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Abstract. In this paper, we present a new unsupervised coreference
resolution method, that models coreference resolution as a graph label-
ing problem. The proposed approach uses an incremental graph develop-
ment method that hierarchically deploys coreference features from higher
precision to lower ones. Then, a relaxation labeling method is used for
solving the graph labeling problem.
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1 Introduction

Coreferences are relations that hold between expressions which refer to the same
entities. Expressions are often called mentions of entities. A coreference is a
reflexive, symmetric, and transitive equivalence relation. The reflexive and tran-
sitive closure over coreference relations generates equivalence classes of mentions,
which are called coreference chains.

Coreference resolution is equivalent to the set partitioning problem in which
the search space is the set of all mutually disjoint subsets of mentions. From a
language engineering perspective, the accurate identification of the entities that
are referred to is an important challenge. Numerous natural language process-
ing (NLP) tasks such as information extraction, question answering, automatic
summarization, machine translation, and natural language generation can ben-
efit from availability of a coreference resolution system.

By using coreference information, we can construct a graph G in which each
mention is a vertex, and each coreference relation forms an edge between cor-
responding vertices. In this way, coreference resolution can be formulated as a
graph labeling problem: all vertices with the same label are considered to be in
a same coreference chain.

Several earlier works modeled coreference resolution as a graph labeling or
graph partitioning problem [1–5]. In this paper, we present a new unsupervised
coreference resolution system, which also casts coreference resolution as a graph
labeling problem. It employs relaxation labeling method for labeling assignment.
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The presented system has been inspired by the success of two successful corefer-
ence systems [4,6]. However, our system deploys a new hierarchical graph con-
struction method for developing the adjacency graph.

The hierarchical graph construction method helps the labeling algorithm to
just consider the most reliable set of neighbors when it tries to label mentions
at each pass of the algorithm.

2 Related Work

Recently, the accessibility of annotated coreference data (MUC conferences and
ACE evaluations) has brought up the deployment of a wide variety of supervised
machine learning approaches for the problem of coreference resolution [7]. The
focus of statistical approaches to coreference resolution has been moved from
attainment of simple pairwise models (which determine whether two mentions
are referring to the same entity [8,9]) to the use of rich linguistic features [10,11],
and utilization of advanced learning techniques [12].

Some recent works on coreference resolution have shown that a rich feature
set that can model lexical, syntactic, semantic, and discourse aspects of men-
tions is essential for the success of the coreference task [13–15]. When these rich
features are combined with the complexity of coreference models, supervised
approaches will be more dependent on annotated data and less appropriate for
languages with insufficient or no annotated data.

Because of the increasing importance of multilingual processing in NLP
community, developing unsupervised or semi-supervised methods for automatic
processing of languages with limited resource has become more essential.

Unsupervised learning methods totally eliminate the need to annotated data,
and remarkably, recent unsupervised coreference resolution methods compete
with their supervised counterparts [6,7,14–16].

Motivated in part by such observations, in this paper, we present a new
unsupervised model for coreference resolution. We model unsupervised coref-
erence resolution as a graph labeling problem which is solved by a relaxation
labeling algorithm. The proposed method has been inspired by the success of
two earlier coreference systems [17,18], and it benefits from some advantages of
both approaches. Sapena et al. [17] can be considered as a supervised counter-
part of our approach, and Raghunathan et al. [18] is a rule-based system that
deploys coreference features in a sieve architecture. The sieve architecture allows
more precise features to be considered before low precision features in corefer-
ence decisions. Therefore, the decisions made based on more precise features will
not be affected by lower precision ones.

3 Coreference Resolution as Graph Labeling

The input of a coreference resolution system includes a document consisting of a
set of mentions. Mentions are typically a number of noun phrases that are headed
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by some pronominal or nominal terminals. An intra-document coreference resolu-
tion system partitions such mentions based on their underlying referent entities.
Using relations between document’s mentions, we can construct an undirected
graph in which each mention is represented as a vertex, and each edge corre-
sponds to a coreference relation between two mentions. In other words, assigning
mentions to entities can be formulated as a graph labeling problem [4]. As we
consider graphs whose vertices represent mentions, here, vertices and mentions
are used interchangeably.

