
A Tool for Transforming WordNet-Like
Databases

Marek Kubis(B)

Department of Computer Linguistics and Artificial Intelligence,
Faculty of Mathematics and Computer Science, Adam Mickiewicz University,

Ul. Umultowska 87, 61-614 Poznań, Poland
mkubis@amu.edu.pl

Abstract. The paper presents WUpdate – a data manipulation lan-
guage designed for WordNet-like lexical databases. The language can be
used to perform modifications of a wordnet, such as adding word senses,
removing words, interlinking synsets, etc. The focus of the paper is on
solving wordnet-specific problems that are not addressed by other data
manipulation languages. In particular, the paper addresses the prob-
lem of preserving the properties of semantic hierarchies while they are
being transformed and the problem of changing the granularity of a
WordNet-like database. The paper outlines the syntax and semantics of
the WUpdate language and describes the underlying data model. Alter-
native approaches that may be undertaken to modify a WordNet-like
database are discussed.

Keywords: WordNet · Data manipulation language · Query language

1 Introduction

WordNet [4] and other lexical databases that store data in a structure built
upon interlinked sets of synonymous words1 (synsets) are exploited in a vast
number of projects that involve natural language processing. As the majority
of wordnets are general purpose databases that represent concepts from various
domains of knowledge and store them at different levels of granularity, a prob-
lem arises of adjusting the structure and content of a wordnet to a particular
task. Such an adjustment may involve the removal and creation of synsets and
word senses, changing semantic and lexical relations, establishing a new defi-
nition of synonymy, augmenting synsets with additional data, etc. The paper
presents WUpdate – a tool designed to perform such transformations while pre-
serving invariants imposed by the structure of a WordNet-like database. WUp-
date is a data manipulation language that, with respect to wordnets, plays a
similar role as SQL [1] with respect to relational databases, or Lorel [2] to semi-
structural ones. WUpdate is based on WQuery [9] – a query language operating
on wordnet-specific data types that has been previously used as a module of
1 We call such lexical databases wordnets or WordNet-like databases in the paper.

c© Springer International Publishing Switzerland 2014
Z. Vetulani and J. Mariani (Eds.): LTC 2011, LNAI 8387, pp. 343–355, 2014.
DOI: 10.1007/978-3-319-08958-4 28

344 M. Kubis

an NLP/AI system supporting information management of mass events [8,20].
WUpdate extends WQuery syntax with constructs responsible for modifying a
WordNet-like database and ensures that the proper structure of a wordnet is
preserved while transformations are applied at the semantic level. Emphasis is
placed on solving wordnet-specific problems that are not considered in other
data manipulation languages. In particular, the WUpdate language provides:

1. Proper handling of semantic hierarchies built with such relations as hyper-
nymy and meronymy.

2. Special operators for managing granularity of a WordNet-like database.

The WUpdate interpreter is available for download as a part of the WQuery
system distribution.2 WUpdate inherits from WQuery the ability to import
wordnets stored in the Global Wordnet Grid [5] and Wordnet-LMF [17] doc-
uments.

2 Related Work

The problem of transforming and enriching WordNet-like databases is addressed
in many papers (e.g. [11,12,15]), but most of them do not describe the tools used
for the task. Princeton WordNet website [13] enlists a wide variety of application
programming interfaces designed for general purpose programming languages
that could be used for the task, but these are mostly low level interfaces that
provide only basic operations such as finding a synset by a sense or access-
ing related synsets. Hence, elaborate updates such as those described in Sect. 8
require considerable programming effort. In fact, most of the APIs do not pro-
vide any commands that would be responsible for modifying a wordnet. Thus,
in such cases a transformation of the wordnet must involve the generation of an
entirely new database.

Another possible approach to the problem is to use a data manipulation lan-
guage designed for other data models such as SQL [1] or Lorel [2]. However, these
languages do not incorporate wordnet-specific data types and do not provide
operators responsible for adjusting the granularity of a wordnet that is analo-
gous to those described in Sect. 7. Furthermore, preservation of the Transitive
property as defined in Sect. 6 requires additional programming work to be per-
formed in these tools. The same difficulties arise if one tries to use an XML
[17] or RDF [6] representation of a WordNet-like database and generate a new
wordnet directly using query languages such as XQuery [3] or SPARQL [14].

