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Abstract. We establish that the local state monad introduced by
Plotkin and Power is a monad with graded arities in the category
[Inj, Set]. From this, we deduce that the local state monad is associ-
ated to a graded Lawvere theory �מ which is presented by generators and
relations, depicted in the graphical language of string diagrams.

1 Introduction

In this paper, we elaborate an algebraic and graphical account of the local state
monad on the category [Inj, Set] of covariant presheaves on the category Inj

L : [Inj, Set] −→ [Inj, Set]

formulated ten years ago by Plotkin and Power [12] themselves inspired by sem-
inal ideas developed by O’Hearn and Tennent [11] on the presheaf semantics
of local states. Much work has been dedicated in the past decade in order to
understand the algebraic nature of this specific local state monad, in particular
by Power [14, 15] and by Staton [17, 18]. One main purpose of the present paper
is to recast these two lines of work in the language of monads with arities. An
immediate benefit of the reformulation is that every monad with arities comes
together with a notion of Lawvere theory with arities formulated in [9]. By prov-
ing that the local state monad is a monad with graded arities, we are thus able
to define its graded Lawvere theory �מ (a letter pronounced mem in hebrew).
The whole point of the paper is that the category �מ is sufficiently simple to be
presented by generators and relations easily adapted from [12, 15, 18]. The shift
from finitely presentable arities to graded arities is fundamental to that purpose.

Recall that the category Inj has natural numbers n, p, q ∈ N as objects, and
injective functions f : [p] → [q] as morphisms, where [n] denotes the finite set
[n] = {1, . . . , n} of cardinal n. As any presheaf category, the category [Inj, Set]
is cartesian closed and thus provides a model of the simply-typed λ-calculus,
where every simple type is interpreted as a presheaf A. Moreover, the local state
monad L defines a computational monad on the category [Inj, Set] in the sense
of Moggi [10]. For that reason, the category [Inj, Set] together with the monad L
defines an interpretation of an imperative call-by-value λ-calculus where registers
may be alternatively written, read, allocated and collected, see [12] for details.
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The elements M in An are called elements of degree n in the presheaf A. The
idea underlying the model is that a program M with n registers in the language
should be interpreted as an element of degree n in the presheaf A associated to
the type of the program.

Now, let us recall how the monad L is defined. By convention, we suppose
that every register of our language may be assigned the same finite set V of
values. In that situation, the covariant presheaf LA obtained by applying the
monad L on a covariant presheaf A is conveniently expressed by the formula

LA : n �→ Sn ⇒
( ∫ p∈Inj

Sp ×Ap × Inj(n, p)

)
(1)

where the contravariant presheaf

S : n �→ V n : Inj op −→ Set

transports every number n to the set Sn of states possibly taken by n registers:

Sn := V n =
{
(val1, . . . , valn) | ∀i ∈ {1, ..., n}, vali ∈ V

}
.

Although the formula (1) may appear slightly intimidating, the intuition under-
lying it is easy to grasp. It simply reflects the idea that a program M of type LA
with n registers behaves in the following way: first, the programM reads the state
sin ∈ Sn of its n registers, then, depending on the value sin = (val1, . . . , valn)
which has been just read, the program M allocates a number p− n of registers
(with p ≥ n) and returns three pieces of information to the context:

1. a state sout = (wal1, . . . , walp) ∈ Sp of the p registers,
2. a return value M(sin) ∈ Ap depending on the p registers,
3. and finally, an injective function f : [n] → [p] which tracks the n registers

originally appearing in the program M among the p registers of the returned
program M(sin).