It is desired to model the mutual influence between neighboring mentions
for simultaneously estimating labels of all mentions in a document. Theoreti-
cally, such a model can cover long-range influences between transitively related
mentions. Such influences decrease as the distance of two mentions increases.
However, for tractability purpose, one should focus on the strongest dependen-
cies between neighbors. Such a model, which is called first-order Markov random
Fields [19], cannot be solved in a closed analytic form and is therefore addressed
by an iterative technique called relaxation labeling [20].

Relaxation labeling is an iterative optimization process which efficiently solves
the problem of assigning a set of labels to a set of variables, while satisfying a set of
constraints. Relaxation labeling aims at a label assignment that satisfies as many
constraints as possible. In other words, it uses contextual information, which is
expressed as a number of constraint functions, for reducing local ambiguities in
graph labeling.

One significant feature of relaxation labeling is its ability to deal with any
kind of constraints. The algorithm is independent of the complexity of defined
constraints (i.e., complexity of modeled application), and it can be improved by
using any available constraints. Thus, complex constraints can be used without
the need to change the algorithm. Relaxation labeling is applied to various NLP
tasks such as POS tagging [21], shallow parsing [22], and supervised coreference
resolution [4].

4 System Description

As discussed before, we cast coreference resolution as a graph labeling problem.
This was at first inspired by the successful results of [17], which benefits from
combining group classification and chain formation methods in a same step.
Combination of group classification and chain formation methods in a global
method ensures the consistency of solutions [17].

The domain knowledge (i.e., coreference relations) is combined with the
model through coefficients of a compatibility matrix. Since the compatibility
matrix is a key element of weighted label assignments, the choice of these coef-
ficients is crucial for the success of the algorithm.

These coefficients can be set manually based on the problem specification,
or alternatively, they can be learned from a training set. For instance, Sapena
et al. [17] uses a decision tree for learning compatibility coefficients. For our
method to be unsupervised and therefore independent from any training data,



96 N.S. Moosavi and G. GhassemSani

compatibility coefficients should be determined in an unsupervised manner. One
possible solution for computing compatibility coefficients is to use Wagstaff and
Cardie’s approach [23] for deriving incompatibility functions from linguistic fea-
tures. However, using their method will bring up the concern of setting different
heuristic and experimental parameters for weights of compatibility functions
[23].

We adopt the idea of sieve architecture presented in [18] for this purpose.
The proposed system of Raghunathan et al. [18] is based on the fact that a small
number of high precision features is often overwhelmed by a larger number of
low precision ones. Thus, Raghunathan et al. [18] proposed a multi-pass system
in which higher precision features are deployed at earlier stages of coreference
decisions.

We deploy this multi-pass idea in our coreference resolution System. There-
fore, our system is a layered system in which each layer is constructed based on
different coreference knowledge, and feeds its output forward to the next layer.
The layers are organized in a way that highest precision feature is used at the
first layer, and successive layers deploy features with decreasing precisions.

The layered architecture is deployed in the graph construction phase; graph
is developed incrementally based on different features at each pass, and then
the relaxation labeling algorithm is applied to the current partially constructed
graph. Therefore, the algorithm will just consider more certain neighborhood
relations (i.e., the neighborhood relations that contain higher precision features);
unattached vertices will be labeled later at subsequent passes. After determina-
tion of weighted label assignments in each partially constructed graph, some of
the assignments are determined as being confident enough. These assignments
will not change at later passes and therefore will not be affected by weaker
features.

4.1 Relaxation Labeling

Suppose that Λ is the set of possible labels for a set of variables V ; V =
{v1, . . . , vn} is a set of vertices which, in our modeling, corresponds to the docu-
ment’s mentions, and R = {rij} is a compatibility matrix that defines relations
between variables (i.e., adjacency matrix in our problem). Each coefficient rij

corresponds to a constraint regarding to vi and vj . A higher value for rij indicates
a higher possibility for vi and vj to have the same label.

