
Reduction System

for Extensional Lambda-mu Calculus

Koji Nakazawa and Tomoharu Nagai

Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract. The Λμ-calculus is an extension of Parigot’s λμ-calculus.
For the untyped Λμ-calculus, Saurin proved some fundamental proper-
ties such as the standardization and the separation theorem. Nakazawa
and Katsumata gave extensional models, called stream models, in which
terms are represented as functions on streams. This paper introduces a
conservative extension of the Λμ-calculus, called Λμcons, from which the
open term model is straightforwardly constructed as a stream model,
and for which we can define a reduction system satisfying several fun-
damental properties such as confluence, subject reduction, and strong
normalization.

1 Introduction

The λμ-calculus was originally introduced by Parigot [16] as a term assignment
system for the classical natural deduction, and then a lot of studies have been
devoted to the λμ-calculus from both sides of logic and computer science. An
extension of the λμ-calculus was given by de Groote [6] to study continuation-
passing-style translations for the calculus. As Saurin showed in [18,20], an
untyped variant of this extension, called the Λμ-calculus, enjoys fundamental
properties such as the standardization and the separation theorem. In partic-
ular, the latter does not hold for the original λμ-calculus as shown by David
and Py [5].

For the untyped Λμ-calculus, Nakazawa and Katsumata [14] gave a exten-
sional model, called stream model. The stream model is a simple extension of
the λ-model and similar to Streicher and Reus’ continuation semantics for the
λμ-calculus [22]. The stream model naturally reflects the idea that the Λμ-terms
represent functions on streams. Nakazawa and Katsumata showed the soundness
and gave an algebraic characterization for the stream model, but they have not
discussed on completeness.

Regarding types, some type assignment systems for the Λμ-calculus has been
introduced. Pagani and Saurin [15,21] gave a type system for the Λμ-calculus
as a stream calculus, and Gaboardi and Saurin [10] proposed its extension with
recursive types. De’Liguoro [8] gave an intersection type system and filter models
for the Λμ-calculus, based on the stream model. However, the results on the
stream model in [14] have not been adapted to typed calculi.

The main results of this paper are the following: (1) An extension Λμcons of the
Λμ-calculus and its reduction system are proposed. The calculus Λμcons induces

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 349–363, 2014.
c© Springer International Publishing Switzerland 2014

350 K. Nakazawa and T. Nagai

a term model as a stream model, and hence it is sound and complete with respect
to the stream model. It is proved that the reduction on the untyped Λμcons is
confluence. (2) A type assignment for Λμcons based on de’Liguoro’s type system
is proposed, and subject reduction and strong normalization of the reduction on
the typed Λμcons are proved.

In Section 2 and 3, we define the equational theory and the reduction system
for the untyped Λμcons, and prove confluence. The calculus Λμcons explicitly
contains stream expressions, and this extension is similar to the λμ-calculus of
Streicher and Reus [22]. The reduction system proposed in this paper avoids
the expansion rule in the Λμ-calculus, called (fst) in [18,21], and adopts a new
rule (exp), which we can define with the new explicit stream expressions. The
reduction system is confluent for whole of the untyped Λμcons including open
terms in contrast to the Λμ-calculus in [21], where confluence holds for only the
stream closed terms.

In Section 4 and 5, a typed variant of Λμcons is proposed, and subject reduction
and strong normalization are proved. Following the structure of the stream model
and de’Liguoro’s type system [8], our type system restricts functional types to
those from stream types to term types. For types of streams, we adopt (restricted
forms of) recursive types for finiteness of the calculus, similarly to Gaboardi and
Saurin’s type system [10].

In Section 6, we discuss on the relationship with the existing calculi, such as
the extended stack calculus [3], the untyped Λμ-calculus, and some type systems
in [16,15,21,10]. In particular, we will see that the untyped Λμcons is conservative
over the untyped Λμ-calculus (and hence over the λ-calculus), and inherits the
separation theorem from Λμ.

2 Λμcons

2.1 Definition of Untyped Λμcons

As in [18], we adopt the notation tα to denote the named term [α]t in the original
λμ-calculus, that can be read as a function application of t to a stream α. We
use the constructors car and cdr to represent the head and the tail of a stream,
respectively.

Definition 1 (Untyped Λμcons). Suppose to have two sorts of variables: term
variables, denoted by x, y, · · · , and stream variables, α, β, · · · .

The terms and the streams of Λμcons are defined as

t, u ::= x | λx.t | tu | μα.t | tS | carS S ::= α | t :: S | cdrS

The sets of terms and streams are denoted by Tm and St, respectively. Oc-
currences of x in λx.t and α in μα.t are considered to be bound. A variable
occurrence which is not bound is called free. A term which contains no free
stream variables is called stream closed. The size of t (and S) is defined as usual,
and it is denoted by |t| (and |S|, respectively).

