal presented and discussed here is to generalize the structure
function to reflect uncertainty about the system’s functioning given the state
vector x, by defining it as a probability, so φ : {0, 1}m → [0, 1]. We define φ(x)
as the probability that the system functions for a specific state vector x and for
the next task the system is required to perform. Let S denote the event that the
system functions as required for the next task it is demanded to perform, then

φ(x) = P (S|x) (1)

We have kept the same notation for the structure function, as a probability,
as in Section 1, which should not cause problems and is justified as the earlier
definition of structure function can be regarded as a special case of this gener-
alized definition with all probabilities either 0 or 1. We should emphasize that
we consider system functioning explicitly for the next task that the system has
to perform, which varies from the usual definition for system functioning in the

Modelling Uncertain Aspects of System Dependability 21

literature. We do so as the generalization considered in this paper is particularly
aimed at dealing with different types of tasks, which is easiest when focussing
explicitly on the next task; we discuss this in more detail later. This can, quite
straightforwardly, be generalized to considering multiple future tasks, we do not
discuss this further in this paper.

This generalization already enables an important range of real-world scenar-
ios to be modelled in a straightforward way. Furthermore, as we will discuss
in Section 3, it can quite easily be embedded in existing theory for reliability
quantification. Scenarios where the flexibility of the structure function as a prob-
ability might be useful are, of course, situations where even with known status
of the components, it is not certain whether or not the system functions, that
is performs its task as required. This may be due to varying circumstances or
requirements which may not be modelled explicitly, or may not even be fully
known. For example, one could consider a wind farm, a collection of wind tur-
bines at a specific location, as one system, with the task to generate a level of
energy required to provide a specific area with sufficient electricity. One could
consider each wind turbine as a component (with several other types of compo-
nents in the system, that is irrelevant for now). Even if one knows the number
of functioning components at a particular time, factors such as the weather,
the availability of other electricity generating resources for the network, and the
specific electricity demand, can lead to uncertainty about whether or not the
system meets the actual requirements. To fit with the established deterministic
definition of the structure function one can define system functioning in far more
detail, but this may be hard to do in practice. As another example, one could
think about a network of computers which together form a system for complex
computations, where its actual success in dealing with required tasks might be
achieved with some computers not functioning, but with some lack of knowledge
about the exact number of computers required to complete tasks of different
types.

The generalization to consider the structure function as a probability, al-
though mathematically straightforward, requires substantial information in or-
der to assess the probabilities of system functioning for all possible state vectors
x. While this modelling might explicitly take co-variates into account, thus pos-
sibly benefitting from a large variety of statistical models, it may be difficult
to actually formulate the important co-variates and one might not know their
specific values. This leads to two further topics we wish to discuss, namely what
precisely is meant when we say that the system functions, and a generalization
of probability to allow lack of knowledge to be reflected.

Whether or not a real-world system performs its task well may depend on
many circumstances beyond the states of the system components. It may be
too daunting to specify system functioning for all possible circumstances, and
it may even be impossible to know all possible circumstances. Hence, speaking
of ‘system functioning’ in the traditional theoretic way seems rather restricted.
One suggestion would be to only define system functioning for one (or a spec-
ified number of) application(s), e.g. whether or not a system functions at its

22 F.P.A. Coolen and T. Coolen-Maturi

next required use. This will not be sufficient for all real-world scenarios, but it
will enable important aspects of uncertainty on factors such as different tasks
and circumstances to be taken into account. We believe that this is a topic
that requires further attention, it links to many system dependability concepts
including flexibility and resilience.

The generalization of the structure function as a probability provides sub-
stantial enhanced modelling opportunities for system dependability. However,
the concept of probability, while being well established and very successfully
applied in most areas of human activity involving uncertainty, is not sufficiently
flexible to quantify and reflect the multi-dimensional nature of uncertainty. In
particular, the use of single-valued probabilities for events does not enable the
strength or lack of information to be taken into account, with most obvious limi-
tation the inability to reflect if ‘no information at all’ is available about an event
of interest. In recent decades, theory of imprecise probability [3,11] has gained
increasing attention from the research community, including contributions to
reliability and risk [12]. It generalizes classical, precise, probability theory by
assigning to each event two values, a lower probability and an upper probability,
denoted by P and P , respectively, with 0 ≤ P ≤ P ≤ 1. These can be inter-
preted in several ways [3,11], for the current discussion it suffices to regard them
as the sharpest bounds for a probability based on the information available,
where the lower probability typically reflects the information available in sup-
port of the event of interest and the corresponding upper probability reflects the
information available against this event. The case of no information at all can
be reflected by [P, P] = [0, 1] while equality P = P results in classical precise
probability.

We propose the further generalization of the structure function within impre-
cise probability theory by introducing the lower structure function

φ(x) = P (S|x) (2)

and the upper structure function

φ(x) = P (S|x) (3)

This provides substantial flexibility for practical application of methods to quan-
tify system reliability and other dependability concepts. For example, it may be
known historically that, under different external circumstances, a system with
a certain subset of its components functioning manages a task well in 85 to 95
percent of all cases. While it might be possible to go into further detail and
e.g. describe beliefs within this range by a probability distribution, or assume
this for mathematical convenience, this may not be required or it may actually
be impossible in a meaningful way, and one can use lower probability 0.85 and
upper probability 0.95 to accurately reflect this information. If one has to rely
on expert judgements to assign the values of the structure function, then time
may often be too limited to meaningfully assign precise probabilities for system
functioning for all possible component state vectors. In such cases, the use of
imprecise probabilities also offers suitable flexibility. Assigning a subset of prob-
abilities for some events (or bounds for these) will imply bounds for all other

Modelling Uncertain Aspects of System Dependability 23

related events under suitable coherence assumptions [3,11]1, where particularly
assumed coherence of the system, which implies that any additional component
failure can never improve system functioning, is useful and practically justifiable
in many applications.

3 Survival Signature with Generalized Structure
Function

Recently, we introduced the survival signature to assist reliability analyses for
systems with multiple types of components [9]. In case of just a single type of
components, the survival signature is closely related to the system signature [17],
which is well-established and the topic of many research papers during the last
decade. However, generalization of the signature to systems with multiple types
of components is extremely complicated (as it involves ordering order statistics of
different distributions), so much so that it cannot be applied to most practical
systems. In addition to the possible use for such systems, where the benefit
only occurs if there are multiple components of the same types, the survival
signature is arguably also easier to interpret than the signature. In this section,
we briefly review the survival signature and some recent advances, then link it
to the generalization of the structure function proposed in Section 2.

Consider a system with K ≥ 1 types of components, with mk components of
type k ∈ {1, . . . ,K} and

∑K
k=1 mk = m. Assume that the random failure times

of components of the same type are exchangeable [14], while full independence
is assumed for the random failure times of components of different types. Due to
the arbitrary ordering of the components in the state vector, components of the
same type can be grouped together, leading to a state vector that can be written
as x = (x1, x2, . . . , xK), with xk = (xk

1 , x
k
2 , . . . , x

k
mk

) the sub-vector representing
the states of the components of type k.

The survival signature [9] for such a system, denoted by Φ(l1, . . . , lK), with
lk = 0, 1, . . . ,mk for k = 1, . . . ,K, is defined as the probability for the event
that the system functions given that precisely lk of its mk components of type
k function, for each k ∈ {1, . . . ,K}.

There are
(
mk

lk

)
state vectors xk with

∑mk

i=1 x
k
i = lk. Let S

k
lk

denote the set of
these state vectors for components of type k and let Sl1,...,lK denote the set of
all state vectors for the whole system for which

∑mk

i=1 x
k
i = lk, k = 1, . . . ,K. Due

to the exchangeability assumption for the failure times of the mk components of
type k, all the state vectors xk ∈ Sk

lk
are equally likely to occur, hence [9]

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

φ(x) (4)

1 Coherence here refers to consistency properties of imprecise probabilities, so is dif-
ferent from the term ‘coherence’ used for systems; we do not use this term in the
former meaning further in this paper to avoid confusion.

24 F.P.A. Coolen and T. Coolen-Maturi

We now consider the survival signature with the generalized structure func-
tion as discussed in Section 2, using the lower structure function (2) and upper
structure function (3). The survival signature can straightforwardly be adapted
to include these, due to its monotone dependence on the structure function. This
leads to the following definitions of the lower survival signature

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

φ(x) (5)

and the corresponding upper survival signature

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

φ(x) (6)

These are the sharpest possible bounds for the survival signature corresponding
to the lower and upper structure functions, and as such indeed the lower and
upper probabilities for the event that the system functions given that precisely
lk of its mk components of type k function, for each k ∈ {1, . . . ,K}.

These lower and upper survival signatures can be used for imprecise reliability
quantifications. Particularly if chosen quantifications are monotone functions of
the survival signature, this is again a straightforward generalization of the precise
approach [9]. Let us consider the event that the system functions for the next
task it has to perform, denoted by S. Let Ck ∈ {0, 1, . . . ,mk} denote the number
of components of type k in the system which function when required for the next
task. The probability for the event S is [9]

P (S) =

m1∑

l1=0

· · ·
mK∑

lK=0

Φ(l1, . . . , lK)P (
K⋂

k=1

{Ck = lk}) (7)

With the generalization of the survival signature, we get the lower probability
for the event that the systems functions for the next task

P (S) =

m1∑

l1=0

· · ·
mK∑

lK=0

Φ(l1, . . . , lK)P (

K⋂

k=1

{Ck = lk}) (8)

and the corresponding upper probability

P (S) =

m1∑

l1=0

· · ·
mK∑

lK=0

Φ(l1, . . . , lK)P (

K⋂

k=1

{Ck = lk}) (9)

For this imprecise case, just as for the precise case [9], assuming independence of
the functioning of components of different types leads to, for lk ∈ {0, 1, . . . ,mk}
for each k ∈ {1, . . . ,K},

P (

K⋂

k=1

{Ck = lk}) =
K∏

k=1

P (Ck = lk)

Modelling Uncertain Aspects of System Dependability 25

If in addition it is assumed that functioning of components of the same type is
conditionally independent given probability fk ∈ [0, 1] that a component of type
k functions for the next task, then

P (

K⋂

k=1

{Ck = lk}) =
K∏

k=1

(
mk

lk

)

f lk
k [1− fk]

mk−lk

This leads to relatively straightforward computations for reliability metrics,
which we do not discuss further in this paper. It is important though to empha-
size that exactly the same approach can be followed when interest is in processes
over time, where instead of focussing on functioning of the system for the next
task one can consider the probability that the system functions at a given time
[9].

The probabilities for the numbers of functioning components can also be gen-
eralized to lower and upper probabilities, as e.g. done by Coolen et al. [10] within
the nonparametric predictive inference framework of statistics [5], where lower
and upper probabilities for the events Ck = lk are inferred from test data on
components of the same types as those in the system. This step is slightly less
trivial as one must ensure to have probability distributions for these events, thus
summing to one over lk = 0, 1, . . . ,mk for each type k. For monotone systems
this is not very complicated due to the monotonicity of the (lower or upper)
survival signature.

The main advantage of the survival signature, in line with this property of the
signature for systems with a single type of components [17], as shown by Equa-
tion (7), is that the information about the system structure is fully separated
from the information about functioning of the components, which simplifies re-
lated statistical inference as well as considerations of optimal system design.
This property clearly also holds for the lower and upper survival signatures as
is shown by Equations (8) and (9).

4 Multiple Types of Tasks

If a system may need to deal with different tasks, the (lower or upper) structure
function should, ideally, be defined for each specific type of task. Let there be
R ≥ 1 types of tasks. The (lower or upper) structure function for a specific type
of task r ∈ {1, . . . , R} is the (lower or upper) probability for the event that the
system functions for component states x and for known type of task r, we denote
these as before with an additional subscript r (we generalize earlier notation in
this way throughout this section without explicit introduction), so

φr(x) = P (S|x, r) φ
r
(x) = P (S|x, r) φr(x) = P (S|x, r)

If interest is in the next task that the system has to perform, and it is known
of which type this task is, then we are back to the setting discussed before. If
the type of task is not known with certainty, then there are several possible
scenarios. First, suppose that one can assign a precise probability for the event

26 F.P.A. Coolen and T. Coolen-Maturi

that the next task is of type r, denoted by pr, for each r ∈ {1, . . . , R}. Then
the system structure function for the next task can be derived via the theorem
of total probability, which also applies straightforwardly to the corresponding
lower and upper structure functions in the generalized case. This leads to

φ(x) =
R∑

r=1

φr(x)pr φ(x) =
R∑

r=1

φ
r
(x)pr φ(x) =

R∑

r=1

φr(x)pr

For this scenario the corresponding lower and upper survival signatures that
apply for the next task, of random type, are easily derived and given by

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

R∑

r=1

φ
r
(x)pr

=
R∑

r=1

Φr(l1, . . . , lK)pr

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

R∑

r=1

φr(x)pr

=

R∑

r=1

Φr(l1, . . . , lK)pr

These results hold as all sums involved are finite, hence the order of summations
can be changed, which can also be applied to derive

P (S) =

R∑

r=1

P r(S)pr

P (S) =

R∑

r=1

P r(S)pr

Secondly, one may only be able to assign bounds for the probabilities pr,
where the sharpest bounds one can assign are lower and upper probabilities,
denoted by p

r
and pr. Let p denote any probability vector of dimension R, so

p = (p1, . . . , pR) with all pr ≥ 0 and
∑R

r=1 pr = 1, and let P denote the set of
all such probability vectors with p

r
≤ pr ≤ pr for all r ∈ {1, . . . , R}2. In this

situation, deriving the lower and upper structure functions for the next task is
less straigthforward, as they require optimisation over the set P of probability
vectors

φ(x) = min
p∈P

R∑

r=1

φ
r
(x)pr φ(x) = max

p∈P

R∑

r=1

φr(x)pr (10)

2 This set P is known as the ‘structure’ of the imprecise probability model [3,11], we
will not use this term further to avoid confusion with the use of the term structure
for the considered system.

Modelling Uncertain Aspects of System Dependability 27

In case of a precise structure function, the lower and upper structure functions
on the right-hand sides of these equations are just equal to the precise structure
function, with imprecision still resulting from the set P of probability vectors.
While these optima are not available in closed-form, their computation is quite
straightforward, solutions are obtained by setting all pr equal to either p

r
or pr

apart from one which will take on a value within its corresponding range [p
r
,pr]

such that the individual probabilities sum up to one.
For this scenario, deriving the corresponding lower and upper survival signa-

tures is less straightforward than for the first scenario above. Inserting the lower
and upper structure functions (10) into the equations for the lower and upper
survival signatures would give the expressions

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

(

min
p∈P

R∑

r=1

φ
r
(x)pr

)

(11)

and
[

K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

(

max
p∈P

R∑

r=1

φr(x)pr

)

(12)

However, the corresponding lower and upper survival signatures are

Φ(l1, . . . , lK) = min
p∈P

⎛

⎝

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

R∑

r=1

φ
r
(x)pr

⎞

⎠

Φ(l1, . . . , lK) = max
p∈P

⎛

⎝

[
K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

R∑

r=1

φr(x)pr

⎞

⎠

which generally requires solving complex optimisation problems. This lower sur-
vival signature is greater than or equal to expression (11) and this upper survival
signature is less than or equal to expression (12). If the optimisations in expres-
sion (11) all have the same probability vector within P as solution, then the
lower survival signature is equal to this expression, and similarly for the upper
survival signature with regard to the optimisations in expression (12). While this
may appear to be unlikely, we will illustrate a case were it applies in the example
in Section 5. Further investigations into the optimisation problems for general
situations are left as an important challenge for future research.

Finally, one may wish to use statistical inference for the pr in case one has
relevant data. There is a variety of options, including Bayesian methods, which
might be generalized through the use of sets of prior distributions as in the
imprecise Dirichlet model for multinomial data [3] and nonparametric predictive
inference [7,8]. The latter approach may be of specific interest as it provides the
possibility to take unobserved or even undefined tasks into consideration [4].

28 F.P.A. Coolen and T. Coolen-Maturi

2

1

3

2

1

Fig. 1. System with three types of components

Table 1. Survival signatures for system in Figure 1, two cases

l1 l2 l3 Φ1(l1, l2, l3) Φ2(l1, l2, l3)

0 1 1 1/2 0
0 2 0 1 0
1 0 1 1/2 0
1 1 0 1/2 0
1 1 1 3/4 1/2
1 2 0 1 1/2
2 0 0 1 0
2 1 0 1 1/2

5 Example

Consider the system presented in Figure 1, consisting of two subsystems in se-
ries configuration, but with the following variation for the second subsystem
consisting of three components: for some tasks to be performed according to the
requirements it is sufficient for one of the three components to function, but for
other tasks (or under other circumstances) it is necessary to have at least two
components functioning. We will refer to these as Case 1 and Case 2, respec-
tively. The survival signatures for this system corresponding to these two cases
are presented in Table 1, denoted by Φ1 and Φ2, where the quite trivial entries
for which both survival signatures are equal to 0 or 1 are not included.

Suppose that five different possible tasks have been identified which this sys-
tem may have to deal with. This may actually be different tasks, or just due to
different circumstances under which the tasks may need to be performed. For
Task A Case 1 applies, so only one functioning component in the second sub-
system is required. For Task B Case 2 applies. For Task C there is uncertainty
about whether one or two components need to function in the second subsys-
tem, with either case having probability 1/2. For Task D the same uncertainty
occurs, but the probabilities that either case applies are not precisely known,
with lower and upper probability for Case 1 equal to 0.4 and 0.8, respectively,
which by the conjugacy property for lower and upper probabilities [11] implies

Modelling Uncertain Aspects of System Dependability 29

Table 2. Lower and upper survival signatures for Tasks A-E

l1 l2 l3 ΦA ΦB ΦC [ΦD, ΦD] [ΦE , ΦE]

0 1 1 0.5 0 0.25 [0.2, 0.4] [0, 0.5]
0 2 0 1 0 0.5 [0.4, 0.8] [0, 1]
1 0 1 0.5 0 0.25 [0.2, 0.4] [0, 0.5]
1 1 0 0.5 0 0.25 [0.2, 0.4] [0, 0.5]
1 1 1 0.75 0.5 0.625 [0.6, 0.7] [0.5, 0.75]
1 2 0 1 0.5 0.75 [0.7, 0.9] [0.5, 1]
2 0 0 1 0 0.5 [0.4, 0.8] [0, 1]
2 1 0 1 0.5 0.75 [0.7, 0.9] [0.5, 1]

lower and upper probability 0.2 and 0.6 for Case 2. Finally, for Task E the same
uncertainty occurs but there is no knowledge at all about the probability with
which each case applies, represented by lower and upper probabilities 0 and 1,
respectively, for both cases.

The survival signatures for Tasks A and B are just ΦA = Φ1 and ΦB = Φ2. For
Tasks C-E, the generalized structure functions are easily derived and lead to the
(lower and upper) survival signatures given in Table 2, where for completeness
also ΦA and ΦB are given and entries which are either equal to 0 or 1 for all
these functions have been left out.

For these (lower and upper) survival signatures, the following ordering holds
for all (l1, l2, l3),

ΦB = ΦE ≤ ΦD ≤ ΦC ≤ ΦD ≤ ΦE = ΦA

This means that in this example the special case applies in which expressions
(11) and (12) give the lower and upper survival signatures, as the minimisa-
tions to derive the following lower survival signatures are all solved by the same
probability vector in P , and similar for the maximisations to derive the upper
survival signatures. While this special case does not illustrate the full modelling
ability of the concepts presented in this paper, it is of practical interest in sce-
narios such as discussed in this example, where there are a number of basic tasks
which differ with regard to their demands on the system, and a variety of cases
for the next possible task to be performed, each of these being represented by
a different (imprecise) probability distribution over those basic tasks. For all
such cases, the optimisations involved in deriving the lower and upper survival
signatures for the next task to be performed by the system are straightforward,
as in this example. We now consider several scenarios with different levels of
knowledge about the type of the next task, the lower and upper survival signa-
tures are presented in Table 3 (again leaving out those which are trivially equal
to 0 or 1).

Suppose first, Case I, that the next task can be of any of the five types A−E,
each with probability 0.2. The lower survival signature for the next task in this

30 F.P.A. Coolen and T. Coolen-Maturi

Table 3. Lower and upper survival signatures for Cases I-IV

l1 l2 l3 [ΦI , ΦI] [ΦII , ΦII] [ΦIII , ΦIII] [ΦIV , ΦIV]

0 1 1 [0.19, 0.33] [0.17, 0.34] [0.095, 0.415] [0.17, 0.39]
0 2 0 [0.38, 0.66] [0.34, 0.68] [0.19, 0.83] [0.34, 0.68]
1 0 1 [0.19, 0.33] [0.17, 0.34] [0.095, 0.415] [0.17, 0.39]
1 1 0 [0.19, 0.33] [0.17, 0.34] [0.095, 0.415] [0.17, 0.39]
1 1 1 [0.595, 0.665] [0.585, 0.67] [0.5475, 0.7075] [0.535, 0.695]
1 2 0 [0.69, 0.83] [0.67, 0.84] [0.595, 0.915] [0.62, 0.84]
2 0 0 [0.38, 0.66] [0.34, 0.68] [0.19, 0.83] [0.34, 0.68]
2 1 0 [0.69, 0.83] [0.67, 0.84] [0.595, 0.915] [0.62, 0.84]

case, denoted by ΦI , is derived as the average of the (lower) survival signatures
for tasks A-E, and similar for the upper survival signature. For Case II, suppose
that the next task can again be of types A, B or C with probability 0.2 each, but
there is uncertainty (‘indeterminacy’) with regard to the probability that this
task may be of types D or E, reflected through lower and upper probabilities
of 0.1 and 0.3, respectively, for both these types. To derive the lower survival
signature for the next task in this case, we assign maximum probability 0.3 to
ΦE for all (l1, l2, l3), as this is never greater than ΦD, which of course is assigned
the minimum possible probability 0.1 to remain within the set of probability
vectors P . Similarly, due to ΦE ≥ ΦD for all (l1, l2, l3), the corresponding upper
survival signature is derived by assigning probability 0.3 to ΦE and 0.1 to ΦD.

To illustrate a greater level of indeterminacy with regard to the next task,
Case III considers that it may be of each of the five identified types with lower
probability 0.1 and upper probability 0.5. With the ordering of the (lower and
upper) survival signatures for the five types, it is easy to verify that the lower
survival signature over this set of probability vectors P is derived by assigning
probability 0.4 to ΦB, 0.3 to ΦE and 0.1 to each of ΦD, ΦC and ΦA. Similarly,
the upper survival signature is derived by assigning probability 0.4 to ΦA, 0.3 to
ΦE and 0.1 to each of ΦD, ΦC and ΦB.

Finally, we return to the scenario of Case II, but with an important addi-
tion. For Case IV, suppose that it is judged that the next task the system needs
to perform could actually also be a totally unknown task, for which it is not
known at all whether or not the system can deal with it. This goes beyond
the two basic tasks discussed throughout this example, for which the structure
functions were given in Table 1. To reflect total lack of knowledge of such an
unknown (‘unidentified’, ‘unforeseen’) task, which we indicate by index U , we
can assign lower structure function φ

U
(l1, l2, l3) = 0 and upper structure func-

tion φU (l1, l2, l3) = 1 for all (l1, l2, l3), reflecting that even with all components
functioning we do not know if the system can deal with this task, and that even
with no components functioning it might be possible that this task can be satis-
factorily dealt with. While these values may appear to be extreme, it covers all
possibilities for unknown tasks, including e.g. targeted attacks on the system. It
should be emphasized that such lack of knowledge cannot be taken into account

Modelling Uncertain Aspects of System Dependability 31

adequately when restricted to the use of precise probabilities, and thus illus-
trates one of the major advantages of the use of imprecise probabilities. Let us
assume that the next task can be of type U with lower probability 0 and upper
probability 0.1, so the set of probability vectors over the six types A−E and U
consists of all probability vectors with pA = pB = pC = 0.2, pD, pE ∈ [0.1, 0.3]
and pU ∈ [0, 0.1]. To derive the lower survival signature for the next task in
this case, we assign, in addition to the fixed probabilities 0.2 to types A,B,C,
probability 0.1 to ΦU , 0.2 to ΦE and 0.1 to ΦD. To derive the corresponding
upper survival signature, we similarly assign probability 0.1 to ΦU , 0.2 to ΦE

and 0.1 to ΦD.
As is clear from Table 3, increase in indeterminacy, reflected through increased

imprecision in the assigned lower and upper probabilities, leads to more impre-
cise lower and upper survival signatures in a logically nested way. From the
perspective of risk management, the lower survival signatures are likely to be of
most interest, as they reflect the most pessimistic scenario for system function-
ing corresponding to the information and assumptions made. As this example
shows, the lower survival signature is derived by assigning the maximum possible
probabilities to the possible types of task for which the system is least likely to
function well.

In Case IV, we illustrated the possibility to include a totally unknown type
of task by assigning lower and upper probabilities of 0 and 0.1 for the event
that the next task is of such nature. In most risk scenarios, it would make
sense to have lower probability 0 for such an event. The upper probability is,
of course, more important for risk management as, combined with the lower
probability for the system functioning well for such a task, it relates to the most
pessimistic scenario. To illustrate our method we just chose the value 0.1 for this
upper probability, yet it is worth mentioning that the nonparametric predictive
inference (NPI) approach can actually provide a meaningful numerical value for
the upper probability for the event that an as yet unobserved or even undefined
event occurs [4,7,8,13]. This NPI upper probability, which we do not discuss
further in this paper, is based on relatively weak assumptions and is decreasing
as function of the number of events considered in the data yet increasing as
function of the number of different types of tasks the system had to deal with
thus far.

6 Discussion

Traditional theory of system reliability tends to make some pretty strong as-
sumptions with regard to knowledge about systems and their practical use.
As shown in this paper, rather straightforward generalization of the structure
function to consider it as a probability increases modelling opportunities sub-
stantially. Beyond that, the use of imprecise probabilities enables us to reflect
indeterminacy, which is particularly important in risk scenarios where one may
have limited knowledge and experience of the system functioning, or where the
system may need to be resilient in case of unforeseen tasks. In this paper we have

32 F.P.A. Coolen and T. Coolen-Maturi

illustrated the approach mainly by considering different types of tasks, which in
the example were related to two basic ways a given system could need to func-
tion, namely with one subsystem either requiring only one or at least two of its
three components to function. The main advantage of the survival signature as
presented in this paper is that this generalization of the structure function is
quite straigthforwardly embedded in its definition, leading to lower and upper
survival signatures. These are formulated for a single future task, which is im-
portant if one wishes to use statistical methods to infer system reliability and to
reflect the amount of information available. Developing such statistical methods
related to the lower and upper survival signatures is an interesting challenge for
future research.

One could argue that using imprecise probability to reflect indeterminacy
is an easy way out, as one effectively considers both the most optimistic and
pessimistic scenarios which correspond to the information available, and reports
the bounds based on these as the results of the inferences. The importance of
this generalization of probability should, however, not be underestimated, as it
avoids choosing precise values even in cases where there is no justification for
doing so. Seeing the quality of the available information reflected explicitly in the
reliability quantification, without lack of detailed information being hidden due
to stronger assumptions or precise input values chosen for convenience, provides
useful information for managing risks. If one does have quite detailed information
it can be included in the inferences, and indeed doing so will normally lead to less
imprecision, so it is certainly worth aiming to use all available information. In
addition, one can also explore the influence of further assumptions or information
on the imprecise results, which can be helpful if one wishes to explore what to
focus on in order to derive the most useful information for a specific problem.

Following the first steps presented in this paper, there are many research
challenges in order to develop a methodology that is applicable to large scale
systems. It is important for such research challenges to be taken on with direct
relation to real world applications, in order to discover the real problems and
to see how results can be implemented. Part of such challenges will be in com-
putation, as deriving the survival signature involves complex calculations, the
number of which increases exponentially with the size of the system. Aslett [2]
has developed a function in the statistical software R which can compute the
survival signature for small to medium sized systems, but for practical systems
and networks more research is required.

The theory presented in this paper is particularly useful for systems and net-
works with multiple types of components and with many components of the same
type, as the survival signature is a sufficient summary of the system’s structure
which, in such cases, provides a substantial reduction compared to the complete
structure function. One might encounter such systems and networks in many ap-
plication areas, for example complex computer or communication systems with
many parallel servers, energy networks, and transport infrastructure including
rail networks. It may further be relevant for biology and medical research, explor-
ing the opportunities for applications is an exciting challenge. In many modern

Modelling Uncertain Aspects of System Dependability 33

applications emphasis is on real-time monitoring and online prediction [16]. The
setting presented in this paper may be suitable for such inference, in particu-
lar when combined with nonparametric predictive inference (NPI) [5,9] where
inferences are in terms of the next event and take all data into account. The
combined use of NPI and signatures has been presented for systems consisting
of only a single type of components [1,6]. Recently, NPI has also been applied
together with the survival signature [10], this also requires a substantial research
effort to become implementable to large scale practical problems.

References

1. Al-nefaiee, A.H., Coolen, F.P.A.: Nonparametric predictive inference for system
failure time based on bounds for the signature. Journal of Risk and Reliability 227,
513–522 (2013)

2. Aslett, L.J.M.: ReliabilityTheory: Tools for structural reliability analysis. R pack-
age (2012), www.louisaslett.com

3. Augustin, T., Coolen, F.P.A., de Cooman, G., Troffaes, M.C.M.: Introduction to
Imprecise Probabilities. Wiley, Chichester (2014)

4. Coolen, F.P.A.: Nonparametric prediction of unobserved failure modes. Journal of
Risk and Reliability 221, 207–216 (2007)

5. Coolen, F.P.A.: Nonparametric predictive inference. In: Lovric (ed.) International
Encyclopedia of Statistical Science, pp. 968–970. Springer (2011),
www.npi-statistics.com

6. Coolen, F.P.A., Al-nefaiee, A.H.: Nonparametric predictive inference for failure
times of systems with exchangeable components. Journal of Risk and Reliabil-
ity 226, 262–273 (2012)

7. Coolen, F.P.A., Augustin, T.: Learning from multinomial data: a nonparametric
predictive alternative to the Imprecise Dirichlet Model. In: Cozman, et al. (eds.)
Proceedings ISIPTA 2005, pp. 125–134 (2005)

8. Coolen, F.P.A., Augustin, T.: A nonparametric predictive alternative to the Im-
precise Dirichlet Model: the case of a known number of categories. International
Journal of Approximate Reasoning 50, 217–230 (2009)

9. Coolen, F.P.A., Coolen-Maturi, T.: Generalizing the signature to systems with
multiple types of components. In: Zamojski, W., Mazurkiewicz, J., Sugier, J.,
Walkowiak, T., Kacprzyk, J. (eds.) Complex Systems and Dependability. Advances
in Intelligent Systems and Computing, vol. 170, pp. 115–130. Springer, Heidelberg
(2012)

10. Coolen, F.P.A., Coolen-Maturi, T., Al-nefaiee, A.H.: Nonparametric predictive in-
ference for system reliability using the survival signature. Journal of Risk and
Reliability, doi:10.1177/1748006X14526390

11. Coolen, F.P.A., Troffaes, M.C.M., Augustin, T.: Imprecise probability. In: Lovric
(ed.) International Encyclopedia of Statistical Science, pp. 645–648. Springer
(2011)

12. Coolen, F.P.A., Utkin, L.V.: Imprecise reliability. In: Lovric (ed.) International
Encyclopedia of Statistical Science, pp. 649–650. Springer (2011)

13. Coolen-Maturi, T., Coolen, F.P.A.: Unobserved, re-defined, unknown or removed
failure modes in competing risks. Journal of Risk and Reliability 225, 461–474
(2011)

www.louisaslett.com
www.npi-statistics.com

34 F.P.A. Coolen and T. Coolen-Maturi

14. De Finetti, B.: Theory of Probability. Wiley, New York (1974)
15. Maturi, T.A., Coolen-Schrijner, P., Coolen, F.P.A.: Nonparametric predictive in-

ference for competing risks. Journal of Risk and Reliability 224, 11–26 (2010)
16. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.

ACM Computing Surveys 42(3), article 10 (2010)
17. Samaniego, F.J.: System Signatures and their Applications in Engineering Relia-

bility. Springer (2007)
18. Zamojski, W., Mazurkiewicz, J.: From reliability to system dependability - theory

and models. In: Kolowrocki, Soszynska-Budny (eds.) Proceedings SSARS 2011 -
5th Summer Safety & Reliability Seminars, vol. 1, pp. 223–231 (2011)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

35

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_3

Improving the Dependability of Distributed Surveillance
Systems Using Diverse Redundant Detectors

Francesco Flammini1, Nicola Mazzocca2, Alfio Pappalardo1,2,
Concetta Pragliola1, and Valeria Vittorini2

1 Ansaldo STS, Innovation & Competitiveness Unit
via Argine 425, Naples, Italy

{francesco.flammini,alfio.pappalardo,
concetta.pragliola}@ansaldo-sts.com

2 University of Naples “Federico II”, Department of Computer & Systems Engineering,
via Claudio 21, Naples, Italy

{nicola.mazzocca,alfio.pappalardo,valeria.vittorini}@unina.it

Abstract. Sensor networks nowadays employed in critical monitoring and
surveillance applications represent a relevant case of complex information
infrastructures whose dependability needs to be carefully assessed. Detection
models based on Event Trees provide a simple and effective mean to correlate
events in Physical Security Information Management (PSIM) systems.
However, as a deterministic modeling approach, Event Trees are not able to
address uncertainties in practical applications, like: 1) imperfect threat
modelling; 2) sensor false alarms. Regarding point (1), it is quite obvious that
real-world threat scenarios can be very variable and it is nearly impossible to
consider all the possible combinations of events characterizing a threat. Point
(2) addresses the possibility of missed detections due to sensor faults and the
positive/nuisance false alarms that any real sensor can generate. In this chapter
we describe two techniques that can be adopted to deal with those uncertainties.
The first technique is based on Event Tree heuristic distance metrics. It allows
to generate warnings whenever a threat scenario is detected and it is similar to
the ones in the knowledge base repository. The second technique allows to
measure in real-time the estimated trustworthiness of event detection based on:
a) sensors false alarm rates; b) uncertainties indices associated to correlation
operators. We apply those techniques to case-studies of physical security for
metro railways.

Keywords: Physical Security Information Management, Dependability, Situation
Recognition, False Alarms, Soft Computing, Fuzzy Logic.

1 Introduction

Modern surveillance solutions for infrastructure protection are based on the
integration of different sensing subsystems. Each subsystem can include a large
number of diverse and/or redundant distributed sensors, which are in charge of
detecting abnormal conditions or unwanted events in the monitored environment.

5

36 F. Flammini et al.

The rational exploitation of the available sensing capabilities needs a proper
management and processing of both the “modeled” and “captured” information
together with the related uncertainty. Therefore, together with PSIM systems there is
an increasing need for the appropriate management of parameters characterizing
sensor performances (see references [1,5,6]).

Ideally, the sensors should detect only “real” alarms, that represent a true threat.
However, many devices generate unnecessary warnings, which can be classified as
false alarms or nuisance alarms. False alarms are due to events that should not cause
an alarm, while nuisance alarms are generated when a legitimate cause occurs, but
alarm activation is not due to a real threat. The same consideration is still valid for a
sensing subsystem as a whole, i.e. including sensing devices and specific software for
the processing of what they detect (e.g. intelligent video surveillance systems include
cameras and video content analytics for the detection of events).

We have addressed the issue of automatic situation recognition by developing a
framework for model-based event correlation in infrastructure surveillance. The
framework – named DETECT – is able to store in its knowledge base any number of
threat scenarios described in the form of Event Trees, and then recognize those
scenarios in real-time, providing early warnings to PSIM users [7].

The aim of this chapter is to provide means to improve both effectiveness and
efficiency of situation recognition in PSIM. Effectiveness is achieved by enriching the
system with enhanced detection capabilities by defining and computing appropriate
Event Tree distance metrics based on heuristic approaches. That allows to reduce the
number of threats to be modelled and included in the knowledge base (i.e. scenario
repository). Efficiency is to be intended at human-machine interaction level, by
associating a level of trustworthiness to threat detection in order to allow PSIM
operators to be aware of alarm credibility and priority of intervention, and hence react
consequently.

More specifically, we can evaluate the impact of the reliability of each
sensor/subsystem on the reliability of the whole integrated surveillance system, in
terms of POD (Probability of Detection) and FAR (False Alarm Rate) parameters.
The first characterizes the effectiveness of a detection system, the second determines
its operational viability [3,4]. The need for such an evaluation is especially important
when integrated surveillance systems are extended by means of a correlation engine
aimed at the automatic threat detection and situation recognition. In fact, in that case,
the alarm activation is based on the correlation of different sensors output (and
involves also the activation of the related countermeasures).

In order to demonstrate the application of the approach, several threat scenarios
impacting physical security of metro railway stations are considered.

The rest of this chapter is structured as follows. Section 2 provides an overview of
the related literature on DETECT and on the topics addressed by this chapter, and it
introduces the basic concepts of the event description language. Section 3 describes
the metrics used to evaluate the distance between event trees and provides several
application examples in DETECT. Section 4 describes the on-line computation of
detection trustworthiness using sensor performance and reliability data, together with
a possible “fuzzy” correlation approach. Finally, Section 5 provides conclusions and
hints for future improvements.

 Improving the Dependability of Distributed Surveillance Systems 37

2 Background

2.1 Related Works

The first concept of DETECT has been described in [7], where the overall
architecture of the framework is presented, including the composite event
specification language (EDL, Event Description Language), the modules for the
management of detection models and the scenario repository. In [5], an overall system
including a middleware for the integration of heterogeneous sensor networks is
described and applied to railway surveillance case-studies. Reference [14] discusses
the integration of DETECT in the PSIM system developed by Ansaldo STS, namely
RailSentry [2], presenting the reference scenario which will be also used in this
chapter. The first idea of using scenario similarity analysis has been introduced in
reference [15]; however, it only worked with isomorphic trees and therefore its
practical utility was rather limited.

A survey of state-of-the-art methods in physical security technologies and
advanced surveillance paradigms, including a section on PSIM systems, is provided in
[16]. Contemporary remote surveillance systems for public safety are also discussed
in [17]. Technology and market-oriented considerations on PSIM can be also found in
[18,19].

We could not find any specific applications of real-time trustworthiness evaluation
for PSIM like the one we describe in this chapter. However, we report in the
following some “static” approaches dealing with multi-sensor dependability
evaluation.

In [8] the authors address the issue of providing fault-tolerant solutions for WSN,
using event specification languages and voting schemes. A similar issue is addressed
in [9], where the discussion focuses on different levels of information/decision fusion
on WSN event detection using appropriate classifiers and reaching a consensus
among them in order to enhance trustworthiness. Reference [13] describes a method
for evaluating the reliability of WSN using the Fault Tree modelling formalism, but
the analysis is limited to hardware faults (quantified by the Mean Time Between
Failures, MTBF) and homogenous devices (i.e. the WSN motes). Performance
evaluation aspects of distributed heterogeneous surveillance systems are instead
addressed in [11], which only lists the general issues and some pointers to the related
literature. Reference [10] addresses trustworthiness analysis of sensor networks in
cyber-physical systems, focusing on the reduction of false alarms by clustering
sensors according to their locations and by building appropriate object-alarm graphs.
Another general discussion on the importance of the evaluation of performance
metrics and human factors in distributed surveillance systems can be found in [12].

2.2 Event Description Language

Threats scenarios are described in DETECT using a specific Event Description
Language (EDL) and stored in a Scenario Repository. In this way we are able to store
permanently all scenario features in an interoperable format (i.e. XML). A high level
architecture of the framework is depicted in Fig. 1.

38 F. Flammini et al.

Fig. 1. The DETECT framework

A threat scenario expressed by EDL consists of a set of basic events detected by
the sensing devices. An event is a happening that occurs at some locations and at
some points in time. In this context, events are related to sensor data (e.g. temperature
higher than a threshold, motion detected by an intelligent camera, intrusion detected
by a volumetric sensor). Events are classified as primitive events and composite
events.

A primitive event is a condition on a specific sensor which is associated to some
parameters (i.e. event identifier, time of occurrence, etc...). A composite event is a
combination of primitive events by means of proper logical and temporal operators.

Each event is denoted by an event expression, whose complexity grows with the
number of involved events. Given the expressions nEEE ,...,, 21 , every application on

them through any operator is still an expression. Event expressions are represented by
Event Trees, where primitive events are at the leaves and internal nodes represent
EDL operators.

DETECT is able to support the composition of complex events in EDL through a
Scenario GUI (Graphical User Interface), used to draw threat scenarios by means of a
user-friendly interface.

Furthermore, in the operational phase, a model manager macro-module has the
responsibility of performing queries on the Event History database for the real-time
feeding of detection models corresponding to threat scenarios, according to
predetermined policies. Those policies, namely parameter contexts, are used to set a
specific consumption mode of the occurrences of the events collected in the database.

The EDL is based on the Snoop event algebra [20], considering the following
operators: OR, AND, ANY, SEQ. As an example, Fig. 2 shows a simple event tree
representing the scenario (E1 AND E2) OR E3. In this example scenario, for the sake
of simplicity, the association between the primitive event and the sensor, which
detected it, is not made explicit.

Fig. 2. A simple event tree

E1 E2

E3AND

OR

 Improving the Dependability of Distributed Surveillance Systems 39

The semantics of the Snoop operators are as follows:

• OR. Disjunction of two events 1E and 2E , denoted)(21 EORE . It occurs

when at least one of its components occurs.

• AND. Conjunction of two events 1E and 2E , denoted)(21 EANDE . It

occurs when both events occur (the temporal sequence is ignored).

• ANY. A composite event, denoted),...,,,(21 nEEEmANY , where nm ≤ .

It occurs when m out of n distinct events specified in the expression occur
(the temporal sequence is ignored).

• SEQ. Sequence of two events 1E and 2E , denoted)(21 ESEQE . It

occurs when 2E occurs provided that 1E has already occurred. This means

that the time of occurrence of 1E has to be less than the time of occurrence

of 2E .

Furthermore, temporal constraints can be specified on operators, to restrict the
time validity of logic correlations.

In order to take into account appropriate event consumption modes and to set how
the occurrences of primitive events are processed, four parameter contexts are
defined. Given the concepts of initiator (the first constituent event whose occurrence
starts the composite event detection) and terminator (the constituent event that is
responsible for terminating the composite event detection), the four different contexts
are described as follows.

• Recent: only the most recent occurrence of the initiator is considered.

• Chronicle: the (initiator, terminator) pair is unique. The oldest initiator is
paired with the oldest terminator.

• Continuous: each initiator starts the detection of the event.

• Cumulative: all occurrences of primitive events are accumulated until the
composite event is detected.

The effect of the operators is then conditioned by the specific context in which they
are placed.

When a composite event is recognized, the output of DETECT consists of:

• the identifier(s) of the detected/suspected scenario(s)1;

• the temporal value related to the occurrence of the composite event
(corresponding to the event occurrence time of the last component primitive
event, given by the sensor timestamp);

1 The difference between detected and suspected scenario depends on the partial or total

matching between the real-time event tree and the stored threat pattern.

40 F. Flammini et al.

• an alarm level (optional), associated to scenario evolution (used as a progress
indicator and set by the user at design time);

• other information depending on the detection model (e.g. ‘likelihood’ or
‘distance’, in case of heuristic detection).

