
Process Types as a Descriptive Tool for Interaction�

Control and the Pi-Calculus

Kohei Honda1,��, Nobuko Yoshida2, and Martin Berger3

1 Queen Mary, University of London, London, UK
2 Imperial College London, London, UK

3 University of Sussex, Sussex, UK

Abstract. We demonstrate a tight relationship between linearly typed π-calculi
and typed λ-calculi by giving a type-preserving translation from the call-by-value
λμ-calculus into a typed π-calculus. The λμ-calculus has a particularly simple
representation as typed mobile processes. The target calculus is a simple variant
of the linear π-calculus. We establish full abstraction up to maximally consis-
tent observational congruences in source and target calculi using techniques from
games semantics and process calculi.

1 Introduction

At TLCA 2001 [4] the authors started a research programme relating typed λ-calculi
and typed π-calculi [5, 17, 18, 39, 40]. The rationale behind the programme has been
twofold: first to demonstrate that functional computation can be decomposed into name-
passing and thus be fruitfully understood as a constrained and well-behaved form of
interaction. Secondly, the authors wanted their nascent investigations of the vast space
of typing systems for interacting processes be guided by the λ-calculus community’s
insights into the nature of typing, one of the great contributions to computer science.
A key aspect of our methodology for generalising λ-calculus types to interaction has
been to study full-abstraction: Milner’s encoding of untyped λ-calculus [24] is sound
but not complete in the absence of types. This is because atomic β-reduction steps
are decomposed into multiple name-passing interactions where intermediate steps can
be observed. To achieve completeness, the ability to observe such intermediate steps
must be ruled out by typing – in other words, only processes that interact ’function-
ally’ should be well-typed. A key insight has been the usefulness of linearly typed
π-calculi for the understanding of typed λ-calculi. Linearity and it’s close cousin affin-
ity yield full abstraction using proof techniques coming from games semantics, linear
logic and process calculi. This paper continues our programme by studying the call-by-
value λμ-calculus [26], henceforth λμv-calculus, a λ-calculus with non-local control-
flow manipulation (often referred to as “control” or “jumping”). The λμv-calculus is
a proof-calculus for classical propositional logic. Non-local control can be encoded in
pure λ-calculus using continuation-passing style, but a direct representation of jump-
ing is of interest, not just because of the connection with classical logic, and because

� Partially supported by EPSRC EP/K011715/1, EP/L00058X/1 and EP/K034413/1.
�� http://mrg.doc.ic.ac.uk/kohei.html [29, 33]

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 1–20, 2014.
c© Springer International Publishing Switzerland 2014

http://mrg.doc.ic.ac.uk/kohei.html

2 K. Honda, N. Yoshida, and M. Berger

it leads to more readable programs in comparison with continuation-passing style, but
also because jumping can be seen as a form of interaction that is less restrictive than the
last-in/first-out calling discipline of functional computation.

Technically, we present a type-preserving translation from the λμv-calculus into a
typed π-calculus, and show that it is fully abstract up to maximally consistent obser-
vational congruences in source and target calculi. Full abstraction is proved via an
inverse transformation from the typed π-terms which inhabit the λμv-types into the
λμv-calculus [26].

There are different notions of control. In the π-calculus they can be represented as
distinct forms of typed interaction. The λμ-calculus introduced by Parigot [27] pro-
vides unrestricted control, and was later studied in call-by-value form by Ong and
Stewart [26]. Surprisingly, as this paper demonstrates, unrestricted control has a par-
ticularly simple representation as typed name passing processes; processes used for
the embedding are exactly characterised as a proper subset of the linear π-calculus
introduced in [39], with a clean characterisation in types and behaviour. The linear π-
calculus can embed, for example, the simply typed λ-calculus full abstractly. We call
the subset of the linear π-calculus corresponding to full control the πC-calculus (“c”
indicates control). The πC-calculus is restricted in that each channel is used only for a
unique stateless replicated input and for zero or more dual outputs. The πC-calculus also
precludes circular dependency between channels. In spite of its simplicity, both, call-
by-value and call-by-name full control, are precisely embeddable into the πC-calculus
by changing the translation of types. Because the πC-calculus is a proper subset of the
linear π-calculus, many known results about the linear π-calculus can be carried over
to the πC-calculus. This can be used for establishing properties of the λμv-calculus. For
example, strong normalisability of the πC-calculus is an immediate consequence of the
same property of the linear π-calculus, and that can be used for showing strong normal-
isability of the λμv-calculus [24]. The tight operational and equational correspondence
enables the use of typed π-calculi for investigating and analysing control operators and
calculi in a uniform setting, possibly integrated with other language primitives and op-
erational structures. After studying the call-by-value λμ-calculus, we also demonstrate
applicability of our framework by an embedding of the call-by-name λμ-calculus into
the same πC-calculus by changing translation of types.

Section 2 summarises the πC-calculus. Section 3 gives our encoding of the λμv-
calculus. Section 4 establishes full abstraction. The paper concludes with an outline
of the call-by-name encoding, and discusses related work as well as open issues. Full
proofs and additional discussions are delegated to [1].

2 Processes and Types

Processes. Types for processes prescribe usage of names. To be able to do this with
precision, it is important to control dynamic sharing of names. For this purpose, it is
useful to restrict name passing to bound (private) name passing, where only bound
names are passed in interaction. This allows tighter control of sharing without losing
essential expressiveness, making it easier to administer name usage in more stringent
ways. The resulting calculus is an asynchronous version of the πI-calculus [31] and has

Process Types as a Descriptive Tool for Interaction 3

(Structural Rules) (Reduction)

(S0) P ≡ Q if P ≡α Q

(S1) P |0 ≡ P (S2) P |Q ≡ Q|P
(S3) P |(Q|R) ≡ (P |Q)|R
(S4) (ν x)0 ≡ 0

(S5) (ν x)(ν y)P ≡ (ν y)(ν x)P

(S6) (ν x)(P |Q) ≡ ((ν x)P)|Q (x �∈ fn(Q))

(S7) x(�y)z(�w)P ≡ z(�w)x(�y)P (x, z �∈ {�w�y})
(S8) (ν z)x(�y)P ≡ x(�y)(ν z)P (z �∈ {x�y})
(S9) x(�y)(P |Q) ≡ (x(�y)P)|Q ({�y} ∩ fn(Q) = ∅)

(Com!)
!x(�y).P | x(�y)Q −→!x(�y).P |(ν �y)(P |Q)

(Res)
P −→ Q =⇒ (ν x)P −→ (ν x)Q

(Par)
P −→ P ′ =⇒ P |Q −→ P ′|Q
(Out)
P −→ Q =⇒ x(�y)P −→ x(�y)Q

(Cong)
P ≡ P ′ −→ Q′ ≡ Q =⇒ P −→ Q

Fig. 1. Reduction and Structural Rules

expressive power equivalent to the calculus with free name passing (for the result in
the typed setting, see [39]). In the present study, the restriction to bound name passing
leads to, among others, a clean inverse transformation from the π-calculus into the λμ-
calculus. The grammar of the calculus is given below.

P ::= !x(�y).P | x(�y)P | P |Q | (ν x)P | 0

The initial x in !x(�y).P and x(�y)P is called subject. We write !x.P for !x(ε).P and
xP for x(ε)P , where ε denotes the empty vector. | is parallel composition, !x(�y).P is
replicated input, and x(�y)P is asynchronous bound output, (ν x)P is name hiding and
0 denotes nil. The full definition of the reduction rules and the structure rules is found
in Figure 1 (−→ is generated from the given rules; ≡ is generated from the given rules
together with the closure under all contexts). We write →→ for −→∗ ∪ ≡.

Types. First we introduce channel types. They indicate possible usage of channels.

τ ::= (�τ)p p ::= ! | ?