Reduction System for Extensional Lambda-mu Calculus 351

The axiom schema of Λμcons are the following:

(λx.t)u = t[x := u] (βT)

(μα.t)S = t[α := S] (βS)

λx.tx = t (ηT)

μα.tα = t (ηS)

(carS) :: (cdrS) = S (surj)

car(t :: S) = t (car)

cdr(t :: S) = S (cdr)

t(u :: S) = (tu)S (assoc)

where, t contains no free x in (ηT), and t contains no free α in (ηS). The con-
gruence relation =Λμcons is defined from the above axiom schema.

We write cdriS to denote the i-time application of cdr to S for i ≥ 0, and use
the abbreviation cadriS ≡ car(cdri S).

Example 1. 1. The usual μ-rule (μα.t)u = μα.t[[]α := []uα] is admissible as
follows, where the special substitution t[[]α := []uα] recursively replaces subterm
occurrences of the form vα in t with (vu)α.

(μα.t)u =Λμcons μβ.(μα.t)uβ (ηS)

=Λμcons μβ.t[α := u :: β] (assoc, βS)

=Λμcons μα.t[[]α := []uα] (assoc).

2. By a fixed-point combinator Y in the λ-calculus, the n-th function on
streams is defined as

nth ≡ Y (λf.μα.λn.ifzero n then (carα) else f(cdrα)(pred n)),

where ifzero and pred are defined on the Church numerals, and then we have
nthS k =Λμcons cadr

kS, where k is the Church numeral representing k.

The calculus Λμcons is a natural extension of the Λμ-calculus, and it is also
close to the λμ-calculus in [22], which explicitly has the expressions for continu-
ations but no cdr operator. The main difference from these existing calculi is the
surjectivity axiom (surj). We will discuss the relationship with existing calculi in
Section 6.

2.2 Stream Models for Untyped Λμcons

The stream models are defined as in [14]. We use λ to denote the meta-level
function abstraction.

Definition 2. The set S is called a stream set on a set D if there is a bijective
mapping (::) from D × S to S. For a stream set S, the inverse of (::) is denoted
by 〈Car,Cdr〉.

352 K. Nakazawa and T. Nagai

Definition 3. A stream model consists of
a non-empty set D and a stream set S on D,
a subset [S → D] of the set of functions from S to D,
Ψ : [S → D] → D a bijective mapping,

such that the meaning function [[·]]ρ can be defined for any function ρ from term

variables to D and stream variables to S as follows, where d	s denotes Ψ−1(d)(s).

[[x]]ρ = ρ(x) [[α]]ρ = ρ(α)

[[λx.t]]ρ = Ψ(λs ∈ S.[[t]]ρ[x �→Car s]	(Cdr s)) [[t :: S]]ρ = [[t]]ρ :: [[S]]ρ

[[tu]]ρ = Ψ(λs ∈ S.[[t]]ρ	([[u]]ρ :: s)) [[cdrS]]ρ = Cdr[[S]]ρ

[[μα.t]]ρ = Ψ(λs ∈ S.[[t]]ρ[α�→s])

[[tS]]ρ = [[t]]ρ	[[S]]ρ

[[carS]]ρ = Car[[S]]ρ

The set Tm/ =Λμcons is a stream model, which we call open term model.

Proposition 1 (Open term model). Let [t] and [S] be the equivalence classes
of t and S with respect to =Λμcons , and define

D = {[t] | t ∈ Tm} S = {[S] | S ∈ St} [S → D] = {f[t] | t ∈ Tm},

where f[t] denotes the function λ[S] ∈ S.[tS]. Ψ is defined as Ψ(f[t]) = [t]. Then,
these give a stream model with the meaning function given by [[t]]ρ = [tθρ], where
θρ is the substitution such that θρ(x) = u for ρ(x) = [u] and θρ(α) = S for
ρ(α) = [S].

Proof. Straightforward. Note that [tθρ] is independent of the choice of θρ.

Then, the following is easy to show.

Theorem 1 (Soundness and completeness). For any t and u, t =Λμcons u
holds if and only if [[t]]ρ = [[u]]ρ holds for any stream model and ρ.

Some properties of the stream models are shown in [14]. One of them guaran-
tees existence of a non-trivial stream model, which gives a semantical proof of
the consistency of the equational theory of Λμcons.

Proposition 2 ([14]). For any pointed CPO D, there exists a stream model
DS

∞ into which D can be embedded.

Corollary 1 (Consistency). There exist closed Λμcons-terms t and u such that
t =Λμcons u does not hold.

Reduction System for Extensional Lambda-mu Calculus 353

3 Reduction System

3.1 Reduction for Untyped Λμcons

Definition 4. 1. The one-step reduction → on terms and streams of Λμcons is
the least compatible relation satisfying the following axioms.