Finally, wordnet editors such as DEBVisDic [7] may be used to modify a
database. These editors are easier to use than our tool for local modifications,
such as editing a gloss or adding a semantic link between two synsets, but they do
not provide any mechanisms that would allow to apply modifications to multiple
objects at once, as can be done by the WUpdate expressions shown in Sect. 8. If
a wordnet editor is built on the client-server architecture (e.g. DEBVisDic), such

2 See http://www.wquery.org for details.

http://www.wquery.org

A Tool for Transforming WordNet-Like Databases 345

serial modifications can be done via the server API. However, if the API does
not incorporate a versatile query language then the custom scripts in a general-
purpose programming language have to be built on the client side in order to
perform complex modifications which are directly representable in WUpdate.

3 Data Model

WUpdate adopts the WQuery data model as presented in Fig. 1. A WordNet-
like lexical database is represented in this model by a set of domain-specific
and general purpose data types (called, jointly, basic data types) interlinked
via relations. The values of the domain-specific data types are stored in unary
relations called domain sets. In Fig. 1 the names of the domain sets are enclosed
in parentheses and placed below the names of their corresponding data types.
The basic structure of a wordnet is determined by the binary relations synset,
word, sensenum and pos, which are represented in Fig. 1 by edges with boldfaced
labels. These relations connect a word sense to its synset, word, sense number
and part of speech (POS) symbol, respectively. Additional relations may be
introduced to represent data that vary among wordnets, such as the attributes
of synsets (e.g. gloss and nl in Fig. 1) or particular semantic and lexical relations
(e.g. meronym and antonym). Although all of the relations presented in Fig. 1
are either unary or binary, it should be noted that the model permits relations of
arbitrary arity. Every argument of a relation in the data model has an assigned
position, name and data types that it can take. For instance, the first argument
of the relation pos as shown in Fig. 1 has the name src and it has to take synsets

Fig. 1. Basic data types (as nodes of the graph) and the relations among them (as
edges) in an instance of the WQuery data model.

346 M. Kubis

(i.e. values of the Synset data type), and the second one is named dst and has
to take part of speech symbols.

The data stored in an instance of the WQuery data model are described by
a distinguished set of relations called the metamodel. The names of the relations
stored in an instance of the model are gathered in the relation relations. The
assignments of data types, positions and names to the arguments of relations
are kept in the relation arguments. Both relations are directly accessible for the
query language.

4 WQuery Language

We use the WQuery language in our tool to identify objects that have to be
transformed and to define the results of a transformation. The WQuery construct
we use most extensively is a path expression. It is an expression that describes a
multiset of paths in an instance of the data model presented in Sect. 3. For the
purpose of path expressions, the instance is treated as a directed graph. This
graph’s set of nodes consists of values of the basic data types that belong to the
active domain3 of the instance. The set of edges is given by pairs of values that
belong to tuples of relations gathered in the instance. A path expression begins
with a generator, i.e. an expression that identifies a subset of values of one of the
data types represented by the nodes of the graph. The generator is followed by
zero or more regular expressions formulated over the names of relations stored
in the instance of the WQuery data model. A regular expression specifies which
edges have to be traversed in order to extend the paths retrieved by the preceding
expression. For example, the query4

{auto:1:n}.hypernym+

consists of a generator {auto:1:n} which retrieves the synset that contains the
first noun sense of the word auto (Eng. a car) followed by a regular expres-
sion hypernym+ which traverses one or more times through the edges that link
hyponyms (the values of the first argument of the hypernym relation) to their
hypernyms (the values of the second argument). Thus, the result of the query
consists of paths that link {auto:1:n} with its transitive hypernyms through
zero or more intermediate nodes. Figure 2 presents some paths retrieved by the
query as formulated above.
In order to retrieve paths that link synsets to their transitive hyponyms by
using the hypernym relation, one has to traverse the edges that link the values
of the second argument of this relation to the values of the first argument.5 The
backward edges are accessed by prepending the ^ sign to the relation name.
Hence, the paths that link {auto:1:n} with its transitive hyponyms are given
by the following query
3 I.e. the set of values referenced by at least one relation of the instance.
4 Unless stated otherwise, the queries in the paper are invoked against PolNet [18,19]
– a WordNet-like database developed for the Polish language.