3 Heuristic Distance Metrics for Event Trees

3.1 Definition of Distance Metrics

The following attributes can be associated to Event Trees (positive integer numbers):

1. TN: total number of nodes

2. TD: tree depth, that is the number of levels from leaves to the top node

3. TW: tree width, that is the maximum number of operators at the same level

4. SL: set of leaf nodes

5. SO: set of operator nodes

Though other attributes (e.g. number of arcs) could be associated to event trees, the
ones listed above seem to picture a comprehensive yet not redundant set of
characteristics. While a theoretical demonstration could be possible, such a statement
has been validated experimentally. For instance, the number of arcs in all the
significant scenarios included in the repository was always dependant on the number
of nodes.

In order to obtain an easy to compute metric, the distance between two event trees
is obtained as the sum of the differences between homologous attributes. In other
words, the distance D among event trees A and B is obtained as follows:

ABABBABABA DSODSLTWTWTDTDTNTND ++−+−+−=

(+ 1 if parameter contexts are different)

The quantities DSL and DSO are computed as set differences (card competes the
cardinality of the set):

)()(BABAAB SLSLcardSLSLcardDSL ∩−∪=

)()(BABAAB SOSOcardSOSOcardDSO ∩−∪=

It is quite obvious that such a heuristic distance metric can be applied to any couple

of event trees, regardless of possible isomorphisms2.

2 Two trees are isomorphic when they are identical in graph structure (they could differ in node

attributes).

 Improving the Dependability of Distributed Surveillance Systems 41

3.2 Implementation in DETECT

An appropriate algorithm has been implemented in DETECT in order to properly
compute tree attributes. In the following, the notation of each leaf node (i.e. Ex-Sx,
where x is a positive integer) includes indications regarding both the typology of the
primitive event (i.e. Ex) and the sensor responsible for its detection (i.e. Sx),
according to a pre-defined encoding.

Starting from the root node, the whole tree is scanned and each node is saved in a
table where each row represents a tree level (see Fig. 3). For each node, the name of
the father node is saved as well as the list including the names of the son nodes. In the
end of the scan, all the information relevant for tree attributes computation will be
available. Hence the formula to obtain the distance between any couple of trees can be
easily computed. Off-line distance calculation is very useful when inserting a new
event tree in the Scenario Repository. In fact, when a human operator finishes
building the event tree and saves it in the repository, he/she can see all the distances
(possibly only the ones lower than a certain threshold) with all the other event trees in
the repository. Therefore, if another tree exists whose distance from the new one is
very low, then it is possible the two trees represent the same threat (or similar threats)
and therefore could be somehow merged to reduce multiple warnings and improve
usability as well.

Fig. 3. An example table obtained from an event tree

For on-line calculation, the distance needs to be computed bottom-up starting from
subtree attributes, which will be associated at run-time to each node (see Fig. 4). Due
to the working logics of DETECT, some limitations hold for the run-time
computation of tree attributes (e.g. the TD metric cannot be computed at run-time).
More specifically, since operator nodes can be considered as the roots of the subtrees
below them, it is possible to associate to operator nodes the attributes of the subtrees
below them. Hence, moving from the leaves to the root and exploiting the already
computed attributes, each operator node will be associated to updated attributes
representing all the tree structure below it. Therefore, the root node will include the
overall attributes of the whole tree. When a subtree is detected and its alarm level in

42 F. Flammini et al.

DETECT is greater than 0, its attributes are compared with the ones of all the other
event trees in the Scenario Repository. If the distance D with another threat scenario T
is lower than a configurable threshold DT , then a warning is generated and shown to
the PSIM human operator, in order to warn him/her about the risk that threat T is
occurring. It is obviously possible to associate different warning levels to different
distances (the lower the distance metric, the highest the warning level); however, in
practical applications it is important to keep the system simple to understand to
operators. Therefore, we have decided to use a single threshold and a single warning
level.

Fig. 4. Example of on-line subtree attributes computation

3.3 Distance Metrics Examples

In this section we report some examples of evaluation of attributes and distance
metrics for reference threat scenarios. The first scenario we consider is the Chemical
Attack (scenario A) by means of a CWA (Chemical Warfare Agent), which we have
already described in reference [14], whose event tree is depicted in Fig. 5 together
with a table including its attributes.

Events in the scenario are described as follows using the notation “sensor
description (sensor ID) :: event description (event ID)”:

Intelligent Camera (S1) :: Fall of person (E1)
Intelligent Camera (S1) :: Abnormal running (E2)
Intelligent Camera (S2) :: Fall of person (E1)
Intelligent Camera (S2) :: Abnormal running (E2)

 Improving the Dependability of Distributed Surveillance Systems 43

Audio sensor (S3) :: Scream (E3)
IMS/SAW detector (S4) :: CWA detection (E4)
IR detector (S5) :: CWA detection (E4)

The same scenario could be represented in other way using the model of Fig. 6

(scenario B), featuring slightly different attributes.

SCENARIO A
TN 12

TD 3

TW 2

SL E1-S1, E2-S1, E1-S2, E2-S2, E3-S3, E4-S4, E4-S5 cardinality=7

SO AND, ANY, SEQ, OR cardinality=4

Fig. 5. Event tree attributes for the Chemical Attack scenario

The two scenarios of Fig. 5 and Fig. 6 feature the same primitive events (i.e. the
trees have the same leaves) and therefore the SL distance is 0. Instead, the sets of
operators differ by 1. Overall, the distance is given by:

D = |12−10| + |3−3| + |2−1| + 0 + 1 = 4

Now, let us consider a scenario of pickpocketing/aggression (scenario C), which

could partially overlap with the previous one regarding people behaviour, since it
features the composite event represented by the ANY operator included in scenario B.
Furthermore it is similar to the corresponding ANY in scenario A. Please refer to
Fig. 7, where E5-S6 represents an alarm coming from the emergency call point.

44 F. Flammini et al.

SCENARIO B
TN 10

TD 3

TW 1

SL E1-S1, E2-S1, E1-S2, E2-S2, E3-S3, E4-S4, E4-S5 cardinality=7

SO SEQ, AND, ANY cardinality=3

Fig. 6. Event tree attributes for another version of the Chemical Attack scenario

SCENARIO C

TN 8

TD 2

TW 1

SL E1-S1, E2-S1, E1-S2, E2-S2, E3-S3, E5-S6 cardinality=6

SO SEQ, ANY cardinality=2

Fig. 7. Event tree attributes for the Pickpocketing/Aggression scenario

 Improving the Dependability of Distributed Surveillance Systems 45

Table 1. Differences among attributes of scenarios A, B and C

 A-B A-C B-C
∆TN 2 4 2
∆SL 0 3 3
∆TD 0 1 1
∆SO 1 2 1
∆TW 1 1 0

D 4 11 7

An overview of distances among attributes of event trees representing scenarios A,

B and C is reported in Tab. 1.
As an example, in off-line operation, when inserting scenario B after A and C, the

human operator sees the distances with scenarios A and C. In this case, he/she will be
aware of the similarity with scenario A, since the distance is low (e.g. DT could be set
to 5) and could decide to keep only the original version (i.e. scenario A) since the
variation would be automatically detected by the on-line heuristic engine based on
distance.

In on-line operation, let us assume the ANY event of scenario A is detected. The
expected behaviour will be as follows.

1. DETECT computes the attributes associated to the ANY composite event

subtree (see below).

TN 8

TD 2

SL E1-S1, E2-S1, E1-S2, E2-S2, E3-S3 cardinality=5

SO ANY, OR cardinality=2

2. DETECT computes the distances with all the (enabled and full) event trees in

the Scenario Repository (see D row below).

 ANY-A ANY-B ANY-C
∆TN 4 2 0
∆SL 2 2 1
∆TD 1 1 0
∆SO 2 3 1

D 9 8 2

The computed distances correctly represent the recognised situation that, though

formally belonging to scenario A, in absence of chemical warfare agent detection, is
more similar to a situation of aggression/pickpocketing.

Given the possibility to get additional, but still appropriate warnings on possible
forthcoming threats, the on-line operation is strategic to enrich the detection

46 F. Flammini et al.

capabilities of the existing deterministic correlation engine. In particular, the
described recognition technique addresses the imperfect threat modeling, due to
human faults, as well as the possible missed detections, due to sensor faults.

4 Measuring Detection Trustworthiness in Real-Time

In this section we introduce a further additional feature to take into account the
uncertainty due to sensor false alarms. In particular we describe how to exploit the
parameters describing the detection performance3 of the sensors involved in physical
security situation recognition, in order to evaluate the trustworthiness of the inferred
alarms. Addressing such an issue is very important in physical security management
systems, where the alarms are sent to a control center and the triggering of
countermeasures can be fully automatic (independent from human intervention) or
partially automatic (based on human discrimination).

In order to associate a reliability level to event detection, it is possible to use a real-
time fuzzy correlation of sensor outputs using a Bayesian Network (BN). Such a
probabilistic modeling formalism enables a fuzzy logic through the use of “noisy”
logic gates, whenever the output is not deterministic, but associated with a certain
probability [21].

Formally, let us define a detector as a sensor or a sensing subsystem which in
relation to a certain event can provide two outputs:

• TRUE – if the event has been detected;
• FALSE – if not.

Each detector can be associated to the following parameters:

• POD = P(event detected | event occurred);
• FAR = P(event detected | event not occurred).

An analysis based on the POD of detectors can be used to compute the probability
in threat recognition, while we build the related detection models. Therefore it is
convenient at design-time, since the results can provide a guide to draw appropriate
event trees and to support the choice and dislocation of detectors, with respect to the
specific threats to be addressed. The main end is to reach a certain target in the
probability of recognition a particular threat, before using its detection model at real
time. Such an analysis is objective of another work and it is not described in this
chapter. Let us to address a FAR based real-time analysis in the following.

Assuming the use of AND and OR logical operators in order to correlate the
outputs of detectors, we can perform an analysis based on their FAR parameters and
aimed at the calculation of alarms reliability in real-time. A synthetic indicator of
such an evaluation can then be shown to PSIM operators together with alarms.

3 In this section we refer to detection performance, reliability and trustworthiness by meaning

the same concept related to false alarm generation (i.e. false positive).

 Improving the Dependability of Distributed Surveillance Systems 47

Table 2. Probabilistic parameters of two possible sensors

Detector ID Event ID FAR
S1 E1 0.15
S2 E2 0.10

In the following example, we assume using detectors whose FAR is described in
Tab. 2. With reference to the AND operator, we can model the alarm reliability
through a simple Bayesian Network (see Fig. 8).

Fig. 8. Example of BN modelling an AND logical operator

The leaf nodes represent the occurrence of the alarms associated to the events Ex
detected by Sx. The reliability of each alarm (Ex_Sx_Alarm_Rel) is calculated using
the FAR parameter of the related detector by using the following formula:

P(Ex_Sx is TRUE | Ex_Sx_Alarm has been generated) =
= P(Ex_Sx_Alarm is not FALSE) = 1 − P(Ex_Sx_Alarm is FALSE) = 1 – FAREx_Sx

The alarms reliability reported in the BN are represented in percentages. The CPT

(Conditional Probability Table) of the AND node is reported in Tab. 3.

Table 3. CPT of the AND node

E1_S1_Alarm_Rel E2_S2_Alarm_Rel E1_S1_AND_E2_S2_Alarm_Rel
True True True
True False True
False True True
False False False

E1_S1_AND_E2_S2_Alarm_Rel
True
False

98.5
1.50

E2_S2_Alarm_Rel
True
False

90.0
10.0

E1_S1_Alarm_Rel
True
False

85.0
15.0

E1_S1_Alarm
True
False

 100
 0

E2_S2_Alarm
True
False

 100
 0

48 F. Flammini et al.

The following hypothesis holds: the alarm associated to the AND event is not
considered reliable only if both the alarms associated to E1_S1 and E2_S2 events are
not considered reliable. For example, it means that when S1 detects E1 correctly and
S2 generates a false alarm in E2 detection, then the related AND event – which is
triggered anyway – is classified as TRUE. However, by modifying the CPT properly
we can consider a more conservative hypothesis: the alarm associated to the AND
event is considered TRUE only if both the alarms associated to E1_S1 and E2_S2
events are considered reliable. In the first case (shown in Fig. 8) we have an AND
alarm reliability of 98.5%, in the second one, we have a lower value (76.5%).

The real-time calculation of an OR alarm reliability is quite simple, since OR alarm
activation is concomitant with the single Ex_Sx alarm generated first (i.e. 85% or 90%
depending on the case).

The effectiveness of the approach increases significantly when we consider
complex Event Trees. In those scenarios, when basic events are detected by sensors,
they feed detection models according to the scenario evolution. Thus, step by step, the
BN related to each occurred subtree can be executed in real-time in order to get also
the alarm reliability related to the inferred composite event. In that case, the approach
is easy to apply also to the other operators. In fact, in real-time analysis, the SEQ
(sequence) operator can be treated as an AND, while ANY(k,n) operator (that is
equivalent to the “k out of n” scheme) can be treated as an n-ary AND.

Fig. 9. DETECT entry windows for operator and basic event parameters

Finally, we can take into account also the uncertainty of the detection models used
to recognize threat scenarios. More in detail, in order to consider a possible
mismatching between a real threat scenario and its model, for each logical operator
we can set also a confidence index, which weighs the trustworthiness of the operator.
In other words, if we set the index to a probability value p in the range from 0 to 1
(1 is the default value representing no uncertainty), then the occurrence of the logical
condition represented by the operator is True with a probability p weighted with the
computed alarm reliability. All the input parameters we have described in this chapter
can be entered in DETECT framework by means of proper windows of its GUI
(Graphical User Interface) shown in Fig. 9. The whole logic based on BNs is
therefore completely transparent to the user and it is fully integrated with the one
based on Event Trees.

A practical application of the approach is described as follows. Let us consider the
chemical attack scenario already addressed in the previous section (scenario A),
which describes the drop of a CWA in a metro railway platform, represented by the

 Improving the Dependability of Distributed Surveillance Systems 49

event tree in Fig. 5. The scenario is built considering two intelligent cameras
positioned at platform end walls, a microphone between them, two standoff detectors
for CWAs positioned on the platform and on the escalator or concourse level. Let us
assume to characterize the involved detectors with the FAR parameters reported in
Tab. 4.

Table 4. FAR parameters of detectors used in chemical attack scenario

Detector
ID

Detector
Description

Event ID
Event

Description
FAR

S1

Intelligent
Camera

E1 Fall of
person

0.25

E2 Abnormal
running

0.20

S2

Intelligent
Camera

E1 Fall of
person

0.25

E2 Abnormal
running

0.20

S3 Audio
Sensor

E3 Scream 0.15

S4 IMS/SAW
detector

E4 CWA
detection

0.30

S5 IR detector E4 CWA
detection

0.27

Please note that single events detected by intelligent cameras do not represent

necessarily a threat situation. In the approach we are describing, a low alarm level
(e.g. to 1) can be associated to the OR operators. When 2 out of 3 distinct events
detected by intelligent cameras and/or microphone occur, the monitored situation is
considered abnormal. So the alarm level of the ANY operator is set to 2. The use of
the sequence operator is due to the different locations of the CWA detectors:
IMS/SAW detector (combining Ion Mobility Spectroscopy and Surface Acoustic
Wave technologies) at platform level, and IR detector (based on Infrared Radiation) at
escalator or concourse level, in such a way to detect correctly the spread of CWA and
avoid possible false alarm conditions. The alarm level of the SEQ operator is set to 3.
Finally, the detection of the whole threat scenario is associated to the AND
occurrence. Its alarm level is set to 4. The use of many alarm levels is strategic to
trigger countermeasures properly. Further details on the modeling of the chemical
attack scenario are described in [14].

A possible set of basic event occurrences corresponding to a real CWA attack is
listed in Tab. 5, which includes chronological aspects like the ones used in real PSIM
log-files.

50 F. Flammini et al.

Table 5. A possible basic events chronology related to the CWA attack

Date Time Event ID Detector ID Occurrence Nr

01/04/2012 09:11:11 E4 S4 1

01/04/2012 09:14:18 E1 S2 2

01/04/2012 09:15:51 E3 S3 3

01/04/2012 09:16:00 E2 S2 4

01/04/2012 09:17:07 E4 S5 5

Fig. 10. Screenshot reporting alarms and their reliability values in real time

When using DETECT to model the threat scenario (whose ID is assigned - for
example - 241), with the Event Tree of Fig. 5 and the parameters of Tab. 4, the output
is reported in the screenshot in Fig. 10: for each detected event, also the reliability
level is reported, which is calculated in real-time using the BN approach. In the
described example we have considered no uncertainty coming from the detection
model (the confidence index of each operator used to build the event tree is set to its
default value, i.e. 1)

The real-time execution of the BN models also enables the possibility of using
‘dynamic’ FAR parameters, continuously updated using the feedback of the PSIM
operators in terms of confirmation of the alarms detected in the real on-the-field

Suspected Event with Id: 241
Detection Time: 01/04/12 - 09:14:18
Alarm Reliability: 75,00%
Alarm Level: 1
Component Event Occurrences Id: 2

Suspected Event with Id: 241
Detection Time: 01/04/12 - 09:15:51
Alarm Reliability: 96,25%
Alarm Level: 2
Component Event Occurrences Id: 2 3

Suspected Event with Id: 241
Detection Time: 01/04/12 - 09:16:00
Alarm Reliability: 80,00%
Alarm Level: 1
Component Event Occurrences Id: 4

Suspected Event with Id: 241
Detection Time: 01/04/12 - 09:16:00
Alarm Reliability: 97,00%
Alarm Level: 2
Component Event Occurrences Id: 3 4

Suspected Event with Id: 241
Detection Time: 01/04/12 - 09:17:07
Alarm Reliability: 91,90%
Alarm Level: 3
Component Event Occurrences Id: 1 5

Detected Event with Id: 241
Detection Time: 01/04/12 - 09:17:07
Alarm Reliability: 99,76%
Alarm Level: 4
Component Event Occurrences Id: 3 4 1 5

 Improving the Dependability of Distributed Surveillance Systems 51

operation. In other words, for each event detected by a sensor, the statistical analysis
of the ratio (‘false positive alarms’ / ’total number of alarms’), can lead to a proper
update of FAR parameters and therefore to more reliable estimations with respect to
the ‘static’ ones.

5 Conclusions and Future Work

In this chapter we have provided some means to address the problem of uncertainty
management in threat detection with PSIM systems. The analysis was based on a
reference framework that has been developed to correlate alarms coming from
heterogeneous detectors, namely DETECT. DETECT uses Event Trees as its main
modeling formalism and therefore as the base for its correlation engine. The results
described in this chapter are limited to threat scenarios specified with Event Trees.
Event Trees has the advantage of being a simple modeling formalism for physical
security threat modeling, but also has some limitations. The main limitations, related
to the difficulty in managing uncertainty in model structure and parameters, have been
addressed in this chapter in order to be able to use the framework in dependable
surveillance applications. To that aim, we have developed a set of threat scenarios
relevant for metro railway contexts, some of which have been briefly addressed in this
chapter for the case-study applications.

Though the main problems have been solved, we envisage some further
developments mainly aimed at the automatic ‘learning’ of uncertainty parameters
using the feedback provided by PSIM operators in the operational stage. That would
allow a continuous update of the knowledge base to fine-tune performance and
dependability in real-world surveillance applications. Also, other dependability
related aspects of complex situation recognition in surveillance systems have been
recently addressed in reference [22], which focuses on probabilistic models for the
static evaluation of threat detection trustworthiness on reference scenarios, also
allowing quantitative analysis of model sensitivity to sensor faults.

References

1. Garcia, M.L.: The Design and Evaluation of Physical Protection Systems. Butterworth-
Heinemann (2001)

2. Bocchetti, G., Flammini, F., Pragliola, C., Pappalardo, A.: Dependable integrated
surveillance systems for the physical security of metro railways. In: IEEE Procs. of the
Third ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–7 (2009)

3. Zhu, Z., Huang, T.S.: Multimodal Surveillance: Sensors, Algorithms and Systems. Artech
House Publisher (2007)

4. Wickens, C., Dixon, S.: The benefits of imperfect diagnostic automation: a synthesis of the
literature. Theoretical Issues in Ergonomics Science 8(3), 201–212 (2007)

5. Flammini, F., Gaglione, A., Mazzocca, N., Moscato, V., Pragliola, C.: Wireless Sensor
Data Fusion for Critical Infrastructure Security. In: Corchado, E., Zunino, R., Gastaldo, P.,
Herrero, Á. (eds.) CISIS 2008. ASC, vol. 53, pp. 92–99. Springer, Heidelberg (2009)

52 F. Flammini et al.

6. Flammini, F., Gaglione, A., Ottello, F., Pappalardo, A., Pragliola, C., Tedesco, A.:
Towards Wireless Sensor Networks for Railway Infrastructure Monitoring. In: Proc.
ESARS 2010, Bologna, Italy, pp. 1–6 (2010)

7. Flammini, F., Gaglione, A., Mazzocca, N., Pragliola, C.: DETECT: a novel framework for
the detection of attacks to critical infrastructures. In: Martorell, et al. (eds.) Procs. of
ESREL 2008, pp. 105–112 (2008)

8. Ortmann, S., Langendoerfer, P.: Enhancing reliability of sensor networks by fine tuning
their event observation behaviour. In: Proc. 2008 International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WOWMOM 2008), pp. 1–6. IEEE Computer
Society, Washington, DC (2008)

9. Bahrepour, M., Meratnia, N., Havinga, P.J.M.: Sensor Fusion-based Event Detection in
Wireless Sensor Networks. In: 6th Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services, MobiQuitous 2009, Toronto, Canada
(2009)

10. Tang, L.-A., Yu, X., Kim, S., Han, J., Hung, C.-C., Peng, W.-C.: Tru-Alarm:
Trustworthiness Analysis of Sensor Networks in Cyber-Physical Systems. In: Proceedings
of the 2010 IEEE International Conference on Data Mining (ICDM), IEEE Computer
Society, Washington (2010)

11. Legg, J.A.: Distributed Multisensor Fusion System Specification and Evaluation Issues.
Defence Science and Technology Organisation, Edinburgh, South Australia 5111,
Australia (2005)

12. Karimaa, A.: Efficient Video Surveillance: Performance Evaluation in Distributed Video
Surveillance Systems. In: Surveillance, V., Lin, W. (eds.). InTech (2011),
http://www.intechopen.com/books/video-surveillance/
efficient-video-surveillance-performance-evaluation-in-
distributed-video-surveillance-systems

13. Silva, I., Guedes, L.A., Portugal, P., Vasques, F.: Reliability and Availability Evaluation of
Wireless Sensor Networks for Industrial Applications. Sensors 12(1), 806–838 (2012)

14. Flammini, F., Mazzocca, N., Pappalardo, A., Pragliola, C., Vittorini, V.: Augmenting
surveillance system capabilities by exploiting event correlation and distributed attack
detection. In: Tjoa, A.M., Quirchmayr, G., You, I., Xu, L. (eds.) ARES 2011. LNCS,
vol. 6908, pp. 191–204. Springer, Heidelberg (2011)

15. Flammini, F., Pappalardo, A., Pragliola, C., Vittorini, V.: A robust approach for on-line
and off-line threat detection based on event tree similarity analysis. In: Proc. Workshop on
Multimedia Systems for Surveillance (MMSS) in Conjunction with 8th IEEE International
Conference on Advanced Video and Signal-Based Surveillance, pp. 414–419 (2011)

16. Flammini, F., Pappalardo, A., Vittorini, V.: Challenges and emerging paradigms for
augmented surveillance. In: Effective Surveillance for Homeland Security: Balancing
Technology and Social Issues, pp. 169–198. Taylor & Francis/CRC Press (2013)

17. Räty, T.D.: Survey on contemporary remote surveillance systems for public safety. IEEE
Trans. Sys. Man Cyber Part C 5(40), 493–515 (2010)

18. Hunt, S.: Physical security information management (PSIM): The basics,
http://www.csoonline.com/article/622321/physical-security-
information-management-psim-the-basics

19. Frost, Sullivan: Analysis of the Worldwide Physical Security Information Management
Market (2012), http://www.cnlsoftware.com/media/reports/
Analysis_Worldwide_Physical_Security_Information_
Management_Market.pdf

 Improving the Dependability of Distributed Surveillance Systems 53

20. Chakravarthy, S., Mishra, D.: Snoop, An expressive event specification language for active
databases. Data Knowl. Eng. 14(1), 1–26 (1994)

21. Ben Mrad, A., Maalej, M.A., Delcroix, V., Piechowiak, S., Abid, M.: Fuzzy Evidence in
Bayesian Network. In: Proc. Intl Conf. on Soft Computing and Pattern Recognition, pp.
486–491 (2011)

22. Flammini, F., Marrone, S., Mazzocca, N., Pappalardo, A., Pragliola, C., Vittorini, V.:
Trustworthiness Evaluation of Multi-sensor Situation Recognition in Transit Surveillance
Scenarios. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES
Workshops 2013. LNCS, vol. 8128, pp. 442–456. Springer, Heidelberg (2013)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

55

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_4

Testing-as-a-Service for Mobile Applications:
State-of-the-Art Survey

Oleksii Starov1, Sergiy Vilkomir2, Anatoliy Gorbenko3, and Vyacheslav Kharchenko3

1 Computer Science Department,
State University of New York at Stony Brook, USA

ostarov@cs.stonybrook.edu
2 Department of Computer Science,

East Carolina University, USA
vilkomirs@ecu.edu

3 Department of Computer Systems and Networks (503)
National Aerospace University, Kharkiv, Ukraine

A.Gorbenko@csn.khai.edu,
V.Kharchenko@khai.edu

Abstract. The paper provides an introduction to the main challenges in mobile
applications testing. In the paper we investigate the state-of-the-art mobile testing
technologies and overview related research works in the area. We discuss general
questions of cloud testing and examine a set of existing cloud services and
testing-as-a-service resources facilitating testing of mobile applications and
covering a large range of the specific mobile testing features.

Keywords: Mobile application, software testing, cloud services.

1 Introduction

Mobile development is characterized by a variety of applications with different quality
requirements. Online application stores, like the Apple App Store and Google Play,
offer thousands of market-oriented apps—mobile games, utilities, navigators, social
networks, and clients for web resources. At the same time, the interest in critical mobile
applications is growing. For instance, online banking has evolved into mobile banking,
mobile social alerts are widely used to report accidents or warn about hurricanes [1],
and special apps exist to monitor traffic [2] and help cardiac patients [3]. Augmented
reality apps are used for complex navigation and involve a variety of sensors. A new
trend is to use smartphones as components for mobile cyber-physical systems because
the powerful hardware has a variety of sensors. Mobile applications are even being
considered to support processes at such critical facilities as nuclear power plants [4].
These trends require high levels of reliability and quality for mobile software systems.
They affect testing, in particular, and the whole mobile development process in general.
Too often, the mobile development process ends with the submission of a social
application to an online store. The aim is to gain a wider audience of users in a shorter

5

56 O. Starov et al.

time, but this does not guarantee the quality of the product and non-critical bugs are
usually accepted. Some surveys have confirmed that mobile developers usually deal
with small apps and do not adhere to a formal development process [5]. In contrast, a
totally different approach is required for critical or business-critical mobile
applications, including mobile clients for trustworthy enterprise systems and solutions;
for example, Facebook’s iOS app is crucial for maintaining the company’s profile and
reputation and thus was rebuilt to overcome the poor quality of the first version.

To guarantee these mobile applications’ reliability and security, sufficient testing is
required on a variety of heterogeneous devices as well as on different OS. Android
development is the most representative example of how different applications should
function amid a plethora of hardware-software combinations [6]. Adequately testing all
of these platforms is too expensive—perhaps impossible—especially for small
resource-constrained mobile development companies.

Mobile development has a set of distinctive challenges and features. Mobile
application testing has some similarities to website testing as both involve validation in
many environments (smartphones and browsers, respectively). The general
requirements for both types of testing are similar: applications should function
correctly, efficiently, and be reliable and secure in all environments. However, mobile
testing presents new activities and requires more effort because it includes web
applications that work within mobile browsers or hybrid variants wrapped in native
code [5]. This testing also involves a large number of possible combinations of mobile
devices and OS. Finally, mobile testing involves the use of actual hardware and so
testers need additional knowledge and skills such as build installation and crash-log
retrieving. Advanced mobile software processes typically work according to the
Agile-based methodology [7] and include usage of build distribution services to assist
in testing, analytical services for maintenance during production, and services to obtain
a wider range of mobile devices for testing. These services create a large set of
testing-as-a-service (TaaS) resources, or supporting web-applications, that use cloud
benefits to facilitate the testing of mobile applications and cover a large range of the
specific mobile testing needs. These cloud solutions make mobile testers more effective
because they provide complex infrastructure and/or services that are not feasible within
small developer companies. The dominant type of such cloud services is a “device
cloud,” i.e., a service that provides hosting of remote mobile devices and running of
tests in the cloud. Existing commercial variants of such platforms became an
inspiration for the current study.

The rest of the paper is organized as follows. In the second and third sections we
discuss cloud-based testing services and features of mobile applications testing. In
Section 4 we systematize existing cloud-based services for mobile application testing
including device clouds, application lifecycle management services and discuss
techniques for test automation. Additional standalone tools for mobile application
testing are described in the Section 5. Finally, the 6th section provides an overview of
the modern research studies in mobile testing making emphasis on combinatorial
testing techniques in Section 7.

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 57

2 Cloud-Based Testing

Many research papers have stated that testing extensively migrates to the cloud
nowadays [8–12]. Reviews and classifications of testing cloud services include
solutions for web systems and mobile development [13, 14]. Cloud benefits are used
not only to support performance, load, or reliability testing of websites, but also to
assist with providing required hardware resources (i.e., remote smartphones) for
different needs for mobile testing. Cloud-based mobile testing is a young but very
topical issue [15].

The database at the Cyber Security and Information Systems Information Analysis
Center provides a large list of cloud testing references [16]. Technical and research
issues about testing over the cloud are analyzed in [17] and [18] respectively.

In this work we use the term “cloud service” as the most general understanding of
cloud computing, i.e., cloud service is a software tool or hardware resource that is
delivered over the Internet. The definition means that we also take into account such
web resources as build distribution solutions and online issue tracking systems. The
term “device cloud” (i.e., mobile device cloud or cloud of devices) will also be used,
pointing to both the cloud service’s nature and the many geographically dispersed
devices.

Many specialized studies exist regarding the general architecture and construction of
cloud and distributed systems [19, 20], including providing service through application
programming interfaces (APIs). Technical issues for the tests on the cloud are
discussed in [18], including Hadoop usage for test distribution. Device clouds (services
that provide hosting of smartphones and run tests on multiple remote real devices)
require special algorithms for effective test distribution to make overall test execution
time as minimal as possible.

3 Mobile Application Testing

Mobile development has a set of distinctive features and the following specific
challenges can be mentioned [5]: support of many hardware and software platforms,
correct work with a variety of sensors, interconnections with other applications, high
requirements for users’ experiences and the quality of the user interface, and the
existence of web mobile and hybrid applications that incorporate all of these challenges
to web development.

Mobile applications are popular among startups and approaches for quick
prototyping to evaluate the concept of an application are now in high demand. All of
these features contribute to the complexity and specifics of mobile testing [6, 21]. As
for mobile testing in this work, I mean comprehensive testing of a mobile system that
includes the testing of mobile apps as well as mobile operation systems (OS) and the
related hardware. Different investigations have pointed to the required mobility of the
apps in terms of their ability to function in different environments and configurations as
the root challenge of testing [21].

58 O. Starov et al.

uTest published The Essential Guide to Mobile App Testing [6], a book that
comprehensively and coherently describes challenges and techniques in mobile
application testing. A lot of research exists about automation and facilitation of the
testing process, including leveraging of cloud abilities [10, 22–26]. Companies that
provide cloud services for mobile testing (cloud of devices) usually assist their
customers with a set of guides [27, 28].

Examples of testing matrixes to cover all smartphone models or OS versions
generate an enormous number of combinations [6]. The issue is significant for the
Android platform because of its representatively large number of supported devices
with different characteristics (e.g., screen resolution, size of memory, and set of
sensors). The problem is compounded by the fact that a smartphone simulator or an
emulator cannot fully substitute for the hardware [6]. At the same time, the
development for different mobile platforms looks similar. Platforms have similar
developer websites with necessary documentation, examples, and suggested patterns.
The principles of the application life cycle are similar, for instance, comparing Android
to the Windows Phone 7 [29].

Many software development companies are interested in the mobile market and
many mobile platforms now exist: Android, iOS, Windows Phone, Symbian, etc. New
ones appear regularly like the recent Ubuntu Mobile OS [30]. According to Gartner
[31], Android devices have most of the market and Forbes says that the Android
platform aims to meet enterprise requirements in the near future [32]. Previous research
on the bug statistics for the Android OS [33] proved that the Android (with Symbian)
has effectively organized an open-sourced bug-tracking system that deals with bugs
and makes the platform better. The total number of applications in Google Play
(www.appbrain.com/stats/) is now more than 850,000 and is increasing steadily. The
open source nature of Android makes it popular among the scientific community, and
many examples of research studies targeted at the Android system can be found.

4 Mobile Testing Services

To facilitate mobile testing, various cloud benefits are used and different TaaS, or
supporting services, exist. Figure 1 provides references to them, along with mapping to
correspondent testing stages. The presented types of testing were partially taken from a
diagram on Perfecto Mobile’s guide that shows the demanded device allocation during
different Application Lifecycle Management (ALM) stages [27]. The diagram was
extended by adding conceptualizations as a separate ALM activity, plus concept,
security, and user experience (UX) testing, as well as highlighting test activities such as
test planning, management, and issue tracking that are all specific to real-life mobile
development.

The set of cloud services for mobile testing can be divided into three types: device
clouds (mobile cloud platforms), services to support ALM, and tools to provide
processing according to some testing techniques. The following sub-sections describe
each type separately.

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 59

Fig. 1. Test Stages, Activities and Mobile Testing Services

4.1 Device Clouds

The majority of cloud services for mobile testing serves as a “cloud of devices” and
provides remote access to smartphones in the cloud in order to accomplish testing, in
other words, provides device hosting. Such services usually aid mobile developers in
using remote smartphones as real devices for manual testing (interactive testing
through a web interface), recording of scripts, and automatic running of tests on a range
of models.

For instance, Perfecto Mobile service (www.perfectomobile.com) provides all of
this functionality representing different modern hardware and software mobile
platforms (Android, iOS, Windows Phone, and Symbian) and can be integrated with
HP UFT (QTP) or MS Team Foundation Server. Devices available in the system have
different parameters, for example, testing different types of Internet connections is
possible. The service works with two kinds of test scripts: QTP and the Perfecto Mobile
Application. Perfecto Mobile is only a public service, but UFT Mobile can also be
deployed as a private cloud. UFT Mobile provides automated functional testing and

60 O. Starov et al.

special solutions for realistic mobile performance testing (e.g., LoadRunner and
Performance Center).

Keynote DeviceAnywhere (www.keynotedeviceanywhere.com) is a similar service
that provides online manual and automated testing of a mobile app on a variety of
devices. It can be integrated with existing ALM through HP QTP, IBM RQM or special
Java APIs.

The SOASTA service (www.soasta.com) provides two advanced solutions:
TouchTest test automation for multi-touch, gesture-based applications and CloudTest
for scalable mobile application testing (performance or load-testing with millions of
geographically distributed emulated users). TouchTest scripts can be recorded and
performed against user’s own device. Users can control test devices via IP addresses.

The Cigniti device cloud (www.cigniti.com) provides remote access to a variety of
mobile devices via own proprietary mobile test automation framework, with test
accelerators for test automation and performance testing. Cigniti is suitable for network
carrier testing.

SeeTest by Experitest (experitest.com) provides device cloud that can be deployed as
a private platform within an organization. Test automation facilities include test script
recording/performing on real devices or emulators and integration with HP UFT
(QTP), TestComplete, C#, RFT, Java, Perl, Python. SeeTest also provides manual
testing tools.

The CloudMonkey service (www.gorillalogic.com) runs MonkeyTalk scripts across
many Android emulators and iOS simulators. Screenshot reports are positioned as the
base testing results. CloudMonkey test jobs can be integrated with continuous
integration (CI) servers like Jenkins.

The Appium on Sauce service (saucelabs.com) covers two functionalities: iOS
device hosting and easy CI. The latter means that it can be used as a build server and
testers do not need to set up developer environment on local machines. Test automation
is implemented with Selenium, and interactive testing is only possible for web mobile
applications. Appium can be deployed privately.

The TestDroid Cloud (testdroid.com) is a device cloud service oriented towards
Android apps testing that uses the TestDroid AppCrawler engine to verify application
devices’ compatibility. TestDroid Recorder can be used to generate reusable Android
JUnit test cases. Test results consist of screenshots and device logs. A tester can
compare screenshots to check for GUI bugs. TestDroid can also be integrated with
Jenkins or leveraged through REST APIs.

The Scirocco Cloud (www.scirocco-cloud.com) has all of the functionality of a
device cloud, except of script recording. It supports only the Android platform and
provides manual access to remote devices through its HTML5 web interface. Test
automation is done by using one of three drivers: AndroidDriver, Monkeyrunner, or
NativeDriver. Results are provided as a set of screenshots to compare.

The LessPainfull device cloud (www.lesspainful.com) is oriented for Android and
iOS apps testing. As a test automation engine, it uses Calabash for Cucumber and
accepts Cucumber-based test scripts. LessPainfull provides two options: private cloud
tailored for single customer and shared cloud with devices common for several
customers.

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 61

TestQuest (www.bsquare.com) is a distributed framework for deployment within an
organization. It is oriented towards Android application testing and can be integrated
with MS Visual Studio.

The ZPX service (www.zaptechnologies.com) provides device hosting and mobile
test automation in the cloud and is compatible with HP ALM products.

Jamo (www.jamosolutions.com) provides a set of tools to perform remote and
scheduled testing on a device. For instance, Wanconnector in combination with Remote
Device Screen provides access to a device within different geographical locations. The
M-eux Test tool supports web application testing.

Apkudo’s Device Analytics (www.apkudo.com) provide some elements of
multidirectional testing by testing devices (e.g., new smartphone models) against the
top 200 apps from the market. Similar services are available for smartphone
hardware testing, but these have no relation to mobile apps like Datum
(www.metricowireless.com) that provides verification of calls, data quality, and video
quality. Apkudo also offers free public and fully automated stress testing of the
Android applications on the big range of models using the Monkey tool.

Table 1 summarizes the device clouds mentioned above and a comparison based on
supported mobile platforms, types of testing, and delivery type of cloud solution.

Table 1. List of Device Clouds

Cloud Service
Supported Platforms

Types of Testing

Delivery
Type

Android iOS Other Public Private

Apkudo +
Stress (automated), New device
approval

+

Appium on Sauce +
Manual for web applications,
Automated

+ +

Cigniti + + +
Automated, Interoperability,
Performance, Network

+

CloudMonkey + + Automated, UI-oriented + +

DeviceAnywhere + + +
Manual, Automated, Monitoring,
Coverage

+ +

Jamo + + + Automated +

Perfecto Mobile + + +
Manual, Automated, Performance,
Monitoring

+

Scirocco Cloud + Manual, Automated +

SeeTest + + +
Manual, Automated, On a new
devices

 +

SOASTA + + +
Manual, Automated, Load,
Performance, Gesture-based

+ +

TestDroid Cloud +
Automated, UI-oriented, On a new
devices

+ +

UFT Mobile + + +
Automated, Load, Performance,
Monitoring

 +

Zap-Fix + + + Automated +

62 O. Starov et al.

Manual testing means the remote operation of a device via a web interface, and
automated testing incorporates functional and regression testing and different kinds of
automation. All device clouds provide compatibility testing as intended. Public cloud
means service with shared devices, while a private cloud means an infrastructure
allocated to a single user or a system to be deployed on a user-developer’s site.

Two known research attempts within universities to create and investigate test-bed
cloud solutions for mobile development are SmartLab [28] and the Android Tactical
Application Assessment and Knowledge (ATAACK) Cloud [29]. Both are distributed
systems that connect a set of mobile devices under the Android OS for application
investigation, development, and testing.

The SmartLab is an experimental test-bed being developed at the University of
Cyprus. It provides more than 40 connected Android smartphones plus emulated
devices, but not many details are described or known.

The ATAACK Cloud is new joint project for Virginia Tech, the University of
Maryland, and Vanderbilt University, with the support and funding by Air Force
Research Laboratories. Its goal is large-scale mobile application testing and
investigations.

These research studies consider device clouds with several smartphones connected
to one computer (vertical) and several computers with connected smartphones
(horizontal) scaling of devices, i.e., fully distributed systems, and how to provide
access and testing.

Many studies regarding less-scaled test frameworks for distributed mobile testing
[30] that are not cloud services and many tools for vertical-scaled test automation only
exist, but their reviews are beyond the scope of this chapter.

All services mentioned in this section appear in Figure 3 with the following logistics:
services that support the running of unit tests listed under “unit testing,” services that
support online manual testing listed under “sanity testing,” references to script
automation techniques of these services listed under “regression testing,” all cloud
devices listed under “interoperability/compatibility testing,” and references to special
integrated non-functional test approaches of these services.

4.2 Application Lifecycle Management Services

The application lifecycle management of mobile applications has own specifications
and many cloud services exist that support test-related activities within ALM. Several
examples of these cloud services are listed below.

1. Mobile developers, like all software developers, use issue tracking systems, e.g.,
with Agile-oriented plugins, more complex solutions like IBM Rational Quality
Manager, or test management systems like TestRails. Some of these are integrated
with software configuration management and facilitate code reviews or code style
checks. A review of similar tools and solutions is not the goal of this work, so Figure
3 shows only several basic examples.

2. Mobile testing involves the use of actual hardware and so testers need additional
knowledge and skills, such as build installation or crash-log retrieving. To facilitate
beta build distribution activities, many cloud services exist. Some of them provide

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 63

functions for test team management (e.g. HokeyApp, hockeyapp.net) or build
provisioning and deployment to the store (AirOnApp for iOS, www.aironapp.com).
TestFlight service (testflightapp.com) helps to deal with the iOS build management
and distributes them via email between separated testers. It provides an easy
application installation on a real device, i.e., by a tap on the link in an email opened
on a smartphone. A similar service for Android is Launchpad
(launchpadapp.com). The HokeyApp (hockeyapp.net) build distribution provides
extended functionality to collect live crash reports, feedback from users, and
analysis of resulting test coverage. Usage of these services for build distribution can
be integrated along with the continuous integration process of the company (e.g., via
job scripts for the Jenkins build server).

3. User experience testing and monitoring of an app in production are required
activities within mobile testing. Several analytics services gather usage statistics and
these can be incorporated in a mobile application. Perfecto Mobile
(www.perfectomobile.com) service also provides some solutions for monitoring
performance. The following two services incorporate user experience testing in the
build distribution facilities. The UserTesting service (www.usertesting.com)
provides many real users who will examine an app and provide feedback about their
experience with the app and thoughts about it. The Amazon A/B testing for Android
(developer.amazon.com) provides a service that distributes two builds that differ in
some features between two unique groups of users. Then it provides measurements
and results about which feature is more successful.

