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Foreword

In the summer of 2014, Vienna hosted the largest scientific conference in the
history of logic. The Vienna Summer of Logic (VSL, http://vsl2014.at) con-
sisted of twelve large conferences and 82 workshops, attracting more than 2000
researchers from all over the world. This unique event was organized by the Kurt
Gödel Society and took place at Vienna University of Technology during July
9 to 24, 2014, under the auspices of the Federal President of the Republic of
Austria, Dr. Heinz Fischer.

The conferences and workshops dealt with the main theme, logic, from three
important angles: logic in computer science, mathematical logic, and logic in
artificial intelligence. They naturally gave rise to respective streams gathering
the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)
• 27th IEEE Computer Security Foundations Symposium (CSF)
• 30th International Conference on Logic Programming (ICLP)
• 7th International Joint Conference on Automated Reasoning (IJCAR)
• 5th Conference on Interactive Theorem Proving (ITP)
• Joint meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th ACM/IEEE Symposium on Logic in Computer
Science (LICS)

• 25th International Conference on Rewriting Techniques and Applications
(RTA) joint with the 12th International Conference on Typed Lambda Cal-
culi and Applications (TLCA)

• 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT)

• 76 FLoC Workshops
• FLoC Olympic Games (System Competitions)
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Mathematical Logic

• Logic Colloquium 2014 (LC)
• Logic, Algebra and Truth Degrees 2014 (LATD)
• Compositional Meaning in Logic (GeTFun 2.0)
• The Infinity Workshop (INFINITY)
• Workshop on Logic and Games (LG)
• Kurt Gödel Fellowship Competition

Logic in Artificial Intelligence

• 14th International Conference on Principles of Knowledge Representation
and Reasoning (KR)

• 27th International Workshop on Description Logics (DL)
• 15th International Workshop on Non-Monotonic Reasoning (NMR)
• 6th International Workshop on Knowledge Representation for Health Care
2014 (KR4HC)

The VSL keynote talks which were directed to all participants were given by
Franz Baader (Technische Universität Dresden), Edmund Clarke (Carnegie Mel-
lon University), Christos Papadimitriou (University of California, Berkeley) and
Alex Wilkie (University of Manchester); Dana Scott (Carnegie Mellon Univer-
sity) spoke in the opening session. Since the Vienna Summer of Logic contained
more than a hundred invited talks, it would not be feasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only
scientific talks, poster sessions and panels, but also two distinctive events. One
was the award ceremony of the Kurt Gödel Research Prize Fellowship Competi-
tion, in which the Kurt Gödel Society awarded three research fellowship prizes
endowed with 100.000 Euro each to the winners. This was the third edition of
the competition, themed Logical Mind: Connecting Foundations and Technology
this year.

The 1st FLoC Olympic Games formed the other distinctive event and were
hosted by the Federated Logic Conference (FLoC) 2014. Intended as a new FLoC
element, the Games brought together 12 established logic solver competitions
by different research communities. In addition to the competitions, the Olympic
Games facilitated the exchange of expertise between communities, and increased
the visibility and impact of state-of-the-art solver technology. The winners in
the competition categories were honored with Kurt Gödel medals at the FLoC
Olympic Games award ceremonies.

Organizing an event like the Vienna Summer of Logic was a challenge. We
are indebted to numerous people whose enormous efforts were essential in mak-
ing this vision become reality. With so many colleagues and friends working
with us, we are unable to list them individually here. Nevertheless, as rep-
resentatives of the three streams of VSL, we would like to particularly ex-
press our gratitude to all people who helped to make this event a success:
the sponsors and the Honorary Committee; the Organization Committee and
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the local organizers; the conference and workshop chairs and Program Commit-
tee members; the reviewers and authors; and of course all speakers and partici-
pants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought
that started in Ancient Greece and flourished in the city of Gödel, Wittgenstein
and the Vienna Circle. The heroes of our intellectual past shaped the scientific
world-view and changed our understanding of science. Owing to their achieve-
ments, logic has permeated a wide range of disciplines, including computer sci-
ence, mathematics, artificial intelligence, philosophy, linguistics, and many more.
Logic is everywhere – or in the language of Aristotle, ����� ����	 �
���� ����	��

July 2014 Matthias Baaz
Thomas Eiter
Helmut Veith



Preface

This volume contains the proceedings of the 25th International Conference on
Rewriting Techniques and Applications (RTA 2014) and 12th International Con-
ference on Typed Lambda Calculus and Applications (TLCA 2014), which were
held jointly during July 14–17 2014, in Vienna, Austria.

RTA is the major forum for the presentation of research on all aspects of
rewriting. Previous RTA conferences were held in Dijon (1985), Bordeaux (1987),
Chapel Hill (1989), Como (1991), Montreal (1993), Kaiserslautern (1995), New
Brunswick (1996), Sitges (1997), Tsukuba (1998), Trento (1999), Norwich (2000),
Utrecht (2001), Copenhagen (2002), Valencia (2003), Aachen (2004), Nara
(2005), Seattle (2006), Paris (2007), Hagenberg/Linz (2008), Brasilia (2009),
Edinburgh (2010), Novi Sad (2011), Nagoya (2012), and Eindhoven (2013).

TLCA is the major forum for the presentation of research on all aspects of
typed lambda calclus. Previous TLCA conferences were held in Utrecht (1993),
Edinburgh (1995), Nancy (1997), L’Aquila (1999), Kraków (2001), Valencia
(2003), Nara (2005), Paris (2007), Brasilia (2009), Novi Sad (2011), and Eind-
hoven (2013).

Of the 87 papers submitted to RTA-TLCA 2014, the Programme Committee
selected 31 for presentation at the conference. Moreover, it nominated the pa-
per “Implicational Relevance Logic is 2-ExpTime-Complete” by Sylvain Schmitz
for the Best Paper Award and “A Coinductive Confluence Proof for Infinitary
Lambda-Calculus” by �Lukasz Czajka for the Best Student Paper Award.

We are grateful to Nicola Gambino, Manfred Schmidt-Schauss, and Nobuko
Yoshida for accepting our invitation to present selected topics of their choice and
for enriching the conference by their invited talks, their participation, and their
contributions to the present proceedings.

We used the EasyChair system for many aspects of the reviewing process.
We wish to thank Andrei Voronkov and all others of the EasyChair team for
this invaluable tool. Moreover, we wish to thank the editorial board of ARCoSS,
in particular Vladimiro Sassone, for agreeing to publish these proceedings as a
volume in the ARCoSS series.

RTA-TLCA 2014 was organized as part of the Federated Logic Conference
(FLoC 2014), itself part of the Vienna Summer of Logic (VSL 2014). We would
like to thank Gernot Salzer, the conference chair of RTA-TLCA 2014, as well as
the other members the Organizing Committees of FLOC 2014 and VSL 2014 for
their indispensable contribution to the success of this conference.

Last but not least we want to thank all members of the RTA-TLCA 2014
Program Committee for their reviews, their constructive comments, and the
pleasant collaboration.

July 2014 Gilles Dowek
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Invited Talk
(Abstract)



A Unified Approach to Univalent Foundations

and Homotopical Algebra

Nicola Gambino

Voevodsky’s Univalent Foundations of Mathematics programme seeks to de-
velop a new approach to the foundations of mathematics, based on dependent
type theories extended with axioms inspired by homotopy theory. The most re-
markable of these new axioms is the so-called Univalence Axiom, which allows
us to treat isomorphic types as if there were equal.

Quillen’s homotopical algebra, instead, provides a category-theoretic frame-
work in which it is possible to develop an abstract version of homotopy theory,
giving a homogeneous account of several situations where objects are identified
up to a suitable notion of ‘weak equivalence’. The central notion here is that of
a model category, examples of which arise naturally in several different areas of
mathematics.

The aim of this talk is to explain how the type theories considered in Uni-
valent Foundations and the categorical structures considered in homotopical
algebra are related, but different, and to describe categorically the common core
of Univalent Foundations and homotopical algebra, which allows a simoultane-
ous development of the two subjects. The axiomatisation will be based on work
of several authors, including Awodey, van den Berg, Garner, Joyal, Lumsdaine,
Shulman and Warren.

Acknowledgement. This material is based on research sponsored by the Air
Force Research Laboratory, under agreement number FA8655-13-1-3038. The
U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of the Air Force Research Laboratory or the U.S.
Government.
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Aleš Bizjak, Lars Birkedal, and Marino Miculan

Cut Admissibility by Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Guillaume Burel

Automatic Evaluation of Context-Free Grammars
(System Description) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Carles Creus and Guillem Godoy

Tree Automata with Height Constraints between Brothers . . . . . . . . . . . . 149
Carles Creus and Guillem Godoy

A Coinductive Confluence Proof for Infinitary Lambda-Calculus . . . . . . . 164
�Lukasz Czajka



XX Table of Contents

An Implicit Characterization of the Polynomial-Time Decidable Sets
by Cons-Free Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Daniel de Carvalho and Jakob Grue Simonsen

Preciseness of Subtyping on Intersection and Union Types . . . . . . . . . . . . 194
Mariangiola Dezani-Ciancaglini and Silvia Ghilezan

Abstract Datatypes for Real Numbers in Type Theory . . . . . . . . . . . . . . . . 208
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Process Types as a Descriptive Tool for InteractionΛ

Control and the Pi-Calculus

Kohei Honda1,��, Nobuko Yoshida2, and Martin Berger3

1 Queen Mary, University of London, London, UK
2 Imperial College London, London, UK

3 University of Sussex, Sussex, UK

Abstract. We demonstrate a tight relationship between linearly typed π-calculi
and typed λ-calculi by giving a type-preserving translation from the call-by-value
λμ-calculus into a typed π-calculus. The λμ-calculus has a particularly simple
representation as typed mobile processes. The target calculus is a simple variant
of the linear π-calculus. We establish full abstraction up to maximally consis-
tent observational congruences in source and target calculi using techniques from
games semantics and process calculi.

1 Introduction

At TLCA 2001 [4] the authors started a research programme relating typed λ-calculi
and typed π-calculi [5, 17, 18, 39, 40]. The rationale behind the programme has been
twofold: first to demonstrate that functional computation can be decomposed into name-
passing and thus be fruitfully understood as a constrained and well-behaved form of
interaction. Secondly, the authors wanted their nascent investigations of the vast space
of typing systems for interacting processes be guided by the λ-calculus community’s
insights into the nature of typing, one of the great contributions to computer science.
A key aspect of our methodology for generalising λ-calculus types to interaction has
been to study full-abstraction: Milner’s encoding of untyped λ-calculus [24] is sound
but not complete in the absence of types. This is because atomic β-reduction steps
are decomposed into multiple name-passing interactions where intermediate steps can
be observed. To achieve completeness, the ability to observe such intermediate steps
must be ruled out by typing – in other words, only processes that interact ’function-
ally’ should be well-typed. A key insight has been the usefulness of linearly typed
π-calculi for the understanding of typed λ-calculi. Linearity and it’s close cousin affin-
ity yield full abstraction using proof techniques coming from games semantics, linear
logic and process calculi. This paper continues our programme by studying the call-by-
value λμ-calculus [26], henceforth λμv-calculus, a λ-calculus with non-local control-
flow manipulation (often referred to as “control” or “jumping”). The λμv-calculus is
a proof-calculus for classical propositional logic. Non-local control can be encoded in
pure λ-calculus using continuation-passing style, but a direct representation of jump-
ing is of interest, not just because of the connection with classical logic, and because

� Partially supported by EPSRC EP/K011715/1, EP/L00058X/1 and EP/K034413/1.
�� http://mrg.doc.ic.ac.uk/kohei.html [29, 33]

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 1–20, 2014.
c© Springer International Publishing Switzerland 2014

http://mrg.doc.ic.ac.uk/kohei.html


2 K. Honda, N. Yoshida, and M. Berger

it leads to more readable programs in comparison with continuation-passing style, but
also because jumping can be seen as a form of interaction that is less restrictive than the
last-in/first-out calling discipline of functional computation.

Technically, we present a type-preserving translation from the λμv-calculus into a
typed π-calculus, and show that it is fully abstract up to maximally consistent obser-
vational congruences in source and target calculi. Full abstraction is proved via an
inverse transformation from the typed π-terms which inhabit the λμv-types into the
λμv-calculus [26].

There are different notions of control. In the π-calculus they can be represented as
distinct forms of typed interaction. The λμ-calculus introduced by Parigot [27] pro-
vides unrestricted control, and was later studied in call-by-value form by Ong and
Stewart [26]. Surprisingly, as this paper demonstrates, unrestricted control has a par-
ticularly simple representation as typed name passing processes; processes used for
the embedding are exactly characterised as a proper subset of the linear π-calculus
introduced in [39], with a clean characterisation in types and behaviour. The linear π-
calculus can embed, for example, the simply typed λ-calculus full abstractly. We call
the subset of the linear π-calculus corresponding to full control the πC-calculus (“c”
indicates control). The πC-calculus is restricted in that each channel is used only for a
unique stateless replicated input and for zero or more dual outputs. The πC-calculus also
precludes circular dependency between channels. In spite of its simplicity, both, call-
by-value and call-by-name full control, are precisely embeddable into the πC-calculus
by changing the translation of types. Because the πC-calculus is a proper subset of the
linear π-calculus, many known results about the linear π-calculus can be carried over
to the πC-calculus. This can be used for establishing properties of the λμv-calculus. For
example, strong normalisability of the πC-calculus is an immediate consequence of the
same property of the linear π-calculus, and that can be used for showing strong normal-
isability of the λμv-calculus [24]. The tight operational and equational correspondence
enables the use of typed π-calculi for investigating and analysing control operators and
calculi in a uniform setting, possibly integrated with other language primitives and op-
erational structures. After studying the call-by-value λμ-calculus, we also demonstrate
applicability of our framework by an embedding of the call-by-name λμ-calculus into
the same πC-calculus by changing translation of types.

Section 2 summarises the πC-calculus. Section 3 gives our encoding of the λμv-
calculus. Section 4 establishes full abstraction. The paper concludes with an outline
of the call-by-name encoding, and discusses related work as well as open issues. Full
proofs and additional discussions are delegated to [1].

2 Processes and Types

Processes. Types for processes prescribe usage of names. To be able to do this with
precision, it is important to control dynamic sharing of names. For this purpose, it is
useful to restrict name passing to bound (private) name passing, where only bound
names are passed in interaction. This allows tighter control of sharing without losing
essential expressiveness, making it easier to administer name usage in more stringent
ways. The resulting calculus is an asynchronous version of the πI-calculus [31] and has
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(Structural Rules) (Reduction)

(S0) P ≡ Q if P ≡α Q

(S1) P |0 ≡ P (S2) P |Q ≡ Q|P
(S3) P |(Q|R) ≡ (P |Q)|R
(S4) (ν x)0 ≡ 0

(S5) (ν x)(ν y)P ≡ (ν y)(ν x)P

(S6) (ν x)(P |Q) ≡ ((ν x)P )|Q (x �∈ fn(Q))

(S7) x(�y)z(�w)P ≡ z(�w)x(�y)P (x, z �∈ {�w�y})
(S8) (ν z)x(�y)P ≡ x(�y)(ν z)P (z �∈ {x�y})
(S9) x(�y)(P |Q) ≡ (x(�y)P )|Q ({�y} ∩ fn(Q) = ∅)

(Com!)
!x(�y).P | x(�y)Q −→!x(�y).P |(ν �y)(P |Q)

(Res)
P −→ Q =⇒ (ν x)P −→ (ν x)Q

(Par)
P −→ P ′ =⇒ P |Q −→ P ′|Q
(Out)
P −→ Q =⇒ x(�y)P −→ x(�y)Q

(Cong)
P ≡ P ′ −→ Q′ ≡ Q =⇒ P −→ Q

Fig. 1. Reduction and Structural Rules

expressive power equivalent to the calculus with free name passing (for the result in
the typed setting, see [39]). In the present study, the restriction to bound name passing
leads to, among others, a clean inverse transformation from the π-calculus into the λμ-
calculus. The grammar of the calculus is given below.

P ::= !x(�y).P | x(�y)P | P |Q | (ν x)P | 0

The initial x in !x(�y).P and x(�y)P is called subject. We write !x.P for !x(ε).P and
xP for x(ε)P , where ε denotes the empty vector. | is parallel composition, !x(�y).P is
replicated input, and x(�y)P is asynchronous bound output, (ν x)P is name hiding and
0 denotes nil. The full definition of the reduction rules and the structure rules is found
in Figure 1 (−→ is generated from the given rules; ≡ is generated from the given rules
together with the closure under all contexts). We write →→ for −→∗ ∪ ≡.

Types. First we introduce channel types. They indicate possible usage of channels.

τ ::= (�τ )p p ::= ! | ?

τ, τ ′, ... (resp. p, p′, ...) range over types (resp. modes). ! and ? are called server mode
and client mode, respectively, and they are dual to each other. Here, by server we mean
that the process is waiting with an input to be invoked. Conversely, a process is a client,
if its next action is sending a message to a server. We write md(τ) for the outermost
mode of τ . For example, md((τ1 τ2)!) = !. We write ()p for (ε)p, which stands for
a channel that carries no names. We further demand the following condition to hold
for channel types. A channel type τ is IO-alternating if, for each of its subexpression
(τ1..τn)

p, if p = ! (resp. p = ?) then each md(τi) = ? (resp. md(τi) = !). Hereafter
we assume all channel types we use are IO-alternating. The dual of τ , written τ , is
defined as the result of dualising all modes in τi. For example, (τ1 τ2)? is the dual of the
above type. To guarantee the uniqueness of a server (replicated) process, we introduce
the partial operation � on types, which is generated from: τ � τ = τ � τ = τ and
τ � τ = τ with (md(τ) = ?). Note � is indeed partial since it is not defined in other
cases. This operation means that a server should be unique, but an arbitrary number
of clients can request interactions. To guarantee the second condition, we introduce an
action type ranged over by A,B,C.... The syntax is given as follows:
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A ::= ∅ | x :τ | x : (�τ1)! → y : (�τ2)
? | A,B

The idea behind this definition is that action types are graphs where nodes are of the
form x : τ , provided names like x occur at most once.

Typing. The typing judgement are of the form �φ P � A which is read: P has type A
with mode φ where IO-modes, φ ∈ {I, O}, guarantees a restriction to a single thread.
We present the typing system in Appendix A. The rules are obtained just by restricting
the typing system in [39] to the replicated fragment of the syntax we are now using.
The resulting typed calculus is called πC. The subject reduction of πC is an immediate
consequence of that in [39], since both the action types and the reduction of the present
calculus are projection of those of the sequential linear π-calculus in [39, §5.3].

Proposition 2.1. (Subject Reduction) If �φ P � A and P −→ Q then �φ Q � A.

In addition to the standard reduction, we define an extended notion of reduction, called
the extended reduction, written ↘, again precisely following [39]. We shall use this
reduction extensively in the present study. While−→ gives a natural notion of dynamics
which makes sense in both sequential and concurrent computation, ↘ extends −→ by
exploiting the stateless nature of πC-processes. It offers a close correspondence with
the reduction in the λμv-calculus through the encoding. For that reason ↘ is useful for
studying the correspondence between two calculi. Formally ↘ is the least compatible
relation, i.e. closed under typed context, taken modulo ≡, that includes:

C[x(�y)P ]|!x(�y).Q↘r C[(ν �y)(P |Q)] | !x(�y).Q (ν x)!x(�y).Q↘g 0

where C[ · ] is an arbitrary (typed) context. We can immediately see that −→⊂↘. Note
↘ calculates under prefixes, which is unusual in process calculi. Another observation is
that a given typed process in the πC-calculus can have at most one redex for the standard
reduction −→ while it may have more than one redex for ↘. The extended reduction
↘ is the exact image of extended reduction in [39] onto the present subcalculus, so that
we immediately conclude, from the results in [39]:

Proposition 2.2. 1. (Subject Reduction) If �φ P � A and P ↘ Q then �φ Q � A.
2. (CR) If P is typable and P ↘ Qi (i = 1, 2) with Q1 �≡ Q2, we have Qi ↘+ R

(i = 1, 2) for some R.
3. (SN) If P is typable then P does not have infinite ↘-reductions.

It may be useful to state at this point that, possibly contrary to what is suggested by the
asymmetric notation,↘ does not introduce a new form of computation step, a new form
of interaction. Instead, P ↘ Q says that P andQ cannot be distinguished by well-typed
observers. This indistinguishability is an artefact of our restrictive typing discipline and
does not hold in the untyped calculus. The notation was chosen to emphasise that Q in
P ↘ Q is ’smaller’ or more reduced than P in a sense that can be made precise.

There are three further observations on the extended reduction. First, while we do
not use the property directly in the present work, the convertibility induced by ↘ (i.e.
the typed congruent closure of↘) coincides with the weak bisimilarity≈ [39, Theorem
4.1], because the transition relation is the faithful image of that of the pure sequential
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linear π-calculus in [39]. Second, Proposition 2.2 (3) indicates all πC-processes are
represented by their ↘-normal forms, i.e. those πC-processes which do not have a ↘-
redex, which own a very simple syntactic structure characterised inductively. Finally,
in the definition of ↘ it is not necessary to cater for replicated inputs occurring freely
under other input prefixes as that is impossible by typing. Similarly, any replicated
input with free subject under an output can be put into parallel with that output by the
structural rules in the typed setting.

Definition 2.1. Let the set NFe of πC-processes be generated by the following induc-
tion, assuming typability in each clause. (1) 0 ∈ NFe; (2) if P,Q ∈ NFe and P and Q
do not share a common free name of different polarities, then P |Q ∈ NFe; (3) P ∈ NFe

then !x(�y).P ∈ NFe; (4) x(�y)P ∈ NFe if P ∈ NFe and x(�y)P is a prime output, where
we call x(�y)P prime if the initial x is its only free name not under input prefix; and (5)
If P ∈ NFe and P ≡ Q thenQ ∈ NFe. Clearly if P is typable and P �↘ then P ∈ NFe.

Contextual Congruence for πC. The Church-Rosser property of typed processes, as
stated in Proposition 2.2, suggests that non-deterministic state change (which plays a
basic role in e.g. bisimilarity and testing/failure equivalence) may safely be ignored in
typed equality, so that a Morris-like contextual equivalence suffices as a basic equality
over processes. Let us define:

P ⇓x iff P →→ x(�y)Q for some Q

We can now define a basic typed congruence. Below, a relation over typed processes is
typed if it relates only processes with identical action type and IO-mode. IfR is a typed
relation and �φ P1,2 � A are related by R then we write �φ P1 R P2 � A or, when no
confusion arises, P1 R P2. A relation is a typed congruence when (1) R ⊇≡, and (2)
R is a typed equivalence relation closed under typed contexts (note we are taking ≡ as
if it were the α-equality: this is essentially because the notion of reduction depends on
this relation, just as reduction in the λ-calculus depends on the α-equality).

Definition 2.2. ∼=π is the maximum typed congruence satisfying: if �O P ∼=π Q � x :
()?, then P ⇓x iff Q ⇓x.

Below a typed congruence is maximally consistent [15] if adding any additional equa-
tion to it leads to inconsistency, i.e. equations on all processes with identical typing.

Proposition 2.3. (1)↘ ⊂ ∼=π; (2)∼=π is a maximally consistent typed congruence; (3)
∼=π is the unique maximally consistent congruence containing↘.

Our choice of observable in πCcorresponds to the usual output-barbed congruence one
considers in the untyped calculus. It is also the canonical choice for the calculus frag-
ment under discussion, for the following reasons. ?-actions are not considered as
observables in linear/affine π-calculi [4, 39] since, intuitively, invoking replicated pro-
cesses do not affect them. Proposition 2.3 suggests that the existence/non-existence of
?-actions may be the only sensible way to obtain a non-trivial large equality in πC,
equationally justifying the use of ?-actions as observables.
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3 Encoding

Call-by-value λμ-calculus. This section presents a type-preserving embedding of the
call-by-valueλμ-calculus by Ong and Stewart [26] in πC. Apart from tractable syntactic
properties of the calculus in comparison with its call-by-name counterpart, [26] showed
how various control primitives of call-by-value languages (such as call/cc in ML) can
be encoded in this calculus and its extension with recursion [26]. The calculus repre-
sents full control in a call-by-value setting, just like the call-by-value λ-calculus with
Felleisen’s C operator.

Types (α, β, . . .) are those of simply typed λ-calculus with the atomic type ⊥ (we
can add other atomic types with appropriate values and operations on them). We use
variables (x, y, . . .) and control variables (or names) (a, b, . . .). Preterms (M,N, . . .)
and values (V,W, . . .) are generated from the grammar:

M,N ::= x | λxα.N |MN | μaα.M | [a]M V,W ::= x | λxα.N

Apart from variables, abstraction and application, we have a named term [a]M and a
μ-abstraction μa.M , both of which use names. The typing judgement has the form
Γ � M : α;Δ where Γ is a finite map from variables to types, M is a preterm given
above, and Δ is a finite map from names to non-⊥-types. The typing rules are given
below:

(Id)

−

Γ · x :α 
 x :α ;Δ

(C-var)

Γ · x :α · y :α 
 M :β ;Δ

Γ · z :α 
 M{z/xy} :β ;Δ

(C-name)

Γ 
 M :β ;Δ · a :α · b :α

Γ 
 M{c/ab} :β ;Δ · c :α

(⇒-I)

Γ · x :α 
 M :β ;Δ

Γ 
 λxα.M :α⇒β ;Δ

(⇒-E)

Γ 
 M :α⇒β ;Δ

Γ 
 N :α ;Δ

Γ 
 MN :β ;Δ

(⊥-I)

Γ 
 M :α ;Δα �= ⊥

Γ 
 [a]M :⊥ ;Δ · a :α

(⊥-E)

Γ 
 M :⊥ ;Δ · a :α

Γ 
 μaα.M : α ;Δ

In the rules, we assume newly introduced names/variables in the conclusion are always
fresh. The notation Γ · x : τ indicates x is not in the domain of Γ . M{z/xy} denotes
the result of substituting z in M for both x and y, similarly for M{c/ab}. A typable
preterm is called a λμv-term. The reduction rules for the λμv-calculus is given next:

(βv) (λx.M)V −→ M{V/x} (ζarg) V α⇒β(μaα.M) −→ μb.(M{ [b](V [ · ]) / [a][ · ] }

(ηv) λx.(V x) −→ V (x /∈ fv(V )) (ζfun,⊥) (μaα⇒⊥ .M)N −→ M{ [ · ]N / [a][ · ] }

(μ-β) [b]μa.M −→ M{b/a} (ζarg,⊥) V α⇒⊥(μaα .M) −→ M{V [ · ] / [a][ · ] }

(μ-η) μa.[a]M −→ M (a /∈ fn(M)) (⊥) V ⊥⇒βM −→ μbβ .M (b fresh)

(ζfun) (μaα⇒β .M)N −→ μb.M{ [b]([ · ]N) / [a][ · ] } (⊥⊥) V ⊥⇒⊥M −→M

We let β �= ⊥. In (ζarg,ζarg,⊥), α �= ⊥. In the rules we include ηv-reduction, unlike
[26]. Inclusion or non-inclusion does not affect the subsequent technical development.
Some rules use substitutionM{C[ · ] / [a][ · ] } defined next, assuming the bound name
convention. Note that substitution is applied in a nested fashion in the last line.
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x{C[ · ] / [a][ · ] } def
= x

(λx.M){C[ · ] / [a][ · ] } def
= λx.(M{C[ · ] / [a][ · ] })

MN{C[ · ] / [a][ · ] } def
= (M{C[ · ] / [a][ · ] })(N{C[ · ] / [a][ · ] })

(μbα.M){C[ · ] / [a][ · ] } def
= μbα.(M{C[ · ] / [a][ · ] })

([a′]M){C[ · ] / [a][ · ] } def
=

{
[a′](M{C[ · ] / [a][ · ] }) (a �= a′)
[a′](C[M{C[ · ] / [a][ · ] }]) (a = a′)

Encoding (1): Types. The general idea of the encoding is simple, and closely follows
the standard call-by-value encoding of the λ-calculus, due to Milner [24]. The reading
is strongly operational, elucidating the dynamics of λμ-terms up to a certain level of
abstraction. Given a λμ-term,Γ �M : α;Δ, its encoding considersΓ as the interaction
points of the program/process where it queries the environment and gets information;
while either at its main port, typed as α, or at one of the control variables given asΔ, the
program/process would return a value: at which port it would return depends on how its
sequential thread of control will proceed during execution. If Δ is empty, this reading
precisely coincides with Milner’s original one [24]. One of the distinguishing features
of the π-calculus encodings of programming languages in general (including those for
untyped calculi) and that of the present encoding in particular, is that the operational
interpretation of this sort in fact obeys a clean and rigid type structure.

We start with the encoding of types, using two maps, α• and α◦. Intuitively α◦ maps
α as a type for values; while α• maps α as a type for threads which may converge to
values of type α or which may diverge, or “computation” in Moggi’s terminology [25].

α•
def
=

{
ε (α = ⊥)
(α◦)? (α �= ⊥)

(α⇒β)◦
def
=

{
(β•)! (α = ⊥)
(α◦β•)! (α �= ⊥)

Note a type for computation is the lifting of a type for values. The encoding of ⊥
indicates that we assume there is no (closed) value, or a proof without assumptions,
inhabiting ⊥. This leads to the degenerate treatment of (⊥ ⇒ α)• since “asking at the
assumed absurdity” does not make sense. By “degenerate” we mean that the argument
in (⊥ ⇒ α) is simply ignored.

Example 3.1 As simple examples, consider: (⊥ ⇒ ⊥)◦ def
= ()! and ((⊥ ⇒ ⊥) ⇒

⊥)◦ def
= (()?)!. Note if α �= ⊥ we always have (α ⇒ ⊥)◦ = (α◦)! which corresponds

to the standard translation, ¬A def
= A ⊃ ⊥.

Following the mappings of types, the environments for variables and names are mapped

as follows, starting from ∅• def
= ∅ and ∅◦ def

= ∅.

(a :α ·Δ)•
def
=

{
a :α• ·Δ• (α �= ⊥)
Δ• (α = ⊥) (x :α · Γ )◦ def

=

{
x :α◦ · Γ ◦ (α �= ⊥)
Γ ◦ (α = ⊥)

The special treatment of ⊥ follows the encoding of types above and reflects its special
role in classical natural deduction. Simply put, if we have a proof whose conclusion
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[[x : α]]u
def
=

{
u〈xα◦ 〉 (α �= ⊥)
0 (α = ⊥)

[[λxα.M : α⇒β]]u
def
=

⎧⎪⎪⎨
⎪⎪⎩

u(c)!c(xz).[[M :β]]z (α �= ⊥, β �= ⊥)
u(c)!c(z).[[M :β]]z (α = ⊥, β �= ⊥)
u(c)!c(x).[[M :⊥]]z (α �= ⊥, β = ⊥)
u(c)!c.[[M :⊥]]z (α = ⊥, β = ⊥)

[[MN : β]]u
def
=

⎧⎪⎨
⎪⎩

[[M :α⇒β]]m{m(c)=([[N :α]]n{n(e)=c〈euα◦β◦〉})} (α �=⊥, β �=⊥)
[[M :α⇒β]]m{m(c)=c〈uβ◦〉} (α=⊥, β �=⊥)
[[M :α⇒β]]m{m(c)=[[N : α]]u} (α=⊥)

[[[a]M : ⊥]]u
def
= [[M : α]]m{a/m} [[μaα.M : α]]u

def
= [[M : ⊥]]m{u/a}

Fig. 2. Encoding of λμ-terms

is the falsity ⊥, then it is given there, for its all usefulness, for the purpose of having
a contradiction and negating a stipulated assumption. Operationally this suggests the
proof whose (conclusion’s) type is ⊥ has nothing positive to communicate to the out-
side, which explains why the map for computation ( · )• ignores the control channel of
type ⊥. Dually you get no information from the proof of type ⊥, so querying at that
environment port is insignificant, hence we ignore⊥-types in the negative positions.

Encoding (2): Terms. For the encoding of terms, we introduce the following notations,
which we shall use throughout the paper. Below in (3) we use the notation from [12,
Remark 15] in the context of CPS calculus (cf. Section 5).

1. (copycat) Let τ be an input type. Then [x→ y]τ , copy-cat of type τ , is inductively
defined by the following clause.

[x→ x′](τ1..τn)
! def

= !x(�y).x′(�y′)Π1≤i≤n[y
′
i → yi]

τi

where
∏

1≤i≤n Pi (or
∏

i Pi) stands for the n-fold parallel compositionP1| · · · |Pn.

2. (free output) x〈�y �τ 〉 def
= x(�z)Π [zi → yi]

τi with each τi having an output mode.

3. (substitution environment) P{x(�y)=R} def
= (ν x)(P | !x(�y).R).

Figure 2 presents the encoding of terms. The encoding closely follows that of types,
mapping a typing judgement Γ � M :α ;Δ and a fresh name (called anchor) to a pro-
cess. We omit the type environment from the source term in Figure 2. In each rule, we
assume newly introduced names (among others an anchor) are always fresh. The anchor
u in [[M :α]]u represents the point of interaction which M may have as a process [24]
or, more concretely, the channel through which the process returns the resulting value to
the environment. The process [[M :α]]u may also have interactions at its free variables
(for querying information) and at its free control variables (for returning values). Note
both of them are now channel names.

Proposition 3.1. Γ �M :α ;Δ implies �O [[M :α]]u � (u :α ·Δ)•, Γ ◦.

In Proposition 3.1, the type of the term and the types of control names are both mapped
with ( )•, conforming to the shape of the sequent Γ � M : α;Δ. In particular, there
is no causality arrow in the types for translations of λμ-terms. This is because all types
(including environments and types for names) are mapped to output types, and causality
can only from ! to ?.
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Example 3.2 (variable) As a simplest example, consider [[x : ⊥]]u def
= 0. Since

(x : ⊥)◦ = (u : ⊥)• = ∅, we have �O [[x : ⊥]]u � (u : ⊥)•, (x : ⊥)◦ This en-
coding intuitively represents a trivial proof which assumes ⊥ and concludes ⊥, or, in
the terminology of Linear Logic, the axiom link of the empty type.

Example 3.3 (identity, 1) By closing x in Example 3.2, [[λx⊥.x : ⊥ ⇒ ⊥]]u def
=

u(c)!c.0. Since (⊥ ⇒ ⊥)• = (()!)?, we have �O [[λx⊥.x : ⊥ ⇒ ⊥]]u � u : (⊥ ⇒ ⊥)•.

Example 3.4 (identity, 2) If α �= ⊥, then [[λxα.x : α⇒ α]]u
def
= u(c)!c(xz).z〈xα◦〉.

Example 3.5 (control operator, 1) The following term essentially corresponds to C in
λCv introduced by Felleisen and his colleagues [10, 11]. Logically it is a shortest proof

of ¬¬A ⊃ A. Below we let ¬α def
= α⇒ ⊥: ℵ def

= λz¬¬α.μaα.z(λxα.[a]x). Its direct
encoding is, assuming α �= ⊥:

[[ℵ]]u def
= u(c)!c(za).(νm)(m〈z〉 | !m(z).(ν n)(n(f)!f(x).a〈x〉 | !n(f).z〈f〉))

which, through a couple of ↘ uses, can be simplified into u(c)!c(za).z(f)!f(x).a〈x〉.
This agent first signals itself: then it is invoked with a function in the environment (of
type ¬¬α) as an argument and a continuation a (of type α), invokes the former with the
identity agent (whose continuation is a) and a continuation a. Then if that function asks
back at the identity with an argument, say x, then this x is returned to a as the answer
to the initial invocation. Note how the πC-translation makes explicit the operational
content of the agent, especially when simplified using ↘.

Example 3.6 (control operator, 3) The following is the well-known witness of Peirce’s
law, ((A ⊃ B) ⊃ A) ⊃ A, and corresponds to call/cc in Scheme.

κ
def
= λy(α⇒β)⇒α.μaα.[a](y(λxα.μbβ.[a]x)).

The direct encoding becomes:

[[κ]]u
def
= u(c)!c(za).(νm)(m〈z〉|!m(z).(ν n)(n(f)!f(xb).a〈x〉|!n(f).z〈fa〉))

which is simplified with ↘ into: u(c)!c(ya).y(fa′)(!f(xb).a〈x〉 | [a′ → a]). The pro-
cess first signals itself at u, then, when invoked with an argument y and a return point
a, asks at y with an argument f and a new return point a′. Then whichever is invoked, it
would return with the received value to the initial return point a. Note that the only dif-
ference from the encoding of ℵ is whether, in addition to the invocation of the identity
function at f , there is the possibility that the direct return comes from the environment:
the difference, thus, is, in the standard execution, whether it preserves a current stack to
forward the value from the environment or not.

Correspondence in Dynamics. The dynamics of λμ-calculi, including its call-by-name
and call-by-value versions, has additional complexity due to the involvement of μ-
abstraction. Among others it becomes necessary to use a nested context substitution
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M{C[·] / [a][·] }when μ-abstraction and application interact. In the following we anal-
yse the dynamics of the λμv-calculus through the embedding, using the interaction-
oriented dynamics of πC. The strong normalisability of λμv-reduction is an immediate
consequence of this analysis.

We need some preparations. First, for a λμv-term which is also a value, the following
construction is useful.

Definition 3.1. Let Γ � V : α;Δ. Then we set [[V ]]val
m

def
= P iff [[V ]]u

def
= u(m)P .

Note u(m)[[V ]]val
m is identical with [[V ]]u up to alpha-equality. Note further, by typing,

[[V ]]val
m always has the form !m(�y).P . These observations are useful when we think

about the encodings, especially when we apply extended reduction on them.
We are now ready to embark on the analysis of λμv-reduction through its encoding

into πC. Suppose we have reduction M −→ M ′ for a λμv-term M . Using the defini-
tions above, the generation of reduction can be attributed to one of the following cases:
(1) (βv)-rule or (ηv)-rule; (2) one of the μ-reduction rules; or (3) one of the ζ-reduction
rules. Of those, ζ-reductions require the most attention. Instead of considering the gen-
eral case (which we shall treat later), let us first take a look at the following concrete
λμv-reduction. Below f and g are typed as α⇒ γ and α.

M
def
= (μaα⇒β.[a]λyα.μeβ.[a]f)g −→μbβ.[b](λy.μe.[b](fg))g

def
= M ′ (1)

The encoding into πCelucidates ζ-reductions on the uniform basis of name passing in-
teraction. Let us first encodeM , writing c〈〈xu〉〉 for (ν n)(!n(y).c〈yu〉|n〈x〉):

[[M : α⇒ β]]u
def
= (ν a)(a(c)!c(ye).a〈f〉 | !a(c).c〈〈gu〉〉) (2)

On the right of (2), we find two ↘r-redexes (apart from in c〈〈gu〉〉), two outputs and
a shared input at a, which are ready to interact. Redexes for the ζ-reduction now arise
explicitly as redexes for interactions. Note also these redexes do not depend on whether
the argument (g above) is a value or not, explaining the shape of (ζfun).

To see how M ′ in (1) results from M in the encoding, we “copy” replications to
make these two redexes contiguous, obtaining:

(ν a)(a(c)!c(ye).(ν a)(a〈f〉 | !a(c).c〈〈gu〉〉) | !a(c).c〈〈gu〉〉) (3)

This term is an intermediate form before reducing the mentioned two redexes in (2) and
is behaviourally equivalent to (2) (even in the untyped weak bisimilarity). We observe:

[[M ′ :α⇒β]]u def
=(ν a)(a(c)!c(ye).(ν a′)(a′〈f〉 | !a′(c).c〈〈gu〉〉) | !a(c).c〈〈gu〉〉)

so the intermediate form (3) is nothing but the encoding of M ′. This also shows if we
really reduce the two ↘-redexes from (2), the result goes past (3). In general, M −→
M ′ does not imply [[M ]]u ↘+ [[M ′]]u since [[M ]]u reduces a little further than [[M ′]]u.
However [[M ′]]u can catch up with the result by reducing the mentioned two redexes in
(3).Based on this observation, we formally state the main result. Below size(M) is the
size of M , which is inductively defined as: size(x) = 1, size([a]M) = 1 + size(M),
size(λx.M) = size(M) + 1, size(μa.M) = 1 + size(M), size(MN) = size(M) +
size(N). We use this index for maintaining the well-ordering on reduction. Below→λμv

is the reduction relation on λμ-terms presented in [26].
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Proposition 3.2. M →λμv M
′ with M and M ′ typed implies either [[M :α]] ≡ [[M ′ :

α]] such that size(M) � size(M ′), or [[M : α]]u↘+P such that [[M ′ : α]]u ↘∗ P . In
particular, →λμv on λμ-terms is strongly normalising.