5 In the paper we skip the methods of accessing the arbitrary arguments of non-binary
relations. The details can be found in [10].

A Tool for Transforming WordNet-Like Databases 347

Fig. 2. Sample paths returned by the query {auto:1:n}.hypernym+.

{auto:1:n}.^hypernym+

One can place a variable after a specific step6 of a path expression in order
to reference the values reached by the step. For example, the expression

{auto:1:n}$a.hypernym+$b

attaches bindings to every retrieved path that associate the variable $a with the
first node on the path and the variable $b with the last node.

Variable bindings may be referenced in filters, i.e. bracketed conditional
expressions that may be placed after the step of a path expression to elimi-
nate undesirable paths from the query result. For instance, the following query
returns paths that begin with a synset that contains the word auto and ends
with its meronym that contains at least two word senses.

{auto}.meronym$a[count($a.^synset) >= 2]

One may use the from expression in order to iterate through all the bindings of
a path expression. For example, one may formulate the expression

from {auto:1:n}.hypernym+$a
emit $a

to pass to the output (i.e. emit) only values that are bound to the variable $a.

5 WUpdate Language

A WUpdate expression consists of two WQuery expressions interleaved by a rela-
tion name and a transformation operator. The tuples of the specified relation
6 By a step we mean the generator or any of the regular expressions of a path expression
that follow.

348 M. Kubis

which are determined by the left-hand expression are updated using the val-
ues determined by the right-hand expression with regard to the transformation
operator.7 For instance, the expression

{autobus:1:n} hypernym += {auto:1:n}

connects the synset { autobus:1:n } (Eng. a bus) to the synset { auto:1:n } via
the relation hypernym. Besides the += operator, which adds tuples to a relation,
one can also use -= to remove them and := to replace the tuples conforming to
the objects determined by the left-hand expression with new tuples that end in
the right-hand objects.

Values of wordnet-specific data types, shown in Fig. 1 as nodes, may be added
or removed from the database by modifying relations that correspond to their
data type names. For example, to add the second noun sense of the word auto
one may execute the following expression

senses += auto:2:n

In order to change the set of relations that are stored in an instance of the
WQuery data model one has to modify the relations of the metamodel. For
example, to create the relation usage that connects synsets to the sentences
that are examples of their usage, one may execute the following commands

relations += ‘usage‘
‘usage‘ arguments += ‘src‘,‘synset‘,1
‘usage‘ arguments += ‘dst‘,‘string‘,2

The first expression adds the relation named usage to the instance. The
second one specifies that the first argument of usage is named src and takes
synsets as its values. The last one states that the second argument of usage
is named dst and is restricted to string values. The comma (,) operator in
the expressions above represents the concatenation of the paths. By default the
elements of paths returned by the arguments of an update operator have to
correspond to the consecutive arguments of the modified relation. Thus, in the
expression

‘usage‘ arguments += ‘dst‘,‘string‘,2

the string usage is assigned to the first argument of the relation arguments, the
string dst to the second one, etc. One can reference the arguments of a relation
by name with^signs placed in between in order to assign values to them in an
arbitrary order. Hence, the tuple added by the expression above may also be
created by the command

‘usage‘ relation^arguments^position^name^type += 2,‘dst‘,‘string‘

7 The left-hand expression is optional. If it is not specified, all the tuples of the relation
are considered as shown in the examples later in this section.

A Tool for Transforming WordNet-Like Databases 349

6 Preserving Relation Properties

Modifying the content of a wordnet may corrupt its structure. For example, if we
add a new connection through the hypernym relation, we may accidentally cre-
ate a cycle in the hypernymy hierarchy which by definition is acyclic. In order,to
prevent such situations we have extended the WQuery data model by introduc-
ing properties that may be associated with arguments of relations in order to
preserve the valid structure of a wordnet while its content is being modified. We
present the available properties in Table 1. The Required(α), Functional(α),
Symmetric(α, β) and Antisymmetric(α, β) properties are simple constraints
that have natural counterparts in other database systems. The Transitive(α, β)
property has been introduced to ease maintenance of semantic hierarchies built
using such relations as hypernymy or meronymy. It may become compromised
if a tuple is removed from R or if for some tuple t ∈ R the value t(α) or t(β) is
removed from a domain set. In the first case the default action is to permit such
an operation assuming that the change has been introduced intentionally. In the
second case the tuples that contain the removed value on the β position have to
be joined with the tuples that contain it on the α position, as is shown in the
example in Fig. 3. Hence, the removal of intermediate objects from a transitive
relation preserves the reachability of values as defined in Table 1. It should be
noted that in the case of non-binary relations the join operation will succeed only
if the tuples being joined are equal except for the values of α and β, otherwise
an error will be reported.

