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Abstract. Deduction modulo is a framework in which theories are inte-
grated into proof systems such as natural deduction or sequent calculus
by presenting them using rewriting rules. When only terms are rewritten,
cut admissibility in those systems is equivalent to the confluence of the
rewriting system, as shown by Dowek, RTA 2003, LNCS 2706. This is no
longer true when considering rewriting rules involving propositions. In
this paper, we show that, in the same way that it is possible to recover
confluence using Knuth-Bendix completion, one can regain cut admis-
sibility in the general case using standard saturation techniques. This
work relies on a view of proposition rewriting rules as oriented clauses,
like term rewriting rules can be seen as oriented equations. This also
leads us to introduce an extension of deduction modulo with conditional
term rewriting rules.

Whatever their origin, proofs rarely need to be searched for without context:
Program verification requires arithmetic, theories of lists or arrays, etc. Mathe-
matical theorems are in general not proved in pure predicate logic. Consequently,
even if (automated and interactive) proof systems have achieved a high degree
of maturity, they need to be able to deal with theories in an efficient way. This
explains the particular interest focused on SMT (Satisfiability Modulo Theory)
provers in the latter years. However, one of the drawbacks of the SMT approach
is that the way theories are integrated is not completely generic, in the sense
that each theory needs a special treatment.

A more generic approach to integrating theories into a proof system was pro-
posed by Dowek, Hardin and Kirchner [14]. In Deduction Modulo1, a theory is
represented by a congruence over formulæ, and proofs are searched for mod-
ulo this congruence. In practice, this congruence is most often described as a
rewriting system. However, using only term rewriting rules would not be enough
to capture interesting theories. For instance, Vorobyov [21] showed that even
quantifier-free Presburger arithmetic cannot be presented as a convergent term
rewriting system. To overcome this, Deduction Modulo also deals with proposi-
tion rewriting rules, that rewrite atomic formulæ into formulæ. Thanks to this,
it was possible to present many theories in Deduction Modulo: simple type the-
ory (also known as higher-order logic), arithmetic, B set theory [18], any pure

1 Although it may sound rather strange, the absence of subsequent to the term “mod-
ulo” follows the original works about this field.
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type system, including the calculus of constructions which is the foundation
of the proof assistant Coq [7], or, in fact, any first-order theory [5]. It is then
possible to use automated theorem provers based on Deduction Modulo, such
as iProver Modulo [6] or Zenon Modulo [9]. Moreover, proofs in those theo-
ries can be checked using Dedukti, a proof checker based on Deduction Modulo
(https://www.rocq.inria.fr/deducteam/Dedukti/). Note that if one wants
that the proof systems modulo a rewriting system behave well, in particular, if
one wants the proof search methods to be complete, or the proof calculus to
enjoy usual proof-theoretical properties such as the subformula property or the
witness property, the rewriting system must have the following feature: The cut
rule must be admissible in the sequent calculus modulo the rewriting system.
This is true for the presentations of theories cited above.

Even if any first-order theory can be presented as a rewriting system with cut
admissibility, these presentations may be quite unnatural. This is particularly the
case when equality is involved. Indeed, the work [5] does not handle the equality
predicate � in a special way, and for instance an axiom s � t would be presented
by a proposition rewriting rule s � t → � and not by a term rewriting rule s → t.
There are also cases in which the most natural candidate to present an axiom as
a rewriting rule would be a conditional rewriting rule, for instance in the case of
an axiom of the shape A(x) ⇒ s(x) � t(x). In particular, this is the case of one
of the axioms of the theory used in the provers of the HOL family (HOL4, HOL
Light, or even Isabelle/HOL). In the translation of proofs in the OpenTheory
format [17] into proofs that can be checked by Dedukti [1], this axiom could
not be easily presented as a rewriting rule, and should therefore remain as an
axiom, losing partially the benefit of working modulo the theory. As we will see in
Example 8, this axiom can be naturally presented as a conditional rewriting rule.
In this paper, we therefore introduce Deduction Modulo Conditional Rewriting
Rules, which strictly subsumes the usual presentation of Deduction Modulo.

We therefore need a criterion that ensures that cut admissibility holds in
the sequent calculus modulo the conditional rewriting system. To do so, we
study links between saturation processes and cut admissibility. In [12], Dowek
proved that in the case were there are only term rewriting rules, cut admissi-
bility is equivalent to the confluence of the rewriting system. In the case where
there are proposition rewriting rules, this is no longer true; for instance the rule
A → A ⇒ B is confluent but does not admit cuts. Now, consider a term rewrit-
ing system that does not admit cuts. Equivalently, it is not confluent. One way to
recover confluence, and thus cut admissibility, is to use the completion technique
of Knuth and Bendix [19], that has been refined into Unfailing Completion [2].
Unfailing Completion is a saturation process: starting from a set of equations,
new equations are generated, and older ones are simplified, until all newly gener-
ated equations are redundant. The set of equations is then called saturated, and
in the case of Unfailing Completion, the corresponding rewriting system is con-
vergent on ground terms. Consequently, cut admissibility is ensured for ground
terms, which is enough for cut admissibility since we can restrict ourselves to
ground sequents (if one considers Eigenvariables as constants). In other words,

https://www.rocq.inria.fr/deducteam/Dedukti/
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when it succeeds, Unfailing Completion allows to recover cut admissibility. In
this paper, we investigate how a saturation technique can help at regaining cut
admissibility in the more general case when there are proposition rewriting rules.