4 Decoding and Full Abstraction

Canonical Normal Forms. In the previous section we have shown that types and dy-
namics of λμv-terms are faithfully embeddable into πC. In this section we show this
embedding is as faithful as possible — if a process lives in the encoding of a λμv-
type, then it is indeed the image of a λμv-term of that type. This result corresponds to
the standard definability result in denotational semantics, and immediately leads to full
abstraction for a suitably defined observational congruence for λμv.

A key observation towards definability is that we can algorithmically translate back
processes having the encoded λμv-types into the original λμv-terms. To study the de-
coding, it is convenient to introduce canonical normal forms (CNFs) [2, 4, 19], which
are essentially a subset of λμv-terms whose syntactic structures precisely correspond
to their process representation.

First, CNF preterms (N, . . .) and CNF value preterms (U, . . .) are given by:

N ::= c | λxα.N | let x = yU in N | let = yU | [a]U | μaα.N
U ::= c | λxα.N | μaα.[a]U

We further assume the following conditions on CNF preterms: (1) In [a]N, N does not
have form μbβ.N′. (2) In μaα.N, (a) if N is [a]U then a ∈ fn(U); and (b) if N is let x =
yU′ in N′ then a ∈ fn(U′). (3) In μaα.[a]U, a ∈ fn(U). The conditions 1, 2-a and 3 are
to avoid a μ-redex. The condition 2-b is to determine the shape of a normal form, since
without this condition μa.let x = yU′ in N′ can be written let x = yU′ in μa.N′.

Under these conditions, the set of CNFs are those which are typable by the following
typing rules combined with those for the λμ-calculus except the rule for application.

(⊥-const)

−
Γ ·x :⊥ � c :⊥ ;Δ

(let)

Γ ·x :β � N :γ ;Δ

Γ � yU :β ;Δ (β �= ⊥)
Γ � let xβ = yU in N :γ ;Δ

(let-⊥)

Γ � y :α⇒⊥ ; ∅
Γ � U :α ;Δ

Γ � let = yU :⊥ ;Δ

In (⊥-const), c, which witnesses absurdity, is introduced only when⊥ is assumed in the
environment (logically this says that we can say an absurd thing only when the environ-
ment is absurd). CNFs which are also CNF value preterms are called CNF values. Note
a CNF value is either c (which is the sole case when it has a type ⊥), a λ-abstraction,
or a μ-abstraction followed by a λ-abstraction.

CNFs correspond to λμv-terms as follows. In the first rule we assume x is chosen
arbitrarily from variables assigned to ⊥. Below in the first line, it is semantically (and
logically) irrelevant which ⊥-typed variable we choose: for example, we may assume
there is a total order on names and choose the least one from the given environment.

(Γ ·x :⊥ � c :⊥ ;Δ)∗ def
= Γ ·x :⊥ � x :⊥ ;Δ (Γ � let = yU :⊥ ;Δ)∗ def

= Γ � yU∗ :⊥ ;Δ

(Γ � let xβ = yU in N :γ ;Δ)∗ def
= Γ � (λx.N∗)(yU∗) :γ ;Δ
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[0]Γ ;Δ
u

def
= c :⊥ [u(c)!c(xz).R]

Γ ;Δ·u:(α⇒β)
u

def
= λxα.[R]Γ ·x:α;Δ·z:β

z

[y]Γ ·y:α⇒β;Δ
u

def
= let = yc [u(c)!c(x).R]

Γ ;Δ·u:(α⇒⊥)
u

def
= λxα.[R]Γ ·x:α;Δ

m

[u(c)!c.R]
Γ ;Δ·u:(⊥⇒⊥)
u

def
= λx⊥.[R]Γ ;Δ

m [u(c)!c(z).R]
Γ ;Δ·u:(⊥⇒β)
u

def
= λx⊥.[R]Γ ;Δ·z:β

z

[P〈a〉]
Γ ;Δ·a:α
u

def
= [a][P〈m/a〉]

Γ ;Δ·a:α·m:α
m [y(w)R]Γ ·y:α⇒β;Δ

u
def
= let = y[c(w)P ]Γ ;Δ

c

[y(wz)(R | !z(x).Q)]Γ ·y:α⇒β;Δ
u

def
= let xβ = y[c(w)R]Γ ·y:α⇒β;Δ

c in [Q]
(Γ ·x:β);Δ
u

[y(z)!z(x).Q]Γ ·y:α⇒β;Δ
u

def
= let xβ= yc in [Q]Γ ·y:α⇒β·x:β;Δ

u

[P ]Γ ;Δ·u:α
u

def
= μuα.[P ]Γ ;Δ·u:α

m other cases

Fig. 3. Decoding of λμ-typed processes (α, β �= ⊥ and m,u are fresh)

For CNFs which are λ-abstraction, μ-abstraction and named terms, the mapping uses
the same clauses as in Figure 2, replacing [[ · ]] in the defining clauses with ( · )∗.

Via ( )∗ we can encode CNFs to processes:

Γ � N : α;Δ �→ Γ � N∗ : α;Δ �→ �O [[(N : α)∗]]u � (u :α,Δ)•, Δ◦

CNFs can also be directly encoded into πC-processes, using the following rules com-
bined with those for abstraction, naming and μ-abstraction given in Figure 2 (replacing
[[ · ]] with 〈 · 〉 in each clause).

〈let x = yU in N :γ〉u def
=

{
y(wz)(P |!z(x).〈N :γ〉u) (U �= c, 〈U〉c def

= c(w)P )

y(z)!z(x).〈N :γ〉u (U = c)

〈let = yU :⊥〉u def
=

{ 〈U〉y (U �= c)
y (U = c)

〈c :⊥〉u def
= 0

Two process encodings of CNFs coincide up to ↘.

Proposition 4.1. 1. Let Γ � N :α ;Δ. Then �O 〈N〉u � (u :α,Δ)•, Γ ◦.
2. Let Γ � N :α ;Δ. Then [[N∗ : α]]u ↘∗ 〈N〉u �↘.

Definability. The decoding of πC-processes (of encoded λμv-types) to λμv-preterms
is written [P ]Γ ;Δ

u , which translates P ∈ NFe such that �O P � Γ ◦, Δ• with u �∈
dom(Γ ) to a λμv-pretermM . Without loss of generality, we assume P does not contain
redundant 0 or hiding. The mapping is defined inductively by the rules given in Figure
3. In the second last line, P〈a〉 indicates P is a prime output with subject a, whereas
P〈m/a〉 is the result of replacing the subject a in P〈a〉 withm.

Proposition 4.2. Let ⊥ �∈ image(Γ ), u �∈ dom(Γ ) and P ∈ NFe. Then � P � Γ ◦ ·Δ•

implies, with x fresh: (1) if Δ = Δ0 · u :α then Γ · x :⊥ � [P ]Γ
◦;Δ•

u :α ;Δ0 and; (2) if
u �∈ dom(Δ) then Γ · x :⊥ � [P ]Γ

◦;Δ•

u :⊥ ;Δ0.

Let us say Γ � M : β ;Δ with u �∈ dom(Γ ) defines � P � Γ ◦ · Δ• ∈ NFe at u
iff [[M : β]]u ↘∗ P . A λμv-term is closed if it contains neither free names nor free
variables. We can now establish the definability.
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Theorem 4.1. (definability) Let � P � Γ ◦·Δ•·u :α• ∈ NFe such that⊥ �∈ image(Γ ).
Then Γ · x :⊥ � [P ]u :α ; Δ defines P . Further if Γ = Δ = ∅ and P �≡ 0, then there
is a closed λμv-term which defines P .

Full Abstraction. To prove full abstraction, our first task is to define a suitable observa-
tional congruence in the λμv-calculus. There can be different notions of observational
congruences for the calculus; here we choose a large, but consistent congruence. This
equality is defined solely using the terms and dynamics of the calculus; yet, as we shall
illustrate later, its construction comes from an analysis of λμv-terms’ behaviour through
their encoding into πC-processes and the process equivalence ∼=π . The analysis is use-
ful since the notion of observation in pure λμv-calculus may not be too obvious, while
∼=π is based on a clear and simple idea of observables. Two further observations on
the induced congruence: (1) The congruence is closely related with (and possibly coin-
cide with some of) the notions of equality over full controls, as studied by Laird [20],
Selinger [34] and others; and (2) If we extend λμv with sums or non-trivial atomic
types, and define the congruence based on the convergence to distinct normal forms of
these types, then the resulting congruence restricted to the pure λμv-calculus is pre-
cisely what we obtain by the present congruence.

Definition 4.1. ≡⊥ is the smallest typed congruence on λμv-terms which includes:

1. Γ �M ≡⊥ N : β;Δ whenM ≡α N .

2. Γ �M ≡⊥ N : β;Δ when N
def
= M{y/x} where Γ (x) = Γ (y) = ⊥.

For example, we have, under the environment x : ⊥, y : ⊥: x ≡⊥ y. We also have:
λx⊥.λy⊥x ≡⊥ λx⊥.λy⊥y. We can easily check that, in the encoding, ≡⊥-related
terms are always mapped to an identical process.

Convention 1. Henceforth we always consider λμv-terms and CNFs up to ≡⊥.

We can now define observables, which is an infinite series of closed terms of the type
⊥ ⇒ ⊥⇒ ⊥.

Definition 4.2. Define {Wi}i∈ω by the following induction: W0
def
= λz⊥.μu⊥⇒⊥.z

and Wn+1
def
= λz⊥.μu⊥⇒⊥.[w]Wn. Let γ = ⊥ ⇒ ⊥ ⇒ ⊥. We then define: Obs

def
=

{W0} ∪ {μwγ .[w]Wn+1, n ∈ N} where we take terms up ≡⊥.

All terms in Obs are closed →λμv-normal forms of type γ (W0 can also be written as
μw.[w]W0, but is treated separately since μw.[w]W0 is not a normal form).

To illustrate the choice of Obs, we show below the π-calculus representation ofW0,
μw.[w]W1, μw.[w]W2, . . . through [[ · ]]u, which is in fact the origin of Obs.

Definition 4.3. Define {Pi}i∈ω as follows (below we use the same names for bound

names for simplicity). P0
def
= w(c)!c(u).0 and Pn+1

def
= w(c)!c(u).Pn. We set Obsπ

def
=

{ �O Pi � w : γ• }i∈ω, taking processes modulo ≡.

Note each Pi only outputs at w (if ever) at any subsequent invocation, even though an
output at any one of the bound names (u above) is well-typed. For example,
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P ′
1

def
= w(c)!c(u).u(c)!c(u).0 has type w : γ• but differs from P1 by outputting at

the bound u when it is invoked the second time. One can check P0 is the smallest
(w.r.t. process size, i.e. number of constructors) non-trivial inhabitant of this type: in

particular it is smaller than [[λz⊥.λx⊥.x]]w
def
= P ′

1.

Proposition 4.3. 1. �O Pi
∼=π Pj � w : γ• for arbitrary i and j.

2. If �O Q � w : γ•, Q ∈ NFe andQ ∼=π Pi then Q ∈ Obsπ.

Processes in Obsπ have uniform behaviours: indeed they are closed under ∼=π. These
observations motivate the following definition. Below C[ · ]βΓ ;α;Δ is a typed context
whose hole takes a term typed as α;Δ under the base Γ and which returns a closed
term of type β.

Definition 4.4. We write Γ � M ∼=λμ N : α ;Δ when, for each typed context
C[ ]⊥⇒⊥⇒⊥

Γ ;α;Δ , we have: ∃L.(C[M ] ⇓ L ∈ Obs) iff ∃L′.(C[N ] ⇓ L′ ∈ Obs).

Note that we treat all values inObs as an identical observable. Immediately→λμv⊂∼=λμ.
We can now establish the full abstraction, following the standard routine. We start with
the computational adequacy. We writeM ⇓ L whenM →∗

λμv L �→λμv.

Proposition 4.4. (computational adequacy) Let M : ⊥ ⇒ ⊥ ⇒ ⊥ be closed. Then
∃L.(M ⇓ L ∈ Obs) iff ∃P.([[M ]]u ↘∗ P ∈ Obsπ).

Corollary 4.1. (soundness) [[M ]]u ∼=π [[N ]]u implies M ∼=λμ N .

Proof. Assume [[M ]]u ∼=π [[N ]]u. We show, for each well-typed C[ · ], ∃L.(C[M ] ⇓
L ∈ Obs) iff ∃L′.(C[M ] ⇓ L′ ∈ Obs). Let C[ · ] be well-typed. Now we reason:

C[M ] ⇓ L ∈ Obs ⇒ [[C[M ]]]v ⇓ [[L]]v ∈ Obsπ (Proposition 4.4)
⇒ ∃O.[[C[N ]]]v ↘∗ O ∈ Obsπ ([[C[M ]]]v ∼=π [[C[N ]]]v)
⇒ C[N ]v ↘∗ L′ ∈ Obs (Proposition 4.4)

Theorem 4.2. (full abstraction) Let Γ � Mi : α;Δ (i = 1, 2). Then M1
∼=λμ M2 if

and only if [[M1]]u ∼=π [[M2]]u.

Proof. Suppose ∅ � M1
∼=λμ M2 : α; ∅ but �O [[M1]]u �∼=π [[M2]]u � u : α

•. By this,
converting the observable ()? to the convergence toObsπ in γ• with γ = ⊥ ⇒ ⊥⇒ ⊥,
there exists �I R � u :α•, v :γ• such that R ∈ NFe and (say) ∃P. (ν u)([[M1]]|R) ↘∗

P ∈ Obsπ and ¬∃P. (ν u)([[M2]]|R) ↘∗ P ∈ Obsπ. Since R ∈ NFe, we can safely

set R
def
=!u(c).R′. Now take �I!u(cv).R′ �u : (α⇒ γ)•. By Theorem 4.1 (definability),

we can find L such that � L : α ⇒ γ where [[L]]u ∼=π!u(cv).R
′. Since [[LMi]]u ↘+

(ν u)([[Mi]]|R), we conclude ∃L′. LM1 ⇓ L′ ∈ Obs and ¬∃L′. LM2 ⇓ L′ ∈ Obs,
which contradicts the assumption. Since precisely the same argument holds when Γ and
Δ are possibly non-empty in Γ � M1,2 : α;Δ by closing them by λ/μ-abstractions,
we have now established the full abstraction.



Process Types as a Descriptive Tool for Interaction 15

5 Discussion

This paper explored the connection between control and the π-calculus, first pointed
out by Thielecke [35] who showed that the target of CPS-transform can be written
down as name passing processes. This paper presented the typed π-calculus for full
control, which arises as a subcalculus of the linear π-calculus [39] where all inputs are
replicated. The main contribution of the present work is the use of a duality-based type
structure in the π-calculus by which the embedding of control constructs in processes
becomes semantically exact.

Control and Name Passing (1). The notion of full control arises in several related con-
texts. Historical survey of studies of controls and continuations can be found in [28,36].
Here we pick up three strands of research to position the present work in a historical
context. In one strand, notions of control operators have been formulated and stud-
ied as a way to represent jumps and other non-trivial manipulation of control flows as
an extension of the λ-calculus and related languages. Among many works, Felleisen
and others [10, 11] studied syntactic and equational properties of control operators in
the context of the call-by-value λ-calculus, clarifying their status. Griffin [13] shows
a correspondence between the λ-calculus with control operators, classical proofs and
the CPS transform. Finally Parigot [27] introduced the λμ-calculus, the calculus with-
out control operators but which manipulates names, as term-representation of classical
natural deduction proofs. The control-operator-based presentation and name-based pre-
sentation, which are shown to be equivalent by de Groote [9], elucidate statics and
dynamics of full control in different ways: the latter gives a more fine-grained pic-
ture while the former often offers a more condensed representation. In this context, the
present work shows a further decomposition (and arguably simpler presentation) of the
dynamics of full control on the uniform basis of name passing interaction.

Control and Name Passing (2). Another closely related context is the CPS trans-
form [8,12,30]. In this line of studies, the main idea is to represent the dynamics of the
λ-calculus, or procedural calls, in a way close to implementations. Consider for example
the reduction: (λx.x)1 −→β 1. To model implemented execution of this reduction, we
elaborate each term with a continuation to which the resulting value should be returned.

We write this transformation 〈〈M〉〉. In the above example, 〈〈λx.x〉〉 def
= λh.h(λx.〈〈x〉〉)

(which receives a next continuation and “sends out” its resulting value to that continu-

ation, with 〈〈x〉〉 = λk.kx); whereas 〈〈1〉〉 def
= λh′.h′1. The term (λx.x)1 as a whole is

transformed as follows:

λk.(λh.hλx.〈〈x〉〉)(λm.〈〈1〉〉(λn.mnk)) (4)

This transformation may need some illustration. Assume first we apply to the above
abstraction the ultimate continuation k (to which the result of evaluating the whole term
should jump), marking the start of computation. Write M for λx.x and N for 1. After
the continuation k is fed to the left-hand side, we first give 〈〈M〉〉 its next continuation
(λm.〈〈N〉〉(λn.mnk)), to which the result of evaluatingM , say V , is fed, replacingm,
then we send 〈〈N〉〉 its continuation λn.V nk, to which the result of evaluating 〈〈N〉〉 is
fed, replacing n, so that finally the “real” computation VW can be performed, to whose
result the ultimate continuation k is applied.
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As may be seen from the example above, the CPS transform can be seen as a way to
mimic the operational idea of “jumping to an address with a value” solely using function
application and abstraction. This representation is useful to connect the procedural calls
in high-level languages to their representation at an execution level. The representation
is somewhat shy about the use of “names” by abstracting them immediately after their
introduction, partly because this is the only way to use the notion in the world of pure
functions (note in (λh.hM)V , the bound h in fact names V ). This however does not
prevent us from observing (4) is isomorphic to its process encoding via [[ · ]] of Section
3, given as:

(ν h)([[λx.x]]h | !h(n).(ν h′)([[1]]h′ | !h′(m).n〈mk〉)) (5)

In (5), k, h, h′ are all channel names at which processes interact: the input/output polar-
ities make it clear what is named (used as replicated inputs) and to which it is jumping
(used as outputs, i.e. subscripts of the encoding). The “book-keeping” abstractions of h
and h′ in (4) are replaced by hiding. Setting [[1]]h′ to be h′〈1〉 (regarding 1 as a specific
name), we can see how (5) reduces precisely as (4) reduces modulo the book-keeping
reductions. Sangiorgi [32] observed that we can regard (4) as terms in the applicable
part of the higher-order π-calculus (a variant of π-calculus which processes communi-
cate not only names but also terms) and that the translation from a λ-term to its process
representation can be factored into the former’s CPS transformation and its encoding
into the π-calculus.

In the context of these studies, where the control is studied purely in the context of
the λ-calculi, the main contribution of our work may lie in identifying the precise realm
of typed processes which, when it is used for the encoding of λ-terms, gives exactly the
same equational effect as the standard CPS transform embedded in the λ-calculus. As
we have shown in [4, 39], the encoding of the λ-calculi into the linear/affine-π-calculi
[4] results in full abstraction. πC offers a refined understanding on CPS-transform, with
precisely the same induced equivalence. As related points, we have suggested possible
relationship between existing CPS transformations/inversions [8, 12, 30], on the one
hand, and the encoding/decoding in Sections 3 and 4 in this paper on the other.

Control and Name Passing (3). There are many studies of semantics and equalities in
calculi with full control, notably those which aim to investigate appropriate algebraic
structures of suitable categories (for example those by Thielecke [35], Laird [21] and
Selinger [34]). The present work may have two interests in this context.

The basis of the observational equivalence for λμv-terms, the behavioural equiva-
lence over πC-processes, has very simple operational content, while inducing the equal-
ity closely related with those studied in the past. Among others we believe that ∼=λμ

coincides with the call-by-value, total and extensional version of Laird’s games for con-
trol [16,20] (it is easy to check all terms inObs are equated in such a universe). We also
suspect it is very close to the equality induced by the call-by-value part of Selinger’s
dualised universe [34] (for the same reason), though details are to be checked. The
combination of clear observational scenario and correspondence with good denotational
universes is one of the notable aspects of the use of the π-calculus.

In another and related view, we may consider processes in πC as name passing tran-
sition systems (or name passing synchronisation trees). As such, a process identifies
meaning of a denoted program as an abstract entity. The rich repertoire of powerful
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reasoning techniques developed for π-calculi is now freely available; further this rep-
resentation has enriching connection with studies on game-based semantics, most no-
tably games for control studied by Laird [21]. Indeed, Laird’s work may be regarded
as a characterisation of dynamic interaction structure of πC (or, to be precise, its affine
extensions), where the lack of well-bracketing corresponds to the coalescing of linear
actions into replicated actions. Another intensional structure in close connection is Ab-
stract Böhm Trees studied by Curien and Herbelin [6]. We expect the variant of these
structures for full control to have a close connection to name passing transition of πC.

It is also notable that representation of programs and other algorithmic entities as
name passing transition, together with basic operators such as parallel composition,
hiding and prefixing, is not limited to the control nor to sequential computation.

Control as Proofs and Control as Processes. The present work has a close connection
with recent studies on control from a proof-theoretic viewpoint, notably Polarised Lin-
ear Logic by Laurent [22, 23] and λμμ̃-calculus by Curien and Herbelin [7]. The type
structures for the linear/affine π-calculi are based on duality, here arising in a simplest
possible way, as mutually dual input and output modes of channel types. This duality
has a direct applicability for analysis of processes and programs, as may be seen in the
new flow analysis we have recently developed for typed π-calculi [17]. This duality
allows a clean decomposition of behaviours in programming languages into name pass-
ing interaction, and is in close correspondence with polarity in Polarised Linear Logic
by Laurent [22, 23]. Laurent and the first author recently obtained a basic result on the
relationship between πC and Polarised Linear Logic, as discussed in [14].

In a different context, Curien and Herbelin [7] presents λμμ̃, a calculus for control,
based on Gentzen’s LK, in which a strong notion of duality elucidates the distinction
between the call-by-name and call-by-value evaluations in the setting of full control.
One interesting aspect is the way non-determinism arises in their calculus, which sug-
gests an intriguing connection between the dynamics of their calculus and name passing
processes. From the same viewpoint, the connection with a recent work by Wadler [38]
on duality and λ-calculi is an interesting subject for further studies.

The present study concentrates on the call-by-value encoding of the λμ-calculus.
As in the λ-calculus [4], we can similarly embed the call-by-name λμ-calculus into

πC by changing the encoding of types (hence terms). The mapping [α1, ..., αn,⊥]◦ def
=

(α◦1, ..., α
◦
n)

! is the standard Hyland-Ong encoding of call-by-name types [4] assuming
the only atomic type is ⊥. In the presence of control, we can simply augment this

map with α•
def
= (α◦)? which says: “a program may jump to a continuation” (this

corresponds to the “player first” in Laurent’s games [22]). This determines, together
with the one given in [4], the encoding of programs. We strongly believe the embedding
is fully abstract, though details are to be checked.

Van Bakel and Vigliotti [37] present a different approach towards representing con-
trol as interaction. Milner’s encoding of λ-calculus does not model reductions under
λ-binders by matching reductions in the π-calculus. They consider a variant of the λμ-
calculus with explicit substitution that preserves single-step explicit head reduction.

Finally, the idea of viewing non-local control-flow manipulation in λ-calculi as typed
interacting processes in πC has been fruitful for finding Hoare logics for languages with
call/cc: [3] produces the first such logic by designing a Hennessy-Milner logic for a
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variant of πC and then pushes that logic back to call-by-value PCF extended with with
call/cc to obtain a conventional Hoare logic.
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A Typing

We write |A| for the set ofA’s nodes. Edges, which are always from input-moded nodes
to output-moded nodes, denote dependency between channels and are used to prevent
vicious cycles between names. IfA is such a graph and x : τ is one of its nodes, we also
writeA(x) = τ . By fn(A) we denote the set of all names x such thatA(x) = τ for some
τ . Sometimes we also write x : τ ∈ A to indicate that A(x) = τ . We write md(A) = p
to indicate that md(A(x)) = p for all x ∈ fn(A). We write x → y if x : τ → y : τ ′

for some τ and τ ′, in a given action type. We compose two processes typed by A and
B iff: (1) A(a) � B(a) is defined for all a ∈ fn(A) ∩ fn(B); and (2) the composition
creates no circularity between names. We defineA � B iff: (1) whenever x :τ ∈ A and
x : τ ′ ∈ B, τ � τ ′ is defined; and (2) whenever x1 → x2, x2 → x3, . . . , xn−1 → xn
alternately in A and B (n ≥ 2), we have x1 �= xn.

Then A�B, defined iff A � B, is the following action type.

– x : τ ∈ |A � B| iff either (1) x : τ occurs in either A or B, but not both ; or (2)
x :τ ′ ∈ A and x :τ ′′ ∈ B and τ = τ ′ � τ ′′.

– x → y in A � B iff x : τ, y : τ ′ ∈ |A �B| and x = z1→z2, z2→z3, . . . , zn−1→
zn = y (n ≥ 2) alternately in A and B.

Finally, the third condition, the restriction to a single thread, is guaranteed by using IO-
modes, φ ∈ {I, O}, in the typing judgement. These IO-modes are given the following
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partial algebra, using the overloaded notation �: I � I = I and I � O = O � I = O.
Among the two IO-modes, O indicates a unique active output: thus O � O is undefined,
which means that we do not want more than one active thread at the same time. We
write φ1 � φ2 if φ1 � φ2 is defined. IO-modes sequentialise the computation in our
typed calculus. This makes reductions deterministic which in turn simplifies reasoning.

(Zero)

−
�I 0 � ∅

(Par)

�φi Pi � Ai (i =1, 2)

A1 
 A2 φ1 
 φ2

�φ1�φ2 P1|P2 � A1�A2

(Res)

�φ P � A

md(A(x)) = !

�φ (ν x)P � A/x

(Weak) x �∈ fn(A)

�φ P � A

md(τ ) = ?

�φ P � A, x :τ

(Weak-io)

�I P � A

�O P � A

(In!) x �∈ fn(A), md(A) = ?

�O P � �y :�τ, A

�I!x(�y).P � x : (�τ)!→A

(Out?) yi :τi ∈ A

�I P � A 
 x : (�τ)?

�O x(�y)P � A/�y � x : (�τ)?

In the following, we briefly illustrate each typing rule. In (Zero), we start in I-mode
with empty type since there is no active output. In (Par), “�” controls composability,
ensuring that at most one thread is active in a given term (by φ1 � φ2) and uniqueness
of replicated inputs and non-circularity (by A1 � A2). The resulting type is given by
merging two types. In (Res), we do not allow ? to be restricted since this action expects
its dual server always exists in the environment. A/�y means the result of deleting the
nodes �x : �τ in A (and edges from/to deleted nodes). In (Weak), we weaken a ?-
moded channel since this mode means zero or more output actions at a given channel.
In (Weak-io), we turn the input mode into the output mode. (In!) ensures non-circularity
at x (by x �∈ fn(A)) and no free input occurrence under input (by md(A) = ?). Then
it records the causality from input to free outputs. If A is empty, x : (�τ )! → A simply
stands for x : (�τ )! . (Out?) essentially the rule composes the output prefix and the
body in parallel. In the condition, yi : τi ∈ A means each yi : τi appears in A. This
ensures bound input channels �y become always active after the message received. It
also changes the mode to output, to indicate an active thread or server. Note that this
rule does not suppress the body by prefix since output is asynchronous.
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Abstract. The focus will be a presentation of new results and successes
of semantic analyses of concurrent programs. These are accomplished
by contextual equivalence, observing may- and should-convergence, and
by adapting known techniques from deterministic programs to non-
determinism and concurrency. The techniques are context lemmata, di-
agram techniques, applicative similarities, infinite tree reductions, and
translations. The results are equivalences, correctness of program trans-
formations, correctness of implementations and translations.

1 Motivation

The central issue is the semantics of realistic concurrent programming languages.
Several other questions are related to this. From a compiler writers perspective
the questions are which optimizations or program transformations are permitted,
which implementations in low level languages represent the intention of the high
level program, and which evaluation strategy or scheduling of processes can be
used and how (un)fair can the evaluation be. A programmer may ask how to
model a given problem, or how to write efficient and reliable code, and how
to debug. A programming language designer may also ask which constructs are
useful and which are harmful.

For standard deterministic programming languages there are different ap-
proaches to semantics, which in general also lead to the same equivalences of
programs. The situation is different for languages with nondeterministic or con-
current constructs.

In collaboration with David Sabel and building on experience with contextual
semantics for smaller languages, we applied, thereby adapting and extending,
the contextual semantics to an interesting language model: a call-by-need, func-
tional programming language with a separation of pure and side-effecting com-
putations where side effects are encapsulated by monadic programming. A real
programming language embodying these concepts is Concurrent Haskell, and in
particular, the current implementation in the Glasgow Haskell Compiler (GHC).

There are several challenges: A first one is the construction of a model calculus
(called CHF) that captures the essence of the operational behavior. A second
challenge is the design of the semantics, which we selected as a combination
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of the observations of may- and should-convergence. The third challenge is to
demonstrate that the known tools can be adapted and permit to prove useful
results for the calculus.

This talk will mainly present two results: A conservativity result that can be
seen as a theoretical justification of the separation into pure and monadic pro-
gramming, and a correctness result for an implementation of a software transac-
tional memory specification into a highly concurrent (call-by-need, functional)
implementation.

The structure will be to first go into known details and ingredients of call-
by-need functional calculi, the syntactic and operational details. Then we detail
the contextual semantics, and may- and should-convergence and the relation
to must-convergence. Then a short overview of the used techniques, tools and
methods is given, where of course, rewriting techniques play an important role
at several places. A short overview of the proof details for the conservativity and
also for the concurrent implementation is given.

As a disclaimer, the talk is subjective and so will only mention a small selection
of related results and approaches.

2 Start: Lambda Calculus

A program calculus modelling functions and the application of functions to ar-
guments is the untyped lambda calculus with the syntax s := V | (s1 s2) | λV.s.
The only operation is the beta-reduction (λx.s) t → s[t/x], which is a (higher-
order) rewrite rule. Evaluation in programming languages usually follows a fixed
(rewriting) strategy. An early study is [1], where the call-by-name outermost
strategy is selected, and where the values are selected as the abstractions, with
the motivation to properly model the evaluation strategy of lazy functional lan-
guages. An expression s is terminating (or converging) if s reduces after finitely
many reduction steps to λx.s′, which is denoted as s↓.

Following [17], the contextual equivalence is defined as s ∼c t iff for all con-
texts C: C[s]↓ ⇐⇒ C[t]↓. This is a congruence on expressions. An applicative
similarity characterizes contextual equivalence in [1]: ∼b = ∼c, where ∼b is the
greatest fixpoint satisfying the following condition: s ∼b t ⇐⇒ ∀ closed r :
s r ∼b s r. This implies that beta-reduction is a correct program transforma-
tion, but η-reduction is in general not correct, since Ω �∼ λx.(Ω x). Other strate-
gies, like call-by-value, or innermost, with a slightly specialized beta-reduction
(λx.s) (λy.t) → s[(λy.t)/x] are incomparable with call-by-need [20].

A related early work is by Robin Milner [14] who constructed a (fully abstract)
term model for the lambda calculus, which is exactly the quotient by contextual
equivalence.

3 Increasingly More Expressive Calculi

3.1 Deterministic Constructs

The lambda calculus is an example of a deterministic programming language.
Let us look at the possible further language constructs and concepts:
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Sharing: An explicit syntactic treatment is by (let x = s in t), where s
may be shared in t and the occurrences of x in t represent s; similar to explicit
substitutions (in rewriting terms). A more intricate construct is the let(rec)

in Haskell [6], also called cyclic let, which has syntax (let x1 = s1, . . . , xn =
sn in s) and a recursive scope (every xi is bound in every sj and s).

Evaluation strategy: Known strategies are call-by-name and call-by-value.
The call-by-need (or lazy) strategy is a combination of call-by-name with a
proper treatment of sharing.

Data can be constructed by data constructors and analyzed by case-
constructs (case sof (patt1 → s1) . . .). An if-then-else is a special case.

The operator seq in Haskell influences the evaluation strategy, i.e. (seq s t)
has the same value as the value vt of t, but s must also be evaluated before the
value vt is returned. Though looking innocent, it has a serious influence on the
semantics. For example in a polymorphically typed language, the parametricity
theorems do no longer hold, see [9]. Operationally, seq can also be interpreted
as permitting the start of a parallel evaluation.

Typing is ubiquitous in programming languages. We will mainly take into
account monomorphic or polymorphic, predicative typing.

3.2 Non-Deterministic Constructs

The operator choice is used as (choice s t) with the idea that at runtime,
on evaluation, either s or t is returned. There are several variants of behaviors,
the most prominent one is amb [13], which permits the selection of one of its
arguments only after it is evaluated to a value. It is also called bottom-avoiding
amb, and often analyzed in connection with fair evaluation.

Concurrent non-determinism is available if several threads are running
at different and unpredictable speed and communicate (by message passing as
in the pi-calculus [15,16] or by accessing the shared-memory). This leads to a
non-deterministic sequence of communications and of side-effects. There may
be a synchronizing construct (e.g.semaphores or synchronizing variables, like
MVars in Haskell) or a selection of one of several possible interactions on a
channel. In Haskell, the monadic programming separates the sequential side-
effecting evaluation from the pure functional evaluation [6].

4 Contextual Equality; May and Should

In a programming language L with a notion of successful evaluation (or may-
convergence) (e↓e′), and a notion of contexts (programs with hole) C[·], con-
textual equivalence is defined as s ≤L t iff ∀C[·] s.t. C[s], C[t] are closed:
C[s]↓ =⇒ C[t]↓. Equivalence s ∼L t holds iff s ≤L t∧ t ≤L s. This is based on
the operational semantics, which occurs here as the ↓-symbol.

Small-step vs. big-step operational semantics: Big-step operational se-
mantics is like a specification (or logical deduction system for the obtained
value(s)). A small-step operational semantics is the same as a (higher-order)
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rewriting system for programs which is restricted by a strategy. In a non-
deterministic/concurrent language, the small-step operational semantics is in
my opinion a more adequate notion of evaluation, since it naturally describes
the infinite evaluation graph and also naturally specifies the granularity of the
atomic single reduction steps.

Let us assume small-step operational semantics from now on.

In non-deterministic and concurrent programming languages, the may-
contextual equivalence does not fully capture the idea of equivalent programs,
since there may be different evaluation possibilities, and non-terminating or fail-
ing evaluation paths. So there are other, additional conditions for equivalence.
One is must-convergence: P⇓must, iff every reduction possibility of P is termi-
nating and successful. There is also a third one: should-convergence: P⇓should,
if every program reachable by reduction is may-convergent. This leads to vari-
ants of contextual equivalence s ∼L,must t iff ∀C[·] : C[s]⇓must ⇐⇒ C[t]⇓must

and s ∼L,should t iff ∀C[·] : C[s]⇓should ⇐⇒ C[t]⇓should , which usually are
combined as s ∼L t iff s ∼L,may t ∧ s ∼L,must or alternatively, s ∼L t iff
s ∼L,may t ∧ s ∼L,should .

Instead of arguing which of the combinations, “may and must” (M&M), or
“may and should” (M&S), is the right one, we provide some observations

1. The equivalences are different, and so have different invariants;
2. After combining it with fairness (redexes are not indefinitely delayed),

the (M&S) contextual equivalence is unchanged, whereas the (M&M) -
equivalence changes;

3. There are more papers using (M&M);
4. The invariant under (M&M)-∼ is guarantee of a success;
5. The invariant under (M&S)-∼ is a guarantee of error-freeness;
6. The (M&S)-equivalence is closed w.r.t. certain extensions (see [30]);
7. (M&S): Busy-waiting-implementations of concurrency constructs are valid

and can be proved equivalent to other implementations. (see e.g. [32]) in
contrast to M&M without fairness restrictions.

Let us assume may- and should-convergence from now on.

5 Methods for Proving Contextual Equality

Since direct proofs of contextual equivalences would require an equivalence rea-
soning over all contexts, it is very helpful if tools are provided that either restrict
this quantification to a smaller set of contexts that are more friendly to reason-
ing, or tools providing easier ways of reasoning.

Context Lemmas: These are usually of the form: if for all contexts R of a
class R of contexts: R[s]↓ ⇐⇒ R[t]↓; then s ∼may t. Similarly for should-
and must-convergence (see [27]). A CIU-Lemma is a variant: if for all closed
contexts R of a class R of contexts and for all closed (special) substitutions σ:



Concurrent Programming and Semantic Analyses 25

R[σ(s)]↓ ⇐⇒ R[σ(t)]↓; then s ∼may t. For example, a context lemma appears
in [14], and also in many other papers, and for ciu-theorems (see e.g. [12]).

Applicative Similarities or Applicative Bisimilarities:Testing equivalence
of s, t is reduced to checking the behavior of s and t as functions on all (closed)
arguments r. The relation is usually defined as a greatest fixpoint and thus also
covers for example infinite lists as results, but requires co-induction as a proof
principle. A basic technique for proving soundness of applicative similarities,
often modified and adapted to different calculi, is Howe’s technique [7,8]. The
core of the technique is the definition of a specific congruence-closure relation of
the applicative similarity relation, which is then used to show that applicative
similarity (in the current calculus) is a pre-congruence.

Diagram-Technique: This is reminiscent of the overlapping and reduction
completion technique in Knuth-Bendix completion. However, it is different, since
reduction is in general non-terminating, a rewriting strategy has to be obeyed,
and instead of an equality, a converging reduction is looked for.

Examples for a diagram technique application is the proof of strong conflu-
ence from local strong confluence, the use of the so-called (parallel) 1-reduction to
show confluence in various lambda-calculi. [31] develops and applies the diagram
method in a call-by-need lambda-calculus. Overlap diagrams between standard
reductions and internal reductions are computed, in the form of so-called forking
and commuting diagrams. An automatic method using nominal letrec-unification
is described in [21]. Often there are finite sets of them (they even represent in-
finitely many possibilities) and so they can be used to show may-convergencies
by constructing converging standard reduction sequences: Given s and a success-
ful standard reduction sequence s

∗−→ s′ where s′ is a value (WHNF), and s→ t

by a single transformation step, a converging standard reduction t
∗−→ t′ can be

constructed using the diagrams. The main idea can be illustrated as follows:
Diagram Given After completion

· T ��

sr
��

·
sr
���
�

· T,∗ �� ·

s

sr
��

T �� t

s1
sr,∗
��
sn

s

sr
��

T �� t

sr
���
�

s1
sr,∗
��

T,∗ ����� t1
sr,∗
���
�

sn
T,∗ ����� tn

Where sn, tn are the final WHNFs.
The results in [31] are a bunch of correct transformations in a core-calculus,
but also invariants on lengths of reductions sequences under program transfor-
mations. A certain form of strictness analysis for lazy functional languages was
proved to be sound. An interesting spin-off was the result that strictness opti-
mization does not change (in particular not reduce) the number of (essential)
reduction steps. However, the optimization effect is observable, and has other
reasons located in the abstract machine program.
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Unfortunately, the obtained diagram sets are in general a bit more complicated

than expected, for example, closing them may require
sr,∗−−→, and moreover, the

diagram sets have an inherent non-determinism.
Abstracting a bit, a diagram set is a rewriting system on reduction sequences

(a mix of standard reductions and transformations), where the desired results

are standard reduction sequences. But due to the
sr,∗−−→ the diagrams can also be

seen as an infinite rewrite system, finitely represented. The question of existence
of a standard reduction sequence can be translated into a termination problem.
This was explored in [22], where the problem of correctness of a program trans-
formation was (after a massage) a termination problem, which could be solved
by an automatic termination prover (like AProVE [2]).

Infinite Expressions are used in different deterministic call-by-need (letrec)-
calculi to bridge the gap between call-by-need and call-by-name variants. The
infinite expressions together with call-by-name reductions are used as an inter-
mediate calculus where it can be shown that the translations are convergence
equivalent. This method is for example used in [29,25].

5.1 Program Transformations in a Programming Language

In programming languages and compilers of programming languages, there are
a class of optimizations that are source-to-source, also on intermediate levels,
which can all be subsumed under the notion of program transformations.