A nice aspect of the formula (1) is that it takes care of the fact that the p − n
registers may be allocated with different names in the memory. This is indeed
the purpose of the colimit (or more precisely the coend) formula∫ p∈Inj

Sp ×Ap × Inj(n, p) =
( ∐

p∈N

Sp ×Ap × Inj(n, p)
)
/ ∼ (2)

which is defined as the set of triples (val1, . . . , valp,M, f) in Sp×Ap× Inj(n, p)
modulo the least equivalence relation ∼ identifying all triples

(valh(1), · · · , valh(p),M, f : [n] → [p]) ∼ (val1, · · · , valq, Ah(M), h◦ f : [n] → [q])

for an injection h : [p] → [q]. Here, the element Ah(M) ∈ Aq denotes the image
(or pushforward) of the element M ∈ Ap of degree p along the injection h : [p] →
[q], which is typically obtained in the case of a program M by h-reindexing the
names of its p registers.
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2 The Global State Monad

In their work, Plotkin and Power [12] made the important observation that the
local state monad L may be alternatively presented by a series of well-chosen
generators and relations. One ambition of this paper is to illustrate the additional
principle advocated by the author in [9] that any concise formulation such as (1)
of a monad L presented by generators and relations can be derived from the
existence of a class of canonical forms for the terms of the associated algebraic
theory. This general principle was succesfully applied in [9] on the global state
monad

T : A �→ S ⇒ (S ×A ) : Set −→ Set (3)

induced by a finite set S of states on the category Set. For simplicity, we will
suppose from now on that all the registers manipulated by the language are
boolean, and thus that the set of values is equal to V = {true, false}. We will
also suppose for the sake of the discussion that S = V = {true, false}. This
leads to the following definition. A mnemoid in a cartesian category C is defined
as an object A equipped with a binary operation lookup and a unary operation
update〈val〉 for each value val ∈ {true, false} of the register:

lookup : A×A −→ A update〈val〉 : A −→ A

moreover satisfying three families of equations.

1. Creation lookup – update. Reading the value val of the register and then
writing the very same value val in the register is like doing nothing at all. This
leads to the equation below:

lookup(update〈true〉(term), update〈false〉(term)) = term

2. Interaction update – update. Storing a value val1 and then a value val2 inside
the register is just like storing directly the value val2. In particular, the value val1
is lost in the process.

update〈val1〉 ◦ update〈val2〉 = update〈val2〉

3. Interaction update – lookup. When one stores a value val in the register and
then reads the value of the register, one gets back the value val.

update〈val〉 ◦ lookup
[
term(true) , term(false)

]
= update〈val〉( term(val) ).

The two operations lookup and update〈val〉 of a mnemoid may be conveniently
depicted in the language of string diagrams in the following way:

left branch

root

right branch

val rootbranch
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Here, the lookup operation is depicted as an “eye” which inspects the value of
the register at the root and then branches on the left when the value is true and
on the right when the value is false. The update〈val〉 operation is depicted as
a “cartouche” which erases the value of the register at the root and writes its
own value val ∈ {true, false} on the branch. The arrows on the wires indicate
the direction of execution, which goes from the root to the leaves of the tree
of operations. The three equations 1, 2 and 3(a, b) required of a mnemoid are
depicted as follows in the language of string diagrams:

rootx
(1)
=

x

false

root

true

x

val root1val2x
(2)
= rootval2x

x

y

true root
(3a)
=

x

true root

x

y

false root
(3b)
=

y

false root

The main theorem established by Plotkin and Power [12] for the global state
monad may be formulated as follows for the cartesian category C = Set:

Theorem 1. The category of mnemoids is equivalent to the category of algebras
of the global state monad for S = {true, false}.
The theorem is obtained in the original paper by Plotkin and Power [12] by
applying the Beck theorem in order to establish the monadicity of an adjunction
of interest. We advocate in [9] that a more conceptual way to obtain the same
result is to deduce it from two separate facts. First of all, the global state monad
is finitary. Then, the following canonical form theorem for mnemoids:

Theorem 2. Every term of the theory of mnemoids with n variables x1, . . . , xp

is equivalent to a term of the form

lookup
[

update〈val〉 (xp) , update〈wal〉 (xq)
]

Moreover, this canonical form is unique for a given term.

Expressed graphically, this means that every such term with n variables of the
theory of mnemoids is equivalent to a unique term of the form:

p

wal

root

val

q

x

x

with val, wal ∈ {true, false} and p, q ∈ [n]. In other words, every sequence of
operations performed in the theory of mnemoids on the finite set [n] = {1, . . . , n}
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of variables is equal to a lookup operation followed on each branch true and false
by an update operation and a choice of an element in [n]. We explain in [9] how
to apply the philosophy of Lawvere in order to deduce from this canonical form
theorem that the free mnemoid generated by a given set A coincides in fact
with the result TA of applying the global state monad T to the set A. More
conceptually, one recovers in this way the result by Plotkin and Power (Thm 1)
that the category of mnemoids is equivalent to the category of algebras of the
global state monad T . The existence of the canonical form was independently
observed by Pretnar [16] who uses it in order to establish that the theory is
Hilbert-Post complete.