4. Mobile development is very popular among startups and usually requires rapid
prototyping for concept feasibility evaluation. Thus such services exist like FluidUI
(www.fluidui.com) to easily create interactive prototypes, or Kickfolio
(kickfolio.com) to share an app demo, or Pidoco (pidoco.com) to create realistic
mockups. All of these are needed to test the concept and idea of the app (i.e., if it can
hit the market) at a minimal expense.

4.3 Device Cloud-Based Testing Techniques

Device clouds provide different techniques for test automation (recording, distribution,
and execution). This includes unit tests and GUI-based testing. Examples of approaches
are standard Android SDK tools Monkeyrunner and Monkey (developer.android.com),
special solutions like SOASTA TouchTest, and solutions based on object recognition
(e.g., Eggplant automation based on VNC technology, www.testplant.com).

Test automation has its own weak sides, and according to experts in the field, cannot
serve as a total substitution for manual testing. The issue that was noticed during the
analysis of cloud test automation was the delivery of the test input data to mobile
sensors (GPS, accelerometer, camera, etc.). While solutions to send dummy GPS
coordinates exist, situation with a photo camera is more complicated because it requires
the simultaneous changing of a picture (preferable physically in front of a camera)
while performing a script. A variety of mobile apps use a camera as a part of their key
functionality (e.g., shopping apps and QR code readers), and proper testing requires test
cases with snapshots from different distances, angles, lights, etc. Other problematic

64 O. Starov et al.

aspects of automation are the sophisticated (approximate) screenshots comparisons,
executions of direct device-to-device communication during the test, and others.

Device clouds provide compatibility, interoperability, and regression testing. Many
services provide embedded tools to support performance monitoring and load testing
(Perfecto Mobile, www.perfectomobile.com, SOASTA, www.soasta.com, Cigniti
Mobile Testing, www.cigniti.com) or even automated stress testing on a variety of
devices (e.g. Apkudo, www.apkudo.com).

There are special cloud services that aid with mobile performance and load testing.
For instance, SandStrom (sandstorm.impetus.com) can be used for load testing of web
mobile applications and NeoLoad (www.neotys.com) focuses on load testing of
back-end servers by emulating typical mobile devices working in parallel and sending
appropriate content to the server.

There are also standalone solutions for test techniques applications like performance
frame counters on Windows Phone Emulator that theoretically can be leveraged in a
cloud.

Security testing is mainly presented by static check techniques. Checkmarks
(www.checkmarx.com) provides scanning of source code and supports Android and
iOS applications. Mobile App Security and Privacy Analysis by Veracode
(www.veracode.com) scans and evaluates binary files for vulnerabilities and can be
leveraged through APIs.

Another type of services exists based on experts. For instance, uTest experts will
assist with mobile security testing by manual penetration and using internal static and
dynamic security testing solutions (www.utest.com). At the same time, research papers
about novelty mobile security testing approaches exist (that potentially can be
leveraged by some cloud services) [31], but they are out of the scope of this review.

Concept testing, UX testing, and monitoring techniques were comprehensively
described in section 4.2 as parts of services that support ALM.

Mobile testing services should incorporate test planning and test generation
techniques. Keynote DeviceAnywhere Test Planner (www.keynotedeviceanywhere.com)
provides a coverage calculation for smartphone models to test that can be considered as
application of combinatorial testing techniques, but it can be extended by using pairwise,
t-way, or other approaches. HokeyApp only provides test coverage monitoring and
analytics, i.e., the matrix of the devices and languages that were tested. Cigniti Test
Advisory Services and TestRails provide more high-level test planning and control
facilities.

The situation with cloud services for mobile testing is changing extremely rapidly:
new ones appear and old ones get new functionalities. Thus, it is hard to guarantee that
the provided list of tools and services is exhaustive, but it can serve as a useful baseline.

5 Standalone Tools for Mobile Application Testing

Any mobile platform has a correspondent software development kit (SDK) for app
developers. Usually the producers of mobile platforms provide developers with a
debugger, emulator or simulator, plugin for popular IDE, etc. The toolsets for Android,

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 65

iOS, or Windows Phone development are very similar. Each platform also provides
similar development support. For instance, web developer portals provide similar
guidelines on how to use the available tools. In this section, we describe the most
important standard tools (i.e., available from SDK) for Android app testing and several
third-party extensions or analogues.

The basic tool for working with Android devices is Android Debug Bridge (ADB),
which is a command-line utility to control Android devices. Device detection,
debugging, execution of shell commands, and access to a device’s file system is
possible by using ADB. A high-level development environment like Eclipse (with the
Android Development Tools plugin installed) implicitly uses ADB to install and debug
builds within a connected device.

Android SDK provides two special tools for the GUI-based automated testing of
applications. The first is UI/Application Exerciser Monkey (developer.android.com) for
GUI stress testing, which generates a set of pseudo-random user events and sends them
to an Android device. Previously, the Apkudo service (www.apkudo.com) was
mentioned to provide a cloud of devices for long-term stress testing of an app using
Monkey. It shows the statuses of the application being tested on each device, i.e., it
either crashed after a sequence of random events or it is still running. Crash logs and
other supporting information are provided.

A more advanced tool for automated testing provided by SDK is Monkeyrunner
(developer.android.com), which runs on test scripts written in Python with several
special classes available to provide support of touch, press, type, drag events, shell
commands, intent invocations, app installations, and removal. Functionality is
sufficient for basic GUI-based automation. So the following two strategies of
interaction with interface components can be used:

(i) dynamic coordinates calculation (screen sizes can be dynamically retrieved);
(ii) and components enumeration through focus change.

At the same time a tester who writes test scripts should remember to put in appropriate
delays (or special workarounds) between long-term events or actions and the results
check. Monkeyrunner is suitable for screenshot analysis, as it provides methods to take
screenshots during test script checkpoints and compare them. Thread-safeness is not
guaranteed, but test scripts can include efficient simultaneous launches on several
connected devices (and thus screenshots can be taken from several smartphones at the
same time).

An AndroidViewClient extension (can be downloaded from Github) exists for
Monkeyrunner that enables more high-level test scripts, particularly to address UI
components in a test script by name or text. But this library only supports “rooted”
devices with ViewServer installed or newer devices with Android’s UIAutomator
(Android API 16 and greater). UIAutomator is part of the Android SDK revision 21 and
up and comes with the UIAutomatorViewer tool that lists all the UI objects.

Robotium (code.google.com) is another popular engine for the automated testing of
Android applications. It is an extension of the Android test framework (JUnit tests for
Androip applications) used to write easy and powerful automatic black-box tests.

66 O. Starov et al.

Similarly, the Robolectric is based on JUnit 4 and runs Android tests directly on the
JVM. Both of these tools point to another direction, i.e., the application of unit tests for
mobile testing and even GUI-testing.

Other test automation solutions exist. Previously, several cloud services that provide a
run of tests on multiple real devices were mentioned as having their own solutions for test
automation. For instance, LessPainful (www.lesspainful.com) accepts test scripts written in
Cucumber using Calabash-Android (github.com/calabash/). All of the aforementioned test
automation drivers can be used for cloud-based testing of mobile systems. One of
considered enhancements is to provide users with a choice of test scripts to use. The
principles of usage are similar to Monkeyrunner, so it does not require a lot of work to
integrate another driver like Robotium.

6 Research Studies in Mobile Testing

In the Table 2 we summarize recent research studies in the field of mobile testing. Each
of them concerns a testing aspect that can be used in the cloud. For instance, many of
the research studies deal with test automation, and theoretically, any service like device
clouds can use described approaches as the test automation driver. In the same way,
such extensions like test generation or static analysis can serve as an additional
functionality integrated within any cloud service to facilitate mobile testing. Table 2
shows research areas and contributions for papers and highlights the year of release and
the targeted mobile platforms. We can conclude that the popularity of mobile testing
continues to grow and touches all possible aspects from effective test generation and
design to execution and monitoring. At the same time, Android became the most
popular platform under study. An open-source nature, prevalence in the market,
support of an enormous number of devices, and ease of development (no provisions or
jailbreaks are needed as in the case of iOS)—all make it the choice of researchers.
These listed studies are potential directions for implementation of the integrated cloud
services for mobile applications testing. They do not discuss cloud solutions for mobile
testing, but instead present actual issues and techniques and describe possible
supporting functionality.

7 Combinatorial Testing

Application of combinatorial approaches to mobile testing can aid in dealing with
large amounts of different combinations of hardware and software parameters that
should be covered by the tests. Coverage calculation is a crucial activity within
mobile testing. So far, there are nine families of Android OS presented in the market
(not counting lower sub-versions and correspondent builds without Google APIs),
four types of screen resolutions (small, normal, large, and extra), and four levels of
screen density.

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 67

Table 2. Researches in Mobile Testing

Year Ref. Mobile
Platform

Research Area Contribution

2012 [32] Multi
(J2ME)

Automation of mobile app
testing

Framework that does not require a
device under testing to be connected
to a computer

[31] Android Whitebox automated security
testing of mobile apps

Fuzz test generation approach/testbed
for emulation in the cloud

[33] Android Automatic categorization of
mobile apps

New method for categorizing Android
applications through machine-
learning techniques (while accepting
malicious apps into the market)

[34] Android GUI-based unit testing of
mobile apps

Framework to test applications from
GUI

[35] Android Testing mobile apps through
symbolic execution

Application of symbolic execution to
generate test cases for mobile apps

[36] Android Verification of touch screen
devices

Test environment and supporting
Android app to test touch screens

[37] Android Automated mobile app
testing through GUI-ripping

Technique and real-life case study of
bug detection

2011 [38] Android GUI crawling-based testing
of mobile apps

Technique for rapid crash testing and
regression testing

[39] Multi Model-driven approach for
automating mobile app
testing

Tool suite to apply Domain-Specific
Modeling Language

[40] Android Automation of mobile app
testing

Review of the Android Instrumen
tation and the Positron frameworks

[41] Android Automation of mobile app
testing

Approach to use the Monkey tool in
conjunction with JUnit

[42] Android
(Dalvik)

Automated privacy testing of
mobile apps

Automated privacy validation system
to analyze apps (while they are
accepted into the market)

[43] Multi
(Android)

Automation of service-
oriented mobile app testing

Approach for decentralized testing
automation and test distribution

[44] Android Model-based GUI testing of
mobile apps

Extensive case study

[45] Multi Automated test case design
strategies for mobile apps

Comprehensive review of challenges
and correspondent techniques

[46] Android Static analysis of mobile apps Extensions to Julia to provide formally
correct analysis of mobile apps

[47] Android GUI unit-testing of mobile
apps

Techniques to assess the validity of
the GUI code

2010 [48] Multi
(Android)

Adaptive random testing of
mobile apps

Test case generation technique

2009 [49] Windows
Mobile

Automated GUI stress testing
of mobile apps

Review/automated GUI stress testing
tool

[50] J2ME Automation of mobile app
testing

Tool for testing mobile device
applications

[51] Multi Automation of mobile app
testing

SOA based framework for mobile app
testing

68 O. Starov et al.

Other parameters like type of Internet connection (WiFi, 3G, or 4G), size of RAM,
vendor, and a processor’s characteristics should also be taken into account to provide
adequate coverage during testing.

Many combinatorial testing materials can be found on the corresponding webpage of
the National Institute of Standards and Technology (NIST) [52]. One of the simplest
and easiest ways to implement combinatorial approaches is the Base Choice [53]. The
idea is to create a base test case that represents the most important (common or popular)
value for each parameter, and then create others by varying the value of only one
parameter at a time. The base test case can be created using statistics, especially in case
of mobile testing (i.e., what screen resolution is the most spread or what vendor shares
the best part of the market). Pair-wise [54] and t-wise (t-way) [54] testing are the most
common and powerful combinatorial testing approaches. According to the t-wise
testing approach, for each subset of t input parameters of a system, every combination
of valid values of these parameters should be covered by at least one test case. In
pair-wise testing, which is a case of t-wise testing with t equals 2. The idea behind the
t-wise approach is that the faults in the software are more likely triggered by a small
number of input parameters, with the benefits being that t-wise testing providing
reasonable coverage of software input space while using a small number of test cases.
For example, if there are 15 Boolean input variables, the total number of various input
combinations is 215 or 32,768. However, it takes only 10 input combinations (as
pair-wise test cases) to cover all of the different values for each pair of input variables.

Some examples of combinatorial tests based on different configurations of Android
application can be found in [56]. Other similar techniques, including t-wise testing [57],
MC/DC [58], and RC/DC [59] testing criteria are also worth to be mentioned. The
ACTS tool (csrc.nist.gov) created by the NIST and the ALLPAIRS (www.satisfice.com)
provide engines to calculate different combinatorial strategies and perform
combinatorial testing.

8 Conclusions

Ensuring quality of modern mobile applications is complicated by a variety of mobile
hardware and software platforms, variety of sensors, network interfaces, existence of
web mobile and hybrid applications, and also high user’s expectations. This is why
thorough testing of mobile applications is of a great importance for both developers and
consumers of these products.

Nowadays, testing extensively migrates to the clouds allowing to support team
work, shorten testing time, and to reduce development costs, that is especially
important for many startup companies. In the paper we have described a set of cloud
services for mobile testing that can be divided into three types: (i) device clouds
(mobile cloud platforms), (ii) services to support application lifecycle management,
and (iii) tools to provide processing according to some testing techniques. Mobile
testing over a cloud is an extremely important activity that is very hard to research. As it
was described above, a lot of cloud services exist that fulfill the initial testers’ needs,
but a scalable platform for effective crowdsourcing in mobile testing supporting
multidirectional testing and flexible integration of many different testing services and
techniques is still of a great demand.

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 69

References

1. White, J., Clarke, S., Doughtery, B., Thompson, C., Shmidt, D.: R&D Challenges and
Solutions for Mobile Cyber-Physical Applications and Supporting Internet Services.
Springer Journal of Internet Services and Applications 1(1), 45–56 (2010)

2. Work, D.B., Bayen, A.M.: Impacts of the Mobile Internet on Transportation Cyberphysical
Systems: Traffic Monitoring using Smartphones. In: National Workshop for Research on
High-Confidence Transportation Cyber-Physical Systems: Automotive, Aviation and Rail,
Washington, DC, USA (2008)

3. Leijdekkers, P., Gay, V.: Personal Heart Monitoring and Rehabilitation System using Smart
Phones. In: Intern. Conf. on Mobile Business, Copenhagen, Denmark (2006)

4. Moser, K.: Improving Work Processes for Nuclear Plants. In: American Nuclear Society
Utility Working Conf., Hollywood, Florida, USA (2012)

5. Wasserman, A.: Software engineering issues for mobile application development. In:
Workshop on Future of Software Engineering Research at the 18th Int. Symposium on
Foundations of Software Engineering (ACM SIGSOFT), Santa Fe, USA, pp. 397–400
(2010)

6. The Essential Guide to Mobile App Testing,
http://www.utest.com/landing-blog/essential-guide-
mobile-app-testing

7. Holler, R.: Mobile Application Development: A Natural Fit with Agile Methodologies,
http://www.versionone.com/pdf/mobiledevelopment.pdf

8. Vilkomir, S.: Cloud Testing: A State-of-the-Art Review. Information & Security: An
International Journal 28(2(17), 213–222 (2012)

9. Tilley, S., Parveen, T.: Software Testing in the Cloud: Perspectives on an Emerging
Discipline. IGI Global (2012)

10. Tsai, W., Chen, X., Liu, L., Zhao, Y., Tang, L., Zhao, W.: Testing as a service over cloud. In:
5th IEEE Int. Symposium on Service Oriented System Engineering, pp. 181–188 (2010)

11. Kalliosaari, L., Taipale, O., Smolander, K.: Testing in the Cloud: Exploring the Practice.
IEEE Software 29(2), 46–51 (2012)

12. Weidong, F., Yong, X.: Cloud testing: The next generation test technology. In: 10th Int.
Conf. Electronic Measurement & Instruments, Chengdu, China, pp. 291–295 (2011)

13. Inçki, K., Ari, I., Soze, H.: A Survey of Software Testing in the Cloud. In: IEEE 6th Int.
Conf. on Software Security and Reliability Companion, pp. 18–23 (2012)

14. Priyanka, C.I., Rana, A.: Empirical evaluation of cloud-based testing techniques: a
systematic review. ACM SIGSOFT Software Engineering Notes Archive 37(3), 1–9 (2012)

15. Mote, D.: Cloud based Testing Mobile Apps. In: 2nd IndicThreads.com Conference on
Software Quality, Pune, India (2011)

16. Cloud Testing: Database of Cyber Security and Information Systems Information Analysis
Center, https://sw.thecsiac.com/databases/url/key/7848/8764/
8765#.USGPb-h8vDm

17. Tilley, S., Parveen, T.: Software Testing in the Cloud: Migration & Execution. Springer
Briefs in Computer Science (2012)

18. Riungu, L.M., Taipale, O., Smolander, K.: Research Issues for Software Testing in the
Cloud. In: IEEE 2nd Int. Conf. Cloud Computing Technology and Science, pp. 557–564
(2010)

19. Rhoton, J., Haukioja, R.: Cloud Computing Architected: Solution Design Handbook.
Recursive (2011)

70 O. Starov et al.

20. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Concepts and
Design. Addison-Wesley (2011)

21. Muccini, H., Francesco, A., Esposito, P.: Software testing of mobile applications:
Challenges and future research directions. In: 7th Int. Workshop on Automation of Software
Test (2012)

22. Franke, D., Weise, C.: Providing a Software Quality Framework for Testing of Mobile
Applications. In: IEEE 4th Int. Conf. on Software Testing, Verification and Validation,
Berlin, Germany, pp. 431–434 (2011)

23. Milano, D.: Android Application Testing Guide. Publishing Ltd. (2011)
24. Frederick, G., Lal, R.: Testing a Mobile Web Site. Beginning Smartphone App

Development – Part IV. Apress (2009)
25. Dantas, V., Marinho, F., Da Costa, A., Andrade, R.: Testing requirements for mobile

applications. In: 24th Int. Symposium on Computer and Information Sciences (2009)
26. Test Strategies for Smartphones and Mobile Devices,

http://www.macadamian.com/images/uploads/whitepapers/
MobileTestStrategies_Aug2010.pdf

27. Make Your Mobile Testing Solution Enterprise-Ready,
http://www.perfectomobile.com/portal/cms/resources/
enterprise-ready_white-paper

28. Konstantinidis, A., Costa, C., Larkou, G., Zeinalipour-Yazti, D.: Demo: a programming
cloud of smartphones. In: 10th Int. Conf. on Mobile Systems, Applications, and Services,
pp. 465–466 (2012)

29. Turner, H., White, J., Reed, J., Galindo, J., Porter, A., Marathe, M., Vullikanti, A., Gokhale,
A.: Building a Cloud-Based Mobile Application Testbed. IGI Global (2012)

30. She, S., Sivapalan, S., Warren, I.: Hermes: A Tool for Testing Mobile Device Applications.
In: Software Engineering Conf., Queensland, Australia (2009l)

31. Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S., Stavrou, A.: A whitebox
approach for automated security testing of Android applications on the cloud. In: 7th Int.
Workshop on Automation of Software Test, pp. 22–28 (2012)

32. Nagowah, L., Sowamber, G.: A Novel Approach of Automation Testing on Mobile Devices.
Int. Conf. on Computer & Information Science 2, 924–930 (2012)

33. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.: On the Automatic
Categorisation of Android Applications. In: 9th Annual IEEE Consumer Communications
and Networking Conf. – Security and Content Protections (2012)

34. Allevato, A., Edwards, S.: RoboLIFT: simple GUI-based unit testing of student-written
android applications. In: 43rd ACM Technical Symposium on Computer Science Education,
p. 670 (2012)

35. Mirzaei, N., Malek, S., Păsăreanu, C., Esfahani, N., Mahmood, R.: Testing Android Apps
Through Symbolic Execution. ACM SIGSOFT Software Engineering Notes Archive 37(6),
1–5 (2012)

36. Zivkov, D.: Touch screen mobile application as part of testing and verification system. In:
35th Int. Convention MIPRO, pp. 892–895 (2012)

37. Amalfitano, D., Fasolino, A., Tramontana, P., De Carmine, S.: Using GUI ripping for
automated testing of Android application. In: 27th IEEE/ACM Int. Conf. on Automated
Software Engineering, Germany (2012)

38. Amalfitano, D., Fasolino, A.R., Tramontana, P.: A GUI Crawling-Based Technique for
Android Mobile Application Testing. In: Software Testing, Verification and Validation
Workshops, pp. 252–261 (2011)

 Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey 71

39. Ridene, Y., Barbier, F.: A model-driven approach for automating mobile applications
testing. In: 5th European Conf. on Software Architecture: Companion (2011)

40. Kropp, M., Morales, P.: Automated GUI Testing on the Android Platform. IMVS Fokus
Report 4(1) (2010)

41. Hu, C., Neamtiu, I.: Automating GUI testing for Android applications. In: 6th Int. Workshop
on Automation of Software Test, pp. 77–83 (2011)

42. Gilbert, P., Chun, B., Cox, L., Jung, J.: Automating Privacy Testing of Smartphone
Applications. Technical Report CS-2011-02 (2011)

43. Edmondson, J., Gokhale, A., Neema, S.: Automating Testing of Service-oriented Mobile
Applications with Distributed Knowledge and Reasoning. In: Service-Oriented Computing
and Applications, pp. 1–4 (2011)

44. Takala, T., Katara, M., Harty, J.: Experiences of System-Level Model-Based GUI Testing of
an Android Application. In: Software Testing, Verification and Validation, pp. 377–386
(2011)

45. Selvam, R., Karthikeyani, V.: Mobile Software Testing – Automated Test Case Design
Strategies. Int. J. on Computer Science and Engineering (2011)

46. Payet, É., Spoto, F.: Static Analysis of Android Programs. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 439–445. Springer,
Heidelberg (2011)

47. Sadeh, B., Ørbekk, K., Eide, M.M., Gjerde, N.C.A., Tønnesland, T.A., Gopalakrishnan, S.:
Towards Unit Testing of User Interface Code for Android Mobile Applications. In: Zain,
J.M., Wan Mohd, W.M.b., El-Qawasmeh, E. (eds.) ICSECS 2011, Part III. CCIS, vol. 181,
pp. 163–175. Springer, Heidelberg (2011)

48. Liu, Z., Gao, X., Long, X.: Adaptive random testing of mobile application. In: Computer
Engineering and Technology, pp. 297–301 (2010)

49. Abdallah, N., Ramakrishnan, S.: Automated Stress Testing of Windows Mobile GUI
Applications. In: 20th Int. Symposium on Software Reliability Engineering (2009)

50. Sivapalan, S., Warren, I.: Hermes: A Tool for Testing Mobile Device Applications. In:
Software Engineering Conference, Australia (2009)

51. Liu, Z.-F., Liu, B., Gao, X.-P.: SOA based mobile application software test framework. In:
8th Int. Conf. Reliability, Maintainability and Safety, pp. 765–769 (2009)

52. Combinatorial Methods in Software Testing, http://csrc.nist.gov/groups/SNS/acts/
53. Grindal, M., Offutt, J., Andler, S.F.: Combination Testing Strategies: a Survey. Software

Testing, Verification and Reliability 15(3), 167–199 (2005)
54. Kuhn, D.R., Lei, Y., Kacker, R.: Practical Combinatorial Testing - Beyond Pairwise. IEEE

IT Professional 6, 19–23 (2008)
55. Maximoff, J.R., Trela, M.D., Kuhn, D.R., Kacker, R.: A Method for Analyzing System

State-space Coverage within a t-Wise Testing Framework. In: IEEE Int. Systems Conf., San
Diego (2010)

56. Kuhn, D.R., Kacker, R.N., Lei, Y.: Practical Combinatorial Testing. NIST Special
Publication 10, 13–15 (2010)

57. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: A General Strategy for
T-Way Software Testing. In: IEEE Engineering of Computer Based Systems Conf., pp.
549–556 (2007)

58. Chilenski, J.J., Miller, S.: Applicability of Modified Condition/Decision Coverage to
Software Testing. Software Engineering J. 9, 193–200 (1994)

59. Vilkomir, S., Bowen, J.P.: From MC/DC to RC/DC: Formalization and Analysis of
Control-flow Testing Criteria. Formal Aspects of Computing 18(1), 42–62 (2006)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

73

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_5

Agent Approach to Network Systems Dependability
Analysis in Case of Critical Situations

Jacek Mazurkiewicz

Institute of Computer Engineering, Control and Robotics, Wroclaw University of Technology
ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland

Jacek.Mazurkiewicz@pwr.wroc.pl

Abstract. The chapter describes the analysis and discussion of the network
systems in case of the critical situation that happens during ordinary work. The
formal model is proposed – based on the two types of real sophisticated net-
work systems – with the approach to its modeling based on the system behavior
observation. The agent approach to constant network monitoring is given using
hierarchical structure. The definition of the critical situation sets are created by
reliability, functional and human reasons. The proposed method is based on
specified description languages that can be seen as a bridge between system de-
scription and an analysis tools. Using a multilevel-agent based architecture the
realistic data are collected. Described architecture can be finding as a basis for a
tool that can visualize and analyze data, with respect to real parameters. No re-
striction on the system structure and on a kind of distribution describing the
system functional and reliability parameters is the main advantage of the ap-
proach. The proposed solution seems to be essential for the owner and adminis-
trator of the transportation systems.

Keywords: network systems, critical sets, reliability, dependability modeling.

1 Introduction

Contemporary network systems are very often considered as a set of services realized
in well-defined environment created by the necessary hardware and software utensils.
The system dependability can be described by such attributes as availability (readi-
ness for correct service), reliability (continuity of correct service), safety (absence of
catastrophic consequences on the users and the environment), security (availability of
the system only for authorized users), confidentiality (absence of unauthorized disclo-
sure of information), integrity (absence of improper system state alterations) and
maintainability (ability to undergo repairs and modifications) [1, 3, 13, 20].

The system realizes some tasks and it is assumed that the main system goal, taken in-
to consideration during design and operation, is to fulfill the user requirements. The
system functionalities (services) and the technical resources are engaged for task reali-
zation. Each task needs a fixed list of services which are processed based on the system
technological infrastructure. The different services may be realized using the same tech-
nical resources and the same services may be realized involving different sets of the

5

74 J. Mazurkiewicz

technical resources. It is easy to understand that the different values of performance and
reliability parameters should be taken into account. The last statement is essential when
tasks are realized in the real system surrounded by unfriendly environment that may be
a source of threads and even intentional attacks.

Moreover, the real systems are built on the base of unreliable technical infrastruc-
tures and components. The modern systems are equipped with suitable measures and
probes, which minimize the negative effects of these inefficiencies (a check-
diagnostic complex, fault recovery, information renewal, time and hardware redun-
dancy, reconfiguration or graceful degradation, restart etc). The contemporary
network systems are created as very sophisticated products of human idea characte-
rized by the complex structure. This way the critical situations observable during its
exploitation are not always predictable for system owners and managers, but could be
very costly for a company and sometimes even damaging.

The necessary analysis mechanisms should be created not only for the money sav-
ing, by also as a tool for the future administration of the system and decision support
(based on some specified metrics). The main problem is to realize multi-criteria
optimization for system management. The solution ought to combine the sets of relia-
bility, functional and economic parameters. The mentioned data are modeled by dis-
tributions - so it makes the optimization problem more sophisticated. This is the
reason why we propose the computational collective intelligence to create the device
to support human’s decisions.

The presented work uses the agents in task of the transportation system monitoring
and modeling, so we propose the following description of the most important agent’s
features [5]:

- unique identification within the proposed architecture,
- interaction abilities and proper interfaces for communication and different data

transfer,
- secure protocols necessary for communication purposes,
- hardware and / or software implementation,
- plug-and-play ability to guarantee promising scalable and flexible structure.

The temporary computer engineering still does not define an “agent” term in de-
tailed way, but it is not a real barrier to establish the unified semantic meaning of the
word in technical point of view. The agent can play the role of the autonomous entity
[6] as a model or software component for example. The agent’s behavior can be no-
ticed as trivial reactions, but is not limited – so we can easily find agents characte-
rized by complex adaptive intelligence. Sometimes is important to point the potential
adaptive abilities of the agents [7]. It means the agent can gather the knowledge from
the environment around and to tune their behavior as a reaction for different events.

This way we can say the agents belong to the softcomputing world. The agent’s
structure is not obligatory plain. We can easily [5] find at least two levels (lower,
higher) of the rules created for the agents. This approach allows to tune the level of
the sensitivity for the environment and to define the vitality feature of the agent un-
derstood as activity or passivity [12, 15].

The agent-based approach provides the real great effectiveness comparing with the
classical architectures if we think about the data gathering and aggregation from the

 Agent Approach to Network Systems Dependability Analysis 75

real sophisticated system characterized by the large network, significant number of
nodes and non-trivial addressing aspects. This way it is easy to create the global and
detailed enough view for multilevel systems with elements described by various sets
of features. We propose to use the agents to create the intelligent hierarchical moni-
toring architecture - described in section 4. The section 5 presents a solution of a de-
scription language for a proposed model, called SML (System Modeling Language).
As a format of the proposed language XML (Extensible Markup Language) was cho-
sen. Main reason is a simple (easy to learn) and readable structure, that can be easily
convert to text or other format. Moreover, XML is supported not only with various
tools (providing validation possibilities) but is also supported by many programming
languages and framework in case of quicker and more efficient implementation.

The aim of this chapter is to point the problems of the critical situations in unified
network system – product of essential elements and features taken from two kind of
real systems: Discrete Transport System (DTS) and Computer Information System
(CIS). Each part of the system is characterized by unique set of features and can
caused the critical situation of whole system if it starts to work in unusual way or the
fault or error of it is noticed. It is hard for an administrator, manager or an owner to
understand the system behavior and to combine the large scale of variant states of it in
single – easily observable and controlled global metric as a pointer to make the proper
decision in short time period. To overcome this problem we propose a functional
approach. The system is analyzed from the functional point of view, focusing on
business service realized by a system [21]. The analysis is following a classical [15]:
modeling and simulation approach. It allows calculating different system measures,
which could be a base for decisions related to administration of the transportation
systems. The results of the system observation – understand as the set of data col-
lected during the simulation process are the basis to define the critical situations and
they allow providing proper solution to lift-up the systems in effective way if the
critical situation occurs. This is the only sensible way, because the critical situations
are the real and not removable part of the system life. The organization of this paper is
as follow. We start with description of the abstract service network model (section 2).
Base in it we define the normal conditions of the system work (section 3). In section 6
we provide the most adequate – in case of the level of detail - the well-established
description of the critical situation.

2 Network Model

The chapter describes approach based on functional-dependability models understood
as a concept of specifying dependability aspect for two perspectives: secure and de-
pendable system as much as service-related operational system. In our research, we
focus on two types of service models, that where close to our interest area: Discrete
Transport System (DTS) [16, 17, 20, 21, 22] and Computer Information System (CIS)
[12, 13, 17, 18]. Both systems can be analyzed separately, but because of their specif-
ic goal, some common mechanisms can be seen. Taking into consideration more

76 J. Mazurkiewicz

generic perspective, we decided to focus on a common view on the system model we
call - Abstract Service Network Model.

As mentioned, both systems have the same aim – to provide a service in a sense of
user request accomplishment. For this reasons, the key point to analyze the systems is
a Task (T) given to the systems. Task is defined by the user and parameters related
with time (user patience time, delivery take, etc.) but also it is strongly and inextrica-
bly connected with some service scenario. In fact, when we analyze logically the way
the service is provided, we can see that the scenario conditions define specific cho-
reography (graph of various components) within a service. The choreography must be
defined and known. Since task is realized as an input to the Business Service (BS),
therefore its choreography is based on predefined service components located in net-
work nodes (reconfigurable components).

Moreover, network nodes base on Technical Infrastructure (TI) – resources used as
elements for providing dependable service seen as a hardware and software linked
within a network. Various functional define each element of the Technical Infrastruc-
ture (routes and central points in Discrete Transport System, computers or network
devices in Complex Information Systems) and dependability parameters, not to men-
tion about some time functions. Time related with the technical resources is as much
important as time on a service level, therefore we speak about – Chronicle of the Sys-
tem (K). Taking into consideration these common features an abstract model can be
proposed as follows:

 >=< BS,TI,M,KTANS , (1)

where: ANS – Abstract Network Services, T – Task, BS – Business Service,
TI – Technical Infrastructure, M – User, K – Chronicle of the System.

The unified description can guarantee the required level of abstraction for the anal-
ysis we are going to provide.

3 Service Description

3.1 Tasks

The problems of the contemporary systems reliability certainly need to be extended to
cover the envisaged fact that the main object (system) of its studies is a tightly
connected complex of hardware resources, information resources (algorithms and
procedures of operations and system management) and human-factor (managers, ad-
ministrators and users). The studied systems realize complex functions and are capa-
ble of substituting tasks on detecting faults (functional redundancy). The systems
operate in a changing environment, often antagonistic to them. Users generate tasks
which are being realized by the system. The task to be realized requires some services
(functionalities) available in the system. A realization of the service needs a defined
set of technical resources. In a case when any resource component of this set is in a
state "out of order" or "busy", the task may wait until a moment when the resource
component returns to a state "available" or the service may try to create other configu-
ration based on available technical infrastructure [2, 3, 4].

 Agent Approach to Network Systems Dependability Analysis 77

A technological infrastructure is considered as a set of hardware resources (devices
and communication channels) which are described by sets of their technological, reli-
ability and maintenance parameters. The information resources are understood in the
same way. The human-factor’s functions are defined little bit different: she or he can
be defined as: a system operator, a service person, a system manager (administrator)
etc. [21, 29]. The system management allocates the resources to the task realisation,
checks the efficient states of the system, performs the suitable actions to locate faults,
attacks or viruses and to minimise their negative effects. In many situations the sys-
tem staff and the management system have to cooperate in looking for adequate deci-
sions (for instance to fight with a heavy attack or when a new virus is disclosed). The
system events corresponds to: tasks realisation, occurrence of incidents (faults, vi-
ruses, attacks) and system reactions to them (technological and information renewals).
Task configurations change when the tasks are being processed. The software man-
agement, reacting with the system users, determines the changes. Some changes may
be the result of detecting system faults and reacting to them. This is called system
reconfiguration [25, 27]. The subsets of resources used by the tasks do not need to be
disjoint. A resource that can be allocated to more than one configuration at the same
time is called sharable, whereas one that cannot is non-sharable. Some resources, for
example the central processors in computer systems, are “time-sharable”. This is a
technique that allows sharing of resources that are essentially non-sharable, by very
fast switching of the allocation in time [1, 17, 18].

3.2 Events

Different events of the service network are considered as: normal functional events
described by such time parameters as the start or / and the end of the task, a moment
of a system resources allocation, a time of occurrence of a new task, an (prognoses or
real) task execution time, etc., unfriendly incidents that are disturbed efficient system
execution; for example failures of transport structure, failures and errors, delay time
of data packages, faults of network devices or dispatching system, etc.

It is easy to notice that the first class of system events is strictly connected with
correct system task realization and the second one groups all events disrupting the
efficient operation of the system and which may start the system defence reactions. In
this way the first class of events will be called “efficient functional events” and the
second one “dependable incidents” or “unfriendly events”. A classification of de-
pendable incidents and system reactions is presented in the Figure 1. A dependable
incident is an event that might lead to some disruptions in the system behavior. The
incident may cause some damage to the system resources; transport structure, man-
agement actions and, in consequence, it may disrupt the executed transport processes
[3, 4]. If a fault appears during the task execution then the system on the base of deci-
sion of its management system starts renewal processes. Time of technological re-
newal activities are added to the nominal time of the task so a real time of the task
duration will be longer. The real duration time of the executed tasks depends on the
nature of the system faults. Failures of hardware may need both renewals of techno-
logical resources and information resources. Consequences of human errors or

78 J. Mazurkiewicz

computer software faults are limited to renewals of information processes. Sometimes
an incident which are occurred in a short time interval may have a more serious
impact on the system behavior; it may escalate to a security incident, a crisis or a
catastrophe. The failures of the network structure - physical failures of technical infra-
structure need to use adequate service teams, spare elements or substituted routes.
Very often “technical” system renewal processes are considered with assuming of the
limited resources, for example the number service team for the part of the network
[5, 27].

Other sources of the network disruptions we can find in organization and manage-
ment: overloading of the technical infrastructure, traffic problems or jams – caused by
limited bandwidth or dispatching errors, dispatching faults – system is not able to
keep up the dynamic changes of the situation in the working network.

Fig. 1. A classification of unfriendly events of a discrete transport system

In these cases exploitation system renewal processes are initiated by the system
dispatcher. The processes very often consume more time and money than a renewal of
a “simple (physical)” broken technical resource, e.g. a repair of a failed truck or a lift.

3.3 System Maintenance

The modern systems are equipped with suitable measures, which minimise the nega-
tive effects of these inefficiencies (a check-diagnostic complex, fault recovery,
information renewal, time and hardware redundancy, reconfiguration or graceful deg-
radation, restart etc). The special services resources (service persons, different redun-
dancy devices, etc.) supported by the so-called maintenance policies (procedures of
the service resources using in purpose to minimise negative consequences of faults

network structure
renewal

dependable unfriendly system events

monitoring & diagnosis

network
structure faults

dispatching decisions and system defense reactions

failures
and errors

service
faults

schedule
changing

functional
reconfiguration

 Agent Approach to Network Systems Dependability Analysis 79

that are prepared before or created ad hoc by the system manager) are build in every
real system [3, 4, 24, 27]. The maintenance policy is based on two main concepts:
detection of unfriendly events and system responses to them. Detection mechanisms
should ensure detection of incidents based on observation of a combination of seem-
ingly unrelated events, or on an abnormal behaviour of the system. Response provides
a framework for counter-measure initiatives to respond in a quick and appropriate
way to detected incidents. In general, the system responses incorporate the following
procedures: detection of incidents and identification of them, isolation of damaged
resources in order to limit proliferation of incident consequences, renewal of damaged
processes and resources. Relations among the incidents and the reactions of the sys-
tem are shown in Figure 2. A services network is a system of functional services that
are necessary for clients tasks realisation process. The services networks are organ-
ized based on the technical infrastructure and technological services which are
involved into a task realisation process according to decisions of the management
system. The task realisation process may include many sequences of services, func-
tions and operations which are using assignment network resources. Description of
the allocation of network services and their implementation process will be hereinaf-
ter referred to as network choreography. We can build more general definition of the
system introducing the idea of the net of services. It is described at the upper level of
abstraction: a task or a job may use a single service or a few services - concurrent or
sequenced - on the base of available network resources. The management system -
allocates services (functionalities) and network resources to realized tasks, checks
states of the services network and controls suitable system responses to detected and
localized unfriendly events and minimizes their negative effects. The control of the
defence reactions of the system is understood as the choice of an appropriate mainte-
nance policy. A service may be realised based on a few separated sets of functional-
ities with different costs which are the consequences of using different network
resources. Because the services have to cooperate with other services than protocols
and interfaces between services, and/or individual activities are crucial problems
which have a big impact on the definitions of the services, and on processes of their
execution. Generally the management system has main functionalities: monitoring of
network states and controlling of services and resources; creating and implementing
maintenance policies which ought to be adequate network reactions on concrete
events/accidents. In many critical situations a team of persons and the management
system have to cooperate in looking for adequate counter-measures. As a conse-
quence, the services network is considered as a dynamical structure with many
streams of events generated by realized tasks, used services and resources.

Some network events may been independent but majority of events depends on a
history of a network life. Generally, event streams created by a real network are a mix
of deterministic and stochastic streams which are strongly tied together by a network
choreography. Modelling of this kind of systems is a hard problem for system design-
ers, constructors and maintenance organizers, and for mathematicians, too. It is
proposed to focus the dependability analysis of the networks on the fulfilment of
requirements defined by user task [27].

80 J. Mazurkiewicz

Fig. 2. Incidents and reactions of the system

Therefore, it should take into consideration following aspects:

• specification of the user requirements described by task demands, for example ex-
pected volume to transport, desired time parameters etc.,

• functional and performance properties of the network system and components,
• reliable properties of the technical infrastructure that means reliable properties of

the network structure and its components considered as a source of unfriendly
events which influence the task processing,

• threads in the network environment,
• measures and methods which are planned or build-in the network system for elimi-

nation or limitation of unfriendly incident consequences; reconfiguration of the
transport system is a good example of such methods,

• the system of maintenance policies applied in the considered network.

The task realisation process is supported by two-level decision procedures con-
nected with selection and allocation of the network services (functionalities) and in-
frastructure resources. The first level of decision procedure is focused on suitable
services selection and a task configuration. The functional and the performance task
demands are based on suitable services choosing from all possible network services.
The goal of the second level of the decision process is to find needed components of
the network infrastructure for each service execution and the next to allocate them
based on their availability to the service configuration. If any component of technical
infrastructure is not ready to support the service configuration then the allocation
process of network infrastructure is repeated. If the management system could not
create the service configuration then the service management process is started again
and other task configuration may be appointed. These two decision processes are
working in a loop which is started up as a reaction on network events and incidents
[3, 4, 8, 27].

 Agent Approach to Network Systems Dependability Analysis 81

3.4 Dependability Discussion

The term dependability is well known in the literature and commonly used by fault
tolerant and dependable computing community, but has been assigned many different
meanings. For example, there is more than one definition of dependability [3, 4, 9, 10,
14]. The dependability of the system can be defined as the ability to execute the func-
tions (tasks, jobs) correctly, in the anticipated time, in the assumed work conditions,
and in the presence of threats, technological resources failures, information resources
and human faults (mainly malfunctions) [8]. Dependability is the most comprehensive
concept for modeling complex systems taking a top-down approach [1]. It is evolving
into a distinct discipline attempting to subsume the preceding concepts of reliability,
and fault-tolerance. There is no universally accepted definition of dependability; the
term has been accepted for use in a generic sense as an umbrella concept [2, 3].

Users of the system realize some tasks using it – for example: send a parcel in the
transport system or buy a ticket in the internet ticket office. It is assumed that the
main goal, taken into consideration during design and operation, is to fulfill the user’s
requirements. We can easy find some quantitative and qualitative parameters of user’s
tasks [2, 27]. The system functionalities (services) and the technical resources are
engaged for task realization. Each task needs a fixed list of services, which are
processed based on the system technological infrastructure or the part of it. The dif-
ferent services may be realized using the same technical resources and the same ser-
vices may be realized involving different sets of the technical resources. It is easy to
understand that the different values of performance and reliability parameters are
taking into account. The last statement is essential when tasks are realized in the real
system surrounded by unfriendly environment that may be a source of threads and
even intentional attacks. Moreover, the real systems are built of unreliable software
and hardware components as well.

It is hard to predict all incidents in the system; especially, it is not possible to envi-
sion all possible attacks, so system reactions are very often "improvised" by the sys-
tem, by the administrator staff or even by expert panels specially created to find a
solution for the existing situation. The time, needed for the renewal, depends on the
incident that has occurred, the system resources that are available and the renewal
policy that is applied. The renewal policy should be formulated on the basis of the
required levels of system dependability (and safety) and on the economic conditions
(first of all, the cost of downtime and lost processing/computations) [2]. Modeling of
this kind of systems is a hard problem for system designers, constructors and main-
tenance organizers, as well as for mathematicians. It is worth to point out some
achievements in the computer science area such as Service Oriented Architecture [3,
4, 26] or Business Oriented Architecture [26, 29], and a lot of languages for network
description on a system choreography level, for example WS-CDL [18], or a technical
infrastructure level, for example SDL [18, 27]. The approach seems to be useful for
analysis of a network from the designer point of view. The description languages are
supported by the simulation tools, for example modified SSF Net simulator [21, 22].
Still it is difficult to find the computer tools which are combination of model languag-
es and Monte Carlo simulators [19, 23, 24].