By default WUpdate reports an error if Required(α), Functional(α) or
Antisymmetric(α, β) becomes compromised by a command submitted to the
interpreter. The default action undertaken in the case of the Symmetric(α, β)
property is to restore the symmetry. Thus, if a new tuple is added to a symmetric
relation then the backward tuple is also created, and if a tuple is removed the
backward one is removed also. If the default action associated with a property
is not adequate, it may be replaced by an alternative from Table 2.

Descriptions of properties are stored in two new relations added to the meta-
model:

1. properties(relation, argument, property, action) that collects properties (arg.
property) assigned to the arguments (arg. argument) of relations (arg. rela-
tion) and the actions bound to them (arg. action)

2. pair properties(relation, source, destination, property, action) that collects
properties (arg. property) of pairs of arguments (arg. source and destination)
of relations (arg. relation) and the actions bound to them (arg. action).

These relations have to be modified in order to add or remove the properties of
relation arguments. For instance, to make the hypernym relation antisymmetric,
one can invoke the following command

‘hypernym‘, ‘src‘, ‘dst‘
pair_properties := ‘antisymmetric‘, ‘preserve‘

350 M. Kubis

Table 1. Properties of relation arguments. α, β – arguments of the relation R, dt(x)
data type of the argument x

Name Definition Example

Required(α) If v is a value of of the type dt(α)
then there exists a tuple t ∈ R
such that t(α) = v

pos(src)

Functional(α) If v is a value of of the type dt(α)
then there exists at most one
tuple t ∈ R such that t(α) = v

gloss(src)

Symmetric(α, β) if there exists a tuple t ∈ R such
that t(α) = v and t(β) = w then
there exists a tuple s ∈ R such
that s(α) = w and s(β) = v

antonym(src,dst)

Antisymmetric(α, β) if there exists a tuple t ∈ R such
that t(α) = v and t(β) = w then
there is no tuple s ∈ R such that
s(α) = w and s(β) = v

meronym(src,dst)

Transitive(α, β) if w is reachable from v through R
(i.e. there exist tuples
t1, t2, . . . , tk ∈ R such that
t1(α) = v, tk(β) = w,
ti(β) = ti+1(α) for i < k) before
transformation and the
transformation does not remove
either w or v then w is
reachable from v after the
transformation is performed

hypernym(src,dst)

Fig. 3. The hypernym relation before (a) and after (b) the removal of the synset
{ car:1:n } from the Princeton WordNet

A Tool for Transforming WordNet-Like Databases 351

Table 2. Alternative actions that may be undertaken if a property is compromised

Property Cause Alternative Actions

Required(α) A tuple t has been
removed

Remove the value t(α)

Functional(α) A tuple t has been
added

Remove the tuple s
such that
t(α) = s(α)

Symmetric(α, β) A tuple has been added
or removed

Report an error

Antisymmetric(α, β) A tuple t has been
added such that for
some tuple s holds
t(α) = s(β) and
t(β) = s(α)

Remove the tuple s

Transitive(α, β) t(α) or t(β) has been
removed for some
tuple t ∈ R

Report an error

7 Managing Granularity of a Wordnet

Since the problem of adjusting the granularity of a wordnet to a target applica-
tion has been discussed in several papers (e.g. [11,12,15], in the context of word
sense disambiguation), we decided to introduce the split and merge operators
that simplify adjustment of the partition of senses into synsets.