(μα.t)u → μα.t[α := u :: α] (βT)

(μα.t)S → t[α := S] (βS)

λx.t → μα.t[x := carα](cdrα) (exp)

t(u :: S) → tuS (assoc)

car(u :: S) → u (car)

cdr(u :: S) → S (cdr)

μα.tα → t (α �∈ FV (t)) (ηS)

(carS) :: (cdrS) → S (η::)

t(carS)(cdrS) → tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →B and →E are defined as the least compatible relations
satisfying the following axioms, respectively.

→B: (βT), (βS), (exp), (assoc), (car), and (cdr)
→E: (ηS), (η::), (η

′
::), (car), and (cdr)

We also use →∗
B, →+

E , and so on.

Note that the →B-normal forms are characterized by

t ::= a | μα.t a ::= x | cadrnα | at | a(cdrnα).

We can easily see that the usual β- and η-rules in the λ-calculus are derivable,
that is, (λx.t)u →∗ t[x := u] and λx.tx →∗ t for x �∈ FV (t) hold. Hence, the βη-
reduction of the λ-calculus and the reduction of Parigot’s λμ-calculus including
the renaming and the η-rules for μ-abstractions can be simulated in Λμcons.
Furthermore, the following holds.

Proposition 3. The equivalence closure of → coincides with =Λμcons .

It is known that näıvely adding the η-rule λx.tx →η t to the λμ-calculus
destroys confluence [5]. The counterexample is t = λx.(μα.yβ)x, and then

t →η μα.yβ, t →β λx.μα.yβ.

In order to recover confluence, the rule called (fst) in [21] has been proposed as

μα.t → λx.μα.t[[]α := []xα] (fst).

354 K. Nakazawa and T. Nagai

It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization.

Alternatively, by the explicit stream syntax in Λμcons, we can define the new
rule (exp), and the above critical pair is solved as

λx.μα.yβ →exp μγ.(μα.yβ)(cdrγ) →βS μγ.yβ(= μα.yβ).

The reduction system with (exp) will be adapted to the typed Λμcons without
any restriction of types, and subject reduction and strong normalization will be
proved.

3.2 Confluence

We prove confluence of → by (1) confluence of →B, (2) confluence of →E, and
(3) commutativity of them. In contrast to the Λμ-calculus [21], the result is not
restricted to stream closed terms, and hence the Church-Rosser theorem directly
follows from the confluence.

Proposition 4. →B and →E are respectively confluent.

Proof. (B) By a generalized notion of complete development, which is indepen-
dently introduced in [7,11]. We define the mapping (·)† as follows.

x† = x α† = α

(λx.t)† = μα.t†[x := carα](cdrα) (cdr(t :: S))† = S†

(μα.t)† = μα.t† (cdrS)† = cdrS† (otherwise)

((μα.t)u)† = μα.t†[α := u† :: α] (t :: S)† = t† :: S†

(tu)† = t†u† (otherwise)

((μα.t)S)† = t†[α := S†]

((μα.t)uS)† = t†[α := u† :: S†]

(t(u :: S))† = t†u†S† (t �= μ-abst.)

(tS)† = t†S† (otherwise)

(car(t :: S))† = t†

(carS)† = carS† (otherwise)

Then, we can prove that t →B u implies u →∗
B t† →∗

B u†, from which the
confluence follows. The only non-trivial point is that we exceptionally define
((μα.t)uS)† = t†[α := u† :: S†] (not (μα.t†[α := u† :: α])S†), since we have
to show that ((μα.t)(u :: S))† →∗

B ((μα.t)uS)†, the left-hand side of which is
t†[α := (u :: S)†] = t†[α := u† :: S†].

(E) Since →E is clearly strongly normalizing, it is sufficient to prove local
confluence. It is straightforward.

Reduction System for Extensional Lambda-mu Calculus 355

In order to prove commutativity of B and E, we consider the following re-
stricted E-reduction.

Definition 5. The relation →E− is the least compatible relation satisfying (ηS),
(car), (cdr), and the restricted forms of (η::) and (η′::) as follows.

(car cdrnα) :: (cdr cdrnα) → cdrnα (η−::)

t(car cdrnα)(cdr cdrnα) → t(cdrnα) (η′−::)

The relation →cdr is the least compatible relation satisfying (cdr).

The relation →E− is introduced to show a variant of strong commutativity,
that is Lemma 2.2. Note that t →E− t′ does not necessarily imply t[α := S] →E−

t′[α := S] due to the restriction. Instead, we have the following lemma.

Lemma 1. 1. Any S is reduced by →cdr to a term of the form either t′ :: S′ or
cdrnα for some n ≥ 0.

2. For any S, there exists S′ such that S →∗
cdr S

′ and (carS) :: (cdrS) →∗
E− S′.