82 J. Mazurkiewicz

4 Monitoring Architecture

In case of Monitoring Architecture representation and distributed multilevel agent-
based architecture can be constructed. Figure 3 shows the diversification of complexi-
ty of a system into layers and their placement in a system. The lowest components of
the structure are Node Probes (NP) which are the simplest pieces of the architecture
representing resident level. These are the simplest and easy to get data that at this
level represent small value that is why they are aggregated in upper units are for-
warded to appropriate supervising Node Sensors (NS). Next Node Sensors collect the
data and create an image of the particular area – so they are located in the ordinary
nodes (ON). Again the information is sent to a higher level – Local Agent (LA) –
combined to the central node (CN).

 (2)

This set of information creates a database building representation of local part of a
system (subnetwork). It means that the local view of the system and partial adminis-
tration in the system can be done at this level.

 NjNSLA
j

ji ∈= ; (3)

The highest component of this structure is the Global Agent – working in the head-
quarter (HQ), that picks and process local information’s and view to one central unit.

 NjLAGA
j

j ∈= ; (4)

This module stores all information from a whole system. It is situated in one point
and one dedicated machine (with a strong backup). Assembling all local view at this
level we get one homogenous global view. At this level, data-mining techniques can
be used. We can see that set of information flow goes to the central unit – Global
Agent. For this reasons it is the most complex and the simplicity of the data that are
needed to describe the system in this point is the highest in hierarchy.

5 Description Language

Since, the purpose of the work is to analyze network system based on specified ma-
thematical model, there is a need to transfer the data into a format that would be
useful in an analysis tool. It requires specify data format that can be easily shared
between various tools or even several of transport architectures (independent form
complexity). Several data sharing and exchange standards have been developed in the
Intelligent Transport Systems [11]. They define a standard data format for the sharing
and exchange of the transportation data mostly based on UML (Unified Modeling
Language) diagrams. Other solutions, i.e. Japanese standard called UTMS (Universal
Traffic Management Systems) focuses rather on the road traffic system.

NjNPNS
j

ji ∈= ;

 Agent Approach to Network Systems Dependability Analysis 83

Fig. 3. Multilevel architecture schema

Still none of them is coherent with solutions proposed in this chapter, since they
describe different types of network system. Moreover they are based on UML dia-
grams, which are the graphical representation of a model, but not the one, that can be
simply used as an input format for any available analysis tool (computer simulator).
Additionally description language for this system should be as close as real, not only
to a mathematical description of the system, but to real system behavior and its para-
meters. In Section 4 we mentioned that the view of the network system can be rea-
lized on two levels (local and global). To do that, the tool for visualization and data
processing is needed. Furthermore having this tool we can not only see the topology
of the system, but also its elements and parameters. It gives us an opportunity to see
the system more precisely or even make some analysis on a real data that comes from
proposed multilevel agent-based architecture. Still, it requires specify data format that
can be shared between tools, but since of the data exchange is done based on UML
diagrams, there is a need used some other solution that will be more suitable. Since
UML diagrams are mostly graphical representation of a model, we propose a solution
of a description language for a proposed model, called SML (System Modeling Lan-
guage) [16]. Format of this language is based on XML standards, since it is easy to
use, and extendable. Moreover the format allows using the language without special
tools, since XML is supported by many tools. Figure 4 shows a fragment of the lan-
guage with appropriate elements and attributes related with mathematical model
described previously. As can be seen, each element of the system is modeled as a
complex element with appropriate sub-elements and attributes. The proposed lan-
guage assures aggregation of dependability and functionality aspects of the examined
systems. One language describes whole system and provides a universal solution for
various techniques of computer analysis as an effective and suitable input for those
tools. Expect easiness of potential softcomputing analysis, promising scalability and

84 J. Mazurkiewicz

portability (between analysis tools) can be named as the main advantage of the lan-
guage usage. Proposed language is easy to read and to process using popular and
open-source tools; however the metadata used in this format are still a significant
problem in case of file processing (large size of the file). Nevertheless since XML
format is strongly supported by programming languages like: Java, C#, the usage as
much as processing of the file can be done irrespectively from application language.
As previously described (Fig. 3.) data send by Node Probe are combined in the Node
Sensors. Each of these entities has assigned to it a supervisor – Local Agent that ac-
cumulates these files in order to create local view. This level is more compound and
computational complex than previous one considering installed database and some
methods that solve additional problems. In this way XML files transferred from the
simplest level to the next one – creating views on the upper level. Global Agent col-
lects this information and similarly to Local Agent combines all information included
in dedicated SML file. As this Global Agent is the most resourceful entity it may be
distributed, so it can contain more than one database. At the end, full description of
the system is created, visualized and analyzed with respect to dedicated analysis tools.

<Node>
 <SingleCentralNode to="Wroclaw">
 <numberOfPackages>3455</numberOfPackages>
 <numberOfVehicles>8990</numberOfVehicles>
 <ManagementSystem />
 <TechnicalInfastuctureTopology numberofOrdinaryNodes="5819">
 <timeBetweenSpecificNodes>
 <linksBetweenNodes from="Wroclaw" to="Opole" />
 <time>5.7</time>
 </timeBetweenSpecificNodes>
 </TechnicalInfastuctureTopology>
 </SingleCentralNode>
 </Node>
 <Vehicle>
 <meanspeed>9.7</meanspeed>
 <capacity>678</capacity>
 <MTTF>10.05</MTTF>
 <MRT>50.98</MRT>
 </Vehicle>

Fig. 4. SML – fragment of the language for DTS

6 Critical Situations

The working point of a unified network system is defined by specific values of func-
tional parameters (resulting from the existing infrastructure – load capacity of
commodity carriers and the available number of carriers, passing transfer limits, con-
nection quality, availability and quality of handling equipment, route selection, etc.)
and reliability (mean time to elements failures, the number of repair crews, the fre-
quency and duration of traffic jams and other problems, machine renewal time, etc.).
In practice, only some elements of the system model may be treated as decision va-
riables. For example, a system designer may adjust carrier capacities to the actual

 Agent Approach to Network Systems Dependability Analysis 85

needs of the task but very often, he or she has no possibility to choose the elements
base on their reliability features. For example, it is possible to choose a better
throughput of the connection, but it is no chance to change the parameters of this part
of the network. The appropriate operating point of the network system may be
achieved thankfully to the dispatching mechanisms and the actions of organizational
nature as: choosing the number of carriers and/or the number of repair crews, bypass-
ing a blocked (overload) by traffic connections, rescheduling, etc. Dispatching deci-
sions concerning allocation of services (functionalities) and resources can define the
system reconfiguration necessary to accomplish the planned tasks.

The dependability analysis of network systems is carried out to assess the degree of
risk associated with the implementation of task agreements. Note that in this case, the
risk is defined and assessed as likely to ensure the system performance under certain
conditions. Another important issue is the evaluation of the impact of various system
parameters on defined measures of performance (performability, dependability). De-
pendability synthesis of network systems is based primarily on proper selection of
services and resources to fulfill the functional requirements defined by users’ tasks
(the so-called. input tasks) – see functional – reliable models [21, 22, 27].

Optimization of system synthesis is carried out based on the minimization of po-
tential losses resulting from breach of contract. Since the parameters and decision
variables of the process of network system synthesis are determined by nominal
values contained in the intervals of tolerance, though unlikely, is a scenario corres-
ponding an operation point defined by the worst of circumstances (for example, the
simultaneous maximum demand of tasks, the maximum number of long-term traffic
jams, outbreaks caused by different matters, etc.). The decision variables and the pa-
rameters are very often treated as random variables within appropriate tolerance
ranges. The operation point of the system may be defined together with a multidimen-
sional solid of tolerance that is created at the appropriate confidence level.

The tolerance solid of the network system may be used as a basis for estimating the
risk of system faults. It is worth noting the difference between the intended ("built-
in") redundancy (functional, reliable) and pseudo-redundancies as a result of random
variables distributions, and therefore both the system constructor and the dispatching
mechanisms should exercise adequate caution in these situations. The set of system
operation points forms a system efficient operation area defined in n-dimensional
hyperspace of system parameters and decision variables. The task of synthesis of the
network system can be formulated as to ensure the global task performance for a spe-
cified number of carriers, choosing the appropriate delivery route and the costs do not
exceed a fixed value. Figure 5 illustrates the problem of selecting the operation point
of the network system taking into account the number of carriers and repair utensils.
The actual system quality is measured by the availability parameter.

The boundaries of the efficient operation area shall be determined on the basis of
the acceptable costs of tasks, the maximum allowable repair time, and cost of used
infrastructure. The boundaries can be set for the expected values – the hyper-planes of
maximum costs of working system and the hyper-plane of the minimum, but still
acceptable, system availability. It is easy to notice that the efficient operation area
may consist of many operating points, which are associated with different operating

86 J. Mazurkiewicz

costs or risk of incorrect operation of the system. It is introduced a concept of a criti-
cal operation point of the system, i.e., such an operation point within the efficient
operation area that the occurrence of a single hostile incident (e.g. damage of single
system element) causes a transient exit (e.g. for renewal time) beyond the area of
efficiency and an additional hostile event that appears during the renewal time (e.g. a
traffic jam on one of the used routes) leads to system crush (e.g. interruption of the
supply chain in a just at time operating system).

A subset of the critical operation points constitutes the so-called critical efficient
operation area of the system (Figure 5) corresponds to critical system operation states.
The critical system state can be a simple consequence of change of "process parame-
ters", such as raising the intensity of damage of the systems elements as a result of
their use or the result of unfavorable combination of circumstances (adverse realiza-
tion of random variables). For example, without necessarily changing the intensity
parameter, too many carriers would be damaged at the same time, and repair crews
would be overwhelmed. In extreme cases, it may lead to an avalanche of hostile
events, or even to crash the system.

Fig. 5. General idea of critical sets for network system

7 Conclusions

We have presented a formal model of sophisticated network system including
reliability, functional parameters as well as the human factor component at the neces-
sary level of detail. The model is based on the essential elements and features ex-
tracted from the Discrete Transport System (DTS) and the Computer Information
System (CIS). We pointed the crucial conditions of the normal work of the system.

 Agent Approach to Network Systems Dependability Analysis 87

The critical situation is described and discussed to create the Pareto set – guarantying
the possible safety operating points for actual network system.

The proposed approach allows performing reliability and functional analysis of the
different types of network systems – for example:

• determine what will cause a ”local” change in the system,
• make experiments in case of increasing volume of the commodity incoming to sys-

tem,
• identify weak point of the system by comparing few its configuration,
• better understand how the system behaves.

Based on the results of simulation it is possible to create different metrics to ana-
lyze the system in case of reliability, functional and economic case. The metric could
be analyzed as a function of different essential functional and reliability parameters of
network services system. Also the system could be analyze in case of some critical
situation (like for example a few day tie-up [24]).

The presented approach – based on two streams of data: dependability factors and
the features defined by the type of business service realized – makes a starting point
for practical tool for defining an organization of network systems maintenance. It is
possible to operate with large and complex networks described by various – not only
classic – distributions and set of parameters. The model can be used as a source to
create different measures – also for the economic quality of the network systems. The
presented problem is practically essential for defining and organization of network
services exploitation.

References

1. Al-Kuwaiti, M., Kyriakopoulos, N., and Hussein, S.: A Comparative Analysis of Network
Dependability Fault-tolerance, Reliability, Security, and Survivability. IEEE Communica-
tions Surveys & Tutorials, 11 (2), pp. 106-124 (2009)

2. Arvidsson, J.: Taxonomy of the Computer Security Incident Related Terminology. Telia
CERT (2006), Retrieving date of access: May, 15, 2011 from
(http://www.terena.nl/tech/projects/cert/
i-taxonomy/archive/.txt)

3. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental Concepts of Dependability. Toulouse
France: LAAS-CNRS Research Report No. 1145, LAAS-CNRS (2001)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. Dependable and Secure Computing
(TDSC), 1 (1), pp. 11-33 (2004)

5. Bonabeau E.: Agent-Based Modelling: Methods and Techniques for Simulating Human
Systems, Proc Natl Acad Sci (2002)

6. Gao Y., Freeh V. W., Madey G. R.: Conceptual Framework for Agent-based Modelling
and Simulation, Proceedings of NAACSOS Conference, Pittsburgh (2003)

7. Jennings N. R.: On Agent-Based Software Engineering, Artificial Intelligence 117, El-
sevier Press, April 2000, pp. 277-296, (2000)

88 J. Mazurkiewicz

8. Kołowrocki, K.: Reliability of Large Systems. Amsterdam-Boston-Heidelberg-London-
New York-Oxford-Paris-San Diego-San Francisco-Singapore–Sydney-Tokyo: Elsevier
(2004)

9. Kyriakopoulos, N., Wilikens M.: Dependability and Complexity: Exploring Ideas for
Studying Open Systems, EN. Brussels, Belgium: EC Joint Research Centre (2001)

10. Lapie J. C.: Dependability: Basic Concepts and Terminology. New-York, NY, Wien:
Springer-Verlag (1992)

11. Liu H., Chu L., Recker W.: Performance Evaluation of ITS Strategies Using Microscopic
Simulation, Proceedings of the 7th International IEEE Conference on Intelligent Transpor-
tation Systems, 2004, pp. 255-270 (2004)

12. Mascal C. M., North M. J.: Tutorial on Agent-Based Modelling and Simulation, Winter
Simulation Conference, (2005)

13. Mazurkiewicz, J., Walkowiak, T., Nowak K.: Fuzzy Availability Analysis of Web Systems
by Monte-Carlo Simulation. In Lecture Notes in Computer Science. Lecture Notes in Ar-
tificial Intelligence, pp. 616-624. Berlin, Heidelberg: Springer-Verlag (2012)

14. Melhart, B., White, S.: Issues in Defining, Analyzing, Refining, and Specifying System
Dependability Requirements. In Proc. of the7th IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems (ECBS 2000), Apr. 3-7, 2000
pp. 334-340, Edinburgh, Scotland, UK: IEEE Computer Society (2000)

15. Mellouli S., Moulin B., Mineau G. W.: Laying Down the Foundations of an Agent Model-
ling Methodology for Fault-Tolerant Multi-agent Systems, ESAW 2003, pp. 275-293
(2003)

16. Michalska K., Mazurkiewicz J.: Functional and Dependability Approach to Transport Ser-
vices Using Modeling Language; Computational Collective Intelligence – Technologies
and Applications – ICCCI 2011, 3rd International Conference, Gdynia, Poland, September
2011, Proceedings, Part II, LNAI 6923, Springer-Verlag Berlin Heidelberg 2011,
P. Jędrzejowicz et al. (Eds.), pp. 180-190 (2011)

17. Michalska, K., Walkowiak, T.: Hierarchical Approach to Dependability Analysis of In-
formation Systems by Modeling and Simulation. In Andre Cotton et al. (Eds.), Proceed-
ings of the 2nd International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE 2008), Cap Esterel, France, 25-31 August, 2008,
pp. 356-361, Los Alamitos: IEEE Computer Society Press (2008)

18. Michalska, K., Walkowiak, T. (2008). Modelling and Simulation for Dependability
Analysis of Information Systems. In Jerzy Świątek et al. (Eds.), Information Systems Ar-
chitecture and Technology. Model Based Decisions, pp. 115-125, Wroclaw: University of
Technology (2008)

19. Nowak, K.: Modelling of Computer Systems – an Approach for Functional and Dependa-
bility Analysis. K. Kołowrocki, J. Soszyńska-Budny (Eds.), Journal of Polish Safety and
Reliability Association, Summer Safety and Reliability Seminars (SSARS 2011), 1,
pp. 153-161 (2011)

20. Walkowiak, T., Mazurkiewicz, J.: Availability of Discrete Transportation System Simu-
lated by SSF Tool. In Proceedings of International Conference on Dependability of Com-
puter Systems, Szklarska Poreba, Poland, June, 2008, pp. 430-437, Los Alamitos: IEEE
Computer Society Press (2008)

21. Walkowiak, T., Mazurkiewicz, J.: Functional Availability Analysis of Discrete Transporta-
tion System Realized by SSF Simulator. In Proceedings of the 8th International Confe-
rence ‘Computational Science – ICCS 2008’, part I, Krakow, Poland, June 2008,
pp. 671-678, Berlin, Heidelberg: Springer-Verlag (2008)

 Agent Approach to Network Systems Dependability Analysis 89

22. Walkowiak, T., Mazurkiewicz, J.: Algorithmic Approach to Vehicle Dispatching in Dis-
crete Transportation Systems. In Jarosław Sugier et al. (Eds.), Technical Approach to De-
pendability, pp. 173-188, Wroclaw: Wroclaw University of Technology (2010)

23. Walkowiak, T., Mazurkiewicz, J.: Functional Availability Analysis of Discrete Transporta-
tion System Simulated by SSF Tool. International Journal of Critical Computer-Based
Systems, 1 (1-3), pp. 255-266 (2010)

24. Walkowiak, T., Mazurkiewicz, J.: Soft Computing Approach to Discrete Transportation
System Management. In Lecture Notes in Computer Science. Lecture Notes in Artificial
Intelligence. vol. 6114, pp. 675-682, Berlin, Heidelberg: Springer-Verlag (2010)

25. Volfson, I.E.: Reliability Criteria and the Synthesis of Communication Networks with its
Accounting. J. Computer and Systems Sciences International, 39 (6), pp. 951-967 (2000)

26. Xiaofeng, T., Changjun, J., Yaojun, H.: Applying SOA to Intelligent Transportation Sys-
tem. In Proceedings of the IEEE International Conference on Services Computing, Vol. 2,
July, 11-15, 2005, pp. 101-104, Orlando, Florida: IEEE Computer Society (2005)

27. Zamojski, W., Caban, D.: Assessment of the Impact of Software Failures on the Reliability
of a Man-Computer System. In Proc. of the Conference on European Safety and Reliability
(ESREL), 2005, pp. 2087-2090, Gdynia-Sopot-Gdansk: A. A. Balkema (2005)

28. Zhou, M., Kurapati, V.: Modelling, Simulation, & Control of Flexible Manufacturing Sys-
tems: A Petri Net Approach. London, UK: World Scientific Publishing (1999)

29. Zhu, J., Zhang, L.Z.: A Sandwich Model for Business Integration in BOA (Business
Oriented Architecture). In Proceedings of the IEEE Asia-Pacific Conference on Services
Computing (APCSC), 2006, pp. 305-310, Washington, DC: IEEE Computer Society
(2006)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

91

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_6

Model Transformation for Multi-objective Architecture
Optimisation of Dependable Systems

Zhibao Mian, Leonardo Bottaci, Yiannis Papadopoulos,
Septavera Sharvia, and Nidhal Mahmud

Computer Science Department,
University of Hull, HU6 7RX, UK

{Z.Mian@2009.,L.Bottaci@,Y.I.Papadopoulos@,
s.sharvia@,N.Mahmud@}hull.ac.uk

Abstract. The promise of model-based engineering is that by use of an inte-
grated and coherent system model both functional and non-functional require-
ments may be analysed, implemented and tested in a rigorous and cost-effective
manner. An important part of model-based engineering is the use of analysis
and design languages. The Architecture Analysis Design Language (AADL) is
a new modelling language which is increasingly being used for high dependa-
bility embedded systems development. Such languages are ideally suited to
model-based engineering but the use of new languages threatens to isolate exist-
ing tools which use different languages. This is a particular problem when
these tools provide an important development or analysis function. System
optimization is such a function.

System designers seek an optimal trade-off between high dependability and
low cost. For large systems, the design space of alternatives with respect to both
dependability and cost is enormous and too large to investigate manually. For
this reason automation is required to produce optimal or near optimal designs.

HiP-HOPS is a mature, state of the art, dependability analysis and optimisa-
tion method and tool. HiP-HOPS requires, as input, the local failure behaviour
of the system components together with the inter-component failure propaga-
tion behaviour. For optimisation, component variability information is also
required.

The integration of tools such as HiP-HOPS into a model-based engineering
environment requires that these tools have suitable access to the system model.
Without proper integration, additional system information must be input at ad-
ditional cost and risk of inconsistency.

This paper shows how model transformation may be used to integrate a mul-
ti-objective optimization method and tool into a model-based engineering envi-
ronment. To illustrate the transformation method it is applied in a case study;
where, drawing from the results of the optimisation, we highlight the potential
value of this work for model-based design.

Keywords: MBE, dependability analysis, model transformation, ATL, AADL,
HiP-HOPS, architecture optimisation.

5

92 Z. Mian et al.

1 Introduction

1.1 Model-Based Engineering and System Optimisation

Model-based engineering is used to design engineering systems in which models are
the central artefacts through the lifecycle of a system development process. Model-
based engineering, as argued in [1], allows a systematic analyses of system architecture
early and throughout the development life cycle. This can provide higher confidence
that the integrated system will meet specific design goals such as performance, timing
and dependability-related requirements. Furthermore, model-based engineering
enables a more cost effective development and system integration process.

Recent work in this area has focused on the development of languages and nota-
tions that aim to progressively refine requirements models and design models to au-
tomatically drive the development and then verification of complex systems. These
include general purpose modelling languages such as Unified Modelling Language
(UML) [2] and SysML [3]. More recently, Architecture Description Languages
(ADLs) such as AADL (Architecture Analysis and Design Language as described in
[4]) and EAST-ADL (Electronics Architecture and Software Technology - Architec-
ture Description Language as described in [5]) have emerged as potential future stan-
dards for model-based design of embedded systems in aerospace, automobile and
avionics industries.

Beyond the modelling of “normal” behaviour, these languages also incorporate er-
ror modelling semantics which enables dependability analysis. For example, the So-
ciety for Automotive Engineer (SAE) published an Error Model Annex document [6]
to complement the AADL with capabilities for dependability modelling. One of the
advantages of the Error Model Annex is that it supplies a notation used for modelling
the failure information on the original AADL architecture model. This kind of error
annotation enables the dependability analysis to consider both intra- and inter-
component error models, which is considered important for dependability analysis
[7].

The design of dependable systems must address both cost and dependability con-
cerns. For example, the cost of motor vehicles can be reduced by developing distri-
buted flexible subsystems for functions that include steering and braking [8]. The
complexity of this design space is recognised [9-10]. One problem is that a number
of architectures may potentially meet the dependability requirements both technically
and economically. In such architectures, any shared information and hardware re-
sources may allow a large number of different configuration options. This greatly
expands the already large design space and severely hampers the identification of the
most dependable designs with minimal costs. Another problem is that there may be
no solution that satisfies all the requirements. In this case, the designer must find
those solutions that achieve the key requirements with the best possible trade-offs
between dependability and cost. The consideration of the trade-off between objec-
tives is an inherent part of multi-objective optimisation.

The Architecture Analysis and Design Language (AADL) has many advantages for
model-based design but is relatively new and consequently there is a lack of tools that

 Model Transformation for Multi-objective Architecture Optimisation 93

enable dependability analysis and optimization of AADL models [10]. Three chal-
lenges therefore face designers:

(1) How to ensure effective prediction of quality attributes such as dependability, via
use of automated model-based analysis techniques?

(2) How best to introduce optimisation into the MBE process? If the model lacks the
information required for optimisation, e.g. a scheme for representing variability,
how should the model be extended to represent variability?

(3) More generally, how to use existing tools to extend the range of analyses availa-
ble in a particular modelling language?

1.2 An Approach to System Optimisation for AADL Models

The approach advocated in this paper is to exploit existing dependability analysis and
architecture optimisation techniques and tools. The challenge is to ensure that such
tools are properly integrated into a model-based engineering process. HiP-HOPS
(Hierarchically Performed Hazard Origin and Propagation Studies) [9] is a state-of-
the-art model-based system dependability analysis and optimisation technique. Un-
fortunately, HiP-HOPS requires that the system to be optimised is expressed as a
HiP-HOPS model using the HiP-HOPS modelling language. HiP-HOPS requires, as
input, the local failure behaviour of the system components together with the inter-
component failure propagation behavior. For optimisation, component variability
information is also required. The integration of tools such as HiP-HOPS into a model-
based engineering environment requires that these tools have suitable access to the
system model. Without proper integration, additional system information must be
input at additional cost and risk of inconsistency.

This problem can be overcome by transforming the AADL model into an equiva-
lent HiP-HOPS model. More specifically, the AADL dependable model must be
transformed into a HiP-HOPS model that captures the relevant component structure,
topology and local failure information required for the HiP-HOPS analysis.

2 Background

Multi-objective optimisation problems, as argued in [9-10], should be approached
systematically with the aid of optimisation techniques and computerised algorithms.
An introduction to the model-based optimisation field is given by [11]. A wider sur-
vey of literature on architectural optimisation techniques is [12].

As argued in [10], to find a suitable or optimal architecture design is difficult and
some automation is needed. One key issue facing system designers is how to opti-
mise system architectures throughout the whole system development lifecycle.

Methods and tools for performing multi-objective architecture optimisation in-
cludes work based on Reliability Block Diagrams (RBDs) model [13] and, more re-
cently, the HiP-HOPS method [8-9], [14]. HiP-HOPS is a model based dependability
analysis and architecture optimisation technique. HiP-HOPS incorporates a fast algo-
rithm for bottom up dependability analysis via automatic synthesis of fault trees and

94 Z. Mian et al.

Failure Models and Effects Analyses (FMEAs). Recently, HiP-HOPS has combined
with meta-heuristics (Pareto-based Genetic Algorithms) [10] to assist in the automatic
evolution of design models that can meet dependability and cost requirements. By
using genetic algorithms, HiP-HOPS is able to explore the space of variations of a
model and by evaluating the dependability and cost of the various model variations,
HiP-HOPS is able to solve difficult multi-objective (cost and dependability) optimisa-
tion problems.

In the context of ADLs, Walker et al. [10] presents a multi-objective optimisation
approach based on EAST-ADL. In this approach, three objectives, i.e., dependability,
timing and cost were evaluated. The system dependability is evaluated by HiP-HOPS
by transforming the EAST-ADL model into a HiP-HOPS model. EAST-ADL’s va-
riability management mechanism was used to specify the alternative implementations
and thus define the design space. AADL, however, has no such scheme to define the
search space of alternatives. A scheme for representing component variability is
needed for optimisation of AADL models.

Related work has been done on the development of tools for multi-objective opti-
misation of software architectures. One tool is ArcheOpterix [15], which is based on
AADL and potentially allows automatic optimisation of AADL specifications. Two
quality metrics, i.e., data transmission reliability and communication overhead were
evaluated. The tool was extended to enable reliability, cost and response time optimi-
sation of AADL models shown in [16]. In this extension, only simple component
redundancy allocation was used as a reliability improvement. Compared to the use of
a set of component alternatives, this limits the design space.

Another tool is AQOSA (Automated Quality-driven Optimisation of Software Ar-
chitecture) [17-18], for automated software architecture optimisation that allows mul-
tiple quality attributes (processor utilisation, response time, data flow latency, safety
and cost). The tool is designed to use model transformation technology to convert
input models (e.g. from AADL) into an intermediate model (AQOSA-IR) that can be
used as the basis of the optimisation process. To generate the design space, alterna-
tive components are provided by a repository. A set of external objective function
plugins provides the evaluation that drives the search process. AQOSA is designed to
be independent of any given domain specific language and hence needs model trans-
formation technology to generate analysis models from other architecture models to
perform the optimisation. There is, however, no detailed work showing how the va-
riability of alternative AADL components is represented and how the AADL depend-
able model can be transformed to AQOSA for AADL architecture optimisation based
on dependability and cost.

In summary, there is a lack of analysis techniques and tools that can perform a de-
pendability analysis and optimisation of AADL models. It is not always possible or
best to develop and analyse systems in a single model. Different models are imple-
mented in different languages. These include UML models, program code, interface
specifications, data schemas, component descriptors and etc. [19]. Due to the use of
varied models, transformations between models are necessary. The model transfor-
mation method has been used by a number of researchers [7], [20-25]. Czarnecki
and Helsen [19] surveyed and analysed the domain of existing model transformation
languages including model to model and model to text transformations in the litera-
ture and identified commonalities and variability among them.

 Model Transformation for Multi-objective Architecture Optimisation 95

3 Model Transformation Overview

There are similarities and differences in the AADL and HiP-HOPS modelling con-
cepts. Both languages use the concepts of component, port and connection although
detailed semantics differ. Error models in AADL are state machines which describe
how the state of the component changes in response to events or the state of other
components as observed at input ports. An omission of input or an internal compo-
nent failure is an example of an event that might cause a transition to a component-
failed state. In HiP-HOPS, error models for components are fault trees, i.e. local
Boolean failure expressions to describe how each component may fail based on its
internal malfunctions or input error deviations.

For error model transformation, we adopt the state machine to fault tree conversion
algorithm shown in [24-25] rather than using the Direct Graph (DG) shown in [7].
This conversion algorithm preserves the temporal properties of the state-machine.
The transformation method is similar as shown in [22]. The transformation concepts
shown in [22] are used because their work is related to this research. Our transforma-
tion, however, is from a different model (AADL) and the scope is broader, aiming to
encompass not only the dependability analysis but also the optimisation and temporal
analysis [24] capabilities of HiP-HOPS.

In AADL, the connections between components form the main paths of error prop-
agation through the system. In HiP-HOPS, the Line element describes how events,
typically error events, propagate from one component to another. A Line element is
associated with each input port. HiP-HOPS can automatically generate a system-wide
fault tree from the locally defined component fault trees and the propagation informa-
tion contained in the HiP-HOPS Line elements.

3.1 Translation of AADL Component Error Model to HiP-HOPS Failure
Expressions

At the highest level of abstraction, the transformation consists of two parts. One part
is concerned with the component specific error behaviour and the other part is con-
cerned with inter-component error propagation. Structurally, the model transforma-
tion transforms AADL components into HiP-HOPS components and constructs
HiP-HOPS Line objects from information in AADL components and connections.
More specifically, for a given component, the HiP-HOPS failure expression (local
fault tree) can be derived from the AADL error state machine, guard_in and
guard_out expressions. The HiP-HOPS Line elements can be derived from the
AADL connections.

An AADL component error model is a state machine in which component beha-
viour is described in terms of states and transitions between states caused by error
events. Figure 1 shows an example error state machines for component BSCU from the
case study presented later. The component is initially in the ErrorFree state. If the
component fails then its state changes to Failed2. Once in this error state it propa-
gates the event Loss_Data from BSCU.Output1. When the component loses input,

96 Z. Mian et al.

Fig. 1.

either Loss_Data1 or Los
this error state, the compon
may in turn cause a transitio

The first stage of the tran
each AADL component in
possible output of the error
in the machine shown in F
event and the equivalent fai

Loss_Data = L

This failure expression i
the final states correspondin
25]. Below the top event i
state to a final state corresp
path represents an alternativ
final state, each event that
path is represented by an A
the path.

3.1.1 Mapping Error Sta
Returning to the example o
sion (1) above. Error even
name for an error event con
or generic error followed
<PortName> indicates the t

There are six input ports
HiP-HOPS, expression (1) w

Loss_Data-Output =

Equation (2) specifies th
Loss_Data1 through any
Loss_Data through its ou

Error state machine for component BSCU

ss_Data2, it changes to the error state Failed1. Once
nent propagates output error event Loss_Data. This ev
on in the error model of some other connected compone
nsformation is to transform the component error model
nto a HiP-HOPS component fault tree expression. E
r state machine is a top event for a fault tree. For examp
Figure 1, the output propagation (Loss_Data) is the
ilure expression or fault tree is:

Loss_Data1 OR Loss_Data2 OR CMDBE

is constructed by identifying paths from the initial state
ng to the top event. The formal algorithm is given in [
is an OR-gate with one input for each path from the ini
ponding to the top event. An OR-gate is used because e
ve way of reaching the final state. To traverse a path to
controls a state transition on that path must occur henc

AND-gate in which the inputs are the events that occur

ates and Error Events to Component Ports
of Figure 1, notice the absence of port names in the expr
nts enter and leave components via ports. The HiP-HO
nsists of a basic event name, known also as a failure cl
d by a port identifier. The notation <FailureClas
type of failure and the port from which it propagates.
for the BSCU (Figure 3). To represent port information

would be written as

= Loss_Data1-Input1 OR … Loss_Data1-Input6
 OR
 Loss_Data2-Input1 OR … Loss_Data2-Input6
OR CMDBE

hat when the component receives an input error propagat
 input port 1-6, the component will propagate the er

utput port Output. The port and event name informat

e in
vent
ent.
s of

Each
mple,

top

(1)

e to
[23-
itial

each
 the
ce a
r on

res-
OPS
lass
ss>-

n in

6

6
(2)

tion
rror
tion

 Model Transformation for Multi-objective Architecture Optimisation 97

required to construct the HiP-HOPS, expression (2) may be obtained from the
guard_in error property of the AADL model. The guard_in property associates a local
error event with events from other components that may propagate along a connection
to an input port. For example, the AADL guard_in property at the input port Input1
of BSCU might be

 guard_in => Loss_Data1 when Input1[Loss_Data],
 mask when others
 applies to Input1;

This expression means that the propagation of the error event Loss_Data to the
input port Input1 of BSCU will trigger the Loss_Data1 error event in BSCU. Other
error events that arrive at the input port are “masked” i.e. ignored. The port name that
appears in the guard_in property can be used to translate the AADL error
Loss_Data1 into a HiP-HOPS port-name qualified failure class, i.e.

Loss_Data1 = Loss_Data-Input1 (3)

Note that if there is no guard_in error property defined for a locally defined input
error propagation, then this means that no input error name mapping is required i.e.,
input and output error propagations have the same name. Note also that in the situa-
tion in which a component has more than one input port and no guard_in error proper-
ty is defined for a given error that may propagate to those input ports then the error
may propagate through any of the input ports. To translate this situation into a HiP-
HOPS failure expression, an event name of the form <FailureClass>-<PortName> is
created for each port. The event which is the propagation of the error to any port can
then be represented as a disjunction (OR) of port qualified names. In general, each
locally defined input error propagation e that appears in a state machine is trans-
formed into a disjunction (OR) of the names constructed by appending each of the
input ports to the input error propagation:

e = e-in1 OR e-in2 OR ... e-inN (4)

where in1, in2, ... e-inN are the input ports through which e may propagate to
the component.

The HiP-HOPS names of error events that propagate out of a component may be
constructed in an analogous manner. In the presence of a guard_out property at a
port, the error name mapping at that port can be used to create the HiP-HOPS name.
In the current example, suppose that there is the following guard_out property at the
output port Output1 of BSCU

 guard_out => Loss_Data when self [Failed2],
 mask when others
 applies to Output1;

which means that the component will propagate an output error propagation called
Loss_Data through output port Output1 when it is in the state Failed2. The other
error propagations propagate through this output port are “masked” i.e. not propagat-
ed out. Again, the fact that this guard_out property is associated with the port Out-
put1 may be used to qualify the Loss_Data event, i.e.

98 Z. Mian et al.

Loss_Data = Loss_Data-Output1 (5)

The guard_out also allows the mapping of the component Failed2 state to the
output propagation Loss_Data (HiP-HOPS failure class Loss_Data-Output1),
i.e.

Loss_Data-Output1 = Failed2 = CMDBE (6)

In the absence of any guard_out error property, the output error propagations de-
fined for a component will propagate through each output port of that component.
For a given set of errors that propagate out of a component, a HiP-HOPS failure class
is created for each error. For a given set of output ports, each port is used to qualify
the failure class. More formally, suppose that there are number n of output ports (n
>= 1), i.e., out1, out2, . . . , outn, then we obtain:

OutputErr = OutputErr-Out1 = OutputErr-Out2 = ...
 = OutputErr-Outn (7)

For component BSCU, there are three output ports: Output, Output1 and
Output2. Thus, in the absence of any guard_out error property, based on the Boolean
logic shown in (7), we obtain:

Loss_Data = Loss_Data-Output = Loss_Data-Output1
 = Loss_Data-Output2 (8)

For component BSCU, from Boolean logic (5) and (6) we now obtain:

Loss_Data-Output1 = CMDBE (9)

This is the HiP-HOPS Boolean failure expression (fault tree) for the component
BSCU and all event names except local failure event e.g. CMDBE, are expressed as
<failure class>-<port name>.

3.2 Transformation of AADL connections to HiP-HOPS Lines

Using the AADL state machine to HiP-HOPS fault tree transformation described in
the previous section, we can obtain a local fault tree for each component in the sys-
tem. To create a whole system fault tree, HiP-HOPS needs information about how
errors propagate between components. This information is represented using HiP-
HOPS Lines. The HiP-HOPS Line element describes how events, typically error
events, propagate from one component to another. The HiP-HOPS Line concept de-
scribes a set of connected ports. The Line contains a set of HiP-HOPS Connection
objects. Each Connection describes the propagation of event to a specific port from
other ports. A Line connecting two ports will have two Connections if events flow in
both directions.

The information required to create HiP-HOPS Lines can be obtained from
the AADL connection objects. To give a simple description of the transformation
from AADL connections to HiP-HOPS Lines, consider a simple case in which
only one AADL connection (called DataConnection1) is defined between two
components Power and BSCU (Figure 3). Assume also that there is an ‘in out’ error

 Model Transformation for Multi-objective Architecture Optimisation 99

propagation called Loss_Data which is defined in an error model and this error
model is associated with both components Power and BSCU. The partial AADL de-
scription of this connection is

DataConnection1: data port Power.Output -> BSCU.Input1;

For this AADL connection, the error events will propagate from the source port
Power.Output to the destination port BSCU.Input1. In particular we can associate
a connection logic failure expression (called HiP-HOPS PortExpression) with port
BSCU.Input1 which describes the failure at component BSCU in terms of the output
failure at Power. Thus the HiP-HOPS Line for the connection from Power.Output
to BSCU.Input1 would be constructed as follows

 <Line> <Type>Directed</Type>
 <Connections>
 <Connection>
 <FailureClass> // failure in component
 Loss_Data
 </FailureClass>
 <Port>BSCU.Input1</Port> // propagated into port
 <PortExpression> // failure propagated when
 Loss_Data-Power.Output
 </PortExpression>
 </Connection>
 </Connections>
 </Line>

Each Line element contains a list of Connections. Each Connection describes how
errors at one or more output ports (e.g. Loss_Data at Power.Output) propagate to
an error at an input port (e.g. Loss_Data at BSCU.Input1). The <Port> attribute
identifies the port to which the error propagates. Since the Line is directed the error
will propagate from the port (Power.Output) to the port (BSCU.Input1). The
PortExpression element is a Boolean expression containing the names of other ports
on the Line. The PortExpression describes the events at other components, i.e.
Loss_Data from Power.Output, which causes an event, in this case, Loss_Data
at the Input1 port of component BSCU.

The transformation of the above example AADL connection to HiP-HOPS Line is
relatively straightforward as errors to the port BSCU.Input1 can come only from one
port, i.e. Power.Output. The transformation transforms the AADL connection’s
destination port to HiP-HOPS Connection destination port and the AADL connec-
tion’s source port to HiP-HOPS PortExpression. The AADL output error propagation
Loss_Data is transformed to a HiP-HOPS FailureClass and the portExpression is
constructed in the style of < FailureClass >-<portname>.

Whereas an AADL connection joins only two ports, a HiP-HOPS Line may con-
nect any number of ports. For each port in a Line to which error events may propa-
gate, there is a HiP-HOPS Connection object that specifies how error events may

100 Z. Mian et al.

propagate to that port from other ports in the Line. The HiP-HOPS Line also maps the
names of events at source components to names of events in the destination compo-
nent. This is an important difference between AADL connections and HiP-HOPS
Lines. HiP-HOPS models multiple AADL connections that fan-in to a single destina-
tion port using one HiP-HOPS Line. Since an error event may originate from any of
the fan-in components, the transformation introduces the OR logic operator into the
port expression.

To generalise, the corresponding algorithm for transforming AADL connections to
HiP-HOPS Lines is given in Figure 2. In a hierarchically structured model, the algo-
rithm is applied to the top-level system and any sub-system.

Fig. 2. The formal algorithm for transforming AADL Connections into HiP-HOPS Lines

The formal description of the algorithm shown in Figure 2 should be read as fol-
lows. The variable DestPorts is defined to be the set generated ( denotes generator
operator) by collecting the destination port of each connection in the system. The sys-
tem is represented by the variable sys. The variable ConnsSameDest is defined to
be a set of connection sets. In each connection set, all the connections share the same
destination port. For each destination port, a set of connections to that port is generat-
ed by filtering (| denotes filter operator) the connections with a destination equal to a
given destination port. The variable Lines is the set of HiP-HOPS Line objects.
For each set of connections in ConnsSameDest, a HiP-HOPS Line object is con-
structed. A Line is constructed from a set of HiP-HOPS Connection (Connec-
tionH). A HiP-HOPS Connection is constructed for each failure class that is
propagated from any component that is at the source of any connection in the set of
connections to a given destination port. The HiP-HOPS PortExpression is a disjunc-
tion because the error may propagate from any of the source components, hence

OR{c : cd  e-c.source.name} where e is a failure class and
c.source.name is a port name. The operator OR denotes e-c1.source.name OR e-
c2.source.name .. e-cn.source.name, for each connection ci in cd.

In this definition, c.source.component.errorsPropagated denotes the set
of output error propagations (HiP-HOPS failure classes) from the component at the

�

 Model Transformation for Multi-objective Architecture Optimisation 101

source of connection c. These error propagations can be obtained from the error
model of the source component. Each failure class collected, denoted e, is used to
qualify the connection source port name, i.e. e-c.source.name.

HiP-HOPS allows a number of abbreviated syntax forms in order to improve rea-
dability. If a Connection lacks a failure class then the PortExpression applies to all
failure classes. If a model is not intended to be human-readable then such abbrevia-
tions are unnecessary. Omitting such abbreviation typically simplifies the model to
model transformation and is the approach adopted in this work.

One challenge for the optimisation of AADL models, is how to represent model
‘variability’ in the AADL system model. Variability includes the possibility of desig-
nating one or more alternatives to a given component or subsystem. Variability is a
prerequisite for optimisation, because it creates the design space of alternative designs
which needs to be explored in order to seek the best solutions.

Clearly, for automated optimisation, the variability must be constrained. In the op-
timisation method considered in this paper, any component or subsystems may be
associated with one or more alternatives. Each alternative component has an equiva-
lent function but a different dependability and cost. The optimisation process
searches the large space of possible designs defined by the combinations of possible
choices, and uses optimisation heuristics such as genetic algorithms to obtain optimal
or near optimum designs.

In AADL, however, there is no direct means of modelling component alternatives
and other optimisation parameters. Mian et al. [26] introduces a method which allows
the AADL designer to specify variable elements of the system model. That method is
used in this paper. To enable optimization, additional information on component al-
ternatives is required. These alternatives provide options in terms of trade-off between
dependability and cost. Each component is annotated with its alternatives, i.e. compo-
nents performing identical functions but with differing costs and failure rates.

3.3 Model Transformation Implementation

The Eclipse Modelling Framework (EMF) [27] is a modelling framework and a high-
ly flexible tool platform. Different plugins for different models can be developed
based on EMF. The Open-Source AADL Tool Environment (OSATE) developed by
SEI [28] is a set of plug-ins based on Eclipse and the EMF. The OSATE plug-ins
were used in the work reported here and the model transformation method has been
implemented as an OSATE plugin.

