
Automatic Evaluation of Context-Free

Grammars (System Description)�

Carles Creus and Guillem Godoy

Universitat Politècnica de Catalunya, Department of Software,
Barcelona, Spain

ccreuslopez@gmail.com, ggodoy@lsi.upc.edu

Abstract. We implement an online judge for context-free grammars.
Our system contains a list of problems describing formal languages, and
asking for grammars generating them. A submitted proposal grammar
receives a verdict of acceptance or rejection depending on whether the
judge determines that it is equivalent to the reference solution grammar
provided by the problem setter. Since equivalence of context-free gram-
mars is an undecidable problem, we consider a maximum length � and
only test equivalence of the generated languages up to words of length �.
This length restriction is very often sufficient for the well-meant submis-
sions. Since this restricted problem is still NP-complete, we design and
implement methods based on hashing, SAT, and automata that perform
well in practice.

Keywords: grammars, equivalence, hashing, SAT, automata.

1 Introduction

Nowadays, there is an increasing interest in offering college-level courses online.
Websites like Khan Academy [10], Coursera [13], Udacity [15] and edX [1], pro-
vide online courses on numerous topics. The users/students have access to videos
and texts explaining several subjects, as well as tools for automated evaluation
by means of exercises. In the specific context of computer science, the use of
online judges for testing correctness of programs is used in several academic do-
mains as a self-learning tool for students, as well as a precise method in exams
for scoring their programming skills (see, e.g., [14,7,2]).

For the last two years we have developed a specific online judge for the subject
of Theory of Computation [9], located at http://racso.lsi.upc.edu/juez.
The site offers exercises about deterministic finite automata, context-free gram-
mars, push-down automata, reductions between undecidable problems, and re-
ductions between NP-complete problems. Users can submit their solutions, the
judge evaluates them, and offers a counterexample when the submission is re-
jected. This is very useful to make students understand why their solutions are
wrong, and to keep them motivated during the learning process. We have used

� The authors were supported by an FPU grant (first author) and the FORMALISM
project (TIN2007-66523) from the Spanish Ministry of Education and Science.

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 139–148, 2014.
c© Springer International Publishing Switzerland 2014

http://racso.lsi.upc.edu/juez

140 C. Creus and G. Godoy

the judge in the classroom, not only as a support tool for the students, but also
as an evaluation method on exams. This has had a marked effect on the motiva-
tion and involvement of the students: during a fifteen-week course, each student
has solved more than 150 problems in average, with more than 680 submissions.
This means that each problem needed over 4 submissions to get acceptance from
the judge, and the students were motivated enough to perform new attempts to
reach an acceptance verdict.

In this paper we explain the techniques used to automatically evaluate the
problems on context-free grammars. Each of such problems describes a language
L and asks the student to submit a grammar Gsub generating L. In some cases, it
asks specifically for an unambiguous grammar. The judge checks the correctness
of Gsub by testing that it generates the same language as a reference gram-
mar Gsol provided by the problem setter. Since it is well-known that grammar
equivalence is an undecidable problem [9], we cannot expect the judge to behave
correctly for every input. Therefore, we focus on performing well with the well-
meant grammars submitted by students to academic problems. These grammars
are very simple, and when they are wrong, there is usually a small counterex-
ample, i.e., a small word in L(Gsub)�L(Gsol). For this reason, we tackle the
problem by fixing a length � and looking for a word w ∈ L(Gsub)�L(Gsol) with
length bounded by �. Since this is still NP-complete, we develop methods that
in practice behave well enough for small �, Gsub, and Gsol. In particular, our
judges1 are based on automata and hashing techniques, and we also study pos-
sible optimizations for the reduction in [3] of the grammar equivalence to the
SAT problem.

The paper is organized as follows. In Section 2 we summarize notations and
basic concepts. In Section 3 we explain the different developed methods, and in
Section 4 compare them with others from the literature. In Section 5 we describe
our online system and our experience using it. We conclude in Section 6.