3 The Five Operations of the Local State Monad

One main purpose of the present article is to establish a similar result for the
local state monad L. In particular, we would like to derive the formula (1) for
the monad L from the existence of a canonical form for a particular algebraic
presentation of its operations. To this effect, we start from a mild adaptation of
the algebraic presentation given by Plotkin and Power in their seminal paper [12].
The resulting algebraic presentation is based on the distinction between four
families of operations. First of all, for each natural number n ∈ N and each
location loc ∈ [n], the operations of a mnemoid:

lookup〈loc〉 : An ×An −→ An update〈loc,val〉 : An −→ An (4)

where val ∈ {true, false}. Note that these two operations do not alter the
degree n of the elements. Then, for each natural number n ∈ N, for each loca-
tion loc ∈ [n+ 1] and for each value val ∈ {true, false}, an operation

fresh〈loc,val〉 : An+1 −→ An (5)

whose intuitive purpose is to allocate among n registers a fresh register at loca-
tion loc ∈ [n+ 1] moreover initialized with the value val ∈ {true, false}. Then,
for each natural number n ∈ N and for each location loc ∈ [n+ 1], an operation

collect〈loc〉 : An −→ An+1 (6)

whose intuitive purpose is to deallocate or garbage collect the register at loca-
tion loc ∈ [n + 1]. Finally, for each natural number n ∈ N and for each pair of
locations loc, loc+ 1 ∈ [n], an operation

permute〈loc,loc+1〉 : An −→ An (7)

whose intuitive purpose is to permute the two registers at location loc and
loc+ 1. One main conceptual difficulty of the local state monad, and also one
main reason for studying it so closely, is that it entangles in a sophisticated
way the read/write operations (4) of the mnemoid to the structural operations
(5–6–7) whose function is to reorganize the shape of the memory by allocating,
collecting or permuting registers. There seems to be here a general principle
of interaction between effects and resources, which one would like to better
understand.
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4 A Notion of Graded Arity in [Inj, Set]

An apparent obstruction to the idea of canonical form in the case of the local
state monad L is the fact that its definition relies on the coend formula (2).
According to a naive but reasonable understanding of Lawvere’s principles, there
should be exactly one canonical form for each element of the set (TA)n and such
a one-to-one correspondence seems difficult to achieve for a general covariant
presheaf A because of the presence of the non-trivial equivalence relation ∼ in
the formula (2). In order to tackle the situation, we thus need to specialize the
formula (1) to a specific class of covariant presheaves, provided in this cas by
the finite sums

[ p0 , . . . , pm ] = 〈0〉+ · · ·+ 〈0〉︸ ︷︷ ︸
p0 times

+ · · · + 〈m〉+ · · ·+ 〈m〉︸ ︷︷ ︸
pm times

of representable covariant presheaves

〈 k 〉 := yk : n �→ Inj(k, n) : Inj −→ Set.

Note in particular that it follows from the Yoneda lemma that

[Inj, Set] ( [p0 , . . . , pm ] , A ) =

m∏
k=0

Ak × . . .×Ak︸ ︷︷ ︸
pk times

=

m∏
k=0

Apk

k

for every covariant presheaf A over the category Inj. This equation justifies
thinking of the presheaves [ p0, . . ., pm ] as an appropriate notion of generalized
arity in the category of presheaves [Inj, Set] which we call graded arity. Indeed,
in the same way a function from [n] = {1, . . . , n} to a set A defines a word
of length n in the alphabet A, a morphism from [ p0, . . . , pm ] to a covariant
presheaf A defines a word of length n =

∑
pk in the graded alphabet A, con-

sisting of m words of length pk in the alphabet Ak of elements of grade k ∈ [m]
in the covariant presheaf A. Note that the full subcategory of such arities in the
category [Inj, Set] is isomorphic to the free category with finite sums Σ Injop

generated by the category Injop. Moreover, the resulting full and faithful functor

i : Σ Injop −→ [Inj, Set]

is dense in the category [Inj, Set]. As such, the category ΣInjop together with
the functor i defines a notion of arities on the presheaf category [Inj, Set] in the
sense of Weber [20] who developed the notion in his study of globular operads,
see also [9].