3. If t →E− t′, then t[α := S] →E− u and t′[α := S] →∗
cdr u for some u.

Proof. 1. By induction on S.
2. By 1, there exists S′ such that S →∗

cdr S′ and S′ is of the form t′0 :: S′
0

or cdrnα. In the former case, we have (carS) :: (cdrS) →∗
cdr (car(t′0 :: S′

0)) ::
(cdr(t′0 :: S′

0)) →∗
car,cdr t

′
0 :: S′

0. In the latter case, we have (carS) :: (cdrS) →∗
cdr

(car cdrnα) :: (cdr cdrnα) →E− cdrnα.
3. By induction on t →E− t′. Consider the case of car cdrnα :: cdr cdrnα →E−

cdrnα by (η−::). By 2, there exists S′ such that (car cdrnS) :: (cdr cdrnS) →∗
E− S′

and (cdrnS) →∗
cdr S

′. The case of η′−:: is similarly proved, and the other cases are
straightforward.

Lemma 2. The following commuting diagrams hold.

1. · cdr ��

E−

��

·
= E−
��

·
cdr

= �� ∃ ·

2. · B ��

E−

��

·
E−∗
��

· =

B
�� · ∗

cdr
�� ∃ ·

3. ·
E ∗
��

cdr

∗
�� ·

E−∗
��

·
cdr

∗ �� ∃ ·

Proof. 1. By induction on the size of terms and streams.
2. By induction on the terms and streams. We only show the case of

(μα.t)S →B t[α := S] and (μα.t)S →E− (μα.t′)S where t →E− t′. By Lemma 1,
there exists u such that t[α := S] →∗

E− u and (μα.t′)S →B t′[α := S] →∗
cdr u.

3. By induction on the length of →∗
E. By 1, →∗

E− and →∗
cdr commute, so it

is sufficient to consider each step of (η::) and (η′::) which is not restricted. It is
proved since t →E t′ implies that there exists u such that t →∗

E− u and t′ →∗
cdr u,

that is proved by Lemma 1.2.

If we consider the full E-reduction, →= in 1 and 2 does not necessarily hold.

356 K. Nakazawa and T. Nagai

Proposition 5. →∗
B and →∗

E commute.

Proof. By Lemma 2.3, the left triangle in the following diagram commute. By 1
and 2 of Lemma 2, →∗

B and →∗
E− commute, and hence →∗

B and →∗
E commute.

· B

∗
��

E ∗
��

E−

∗
��

·
E−∗
��·

cdr

∗ �� ·
B

∗ �� ·

Theorem 2 (Confluence). The reduction → is confluent.

Proof. It follows from Proposition 4 and 5.

Corollary 2 (Church-Rosser theorem). If t =Λμcons t
′ holds, then there ex-

ists u such that t →∗ u and t′ →∗ u.

The Church-Rosser theorem gives a syntactic proof of consistency of the equa-
tional logic of Λμcons, since, for example, μα.carα and μα.cadrα are different
normal forms.

Corollary 3 (Consistency of Λμcons). There exists two closed Λμcons-terms t
and u such that t =Λμcons u does not hold.

4 Typed Λμcons

We will give a type assignment system for Λμcons, inspired by de’Liguoro’s type
system for the Λμ-calculus [8], and adopting recursive types to represent types
for streams like [10].

4.1 Definition of Typed Λμcons

The types of streams will be introduced as non-empty lists of types of individual
data such as [δ0, δ1], which is a special case of the recursive types, and which
is just an abbreviation for μχ.δ0 × δ1 × χ. The following axiomatization for the
equivalence on the types are borrowed from the well-known results for recursively
defined trees in [17,12,1,2].

Definition 6 (Typed Λμcons). The types consist of two sorts, term types and
stream types, which are inductively defined as

δ ::= X | σ → δ σ ::= [δ0, · · · , δn−1] | δ × σ,

where X ranges over the base types, and [δ0, · · · , δn−1] is a non-empty finite list
of types. The relation ∼ on the types is defined as the least congruence relation
satisfying the following.

[δ0, · · · , δn−1] ∼ δ0 × [δ1, · · · δn−1, δ0]
(Fld)

δ0 × · · · δn−1 × σ ∼ σ

[δ0, · · · , δn−1] ∼ σ
(Ctr)

Reduction System for Extensional Lambda-mu Calculus 357

Note that ∼ is also defined on the term types as σ → δ ∼ σ′ → δ′ if σ ∼ σ′ and
δ ∼ δ′.

A term context Γ and a stream context Δ are finite lists of pairs of the form
(x : δ) and (α : σ), respectively, in which each variable occurs at most once.

The typing rules of Λμcons are the following.