To better apprehend how it works, let us remark that there are usually two
ways to see rewriting systems: The first one is to consider them as particular
cases of abstract reduction systems whose objects are terms. The second one
is to consider them as a set of equations oriented by some reduction ordering.
It is this second point of view that is considered in Unfailing Completion, and
more generally in the automated theorem proving community. Of course, the
two views generally coincide, in particular in the case of terminating rewrite
systems. Let us now look at what would correspond to a proposition rewriting
rule following the second point of view. According to Dowek [13], a rewriting
rule P → C would coincide to what he calls a one-way clause ¬P ∨ C, where
¬P is selected, which means it is the only literal that can be used to resolve
the clause in the Resolution method. This idea of selected literal is reminiscent
of Ordered Resolution with Selection [4], where literals are selected according
to a well-founded ordering and a selection function choosing negative literals.
Therefore, the analogue of seeing term rewriting rules as equations oriented by
an ordering is to see proposition rewriting rules as clauses oriented by an ordering
and a selection function. Then, Ordered Resolution with Selection can be used
as a saturation process that allows to recover cut admissibility, as we prove in
Theorem 7.

We can go a step further. Unfailing Completion and Ordered Resolution with
Selection can be combined into Superposition, which is therefore a proof search
method for first-order logic with equality. Superposition includes in particular
the following inference rule:

s � u ∨C L[t]p ∨D
Superposition σ = mgu(s, t)

σ(L[u]p ∨ C ∨D)

with ordering restrictions to prevent the proliferation of such inferences. If we
look at the inference rule, it behaves as if L[t]p was rewritten (or more precisely
narrowed) into L[u]p, provided no condition in C holds. Following our analogy
between rewriting rules, equations and clauses, we can therefore see the clause
s � u ∨ C as a conditional rewriting rule s → u if ¬C. We then prove that
when a set of clauses is saturated using Superposition, its corresponding rewrit-
ing system, consisting of both proposition rewriting rules and conditional term
rewriting rules, admits cuts (Theorem 7 again, since Ordered Resolution with
Selection is a special case of Superposition when equality is not present).

In the following section, we will present Deduction Modulo in more details.
Then in Section 2 we say a few words about saturation processes, in particu-
lar saturation up to compositeness which is a modular form of redundancy. In
Section 3 we introduce Deduction Modulo Conditional Rewriting Rules, in par-
ticular by means of a sequent calculus. In Section 4, we prove the main result of
this paper, namely that when a set of clauses is saturated up to compositeness,
then a corresponding conditional rewriting system admits cuts.
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1 Deduction Modulo

1.1 Sequent Calculi Modulo

We use standard definitions for terms, predicates, propositions (with connectives
¬,⇒,∧,∨ and quantifiers ∀, ∃), sequents, substitutions, term rewriting rules and
term rewriting. The substitution of a variable x by a term t in a term or a
proposition A is denoted by {t/x}A, and more generally the application of a
substitution σ in a term or a proposition A by σA. A literal is an atomic propo-
sition or the negation of an atomic proposition. The negation of a literal L⊥ is
defined by P⊥ = ¬P and ¬P⊥ = P . A proposition is in clausal form if it is
the universal quantification of a disjunction of literals ∀x1, . . . , xn. L1 ∨ . . .∨Lp

where x1, . . . , xn are the free variables of L1, . . . , Lp. In the following, we will
often omit the quantifiers, and we will identify propositions in clausal form with
clauses (i.e. set of literals) as if ∨ were associative, commutative and idempotent.
This will be justified in Section 3. The symbol 
� represents the empty clause.
The polarity of a position in a proposition can be defined as follows: the root is
positive, and the polarity switches when going under a ¬ or on the left of a ⇒.

In deduction modulo, term rewriting is extended to propositions by congru-
ence on the proposition structure. In addition, there are also proposition rewrit-
ing rules whose left-hand side is an atomic proposition and whose right-hand side
can be any proposition. Such rules can also be applied to non-atomic proposi-
tions by congruence on the proposition structure. We call a rewriting system
the combination of a term rewriting system and a proposition rewriting system.
Deduction modulo consists in applying the inference rules of an existing proof
system modulo such a rewriting system.