Model to model transformation languages should be well suited for our semantic
mapping transformation, since both input and output are models. We chose the AT-
LAS Transformation Language (ATL) [29-30] which is a hybrid language containing
a mixture of declarative and imperative constructs. The declarative rule-base lan-
guage hides much of the complexity of navigating the AADL source model. In addi-
tion, ATL has been shown to be effective for similar model transformations [22].

102 Z. Mian et al.

4 Case Study

4.1 System Description

The aircraft wheel brake system model is adapted from the Aerospace Recommended
Practice [31] aircraft wheel brake system, which is also presented in [32].
Figure 3 shows the basic system structure and Figure 4 shows the corresponding
AADL description of the wheel brake system. The primary function of the wheel
brake system is to provide safe braking function for aircraft which requires supplying
correct pressure and preventing skidding. Braking can be either manual or automatic.
Manual braking is controlled via brake pedals, while automated braking does not re-
quire pedal application. The automated braking is realized via Autobrake function
which allows the pilot to provide the deceleration rate prior to takeoff or landing.

The braking system operates in one of two modes, Normal or Alternate. In Normal
braking mode, GreenPump provides the required hydraulic pressure, and Alternate
mode is held on standby. If failure occurs on Normal mode, the system moves to Al-
ternate mode and hydraulic power is generated by the BluePump. In the original ARP
4761 example, another backup mechanism is in place lest both of the pumps fail. In
this paper, however, it has been deliberately excluded to demonstrate how HiP-HOPS
can be used to help guide the analysis process and the identification of potential safety
measures.

The Brake System Control Unit (BSCU), is the digital controller which accepts in-
puts to compute braking and anti-skid commands. In its Normal operational mode,
BSCU receives information from various input sources. It obtains brake pedal posi-
tions as input and processes this information to produce command signals to the
brakes. When Autobrake is true, deceleration rate and aircraft speed are used to calcu-
late the brake command. BSCU also monitors signals which indicate certain critical
aircraft and system states to provide correct brake function, generate warnings, indica-
tions and maintenance information to other system.

Two hydraulic pressure lines are used: the Green line, powered by the GreenPump
(Normal) and the Blue line, powered by the BluePump (Alternate). The GreenValve
and the BlueValve are used to control the pressure from the GreenPump and Blu-
ePump respectively. The SelectorValve is located across the Green and Blue hydrau-
lic lines, and selects only one of the two hydraulic systems to provide pressure
to the brakes. This pressure is relayed to the corresponding meter valves, CMD/
ASMeterValveG and CMD/ASMeterValveB respectively. The meter valves take two
inputs: the incoming pressure and the valve position command. The valve position is
adjusted to output the required amount of pressure based on the command from the
BSCU.

The system switches to Alternate mode when the pressure along the green line falls
below a threshold. Once BSCU identifies that Alternate line should be activated, it
sends an OnAlternate signal which commands SelectorValve to switch to the Blue
line. Once the system switches to Alternate, it will not revert back to Normal. The
component labelled WBS is the pressure output block, the components NormalP and
AlternateP serve only to propagate failures.

 Model Transformation for Multi-objective Architecture Optimisation 103

Fig. 3. The basic system structure of aircraft wheel brake system

Fig. 4. The AADL description for the aircraft wheel brake system

4.2 Failure Data

The AADL Error Model Annex is used to model the system failure behavior. For
simplicity, each component is assumed to be vulnerable to one internal failure
which leads to the omission of component output. Other types of component failure

104 Z. Mian et al.

Fig. 5. AADL error model type definition and error model implementation for component
Power, GreenValve and BSCU

(for example, commission or value failure) are not discussed but may be treated ana-
logously. The internal failures for components GreenPump, GreenValve, BluePump,
BlueValve, CMD/ASMeterValveG, CMD/ASMeterValveB and SelectorValve
are denoted as GreenPumpBE, GreenValveBE, BluePumpBE, BlueValveBE,
GCMDASBE, BCMDASBE, SelValveBE respectively. Internal failure in the BSCU
(the command unit) is denoted as CMDBE. The input to the BSCU comes from Pow-
er, PedalPosition, AutoBrake, Speed and DCRate component. Internal failures in
these input components are denoted as PowerBE, PedalPositionBE, AutoBrakeBE,
SpeedBE, and DCRateBE respectively.

Figure 5 shows the AADL error model type definition and error model implemen-
tation for component Power, GreenValve and BSCU. The error state machine shown
in Figure 1 is specified in the error model implementation of Basic.BSCU shown in

 Model Transformation for Multi-objective Architecture Optimisation 105

Fig. 6. Associated AADL error model, guard_in and guard_out error model properties for com-
ponent BSCU and alternative implementations of this component

Figure 5. Figure 6 shows the association of error model implementation Basic.BSCU to
component BSCU, the guard_in and guard_out error properties for component im-
plementation DeviceType5.BSCU and the alternative implementations of this compo-
nent. Note the guard_in and guard_out error properties shown in Error_Model in
DeviceType5.BSCU. These error properties specify conditions under which the input

106 Z. Mian et al.

or output error propagations occur. From Figure 6, the Optimise property with value
true means that alternatives for device DeviceType5 should be considered in the
optimisation process. This property allows the optimisation process to be applied
selectively to parts of the system. For the implementation component, Device-
Type5.BSCU2, the property Exclude_From_Optimisation property with value true
means that this alternative component should not be used as a replacement, i.e., is not
an available alternative. This allows the designer fine-grained control over the
alternatives used in the optimisation. The Cost property specifies the cost of this
implementation. The device DeviceType5 has three alternative implementations (De-
viceType5.BSCU2, DeviceType5.BSCU3, and DeviceType5.BSCU4), which is spe-
cified in the properties via setting the property value of List_of_Alternatives. Due to
space limitation we only show two alternative implementations. For each of the
implementations, the cost and other optimisation properties are specified.

4.3 Analysis of the Wheel Brake System Model

HiP-HOPS produces, FTA and FMEA. The minimal cut sets show the potential ha-
zardous combinations of component failures which lead to O-WBS.out. The analysis
of the results of FTA and FMEA shows, for e.g., that the omission of Power, BSCU
command unit and SelectorValve directly leads to omission of pressure on the wheel
brake. The other single point failures are also identified. For a small design model,
manual analysis may be manageable. But for larger system, where this architecture
may be nested within a more complex design, manual analysis becomes laborious and
error-prone.

4.4 Design Optimization

In this case study, we assumed that each component has four different alternatives
(each with different failure rate and different cost). Components with lower failure
rates have a higher cost. Table 1 summarizes the failure rates and costs data for the
component alternatives. The failure rates and costs of CMD/ASMeterValves follow
those of green valves and blue valves. It should be noted that the values of failure
rates are not based on any empirical data, but chosen hypothetically to illustrate the
method.

Table 1. The failure rates and costs data for the component alternatives

Component Failure Rate λ Cost
BSCU1/ SelectorValve1 1e-10 50
BSCU2/ SelectorValve2 2e-10 20
BSCU3/ SelectorValve3 3e-10 10
BSCU4/ SelectorValve4 5e-10 5
GreenPump1/Valve1/BluePump1/Valve1 1e-8 16
GreenPump2/Valve2/BluePump2/Valve2 2e-8 8
GreenPump3/Valve3/BluePump3/Valve3 3e-8 4
GreenPump4/Valve4/BluePump4/Valve4 4e-8 2

 Model Transformation for Multi-objective Architecture Optimisation 107

In general, there are 4 potential component architectures for each of these 8 com-
ponents. The size of the design space to be explored is therefore 48 possible configu-
rations. As such it is very difficult to do this kind of optimisation manually.

4.5 Optimization Results

Based on these parameters the multi-objective optimization problem is to minimize
both system risk and cost.

Figure 7 shows the optimal architectures on the Pareto front. These solutions are
less risky than all other more costly solutions. To obtain specific solutions from the
Pareto front, the goal of the optimization was defined as:

Risk ≤ 0.000015, Cost ≤ 120

Three solutions which satisfy this constraint are presented in Table 2. The configu-
ration shows the combination of component alternatives selected for the solutions.

The various design solutions shows different potential configurations of compo-
nents to achieve the pre-defined risk and cost restrictions. BSCU and SelectorValve
are highly critical components and therefore should be robust. This is illustrated by
how Solution 3, which has the lowest risk among the three selected sample solutions
within the restricted cost, employs the BSCU1 and SelectorValve2. The results pre-
sented here represent a preliminary step in the overall safety assessment process. The
multi-objective assessment routine can be performed iteratively by adjusting design
parameters (risk and cost) until requirements are met in the process of an evolving
design. The optimization is automated and therefore can be repeated efficiently in the
course of design iterations.

Fig. 7. The Pareto front optimal solutions

108 Z. Mian et al.

Table 2. The three solutions which satisfy the constraint: Risk ≤ 0.000015, Cost ≤ 120

Component Solution 1 Solution 2 Solution 3
BSCU BSCU2 BSCU2 BSCU1
BluePump BluePump2 BluePump2 BluePump2
BlueValve BlueValve3 BlueValve1 BlueValve3
CMD/ASMeterValveB CMDASMe-

terValveB1
CMDASMe-
terValveB4

CMDASMeter-
ValveB2

CMD/ASMeterValveG CMDASMe-
terValveG3

CMDASMe-
terValveG1

CMDASMeter-
ValveG3

GreenPump GreenPump3 GreenPump3 GreenPump1
GreenValve GreenValve2 GreenValve3 GreenValve3
SelectorValve SelectorValve3 SelectorValve2 SelectorValve2
Cost 74 90 114
Risk 0.000015 0.000014 0.000013

5 Conclusion and Future Work

A model transformation method has been devised and implemented for the dependa-
bility and cost optimisation of AADL models. The direct benefit of the transforma-
tion presented in this paper is that it opens a path that will enable the AADL language
to take advantage of an existing dependability analysis and optimisation technique.
The technique may be used early in the design and makes the analysis of complex
dependable systems practical and cost-effective. Model transformation plays a key
role in model driven system development and analysis. It allows the wide application
and reuse of tools.

If AADL models could be transformed into the models used by other methods then
it would extend the range of analysis that could be done on AADL models. We be-
lieve that model transformation is a fundamental technique to maximise the utility of
MBE because it provides a route for the exploitation of mature and tested tools in a
MBE context.

Future work will consider new techniques for describing model variability. In ad-
dition to replacing a single component with an alternative component, a designer may
wish to introduce other replacement patterns. For example, a replacement pattern
may require that two matching components are always replaced as a pair.

References

1. Feiler, P., Gluch, D.: Model-Based Engineering with AADL-An Introduction to the SAE
Architecture Analysis & Design Language. Pearson Education, USA (2012)

2. OMG: Introduction To OMG’s Unified Modelling Language (UML),
http://www.omg.org/gettingstarted/what_is_uml.htm

3. OMG: OMG Systems Modeling Language (OMG SysML version 1.3),
http://www.omg.org/spec/SysML/1.3/

 Model Transformation for Multi-objective Architecture Optimisation 109

4. SAE-AS5506: Architecture Analysis and Design Language (AADL). Society of Automo-
tive Engineers (SAE) (2006)

5. MAENAD project: EAST-ADL Domain Model Specification version V2.1.11,
http://east-adl.info/Specification/V2.1.11/
EAST-ADL-Specification_V2.1.11.pdf

6. SAE-AS5506/1: Architecture Analysis and Design Language Annex Volume 1, Annex E:
Error Model Annex. Society of Automotive Engineers (SAE) (2006)

7. Joshi, A., Vestal, S., Binns, P.: Automatic Generation of Static Fault Trees from AADL
Models. In: DSN Workshop on Architecting Dependable Systems, DSN 2007-WADS,
Edinburgh, Scotland, UK (2007)

8. Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated safety
analysis and optimisation techniques. The Journal of Systems and Software 76(1), 77–89
(2005)

9. Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T.: An approach to optimi-
zation of fault tolerant architectures using HiP-HOPS. Software Practice and Expe-
rience 41(11), 1303–1327 (2011)

10. Walker, M., Reiser, M.O., Tucci-Piergiovanni, S., Papadopoulos, Y., Lönn, H., Mraidha,
C., Parker, D., Chen, D.J., Servat, D.: Automatic optimisation of system architectures us-
ing EAST-ADL. Journal of Systems and Software 86(10), 2467–2487 (2013)

11. Grunske, L., Lindsay, P., Bondarev, E., Papadopoulos, Y., Parker, D.: An outline of an ar-
chitecture-based method for optimizing dependability attributes of software-intensive
systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems IV. LNCS, vol. 4615, pp. 188–209. Springer, Heidelberg (2007)

12. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architecture
optimization methods: a systematic literature review. IEEE Transactions on Software En-
gineering (99) (September 2012) ISSN: 0098-5589

13. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algo-
rithms. Reliability Engineering & System Safety 91(9), 992–1007 (2006)

14. Hamann, R., Uhlig, A., Papadopoulos, Y., Rüde, E., Grätz, U., Walker, M., et al.: Semi
Automatic Failure Analysis Based on Simulation Models. In: The ASME 27th Internation-
al Conference on Offshore Mechanics and Arctic Engineering, OMAE 2008, Estoril
(2008)

15. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extendable tool
for architecture optimization of AADL models. In: Proceedings of the 2009 ICSE Work-
shop on Model-Based Methodologies for Pervasive and Embedded Software, pp. 61–71
(2009)

16. Meedeniya, I., Aleti, A., Bühnova, B.: Redundancy allocation in automotive systems using
multi-objective optimisation. In: Symposium of Avionics/Automotive Systems Engineer-
ing (SAASE 2009), San Diego (2009)

17. Li, R., Etemaadi, R., Emmerich, M.T.M., Chaudron, M.R.V.: Automated Design of Soft-
ware Architectures for Embedded Systems using Evolutionary Multiobjective Optimiza-
tion. In: Proc. of the VII ALIO/EURO (2011)

18. Etemaadi, R., Chaudron, M.R.V.: A model-based tool for automated quality driven design
of system architectures. In: Proceedings of the 8th European Conference on Modelling
Foundations and Applications (ECMFA 2012), Lyngby, Denmark (2012)

19. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In: OOP-
SLA 2003 Workshop on Generative Techniques in the Context of MDA, Anaheim, USA
(2006)

110 Z. Mian et al.

20. Rugina, A.E.: Dependability modelling and evaluation - From AADL to stochastic Petri
nets. PhD dissertation, LAAS/CNRS (2007)

21. Rugina, A.E., Kanoun, K., Kaâniche, M.: An Architecture-based Dependability Modelling
Framework Using AADL. In: 10th IASTED International Conference on Software Engi-
neering and Applications (SEA 2006), Dallas (USA), pp. 222–227 (2007)

22. Biehl, M., Chen, D., Torngren, M.: Integrating Safety Analysis into the Model-based De-
velopment Toolchain of Automotive Embedded System. In: LCTES 2010, Stockholm,
Sweden (2010)

23. Rauzy, A.: Mode automata and their compilation into fault trees. Rel. Eng. & Sys. Safety
(RESS) 78(1), 1–12 (2002)

24. Mahmud, N., Papadopoulos, Y., Walker, M.: A translation of State Machines to temporal
fault trees. In: International Conference on Dependable Systems and Networks Workshops
(DSN-W), Chicago, USA, pp. 45–51 (2010)

25. Mahmud, N., Walker, M., Papadopoulos, Y.: Compositional synthesis of Temporal Fault
Trees from State Machines. Special Issue on Modeling Dynamic Behaviors of Complex
Distrib. Syst. 39, 79–88 (2012)

26. Mian, Z., Bottaci, L.: Multi-objective Architecture Optimisation Modelling for Dependa-
ble Systems. In: the 4th IFAC Workshop on Dependable Control of Discrete Systems
(DCDS 2013), York University, UK (2013)

27. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling frame-
work. Pearson Education, Boston (2009)

28. Feiler, P., Gluch, D., Hudak, J.: The Architecture Analysis & Design Language (AADL):
An Introduction, http://www.sei.cmu.edu/reports/06tn011.pdf

29. Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming (72), 31–39 (2008)

30. ATLAS group: ATL: Atlas Transformation Language. ATL Starter’s Guide
31. ARP 4761: Aerospace recommended practice: guidelines and methods for conducting the

afety assessment process on civil airborne systems and equipment. Society of Automotive
Engineering. Warrendale, PA, Tech. Rep. (1996)

32. Joshi, A., Heimdahl, M.P.E., Miller, S., Wallen, M.: Model-Based Safety Analysis. Uni-
versity of Minnesota Advanced Technology Center (2006)

Optimization in CIS Systems

Czeslaw Smutnicki

Wroclaw University of Technology, Wroclaw, Poland

Abstract. The chapter provides an approach for solving optimization
task followed from relocation/reconstruction of distributed services in
the SaaS cloud computing model in case of its malfunction, by using
multicriteria evaluation with supporting simulation of possible chore-
ographies. Beside critical survey of methods, approaches and trends ob-
served in modern optimization, focusing on nature-inspired techniques
recommended for particularly hard discrete multicriteria problems, we
discuss subject of network architecture and its suscebility on attacks
and malfunctions in terms of system dependability. Applicability of the
methods, depending the class of stated optimization task and classes of
goal function, have been also discussed.

1 Introduction

The notion Complex Information System (CIS) appearing in the literature has
a broad spectrum of meaning. We understand here CIS as special class of com-
puter system composed of workstations (clients), servers of contents or services
and the net linking all these players. Generally, it works in the mode question-
and-answer, although some deputed task directed to a server can be splitted and
sub-ordered to next servers. One can consider CIS as a localization of various re-
sources (hardware, services, software, databases, contents, etc.) dispersed among
nodes in the net, called sometimes SaaS cloud computing model with centralised
(balanced) management or web-based service, [16]. In our opinion, the last name
characterize the best esential features of the system.

It is clear that events in this system have discrete character, with high dy-
namics of changes, unpredictive (random) set of coming events and huge size of
dimension. Moreover, several procedures running in the system may be defined
only as a sequence of commands or activities.

From modeling point of view CIS can be perceived as the non-stationary mixed
open/closed queuening system with queues of limited length, each of which has
set its own service policy. Such complex system cannot be analysed analytically,
because of insuffcient power of theoretical methods. Then, many researchers
consider the simulation as the most proper tool for describing and analysing
behaviour of CIS.

Beside mentioned modeling aspects, a lot of attacks and malfunctions have
been observed in the net, influencing on availability/unavailability of resources of
some kind, thus on system dependability. In order to save the viability of service
quality after the malfunction, reconfiguration of the system architecture has been

c© Springer International Publishing Switzerland 201 111
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,
Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_7

5

112 C. Smutnicki

recommended. Usually several scenarios of the changes (called sometimes in the
literature choreography) are possible and can be considered. Each scenario has
been evaluated from several points of view. Our aim is to select the best target
scenario. This leads to the task of discrete optimization (because of finished set
of possible scenarios) and multicriteria (because of the number of evaluation
criteria taken into account) with unusual technology of goal function evaluation
(simulation). Such optimization tasks have not been considered in optimization
theory so far, then the best practices from several approaches and fields are
especially welcome.

We provide, beside critical survey of methods, approaches and trends observed
in modern optimization, focusing on nature-inspired techniques recommended for
particularly hard discrete multicriteria problems, some proposals for using these
tools to solve the problem of optimal reconfiguring of CIS.

2 Optimization Technologies

Approaches employed to solve optimization goals generated by problems of on-
line decision making, load balancing, task scheduling, control, planning, designing
and management, significantly evolved in recent years. Cases with unimodal, con-
vex, differentiable scalar goal functions disappeared from research labs, because
a lot of satisfactory efficient methods were already developed. On the battlefield
still remain very hard cases: multimodal, multi-criteria, non-differentiable, NP-
hard, discrete, with huge dimensionality, with exponential increase of the number
of local extremes, without apriori information about data, with random data, etc.
These practical goals, generated by computer systems and networks, industry and
market, evoke serious troubles observed in the process of seeking global optimum.
Great effort has been done by scientist in recent years in order to reinforce power
of solution methods and to fulfill expectations of practitioners. The moderate suc-
cess in algorithms development strike practitioners fancy, so there is still needs for
further research in this area.

3 Optimization Troubles

In the next few sections we refer to the following form of single-criterion opti-
mization case: find x∗ ∈ X so that

K∗ def
= K(x∗) = min

x∈X
K(x) (1)

where x, x∗, X and K(x) are solution, optimal solution, set of feasible solutions
and scalar goal function, respectively. The form of x, X and K(x) depends on
the type of optimization task. We focus chiefly on practical discrete NP-hard
problems, where X is discrete, K(x) is nonlinear and non-differentiable. Other
optimization cases (multicriteria) will be discussed in detail thereinafter.

Up to now, there has been recognized a few reasons considered as responsible
for failures of the solution methods, like as: slow convergence of an optimization

Optimization in CIS Systems 113

method to optimal or good solution, premature convergence to poor solutions,
and/or high calculation cost. Main causes and effects are discussed below, il-
lustrated by some common literature benchmarks, collected for example in [14],
derived originally from Griewank, Langermann, Shakel, Rosenbrock, and others.

Multiple Extremes. This phenomenon is well illustrated by many benchmark
functions, see summary in [14], starting from six-hump camel back function hav-
ing only six local extremes located in the flat canion. The more stressful is
Griewank’s benchmark function which exhibits huge number of local extremes
in every small part of the space. Hopefully, for the Griewank’s function ex-
tremes are quite regularly distributed in the space. The interpretation of the
latter function changes with the scale of the view; the general overview suggests
classical convex function, medium-scale view suggests existence of a few local
extremes, and whereas high-scale zoom indicates complex structure of numerous
local extremes. Theoretically, due to regularity of the surface, one can easily
define strategic search directions which lead quickly the search process to the
most promising part of the solution space.

Exponential Growth of the Number of Extremes. For the mentioned
already Griewank’s benchmark function the number of local extremes grows ex-
ponentially with the dimension of the space. For larger size of the space, this fact
practically eliminates methods which completely examine even a small fraction
of local extremes, and fully disqualifies exhaustive search methods.

Uneven Distribution of Extremes. This phenomenon is well illustrated by
Langermann’s benchmark function which exhibits numerous local minima un-
evenly distributed, depending on some parameters unknown apriori. It means
that strategic search directions in the solution space have no regular character
and have to be set in an adaptive way.

Deception Extremes. This phenomenon is well illustrated by Shakel’s bench-
mark function (called also fox holes) which exhibits quite deep local minima
(holes) unevenly distributed on the almost flat surface. The behavior of the
function between holes (significant part of the surface) provides no informa-
tion about minima expected in the vicinity. Moreover, iterative search methods
(walking step-by-step) are often unable to go out from so deep minima, which
results premature convergence.

Flat Valey of Extremes. This phenomenon is well illustrated by Rosenbrock’s
benchmark function (also known as banana function) which owns global mini-
mum located inside a long, narrow, parabolidal flat valley. Finding of the valley
is trivial, however convergence of procedure going step-by-step to the global
optimum is difficult and very slow.

Curse of Dimensionality. Benchmarks mentioned in three previous heads
refer to the space dimension a few or a dozen or so (1 . . . 10). Nobody have
analyzed the behavior of the proper methods for grater space dimension of size
of hundreds or thousands (real-case size). In particular, in the paper [15] there
was mentioned about very small practical instance from scheduling theory with

114 C. Smutnicki

dimensionality 90 and approximately 4 · 1048 feasible solutions. We are able to
check 109 solution in practically acceptable time, which constitutes infinitisimaly
small fraction 10−39 of the whole space. Nobody can enumerate significantly
more.

NPHardness.Most of discrete optimization problems derived from practice are
NP-hard, which immediately implies exponential-time computational complexity
of solution algorithm. Since the power of processors increases linearly in recent
years, while the cost of calculations as well as the number of local extremes
increases exponentially with the size of problem, there is no hope to solve real
instances in the time acceptable in practice.

Calculation Cost. NP-hardness implies unacceptable large calculation cost
measured by the processor running time. Moreover, discrete problems are con-
sidered as superfluously rigid, in that sense that small perturbation of data
destroys optimality of expensively found solution, which force the user to make
expensive calculation once again. That’s why seeking optimal solution is not
popular in the society of practitioners.

4 Space Landscape

Intuitively, the behavior of the solution algorithm have to be adjusted to the
rough landscape of the solution space in order to exploit fully acquired in-
formation about its structure. Notion landscape is actually an unprecise term
since refers to human’s intuition of perceving and interpreting 3D view. In fact,
solution space is multi-dimensional, thus intuitions such as search directions,
trajectory, convexity, have not so intuitive interpretations. Detection of several
recognized properties of the landscape (mentioned in the previous section) allow
us to design efficient algorithms. Notice, there are at least two views on employ-
ing provided knowledge: (1) static, predefined; (2) dynamic, on-line, adaptive. In
the approach (1) one can distinguish generally three phases: (A) phase of ana-
lyzing (e.g. by sampling) space structure; (B) calculating tuning parameters for
solution algorithm; (C) searching solution with current configuration of the al-
gorithm. The approach (2) continously collects information about solution space
obtained during the search, which can be used to control searching process in an
adaptive way in the on-line mode. Between these two extreme views, there exist
a lot of intermediate constructions. Particular solution methods realizes these
postulates in different ways.

Space Sampling. Sampling can be performed by using random overview, or
generaing local search or goal oriented search trajectories walking through the
space by neighboring solutions (distant by one unit). It can be performed with
respect to a set of any solutions or focusing on local extremes only. It is used to
examine or detect space and landscape properties. Random sampling has at least
two goals: (1) identifying regions containing feasible solutions, (2) identifying the
promising search regions in terms of K(x).

Optimization in CIS Systems 115

Distributions. Distribution of solutions as well as local minima in the discrete
space is usually uneven. One can verify this fact by making space sampling. From
such sampling we can find that the distance of any solution to the optimal one
is usually distributed normally with the mean about 50% of the space diameter.
The distribution of goal function value is also close to normal with the mean
depending on the problem considered. Interestingly, the probability of finding
solution very close to optimal by random sampling of the space X is practically
infinitisimal, although the number of such solution is so large that there is no
way to enumerate them, even partially. This is a serious drawback of random
search methods.

Big Valley. Problem is suspected to own big valley phenomenon if there is
exist positive correlation (in statistical sense) between goal function value and
the distance to optimal solution (the best found solution); in the big valley
appears the densification of local extremes of the goal function value. The size of
the valley is usually relatively small with respect to the size of the whole solution
space.

Ruggedness. This is an independent measure characterizing diversity of goal
function values of related (usually neighboring) solutions. Greater ruggedness
means sharper and unpredicted changes of K(x) for neighboring solutions.
Smaller ruggedness means flat or slow-changeable landscape. There has been
proposed objective measures of ruggedness based on autocorrelation coefficient
and or autocorrelation function, see [15] for detail.

Other Measures. Among other measures characterizing landscape there are
mentioned: correlation between random trajectories, landscape statistically
isotropic, fractal landscape, correlation between genes (epitasis), correlation of
the distance of fitness.

5 Solution Approaches

The evolution of solution approaches for discrete problems has long and rich
history, see Fig. 1. Although milestones of this history presented below deal fun-
damentally with single-criteria case, they have an influence on multiple-criteria
solution methods as well. Beginning from the commonly used heuristics based
chiefly on various priority rules in the fifties and sixties, through the theory
of NP-completeness (the seventies) which classified problems and algorithms
into polynomial-time and exponential-time. Significant development of exact al-
gorithms in the seventies and eighties moved slightly the border of instance sizes
which can be solved by these methods but finally set the limit of its appli-
cability. Pessimistic experience with exact methods stimulates, among others,
the development of approximation algorithms (the eighties and nineties) and ap-
proximality theory. Besides the theoretical results, a lot of approximation scheme
(AS), polynomial-time AS (PTAS) and fully polynomial time AS (FPTAS) were
proposed. For the class of on-line algorithms the similar role plays so called com-
petitive analysis. However these quite complex theoretical constructions do not

116 C. Smutnicki

Fig. 1. Development of the solution approaches

gain acceptance among practitioners. From the nineties there was observed the
snappy development of metaheuristics with good accuracy confirmed in com-
puter benchmarks. Theoretical foundations of metaheuristics appeared a few
years later. From 2000, in the natural way, there began the era of meta2heuristics
and parallel metaheuristics, being the new class of algorithms.

Exact Methods. We call the method exact if it always finds x∗ satisfying (1).
Depending on the class of computational complexity, one can distinguish the
following types of exact methods: (a) dedicated polynomial-time algorithms, (b)
algorithms based on the Branch-and-Bound (B&B) scheme, (c) algorithms based
on the Dynamic Programming (DP) scheme, (d) algorithms based on Integer
Linear Programing (ILP), (e) algorithms based on Binary Linear Programing
(BLP), (f) subgradient methods. Methods (a) are considered as computation-
ally cheap specialized methods for problems from P-class or NP-hard numeral.
Methods (b) – (f) are computationally expensive, dedicated for strongly NP-
hard problems. Up to the end of the eighties one considered them as “sole right“
approaches for strongly NP-hard problems, after that time there was appeared
barrier of dimension. Although significant development was done in its progress,
practitioners still consider them as unattractive, or limit their applications to
a narrow scope. Methods are time- and memory- consuming, whereas size of
instances which can be solved in a reasonable time is still too small for prac-
tice. Moreover, implementation of more complex algorithms of this type needs
skillful programmers. The serious problem is also validity of the instance data,
which frequently have been perturbed just after the expensive finding of opti-
mal solution and so called superfluous rigidness of the problem. One can say
that the cost of finding optimal solution is still to high with the profits obtained
from its implementation. Nevertheless, there still exist several problems where
application of exact methods are justified and recommended.

Approximate Methods. Approximate algorithm A provides solution xA, so
that

K(xA) = min
x∈XA

K(x) ≥ K(x∗) (2)

Optimization in CIS Systems 117

where XA ⊂ X is the subset of solutions checked by A. The overall aim is to
find xA so that K(xA) is close to K(x∗) by examining the smallest as possible
XA. The closeness to K(x∗) (accuracy) can be either guaranteed a priori or eval-
uated a posteriori. It is clear that accuracy has opposing tendency to running
time, i.e. finding better approximate solution needs longer running time (greater
XA), and this dependence owns strongly nonlinear character. Therefore, discrete
optimization manifests a variety of models and solution methods, usually ded-
icated for narrow classes of problems or even separate problems. Reduction of
the generality of models allow us to find special features of the problem, applica-
tion of which improve numerical properties of the algorithm such that running
time, speed of convergence. Quite often, a strongly NP-hard problem has in
the literature several various algorithms with different numerical characteristics.
Knowledge about models and algorithms allow us to fit satisfactory algorithm
for each newly stated problem. Bear in mind, in the considered research area the
goal is not to formulate whatsoever model and method, but to provide simply
model and solution method reasonable from the computer implementation point
of view.

Approximation Error. The set of data specifies the instance Z of the problem.
Denote by X (Z) the set of feasible solutions for the problem, and by K(x;Z)
value of criteriaK for solution x in the instance Z. Solution x∗ ∈ X (Z) such that
K(x∗;Z) = min{K(x;Z) : x ∈ X (Z)} is the optimal solution for the instance
Z. Let xA ∈ X (Z) denote the approximate solution generated by algorithm A
for the instance Z. The approximation error FA(Z) of algorithm A observed on
instance Z is a measure defined on the base of relation between K(xA;Z) and

K(x∗;Z), for example FA(Z) = SA(Z)
def
= K(xA;Z)/K(x∗;Z), see [] short sur-

vey for other definitions of FA(Z). Behaviour of FA(Z) over Z can be examined
either experimentally or analytically, apriori or a posteriori.

Experimental Analysis. It evaluates a posteriori behavior of the algorithm
(chosen error, running time, etc.) on the base of results obtained for limited
representative sample of instances Z. This is the most popular method despite
its main drawback, namely it depends on the chosen sample of instances (is
subjective). However, only this analysis is able, to justify, in the context of “no
free lunch” theorem, observed superiority of the chosen algorithm over other
subclasses of instances Z.

Worst Case Analysis. It evaluates a priori behavior of the chosen error F on
entire infinite population of instances Z. Usually, there is applied for mentioned
already error FA(Z) = SA(Z) = K(xA;Z)/K(x∗;Z), for which there are also
defined the worst-case ratio ηA = min{y : SA(Z) ≤ y, ∀Z} and asymptotic
worst-case ratio ηA∞ = min{y : SA(Z) ≤ y, ∀Z ∈ {W : K(x∗;W) ≥ L}}, where
L is a number.

Probabilistic Analysis. It evaluates a priori behavior of the chosen error
F on entire infinite population of instances Z, considering each instance Z
as a realization of n independent random variables with known distributions

118 C. Smutnicki

(usually uniform) of probability; this fact will be denoted by writing Zn instead
of Z. Then, values K(x∗;Zn), K(xA;Zn) and FA(Zn) are clearly random vari-
ables. The analysis provides basic information about behavior of random variable
FA(Zn), namely its distribution, moments, etc. and type and speed and type of
convergence with n tending to infinicity. For example, there are considered the
following types of convergence: (a) almost sure P (limn→∞ FA(Zn) = m) = 1,
(b) in probability limn→∞ P (

∣
∣FA(Zn)−m

∣
∣ > ε) = 0, for any ε > 0, (c) in the

mean limn→∞
∣
∣E(FA(Zn))−m

∣
∣ = 0.

Approximation Schemes. Approximation scheme (AS) is the family of al-
gorithms A, such that A provides for the given ε > 0 solution xA satisfying
K(xA;Z)/K(x∗;Z) ≤ 1 + ε, ∀Z. AS is the polynomial-time approximation
scheme (PTAS), if for any fixed ε it owns polynomial computational complex-
ity. If additionally this complexity is a polynomial of 1/ε, then scheme is fully
polynomial-time approximation scheme (FPTAS). In practice, ASes turned out
to be rather complex algorithmic constructions and appear inactractive for prac-
tical applications.

6 The Newest Trends

In recent years, simultaneously with the development of mathematically perfect
theories, there has been observed rapid development of metaheuristics, i.e. ap-
proximate methods without excessive theory but with good or even excellent
numerical properties confirmed in numerous computer tests. Surprisingly, these
methods are more interesting for users, since in practice provide quickly solu-
tions with better quality, than mathematically perfect approximation schemes.
These methods are classified as either constructive (see first two entries in Table
1) or improvement (see the remain entries in Table 1). The former are fast, eas-
ily implementable, but generate solutions of poor quality. The later are slower,
need starting solution improved next iteratively, but provide solutions with good
or excellent quality. They also allow to form in a flexible way the compromise
between the solution quality and the algorithm’s running time. Theoretical guar-
antee of quality were found, up till now, for numerous constructive methods but
only for few improvement methods. For some improvement methods there have
been proved convergence to the optimal solution, the sufficient conditions do not
hold in practice, thus these results have rather theoretical then practical signifi-
cance. Finally, the practical usefulness of approaches and/or algorithms follows
from various theoretical as well as experimental analysis.

7 Multicriteria Approaches

Practitioners usually evaluate solutions taking into account various points of
view, thus using a number of different criteria. Thus, in this section we consider
the following optimization problem: find x∗ ∈ X such that

K∗ def
= K(x∗) = min

x∈X
K(x), (3)

Optimization in CIS Systems 119

Table 1. List of metaheuristic approaches

Aproaches

Constructive algorithms (CA)
Priority rules (PR)
Local search (LS)

Descending search, hill climbing (DS)
Random search (RS), Monte Carlo methods (MC)

Simulated annealing (SA)
Simulated jumping (SJ)

Tabu search (TS)
Adaptive memory search (AMS)

Path search, star path search (PS, SPS)
Goal oriented tracing paths (GOTP)

Curtailed (truncated) branch-and-bound (CB&B)
Randomised methods (RM)

Greedy random adaptive search procedure (GRASP)
Variable neighborhood search (VNS)

Beam search (BS), filtered beam search (FBS)
Guided local search (GLS)

Genetic, evolutionary search (GS)
Memetic search (MS)

Differential evolution (DE)
Cultural methods (CM)

Artificial immune system (AIS)
Path relinking (PR)

Biochemical random search (BRS)
Ant colony optimization (ACO)

Scatter search (SS)
Constraint satisfaction (CS)
Geometric approach (GES)

Particle swarm optimization (PSO)
Bee search (BS)
Bat search (BA)

Harmony search (HS)
Electromagnetic search (ES)

Intelligent wather drops (IWD)
Neural nets (NN)

where
K(x) = [K1(x), . . . ,Ks(x)]

T (4)

and x, x∗, X andK(x) are solution, optimal solution, set of feasible solutions and
vector goal function, respectively. The min operator in (3) does not specify how
to interprete minimization over the set of vectors since formally we need to define
the method of comparison between vectors which depends on user preferences
expressed directly or undirectly. The primary goal of multiobjective optimization

120 C. Smutnicki

is to model preferences of the decision maker (expresses as the importance of
each particular criteria or ordered rank of criteria).

Known multicriteria solution approaches are classified depending on the phi-
losophy of expressing user’s preferences: (1) preferences are defined by the user
a priori as relative importance of the component criteria, (2) user expresses
preferences a posteriori by selecting one solution from the set of uncomparable
(equivalent) solutions, (3) no preferences are provided by the user, (4) preferences
are set in certain iterative way (progressively) by learning equally the system
and user how to find the satisfactory solution. Special attension is set to (5)
genetic population-based approaches in the context of finding Pareto frontier.

There exists also another classification, which distinguishes basically two
classes of methods: (a) optimization by scalarization, (b) pure vector optimiza-
tion methods. The former approach is clear since, by using a transformation,
leads to single-optimization case, which provides single optimal solution in terms
of combined function. For such problems, results presented in Sections 2 – 6 re-
mains valid. In the latter approach there is no single global solution, but there
is a set of solutions that satisfy so called Pareto optimality (in strong or weak
sense).

Skipping the formal definition of Pareto optimality we only mention about
valid topics, methods and notions associated with this subject, namely: (A)
necessary and sufficient conditions for solution to be Pareto optimal, (B) method
of checking whether given solution is Pareto optimal, (C) notion of efficient
and dominated/undominated solutions, (D) notion of compromise solution, (E)
notion of utopia point, (F) non-dimensional objective transformations.

Follow the approach (1) one can find in the literature a lot of scalarizing
function, see survey in [13], which lead to particular methods known as: (1.1)
weighted global criterion method, (1.2) weighted sum method, (1.3) lexicographic
method, (1.4) weighted min-max method, (1.5) exponential weighted criterion,
(1.6) weighted product method, (1.7) goal programming methods, (1.8) bounded
objective function method, (1.9) physical programming. The scalarizing tech-
niques are wide, begining for example from a simple (1.2) K(x) =

∑s
i=1 wiKi(x)

with arbitrary or user-defined weights wi, up to quite sophisticated (1.4) K(x) =
maxi{wi[Ki(x)−Ko

i]}+ρ
∑s

j=1 wj [Kj(x)−Ko
j], where K

o denotes utopia point.
For more details we refer the reader to the paper [13].

In the approach (2) the algorithm provides a representation of the Pareto
optimal set (or subset) leaving the final decision for the decision maker. The
basic aim of this approach is to produce a set of optimal Pareto points which are
able to represent acurately the complete Pareto set. Among particular methods
one can find: (2.1) physical programming, (2.2) normal boundary intersection,
(2.3) normal constraint. Notice, these are rather expensive technologies providing
the Pareto frontier or its approximation.

If the decision-maker cannot define her/his preferences, methods from group
(3) is recommended. In practice, approaches from group (1) are applied with the
exclusion of user-defined parameters. In this context, respecive algorithms can
be used to group (3) as well. Careful study of this area allow us to distinguish

Optimization in CIS Systems 121

the following methods: (3.1) global criterion (i.e. scalarization with arbitrary
parameter values), (3.2) Nash arbitration and objective product, (3.3.) Rao’s
method.

Decision maker preferences set in an iterative way are usually modelled as
special class of games. They commonly are used in Decision Support Systems
based on Muliple Criteria Decision Making (MCDM), see Table 2 for known
aprooaches in this area.

Special attention has been paid to genetic algorithms (GA) due to their par-
ticular usefulness in solving multicriteria problems since they naturally operate
on the set of dispersed solutions (population). This technology is clear in the
context of single criteria case and for multicriteria case with a scalarization of
the goal function, see previous sections. The most interesting is the pure vector
optimization, for which GA is able to provide quite efficiently an aproxima-
tion of Pareto frontier, see the review in [11]. Up to now, several various orig-
inal approaches were developed in this area. Skipping consciously the overview
of these approaches we mention only about some particular methods: (5.1)
Weighted-sum-Approach (using randomly generated weigths and Elitism), (5.2)
Vector Evaluated Genetic Algorithm (VEGA), (5.3.) Multi-Objective Genetic
Agorithm (MOGA), (5.4) Nitched Pareto Genetic Algorithm (NPGA), (5.5)
Strength Pareto Evolutionary Algorithm (SPA), (5.6) Non-dominated Sorting
Genetic Algorithm (NSGA), (5.7) Vector-optimized evolution strategy (VOES),
(5.8) Weight-based genetic algorithm (WBGA), (5.9) Predator-prey evolution
strategy (PPES), (5.10) Elitist multi-objective evolutionary algorithm
(EMOEA), (5.11) Elitist non-dominated sorting genetic algorithm (ENSGA),
(5.12) Distance-Based Pareto genetic algorithm (DBPGA), (5.13) Thermody-
namical genetic algorithm (TGA), (5.14) Pareto-archived evolution strategy
(PAES).

8 Parallel Methods

In recent years the increase of computational power of computers evolves towards
parallel architectures. Since the increase of the number of processors or cores in
single computer is still too slow comparing it with the increase of the number of
solutions in the space, there is no hope to vanquish barrier of NP-hardness in the
area of exact methods. Even cloud computing with the use of computer clusters
does not offer good alternative, chiefly because of too high calculation cost. On
the other hand, computer parallelism can improve significantly metaheuristics in
terms of running time and quality. Thus parallel metaheuristics become the most
desired class of algorithms, since they link excellent quality with a short running
time. Sophisticated implementations of parallel algorithms require skilfull appli-
cation of a few fundamental elements linked with parallel programming theory,
calculation models, and practical tools, namely: (1) theoretical models of paral-
lel calculation (SISD, SIMD, MISD, MIMD), (2) theoretical models of memory
access (EREW, CREW, CRCW), (3) practical parallel calculation environments
(hardware, software, GPGPU), (4) shared memory programming (Pthreads in C,

122 C. Smutnicki

Table 2. List of MCDM approaches

Aproaches

Aggregated Indices Randomization Method (AIRM)
Analytic hierarchy process (AHP)
Analytic network process (ANP)

Data envelopment analysis
Decision EXpert (DEX)

Dominance-based rough set approach (DRSA)
ELECTRE (Outranking)

The evidential reasoning approach (ER)
Goal programming

Grey relational analysis (GRA)
Inner product of vectors (IPV)

Measuring Attractiveness by a Cathegorial Based
Evaluation Technique (MACBETH)

Disaggregation – Aggregation Approaches (UTA*, UTAII, UTADIS)
Multi-Attribute Global Inference of Quality (MAGIQ)

Multi-attribute utility theory (MAUT)
Multi-attribute value theory (MAVT)
New Approach to Appraisal (NATA)

Nonstructural Fuzzy Decision Support System (NSFDSS)
Potentially all pairwise rankings of all possible alternatives (PAPRIKA)

PROMETHEE (Outranking)
Superiority and inferiority ranking method (SIR)

Technique for the Order of Prioritisation
by Similarity to Ideal Solution (TOPSIS)

Value analysis (VA)
Value engineering (VE)

VIKOR method
Fuzzy VIKOR method

Weighted product model (WPM)
Weighted sum model (WSM)

Java threads, Open MP in FORTRAN, C, C++), (5) distributed memory pro-
gramming, message-passing, object-based, (6) Internet computing (PVM, MPI,
Sockets, Java RMI, CORBA, Globus, Condor), (6) measures of quality of paral-
lel algorithms (runtime, speedup, efficiency, cost), (7) single/multiple searching
threads, (8) granularity evaluation, (9) independent/cooperative search threads,
(10) distributed (reliable) calculations in the net.