Γ, x : δ | Δ � x : δ Γ | Δ,α : σ � α : σ

Γ | Δ � S : δ × σ

Γ | Δ � carS : δ

Γ, x : δ | Δ � t : σ → δ′

Γ | Δ � λx.t : δ × σ → δ′
Γ | Δ � t : δ × σ → δ′ Γ | Δ � u : δ

Γ | Δ � tu : σ → δ′

Γ | Δ,α : σ � t : δ

Γ | Δ � μα.t : σ → δ

Γ | Δ � t : σ → δ Γ | Δ � S : σ

Γ | Δ � tS : δ

Γ | Δ � t : δ Γ | Δ � S : σ

Γ | Δ � t :: S : δ × σ

Γ | Δ � S : δ × σ

Γ | Δ � cdr, S : σ

Γ | Δ � t : δ δ ∼ δ′

Γ | Δ � t : δ′
Γ | Δ � S : σ σ ∼ σ′

Γ | Δ � S : σ′

The relation Γ | Δ � t1 = t2 : δ means Γ | Δ � ti : δ (i = 1, 2) and t1 =Λμcons t2.

We consider the restricted recursive types only for finiteness of the type sys-
tem, and the choice of the equivalence ∼ is not essential for the following dis-
cussion. We can adopt the equivalence defined by only the fold/unfold axiom
as in [10]. Indeed, the discussion in the following sections can be done in more
general setting in which types of streams are represented as infinite product
types, called expanded types. Some notions such as the stream models and the
reducibility predicate for the strong normalization proof will be defined on the
expanded types.

Definition 7. 1. The expanded types are defined by

δ ::= X | σ → δ σ ::= Πi∈Nδi.

We also use the notation δ ×Πi∈Nδ
′
i, which is straightforwardly defined.

2. Given a stream type σ and i ∈ N, we define (σ)i by

([δ0, · · · , δn−1])i = δimodn (δ × σ)i =

{
δ (i = 0)

(σ)i−1 (i > 0),

where imodn denotes the remainder of the division of i by n. We also define
the function (σ)i for the expanded types as (Πj∈Nδj)i = δi.

3. The expansion of the types is defined as follows.

〈|X |〉 = X 〈|σ → δ|〉 = 〈|σ|〉 → 〈|δ|〉 〈|σ|〉 = Πi∈N〈|(σ)i|〉
Note that the relation � on expanded types defined as σ, δ � σ → δ and

δi � Πi∈Nδi is a well-founded order, and we use the induction on this order.

358 K. Nakazawa and T. Nagai

Proposition 6. δ ∼ δ′ iff 〈|δ|〉 = 〈|δ′|〉.
It follows from the completeness of the axiomatization, for example, in [1].

Example 2. In [14], SCL is proposed as a combinatory calculus which is equiv-
alent to the Λμ-calculus. However, some combinators of SCL are not typable
in the original typed λμ-calculus. On the other hand, the SCL combinators are
typable in Λμcons such as

(K1) · | · � λx.μα.x : δ × σ → δ

(W1) · | · � λx.μα.xαα : (σ → σ → δ)× σ → δ

for any term type δ and any stream type σ.

We will discuss the related typed calculi in Section 6 and in [13].

4.2 Stream Models for Typed Λμcons

In [13], it is shown that the stream models are adapted to the typed Λμcons, and
we briefly introduce the results.

A stream model for the typed Λμcons consists of

– family of sets Aδ and Aσ indexed by the expanded types
– an operation () : Aσ→δ ×Aσ → Aδ for each σ and δ such that

∀f, g ∈ Aσ→δ .[∀s ∈ Aσ.[f	s = g	s] ⇒ f = g].

– a bijection (::) : Aδ × Aσ → Aδ×σ for each δ and σ, the inverse of which
consists of the projection functions 〈Car,Cdr〉.

– a meaning function [[·]] such that [[λxδ′ .tσ→δ]]ρ ∈ Aδ′×σ→δ and

[[λxδ′ .tσ→δ]]ρ	s = [[t]]ρ[x �→Car(s)]	Cdr(s) for any s ∈ Aδ′×σ, and so on.

In particular, a stream model is called full if Aσ→δ is the whole function space
from Aσ to Aδ for any σ and δ, and Aσ is Πi∈NA(σ)i for any σ.

The typed Λμcons is sound and complete with respect to the stream model.
Furthermore, we can show the following property, corresponding to Friedman’s
theorem [9]: the extensional equality in λ→ is characterized by an arbitrary
individual full type hierarchy with infinite domains for base types. This theorem
is proved by giving the logical relation on the stream models between the open
term model and the full stream model.

Theorem 3 (Friedman’s theorem for Λμcons, [13]). Suppose that a stream
model F is full and all of FX are infinite. Then, for any closed typable t and u,
t =Λμcons u holds if and only if [[t]]

F
= [[u]]

F
holds.

5 Reduction System for Typed Λμcons

In this section, we show two fundamental properties of the reduction on the
typed Λμcons: subject reduction and strong normalization.

Reduction System for Extensional Lambda-mu Calculus 359

5.1 Subject Reduction

We omit the proof of the subject reduction since it is straightforwardly proved
using the usual generation lemma modulo ∼.