Haskell [6] and the GHC make use of such program transformations for opti-
mizations. See [18,19] for small transformations like let-shifting. Haskell also has
a rewriting-feature to permit a set of source-to-source transformations to mod-
ify and optimize programs, where the correctness proof of the transformations
is due to the programmer.

Another form of correct transformations is deforestation [5] which avoids the
construction of intermediate data structures (see also [33]). In a similar direction
are the transformation ideas in the work of Bird and Moor [4] and the design
principles and transformations in [3].

A technique that is used in compilers of programming languages is pre-
evaluation of expressions, which is like partial evaluation [10,11]. Programming
languages based on calculi where reduction rules are correct transformations can
make use of this method. This exactly corresponds to proving the correctness of
reduction rules in higher-order program calculi, and the use of these reduction
rules during compilation for simplifying or pre-evaluating parts of the program.

5.2 Translations

From a bird’s eye perspective, a compiler translates programs from a program-
ming language L into programs of another programming language L′. Making
this formal and using operational semantics and contextual preorder (or equiv-
alence) as semantics leads to the notion of translations φ from one calculus L
into another L′, mapping expressions, contexts, convergencies, and leads to two
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useful correctness notions: adequacy holds if φ(s) ≤ φ(t) =⇒ s ≤ t, and full
abstractness holds if φ(s) ≤ φ(t) ⇐⇒ s ≤ t (see e.g. [26]). An adequate
translation can be interpreted as a correct result of a compilation from a high-
level language into a low-level language, whereas a fully abstract translation is
a translation from a language into another one of equal level. A fully abstract
translation can also be viewed as an embedding of language L in L′ (modulo the
contextual equivalence).

Adequacy holds if two criteria (convergence equivalence and compositional)
hold of a translation. Convergence equivalence means that s↓ ⇐⇒ φ(s)↓′,
and compositional means that φ(C[e]) ∼′ φ(C)[φ(e)]). Since the definition of
contextual equivalence can be applied to almost every programming language,
also the notions above are useful for all these languages.

For concurrent languages, the convergence equivalence criteria consist usually
of two convergencies. The methods are applied and turned out to be crucial for
several analyses in concurrent languages: The theoretical essence of [28] is the
proof of adequacy of a translation. Translations are used several times in [25].

6 Concurrent Programming Languages

Modelling concurrency and non-determinism in lazy (call-by-need) functional
languages has two sensible alternatives: (1) permitting calls anywhere in the
program; and (2) using monadic programming in connection with actions that
manipulate external objects.

(1) Permitting calls anywhere in the program: Call-by-need extended
lambda calculi with a choice-operator are appropriate for modelling this method.
Among the possibilities are choice or amb, where choice can model interactions
with the environment, whereas amb is a bit more ambitious and models concur-
rent threads, where threads can also be killed or be garbage collected. In [23] an
expressive calculus with amb and letrec is analyzed with may- and should con-
vergence also under fair evaluation of threads. The results are context lemmas for
may- and should-preorders, and a large set of correct program transformations
and some equalities for amb and relations between the two contextual preorders.

(2) Using monadic programming in connection with actions that
manipulate external objects.: Concurrent Haskell is such a language, but it
is too complex to be used for theoretical analyses, so we approached it with the
calculus CHF (concurrent Haskell with futures) [24,25], which is rather close to
the realistic language “concurrent Haskell”:

Threads are generalized to so-called futures, which are named threads that can
deliver a result. Monomorphic typing is necessary to keep monadic programming
and the pure functional part separate. Using contextual equivalence, the calcu-
lus can indeed be semantically analyzed and again all deterministic reduction
rules are correct. The non-deterministic ones are putMVar and takeMVar which
empty or fill a synchronizing variable MVar which cannot be used as program
transformations for obvious reasons.
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One result of [24] are context lemmas, and a further result is that after a minor
change w.r.t. Haskell (restricting seq in the first argument to pure functional
expressions), the monadic axioms hold, which can be transferred to concurrent
Haskell. Without this restriction these axioms do not hold, thus these are false
in concurrent Haskell.

The work in [25] is a deeper analysis of CHF, where the goal was to find out
about the equivalences that hold in the pure functional part (say Haskell) and
whether these equivalences still hold in full CHF. Formally, this is the question
whether the pure part of CHF with its local contextual equivalence is conserva-
tively embedded in CHF. Indeed, this is the case, which is an important result
with the practical consequence that the optimizations of pure Haskell can still
be used in concurrent Haskell.

It is also shown that having a too restricted scheduling of futures (threads),
then conservativity fails. In particular, if lazy futures (evaluation starts only
if requested from another thread) are added, then sequencing is observ-
able: a particular witness is: seq y (seq x y) ∼CHF,pure (seq x y), but
seq y (seq x y) �∼CHF,lazyfuture (seq x y).

Proof methods are again: translating the call-by-need calculus into a call-
by-name infinite calculus, applying Howe’s technique for the pure part and the
infinite expression calculus, and then showing correctness of embeddings.

7 Software Transactional Memory

Looking at a real application: software transactional memory in a CHF-like
calculus of a variant of concurrent Haskell [28].

The main idea is programming of transactions on main memory, where up-
dates made by a transaction are visible to other transactions only if the trans-
action successfully ended, and which can be stopped and retried in case of a
conflicting access. Additionally, an Orelse allows a programmed alternative in-
stead of a complete Retry. The specification of the operational semantics of a
transaction says: execute it, but only if it can be executed successfully as one
atomic and isolated step.

The result of our work is that the operational specification with undecid-
able evaluation conditions can be implemented, where every rule application has
decidable execution conditions, and where the target calculus is much more ex-
plicit about the variables, locking variables of the transactional memory, running
threads in parallel and killing other threads.

The main result is that this implementation is semantically correct (i.e. ad-
equate) w.r.t. contextual equivalence with may- and should-convergence. The
core of the proof is to show convergence-equivalence of a translation for may-
and should-convergence. It has four parts, two for may- and two for should-
convergence, and then one for every implication.

That a theoretical result is possible at all is surprising, since the implemen-
tation, using more than 20 compound rules, is rather complex.
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8 Conclusion, Further Work

Contextual equivalence as semantics for concurrent languages and using may-
and should-convergence have a good coverage of invariants and a potential as a
foundation for their correctness.

Further work may be to strengthen the methods and apply it to other realistic
programming languages e.g. one may include exception handling in the analysis.

Programming languages where the operational semantics is not really part
of the specification or subject to permanent changes are prohibitive for such
analyses.
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J., Mauri, G., Ong, C.H.L. (eds.) 5th IFIP TCS 2008. IFIP, vol. 273, pp. 521–535.
Springer, Heidelberg (2008)

27. Schmidt-Schauß, M., Sabel, D.: On generic context lemmas for higher-order calculi
with sharing. Theoret. Comput. Sci. 411(11-13), 1521–1541 (2010)

28. Schmidt-Schauß, M., Sabel, D.: Correctness of an STM Haskell implementation.
In: Morrisett, G., Uustalu, T. (eds.) Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2013, pp. 161–172.
ACM, New York (2013)

29. Schmidt-Schauß, M., Sabel, D., Machkasova, E.: Simulation in the call-by-need
lambda-calculus with letrec. In: Lynch, C. (ed.) Proc. of 21st RTA 2010. LIPIcs,
vol. 6, pp. 295–310. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)
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Abstract. Inductive data such as finite lists and trees can elegantly be
defined by constructors which allow programmers to analyze and manip-
ulate finite data via pattern matching. Dually, coinductive data such as
streams can be defined by observations such as head and tail and pro-
grammers can synthesize infinite data via copattern matching. This leads
to a symmetric language where finite and infinite data can be nested. In
this paper, we compile nested pattern and copattern matching into a core
language which only supports simple non-nested (co)pattern matching.
This core language may serve as an intermediate language of a compiler.
We show that this translation is conservative, i.e. the multi-step reduc-
tion relation in both languages coincides for terms of the original lan-
guage. Furthermore, we show that the translation preserves strong and
weak normalisation: a term of the original language is strongly/weakly
normalising in one language if and only if it is so in the other. In the
proof we develop more general criteria which guarantee that extensions
of abstract reduction systems are conservative and preserve strong or
weak normalisation.

Keywords: Pattern matching, copattern matching, algebraic data types,
codata, coalgebras, conservative extension, strong normalisation, weak
normalisation,abstract reduction system, ARS.

1 Introduction

Finite inductive data such as lists and trees can be elegantly defined via con-
structors, and programmers are able to case-analyze and manipulate finite data
in functional languages using pattern matching. To compile functional languages
supporting pattern matching, we typically elaborate complex and nested pattern
matches into a series of simple patterns which can be easily compiled into ef-
ficient code (see for example [3]). This is typically the first step in translating
the source language to a low-level target language which can be efficiently exe-
cuted. It is also an important step towards developing a core calculus supporting
well-founded recursive functions.
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Dually to finite data, coinductive data such as streams can be defined by
observations such as head and tail. This view was pioneered by Hagino [7] who
modelled finite objects via initial algebras and infinite objects via final coalgebras
in category theory. This led to the design of symML, a dialect of ML where we
can for example define the codata-type of streams via the destructors head and
tail which describe the observations we can make about streams [8]. Cockett and
Fukushima [6] continued this line of work and designed a language Charity where
one programs directly with the morphisms of category theory. Our recent work
[2] extends these ideas and introduces copattern matching for analyzing infinite
data. This novel perspective on defining infinite structures via their observations
leads to a new symmetric foundation for functional languages where inductive
and coinductive data types can be mixed.

In this paper, we elaborate our high-level functional language which supports
nested patterns and copatterns into a language of simple patterns and copatterns.
Similar to pattern compilation in Idris or Agda, our translation into simple
patterns is guided by the coverage algorithm. We show that the translation
into our core language of simple patterns is conservative, i.e. the multi-step
reduction relations of both languages coincide for terms of the original language.
Furthermore, we show that the translation preserves strong normalisation (SN )
and weak normalisation (WN ): a term of the original language is SN or WN in
one language if and only if it has this property in the other.

The paper is organized as follows: We describe the core language including
pattern and copattern matching in Sect. 2. In Sect. 3, we explain the translation
into simple patterns. In Sect. 4 we develop criteria which guarantee that exten-
sions of abstract reduction systems are conservative and preserve SN or WN.
We use this these criteria in Section 5 to show that the translation of patterns
into simple patterns is a conservative extension preserving SN and WN.

2 A Core Language for Copattern Matching

In this section, we summarize the basic core language with (co)recursive data
types and support for (co)pattern described in previous work [2].

2.1 Types and Terms

A language L = (F , C,D) consists of a finite set F of constants (function sym-
bols), a finite set C of constructors, and a finite set D of destructors. We will in
the following assume one fixed language L, with pairwise disjoint F , C, and D.
We write f, c, d for elements of F , C,D, respectively.

Our type language includes 1 (unit), A × B (products), A → B (functions),
disjoint unions D (labelled sums, “data”), records R (labelled products), least
fixed points μX.D, and greatest fixed points νX.R.

Types A,B,C ::= X | 1 | A×B | A→ B | μX.D | νX.R
Variants D ::= 〈c1 A1 | . . . | cn An〉
Records R ::= {d1 : A1, . . . , dn : An}
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In the above let ci be different, and di be different. Variant types 〈c1 A1 | . . . |
cn An〉, finite maps from constructors to types, appear only in possibly recursive
data types μX.D. Records {d1 : A1, . . . , dn : An}, finite maps from destructors
to types, list the fields di of a possibly recursive record type νX.R. To illustrate,
we define natural numbers Nat, lists and Nat-streams:

Nat := μX.〈zero 1 | suc X〉
List A := μX.〈nil 1 | cons (A×X)〉
StrN := νX.{head : Nat, tail : X}

In our non-polymorphic calculus, type variables X only serve to construct
recursive data types and recursive record types. As usual, μX.D (νX.R, resp.)
binds type variable X in D (R, resp.). Capture-avoiding substitution of type C
for variable X in type A is denoted by A[X := C]. A type is well-formed if it has
no free type variables; in the following, we assume that all types are well-formed.

We write c ∈ D for cA for some A being part of variant D and define the type
of constructor c as (μX.D)c := A[X := μX.D]. Analogously, we write d ∈ R for
d : A for some A being part of the record R and define the type of the destructor
d as (νX.R)d := A[X := νX.R].

A signature for L is a map Σ from F into the set of types. Unless stated
differently, we assume one fixed signature Σ. A typed language is a pair (L, Σ)
where L is a language and Σ is a signature for L. We sometimes write Σ instead
of (L, Σ). We write f ∈ Σ if Σ(f) is defined, i.e. f ∈ F . Next, we define the
grammar of terms of a language L = (F , C,D). Herein, f ∈ F , c ∈ C, and d ∈ D.

e, r, s, t, u ::= f Defined constant (function) | x Variable
| () Unit (empty tuple) | (t1, t2) Pair
| c t Constructor application | t1 t2 Application
| t .d Destructor application

Terms include identifiers (variables x and defined constants f) and introduc-
tion forms: pairs (t1, t2), unit (), and constructed terms c t, for the positive types
A×B, 1, and μX.D. There are however no elimination forms for positive types,
since we define programs via rewrite rules and employ pattern matching. On the
other hand we have eliminations, application t1 t2 and projection t .d, of nega-
tive types A→ B and νX.R respectively, but omit introductions for these types,
since this will be handled by copattern matching.

We write term substitutions as s[x1 := t1, . . . , xn := tn] or short s[�x := �t].
Contexts Δ are finite maps from variable to types, written as lists of pairs
x1 : A1, . . . , xn : An, or short �x : �A, with · denoting the empty context. We write
Δ→ A or �A→ A for n-ary curried function types A1 → · · · → An → A (but A
may still be a function type), and s �t for n-ary curried application s t1 · · · tn.

The typing rules for terms (relative to a typed language Σ) are defined in
Figure 1. If we want to explicitly refer to a given typed language (L, Σ) or Σ we
write Δ �L,Σ A or Δ �Σ A, similarly for later notions of �.
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Δ(x) = A

Δ � x : A Δ � () : 1

Δ � t : (μX.D)c

Δ � c t : μX.D

Δ � t1 : A1 Δ � t2 : A2

Δ � (t1, t2) : A1 × A2

Δ � f : Σ(f)

Δ � t : A→ B Δ � t′ : A
Δ � t t′ : B

Δ � t : νX.R
Δ � t .d : (νX.R)d

Fig. 1. Typing rules

2.2 Patterns and Copatterns

For each f ∈ F , we will determine the rewrite rules for f as a set of pairs
(q −→ r) where q is a copattern sometimes referred to as left hand side, and r a
term, sometimes referred to as right hand side. Patterns p and copatterns q are
special terms given by the grammar below, where c ∈ C and d ∈ D.

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

q ::= f Head (constant)
| q p Application copattern
| q .d Destructor copattern

In addition we require p and q to be linear, i.e. each variable occurs at most once
in p or q. When later defining typed patterns Δ � q : A as part of a coverage
complete pattern set for a constant f , we will have that, if this judgement is
provable as a typing judgement for terms, the variables in q are exactly the
variables in Δ, and f is the head of q.

The distinction between patterns and copatterns is in this article only relevant
in this grammar, therefore we often write simply “pattern” for both.

Example 1 (Cycling numbers). Function cyc of type Nat→ StrN, when passed an
integer n, produces a stream n, n− 1, . . . , 1, 0, N,N− 1, . . . , 1, 0, N,N − 1, . . . for
some fixed N . To define this function we match on the input n and also observe
the resulting stream, highlighting the mix of pattern and copattern matching.
The rules for cyc are the following:

cyc x .head −→ x
cyc (zero ()) .tail −→ cyc N
cyc (suc x) .tail −→ cyc x

Example 2 (Fibonacci Stream). Nested destructor copatterns appear in the fol-
lowing definition of the stream of Fibonacci numbers. It uses zipWith + which
is the pointwise addition of two streams.

fib .head −→ 0
fib .tail .head −→ 1
fib .tail .tail −→ zipWith + fib (fib .tail)
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2.3 Coverage

For our purposes, the rules for a constant f are complete, if every closed, well-
typed term t of positive type can be reduced with exactly one of the rules of
f . Alternatively, we could say that all cases for f are uniquely covered by the
reduction rules. Coverage implies that the execution of a program progresses,
i.e. does not get stuck, and is deterministic. Note that by restricting to positive
types, which play the role of ground types, we ensure that t is not stuck because
f is underapplied. Progress has been proven in previous work [2]; in this work,
we extend coverage checking to an algorithm for pattern compilation.

We introduce the judgement f : A � | Q, called a coverage complete pattern
set for f (cc-pattern-set for f). Here Q is a set Q = (Δi � qi : Ci)i=1,...,n. If
f : A � | Q then constant f of type A can be defined by the coverage complete
patterns qi (depending on variables in Δi) together with rewrite rules qi −→ ti
for some Δi � ti : Ci.

The rules for deriving cc-pattern-sets are presented in Figure 2. In the variable
splitting rules, the split variable is written as the last element of the context.
Because contexts are finite maps they have no order—any variable can be split.
Note as well that patterns and copatterns are by definition required to be linear.

Result splitting:

f : A � | (· � f : A)
CHead

f : A � | Q (Δ � q : B → C)

f : A � | Q (Δ,x : B � q x : C)
CApp

f : A � | Q (Δ � q : νX.R)

f : A � | Q (Δ � q .d : (νX.R)d)d∈R

CDest

Variable splitting:

f : A � | Q (Δ,x : 1 � q : C)

f : A � | Q (Δ � q[x := ()] : C)
CUnit

f : A � | Q (Δ,x : A1 × A2 � q : C)

f : A � | Q (Δ,x1 : A1, x2 : A2 � q[x := (x1, x2)] : C)
CPair

f : A � | Q (Δ,x : μX.D � q : C)

f : A � | Q (Δ,x′ : (μX.D)c � q[x := c x′] : C)c∈D

CConst

Fig. 2. Coverage rules

The judgement f : Σ(f) � | (Δi � qi −→ ti : Ci)i=1,...,n called a coverage
complete set of rules for f (cc-rule-set for f) has the following derivation rule

f : Σ(f) � | (Δi � qi : Ci)i=1,...,n Δi � ti : Ci (i = 1, . . . , n)

f : Σ(f) � | (Δi � qi −→ ti : Ci)i=1,...,n

Then f : Σ(f) � | (Δi � qi : Ci)i=1,...,n is called the underlying cc-pattern-set of
the cc-rule set. The corresponding term rewriting rules for f are qi −→ ti.
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A program P over the typed language Σ is a function mapping each constant
f to a cc-rule-set Pf for f . We write t −→P t

′ for one-step reduction of term t to
t′ using the compatible closure1 of the term rewriting rules in P , and drop index
P if clear from the context of discourse. We further write −→∗

P for its transitive

and reflexive closure and −→≥1
P for its transitive closure.

Example (Deriving a cc-pattern-set for cyc) We start with CHead

cyc : Nat→ StrN � | (· � cyc : Nat→ StrN)

We apply x to the head by CApp.

cyc : Nat→ StrN � | (x : Nat � cyc x : StrN)

Then we split the result by CDest.

cyc : Nat→ StrN � | (x : Nat � cyc x .head : Nat)
(x : Nat � cyc x .tail : StrN)

In the second copattern, we split x using CConst.

cyc : Nat→ StrN � |
(x : Nat � cyc x .head : Nat)
(x : 1 � cyc (zero x) .tail : StrN)
(x : Nat � cyc (suc x) .tail : StrN)

We finish by applying CUnit which replaces x by () in the second clause.

cyc : Nat→ StrN � |
(x : Nat � cyc x .head : Nat)
(· � cyc (zero ()) .tail : StrN)
(x : Nat � cyc (suc x) .tail : StrN)

This concludes the derivation of the cc-pattern-set for the cyc function.

3 Reduction of Nested to Simple Pattern Matching

In the following, we describe a translation of deep (aka nested) (co)pattern
matching (i.e. pattern matching as defined before) into shallow (aka non-nested)
pattern matching, which we call simple pattern matching, as defined below. We
are certainly not the first to describe such a translation, except maybe for copat-
terns, but we have special requirements for our translation. The obvious thing
to ask for is simulation, i.e. each reduction step in the original program should
correspond to one or more reduction steps in the translated program. However,
we want the translation also to preserve and reflect normalization: A term in
the original program terminates, if and only if it terminates in the translated
program. Preservation of normalization is important for instance in dependently
typed languages such as Agda, where the translated programs are run during

1 See e.g. Def. 2.2.4 of [12].
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type checking and need to behave exactly like the original, user-written pro-
grams.

The strong normalization property is lost by some of the popular translations.
For instance, translating rewrite rules to fixed-point and case combinators breaks
normalization, simply because fixed-point combinators reduce by themselves,
allowing infinite reduction sequences immediately. But also special fixed-point
combinators that only unfold, if their principal argument is a constructor term,
or dually co-fixed-point combinators that only unfold, if their result is observed2,
have such problems. Consider the following translation of a function f with deep
matching into such a fixed-point combinator:

f (zero ()) −→ zero ()
f (suc (zero ())) −→ zero ()
f (suc (suc x)) −→ f (suc x))

� fix f (x).case x of

⎧⎨
⎩

zero () −→ zero ()
suc (zero ()) −→ zero ()
suc (suc x) −→ f(suc x))

While the term f (sucx) terminates for the original program simply because no
pattern matches (i.e. no rewrite rule applies), it diverges for the translated pro-
gram since the fixed-point applied to a constructor unfolds to a term containing
the original term as a subterm. A closer look reveals that this special fixed-point
combinator preserves normalization for simple pattern matching only.

3.1 Simple Patterns

A simple copattern qs is of one of the forms f �x (no matching), f �x .d (shallow
result matching) or f �x ps (shallow argument matching) where
ps ::= () | (x1, x2) | c x is a simple pattern.

Definition 1 (Simple coverage-complete pattern sets)

(a) Simple cc-pattern-sets f : A � |s Q are defined as follows (Δ = �x : �A):

f : Δ→ A �|s (Δ � f �x : A)

f : Δ→ νX.R �|s (Δ � f �x .d : (νX.R)d)d∈R

f : Δ→ 1→ A �|s (Δ � f �x () : A)

f : Δ→ (B1 ×B2)→ A �|s (Δ, y1 : B1, y2 : B2 � f �x (y1, y2) : A)

f : Δ→ (μX.D)→ A �|s (Δ,x′ : (μX.D)c � f �x (c x′) : A)c∈D

(b) A cc-rule-set is simple if the underlying cc-pattern-set is simple. A constant
in a program is simple, if its cc-rule-set is simple. A program is simple if all
its constants are simple.

Remark 2. If f : A � |s Q then f : A � | Q.
2 Such fixed-point combinators are used in the Calculus of Inductive Constructions,
the core language of Coq [9], but have also been studied for sized types [4,1].
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3.2 The Translation Algorithm by Example

Neither the cyc function, nor the Fibonacci stream are simple. The translation
into simple patterns introduces auxiliary function symbols, which are obtained
as follows: We start from the bottom of the derivation tree of a non simple
cc-pattern-set, remove the last derivation step, and create a new function sym-
bol. This function takes as arguments the variables we have not split on from
the original function and (co)pattern matches just as the last derivation set of
the original derivation did. Let us walk through the algorithm of transforming
patterns into simple patterns for the cyc function. The original program is

cyc : Nat→ StrN � |
(x : Nat � cyc x .head −→ x : Nat)
( � cyc (zero ()) .tail −→ cyc N : StrN)
(x : Nat � cyc (suc x) .tail −→ cyc x : StrN)

In the derivation of the underlying cc-pattern-set, the last step was CUnit replac-
ing pattern variable x : 1 by pattern (). We introduce a new constant g2 with
simple cc-rule-set and replace the right hand side of the split clause with a call
to g2 in the cc-rule-set of cyc. We obtain the following program:

(x : Nat � cyc x .head −→ x : Nat)
cyc : Nat→ StrN �| (x : 1 � cyc (zero x) .tail −→ g2 x : StrN)

(x : Nat � cyc (suc x) .tail −→ cyc x : StrN)

g2 : 1→ StrN �|s (· � g2 () −→ cyc N : StrN)

Let a term in the new language be good, if all occurrences of g2 are applied at
least once. We can define a back-translation int of good terms into the original
language by recursively replacing g2 s by cyc (zero s) .tail.

The second last step in the derivation of the cc-pattern-set was a split of
pattern variable x : Nat into zero x and suc x using CConst. Again, we introduce
a simple auxiliary function g1, which performs just this split and obtain a simple
program with mutually recursive functions cyc, g1, and g2:

cyc : Nat→ StrN �|s
(x : Nat � cyc x .head −→ x : Nat)
(x : Nat � cyc x .tail −→ g1 x : StrN)

g1 : Nat→ StrN �|s
(x : 1 � g1 (zero x) −→ g2 x : StrN)
(x : Nat � g1 (suc x) −→ cyc x : StrN)

g2 : 1→ StrN �|s (· � g2 () −→ cyc N : StrN)

The back-interpretation of g1 for good terms of the new program replaces recur-
sively g1 s by cyc s .tail. We note the following:

(a) The translation can be performed by induction on the derivation of coverage;
or, one can do the translation while checking coverage.3

3 This is actually happening in the language Idris [5]; Agda [10] has separate phases,
but uses the split tree generated by the coverage checker to translate pattern match-
ing into case trees.
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(b) The generated functions are simple upon creation and need not be processed
recursively. The right hand sides of these functions are either right hand
sides of the original program or calls to earlier generated functions applied
to exactly the pattern variables in context.

(c) When generating a function, it is invoked on the pattern variables in context.
We can define a function int which interprets this generated function back
into terms of the original program (if applied to good terms).

(d) Since we gave earlier created functions (here: g2) a higher index than later
created functions (here: g1), calls between generated functions increase the
index. There can only be finitely many calls between generated functions
before executing an original right hand side again. This fact ensures preser-
vation of normalization (see later).

(e) Calls between generated functions are undone by the back translation int,
thus the corresponding reduction steps vanish under int.

In the case of the Fibonacci stream, the translated simple program is as follows:

fib .head −→ 0
fib .tail −→ g

g .head −→ 1
g .tail −→ zipWith + fib (fib .tail)

3.3 The Translation Algorithm

Let P be the input program for typed language Σ. Let Pf be a non-simple
cc-rule-set of P . Consider the last step in the derivation of the underlying cc-
pattern-set. Since Pf is non-simple, this step cannot be CHead. Assume

Pf = f : Σ(f) � | Q (Δi � qi −→ ti : Ci)i∈I .

where in some cases I = {0}. Let the last step in the derivation of the underlying
cc-pattern-set be

f : Σ(f) � | Q (Δ′ � q : A)
f : Σ(f) � | Q (Δi � qi : Ci)i∈I

C

We extend Σ to Σ′ by adding one fresh constant g : Δ′ → A. Let Δ′ = �y : �A.
Depending on C we introduce below a simple q′i and define the program P ′ for
the typed language Σ′ by

P ′
f = f : Σ(f) �| Q (Δ′ � q −→ g �y : A)

P ′
g = g : Δ′ → A �|s (Δi � q′i −→ ti : Ci)i∈I

P ′
h = Ph otherwise

Note that the underlying cc-pattern-set for f is as in the premise of C, P ′
g

is simple, and all other constants are left unchanged. Therefore the height of
the derivation for the cc-pattern-set for f is reduced by 1. We then recursively
apply the algorithm on P ′. Since each step of the algorithm makes the coverage
derivation of one non-simple function shorter, and new constants are simple, the
algorithm terminates, returning only simple constants.
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In case of variable splitting, we always reorder Δ′ such that the variable we
split on appears last. When referring to a context Δ, assume Δ = �x : �A.
Case q x −→ t and C is

f : Σ(f) � | Q (Δ � q : B → C)

f : Σ(f) � | Q (Δ,x : B � q x : C)
CApp

Define q′0 = g �x x. Therefore,

P ′
f = f : Σ(f) �| Q (Δ � q −→ g �x : B → C)

P ′
g = g : Δ→ B → C �|s (Δ,x : B � g �x x −→ t : C)

Case q .d −→ td for all d ∈ R and C is

f : Σ(f) � | Q (Δ � q : νX.R)
f : Σ(f) � | Q (Δ � q .d : (νX.R)d)d∈R

CDest

Define q′d = g �x .d. Therefore,

P ′
f = f : Σ(f) �| Q (Δ � q −→ g �x : νX.R)

P ′
g = g : Δ→ νX.R �|s (Δ � g �x .d −→ td : (νX.R)d)d∈R

Case q[x′ := ()] −→ t and C is

f : Σ(f) � | Q (Δ,x′ : 1 � q : C)
f : Σ(f) � | Q (Δ � q[x′ := ()] : C)

CUnit

Define q′0 := g �x (). Therefore,

P ′
f = f : Σ(f) �| Q (Δ,x′ : 1 � q −→ g �x x′ : C)

P ′
g := g : Δ→ 1→ C �|s (Δ � g �x () −→ t : C)

Case q[x′ := (x1, x2)] −→ t and C is

f : Σ(f) � | Q (Δ,x′ : A1 ×A2 � q : C)
f : Σ(f) � | Q (Δ,x1 : A1, x2 : A2 � q[x′ := (x1, x2)] : C)

CPair

Define q′0 = g �x (x1, x2). Therefore,

P ′
f =f : Σ(f) �| Q (Δ,x′ : A1 ×A2 � q −→ g �x x′ : C)

P ′
g :=g : Δ→ (A1 ×A2)→ C �|s (Δ,x1 : A1, x2 : A2 � g �x (x1, x2) −→ t : C)

Case q[x′ := c x′] −→ tc for all c ∈ D and C is

f : Σ(f) � | Q (Δ,x′ : μX.D � q : C)
f : Σ(f) � | Q (Δ,x′ : (μX.D)c � q[x′ := c x′] : C)c∈D

CConst

Define q′c := g �x (c x′). Therefore,

P ′
f = f : Σ(f) �| Q (Δ,x′ : μX.D � q −→ g �x x′ : C)

P ′
g = g : Δ→ μX.D → C �|s (Δ,x′ : (μX.D)c � g �x (c x′) −→ tc : C)c∈D
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4 Extensions of Abstract Reduction Systems

It is easy to see that a reduction in the original program P (over Σ) corresponds
to possibly multiple reductions in the translated language P ′ (over Σ′). What is
more difficult to prove is that we do not get additional reductions, i.e. if t �−→ ∗

Pt
′

then it is impossible to reduce t to t′ using reductions and intermediate terms
in P ′. We call this notion conservative extension. Even this will not be sufficient
as pointed out in Sect. 3, we need in addition preservation of normalisation. We
will define and explore the corresponding notions more generally for abstract
reduction systems (ARS ).

An ARS is a pair (A,−→), often just written A, such that A is a set and
−→ is a binary relation on A written infix. Let −→∗ be the transitive-reflexive
and −→≥1 be the transitive closure of −→. An element a ∈ A is in normal form
(NF) if there is no a′ ∈ A such that a −→ a′. It is weakly normalising (WN) if
there exists an a′ ∈ A in NF such that a −→∗ a′. a is strongly normalising (SN)
if there exist no infinite reduction sequence a = a0 −→ a1 −→ a2 −→ · · ·. Let
SN, WN, NF be the set of elements in A which are SN, WN, NF respectively.
For a reduction system (A′,−→′), let SN′, WN′, NF′ be the elements of A′ which
are −→′-SN, -WN, -NF.

Let (A,−→), (A′,−→′) be ARS such that A ⊆ A′. Then,

A′ is a conservative extension of A iff ∀a, a′ ∈ A. a −→∗ a′ ⇔ a−→′∗a′

A′ is an SN-preserving extension of A iff ∀a ∈ A. a ∈ SN⇔ a ∈ SN′

A′ is a WN-preserving extension of A iff ∀a ∈ A. a ∈WN ⇔ a ∈WN′

Lemma 3 (Transitivity of conservative/SN/WN-preserving exten-
sions). Let A,A′,A′′ be ARSs, A′ be an extension of A and A′′ an extension
of A′, both of which are conservative, SN-preserving, or WN-preserving exten-
sions. Then A′′ is a conservative, SN-preserving, or WN-preserving extension,
respectively, of A.

In order to show the above properties, we use the notion of a back-translation
from the extended ARS into the original one:

Let (A,−→), (A′,−→′) be ARSs such thatA ⊆ A′. Then a back-interpretation
of A′ into A is given by
– a set Good such that A ⊆ Good ⊆ A′; we say a is good if a ∈ Good;
– a function int : Good→ A such that ∀a ∈ A.int(a) = a.

We define 3 conditions for a back-interpretation (Good, int) where condition (SN
2) refers to a measure m : Good→ N:

(SN 1) ∀a, a′ ∈ A.a −→ a′ ⇒ a−→′≥1
a′.

(SN 2) If a ∈ Good, a′ ∈ A′ and a −→′ a′ then a′ ∈ Good and we have
int(a) −→≥1 int(a′) or int(a) = int(a′) ∧m(a) > m(a′).

(WN) If a ∈ Good ∩ NF′ then int(a) ∈ NF.

The following theorem substantially extends Lem. 1.1.27 of [13] and Lem. 2.2.5
of [11]:
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Theorem 4 (Backinterpretations for ARSs and conservativity, SN,
WN). Let (A,−→), (A′,−→′) be ARSs such that A ⊆ A′. Let (Good, int) be a
back-interpretation from A′ into A, m : Good→ N. Then the following holds:

(a) (SN 1), (SN 2) imply that A′ is a conservative extension of A preserving SN.
(b) (SN 1), (SN 2), (WN) imply that A′ is an extension of A preserving WN.

Proof: (a): Proof of Conservativity: a −→∗ a′ implies by (SN 1) a−→′∗a′. If
a, a′ ∈ A, a−→′∗a′ then by (SN 2) a = int(a) −→∗ int(a′) = a′.
Proof of preservation of SN: We show the classically equivalent statement
∀a ∈ A.¬(a is −→-SN)⇔ ¬(a is −→′-SN).
For “⇒” assume a = a0 −→ a1 −→ a2 −→ · · · is an infinite −→-reduction
sequence starting with a. Then by (SN 1) a = a0−→′≥1

a1−→′≥1
a2−→′≥1 · · · is

an infinite −→′-reduction sequence.
For “⇐” assume a = a′0−→′a′1 −→P′ a′2 −→P′ · · ·.
Then by (SN 2) a = int(a0) = int(a′0) −→∗ int(a′1) −→∗ int(a′2)−→′∗ · · ·. If
int(a′i) = int(a′i+1) then m(a′i) > m(a′i+1), so by (SN 2) after finitely many steps,
where int(a′i) = int(a′i+1), we must have one step int(a′j) −→≥1 int(a′j+1). Thus,
we obtain an infinite reduction sequence starting with a in A.
(b) Assume a ∈ A, a ∈WN. Then a −→∗ a′ ∈ NF for some a′, therefore a′ ∈ SN,
by (a) a′ ∈ SN′, a′−→′∗a′′ for some a′′ ∈ NF′, therefore a−→′∗a′−→′∗a′′ ∈ NF′,
a ∈WN′. For the other direction, assume a ∈ A, a ∈WN′. Then a−→′∗a′ ∈ NF′

for some a′, by (SN 2), (WN) a = int(a) −→∗ int(a′) ∈ NF, a ∈ WN.

5 Proof of Correctness of the Translation

In our translation we extend our language by new auxiliary constants while
keeping the old ones, including their types. More formally, we define Σ ⊆F Σ

′,
pronouncedΣ′ extends Σ by constants, if (1)Σ′ andΣ have the same constructor
and destructor symbols C,D, (2) the constants F of L form a subset of the
constants of L′, and (3) Σ and Σ′ assign the same types to F .

Let P be a program for Σ, TermΣ = {t | ∃Δ,A.Δ �Σ t : A}. The ARS for
a program P is (TermΣ,−→P). Let P ,P ′ be programs for typed languages Σ,
Σ′, respectively. P ′ is an extension of P iff Σ ⊆F Σ

′. If P ′ is an extension of P ,
then P ′ is a conservative, SN-preserving, or WN-preserving extension of P if the
corresponding condition holds for the ARSs (TermΣ ,−→P ) and (TermΣ′ ,−→P′).

We will define a back-interpretations by replacing in terms g t1 . . . tn the new
constants g by a term of the original language. Due to lack of λ-abstraction, we
only get a term of the original language if g is applied to n arguments. So, for our
back translation, we need an arity(g) = n of new constants, and an interpretation
Int(g) of those terms:

Assume Σ ⊆F Σ
′. A concrete back-interpretation (arity, Int) of Σ′ into Σ is

given by the following:

– An arity arity(g) = n assigned to each new constant g of Σ′ such that
Σ′(g) = A1 → · · · → An → A for some types A1, . . . , An, A. Here, A (as well
as any Ai) might be a function type.



Unnesting of Copatterns 43

– For every new constant g of Σ′ with arity(g) = n and
Σ′(g) = A1 → · · · → An → A a term Int(g) = t of Σ such that
x1 : A1, . . . , xn : An � t : A. In this case, we write Int(g)[�t] for t[�x := �t].

Assume that (arity, Int) is a concrete back-interpretation of Σ′ into Σ.
– The set Goodarity,Int of good terms is given by the set of t ∈ TermΣ such that

each occurrence of a new constant g of arity n in t is applied to at least n
arguments.

– If t ∈ Goodarity,Int, then intarity,Int(t), in short int(t), is obtained by inductively
replacing all occurrences of g �t for new constants g by Int(g)[int(�t)].

Trivially, concrete back-interpretations are back-interpretations. We now have
the definitions in place to prove SN+WN-conservativity of our translation.

Lemma 5 (Some simple facts)

(a) If f : A � | Q (Δ � q : A) then each variable in Δ occurs exactly once in q.
(b) If x is a variable occurring in pattern q, then t is a subterm of q[x := t].
(c) Assume s is a maximal subterm of t, i.e. s is a subterm such that there is

no term s′ such that s s′ is a subterm starting at the same occurrence as s
in t. If t is good, then s is good as well.

Theorem 6 (Correctness of Translation). Let P be a program for Σ. Then
there exists a typed language Σ′ ⊇F Σ and a simple program P ′ for Σ′, which
is a conservative extension of P preserving SN and WN.

Proof: Define for a program P the height of its derivation height(P) as the sum
of the heights of the derivations of those covering patterns in P , which are not
simple covering patterns. The proof is by induction on height(P).

The case height(P) = 0 is trivial, since P is simple. Assume height(P) > 0. We
obtain a Σ′ ⊇F Σ and corresponding program P ′ for Σ′ by applying one step of
Algorithm 3.3 to P . We show below that P ′ is a conservative extension of P pre-
serving SN and WN. Since the derivations for the coverage complete pattern sets
in P ′ are the same as for P , except for the one for P ′

f , which is reduced in height
by one as the algorithm takes out the last derivation of the coverage derivation
of Pf , and that for P ′

g, which is simple, we have height(P ′) = height(P)− 1. By
induction hypothesis there exists a conservative extension P ′′ of P ′ preserving
SN and WN, which is simple, which is as well a conservative extension of P
preserving SN and WN. This extension is obtained by the recursive call made
by the algorithm.

So we need to show that P ′ is a conservative extension of P preserving SN
and WN. Let f, g,Δ′, �y, q, A, I,Δi, qi, ti, Ci, q

′
i be as stated in Algorithm 3.3,

Δi = �yi : �Ai, and n be the length of Δ′.
We introduce a concrete back-interpretation of P ′ into P by

arity(g) := n and Int(g)[�y] := q. Let m(t) be the number of occurrences of f in t.
Let (Good, int) be the corresponding back interpretation.

Assume P ′ fulfils with the given q′i the following conditions:

(1) int(q′i) = qi −→P′ q′i
(2) If q[�x := �s] �t = qi, then g �s �t = q′i, where ti are terms or of the form .d.
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Then (Good, int) fulfils (SN 1), (SN 2), and (WN), and therefore P ′ is a
conservative extension of P preserving SN and WN:
(SN 1) holds since the only changed derivation is based on the original redex
qi[�yi := �t] −→P ti[�yi := �t] and by (1) qi[�yi := �t] −→P′ q′i[�yi := �t] −→P′ ti[�yi := �t].
(SN 2) holds since the new redexes are the following:

– q[�y := �t] −→P′ g �t, where q[�y := �t] is good. Since it is good and variables
in a pattern are not applied to other terms, by Lem. 5 �t is good as well,
and therefore as well g �t. We have int(q[�y := �t]) = q[�y := int(�t)] = int(g �t).
Furthermore, m(q[�y := �t]) = m(g �t) + 1 > m(g �t), since pattern q starts with
f , and each variable in �y occurs by Lem. 5 exactly once in q.