In this setting, rewriting rules can be applied indifferently to the left- or the
right-hand side of a sequent. Consequently, they can be considered semantically
as an equivalence between their left- and right-hand sides. To be able to con-
sider implications, a polarized version of deduction modulo was introduced [11].
Proposition rewriting rules are tagged with a polarity + or −; they are then
called polarized rewriting rules. A proposition A is rewritten positively into a
proposition B (A−→+B) if it is rewritten by a positive rule at a positive po-
sition or by a negative rule at a negative position. It is rewritten negatively
(A−→−B) if it is rewritten by a positive rule at a negative position or by a
negative rule at a positive position. Intuitively, a positive rule A →+ B (resp. a
negative rule B →− A) corresponds to an implication B ⇒ A. Term rewriting
rules (but not proposition rewriting rules) are considered as both positive and

negative.
∗−→± is the reflexive transitive closure of −→±. This gives the polar-

ized sequent calculus modulo, some of whose rules are presented in Figure 1.

Example 1. Consider the polarized rewriting system

A ⊆ B →− ∀x. x ∈ A ⇒ x ∈ B A ⊆ B →+ ¬dw (A,B) ∈ A

A ⊆ B →+ dw(A,B) ∈ B



128 G. Burel

�− A
∗−→
R

−C + ∗←−
R

B
Γ,A− B,Δ

Γ,A − Δ Γ − B,Δ−
�

A − ∗←−
R

C
∗−→
R

+B
Γ − Δ

Γ,B − Δ Γ − A,Δ
⇒− C

∗−→
R

−A ⇒ B
Γ, C − Δ

Γ,A − Δ
−¬ B

∗−→
R

+¬A
Γ − B,Δ

Γ, {t/x}A − Δ
∀− B

∗−→
R

−∀x. A
Γ,B − Δ

Γ − A,B,Δ
−∵

C
∗−→
R

+A

C
∗−→
R

+BΓ − C,Δ

Fig. 1. Some inference rules of the Polarized Sequent Calculus Modulo R

(dw can be seen as the Skolem symbol introduced by the CNF transformation of
the definition of the subset relation, dw (A,B) is a witness that A is not included
in B if it is the case.) We can build the following proof of the transitivity of the
inclusion in the polarized sequent calculus modulo this system:

�−
dw(A,C) ∈ C − A ⊆ C

�−
dw(A,C) ∈ B − dw (A,C) ∈ B

⇒−
dw (A,C) ∈ B ⇒ dw (A,C) ∈ C, dw (A,C) ∈ B − A ⊆ C

∀−
B ⊆ C, dw (A,C) ∈ B − A ⊆ C

�−
dw(A,C)∈A−dw(A,C)∈A⇒−

dw(A,C) ∈ A ⇒ dw (A,C) ∈ B,B ⊆ C, dw (A,C) ∈ A − A ⊆ C
∀−

A ⊆ B,B ⊆ C, dw (A,C) ∈ A − A ⊆ C
−¬

A ⊆ B,B ⊆ C − A ⊆ C,A ⊆ C
−∵

A ⊆ B,B ⊆ C − A ⊆ C

We denote by Γ �R Δ the fact that the sequent Γ − Δ is provable in the
Polarized Sequent Calculus Modulo R. A theory Γ and a rewriting system R
are called compatible if for all formulæ A, then Γ � A (without rewriting) if and
only if �R A.

The cut rule is admissible in the sequent calculus modulo R if, whenever a
sequent can be proved in it, then it can be proved without using the cut rule (−

�

in Figure 1). Abusing terminology, we say that a rewriting system R admits cut
if the cut rule is admissible in the sequent calculus modulo R. The admissibility
of the cut rule has a strong proof-theoretical as well as practical importance:
it entails that normal forms exist for proofs; it implies the consistency of the
theory associated to R; it is equivalent to the completeness of the proof search
procedures based on deduction modulo R; etc.

1.2 Resolution Modulo and One-Way Clauses

An extension of resolution based on deduction modulo, called ENAR for Ex-
tended Narrowing and Resolution, was proposed by Dowek, Hardin and Kirch-
ner [14]. It consists of adding a new inference rule to the method of Robinson [20].
This rule, called Extended Narrowing, narrows a clause using the rewrite system
modulo which the proof is searched for. However, in ENAR, there is a need to
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P ∨ C ¬Q ∨D
Resolution σ = mgu(P,Q)

σ(C ∨D)

L ∨K ∨ CFactoring σ = mgu(L,K)
σ(L ∨ C)

P ∨ C
Ext. Narr.−

σ = mgu(P, Q)

Q →− D ∈ Rσ(D ∨ C)

¬Q ∨D
Ext. Narr.+

σ = mgu(P, Q)

P →+ ¬C ∈ Rσ(C ∨D)

Fig. 2. Polarized Resolution Modulo

transform formulæ into clausal normal form during proof search, and not only
before as it is usually the case with resolution methods. Therefore, Dowek refined
ENAR into Polarized Resolution Modulo, whose rules are presented in Figure 2.
In Polarized Resolution Modulo, proposition rewrite rules are assumed to be
clausal, which means that positive rewrite rules are of the form P →+ ¬C, and
negative rules are of the form P →− C, where C is in clausal form. This ensures
that formulæ generated by Extended Narrowing are still in clausal form.