Theorem 4 (Subject reduction). If Γ | Δ � t : δ and t → u hold, then we
have Γ | Δ � u : δ.

5.2 Strong Normalization

First, we prove the strong normalization of →B by the usual reducibility, and
then extend it to the full reduction →. The set of terms and streams which
are strongly normalizable with respect to →B are denoted by SNT and SNS,
respectively. Moreover, the applicative contexts are defined as C ::= [] | Ct | CS,
and SNC is the set of the applicative contexts in which t ∈ SNT and S ∈ SNS.

Definition 8. The predicates Red indexed by the expanded types are defined
as

RedX = SNT,
t ∈ Redσ→δ iff, for any S ∈ Redσ, tS ∈ Redδ,
S ∈ Redσ iff, for any n ≥ 0, cadrnS ∈ Red(σ)n .

For (not expanded) types, Redδ and Redσ mean Red〈|δ|〉 and Red〈|σ|〉, respectively.

Note that, S ∈ Redδ×σ iff carS ∈ Redδ and cdrS ∈ Redσ by the definition.

Lemma 3. 1. Redδ ⊆ SNT and Redσ ⊆ SNS hold.
2. For any C ∈ SNC, C[x] ∈ Redδ and C[cadrnα] ∈ Redδ hold.
3. α ∈ Redσ holds.

Proof. They are simultaneously proved by induction on the expanded types.

Lemma 4. For any expanded types δ, σ, and any applicative context C, the
following hold.

1. For any u ∈ SNT, C[μα.t[α := u :: α]] ∈ Redδ implies C[(μα.t)u] ∈ Redδ.
2. For any S ∈ SNS, C[t[α := S]] ∈ Redδ implies C[(μα.t)S] ∈ Redδ.
3. C[μα.t[x := carα](cdrα)] ∈ Redδ implies C[λx.t] ∈ Redδ.
4. For any S ∈ SNS, if C[t] ∈ Redδ implies C[car(t :: S)] ∈ Redδ.
5. For any t ∈ SNT, if C[cadrnS] ∈ Redδ implies C[cadrn+1(t :: S)] ∈ Redδ.

Proof. We give only the proof of 2, and the others are proved similarly. In this
proof, #t for t ∈ SNT denotes the maximum length of reduction sequences from
t, and #S for S ∈ SNS is similarly defined.

First, we show that, for any S ∈ SNS, C[t[α := S]] ∈ SNT implies C[(μα.t)S] ∈
SNT, by induction on the triple 〈#S, |S|,#C[t[α := S]]〉 with the lexicographical
order. It is sufficient to show that u ∈ SNT for any u such that C[(μα.t)S] →B u.

Case C[(μα.t)S] →B C[t[α := S]]. C[t[α := S]] ∈ SNT is the assumption.
Case C[(μα.t)S] →B C′[(μα.t′)S]. We have C[t[α := S]] →B C′[t′[α := S]],

and hence C′[(μα.t′)S] ∈ SNT follows from the induction hypothesis since
#C[t[α := S]] > #C′[t′[α := S]].

360 K. Nakazawa and T. Nagai

Case C[(μα.t)S] →B C[(μα.t)S′]. It follows from the induction hypothesis
since #S > #S′.

Case C[(μα.t)(t0 :: S0)] →B C[(μα.t)t0S0] by (assoc). Since #(t0 :: S0) ≥ #S0

and |t0 :: S0| > |S0|, we have C[(μα.t[α := t0 :: α])S0] ∈ SNT by the induction
hypothesis. Since t0 ∈ SNT, we have C[(μα.t)t0S0] ∈ SNT by 1.

Secondly, the lemma is proved by induction on the expanded types. The base
case is shown above, and the induction steps are straightforward.

Definition 9. RedΓ |Δ denotes the set of substitutions θ such that θ(x) ∈ Redδ
for any x : δ ∈ Γ and θ(α) ∈ Redσ for any α : σ ∈ Δ.

Lemma 5. If Γ | Δ � t : δ and θ ∈ RedΓ |Δ, then we have tθ ∈ Redδ.

Proof. By induction on the derivation of Γ | Δ � t : δ, using Lemma 4. Note
that δ ∼ δ′ implies Redδ = Redδ′ .

Proposition 7. Every typable term is in SNT.

Proof. By 2 and 3 of Lemma 3, the identity substitution θ is in RedΓ |Δ for any
Γ and Δ. Hence, by Lemma 3.1 and Lemma 5, we have t = tθ ∈ Redδ ⊆ SNT.

Theorem 5 (Strong normalization). Every typable term is strongly normal-
izing with respect to →.

Proof. For any reduction sequence, we can postpone any E-reduction, that is,
we can prove that t →E · →B u implies t →+

B · →∗
E u. Since →E is strongly

normalizable, if we have an infinite sequence of →, we can construct an infinite
sequence of →B, that contradicts Proposition 7.