τ, τ ′, ... (resp. p, p′, ...) range over types (resp. modes). ! and ? are called server mode
and client mode, respectively, and they are dual to each other. Here, by server we mean
that the process is waiting with an input to be invoked. Conversely, a process is a client,
if its next action is sending a message to a server. We write md(τ) for the outermost
mode of τ . For example, md((τ1 τ2)!) = !. We write ()p for (ε)p, which stands for
a channel that carries no names. We further demand the following condition to hold
for channel types. A channel type τ is IO-alternating if, for each of its subexpression
(τ1..τn)

p, if p = ! (resp. p = ?) then each md(τi) = ? (resp. md(τi) = !). Hereafter
we assume all channel types we use are IO-alternating. The dual of τ , written τ , is
defined as the result of dualising all modes in τi. For example, (τ1 τ2)? is the dual of the
above type. To guarantee the uniqueness of a server (replicated) process, we introduce
the partial operation � on types, which is generated from: τ � τ = τ � τ = τ and
τ � τ = τ with (md(τ) = ?). Note � is indeed partial since it is not defined in other
cases. This operation means that a server should be unique, but an arbitrary number
of clients can request interactions. To guarantee the second condition, we introduce an
action type ranged over by A,B,C.... The syntax is given as follows:

4 K. Honda, N. Yoshida, and M. Berger

A ::= ∅ | x :τ | x : (�τ1)! → y : (�τ2)
? | A,B

The idea behind this definition is that action types are graphs where nodes are of the
form x : τ , provided names like x occur at most once.

Typing. The typing judgement are of the form �φ P � A which is read: P has type A
with mode φ where IO-modes, φ ∈ {I, O}, guarantees a restriction to a single thread.
We present the typing system in Appendix A. The rules are obtained just by restricting
the typing system in [39] to the replicated fragment of the syntax we are now using.
The resulting typed calculus is called πC. The subject reduction of πC is an immediate
consequence of that in [39], since both the action types and the reduction of the present
calculus are projection of those of the sequential linear π-calculus in [39, §5.3].

Proposition 2.1. (Subject Reduction) If �φ P � A and P −→ Q then �φ Q � A.

In addition to the standard reduction, we define an extended notion of reduction, called
the extended reduction, written ↘, again precisely following [39]. We shall use this
reduction extensively in the present study. While −→ gives a natural notion of dynamics
which makes sense in both sequential and concurrent computation, ↘ extends −→ by
exploiting the stateless nature of πC-processes. It offers a close correspondence with
the reduction in the λμv-calculus through the encoding. For that reason ↘ is useful for
studying the correspondence between two calculi. Formally ↘ is the least compatible
relation, i.e. closed under typed context, taken modulo ≡, that includes:

C[x(�y)P]|!x(�y).Q ↘r C[(ν �y)(P |Q)] | !x(�y).Q (ν x)!x(�y).Q ↘g 0

where C[·] is an arbitrary (typed) context. We can immediately see that −→⊂↘. Note
↘ calculates under prefixes, which is unusual in process calculi. Another observation is
that a given typed process in the πC-calculus can have at most one redex for the standard
reduction −→ while it may have more than one redex for ↘. The extended reduction
↘ is the exact image of extended reduction in [39] onto the present subcalculus, so that
we immediately conclude, from the results in [39]:

Proposition 2.2. 1. (Subject Reduction) If �φ P � A and P ↘ Q then �φ Q � A.
2. (CR) If P is typable and P ↘ Qi (i = 1, 2) with Q1 �≡ Q2, we have Qi ↘+ R

(i = 1, 2) for some R.
3. (SN) If P is typable then P does not have infinite ↘-reductions.

It may be useful to state at this point that, possibly contrary to what is suggested by the
asymmetric notation,↘ does not introduce a new form of computation step, a new form
of interaction. Instead, P ↘ Q says that P and Q cannot be distinguished by well-typed
observers. This indistinguishability is an artefact of our restrictive typing discipline and
does not hold in the untyped calculus. The notation was chosen to emphasise that Q in
P ↘ Q is ’smaller’ or more reduced than P in a sense that can be made precise.

There are three further observations on the extended reduction. First, while we do
not use the property directly in the present work, the convertibility induced by ↘ (i.e.
the typed congruent closure of ↘) coincides with the weak bisimilarity ≈ [39, Theorem
4.1], because the transition relation is the faithful image of that of the pure sequential

Process Types as a Descriptive Tool for Interaction 5

linear π-calculus in [39]. Second, Proposition 2.2 (3) indicates all πC-processes are
represented by their ↘-normal forms, i.e. those πC-processes which do not have a ↘-
redex, which own a very simple syntactic structure characterised inductively. Finally,
in the definition of ↘ it is not necessary to cater for replicated inputs occurring freely
under other input prefixes as that is impossible by typing. Similarly, any replicated
input with free subject under an output can be put into parallel with that output by the
structural rules in the typed setting.

Definition 2.1. Let the set NFe of πC-processes be generated by the following induc-
tion, assuming typability in each clause. (1) 0 ∈ NFe; (2) if P,Q ∈ NFe and P and Q
do not share a common free name of different polarities, then P |Q ∈ NFe; (3) P ∈ NFe

then !x(�y).P ∈ NFe; (4) x(�y)P ∈ NFe if P ∈ NFe and x(�y)P is a prime output, where
we call x(�y)P prime if the initial x is its only free name not under input prefix; and (5)
If P ∈ NFe and P ≡ Q then Q ∈ NFe. Clearly if P is typable and P �↘ then P ∈ NFe.

Contextual Congruence for πC. The Church-Rosser property of typed processes, as
stated in Proposition 2.2, suggests that non-deterministic state change (which plays a
basic role in e.g. bisimilarity and testing/failure equivalence) may safely be ignored in
typed equality, so that a Morris-like contextual equivalence suffices as a basic equality
over processes. Let us define:

P ⇓x iff P →→ x(�y)Q for some Q

We can now define a basic typed congruence. Below, a relation over typed processes is
typed if it relates only processes with identical action type and IO-mode. If R is a typed
relation and �φ P1,2 � A are related by R then we write �φ P1 R P2 � A or, when no
confusion arises, P1 R P2. A relation is a typed congruence when (1) R ⊇≡, and (2)
R is a typed equivalence relation closed under typed contexts (note we are taking ≡ as
if it were the α-equality: this is essentially because the notion of reduction depends on
this relation, just as reduction in the λ-calculus depends on the α-equality).

Definition 2.2. ∼=π is the maximum typed congruence satisfying: if �O P ∼=π Q � x :
()?, then P ⇓x iff Q ⇓x.

Below a typed congruence is maximally consistent [15] if adding any additional equa-
tion to it leads to inconsistency, i.e. equations on all processes with identical typing.

Proposition 2.3. (1) ↘ ⊂ ∼=π; (2) ∼=π is a maximally consistent typed congruence; (3)
∼=π is the unique maximally consistent congruence containing ↘.

Our choice of observable in πCcorresponds to the usual output-barbed congruence one
considers in the untyped calculus. It is also the canonical choice for the calculus frag-
ment under discussion, for the following reasons. ?-actions are not considered as
observables in linear/affine π-calculi [4, 39] since, intuitively, invoking replicated pro-
cesses do not affect them. Proposition 2.3 suggests that the existence/non-existence of
?-actions may be the only sensible way to obtain a non-trivial large equality in πC,
equationally justifying the use of ?-actions as observables.

6 K. Honda, N. Yoshida, and M. Berger

3 Encoding

Call-by-value λμ-calculus. This section presents a type-preserving embedding of the
call-by-valueλμ-calculus by Ong and Stewart [26] in πC. Apart from tractable syntactic
properties of the calculus in comparison with its call-by-name counterpart, [26] showed
how various control primitives of call-by-value languages (such as call/cc in ML) can
be encoded in this calculus and its extension with recursion [26]. The calculus repre-
sents full control in a call-by-value setting, just like the call-by-value λ-calculus with
Felleisen’s C operator.