5 From a Coend Formula to a Coproduct Formula

It appears that when applied to a graded arity A = [ p0, . . . , pm], the coend
formula (2) suddenly becomes a coproduct formula. Let us briefly explain why.
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The phenomenon is in fact slightly more general. Consider the categoryNat with
natural numbers n ∈ N as objects and no morphisms except for the identities.
The object-preserving functor � : Nat −→ Inj induces an adjunction

[Nat, Set]

∃�

��⊥
�∗

�� [Inj, Set] (8)

where the forgetful functor �∗ is defined by precomposition with � and its left
adjoint functor ∃� is defined by left Kan extension along �. The computation of
this left Kan extension is easy. Namely, given a presheaf A on the category Nat,
one obtains:

∃� A : n �→
∐
m∈N

Am × Inj(m,n) = { (M, f) |M ∈ Am, f ∈ Inj(m,n) }

Observe that the covariant presheaves of the form ∃� A are precisely the (possibly
infinite) sums of representable presheaves over Inj. In particular, every graded
arity [ p0, . . . , pm ] is of that form. Now, a simple computation shows that the
coend formula (2) applied to such a covariant presheaf ∃� A yields a coproduct
formula:∫ p∈Inj

Sp ×
[ ∐

m∈N

Am × Inj(m, p)
]
× Inj(n, p) ∼=

∐
m∈N

Am × 〈m,n |S 〉

where the set 〈m,n |S 〉 is defined as

〈m,n |S 〉 :=

∫ p∈Inj

Inj(m, p) × Inj(n, p)× Sp.

This slightly enigmatic result convinces us to study more closely the monad

LNat := �∗ ◦ L ◦ ∃� : [Nat, Set] −→ [Nat, Set]

obtained by pre and post-composing the monad L with the two components of
the adjunction ∃� � �∗. The image of a presheaf A on Nat (also called a graded
set) is thus defined as

LNatA : n �→ Sn ⇒
∐
m∈N

Am × 〈m,n |S 〉. (9)

From now on, and in order to differentiate the two local state monads, we write
LInj for the local state monad L on the category [Inj, Set].

6 The Category Res of Resource Management

The monad LNat is so simple that it deserves further analysis. In particular,
remember from §3 that we are interested in clarifying the intricate interplay
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between read/write effects (lookup,update) and resource management (fresh,
collect, permute) in the local state monad. This idea has been already explored
quite far by Power [15] in his work on indexed Lawvere theories. Here, it pro-
vides us with a precious guide in our analysis. Indeed, it is folklore that the
category Inj is presented (in some sense which will be later elaborated) by
the collect and permute operations. This preliminary observation leads us to
introduce a category Res already considered by Staton [18] whose intuitive pur-
pose is to reflect all the resource management operations (not just collect

and permute but also fresh) of the local state monad. By definition, the cat-
egory Res has natural numbers n ∈ N as objects, and resource morphisms
[m] → [n] as morphisms m → n, where a resource morphism f : [m] → [n]
is defined as a function f : [m] → [n] + {true, false} satisfying the following
injectivity property: every element k ∈ [n] has at most one antecedent in [m].
The resource morphism g ◦ f : [m] → [n] obtained by composing two resource
morphisms f : [m] → [p] and g : [p] → [n] is defined just as expected. Note
in particular that the category Res is a subcategory of the Kleisli category in-
duced by the exception monad A �→ A+ {true, false} on the category Set with
natural numbers m,n ∈ N as objects and functions [m] → [n] as morphisms. Ac-
cordingly, the reader should note that there exists an object-preserving functor
ι : Inj → Res which transports every injection f : [m] → [n] of the category Inj
to the function η ◦f : [m] → [n]+{true, false} defined by composing f with the
unit η of the exception monad in Fin. An interesting fact to mention regard-
ing the category Res is that there exists for every pair of numbers m,n ∈ N a
one-to-one correspondence