Relaxation labeling starts by assigning initial labels to all variables. It then
iteratively modifies label assignments in a manner that the labeling satisfies as
many constraints as possible, where constraints are defined by the compatibility
matrix. Information of the compatibility matrix and the current label assignment
are used for parallel update of labels. In other words, each variable vi ∈ V gets
an initial probability vector p̄i

0, which has one element for each possible label of
vi. p

(t)
i (λ) is an element of p̄i

(t), which corresponds to the probability of assigning
label λ to variable vi at the tth iteration. The whole set of p̄ = {p̄1, . . . , p̄n} is
denominated as weighted label assignments.
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A support function is defined for each possible label λ of each variable vi. The
compatibility of the current label assignments of neighbors of vi, and hypothesis
“λ is the label of vi”, is measured by this support function. The support function
is defined as follows:

S
(t)
i (λ; p̄) =

∑

j∈neighbors(vi)

rij × p
(t)
j (λ) (1)

Clearly, the higher value of the support function indicates that it is more prob-
able to label vi with λ. The support function is then used for updating label
assignments:

p
(t+1)
i (λ) =

p
(t)
i (λ) × (−m + s

(t)
i (λ, p̄(t)))

∑
σ∈Λ p

(t)
i (σ) × (−m + s

(t)
i (σ, p̄(t)))

, (2)

where m = min(s̄(t)i ).
We use a negative value for rij when vi and vj are incompatible in terms

of coreference features (e.g., their gender features are incompatible). Therefore,
si can have negative values. m is added for negative support values, and the
denominator is for normalizing the result, so that p

(t+1)
i (λ) will remain a prob-

ability.
The process of calculating p

(t+1)
i (λ) continues until the algorithm converges

to stable values for p, or it reaches a predefined maximum number of iterations.
Relaxation labeling complexity is linear in proportion to the number of variables
(i.e., number of mentions in a document).

4.2 Hierarchical Graph Development

In each pass of our hierarchical graph development algorithm, the system
processes all mentions of a document. Supposing the algorithm is in pass j, con-
taining feature set Fj = {f j

1 , . . . , f j
m}, where m is the number of features enclosed

in pass j. For each mention mi, the adjacency graph development process will
be performed as follows:

Every mention mk located before mi is considered as a candidate for graph
development. If both mk and mi share one of features {f j

1 , . . . , f j
m}, the vertices

vk and vi corresponding to mk and mi, will be attached by a new edge (only if
they were unattached before). There is two possible values for edge weights (i.e.,
rij): +1 and −1. A weight of +1 represents a preference, and a weight of −1
represents a restriction. The partially constructed graph of each pass contains
only the vertices that have at least one edge to some other vertices.

The features that are used at each pass of the system and their corresponding
weights are listed in Table 1. It is notable that the first 6 passes mostly consider
non-pronoun mentions and the last pass is only for pronouns. A detailed descrip-
tion of the used features can be found in [6,13,14].
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4.3 Initialization and Post-processing of Each Pass

We use the same approach as [17] for initializing weighted label assignments.
The first non-pronoun mention has no previous mention to be referred to, and
it will be considered as the beginning of a new entity. The label assignment of
this mention is marked as a first confident assignment in our model. The final
label assignments of each pass are considered as the initial label assignments of
the next pass. Indeed, if a vertex has a positive neighbor (i.e., a neighbor with a
positive weight) with a confident label assignment, it’s weighted label assignment
will also be marked as a confident assignment at the end of the current pass,
and therefore, it would not be changed at later passes.

5 Experiments

5.1 Data

In this work, the following data sets are used for the evaluation purpose.

– ACE2004-NWIRE: the newswire part of ACE 2004. It consists of 128 docu-
ments and 11413 mentions.

Table 1. The feature sets of each pass of the system and their corresponding weights.

Pass Weight Feature

1 +1 Exact match

2 +1 Appositive

Role appositive

Alias

Demonym

Relative Pronoun

−1 Gender mismatch

Number mismatch

Entity type mismatch

3 +1 Head match + same non-stop words + compatible modifiers

4 +1 Head match + same non-stop words

Head match + compatible modifiers

5 +1 Head match

6 +1 Substring

7 +1 Gender match

Number match

Entity type match

Animacy match

Both speak



Unsupervised Coreference Resolution Using a Graph Labeling Approach 99

– ACE2004-ROTH-DEV: A development set of ACE 2004, which is first uti-
lized in [13]. It consists of 68 documents and 4536 mentions.

– ACE2004-CULOTTA-TEST: A test split of ACE 2004, which is first utilized
in [24]. It consists of 107 documents and 5469 mentions.