2 Preliminaries

Words are finite-length lists of symbols chosen over an underlying alphabet Σ.
The length of a word w is denoted by |w|, and its i’th symbol, for 1 ≤ i ≤ |w|, is
denoted by w[i]. Similarly, its subword between i and j, inclusive, is denoted by
w[i..j]. The empty word is denoted by ε. We assume that the reader is familiar
with the concept of context-free grammar (cfg) as a structure G = 〈V , Σ,R, S〉,
where V is the set of non-terminal symbols, Σ is the alphabet of terminal sym-
bols, R ⊂ V × (V ∪ Σ)∗ is the set of rules, and S ∈ V is the initial symbol.
We denote non-terminals with uppercase letters X,Y, Z, . . . and terminals with
lowercase letters a, b, c, . . ., with possible subscripts. Often, grammars are just
represented by a list of rules, where the non-terminal at the left-hand side of
the first rule is considered the initial symbol. Also, rules with common left-hand
side are usually described in compact form, e.g., two rules X → u, X → v are
represented by X → u | v. In order to simplify definitions and arguments, we

1 Source code available at http://www.lsi.upc.edu/~ggodoy/publications.html

http://www.lsi.upc.edu/~ggodoy/publications.html

Automatic Evaluation of Context-Free Grammars (System Description) 141

assume without loss of generality that the sets of non-terminals of any two gram-
mars are disjoint. We assume that our grammars are reduced and in cnf [9],
and hence we only deal with rules of the form X → Y Z and X → a. Recall
that the standard transformation to cnf produces a quadratic increase in size,
and can be adapted to detect when ambiguity is lost due to the transformation.
For a detailed definition of the language L(G) generated by the cfg G, and the
concept of ambiguity see, e.g., [9]. We assume that the reader is familiar with
the concept of deterministic finite automata (dfa) and their properties [9].

3 Judging Methods

3.1 Exhaustive

The JudgeExhaustive approach consists in enumerating all the words up to
length � that can be generated by each of the grammars and checking whether
there exists some word w that is generated by just one of them. This brute force
solution has some benefits in our setting. First, it is trivial to give the minimal
counterexample in size, whenever one exists in our search space. Second, besides
enumerating the words, it is easy to count the amount of different derivations
that generate each of them. This additional information allows to check whether
the grammar is ambiguous in the subset of words with length bounded by �.

3.2 Hash

The JudgeHash approach is based on a hash function H that maps languages
to natural numbers. We focus on the subsets LGsub,� ⊆ L(Gsub) and LGsol,� ⊆
L(Gsol) of words of length � of L(Gsub) and L(Gsol), respectively, and check
LGsub,� = LGsol,� indirectly with H(LGsub,�) = H(LGsol,�). Note that by using
hash functions we may obtain false positives due to collisions, but never false
negatives. We use a typical definition [11] for a hash function for words:

H(w) =
(∑|w|

i=1 w[i] · bi−1
)
mod m

where m is a “big” prime and b is a “small” prime satisfying b > |Σ|. Note that
we interpret the terminal symbols in Σ as numbers, assuming that they are in
{1, . . . , b− 1} and are pairwise different. An extension of H to languages like

H(L) =
(∑

w∈LH(w)
)
mod m

suffices to detect when LGsub,� and LGsol,� differ, and in such case a counterex-
ample w ∈ LGsub,��LGsol,� can easily be constructed one symbol at a time: it
suffices to check that the symbol appended to w is valid for w to become the
counterexample, i.e., to check that H({wu ∈ LGsub,�}) �= H({wv ∈ LGsol,�}).