It is noticeable, that metahuristics can be implemented in parallel calculation
environments in different manner, providing particular algorithms with vari-
ous numerical properties. Let us consider, for example, SA approach. We can
adopt this method as follows: (a) single thread, conventional SA, parallel calcu-
lation of the goal function value, fine grain, conventional theory of convergence,

Optimization in CIS Systems 123

(b) single thread, pSA, parallel moves, subset of random trial solutions selected
in the neighborhood, parallel evaluation of trial solutions, parallel theory of con-
vergence, (c) exploration of equilibrium state at fixed temperature in parallel,
(d) multiple independent threads, coarse grain, (e) multiple cooperative threads,
coarse grain. Similarly, for GS we have: (a) single thread, conventional GA, par-
allel calculation of the goal function value, small grain, theory of convergence, (b)
single thread, parallel evaluation of population, (c) multiple independent threads,
coarse grain, (d) multiple cooperative threads, (e) distributed subpopulations,
migration, diffusion, island models. These means that from several sequential
methods we can create many parallel methods, so the final number of possible
solution technologies is quite large.

9 Optimization Strategies

Neither (1) nor (3) define precisely the method of calculating K(x) for the given
x. Notice, because of the hardness of the most practical optimization tasks, one
can expect that the optimization procedure uses an approximate searching strat-
egy A, which for single-criteria case seeks solution xA soK(xA) = minx∈XA K(x)
by immediate checking values of the goal function K(x) only for some subset
x ∈ XA ⊂ X , see formula (2). In the multiple criteria case we select among
solutions from XA the set of undominated solutions, providing in this way cer-
tain approximation of Pareto front. The cost of such calculations depend on the
cardinality of XA and the computational complexity of performing the basic
step “for the given x find K(x)”. In case of too high cost of calculations, one
can either replace K(x) by a cheapest its approximation K ′(x) or by limiting
cardinality of XA. It is evident that these two elements (namely XA and cost of
K(x)) correlate and infuence strictly not only on the final result provided by the
solution algorithm but also on technology of designing such algorithm. More-
over, the computational complexity depends also on the character of the data
provided to the optimization task. After an analysis we propose the following
taxonomy:

– x is deterministic, function K(x) is given by a formula (clear, the most
frequent case),

– x is deterministic, function K(x) is given by a deterministic polynomial-time
algorithm (e.g. longest path in the graph defined by x),

– x is deterministic, function K(x) is given by a deterministic exponential-time
algorithm (e.g. TSP for given set of cities x),

– x is deterministic, function K(x) is given by a deterministic algorithm pro-
vided in form of pseudocode or program code,

– x is random variable, function K(x) represents certain measure on x (e.g.
moments, probability),

– x is random variable, function K(x) is given by an algorithm (e.g. RR in
simple queuening systems),

– x is fuzzy variable, function K(x) represents certain defuzzified measure on
x,

124 C. Smutnicki

– x is any variable, function K(x) is given as the result of running program
code (especially the result of a simulation),

– x is any variable, function K(x) is given as the result of sensor measurement.

The third case clearly show that in some situations we have to replace the ex-
act calculation ofK(x) for the given x by some approximation denoted hereinafer
K ′(x). Two last enumerated cases can be treated as experimental measurement
of the black box, see Figure 2, with the input x and the output K(x). Notice that

Fig. 2. CIS as an object of control

the same input values may provide different output values because of the noise.
Therefore, we are incline to the view that based on the sequence of measurements
for the same x we need to define certain estimation of the result K(x).

10 Proposed Approach

Refeering to the taxonomy provided in Section 9 one can say that the form of
optimization task for the case of CIS collapse depends on the style of CIS de-
scription. Taking into account fundamental features of the CIS architecture and
activity, the simulation seems to be the most adequate method of K(x) calcu-
lation, see Fig. 3. Effects of such approach are manifold. First, solution x corre-
sponds to configuration of services in CIS, i.e. their distribution among nodes.
The service i located at the node j using contrary policy of queue or resources
is treated as different solution. Requirements coming to CIS from workstations
are treated as the noise from statistical point of view. Single simulation provides
a measurement of some parameter(s) representing criteria K(x) treated as ob-
served realization of the random variable. Statistically important sample length
is necessary to estimate correctly output of our black box being the object of
control. Box called “x control” is in fact one among mentioned earlier solution
methods, e.g. GA, SA, etc.

11 Attacks and Malfunctions

Malfunctions in CIS depends on the connections (links) in the net as well as on
the availability of services located in nodes of the network. In order to ensure

Optimization in CIS Systems 125

Fig. 3. Proposed optimization algorithm

level of protection some services can be redundant and available in a few nodes by
using various paths. Each failure in CIS entails several scenarios (choreography)
of changes, which aimed to restoration functionalities/availability of services.
These choreographies are either given a priori (fixed) or generated automati-
cally by some generator. In [8] there has been provided some classifications of
failures, which can occur in the network, namely by: (a) scope of protection, (b)
backup path setup method, (c) type of resource reservation, (d) domain of re-
covery process. Note that due to statistical character, failures usually appear in
single point (node) at once. It is commonly assumed that probability of occuring
failure in several nodes simultaneously is close to zero. Separate case to discuss
and consider is so called progressive failures. Refering to attacks, we distinguish
attacks carried on on single node, however attacks carried on on multiple nodes
are possible as well.

12 Criteria

As a result of malfunction some services become unavailable. The basic aim of
reconfiguration is to restore full functionality of CIS as quick as possible. To this
order several choreografies are possible and one of them is chosen for application.
All of them are evaluated from several points of view. Thus, among considered
criteria one can use: (1) maximal restoration time, (2) average restoration time,
(3) aggregate restoration time, (4) fraction of unserviced clients, (5) rejection
ratio, (6) resource utilization, (7) cost of restoration.

13 Topologies

Simulation of choreography can be performed on CIS taken from reality assum-
ing different occuring malfunctions. However, this provides only single or few

126 C. Smutnicki

Table 3. Parameters characterizing topologies

Parameters

Betweenness centrality
Clustering coefficient

Global efficiency of a graph
Local efficiency

Small world property
Scale-free property

Rich-club connectivity of a graph
Status of a vertex, graph

Median of a graph
Centroid value of a vertex, graph

Centroid of a graph
Normalized Laplacian spectrum of a graph

Maximal fault tolerance of a graph
Maximum flow

instance(s) of CIS. Since the proposed approach provides only an approximate
solution, then in order to evaluate overall its features more testbeds need to be
used, see Section 5 for methodology of approximate algorithms analysis. To this
aim, some generators of the net topologies are especially welcome, particularly
for scale-free networks like Internet. To distinguish various topologies a lot of
parameters has been used in the literature, see Table 3 based on the survey in [8].
These parameters follow from practice and constitutes the base for net genera-
tors for the simulator. One can find a few deterministic topologies: (a) circulant
graphs lattices, (b) chordal rings, (c) Cayley graphs, (d) hypercubes, and a lot
of non-deterministic topologies, called as following models: (e) random graph (of
Erdö and Rényi, ER), (f) Watts-Strogatz (WS), (g) Waxman (WX), (h) CRUG,
(i) C-CRUG-PA, (j) C-CRUG-MAX-DPA, (k) NPART. The most suitable are
generators of Internet-like topology, namely models: (l) Barabasi Albert (BA),
(m) Extended Barabasi Albert (EBA), (n) Tiers (TI), (o) Transit-Stub (TS), (p)
Power Law Random Graph (PLRG), (q) BRITE, (r) Interactive Growth (IG),
(s) Positive Feedback Preference (PFP), (t) Inet-3.0 (INET).

Not discessing here in details each particular model, we only mention that the
result of simulation depends on chosen model of the net. For our aim the free-
scale network generator similar to Internet is recommended. Finding optimal
strategy of reconfiguration needs excesive computational experiments.

14 Conclusions and Comments

The given survey of methodologies leading to the proposed CIS optimization
task does not provide all details necessary to make an algorithm. It rather out-
lines crucial aspectcs important for the design and context of use of solution

Optimization in CIS Systems 127

methods for the hard discrete optimization problems in the environment having
rich variety of possible approaches. The present tendency prefer metaheuristics
(sequencing as well as parallel, also in multicriteria case) since they links high
or good quality of generated solutions with relatively small or moderate calcu-
lation cost. Morover they are resistant to local extremes. Real usefulness and
applicability of each particular method depends on space landscape, rutherness,
big valley, distribution of solutions in the space and the probler balance between
instesification and diversification of the search. Currently, for the single criteria
case, the promissing approaches are SA, SJ, GS, MS – for problems without any
particular properties (SA and SJ for problems having high cost of evaluating
single solution) and TS, AMS – for problems having special properties allowing
on acceleration of the searching process. For the multicriteria case recommended
are population based methods, namely GS, ACO, or methods that operate on
the sets of numerous solutions like TS. Recent study suggest that eficcient find-
ing of Pareto from can be done by united force of a few different algorithms, e.g.
GA+ACO+TS. If cost of calculations becomes high, for example for instances
of greater size, there is recommended to consider parallel methods, possible to
implement already on a PC with multicore processor or CUDA platform.

Coming back to the task of calculating K(x) for the given x via simulation,
we suggest to give up seeking Pareto front or its approximation due to very
high cost of calculations. Taking into account this unusual technology of K(x)
finding, a scalarization is the most appropriate approach and SA is the most
recommended metaheuristics.

Acknowledgments. Paper is supported by funds of National Centre of Science,
agreement 4759/B/T02/2011/40, grant N N516 475940.

References

1. Aarts, E.H.L., van Laarhoven, P.J.M.: Simulated annealing: a pedestrain review
of the theory and some applications. In: Deviijver, P.A., Kittler, J. (eds.) Pattern
Recognition and Applications. Springer, Berlin (1987)

2. Alba, E.: Parallel metaheuristics: a new class of algorithms. John Wiley & Sons
(2005)

3. Bartak, R.: On-line guide to Constraint programming (2010),
http://ktiml.mff.cuni.cz/bartak/constraints/

4. Bożejko, W.: A new class of parallel scheduling algorithms. Oficyna Wydawnicza
PWr, Wroc�law (2010)

5. Corne, D., Dorigo, M., Glover, F. (eds.): New ideas in optimization. McGraw Hill,
Cambridge (1999)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books (2004)
7. Geem, Z.W. (ed.): Recent Advances in Harmony Search Algorithm. SCI, vol. 270.

Springer, Heidelberg (2010)
8. Gierszewski, T.: Methods for minimizing attack’s impact on IP networks, PhD

Dissertation, Gdansk University of Technology, Gdansk, Poland (2011)
9. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Boston (1997)

http://ktiml.mff.cuni.cz/bartak/constraints/

128 C. Smutnicki

10. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley (1989)

11. Ghosh, A., Dehuri, S.: Evolutionary Algorithms for Multi-Criterion Optimization:
A Servey. International Journal of Computing & Information Sciences 2(1), 38–57
(2004)

12. Nedjah, N., Coelho, L.S., de Mourelle, L.M. (eds.): Multi-Objective Swarm Intel-
ligent Systems. SCI, vol. 261. Springer, Heidelberg (2009)

13. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for en-
gineering. Struct. Multidisc. Optim. 26, 369–395 (2004)

14. Molga, M., Smutnicki, C.: Test functions for optimization needs, Technical Report,
Institute of Computer Engineering Control and Robotics, Wroclaw University of
Technology, Wroclaw, Poland (2005)

15. Smutnicki, C.: Optimization technologies for hard problems. In: Fodor, J.,
Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineer-
ing Systems. Studies in Computational Intelligence, vol. 378, pp. 79–104. Springer,
Heidelberg (2012)

16. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N.: Dependability in the Web
Service Architecture. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Archi-
tecting Dependable Systems. LNCS, vol. 2677, pp. 90–109. Springer, Heidelberg
(2003)

17. Wierzchon, S.T.: Artificial immune systems. Theory and application, EXIT,
Warsaw (2001) (in Polish)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

129

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_8

Metascheduling Strategies in Distributed Computing
with Non-dedicated Resources

Victor Toporkov1, Alexey Tselishchev2, Dmitry Yemelyanov1, and Petr Potekhin1

1 National Research University “MPEI”,
ul. Krasnokazarmennaya 14, Moscow, 111250 Russia

{ToporkovVV,YemelyanovDM,PotekhinPA}@mpei.ru
2 CERN (European Organization for Nuclear Research),

CERN CH-1211 Genève 23 Switzerland
Alexey.Tselishchev@cern.ch

Abstract. In this chapter, we address problems of efficient computing in
distributed systems with non-dedicated resources including utility Grid. There
are global job flows from external users along with resource owner’s local tasks
upon resource non-dedication condition. Competition for resource reservation
between independent users, local and global job flows substantially complicates
scheduling and the requirement to provide the necessary quality of service. A
metascheduling concept, justified in this work, assumes a complex combination
of job flow dispatching and application-level scheduling methods for parallel
jobs, as well as resource sharing and consumption policies established in virtual
organizations and based on economic principles.

Keywords: Distributed computing, economic scheduling, resource management,
co-allocation, slot, job, task, batch.

1 Introduction

Execution of large parallel jobs in distributed computational environments requires
allocation of significant resources amount partially shared with their owners [1-4].
Today well-known algorithms, their combinations and heuristics used by schedulers
are usually unable to provide optimal or suboptimal solutions in terms of
heterogeneous distributed environments and dynamically changing sets of available
computational nodes and their utilization. Resource management and job scheduling
economic models proved to be efficient in such conditions [1-3].

Two established trends may be outlined among diverse approaches to distributed
computing. The first one is based on the available resources utilization and
application-level scheduling. As a rule, this approach does not imply any global
resource sharing or allocation policy. Application agents, i.e. resource brokers [5-11],
are usually considered as mediators between the users and the resource owners. There
are a lot of projects belonging to this trend, namely AppLeS [6], APST [7], Legion
[8], DRM [9], Condor-G [10], Nimrod/G [11] and others.

5

130 V. Toporkov et al.

Another trend is related to the formation of user’s virtual organizations (VO) and
job flow scheduling [12-14]. In this case, an external scheduler, e.g. a Grid dispatcher,
a metascheduler or a Meta-Broker [15], is an intermediate chain between the users
and local resource management and job batch processing systems.

Scheduling and resource management systems belonging to the first approach are
well-scalable and application-oriented. However, simultaneous application-level
scheduling with diverse optimization criteria set by independent users, especially
upon possible competition between applications, may deteriorate such integral QoS
characteristics of a distributed environment as total job batch execution time or
overall resource utilization. VOs, from one hand, naturally restrict the scalability of
resource management systems. On the other hand, uniform rules of resource sharing
and consumption, in particular based on economic models [1-4, 16-18], makes it
possible to improve the job-flow level scheduling and resource distribution efficiency.

The “convergence” idea of application-level and job-flow scheduling approaches
was declared in relatively early works [14, 19-21]. Nevertheless, in some well-known
models of distributed computing with non-dedicated resources, only the first fit set of
resources is chosen depending on the environment state [22-24], while job scheduling
optimization mechanisms are usually not supported. The aspects related to the
specifics of environments with non-dedicated resources, particularly dynamic
resource loading, the competition between independent users, users’ global and
owners’ local job flows, are not presented in other models [14, 16, 17].

A metascheduling concept in VOs proposed in this work fundamentally differs
from known solutions by combining methods of independent job flow management
and application-level scheduling [19-21]. We propose a model of independent job
flows management based on economic principles The job scheduling is performed
cyclically for alternative sets of preliminary selected resources (alternatives) [25]. In
contrast to well-known models, the proposed approach assumes job flows and batches
formations according to job features, characteristics, resource requirements, users’
preferences, and further job batch cyclic scheduling based on dynamically updated
VO policies, strategies and restrictions. Job batch schedules are optimized by a
criteria vector according to the resource sharing and consumption policy established
in the VO.

The rest of this chapter is organized as follows. Section 2 is devoted to analysis of
various VO stakeholders preferences and related works in distributed computing.
There is a formal problem statement for a cyclic scheduling scheme. Then we discuss
restrictions of this scheme. In Section 3, we introduce main requirements for a model
of scheduling and fair resource sharing, representing the cyclic scheduling scheme
generalization. A combined scheduling approach based on generalized cyclic
scheduling scheme and backfilling is proposed in Section 4. Section 5 contains a
simulation framework description, variables and parameters for the model of
scheduling and fair resource sharing studies. The simulation results are presented in
Section 6. Section 7 focuses on the research of the scheduling method combined with
backfilling. Finally, Section 8 summarizes the chapter and describes further research
topics.

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 131

2 Scheduling Problems in VO

2.1 VO Stakeholders and Their Preferences

The scheduling efficiency in VO may be considered from different points of view. On
the one hand, one of the most important indicators is available resources utilization
level and an average job starting time (“response” time). Computational nodes of
distributed environments with non-dedicated resources are generally partially utilized
by local high priority tasks. Thus, the available resources of VO are represented as a
set of slots, i.e. time spans during which the related node is idle and ready for
executing a part of a parallel job. The existence of an available slots set with different
start and finish times as well as a different performance rate (depending on the CPU
node characteristics), complicates the problem of efficient resource co-allocation and
job-flow execution in the distributed environment. The resource fragmentation also
reduces the overall distributed environment utilization level. On the other hand, the
VO scheduling efficiency may be considered in terms of compliance with certain
scheduling policies and VO shareholders preferences. Besides, there are contradictory
interests of VO users, resources owners and administrators. The users are usually
interested in the earliest start time for their applications with the lowest cost, while
resource owners intend to obtain the maximum profit for providing their resources in
VO. The administrators define VO policy and they are interested in the distributed
environment overall performance optimization as well as in matching preferences of
users and resource owners. A fair resource sharing implies that the interests of VO
shareholders are met.

Every user job is submitted with a resource request – a list of requirements for the
resources needed for a particular application execution. One of the most important
parameters is a resource reservation time, during which the allocated nodes are
utilized by the user job. For the overall job-flow execution optimization and a
resource occupation time prediction existing schedulers rely on the time specified in
the job’s resource request. However, the reservation time is usually based on user
inaccurate runtime estimates [14, 26]. In case, when the application is completed
before the term specified in the resource request, the allocated resources remain
underutilized. Moreover, if the job runtime estimation substantially differs from the
real runtime, the job schedule may become ineffective in terms of optimization
criteria defined in VO.

Thus, we outline two main job-flow optimization directions in the distributed
computing environment. In the first of them, the optimal or suboptimal scheduling
under a given criterion or criteria specified in VO, is performed on the basis of a
priori information about local schedules of computational nodes and the resource
reservation time for each job execution. The cyclic scheduling scheme (CSS) [27]
belongs to this type of systems. Another approach represents scheduling “on the fly”
depending on a dynamically updated information about resource utilization. In this
case, schedulers are focused on overall resources load maximization and job start time
minimizing. Backfilling [28] may be related to this type of scheduling. Existing
scheduling approaches are discussed in the next subsection.

132 V. Toporkov et al.

2.2 Related Works

There are several resource selection and scheduling algorithms for parallel jobs in
distributed environments [17, 22-24, 30-33]. The scheduling problem in Grid is NP-
hard due to its combinatorial nature and many heuristic-based solutions have been
proposed. In [17], heuristic algorithms for slot selection, based on user-defined utility
functions, are introduced. NWIRE system [17] performs a slot window allocation
based on the user defined efficiency criterion under the maximum total execution cost
constraint. However, the optimization occurs only on the stage of the best found offer
selection.

The paper [30] presents architecture and an algorithm for performing Grid
resources co-allocation without the need for advance reservations based on
synchronous queuing (SQ) of subtasks. The objective of SQ is to minimize the co-
allocation skew of all tasks requiring co-allocation. It enables SQ to over subscribe
the resources and hence to improve resource utilization. Mean utilization value is a
single criterion in this model. However, advance reservation is effective to improve
the co-allocation QoS. Moreover job control and resource management may be
efficient using strategies. This means a combination of different algorithms and
scheduling heuristics [3, 17, 22-24, 27, 32] with consideration for multiple factors and
criteria: the policy of resource allocation and administration, dynamical composition
and heterogeneity of CPU nodes, etc. By combining the optimization criteria, VO
administrators and users can form alternative search strategies for every job in the
batch [27]. Users may be interested in their jobs total execution cost minimizing or,
for example, in the earliest possible jobs finish time, and in being able to affect the set
of alternatives found by specifying the job distribution criteria. VO administrators in
turn are interested in finding extreme alternatives characteristics values (e.g., total
cost, total execution time) to form more flexible and, possibly, more effective
combination of alternatives representing a batch execution schedule.

Advance reservation-based co-allocation algorithms are proposed in [22-24, 31,
32]. First fit resource selection algorithms (backtrack [22, 23] and NorduGrid [24]
approaches) assign any job to the first set of slots matching the resource request
conditions without any optimization. The co-allocation algorithms described in [31-
34] suppose an exhaustive search and some of them are based on a linear integer
programming (IP) [3, 32] or mixed-integer programming (MIP) model [33]. In [31]
an online algorithm for co-allocating resources that provides support for advance
reservations is proposed. The overall complexity of the algorithm for a successful
scheduling attempt for the temporal space including a set of Q slots is

()()2MlogQnO r ×× , where M is the number of servers in a computing system,

and rn is the reservation spatial size, i.e., the number of servers required for the given

job. The co-allocation algorithm presented in [32] uses the 0-1 IP model with the goal
of creating reservation plans satisfying user resource requirements. Users can specify
a time frame for each resource: the earliest start time, the latest start time, and the job
duration, where the user wants to reserve a time slot. This condition imposes
restrictions for slots search only within this time frame. Moreover, the important
factor is a complexity and an actual calculation time of the algorithm under
consideration [32] especially with the assumption of the repeated use during the

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 133

scheduling interval. The number of variables in the proposed algorithm becomes 3R
depending on the number of computer sites R . Thus, this approach may be
inadequate for an on-line service in practical use. A linear IP-driven algorithm is
proposed in [3]. It combines the capabilities of IP and genetic algorithm and allows to
obtain the best metaschedule that minimizes the combined cost of all independent
users in a coordinated manner. In [33], the authors propose a MIP model which
determines the best scheduling for all the jobs in the queue in environments composed
of multiple clusters that act collaboratively.

Backfilling [28] is a FCFS (First Come – First Served) method modification. In
contrast to FCFS, backfilling requires user’s jobs runtime estimates in order to reserve
resources in advance. The resources are assigned to the jobs in a priority order, and
the jobs are allocated on to the suitable resources if they are not already reserved for
higher priority jobs. The advance reservation mechanism in backfilling guarantees to
get the resources for higher priority jobs and allows the job queue order violation,
which contributes to a higher overall resource utilization. The queue order violation
occurs during the backfill stage when low priority jobs are attempted to be allocated
to unreserved resources. With backfilling conservative variation a low priority job
may be executed out of order, if it will not delay the execution of all higher priority
jobs. Aggressive backfilling variation allows jobs to be executed out of the order only
in case, when they do not delay the highest priority job execution.

There are some limitations of backfilling for distributed computing. The first one is
inefficient resource usage by criteria differed from an average job start time
(especially at a relatively low level resources load). The second is a principal inability
to affect the resource sharing quality by defining policies and criteria in VO.
Nevertheless it is appropriate to consider the use of backfilling to avoid resources
fragmentation (see subsection 2.3).

The scheduling techniques proposed in [3, 31-33] are efficient compared with other
scheduling techniques under given criteria: the minimum processing cost, the overall
makespan, resources utilization etc. However, complexity of the scheduling process is
extremely increased by the resources heterogeneity and the co-allocation process,
which distributes the tasks of parallel jobs across resource domain boundaries. The
degree of complexity may be an obstacle for on-line use in large-scale distributed
environments.

In this work, we use algorithms for efficient slot selection based on user and VO
administrators defined criteria with the linear complexity on the number of all
available time-slots during the scheduling interval denoting how far in the future the
system may schedule resources [25, 27, 29]. Besides, in our approach the job start
time and the finish time for slot search algorithms may be considered as criteria
specified by users in accordance with the job total allocation cost. It makes an
opportunity to perform more flexible scheduling solutions.

2.3 Cyclic Scheduling Scheme

Cyclic scheduling was proposed for a model based on a hierarchical job-flow
management scheme [27]. Job-flow scheduling is performed in cycles by separate job

134 V. Toporkov et al.

batches on the basis of dynamically updated local schedules of computational nodes
(Fig. 1). Sets of available slots and their costs (Cj in Fig. 1) determined by resource
owners are updated based on the information from local resource managers or job
batch processing systems. Thus, during every scheduling cycle two problems have to
be solved. First of all, the alternative sets of slots (alternative offers for each batch
job) that meet the requirements (resource, time, and cost) should be selected. Each
alternative is characterized by the total execution cost, runtime, start time, finish time
and other parameters (for example power consumption). Second, a combination of
alternatives that would be the efficient or optimal in terms of the whole job batch
execution in the current scheduling cycle is chosen (according to the VO policy).

Fig. 1. Job flow cyclic scheduling

Let iS be the family of appropriate sets of slots for executing job i, n,...,i 1= , in

the batch, ij Ss ∈ be the set of slots that are appropriate by the resource request, the

cost ()ji sc and the execution time ()ji st , 
n

i
iSN,N,...,j

1
1

=
== . Denote by S the

family of appropriate sets of slots and by ()ns,...,ss 1= , Ss ∈ , the sequence, which

we call the combination of slots, for executing the batch of jobs. Let ()ji sf be a

function determining the efficiency of executing job i in the batch on the set of slots

js under the admissible expenses specified by the function ()ji sg . For example,

() ()jiji scsf = is the price of using the set js for the time () ()jiji stsg = . The

expenses are admissible if () *ggsg iji ≤≤ , where ig is the level of the total

expenses for the execution of a part of jobs from the batch (for example, jobs

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 135

n,...,i,i 1+ or 11,...,i,i −) and g* is the restriction for the entire set of jobs (in

particular, the restriction on a total time t* of slot occupation or a limitation on a
budget *b of the virtual organization).

Formally, the statement of the problem of the optimal choice of a slot combination
()ns,...,ss 1= is as follows:

() () extr
1

→= 
=

n

i
ji sfsf , () *ggsg iji ≤≤ , ()

=
=

n

i
ji sg*g

1

0 , (1)

where ()ji sg 0 is the resource expense level function of executing the batch.

The recurrences for finding the extremum of the criterion in (1) for the set of slots

 ,ij Ss ∈ { }N,...,j,n,i 11 ∈= based on backward recursion are

() () ()(){ }jiiiji
Ss

ii sggfsfgf
ij

−+= +
∈

1extr , () *ggsg iji ≤≤ , n,i 1= ,

() 011 ≡++ nn gf , ()kiii sggg 11 −− −= , ni ≤<1 , *gg =1 , 1−∈ ik Ss , (2)

where ig are the total expenses (utilization time or cost) for using the slots for jobs

n,...,i,i 1+ of this batch.
The optimal expenses are determined from the equation

() ()
() iji gsg

iij
*
i gfsg

≤
= extrarg , n,i 1= . (3)

The optimal set of slots { }N,...,s*
i 1∈ in the scheme (2), (3) is given by the

relation

()()jii
Ss

*
i s*gfs

ij ∈
= extrarg , n,i 1= . (4)

Here (4) represents the solution of the problem (1). An example of a resource

expense level function in (1) is () ()][0 =
js

ijiji l/stst , where il is the number of

admissible (alternative) sets of slots for the execution of job i, []⋅ is the ceiling of

()ji st0 . Then the constraint on the total time of slot occupation in the current

scheduling cycle can have the form

()
=

=
n

i
ji st*t

1

0 . (5)

Let us consider several problems of practical importance.
1. Maximization of profit of resource owners under restrictions on the total

time of slot utilization. Suppose it is required to select a set of slots for executing a
batch of n jobs so as to maximize the total cost of resource utilization

() () ()(){ }jiiiji
Ss

ii sttfsctf
ij

−+= +∈ 1max , n,...,i 1= , () 011 ≡++ nn tf . (6)

The restriction on the total time of using slots by all the jobs is given by (5).

136 V. Toporkov et al.

2. Minimization of the total completion time of a batch of jobs under a
restriction on the budget *b of the virtual organization:

() () ()(){ }jiiiji
Ss

ii sccfstcf
ij

−+= +∈ 1min , n,...,i 1= , () 011 ≡++ nn cf . (7)

3. Minimization of the total cost of executing a batch of n jobs under a
restriction on the total time (5) of slot utilization:

() () ()(){ }jiiiji
Ss

ii sttfsctf
ij

−+= +∈ 1min , n,...,i 1= , () 011 ≡++ nn tf . (8)

4. Minimization of the idleness of resources under the restriction on the total
time of their utilization. On the one hand, the resource owners restrict the time of slot
utilization to balance their own (local) and users’ job flows. On the other hand, the
owners naturally strive to minimize the idleness of resources. Assume that the slot
utilization time is bounded by (5). The problem is reduced to finding a set of slots that
satisfy this restriction:

() () ()(){ }jiiiji
Ss

ii sttfsttf
ij

−+= +∈ 1max , n,...,i 1= , () 011 ≡++ nn tf . (9)

The above functional equations (6)-(9) are concretizations of (2) and are
implemented as simulation environment components [27].

Among the major CSS restrictions in terms of an efficient scheduling and resource
allocation one may outline the following. First of all, it is not possible to affect
execution parameters of an individual job: the search for particular alternatives is
performed on the First Fit principle, while choice the optimal combination (4)
represents only the interests of VO upon the whole. Thus this approach does not take
into account user interests and preferences, and therefore obstructs fair resource
sharing. Second, the job batch scheduling is based on a user estimation of the
particular job runtime ()ji st (often inaccurate). Thus, in case of estimation

incorrectness, the early released resources may become idle reducing the distributed
environment utilization level. Third, the job batch scheduling requires allocation of a
multiple “nonintersecting” in terms of slots alternatives, and at the same time only
one alternative is chosen for each job execution.

Fig. 2 shows a job batch scheduling example consisting of five independent jobs.

Fig. 2. An example of alternatives allocation for a batch of five jobs

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 137

Highlighted rectangles schematically represent all “nonintersecting” in terms of
slots alternatives found for the batch on the scheduling cycle in “CPU – Time” space.
Filled rectangles represent a combination of the alternatives selected by the
metascheduler. Thus, available resources are fragmented, and their utilization level,
especially at the beginning of the considered scheduling interval, is relatively low.

The following section is dedicated to the CSS generalization and further
development.

3 The Model of Scheduling and Fair Resource Sharing

For the metascheduling concept implementation we put the following requirements
for the model of scheduling and fair resource sharing among the VO stakeholders (we
name this model as Batch-slicer). First, VO administrators should be able to manage
the scheduling process by establishing a job-flow execution policy. Second, VO users
should have an opportunity to affect their jobs execution schedule by setting an
optimization criterion. Third, resource owners should be able to control utilization
level of their computational nodes by specifying their pricing model during the
scheduling interval.

Batch-slicer is a generalization of the CSS system described above, and therefore it
takes into account the interests of diverse VO stakeholders. In order to satisfy the user
preferences a desirable optimization criterion is introduced into the resource request
format (Fig. 3).

Fig. 3. Users’ optimization criteria for jobs execution

Unlike the so-called soft constraints [14] representing the user preferences, the
optimization criterion defined in the resource request is considered during the stage of
alternatives (slot sets) search. Algorithm searching for Extreme Performance (AEP)
described in details in [29] is used to select optimal alternatives under a given
criterion. Thus, a set of job execution alternatives is formed by the user preferences
according to the individual application optimization criteria. At the same time the
optimal alternatives combination choice is carried out in accordance with the criterion
which implements VO policy. Resource owners receive an opportunity to manage
their own profit and computational nodes utilization by varying local schedules and
price establishing during the scheduling cycle.

138 V. Toporkov et al.

Another Batch-slicer difference from CSS consists in the job system formation
algorithm. Batch-slicer implies a separation of the initial job batch into a set of sub-
batches and each sub-batch scheduling at the same given scheduling interval. The idea
of “slicing” can be particularly noticeable at a relatively high distributed environment
resources utilization level. According to the alternatives search algorithm adopted in
CSS [27], the number of execution alternatives for a job batch may be relatively small
(up to just a single alternative for every job at a high resource utilization level). Such
a small number of alternatives found may affect the optimal slot combination
selection (4), and therefore, may reduce overall scheduling efficiency. The job batch
“slicing” increases the number of alternatives found for high-priority jobs and
diversifies the choice on the slots combination selection (4) stage, and thereby
increases the resource sharing efficiency according to VO policy. When separating
the original batch to n sub-batches, where n is a total number of jobs in the batch
(see subsection 2.3), the algorithm will find the best sets of slots for each job
according to the criteria specified in their resource requests. But in this case the
efficiency of a whole job batch scheduling is not taken into account. On the other
hand, when only a single sub-batch is “picked” from the original job batch the
scheduling result will be identical to CSS application.

In view of described modifications, Batch-slicer is schematically shown in Fig. 4:
an optimization criterion is specified for each job, and the job batch is separated to the
sub-batches during the scheduling cycle.

Fig. 4. Job flow cyclic scheduling with batch-slicing

4 Cyclic Scheduling Method Combined with Backfilling

Each of the approaches described above has its advantages and disadvantages. Batch-
slicer makes it possible to optimize the job-flow execution according to the VO
shareholders preferences on condition that a sufficient number of alternatives was
found for the batch jobs during the scheduling cycle. Backfilling responds to early

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 139

resources releases and performs “on the fly” rescheduling which is very important
when a user job runtime estimation is significantly different from the actual job
execution time.

We propose a combined approach. During every scheduling cycle a set of high
priority jobs, for example the most “expensive” (by total execution cost) or the most
critical in terms of required resource (by performance), is allocated from the initial
job batch. These jobs should be scheduled before other jobs, probably, without
complying the queue discipline. High priority jobs are grouped into a separate sub-
batch. The scheduling of this sub-batch is further performed by Batch-slicer based on
the preliminary known resources utilization schedule. The scheduling of the rest batch
jobs is performed by backfilling with the dynamically updated information about the
actual computational nodes utilization. Thus, the cyclic scheduling method combined
with backfilling (Batch-slice-Filling - BSF) combines the main advantages of both
Batch-slicer and backfilling, namely the optimization of the most time-consuming
jobs execution as well as the efficient resource usage, preferential job execution queue
order compliance and relatively low response time. The exact number of jobs to select
into the first sub-batch to schedule with Batch-slicer and the selection principle may
depend on the related resource domain characteristics as well as on the job batch
composition and general parameters.

5 Simulation Environment Setup

A series of studies were carried out with the simulation environment [27] in order to
investigate the proposed job batch scheduling approaches and to compare them with
known scheduling algorithms.

The scheduling environment core consists of the following major components:
computational procedures and random variable functions implementation for the
environment parameters generation; resource requests and distributed computing
environment generation; AEP slot processing; an algorithm for optimal alternatives
combination selection; Batch-slicer module; backfilling module; BSF module.

The main features of the simulation environment are as follows.
1. The job-flow and domain heterogeneous resources generation is performed in

accordance with the random variables distribution functions with settings specified in
the model for the real traces simulation.

2. Initial domain node utilization level is determined by the local tasks number and
runtime. The initial CPU node utilization schedule is generated with the
hypergeometric distribution.

3. The model supports different pricing mechanisms and the interaction between
the VO stakeholders with economic principles.

4. The algorithms for job system formation, alternatives search and the best
alternatives combination selection are implemented in the model.

The model components general settings are used for the experiments as follows. A
typical scheduling interval length is assumed to be 600 units of time. The number of
nodes in the resource domain is equal to 24. The nodes performance level is given as

140 V. Toporkov et al.

a uniformly distributed random value ∈p [2, 10]. Thus the resources with the highest

performance level (p = 10) are generally able to execute jobs roughly twice as fast as

medium performance level nodes (p = 6), while nodes with the lowest performance

(p = 2) are three times slower. This configuration provides a sufficient resources

diversity level while the difference between the highest and the lowest resource
performance levels will not exceed one order within a particular resource domain.
Uniform distribution was chosen in the assumption that the CPU node composition is
formed by resource selection based on such characteristics as a CPU node type,
performance, locations, etc. (hard constraints according to [14]). The node prices are
assigned during the pricing stage depending on the node performance level and a
random “discount/extra charge” value which is normally distributed. The number of
user jobs in each scheduling cycle is assumed to be 20. The jobs budget limit is
generated in such a way that the “richest” users can afford to use “expensive”
resources with the price formed as a “market value + 60% extra charge”, and the
“poorest” users have been forced to rely on 60% discounts. These factors prevent the
monopoly for the most expensive and, therefore, the high-performance resources.

A special study is a simulation of a complete scheduling cycle for the same job
batch independently by proposed and known algorithms. In each experiment, first of
all, a job batch presented as a resource requests list is performed, and, second, a
resource environment composition with local utilization schedules is generated. Thus
the study is based on scheduling results obtained with the same input (job batch)
using different scheduling algorithms comparison.

6 Experimental Studies of Fair Resource Sharing

The goal of the investigation is to verify basic concepts of fair resource sharing, i.e. to
prove that each VO member has a possibility to affect the process of scheduling
according to his preferences (see Section 2).

6.1 Taking into Account VO Users’ Preferences

Taking into account VO users’ preferences and the analysis of scheduling results for
individual jobs is carried out by comparing the proposed Batch-slicer approach with
the initial CSS. The latter does not perform optimization during the stage of
alternatives selection. Thus, there are two approaches considered in the experiment.
First of all, scheduling of the job batch with Batch-slicer where alternatives search is
performed based on AEP taking into account the criterion specified in resource
request. Second, scheduling of the job batch with CSS where alternatives search is
performed by choosing the first fit alternative.

Table 1 shows the results of individual jobs scheduling depending on the
optimization criterion specified by the user: job start and finish time, execution time
and cost (AEP minimizes the value of the specified criterion).

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 141

Table 1. Scheduling results with VO users’ preferences

Criterion

AN

Start time

Execution
time

Finish time

Cost

Start time 12.8 171.7 56.1 227.8 1281.1

Execution time 10.6 214.5 39.3 253.9 1278.5

Finish time 12.2 169.6 45 205.5 1283.2

Cost 12.9 262.6 55.5 318 1098.3
CSS 12.1 222 50.3 272.3 1248.4

The choice of one of the four optimization criteria is made randomly with uniform

distribution at the stage of job batch generation. Uniform distribution is used because
no prevalent optimization criterion can be chosen. The last row of Table 1 shows the
results of scheduling of the same job batch with initial CSS without optimization at
the stage of alternatives search. Simulation of 5000 individual scheduling cycles was
conducted. As can be seen from Table 1, best values against start and finish time
criteria as well as by execution time and cost (the minimal values are marked in bold)
are achieved by the jobs for which the corresponding optimization criterion is
specified (“Criterion” column). The only exception is finish time minimization
approach: the jobs for which this optimization criterion was specified show on
average not only the minimal finish time, but also the minimal start time. On average
the use of an optimization criterion in Batch-slicer, in comparison with CSS, when
executing individual jobs, allows reducing job start and finish time by more than 23%,
reducing execution time by 21% and reducing execution cost by 12%. Average
number of execution alternatives (AN in Table 1) found for the jobs during one

scheduling cycle almost does not depend on the chosen optimization criterion.
Average number of jobs per each group having the same optimization criterion equals
5 on average. This fits the use of uniform distribution when choosing one of the four
optimization criteria for each of the 20 batch jobs.

The individual jobs scheduling results show that users can affect the execution of
their own jobs by specifying an optimization criterion. This is achieved due to the fact
that in the presence of different requirements to efficiency of job execution resources
are allocated among the jobs unevenly, depending on the criterion used in selection.
Note that in the initial CSS at the stage of alternatives search all the resources are
allocated among the jobs uniformly.

6.2 Optimization of Job Batch Execution in VO

The next experiment is dedicated to comparing the scheduling results when slicing the
initial job batch in Batch-slicer into different number of sub-batches and at different
levels of environment utilization. The experiment allows estimating the efficiency of
scheduling in different modes with different input data. Modes comparison was
performed on the basis of job batch allocation results on full scheduling cycle

142 V. Toporkov et al.

including initial environment generation, composition of batches and sub-batches and
then their sequential scheduling.

When choosing the optimal execution alternatives combination the average job
execution time CPUT minimization task was being solved. Total slot utilization time

for an alternative is determined as the sum of slot lengths being part of the composed
“window”. Fig. 5 shows the value of CPUT depending on the number of sub-batches

{ }201065321 ,,,,,,k ∈ into which the initial batch is sliced and the level of environment

utilization. When performing the series of experiments the environment utilization
level is determined by the relative average number of failures Y – scheduling cycles in
the course of which the execution schedule for all the batch jobs was not found. The
experiments were conducted under high (Y = 0.3), medium (Y = 0.03) and low
utilization levels (Y < 0.0002). Thus the number of failures in the conducted series of
experiments differs at the minimum by the order of magnitude of one.

Fig. 5. Average batch jobs execution time CPUT depending on the number of subbathes k

As a result of the job batch scheduling experiment the following patterns were
revealed. An increase of composed sub-batches number causes an increase of
alternatives number for execution an individual job, a decrease of total job execution
cost, and an increase of relative number of failures Y . When increasing the level of
available resources the number of alternatives for an individual job execution
increases, the relative number of failures Y decreases, and the total cost of job batch
execution decreases. The experiment results show that slicing of the initial batch into
sub-batches and their sequential independent scheduling allows increasing the number
of execution alternatives for the batch jobs and performing more efficient execution
schedules. So, at a high execution environment utilization rate the best efficiency and
the least number of failures is provided by slicing into fewer sub-batches. On the
other hand, at a low utilization of available resources it is advantageous to slice into a
greater number of sub-batches up to scheduling the jobs individually (see Fig. 5).
Another advantage of Batch-slicer in comparison with CSS is decreasing of total

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 143

execution cost as the level of resource utilization becomes lower. CSS tries to use the
entire admissible budget *b for the job batch execution by choosing the
corresponding set of alternatives. At the same time when scheduling sub-batches with
a small number of jobs the choice is often confined to a few alternatives whose cost is
not necessarily close to the admissible budget limitation.

Thus, Batch-slicer allows not only taking into account VO administrators’
preferences (by optimizing at the alternatives set selection stage, like in the initial
CSS), but can also provide a better value of the target criterion in comparison with
CSS by slicing into sub-batches (the least value of the target criterion – job batch total
execution time – was achieved when slicing the job batch into 5 sub-batches with four
jobs in each of them).