〈m,n |S 〉 ∼= Sn ×Res(m,n). (10)

From this follows that Formula (9) may be conveniently rewritten as

LNatA : n �→ Sn ⇒ Sn ×
∐
m∈N

Am × Res(m,n). (11)

7 Main Theorem

Together with the functor � : Nat → Inj, the functor ι : Inj → Res induces a
pair of adjunctions on the associated presheaf categories:

[Nat, Set]

∃�

��⊥
�∗

�� [Inj, Set]

∃ι

��⊥
ι∗

�� [Res, Set] (12)

This pair of adjunctions ∃� � �∗ and ∃ι � ι∗ induces in turn a monad

BNat := �∗ ◦ ι∗ ◦ ∃ι ◦ ∃� : [Nat, Set] −→ [Nat, Set]



342 P.-A. Melliès

on the presheaf category [Nat, Set]. The image of a graded set A is defined as

BNatA : n �→
∐
m∈N

Am×Res(m,n) = { (M, f) |M ∈ Am, f ∈ Res(m,n) }.

In addition to the monad BNat, there is also a state monad

FNatA : n �→ Sn ⇒ (Sn ×An) : [Nat, Set] −→ [Nat, Set]

on the presheaf category [Nat, Set], simply obtained by applying the global state
monad on n registers

Tn : A �→ Sn ⇒ (Sn ×A) : Set −→ Set

on each set An of elements of grade n in the presheaf A. Note in particular that

(FNatA)n := Tn (An).

The notations BNat and FNat are mnemonics for basis monad BNat and fiber
monad FNat. The intuition is that the basis monad BNat acts on the basis Nat
of the covariant presheaf A by an appropriate change of basis from Nat to Res
while the fiber monad FNat acts on each of its fibers An of elements of grade n.
Each of the two monads FNat and BNat captures one disjoint aspect of the
local state monad LNat. Intuitively, the monad FNat deals with the read/write
operations while the monad BNat deals with memory management. The question
is thus to understand how the two monads FNat and BNat interact. The nature
of this interaction is nicely captured by the existence of a distributivity law in
the sense of Beck [1] between the two monads:

Theorem 3. The local state monad LNat is equal to the monad FNat ◦ BNat

associated to a distributivity law λ[Nat] : BNat ◦FNat ⇒ FNat ◦BNat between the
two monads BNat and FNat.

Once this decomposition of the monad LNat performed, it appears that a similar
decomposition of the local state monad LInj is also possible. One recovers in this
way the distributivity law noticed by Staton in [18]. Recall that the presheaf
category [Inj, Set] is equivalent to the category of algebras of the monad �∗ ◦ ∃�
encountered in §5. There exists moreover a distributivity law λ between the two
monads FNat and �∗ ◦ ∃�. For these two reasons, the monad FNat extends to a
monad FInj on the presheaf category [Inj, Set] defined in just the same way:

(FInjA)n := Tn (An).

For the sake of comparison, it is worth mentioning here that the algebras of
the monad FInjA coincide with the models of the indexed Lawvere theory L⊗
formulated by Power in [15]. For that reason, the distributivity law λ may be
seen as an alternative but equivalent way as the functor L⊗ : Inj → Law to
“glue” together the global state monads Tn into the monad FInj . Besides the
monad FInj just defined on [Inj, Set], one finds the monad BInj = ι∗◦∃ι induced
from the adjunction ∃ι � ι∗ mentioned in (12). This leads us to the following
variant of Theorem 3, established this time for the local state monad LInj:
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Theorem 4. The local state monad LInj is equal to the monad FInj ◦ BInj

associated to a distributivity law λ[Inj] : BInj ◦ FInj ⇒ FInj ◦ BInj between the
two monads BInj and FInj.

This leads us to the main theorem of the paper:

Theorem 5. The local state monad LInj is a monad with graded arities ΣInjop

on the presheaf category [Inj, Set].