Due to the lack of space and for explanation purposes, instead of giving the
formal definition of the efficient computation ofH(LG,�) making use of the struc-
ture of G, we just give an example. Consider the language L = {anbn | n > 0}

142 C. Creus and G. Godoy

and the following cfg generating L (already in cnf):

S → AX | AB
X → SB
A → a
B → b

By H(W, �) we denote H({w ∈ Σ∗ | W →∗
G w ∧ |w| = �}) and by C(W, �) we

denote |{w ∈ Σ∗ | W →∗
G w ∧ |w| = �}|. Such values can be recursively obtained

using the structure of G. For the direct cases we have H(A, 1) = a, H(B, 1) = b,
C(A, 1) = C(B, 1) = 1, and H(A, n) = H(B, n) = C(A, n) = C(B, n) = 0 for
n > 1. Since the right-hand sides of rules of S and X have size 2, H(S, 1) =
H(X, 1) = C(S, 1) = C(X, 1) = 0. Since X only has the rule X → SB, C(X, 2) =
C(S, 1) · C(B, 1) = 0, and H(X, 2) = H(S, 1) · C(B, 1) + C(S, 1) · H(B, 1) · b = 0.
Proceeding analogously, we obtain C(S, 2) = 1, H(S, 2) = a + bb. Since S has
the rules S → AX, S → AB,

C(S, 3) = C(A, 1) · C(X, 2) + C(A, 2) · C(X, 1)+
C(A, 1) · C(B, 2) + C(A, 2) · C(B, 1) = 0

H(S, 3) = H(A, 1) · C(X, 2) + C(A, 1) · H(X, 2) · b+
H(A, 2) · C(X, 1) + C(A, 2) · H(X, 1) · b2+
H(A, 1) · C(B, 2) + C(A, 1) · H(B, 2) · b+
H(A, 2) · C(B, 1) + C(A, 2) · H(B, 1) · b2 = 0

Proceeding analogously, we obtain C(X, 3) = 1, H(X, 3) = a+ bb+ bb2.
JudgeHash only works correctly when Gsol is unambiguous because deriva-

tions generating the same word are counted independently. The generated coun-
terexample w to the correctness ofGsub will be either a word in L(Gsub)�L(Gsol)
or a word ambiguously generated by Gsub. A membership test can determine
which one of these cases takes place.

3.3 SAT

The JudgeSAT is based on the work of [3] and consists in testing equiva-
lence of Gsub and Gsol by reducing the problem to the satisfiability of boolean
propositional formulas. More specifically, the idea is to first construct a formula
F�,Gsub,Gsol

such that it is satisfiable if and only if there exists a counterexample
word of length at most �, and then to solve the formula with a state-of-the-art
SAT solver. We have reimplemented this method with the idea of trying some
possible optimizations. One of them consists in splitting F�,Gsub,Gsol

in two inde-
pendent formulas F�,Gsub\Gsol

and F�,Gsol\Gsub
, where F�,Gi\Gj

is satisfiable if and
only if there exists a word of length � in L(Gi) \ L(Gj). We recall the reduction
process of [3] just for F�,Gsub\Gsol

.
The formula F�,Gsub\Gsol

is defined by means of two kinds of propositional
variables: X a

i and XX
i,j , where 1 ≤ i ≤ j ≤ �, a ∈ Σ and X ∈ V . The first

kind of variable, X a
i , represents the fact that the counterexample w has the

terminal a at position i. The second kind of variable, XX
i,j , represents the fact

Automatic Evaluation of Context-Free Grammars (System Description) 143

that the subword w[i..j] can be generated from the non-terminal X . The formula
F�,Gsub\Gsol

can be decomposed into four different parts. First, it guarantees that
the counterexample w[1..�] is a valid word in Σ∗ by forcing each position of the
word to contain exactly one terminal symbol of Σ:

∧�
i=1

(∨
a∈Σ X a

i

)
∧�

i=1

∧
a∈Σ

(
X a

i → ∧
b∈Σ\{a} ¬X b

i

)