– q′i[�yi := �t] −→P′ ti[�yi := �t]. Since q
′
i[�yi := �t] is good, as in (a) �t are good and

therefore ti[�yi := �t] is good. Furthermore, by (1) int(q′i[�yi := �t]) =
int(q′i)[�yi := int(�t)]) = qi[�yi := int(�t)] −→P ti[�yi := int(�t)] = int(ti[�yi := �t]).

Proof of (WN): We first show that (2) implies
(3) If s ∈ Good, int(s) = qi then s = qi ∨ s = q′i
Since qi starts with f , s must start with f or g. The only occurrence of a constant
in qi is at the beginning, therefore s = f �r or s = g �r where int(�r) = �r. If s = f �r
then s = int(s) = qi. If s = g �r = g �s �t, q[�x := �s] �t = int(s) = qi, therefore by (2)
s = g �s �t = q′i.
Using (3), assume s ∈ Good, s ∈ NF′, and show int(s) ∈ NF. Assume int(s) �∈ NF,
int(s) has redex q̃[�x := �r] for a pattern q̃ of P . If q̃ �= qi, q̃ starts with some

h �= f, g, and has no occurrences of f, g. Then s contains q̃[�x := �r′] where

int(�r′) = �r, and has therefore a redex, contradicting s ∈ NF′. Therefore q̃ = qi
for some i. Therefore s contains a subterm s′[�x := �r′] such that int(s′) = qi,

int(�r′) = �r. But then by (1), (3) s′[�x := �r′] has a reduction, again a contradiction.
So the proof is complete provided conditions (1), (2) are fulfilled. We verify

the case when the last rule is (CDest), the other cases follow similarly:

(1) int(q′d) = int(g �x .d) = Int(g)[�x] .d = q .d = qd −→P′ g �x .d = q′d.
(2) If q[�x := �s] �t = qd = q .d, �s = �x, �t = .d, g �s �t = g �x .d = q′d.

6 Conclusion

We have described a reduction of deep copattern matching to shallow copat-
tern matching. The translation preserves weak and strong normalization. It is
conservative, thus establishing a weak bisimulation between the original and the
translated program. The translated programs can be used for more efficient eval-
uation in a checker for dependent types or can serve as intermediate code for
translation into a more low-level language that has no concept of pattern at all.

There are two more translations of interest. The first one, which we have
mostly worked out, is a translation into a variable-free language of combina-
tors, including a proof of conservativity and preservation of normalization. Our
techniques were developed more generally in order to prove correctness for this
translation as well. A second translation would be to a call-by-need lambda-
calculus with lazy record constructors. This would allow us to map definitions of
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infinite structures by copatterns back to Haskell style definitions by lazy evalu-
ation. While there seems to be no (weak) bisimulation in this case, one still can
hope for preservation of normalization, maybe established by logical relations.
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Abstract. The decreasing diagrams technique (van Oostrom, 1994) has
been successfully used to prove confluence of rewrite systems in vari-
ous ways; using rule-labelling (van Oostrom, 2008), it can also be ap-
plied directly to prove confluence of some linear term rewriting systems
(TRSs) automatically. Some efforts for extending the rule-labelling are
known, but non-left-linear TRSs are left beyond the scope. Two methods
for automatically proving confluence of non-(left-)linear TRSs with the
rule-labelling are given. The key idea of our methods is to combine the
decreasing diagrams technique with persistency of confluence (Aoto &
Toyama, 1997).

Keywords: Confluence, Persistency, Decreasing Diagrams, Rule-
Labelling, Non-Linear, Term Rewriting Systems.

1 Introduction

Decreasing diagrams [11] give a characterization of confluence of abstract rewrite
systems; the criterion based on decreasing diagrams can be adapted to prove
confluence of rewrite systems in various ways. In particular, rule-labelling [12]
has been adapted to prove confluence of left-linear TRSs [1,8,19] automatically.
A property of TRSs is said to be persistent if the property is preserved under
elimination of sorts [20]. It is shown in [2] that confluence is persistent, that is, if
a many-sorted TRS is confluent on (many-sorted) terms then so is the underlying
unsorted TRS on all (i.e. including ill-sorted) terms.

In this paper, the decreasing diagrams technique and persistency of confluence
are combined to give methods for proving confluence of non-linear TRSs auto-
matically. For proving confluence of TRSs R, we consider a subsystemRτ

nl which
is obtained from some many-sorted version Rτ of R. Based on assumptions on
the subsystem Rτ

nl , we develop two confluence criteria based on decreasing di-
agrams with rule-labelling—one of the criteria is based on the assumption that
Rτ

nl is terminating, and the other is based on the assumption that Rτ
nl is inner-

most normalizing. These two criteria are incomparable, and the proofs of the
correctness are given independently. Both of the criteria, however, can be ap-
plied to prove confluence of non-left-linear non-terminating TRSs, for which no

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 46–60, 2014.
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decreasing diagrams technique with rule-labelling has been known and only few
techniques for proving confluence have been known.

The rest of the paper is organized as follows. Section 2 covers preliminaries;
some common notions and notations to be used in Sections 3 and 4 are also
presented. In Section 3, we introduce the class of strongly quasi-linear TRSs and
show a confluence criterion for TRSs in this class. In Section 4, we introduce the
class of quasi-linear TRSs and show a confluence criterion for TRSs in this class.
We also show that these two criteria are incomparable. In Section 5, we report
on an implementation of these criteria in our confluence prover ACP [3] and on
experiments. Related work is also explained in Section 5. Section 6 concludes.

2 Preliminaries

We fix notations assuming basic familiarity with term rewriting [4].
The transitive (reflexive, transitive and reflexive, equivalence) closure of a

relation→ (on a set A) is denoted by
+→ (

=→,
∗→,

∗↔, respectively). An element a

is a normal form if a→ b for no b; normalizing if a
∗→ b for some normal form b;

terminating if there exists no infinite sequence a = a0 → a1 → · · · . The relation
→ is normalizing (terminating) if so are all a ∈ A; confluent if ∗←◦ ∗→ ⊆ ∗→◦ ∗←.

We denote a set of (arity-fixed) function symbols by F , an enumerable set
of variables by V , and the set of terms by T(F ,V). A variable in a term t
is linear if it occurs only once in t, otherwise non-linear. The set of variables
(linear variables, non-linear variables) in t is denoted by V(t) (Vl (t), Vnl (t),
respectively). A term t is ground if V(t) = ∅. A position is a sequence of positive
integers, where ε stands for the empty sequence. The set of positions (function
positions, variable positions) of a term t is denoted by Pos(t) (PosF (t), PosV(t),
respectively). We use � for the prefix order on positions. Positions p and q are
disjoint (p ‖ q) if p �� q and q �� p. The symbol (subterm) of a term t at the
position p is denoted by t(p) (t|p, respectively). The subterm relation is denoted
by �; its strict part is by �. We write θ : X → T to if the substitution θ satisfies
θ(x) = x for all x ∈ V \ X and θ(x) ∈ T for any x ∈ X . The most general
unifier of s and t is denoted by mgu(s, t). A rewrite rule l → r satisfies l /∈ V
and V(r) ⊆ V(l). Rewrite rules are identified modulo renaming of variables. A
rewrite rule l → r is linear if l and r are linear. The set of non-linear variables of a
rewrite rule l → r is given by Vnl(l → r) = Vnl(l)∪Vnl(r); that of linear variables
is by Vl(l → r) = V(l) \ Vnl(l → r). A term rewriting system (TRS ) is a set R of
rewrite rules; R is linear if so are all its rewrite rules. A rewrite step s →R t is
written as s→p,l→r,θ t to specify the position p, the rewrite rule l → r ∈ R and
the substitution θ employed. If s →p,l→r,θ t or s ←p,l→r,θ t, we (ambiguously)
write s↔p,l→r,θ t. If not necessary, subscripts p, l→ r, θ,R will be dropped. The
set of normal forms (w.r.t. the rewrite relation →R) is denoted by NFR(F ,V), or
just NF(F ,V). A TRS R is normalizing (terminating, confluent) if so is→R. We
write s→im t if s→p t is innermost, i.e. any proper subterm of s|p is a normal
form. A term or a TRS is innermost normalizing (innermost terminating) if it
is normalizing (terminating, respectively) w.r.t. →im .
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A conversion γ : s1 ↔l1→r1 s2 ↔l2→r2 · · · ↔ln−1→rn−1 sn is specified as

γ : s1
∗↔ sn if the detail is not necessary. We put Rules(γ) = {li → ri | 1 ≤

i < n}, or Rules(s1
∗↔ sn) = {li → ri | 1 ≤ i < n} for brevity. A conversion

t1 ←p1,l1→r1,θ1 s →p2,l2→r2,θ2 t2 is called a peak ; it is a disjoint peak if p1 ‖ p2,
it is a variable peak if p1 = p2.o.q for some o ∈ PosV(l2) and q or the other way
round, it is a overlap peak if p1 = p2.o for some o ∈ PosF (l2) or the other way
round; furthermore, an overlap peak is trivial if p1 = p2 and l1 → r1 = l2 → r2.
For rewrite rules l1 → r1, l2 → r2 ∈ R (w.l.o.g. V(l1)∩V(l2) = ∅), any non-trivial
overlap peak of the form l2[r1]qθ ←q,l1→r1,θ l2θ →ε,l2→r2,θ r2θ is called a critical
peak, if q ∈ PosF(l2) and θ = mgu(l1, l2|q). The set of critical peaks of rules
from R is denoted by CP(R).

Decreasing Diagrams. Let ( be a partial order on a set L of labels. For α, β ∈ L,
subsets �α,�α∨β ⊆ L are given by �α = {γ ∈ L | γ ≺ α} and �α∨β = {γ ∈
L | γ ≺ α ∨ γ ≺ β}. Let A be a set and →α be a relation on A for each α ∈ L.
We let →� =

⋃
α∈�→α for � ⊆ L. Then the relation →L is said to be locally

decreasing w.r.t. ( if, for any α, β ∈ L,←α◦→β ⊆ ∗↔�α◦ =→β◦ ∗↔�α∨β◦ =←α◦ ∗↔�β .

Proposition 2.1 (Confluence by decreasing diagrams [12]). A relation
→L is confluent if it is locally decreasing w.r.t. some well-founded partial order
( on L.

In order to apply this proposition for proving the confluence of a TRS R, we
need to set relations→α (α ∈ L) on T(F ,V) such that

⋃
α∈L→α =→R. For this,

we consider a labelling function, say lab, that assigns a label to each rewrite step,
and put s →α t if α = lab(s → t). We say a peak t1 ←α s →β t2 is decreasing

w.r.t. lab (and () if there exists a conversion t1 ∗↔�α ◦ =→β◦ ∗↔�α∨β◦ =←α◦ ∗↔�β tn
(Figure 1). Then, by the proposition, R is confluent if there exist a labelling
function lab such that any peak is decreasing w.r.t. lab.

Persistency. Let S be a set of sorts. A sort assignment τ assigns τ(x) ∈ S
to each variable x ∈ V and τ(f) ∈ Sn+1 to each function symbol f ∈ F of
arity n, in such a way that {x ∈ V | τ(x) = σ} is infinite for any σ ∈ S. Sort
assignment τ induces a many-sorted signature—the set of well-sorted terms is
denoted by T(F ,V)τ . We write tτ to denote t ∈ T(F ,V)τ ; τ(t) = σ if the sort of
t ∈ T(F ,V)τ is σ. A quasi-order � on S is given like this: σ � ρ if there exists
a well-sorted term of sort σ having a subterm of sort ρ.

A sort assignment τ is consistent with a TRS R if (l and r are well-sorted
and) τ(l) = τ(r) for all l→ r ∈ R where w.l.o.g. the sets of variables in rewrite
rules are supposed to be mutually disjoint. A sort assignment τ consistent with
a TRS R induces a many-sorted TRS Rτ ; the rewrite relation of Rτ (and hence
the notions of confluence, etc.) is defined on T(F ,V)τ . If no confusion arises,
many-sorted TRSs are called TRSs for simplicity.

Proposition 2.2 (Persistency of confluence [2]). For any sort assignment
τ consistent with R, Rτ is confluent iff R is confluent.
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α

β

∗ �β

∗
�α

=

β

= α

∗
�α∨β

f(f(x, x), f(x, x)) g(f(x, x))

f(g(x), f(x, x)) f(g(x), g(x)) g(g(x))

r1 (= β)

r1 (= α)

r1 r1

r1

Fig. 1. Decreasing peak and an non-decreasing peak by r1 : f(x, x)→ g(x)

2.1 Non-Linear Sorts

We will give confluence criteria based on decreasing diagrams in the following two
sections, one in each of sections; these two criteria are incomparable and their
correctness are proven independently. Some notions, however, are shared—we
introduce these notions in this subsection.

Our confluence criteria based on decreasing diagrams aim at dealing with non-
linear rewrite rules. For this, we extend the rule-labelling [12], which considers a
function δ : R→ L and labels each rewrite step by lab(s→l→r t) = δ(l → r). To
show the confluence of a TRS R by decreasing diagrams with only rule-labelling,
R needs to be linear [12,1]—if a non-linear rewrite rule is contained then one
always obtains non-decreasing peaks (Figure 1). Our idea to deal with such cases
is to restrict rewrite rules usable in instantiations of non-linear variables (of other
rewrite rules) by considering well-sorted terms. The set of rewrite rules usable
in instantiations of non-linear variables of rewrite rules in U τ is denoted by U τ

nl

and is formally given as below.

Definition 2.3 (non-linear sort, many-sorted TRS Rτ
nl). Let R be a TRS,

τ a sort assignment consistent with R and U τ ⊆ Rτ . A sort σ ∈ S is said to be
a non-linear sort of U τ if there exist l → r ∈ U τ and x ∈ Vnl (l → r) such that
τ(x) = σ. The set of non-linear sorts of U τ is denoted by Snl (U τ ). By non-linear
sorts, we mean non-linear sorts of Rτ . We define the set U τ

nl ⊆ Rτ as

U τ
nl = {l→ r ∈ Rτ | ∃σ ∈ Snl (U τ ). τ(l) � σ}.

(U τ
nl is written as Rτ

nl if we take U τ = Rτ .) We also put U τ
l = Rτ \ U τ

nl .

Clearly, Snl and ()nl are monotone, i.e. U τ ⊆ T τ implies Snl (U τ ) ⊆ Snl (T τ)
and U τ

nl ⊆ T τ
nl .

Example 2.4. Let S = {0, 1, 2} and

R =

{
(r1) f(x, x) → f(h(b), h(a)) (r2) h(x)→ k(x, x)
(r3) k(a, b) → h(a) (r4) a → b

}
.
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Take a sort assignment τ = {f : 1 × 1 → 2, k : 0 × 0 → 1, h : 0 → 1, a :
0, b : 0} consistent with R. We have Snl ({(r1)}) = {1}, Snl ({(r2)}) = {0},
Snl ({(r3)}) = Snl ({(r4)}) = ∅ and Snl (Rτ ) = {0, 1}. We have Rτ

nl = {(r1)}nl =
{(r2), (r3), (r4)}, {(r2)}nl = {(r4)}, {(r3)}nl = {(r4)}nl = ∅ and Rτ

l = {(r1)}.

Note that any subterm of a term of non-linear sort has non-linear sort. Sim-
ilarly, if s →l→r t and τ(s) ∈ Snl (U τ ) then l → r ∈ U τ

nl , and thus, there is no
critical peak of the form t1 ←Rτ

l
◦ →Rτ

nl
t2.

In the next section (Section 3), we will give a confluence criterion that can
be applied if Rτ

nl is terminating. In Section 4, we consider the case that Rτ
nl is

(possibly not terminating but) innermost normalizing.

3 Confluence of Strongly Quasi-Linear TRSs

In this section, we give a confluence criterion based on the decreasing diagrams
and strong quasi-linearity, a notion for many-sorted TRSs given as follows.

Definition 3.1 (strongly quasi-linear). A many-sorted TRS Rτ is strongly
quasi-linear if the many-sorted TRS Rτ

nl is terminating.

Clearly, if Rτ is strongly quasi-linear, any (well-sorted) term of non-linear
sort is terminating. Note that any (well-sorted) term is terminating w.r.t. Rτ

nl .
For strongly quasi-linear TRSs, the following labelling function is considered.

Definition 3.2 (labelling for strongly quasi-linear TRS). Let Rτ be a
strongly quasi-linear TRS.

1. Let L be a set and > a well-founded partial order on it. We consider the set
L ∪ T(F ∪ V)τ as the set of labels.

2. We define a relation ( on L ∪ T(F ∪ V)τ as follows: α ( β if either (i)
α, β ∈ L and α > β, (ii) α ∈ L and β ∈ T(F ,V)τ , or (iii) α, β ∈ T(F ,V)τ

and α
+→Rτ

nl
β.

3. Let δ : Rτ
l → L. The labelling function labδ from the rewrite steps of Rτ to

L ∪ T(F ∪ V)τ is given like this:

labδ(s→l→r t) =

{
δ(l→ r) if l → r ∈ Rτ

l

s if l → r ∈ Rτ
nl

The labelling given like labδ(s → t) = s is called source-labelling [12]. Thus,
our labelling is a combination of the rule-labelling and the source-labelling1.

In the rest of this section, we assume that τ is a sort assignment consistent
with R and that Rτ is strongly quasi-linear. Furthermore, we suppose a set L
of labels with a well-founded partial order > and δ : Rτ

l → L are fixed.
The next lemma is an immediate corollary of well-foundedness of the partial

order > on L and the termination of Rτ
nl .

1 A similar idea has been adapted in Theorem 5 of [12].
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Lemma 3.3. The relation ( on L ∪ T(F ,V)τ is a well-founded partial order.

It is trivial to show that disjoint peaks are decreasing. The proof that variable
peaks are decreasing is straightforward but interesting, as it reveals why our
choice of the labelling function matters (and other variations do not work).

Lemma 3.4. Any disjoint peak is decreasing w.r.t. labδ.

Lemma 3.5. Any variable peak is decreasing w.r.t. labδ.

Thus, it remains to show that overlap peaks are decreasing, but this does
not hold in general. We reduce decreasingness of overlap peaks to that of crit-
ical peaks, where decreasingness of critical peaks is guaranteed by a sufficient
criterion, which we introduce below.

ε
v2

v1

α Rτ
nl

β(= α)

Rτ
nl

∗ Rτ
nl

∗
Rτ

nl

(i)

ε
v2

v1

(ii)

α Rτ
l

β

Rτ
l ∗ �β

∗
�α

=

β

= α

∗
�α∨β

ε
v2

v1

(iii)

α Rτ
nl

β

Rτ
l

∗ �β

∗
Rτ

nl
=

β

Fig. 2. Hierarchically decreasing critical peaks

Definition 3.6 (hierarchical decreasingness). Any critical peak v1 ←l1→r1

◦ →l2→r2 v2 is said to be hierarchically decreasing w.r.t. δ and > if either one
of the following conditions (i)–(iii) holds (Figure 2):

(i) l1 → r1, l2 → r2 ∈ Rτ
nl and v1

∗→ ◦ ∗← v2 (and hence v1
∗→Rτ

nl
◦ ∗←Rτ

nl
v2).

(ii) l1 → r1, l2 → r2 ∈ Rτ
l and v1

∗↔�α ◦ =→β ◦ ∗↔�α∨β ◦ =←α ◦ ∗↔�β v2 and

(iii) l1 → r1 ∈ Rτ
nl , l2 → r2 ∈ Rτ

l and v1
∗→Rτ

nl
◦ =→β ◦ ∗↔�β v2,

where α = δ(l1 → r1) and β = δ(l2 → r2). A many-sorted TRS Rτ is said to be
hierarchically decreasing (w.r.t. δ and >) if so are all critical peaks of Rτ .

Note that the remaining case, i.e. the case of l1 → r1 ∈ Rτ
l and l2 → r2 ∈ Rτ

nl

needs not be considered (see a remark below Example 2.4). It may look the
conditions (i) and (iii) can be obtained by reducing the decreasingness by using
the fact that any label of rewrite steps of Rτ

nl is smaller than any label of rewrite
steps of Rτ

l , but this is not true; in fact, these conditions are weaker than what
are possible according to the definition of decreasingness.

The following properties are used to reduce the decreasingness of overlap
peaks to that of critical peaks. For a rewrite step γ : s→l→r t, a context C and
a substitution θ, we put C[γθ] : C[sθ]→l→r C[tθ] ([19]).
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Lemma 3.7. Let γ, γ′ be rewrite steps of Rτ , C a context, θ a substitution and
∝ ∈ {=,≺}. If labδ(γ) ∝ labδ(γ

′) then labδ(C[γθ]) ∝ labδ(C[γ
′θ]).

Lemma 3.8. If Rτ is hierarchically decreasing w.r.t. δ, then any overlap peak
is decreasing w.r.t. labδ.

Proof. It follows from the definition of hierarchical decreasingness that any crit-
ical peak is decreasing. Then the claim follows using Lemma 3.7. +,

Now we arrive at the main theorem of this section.

Theorem 3.9 (confluence of strongly quasi-linear TRSs). If Rτ is
strongly quasi-linear and hierarchically decreasing, then R is confluent.

Proof. Every peak is decreasing w.r.t. labδ by Lemmas 3.4, 3.5 and 3.8. Thus,
the claim follows from Propositions 2.1 and 2.2. +,

Example 3.10. Let

R =

⎧⎨⎩ (r1) f(x, h(x)) → f(h(x), h(x)) (r2) f(x, k(y, z))→ f(h(y), h(y))
(r3) h(x) → k(x, x) (r4) k(a, a) → h(b)
(r5) a → b

⎫⎬⎭
We consider S = L = N and the standard relation> onN. Take a sort assignment
τ = {f : 0 × 0 → 1, k : 0 × 0 → 0, h : 0 → 0, a : 0, b : 0} consistent with R. Then
Snl (Rτ ) = {0} and Rτ

nl = {(r3), (r4), (r5)} is terminating. Thus Rτ is strongly
quasi-linear. Take δ = {(r1) �→ 0, (r2) �→ 0} : Rτ

l → N. We have

CP(R) =

⎧⎪⎪⎨⎪⎪⎩
(cp1) f(x, k(x, x)) ←(r3) f(x, h(x)) →(r1) f(h(x), h(x))
(cp2) f(x, h(b))←(r4) f(x, k(a, a))→(r2) f(h(a), h(a))
(cp3) k(b, a)←(r5) k(a, a)→(r4) h(b)
(cp4) k(a, b)←(r5) k(a, a)→(r4) h(b)

⎫⎪⎪⎬⎪⎪⎭ .
We now check that every critical peak is hierarchically decreasing.

– (cp1) We have (r3) ∈ Rτ
nl , (r1) ∈ Rτ

l and δ((r1)) = 0. Thus f(x, k(x, x)) ←Rτ
nl

◦ →0 f(h(x), h(x)). Since f(x, k(x, x)) →0 f(h(x), h(x)), the condition (iii) of
hierarchical decreasingness holds.

– (cp2) We have (r4) ∈ Rτ
nl (r2) ∈ Rτ

l and δ((r2)) = 0. f(x, h(b)) ←Rτ
nl

◦ →0 f(h(a), h(a)). Since f(x, h(b)) →Rτ
nl
f(x, k(b, b)) →0 f(h(b), h(b)) ←Rτ

nl

f(h(a), h(b))←Rτ
nl
f(h(a), h(a)), the condition (iii) of hierarchical decreasing-

ness holds.

– (cp3), (cp4) We have (r4), (r5) ∈ Rτ
nl . It is easy to check the condition (i)

of hierarchical decreasingness holds.

Thus, every critical peak is hierarchically decreasing. Hence, by Theorem 3.9, it
follows that R is confluent.
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4 Confluence of Quasi-Linear TRSs

In this section, we give a confluence criterion based on the decreasing diagrams
and quasi-linearity, a notion for many-sorted TRSs obtained by replacing “ter-
mination of Rτ

nl” of strong quasi-linearity by “innermost normalization of Rτ
nl .”

Definition 4.1 (quasi-linear). A many-sorted TRS Rτ is quasi-linear if the
many-sorted TRS Rτ

nl is innermost normalizing.

Clearly, strongly quasi-linear (many-sorted) TRSs are quasi-linear but not
vice versa.

To deal with non-linear TRSs, we here introduce a many-sorted linear TRS
Rτ

nf , which is obtained by instantiating non-linear variables by ground normal
forms. We will give a translation from a quasi-linear TRS Rτ to a many-sorted
TRS Rτ

nf with infinite number of linear rewrite rules. Then we show that con-
fluence of Rτ

nf implies that of Rτ .
We will distinguish object terms to be rewritten and rewrite rules. To deal

with confluence, variables in object terms can always be regarded as constants.
Thus, consider constants cx corresponding to each variable x, and let CV =
{cx | x ∈ V}. Now, we consider the set T(F ∪ CV) as the set of object terms
to be rewritten. Suppose t ∈ T(F ,V) and V(t) = {x1, . . . , xn}. Let tc be the
term in T(F ∪ CV) obtained by replacing each xi with cxi (1 ≤ i ≤ n). Then
s →R t iff sc →R tc. Hence R is confluent on T(F ,V) iff R is confluent on
T(F ∪CV). Similarly, by extending sort assignment τ by τ(cx) = τ(x), it follows
that Rτ is confluent on T(F ,V)τ iff Rτ is confluent on T(F ∪CV)τ . Henceforth,
let NF(F ∪ CV)τ be the set of normal forms from T(F ∪ CV)τ (w.r.t. →Rτ ).

Definition 4.2 (linearization of quasi-linear TRSs). Let Rτ be a quasi-
linear TRS. For U τ ⊆ Rτ , we define a many-sorted TRS U τ

nf by

U τ
nf =

⋃
l→r∈Uτ

{lθ̂ → rθ̂ | θ̂ : Vnl (l → r)→ NF(F ∪ CV)τ}.

(U τ
nf is written as Rτ

nf if we take U τ = Rτ .) We write a rewrite rule of U τ
nf as

lθ̂ → rθ̂, for brevity, to denote l → r ∈ U τ and θ̂ : Vnl (l→ r) → NF(F ∪ CV)τ .
Example 4.3. Let S = {0, 1, 2} and

R =
{
(r1) f(x, x, y)→ f(x, g(x), y) (r2) f(x, y, z)→ h(a)

}
.

Take a sort assignment τ = {f : 0 × 0 × 1 → 2, g : 0 → 0, h : 0 → 2, a : 0}
consistent with R. Since Vnl (r1) = {x} and Vnl (r2) = ∅, we obtain Rτ

nf =
{f(s, s, y)→ f(s, g(s), y) | s ∈ NF(F ∪ CV)τ , τ(s) = 0} ∪ {f(x, y, z)→ h(a)}.

It is clear that Rτ
nf is a linear TRS, as all non-linear variables of rewrite rules

are instantiated by ground terms. Since there are infinitely many instantiations
of each rewrite rule, Rτ

nf has infinitely many numbers of rewrite rules.
In the rest of this section, we assume that τ is a sort assignment consistent

with R and that Rτ is quasi-linear. We also abbreviate →Rτ and →Rτ
nf

by →
and →

nf
, respectively. The next lemma is used to show Lemma 4.5.
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Lemma 4.4. Suppose s
∗→im t and let U τ = Rules(s

∗→im t). Then s
∗→Uτ

nf
t.

Lemma 4.5. Let l → r ∈ Rτ and U τ = {l → r}nl . Then, →l→r ⊆ ∗→Uτ
nf
◦

→{l→r}nf ◦
∗←Uτ

nf
on T(F ∪ CV)τ .

A corollary of the previous lemma is the following sufficient criterion of con-
fluence of Rτ in terms of Rτ

nf , on which our analysis will be based.

Lemma 4.6. A quasi-linear TRS Rτ is confluent on T(F ∪ CV)τ if so is its
linearization Rτ

nf .

Proof. The claim easily follows from →
nf
⊆ → ⊆ ∗↔

nf
, which holds by Lemma 4.5

and the definition of Rτ
nf . +,

The next lemma is used to analyze overlap peaks of Rτ
nf by those of Rτ .

Lemma 4.7. Let v1 ←l1θ̂1→r1 θ̂1
◦ →l2θ̂2→r2 θ̂2

v2 be a critical peak of Rτ
nf . Then

there exist a critical peak u1 ←l1→r1 ◦ →l2→r2 u2 of Rτ and a substitution θ
such that uiθ = vi ( i = 1, 2).

We note the converse of Lemma 4.7 does not hold in general.
Let L stand for the set of labels and ( be a well-founded partial order on L.

Definition 4.8 (labelling on Rτ
nf ). Let lab : Rτ → L. We extend2 lab to a

function Rτ
nf → L by lab(lθ̂ → rθ̂) = lab(l → r). Furthermore, we label the

rewrite steps s→lθ̂→rθ̂ t of Rτ
nf by lab(lθ̂ → rθ̂).

In the following, we assume some lab : Rτ → L is fixed. Let � (literally)
stands for α or α ∨ β (α, β ∈ L). For any U τ ⊆ Rτ , we write U τ ≺ � (U τ

nf ≺ �)
if lab(l → r) ≺ � for all l → r ∈ U τ (l → r ∈ U τ

nf , respectively). Note U
τ ≺ � iff

U τ
nf ≺ � for any U τ ⊆ Rτ . Let Rulesnl (γ) = (Rules(γ))nl for any conversion γ.
The next technical lemma, to be used in our key lemma (Lemma 4.11), is an

immediate consequence of Lemma 4.5.

Lemma 4.9. Let γ : s
∗↔�� s′

=→β t be a conversion on T(F ∪ CV)τ . If

Rulesnl (γ) ≺ � then s
∗↔
nf

�� ŝ
=→
nf

β t̂
∗←
nf

�� t on T(F ∪ CV)τ . Furthermore, s′ = t

implies ŝ = t̂.

Definition 4.10 (linearized-decreasingness). Any critical peak v1 ←α ◦ →β

v2 of Rτ is said to be linearized-decreasing w.r.t. lab : Rτ → L and ( if there
exists a conversion

v1
∗↔�α ◦ =→β u1

∗↔�α∨β u2
=←α ◦ ∗↔�β v2

on T(F ,V)τ such that the following conditions (i)–(iii) are satisfied (Figure 3):

2 Thus, strictly speaking, lθ̂ → rθ̂ should be considered as 〈l → r, θ̂〉, to distinguish
common instances of different rewrite rules.
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ε
v2

v1

α

β

∗ �β

∗
�α

=

β

= α

∗
�α∨β

Rulesnl ≺ α

Rulesnl ≺ α∨β

Rulesnl ≺ β

Fig. 3. Linearized-decreasing critical peak

(i) Rulesnl (v1
∗↔�α ◦ =→β u1)) ≺ α,

(ii) Rulesnl (u1
∗↔�α∨β u2) ≺ α ∨ β, and

(iii) Rulesnl (u2
=←α ◦ ∗↔�β v2) ≺ β.

A many-sorted TRS Rτ is said to be linearized-decreasing (w.r.t. lab and () if
so are all critical peaks of Rτ .

Lemma 4.11. Let Rτ be a quasi-linear and linearized-decreasing TRS. Let
w1 ←α ◦ →β w2 be a critical peak of Rτ

nf and w1θ, w2θ ∈ T(F ∪ CV)τ . Then,
w1θ

∗↔
nf

�α ◦ =→
nf

β ◦ ∗↔
nf

�α∨β ◦ =←
nf

α ◦ ∗↔
nf

�β w2θ on T(F ∪ CV)τ .

Proof. Let w1 ←l1 θ̂1→r1θ̂1
◦ →l2θ̂2→r2 θ̂2

w2. Then, by Lemma 4.7, there exists
critical peak v1 ←l1→r1 ◦ →l2→r2 v2 such that w1 = v1θ

′ and w2 = v2θ
′ for some

θ′. Then, by the definition of labelling of rewrite steps of Rτ
nf , we have v1 ←α

◦ →β v2. Thus, by assumption, there exists a conversion v1
∗↔�α ◦ =→β u1

∗↔�α∨β

u2
=←α ◦ ∗↔�β v2 on T(F ,V)τ satisfying conditions (i)–(iii) of Definition 4.10.

Now, apply the substitution θ ◦ θ′ to this conversion to obtain

w1θ = v1θ
′θ

∗↔�α ◦ =→β u1θ
′θ

∗↔�α∨β u2θ
′θ

=←α ◦ ∗↔�β v2θ′θ = w2θ.

Here, w.l.o.g. one can extend θ with x �→ cx so that this conversion is on T(F ∪
CV)τ . Furthermore, conditions (i)–(iii) of Definition 4.10 imply

(i′) Rulesnl (v1θ
′θ

∗↔�α ◦
=→β u1θ

′θ) ≺ α,
(ii′) Rulesnl (u1θ

′θ
∗↔�α∨β u2θ

′θ) ≺ α ∨ β, and
(iii′) Rulesnl (u2θ

′θ
=←α ◦ ∗↔�β v2θ′θ) ≺ β.

Then, by Lemma 4.9, v1θ
′θ

∗↔
nf

�α ◦ =→
nf

β ◦ ∗←
nf

�α u1θ′θ
∗↔
nf

�α∨β u2θ
′θ

∗→
nf

�β ◦ =←
nf

α

◦ ∗↔
nf

�β v2θ′θ on T(F ∪ CV)τ . As ←
nf

�α,→
nf

�β ⊆ ↔
nf

�α∨β , the claim follows. +,
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Lemma 4.12. Let Rτ be a quasi-linear and linearized-decreasing TRS. Then
→
nf

on T(F ∪ CV)τ is locally decreasing.

Proof. The claim follows easily for disjoint peaks. The case for variable peaks
follows also easily, as Rτ

nf is linear. The case for trivial overlap peaks are obvious.
The case for non-trivial overlap peaks follows from Lemma 4.11. +,

Theorem 4.13 (confluence of quasi-linear TRSs). If Rτ is quasi-linear
and linearized-decreasing then R is confluent.

Proof. Use Lemmas 4.6 and 4.12 and Propositions 2.1 and 2.2. +,

Example 4.14. Let

R =

{
(r1) f(x, y)→ f(g(x), g(x)) (r2) f(g(x), x) → f(x, g(x))
(r3) g(x) → h(x) (r4) h(g(x)) → g(g(x))

}
We consider S = L = N and the standard relation> onN. Take a sort assignment
τ = {f : 0× 0→ 1, g : 0 → 0, h : 0 → 0} consistent with R. We have Snl (Rτ ) =
{0} and Rτ

nl = {(r3), (r4)} is innermost normalizing. Thus Rτ is quasi-linear.
We have

CP(R) =

⎧⎪⎪⎨⎪⎪⎩
(cp1) f(h(x), x) ←(r3) f(g(x), x) →(r2) f(x, g(x))
(cp2) h(h(x))←(r3) h(g(x))→(r4) g(g(x))
(cp3) f(x, g(x))←(r2) f(g(x), x) →(r1) f(g(g(x)), g(g(x)))
(cp3′) f(g(g(x)), g(g(x))) ←(r1) f(g(x), x) →(r2) f(x, g(x))

⎫⎪⎪⎬⎪⎪⎭ .
Take lab = {(r1) �→ 2, (r2) �→ 3, (r3) �→ 0, (r4) �→ 1} : R → N.

– (cp1) We have γ1 : f(h(x), x) →(r1) f(g(h(x)), g(h(x))) ←(r1) f(h(x), g(x)) =
γ2 : f(h(x), g(x)) ←(r3) f(g(x), g(x)) ←(r1) f(x, g(x)), and Rulesnl (γ1) =
{(r3), (r4)} ≺ 0 ∨ 3 and Rulesnl (γ2) = {(r3), (r4)} ≺ 3. Thus the critical
peak is linearized-decreasing.

– (cp2) We have γ : h(h(x)) ←(r3) g(h(x)) ←(r3) g(g(x)), and Rulesnl (γ) = ∅.
Thus the critical peak is linearized-decreasing.

– (cp3) We have γ : f(x, g(x)) →(r1) f(g(x), g(x)) →(r1) f(g(g(x)), g(g(x)))
Since Rulesnl (γ) = {(r3), (r4)} ≺ 2, the critical peak is linearized-
decreasing. The case (cp3′) follows similarly.

Hence, by Theorem 4.13, it follows that R is confluent.

We now remark that Theorems 3.9 and 4.13 are incomparable. First, R in
Example 4.14 is not strongly quasi-linear, as Rτ

nl is not terminating. Thus, The-
orem 3.9 is not subsumed by Theorem 4.13. In the next example, we show that
Theorem 4.13 is not subsumed by Theorem 3.9.

Example 4.15. Let us consider R in Example 3.10. First note that {(r1)}nl =
{(r2)}nl = {(r3)}nl = {(r3), (r4), (r5)}. We consider conversions for the critical
peak (cp2): v1 = f(x, h(b)) ←(r4) f(x, k(a, a)) →(r2) f(h(a), h(a)) = v2. It is easy
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to see x
∗↔ t implies x = t for any t. From this, it follows that the conversion

has the form v1
∗↔ w1 →(r2) w2

∗↔ v2. We now consider decreasing conversion

v1
∗↔�lab(r4) ◦

=→lab(r2) u1
∗↔�lab(r4)∨lab(r2) u2

=←lab(r4) u3
∗↔�lab(r2) v2 and

distinguish cases by in which part of this conversion the rewrite step w1 →(r2) w2

is involved.

– Case w1 → w2 is in v1
∗↔�lab(r4) ◦

=→lab(r2) u1. Then by (r4) ∈ {(r2)}nl, one
requires lab(r4) ≺ lab(r4), which is impossible.

– Case w1 → w2 is in u1
∗↔�lab(r4)∨lab(r2) u2. Then one needs lab(r2) ≺

lab(r4) ∨ lab(r2) and lab(r4) ≺ lab(r4) ∨ lab(r2). This is again impossible.
– Case w1 → w2 is in u2

=←lab(r4) u3. This is impossible because of the direction
of the rewrite steps does not coincide.

– Case w1 → w2 is in u3
∗↔�lab(r2) v2. Then one needs lab(r2) ≺ lab(r2),

which is impossible.

Thus, the critical peak (cp2) is not linearized-decreasing.

Relations between Theorem 4.13 and Theorem 3.9 for some particular classes
of TRSs follow. For non-overlapping TRSs, Theorem 4.13 is strictly subsumed by
Theorem 3.9. For linear TRSs, Theorem 4.13 and Theorem 3.9 (and the original
rule-labelling) are equivalent.

Finally, we note that one can generally include linear rules to Rτ
nl in Theo-

rem 3.9, and then Knuth-Bendix’s criterion is obtained from Theorem 3.9. This
is, however, not surprising as it is known that Knuth-Bendix’s criterion can be
given by decreasing diagrams with the source-labelling (Example 12 of [12]).

5 Implementation, Experiments and Related Work

The confluence criteria of the paper have been implemented in the confluence
proverACP [3]. We straightforwardly adapt techniques for automating decreasing
diagrams based on rule-labelling [1,8]. We use SML/NJ [13] for the implemen-
tation language and the constraint solver Yices [5] to check the satisfiability of
constraints encoding existence of a labelling function satisfying our criteria.

Some heuristics and approximation employed in our implementation follow.
To construct many-sorted TRS Rτ from an unsorted TRS R, it suffices to com-
pute sort assignment τ consistent with R. In practice, its enough to choose
such a sort assignment that maximally distinct sorts, in order to maximize the
applicability of the criteria. This can be done by first assigning fresh sorts for
each sort declarations of function symbols and for variables, and then solving
the constraint on these sorts that arises from the requirement that lhs and rhs
of each rewrite rule are well-sorted terms having the same sort. To check the
quasi-linearity of TRSs, one has to check innermost normalization of TRSs. To
the best of our knowledge, no works concentrated on proving innermost nor-
malization are known; thus, the check is approximated by checking innermost
termination. To check decreasing diagram criteria, one has to find, for each criti-
cal peak v1 ← u→ v2, some conversions v1

∗↔ v2 that are used as the candidates
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Table 1. Experiments with the state-of-art confluence provers

ACP CSI Saigawa Thm. 3.9 Thm. 4.13 Thm. 3.9&4.13

Example 3.10 × × × � × �
Example 4.14 × × × × � �
9 examples from [14] 8 1 1 9 9 9
11 new examples 0 0 0 9 10 11

for v1
∗↔�α ◦ =→β u1

∗↔�α∨β u2
=←α ◦ ∗↔�β v2. For this, our implementation

uses sets of conversions v1
<4→R↔ ◦ <4←R↔ v2 as the sets of candidates, where

R↔ = R ∪ {r → l | l → r ∈ R, r /∈ V ,V(l) ⊆ V(r)} [8] and s
<4→ t means s

∗→ t
in less than four rewrite steps. Then applicability of the criterion for all possible
choice of u1, u2 in these sequences is encoded in a constraint [1].