The split operator takes as an argument a set of synsets and creates sep-
arate synsets for all of their senses. For example, to split the synset { auto:1:n
samochód osobowy:1:n bryka:2:n samochodzik:2:n } into the synsets { auto:1:n },
{ samochód osobowy:1:n }, { bryka:2:n }, { samochodzik:2:n } one may formulate
the following expression

split {auto:1:n}

The merge operator takes as an argument a set of synsets and/or word senses
and relocates senses to the new synset. For instance, to create a new synset from
all synsets that contain the word pojazd (Eng. a vehicle), one may execute the
following command.

merge {pojazd}

The main problem that arises while relocating senses is how to deal with the
connections of their synsets. By default new synsets inherit all connections after
the merged/split ones, and in the case of the merge operator edges that point
from the new synset to the same object are joined together. Since the split

352 M. Kubis

and merge operators preserve relation properties as defined in Sect. 6, they may
report an error if such an action is associated with a property. For instance, if
one merges synsets that belong to different levels of the hierarchy determined
by a transitive antisymmetric relation (e.g. hypernymy), one may encounter the
error as shown in the example below.

merge {pojazd:1:n} union {auto:1:n}

ERROR: Update breaks property ’transitive antisymmetry’
of relation ’hypernym’

In order to avoid errors one has to prepend and/or append additional expres-
sions that will guarantee that the properties of the relations will not become
compromised. Due to the limited space we skip the details, which can be found
in [10].

8 Examples of Complex Transformations

In order to show how the WUpdate language may be used to perform complex
database transformations in this section we consider problems that require more
elaborate changes to be performed on a wordnet. We have chosen problems that
do not depend on the existence of particular synsets, word senses or words in
the database, but which rely only on the structural properties of a wordnet,
such as existence of hypernymy and meronymy relations. Thus, the WUpdate
expressions presented in this section may be invoked against different WordNet-
like databases without introducing adjustments.

8.1 Removing Redundant Connections

Hypernymy is a transitive relation. Hence, if two synsets are reachable via hyper-
nymy through one or more intermediate synsets then maintaining a direct hyper-
nymy link between them is redundant. Such links may be removed with the
following expression8

from {}$a.hypernym.hypernym+$b[$b in $a.hypernym]
$a hypernym -= $b.

A similar problem arises if we assume that hyponyms inherit meronyms from
their hypernyms. In this case we can remove the meronymy links from the
hyponyms.

from {}$a.meronym$b[$b in $a.hypernym+.meronym]
$a meronym -= $b

8 The {} generator represents all synsets in the database.

A Tool for Transforming WordNet-Like Databases 353

8.2 Separating Senses by Parts of Speech

WUpdate does not enforce synsets to be composed only from senses that belong
to the same part of speech. If such a separation is necessary for a given task, it
can be introduced by iterating through synsets and merging senses that belong
to the same part of speech.

from {}$a
from possyms$b

merge $a.^synset[$a.pos = $b]

The cross-part-of-speech hypernymy links (if any exist) can be removed with the
following expression

from {}$a.hypernym$b[$a.pos != $b.pos]
$a hypernym -= $b

9 Conclusion

The paper describes a tool designed to perform transformations of WordNet-
like lexical databases. WUpdate incorporates several features that have been
designed to simplify manipulation of wordnet data that are not found in other
wordnet-oriented and general purpose data management tools. First, it is built
upon a query language that incorporates wordnet-specific data types. Second, it
adopts a data model that preserves the properties of semantic relations while the
content of a wordnet is being transformed. Third, it provides a set of operators
for managing the granularity of a WordNet-like database. We have shown how
these features, when combined together, can be exploited to perform complex
wordnet transformations.

In the future we would like to extend the language with constructs respon-
sible for processing multiple WordNet-like databases at once. As WUpdate per-
formance is coupled to the performance of the WQuery engine, we also plan to
investigate query optimization methods that exploit the structure of a wordnet.

Acknowledgments. This research was supported by a scholarship within the project
“Scholarship support for Ph.D. students specializing in majors strategic for Wielkopol-
ska’s development”, Sub-measure 8.2.2 Human Capital Operational Programme, co-
financed by European Union under the European Social Fund.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query
language for semistructured data. Int. J. Digit. Libr. 1(1), 68–88 (1997)

354 M. Kubis

3. Boag, S., Chamberlin, D.D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: an XML query language (2nd Edition). W3C recommendation, W3C
(December 2010). http://www.w3.org/TR/2010/REC-xquery-20101214/

4. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press,
Cambridge (1998)

5. Global Wordnet Association: Global Wordnet Grid DTD. http://globalwordnet.
org/gwa/grid/bwn2.dtd (2010). Accessed 23 Sep 2010