Second, F�,Gsub\Gsol
states that w[1..�] is generated by Gsub but not by Gsol with

the two unit clauses (XSsub

1,�) and (¬XSsol

1,�), where Ssub and Ssol are the starting
symbols of Gsub and Gsol, respectively. Third, it formalizes the fact that Gsub

generates w[1..�]:

∧�−1
i=1

∧�
j=i+1

∧
X∈Vsub

(
XX

i,j →
∨

(X→Y Z)∈Rsub

∨j−1
s=i (X Y

i,s ∧ XZ
s+1,j)

)
∧�

i=1

∧
X∈Vsub

(
XX

i,i →
∨

(X→a)∈Rsub
X a

i

)

where Vsub and Rsub are the sets of non-terminals and rules ofGsub. And fourth, it
formalizes the fact that Gsol does not generate w[1..�] with a formula analogous
to the previous one, but with the direction of the implications reversed.

It is clear that a counterexample w of length � exists if and only if either
F�,Gsub\Gsol

or F�,Gsol\Gsub
is satisfiable. Moreover, w can be derived from any

assignment η that satisfies a formula by analysing all the values η(X a
i).

One additional optimization with respect to [3] that we have considered is
to simplify the formulas as follows: whenever we detect that a non-terminal X
cannot generate any word of length k, we simply create a unit clause (¬XX

i,i+k−1)
for any relevant i. This allows us to ignore for length k all the rules with X as
left-hand side and all the possible split indexes s ∈ {i, . . . , i+ k − 1}.

3.4 DFA

The approach of JudgeDFA is based on automata techniques. The idea is to
construct the minimum dfa Asub,� and Asol,� recognizing the words of length �
generated by Gsub and Gsol, and testing whether Asub,� and Asol,� are identical.
In order to be able to compute the automata directly on the grammars, we use
the following function A : V ×N → dfa mapping a non-terminal X and a length
� to an automaton recognizing the words of length � generated from X :

A(X, �) =

{⋃
(X→a)∈R Aa if �=1⋃
(X→Y Z)∈R

⋃�−1
i=1 A(Y, i) · A(Z, � − i) if �>1

where concatenation and union are not set operations, but automata operations
producing automata recognizing the concatenation and union of the languages
of the given automata, and Aa denotes the automaton recognizing the word
a ∈ Σ. Moreover, we assume that the dfa recognizing the empty language is the
neutral element of the automata union. Note that we do not explicitly detect
whether the grammars are ambiguous, but an approximation could be checked
while evaluating A by testing whether the unions performed are disjoint.

144 C. Creus and G. Godoy

4 Performance

4.1 Complexity Analysis

For JudgeExhaustive, when we restrict to small alphabets and small �, words
can be encoded as natural numbers using the native representation of the com-
puter, and then the running time is in O(|R| ·� · |Σ|�) and its space in O(V ·|Σ|�).

In the case of JudgeHash, using a dynamic programming scheme, the space
requirements to compute C and H up to the current counterexample w are in
O(|V|·�2) and it takes time in O(|R|·�3). The construction of the counterexample
w requires the recomputation of Cw and Hw at most � · |Σ| times, giving a global
running time in O(|R| · �4 · |Σ|).

The number of variables of the form X a
i and XX

i,j of JudgeSAT is in O(�·|Σ|+
�2 · |V|), and hence, the cost of solving F�,Gi\Gj

is in 2O(�·|Σ|+�2·|V|). Fortunately,
state-of-the-art SAT solvers perform much better than this in practice, and in-
cremental SAT-solver techniques [8,16] lead to noticeable speed-ups since the
solver can reuse for F�+1,Gi\Gj

the knowledge obtained when solving F�,Gi\Gj
.

Finally, for JudgeDFA, first note that the size of a minimum dfa recognizing
a set of words of length � is in 2O(log(|Σ|)·�). Second, recall that the concatenation
operation on automata might lead to exponential blowup and the union opera-
tion multiplies the sizes of the automata being considered [9]. This implies that

the computations of JudgeDFA have space requirements in 22
O(log(|Σ|)·�)

. How-
ever, this extreme bound is only reached when the languages generated by the
grammars require excessive memorization, e.g., the language of palindromes and
the language of well-parenthesized words. In other cases, JudgeDFA can “com-
press” the language by sharing states and obtains much better performance.