6.3 Taking into Account VO Resource Owners’ Preferences

Table 2 shows the scheduling results with Batch-slicer from resource owners’ point of
view by the example of a single CPU node characteristics depending on the unit cost
с , specified for the use of scheduling interval T = 600: cL – total slot utilization

time in the scheduling interval; U – relative resource utilization average value in the
scheduling interval; S – average profit made by the resource owner, and Y – relative
number of scheduling failures.

Table 2. Scheduling results with VO resource owners’ preferences

с cL U S Y

2 256.6 0.44 527.1 0

4 234.9 0.39 939.6 0.001

6 185.4 0.31 1112.3 0.013

8 109.8 0.18 878.7 0.024

10 71 0.12 710.3 0.025

Fig. 6. A resource owner’s profit S depending on the proposed price с

144 V. Toporkov et al.

As can be seen from Table 2, resource owners are able to control their profit S and
the computational node utilization level U in the scheduling interval T by
proposing the unit cost с of using their node. Profit extremum is achieved when
proposing the cost close to the “average market cost”, i.e. the average cost for a
resource with similar performance, proposed by other resource owners. The profit
value received by a resource owner for providing a single computational node is
illustrated graphically in Fig. 6.

7 Experimental Studies of Resource Use Efficiency in the Cyclic
Scheme

7.1 Studies of Combined Scheduling Method BSF

The efficiency of scheduling with BSF combined approach can be considered from
two viewpoints at the same time: on the one hand, from the viewpoint of criterion
value optimization in the specific VO, job batch total execution time (7), for instance,
and, on the other hand, from the environment utilization level and batch job start time
minimization viewpoint.

Fig. 7. Average job execution CPUT and start startT time in BSF

Fig. 7 shows batch job average execution time CPUT and average start time startT

depending on the ratio according to which slicing into sub-batches was made: CSCn –

the number of jobs in the first sub-batch, scheduled with CSS, n – total number of
jobs in the batch. Slicing into sub-batches was made on basis of a priority – the order
of jobs in the batch, without taking into account the characteristics of the jobs
themselves. The scheduling results presented in Fig. 7 are obtained based on
simulation of 5000 independent scheduling cycles at a medium level of resource
utilization according to the settings described in section 5. As seen from Fig. 7, if a
major part of the job is scheduled with Batch-slicer then a better value of the target
VO scheduling criterion – execution time CPUT – is achieved, but average job start

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 145

time startT is delayed. And on the contrary, if a major part of the job is scheduled with

backfilling, then average start time approaches the beginning of the scheduling
interval but the value of the target optimization criterion deteriorates. Particular
emphasis should be placed on the cross point of graphs in Fig. 7. Its presence given
that the graphs are monotone suggests the possibility of reaching a compromise
between average start time and the value of the VO target optimization criterion. So,
BSF shows “compromise” values of the discussed characteristics compared to BS and
backfilling.

7.2 Experimental Studies of Consistency of Schedules Based on Job Execution
Time Estimate

Let us consider scheduling efficiency studies results and consistency of schedules
performed with Batch-slicer and CSS and based on job execution time estimate which
is specified in the resource request. Batch-slicer and CSS form preliminary job batch
execution schedules in the scheduling interval without taking into account the
situations in which real job execution time is less than the time specified by the user.
Early job completion, untimely resource release and idleness may negatively affect
the efficiency of job batch execution against the criteria specified by VO stakeholders
and make the schedule inconsistent. On the other hand, backfilling conducts
scheduling on basis of dynamically updated information on job execution status and
computational node utilization. Thanks to this it can provide the efficient job flow
execution. A simulation was conducted to study and to compare the efficiency of
schedules performed with CSS, Batch-slicer and backfilling. In the simulation real job
execution time differed considerably from resource advanced reservation time. Real
job execution time was specified as a random variable uniformly distributed in the
interval [0.2* resT , resT], where resT – time reserved for job execution. Uniform

distribution is chosen as it is almost impossible to predict real job execution time on
the specified resources. Thus, at worst real execution time could differ from user
estimate by 5 times.

Table 3 contains the average job execution time values (the target optimization
criterion) and average job start time obtained: 1) at the stage of preliminary
scheduling based on job execution time estimate resT (“Scheduled” column); 2) as the

result of execution simulation of the composed schedule taking into account real job
execution time on the chosen resources (“Real” column).

Table 3. Real and scheduled job execution time

Algorithm Execution time Average job start time

Scheduled Real Scheduled Real

Backfilling 187.7 115.1 69 37.3

CSS 150.1 90.4 281.2 281.2

Batch-slicer 138.6 83.5 223.8 223.8

Advantage of Batch-slicer over backfilling 26.2% 27.5% -69% -83%

146 V. Toporkov et al.

It can be seen from Table 3 that even if the difference between resource reservation
time and real job execution time is significant the advantage of Batch-slicer over
backfilling against the VO target optimization criterion not only remains but
increases. That is because backfilling does not optimize against criteria different from
start time and a more compact job location (real start time of jobs scheduled with
backfilling is reduced by 46% on average) uses almost all the available resources
including those less advantageous against the target criterion.

Thus, results of the experiment show that preliminary schedules formed in the
beginning of the scheduling cycle are consistent against the criteria determined in VO
in the case when real execution time differs significantly from resource reservation
time. Note that additional advantage can be achieved by rescheduling taking into
account the information about computational nodes’ current utilization.

8 Conclusions and Future Work

In this work, we address metascheduling strategies with different target criteria and
based on scheduling and fair resource sharing model taking into account all VO
stakeholders’ preferences on the basis of economic principles. A solution to the
problem of fair resource sharing among VO stakeholders is proposed.

The advantage over initial CSS when scheduling the job flow reaches 7% and in
the terms of single job execution it reaches 25% at a medium level of environment
utilization. Resource owners can vary the resource provision unit cost (by offering
discounts for instance) to maximize the profit or to achieve the necessary resource
utilization level. Based on union of CSS and backfilling a combined approach BSF is
proposed. The approach shows compromise results compared to Batch-slicer and
backfilling, namely it allows utilizing the available resources efficiently (by means of
backfilling) when efficiently executing a part of jobs in VO (by means of optimization
in Batch-slicer). The consistency of scheduling made with Batch-slicer when real job
execution time is significantly different from user’s estimate is shown.

Further research will be related to a more precise investigation of dividing the job
flow into sub-batches depending on the jobs characteristics and computing
environment parameters as well as to studying the mechanism of rescheduling based
on the information about computational nodes current utilization.

Acknowledgements. This work was partially supported by the Council on Grants of
the President of the Russian Federation for State Support of Leading Scientific
Schools (SS-362.2014.9), the Russian Foundation for Basic Research (grant no. 12-
07-00042), and by the Federal Target Program “Research and scientific-pedagogical
cadres of innovative Russia” (state contract no. 16.740.11.0516).

References

1. Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling Parallel Applications on Utility Grids:
Time and Cost Trade-off Management. In: 32nd Australasian Computer Science
Conference (ACSC 2009), Wellington, New Zealand, pp. 151–159 (2009)

 Metascheduling Strategies in Distributed Computing with Non-dedicated Resources 147

2. Degabriele, J.P., Pym, D.: Economic Aspects of a Utility Computing Service, Trusted
Systems Laboratory HP Laboratories Bristol HPL-2007-101. Technical Report, pp. 1–23
(July 3, 2007)

3. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious Scheduling of
HPC Applications on Distributed Cloud-oriented Data Centers. J. Parallel and Distributed
Computing 71(6), 732–749 (2011)

4. Tesauro, G., Bredin, J.L.: Strategic Sequential Bidding in Auctions Using Dynamic
Programming. In: 1st International Joint Conference on Autonomous Agents and
Multiagent Systems, Part 2, pp. 591–598. ACM, New York (2002)

5. Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: the Condor
Experience. J. Concurrency and Computation: Practice and Experience 17(2-4), 323–356
(2004)

6. Berman, F.: High-performance Schedulers. In: Foster, I., Kesselman, C. (eds.) The Grid:
Blueprint for a New Computing Infrastructure, pp. 279–309. Morgan Kaufmann, San
Francisco (1999)

7. Yang, Y., Raadt, K., Casanova, H.: Multiround Algorithms for Scheduling Divisible
Loads. IEEE Trans. Parallel and Distributed Systems 16(8), 1092–1102 (2005)

8. Natrajan, A., Humphrey, M.A., Grimshaw, A.S.: Grid Resource Management in Legion.
In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management. State of the
Art and Future Trends, pp. 145–160. Kluwer Academic Publishers, Boston (2003)

9. Beiriger, J., Johnson, W., Bivens, H.: Constructing the ASCI Grid. In: 9th IEEE
Symposium on High Performance Distributed Computing, pp. 193–200. IEEE Press, New
York (2000)

10. Frey, J., Foster, I., Livny, M.: Condor-G: A Computation Management Agent for Multi-
institutional Grids. In: 10th International Symposium on High-Performance Distributed
Computing, pp. 55–66. IEEE Press, New York (2001)

11. Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid? In: International Parallel and
Distributed Processing Symposium, pp. 520–528. IEEE Press, New York (2000)

12. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. of High Performance Computing Applications 15(3), 200–222 (2001)

13. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed
Data-intensive Applications. In: 11th IEEE International Symposium on High Performance
Distributed Computing, pp. 376–381. IEEE Press, New York (2002)

14. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid
Resource Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. State of the art and Future Trends, pp. 271–293. Kluwer Academic
Publishers, Boston (2003)

15. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Algorithm
for Meta-scheduling on Utility Grids. J. Par., Emergent and Distr. Systems 26, 493–517
(2011)

16. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and
Scheduling in Grid Computing. J. Concurrency and Computation 14(5), 1507–1542 (2002)

17. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002)

18. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud
Services with Data Access Awareness. J. Par. and Distr. Computing 72(4), 591–602 (2012)

148 V. Toporkov et al.

19. Toporkov, V.V.: Job and Application-Level Scheduling in Distributed Computing.
Ubiquitous Computing and Communication J. Applied Computing 4(3), 559–570 (2009)

20. Toporkov, V.V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Job and Application-
Level Scheduling: an Integrated Approach for Achieving Quality of Service in Distributed
Computing. In: 4th International Conference on Dependability of Computer Systems, pp.
202–209. IEEE CS Press, Los Alamitos (2009)

21. Toporkov, V.: Application-Level and Job-Flow Scheduling: an Approach for Achieving
Quality of Service in Distributed Computing. In: Malyshkin, V. (ed.) PaCT 2009. LNCS,
vol. 5698, pp. 350–359. Springer, Heidelberg (2009)

22. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance
Reservations. In: 17th IEEE Int. Symposium on HPDC, pp. 65–74. IEEE CS Press, New
York (2008)

23. Ando, S., Aida, K.: Evaluation of Scheduling Algorithms for Advance Reservations.
Information Processing Society of Japan SIG Notes HPC-113, 37–42 (2007)

24. Elmroth, E., Tordsson, J.: A Standards-based Grid Resource Brokering Service Supporting
Advance Reservations, Coallocation and Cross-Grid Interoperability. J. of Concurrency
and Computation 25(18), 2298–2335 (2009)

25. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource Selection
Algorithms for Economic Scheduling in Distributed Systems. Procedia Computer
Science 4, 2267–2276 (2011)

26. Bailey Lee, C., Schwartzman, Y., Hardy, J., Snavely, A.: Are User Runtime Estimates
Inherently Inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

27. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Dependable Strategies
for Job-flows Dispatching and Scheduling in Virtual Organizations of Distributed
Computing Environments. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) Complex Systems and Dependability. AISC, vol. 170, pp. 289–304.
Springer, Heidelberg (2012)

28. Moab Adaptive Computing Suite,
http://www.adaptivecomputing.com/products/
moab-adaptive-computing-suite.php

29. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot Selection Algorithms
for Economic Scheduling in Distributed Computing with High QoS Rates. In: Zamojski,
W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) New Results in
Dependability & Comput. Syst. AISC, vol. 224, pp. 459–468. Springer, Heidelberg (2013)

30. Azzedin, F., Maheswaran, M., Arnason, N.: A Synchronous Co-allocation Mechanism for
Grid Computing Systems. Cluster Computing 7, 39–49 (2004)

31. Castillo, C., Rouskas, G.N., Harfoush, K.: Resource Co-allocation for Large-scale
Distributed Environments. In: 18th ACM International Symposium on High Performance
Distributed Compuing, pp. 137–150. ACM, New York (2009)

32. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-based Co-
allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-
guaranteed Grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS,
vol. 6253, pp. 16–34. Springer, Heidelberg (2010)

33. Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP Model Scheduling for Multi-
clusters. In: Caragiannis, I., Alexander, M., Badia, R.M., Cannataro, M., Costan, A.,
Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott, S.L., Weidendorfer, J.
(eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp. 196–206. Springer, Heidelberg
(2013)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

149

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_9

Improvement of Dependability of Complex Web Based
Systems by Service Reconfiguration

Tomasz Walkowiak and Dariusz Caban

Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-320 Wrocław, Poland
{tomasz.walkowiak,dariusz.caban}@pwr.wroc.pl

Abstract. Web based information systems are exposed to various dependability
issues during their lifetime (originating in the hardware, in the software or
stemming from security vulnerabilities). We present an approach to use
reconfiguration to circumvent these issues. The presentation is focused on the
potential threads, measuring the dependability risks, constructing of optimal re-
configuration strategies and assessing their impact on the over-all dependabili-
ty. The proposed technique involves construction of the reconfiguration graph,
assessment of the steady state probabilities of web system dependability states
and choosing the optimal strategy from among the admissible ones.

Keywords: Web based systems, dependability, security, reconfiguration graph,
optimization.

1 Introduction

Whenever a fault manifests itself in a Web based system, whether it is a hardware
failure, a software error or a security attack, the administrator is faced with the diffi-
cult problem to maintain the continuity of business services. Isolation of the affected
hardware and software is usually the first reaction (to prevent propagation of the prob-
lem to yet unaffected parts of the system). It then follows that the most important
services have to be moved from the affected hosts/servers to those that are still opera-
tional. This redeployment of services [3, 9] is further called system reconfiguration.

Reconfiguration is realized in critical time constraints, there is risk that the prob-
lem may escalate due to untimely or improper administrative decisions. To prevent
this, a reconfiguration strategy should be planned beforehand. The problem of assess-
ing the dependability consequences of such a reconfiguration strategy is addressed
hereafter.

Since the reconfiguration strategy is planned in advance, as a list of contingency
actions to be taken in case of the various foreseen issues, it is desirable to optimize it,
so the Web based system is minimally affected. A number of optimization tasks are
formulated to achieve this.

5

150 T. Walkowiak and D. Caban

2 Dependability of Web Based Systems

The most popular definition of dependability was proposed by A. Avizienis, J.C.
Laprie and B. Randell [1]: it is defined as the capability of systems to deliver service
that can justifiably be trusted. The following aspects of this definition are of particular
interest:

─ It relates dependability with the functionality of systems, i.e. with their ability to
provide the functionality in presence of faults.

─ It relates dependability with justifiable trust, not specifically probability, allowing
approaches which are not based on stochastic processes.

A closely related aspect of dependability, even though not expressed directly in the
definition, is the way that faults are defined in this approach, i.e. the introduction of
the trichotomy of fault – error – failure:

─ Fault relates to the fact that some system component may be inoperational or may
be operating incorrectly. A fault may exist in the system from the beginning of its
life cycle (design or production fault, software bugs) or it may occur during its
exploitation (natural wear, incidental stresses, hardware/software replacements or
upgrades, human errors, security breaches, etc.).

─ Error relates to the system operation. A fault may be dormant in the system for any
extend of time. When the system makes use of a faulty component during its op-
eration, then the corresponding function is not realized correctly. Then, an error is
said to occur.

─ Failure relates to the results of system operation. A failure is said to occur if the
results of an error occurrence manifest themselves in the system not producing
output or producing incorrect output.

The concept of dependability was introduced to unify the concepts of systems re-
liability and software reliability. Systems reliability was introduced to the engineering
community to explain the phenomena occurring in complex systems (as reported by
R. E. Barlow [2]). It was observed that the lifespan of a system was often much short-
er than expected on the basis of the quality of the components being used. To under-
stand this and improve the predictions, the reliability was defined as the probability of
a device performing its purpose adequately for the period of time intended under op-
erating conditions encountered. The reliability of a system is related to the reliability
of its components and its reliability structure.

The definition of dependability is very similar to the above statement, but with sig-
nificant differences. These differences in the approach address the problems encoun-
tered when trying to define the reliability as applying to computer systems, complex
fault tolerant digital circuits and, especially, to software. In all these cases the classic-
al definition, connecting reliability to the system structure, cannot be applied. The
reliability structure varies depending on the considered system functions.

Software is usually regarded as a system component that is not prone to degrade
(acquire faults during exploitation). The term “software reliability” was introduced to

 Improvement of Dependability of Complex Web Based Systems 151

capture the similarity of software to hardware operation. In case of software, the faults
do not occur during exploitation, they are dormant in the program from its develop-
ment or are introduced when patching or upgrading it. The faults are not random.
Instead, when a program is running it activates different parts of the code in a pseudo-
random fashion. When a fault is activated, the software fails to operate correctly.
Thus, even though faults are not random, the occurrence of software errors is random.

Software reliability is defined as the probability of error-free software operation for
a specified period of time in a specified environment (see [7]). Software reliability
growth models relate this probability to the number of faults dormant in the system
and the exploitation time.

Even though this definition is very similar to the definition of reliability, the under-
lying mechanisms of failure are completely different. In reliability theory a compo-
nent fault can be either masked or cause system failure when it occurs. Software
reliability introduces the concept of systems being operational, regardless faulty com-
ponents that are not masked. The problem is in the visibility of faults. In the definition
of dependability, this is dealt with by distinguishing faults, errors and failure.

Web based systems are a combination of failure prone hardware and software.
Thus, it is appropriate to use the dependability approach as opposed to systems relia-
bility or software reliability. Furthermore, the concept can also encompass security
issues, such as vulnerability exploits, malware proliferation and denial-of-service.

2.1 Faults Taxonomy

As already mentioned, when considering dependability of a Web based system, it is
necessary to analyse a very diverse set of faults. It encompasses hardware faults, er-
rors in the software, security vulnerabilities. A taxonomy based on the primary cause
of faults is feasible, but it not very useful for these considerations.

The most suitable for the proposed analysis is the classification of faults that is
based on the effect it has on the Web system. Particularly, the classification considers
the suitability of service relocation as a remedy to the fault.

It should be stressed that the occurrence of a fault may escape detection for some
time. This may be the case in all the considered classes of hardware/software faults. It
is almost a rule in case of security incidents. In all these cases the incident contain-
ment and recovery procedures can be applied only after detection. This also applies to
the proposed relocation techniques. For this reason the proposed taxonomy of faults,
as described in Fig. 1, is addressed to the detected faults only. Undetected faults can
proliferate through the system, eventually causing detected propagation faults, data
inconsistencies in the system, and in some cases corrupting some hosts.

In the considered approach, the hosts and communication channels are the basic
components of the system. Thus, all the faults are attributed to them (and not to par-
ticular hardware or software components). It should also be noted that the communi-
cation faults are usually handled at the infrastructure level (by retransmission, error
correction techniques, rerouting, etc.). They are rarely allowed to propagate to the
system view as discussed in this paper. Thus, even though they are indicated in the
taxonomy, we will not consider them as the potential events initiating relocation.

152 T. Walkowiak and D

Fig. 1. A classification

The faults can either aff
the following classes of fau

Host crash – the host cann
not produce any responses t
Performance fault – the ho
al resources, causing some
acceptable limits.
Host infection – caused b
malfunctions, exploitation
services located on the hos
vices at other nodes (servic
host may cause, it is usual
fault with potential service

The faults that affect a s
fects as:
Inaccessible service – the
requests, due to exploitation
tion dependent (location lo
effective remedy. On the ot
tion will be ineffective an
should never be applied in t
Corrupted service – the
responses due to software e
that can be simply elimina
does not need relocation, th
restart). It should be noted,
other service components,
recovery.

D. Caban

of system faults reflecting their impact on reconfiguration

fect a host or only a service running on it. We distingu
ults that affect the host:

not process services that are located on it, these in turn
to queries from the services located on other hosts.
ost can operate, but it cannot provide the full computati
services to fail or increasing their response time above

by the proliferation of software errors, effects of transi
of vulnerabilities, malware propagation. The operation

st becomes unpredictable and potentially dangerous to
ce corruption fault). Due to the potential damage that
lly isolated from the system. This is equivalent to a cr
corruption.
ingle service can be classified on the basis of their afte

e service component becomes incapable of responding
n of vulnerabilities or a DOS attack. This fault can be lo
ocked fault), in which case relocation may be a fast
ther hand, it may be service locked, in which case relo

nd potentially dangerous to the new location. Relocat
this case.
service commences to produce incorrect or inconsist

errors or vulnerabilities. Usually, this is a propagated fa
ated by restarting the affected software. This type of fa
hough relocation will be effective (since it ensures softw

though, that the effects of a corrupted service propagat
possibly locating on other hosts. These may also n

uish

n do

ion-
the

ient
n of
ser-
the

rash

eref-

g to
oca-
and

oca-
tion

tent
fault
fault
ware
e to

need

 Improvement of Dependability of Complex Web Based Systems 153

Data inconsistency – propagating errors and malware may cause more persistent
effects, by corrupting the system database. This type of faults can be very costly to
recover. Technically, though, they are also remedied by service restart from the last
valid backup point.

It should be noted that all the faults may lead to system failure if left unhandled.
Service relocation may preserve the system functionality, though in some cases it
might be an over-reaction. In case of service oriented DOS attacks, relocation is insuf-
ficient, requiring additional handling. Otherwise, it might escalate the problem by
increasing the extent of penetration.

2.2 Dependability Measures

Dependability is assessed based on the concept of “justifiable trustworthiness” [1].
This trust can be measured using probability. Thus, all the measures used in reliability
theory can be also applied to dependability. Since the Web based systems are clearly
renewable, so the standard measure of availability may be used.

The availability function A(t) is defined as the probability that the system is opera-
tional (provides correct responses) at a specific time t. In stationary conditions, most
interesting from the practical point of view, the function is time invariant, characte-
rized by a constant coefficient, denoted as A. The asymptotic property of the steady-
state availability A provides a simple formula for assessing it [2]:

 t

t

t

upA
∞→

= lim (1)

based on the system total accumulated uptime tup.
In a number of cases it is questionable to assume the probabilistic nature of faults

occurrence, especially if they are related with human actions. It is then difficult to
uphold the probabilistic interpretation of the observed ratio of uptime to the total time
of running the system. Still, the ratio (1) can be used as an independent dependability
metric.

Dependability is an integrative concept that encompasses a number of different
aspects of system operation in the presence of faults [1]:

─ availability (readiness for correct service),
─ reliability (continuity of correct service),
─ safety (absence of catastrophic consequences),
─ confidentiality (absence of unauthorized disclosure of information),
─ integrity (absence of improper system state alterations),
─ maintainability (ability to undergo repairs and modifications).

Any of the considered faults can affect all of these properties of the Web based
systems. Not surprisingly, there are many dependability metrics in use, addressing
specific subsets of these properties. This is overviewed in [5]. Many of the metrics are
of marginal interest in our considerations, since they are not directly affected by

154 T. Walkowiak and D. Caban

reconfiguration. For this reason, we will further focus on the metrics directly con-
nected with availability and reliability.

Availability coefficient does not reflect the comfort of using the services by the
end-users, especially connected with operation in the degraded state. In these situa-
tions, the system is operating at 1..L levels of degradation. The quality of service is
different at each level of degradation. For each level, a different coefficient of availa-
bility Al can be considered. This coefficient represents the steady-state probability that
the system is operating at the l-th level of degradation. It can be determined by a mod-
ified equation (1), where total uptime is replaced with accumulated time of operation
at level l.

In situations, where there is no single value for availability, it is necessary to use a
modified measure, combining the various coefficients. This measure of the overall
quality of service Q is determined as:

 
=

⋅=
L

l
ll AqQ

1

 (2)

The equation assumes that operation at each level of degradation is characterized by a
value related to its quality of service ql . The choice of this measure is not trivial;
there are various approaches in use. It can be arbitrarily attributed to each degradation
level (e.g. the degradation level can be used directly). More often, it is a measure of
system performance. The short discussion of the quality measures used in case web
based systems is presented in Section 4.1.

A commonly used, very simple and intuitive approach to dependability assessment
is based on identifying the single (and multiple) points of failure in the system. This is
in fact a metric of system resilience, i.e. its ability to deliver services after an error
occurs. We propose to use two such measures: SPF (single points of failure) and MPF
(multiple points of failure). SPF is the number of single faults that cause the system to
become inoperational; if SPF = 0, then MPF is evaluated as the smallest number of
faults that must occur for the system to fail.

2.3 Dependability State-Transition Graph

Faults occur in the system randomly, usually with a predictable distribution. Then the
system for some time operates in a degraded state or becomes inoperational in a fail-
ure state, until maintenance procedures restore it to full operability. The purpose of
stochastic analysis is to assess the dependability of the system, especially to assess its
improvement when a reconfiguration policy is implemented.

The analysis is based on a stochastic state-transition process, in which the states are
described by the vectors of operability states of all the hosts in the system. Assuming
that the faults can either have no effect on specific hosts or can cause them to become
fully unavailable, the system state is defined as the vector of the up-down states of the
hosts. The transitions between states are caused by incident occurrence and by
renewal.

 Improvement of Dependability of Complex Web Based Systems 155

The state-transition model can be analyzed using a number of approaches: as a
Marcov chain, using semi-Markov processes, using Monte Carlo simulation. The
applicability of each method depends on the assumptions that can be made regarding
faults occurrence. In case of the Marcov approach, it is necessary to assume that both
the faults and renewals occur with constant intensities (i.e. exponential distribution).
This approach is used hereafter in the presented case study. A significantly more gen-
eral approach is possible using simulation, which was investigated by us in [10, 11].

Whatever the method used for analyzing the S-T model, the results are the proba-
bilities that the system is in a specific dependability state at a time instance. This is
denoted as Ps, where s∈S are the possible states.

All the dependability states are classified into two categories: states where the
system is still operational Sup, and those where it is down Sdown. If the system is not
reconfigured and it does not have any other mechanisms of fault tolerance, then only
one of its states (all hosts being up) is in the Sup set. Reconfiguration extends the set of
up states to all those situations where there is a configuration in which the system
preserves its functionality. Then, the system availability is obtained as:

 
∈

=
ups

sPA
S

. (3)

When considering the quality of a Web based system that can operate in degraded
states, then each dependability state s has to be classified to one of L+1 levels of de-
gradation, not just as up or down. The quality coefficient qs is determined on the basis
of this classification. Then, the system quality is obtained as:

 
∈

⋅=
ups

ss PqQ
S

. (4)

3 Reconfiguration of Web Services

One of the most promising techniques to increase dependability is based on utilizing
the functional redundancy of a system. At network level this is routinely achieved by
dynamic routing and load balancing. At system level this can be improved by intro-
ducing reconfiguration of services when failures occur [6, 8]. This chapter addresses
the issues of reconfiguring Web based systems. Reconfiguration is used to improve
the dependability of these systems, invoked as a reaction to a fault occurrence. Its aim
is to recover the system functionality, fully or partially, while the consequences of the
fault occurrence still prevent normal operation.

3.1 Deployment of Services

The Web based systems provide some business service(s), useful to the end-users as a
result of interaction between communicating component services, which are transpa-
rent to the end-user. In Fig. 2, the system is represented by the interacting service

156 T. Walkowiak and D. Caban

components, which are deployed on various hosts (networked computer nodes). The
services make use of the hosts to provide the required processing capabilities, and of
the network resources to ensure visibility and data exchange.

Fig. 2. System infrastructure supporting SOA systems

Each host is characterized by its computing resources: processing power, memory
and external storage, installed software, etc. The services, deployed on a host, deter-
mine the demand for these resources. If the cumulated demand for a resource of all
the services deployed in a node exceeds the available level, then all the services will
be degraded. Similarly, the logical connections between the services determine the
demand on the communication resources at both end nodes of the connection. The
network SLAs (Service Level Agreements) determine the limits placed on the cumu-
lated communication demands in any single node or group of nodes. Thus, any
change in the placement of services onto hosts affects both the time of processing
requests by the services and the time of transmitting requests and responses. The
problem of predicting this degradation is nontrivial, a simulation based approach is
proposed in “Prediction of the performance of Web based systems” in this
monograph.

3.2 Operational Configurations

System configuration is determined by the deployment of service components onto
the system hosts. A configuration ensures system operability if the services are so
deployed that the hosts are not overloaded and the demand for communication be-
tween them does not violate the SLA limits. The set of all possible configurations that
satisfy these conditions is denoted by Ψup . This set is referred to as the set of permiss-
ible configurations. It should be noted that some deployments will not be possible due
to conflicting requirements of the services regarding the host resources, such as the

 Improvement of Dependability of Complex Web Based Systems 157

versions of installed software. The corresponding configurations will also be excluded
from the set of permissible ones.

Reconfiguration (change of system configuration) takes place when service dep-
loyment is changed. If we reconfigure the system to any configuration from the set
Ψup , then its operability will be preserved. Of course, this does not mean that the
quality of the service will not be affected. The various permissible configurations may
differ in the efficiency of generating the responses to client requests. This leads to the
degraded operation after some reconfigurations. The set Ψup is then split to the dis-
joint sets of Ψl corresponding to the various levels of degradation l∈[1..L].

The permissible and degraded-operation configurations can be found using stan-
dard combinatorial techniques and simulation. Due to the size of the problem, it is
almost never feasible to compute the full sets, though.

Fig. 3. An example of a simple reconfiguration graph (the numbers in the nodes correspond to
the arbitrary numbering of permissible configurations in Table 1)

3.3 System Reconfiguration Graph

The reconfiguration graph [4] is built to define the possible changes in the configura-
tion, that tolerate the various discussed faults. Set Ψup is at the root of the graph, since
any admissible configuration ensures system being up, if there are no failures. The
branches leaving the root correspond to the various faults affecting hosts or services.
They point at subsets of Ψup obtained by eliminating the configurations which do not
ensure system operation in presence of the specified faults, i.e. if a host is down as the
effect of the fault occurrence, then all the configurations that assume deployment of a

158 T. Walkowiak and D. Caban

service to that host are eliminated. Let’s denote the subset – obtained for each fault vi
– as Ψ|vi.

Further branches of the graph, corresponding to subsequent faults, are produced by
eliminating configurations from Ψ|vi. These are denoted as Ψ|v1v2. The procedure is
continued until the elimination produce empty sets φ that correspond to combina-

tions of failures that cannot be tolerated by any reconfiguration. This approach to the
reconfiguration graph construction ensures that all the possible configurations are
taken into account. An example of such a reconfiguration graph is presented in Fig. 3.

It should be noted that the reconfiguration graph illustrates all the possible changes
in the service deployment that will preserve the system operability.

3.4 Testbed Analysis

Let’s consider a fairly simple system to illustrate the proposed approach to dependa-
bility analysis. The system consists of 3 hosts: Server A, Server B and Server C.
There are also 3 service components: Controller, View and Model. Table 1 lists the
permissible deployments of the services onto hosts. Configuration 1 is used when the
system is fully operational.

Table 1. Permissible configurations

Id. Controller View Model
1 Server A Server B Server C
2 Server B Server B Server C
3 Server B Server C Server B
4 Server C Server B Server C
5 Server C Server C Server B
6 Server C Server C Server C
7 Server A Server A Server C
8 Server A Server C Server C
9 Server C Server A Server C

10 Server C Server C Server A
11 Server A Server A Server A
12 Server A Server B Server A
13 Server A Server A Server B
14 Server B Server A Server B
15 Server B Server B Server A

When a fault occurs, one of the hosts becomes unavailable. Then, some of the con-
figurations cannot provide service anymore. The list of permissible configurations
after any combination of faults is enumerated in Table 2. This is the basis for con-
structing the reconfiguration graph in Fig. 3.

 Improvement of Dependability of Complex Web Based Systems 159

Table 2. Admissible configurations for the given set of faults

Fault Set Configurations
v1 2,3,4,5,6
v2 6,7,8,9,10,11
v3 6,11,12,13,14,15

v1, v2 6
v3, v2 11

The state-transition graph can be directly derived from the reconfiguration graph.
All the up-states of the S-T graph are represented as nodes of the reconfiguration
graph. The fail-states are combined to a single state. The Markov chain is then de-
rived by annotating the transitions with intensities of the faults occurrence λi. Further
transitions have to be added, corresponding to the renewal/repair process being im-
plemented. Renewal can be realized independently for each fault. This is represented
by the transitions directed opposite to every fault occurrence transition, characterized
by the corresponding renewal intensity μi. An extra transition is introduced from the
fail-state to the fully operational system – this represents a global renewal policy with
intensity M . The resulting Marcov chain is represented in Fig. 4.

Fig. 4. An example of a the S-T model for reconfiguration graph from Fig. 3

160 T. Walkowiak and D. Caban

The steady state probabilities of the state transition model given in Fig. 4 can be
determined by solving the following set of equations:



























=





























φ
Ψ
Ψ
Ψ
Ψ
Ψ

ΦΨ

Λ

0

0

0

0

0

0

}{
}|{

}|{
}|{

}|{

}|{

}|{

32

21

3

2

1

P
vvP

vvP
vP

vP

vP

P

T  , (5)

1}{}|{}|{

}|{}|{}|{}|{

3221

321

=φ+Ψ+Ψ
+Ψ+Ψ+Ψ+ΦΨ

PvvPvvP

vPvPvPP
 (6)

where:















































−









+

+
−









+

+
−









+

+
−









+

+
−









+

+
−









+

+
−

=Λ

M

M

T

1313

3

21
23

3
2

13
12

2
3

21
3

1
2

31
2

2
1

32
1

321
3

21

00

0000

000

0000

0000

0000

00

λλλλ
μ

μλ
λλ

μ
μ

μλ
λλ

μ
μ

λλ
λ

μ
μ

λλ
λ

μ
μ

λλ
λ

μμμ
λ

λλ

. (7)

The equations are solved by linear programming and the steady state probabilities
are found. This is the basis for determining the system availability from equation (3).

To simplify the algebraic solution of equations (3, 5-7), the intensities of the faults
occurrence are assumed equal to λ for all the groups. Also, the local renewal
intensities are similar, denoted as μ, and global renewal policy equal to μ/2. For such
simplifications the availability is then given as:

()

54322344

432234

425751189024

182559584

μλμμλμλμλλ
λλμμλμλμμ

+++++
++++=A . (8)

Fig. 5.A presents the results of availability analysis computed from (8) for various
values of the local renewal and faults occurrence. The impact of fault rate and renewal

 Improvement of Dependability of Complex Web Based Systems 161

time is as expected for any repairable system. It is much more interesting to compare
these results with availability of a system where we choose not to relocate services.
Let us define reconfiguration availability improvement factor as a ratio of availability

change over availability of the system without reconfiguration (A):

 %100⋅−=
A

AA
r (9)

The results of reconfiguration improvement factor computed from (9) for the local
renewal and faults occurrence values the same as in the previous analysis are
presented in Fig 5.B. In the analyzed area of the mean renewal and failure time the
use of service reconfiguration improves the web system availability up to 20%. The
improvement is meaningless for very fast renewal times.

Fig. 5. System availability of a web system employing reconfiguration and B. Reconfiguration
availability improvement factor when a web system uses reconfiguration to improve
dependability.

4 Optimization of the Reconfiguration Strategy

The reconfiguration graph describes all the possible target configurations that can
assure continuity of the services after a sequence of faults occurrence. This is done by
following the graph transitions from its root, corresponding to the faults sequence.
The set of configurations, associated with the vertex thus reached, represents all the
target configurations that tolerate this faults sequence. If the set is empty, then the
faults cannot be tolerated and the system fails.

Reconfiguration strategy is constructed by choosing just one configuration from
the set in each node of the reconfiguration graph. If any of the graph nodes (except for

A) B)

162 T. Walkowiak and D. Caban

the root one) contain multiple alternate configurations, then there are different recon-
figuration strategies that can be constructed in this way.

Any one of the so obtained strategies is equivalent from the point of view of ser-
vice availability, since the equation (3) does not depend on the choice of configura-
tions in the reconfiguration graph nodes. The proposed measures of system resilience
(i.e. single points of failure SPF and multiple points of failure MPF) are also invariant
with the choice of reconfiguration strategy, since they can be directly derived by ana-
lyzing the reconfiguration graph.

Thus, choosing the optimal strategy can be either based on the proposed quality of
service measure (4) or may require additional criteria.

4.1 Reconfiguration Strategy Optimizing the Quality of Service

We consider the situation, where the optimal strategy should ensure the highest over-
all quality, i.e. the quality given by equation (4) has to be maximized over the set of
all permissible reconfiguration strategies. The choice of optimal strategy does not
change the reconfiguration graph and, what follows, the S-T graph. This means that
the state probabilities in (4) are invariant, i.e.

 
∈ Ψ∈

⋅=
up ss

k
k

s qPQ
S

}{maxmax (10)

This means that the problem of finding the optimal strategy can be reduced by
determining the configuration with the highest quality coefficient in each node of the
reconfiguration graph.

The problem can be further simplified considering that some probabilities Ps are
much smaller than the others. Usually, this corresponds to nodes of reconfiguration
graph reached after multiple independent errors (though not necessarily). The choice
of configuration in these nodes does not impact the overall quality significantly. In
these nodes it is sufficient to determine any permissible configuration, not necessarily
the best one.

This approach to determining the reconfiguration strategy has to be based on some
measure of the quality of services. This is always questionable, as there are multiple
metrics to be considered. Strategies that maximize one, usually do not perform so well
in the others. Often, the only reasonable approach is to classify the system perfor-
mance into a few categories – levels of performance degradation – and base optimiza-
tion on achieving the best average level of degradation (an approach based on
arbitrary classification based on expert knowledge).

A more formal approach may be based on the analysis of response time characte-
ristics of business services for the various configurations. See Fig. 6 for an example of
the response time characteristic. Obviously, it is a function of the demand for service
and not just a single number that could be used in equation (4). It has a distinguishing
attribute: the maximum properly handled request rate. This can be used as the
measure of service quality.

 Improvement of Dependability of Complex Web Based Systems 163

Fig. 6. Response time characteristic of a web based system configuration

4.2 Reconfiguration Strategy Minimizing Service Relocation

Optimizing the reconfiguration strategy on the basis of quality of service often does
not yield significant improvement in the overall quality. This is the case when the
faults are rare (their probabilities are small). In such situations, it may be more
important to address some other aspects connected with reconfiguration. Obviously,
the number of service components that have to be relocated may be an important
issue.

Let’s consider an example of the reconfiguration strategy shown in Fig. 7. By
comparing the configurations in the neighboring nodes of the graph (connected by a
transition), it is possible to determine the number of service components ni that have
to be relocated during reconfiguration. The number is then used to describe the cor-
responding transition. By repeating it for every transition in the graph, the marking
shown in Fig. 6 is obtained. It illustrates the numbers of relocated service components
in every situation envisioned by the strategy. Of course, the probability of reconfigu-
ration has also to be considered during optimization. Thus, the component numbers at
each transition are weighed by the probabilities of states from which they initiate. The
sum of these attributes, taken over all the graph transitions, is further called the aver-
age relocation factor. It can be used to optimize the service strategies to account for
difficulty of reconfiguration.

It should be noted that changing the configuration in a single node, affects the
weights of all the transitions reaching or leaving that node. In effect, the optimization
process cannot be limited to single nodes, but must consider the whole strategy. Any
of the well-known nonlinear optimization techniques can be applied.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Re
sp

on
se

 ti
m

e
[s

]

request rate [1/s]

164 T. Walkowiak and D. Caban

Fig. 7. An example of service relocation assessment for a relocation strategy

5 Conclusions

We demonstrated how a properly developed reconfiguration strategy can improve the
various aspects of dependability (preserving continuity of service, removing or reduc-
ing the number of single points of failure, improving over-all availability, optimizing
the quality of service). The proposed technique involves identification of the potential
faults, construction of the reconfiguration graph, assessment of the steady state proba-
bilities of web system dependability states, choosing the optimal strategy from among
the admissible ones (identified by the reconfiguration graph).

The proposed approach is illustrated in a very simple case study: a web system
consisting of just 3 services deployed to 3 hosts. The resulting reconfiguration graph
is still quite complex. In real world systems, the graph can be huge and the corres-
ponding strategies very complex. In these cases, the formulated optimization prob-
lems require application of some formal algorithms. These are addressed elsewhere in
this monograph.

Acknowledgements. The presented work was funded by the Polish National Science
Centre under grant no. N N516 475940.

References

1. Avizienis, A., Laprie, J., Randell, B.: Fundamental Concepts of Dependability. In: Proc.
3rd IEEE Information Survivability Workshop, Boston, Massachusetts, pp. 7–12 (2000)

 Improvement of Dependability of Complex Web Based Systems 165

2. Barlow, R.E.: Engineering Reliability. ASA-SIAM Series on Statistics and Applied Proba-
bility (1998)

3. Caban, D., Walkowiak, T.: Dependability oriented reconfiguration of SOA systems. In:
Grzech, A. (ed.) Information Systems Architecture and Technology: Networks and Net-
works’ Services, pp. 15–25. Oficyna Wydawnicza Politechniki Wrocławskiej, Wroclaw
(2010)

4. Caban, D., Zamojski, W.: Dependability analysis of information systems with hierarchical
reconfiguration of services. In: Second International Conference on Emerging Security In-
formation, Systems and Technologies, SECURWARE, pp. 350–355. IEEE Press (2008)

5. Eusgeld, I., Freiling, F.C., Reussner, R. (eds.): Dependability Metrics. LNCS, vol. 4909.
Springer, Heidelberg (2008)

6. Krekora, P., Caban, D.: Dependability analysis of reconfigurable information systems. In:
2nd International Conference on Dependability of Computer Systems, DepCoS-
RELCOMEX, pp. 177–184. IEEE Press (2007)

7. Musa, J.D.: Software Reliability Engineering. More Reliable Software, Faster Develop-
ment and Testing. McGraw-Hill (1999)

8. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N.: Dependability in the Web Services
Architecture. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependa-
ble Systems. LNCS, vol. 2677, pp. 90–109. Springer, Heidelberg (2003)

9. Pérez, P., Bruyère, B.: DESEREC: Dependability and Security by Enhanced Reconfigura-
bility. European CIIP Newsletter 3(1) (2007)

10. Walkowiak, T.: Information systems performance analysis using task-level simulator. In:
DepCoS – RELCOMEX, pp. 218–225. IEEE Computer Society Press (2009)

11. Walkowiak, T., Michalska, K.: Functional based reliability analysis of Web based
information systems. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walko-
wiak, T. (eds.) Dependable Computer Systems. AISC, vol. 97, pp. 257–269. Springer,
Heidelberg (2011)

© Springer International Publishing Switzerland 201
W. Zamojski and J. Sugier (eds.), Dependability Problems of Complex Information Systems,

167

Advances in Intelligent Systems and Computing 307, DOI: 10.1007/978-3-319-08964-5_10

Functional-Reliability Model of a Services System
with Path Reconfiguration Ability

Wojciech Zamojski and Jarosław Sugier

Wrocław University of Technology, Wrocław, Poland
Institute of Computer Engineering, Control and Robotics

{wojciech.zamojski,jaroslaw.sugier}@pwr.wroc.pl

Abstract. In this work we analyse operation of a services network which is
built from processing nodes serving dedicated services and communication
links transmitting required information resources. For task executions specific
subsets of network resources – so called communication paths – are allocated.
Execution of a task in communication paths is disrupted by occurring faults
which are eliminated by renewal procedures leading to delays in task comple-
tion time or even to task cancellation. One of the method for overcoming the
negative effects of the faults is to apply a path reconfiguration mechanism i.e.
a redirection of the communication traffic which bypasses the damaged link.
We propose a functional-reliability dependability model of the services network
which takes into account possible path reconfigurations. We also define a net-
work dependability parameter which evaluates network efficiency by finding
the degree of task losses among all the jobs being executed in the network.