In [14], a critical pair criterion for quasi-left-linear TRSs have been given. The
main differences between quasi-left-linear TRSs and quasi-linear TRSs are that
(1) the former considers only non-linear variables on lhs of the rewrite rules while
the latter considers non-linear variables on lhs or rhs of the rewrite rules, and (2)
in the the former, Rτ

nf is obtained by instantiating all variables of non-left-linear
sorts, while in the latterRτ

nf is obtained by instantiating non-linear variables. We
have adapted decreasing diagrams with rule-labelling for proving confluence of
Rτ

nf but in [14] critical pair criteria for left-linear TRSs (e.g. [9,15]) are applied.
We now report on experiments for the collection of 9 examples from [14],

and 11 new examples constructed in the course of experiments, including Exam-
ples 3.10 and 4.14. These are all non-left-linear and non-terminating TRSs. Tests
are performed on a PC with one 2.50GHz CPU and 4G memory; the timeout is
set to 60 seconds. For comparison with the state-of-art confluence provers, ACP
(ver. 0.41) [3], CSI (ver. 0.4.1) [18] and Saigawa (ver. 1.5) [7] are used. The sum-
mary of experiments is shown in Table 1. For examples, � denotes success and
× denotes failure. Examples 3.10 and 4.14 are solved by none of the state-of-art
confluence provers. For the collections, the number of successes is shown. ACP
implements the technique given in [14], and thus can solve all examples but the
last one which has been left open for automated confluence proving in [14]. Both
of our new criteria prove this last example from [14]. All provers fail at solving
all our new examples. Hence, in particular, the technique of [14] is not effective
for all of our new examples. The difference of Thm. 3.9 and Thm. 4.13 appears
on only few examples. In particular, Example 3.10 is only solved by the criterion
of Thm. 3.9, and Example 4.14 is only solved by the criterion of Thm. 4.13.

Next we discuss other related work. In [1,12,19], the rule-labelling is extended
to (non-linear) left-linear TRSs, where the one in latest [19] subsumes those in
the others. This technique essentially depends on the path information to the
duplicating variables in the rewrite rules to ensure the decreasingness of variable
peaks. In [10], a criterion for proving confluence of non-left-linear TRSs using
relative termination has been developed, whose correctness is proved based on
the decreasing diagrams with source-labelling. This criterion essentially requires
termination of R1 relative to R2 to show the confluence of R = R1∪R2. Several
other confluence criteria applicable for non-left-linear TRSs have been developed
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Table 2. Experiments of confluence criteria for non-left-linear non-terminating TRSs

Criterion (or tool) 42 Cops 10 Cops

Thm. 3.9 13 1
Thm. 4.13 12 1

Criterion for quasi-left-linear TRSs [14] (in ACP) 9 0
Criterion for weight-decreasing TRSs [6] (in ACP) 13 0
Criterion for simple-right-linear TRSs [17] (in ACP) 1 0
Saigawa (including [10]) 12 0

in [6,17]; these criteria require some restrictions on the form of rewrite rules. All
of these criteria are incomparable with the techniques developed in the present
paper is witnessed in Table 1, as (the automatizable parts of) these techniques
have been involved in some of the confluence provers ACP, CSI and Saigawa.

Next we compare strength of confluence criteria for non-terminating non-left-
linear TRSs experimentally. For this, we use two collections of non-terminating
non-left-linear problems from Cops (Confluence Problems) database: (i) the col-
lection of 42 problems from CoCo 2013 that are not solved as ‘non confluent’
by any tool, and (ii) the collection of 10 problems from CoCo 2013 that are not
solved by any tool. The criterion of [10] is approximated by Saigawa (Saigawa
does not facilitate to choose a single technique employed). For other criteria,
ACP is adapted to single out each criterion. In Table 2, the numbers of successes
for each criterion are shown. We observe that the problems in CoCo 2013 do not
differentiate strength of most of techniques very much. We note the current im-
plementation of the technique of [17] in ACP is not very elaborated. The problem
that is not solved in any provers in CoCo 2013 but solved by our new criteria is
the last example from [14] mentioned before.

The collection of new examples and details of the experiments are available on
the webpage http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/

rtatlca14/all.html.
In this paper, sort constraint is used to limit instantiations of non-linear vari-

ables of rewrite rules. Imposing such limitation more abstractly leads to the
framework of membership conditional rewriting systems and a confluence crite-
rion for such systems [16].

6 Conclusion

We have presented two criteria for confluence of TRSs R based on decreasing
diagrams with rule-labelling and persistency: (1) Rτ is strongly quasi-linear and
hierarchically decreasing, and (2) Rτ is quasi-linear and linearized-decreasing.
We have also shown that these criteria are incomparable. These criteria are par-
ticularly useful for proving non-linear TRSs confluent, including non-terminating
non-left-linear TRSs for which only few confluence criteria have been known. Our
criteria have been implemented in the confluence prover ACP. We have shown
that our criteria are successfully used in confluence provers for proving confluence
of TRSs for which none of the state-of-art confluence provers succeed.
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Abstract. For an infinite-state concurrent system S with a set AP of
state predicates, its predicate abstraction defines a finite-state system
whose states are subsets of AP, and its transitions s → s′ are witnessed by
concrete transitions between states in S satisfying the respective sets of
predicates s and s′. Since it is not always possible to find such witnesses,
an over-approximation adding extra transitions is often used. For systems
S described by formal specifications, predicate abstractions are typically
built using various automated deduction techniques. This paper presents
a new method—based on rewriting, semantic unification, and variant
narrowing—to automatically generate a predicate abstraction when the
formal specification of S is given by a conditional rewrite theory. The
method is illustrated with concrete examples showing that it naturally
supports abstraction refinement and is quite accurate, i.e., it can produce
abstractions not needing over-approximations.

1 Introduction

To automatically verify a temporal logic property ϕ of an infinite-state system
S by model checking, two methods can be used: (i) we can try to use an infinite-
state model checking procedure to directly verify that S |= ϕ, or (ii) we can
abstract S into a finite-state system A, verify that A |= ϕ holds using a standard
model checking method, and use general abstraction results to prove that this
ensures S |= ϕ for the original system S. These two methods have complemen-
tary strengths. On the one hand, a direct, infinite-state model checking method
can settle the question once and for all, but may not always terminate, and may
only be applicable under some restrictions on S and ϕ. On the other hand, ab-
stractions allow the use of efficient finite-state model checking algorithms and
tools, but may exhibit spurious counterexamples; that is, counterexamples show-
ing that A �|= ϕ, while in fact S |= ϕ holds. In such cases, abstraction refinement
[6] can be used to find a less abstract, yet still finite, abstraction A′ where we
may show A′ |= ϕ if indeed ϕ holds for the system S.

Predicate abstraction is one of the simplest and most widely used abstraction
methods. We assume that several state predicates AP = {p1, . . . , pn} are defined
on the states of S. Then, the abstract system S/AP has set of states P(AP), and
a transition s → s′ exists for s, s′ ∈ P(AP) iff there exists a concrete transition
u → v in S such that u (resp. v) satisfies exactly the predicates in s (resp. in s′).

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 61–76, 2014.
c© Springer International Publishing Switzerland 2014
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Since it may not be always possible to prove the existence of such a concrete
transition u → v, an over-approximation α(S/AP), which adds extra transitions
when in doubt, may instead be used. Predicate abstraction can be used either
for: (i) systems S defined by programs in a conventional language like C, or
(ii) systems S described by formal specifications, in which case some theorem
proving techniques are used to build a predicate abstraction α(S/AP).

This paper presents an automatic method to build a predicate abstraction
α(R/AP) for a concurrent system specified as a rewrite theory R = (Σ, E, R)
with equations E and rewrite rules R. We systematically exploit rewriting and
unification techniques to automate the predicate abstraction process by a method
that, as we illustrate with examples, has a good chance of building abstractions
that are as accurate as possible. What is exploited is both the simplicity of
the specification as a rewrite theory R, and the power and automatic nature
of rewriting and unification techniques, including the recently developed generic
method to automatically derive unification algorithms by variant narrowing [14],
already available in Maude. Although several abstraction methods have been
studied before for rewrite theories (for a detailed survey see § 3.12 in [20]), except
for the technical report [23] based on theorem proving, predicate abstraction of
rewrite theories has remained undeveloped until now.

Our Contributions. Our main contributions are as follows:

– Automatic method: unlike the quite different semi-automatic method in [23],
which generated proof obligations for an interactive theorem prover, our
method is fully automatic, although it may produce an over-approximation.

– Wide applicability beyond narrowing-based methods: narrowing-based model
checking techniques (e.g., in [4,13]) require equations E to have a finitary
E-unification algorithm and rules R to be unconditional; no such restrictions
apply to R = (Σ, E, R) in our abstraction method; and

– Effective unsatisfiability checking procedure, which, although incomplete, is
automatic and can be used in practice to prove a conjunction of equations
E-unsatisfiable. We believe this method can be useful not just for building
predicate abstractions, but for other formal verification tasks.

Related Work. Predicate abstraction was first introduced in [16], and has
been widely applied to both conventional programming languages, e.g., [5,25],
and formal specifications, e.g., [10,17]. However, predicate abstraction for rewrite
theories has not been much developed, except for the semi-automatic method in
[23] using theorem proving. This work is also related to existing rewriting-based
methods for model checking infinite-state systems, for example, using equational
abstractions [21], narrowing [4,13], or tree automata [15,22]. The present work
differs from and complements those approaches in that predicate abstraction
always reduces such an infinite-state system to a finite-state one. Finally, our
method to check unsatisfiability of equational constraints is related to the tech-
niques in [2,12] to check unfeasiblity of conditional critical pairs in the context
of proving confluence of conditional rewrite rules.
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2 Preliminaries

Equational Theories. An order-sorted signature is a triple Σ = (S, ≤, Σ)
with poset of sorts (S, ≤) and operators Σ = {Σw,s}(w,s)∈S∗×S typed in (S, ≤).
A Σ-algebra A consists of a set As for each sort s, a subset inclusion As ⊆ As′

for each subsort relation s ≤ s′, and a function Af : As1 × · · · × Asn → As for
each operator f ∈ Σs1···sn,s. The set TΣ(X )s denotes the set of Σ-terms of sort s
over X an infinite set of S-sorted variables, and TΣ,s denotes the set of ground
Σ-terms of sort s. We assume that TΣ,s �= ∅ for each sort s in Σ. A substitution
σ : Y → TΣ(X ) is a function that maps variables Y ⊆ X to terms of the same
sort, and is homomorphically extended to TΣ(X ) in a natural way.

A Σ-equation is an unoriented pair t = t′ of terms t, t′ ∈ TΣ(X )s for some sort
s ∈ Σ. For a Σ-algebra A and a valuation a : X → A assigning a value in As to
each variable x ∈ X of sort s, if ā : TΣ(X ) → A is the homomorphic extension
of a to terms, by definition, (A, a) |= t = t′ iff ā(t) = ā(t′). An equational theory
(Σ, E) with a set of Σ-equations E induces a congruence relation =E such that
u =E u′ iff (Σ, E) � (∀X ) u = u′ iff (A, a) |= u = u′ for any model A of E (i.e.,
for each equation t = t′ ∈ E and valuation a, (A, a) |= t = t′ holds) [18].

An E-unifier of an equation t = t′ is a substitution σ such that σt =E σt′.
A set CSUE(t = t′) is a complete set of E-unifiers in which any E-unifier ρ of
t = t′ has a more general E-unifier σ ∈ CSUE(t = t′), i.e., (∃η) ρ =E η ◦ σ.
For a set of equations E and a set of equational axioms B (such as associativity,
commutativity, and identity), if E ∪ B has the finite variant property, there is
a finitary E ∪ B-unification algorithm to find finite CSUE∪B(t = t′) [9,14]. As
explained in [9], E ∪ B has the finite variant property iff for every term t there
is a bound n such that the normal form of θt for a normalized substitution θ is
reachable from t by applying E modulo B less than n times.

Rewrite Theories. A rewrite theory is a formal specification of a concurrent
system [19]. We consider order-sorted rewrite theories R = (Σ, E, R) with (Σ, E)
an equational theory and R a set of rewrite rules of the form l −→ r if C, where
l, r ∈ TΣ(X )s for some sort s and C is a conjunction of Σ-equations. The system’s
states are modeled as the initial algebra TΣ/E (i.e., each state is an E-equivalence
class [t]E ∈ TΣ/E of ground terms). Each rule (l −→ r if C) ∈ R defines a one-step
rewrite t −→R,E t′, specifying the system’s transitions, iff there exist a subterm
u of t and a substitution σ such that u =E σl and t′ is the term obtained from
t by replacing u by σr, provided that σu =E σv for each condition u = v in C.

A rewrite theory R is called topmost iff there exists a sort State at the top
of one of the connected component of (S, ≤) such that: (i) for each rewrite rule
l −→ r if C, both l and r have the top sort State; and (ii) no operator in Σ has
State or any of its subsorts as an argument sort. This ensures that all rewrites
with rules in R must take place at the top of the term. Throughout this paper
we assume that E decomposes as a disjoint union E = Eo ∪ B with B a set of
equational axioms (such as associativity, commutativity, and identity) and Eo

convergent (i.e., sort-decreasing, terminating, confluent, and coherent modulo
B) [11], and that R is coherent with Eo module B [24].
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LTL Model Checking. A linear temporal logic (LTL) formula is constructed
by state propositions p ∈ AP and temporal logic operators such as ¬ (negation),
∧, ∨, → (implication), � (always), � (eventually), U (until), and © (next).
The semantics of LTL is defined on a Kripke structure K = (S, AP, L, −→K) [7],
where S is a set of states, AP is a set of state propositions, L : S → P(AP) is a
state-labeling function, and −→K ⊆ S × S is a transition relation.

Given two Kripke structures Ki = (Si, AP, Li, −→Ki), i = 1, 2, a relation
H ⊆ S1 × S2 is a simulation iff (i) if s1 H s2, then L1(s1) = L2(s2), and (ii) if
s1 H s2 and s1 −→K1 s′

1, there exists s′
2 ∈ S2 such that s′

1 H s′
2 and s2 −→K2 s′

2.
A simulation H ⊆ S1 × S2 is total iff for each s1 ∈ S1 there exists s2 ∈ S2 such
that s1Hs2, and H is a bisimulation iff both H and H−1 are simulations.

Lemma 1. [7] Given a simulation H between two Kripke structures K1 and K2,
if s10 H s20, then for any LTL formula ϕ, K2, s20 |= ϕ implies K1, s10 |= ϕ.

We can associate to a rewrite theory R = (Σ, E, R) a corresponding Kripke
structure. A state proposition p is defined as a term of sort Prop, whose meaning
is defined by equations using the auxiliary operator _|=_ : State Prop → Bool.
By definition, p ∈ TΣ/E,Prop is satisfied on [t]E iff (t |= p) =E true. We assume
that: (i) sort Bool has two constants true and false with true �=E false; (ii) any
t ∈ TΣ,Bool is provably equal to either true or false; and (iii) R is deadlock-free,
since R can be easily transformed into an equivalent deadlock-free theory [21].

Definition 1. Given R = (Σ, E, R) and a set AP ⊆ TΣ/E,Prop defined by E,
the corresponding Kripke structure is K(R)AP = (TΣ/E,State, AP, LAP , −→R,E),
where LAP([t]E) = {p ∈ AP | (t |= p) =E true}.

3 AP-Abstractions of Rewrite Theories

This section shows how a predicate abstraction of a topmost rewrite theory
R = (Σ, E, R) can be constructed by using E-unification. Following the usual
predicate abstraction methods, we consider abstract states as subsets of a set of
state propositions AP = {p1, . . . , pn}, where a transition s −→ s′ ∈ P(AP)2 is
defined if there exists a concrete one-step rewrite t −→R,E t′ such that:

s = {p ∈ AP | (t |= p) =E true} ∧ s′ = {p ∈ AP | (t′ |= p) =E true} (1)

Our approach is motivated by the following observation. For a topmost rewrite
theory R = (Σ, E, R), a concrete one-step rewrite t −→R,E t′ exists iff for a rule
(l −→ r if C) ∈ R and a ground substitution σ:

t =E σl ∧ t′ =E σr ∧ (∀u = v ∈ C) σu =E σv (2)

The abstraction s −→ s′ of the transition t −→R,E t′ is given by Condition (1).
Since t =E σl and t′ =E σr by Condition (2), we can replace t and t′ in (1)
by σl and σr, respectively, and we obtain: s = {p ∈ AP | (σl |= p) =E true},
s′ = {p ∈ AP | (σr |= p) =E true}, and s −→ s′ if (∀u = v ∈ C) σu =E σv.
That is, s −→ s′ holds if there exist a rewrite rule (l −→ r if C) ∈ R and a
ground substitution σ that satisfy these E-equality constraints.
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Abstract Kripke Structures. We construct an AP-abstract Kripke structure
of R, whose states are elements of P(AP), and whose transitions are decided by
solving E-equality constraints. Let p ∈_ : P(AP) → {true, false} be the truth
function such that (p ∈ s) = true iff p ∈ s, and (p ∈ s) = false iff p /∈ s.
Definition 2. Given a topmost rewrite theory R = (Σ, E, R) and a finite set of
state propositions AP defined by E, the AP-abstract Kripke structure of R is a
Kripke structure R/AP = (P(AP), AP, idP(AP), −→R/AP), where:
– idP(AP) : P(AP) → P(AP) is the identity labeling function, and
– s −→R/AP s′ iff there exists a rewrite rule (l −→ r if C) ∈ R such that the

following constraints are E-satisfiable:
∧

p∈AP
(l |= p) = (p ∈ s) ∧

∧

p∈AP
(r |= p) = (p ∈ s′) ∧

∧

u=v∈C

u = v (†)

If there exists a finitary E-unification algorithm (e.g., E has the finite variant
property), the satisfiability of (†) can be decided by checking for the emptiness
of the finite complete set of the E-unifiers:

CSUE(
∧

p∈AP(l |= p) = (p ∈ s) ∧
∧

p∈AP(r |= p) = (p ∈ s′) ∧
∧

u=v∈Cu = v).

However, checking satisfiability of the constraints (†) by E-unification is in
general undecidable [3]. Therefore, R/AP may not have an effective procedure
to precisely decide its transitions. In practice, there are three cases:
1. For some rule in R, we can prove the satisfiability of (†) for states s and s′,

in which case we know that s −→R/AP s′ holds.
2. For every rule in R, we can prove the unsatisfiability of (†) for states s and

s′, in which case we know that s −→R/AP s′ does not hold.
3. Otherwise, we cannot decide whether s −→R/AP s′ holds or not. In this case

we can add s −→α(R/AP) s′ to a Kripke structure α(R/AP) approximating
(and therefore simulating) R/AP with possibly more transitions.

By definition, a Kripke structure α(K) = (S, AP, L, −→α(K)) is an approximation
of K = (S, AP, L, −→K) iff −→K ⊆ −→α(K). In Section 4 we propose some
procedures for checking satisfiability of the constraints (†).
Theorem 1. For an LTL formula ϕ and a state t ∈ TΣ,State, if s = LAP([t]E),
then α(R/AP), s |= ϕ implies K(R)AP , [t]E |= ϕ.

Proof. It suffices to show that the state-labeling function LAP of K(R)AP , where
LAP([u]E) = {p ∈ AP | (u |= p) =E true}, is a total simulation from K(R)AP
to R/AP. Then, (idP(AP) ◦ LAP) = LAP becomes a simulation from K(R)AP to
α(R/AP), since idP(AP) is a simulation from R/AP to α(R/AP).

Suppose that t −→R,E t′ exists in K(R)AP . By definition, for a rewrite rule
(l −→ r if C) ∈ R, there is a ground substitution σ such that t =E σl, t′ =E σr,
and for each u = v ∈ C, σu =E σv. Let s = LAP([t]E) and s′ = LAP([t′]E).
Since t =E σl and t′ =E σr, we have s = {p ∈ AP | (σl |= p) =E true}
and s′ = {p ∈ AP | (σr |= p) =E true}. Hence,

∧
p∈AP(σl |= p) =E (p ∈ s)

and
∧

p∈AP(σr |= p) =E (p ∈ s′) hold. That is, σ is a solution of (†), so that
s −→R/AP s′. Therefore, LAP is a total simulation from K(R)AP to R/AP. ��
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{writing} ∅ {reading} {reading, writing}

Fig. 1. The AP-abstract Kripke structure with the initial state ∅

Rule 〈0, 0〉 � 〈0, s(0)〉 〈r, 0〉 � 〈s(r), 0〉 〈r, s(w)〉 � 〈r, w〉 〈s(r), w〉 � 〈r, w〉
∅ → {w} 〈0, 0〉 � 〈0, s(0)〉
∅ → {r} 〈0, 0〉 � 〈s(0), 0〉

{w} → ∅ 〈0, s(0)〉 � 〈0, 0〉
{w} → {w} 〈0, s(s(w))〉 � 〈0, s(w)〉
{r} → ∅ 〈s(0), 0〉 � 〈0, 0〉
{r} → {r} 〈s(r), 0〉 �

〈s(s(r)), 0〉
〈s(s(r)), 0〉
� 〈s(r), 0〉

{r, w} → {w} 〈s(0), s(w)〉 � 〈0, s(w)〉
{r, w} → {r} 〈s(r), s(0)〉 � 〈s(r), 0〉

{r, w} → {r, w} 〈s(r), s(s(w))〉
� 〈s(r), s(w)〉

〈s(s(r)), s(w)〉
� 〈s(r), s(w)〉

Fig. 2. The rule instances for each abstract transition s → s′ ∈ P(AP)2

Example. We illustrate our ideas with a simple model of the readers-writers
problem (adapted from [8]). Each state is modeled as a pair 〈r, w〉 ∈ N2 in which
r is the number of readers and w is the number of writers, given by the operator
〈_, _〉 : Nat Nat → State. Natural numbers are expressed in Peano notation
using the successor function s : Nat → Nat and the zero constant 0 of sort
Nat. The behavior is defined by the following four unconditional rewrite rules:
〈0, 0〉 → 〈0, s(0)〉, 〈r, 0〉 → 〈s(r), 0〉, 〈r, s(w)〉 → 〈r, w〉, and 〈s(r), w〉 → 〈r, w〉.
Mutual exclusion is expressed by the LTL formula �¬(reading ∧ writing), where
the state propositions are defined by the equations: 〈s(r), w〉 |= reading = true,
〈0, w〉 |= reading = false, 〈r, s(w)〉 |= writing = true, and 〈r, 0〉 |= writing = false,
satisfying the finite variant property since the right-hand sides are constants.

This system is infinite-state, since the number of readers r is unbounded.
However, we obtain the finite AP-abstract Kripke structure R/AP in Figure 1,
whose transitions are decided by using E-unification. Figure 2 shows the rule
instances ζl � ζr for each rule l −→ r ∈ R, transition s −→ s′ ∈ P(AP)2, and
E-unifier ζ ∈ CSUE(

∧
p∈AP(l |= p) = (p ∈ s) ∧

∧
p∈AP(r |= p) = (p ∈ s′)) that

represent the transitions of R/AP. The property �¬(reading∧writing) holds from
the initial state ∅ in R/AP, since {reading, writing} is not reachable. Therefore,
�¬(reading ∧ writing) also holds from 〈0, 0〉 in K(R)AP , thanks to Theorem 1.

If we consider the LTL formula ��¬writing (i.e., infinitely often not writing),
there exists the spurious counterexample ∅ → {writing} → {writing} → · · · .
As usual for predicate abstraction methods, we can refine the AP-abstraction
by adding the state proposition 1w to further specialize the abstract state
space, meaning that there exists only one writer, defined by the three equations:
〈R, s(0)〉 |= 1w = true, 〈R, 0〉 |= 1w = false, and 〈R, s(s(w))〉 |= 1w = false.
We have then the refined AP-abstract Kripke structure in Figure 3 in which
the formula ��¬writing holds from the initial state ∅. Again, by Theorem 1,
��¬writing also holds from 〈0, 0〉 in the concrete Kripke structure K(R)AP .
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{writing, 1w} ∅ {reading}

{writing} {reading, writing, 1w} {reading, writing}

Fig. 3. Refined AP-abstract Kripke structure for the readers-writers problem

4 Effective Procedures for Equality Constraints

In Section 3 we defined a predicate abstraction R/AP of a topmost rewrite theory
R = (Σ, E, R) using E-equality constraints when the set of state propositions
AP is specified by E. If there exists a finitary E-unification algorithm, such
as E satisfying the finite variant property, then we can automatically construct
R/AP by using E-unification. This section shows how to check the unsatisfiability
of E-equality constraints. Since the problem is in general semi-decidable [3],
we are interested in a sound but incomplete terminating procedures that can
be automated, so that an over-approximation α(R/AP) can be built when the
procedure fails to give an answer. A semi-decidable E-unification algorithm does
not give such a procedure because it may not terminate when no solution exists.

Our method relies on the fact that a state proposition p is typically defined
using only a subset of equations Ep ⊆ E, so that solving constraints for p may
only involve Ep, not all of E. If a finitary Ep-unification algorithm is available,
then we can discharge the constraints for p using Ep-unification. After resolving
all such solvable constrains, we apply a sound procedure based on E-reduction
to test if the remaining constraint are inconsistent or not.

Decomposition of Constraints. In practice, the equational semantics of a
state proposition p can be restricted to a subset of the equations Ep ⊆ E. As
assumed throughout this paper, E decomposes as a disjoint union E = Eo ∪ B
with B a set of equational axioms and Eo convergent modulo B.

Definition 3. Let Ω ⊆ Σ be a set of free constructors for Eo modulo B. Given
a set of patterns U = {u1, . . . , un} ⊆ TΣ(X ), we define:

�U� = {t ∈ TΣ(X ) | (∃σ : X → TΩ(X ), ∃u ∈ U) t =B σu},

EU = {u = v ∈ Eo | u, v ∈ �U�}.

We call Eo syntactically independent with respect to U iff EU is convergent
modulo B and satisfies: (i) any proper subterm v of u ∈ U is strongly Eo, B-
irreducible (i.e., γv is a normal form for any normalized substitution γ), and
(ii) for every t = t′ ∈ E − EU and u ∈ U , CSUB(t = u) = ∅.

For the readers-writers problem in Section 3, every state proposition p has its
syntactically independent patterns Up; e.g., for the state proposition reading,
for Ureading = {(S |= reading), true, false} for a variable S of sort State, where
EUreading = {〈s(r), w〉 |= reading = true, 〈0, w〉 |= reading = false}.



68 K. Bae and J. Meseguer

We are interested in finding a subset of equations G ⊆ E with a finitary
unification algorithm that can make E-solvability of a constraint u = v in (†)
decidable by using G-unification. An E-equality constraint u = v is G-solvable for
a subset of equations G ⊆ E iff σu =E σv implies σu =G σv for any substitution
σ. Since G ⊆ E, if u = v is G-solvable, then σu =E σv ⇐⇒ σu =G σv.

Proposition 1. If Eo is syntactically independent with respect to U , then for
any u, v ∈ �U�, an E-equality constraint u = v is EU ∪ B-solvable.

Proof. Since we assume that TΣ(X )s �= ∅ for each sort s, a constraint u = v
is Eo ∪ B-solvable iff for some normalized ground substitution σ : X → TΩ ,
canEo/B(σu) =B canEo/B(σv), where canEo/B(t) denotes an Eo/B-canonical
form of t. Since σu, σv ∈ �U�, by Ω-terms being free modulo B, convergence of
EU modulo B, and (i)–(ii) in Definition 3, canEo/B(σu) =B canEU/B(σu) and
canEo/B(σv) =B canEU/B(σv) hold. The lifting lemma for narrowing modulo B
then forces u = v to be EU ∪ B-solvable by narrowing with EU modulo B. ��

Even when EU ∪ B does not have the finite variant property, there may still
exist a subset ẼU ⊆ EU where ẼU ∪ B has the finite variant property and a
constraint u = v is ẼU ∪ B-solvable (see Section 5 for an example).

For a set of E-equality constraints D, if G ⊆ E has a finitary G-unification
algorithm and a constraint u = v ∈ D is G-solvable, then CSUG(u = v) is finite,
and u = v is E-satisfiable iff CSUG(u = v) �= ∅. Therefore, we can decompose the
problem D into finding ζ ∈ CSUG(u = v) and solving the remaining constraints.

Lemma 2. Given a set of E-equality constraints D, if G ⊆ E has a finitary
unification algorithm and u = v ∈ D is G-solvable, then D is E-satisfiable iff
for some ζ ∈ CSUG(u = v), {ζu = ζv | u = v ∈ D − {u = v}} is E-satisfiable

Proof. Suppose that there exists a substitution ρ such that
∧

u=v∈D ρu =E ρv.
Since u = v is G-solvable, ρu =EFV ρv also holds. Therefore, there exists a
substitution ζ ∈ CSUEFV (u = v) such that (∃η) ρ =EFV η ◦ ζ. Notice that
ρ =E η ◦ ζ, since G ⊆ E. Therefore,

∧
u=v∈D−{u=v} η(ζu) =E η(ζv) holds. ��

We can repeatedly apply this procedure to solve each G-solvable constraint in (†)
to determine s −→R/AP s′, provided that G has a finitary unification algorithm.
If there exists no common solution, then s −→R/AP s′ does not hold.

Unfeasibility of Constraints. Applying Lemma 2, we can transform a set D of
E-equality constraints into an equivalent set F having no G-solvable constraints.
We now present a sound but incomplete procedure to test for E-unsatisfiability
of F . We have assumed that E decomposes as a disjoint union E = Eo∪B, where
Eo is convergent and a finitary B-unification algorithm exists, and TΣ,s �= ∅ for
each sort s ∈ Σ. Therefore, we can use the canonical term algebra CΣ/Eo,B,
whose elements are B-equivalence classes of Σ-terms in Eo/B-canonical form,
and which is an initial Eo ∪ B-algebra. That is, F is E-satisfiable iff there exists
a normalized ground substitution θ such that (CΣ/Eo,B, qB ◦ θ) |= F , where
qB : TΣ → TΣ/B is the quotient map t �→ [t]B for B.
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Given the set X of the variables in F , let X̄ = {x̄ | x ∈ X} be the set in which
each variable x ∈ X of sort s is turned into the constant x̄ of the same sort s,
where X̄ ∩ Σ = ∅, and let F̄ = {ū = v̄ | u = v ∈ F} be the set of the ground
constraints obtained from F by replacing each x ∈ X by x̄ ∈ X̄. Recall that a
Σ ∪ X̄-algebra is exactly a pair (A, a) with a valuation a : X̄ → A. Therefore,
if (CΣ/Eo,B, qB ◦ θ) |= F , then the valuation qB ◦ θ̂, with θ̂(x̄) = θ(x) for x ∈ X ,
gives us a Σ ∪ X̄-algebra (CΣ/Eo,B, qB ◦ θ̂) satisfying both E and F̄ . Soundness
of equational logic then ensures that whenever (Σ ∪ X̄, E ∪ F̄ ) � (∀∅) ū = v̄,
where vars(u) ∪ vars(v) ⊆ X , we must have (CΣ/Eo,B, qB ◦ θ̂) |= (∀∅) ū = v̄.

Our sound procedure for testing unsatisfiability of F is based on the idea of
obtaining a proof of the form (Σ ∪ X̄, E ∪ F̄ ) � (∀∅) ū = v̄, where u and v are
strongly Eo, B-irreducible Σ-terms (i.e., each normalized substitution γ makes
both γu and γv normalized) and CSUB(u = v) = ∅. This gives a contradiction to
the assumption that F is satisfiable; if F is satisfied by a normalized substitution
θ, then (CΣ/Eo,B, qB ◦ θ̂) |= ū = v̄ , i.e., [θu]B = [θv]B , since u and v are strongly
Eo, B-irreducible, but CSUB(u = v) = ∅ implies [θu]B �= [θv]B .

A practical way of obtaining such a proof (Σ ∪ X̄, E ∪ F̄ ) � (∀∅) ū = v̄ is by
rewriting modulo B. That is, we can use the set of rewrite rules E�

o ∪ F̄ � with
E�

o the oriented equations and for a B-compatible order � on ground terms:

F̄ � = {canEo/B(w̄) → canEo/B(w̄′) | w = w′ ∈ F or w′ = w ∈ F,

canEo/B(w̄) � canEo/B(w̄′)},

where canEo/B(w) denotes an Eo/B-canonical form of w. Then, if we obtain
ū ←→∗

E�

o ∪F̄ �,B
v̄ by rewriting modulo B, then by equational reasoning, we have

a fortiori derived (Σ ∪ X̄, E ∪ F̄ ) � (∀∅) ū = v̄. In summary:

Theorem 2. For a set of E-equality constraints F with X = vars(F ), if there
exist strongly Eo, B-irreducible Σ-terms u and v such that vars(u)∪vars(v) ⊆ X,
CSUB(u = v) = ∅, and ū ←→∗

E�

o ∪F̄ �,B
v̄, then F is E-unsatisfiable.

Example. We consider a model of the readers-writers problem with explicit
shared variables and processes, adapted from [1] (which is a more sophisticated
version of the model in Section 3). Each state has the form 〈n, b | p1; · · · ; pn〉,
given by the operator 〈_, _|_〉 : Nat Bool ProcSet → State, where n denotes the
number of readers, b is a Boolean flag to denote no readers and no writers, and
p1; · · · ; pn is a multiset of processes, each in a status pi ∈ {idle, read, write}. The
behavior of the system is specified by the following (conditional) rewrite rules:

〈n, b | idle ; PS〉 −→ 〈s(n), b′ | read ; PS〉 if c(n, b, b′) = true
〈s(n), b | read ; PS〉 −→ 〈n, b′ | idle ; PS〉 if c(n, b′, b) = true
〈n, true | idle ; PS〉 −→ 〈n, false | write ; PS〉

〈n, false | write ; PS〉 −→ 〈n, true | idle ; PS〉

where the function c(n, b, b′) returns true iff b = true and b′ = false when n = 0,
or b = b′ when n > 0, defined by the equations:
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c(0, true, false) = true c(0, false, b) = false c(0, b, true) = false
c(s(n), b, b) = true c(s(n), true, false) = false c(s(n), false, true) = false

Mutual exclusion is expressed by the formula �¬(reading ∧ writing). We can
define sorts ProcIdleSet (denoting processes in idle), ProcReadSet (for processes
in idle or read), and ProcWriteSet (denoting processes in idle or write), having
subsort relations ProcIdleSet ≤ ProcReadSet ProcWriteSet ≤ ProcSet. The state
propositions are then defined by the following equations, where RS is a variable
of sort ProcReadSet and WS is a variable of sort ProcWriteSet:

〈n, b | read ; PS〉 |= reading = true 〈n, b | WS〉 |= reading = false
〈n, b | write ; PS〉 |= writing = true 〈n, b | RS〉 |= writing = false

This system is finite-state for a fixed set of processes; but the system is actually
infinite-state, since the number of processes is unbounded. We are interested in
verifying �¬(reading ∧ writing) for an unbounded number of processes.

In order to verify �¬(reading ∧ writing), we need to have two additional state
propositions free and good , defined by the following equations, where good(n, PS)
returns true iff n is equal to the number of readers in PS :

〈n, true | PS〉 |= free = true 〈n, false | PS〉 |= free = false
〈n, b | PS〉 |= good = good(n, PS) good(s(n), read ; PS) = good(n, PS)
good(n, write ; PS) = good(n, PS) good(n, idle ; PS) = good(n, PS)

good(0, WS) = true good(s(n), WS) = false good(0, read ; PS) = false

Notice that every state proposition has syntactically independent equations.
Hence, we can easily see that every constraint for c, reading, writing, and free
is solvable by a set of equations satisfying the finite variant property. However,
the equations defining good do not have the finite variant property.

We can obtain a finite R/AP in which only two states {reading, good} and
{writing, good} are reachable from the initial state {free, good}. For example,
from {free, good}, after resolving each Ep ∪ B-solvable constraint, we have the
following sets of the remaining constraints:

〈0, true | idle ; IS〉 |= good = true ∧ 〈s(0), false | read ; IS〉 |= good = b1,

〈s(n), true | idle ; IS〉 |= good = true ∧ 〈s(s(n)), true | read ; IS〉 |= good = b2,

〈n, true | idle ; IS〉 |= good = true ∧ 〈n, false | write ; IS〉 |= good = b3,

where IS has sort ProcIdleSet and b1, b2, b3 ∈ {true, false}. By normalizing each
constraint after replacing the variables into the constants, we have the oriented
constraint sets {true → true, true → b1}, {true → false, b2 → false}, and
{good(n, IS) → true, good(n, IS) → b3}. Therefore, the cases of b1 = false,
b2 ∈ {true, false}, and b3 = false are unsatisfiable. That is, {free, good} has only
two next states {reading, good} and {writing, good}. Similarly, {reading, good}
has the next states {free, good} and {reading, good}, and {writing, good} has the
next states {free, good} and {writing, good}. Therefore, �¬(reading ∧ writing)
holds in R/AP from {free, good}. Thanks to Theorem 1, the formula also holds
in K(R)AP for an unbounded number of processes.
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findNextStates(s ∈ P(AP)):
NextStates := ∅;
foreach s′ ∈ P(AP) do
foreach (l −→ r if C) ∈ R do
CTR := getConstraints(s, s′, l, r, C); // CTR = the set of constraints (†)
(D,F,G) := findSolvable(CTR); // D = a set of G-solvable equations
if isSatisfiable(D,F,G) then add s′ to NextStates;

return NextStates;

isSatisfiable(D, F , G):
if D �= ∅ then
choose u = v from D;
foreach ζ ∈ CSUG(u = v) do
if isSatisfiable(ζ(D − {u = v}), ζF , G) then return true;

return false;
else
return (if F = ∅ then true else ¬ testUnsatisfiable(F ));

Fig. 4. Predicate Abstraction Algorithm for R = (Σ, E, R)

Predicate Abstraction Algorithm. Figure 4 shows an algorithm to generate
a predicate abstraction α(R/AP) of a rewrite theory R = (Σ, E, R). There exists
a transition s −→ s′ in α(R/AP) iff s′ ∈ findNextStates(s), where the function
findNextStates(s) returns a set of next abstract states from s ∈ P(AP).

The function findNextStates uses a number of subroutines that correspond to
methods in Sections 3 and 4. Given a set of E-equality constraints CTR, using
Proposition 1, findSolvable(CTR) returns a triple (D, F, G) such that D is a set
of G-solvable constraints, G has the finite variant property, and CTR = D ∪ F .
Then, using Lemma 2, isSatisfiable(D, F, G) returns false if the set of constraints
D ∪ F is unsatisfiable, where testUnsatisfiable(F ) returns true if F is shown to
be unsatisfiable using Theorem 2. More details on each subroutine, as well as
some demos based on several components of this algorithm, can be found at
http://formal.cs.illinois.edu/kbae/pred.

5 Case Study

We illustrate our predicate abstraction method with another nontrivial infinite-
state system, namely, Lamport’s bakery protocol for mutual exclusion (adapted
from [4,13]). Each state has the form 〈n, m, A, [i1, d1] . . . [in, dn]〉, given by the
operator 〈_, _, _, _〉 : Nat Nat Action ProcSet → State, where n is the current
number in the bakery’s number dispenser, m is the number currently being
served, A ∈ {⊥, wake, crit, exit} is the action taken in the previous step, and
[i1, d1] . . . [in, dn] is a multiset of customer processes, each with an identity ij

and in a mode dj . A mode can be idle (not yet picked a number), wait(n)
(waiting with number n), or crit(n) (being served with number n).

http://formal.cs.illinois.edu/kbae/pred
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∅ {in-wait, wake} {in-wait}

{in-crit} {in-wait, in-crit, wake} {in-wait, in-crit}

Fig. 5. AP-abstract Kripke structure for the livelock freedom property

The behavior is then specified by the following unconditional rewrite rules,
where natural numbers are modeled as multisets of s with the multiset union
operator __ : Nat Nat → Nat (empty syntax), satisfying laws of commutativity
and associativity, and the empty multiset 0 (e.g., 0 = 0, and 3 = s s s):

〈n, m, A, [i, idle] PS〉 −→ 〈s n, m, wake, [i, wait(n)] PS〉
〈n, m, A, [i, wait(m)] PS〉 −→ 〈n, m, crit, [i, crit(m)] PS〉
〈n, m, A, [i, crit(m)] PS〉 −→ 〈n, s m, exit, [i, idle] PS〉

Notice that this system is infinite-state since: (i) the counters n and m are
unbounded, and (ii) the number of customer processes is unbounded.