Types (α, β, . . .) are those of simply typed λ-calculus with the atomic type ⊥ (we
can add other atomic types with appropriate values and operations on them). We use
variables (x, y, . . .) and control variables (or names) (a, b, . . .). Preterms (M,N, . . .)
and values (V,W, . . .) are generated from the grammar:

M,N ::= x | λxα.N | MN | μaα.M | [a]M V,W ::= x | λxα.N

Apart from variables, abstraction and application, we have a named term [a]M and a
μ-abstraction μa.M , both of which use names. The typing judgement has the form
Γ � M : α;Δ where Γ is a finite map from variables to types, M is a preterm given
above, and Δ is a finite map from names to non-⊥-types. The typing rules are given
below:

(Id)

−
Γ · x :α
 x :α ;Δ

(C-var)

Γ · x :α · y :α
 M :β ;Δ

Γ · z :α
 M{z/xy} :β ;Δ

(C-name)

Γ
 M :β ;Δ · a :α · b :α
Γ
 M{c/ab} :β ;Δ · c :α

(⇒-I)

Γ · x :α
 M :β ;Δ

Γ
 λxα.M :α⇒β ;Δ

(⇒-E)

Γ
 M :α⇒β ;Δ

Γ
 N :α ;Δ

Γ
 MN :β ;Δ

(⊥-I)

Γ
 M :α ;Δα �= ⊥
Γ
 [a]M :⊥ ;Δ · a :α

(⊥-E)

Γ
 M :⊥ ;Δ · a :α
Γ
 μaα.M : α ;Δ

In the rules, we assume newly introduced names/variables in the conclusion are always
fresh. The notation Γ · x : τ indicates x is not in the domain of Γ . M{z/xy} denotes
the result of substituting z in M for both x and y, similarly for M{c/ab}. A typable
preterm is called a λμv-term. The reduction rules for the λμv-calculus is given next:

(βv) (λx.M)V −→ M{V/x} (ζarg) V α⇒β(μaα.M) −→ μb.(M{ [b](V [·]) / [a][·] }
(ηv) λx.(V x) −→ V (x /∈ fv(V)) (ζfun,⊥) (μaα⇒⊥ .M)N −→ M{ [·]N / [a][·] }
(μ-β) [b]μa.M −→ M{b/a} (ζarg,⊥) V α⇒⊥(μaα .M) −→ M{V [·] / [a][·] }
(μ-η) μa.[a]M −→ M (a /∈ fn(M)) (⊥) V ⊥⇒βM −→ μbβ .M (b fresh)

(ζfun) (μaα⇒β .M)N −→ μb.M{ [b]([·]N) / [a][·] } (⊥⊥) V ⊥⇒⊥M −→ M

We let β �= ⊥. In (ζarg,ζarg,⊥), α �= ⊥. In the rules we include ηv-reduction, unlike
[26]. Inclusion or non-inclusion does not affect the subsequent technical development.
Some rules use substitution M{C[·] / [a][·] } defined next, assuming the bound name
convention. Note that substitution is applied in a nested fashion in the last line.

Process Types as a Descriptive Tool for Interaction 7

x{C[·] / [a][·] } def
= x

(λx.M){C[·] / [a][·] } def
= λx.(M{C[·] / [a][·] })

MN{C[·] / [a][·] } def
= (M{C[·] / [a][·] })(N{C[·] / [a][·] })

(μbα.M){C[·] / [a][·] } def
= μbα.(M{C[·] / [a][·] })

([a′]M){C[·] / [a][·] } def
=

{
[a′](M{C[·] / [a][·] }) (a �= a′)
[a′](C[M{C[·] / [a][·] }]) (a = a′)

Encoding (1): Types. The general idea of the encoding is simple, and closely follows
the standard call-by-value encoding of the λ-calculus, due to Milner [24]. The reading
is strongly operational, elucidating the dynamics of λμ-terms up to a certain level of
abstraction. Given a λμ-term,Γ � M : α;Δ, its encoding considersΓ as the interaction
points of the program/process where it queries the environment and gets information;
while either at its main port, typed as α, or at one of the control variables given as Δ, the
program/process would return a value: at which port it would return depends on how its
sequential thread of control will proceed during execution. If Δ is empty, this reading
precisely coincides with Milner’s original one [24]. One of the distinguishing features
of the π-calculus encodings of programming languages in general (including those for
untyped calculi) and that of the present encoding in particular, is that the operational
interpretation of this sort in fact obeys a clean and rigid type structure.

We start with the encoding of types, using two maps, α• and α◦. Intuitively α◦ maps
α as a type for values; while α• maps α as a type for threads which may converge to
values of type α or which may diverge, or “computation” in Moggi’s terminology [25].

α• def
=

{
ε (α = ⊥)

(α◦)? (α �= ⊥)
(α⇒β)◦ def

=

{
(β•)! (α = ⊥)

(α◦β•)! (α �= ⊥)

Note a type for computation is the lifting of a type for values. The encoding of ⊥
indicates that we assume there is no (closed) value, or a proof without assumptions,
inhabiting ⊥. This leads to the degenerate treatment of (⊥ ⇒ α)• since “asking at the
assumed absurdity” does not make sense. By “degenerate” we mean that the argument
in (⊥ ⇒ α) is simply ignored.

Example 3.1 As simple examples, consider: (⊥ ⇒ ⊥)◦ def
= ()! and ((⊥ ⇒ ⊥) ⇒

⊥)◦ def
= (()?)!. Note if α �= ⊥ we always have (α ⇒ ⊥)◦ = (α◦)! which corresponds

to the standard translation, ¬A def
= A ⊃ ⊥.

Following the mappings of types, the environments for variables and names are mapped

as follows, starting from ∅• def
= ∅ and ∅◦ def

= ∅.

(a :α ·Δ)• def
=

{
a :α• ·Δ• (α �= ⊥)
Δ• (α = ⊥)

(x :α · Γ)◦ def
=

{
x :α◦ · Γ ◦ (α �= ⊥)
Γ ◦ (α = ⊥)

The special treatment of ⊥ follows the encoding of types above and reflects its special
role in classical natural deduction. Simply put, if we have a proof whose conclusion

8 K. Honda, N. Yoshida, and M. Berger

[[x : α]]u
def
=

{
u〈xα◦ 〉 (α �= ⊥)
0 (α = ⊥)

[[λxα.M : α⇒β]]u
def
=

⎧⎪⎪⎨
⎪⎪⎩

u(c)!c(xz).[[M :β]]z (α �= ⊥, β �= ⊥)
u(c)!c(z).[[M :β]]z (α = ⊥, β �= ⊥)
u(c)!c(x).[[M :⊥]]z (α �= ⊥, β = ⊥)
u(c)!c.[[M :⊥]]z (α = ⊥, β = ⊥)

[[MN : β]]u
def
=

⎧⎪⎨
⎪⎩

[[M :α⇒β]]m{m(c)=([[N :α]]n{n(e)=c〈euα◦β◦〉})} (α �=⊥, β �=⊥)

[[M :α⇒β]]m{m(c)=c〈uβ◦〉} (α=⊥, β �=⊥)
[[M :α⇒β]]m{m(c)=[[N : α]]u} (α=⊥)

[[[a]M : ⊥]]u
def
= [[M : α]]m{a/m} [[μaα.M : α]]u

def
= [[M : ⊥]]m{u/a}

Fig. 2. Encoding of λμ-terms

is the falsity ⊥, then it is given there, for its all usefulness, for the purpose of having
a contradiction and negating a stipulated assumption. Operationally this suggests the
proof whose (conclusion’s) type is ⊥ has nothing positive to communicate to the out-
side, which explains why the map for computation (·)• ignores the control channel of
type ⊥. Dually you get no information from the proof of type ⊥, so querying at that
environment port is insignificant, hence we ignore ⊥-types in the negative positions.

Encoding (2): Terms. For the encoding of terms, we introduce the following notations,
which we shall use throughout the paper. Below in (3) we use the notation from [12,
Remark 15] in the context of CPS calculus (cf. Section 5).

1. (copycat) Let τ be an input type. Then [x → y]τ , copy-cat of type τ , is inductively
defined by the following clause.

[x → x′](τ1..τn)
! def

= !x(�y).x′(�y′)Π1≤i≤n[y
′
i → yi]

τi

where
∏

1≤i≤n Pi (or
∏

i Pi) stands for the n-fold parallel compositionP1| · · · |Pn.

2. (free output) x〈�y �τ 〉 def
= x(�z)Π [zi → yi]

τi with each τi having an output mode.

3. (substitution environment) P{x(�y)=R} def
= (ν x)(P | !x(�y).R).