6. Graves, A., Gutierrez, C.: Data representations for WordNet: a case for RDF. In:
Sojka et al. [16], pp. 165–169

7. Horak, A., Pala, K., Rambousek, A., Povolny, M.: DEBVisDic - First version of new
client-server wordnet browsing and editing tool. In: Sojka et al. [16], pp. 325–328

8. Kubis, M.: An access layer to PolNet – polish WordNet. In: Vetulani, Z. (ed.) LTC
2009. LNCS (LNAI), vol. 6562, pp. 444–455. Springer, Heidelberg (2011)

9. Kubis, M.: A query language for WordNet-like lexical databases. In: Pan, J.-S.,
Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part III. LNCS, vol. 7198, pp.
436–445. Springer, Heidelberg (2012)

10. Kubis, M.: WQuery User Guide (2013). http://wquery.org/user-guide.pdf
11. Mihalcea, R., Moldovan, D.I.: EZ.WordNet: principles for automatic generation of

a coarse grained WordNet. In: Russell, I., Kolen, J.F. (eds.) Proceedings of the
Fourteenth International Florida Artificial Intelligence Research Society Confer-
ence, 21–23 May, Key West, Florida, USA, pp. 454–458. AAAI Press (2001)

12. Navigli, R.: Meaningful clustering of senses helps boost word sense disam-
biguation performance. In: Proceedings of the 21st International Conference on
Computational Linguistics and the 44th Annual Meeting of the Association for
Computational Linguistics, pp. 105–112. ACL-44. Association for Computational
Linguistics, Stroudsburg (2006)

13. Princeton University: WordNet - Related Projects (2011). http://wordnet.
princeton.edu/wordnet/related-projects/, Accessed 28 April 2011

14. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF.
W3C recommendation, W3C (January 2008). http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/

15. Snow, R., Prakash, S., Jurafsky, D., Ng, A.Y.: Learning to merge word senses.
In: Proceedings of the Joint Meeting of the Conference on Empirical Methods on
Natural Language Processing and the Conference on Natural Language Learning,
pp. 1005–1014 (2007)

16. Sojka, P., Choi, K.S., Fellbaum, C., Vossen, P. (eds.): Proceedings of the Third
International WordNet Conference - GWC 2006. Masaryk University, Brno, Czech
Republic (2005)

17. Soria, C., Monachini, M., Vossen, P.: Wordnet-LMF: Fleshing out a standardized
format for wordnet interoperability. In: Proceeding of the 2009 International Work-
shop on Intercultural Collaboration, pp. 139–146. ACM, New York (2009)

18. Vetulani, Z.: Wordnet based lexicon grammar for polish. In: Calzolari, N., et al.
(eds.) Proceedings of the Eight International Conference on Language Resources
and Evaluation (LREC’12). European Language Resources Association (ELRA),
Istanbul, Turkey (2012)

http://www.w3.org/TR/2010/REC-xquery-20101214/
http://globalwordnet.org/gwa/grid/bwn2.dtd
http://globalwordnet.org/gwa/grid/bwn2.dtd
http://wquery.org/user-guide.pdf
http://wordnet.princeton.edu/wordnet/related-projects/
http://wordnet.princeton.edu/wordnet/related-projects/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

A Tool for Transforming WordNet-Like Databases 355

19. Vetulani, Z., Kubis, M., Obrebski, T.: PolNet - Polish WordNet: Data and Tools.
In: Calzolari, N., et al. (eds.) Proceedings of the 7th International Conference on
Language Resources and Evaluation (LREC’10), pp. 3793–3797. European Lan-
guage Resources Association (ELRA), Valletta, Malta (2010)

20. Vetulani, Z., Marciniak, J.: Natural language based communication between human
users and the emergency center: POLINT-112-SMS. In: Vetulani, Z. (ed.) LTC
2009. LNCS (LNAI), vol. 6562, pp. 303–314. Springer, Heidelberg (2011)

	A Tool for Transforming WordNet-Like Databases
	1 Introduction
	2 Related Work
	3 Data Model
	4 WQuery Language
	5 WUpdate Language
	6 Preserving Relation Properties
	7 Managing Granularity of a Wordnet
	8 Examples of Complex Transformations
	8.1 Removing Redundant Connections
	8.2 Separating Senses by Parts of Speech

	9 Conclusion
	References