We can define three sorts ProcIdleSet (for processes in idle), ProcWaitSet
(denoting processes in idle or wait(n)), and ProcCritSet (denoting processes
in idle or crit(n)), yielding an order-sorted signature with subsort relations
ProcIdleSet ≤ ProcWaitSet ProcCritSet ≤ ProcSet. We can define sort NWAction
denoting the non-wake actions (⊥, crit, and exit), where NWAction ≤ Action.

Livelock Freedom. We are interested in verifying the livelock freedom “if some
process is waiting, then some (possibly different) process eventually enters the
critical section” under the fairness assumption “wake is not taken infinitely many
times,” expressed as the LTL formula ��¬wake → �(in-wait → �in-crit). The
state propositions are defined by the following equations that satisfy the finite
variant property, where CS is a variable of sort ProcCritSet, WS is a variable of
sort ProcWaitSet, and NA is a variable of sort NWAction:

〈n, m, A, [i, wait(k)] PS〉 |= in-wait = true 〈n, m, A, CS〉 |= in-wait = false
〈n, m, A, [i, crit(k)] PS〉 |= in-crit = true 〈n, m, A, WS〉 |= in-crit = false

〈n, m, wake, PS〉 |= wake = true 〈n, m, NA, PS〉 |= wake = false.

We obtain the AP-abstract Kripke structure in Figure 5 using E-unification,
because a finitary E-unification algorithm is available. Since in-crit holds in
every state in the second row, the formula ��¬wake → �(in-wait → �in-crit)
holds in the AP-abstract Kripke structure from the initial state ∅. Hence, by
Theorem 1, the formula also holds in the concrete Kripke structure K(R)AP
from any state [t]E with LAP([t]E) = ∅ for an unbounded number of processes.
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Mutual Exclusion. We now consider the mutual exclusion “at most one process
can enter the critical section,” expressed by the LTL formula �mutex in which
the state proposition is defined by the equations: 〈n, m, A, WS〉 |= mutex = true,
〈n, m, A, [i, crit(k)] WS〉 |= mutex = true, and

〈n, m, A, [i, crit(k)] [i′, crit(k′)] PS〉 |= mutex = false.

We need three extra state propositions to define a predicate abstraction:
mcrit, bound, and uniq. First, mcrit holds in a state 〈n, m, A, PS〉 if at most
one process enters the critical section with number m, defined by the equations:
〈n, m, A, WS〉 |= mcrit = true, 〈n, m, A, [i, crit(m)] WS〉 |= mcrit = true, and

〈n, m, A, [i, crit(s k m)] WS〉 |= mcrit = false
〈n, s k m, A, [i, crit(m)] WS〉 |= mcrit = false

〈n, m, A, [i, crit(k)] [i′, crit(k′)] PS〉 |= mcrit = false.

Next, the state proposition bound holds in a state 〈n, m, A, PS〉 if any ticket
number of a process in PS is less than n, defined by the equations:

〈n, m, A, PS〉 |= bound = bd(n, PS)
bd(n, [i, wait(n k)] PS) = false bd(n, [i, crit(n k)] PS) = false

]
(Eb)

bd(n, IS) = true bd(s n k, [i, wait(k)] PS) = bd(s n k, PS)
bd(s n k, [i, crit(k)] PS) = bd(s n k, PS)

Finally, the state proposition uniq holds in a state 〈n, m, A, PS〉 if no duplicate
ticket numbers of processes in PS , defined by the equations:

〈n, m, A, PS〉 |= uniq = q(PS) q([i, wait(k)] [j, wait(k)] PS) = false
q([i, wait(k)] [j, crit(k)] PS) = false q([i, crit(k)] [j, crit(k)] PS) = false

]
(Eq)

q([i, wait(k)] [j, wait(s m k)] PS) = q([i, wait(k)] PS) q([i, idle] PS) = q(PS)
q([i, wait(k)] [j, crit(s m k)] PS) = q([i, wait(k)] PS) q([i, wait(k)]) = true
q([i, crit(k)] [j, wait(s m k)] PS) = q([i, crit(k)] PS) q([i, crit(k)]) = true
q([i, crit(k)] [j, crit(s m k)] PS) = q([i, crit(k)] PS) q(none) = true

Notice that every state proposition has syntactically independent equations.
In particular, the equations for mutex and mcrit have the finite variant property.
The equations defining bound and uniq do not have the finite variant property,
but the equations Eb ∪B and Eq ∪B that define the negative cases of bound and
uniq do have the finite variant property. Furthermore:

Lemma 3. For a state term u ∈ TΣ(X )State, a constraint (u |= bound = false)
is Eb ∪ B-solvable, and (u |= uniq = false) is Eq ∪ B-solvable.

Proof. A term u has the form 〈n, m, A, tprocs〉. If σu |= bound =E false for some
substitution σ, then σtprocs contains a process whose ticket number is greater
than or equal to n. Since Eb ∪ B reduces such a negative case to false in 2 steps,
σu |= bound =Eb∪B false. Similarly, if σu |= uniq =E false, then σtprocs contains
two processes with the same ticket number, and σu |= uniq =Eq∪B false. ��
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We obtain R/AP having a single reachable state from the given initial state
{mutex, mcrit, bound, uniq}. By resolving each constraint for mutex and mcrit,
from {mutex, mcrit, bound, uniq}, the resulting sets of remaining constraints are
{lk |= bound = true, lk |= uniq = true, rk |= bound = bk, rk |= uniq = b′

k} for
1 ≤ j ≤ 5, where bk, b′

k ∈ {true, false} and each pair lk →k rk is given by:

〈n, m, A, [i, idle] WS〉 →1 〈s n, m, wake, [i, wait(n)] WS〉
〈n, m, A, [i, idle] [j, crit(m)] WS〉 →2 〈s n, m, wake, [i, wait(n)] [j, crit(m)] WS〉

〈n, m, A, [i, wait(m)] WS〉 →3 〈n, m, crit, [i, crit(m)] WS〉
〈n, m, A, [i, crit(m)] WS〉 →4 〈n, s m, exit, [i, idle] WS〉

〈n, m, A, [i, wait(m)] [j, crit(m)] WS〉 →5 〈n, m, crit, [i, crit(m)] [j, crit(m)] WS〉

The case of k = 5 is unsatisfiable for any values of b5, b′
5 ∈ {true, false}, since

l5 |= uniq =E false. For the cases of 1 ≤ k ≤ 4, if bk = false for bound, then
its solution ζ ∈ CSUEb∪B(rk |= bound = false) makes ζlk |= bound =E false.1
That is, the cases of bk = false are unsatisfiable. Similarly, if b′

k = false for uniq,
then ζ ∈ CSUEq∪B(rk |= uniq = false) makes either ζlk |= bound =E false or
ζlk |= uniq =E false, i.e., unsatisfiable. Therefore, {mutex, mcrit, bound, uniq}
has the one next state, itself. Clearly, �mutex holds in R/AP, and thus �mutex
also holds in K(R)AP for an unbounded number of processes.

6 Concluding Remarks

In this work we have presented a predicate abstraction method for a wide range of
infinite-state concurrent systems specified as conditional rewrite theories. One
of the main ideas is to reduce a predicate abstraction problem into solving a
set of E-equality constraints, which can be automated if there exists a finitary
E-unification algorithm. To deal with the case where no finitary E-unification
algorithm exists, we have also presented sound but incomplete procedures to
check unsatisfiability of E-equality constraints, where an over-approximation can
be constructed if such procedures fail to give an answer. We have illustrated our
method with nontrivial infinite-state systems, namely, parameterized protocols
for an unbounded number of processes.

Future work includes implementing a predicate abstraction-based LTL model
checker in Maude,2 integrating it with other infinite-state model checking meth-
ods such as equational abstractions and narrowing-based methods, and applying
SMT techniques, as well as E-unification, to solve E-equality constraints.

Acknowledgments. This work has been supported in part by NSF Grant CNS
13-19109 and AFOSR Grant FA8750-11-2-0084.
1 For example, CSUEb∪B(〈s n, m,wake, [j,wait(n)]WS〉 |= bound = false) has the
substitution ζ = {WS ← [j′,wait(s n m′)]WS ′}, and ζl1 |= bound =E false.

2 The key software components used by the algorithm (already available in Maude) and
detailed experiments showing how they can automate the case studies are explained
in the webpage http://formal.cs.illinois.edu/kbae/pred

http://formal.cs.illinois.edu/kbae/pred
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Abstract. We present an algebraic characterization of the complexity
classes Logspace and NLogspace, using an algebra with a composition
law based on unification. This new bridge between unification and
complexity classes is inspired from proof theory and more specifically
linear logic and Geometry of Interaction.

We show how unification can be used to build a model of computation
by means of specific subalgebras associated to finite permutation groups.

We then prove that whether an observation (the algebraic counterpart
of a program) accepts a word can be decided within logarithmic space.
We also show that the construction can naturally encode pointer ma-
chines, an intuitive way of understanding logarithmic space computing.

Keywords: Implicit Complexity, Unification, Logarithmic Space, Proof
Theory, Pointer Machines, Geometry of Interaction.

Introduction

Proof Theory and Complexity Theory. There is a longstanding tradition of
relating proof theory (more specifically linear logic [1]) and implicit complexity
theory that dates back to the introduction of bounded [2] and light [3] logics.
Control over the modalities [4,5], type assignment [6] and stratification of
exponential boxes [7], to name a few, led to a clearer understanding of the
complexity bounds linear logic could entail on the cut-elimination procedure.

We propose to push further this approach by adopting a more semantical and
algebraic point of view that will allow us to capture non-deterministic logarithmic
space computation.

Geometry of Interaction. As the study of cut-elimination has grown as
a central topic in proof theory, its mathematical modeling became of great
interest. The Geometry of Interaction [8] research program led to mathematical
models of cut-elimination in terms of paths in proofnets [9], token machines [10]
and operator algebras [11]. Related complexity concerns have already been
explored [12,13].

Recent works [13,14,15] studied the link between Geometry of Interaction
and logarithmic space, relying on the theory of von Neumann algebras. Those
three articles are indubitably sources of inspiration of this work, but the whole
construction is made anew, in a simpler framework.
� This work was partly supported by the ANR-10-BLAN-0213 Logoi and the ANR-

11-BS02-0010 Récré.

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 77–92, 2014.
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Unification. Unification is one of the key-concepts of theoretical computer
science, for it is used in logic programming and is a classical subject of study
for complexity theory. It was shown [16,17] that one can model cut-elimination
with unification techniques.

Execution will be expressed in terms of matching in a unification algebra.
This is a simple framework, yet expressive enough to encode the action of
finite permutation groups on an unbounded tensor product, which is a crucial
ingredient of our construction.

Contribution. We carry on the methodology of bridging Geometry of Inter-
action and complexity theory with a renewed approach. It relies on an simpler
representation of execution in a unification-based algebra, proved to capture
exactly logarithmic space complexity.

While the representation of inputs (words over a finite alphabet) comes
from the classical Church representation, observations (the algebraic counterpart
of programs) are shown to correspond very naturally to a notion of pointer
machines. This correspondence allows us to prove that reversibility (of machines)
is related to the algebraic notion of isometricity (of observations).

Organization of This Article. In Sect.1 we review some classical results
on unification of first-order terms and use them to build the algebra that will
constitute our computational setting.

We explain in Sect.2 how words and computing devices (observations) can be
modeled by particular elements of this algebra. The way they interact to yield
a notion of language recognized by an observation is described in Sect.3.

Finally, we show in Sect.4 that our construction captures exactly logarithmic
space computation, both deterministic and non-deterministic.

1 The Unification Algebra

1.1 Unification

Unification can be generally thought of as the study of formal solving of equations
between terms.

This topic was introduced by Herbrand, but became really widespread after
the work of J. A. Robinson on automated theorem proving. The unification
technique is also at the core of the logic programming language Prolog and type
inference for functional programming languages such as CaML and Haskell.

Specifically, we will be interested in the following problem:

Given two terms, can they be “made equal” by replacing their variables?

Definition 1 (terms)
We consider the following set of first-order terms

T ::= x, y, z, . . . | a, b, c, . . . | T •T

where x, y, z, · · · ∈ V are variables, a, b, c, . . . are constants and • is a binary
function symbol.
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For any t ∈ T , we will write Var(t) the set of variables occurring in t . We say
that a term is closed when Var(t) = ∅ , and denote Tc the set of closed terms.

Notation. The binary function symbol • is not associative, but we will write it
by convention as right associating to lighten notations: t •u •v := t •(u •v)

Definition 2 (substitution)
A substitution is a map θ : V→ T such that the set Dom(θ) := {v ∈ V|θ(v) �= v}
(the domain of θ ) is finite. A substitution with domain { x1, . . . , xn } such that
θ(x1) = u1 , . . . , θ(xn) = un will be written as { x1 �→ u1 ; . . . ; xn �→ un } .
If t ∈ T is a term we write t.θ the term t where any occurrence of any variable
x has been replaced by θ(x) .
If θ = { xi �→ ui } and ψ = { yj �→ vj } , their composition is defined as

θ;ψ := { xi �→ ui.ψ } ∪ { yj �→ vj | yj �∈ Dom(θ) }

Remark. The composition of substitutions is such that t.(θ;ψ) = (t.θ).ψ holds.

Definition 3 (renamings and instances)
A renaming is a substitution α such that α(V) ⊆ V and that is bijective. A term
t′ is a renaming of t if t′ = t.α for some renaming α .
Two substitutions θ, ψ are equal up to renaming if there is a renaming α such
that ψ = θ;α .
A substitution ψ is an instance of θ if there is a substitution σ such that
ψ = θ;σ .

Proposition 4
Let θ, ψ be two substitutions. If θ is an instance of ψ and ψ is an instance of
θ , then they are equal up to renaming.

Definition 5 (unification)
Two terms t, u are unifiable if there is a substitution θ such that t.θ = u.θ .

We say that θ is a most general unifier (MGU) of t, u if any other unifier of
t, u is an instance of θ .

Remark. It follows from Proposition 4 that any two MGU of a pair of terms
are equal up to renaming.
We will be interested mostly in the weaker variant of unification where one can
first perform renamings on terms so that their variables are distinct, we introduce
therefore a specific vocabulary for it.

Definition 6 (disjointness and matching)
Two terms t, u are matchable if t′, u′ are unifiable, where t′, u′ are renamings
(Definition 3) of t, u such that Var(t′) ∩ Var(u′) = ∅ .
If two terms are not matchable, they are said to be disjoint.



80 C. Aubert and M. Bagnol

Example. x and f •x are not unifiable.
But they are matchable, as x.{ x �→ y ; y �→ x } = y which is unifiable with f •x .
More generally, disjointness is stronger than non-unifiability.

The crucial feature of first-order unification is the (decidable) existence of most
general unifiers for unification problems that have a solution.

Proposition 7 (MGU)
If two terms are unifiable, then they have a MGU.
Whether two terms are unifiable and, in case they are, finding a MGU is
decidable.

As unification grew in importance, the study of its complexity gained in
attention. A complete survey [18] tells the story of the bounds getting sharpened:
general first-order unification was finally proved [19] to be a Ptime-complete
problem.
In this article, we are concerned with a very much simpler case of the problem:
the matching (Definition 6) of linear terms (ie. where variables occur at most
once). This case can be solved in a space-efficient way.

Proposition 8 (matching in logarithmic space [20, Lemma 20])
Whether two linear terms t, u with disjoint sets of variables are unifiable, and
if so finding a MGU, can be computed in logarithmic space in the size1 of t, u
on a deterministic Turing machine

The lemma in [20] actually states that the problem is in NC1, a complexity class
of parallel computation known to be included in Logspace.
We will use only a special case of the result, matching a linear term against a
closed term.

1.2 Flows and Wirings

We now use the notions we just saw to build an algebra with a product based on
unification. Let us start with a monoid with a partially defined product, which
will be the basis of the construction.

Definition 9 (flows)
A flow is an oriented pair written t↼u with t, u ∈ T such that Var(t) =

Var(u) .
Flows are considered up to renaming: for any renaming α , t↼u = t.α↼u.α .
We will write F the set of (equivalence classes of) flows.
We set I := x↼x and (t↼u)† := u↼t so that (.)† is an involution of F .

A flow t↼u can be thought of as a ‘match ... with u -> t’ in a ML-style
language. The composition of flows follows this intuition.

1 The size of a term is the total number of occurrences of symbols in it.
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Definition 10 (product of flows)
Let u↼v ∈ F and t↼w ∈ F . Suppose we have chosen two representatives of
the renaming classes such that their sets of variables are disjoint.
The product of u↼v and t↼w is defined if v, t are unifiable with MGU
θ (the choice of a MGU does not matter because of the remark following
Definition 5) and in that case: (u↼v)(t↼w) := u.θ↼w.θ .

Definition 11 (action on closed terms)
If t ∈ Tc is a closed term, (u↼v)(t) is defined whenever t and v are unifiable,
with MGU θ , in that case (u↼v)(t) := u.θ

Examples. Composition of flows: (x •c↼ (c •c) •x)(y •z↼z •y)=x •c↼x •c •c .
Action on a closed term: (x •c↼x •c •c)(d •c •c) = d •c .

Remark. The condition on variables ensures that the result is a closed term
(because Var(u) ⊆ Var(v) ) and that the action is injective on its domain of
definition (because Var(v) ⊆ Var(u) ). Moreover, the action is compatible with
the product of flows: l(k(t)) = (l k)(t) and both are defined at the same time.

By adding a formal element ⊥ (representing the failure of unification) to the set
of flows, one could turn the product into a completely defined operation, making
F an inverse monoid. However, we will need to consider the wider algebra of
sums of flows that is easily defined directly from the partially defined product.

Definition 12 (wirings)
Wirings are C-linear combinations of flows (formally: almost-everywhere null
functions from the set of flows F to C ), endowed with the following operations:(∑

i

λi li

)(∑
j

μj kj

)
:=
∑

i,j such that
(likj) is defined

λiμj(li kj) (with λi,μj∈C and li,kj ∈F )

and
(∑

i

λi li

)†
:=
∑
i

λi l
†
i (where λ is the complex conjugate of λ )

We write U the set of wirings and refer to it as the unification algebra.

Remark. Indeed, U is a unital ∗-algebra: it is a C-algebra (considering the
product defined above) with an involution (.)† and a unit I .

Definition 13 (partial isometries)
A partial isometry is a wiring U ∈ U satisfying UU †U = U .

Example. (c •x↼x •d) + (d •c↼c •c) is a partial isometry.
While U offers the general algebraic background to work in, we will need to
consider a particular kind of wirings to study computation.

Definition 14 (concrete and isometric wirings)
A wiring is concrete whenever it is a sum of flows with all coefficients equal
to 1 .
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An isometric wiring is a concrete wiring that is also a partial isometry.
Given a set of wirings E we write E+ for the set of all concrete wirings of E .

Isometric wirings enjoy a direct characterization.

Proposition 15 (isometric wirings)
The isometric wirings are exactly the wirings of the form

∑
i ui↼ti with the

ui pairwise disjoint (Definition 6) and ti pairwise disjoint.

It will be useful to consider the action of wirings on closed terms. For this purpose
we extend Definition 11 to wirings.

Definition 16 (action on closed terms)
Let Vc be the free C-vector space over Tc .
Wirings act on base vectors of Vc in the following way(∑

i

λi li

)
(t) :=

∑
i such that

li(t) is defined

λi
(
li(t)

)
∈ Vc

which extends by linearity into an action on the whole Vc .

Isometric wirings have a particular behavior in terms of this action.

Lemma 17 (isometric action)
Let F be an isometric wiring and t a closed term. We have that F (t) and
F †(t) are either 0 or another closed term t′ (seen as an element of Vc ).

1.3 Tensor Product and Permutations

We define now the representation in U of structures that provide enough
expressivity to model computation.
Unbounded tensor products will allow to represent data of arbitrary size, and
finite permutations will be used to manipulate these data.

Notations. Given any set of wirings or closed terms E , we write Vect(E) the
vector space generated by E , ie. the set of finite linear combinations of elements
of E (for instance Vect(Tc) = Vc ).
Moreover, we set I := { λI | λ ∈ C } (with I = x↼x as in Definition 9)
which is the ∗-algebra of multiples of the identity, and u	 v := u↼v+ v↼u .
For brevity we write “∗-algebra” instead of the more correct “∗-subalgebra of U ”
( ie. a subset of U that is stable by linear combinations, product and (.)† ).

Definition 18 (tensor product)
Let u↼v and t↼w be two flows. Suppose we have chosen representatives of
these renaming classes that have their sets of variables disjoint. We define their
tensor product as (u↼v) ⊗̇ (t↼w) := u •t↼v •w . The operation is extended
to wirings by bilinearity.
Given two ∗-algebras A,B , we define their tensor product as the ∗-algebra

A⊗̇B := Vect
{
F ⊗̇G

∣∣ F ∈ A, G ∈ B
}
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This actually defines an embedding of the algebraic tensor product of ∗-algebras
into U , which means in particular that (F ⊗̇G)(P ⊗̇Q) = (FP ) ⊗̇ (GQ) . It
ensures also that the ⊗̇ operation indeed yields ∗-algebras.
Notation. As • , the ⊗̇ operation is not associative. We carry on our conven-
tion and write it as right associating: A⊗̇B ⊗̇ C := A⊗̇ (B ⊗̇ C) .
Definition 19 (unbounded tensor)
Let A be a ∗-algebra. We define the ∗-algebras A⊗n for all n ∈ N as

A⊗0 := I and A⊗n+1 := A⊗̇A⊗n

and the ∗-algebra A⊗∞ := Vect

(⋃
n∈N

A⊗n

)
.

We will consider finite permutations, but allow them to be composed even when
their domain of definition do not match.
Notations. Let Sn be the set of finite permutations over {1, . . . , n}, if σ ∈ Sn ,
we define σ+k ∈ Sn+k as the permutation σ extended to { 1, . . . , n, . . . , n+ k }
letting σ+k(n+ i) := n+ i for i ∈ { 1, . . . , k } .
We also write Ik := Id{1,...,k} ∈ Sk .

Definition 20 (representation)
To a permutation σ ∈ Sn we associate the flow

[σ] := x1 •x2 • · · · •xn •y↼xσ(1) •xσ(2) • · · · •xσ(n) •y

A permutation σ ∈ Sn will act on the first n components of the unbounded
tensor product (Definition 19) by swapping them and leaving the rest unchanged.
The wirings [σ] internalize this action: in the above definition, the variable y
at the end stands for the components that are not affected.
Example. Let τ ∈ S2 be the permutation swapping the two elements of {1, 2}
and U1 ⊗̇U2 ⊗̇U3 ⊗̇ I ∈ U⊗3 ⊆ U⊗∞ . We have [τ ] = x1 •x2 •y↼x2 •x1 •y and
[τ ](U1 ⊗̇U2 ⊗̇U3 ⊗̇ I)[τ ]† = U2 ⊗̇U1 ⊗̇U3 ⊗̇ I .

Proposition 21 (representation)
For σ ∈ Sn and τ ∈ Sn+k we have

[σ+k] = [σ][In+k] = [In+k][σ] [σ+k ◦ τ ] = [σ][τ ] and [σ−1] = [σ]†

Definition 22 (permutation algebra)
For n ∈ N we set [Sn] := { [σ] | σ ∈ Sn } and Sn := Vect[Sn] .

We define then S := Vect

(⋃
n∈N

Sn

)
, which we call the permutation algebra.

Proposition 21 ensures that the Sn and S are ∗-algebras.
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2 Words and Observations

The representation of words over an alphabet in the unification algebra directly
comes from the translation of Church lists in linear logic and their interpretation
in Geometry of Interaction models [11,16].

This proof-theoretic origin is an useful guide for intuition, even if we give here
a more straightforward definition of the notion.

From now on, we fix a set of two distinguished constant symbols LR := { L, R } .

Definition 23 (word algebra)
To a set S of closed terms, we associate the ∗-algebra

S∗ := Vect{ t↼u | t, u ∈ S }

(which is indeed an algebra because unification of closed terms is simply equality)

The word algebra associated to a finite set of constant symbols Σ is the ∗-algebra
defined as

WΣ := (I ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ (T∗c)
⊗1

( Tc is the set of all closed terms, I is defined at the beginning of Sect.1.3

⊗̇ is as in Definition 18 and (.)⊗1 is the case n = 1 of Definition 19)

The words we consider are cyclic, with a begin/end marker � , a reserved constant
symbol. For example the word 0010 is to be thought of as �0010 = 10�00 =
0�001 = · · · .
We consider therefore that the alphabet Σ always contains the symbol � .

Definition 24 (word representation)
Let W = �c1 . . . cn be a word over Σ and t0, t1, . . . , tn be distinct closed terms.
The representation W (t0, t1, . . . , tn) ∈ W+

Σ with respect to t0, t1, . . . , tn of W
is an isometric wiring (Definition 14), defined as

W (t0, t1, . . . , tn) := x • � •R •(t0 •y)	x •c1 •L •(t1 •y)
+ x •c1 •R •(t1 •y)	x •c2 •L •(t2 •y)
+ · · ·
+ x •cn •R •(tn •y)	x • � •L •(t0 •y)

We now define observations, programs computing on representations of words.
They lie in a particular ∗-algebra based on the representation of permutations
presented in Sect.1.3.

Definition 25 (observation algebra)
An observation over a finite set of symbols Σ is any element of O+

Σ where
OΣ := (T∗c ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ S , i.e. a finite sum of flows of the form

(s′ •c′ •d′↼s •c •d) ⊗̇ [σ]

with s, s′ closed terms, c, c′ ∈ Σ , d, d′ ∈ LR and σ is a permutation.
Moreover when an observation happens to be an isometric wiring, we will call it
an isometric observation.
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3 Normativity: Independence from Representations

We are going to define how observations accept and reject words. This needs
to be discussed, because there is a potential issue with word representations:
an observation is an element of U and can therefore only interact with
representations of a word, and there are many possible representation of the
same word (in Definition 24, different choices of closed terms lead to different
representations). Therefore one has to ensure that acceptance or rejection is
independent of the representation, so that the notion makes the intended sense.
The termination of computations will correspond to the algebraic notion of
nilpotency, which we recall here.

Definition 26 (nilpotency)
A wiring F is nilpotent if Fn = 0 for some n .

Definition 27 (automorphism)
An automorphism of a ∗-algebra A is a linear application ϕ : A → A such that
for all F,G ∈ A : ϕ(FG) = ϕ(F )ϕ(G) , ϕ(F †) = ϕ(F )† and ϕ is injective .

Example. ϕ(U1 ⊗̇U2) := U2 ⊗̇U1 induces an automorphism of U ⊗̇U .
Notation. If ϕ is an automorphism of A and ψ is an automorphism of B ,
we write ϕ ⊗̇ψ the automorphism of A⊗̇B defined for all A ∈ A, B ∈ B as
(ϕ ⊗̇ψ)(A ⊗̇B) := ϕ(A) ⊗̇ψ(B) and extended to all A⊗̇B by linearity.

Definition 28 (normative pair)
A pair (A,B) of ∗-algebras is a normative pair whenever any automorphism ϕ

of A can be extended into an automorphism ϕ of the ∗-algebra E generated by
A ∪ B , such that ϕ(F ) = F for any F ∈ B ⊆ E .

The two following propositions set the basis for a notion of acceptance/rejection
independent of the representation of a word.

Proposition 29 (automorphic representations)
Any two representations W (t0, . . . , tn),W (u0, . . . , un) of a word W over Σ are
automorphic: there exists an automorphism ϕ of (T∗c)

⊗1 such that

(IdU ⊗̇ϕ)
(
W (t0, . . . , tn)

)
=W (u0, . . . , un)

Proof. Consider a bijection f : Tc → Tc such that f(ti) = ui for all i . Then
set ϕ(v •x↼w •x) := f(v) •x↼f(w) •x , extended by linearity. +,
Proposition 30 (nilpotency and normative pairs)
Let (A,B) be a normative pair and ϕ an automorphism of A . Let F ∈ U ⊗̇A ,
G ∈ U ⊗̇B and let ψ := IdU ⊗̇ϕ . Then GF is nilpotent if and only if Gψ(F )
is nilpotent.

Proof. Let ϕ be the extension of ϕ as in Definition 28 and ψ := IdU ⊗̇ϕ .
We have for all n �= 0 that (Gψ(F ))n = (ψ(G)ψ(F ))n = (ψ(GF ))n =
ψ((GF )n) .
By injectivity of ψ , (Gψ(F ))n = 0 if and only if (GF )n = 0 . +,
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Corollary 31 (independence)
If
(
(T∗c)

⊗1,B
)

is a normative pair, W a word over Σ and F ∈ U ⊗̇B . The
product of F with the representation of the word, FW (t0, . . . , tn) , is nilpotent
for one choice of (t0, . . . , tn) if and only if it is nilpotent for all choices of
(t0, . . . , tn) .

The basic components of the word and observation algebras we introduced earlier
can be shown to form a normative pair.

Theorem 32
The pair

(
(T∗c)

⊗1,S
)

is normative.

Proof (sketch). By simple computations, the set

A := Vect
{
σF

∣∣ σ ∈ S and F ∈ (T∗c)
⊗∞ }

can be shown to be a ∗-algebra E , the ∗-algebra generated by S ∪ (T∗c)
⊗1 .

As ϕ is an automorphism of (T∗c)
⊗1 , it can be written as ϕ(G ⊗̇ I) = ψ(G) ⊗̇ I

for all G , with ψ an automorphism of T∗c .
We set for F = F1 ⊗̇ · · · ⊗̇Fn ⊗̇ I ∈ (T∗c)

⊗n , ϕ̃(F ) := ψ(F1) ⊗̇ · · · ⊗̇ψ(Fn) ⊗̇ I
which extends into an automorphism of (T∗c)

⊗∞ by linearity. Finally, we extend
ϕ̃ to A by ϕ(σF ) := σ ϕ̃(F ) . It is then easy to check that ϕ has the required
properties. +,

Remark. Here we sketched a direct proof for brevity, but this can also be shown
by involving a little more mathematical structure (actions of permutations on
the unbounded tensor and crossed products) which would give a more synthetic
proof.

We can then define the notion of the language recognized by an observation, via
Corollary 31.

Definition 33 (language of an observation)
Let φ ∈ O+

Σ be an observation over Σ . The language recognized by φ is the
following set of words over Σ :

L(φ) := {W word overΣ | φW (t0, . . . , tn)nilpotent for any (t0, . . . , tn) }

4 Wirings and Logarithmic Space

Now that we have defined our framework and showed how observations can
compute, we study the complexity of deciding whenever an observation accepts
a word (4.1), and how wirings can recognize any language in (N)Logspace (4.2).
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4.1 Soundness of Observations

The aim of this subsection is to prove the following theorem:

Theorem 34 (space soundness)
Let φ ∈ O+

Σ be an observation over Σ .
• L(φ) is decidable in non-deterministic logarithmic space.
• If φ is isometric, then L(φ) is decidable in deterministic logarithmic space.

Actually, the result stands for the complements of these languages, but as co-
NLogspace = NLogspace by the Immerman-Szelepcsényi theorem, this makes
no difference.

The main tool for this purpose is the notion of computation space: finite
dimensional subspaces of Vc (Definition 16) on which we will be able to observe
the behavior of certain wirings. It can be understood as the place where all the
relevant interactions between an observation and a representation of a word take
place.

Definition 35 (separating space)
A subspace E of Vc is separating for a wiring F whenever F (E) ⊆ E and
Fn(E) = 0 implies Fn = 0 .

Observations are finite sums of wirings. We can naturally associate a finite-
dimensional vector space to an observation and a finite set of closed terms.

Definition 36 (computation space)
Let { t0, . . . , tn } be a set of distinct closed terms and φ ∈ O+

Σ an observation.
Let N(φ) be the smallest integer and S(φ) the smallest (finite) set of closed
terms such that φ ∈ (S(φ)∗ ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ SN(φ) .
The computation space Compφ(t0, . . . , tn) is the subspace of Vc generated by
the terms

s •c •d •( a1 • · · · •aN(φ) • �)

where s ∈ S(φ) , c ∈ Σ , d ∈ LR and the ai ∈ { t0, . . . , tn } .
The dimension of Compφ(t0, . . . , tn) is |S(φ)| |Σ|2(n+1)N(φ) (where |A| is the
cardinal of A ), which is polynomial in n .

Lemma 37 (separation)
For any observation φ and any word W , the space Compφ(t0, . . . , tn) is sepa-
rating for the wiring φW (t0, . . . , tn) .

Proof (of Theorem 34). With these lemmas at hand, we can define the
non-deterministic algorithm below. It takes as an input the representation
W (t0, . . . , tn) of a word W of length n .
φ being a constant, one can compute once and for all N(φ) and S(φ) .
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1: D ← |S(φ)| |Σ|2(n+ 1)N(φ)

2: C ← 0
3: pick a term v ∈ Compφ(t0, . . . , tn)
4: while C ≤ D do
5: if (φW (t0, . . . , tn))(v) = 0 then
6: return ACCEPT
7: end if

8: pick a term v′

in (φW (t0, . . . , tn))(v)
9: v ← v′

10: C ← C + 1
11: end while
12: return REJECT

All computation paths (the “pick” at lines 3 and 8 being non-deterministic
choices) accept if and only if (φW (t0, . . . , tn))

n(Compφ(t0, . . . , tn)) = 0 for some
n lesser or equal to the dimensionD of the computation space Compφ(t0, . . . , tn) .
By Lemma 37, this is equivalent to φW (t0, . . . , tn) being nilpotent.

The term chosen at lines 3 is representable by an integer of size at most D and
is erased by the one chosen at line 8 every time we go through the while-loop.
C and D are integers proportional to the dimension of the computation space,
which is polynomial in n (Definition 36), thus representable in logarithmic space
in the size of the input.

The computation of (φW (t0, . . . , tn))(v) at line 5 and 8 and can be performed
in logarithmic space by Proposition 8, as we are unifying closed terms with linear
terms.

Moreover, if φ is an isometric wiring, (φW (t0, . . . , tn))(v) consists of a single
term instead of a sum by Lemma 17, and there is therefore no non-deterministic
choice to be made at line 8. It is then enough to run the algorithm enumerating
all possible terms of Compφ(t0, . . . , tn) at line 3 to determine the nilpotency of
φW (t0, . . . , tn) . +,

4.2 Completeness: Representing Pointer Machines as Wirings

To prove the converse of Theorem 34, we prove that wirings can encode a special
kind of read-only multi-head Turing Machine: pointers machines. The definition
of this model will be guided by our understanding of the computation of wirings:
they won’t have the ability to write and acceptance will be defined as termination
of all paths of computation. For a survey of this topic, one may consult the first
author’s thesis [21, Chap.4], the main novelty of this part of our work is to notice
that reversible computation is represented by isometric operators.
Definition 38 (pointer machine)
A pointer machine over an alphabet Σ is a tuple (N, S, Δ) where

• N �= 0 is an integer, the number of pointers,
• S is a finite set, the states of the machine,
• Δ ⊆ (S×Σ × LR)× (S×Σ × LR)×SN , the transitions of the machine

(we will write (s, c, d)→ (s′, c′, d′)× σ the transitions, for readability).
A pointer machine will be called deterministic if for any A ∈ S×Σ× LR , there
is at most one B ∈ S×Σ×LR and one σ ∈ SN such that A→ B×σ ∈ Δ . In
that case we can see Δ as a partial function, and we say that M is reversible
if Δ is a partial injection.
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We call the first of the N pointers the main pointer, it is the only one that can
move. The other pointers are referred to as the auxiliary pointers. An auxiliary
pointer will be able to become the main pointer during the computation thanks
to permutations.

Definition 39 (configuration)
Given the length n of a word W = �c1 . . .cn over Σ and a pointer machine
M = (N, S, Δ) , a configuration of (M,n) is an element of

S×Σ × LR× {0, 1, . . . , n}N

The element of S is the state of the machine and the element of Σ is the letter
the main pointer points at. The element of LR is the direction of the next move of
the main pointer, and the elements of {0, 1, . . . , n}N correspond to the positions
of the (main and auxiliary) pointers on the input.
As the input tape is considered cyclic with a special symbol marking the
beginning of the word (recall Definition 24), the pointer positions are integers
modulo n+ 1 for an input word of length n .

Definition 40 (transition)
Let W be a word and M = (N, S, Δ) be a pointer machine. A transition of M
on input W is a triple of configurations

s, c, d, (p1, . . . , pN )
MOVE−−−→ s, c′, d, (p′1, . . . , p

′
N )

SWAP−−−→ s′, c′′, d′, (p′σ(1), . . . , p
′
σ(N))

such that

1. if d ∈ LR , d is the other element of LR ,
2. p′1 = p1 + 1 if d = R and p′1 = p1 − 1 if d = L ,
3. p′i = pi for i �= 1 ,
4. c is the letter at position p1 and c′ is the letter at position p′1 ,
5. and (s, c′, d)→ (s′, c′′, d′)× σ belongs to Δ .

There is no constraint on c′′ , but every time this value differs from the letter
pointed by p′σ(1) , the computation will halt on the next MOVE phase, because
there is a mismatch between the value that is supposed to have been read and
the actual bit of W stored at this position, and that would contradict the first
part of item 4. In terms of wirings, the MOVE phase corresponds to the application
of the representation of the word, whereas the SWAP phase corresponds to the
application of the observation.

Definition 41 (acceptance)
We say that M accepts W if any sequence of transitions

(
Ci

MOVE−−−→ C′
i

SWAP−−−→
C′′

i

)
such that C′′

i = Ci+1 for all i is necessarily finite.
We write L(M) the set of words accepted by M .
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This means informally: we consider that a pointer machine accepts a word if it
cannot ever loop, from whatever configuration it starts from. That a lot of paths
of computation accepts “wrongly” is no worry, since only rejection is meaningful:
our pointer machines compute in a “universally non-deterministic” way, to stick
to the acceptance condition of wirings, nilpotency.

Proposition 42 (space and pointer machines)
If L ∈ NLogspace , then there exist a pointer machine M such that L(M) =

L . Moreover, if L ∈ Logspace then M can be chosen to be reversible.

Proof (sketch). It is well-known [22] that read-only Turing Machines – or
equivalently (non-)Deterministic Multi-Head Finite Automata – characterize
(N)Logspace. It takes little effort to see that our pointer machines are just
a reasonable rearrangement of this model, since it is always possible to encode
the missing information in the states of the machine.
That acceptance and rejection are “reversed” is harmless in the deterministic (or
equivalently reversible [23]) case, and uses that co-NLogspace = NLogspace
to get the expected result in the non-deterministic case. +,

As we said, our pointer machines are designed to be easily simulated by wirings,
so that we get the expected result almost for free.

Theorem 43 (space completeness)
If L ∈ NLogspace , then there exist an observation φ ∈ O+

Σ such that L(φ) =
L . Moreover, if L ∈ Logspace then φ is an isometric wiring.

Proof. By Proposition 42, there exists a pointer machine M = (N, S, Δ) such
that L(M) = L. We associate to the set S a set of distinct closed terms [S] and
write [s] the term associated to s . To any element D = (s, c, d)→ (s′, c′, d′)×σ
of Δ we associate the flow

[D] := ([s′] •c′ •d′↼ [s] •c •d) ⊗̇ [σ] ∈ ([S]∗ ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ Sn ⊆ O+
Σ

and we define the observation [M ] ∈ O+
Σ as

∑
D∈Δ

[D] .

One can easily check that this translation preserves the language recognized
(there is even a step by step simulation of the computation on the word W by the
wiring [M ]W (t0, . . . , tn) ) and relates reversibility with isometricity: in fact, M
is reversible if and only if [M ] is an isometric wiring. Then, if L ∈ Logspace ,
M is deterministic and can always be chosen to be reversible [23]. +,

Discussion

The language of the unification algebra gives us a twofold point of view on
computation, either through algebraic structures (that are described finitely
by wirings) or pointer machines. We may therefore start exploring possible
variations of the construction, combining intuitions from both worlds.
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For instance, the choice of a normative pair can affect the expressivity of
the construction: the more restrictive the notion of representation of a word is,
the more liberal that of an observation can become, as suggested by T. Seiller.
Whether and how this can affect the corresponding complexity class is definitely
a direction for future work.