Applying Extended Narrowing to a clause P ∨ C using the rule Q →− D
produces the same clause (namely σ(D∨C), where σ = mgu(P,Q)) as applying
Resolution to this clause P ∨C and the clause ¬Q∨D. Similarly, narrowing with
P →+ ¬C amounts to resolving with P ∨ C. Therefore, the polarized rewrite
rule Q →− D (resp. P →+ ¬C) can be identified with what Dowek [13] called
the one-way clause ¬Q ∨D (resp. P ∨ C) where

– two one-way clauses cannot be resolved together;
– only the selected (underlined) literal of a one way-clause can be used in

resolution.

Conversely, given a clause C and a literal L in C, it is always possible to
associate a polarized rewrite rule polar (C,L): polar (P ∨C,P ) is P →+ ¬C and
polar (¬Q∨D,¬Q) is Q →− D. Therefore, the same way that it is possible to see
a term rewriting rule as an equation in which one side is selected, it is possible
to see clausal polarized rewriting rules as clauses in which a literal is selected.

2 Saturation

If there are only term rewriting rules in R, and no proposition rewriting rules,
Dowek [12] showed that cut admissibility in the asymmetric sequent calculus
modulo R is equivalent to confluence of R. If R is not confluent, a way to get
an equivalent rewriting system which is confluent is to apply the Knuth-Bendix
standard completion [19], which was extended into Unfailing Completion [2].
Unfailing completion can be seen as a saturation process: one applies all possible
inferences to a starting set of formulæ (in that case, positive unit equations) until
all newly inferred formulæ are redundant, that is, can be simplified. In that case,
the resulting set is called saturated, and the correctness of the procedure shows
that a saturated set has the required property, namely ground convergence in
the case of Unfailing Completion. Of course, since the required property is in
general not decidable, the saturation process may not terminate. Resolution and
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its refinements can also be seen as saturation processes: the set of clauses is
completed until either the empty clause is generated, in which case the initial
set was inconsistent, or until all newly generated clauses are redundant, in which
case it is possible to construct a model of the saturated set of clauses.

It would be preferable that the saturation process were modular, in the sense
that, if a set Γ of formulæ is saturated, then saturating Γ ∪Δ should not need
to apply inferences between formulæ of Γ only. (This is in particular crucial for
implementing resolution using the given clause algorithm, to ensure that clauses
that were redundant remains redundant when a new given clause is chosen.)
Therefore, redundancy should be modular, in the sense that if C is redundant in
Γ , then it should be redundant in Γ ∪Δ. This refinement of redundancy is called
compositeness by Bachmair and Ganziger [3]. In fact, resolution-based provers
saturate their input in general not up to redundancy but up to compositeness
(Bachmair and Ganziger call saturation up to compositeness completeness, but
we will keep writing “saturation up to compositeness” to keep things clear.) Of
course, saturation up to compositeness implies saturation up to redundancy.

To deal with full first-order logic with equality, and not only unit clauses, Un-
failing Completion can be extended into Superposition [3], which is consequently
a complete proof-search method for first-order logic with equality. In pure Su-
perposition, the only predicate is the equality predicate (noted �), and clauses
are therefore sets of equations and inequations. It is possible to encode other
predicates using function symbols, as is done for instance in the prover E. How-
ever, to separate more clearly reasoning about equality and about propositions,
we will use the inference for Superposition in addition to the rules for Ordered
Resolution with Selection [4] (a refinement of resolution inspired by Superposi-
tion), as is done in the prover SPASS. As in Unfailing Completion, we consider a
reduction ordering �, that is, an ordering that is stable under substitution and
context. Literals are compared as the multisets of multisets {{s}, {t}} for the
positive literal s � t and {{s, �}, {t, �}} for the negative literal s �� t, where � is
a special symbol not part as the signature, which is assumed to be smaller than
any term. A clause s � t ∨ C is reductive for s � t if t �� s and s � t is strictly
maximal in s � t∨C. We also consider a selection function S that, given a clause
C, returns a subset of the negative literals of C. Without considering simplifi-
cations, Superposition consists of the four inference rules presented in Figure 3,
in addition to which we also consider the two rules of Ordered Resolution with
Selection presented in Figure 4.

As we can see, Superposition has strong restrictions on the application of infer-
ence rules, which explain in part its efficiency. In particular, ordering restrictions
are performed after the application of the unifier σ. Let us note notwithstanding
that, thanks to the stability of � by substitution, the calculus remains of course
complete if the restriction is applied on the premises, although it makes the proof
search space bigger.