4.2 Benchmarks

We have compared the performance of our judges using the set of benchmarks
from [3], comprising 35910 different pairs of grammars. As a reference, we have
also tested the prototype implementation of [3], cfganalyzer2. Additionally,
we have also compared our proposals with Hampi

3, a state-of-the-art string-
constraint solver developed in [6] which is expressive enough to approximate
grammar equivalence. Hampi works by internally transforming the grammars to
fixed-length regular expressions and then solving the constraints for them.

Figure 1 shows the results obtained4 for each judge when testing grammar
equivalence up to length � = 15. The plot can be interpreted as follows: all
the 35910 tests are run in parallel in independent machines, the abscissa is the
elapsed time, and the ordinate is the number of tests that have not reached a
verdict. It is easy to see in the chart that most of the tests can be solved in less

2 Version 2012-12-26, http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/
3 Version 2012-2-13, http://people.csail.mit.edu/akiezun/hampi/
4 Measurements taken on a 64-bit IntelR© PentiumR© T4200, at 2GHz and with 4GB of
RAM, timings available at http://www.lsi.upc.edu/~ggodoy/publications.html

http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/
http://people.csail.mit.edu/akiezun/hampi/
http://www.lsi.upc.edu/~ggodoy/publications.html

Automatic Evaluation of Context-Free Grammars (System Description) 145

1 10 100 1000 10000 100000

Elapsed time (milliseconds)

1
10

10
0

10
00

10
00

0
Am

ou
nt

 o
f u

nfi
ni

sh
ed

 te
st

s

cfganalyzer JudgeHash JudgeDFA JudgeSAT JudgeSATsplit JudgeExhaustive Hampi

Fig. 1. Results using the benchmarks from [3], comprising 35910 grammar pairs, testing
equivalence up to length � = 15

than 10 milliseconds by all the judges. This is because in such cases either the
counterexamples were small, i.e., the empty word, or the grammars were deemed
wrongly formatted. Timings for cfganalyzer and JudgeSAT correspond to the
builds using the latest version of MiniSat

5 [5] (the solvers zChaff [12] and Pi-

coSat [4] were also considered, but finally discarded due to lower performance).
Clearly, the plots for JudgeSAT closely follow cfganalyzer, with our opti-
mizations giving only a small benefit. The results for JudgeExhaustive and
JudgeDFA are comparable to cfganalyzer, and even significantly better when
considering the most expensive tests. JudgeExhaustive is competitive with the
rest because the alphabets are small and the languages are sparse. The timings
obtained for JudgeHash are quite remarkable: the worst running time was just
12 milliseconds. Finally, in the case of Hampi, we had to limit the execution
time to 2 minutes and the memory to 512 MB, since in some tests the program
hung consuming all the available memory. Due to these problems, we only used
a subset of the tests. Overall, results for Hampi are rather poor when compared
to the rest of judges.

4.3 Stressing the Judges

To highlight the differences between our judges, we have devised an additional
set of grammar pairs that focus on particular bottlenecks of each judge:

– Language of words with same number of a’s and b’s:

Gnumab = {S → aXbS | bY aS | ε, G′
numab = {S → aSbS | bSaS | ε}

X → aXbX | ε,
Y → bY aY | ε}

– Palindromes over an alphabet Σi with i different terminal symbols:

Gpali =
⋃

a∈Σi
{S → aSa | a | ε} G′

pali
=

⋃
a∈Σi

{S → Aa | a | ε, Aa → aSa}
5 Version 2.2.0, http://www.minisat.se

http://www.minisat.se

146 C. Creus and G. Godoy

– Language of the well-parenthesized words:

Gparen = {S → (S)S | [S]S | G′
paren = {S → S(S)S | S[S]S |

{S}S | <S>S | ε} S{S}S | S<S>S | ε}

– Language of the valid expressions over the alphabet Σ = {+, *, (,), 0, . . . , 9}:
Gexpr = {E → P+E | P, P → B*P | B, G′

expr = {E → E+E | E*E | N | (E),
B → N | (E), N → ND | D, N → DN | D,
D → 0 | 1 | . . . | 9} D → 0 | 1 | . . . | 9}

Figure 2 shows the obtained running times. As expected, JudgeExhaustive
achieves acceptable performance only when the alphabet is small and the lan-
guages sparse. The cases of JudgeDFA and JudgeSAT are related: the latter
improves the times of the former when the languages require excessive mem-
orization. For instance, Gpali

, G′
pali

, Gparen and G′
paren force the automata to

memorize almost all the read word. When no such excessive memorization is
required, like in Gnumab, G

′
numab, Gexpr and G′

expr, the automata of JudgeDFA

are small and it obtains better performance than JudgeSAT.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
0.

4
0.

8

(a) Gnumab vs. G′
numab

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1

2

(b) Gpal4
vs. G′

pal4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
10

20
30

40

(c) Gparen vs. G′
paren

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
10

20
30

(d) Gexpr vs. G′
expr

Fig. 2. Running times in seconds (ordinate) in terms of the maximum length � tested
(abscissa) for the different judges (dotted lines correspond to JudgeExhaustive, long-
dashed to JudgeDFA, short-dashed to JudgeSAT)

We have an extra test to stress JudgeHash. This is necessary since its worst
case scenario is not with equivalent grammars, but when there is a big coun-
terexample. We test the language of words of length i over Σj = {a1, . . . , aj}:

Garti,j = {S →
i

︷ ︸︸ ︷
T . . . T , T → a1 | . . . | aj} G′

arti,j
= Garti,j ∪ {S →

i
︷ ︸︸ ︷
aj . . . aj}

Note that the lexicographically last word is ambiguously generated by G′
arti,j

,
thus being the counterexample. Figure 3 depicts the obtained times, where it is
clear that competitive performance is achieved even with rather big i and j.

Automatic Evaluation of Context-Free Grammars (System Description) 147

5 10 15 20 25 30 35 40 45 500.
1

1
10

10
0

j = 30
j = 25
j = 20
j = 15
j = 10
j = 5

Fig. 3. JudgeHash’s running times in seconds (ordinate) in terms of the word length
i (abscissa) for Garti,j vs. G′

arti,j

5 Online Judging System

Our website currently offers 46 problems on cfg’s and 21 on push-down au-
tomata, which are checked by the same judges by a prior standard transformation
into cfg’s. Our system is configured as follows. For problems with languages over
alphabets with 2 or 3 symbols we use JudgeExhaustive with � = 10, because it
is fast enough, has a rather uniform running time, and the answer is guaranteed
to be correct up to the chosen �. For problems over alphabets larger than 3 and
asking for an unambiguous grammar we use JudgeHash and � = 15, which is
combined with JudgeExhaustive with � = 3 in order to reduce the chances of
hash collisions. For the rest of problems we use either JudgeSAT or JudgeDFA,
depending on the language, and with � = 10. Essentially, JudgeDFA is used
for those languages for which the expected natural grammar solutions produce
small automata, according to the problem setter criterion.

We have been using the online judge since September 2012 with the students
of the Theory of Computation subject at the Computer Science course of the
Universitat Politècnica de Catalunya. For the first two semesters it was offered to
the students as an optional support tool to do exercises. During the fall semester
of 2013 we also used our system to hold online exams, and the students made
over 12000 submissions in total, for an average of 250 submissions per student.