Keywords: dependability, services network, dependability model of a services
network, communication path, reconfiguration, path reconfiguration.

1 Introduction

In this paper we investigate networks of services which are constructed from process-
ing nodes (providing dedicated services) and communication links (ensuring proper
transmission of data related to both tasks being handled and operation the of network
itself). Realized tasks engage particular network resources and for any given task
there can be several different hardware, software or functional configurations which
accomplish it with different efficiency (throughput) and along different time sched-
ules [11, 13]. The last observation is particularly significant when secure and timely
completion of the tasks (services) is required in a network built from unreliable (falli-
ble) components (nodes and communication links) and operating in not always
friendly environment. Such an environment can often be a source of threats and
attacks of random or deterministic (purposeful) nature [1].

A good example of a services network can be a computer network with an architec-
ture particularly well suited for execution of user’s (client’s) tasks based on dynami-
cally allocated functionalities – so called Service-Oriented Architecture, SOA. In

5

168 W. Zamojski and J. Sugier

these kinds of systems it is usually possible to substitute particular functionalities with
other equivalent ones implemented with different hardware / software configurations
or completed in different time [15, 13, 16].

The resource allocation process is inherently dynamic and is determined by the
events of tasks being submitted, resources being released, occurring faults, activations
of system recovery or failover procedures, etc. The issues analysed in this work be-
long to the topics of advanced contemporary information technologies like the above
mentioned SOA (Service Oriented Architecture), SOM (Service Oriented Manage-
ment) or SCA (Service Component Architecture) which deal with problems of service
/ resource allocation and selection of exploitation strategy which would be optimal for
user demands like it is, for example, in complex e-business systems [15, 16, 7].

2 Services Networks

A services network considered in this paper is interpreted as a server – client system
which realizes user (client) tasks in a collection (farm) of servers and hosts.

To some degree there is an analogy between the model of communication paths
which is introduced below and TCP/IP computer networks, mobile wireless networks
or cloud computing systems.

2.1 Communication Structure of the Network

To accomplish a requested task a communication path is established which comprises
necessary network resources. The path consists of the transmitter node, a set of inter-
mediate nodes, the receiver node and required communication links. It is assumed that
functionalities of particular nodes are activated dynamically. In many practical cases
functionality of any intermediate node is limited to setting up a communication path
understood as pointing to the nearest node which is active and operational i.e. it can
confirm correct reception of transmitted messages [7].

In order to precisely investigate the functional-dependability network model the
following concepts are hereby introduced [12, 13]:

• The transmitter and the receiver nodes are considered to be neighbour nodes if it is
possible to correctly transmit information (messages, packets) between them.

• The receiver node is the n-th order neighbour of the transmitter node if active and
correct operation of n – 1 intermediate nodes and n links is required for proper
transmission between them.

• The distance between any two nodes of the network is defined as the overall time
required for transmission between them.

The transmission time covers overall time of information transfer over the transmis-
sion medium, i.e. the time needed for establishing (setting up) the communication
path between the sender and the receiver and the actual time of the correct transmis-
sion itself. The higher the order of node neighbourhood, the longer the distance
between them, as understood in the above definition.

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 169

2.2 The Tasks

The process of completing a task includes:

• Task feasibility analysis, i.e. testing whether the network has required services at
its disposal. As a result of this phase the task is accepted for execution or rejected
(refused).

• Preparation of task execution choreography, i.e. organization of a chain of services
which also includes allocation of necessary resources from informational and tech-
nical infrastructures. Allocation of services and resources can be static or dynamic
– the latter one is implemented, among others, with balancing the load placed upon
the nodes (servers) and communication links.

• The proper completion of the task, i.e. executing in the request – respond mode
consecutive elements of the service chain where each particular element of the
chain triggers sending data packets over communication links to service providers.
In case of communication disruptions the network tries to repeat particular trans-
missions or even attempts to reconfigure the communication paths.

It is assumed that the task completion time is the sum of individual service times and
transmission times which occur in the communication paths;

 () +=
services

i
comm

i
serv

i
T

)()()(τττ (1)

where
)(i

servτ - execution time for the i-th service,
)(i

commτ - communication procedures time related to execution of the i-th service.

In a real environment execution times for both services and communication proce-
dures depend on numerous factors, including faults and disruptions, and are random.
In practice these times are either estimated with expected values (possibly medians)
or intervals of their variation are evaluated.

3 Dependability

Dependability is a property of a system (a network, an object) which integrates such
attributes as perfomability, reliability, readiness, security, survivability and mainte-
nance – all related to correct and in-time execution of the tasks [1, 14].

Dependability analysis takes into account, among others:

• threats, faults and errors which occur in technical structures and management sys-
tems;

• functional and performance characteristics;
• actions which reduce consequences of occurred or foreseen threats, faults or errors.

170 W. Zamojski and J. Sugier

3.1 Errors and Faults

There are many causes of faults in information systems and among them hardware
failures are now becoming more and more infrequent and insignificant. Today the
main source of faults in computer systems are errors which are brought into system
operation by software and by people (administrators, operators, users). The nature of
these faults is also changing; “classic permanent” failures calling for a repair (techni-
cal renewal) are becoming rare while transient faults (misrepresentations or errors) are
becoming frequent. Although malfunctions (e.g. transmission faults) or errors do not
demand repairs, they can cause significant time losses as they require reconstruction
of the interrupted processing procedures, i.e. the informational renewal [11, 9].

Fault of a communication path is defined as a random event of breaking
a communication link between a pair of neighbour nodes. A direct cause for such
a fault can be an event from the following categories:

• F1 – a set of physical failures of the links,
• F2 – a set of node failures (terminal and/or intermediate ones),
• F3 – a set of events related to overloading the communication paths with excessive

number of transmitted messages which leads to exceeding the limits of service
completion time (queue problems) and rejecting the subsequent packets (mes-
sages).

3.2 Renewals

Renewal of a communication path is understood as a restoration of its functional-
reliability parameters by;

• r1 – removing the physical failure of the link (repair) – r1H and re-establishing the
communication path (restoring the original functional properties of the originally
established path) – r1S,

• r2 – removing the physical failure of a node (repair) and re-establishing the com-
munication path (restoring the functional properties)

• r3 – reconfiguration of the communication path understood as redefinition of node
neighbourhood and redirection of the traffic to the “nearest” node.

3.3 Strategies for Restoration of Communication Paths

The following strategies for restoration of communication paths are defined.

1. Repair or reconfiguration of a physically damaged link
As a rule, a repair is a prolonged operation and its completion time significantly sur-
passes average task completion time in the network (THr ττ >>1). In networks with

built-in path reconfiguration mechanisms a by-pass link is created for the time of
restoration. Cost of establishing a by-pass link (of usually smaller throughput) is

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 171

evaluated from the time required for its arrangement. In this case the restoration time
meets the conditions

 ())(
1

)(
1

)(
1

)()()()(1 j
Hr

j
Sr

j
Hr

i
REN

j
reN

jj thenreNandFfif τττττ ≅+≤≤∃∈ (2)

where
)(jreN - path reconfiguration triggered by the j-th fault,

)(j
RENτ - renewal time,

)(j
reNτ - time of path restoration,

)(
1
j
Hrτ - time of technical renewal (repair) of the link,
)(

1
j
Srτ - time of functional restoration of the path (informational renewal).

2. Repair or reconfiguration of a physically damaged node
Like it was in the case of a link damage, a node damage is eliminated by a repair
(r2H) or a reconfiguration which takes)(j

reNτ time, i.e.

 ())(
2

)(
2

)(
2

)()()()(2 j
Hr

j
Sr

j
Hr

j
REN

j
reN

jj thenreNandFfif τττττ ≅+≤≤∃∈ (3)

where
)(

2
j
Hrτ - node renewal (repair) time,
)(

2
j
Srτ - time of functional recovery of the path.

3. Elimination or reduction of paths overloading
Overloading of a communication path comes as a consequence of throughput of the
nodes or links being too low compared to the number of messages sent and it can lead
to accumulation of the messages in node buffers. Pending packets can be sent farther
with different, “substitute”, links (provided that the network has appropriate recon-
figuration abilities) or they can be eliminated from transmission if the packet waiting
time exceeds permissible waiting time (task queuing). Elimination of the overloads –
the bottlenecks – is a procedure which includes setting up a substitute (of worse effi-
ciency) path and accomplishing the transmission itself. In many cases completion
time for these operations can be comparable to the average task execution time
(T

j
Sr ττ ≈)(

3) whereas the cost analysis should consider overall reduction in network

performance resulting from redirection of the flow to the substitute paths (which are
already loaded with other assigned tasks) [2, 10].

3.4 Measures of Network Dependability

As a measure of network dependability we can take an effectiveness factor defined as

a ratio of actually executed tasks Trealn to the potential performability [11, 12,1] of

172 W. Zamojski and J. Sugier

the network Tn which represents a number of tasks completed in conditions of its

ideal reliability and maximal productivity

 







−≈=

T

T

n

n
lost

Treal

Tnom

T

Treal
T 1

τ
τ

η (4)

where

T – length of analysed time horizon of network operation,

Tnomτ – nominal time of task completion,

Trealτ – actual time of task completion,

lostT – time spent (lost) on recovery after failures and their repercussions.

The number of tasks accomplished in considered time horizon [0, T] and comple-
tion times of particular tasks depend on functional and performance properties of the
network, faults disrupting its operation and organization of processes for renewal of
its hardware and informational resources.

4 Impact of Communication Links Reconfigurability on
Network Dependability

4.1 Introduction

In the forthcoming analysis we will consider a network with N services implemented
in dedicated nodes. For simplicity it is assumed that the services assigned to the i-th

specific task are numbered from 1 to)(iN (NN i ≤)() and are carried out sequentially

according to this numbering. The task is initiated in the first node and finished in the

node)(iN . Implementation of the task require transmissions which incur packet trans-

fer times and some time used for setup of the communication path.
In many cases, it is assumed that during the implementation of the i-th task there

will be not more than one physical damage of the connection between two neighbour-
ing (j, j+1) nodes. From the commonly accepted principles of the reliability theory

probability of such an event is approximately equal to { })(1
1,

)(
1, ,Pr i

Tjj
i

Tjj tf τλτ ++ ≅≤ .

Link repair time usually by far exceeds the average execution time of network tasks.
If ability to reconfigure communication paths is built-in into the network then for the
time of link renewal a substitute connection is established which bypasses the
damaged one under repair (Figure 1). The cost of establishing a substitute path/link,
usually with lower bandwidth, is evaluated from amount of time spent on this
operation.

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 173

4.2 Reconfiguration Costs

Let’s consider a communication path from the transmitting node S to the receiver R
(Figure 1). Detection of a damaged link between nodes i and j starts the path
reconfiguration procedure for this link. Probably the most profitable network recon-
figuration will be the one using the first order neighbour node, i.e.

() () jiireNji
b

→+→=→ 1:1 (cf. Figure 1). Other possible reconfigurations, for

example () () () jiiireN →+→+→= 21:2 , involve a larger number of intermediate

links and nodes, and thus will be more expensive (longer delivery time).
Estimation of the value of the network tasks loss factor (4) in the interval of time T

can be carried out on the basis of the expected values and / or the lower and upper
limits of variation of)(i

lostT as well as)(i
Trealτ .

Fig. 1. Fragment of a network with a broken link i → j

4.2.1 Time Lost lostT

It is assumed that the network executes a stream of i-th tasks with a total duration

time =
i

i
T

iT)()(τ and ()()()()(i
Tnom

i
Treal

ii MTBFT ττ ≥>>>>), and during this time)(iF

faults of communication links/paths occur that are recovered (recovery time)(i
RENτ). In

the absence of path reconfiguration, accepting an assumption of failures independ-
ence, the time lost in use of the communication path corresponds to a total time of
repairing the damaged resource:

 (){ } { })()()()()()(**;Pr*;Pr
)(

i
REN

l

f

i
Tlost

ili
Tlost TfreNTTfT

l

τ −≈ (5)

where

(){ })()()(;Pr i
Tlost

il TTf − - probability of the l-th failure occurring in actual time of task

execution,

{ })(;Pr lfreN - probability of the l-th fault being unresolvable through path

reconfiguration.

S

R

i+4

i+2

i+3

i+1

i

j broken

174 W. Zamojski and J. Sugier

Calculation of the lost time on the basis of equation (5) is “difficult in computa-
tional practice” so it is proposed to simplify the problem and to use estimates of the
expected values and / or limits of variation ranges.

We will use notation []...TE to represent the expected value operator applied to the

interval [0, T]. For example, if it is assumed that distribution of the lifetime of a path
with N resources (reliability serial configuration) is described by exponential distribu-
tion with failure rate commλ than the following estimation of lost time is possible

 [] RENcommlostTRENcomm TNTET τλτλ ≤≤≤0 (6)

It is easy to see that both (the upper and the lower) estimated limits of the time lost
are too pessimistic because they do not take into account the basic observation that
during the renewal process some functionalities of the system may be “switched off”
and therefore they are not subject to damage. Thus, ()lostTT − instead of T should be

taken into account. The bottom (left-hand) estimation of the time lost is closer to real-
ity because the actual MTBF times of hardware (servers and communication links)
are large enough for the probability of more than one being damaged during such
a long time period (one or two years of use) becoming negligible. In our opinion
given estimation of the upper time lost variation limit is too pessimistic (the worst
case), especially because it is made against additional assumptions about sequential
delivery of services.

4.2.2 Duration of the Tasks
)(i

Trealτ

The nominal (without disruptions brought by network failures) execution time of
a task using the functionalities available in the network is defined by the relation (1).
Assuming that execution times of services and communication times shall be the
same we get

)()()()(i
comm

i
commserv

i
serv

i
T NN τττ += (7)

A damage of the communication link starts (concurrently to the repair/renewal proc-
ess) a reconfiguration process of the communication path which includes 1) determin-
ing necessity of a new path - an additional load on the processor operating the service,
2) “extension” of the transmission path through additional intermediate links and
nodes. If the issue of network bandwidth changes is ignored, we obtain

 { } 





 +++≈)(

)()()()(2Pr ireN

i
commserv

ii
T

i
Treal reN τττττ (8)

where

{ })(Pr ireN - probability of reconfiguration,

)(ireN
τ - reconfiguration time.

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 175

Path reconfigurations are accomplished based on available and efficient resources (the
connecting links and the nodes). The lower estimation of the probability of successful
reconfiguration corresponds to the condition when a service is transferred to one of
unused resources treated as cold reserve, and the upper estimation – to the situation
when all the remaining nodes and links get involved in this operation. Our further
discussion we will be limited to the networks with reconfiguration groups of K paths
in the form link – server – link which in the reliability theory is modelled as a system
with N(i) serially connected elements with a moving loaded reserve of cardinality K.
[12, 5].

The above estimations of the task duration time (7), the probability of a successful
reconfiguration of the path (8) and the lost time (5) are modified depending on a par-
ticular strategy of reconfiguration implemented in the network.

4.2.3 Effectiveness Factor of a Network with Reconfiguration
of Communication Paths

In a case of a network with reconfigured communications paths the reconfiguration
effectiveness factor (4) is modified to the form of

 









−≈=

T

reNT

reNn

reNn
reN

ii
lost

i
Treal

i
Tnom

i
Tnom

ii
Trealii

T

)(
1

)(

)(
)(

)()(

)(

)(

)(

)()(
)()(

τ
τ

η (9)

where

N(i) – resources involving in realization of the i-th task,

reN(i) – used reconfiguration strategy.

4.3 Reconfiguration According to the Principle of the First-Order
Neighbourhood

4.3.1 The reN=1 Reconfiguration
It is assumed that the network is built of N resources CS NNN += where SN -

a number of servers (nodes) of the network and CN - a number of communication

links. Realization of the i-th task is based on)()()(i
C

i
S

i NNN += resources (NN i ≤)()

which create a serial reliability configuration. All the servers and all the communica-
tion links have the same functional and reliability properties but the number of used
processors is larger by one than the number of connecting links. The first-order

neighbourhood reconfiguration strategy (1)(=ireN) is used which is based on free

resources i.e. the ones not involved in realization of the task process.

176 W. Zamojski and J. Sugier

Fig. 2. Reliability schema of the i-th task functional configurations with a reconfiguration
group implementing strategy 1)(=ireN

Fig. 3. Functional schema of the i-th task realization; a) no faults, b) a fault and
a reconfiguration with strategy 1)(=ireN

R

reconfiguration
groups

S

NS
 (i) servers

N
C

 (i)
 links

Nominal time of i-th task

a)

processing communication

Real time of i-th task with reN=1

b)

fault

switch to reconfiguration group

1 3

4

4

2

5

44

4 5 6 7

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 177

If there are no faults in functional configuration during the period of i-th task

execution () 0)()()(=∪= i
C

i
S

i NNNF then the task completion time is equal to the

nominal duration time of a task (1) and it is estimated as comm
i

Cserv
i

S
i

Tnom NN τττ)()()(+≈ .

On the other hand, if there is one functional configuration fault

() 1)()()(=∪= i
C

i
S

i NNNF , then the actual task completion time in the network with

reconfiguration according to the principle of first-order neighbourhood (reN(i) = 1) is
associated with involvement of one additional server node and two communication
links and the time of task realization may be generally estimated as a reconfiguration
procedure (see Figure 3);

() (){ }()
{ } 






 +++=+

++=≈=

)(21Pr

0Pr1

)()(

)()()()()(

ireNcommserv
i

Tnom
i

comm
i

Cserv
i

S
iii

Treal

reN

NNNFreN

ττττ

τττ
 (10)

where

(){ }0Pr)(=iNF - probability of correct execution of the i-th task with resources of

the basic functional configuration (without consuming any resources of the reconfigu-
ration group),

{ }1Pr)(=ireN - probability of proper completion of the task with successful appli-

cation of the resources from the reconfiguration group.

It is assumed that, for increasing the probability of successful completion of the
i-th task, a reconfiguration group of cardinality K has been created which operates
according to the principle of first-order neighbourhood (reN(i) = 1). Cardinality of a
such reconfiguration group significantly affects the actual task execution time – see
Table 1.

4.3.2 Network Cases
Let’s denote probability of correct operation of the server as rS and of the communica-
tion link as rC. It is also assumed that detection of a damaged communication path
starts a network renewal process which comprises both the reconfiguration process
and the repair processes for the failed resources.

Case 1
Probability of operation of the network in this case equals probability of successful
completion of the task in functional configuration N(i) with serial reliability structure,
i.e.

 () () ()ii
C

i
S

K

CS
N

C
N

S
i

Case
i rrrrPNF 2)(

1
)(

)()(

0 == (11)

and the time network remains in this case corresponds to the nominal task execution
time

178 W. Zamojski and J. Sugier

 comm
i

Cserv
i

S
i

TnomCase NN ττττ)()()(
1 +=≈ (12)

Table 1. Considered cases of network reconfiguration

Case Events Description

1 () () 00)(=∩= RECFNF i
Correct execution of the task with resources
of the functional configuration N(i) and with
fully operational reconfiguration group

2 F(N(i)) = 1 ∩ F(REC) = 0

Failure of one of the resources from the
functional configuration N(i) and successful
reconfiguration of the network with pre-
sumed correct operation of all resources
from the reconfiguration group;
reconfiguration time







 ++)(2 ireNcommserv τττ

3
F(N(i)) = 1 ∩ F(REC) = k;
1 ≤ k < K

Failure of one of the resources from the
functional configuration N(i) and of k (1 ≤ k <
K) paths in the reconfiguration group;
reconfiguration time is estimated as

())(12 ireNcommserv kk τττ +−+

4 F(N(i)) = 1 ∩ F(REC) = K

Failure of one of the resources from the
functional configuration N(i) and of all K
paths in the reconfiguration group, i.e. the i-
th task cannot be completed and network
renewal (which takes)(i

RENτ time) is neces-
sary

Case 2
Probability that one of the resources from the functional configuration N(i) would fail
and all K reconfiguration groups would operate correctly is estimated as

() ()()(

() ()() ()() ()ii
C

i
S

K

CSC
N

C
N

S
i

C
i

Case

iCase

rrrrrNP

RECFNFf

21)()(
2

)(2

1

01

−=

=∩=∈

−
 (13)

while the task execution time is increased by the reconfiguration time

)()(

)()()(
2

)(

)(2)1(

i

reNcommserv
i

Tnom

reNcommservcomm
i

Cserv
i

S
i

Case

i

iNN

ττττ

ττττττ

+++≈

≈+++−+≈
 (14)

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 179

Case 3
Functional configuration of the i-th task is equipped with a reconfiguration group
(of cardinality K) which implements the principle of first-order neighbourhood (reN(i)
= 1). Probability of correct task execution which takes into account possible k
reconfigurations, with assumed independence between failures of resources in the
reconfiguration group (bold assumption!), can be estimated by the sum of probabili-
ties of correct operation of k (1 ≤ k ≤ K) paths

()() () ()()() () 







 −−−≈

≈=





=

−−

=

K

k

k

CS

kK

CSC
N

C
N

S
i

C

K

k
kCaseCase

rrrrkKrrrN

PP

i
CS

1

221)(

1
,33

11
)(

 (15)

and the task execution time

 ()
=







 +−++≈

K

k

i

reNcommserv
i

kCase
i

Tnom
i

Case ikkP
1

)()(
,3

)()(
3)(12 τττττ (16)

Case 4
Because there has been at least one resource failure in the functional configuration of
the i-th task and all elements of the reconfiguration group are faulty, execution of this
task will be suspended for the time of network renewal i.e. for)(i

RENτ . In real-world

conditions renewal processes for particular resources in the functional configuration
and in the reconfiguration group depend not only on the number of “service techni-
cians” and on adopted renewal strategies but also on the relation between time to
failure and repair times of individual resources. Some assessment of the lower limit of
the network renewal time can be formulated after adopting minimal values of
resource repair times;

 () () ()[]KRECTrRECTrNTr ii
REN ===≥ ,,1,1min)()(τ (17)

where Tr(…) denotes renewal time of a failed resource.
Equation (16) is valid with the assumptions that every renewal starts at the time of
failure detection, there is a sufficient number of independent “service technicians”
and the cumulative renewal time is much shorter than the average time between fail-
ures (so called fast recovery). The last condition is entirely reasonable in the case of
contemporary computer equipment which usually suffers from single failures over the
period of two or three years of continuous operation [5, 9, 14].

4.3.3 Number of Network Renewals
Over the analysed exploitation period T the network carries out tasks with cumulative
execution time T(i). By assumption, the time devoted to realization of the reconfigura-
tion procedures is included in the task execution time;

)()()(i
REN

i
T

i ELT τ+=Τ (18)

180 W. Zamojski and J. Sugier

where
)(i

TL - number of network renewals which result from inability of reconfiguration,
)(i

RENEτ - expected value of renewal time of i-th functional configuration.

Fig. 4. Reconfiguration and renewal schema of the i-th task functional configuration supported
by the reconfiguration group

With an assumption that the i-th functional configuration engage N(i) network re-
sources and that the reconfiguration group implements the principle of first-order
neighbourhood, the network renewal takes place with every transition of the system
into Case 4, i.e.

)(
3

1

)(
4

)()()()(i
REN

m

i
Tlost

i
mCase

i
mCase

i
lost

i
T ELTPTT ττ

=

+=+Τ= (19)

or also

)(
3

1

)(
4

)()()()(i
REN

m

i
TCase

i
mCase

i
TmCase

i
lost

i
T ELLTT ττ

=

+=+Τ= (20)

Τr(N(i)=1)

F(N(i))=1

F(REC)=

τreN
F(REC)=1

τ
reN

Τr(REC=1)

F(REC)=K

no reconfiguration
network renewal

Τr(REC=K)

•••

Case 1 Case 2 ••• Case 4

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 181

where
)(i

TmCaseL - number of state transitions into Case m of the network operation within the

analysed exploitation period T.
If the i-th functional configuration is considered as a system with as alternative re-

newal process [6, 5] then the expected number of renewals (understood as returns
from Case 4 – see Figure 4) can be estimated as

 ()
() ()()[]TMTM

M

M
L

i
REN

i
Case

i
REN

i
Case

i
REN

i
Case

i
REN

i
CaseiREN

TCase

)()(
4

)()(
4

2)()(
4

)()(
4)(

4

exp1*

*

+Λ−++Λ+−

+Λ
Λ

≈
 (21)

whereas the expected number of network failures understood as the sum of state tran-
sitions into Case 4 as

 ()
()()() ()[]TMMTM

M
L

i
REN

i
Case

i
REN

i
REN

i
Case

i
Case

i
REN

i
Case

i
CaseCasef

T

i

)()(
4

)()()(
4

)(
4

2)()(
4

)(
4)4(

exp1*

*
)(

+Λ++Λ−−Λ

+Λ
Λ

≈
 (22)

If we assume a long exploitation period T >> MTBFCase 4 >>)(
)(

i
REN

REN

T

i

L τ then the

number of renewals is estimated as

 () ()[]TM
M

M
L i

REN
i
Casei

REN
i
Case

i
REN

i
CaseiREN

Tcase
)()(

42)()(
4

)()(
4)(

4 1 +Λ+−
+Λ

Λ
≈ (23)

or even further approximation is allowable
() T

M

M
L

i
REN

i
Case

i
REN

i
CaseiREN

TCase)()(
4

)()(
4)(

4
+Λ

Λ
≈ , whereby the

difference between the expected numbers of failures and renewals over the period
[0, T] is

 ()()()TM
M

LL i
REN

i
Casei

REN
i
Case

i
CaseiREN

TCase
Casef

T

i)()(
4)()(

4

)(
4)(

4
)4(exp1

)(

+Λ−−
+Λ

Λ
≈− (24)

and it asymptotically approaches the value of)()(
4

)(
4

i
REN

i
Case

i
Case

M+Λ
Λ

.

4.3.4 Estimation of Renewal Parameters
According to the statements made about uniformity of the resources and availability

of the “service technicians” it is assumed that)(
)(1

i
REN

i
RENM τ≈ wherein)(i

RENτ can be

estimated as the minimal value of resource renewal time (17).
Finding intensity of state transitions into Case 4 is an unrealistic task in case of

generically formulated prepositions about the network because it constitutes a

182 W. Zamojski and J. Sugier

renewable system with a moving reserve and, as it is known, transition intensities
(failures, renewals) in such systems are functions of time. For the needs of an engi-
neering approximation one can assume

 ()() ()()CS
iii

CaseCS
i KNK λλλλ 221)()()(

4
)(++≤Λ≤++ (25)

where the left-hand limit corresponds to a situation when there is one failure of an
element in the basic functional configuration and the failures of all elements in the
reconfiguration group, and the right-hand one allows a failure of any one element in
the functional configuration and in the reconfiguration group (reliability serial
structure).

()()

()
() ()()

() T
KN

KN
LLT

K

K
iii

REN

CS
ii

Casef
T

REN
TCaseii

REN

CS
i

i

1

2

11

21
)()()(

)()(
4

4)()(

)(
)(

++
++

≤≈≤
++

++
τ

λλ
τ

λλ
 (26)

For simplicity it was assumed that the average intensity of state transitions into
Case 4 corresponds to

 () 









+

+
+≈Λ)(

)(
)(

4 2

1
2 i

i

CS
i
Case K

N
λλ (27)

and

 ()
()

()
T

K
N

K
N

LL
i

i

CS
i

REN

CS
i

i

Casef
T

REN
TCase

i

1
2

1
2

2
2

1

)(
)(

)(

)(
)(

4
4

)(

+









+

+
+

+









+

+

≈=

λλτ

λλ
 (28)

4.3.5 Reconfiguration Effectiveness Factor
For the nearest neighbourhood principle the reconfiguration effectiveness factor de-
fined in (4) becomes

 








 =
−

=
≈=

T

reNT

reN
reN

ii
lost

i
Treal

i
Tnomi

T

)1(
1

)1(
)1(

)()(

)(

)(
)(

τ
τ

η (29)

where
)(i

Tnomτ - the average nominal execution time for the i-th task evaluated as (12),

())(
4

)()(
)(

1 i
REN

REN

TCase
ii

lost

i

LreNT τ≈= - cumulative lost time of the i-th functional configura-

tion,

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 183

() 
=

≈==
3

1

)()()()()(1
m

i
mCase

i
mCase

i
Treal

ii
Treal PreN τττ - the average actual execution time of the

i-th task estimated in the analyses of Case 1, Case 2, Case 3 and Case 4.
Probabilities)(i

mCaseP and times)(i
mCaseτ are given by equations (11), (13), (15) and (12),

(14), (16).
Value of the reconfiguration effectiveness factor can be calculated using the above

proposed expected values for transition intensities between Case states (27) and (28)
or renewal times of the i-th functional configuration (17). Also, one can use the vari-
ability intervals proposed in (25) and (26).

4.4 Estimating Reconfiguration Effectiveness Factor: An Example

In this example we will consider a network of N = NS + NC resources. For execution
of a i-th task a functional configuration N(i) is established which engages NS

(i) servers
and NC

(i) communication links.
Task execution time is the sum of times taken by service completions in particular

servers and by communications between the servers (1). From another point of analy-
sis, task execution time comes as an expenditure incurred by data processing and
communication activities in some defined functional configuration. It is assumed that
these times are small (they are comparable to service completion times in distributed

computer networks) and that transmission times (Cτ) are larger than processing times

(Sτ) like, for example, 0.004 vs. 0.001.
It is furthermore assumed that reliability characteristics of the network technical

infrastructure are expressed by fault intensities Sλ and Cλ , and in the considered
example fault intensity of the communication links is larger than the same intensity of
the servers: 0.005 vs. 0.001, respectively. When a network fault arises, a renewal
mechanism is started and, in order to minimize losses incurred by the renewal, a re-
configuration group of cardinality K = 3 and implementing the first-order neighbour-
hood principle (reN(i) = 1) is activated. The three introduced reserve paths can replace
three faulty communication links in the defined functional configuration. Resources
of the reconfiguration group are also faulty (the paths are deactivated for the time of
renewal) and in situation when there is no reconfiguration path available for a broken

link a complete network renewal occurs which takes)(i
RENτ time, e.g. 2h. The cost of

network reconfiguration corresponds to the time necessary for this operation and it is

estimated to be a fraction of the network renewal time)()()(i
REN

i
reN

i
REC km ττ = , where m =

1, 2, … and kreN defines complexity of the reconfiguration process, e.g. 0.1.
For a long exploitation time T = 10 000 an attempt was made to estimate an impact

which a reconfiguration group has on efficiency of a network which executes tasks
involving NS

(i) services and NC
(i) communications. Figures 5a and 6 show a relation-

ship between the effectiveness factor and complexity of the executed tasks for differ-
ent values of m. Figures 5b and 6b present how time losses incurred by renewals and
reconfigurations depend on complexity (more precisely: cardinality) of functional
configuration.

184 W. Zamojski and J. Sugier

Fig. 5. Effectiveness factor (a) and lost time (b) computed for Cτ = 0.004, Cλ = 0.005, Sτ =

0.001, Sλ = 0.001,)(i
RENτ =2, kreN = 0.1, m = 1…5

The computations were based on an average number of transitions into Case 4
which was estimated with equation (28) and, therefore, these are initial engineering
assessments only. Much more precise results could be obtained with approximations
based on system renewal theory; estimates (21), (22) or even (23).

0 20 40 60 80 100 120
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nodes

E
ff

ic
ie

nc
y

Eff (N)

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

Nodes

Lo
st

 T
im

e

LT(N)

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 185

Fig. 6. Effectiveness factor (a) and lost time (b) computed for Cτ = 0.004, Cλ = 0.005,

Sτ = 0.001, Sλ = 0.001,)(i
RENτ = 5, kreN = 0.2, m = 1…5

5 Conclusions

The functional-reliability model for services networks with reconfiguration of commu-
nication links presented in this work is a first step only and needs further development.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nodes

E
ff

ic
ie

nc
y

Eff (N)

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Nodes

Lo
st

 T
im

e

LT(N)

186 W. Zamojski and J. Sugier

Possible extensions should be first of all aimed at limitations brought by assumptions
about sequential nature of service execution. Also, parallel realization of transport
services in a communication link used by more than one task should be taken into ac-
count. Another direction of the research would be how the limited throughput of the
communication links leads to deadlock conditions (identification of communication
bottle-necks).

The proposed network reconfiguration model calls for extensions which would
incorporate higher orders of node neighbourhood, e.g. reN(i)=2, 3, etc., and would
indicate their impact on estimated dependability of the services network.

Particular attention needs to be devoted to computational methods which would
enable at least an engineering evaluation of selected dependability parameters of
a network represented according to the proposed methodology of functional-reliability
analysis.

Acknowledgements. This work was prepared as a part of the Project No.
N516475940 financed by the Polish National Centre for Research and Development.

References

1. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental Concepts of Dependability. UCLA-
CSD Report no. 010028 (2000)

2. Caban, D., Walkowiak, T.: Improving dependability of complex information systems by
fast service relocation. In: Ali, A.-D. (ed.) W: The 5th International Conference on Infor-
mation Technology, ICIT 2011, Amman, Jordan, May 11-13, pp. s.97–s.101. Al-
Zaytoonah University of Jordan, Amman (2011)

3. Ang, C.-W., Tham, C.-K.: Analysis and optimization of service availability in a HA cluster
with load-dependent machine availability. IEEE Transactions on Parallel and Distributed
Systems 18(9), 1307–1319 (2007)

4. Gold, N., Knight, C., Mohan, A., Munro, M.: Understanding service-oriented software.
IEEE Software 21, 71–77 (2004)

5. Kozlov, B.A., Ushakov, I.A.: Spravocznik po rasczetunadieznostiapparatury radioelektro-
niki I awtomatiki. Sovietskoje Radio, Moskwa (1975) (in Russian)

6. Ross, S.M.: Introduction to probability models. Academic Press. Inc., Orlando (1985)
7. Xiaofeng, T., Changjun, J., Yaojun, H.: Applying SOA to intelligent transportation system.

In: IEEE International Conference on Services Computing 2005, vol. 2, pp. 101–104
(2005)

8. Volfson, I.E.: Reliability Criteria and the Synthesis of Communication Networks with its
Accounting. J. Computer and Systems Sciences International 39(6), 951–967 (2006)

9. Zamojski, W., Caban, D.: Introduction to the dependability modelling of computer sys-
tems. In: Dependability of Computer Systems DepCoS - RELCOMEX 2006, pp. s.100–
s.109 (2006)

10. Zamojski, W., Caban, D.: Maintenance policy of a network with traffic reconfiguration. In:
Dependability of Computer Systems DepCoS - RELCOMEX 2007, pp. 213–220 (2007)

11. Zamojski, W.: Model funkcjonalno-niezawodnościowy systemu komputer-człowiek. w:
Inżynieria komputerowa. Praca zbiorowa pod redakcją Wojciecha Zamojskiego. WKiŁ,
Warszawa (2005) (in Polish)

 Functional-Reliability Model of a Services System with Path Reconfiguration Ability 187

12. Zamojski, W.: Dependability of services networks. In: 3d Summer Safety and Reliability
Seminars, SSARS 2009, Gdańsk-Sopot, July 19-25, pp. 387–396 (2009)

13. Zamojski, W., Walkowiak, T.: Services net modeling for dependability analysis, pp. 1–17.
In-Tech (2010)

14. Zamojski, W., Mazurkiewicz, J.: From reliability to system dependability – theory and
models. In: Kołowrocki, K., Soszyńska-Budny, J. (eds.) Summer Safety and Reliability
Seminars, SSARS 2011, Gdańsk-Sopot, Poland, July 03-09, vol. 1, Polish Safety and Re-
liability Association, Gdynia (2011)

15. Zheng, Z., Lyu, M.R.: Collaborative Reliability Prediction of Service-Oriented Systems.
In: 3rd Information Survivability Workshop (ISW 2000), Boston, Massachusetts, USA
(2000)

16. Zhu, J., Zhang, L.Z.: A Sandwich Model for Business Integration in BOA (Business
Oriented Architecture). In: Proceedings of the 2006 IEEE Asia-Pacific Conference on Ser-
vices Computing, APSCC, pp. 305–310. IEEE Computer Society, Washington, DC (2006)

Author Index

Bottaci, Leonardo 92

Caban, Dariusz 2, 150
Coolen, Frank P.A. 20
Coolen-Maturi, Tahani 20

Flammini, Francesco 36

Gorbenko, Anatoliy 56

Kharchenko, Vyacheslav 56

Mahmud, Nidhal 92
Mazurkiewicz, Jacek 74
Mazzocca, Nicola 36
Mian, Zhibao 92

Papadopoulos, Yiannis 92
Pappalardo, Alfio 36

Potekhin, Petr 130
Pragliola, Concetta 36

Sharvia, Septavera 92
Smutnicki, Czeslaw 112
Starov, Oleksii 56
Sugier, Jarosław 168

Toporkov, Victor 130
Tselishchev, Alexey 130

Vilkomir, Sergiy 56
Vittorini, Valeria 36

Walkowiak, Tomasz 2, 150

Yemelyanov, Dmitry 130

Zamojski, Wojciech 168

	Preface
	Contents
	Prediction of the Performance of Web Based Systems
	1 Introduction
	2 Web Based Systems
	2.1 Simple Web Server Architecture
	2.2 Distributed Web Services Architecture

	3 System Performance Characteristics
	3.1 Average Service Response Time
	3.2 Service Availability
	3.3 Maximum System Throughput

	4 Performance Prediction Using Network Simulation Techniques
	4.1 Virtual Testbed Environment
	4.2 Server Response Prediction
	4.3 Interaction with Other Services
	4.4 Services Deployed on the Same Host
	4.5 Models Based on Service Choreography

	5 Conclusions
	References

	Modelling Uncertain Aspects of System
Dependability with Survival Signatures

	1 Introduction
	2 The Structure Function as (Imprecise) Probability
	3 Survival Signature with Generalized Structure Function
	4 Multiple Types of Tasks
	5 Example
	6 Discussion
	References

	Improving the Dependability of Distributed Surveillance Systems Using Diverse Redundant Detectors
	1 Introduction
	2 Background
	2.1 Related Works
	2.2 Event Description Language

	3 Heuristic Distance Metrics for Event Trees
	3.1 Definition of Distance Metrics
	3.2 Implementation in DETECT
	3.3 Distance Metrics Examples

	4 Measuring Detection Trustworthiness in Real-Time
	5 Conclusions and Future Work
	References

	Testing-as-a-Service for Mobile Applications: State-of-the-Art Survey
	1 Introduction
	2 Cloud-Based Testing
	3 Mobile Application Testing
	4 Mobile Testing Services
	4.1 Device Clouds
	4.2 Application Lifecycle Management Services
	4.3 Device Cloud-Based Testing Techniques

	5 Standalone Tools for Mobile Application Testing
	6 Research Studies in Mobile Testing
	7 Combinatorial Testing
	8 Conclusions
	References

	Agent Approach to Network Systems Dependability Analysis in Case of Critical Situations
	1 Introduction
	2 Network Model
	3 Service Description
	3.1 Tasks
	3.2 Events
	3.3 System Maintenance
	3.4 Dependability Discussion

	4 Monitoring Architecture
	5 Description Language
	6 Critical Situations
	7 Conclusions
	References

	Model Transformation for Multi-objective Architecture Optimisation of Dependable Systems
	1 Introduction
	1.1 Model-Based Engineering and System Optimisation
	1.2 An Approach to System Optimisation for AADL Models

	2 Background
	3 Model Transformation Overview
	3.1 Translation of AADL Component Error Model to HiP-HOPS Failure Expressions
	3.1.1 Mapping Error Sta ates and Error Events to Component Ports
	3.2 Transformation of AADL connections to HiP-HOPS Lines
	3.3 Model Transformation Implementation

	4 Case Study
	4.1 System Description
	4.2 Failure Data
	4.3 Analysis of the Wheel Brake System Model
	4.4 Design Optimization
	4.5 Optimization Results

	5 Conclusion and Future Work
	References

	Optimization in CIS Systems
	1 Introduction
	2 Optimization Technologies
	3 Optimization Troubles
	4 Space Landscape
	5 Solution Approaches
	6 The Newest Trends
	7 Multicriteria Approaches
	8 Parallel Methods
	9 Optimization Strategies
	10 Proposed Approach
	11 Attacks and Malfunctions
	12 Criteria
	13 Topologies
	14 Conclusions and Comments
	References

	Metascheduling Strategies in Distributed Computing with Non-dedicated Resources
	1 Introduction
	2 Scheduling Problems in VO
	2.1 VO Stakeholders and Their Preferences
	2.2 Related Works
	2.3 Cyclic Scheduling Scheme

	3 The Model of Scheduling and Fair Resource Sharing
	4 Cyclic Scheduling Method Combined with Backfilling
	5 Simulation Environment Setup
	6 Experimental Studies of Fair Resource Sharing
	6.1 Taking into Account VO Users’ Preferences
	6.2 Optimization of Job Batch Execution in VO
	6.3 Taking into Account VO Resource Owners’ Preferences

	7 Experimental Studies of Resource Use Efficiency in the Cyclic Scheme
	7.1 Studies of Combined Scheduling Method BSF
	7.2 Experimental Studies of Consistency of Schedules Based on Job Execution Time Estimate

	8 Conclusions and Future Work
	References

	Improvement of Dependability of Complex Web Based Systems by Service Reconfiguration
	1 Introduction
	2 Dependability of Web Based Systems
	2.1 Faults Taxonomy
	2.2 Dependability Measures
	2.3 Dependability State-Transition Graph

	3 Reconfiguration of Web Services
	3.1 Deployment of Services
	3.2 Operational Configurations
	3.3 System Reconfiguration Graph
	3.4 Testbed Analysis

	4 Optimization of the Reconfiguration Strategy
	4.1 Reconfiguration Strategy Optimizing the Quality of Service
	4.2 Reconfiguration Strategy Minimizing Service Relocation

	5 Conclusions
	References

	Functional-Reliability Model of a Services System with Path Reconfiguration Ability
	1 Introduction
	2 Services Networks
	2.1 Communication Structure of the Network
	2.2 The Tasks

	3 Dependability
	3.1 Errors and Faults
	3.2 Renewals
	3.3 Strategies for Restoration of Communication Paths
	3.4 Measures of Network Dependability

	4 Impact of Communication Links Reconfigurability on Network Dependability
	4.1 Introduction
	4.2 Reconfiguration Costs
	4.3 Reconfiguration According to the Principle of the First-Order Neighbourhood
	4.4 Estimating Reconfiguration Effectiveness Factor: An Example

	5 Conclusions
	References

	Author Index