The property is a direct consequence of the fact that the local state monad LInj

factors as a pair of monads FInj and BInj with graded arities. Note that one
establishes in the same way that the monad LInj is a monad with finitary arities,
where the notion of finitary arities is defined as the full and dense subcategory
FinGrad of finite graded sets in [Nat, Set].

8 The Graded Lawvere Theory �מ

One important consequence of Theorem 5 is that the monad LInj may be entirely
reconstructed from its Lawvere theory �מ with graded arities. This result holds
for every monad with arities and thus applies in particular to the monad LInj .
See [9] for details. The graded Lawvere theory �מ is defined as the category with
graded arities [ p0, . . . , pk ] as objects and with morphisms

�מ ( [ p0, . . . , pj ] , [ q0 , . . . , qk ] ) = [Inj, Set] ( [ q0 , . . . , qk ] , , LInj [ p0 , . . . , pj ] ).

Note that following Lawvere’s philosophy, the category �מ is defined as a full
subcategory of the opposite of the Kleisli category induced by the local state
monad LInj on the presheaf category [Inj, Set]. The very last part of the pa-
per is devoted to an algebraic presentation by generators and relations of the
graded Lawvere theory .�מ To that purpose, we take advantage that the cate-
gory �מ coincides with the Lawvere theory (with finitary arities) associated to
the monad LNat. The algebraic presentation is then performed in four easy
steps. We start by describing in §9 the generators and relations of the fiber
monad FNat and then carry on in §10 and §11 with a description of the genera-
tors and relations of the basis monad BNat. We conclude in §12 by the series of
equations involved in the algebraic presentation of the distributivity law λ[Nat].
This concludes the algebraic presentation of the graded Lawvere theory .�מ

9 The Global State Monad in String Diagrams

A handy graphical notation for the update and lookup operations on the global
state is to depict each location loc as a specific wire on a ribbon of registers.
Typically, the lookup and update operations on the register loc = loc2 for a
machine with four registers L = {loc1, loc2, loc3, loc4} are depicted as
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lookup〈loc〉 =

1

2

3

4

1

2

3

4

1

2

3

4

update〈loc,val〉 =
val

1

2

3

4

1

2

3

4

where in each case the “eye” and the “cartouche” are positioned on the regis-
ter loc = loc2. One recovers the three equations of mnemoids in this multi-wire
setting. The first equation creation lookup – update is depicted as

x (1)
=

true

false

x

x

the second equation update – update interaction is depicted as:

val1val2 (2)
=

val2

and the true case of the equation update – lookup interaction is depicted as:

true

x

y

(3a)
=

true
x

There is also a fourth equation (4) which states that two updates on different
registers loc and loc′ commute:

update〈loc,val〉 ◦ update〈loc′,val′〉
(4)
= update〈loc′,val′〉 ◦ update〈loc,val〉

and is depicted in the following way:

val′

val (4)
=

val

val′

This last equation is sufficient to ensure that all the lookup/update operations
applied on two different wires commute. In particular, the resulting algebraic
theory for the monad Tn reflects the fact that for every two natural numbers
p, q ∈ N, one has Tp+q = Tp ⊗ Tq where ⊗ denotes the tensor product of algebraic
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theories (or equivalently of Lawvere theories) on the category Set. Hence, Tn may
be seen as the n-fold tensor product of the algebraic theory T1 of mnemoids given
in §2. From this follows that the monad F is presented by the two families of
operations lookup and update together with the four equations 1, 2, 3, 4.

10 The Action of the Category Inj in String Diagrams

An important ingredient of the local state monad is the action of the category Inj
on the names of registers. Indeed, the very definition of the monad T relies on
the equivalence relation ∼ between various choices of a representative Sp×Ap×
Inj(n, p) modulo an action of the category Inj on the set [p] = {1, . . . , p} of
registers. For that reason, it is natural to introduce the notion of Inj-module C ,
defined as an action ∗ : Inj × C −→ C of the monoidal category (Inj,+, 0) on
the category C . Lawvere observed that a monad T on a category C is the same
thing as an action of the monoidal category (Δ,+, 0) on the category C , where
the category Δ of so-called simplices has finite numbers p, q ∈ N as objects and
monotone functions f : [p] → [q] as morphisms. Similarly, an Inj-module C is
the same thing as a category C equipped with a functor D : C −→ C and two
natural transformations

permute : D ◦D −→ D ◦D collect : Id −→ D

depicted as follows in the language of string diagrams:

D

D

D

D
D

and satisfying the familiar Yang-Baxter equation:

D

D

D

D

D

D

(1)
=

D

D

D

D

D

D

as well as the expected equation for a symmetry:

D

D

D

D

(2)
=

D

D

D

D

as well as two equations regulating the interaction between the permutation and
the dispose combinator, the first one among them:

D D

D

(3a)
=

D D

D
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11 The Category Res in String Diagrams

An important instance of Inj-module is provided by the category Res. Just like
the category Inj, the category Res is monoidal with tensor product p⊗q defined
as the sum p+ q. Moreover, the functor ι : Inj → Res is monoidal in the strict
sense. From this follows that Inj acts on the category Res. As a matter of fact,
the category Res may be defined as the free Inj-module where the functor D is
moreover equipped with a natural transformation

fresh〈val〉 : D −→ Id

for each value val ∈ {true, false} and depicted as:

valD

The two operations fresh〈val〉 of allocation should satisfy a series of equations
depicted below. The main equation interaction fresh – collect is depicted as:

val
(1)
= Identity

One of the two equations interaction fresh – permutation is depicted as:

D

D

D

val

(2a)
=

D

D

Dval

while the equation commutation fresh – fresh is depicted as:

D val2

D val1 (3)
=

D val2

D val1

12 The Distributivity Law in String Diagrams

The distributivity law λ is reflected as a series of equalities whose purpose is
to permute all the collect/permute/allocate operations generating the monad B
after (from the point of view of the evaluation) the update/lookup operations
generating the monad F . Typically, in the case of the two combinators fresh and
update, the first equation interaction fresh – update is depicted as

D

D

D

D

D

D

val1val2D (1)
=

D

D

D

D

D

D

val2D

while the second equation commutation fresh – update is depicted as

D

D

D

D

D

D

val2

D val1 (2)
=

D

D

D

D

D

D

val2

D val1
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In the case of the operations fresh and lookup, the equation commutation fresh
– update is depicted as follows:

D

D

D

x

y

val

(3)
=

D

D

D

x

y val

val

Similarly, there is an equation interaction collect – update depicted as

D

D

D

D

D

D val

D

(4)
=

D

D

D

D

D

D val

D

together with an equation commutation collect – lookup. Similar interaction and
commutation equations should be then depicted for all pairs consisting of a
lookup or an update operation and a permute operation. Typically, one of the
two equations interaction permute – lookup is depicted as:

D

D

D

D

D

D

D

D

val (5a)
=

D

D

D

D

D

D

D

Dval

Note that the expected equation interaction fresh – lookup may be derived from
the two equations interaction fresh – update and interaction update – lookup.

Finally, it should be mentioned that there exists a canonical form theorem
extending Theorem 2 to the local state monad: informally speaking, the theorem
states that every morphism of the category �מ factors uniquely as a series of
lookup operations followed by a series of update operations (just as in the case
of Theorem 2) then followed by a series of collect operations followed by a
series of permute operations followed by a series of fresh operations.

13 Conclusion and Related Works

Much work has been devoted in the past decade in order to understand the alge-
braic and combinatorial nature of the local state monad formulated by Plotkin
and Power’s seminal paper [12]. Besides the works by Power [13, 15] and Sta-
ton [17, 18] already mentioned, our work is close in spirit to the line of work
on nominal algebraic theories developed by various authors, see in particular
[2–4, 8]. A substantial work thus remains to be done in order to clarify the
connection between these various notions of nominal algebraic theories and the
notion formulated here of graded algebraic theory. The present paper is also



348 P.-A. Melliès

tightly connected to the work by Hyland, Plotkin and Power on combining com-
putational monads, see [5, 7]. In that respect, we are currently interested in
clarifying the connection of our work with Power’s notion of indexed Lawvere
theories [13, 15]. Finally, Staton [19] has recently developed a work on paramet-
ric effects very close in spirit to this work, but based on abstract clones rather
than on Lawvere theories with arities.
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