6 Related Work

In this section, we discuss the relationship between Λμcons and the existing re-
lated systems such as the stack calculus in [4,3], the untyped Λμ-calculus in [18],
Parigot’s original typed λμ-calculus [16], Pagani and Saurin’s ΛS in [15], and
Gaboardi and Saurin’s ΛS in [10].

6.1 Extended Stack Calculus

The calculus Λμcons can be seen as an extension of the nil-free fragment of the
extended stack calculus in [3]. The stack calculus contains neither term vari-
ables, λ-abstractions, nor term applications, but they can be simulated. It is
straightforward to see that the reduction of Λμcons is conservative over the stack
calculus, that is, for terms t and u of the extended stack calculus without nil,
t →∗ u in the stack calculus if and only if t →∗ u in Λμcons. Moreover, our type
system can be adapted to the extended stack calculus without nil in a straight-
forward way. The discussion in this paper on the stream models for the untyped
and typed variants of Λμcons can be adapted to the extended stack calculus.

Reduction System for Extensional Lambda-mu Calculus 361

6.2 Untyped Λμ-Calculus

The calculus Λμcons is conservative over the Λμ-calculus.

Proposition 8 (Conservativity over Λμ). For any Λμ-terms t and u, t = u
holds in Λμcons if and only if t = u holds in Λμ.

Corollary 4. For any Λμ-terms t and u, t = u holds in the Λμ-calculus if and
only if [[t]]ρ = [[u]]ρ for any stream model A and ρ.

Saurin [18] proved the separation theorem of the Λμ-calculus. By the conser-
vativity, Λμcons inherits the separation theorem from Λμ for stream closed terms.
The canonical normal forms in the Λμ-calculus are defined as terms which are
η-normal and contain no subterm of the form either (λx.t)u, (λx.t)β, (μα.t)u,
or (μα.t)β. The stream applicative contexts are defined as C ::= [] | Ct | Cα.

Theorem 6 (Separation theorem for Λμ, [18]). Let Λμ-terms t1 and t2
be closed canonical normal forms. If t1 �= t2 in Λμ, then there exists a stream
applicative context C such that C[t1] →∗ λxy.x and C[t2] →∗ λxy.y hold in Λμ.

By this theorem, the separation theorem for Λμcons is proved.

Theorem 7 (Separation theorem for Λμcons). Let Λμcons-terms t1 and t2 be
distinct closed normal forms. For any normal u1 and u2, there exists a stream
applicative context C such that C[t1] →∗ u1 and C[t2] →∗ u2 hold in Λμcons.

In [19], Saurin also gave an interpretation of the Λμ-calculus (and its general-
ization, called stream hierarchy) with a CPS translation into the λ-calculus with
surjective pairs, called λSP , and proved the completeness of the CPS transla-
tion. The term model induced from λSP is a special case of the stream models
with D = S, so his result can be seen as the completeness of Λμ with respect to
the stream model.

6.3 Type Assignment for Λμ-Calculus

On the related type systems, more detailed discussion is found in [13].
In the typed Λμcons, only functional types from streams to individual data are

considered, inspired by the type system of de’Liguoro [8]. However, every typable
term in Pagani and Saurin’s ΛS [15,21] is also typable in Λμcons. Therefore, every
typable term in Parigot’s propositional typed λμ-calculus [16] is also typable in
Λμcons.

Here, we show the translation from the λμ-calculus to Λμcons, which is based
on the same idea of translations in Saurin [21] and van Bakel et al. [24]. They
show that their type systems correspond to the image of negative translations
from the classical logic to the intuitionistic logic. The following translation cor-
responds to the continuation-passing-style translation of Thielecke [23].

362 K. Nakazawa and T. Nagai

Definition 10 (Negative translation). We fix a type variable O and an ar-
bitrary stream type θ, and we write ¬σ for σ → O. The negative translation (·)
from the implicational formulas to term types in Λμcons is defined as

A = ¬A• p• = θ (A → B)• = ¬A• ×B•.

Proposition 9. If Γ � t : A;Δ holds in the propositional typed λμ-calculus,
then ¬Γ •;Δ• � t : ¬A• holds in Λμcons.

Hence, every typable term in either λ→, λμ, or ΛS is typable also in Λμcons.
On the other hand, due to the recursive stream types, there is a λ-term which
is typable in Λμcons, and not typable in λ→. An example of such terms is
x(y(zw))(y(zww)), where zw and zww can have the same type in the typed
Λμcons under the context z : [X] → X,w : X .

Gaboardi and Saurin [10] proposed another type system ΛS as an extension
of the type system in [15,21], equipped with the recursive types and coercion
operator from streams to terms, which enables to represent functions returning
streams such as cdr. We can define a translation from Λμcons to ΛS preserving
typability.