6 Conclusions

We have developed several techniques for determining if two given context-free
grammars generate the same language. The methods we have implemented work
sufficiently well in practice. In the case of the SAT-based judge, the performance
of our implementation is similar to the state of the art. The hash-based method
has much better performance than the others. Nevertheless, besides the fact that
this method cannot be used with ambiguous solution grammars, the extension
of the hash function from words to languages degrades some of its properties,
and it may happen that some collisions take place independently of the chosen
primes m, b. For instance, the following languages L1, L2 give rise to the same
value through the hash:

L1 = {anbn | n ≥ 0} ∪ {cndn | n ≥ 0}
L2 = {andn | n ≥ 0} ∪ {cnbn | n ≥ 0}

148 C. Creus and G. Godoy

This problem takes place only in specific languages in practice, but defining
alternative hashing functions to avoid it should be matter of further work.

According to the students’ opinions, the judge is a good support tool that helps
them know if they are understanding the matter. In our opinion, it has all the
benefits of online judges: it is a good support-learning tool, gives instant feedback,
and motivates users to practice. Note that the tool just checks that the submitted
solutions are correct, but neither the quality of such solutions nor that the students
have understood them well enough to justify their correctness. In this sense, the
professor is essential to adquire a good comprehension of the matter.

Although many problems in the list are artificial, they help students to under-
stand the limits of expressivity of cfg’s, and how context-free conditions can be
combined with regular conditions. We are interested in studying whether simi-
lar techniques perform well for evaluating grammars designed for descending or
ascending parsing, and for the construction of abstract syntax trees. This can
be useful to develop support-learning tools for the Compilers subject.

References

1. Agarwal, A.: edX (2012), https://www.edx.org
2. Alexandrova, S., Balandin, A., Compeau, P., Kladov, A., Rayko, M., Sosa, E.,

Vyahhi, N., Dvorkin, M.: Rosalind (2012), http://www.rosalind.info
3. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an

incremental SAT solver. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 410–422. Springer, Heidelberg (2008)

4. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation 4(2-4), 75–97 (2008)

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

6. Ganesh, V., Kieżun, A., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.: HAMPI: A
string solver for testing, analysis and vulnerability detection. In:Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 1–19. Springer, Heidelberg (2011)

7. Garćıa, C., Revilla, M.A.: UVa online judge (1997), http://uva.onlinejudge.org
8. Hooker, J.N.: Solving the incremental satisfiability problem. Journal of Logic Pro-

gramming 15(1&2), 177–186 (1993)
9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-

guages, and Computation, 3rd edn. Addison-Wesley (2006)
10. Khan, S.: Khan Academy (2006), https://www.khanacademy.org
11. Knuth, D.E.: The Art of Computer Programming, vol. III: Sorting and Searching.

Addison-Wesley (1973)
12. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an efficient SAT solver. In: Annual ACM IEEE Design Automation Conference,
pp. 530–535. ACM (2001)

13. Ng, A., Koller, D.: Coursera (2012), https://www.coursera.org
14. Petit, J., Giménez, O., Roura, S.: Jutge.org: an educational programming judge. In:

ACM Special Interest Group on Computer Science Education, pp. 445–450 (2012)
15. Thrun, S., Stavens, D., Sokolsky, M.: Udacity (2012), https://www.udacity.com
16. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A new incremental satisfiability

engine. In: Design Automation Conference, pp. 542–545 (2001)

https://www.edx.org
http://www.rosalind.info
http://uva.onlinejudge.org
https://www.khanacademy.org
https://www.coursera.org
https://www.udacity.com

	Automatic Evaluation of Context-FreeGrammars (System Description)
	1 Introduction
	2 Preliminaries
	3 Judging Methods
	3.1 Exhaustive
	3.2 Hash
	3.3 SAT
	3.4 DFA

	4 Performance
	4.1 Complexity Analysis
	4.2 Benchmarks
	4.3 Stressing the Judges

	5 Online Judging System
	6 Conclusions
	References