Figure 2 presents the encoding of terms. The encoding closely follows that of types,
mapping a typing judgement Γ � M :α ;Δ and a fresh name (called anchor) to a pro-
cess. We omit the type environment from the source term in Figure 2. In each rule, we
assume newly introduced names (among others an anchor) are always fresh. The anchor
u in [[M :α]]u represents the point of interaction which M may have as a process [24]
or, more concretely, the channel through which the process returns the resulting value to
the environment. The process [[M :α]]u may also have interactions at its free variables
(for querying information) and at its free control variables (for returning values). Note
both of them are now channel names.

Proposition 3.1. Γ � M :α ;Δ implies �O [[M :α]]u � (u :α ·Δ)•, Γ ◦.

In Proposition 3.1, the type of the term and the types of control names are both mapped
with ()•, conforming to the shape of the sequent Γ � M : α;Δ. In particular, there
is no causality arrow in the types for translations of λμ-terms. This is because all types
(including environments and types for names) are mapped to output types, and causality
can only from ! to ?.

Process Types as a Descriptive Tool for Interaction 9

Example 3.2 (variable) As a simplest example, consider [[x : ⊥]]u
def
= 0. Since

(x : ⊥)◦ = (u : ⊥)• = ∅, we have �O [[x : ⊥]]u � (u : ⊥)•, (x : ⊥)◦ This en-
coding intuitively represents a trivial proof which assumes ⊥ and concludes ⊥, or, in
the terminology of Linear Logic, the axiom link of the empty type.

Example 3.3 (identity, 1) By closing x in Example 3.2, [[λx⊥.x : ⊥ ⇒ ⊥]]u
def
=

u(c)!c.0. Since (⊥ ⇒ ⊥)• = (()!)?, we have �O [[λx⊥.x : ⊥ ⇒ ⊥]]u � u : (⊥ ⇒ ⊥)•.

Example 3.4 (identity, 2) If α �= ⊥, then [[λxα.x : α ⇒ α]]u
def
= u(c)!c(xz).z〈xα◦〉.

Example 3.5 (control operator, 1) The following term essentially corresponds to C in
λCv introduced by Felleisen and his colleagues [10, 11]. Logically it is a shortest proof

of ¬¬A ⊃ A. Below we let ¬α def
= α ⇒ ⊥: ℵ def

= λz¬¬α.μaα.z(λxα.[a]x). Its direct
encoding is, assuming α �= ⊥:

[[ℵ]]u def
= u(c)!c(za).(νm)(m〈z〉 | !m(z).(ν n)(n(f)!f(x).a〈x〉 | !n(f).z〈f〉))

which, through a couple of ↘ uses, can be simplified into u(c)!c(za).z(f)!f(x).a〈x〉.
This agent first signals itself: then it is invoked with a function in the environment (of
type ¬¬α) as an argument and a continuation a (of type α), invokes the former with the
identity agent (whose continuation is a) and a continuation a. Then if that function asks
back at the identity with an argument, say x, then this x is returned to a as the answer
to the initial invocation. Note how the πC-translation makes explicit the operational
content of the agent, especially when simplified using ↘.

Example 3.6 (control operator, 3) The following is the well-known witness of Peirce’s
law, ((A ⊃ B) ⊃ A) ⊃ A, and corresponds to call/cc in Scheme.

κ
def
= λy(α⇒β)⇒α.μaα.[a](y(λxα.μbβ.[a]x)).

The direct encoding becomes:

[[κ]]u
def
= u(c)!c(za).(νm)(m〈z〉|!m(z).(ν n)(n(f)!f(xb).a〈x〉|!n(f).z〈fa〉))

which is simplified with ↘ into: u(c)!c(ya).y(fa′)(!f(xb).a〈x〉 | [a′ → a]). The pro-
cess first signals itself at u, then, when invoked with an argument y and a return point
a, asks at y with an argument f and a new return point a′. Then whichever is invoked, it
would return with the received value to the initial return point a. Note that the only dif-
ference from the encoding of ℵ is whether, in addition to the invocation of the identity
function at f , there is the possibility that the direct return comes from the environment:
the difference, thus, is, in the standard execution, whether it preserves a current stack to
forward the value from the environment or not.

Correspondence in Dynamics. The dynamics of λμ-calculi, including its call-by-name
and call-by-value versions, has additional complexity due to the involvement of μ-
abstraction. Among others it becomes necessary to use a nested context substitution

10 K. Honda, N. Yoshida, and M. Berger

M{C[·] / [a][·] } when μ-abstraction and application interact. In the following we anal-
yse the dynamics of the λμv-calculus through the embedding, using the interaction-
oriented dynamics of πC. The strong normalisability of λμv-reduction is an immediate
consequence of this analysis.

We need some preparations. First, for a λμv-term which is also a value, the following
construction is useful.

Definition 3.1. Let Γ � V : α;Δ. Then we set [[V]]val
m

def
= P iff [[V]]u

def
= u(m)P .

Note u(m)[[V]]val
m is identical with [[V]]u up to alpha-equality. Note further, by typing,

[[V]]val
m always has the form !m(�y).P . These observations are useful when we think

about the encodings, especially when we apply extended reduction on them.
We are now ready to embark on the analysis of λμv-reduction through its encoding

into πC. Suppose we have reduction M −→ M ′ for a λμv-term M . Using the defini-
tions above, the generation of reduction can be attributed to one of the following cases:
(1) (βv)-rule or (ηv)-rule; (2) one of the μ-reduction rules; or (3) one of the ζ-reduction
rules. Of those, ζ-reductions require the most attention. Instead of considering the gen-
eral case (which we shall treat later), let us first take a look at the following concrete
λμv-reduction. Below f and g are typed as α ⇒ γ and α.

M
def
= (μaα⇒β.[a]λyα.μeβ.[a]f)g −→μbβ.[b](λy.μe.[b](fg))g

def
= M ′ (1)

The encoding into πCelucidates ζ-reductions on the uniform basis of name passing in-
teraction. Let us first encode M , writing c〈〈xu〉〉 for (ν n)(!n(y).c〈yu〉|n〈x〉):

[[M : α ⇒ β]]u
def
= (ν a)(a(c)!c(ye).a〈f〉 | !a(c).c〈〈gu〉〉) (2)

On the right of (2), we find two ↘r-redexes (apart from in c〈〈gu〉〉), two outputs and
a shared input at a, which are ready to interact. Redexes for the ζ-reduction now arise
explicitly as redexes for interactions. Note also these redexes do not depend on whether
the argument (g above) is a value or not, explaining the shape of (ζfun).

To see how M ′ in (1) results from M in the encoding, we “copy” replications to
make these two redexes contiguous, obtaining:

(ν a)(a(c)!c(ye).(ν a)(a〈f〉 | !a(c).c〈〈gu〉〉) | !a(c).c〈〈gu〉〉) (3)

This term is an intermediate form before reducing the mentioned two redexes in (2) and
is behaviourally equivalent to (2) (even in the untyped weak bisimilarity). We observe:

[[M ′ :α⇒β]]u
def
=(ν a)(a(c)!c(ye).(ν a′)(a′〈f〉 | !a′(c).c〈〈gu〉〉) | !a(c).c〈〈gu〉〉)

so the intermediate form (3) is nothing but the encoding of M ′. This also shows if we
really reduce the two ↘-redexes from (2), the result goes past (3). In general, M −→
M ′ does not imply [[M]]u ↘+ [[M ′]]u since [[M]]u reduces a little further than [[M ′]]u.
However [[M ′]]u can catch up with the result by reducing the mentioned two redexes in
(3).Based on this observation, we formally state the main result. Below size(M) is the
size of M , which is inductively defined as: size(x) = 1, size([a]M) = 1 + size(M),
size(λx.M) = size(M) + 1, size(μa.M) = 1 + size(M), size(MN) = size(M) +
size(N). We use this index for maintaining the well-ordering on reduction. Below →λμv

is the reduction relation on λμ-terms presented in [26].

Process Types as a Descriptive Tool for Interaction 11

Proposition 3.2. M →λμv M ′ with M and M ′ typed implies either [[M :α]] ≡ [[M ′ :
α]] such that size(M) � size(M ′), or [[M : α]]u↘+P such that [[M ′ : α]]u ↘∗ P . In
particular, →λμv on λμ-terms is strongly normalising.