In Superposition, compositeness can be defined as follows: A ground clause C
is called composite with respect to Γ if there exists ground instances C1, . . . , Cn

of clauses of Γ such that C1, . . . , Cn entails C and C � Cj for all 1 ≤ j ≤ n. A
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s �� t ∨ C
Equality Resolution

σ(C)

s � u ∨ C ¬P [t]p ∨D
Negative Superposition

σ(¬P [u]p ∨ C ∨D)

s � u ∨ C P [t]p ∨D
Positive Superposition

σ(P [u]p ∨ C ∨D)

s � u ∨ t � v ∨ CEq. Factoring
σ(u �� v ∨ t � v ∨ C)

where

1. in all rules above, σ = mgu(s, t);
2. in Equality Resolution, either s �� t ∈ S(s � u ∨ C), or (S(s � u ∨ C) = ∅ and

σ(s �� t) is maximal in σ(s � u ∨ C);
3. in both Superpositions, σ(s � u∨C) is reductive for σ(s � u) and t is not a variable;
4. in Negative Superposition, either ¬P [t]p ∈ S(¬P [t]p, D) or S(¬P [t]p ∨ D) = ∅ and

σ(¬P [t]p) is maximal in σ(¬P [t]p ∨D);
5. in Positive Superposition, S(P [t]p∨D) = ∅ and σ(P [t]p∨D) is reductive for σ(P [t]p);
6. in Equality Factoring, S(s � u ∨ t � v ∨ C) = ∅ and σ(s � u) is maximal in

σ(s � u ∨ t � v ∨ C);
7. in both Superpositions, if P [t]p is an equation v[t]p′ � w, then σw �� σv[t]p′ .

Fig. 3. Inference Rules of Superposition

P ∨ C ¬Q ∨D
Resolution

σ(C ∨D)

P ∨Q ∨ C
Factoring

σ(P ∨ C)
where

1. in both cases, σ = mgu(P,Q);
2. in Resolution, σP is strictly maximal in σ(P ∨ C) and S(σ(P ∨ C)) = ∅;
3. in Resolution, either σ(¬Q) ∈ S(σ(¬Q ∨ D) or S(σ(¬Q ∨ D) = ∅ and σ(¬Q) is

maximal in σ(¬Q ∨D);
4. in Factoring, σP is maximal in σ(P ∨ C) and S(σ(P ∨ C)) = ∅.

Fig. 4. Inference Rules of Ordered Resolution with Selection

non-ground clause is called composite with respect to Γ if all its ground instances
are. Lemma 11 of [3] tells us that if C is composite in Γ , then it is composite in
Γ ∪Δ, and that all composite clauses can be safely removed from Γ , as expected.

3 Deduction Modulo Conditional Rewriting Rules

We now present an extension of deduction modulo to the case of conditional
rewriting rules.

Definition 2 (Conditional rewriting rule). A conditional rewriting rule is
given by a pair of terms t and s and a set of formalæ Γ . It is denoted by s →
t if Γ .

A term u rewrites to a term v and conditions Δ using the conditional rewriting
rule s → t if Γ if there is a position p and a substitution θ such that u|p = θs,
v = u[θt]p and Δ = θΓ . This rewrite relation is denoted by u−→ v �Δ. This is
extended to propositions by congruence on the proposition structure.
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Note that our definition of conditional rewriting differs from the usual definition
as can be found in [10], because conditions are not checked before applying the
rewriting rule, but they are delayed and, as we will see, they are checked using
a proof system and not just using normalization. This allows to have arbitrary
first-order formulæ as conditions.

We can combine conditional (term) rewriting rules C with polarized (proposi-
tion) rewriting rules P to get what we call a polarized and conditional rewriting

system : A proposition A rewrites positively to B and Δ in CP (A
∗−→
CP

+B �Δ) if

– either A = B and Δ = ∅
– or A

∗−→
CP

+A′ �Δ1 and

• either A′ −→
P

+B and Δ = Δ1

• or A′ −→
C

B � Δ2 and Δ = θΔ1 ∪ Δ2 where θ is a renaming of the free

variables of Δ1 to avoid clashes with those of Δ2.

Negative rewriting can be defined similarly. Let us remark that a conditional
rewriting step is therefore both a positive or a negative step.

Definition 3. A formula does not involve equality if � is not present in it. A
conditional rewriting rule s → t if C does not involve equality if all formulæ in
C do not involve equality.