Another pending question about this approach to complexity classes is to
delimit the minimal prerequisites of the construction, its core.
Earlier works [13,14,15] made use of von Neumann algebras to get a setting that
is expressive enough, we lighten the construction by using simpler objects. Yet,
the possibility of representing the action of permutations on a unbounded tensor
product is a common denominator that seems deeply related to logarithmic space
and pointer machines.

The logical counterpart of this work also needs clarifying. Indeed, the idea
of representation of words comes directly from proof-theory, while the notion of
observation does not seem to correspond to any known logical construction.

Finally, execution in our setting being based on iteration of matching, which
is computable efficiently by a parallel machine, it seems possible to relate our
modelisation with parallel computation.
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Abstract. Ramsey Theorem for pairs is a combinatorial result that can-
not be intuitionistically proved. In this paper we present a new form of
Ramsey Theorem for pairs we call H-closure Theorem. H-closure is a
property of well-founded relations, intuitionistically provable, informative,
and simple to use in intuitionistic proofs. Using our intuitionistic version
of Ramsey Theorem we intuitionistically prove the Termination Theorem
by Poldenski and Rybalchenko. This theorem concerns an algorithm infer-
ring termination for while-programs, and was originally proved from the
classical Ramsey Theorem, then intuitionistically, but using an intuition-
istic version of Ramsey Theorem different from our one. Our long-term
goal is to extract effective bounds for the while-programs from the proof
of Termination Theorem, and our new intuitionistic version of Ramsey
Theorem is designed for this goal.

Keywords: Intuitionism, Ramsey Theorem, inductive definitions,
termination of while-programs.

1 Introduction

Podelski and Rybalchenko [1] defined an algorithm taking in input an imperative
programmade with the instructionswhile, if and assignment, and able to decide
in some case whether the program is terminating or not, and in some other cases
leaving the question open. The authors prove a result they call the Termination
Theorem, stating the correctness of their algorithm. The authors use in their
proof Ramsey Theorem for pairs [2], from now on called just “Ramsey” for
short. Ramsey is a classical result that cannot be intuitionistically proved: we
refer to [3] for a detailed analysis of the minimal classical principle required to
prove Ramsey. According to the Π0

2 -conservativity of Classical Analysis w.r.t.
Intuitionistic Analysis [4], the proof of Termination Theorem hides some effective
bounds for the while program which the theorem shows to terminate. Our long-
term goal is to find them, by first turning the proof of Termination Theorem
into an intuitionistic proof.

Our first step is to formulate a version of Ramsey which has a purely in-
tuitionistic proof, that is, a proof which does not use Excluded Middle, nor
Brouwer Thesis nor Choice. Our version of Ramsey is informative, in the sense
that it has no negation, while it has a disjunction. We say that a relation R

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 93–107, 2014.
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is H-well-founded if the tree of all R-decreasing transitive sequences is well-
founded. We express Ramsey as a property of well-founded relations, saying
that H-well-founded relations are closed under finite unions. For short we will
call this statement the H-closure Theorem. Thus, we are able to split the proof
of Ramsey into two parts: the intuitionistic proof of the H-closure Theorem,
followed by an easy classical proof of the equivalence between Ramsey and the
H-closure Theorem.

The result closest to H-closure we could find is by Coquand [5]. Coquand, as
Veldman and Bezem did before him [6], considers almost full relations and proves
that they are closed under finite intersections. Veldman and Bezem use Choice
Axiom of type 0 (if ∀x ∈ N.∃y ∈ N.C(x, y), then ∃f : N→ N.∀x ∈ N.C(x, f(x)))
and Brouwer’s thesis. Coquand’s proof, instead, is purely intuitionistic, and it
may be used to give a purely intuitionistic proof of the Termination Theorem
[7]. However, it is not evident what are the effective bounds hidden in Coquand’s
proof of Termination Theorem. If we compare H-closure with the Almost Full
Theorem, in the most recent version by Coquand [5], we find no easy way to
intuitionistically deduce one from the other, due to the use of de’ Morgan laws
to move from the definition of almost full to the definition of H-closure. H-
closure is in a sense more similar to the original Ramsey Theorem, because
it was obtained from it with just one classical step, a contrapositive (see §2),
while almost fullness requires one application of de’ Morgan Law, followed by
a contrapositive. We expect that H-closure, hiding one application less of de’
Morgan laws, should be a version of Ramsey simpler to use in intuitionistic
proofs and for extracting bounds.

Our motivation for producing a new intuitionistic version of Ramsey is to
provide a new intuitionistic proof of the Termination Theorem. We expect that,
by analysing this new proof, we will be able to extract effective bounds from the
Termination Theorem, and possibly, from other concrete applications of Ramsey.

This is the plan of the paper. In section 2 we present Ramsey Theorem for
pairs and we informally introduce H-closure. In section 3 we formally define
inductive well-foundedness and H-well-foundedness, whose main properties are
stated in section 4. The goal of section 5 is to present what we call Nested Fan
Theorem, which is a part of the proof of the H-closure Theorem, as shown in
section 6. In section 7 we intuitionistically prove the Termination Theorem. In
section 8 we compare our result with the previous works along the same line and
we draw some conclusions. Unless explicitly stated, our proofs use intuitionistic
second order arithmetic, without Choice Axiom, Brouwer Thesis, Bar-Induction.

2 Ramsey Theorem and a Variant of It, H-Closure

We first recall the statement of Ramsey Theorem for pairs, just Ramsey for short.
Assume G is a countable non-oriented graph which is complete, i.e., between any
two different elements of G there is exactly one edge in G. Assume we “colored”
the edges of G with n > 0 different colors, that is, we partioned the edges of G
into n sets. Then there is an infinite set X ⊆ G such that all the edges between
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any two different x, y ∈ X have the same color: for some k = 1, . . . , n, all the
edges of X fall in the k-th subset of the partition. We call X an homogenous set
of color k.

Assume σ = x0, x1, . . . , xn, . . . is an injective enumeration of the elements of
G, that is: G = range(σ). We represent a non-oriented edge, between two points
xi, xj in G with j < i, by the pair (i, j), arbitrarily oriented from i to j. The
opposite edge from xj to xi is the same edge of G, and it is again represented
with (i, j). Thus, a partition of edges in n sets S1, . . . , Sn may be represented
by a partition of the set {(xi, xj) : j < i} into n binary relations S1, . . . , Sn.
Therefore one possible formalization of Ramsey is the following.

Theorem 1 (Ramsey for pairs [2]). Assume I is a set having some injective
enumeration σ = x0, x1, . . . , xi, . . .. Assume S1, . . . , Sn are binary relations on I
which are a partition of {(xi, xj) ∈ I × I : j < i}, that is:
1. S1 ∪ · · · ∪ Sn = {(xi, xj) ∈ I × I : j < i}
2. for all 1 ≤ k < h ≤ n: Sk ∩ Sh = ∅.

Then for some k = 1, . . . , n there exists some infinite X ⊆ N such that: ∀i, j ∈
X.(j < i =⇒ xiSkxj).

In the statement above three assumptions may be dropped.

1. First of all, we may drop the assumption that S1, . . . , Sn are pairwise dis-
joint. Suppose we do. Then, if we set S′1 = S1, S

′
2 = S2\S′1, S′3 = S3\(S′1∪S′2),

. . . , we obtain a partition S′1, . . . , S
′
n of {(xi, xj) : j < i}. Therefore there

exists a k = 1, . . . , n and some infinite X ⊆ N, such that ∀i, j ∈ X.(j <
i =⇒ xiS

′
kxj), and with more reason, ∀i, j ∈ X.(j < i =⇒ xiSkxj).

2. Second, we may drop the assumption “σ is injective” (in this case, range(σ)
may be a finite set). Assume we do. Then, if we set S′k = {(i, j) : xiSkxj}
for all k = 1, . . . , n, we obtain n relations S′1, . . . , S

′
k on N, whose union

is the set {(i, j) ∈ N× N : j < i}. Therefore there exists a k = 1, . . . , n and
some infinite X ⊆ N, such that ∀i, j ∈ X.(j < i =⇒ iS′kj), and with more
reason, ∀i, j ∈ X.(j < i =⇒ xiSkxj).

3. Third, we may drop the assumption that σ is an enumeration of I. Sup-
pose we do. Then, if we restrict S1, . . . , Sn to I0 = range(σ), we ob-
tain some binary relations S′1, . . . , S′n on I0 such that S′1 ∪ . . . ∪ S′n =
{(xi, xj) ∈ I0 × I0 : j < i}. Again, we conclude that there exists some k =
1, . . . , n and some infiniteX ⊆ N, such that ∀xi, xj ∈ X.(j < i =⇒ xiS

′
kxj),

and with more reason, ∀i, j ∈ X.(j < i =⇒ xiSkxj).

Summing up, we showed that, classically, we may restate Ramsey Theorem as
follows:

For all sequences σ = x0, x1, x2, . . . on I, if ∀i, j ∈ N.(j < i =⇒ xi(S1∪ . . .∪
Sn)xj), then for some k there is some infinite X ⊆ N, such that ∀i, j ∈ X.(j <
i =⇒ xiSkxj).

It is likely that even this statement cannot be intuitionistically proved, because
the sequence τ is akin to an homogeneous set, and there is no effective way to
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produce homogeneous sets (see for instance [3]). By taking the contrapositive,
we obtain the following corollary:

If for all k = 1, . . . , n, all sequences τ = y0, . . . , yn, . . . such that ∀i, j ∈
N.(j < i =⇒ yiSkyj) are finite, then all sequences σ = x0, . . . , xn, . . . such that
∀i, j ∈ N.(j < i =⇒ xi(S1 ∪ . . . ∪ Sn)xj) are finite.

It is immediate to check that, classically, this is yet another version of Ramsey.
We call this property classical H-closure.

Let us callH(S) the set of all lists such that 1 ≤ j < i ≤ n implies xiSxj . Then
classical H-closure may be restated as follows: if S1, . . . , Sn are binary relations
over some set I, andH(S1), . . . ,H(Sk) are sets of lists well-founded by extension,
then H(S1 ∪ . . . ∪ Sk) is a set of list well-founded by extension. Thus, classical
H-closure is a property classically equivalent to Ramsey Theorem, but which
is about well-founded relations. In Proof Theory, there is plenty of examples of
classical proofs of well-foundedness which are turned into intuitionistic proofs,
and indeed from H-closure we will obtain an intuitionistic version of Ramsey.

There is a last step to be done. We call intuitionistic H-closure, or just H-
closure for short, the statement obtained by replacing, in classical H-closure, the
classical definition of well-foundedness (all decreasing sequences are finite) with
the inductive definition of well-foundedness, which is customary in intuitionistic
logic. We will recall the inductive definition of well-foundedness in §3.1: thus, for
the formal definition of H-well-foundedness we have to wait until §3.2.

3 Well-Founded Relations

In this section we introduce the main objects we will deal with in this paper:
well-founded relations.

We will use I, J, . . . to denote sets, R, S, T, U will denote binary relations,
X, Y, Z will be subsets, and x, y, z, t, . . . elements. We identify the properties
P (·) of elements of I with their extensions X = {x ∈ I : P (x)} ⊆ I.

Let R be a binary relation on I. Classically x ∈ I is R-well-founded if there
is no infinite decreasing R-chain . . . xnRxn−1R . . . x1Rx0 = x from x in I. Clas-
sically R is well-founded if and only if every x ∈ I is R-well-founded.

The inductive definition of well-founded relations is more suitable than the
classical one in the intuitionistic proofs. In the first subsection we introduce this
definition; in the last subsection we present the definition of H-well-foundedness,
which is fundamental to state the new intuitionistic form of Ramsey Theorem.

3.1 Intuitionistic Well-Founded Relations

The intuitionistic definition of well-founded relation uses the definition of induc-
tive property. For short we will say that a relation is “well-founded” to say that
it is intuitionistically well-founded.

Let R be a binary relation on I. A property is R-inductive if whenever
it is true for all R-predecessors of a point it is true for the point. x ∈ I is
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R-well-founded if and only if it belongs to every R-inductive property; R is
well-founded if every x in I is R-well-founded. Formally:

Definition 1. Let R be a binary relation on I.

– A property X ⊆ I is R-inductive if and only if INDR
X ; where

INDR
X := ∀y. (∀z. (zRy =⇒ z ∈ X) =⇒ y ∈ X).

– An element x ∈ I is R-well-founded if and only if WFR(x); where
WFR(x) := ∀X.

(
INDR

X =⇒ x ∈ X
)
.

– R is well-founded if and only if WF(R); where WF(R) := ∀x.WFR(x).

A binary structure, just a structure for short, is a pair (I, R), where R is a
binary relation on I. We say that (I, R) is well-founded if R is well-founded.

We need to introduce also the notion of co-inductivity. A property X is R-co-
inductive in y ∈ I if it satisfies the inverse property ofR-inductive: if the property
X holds for a point, then it holds also for all its R-predecessors. Formally:

Definition 2. Let R be a binary relation on I.

– A property X is R-co-inductive in y ∈ I if and only if CoINDR
X(y); where

CoINDR
X(y) := ∀z. (zRy =⇒ z ∈ X) .

– A property X is R-co-inductive if and only if CoINDR
X ; where

CoINDR
X := ∀y.(y ∈ X =⇒ ∀z. (zRy =⇒ z ∈ X)).

In general we will intuitionistically prove that if there exists an infinite de-
creasing R-chain from x then x is not R-well-founded. Classically, and by using
the Axiom of Choice, x is R-well-founded if and only if there are no infinite
decreasing R-chains from x, and R is well-founded if and only if there are no
infinite decreasing R-chains in I.

3.2 H-Well-Founded Relations

In order to define H-well-foundedness we need to introduce some notations.
We denote a list on I with 〈x1, . . . , xn〉; 〈〉 is the empty list. We define the
operation of concatenation of two lists on I in the natural way as follows:
〈x1, . . . , xn〉∗〈y1, . . . , ym〉 = 〈x1, . . . , xn, y1, . . . , ym〉. We define the relation of
one-step expansion ( between two lists (L, M) on the same I, as L ( M ⇐⇒
L =M∗〈y〉, for some y.

Definition 3. Let R be a binary relation on I.

– H(R) is the set of the R-decreasing transitive finite sequences on I:

〈x1, . . . , xn〉 ∈ H(R) ⇐⇒ ∀i, j ∈ [1, n].i < j =⇒ xjRxi.

– R is H-well-founded if H(R) is (-well-founded.
H-well-founded relations are more common than well-founded relations.

Proposition 1. 1. R well-founded implies that R H-well-founded.
2. R H-well-founded and R transitive imply that R well-founded
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4 Basic Properties of Well-Founded Relations

There are several methods to intuitionistically prove that a binary relation R is
well-founded by using the well-foundedness of another binary relation S.

The goal of this section is to prove these results. In §4.1 we are going to define
simulation relations, in §4.2 we introduce some operations which preserve well-
foundedness, while in §4.3 we will show the main properties of well-foundedness.

4.1 Simulation Relations

A simulation relation is a binary relation which correlates two other binary
relations.

Definition 4. Let R be a binary relation on I and S be a binary relation on J .
Let T be a binary relation on I × J .
– Domain of T . dom(T ) = {x ∈ I : ∃y ∈ J.xTy}.
– Morphism. f : (I, R) → (I, S) is a morphism if f is a function such that
∀x, y ∈ I.xRy =⇒ f(x)Sf(y).

– Simulation. T is a simulation of R in S if and only if it is a relation and

∀x, z ∈ I.∀y ∈ J. ((xTy ∧ zRx) =⇒ ∃t ∈ J. (tSy ∧ zT t))
– Total simulation. A simulation relation T of R in S is total if dom(T ) = I.
– Simulable. R is simulable in S if there exists a total simulation relation T

of R in S.

If we have a simulation T of R in S and xTy holds, we can transform each
finite decreasing R-chain in I from x in a finite decreasing S-chain in J from
y. By using the Axiom of Choice this result holds also for infinite decreasing
R-chains from a point in dom(T ). Then if there are no infinite decreasing S-
chains in J there are no infinite decreasing R-chains in dom(T ). If, furthermore,
the simulation is total there are no infinite decreasing R-chains in I. By using
classical logic and the Axiom of Choice we may conclude that if S is well-founded
and T is a total simulation relation of R in S then R is well-founded. In the last
subsection of this section we will present an intuitionistic proof of this result
that does not use the Axiom of Choice.

We may see binary relations as abstract reduction relations. Recall that an
abstract reduction relation is a simply binary relation (for example rewriting
relations). A reduction relation is said to be terminating or strongly normalizing
if and only if there are no infinite chains [8]. Observe that we use simulation
to prove well foundedness and this is the same method used for labelled state
transition systems [9]; for us every set of labels is a singleton.

4.2 Some Operations on Binary Structures

In this subsection we introduce some operations mapping binary structures
into binary structures. In §4.3 we prove that these operations preserves well-
foundedness.

The first operation is the successor operation (adding a top element).
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Definition 5. Let R be a relation on I and let / be an element not in I. We
define the relation R + 1 = R ∪ {(x,/) : x ∈ I} on I + 1 = I ∪ {/}. We define
the successor structure of (I, R) as (I, R) + 1 = (I + 1, R+ 1).

Another operation on binary structures is the relation defined by components,
inspired by the order by components.

Definition 6. Let R be a binary relation on I, and let S be a binary relation
on J . The relation R⊗ S of components R, S is defined as below:

R⊗ S := (R ×Diag(J)) ∪ (Diag(I)× S) ∪ (R× S),

where Diag(X) = {(x, x) : x ∈ X}.

Equivalently R⊗ S is defined for all x, x′ ∈ I and for all y, y′ ∈ J by:

(x, y)R ⊗ S(x′, y′) ⇐⇒
((xRx′) ∧ (y = y′)) ∨ ((x = x′) ∧ (ySy′)) ∨ ((xRx′) ∧ (ySy′)) .

If R, S are orderings then R⊗ S is the componentwise ordering, also called the
product ordering. In this case R⊗ S = R× S, while in general R ⊗ S ⊇ R× S.

4.3 Properties of Well-Foundedness

Now we may list the main intuitionistic properties of well-founded relations.

Proposition 2. Let R be a binary relation on I, and let S be a binary relation
on J .

1. Well-foundedness is both an inductive and a co-inductive property:

x is R-well-founded ⇐⇒ ∀y.(yRx =⇒ y is R-well-founded ).

2. If R, S are well-founded, then R⊗ S is well-founded.
3. If T is a simulation of R in S and if xTy and y is S-well-founded, then x

is R-well-founded.
4. If T is a simulation of R in S and S is well-founded, then dom(T ) is R-

well-founded.
5. If R is simulable in S and S is well-founded, then R is well-founded.
6. If f : (I, R) → (J, S) is a morphism and if S is well-founded, then R is

well-founded.
7. If R is included in S and S is well-founded then R is well-founded.

Corollary 1. Let R be a binary relation on I. (I, R) well-founded implies that
(I, R) + 1 well-founded.

Corollary 2. Let R be a binary relation on I and x ∈ I. If there exists an
infinite decreasing R-chain from x, then x is not R-well-founded.
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So the intuitionistic definition of well-founded intuitionistically implies the
classical definition; while the other implication is purely classical.

When I and R are finite, we may characterize the well-foundedness and the
H-well-foundedness in an elementary way.

Definition 7. Let R be a binary relation on I and x ∈ I. A finite sequence
〈x0, . . . , xn〉 is an R-cycle from x if n > 0 and

x = xnRxn−1Rxn−2R . . . Rx0 = x.

If n = 1 (that is, if xRx), we call the R-cycle an R-loop.

Proposition 3. Assume I = {x1, . . . , xk} for some k ∈ N. Let R be any binary
relation on I.

1. R is well-founded if and only if there are no R-cycles.
2. R is H-well-founded if and only if there are no R-loops.

Thanks to Proposition 3 we may prove H-closure Theorem if R1, . . . , Rn are
relations over a finite set I. In fact R = (R1 ∪R2 ∪ · · · ∪Rn) is H-well-founded
if and only if there are no R-loops. This is equivalent to: there are no Ri-loops
for any i ∈ [1, n]. Hence R is H-well-founded if and only if for each i ∈ [1, n], Ri

is H-well-founded.
Now we want to prove H-closure Theorem for any set I.

5 An Intuitionistic Version of König’s Lemma

In this section we deal with binary trees. In the first part we introduce binary
trees with some equivalent definitions, while in the second part we use binary
trees to prove an intuitionistic version of König Lemma for nested binary trees
(binary trees whose nodes are themselves binary trees), which we call Nested Fan
Theorem. As in the classical case [3], there is a strong link between intuitionistic
Ramsey Theorem and Nested Fan Theorem.

5.1 Binary Trees

Let R be a binary relation. Then we can define the set of all binary trees where
each child node is in relation R with its father node. If R is well-founded, this set
will be well-founded with respect to the relation “one-step extension” between
trees.

A finite binary tree may be defined in many ways, the most common runs as
follows.

Definition 8. A finite binary tree on I is defined inductively as an empty tree,
called Nil, or a triple composed by one element of I and two trees, called imme-
diate subtrees: so we have Tr = Nil or Tr = 〈x,Tr1,Tr2〉.

BinTr = {Tr : Tr is a binary tree }
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Let Tr = 〈x,Tr1,Tr2〉, then

– Tr is a tree with root x;
– if Tr1 = Tr2 = Nil, we will say that Tr is a leaf-tree;
– if Tr1 �= Nil and Tr2 = Nil, we will say that Tr has exactly one left child;
– if Tr1 = Nil and Tr2 �= Nil, we will say that Tr has exactly one right child;
– if Tr1 �= Nil and Tr2 �= Nil, we will say that Tr has two children: one right

child and one left child.

A binary tree may be also define as a labelled oriented graph on I, empty
(if Tr = Nil) or with a special element, called root, which has exactly one path
from the root to any node. Each edge is labelled with a color c ∈ C = {1, 2} in
such a way that from each node there is at most one edge in each color.

Equivalently we may define firstly colored lists and then the binary tree as a
set of some colored lists.

Definition 9. A colored list (L, f) is a pair, where L = 〈x1, . . . , xn〉 is a list
on I equipped with a list f = 〈c1, . . . , cn−1〉 on C = {1, 2}. nil = (〈〉, 〈〉) is the
empty colored list and ColList(C) is the set of the colored lists with colors in C.

We should imagine that the list L is drawn as a sequence of its elements and
that for each i ∈ [1, n − 1] the segment (xi, xi+1) has color ci. Observe that if
L = 〈〉 or if L = 〈x〉, then f = 〈〉: if there are no edges in L, then there are no
colors (L, f).

We use λ, μ, . . . to denote colored lists in ColList(C). Let c ∈ C. We define
the composition of color c of two colored lists by connecting the last element of
the first list (if any) with the first of the second list (if any) with an edge of color
c. Formally we set nil ∗cλ = λ∗c nil = λ, and (L, f)∗c(M, g) = (L∗M, f∗〈c〉∗g)
whenever L,M �= nil.

We can define the relation one-step extension on colored lists: (c is the one-
step extension of color c and (col is the one-step extension of any color. Assume
C = {1, 2} and x ∈ I and λ, μ ∈ ColList(C). Then we set:

– λ∗c(〈x〉, 〈〉) (c λ.
– λ (col μ if λ (c μ for some c ∈ C.

Now we can equivalently define a binary tree on I as a particular set of some
colored lists.

Definition 10. A binary tree Tr is a set of colored lists on I, such that:

1. nil is in Tr;
2. If λ ∈ Tr and λ (col μ, then μ ∈ Tr;
3. Each list in Tr has at most one one-step extension for each color c ∈ C: if
λ1, λ2, λ ∈ Tr and λ1, λ2 (c λ, then λ1 = λ2.

For all sets L ⊆ ColList(C) of colored lists, BinTr(L) is the set of binary trees
whose branches are all in L.
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For instance the empty tree is the set Nil = {nil}. From (〈x〉, 〈〉) (c nil we
deduce that there is at most one (〈x〉, 〈〉) ∈ Tr: x is root of Tr. The leaf-tree of
root x is equal to {(〈x〉, 〈〉), nil}. The tree with only one root x and two children
y, z is equal to

{(〈x, y〉, 〈1〉), (〈x, z〉, 〈2〉), (〈x〉, 〈〉), nil} .
The last definition we need is the one-step extension (T between binary trees;

Tr′ (T Tr if Tr′ has one leaf more than Tr.

Definition 11 (One-step extension for binary trees). If Tr is a binary tree
and λ ∈ Tr and μ (c λ and λ′ (c λ for no λ′ ∈ Tr, then

Tr∪{μ} (T Tr

5.2 Nested Fan Theorem

König Lemma is a result of classical logic which guarantees that if every branch
of a binary tree is finite then the tree is finite.

There exists a corresponding intuitionistic result, intuitionistically weaker
than the original one that we may state as follows.

Lemma 1 (Fan Theorem). Each inductively well-founded binary tree is finite.

Here we are interested to an intuitionistic version of Fan Theorem for nested
trees (trees whose nodes are trees), that we will call Nested Fan Theorem.

Let consider a tree Tr whose nodes are finite binary trees, and whose fa-
ther/child relation between nodes is the one-step extension (T . Classically we
may say: if for each branch of Tr the union of the nodes in this branch is a binary
tree with only finite branches, then each branch of Tr is finite.

In the intuitionistic proof of the intuitionistic Ramsey Theorem we will use an
intuitionistic version of this statement, in which the finitess of the branches is re-
placed by inductive well-foundedness of branches. Intuitionistic Nested Fan The-
orem states that if a set of colored lists L is well-founded then the set BinTr(L),
of all binary trees whose branches are all in L, is well-founded.

Lemma 2 (Intuitionistic Nested Fan Theorem). Let C = {1, 2} be a set
of colors and let L ⊆ ColList(C) be any set of colored lists with all colors in C.
Then

(L,(col) is well-founded =⇒ (BinTr(L),(T ) is well-founded.

Proof (sketch). Let c ∈ C, λ ∈ ColList(C). We define BinTr(L, λ, c) as the set
of binary trees {Tr ∈ BinTr(L) : λ∗cTr ⊆ L}. BinTr(L, λ, c) is the set of trees
occurring in some tree of BinTr(L), as immediate subtree number c of the last
node of the branch λ. For instance, BinTr(L, nil, c) = BinTr(L).

Since L is well-founded, it can be proved that (BinTr(L, λ, c),(T ) is well-
founded for all λ ∈ L by induction over λ. The thesis will follow if we set
λ = nil, c = 1 (a dummy value).
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6 An Intuitionistic Form of Ramsey Theorem

In this section we present a new intuitionistic version of Ramsey Theorem, the
H-closure Theorem. In the first part of the section we state it and we prove the
easy classical equivalence between it and Ramsey Theorem, in the second part
we prove the H-closure Theorem.

6.1 Stating an Intuitionistic Form of Ramsey Theorem

In [3] we proved that the first order fragment of Ramsey Theorem is equivalent to
the purely classical principle Σ0

3- LLPO [10], so it is not an intuitionistic result.
The H-closure Theorem is a version of Ramsey Theorem intuitionistically valid.

Theorem 2. [H-closure Theorem] The H-well-founded relations are closed un-
der finite unions:

(R1, . . . , Rn H-well-founded) =⇒ ((R1 ∪ · · · ∪Rn) H-well-founded).

H-closure Theorem is classically true, because there exists a simple classical
proof of the equivalence between Ramsey Theorem and H-closure Theorem.
This is one reason for finding an intuitionistic proof of H-closure Theorem: it
splits the proof of Ramsey Theorem into two parts, one intuitionistic and the
other classical but simple (it could be proved using the sub-classical principle
LLPO-3 [3]). We claim we may derive Ramsey for recursive colorings in Heyting
Arithmetic plus the following sub-classical schema:

Assume T is an infinite r.e. k-branching tree. There is an arithmetical formula
defining a branch r of T and some i ≤ k such that r includes infinitely many
“i-children”.

6.2 Proving the Intuitionistic Form Ramsey Theorem

We introduce a particular set of colored lists: the (R1, R2)-colored lists. This set
will be well-founded if R1, R2 are H-well-founded. Let (L, f) be a colored list.
We say that (L, f) is a (R1, R2)-colored list if for every segment (xi, xi+1) of
(L, f), if it has color k ∈ {1, 2} then xi is Rk-greater than all the elements of L
that follows it. Informally, a sequence is a (R1, R2)-colored list if whenever the
sequence decreases w.r.t. Ri, then it remains smaller w.r.t. to Ri. Formally:

Definition 12. (L, f) ∈ ColList(C) is a R1, R2-colored list if either L = 〈〉 and
f = 〈〉 or L = 〈x1, . . . , xn〉, f = 〈c1, . . . , cn−1〉, and

∀i ∈ [1, n− 1].(ci = k =⇒ (∀j ∈ [1, n].i < j =⇒ (xjRkxi))).

ColList(R1, R2) ⊆ ColList(C) is the set of (R1, R2)-colored lists.
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We may think of a (R1, R2)-colored list as a simultaneous construction of one
R1-decreasing transitive list and one R2-decreasing transitive list. We call an
Erdős-tree over R1, R2, a (R1, R2)-tree for short, any binary tree whose branches
are all in ColList(R1, R2). Erdős-trees are inspired by the trees used first by
Erdős then by Jockusch in their proofs of Ramsey [11], hence the name. We may
think of a (R1, R2)-tree as a simultaneous construction of many R1-decreasing
transitive lists and many R2-decreasing transitive lists.

BinTr(ColList(R1, R2)) is the set of all (R1, R2)-trees. We will considering
the one-step extension (col on colored lists in ColList(R1, R2), and the one-step
extension (T on binary trees in BinTr(ColList(R1, R2)).

Now we note that each one-step step extension in a R1 ∪R2-decreasing tran-
sitive list may be simulated as an one-step step extension of some Erdős-tree on
(R1, R2), that is, as an one-step extension either of one R1-decreasing transitive
list or of oneR2-decreasing transitive list, among those associated to the branches
of the (R1, R2)-tree. From the well-foundedness of the set BinTr(ColList(R1, R2))
of Erdős-trees we will derive our intuitionistic version of Ramsey Theorem.

Lemma 3. (Simulation) Let R1, R2 be binary relations on a set I.

1. (ColList(R1, R2),(col) is simulable in (H(R1)×H(R2),( ⊗ () + 1.
2. H(R1 ∪R2,() is simulable in (BinTr(ColList(R1, R2)),(T ).

Corollary 3. Let R1, R2 be binary relations H-well-founded on a set I.

1. The set (ColList(R1, R2),(col) of R1, R2-colored lists is well-founded.
2. The set (BinTr(ColList(R1, R2)),(T ) is well-founded.

Proof. 1. (H(R1)×H(R2),( ⊗ () is well-founded by Proposition 2.2, since its
components are. By Corollary 1, (H(R1)×H(R2),( ⊗ ()+1 is well-founded.
Since (ColList(R1, R2),(col) is simulable in (H(R1)×H(R2),( ⊗ ()+ 1 by
Lemma 3, then it is well-founded by Proposition 2.5.

2. Since (ColList(R1, R2),(col) is well-founded thanks to the previous point,
(BinTr(ColList(R1, R2)),(T ) is well-founded by Lemma 2.

Let ∅ be the empty binary relation on I. Then H(∅) does not contain lists
of length greater or equal than 2. Hence H(∅) = {〈x〉 : x ∈ I} ∪ {〈〉}. H(V ) is
(-well-founded since each 〈x〉 is (-minimal, and 〈〉 has height less or equal than
1. Thus, the empty relation is H-well-founded.

Theorem 3. Let n ∈ N. If R1, . . . , Rn H-well-founded then (R1 ∪ · · · ∪ Rn) is
H-well-founded.

Proof. We may prove it by induction on n ∈ ω. If n = 0 then (R1∪· · ·∪Rn) = ∅:
we already considered this case. Assume that n > 0 , and that the thesis holds
for any m < n. Then R1 ∪ · · · ∪Rn−1 is H-well-founded. Thus, in order to prove
that (R1 ∪ · · · ∪Rn) is H-well-founded, it is enough to consider the case n = 2.

Assume R1, R2 are H-well-founded relations: then by applying Corollary 3.2,
(BinTr(ColList(R1, R2)),(T ) is well-founded. By Lemma 3, (H(R1 ∪ R2),()
is simulable in (BinTr(ColList(R1, R2)),(T ), well-founded, therefore it is itself
well-founded by Proposition 2.5.
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Corollary 4. Let n ∈ N. R1, . . . , Rn are H-well-founded if and only if (R1 ∪
· · · ∪Rn) is H-well-founded.

Proof. ⇒ Theorem 3.
⇐ If R and S are binary relations such that R ⊆ S, then S is H-well-founded

implies that R is H-well-founded. In fact we have H(R) ⊆ H(S); so by
Proposition 2.7, if (H(S),() is well-founded then (H(R),() is well-founded.
Since ∀i ∈ [1, n].Ri ⊆ R1 ∪ · · · ∪Rn, then Ri is H-well-founded.

7 Podelski and Rybalchenko’s Termination Theorem

In this last section we prove that the Termination Theorem [1, Theorem 1] is
intuitionistically valid. For all details we refer to this paper: here we only include
the definitions of program, computation, transition invariant and disjunctively
well-founded relations that Podelski and Rybalchenko used.

Definition 13 (Transition Invariants). As in [1]:

– A program P = (W, I,R) consists of:
• W : a set of states,
• I: a set of starting states, such that I ⊆W ,
• R: a transition relation, such that R ⊆W ×W .

– A computation is a maximal sequence of states s1, s2, . . . such that
• s1 ∈ I,
• (si, si+1) ∈ R for all i ≥ 1.

– The set Acc of accessible states consists of all states that appear in some
computation.

– A transition invariant T is a superset of the transitive closure of the transi-
tion relation R restricted to the accessible states Acc. Formally,

R+ ∩ (Acc×Acc) ⊆ T.

– The program P is terminating if and only if R∩ (Acc×Acc) is well-founded.
– A relation T is disjunctively well-founded if it is a finite union T = T1 ∪
· · · ∪ Tn of well-founded relations.

Lemma 4. If T = R ∩ (Acc×Acc) is well-founded then U = R+ ∩ (Acc×Acc)
is well-founded.

Theorem 4 (Termination). The program P is terminating if and only if there
exists a disjunctively well-founded transition invariant for P .

Proof. ⇐ Let T = T1 ∪ · · · ∪ Tn with T1, . . . , Tn well-founded and T transitive,
then by H-closure Theorem 3 and thanks to the Proposition 1 we obtain T
is well-founded, so P is terminating.

⇒ Let P be terminating then R ∩ (Acc×Acc) is well-founded. By Lemma 4
R+ ∩ (Acc×Acc) is well-founded. Then we are done.
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8 Related Works and Conclusions

In [3] we studied how much Excluded Middle is needed to prove Ramsey Theo-
rem. The answer was that the first order fragment of Ramsey Theorem is equiv-
alent in HA to Σ0

3-LLPO, a classical principle strictly between Excluded Middle
for 3-quantifiers arithmetical formulas and Excluded Middle for 2-quantifiers
arithmetical formulas [10]. Σ0

3 -LLPO may be interpreted as König’s Lemma re-
stricted to trees definable by some Δ0

3-predicate (see again [10]).
However, Ramsey Theorem in the proof of the Termination Theorem [1] may

be replaced by H-closure, obtaining a fully intuitionistic proof. It is worth notic-
ing that we obtained the result of H-closure by analyzing the proof of Termina-
tion Theorem, not by building over any existing intuitionistic interpretation.

We could not find any evident connection with the intuitionistic interpre-
tations by Bellin, Oliva and Powell. Bellin [12] applied the no-counterexample
interpretation to Ramsey theorem, while Oliva and Powell [13] used the dialec-
tica interpretation. They approximated the homogeneous set by a set which may
stand any test for some initial segment (a segment dependent by the try itself).
Instead we proved a well-foundedness result.

Instead, we found interesting connections with the intuitionistic interpreta-
tions expressing Ramsey Theorem as a property of well-founded relations. This
research line started in 1974: the very first intuitionistic proof used Bar Induc-
tion. We refer to §10 of [6] for an account of this earlier stage of the research.
Until 1990, all intuitionistic versions of Ramsey were negated formulas, hence
non-informative. In 1990 [6] Veldman and Bezem proved, using Choice Axiom
and Brouwer thesis, the first intuitionistic negation-free version of Ramsey: al-
most full relations are closed under finite intersections, from now on the Almost-
Full Theorem.

We explain the Almost-full theorem. Brouwer thesis says: a relationR is induc-
tively well-founded if and only if all R-decreasing sequences are finite. Brouwer
thesis is classically true, yet it is not provable using the rules of intuitionistic
natural deduction. In [5] (first published in 1994, updated in 2011) Coquand
showed that we may bypass the need of Choice Axiom and Brouwer thesis in
the Almost Full Theorem, provided we take as definition of well-founded directly
the inductive definition of well-founded (as we do in this paper).

In [6], a binary relation R over a set is almost full if for all infinite sequences
x0, x1, x2, . . . , xn, . . . on I there are some i < j such that xiRxj . We claim that,
classically, the set of almost full relations R is the set of relations such that
the complement of the inverse of R is H-well-founded. Indeed, let ¬R−1 be the
complement of the inverse of R: then, classically, ¬R−1 almost full means that in
all infinite sequences we have xi¬R−1xj for some i < j, that is, xj¬Rxi for some
i < j, that is, all sequences such that xjRxi for all i < j are finite. Classically,
this is equivalent to H-well-foundedness of R. The fact that the relationship
between H-well-founded and almost full requires a complement explains why we
prove closure under finite unions, while Veldman, Bezem and Coquand proved
the closure under finite intersections.
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For the future, we plan to use our proof to extract some effective bounds for
the Termination Theorem. Another challenge is to extract the bounds implicit
in the intuitionistic proof [7], which, as we said, uses Ramsey Theorem in the
form: “almost full relations are closed under intersection”, and to compare the
two bounds.
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Abstract. We show how to construct a logical relation for countable
nondeterminism in a guarded type theory, corresponding to the internal
logic of the topos Sh (ω1) of sheaves over ω1. In contrast to earlier work
on abstract step-indexed models, we not only construct the logical rela-
tions in the guarded type theory, but also give an internal proof of the
adequacy of the model with respect to standard contextual equivalence.
To state and prove adequacy of the logical relation, we introduce a new
propositional modality. In connection with this modality we show why
it is necessary to work in the logic of Sh (ω1).

1 Introduction

Countable nondeterminism arises naturally when modeling properties of concur-
rent systems or systems with user input, etc. Still, semantic models for reasoning
about must-contextual equivalence of higher-order programming languages with
countable nondeterminism are challenging to construct [3,7,1,10,11,12,13,17]. Re-
cently, it was shown how step-indexed logical relations, indexed over the first
uncountable ordinal ω1, can be used to give a simple model of a higher-order pro-
gramming language Fμ,? with recursive types and countable nondeterminism [4],
allowing one to reason about must-contextual equivalence. Using step-indexed
logical relations is arguably substantially simpler than using other models, but
still involves some tedious reasoning about indices, as is characteristic of any
concrete step-indexed model.

In previous work [8,5], the guarded type theory corresponding to the inter-
nal logic of the topos Sh (ω) of sheaves1 on ω has been proved very useful for
developing abstract accounts of step-indexed models indexed over ω. Such ab-
stract accounts eliminate much of the explicit tedious reasoning about indices.
We recall that the internal logic of Sh (ω) can be thought of as a logic of discrete
time, with time corresponding to ordinals and smaller ordinals being the future.
In the application to step-indexed logical relations, the link between steps in the

1 Considered as sheaves on the topological space ω equipped with the Alexandrov
topology.
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operational semantics and the notion of time provided by the internal logic of
Sh (ω) is made by defining the operational semantics using guarded recursion [5].

In this paper we show how to construct a logical relation for countable non-
determinism in a guarded type theory GTT corresponding to the internal logic
of the topos Sh (ω1) of sheaves over ω1. For space reasons we only consider the
case of must-equivalence; the case for may-equivalence is similar. In contrast to
earlier work on abstract step-indexed models [8,5], we not only construct the
logical relation in the guarded type theory, but also give an internal proof of the
adequacy of the model with respect to must-contextual equivalence. To state and
prove adequacy of the logical relation we introduce a new propositional modal-
ity �: intuitively, �ϕ holds if ϕ holds at all times. Using this modality we give
a logical explanation for why it is necessary to work in the logic of Sh (ω1): a
certain logical equivalence involving � holds in the internal logic of Sh (ω1) but
not in the internal logic of Sh (ω) (see Lemma 4).