4 Decoding and Full Abstraction

Canonical Normal Forms. In the previous section we have shown that types and dy-
namics of λμv-terms are faithfully embeddable into πC. In this section we show this
embedding is as faithful as possible — if a process lives in the encoding of a λμv-
type, then it is indeed the image of a λμv-term of that type. This result corresponds to
the standard definability result in denotational semantics, and immediately leads to full
abstraction for a suitably defined observational congruence for λμv.

A key observation towards definability is that we can algorithmically translate back
processes having the encoded λμv-types into the original λμv-terms. To study the de-
coding, it is convenient to introduce canonical normal forms (CNFs) [2, 4, 19], which
are essentially a subset of λμv-terms whose syntactic structures precisely correspond
to their process representation.

First, CNF preterms (N, . . .) and CNF value preterms (U, . . .) are given by:

N ::= c | λxα.N | let x = yU in N | let = yU | [a]U | μaα.N
U ::= c | λxα.N | μaα.[a]U

We further assume the following conditions on CNF preterms: (1) In [a]N, N does not
have form μbβ.N′. (2) In μaα.N, (a) if N is [a]U then a ∈ fn(U); and (b) if N is let x =
yU′ in N′ then a ∈ fn(U′). (3) In μaα.[a]U, a ∈ fn(U). The conditions 1, 2-a and 3 are
to avoid a μ-redex. The condition 2-b is to determine the shape of a normal form, since
without this condition μa.let x = yU′ in N′ can be written let x = yU′ in μa.N′.

Under these conditions, the set of CNFs are those which are typable by the following
typing rules combined with those for the λμ-calculus except the rule for application.

(⊥-const)

−
Γ ·x :⊥ � c :⊥ ;Δ

(let)

Γ ·x :β � N :γ ;Δ

Γ � yU :β ;Δ (β �= ⊥)

Γ � let xβ = yU in N :γ ;Δ

(let-⊥)

Γ � y :α⇒⊥ ; ∅
Γ � U :α ;Δ

Γ � let = yU :⊥ ;Δ

In (⊥-const), c, which witnesses absurdity, is introduced only when ⊥ is assumed in the
environment (logically this says that we can say an absurd thing only when the environ-
ment is absurd). CNFs which are also CNF value preterms are called CNF values. Note
a CNF value is either c (which is the sole case when it has a type ⊥), a λ-abstraction,
or a μ-abstraction followed by a λ-abstraction.

CNFs correspond to λμv-terms as follows. In the first rule we assume x is chosen
arbitrarily from variables assigned to ⊥. Below in the first line, it is semantically (and
logically) irrelevant which ⊥-typed variable we choose: for example, we may assume
there is a total order on names and choose the least one from the given environment.

(Γ ·x :⊥ � c :⊥ ;Δ)∗ def
= Γ ·x :⊥ � x :⊥ ;Δ (Γ � let = yU :⊥ ;Δ)∗ def

= Γ � yU∗ :⊥ ;Δ

(Γ � let xβ = yU in N :γ ;Δ)∗ def
= Γ � (λx.N∗)(yU∗) :γ ;Δ

12 K. Honda, N. Yoshida, and M. Berger

[0]Γ ;Δ
u

def
= c :⊥ [u(c)!c(xz).R]

Γ ;Δ·u:(α⇒β)
u

def
= λxα.[R]Γ ·x:α;Δ·z:β

z

[y]Γ ·y:α⇒β;Δ
u

def
= let = yc [u(c)!c(x).R]

Γ ;Δ·u:(α⇒⊥)
u

def
= λxα.[R]Γ ·x:α;Δ

m

[u(c)!c.R]
Γ ;Δ·u:(⊥⇒⊥)
u

def
= λx⊥.[R]Γ ;Δ

m [u(c)!c(z).R]
Γ ;Δ·u:(⊥⇒β)
u

def
= λx⊥.[R]Γ ;Δ·z:β

z

[P〈a〉]
Γ ;Δ·a:α
u

def
= [a][P〈m/a〉]

Γ ;Δ·a:α·m:α
m [y(w)R]Γ ·y:α⇒β;Δ

u
def
= let = y[c(w)P]Γ ;Δ

c

[y(wz)(R | !z(x).Q)]Γ ·y:α⇒β;Δ
u

def
= let xβ = y[c(w)R]Γ ·y:α⇒β;Δ

c in [Q]
(Γ ·x:β);Δ
u

[y(z)!z(x).Q]Γ ·y:α⇒β;Δ
u

def
= let xβ= yc in [Q]Γ ·y:α⇒β·x:β;Δ

u

[P]Γ ;Δ·u:α
u

def
= μuα.[P]Γ ;Δ·u:α

m other cases

Fig. 3. Decoding of λμ-typed processes (α, β �= ⊥ and m,u are fresh)

For CNFs which are λ-abstraction, μ-abstraction and named terms, the mapping uses
the same clauses as in Figure 2, replacing [[·]] in the defining clauses with (·)∗.

Via ()∗ we can encode CNFs to processes:

Γ � N : α;Δ �→ Γ � N∗ : α;Δ �→ �O [[(N : α)∗]]u � (u :α,Δ)•, Δ◦

CNFs can also be directly encoded into πC-processes, using the following rules com-
bined with those for abstraction, naming and μ-abstraction given in Figure 2 (replacing
[[·]] with 〈 · 〉 in each clause).

〈let x = yU in N :γ〉u def
=

{
y(wz)(P |!z(x).〈N :γ〉u) (U �= c, 〈U〉c def

= c(w)P)

y(z)!z(x).〈N :γ〉u (U = c)

〈let = yU :⊥〉u def
=

{ 〈U〉y (U �= c)
y (U = c)

〈c :⊥〉u def
= 0

Two process encodings of CNFs coincide up to ↘.

Proposition 4.1. 1. Let Γ � N :α ;Δ. Then �O 〈N〉u � (u :α,Δ)•, Γ ◦.
2. Let Γ � N :α ;Δ. Then [[N∗ : α]]u ↘∗ 〈N〉u �↘.

Definability. The decoding of πC-processes (of encoded λμv-types) to λμv-preterms
is written [P]Γ ;Δ

u , which translates P ∈ NFe such that �O P � Γ ◦, Δ• with u �∈
dom(Γ) to a λμv-preterm M . Without loss of generality, we assume P does not contain
redundant 0 or hiding. The mapping is defined inductively by the rules given in Figure
3. In the second last line, P〈a〉 indicates P is a prime output with subject a, whereas
P〈m/a〉 is the result of replacing the subject a in P〈a〉 with m.

Proposition 4.2. Let ⊥ �∈ image(Γ), u �∈ dom(Γ) and P ∈ NFe. Then � P � Γ ◦ ·Δ•

implies, with x fresh: (1) if Δ = Δ0 · u :α then Γ · x :⊥ � [P]Γ
◦;Δ•

u :α ;Δ0 and; (2) if
u �∈ dom(Δ) then Γ · x :⊥ � [P]Γ

◦;Δ•
u :⊥ ;Δ0.

Let us say Γ � M : β ;Δ with u �∈ dom(Γ) defines � P � Γ ◦ · Δ• ∈ NFe at u
iff [[M : β]]u ↘∗ P . A λμv-term is closed if it contains neither free names nor free
variables. We can now establish the definability.

Process Types as a Descriptive Tool for Interaction 13

Theorem 4.1. (definability) Let � P � Γ ◦·Δ•·u :α• ∈ NFe such that ⊥ �∈ image(Γ).
Then Γ · x :⊥ � [P]u :α ; Δ defines P . Further if Γ = Δ = ∅ and P �≡ 0, then there
is a closed λμv-term which defines P .