Given a rewriting system that does not involve equality, we can define the
Sequent Calculus Modulo Polarized and Conditional Rules. We only give the
main rules in Figure 5, the others can be induced from them:

Γ − θA1,Δ . . . Γ − θAn,Δ�− A
∗−→

CP
−C � {A1; . . . ;Ai} and B

∗−→
CP

+C � {Ai+1; . . . ;An}
Γ,A − B,Δ

Γ,A− Δ Γ − B,Δ Γ − θA1, Δ . . . Γ − θAn,Δ−
�

C
∗−→

CP
−A � {A1; . . . ;Ai}

C
∗−→

CP
+B{Ai+1; . . . ;An}Γ − Δ

Γ,B − Δ Γ − A,Δ Γ − θA1,Δ . . . Γ − θAn,Δ⇒− C
∗−→

CP
−A ⇒ B � {A1; . . . ;An}

Γ,C − Δ

Γ − θA1,Δ . . . Γ − θAn,Δ−� A
∗−→

CP
+� � {A1; . . . ;An}

Γ − A,Δ

Γ, {t/x}A − Δ Γ − θA1,Δ . . . Γ − θAn,Δ
∀− B

∗−→
CP

−∀x. A � {A1; . . . ;An}
Γ,B − Δ

where θ is a substitution of the free variables of all Ai.

Fig. 5. Some Inference Rules of the Sequent Calculus Modulo Polarized and Condi-
tional Rules
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Example 4. Consider the following polarized and conditional rewriting system,
inspired by Collatz conjecture:

syracuse(X) → syracuse(half(X)) if {even(X)} half(s(o)) → o if ∅
syracuse(X) → syracuse(tnpo(X)) if {odd(X)} half(o) → o if ∅
half(s(s(X)) → s(half(X)) if ∅ even(s(X)) →+ odd(x)

tnpo(s(X)) → s(s(s(tnpo(X)))) if ∅ odd(s(X)) →+ even(x)

tnpo(o) → s(o) if ∅ even(o) →+ �
and let us denote by n the term s(. . . s(

︸ ︷︷ ︸

n times

o)).

Then, syracuse(5)
∗−→ 1 � {odd(5); even(16); even(8); even(4); even(2)}, and

we have the following proof of odd(syracuse(5)):

−� − odd(5)
−� − even(16)

−� − even(8)
−� − even(4)

−� − even(2)
−� − odd(syracuse(5))

Note that Deduction Modulo Polarized and Conditional Rules strictly sub-
sumes Polarized Deduction Modulo, which is exactly the case when there are no
conditions in the term rewriting rules.

Lemma 5. The inference rules ∀−, ∨−, ¬− and −¬ are invertible in the Sequent
Calculus Modulo Polarized and Conditional Rules, which means that their con-
clusion is provable if and only if their premises are. Moreover, if the proof of the
conclusion does not use −

�
, neither do the proofs of the premises.

Proof. By induction on the proof of the conclusion. 
�
This lemma implies that we can handle formulæ in clausal normal form as
clauses, that is, set of literals. See for instance [16].

4 Ensuring Cut Admissibility Using Saturation

Given an ordering � and a selection function S, we define the polarized and
conditional rewriting system associated to a set of clauses, and state that the
saturation of the set of clauses implies the cut admissibility for the corresponding
rewriting system.

Definition 6. Given a set of clauses Γ , an ordering on terms � and a selection
function S, then the rewrite system CS(Γ,�, S) contains all rewrites rules

– polar(C,L) for all clauses C such that S(C) �= ∅ and for all L in S(C) that
does not involve equality;

– polar(C,L) for all clauses C such that S(C) = ∅ and for all L maximal in
C w.r.t. � that does not involve equality;
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– s → t if {L⊥
1 , . . . , L

⊥
n } for all clauses C = s � t ∨ L1 ∨ · · · ∨ Ln such that

S(C) = ∅, s � t is maximal in C and t �� s.

Theorem 7. If the set Γ of clauses is saturated by Superposition up to com-
positeness, and CS(Γ,�, S) does not involve equality, then the sequent calculus
modulo CS(Γ,�, S) is compatible with Γ and it admits cuts.

Note that the Sequent Calculus Modulo Polarized and Conditional Rules is only
defined to prove formulæ that do not involve equality.

Before we prove Theorem 7, let us look at an example.

Example 8. In provers of the HOL family, it is possible to define a new type
corresponding to the (non-empty) set of terms that satisfies a predicate p. To do
so, two function symbols abs and rep are introduced that go respectively from
the initial type to the new one and conversely, as is represented in the following
figure:

rep

abs

p

These function symbols satisfy the axioms ∀X. p(X) ⇔ abs(rep(X)) � X and
∀Y. rep(abs(Y )) � Y , which correspond to the clauses

p(X) ∨ ¬abs(rep(X)) � X (1)

¬p(X) ∨ abs(rep(X)) � X (2)

rep(abs(Y )) � Y (3)

Without a selection function, and with the lexicographic path ordering with
precedence abs � p and rep � p, the resulting conditional rewriting system is

abs(rep(X)) → X if {p(X)} rep(abs(Y )) → Y if ∅

The sequent calculus modulo this system is not compatible with the initial
theory. Indeed, it is not possible to prove ∀Y. p(abs(Y )), although this is a
consequence of the axioms. This comes from the fact that the set of clauses
is not saturated for Superposition. To saturate the set of clause, for instance
using E, we only need to add a new clause, namely p(abs(Y )), obtained by
applying Negative Superposition on (3) and (1), and then Equality Resolution on
p(abs(X)) ∨ ¬abs(X) � abs(X), which is then composite. Note that all other
generated clauses are tautologies, and therefore are composite.