Acknowledgments. The authors would like to thank Kentaro Kikuchi, Shogo
Ehara, and the anonymous referees for their helpful comments.

References

1. Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15(4), 575–631 (1993)

2. Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundamenta Informat-
icae 26(3-4), 207–240 (1996)

3. Carraro, A.: The untyped stack calculus and Böhm’s theorem. In: 7th Workshop
on Logical and Semantic Frameworks, with Applications (LSFA 2012). Electric
Proceedings in Theoretical Computer Science, vol. 113, pp. 77–92 (2012)

4. Carraro, A., Ehrhard, T., Salibra, A.: The stack calculus. In: 7th Workshop on
Logical and Semantic Frameworks, with Applications (LSFA 2012). Electric Pro-
ceedings in Theoretical Computer Science, vol. 113, pp. 93–108 (2012)

5. David, R., Py, W.: λμ-calculus and Böhm’s theorem. The Journal of Symbolic
Logic 66, 407–413 (2001)

6. de Groote, P.: A CPS-translation of the λμ-calculus. In: Tison, S. (ed.) CAAP
1994. LNCS, vol. 787, pp. 85–99. Springer, Heidelberg (1994)

7. Dehornoy, P., van Oostrom, V.Z.: Proving confluence by monotonic single-step
upperbound functions. In: Logical Models of Reasoning and Computation, LMRC
2008 (2008)

8. de’Liguoro, U.: The approximation theorem for the Λμ-calculus. Mathematical
Structures in Computer Science (to appear)

9. Friedman, H.: Equality between functionals. In: Parikh, R. (ed.) Logic Colloquium,
pp. 22–37 (1973)

10. Gaboardi, M., Saurin, A.: A foundational calculus for computing with streams. In:
12th Italian Conference on Theoretical Computer Science (2010)

Reduction System for Extensional Lambda-mu Calculus 363

11. Komori, Y., Matsuda, N., Yamakawa, F.: A simplified proof of the church-rosser
theorem. Studia Logica 101(1) (2013)

12. Milner, R.: A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences 28, 439–466 (1984)

13. Nakazawa, K.: Extensional models of typed lambda-mu caclulus (2014) (unpub-
lished manuscript),
http://www.fos.kuis.kyoto-u.ac.jp/~knak/papers/manuscript/typed-sm.pdf

14. Nakazawa, K., Katsumata, S.: Extensional models of untyped Lambda-mu calculus.
In: Geuvers, H., de’Liguoro, U. (eds.) Proceedings Fourth Workshop on Classical
Logic and Computation (CL&C 2012). Electric Proceedings in Theoretical Com-
puter Science, vol. 97, pp. 35–47 (2012)

15. Pagani, M., Saurin, A.: Stream associative nets and λμ-calculus. Research Report
6431, INRIA (2008)

16. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992)

17. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the Associations for Computing Machinery 13(1), 158–169 (1966)

18. Saurin, A.: Separation with streams in the Λμ-calculus. In: 20th Annual IEEE
Symposium on Logic in Computer Science (LICS 2005), pp. 356–365 (2005)

19. Saurin, A.: A hierarchy for delimited continuations in call-by-name. In: Ong, L.
(ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 374–388. Springer, Heidelberg (2010)

20. Saurin, A.: Standardization and Böhm trees for Λμ-calculus. In: Blume, M.,
Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 134–149.
Springer, Heidelberg (2010)

21. Saurin, A.: Typing streams in the Λμ-calculus. ACM Transactions on Computa-
tional Logic 11 (2010)

22. Streicher, T., Reus, B.: Classical logic, continuation semantics and abstract
machines. Journal of Functional Programming 8(6), 543–572 (1998)

23. Thielecke, H.: Categorical structure of continuation passing style. PhD thesis,
University of Edinburgh (1997)

24. van Bakel, S., Barbanera, F., de’Liguoro, U.: A filter model for the λμ-calculus.
In: Ong, L. (ed.) Typed Lambda Calculi and Applications. LNCS, vol. 6690, pp.
213–228. Springer, Heidelberg (2011)

http://www.fos.kuis.kyoto-u.ac.jp/~knak/papers/manuscript/typed-sm.pdf

	Reduction System
for Extensional Lambda-mu Calculus

	1 Introduction
	2 Λμcons

	2.1 Definition of Untyped Λμcons

	2.2 Stream Models for Untyped Λμcons

	3 Reduction System
	3.1 Reduction for Untyped Λμcons

	3.2 Confluence

	4 Typed Λμcons

	4.1 Definition of Typed Λμcons

	4.2 Stream Models for Typed Λμcons

	5 Reduction System for Typed Λμcons

	5.1 Subject Reduction
	5.2 Strong Normalization

	6 Related Work
	6.1 Extended Stack Calculus
	6.2 Untyped Λμ-Calculus

	6.3 Type Assignment for Λμ-Calculus

	References