Full Abstraction. To prove full abstraction, our first task is to define a suitable observa-
tional congruence in the λμv-calculus. There can be different notions of observational
congruences for the calculus; here we choose a large, but consistent congruence. This
equality is defined solely using the terms and dynamics of the calculus; yet, as we shall
illustrate later, its construction comes from an analysis of λμv-terms’ behaviour through
their encoding into πC-processes and the process equivalence ∼=π . The analysis is use-
ful since the notion of observation in pure λμv-calculus may not be too obvious, while
∼=π is based on a clear and simple idea of observables. Two further observations on
the induced congruence: (1) The congruence is closely related with (and possibly coin-
cide with some of) the notions of equality over full controls, as studied by Laird [20],
Selinger [34] and others; and (2) If we extend λμv with sums or non-trivial atomic
types, and define the congruence based on the convergence to distinct normal forms of
these types, then the resulting congruence restricted to the pure λμv-calculus is pre-
cisely what we obtain by the present congruence.

Definition 4.1. ≡⊥ is the smallest typed congruence on λμv-terms which includes:

1. Γ � M ≡⊥ N : β;Δ when M ≡α N .

2. Γ � M ≡⊥ N : β;Δ when N
def
= M{y/x} where Γ (x) = Γ (y) = ⊥.

For example, we have, under the environment x : ⊥, y : ⊥: x ≡⊥ y. We also have:
λx⊥.λy⊥x ≡⊥ λx⊥.λy⊥y. We can easily check that, in the encoding, ≡⊥-related
terms are always mapped to an identical process.

Convention 1. Henceforth we always consider λμv-terms and CNFs up to ≡⊥.

We can now define observables, which is an infinite series of closed terms of the type
⊥ ⇒ ⊥ ⇒ ⊥.

Definition 4.2. Define {Wi}i∈ω by the following induction: W0
def
= λz⊥.μu⊥⇒⊥.z

and Wn+1
def
= λz⊥.μu⊥⇒⊥.[w]Wn. Let γ = ⊥ ⇒ ⊥ ⇒ ⊥. We then define: Obs

def
=

{W0} ∪ {μwγ .[w]Wn+1, n ∈ N} where we take terms up ≡⊥.

All terms in Obs are closed →λμv-normal forms of type γ (W0 can also be written as
μw.[w]W0, but is treated separately since μw.[w]W0 is not a normal form).

To illustrate the choice of Obs, we show below the π-calculus representation of W0,
μw.[w]W1, μw.[w]W2, . . . through [[·]]u, which is in fact the origin of Obs.

Definition 4.3. Define {Pi}i∈ω as follows (below we use the same names for bound

names for simplicity). P0
def
= w(c)!c(u).0 and Pn+1

def
= w(c)!c(u).Pn. We set Obsπ

def
=

{ �O Pi � w : γ• }i∈ω, taking processes modulo ≡.

Note each Pi only outputs at w (if ever) at any subsequent invocation, even though an
output at any one of the bound names (u above) is well-typed. For example,

14 K. Honda, N. Yoshida, and M. Berger

P ′
1

def
= w(c)!c(u).u(c)!c(u).0 has type w : γ• but differs from P1 by outputting at

the bound u when it is invoked the second time. One can check P0 is the smallest
(w.r.t. process size, i.e. number of constructors) non-trivial inhabitant of this type: in

particular it is smaller than [[λz⊥.λx⊥.x]]w
def
= P ′

1.

Proposition 4.3. 1. �O Pi
∼=π Pj � w : γ• for arbitrary i and j.

2. If �O Q � w : γ•, Q ∈ NFe and Q ∼=π Pi then Q ∈ Obsπ.

Processes in Obsπ have uniform behaviours: indeed they are closed under ∼=π. These
observations motivate the following definition. Below C[·]βΓ ;α;Δ is a typed context
whose hole takes a term typed as α;Δ under the base Γ and which returns a closed
term of type β.

Definition 4.4. We write Γ � M ∼=λμ N : α ;Δ when, for each typed context
C[]⊥⇒⊥⇒⊥

Γ ;α;Δ , we have: ∃L.(C[M] ⇓ L ∈ Obs) iff ∃L′.(C[N] ⇓ L′ ∈ Obs).

Note that we treat all values in Obs as an identical observable. Immediately→λμv⊂∼=λμ.
We can now establish the full abstraction, following the standard routine. We start with
the computational adequacy. We write M ⇓ L when M →∗

λμv L �→λμv.

Proposition 4.4. (computational adequacy) Let M : ⊥ ⇒ ⊥ ⇒ ⊥ be closed. Then
∃L.(M ⇓ L ∈ Obs) iff ∃P.([[M]]u ↘∗ P ∈ Obsπ).

Corollary 4.1. (soundness) [[M]]u ∼=π [[N]]u implies M ∼=λμ N .

Proof. Assume [[M]]u ∼=π [[N]]u. We show, for each well-typed C[·], ∃L.(C[M] ⇓
L ∈ Obs) iff ∃L′.(C[M] ⇓ L′ ∈ Obs). Let C[·] be well-typed. Now we reason:

C[M] ⇓ L ∈ Obs ⇒ [[C[M]]]v ⇓ [[L]]v ∈ Obsπ (Proposition 4.4)
⇒ ∃O.[[C[N]]]v ↘∗ O ∈ Obsπ ([[C[M]]]v ∼=π [[C[N]]]v)
⇒ C[N]v ↘∗ L′ ∈ Obs (Proposition 4.4)

Theorem 4.2. (full abstraction) Let Γ � Mi : α;Δ (i = 1, 2). Then M1
∼=λμ M2 if

and only if [[M1]]u ∼=π [[M2]]u.

Proof. Suppose ∅ � M1
∼=λμ M2 : α; ∅ but �O [[M1]]u �∼=π [[M2]]u � u : α•. By this,

converting the observable ()? to the convergence to Obsπ in γ• with γ = ⊥ ⇒ ⊥ ⇒ ⊥,
there exists �I R � u :α•, v :γ• such that R ∈ NFe and (say) ∃P. (ν u)([[M1]]|R) ↘∗

P ∈ Obsπ and ¬∃P. (ν u)([[M2]]|R) ↘∗ P ∈ Obsπ. Since R ∈ NFe, we can safely

set R
def
=!u(c).R′. Now take �I!u(cv).R′ �u : (α ⇒ γ)•. By Theorem 4.1 (definability),

we can find L such that � L : α ⇒ γ where [[L]]u ∼=π!u(cv).R
′. Since [[LMi]]u ↘+

(ν u)([[Mi]]|R), we conclude ∃L′. LM1 ⇓ L′ ∈ Obs and ¬∃L′. LM2 ⇓ L′ ∈ Obs,
which contradicts the assumption. Since precisely the same argument holds when Γ and
Δ are possibly non-empty in Γ � M1,2 : α;Δ by closing them by λ/μ-abstractions,
we have now established the full abstraction.

Process Types as a Descriptive Tool for Interaction 15

5 Discussion

This paper explored the connection between control and the π-calculus, first pointed
out by Thielecke [35] who showed that the target of CPS-transform can be written
down as name passing processes. This paper presented the typed π-calculus for full
control, which arises as a subcalculus of the linear π-calculus [39] where all inputs are
replicated. The main contribution of the present work is the use of a duality-based type
structure in the π-calculus by which the embedding of control constructs in processes
becomes semantically exact.

Control and Name Passing (1). The notion of full control arises in several related con-
texts. Historical survey of studies of controls and continuations can be found in [28,36].
Here we pick up three strands of research to position the present work in a historical
context. In one strand, notions of control operators have been formulated and stud-
ied as a way to represent jumps and other non-trivial manipulation of control flows as
an extension of the λ-calculus and related languages. Among many works, Felleisen
and others [10, 11] studied syntactic and equational properties of control operators in
the context of the call-by-value λ-calculus, clarifying their status. Griffin [13] shows
a correspondence between the λ-calculus with control operators, classical proofs and
the CPS transform. Finally Parigot [27] introduced the λμ-calculus, the calculus with-
out control operators but which manipulates names, as term-representation of classical
natural deduction proofs. The control-operator-based presentation and name-based pre-
sentation, which are shown to be equivalent by de Groote [9], elucidate statics and
dynamics of full control in different ways: the latter gives a more fine-grained pic-
ture while the former often offers a more condensed representation. In this context, the
present work shows a further decomposition (and arguably simpler presentation) of the
dynamics of full control on the uniform basis of name passing interaction.