Consequently, the polarized and conditional rewriting system

abs(rep(X)) → X if {p(X)} rep(abs(Y )) → Y if ∅ p(abs(X)) →+ ¬⊥

admits cut for formulæ that do not involve equality.
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Let us mention Holide [1], a translator of proofs in the OpenTheory [17] format
into Dedukti, a proof checker based on deduction modulo. Most of the theory of
HOL can be expressed as rewriting rules, except a few axioms that cannot be
easily oriented. The first axiom defining rep and abs is one of these axioms, and
as we have seen, it could be oriented as a conditional rewriting rule.

To prove Theorem 7, we need to prove that if A is proved in the sequent
calculus modulo CS(Γ,�, S), then it can be proved in Γ , and that if A can be
proved in Γ , then it can be proved in the sequent calculus modulo CS(Γ,�, S)
without −

�
. The proof is partially based on the work of Dowek [13] who proves

that a derivation in PRM can be translated into a cut-free proof in the polarized
sequent calculus modulo.

Lemma 9. If A
∗−→−B � {L1, . . . , Ln}, then Γ,A � B,L⊥

1 , . . . , L
⊥
n .

If A
∗−→+B � {L1, . . . , Ln}, then Γ,B � A,L⊥

1 , . . . , L
⊥
n .

Proof. By induction on the length of the derivation; several steps can be com-
bined using −

�
. Note the importance of renaming free variables between several

steps. A single step can be proved by induction on the rewritten formula. If the
rewriting occurs in a subformula, we can use the induction hypothesis to con-
clude. Let us therefore assume that A is atomic. We have two cases depending
on whether a polarized or a conditional rule is used.

– A−→B � {L1, . . . , Ln}. There is a rule s → t if {L′
1, . . . , L

′
n} in CS(Γ,�, S)

and a substitution σ such that A|p = σs, B = A[σt]p and Lk = σL′
k. This

rule corresponds to a clause s � t∨L′
1
⊥∨· · · ∨L′

n
⊥
in Γ . From Γ,A one can

therefore deduce B ∨ L1
⊥ ∨ Ln

⊥, and thus Γ,A � B,L⊥
1 , . . . , L

⊥
n .

– A−→−B. There exists a rule P →− C in CS(Γ,�, S) and a substitution σ
such that A|p = σP and B = σC. Therefore, there is a clause ¬P ∨ C in Γ ,
and from Γ,A one can therefore deduce σC, thus Γ,A � B. 
�

Corollary 10. If Π �CS(Γ,�,S) Δ then Γ,Π � Δ.

Proof. By induction on the proof, using Lemma 9 to convert rewriting steps. 
�
Lemma 11. If the set Γ of clauses is saturated by Superposition up to compos-
iteness, and CS(Γ,�, S) does not involve equality, if A does not involve equal-
ity and A is valid in Γ , then it can be proved in the sequent calculus modulo
CS(Γ,�, S) without −

�
.

Proof. Since Superposition is complete, there is a derivation of the empty clause
from Γ and C�(¬A) (the clausal normal form of ¬A). We are going to translate
this derivation into a cut-free proof of C�(¬A) −, by induction of the length of
the derivation.

Let us show that all new clauses in the derivation of 
� do not involve equality:
Since Γ is saturated up to compositeness, all inferences using only premises in
Γ are redundant and therefore can be discarded. So by induction hypothesis at
least one of the premises does not involve equality. The only way to obtain an
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equality would be to apply Resolution or Superposition on a literal L of a clause
L ∨ C of Γ . In the former case, the restriction on the application of Resolution
implies that polar (C,L) is in CS(Γ,�, S). Because it does not involve equality,
this means that C, and thus the new clause, neither do. In the latter case, the
clause involving equality is necessarily the left one in the Superposition inference
rule, so that L = s � t for some s and t, and C = L1 ∨ · · · ∨Ln. The restriction
on the application of Superposition implies that s → t if {L⊥

1 , . . . , L
⊥
n } is in

CS(Γ,�, S), so that L1, . . . , Ln do not involve equality, and thus the new clause
neither.