5.2 Results

The experimental results of our approach are presented in Table 2. Since most of
existing evaluations on ACE data sets are based on gold mentions, we also use
gold mention boundaries for our experiments. In order to measure the impact
of hierarchical graph development, we also present results of a single pass flat
variant of our system. This variant constructs the adjacency graph in a single
step and uses all features of the multi-pass system in just one step. In this version,
edge weights are computed as follow:

wij = min(1,
∑

f∈F

δkfk(mi,mj)), (3)

where δk is a fix weight considered for each feature fk. Since the first three passes
of the multi-pass system contain higher precision features, δk is set to +1 for
such features (δk is set to −1 for the features of pass 2 that add a negative edge).
δk is set to 0.25 for other features. The preprocessing pipelines of both variants
of the proposed system are the same as that of [13].

As it is shown, the results of the multi-pass system are considerably higher
than that of the single pass variant. However, we still need some further work
to reach the performance of more successful unsupervised coreference systems
(e.g., [6,14]).

Table 2. Experimental results on ACE 2004 data sets.
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Table 3. Pairwise errors made by our system on the ACE2004-NWIRE data set. Each
cell indicates error rate made on the specified configuration.

Antecedent type

Proper Nominal Total

Anaphora type Proper 241/1140 53/171 249/1311

Nominal 56/257 493/921 549/1178

Pronoun 286/566 285/451 553/1017

5.3 Error Analysis

Table 3 shows the number of pairwise errors made by the proposed multi-pass
system on ACE2004-NWIRE. As it is shown, most errors are made on the nom-
inal anaphora with nominal antecedents. There are several reasons causing a
rather high rate for this type of errors. Typically, such errors are caused by
wrong head match assumptions, and missing semantic and syntactic compatibil-
ity information of the two nominal mentions. Lee et al. [6] uses the first mention
of each cluster at most passes; the first mention of each cluster is often more
representative than other mentions of that cluster. This can reduce errors such
as those made by wrong head match assumptions. Using additional linguistic
knowledge such as parse trees, binding theory, salience hierarchy, richer semantic
knowledge, and cluster-wise feature sets can further decrease coreference decision
errors.

6 Post Conference Section

In this section, we propose an alternative approach for the hierarchical graph
development. The main purpose of the hierarchical graph development is the
appropriate selection of neighbors in Eq. 1. Graph is at first constructed based
on more precise features. Therefore, at each pass of the algorithm, the neighbors
function just returns more important neighbors of each mention, and the label
assignments will be determined based on the label assignments of those neigh-
bors.

As an alternative way for this hierarchical graph development method, we
can use a different neighbors function in Eq. 1, which provides the same benefit
for the labeling algorithm.

Suppose that F = {F1, . . . , Fm} is a set of feature sets in which each Fi

contains one or more binary coreference features, and all Fis are ordered based
on their precisions. This ordering can be done manually based on some linguistic
knowledge [6], or it can be done based on an automatic feature ordering method.
Given F , we can define the neighbors function as follows:

neighbors(vi) = {vj |∃fl∈Fk
fl(vi, vj) = true} (4)
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where k is the first index for which there exist a fl ∈ Fk with a true value for
vi and at least one other vertex. In this way, less precise features will just be
considered in the absence of more precise features.

Using this new neighbors function, all mention can be labeled simultaneously
in just one pass, while the labeling algorithm considers more precise neighbors
of each mention for determining label assignments. In this way, the resolution
process will be less time consuming while it still benefits from the hierarchical
use of coreference features.

7 Conclusions

In this paper, we examine and evaluate the applicability of relaxation labeling in
unsupervised coreference resolution, which has been inspired by the earlier work
of [17], where relaxation labeling technique is used for supervised coreference
resolution.

In comparison to [17], our model is totally unsupervised (i.e., it does not need
any labeled data for determining edge weights), and it uses a hierarchical graph
development algorithm. This hierarchical graph construction method prevents
the small numbers of high precision features to be overwhelmed by a larger
number low precision ones. In the hierarchical graph construction, instead of
considering the whole set of neighbors, the labeling algorithm just considers the
most reliable set of neighbors for labeling a mention at each pass.

We also present a new neighbors function as an alternative way to the hier-
archical graph development method that provides the same benefits, while being
less time consuming.

Although the presented system underperforms the state-of-the-art systems, it
shows promising results and can be further improved in several ways. A natural
way to extend the model is to incorporate more linguistic knowledge sources,
such as those used in [6,14].
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