Control and Name Passing (2). Another closely related context is the CPS trans-
form [8,12,30]. In this line of studies, the main idea is to represent the dynamics of the
λ-calculus, or procedural calls, in a way close to implementations. Consider for example
the reduction: (λx.x)1 −→β 1. To model implemented execution of this reduction, we
elaborate each term with a continuation to which the resulting value should be returned.

We write this transformation 〈〈M〉〉. In the above example, 〈〈λx.x〉〉 def
= λh.h(λx.〈〈x〉〉)

(which receives a next continuation and “sends out” its resulting value to that continu-

ation, with 〈〈x〉〉 = λk.kx); whereas 〈〈1〉〉 def
= λh′.h′1. The term (λx.x)1 as a whole is

transformed as follows:

λk.(λh.hλx.〈〈x〉〉)(λm.〈〈1〉〉(λn.mnk)) (4)

This transformation may need some illustration. Assume first we apply to the above
abstraction the ultimate continuation k (to which the result of evaluating the whole term
should jump), marking the start of computation. Write M for λx.x and N for 1. After
the continuation k is fed to the left-hand side, we first give 〈〈M〉〉 its next continuation
(λm.〈〈N〉〉(λn.mnk)), to which the result of evaluating M , say V , is fed, replacing m,
then we send 〈〈N〉〉 its continuation λn.V nk, to which the result of evaluating 〈〈N〉〉 is
fed, replacing n, so that finally the “real” computation VW can be performed, to whose
result the ultimate continuation k is applied.

16 K. Honda, N. Yoshida, and M. Berger

As may be seen from the example above, the CPS transform can be seen as a way to
mimic the operational idea of “jumping to an address with a value” solely using function
application and abstraction. This representation is useful to connect the procedural calls
in high-level languages to their representation at an execution level. The representation
is somewhat shy about the use of “names” by abstracting them immediately after their
introduction, partly because this is the only way to use the notion in the world of pure
functions (note in (λh.hM)V , the bound h in fact names V). This however does not
prevent us from observing (4) is isomorphic to its process encoding via [[·]] of Section
3, given as:

(ν h)([[λx.x]]h | !h(n).(ν h′)([[1]]h′ | !h′(m).n〈mk〉)) (5)

In (5), k, h, h′ are all channel names at which processes interact: the input/output polar-
ities make it clear what is named (used as replicated inputs) and to which it is jumping
(used as outputs, i.e. subscripts of the encoding). The “book-keeping” abstractions of h
and h′ in (4) are replaced by hiding. Setting [[1]]h′ to be h′〈1〉 (regarding 1 as a specific
name), we can see how (5) reduces precisely as (4) reduces modulo the book-keeping
reductions. Sangiorgi [32] observed that we can regard (4) as terms in the applicable
part of the higher-order π-calculus (a variant of π-calculus which processes communi-
cate not only names but also terms) and that the translation from a λ-term to its process
representation can be factored into the former’s CPS transformation and its encoding
into the π-calculus.

In the context of these studies, where the control is studied purely in the context of
the λ-calculi, the main contribution of our work may lie in identifying the precise realm
of typed processes which, when it is used for the encoding of λ-terms, gives exactly the
same equational effect as the standard CPS transform embedded in the λ-calculus. As
we have shown in [4, 39], the encoding of the λ-calculi into the linear/affine-π-calculi
[4] results in full abstraction. πC offers a refined understanding on CPS-transform, with
precisely the same induced equivalence. As related points, we have suggested possible
relationship between existing CPS transformations/inversions [8, 12, 30], on the one
hand, and the encoding/decoding in Sections 3 and 4 in this paper on the other.

Control and Name Passing (3). There are many studies of semantics and equalities in
calculi with full control, notably those which aim to investigate appropriate algebraic
structures of suitable categories (for example those by Thielecke [35], Laird [21] and
Selinger [34]). The present work may have two interests in this context.

The basis of the observational equivalence for λμv-terms, the behavioural equiva-
lence over πC-processes, has very simple operational content, while inducing the equal-
ity closely related with those studied in the past. Among others we believe that ∼=λμ

coincides with the call-by-value, total and extensional version of Laird’s games for con-
trol [16,20] (it is easy to check all terms in Obs are equated in such a universe). We also
suspect it is very close to the equality induced by the call-by-value part of Selinger’s
dualised universe [34] (for the same reason), though details are to be checked. The
combination of clear observational scenario and correspondence with good denotational
universes is one of the notable aspects of the use of the π-calculus.

In another and related view, we may consider processes in πC as name passing tran-
sition systems (or name passing synchronisation trees). As such, a process identifies
meaning of a denoted program as an abstract entity. The rich repertoire of powerful

Process Types as a Descriptive Tool for Interaction 17

reasoning techniques developed for π-calculi is now freely available; further this rep-
resentation has enriching connection with studies on game-based semantics, most no-
tably games for control studied by Laird [21]. Indeed, Laird’s work may be regarded
as a characterisation of dynamic interaction structure of πC (or, to be precise, its affine
extensions), where the lack of well-bracketing corresponds to the coalescing of linear
actions into replicated actions. Another intensional structure in close connection is Ab-
stract Böhm Trees studied by Curien and Herbelin [6]. We expect the variant of these
structures for full control to have a close connection to name passing transition of πC.

It is also notable that representation of programs and other algorithmic entities as
name passing transition, together with basic operators such as parallel composition,
hiding and prefixing, is not limited to the control nor to sequential computation.

Control as Proofs and Control as Processes. The present work has a close connection
with recent studies on control from a proof-theoretic viewpoint, notably Polarised Lin-
ear Logic by Laurent [22, 23] and λμμ̃-calculus by Curien and Herbelin [7]. The type
structures for the linear/affine π-calculi are based on duality, here arising in a simplest
possible way, as mutually dual input and output modes of channel types. This duality
has a direct applicability for analysis of processes and programs, as may be seen in the
new flow analysis we have recently developed for typed π-calculi [17]. This duality
allows a clean decomposition of behaviours in programming languages into name pass-
ing interaction, and is in close correspondence with polarity in Polarised Linear Logic
by Laurent [22, 23]. Laurent and the first author recently obtained a basic result on the
relationship between πC and Polarised Linear Logic, as discussed in [14].

In a different context, Curien and Herbelin [7] presents λμμ̃, a calculus for control,
based on Gentzen’s LK, in which a strong notion of duality elucidates the distinction
between the call-by-name and call-by-value evaluations in the setting of full control.
One interesting aspect is the way non-determinism arises in their calculus, which sug-
gests an intriguing connection between the dynamics of their calculus and name passing
processes. From the same viewpoint, the connection with a recent work by Wadler [38]
on duality and λ-calculi is an interesting subject for further studies.

The present study concentrates on the call-by-value encoding of the λμ-calculus.
As in the λ-calculus [4], we can similarly embed the call-by-name λμ-calculus into

πC by changing the encoding of types (hence terms). The mapping [α1, ..., αn,⊥]◦ def
=

(α◦
1, ..., α

◦
n)

! is the standard Hyland-Ong encoding of call-by-name types [4] assuming
the only atomic type is ⊥. In the presence of control, we can simply augment this

map with α• def
= (α◦)? which says: “a program may jump to a continuation” (this

corresponds to the “player first” in Laurent’s games [22]). This determines, together
with the one given in [4], the encoding of programs. We strongly believe the embedding
is fully abstract, though details are to be checked.

Van Bakel and Vigliotti [37] present a different approach towards representing con-
trol as interaction. Milner’s encoding of λ-calculus does not model reductions under
λ-binders by matching reductions in the π-calculus. They consider a variant of the λμ-
calculus with explicit substitution that preserves single-step explicit head reduction.

Finally, the idea of viewing non-local control-flow manipulation in λ-calculi as typed
interacting processes in πC has been fruitful for finding Hoare logics for languages with
call/cc: [3] produces the first such logic by designing a Hennessy-Milner logic for a

18 K. Honda, N. Yoshida, and M. Berger

variant of πC and then pushes that logic back to call-by-value PCF extended with with
call/cc to obtain a conventional Hoare logic.