Therefore, since Γ is saturated up to compositeness, we can assume that the
derivation of 
� does not contain applications of Equality Resolution or Equality
Factoring. Let us look at the remaining cases. To ease the proof, we can decom-
pose the application of the inference rules into the application of an instantiation
and the application of the rule without unification, as in the PEIR calculus of
[13]. We have the following cases:

– Instantiation of a clause C outside Γ into σC. By induction hypothesis we
have a cut-free proof of Δ,C, σC −. We can build a cut-free proof of Δ,C −
by applying a contraction of C and then ∀− to instantiate the variables as
in σ. (Remind that we omit to write quantifiers in clauses, so that C stands
in fact for ∀x1, . . . , xn, C where x1, . . . , xn are the free variable of C.)

– Resolution between two clauses P ∨C and ¬P ∨D outside Γ . Let us suppose
that we have a cut-free proof of Δ,P ∨C,¬P ∨D,C∨D −, then Proposition
7 of [13] implies that we have a proof of Δ,P ∨ C,¬P ∨D −.

– Resolution between a clause P ∨ C outside Γ and a clause obtained by in-
stantiating a clause ¬Q ∨ D of Γ with substitution σ. Then Q →− D is in
CS(Γ,�, S), and P

∗−→−σD � ∅. By induction hypothesis, we have a cut-free
proof of Δ,P ∨ C,C ∨ σD −. We can obtain a cut-free proof of Δ,P ∨ C −
by applying a contraction of P ∨ C and rewriting P into σD.

– Resolution between a clause ¬P ∨ C outside Γ and a clause obtained by
instantiating a clause Q ∨D of Γ : similar to the previous case, except that
we need to eliminate a double negation.

– Superposition between an clause obtained by instantiating a clause s � t ∨
L1 ∨ · · · ∨ Ln of Γ with substitution σ and a clause L[σs]p ∨ D outside
Γ . The restriction on the application of Superposition implies that the rule
s → t if {L⊥

1 , . . . , L
⊥
n } is in CS(Γ,�, S), and consequently L[σs]p

∗−→L[σt]p �
{σL⊥

1 , . . . , σL
⊥
n }. By induction hypothesis, we have a cut-free proof of Δ,

L[σs]p ∨D,L[σt]p ∨D ∨ L1 ∨ · · · ∨ Ln −. Since ∨− is cut-free invertible, we
therefore have (cut-free) proofs ofΔ,L[σs]p∨D,L[σt]p∨D − and Δ,L[σs]p∨
D,Li − for all 1 ≤ i ≤ n. Starting from Δ,L[σs]p ∨D −, we can apply con-
traction and rewrite L[σs]p, so that it remains to proveΔ,L[σs]p∨D,L[σt]p∨
D −, which we have, and Δ,L[σs]p ∨D − σLi

⊥ for all 1 ≤ i ≤ n, which can
be obtained by application of −¬ or inversion of ¬− in the proofs above.
Note that to make the proof more clear, we did not take the universal quan-
tifiers into account: this is not a problem since ∀− is invertible, and we took
care of renaming the free variables of the conditions during rewriting.
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The last point to show is that from a cut-free proof of C�(¬A) − one can build
a cut-free proof of − A. This can be proved by slightly adapting the proof of
Proposition 3 of [16]. 
�

5 Conclusion and Further Works

We have introduced an extension of Deduction Modulo that handles conditional
rewriting rules. To get a criterion for cut admissibility in that setting, we have
examined how rewriting rules can be seen as oriented equations and oriented
clauses. This reflection has lead us to study how saturation techniques can help
presenting a theory through a rewriting system with cut admissibility. Our main
result is that whenever a set of clauses is saturated, we can build a corresponding
rewriting system admitting cuts. We can therefore use state-of-the-art automated
theorem provers, which are based on saturation techniques, to orient a theory
so that it can be used in Deduction Modulo. These notable results could be
extended in several directions.

First, the conditions in the conditional rewriting rules obtained from a satu-
rated set of clauses are simple, since they are only a set of literals. This comes
from the fact that we start from clauses, and not arbitrary formulæ. To get more
interesting conditions, an idea would be to consider the work of Ganzinger and
Stuber [15] that extend Superposition with formulæ that need not be in clausal
normal form.

Second, our work is restricted to the case where equality appears only in the
rewriting rules, not in the conditions nor in the formulæ to be proved. If we
allowed equations in them, Negative Superposition could be applied to clauses
of the theory in which a negative equation is selected. Therefore, these clauses
could not be discarded as it is the case in Definition 6. Another issue would
be the design of a sequent calculus modulo for first-order logic with equality. It
could be handled by extending one of the calculi of [8].

Third, saturation implies cut admissibility, but the converse is not true in
general. It would be interesting to be able to characterize cut admissibility as
precisely as can be done when only terms are rewritten, where it is equivalent
to the well studied notion of confluence.

Finally, it would be interesting to see how our work on conditional rewriting
rules can be extended to the λΠ-calculus modulo, the system at the heart of
the proof checker Dedukti. By doing so, we would be able to orient the theory
used in the provers of the HOL family without using axioms, thus improving the
performance of the translator Holide [1].
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