References

1. A full version of this paper. Doc Technical Report DTR 2014/2, Department of Computing,
Imperial College London (April 2014)

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Info. & Comp. 163,
409–470 (2000)

3. Berger, M.: Program Logics for Sequential Higher-Order Control. In: Arbab, F., Sirjani, M.
(eds.) FSEN 2009. LNCS, vol. 5961, pp. 194–211. Springer, Heidelberg (2010)

4. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.)
TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)

5. Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. Acta Inf. 42(2-3), 83–141
(2005)

6. Curien, P.-L., Herbelin, H.: Computing with Abstract Böhm Trees. In: Functional and Logic
Programming, pp. 20–39. World Scientific (1998)

7. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proc. ICFP, pp. 233–243 (2000)
8. Danvy, O., Filinski, A.: Representing control: A study of the CPS transformation.

MSCS 2(4), 361–391 (1992)
9. de Groote, P.: On the Relation between the lambda-mu-calculus and the Syntactic Theory of

Sequential Control. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 31–43. Springer,
Heidelberg (1994)

10. Felleisen, M., Friedman, D.P., Kohlbecker, E., Duba, B.: Syntactic theories of sequential
control. TCS 52, 205–237 (1987)

11. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and
state. TCS 103(2), 235–271 (1992)

12. Führmann, C., Thielecke, H.: On the call-by-value CPS transform and its semantics. Inf.
Comput. 188(2), 241–283 (2004)

13. Griffin, T.G.: A formulae-as-type notion of control. In: Proc. POPL, pp. 47–58 (1990)
14. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and polarised

proof-nets. Theor. Comput. Sci. 411(22-24), 2223–2238 (2010)
15. Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151, 393–456 (1995)
16. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. TCS 221,

393–456 (1999)
17. Honda, K., Yoshida, N.: Noninterference through flow analysis. JFP 15(2), 293–349 (2005)
18. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. TOPLAS 29(6)

(2007)
19. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Inf. & Comp. 163, 285–408 (2000)
20. Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1998)
21. Laird, J.: A game semantics of linearly used continuations. In: Gordon, A.D. (ed.) FOSSACS

2003. LNCS, vol. 2620, pp. 313–327. Springer, Heidelberg (2003)
22. Laurent, O.: Polarized games. In: Proc. LICS, pp. 265–274 (2002)
23. Laurent, O.: Polarized proof-nets and λμ-calculus. TCS 290(1), 161–188 (2003)
24. Milner, R.: Functions as Processes. MSCS 2(2), 119–141 (1992)
25. Moggi, E.: Notions of computation and monads. Inf. & Comp. 93(1), 55–92 (1991)
26. Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with

control. In: Proc. POPL, pp. 215–227 (1997)

Process Types as a Descriptive Tool for Interaction 19

27. Parigot, M.: λ-μ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

28. Reynolds, J.: The discovers of continuations. Lisp and Symbolic Computation 6, 233–247
(1993)

29. Robinson, E.: Kohei Honda. Bulletin of the EATCS 112 (February 2014)
30. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. In:

Proc. LFP, pp. 288–298 (1992)
31. Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. TCS 167(2), 235–274

(1996)
32. Sangiorgi, D.: From λ to π: or, rediscovering continuations. MSCS 9, 367–401 (1999)
33. Sassone, V.: ETAPS Award: Laudatio for Kohei Honda. Bulletin of the EATCS 112 (February

2014)
34. Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu

calculus. MSCS 11(2), 207–260 (2001)
35. Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis, University

of Edinburgh (1997)
36. Thielecke, H.: Continuations, functions and jumps. SIGACT News 30(2), 33–42 (1999)
37. van Bakel, S., Vigliotti, M.G.: An Output-Based Semantics of Λμ with Explicit Substitu-

tion in the π-Calculus. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS,
vol. 7604, pp. 372–387. Springer, Heidelberg (2012)

38. Wadler, P.: Call-by-value is dual to call-by-name. In: Proc. ICFP, pp. 189–201 (2003)
39. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. Inf. Com-

put. 191(2), 145–202 (2004)
40. Yoshida, N., Honda, K., Berger, M.: Linearity and bisimulation. J. Log. Algebr. Pro-

gram. 72(2), 207–238 (2007)

A Typing

We write |A| for the set of A’s nodes. Edges, which are always from input-moded nodes
to output-moded nodes, denote dependency between channels and are used to prevent
vicious cycles between names. If A is such a graph and x : τ is one of its nodes, we also
write A(x) = τ . By fn(A) we denote the set of all names x such that A(x) = τ for some
τ . Sometimes we also write x : τ ∈ A to indicate that A(x) = τ . We write md(A) = p
to indicate that md(A(x)) = p for all x ∈ fn(A). We write x → y if x : τ → y : τ ′

for some τ and τ ′, in a given action type. We compose two processes typed by A and
B iff: (1) A(a) � B(a) is defined for all a ∈ fn(A) ∩ fn(B); and (2) the composition
creates no circularity between names. We define A � B iff: (1) whenever x :τ ∈ A and
x : τ ′ ∈ B, τ � τ ′ is defined; and (2) whenever x1 → x2, x2 → x3, . . . , xn−1 → xn

alternately in A and B (n ≥ 2), we have x1 �= xn.
Then A�B, defined iff A � B, is the following action type.

– x : τ ∈ |A � B| iff either (1) x : τ occurs in either A or B, but not both ; or (2)
x :τ ′ ∈ A and x :τ ′′ ∈ B and τ = τ ′ � τ ′′.

– x → y in A � B iff x : τ, y : τ ′ ∈ |A �B| and x = z1→z2, z2→z3, . . . , zn−1→
zn = y (n ≥ 2) alternately in A and B.

Finally, the third condition, the restriction to a single thread, is guaranteed by using IO-
modes, φ ∈ {I, O}, in the typing judgement. These IO-modes are given the following

20 K. Honda, N. Yoshida, and M. Berger

partial algebra, using the overloaded notation �: I � I = I and I � O = O � I = O.
Among the two IO-modes, O indicates a unique active output: thus O � O is undefined,
which means that we do not want more than one active thread at the same time. We
write φ1 � φ2 if φ1 � φ2 is defined. IO-modes sequentialise the computation in our
typed calculus. This makes reductions deterministic which in turn simplifies reasoning.

(Zero)

−
�I 0 � ∅

(Par)

�φi Pi � Ai (i =1, 2)

A1
 A2 φ1
 φ2

�φ1�φ2 P1|P2 � A1�A2

(Res)

�φ P � A

md(A(x)) = !

�φ (ν x)P � A/x

(Weak) x �∈ fn(A)

�φ P � A

md(τ) = ?

�φ P � A, x :τ

(Weak-io)

�I P � A

�O P � A

(In!) x �∈ fn(A), md(A) = ?

�O P � �y :�τ, A

�I!x(�y).P � x : (�τ)!→A

(Out?) yi :τi ∈ A

�I P � A
 x : (�τ)?

�O x(�y)P � A/�y � x : (�τ)?

In the following, we briefly illustrate each typing rule. In (Zero), we start in I-mode
with empty type since there is no active output. In (Par), “�” controls composability,
ensuring that at most one thread is active in a given term (by φ1 � φ2) and uniqueness
of replicated inputs and non-circularity (by A1 � A2). The resulting type is given by
merging two types. In (Res), we do not allow ? to be restricted since this action expects
its dual server always exists in the environment. A/�y means the result of deleting the
nodes �x : �τ in A (and edges from/to deleted nodes). In (Weak), we weaken a ?-
moded channel since this mode means zero or more output actions at a given channel.
In (Weak-io), we turn the input mode into the output mode. (In!) ensures non-circularity
at x (by x �∈ fn(A)) and no free input occurrence under input (by md(A) = ?). Then
it records the causality from input to free outputs. If A is empty, x : (�τ)! → A simply
stands for x : (�τ)! . (Out?) essentially the rule composes the output prefix and the
body in parallel. In the condition, yi : τi ∈ A means each yi : τi appears in A. This
ensures bound input channels �y become always active after the message received. It
also changes the mode to output, to indicate an active thread or server. Note that this
rule does not suppress the body by prefix since output is asynchronous.

	Process Types as a Descriptive Tool for Interaction
	1 Introduction
	2 Processes and Types
	3 Encoding
	4 Decoding and Full Abstraction
	5 Discussion
	References