To model must -equivalence, we follow [4] and define the logical relation using
biorthogonality. Typically, biorthogonality relies on a definition of convergence; in
our case, it would be must-convergence. In an abstract account of step-indexed
models, convergence would need to be defined by guarded recursion (to show
the fundamental lemma). However, that is not possible in the logic of Sh (ω1).
There are two ways to understand that. If one considers the natural guarded-
recursive definition of convergence,2 using Löb induction one could show that
a non-terminating computation would converge! Another way to understand
this issue is in terms of the model. The stratified convergence predicate ⇓β

from [4] is not a well-defined subobject in Sh (ω1). Intuitively, the reason is that
all predicates in GTT are closed wrt. the future (smaller ordinals), but if an
expression converges to a value in, say, 15 computation steps, then it does not
necessarily converge to a value in 14 steps. Instead we observe that the dual
of stratified must-convergence, the stratified may-divergence, is a subobject of
Sh (ω1) and can easily be defined as a predicate in GTT using guarded recursion.
Thus we use the stratified may-divergence predicate to define biorthogonality,
modifying the definition accordingly.

The remainder of the paper is organized as follows. In Section 2 we explain
the guarded type theory GTT, which we use to define the operational seman-
tics of the higher-order programming language Fμ,? with countable nondeter-
minism (Section 3) and to define the adequate logical relation for reasoning
about contextual equivalence (Section 4). We include an example to demon-
strate how reasoning in the resulting model avoids tedious step-indexing. Fi-
nally, in Section 5 we show that the guarded type theory GTT is consistent
by providing a model thereof in Sh (ω1). Thus, most of the paper can be read
without understanding the details of the model Sh (ω1). For reasons of space,
most proofs have been omitted; they can be found in the accompanying technical
report [6].

2 must-converge(e)↔ ∀e′, e � e′ → �(must-converge(e′)).
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2 The logic GTT

The logic GTT is the internal logic of Sh (ω1). In this section we explain some
of the key features of the logic; in the subsequent development we will also use
a couple of additional facts, which will be introduced as needed.

The logic is an extension of a multisorted intuitionistic higher-order logic with
two modalities � and �, pronounced “later” and “always” respectively. Types
(aka sorts) are ranged over by X , Y ; we denote the type of propositions by Ω
and the function space from X to Y as Y X . We write P (X) = ΩX for the type
of the power set of X . We think of types as variable sets (although in the logic
we will not deal with indices explicitly). There is a subset of types which we
call constant sets ; given a set a, we denote by Δ(a) the type which is constantly
equal to a. Constant sets are closed under product and function space. For each
type X there is a type 
X and a function symbol nextX : X → 
X . Intuitively

X is “one time step later” than the type X , so we can only use it later, i.e. after
one time step and nextX(x) freezes x for a time step so it is only available later.

We also single out the space of total types. Intuitively, these are the types
whose elements at each stage have evolved from some elements from previous
stages, i.e. they do not appear out of nowhere.

Definition 1. For a type X we define Total (X) to mean that nextX is surjective

Total (X)
�↔ ∀x : 
X, ∃x′ : X, nextX(x′) = x

and say that X is total when Total (X) holds.

Note that for each X , Total (X) is a formula of the logic, but Total itself is not
a predicate of the logic. Constant sets Δ(a) for an inhabited a are total. For
simplicity, we do not formalize how to construct constant sets. In the following,
we shall instead just state for some of the types that we use that they are
constant; these facts can be shown using the model in Section 5.

We will adopt the usual “sequent-in-context” judgment of the form Γ | Ξ � ϕ
for saying that the formula ϕ is a consequence of formulas in Ξ, under the typing
context Γ .

The � modality on formulas is used to express that a formula holds only
“later”, that is, after a time step. More precisely, there is a function symbol
� : Ω → Ω which we extend to formulas by composition. We require � to satisfy
the following properties (Γ is an arbitrary context).

1. (Monotonicity) Γ | ϕ � �ϕ
2. (Löb induction rule) Γ | (�ϕ→ ϕ) � ϕ
3. � commutes over /, ∧, → and ∨ (but does not preserve ⊥).
4. For all X,Y and ϕ we have Γ, x : X | ∃y : Y, �ϕ(x, y) � � (∃y : Y, ϕ(x, y)).
5. For all X,Y and ϕ we have Γ, x : X | � (∀y : Y, ϕ(x, y)) � ∀y : Y, �ϕ(x, y).

The converse entailment in the last rule holds if Y is total.

Following [5, Definition 2.8] we define a notion of contractiveness which will
be used to construct unique fixed points of morphisms on total types.



A Model of Countable Nondeterminism in Guarded Type Theory 111

Definition 2. We define the predicate Contr on Y X as

Contr(f)
�↔ ∀x, x′ : X, �(x = x′)→ f(x) = f(x′)

and we say that f is (internally) contractive if Contr(f) holds.

Intuitively, a function f is contractive if f(x) now depends only on the value of
x later, in the future. The following theorem holds in the logic.

Theorem 1 (Internal Banach’s fixed point theorem). Internally, any con-
tractive function f on a total object X has a unique fixed point. More precisely,
the following formula is valid in the logic of Sh (ω1):

Total (X)→ ∀f : XX ,Contr(f)→ ∃!x : X, f(x) = x.

We will use Theorem 1 in Section 4 on a function of type P (X) → P (X) for
a constant set X . We thus additionally assume that Total (P (X)) holds for any
constant set X .

The � modality is used to express that a formula holds for all time steps.
It is thus analogous to the � modality in temporal logic. It is defined as the
right adjoint to the ¬¬-closure operation on formulas and behaves as an interior
operator. More precisely, for a formula ϕ in context Γ , �ϕ is another formula
in context Γ . In contrast to the � modality, � on formulas does not arise from a
function on Ω and consequently does not commute with substitution, i.e., in gen-
eral (�ϕ) [t/x] is not equivalent to � (ϕ [t/x]), although (�ϕ) [t/x] always implies
� (ϕ [t/x]) which is useful for instantiating universally quantified assumptions.
Thus, to be precise, we would have to annotate the � with the context in which
it is used. However, restricting to contexts consisting of constant types, � does
commute with substitution and since we will only use it in such contexts we will
omit explicit contexts.

The basic rules for the � modality are the following. In particular, note the
first rule which characterizes � as the right adjoint to the ¬¬-closure.

Γ | ¬¬ϕ � ψ
Γ | ϕ � �ψ
============

Γ | ϕ � ψ
Γ | �ϕ � �ψ−−−−−−−−−−−−

Γ | �ϕ � ϕ−−−−−−−−−−

Γ | �ϕ � ��ϕ Γ | ¬¬(�ϕ) � �ϕ Γ | ¬¬ϕ � �(¬¬ϕ)

Note that some of the rules can be derived from others. A simple consequence
of the rules is that ¬¬ϕ ↔ �(¬¬ϕ) and ¬¬(�ϕ) ↔ �ϕ. Thus one way to
understand �ϕ is as the largest predicate that implies ϕ and is ¬¬-closed.

Proposition 1. Using the rules for � stated above we can prove the following
in the logic.

�/ ↔ / and �⊥ ↔ ⊥ Γ | ∅ � �(ϕ ∧ ψ)↔ �ϕ ∧�ψ
Γ | ∅ � �(∀x : X,ϕ)↔ ∀x : X,�ϕ Γ | ∅ � �(ϕ→ ψ)→ �ϕ→ �ψ
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τ ::= α | 1 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | μα.τ | ∀α.τ | ∃α.τ
e ::= x | 〈〉 | 〈e1, e2〉 | inl e | inr e | λx.e | Λ.e | pack e | unfold e | fold e

| ? | proji e | e1 e2 | case (e, x1.e1, x2.e2) | e[] | unpack e1 as x in e2

E ::= − | 〈E, e〉 | 〈v,E〉 | inl E | inr E | packE | proji E | E e | v E | E[]

| case (E, x1.e1, x2.e2) | unpack E as x in e | unfoldE | foldE
Fig. 1. Syntax of Fμ,?: types τ , terms e and evaluation contexts E. inl e and inr e
introduce terms of sum type. case (e, x1.e1, x2.e2) is the pattern matching construct
that eliminates a term e of the sum type with the left branch being e1 and right branch
e2. pack e and unpack e1 as x in e2 introduce and eliminate terms of existential types
and Λ.e and e[] introduce and eliminate terms of universal types.

A useful derived introduction rule for the � modality is the well-known �-
introduction rule for S4. It states that if we can prove ϕ using only �’ed facts,
then we can also conclude �ϕ. Formally:

Γ | Ξ � ϕ
Γ | Ξ � �ϕ

Ξ = �ϕ1,�ϕ2, . . . ,�ϕn

3 The Language Fμ,?

In this section we introduce Fμ,?, a call-by-value functional language akin to
System F, i.e., with impredicative polymorphism, existential and general recur-
sive types, extended with a countable choice expression ?. We work informally
in the logic outlined above except where explicitly stated.

Syntax We assume disjoint, countably infinite sets of type variables, ranged over
by α, and term variables, ranged over by x. The syntax of types, terms and
evaluation contexts is defined in Figure 1. Values v and contexts (terms with a
hole) C can be defined in the usual way. The free type variables in a type ftv(τ)
and free term variables in a term fv(e), are defined in the usual way. The notation
σ[τ/α] denotes the simultaneous capture-avoiding substitution of types τ for
the free type variables α in the type σ; similarly, e[v/x] denotes simultaneous
capture-avoiding substitution of values v for the free term variables x in e. We
define the type of natural numbers as nat = μα.1+α and the corresponding
numerals as 0 = fold (inl 〈〉) and n+ 1 = fold (inr n) by induction on n.

The judgment Δ � τ expresses ftv(τ) ⊆ Δ. The typing judgment Δ | Γ � e : τ
expresses that e has type τ in type variable context Δ and term variable context
Γ . Typing rules are the same as for system F with recursive types, apart from
the typing of the ?, which has type nat in any well-formed context.

We write Type for the set of closed types τ , i.e. types τ satisfying ftv(τ) = ∅.
We write Val (τ) and Tm (τ) for the sets of closed values and terms of type τ ,
respectively. Stk (τ) denotes the set of evaluation contexts E with the hole of
type τ . The typing of evaluation contexts can be defined as in [4] by an inductive
relation. We write Val and Tm for the set of all closed values and closed terms,
respectively, and Stk for the set of all evaluation contexts.
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proji 〈v1, v2〉 �−→ vi unfold (fold v) �−→ v

(λx.e) v �−→ e[v/x] unpack (pack v) as x in e �−→ e[v/x]

(Λ.e)[] �−→ e case (inl v, x1.e1, x2.e2) �−→ e1[v/x1]

? �−→ n (n ∈ N) case (inr v, x1.e1, x2.e2) �−→ e2[v/x2]

E[e] � E[e′] if e �−→ e′

Fig. 2. Operational semantics of Fμ,?: basic reductions �−→ and one step reduction �

Using the model in Section 5, we can show that the types of terms, values,
evaluation contexts and contexts are constant sets. We use this fact in the proof
of adequacy in Section 4.

Operational Semantics. The operational semantics of Fμ,? is given in Figure 2
by a one-step reduction relation e � e′. The rules are standard apart from
the rule for ? which states that the countable choice expression ? evaluates
nondeterministically to any numeral n (n ∈ N). We extend basic reduction �−→
to the single step reduction relation � using evaluation contexts E.

To define the logical relation we need further restricted reduction relations.
These will allow us to ignore most reductions in the definition of the logical
relation, except the ones needed to prove the fundamental property (Corollary 1).

Let �∗ be the reflexive transitive closure of �. Following [4] we call unfold-
fold reductions those of the form unfold (fold v) �−→ v, and choice reductions
those of the form ? �−→ n (n ∈ N). Choice reductions are important because
these are the only ones that do not preserve equivalence. We define

– e
p� e′ if e�∗ e′ and none of the reductions is a choice reduction;

– e
0� e′ if e�∗ e′ and none of the reductions is an unfold-fold reduction;

– e
1� e′ if e�∗ e′ and exactly one of the reductions is an unfold-fold reduction;

– e
p,0� e′ if e

p� e′ and e
0� e′;

– e
p,1� e′ if e

p� e′ and e
1� e′.

The
1� reduction relation will be used in the stratified definition of divergence

and the other reduction relations will be used to state additional properties of
the logical relation in Lemma 1. Note that although some of the relations are
described informally using negation they can be described constructively in a

positive way. For instance,
p� can be defined in the same way as the �∗ but

using a subset of the one step relation �.

Divergence Relations. We define the logical relation using biorthogonality. As we
explained in the introduction we use two may-divergence predicates, which are,
informally, the negations of the two must-convergence relations from [4]. Thus
we define, in the logic, the stratified may-divergence predicate �→ as the unique
fixed point of Ψ : P (Tm)→ P (Tm) given as

Ψ(A) =
{
e : Tm

∣∣ ∃e′ : Tm, e
1� e′ ∧ � (e′ ∈ A)

}
.
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Ψ is internally contractive and since Tm is a constant set P (Tm) is total. By
Theorem 1, Ψ has a unique fixed point.

We also define the non-stratified may-divergence predicate ↑ as the greatest
fixed-point of Φ : P (Tm)→ P (Tm) given as

Φ(A) =
{
e : Tm

∣∣ ∃e′ : Tm, e� e′ ∧ e′ ∈ A
}
.

Since Φ is monotone and P (Tm) is a complete lattice, the greatest fixed point
exists by Knaster-Tarski’s fixed-point theorem, which holds in our logic.3 Ob-
serve that Ψ is almost the same as Φ ◦ �, apart from using a different reduction
relation. We write e↑ and e �→ for e ∈ ↑ and e ∈ �→, respectively.

The predicates �→ and ↑ are closed under some, but not all, reductions.

Lemma 1. Let e, e′ : Tm. The following properties hold in the logic GTT.

if e
p� e′ then e↑ ↔ e′↑ if e

p,0� e′ then e �→ ↔ e′ �→

if e
0� e′ then e′ �→ → e �→ if e

1� e′ then � (e′ �→)→ e �→

Must-contextual approximation Contexts can be typed as second-order terms,
by means of a typing judgment of the form C : (Δ | Γ � τ) � (Δ′ | Γ ′ � σ),
stating that whenever Δ | Γ � e : τ holds, Δ′ | Γ ′ � C[e] : σ also holds. The typ-
ing of contexts can be defined as an inductive relation defined by suitable typing
rules, which we omit here due to lack of space; see [2]. We write C : (Δ | Γ � τ)
to mean there exists a type σ, such that C : (Δ | Γ � τ) � (∅ | ∅ � σ) holds.

We define contextual must-approximation using the may-divergence predicate.
This is in contrast with the definition in [4] which uses the must-convergence
predicate. However externally, in the model, the two definitions coincide.

Definition 3 (Must-contextual approximation). In GTT, we define must-
contextual approximation Δ | Γ � e1 �ctx

⇓ e2 : τ as

Δ | Γ � e1 : τ ∧Δ | Γ � e2 : τ ∧ ∀C, (C : (Δ | Γ � τ)) ∧ C[e2]↑ → C[e1]↑.

Note the order in the implication: if C[e2] may-diverges then C[e1] may-diverges.
This is the contrapositive of the definition in [4] which states that if C[e1] must-
converges then C[e2] must-converges. Must-contextual approximation defined
explicitly using contexts can be shown to be the largest compatible adequate
and transitive relation, so it coincides with contextual approximation in [4].

4 Logical Relation

In this section we give an abstract account of the concrete step-indexed model
from [4] by defining a logical relation interpretation of types in GTT. The result
is a simpler model without a proliferation of step-indices, as we will demonstrate
in the example at the end of the section.

3 Knaster-Tarski’s fixed point theorem holds in the internal language of any topos.
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�Δ � α� (ϕ) = ϕr(α)

�Δ � 1� (ϕ) = Id1

�Δ � τ1 × τ2� (ϕ) = {(〈v, u〉, 〈v′, u′〉) | (v, v′) ∈ �Δ � τ1� (ϕ) , (u, u
′) ∈ �Δ � τ2� (ϕ)}

�Δ � τ1 + τ2� (ϕ) = {(inl v, inl v′) | (v, v′) ∈ �Δ � τ1� (ϕ)}∪
{(inr u, inr u′) | (u, u′) ∈ �Δ � τ2� (ϕ)}

�Δ � τ1 → τ2� (ϕ) = {(λx.e, λy.e′) | ∀(v, v′) ∈ �Δ � τ1� (ϕ),(
e[v/x], e′[v′/y]

) ∈ �Δ � τ2� (ϕ)


}

�Δ � ∀α.τ� (ϕ) = {(Λ.e, Λ.e′) | ∀σ, σ′ ∈ Type,∀s ∈ VRel
(
σ, σ′) ,(

e, e′
) ∈ �Δ,α � τ� (ϕ

[
α �→ (σ, σ′, s)

]
)


}

�Δ � ∃α.τ� (ϕ) = {(pack v, pack v′) | ∃σ, σ′ ∈ Type,∃s ∈ VRel
(
σ, σ′) ,(

v, v′
) ∈ �Δ,α � τ� (ϕ

[
α �→ (σ, σ′, s)

]
)}

�Δ � μα.τ� (ϕ) = fix
(
λs.{(fold v, fold v′) | � ((v, v′) ∈ �Δ,α � τ� (ϕ [α �→ s])

)})
where the ·

 : VRel (τ, τ ′) → TRel (τ, τ ′) is defined with the help of ·
 :
VRel (τ, τ ′)→ SRel (τ, τ ′) as follows

r
 = {(E,E′) | ∀(v, v′) ∈ r,E′[v′]↑ → E[v] �→}
r

 = {(e, e′) | ∀(E,E′) ∈ r
, E′[e′]↑ → E[e] �→}.

Fig. 3. Interpretation of types. All the relations are on typeable terms and contexts

Relational Interpretation of Types. Let Type(Δ) = {τ | Δ � τ} be the
set of types well-formed in context Δ. Given τ, τ ′ ∈ Type let VRel (τ, τ ′) =
P (Val (τ)×Val (τ ′)), TRel (τ, τ ′) = P (Tm (τ) ×Tm (τ ′)) and SRel (τ, τ ′) =
P (Stk (τ) × Stk (τ ′)). We implicitly use the inclusion VRel (τ, τ ′) ⊆
TRel (τ, τ ′). For a type variable context Δ, we define VRel (Δ) to be{

(ϕ1, ϕ2, ϕr)
∣∣ ϕ1, ϕ2 : Δ→ Type, ∀α ∈ Δ,ϕr(α) ∈ VRel (ϕ1(α), ϕ2(α))

}
where the first two components give syntactic types for the left and right hand
sides of the relation and the third component is a relation between those types.
The interpretation of types, �· � ·�, is shown in Figure 3. The definition is by
induction on the judgement Δ � τ . Given a judgment Δ � τ , and ϕ ∈ VRel (Δ),
we have �Δ � τ� (ϕ) ∈ VRel (ϕ1(τ), ϕ2(τ)) where ϕ1 and ϕ2 are the first two
components of ϕ, and ϕi(τ) denotes substitution of types in ϕi for free type
variables in τ . Since we are working in the logic GTT, the interpretations of all
type constructions are simple and intuitive. For instance, functions are related
when they map related values to related results, two values of universal type are
related if they respect all value relations. In particular, there are no admissibility
requirements on the relations, nor any step-indexing — but just a use of � in
the interpretation of recursive types, to make it well-defined as a consequence of
Theorem 1, using that the type P (Tm ×Tm) is total.
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The definition of //-closure is where we connect operational semantics and
the � modality, using the stratified may-divergence predicate �→. //-closed rela-
tions are closed under some reductions. More precisely, the following holds.

Lemma 2. Let τ, τ ′ : Type and r ∈ VRel (τ, τ ′).

– If e
p,0� e1 and e′

p� e′1 then (e, e′) ∈ r�� ↔ (e1, e
′
1) ∈ r��.

– If e
1� e1 then for all e′ : Tm, if �((e1, e

′) ∈ r��) then (e, e′) ∈ r��.

We use this fact extensively in the proofs of the fundamental property and
example equivalences.

In order to define logical relations, we need first to extend the interpreta-
tion of types to the interpretation of contexts (note that in particular, related
substitutions map into well-typed values):

�Δ � Γ � (ϕ) = {(γ, γ′) | γ, γ′ : Valdom(Γ ),

∀x ∈ dom (Γ ) , (γ(x), γ′(x)) ∈ �Δ � Γ (x)� (ϕ)}

The logical relation and its fundamental property We define the logical relation
on open terms by reducing it to relations on closed terms by substitution.

Definition 4 (Logical relation). Δ | Γ � e1 �log
⇓ e2 : τ if

∀ϕ ∈ VRel (Δ) , ∀(γ, γ′) ∈ �Δ � Γ � (ϕ), (e1γ, e2γ
′) ∈ �Δ � τ� (ϕ)��.

To prove the fundamental property of logical relations and connect the logical
relation to contextual-must approximation we start with some simple properties
relating evaluation contexts and relations. All the lemmata are essentially of
the same form: given two related evaluation contexts at a suitable type, the
contexts extended with an elimination form are also related at a suitable type.
We only state the case for unfold , since it shows the interplay between unfold-
fold reductions and the stratified may divergence predicate.

Lemma 3. If (E,E′) ∈ �Δ � τ [μα.τ/α]� (ϕ)� then

(E ◦ (unfold []), E′ ◦ (unfold [])) ∈ �Δ � μα.τ� (ϕ)�.

Proof. Given (fold v, fold v′) ∈ �Δ � μα.τ� (ϕ) suppose E′ [unfold (fold v′)] ↑.
By Lemma 1 we have E′ [v′] ↑ and so �(E′[v′]↑). By definition of interpretation
of recursive types we have � ((v, v′) ∈ �Δ � τ [μα.τ/α]� (ϕ)). Thus �(E[v] �→) and
so by Lemma 1 we have E[unfold (fold v)] �→. +,

Note that the proof would not work, were we to use the ↑ relation in place of �→

in the definition of the // closure since the last implication would not hold.

Proposition 2. The logical approximation relation is compatible with the typing
rules (see also [6, Prop. 2.4.17]).
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Proof. We only give two cases, to show how to use the context extension lemmata.

Elimination of recursive types: we need to show

Δ | Γ � e �log
⇓ e′ : μα.τ

Δ | Γ � unfold e �log
⇓ unfolde′ : τ [μα.τ/α]

.

So take ϕ ∈ VRel (Δ) and (γ, γ′) ∈ �Δ � Γ � (ϕ). Let f = eγ and f ′ = e′γ′. We

have to show (unfold f, unfoldf ′) ∈ �Δ � τ [μα.τ/α]� (ϕ)��. So take (E,E′) ∈
�Δ � τ [μα.τ/α]� (ϕ)�. By assumption (f, f ′) ∈ �Δ � μα.τ� (ϕ)�� so it suffices

to show (E ◦ (unfold []), E′ ◦ (unfold [])) ∈ �Δ � μα.τ� (ϕ)� and this is exactly
the content of Lemma 3.

The ? expression: we need to show Δ | Γ � ? �log
⇓ ? : nat. It is easy to see by

induction that for all n ∈ N, (n, n) ∈ �� nat�. So take (E,E′) ∈ �� nat�
�

and
assume E′[?]↑. By definition of the ↑ relation there exists an e′, such that ? � e′

and E′[e′]↑. Inspecting the operational semantics we see that e′ = n for some
n ∈ N. This implies E[n] �→ and so by Lemma 1 we have E[?] �→. +,
Corollary 1 (Fundamental property of logical relations). If Δ | Γ � e : τ
then Δ | Γ � e �log

⇓ e : τ

Proof. By induction on the typing derivation Δ | Γ � e : τ , using Prop. 2. +,
We need the next corollary to relate the logical approximation relation to must-
contextual approximation.

Corollary 2. For any expressions e, e′ and context C, if Δ | Γ � e �log
⇓ e′ : τ

and C : (Δ | Γ � τ) � (Δ′ | Γ ′ � σ) then Δ′ | Γ ′ � C[e] �log
⇓ C[e′] : τ ′.

Proof. By induction on the judgment C : (Δ | Γ � τ) � (Δ′ | Γ ′ � σ), using
Proposition 2. +,

Adequacy We now wish to show soundness of the logical relation with respect
to must-contextual approximation. However, the implication

Δ | Γ � e �log
⇓ e′ : τ → Δ | Γ � e �ctx

⇓ e′ : τ

does not hold, due to the different divergence relations used in the definition of
the logical relation. To see precisely where the proof fails, let us attempt it. Let
Δ | Γ � e �log

⇓ e′ : τ and take a well-typed closing context C with result type σ.

Then by Corollary 2, ∅ | ∅ � C[e] �log
⇓ C[e′] : σ. Unfolding the definition of the

logical relation we get (C[e], C[e′]) ∈ �∅ � σ�
��

. It is easy to see that (−,−) ∈
�∅ � σ�

�
and so we get by definition of // that C[e′]↑ → C[e] �→. However the

definition of contextual equivalence requires the implication C[e′]↑ → C[e]↑,
which is not a consequence of the previous one.

Intuitively, the gist of the problem is that ↑ defines a time-independent pred-
icate, whereas �→ is time-dependent, since it is defined by guarded recursion.
However, in the model in Section 5, we can show the validity of a formula ex-
pressing a connection between ↑ and �→:
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Lemma 4. e : Tm | ∅ � �(e �→)→ e↑ holds in the logic GTT.

Thus we additionally assume this principle in our logic. Note that this lemma
is not valid in the logic of the topos of trees [5] and this is the reason we must
work in the logic of Sh (ω1). We sketch a proof of the lemma at the end of
Section 5 which shows the role of � and why the lemma does not hold in the
topos of trees. Using Lemma 4 we are led to the following corrected statement
of adequacy using the � modality.4

Theorem 2 (Adequacy). If e and e′ are of type τ in context Δ | Γ then

�(Δ | Γ � e �log
⇓ e′ : τ) implies Δ | Γ � e �ctx

⇓ e′ : τ .

To prove this theorem we first observe that all the lemmata used in the proof
of Corollary 2 are proved in constant contexts, using only other constant facts.
Hence, Corollary 2 can be strengthened, yielding the following restatement.

Proposition 3. �[∀Δ,Δ′, Γ, Γ ′, τ, σ, C, e, e′, C : (Δ | Γ � τ) � (Δ′ | Γ ′ � σ)

→ Δ | Γ � e �log
⇓ e′ : τ → Δ′ | Γ ′ � C[e] �log

⇓ C[e′] : τ ′].

Note that all the explicit universal quantification in the proposition is over con-
stant types. One additional ingredient we need to complete the proof is the fact
that ↑ is ¬¬-closed, i.e. e↑ ↔ ¬¬(e↑). We can show this in the logic using the
fact that ↑ is the greatest post-fixed point by showing that ¬¬↑ is another one.
This fact further means that �(e↑) ↔ (e↑) (using the adjoint rule relating ¬¬
and � in Section 2). We are now ready to proceed with the proof of Theorem 2.

Proof (Theorem 2). Continuing the proof we started above we get, using Propo-
sition 1, that �(C[e′]↑ → C[e] �→) and thus also �(C[e′]↑)→ �(C[e] �→). Moreover,
�(C[e′]↑) ↔ C[e′]↑ and, by Lemma 4, �(C[e] �→) → C[e]↑. We thus conclude
C[e′]↑ → C[e]↑, as required. +,

Thus, if we can prove that e and e′ are logically related relying only on constant
facts we can use this theorem to conclude that e must-contextually approximates
e′. In particular, the fundamental property (Corollary 1) can be strengthened to
a “boxed” statement.

Completeness. As in [4] we also get completeness with respect to contextual
approximation. The proof proceeds as in [4] via the notion of CIU-approximation
[15,4]. This property relies on the fact that we have built the logical relation using
biorthogonality and using typeable realizers.

Theorem 3. For any Δ, Γ , e, e′ and τ ,

Δ | Γ � e �CIU
⇓ e′ : τ ↔ Δ | Γ � e �ctx

⇓ e′ : τ ↔ �(Δ | Γ � e �log
⇓ e′ : τ)

4 Readers who are familiar with concrete step-indexed models will note that the �
modality captures the universal quantification over all steps used in the the definition
of concrete step-indexed logical relations.
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Applications. We can now use the logical relation to prove contextual equiva-
lences. Indeed, the accompanying technical report [6] provides internal proofs of
all the examples done in the concrete step-indexed model in [4]; these proofs are
simpler than the ones in [4]. As an example, in this paper we include the proof of
syntactic minimal invariance for must -equivalence. Remarkably, the proof below
is just as simple as the proof of the minimal invariance property in the abstract
account of a step-indexed model for the deterministic language Fμ [8].

Let fix : ∀α, β.((α→β)→(α→β))→ (α→β) be the term Λ.Λ.λf.δf (fold δf )
where δf is the term λy.let y′ = unfoldy in f (λx.y′ y x).

Consider the type τ = μα.nat+α→ α. Let id = λx.x and consider the term

f ≡ λh, x.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .

We show that fix[][] f �log
⇓ id : τ → τ . The other direction is essentially the

same. Since we prove this in the context of constant facts we can use Theorem 3
to conclude that the terms are contextually equivalent.

We show by Löb induction that (fix[][] f, id) ∈ �τ → τ���. It is easy to see

that fix[][] f
p,1� λx.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y))))

where h = λx.δf (fold δf )x. Let

ϕ = λx.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .

We now show directly that (ϕ, id) ∈ �τ → τ� which suffices by Lemma 2.
Let us take (u, u′) ∈ �τ�. By the definition of the interpretation of recursive

and sum types there are two cases:

– u = fold (inln) and u′ = fold (inln) for some n ∈ N: immediate.
– u = fold (inr g), u′ = fold (inr g′) for some g, g′ such that �((g, g′) ∈

�τ → τ�). We then have that ϕu
p,1� fold (inrλy.h(g(h y))) and id u′

p� u′

and so it suffices to show � (λy. (h(g(h y)), g′) ∈ �τ → τ�). We again show
that these are related as values so take �((v, v′) ∈ �τ�) and we need to

show �
(
(h(g(h v)), g′ v′) ∈ �τ�

��
)
. Take �((E,E′) ∈ �τ�

�
). Löb induction

hypothesis gives us that �((h′, id) ∈ �τ → τ���), where h′ is the body of h,

i.e h = λx.h′ x. It is easy to see that this implies �((h, id) ∈ �τ → τ���)
and so by extending the contexts three times using lemmata analogous to

Lemma 3 we get �
(
(E[h (g (h []))], E′[g′ []]) ∈ �τ�

�
)
.

So, assuming �(E′[g′ v′]↑) we get �(E[h (g (h v))] �→), concluding the proof.

5 The Model for GTT

In this section, we present a model for the logic GTT, where all the properties
we have used in the previous sections are justified. The model we consider is
the topos of sheaves over the first uncountable ordinal ω1 (in fact, any ordinal
α ≥ ω1 would suffice). We assume some basic familiarity with topos theory, on
the level described in [14]. We briefly recall the necessary definitions.
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The objects of Sh (ω1) are sheaves over ω1 considered as a topological space
equipped with the Alexandrov topology. Concretely, this means that objects of
Sh (ω1) are continuous functors from (ω1 + 1)op to Set. We think of ordinals as
time, with smaller ordinals being the future. The restriction maps then describe
the evolution of elements through time.

Sh (ω1) is a full subcategory of the category of presheaves PSh (ω1 + 1). The
inclusion functor i has a left adjoint a : PSh (ω1 + 1) → Sh (ω1) called the
associated sheaf functor. Limits and exponentials are constructed as in presheaf
categories. Colimits are not constructed pointwise as in presheaf categories, but
they require also the application of the associated sheaf functor.

There is an essential geometric morphism Π1 1 Δ 1 Γ : Sh (ω1) → Set,
with Δ the constant sheaf functor, Γ the global sections functor and Π1(X) =
X(1) the evaluation at 1 (we consider 0 to be the first ordinal). Given a set a,
the constant sheaf Δ(a) is not the constant presheaf: rather it is equal to the
singleton set 1 at stage 0, and to a at all other stages. For a sheaf X , an element
ξ ∈ X(ν) and β ≤ ν we write ξ|β for the restriction X(β ≤ ν)(ξ).

Analogously to the topos of trees [5], there is a “later” modality on types, i.e.
a functor 
 : Sh (ω1)→ Sh (ω1) defined as (we consider 0 a limit ordinal)


X(ν + 1) = X(ν), 
X(α) = X(α) for α limit ordinal.

There is an obvious natural transformation nextX : X → 
X .
The subobject classifier Ω is given by Ω(ν) = {β

∣∣ β ≤ ν} and its restriction
maps are given by minimum. There is a natural transformation � : Ω → Ω given
as �ν(β) = min{β + 1, ν}.

Kripke-Joyal semantics [9] is a way to translate formulas in the logic to state-
ments about objects and morphisms of Sh (ω1); we refer to [14, Section VI.5]
for a detailed introduction and further references. We now briefly explain the
Kripke-Joyal semantics of GTT.

LetX be a sheaf and ϕ, ψ formulas in the internal language with a free variable
of type X . Intuitively, for an ordinal ν and an element ξ ∈ X(ν), ν  ϕ(ξ) means
that ϕ holds for ξ at stage ν. A formula ϕ is valid if it holds for all ξ and at all
stages.

Let ν ≤ ω1 and ξ ∈ X(ν). The rules of Kripke-Joyal semantics are the usual
ones (see, e.g., [14, Theorem VI.7.1]), specialized for our particular topology:

– ν  ⊥ iff ν = 0;
– ν  / always;
– ν  ϕ(t)(ξ) iff �ϕ�ν (�t�ν (ξ)) = ν, for a predicate symbol ϕ on X ;
– ν  ϕ(ξ) ∧ ψ(ξ) iff ν  ϕ(ξ) and ν  ψ(ξ);
– ν  ϕ(ξ) ∨ ψ(ξ) iff ν  ϕ(ξ) or ν  ψ(ξ);
– ν  ϕ(ξ)→ ψ(ξ) iff for all β ≤ ν, β  ϕ(ξ|β) implies β  ψ(ξ|β);
– ν  ¬ϕ(ξ) iff for all β ≤ ν, β  ϕ(ξ|β) implies β = 0.

Note that 0  ϕ for any ϕ, as is usual in Kripke-Joyal semantics for sheaves
over a space: intuitively, the stage 0 represents the impossible world. Moreover,
if ϕ is a formula with free variables x : X and y : Y , ν ≤ ω1 and ξ ∈ X(ν) then:
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– For ν a successor ordinal: ν  ∃y : Y, ϕ(ξ, y) iff there exists ξ′ ∈ Y (ν) such
that ν  ϕ(ξ, ξ′);

– For ν a limit ordinal: ν  ∃y : Y, ϕ(ξ, y) iff for all β < ν there exists
ξβ ∈ Y (β) such that β  ϕ(ξ|β , ξβ);

– ν  ∀y : Y, ϕ(ξ, y) iff for all β ≤ ν and for all ξβ ∈ Y (β): β  ϕ(ξ|β , ξβ).

The semantics of � is as follows. Let ϕ be a predicate on X , then

ν  �ϕ(α) iff for all β < ν, β  ϕ(α|β).

For successor ordinals ν = ν′ + 1 this reduces to

ν + 1  �ϕ(α) iff ν′  ϕ(α|ν′).

The predicate Total (X) in Definition 1 internalizes the property that all X ’s
restriction maps are surjections which intuitively means that elements at any
stage β evolve from elements in the past. Total sheaves are also called flabby in
homological algebra literature, but we choose to use the term total since it was
used in previous work on guarded recursion to describe an analogous property.

The properties of � stated in Section 2 can be proved easily using the Kripke-
Joyal semantics. The rules are similar to the rules in [5, Theorem 2.7], except
the case of the existential quantifier in which the converse implication does not
hold, even if we restrict to total and inhabited types, or even to constant sets.
As a consequence, we cannot prove the internal Banach’s fixed point theorem in
the logic in the same way as in the topos of trees, cf. [5, Lemma 2.10].

In contrast to that in the topos of trees [5, Theorem 2.9], which requires
the type X only to be inhabited, the internal Banach’s fixed point theorem in
Sh (ω1) (Theorem 1) has stronger assumptions: we require X to be total, which
implies that it is inhabited. The additional assumption seems to be necessary
and is satisfied in all the instances where we use the theorem. In particular, for
a constant X , P (X) is total.

The operator ¬¬ : Ω → Ω gives rise to a function ¬¬X on the lattice of
subobjects Sub (X). In Sh (ω1), ¬¬X preserves suprema5 on each Sub (X) and
therefore has a right adjoint �X : Sub (X)→ Sub (X) defined as

�XP =
∨{

Q
∣∣ ¬¬Q ≤ P

}
.

If X = Δ(a) then �XP has a simpler description:

�Δ(a)(P )(ν) =

{
1 if ν = 0⋂ω1

β=1 P (β) otherwise.

Thus for a predicate P on a constant setΔ(a), �(P ) contains only those elements
for which P holds at all stages.

5 Recall that this is not the case in every topos.
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However, in contrast to ¬¬ which commutes with reindexing, � does not.
There is a general reason for this: in any category with pullbacks, any defla-
tionary operation � that preserves the top element and is natural, i.e. com-
mutes with reindexing, is necessarily the identity [16, Proposition 4.2]. However
Δ(f)∗

(
�Δ(a) (P )

)
= �Δ(b) (Δ(f)∗ (P )) for any f : a → b in Set and since Δ

preserves products we do get that � in the logic commutes with substitution
when restricted to constant contexts.

The external interpretation of ↑ is exactly the negation of the must-conver-
gence predicate ⇓ from [4]. In particular, ↑ is a constant predicate. In contrast,

�→(ν) is a set of expressions e such that there exists a reduction of length at least
ν starting with e. This can easily be seen using the description of Kripke-Joyal
semantics above. Thus, �→ is externally the pointwise complement of the stratified
must-convergence predicate {⇓β}β<ω1 from [4]. Then, the proof that � �→ → ↑
corresponds to the proof that ⇓⊆

⋃
β<ω1

⇓β in [4]. Here we technically see the
need for indexing over ω1.
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Abstract. Deduction modulo is a framework in which theories are inte-
grated into proof systems such as natural deduction or sequent calculus
by presenting them using rewriting rules. When only terms are rewritten,
cut admissibility in those systems is equivalent to the confluence of the
rewriting system, as shown by Dowek, RTA 2003, LNCS 2706. This is no
longer true when considering rewriting rules involving propositions. In
this paper, we show that, in the same way that it is possible to recover
confluence using Knuth-Bendix completion, one can regain cut admis-
sibility in the general case using standard saturation techniques. This
work relies on a view of proposition rewriting rules as oriented clauses,
like term rewriting rules can be seen as oriented equations. This also
leads us to introduce an extension of deduction modulo with conditional
term rewriting rules.

Whatever their origin, proofs rarely need to be searched for without context:
Program verification requires arithmetic, theories of lists or arrays, etc. Mathe-
matical theorems are in general not proved in pure predicate logic. Consequently,
even if (automated and interactive) proof systems have achieved a high degree
of maturity, they need to be able to deal with theories in an efficient way. This
explains the particular interest focused on SMT (Satisfiability Modulo Theory)
provers in the latter years. However, one of the drawbacks of the SMT approach
is that the way theories are integrated is not completely generic, in the sense
that each theory needs a special treatment.

A more generic approach to integrating theories into a proof system was pro-
posed by Dowek, Hardin and Kirchner [14]. In Deduction Modulo1, a theory is
represented by a congruence over formulæ, and proofs are searched for mod-
ulo this congruence. In practice, this congruence is most often described as a
rewriting system. However, using only term rewriting rules would not be enough
to capture interesting theories. For instance, Vorobyov [21] showed that even
quantifier-free Presburger arithmetic cannot be presented as a convergent term
rewriting system. To overcome this, Deduction Modulo also deals with proposi-
tion rewriting rules, that rewrite atomic formulæ into formulæ. Thanks to this,
it was possible to present many theories in Deduction Modulo: simple type the-
ory (also known as higher-order logic), arithmetic, B set theory [18], any pure

1 Although it may sound rather strange, the absence of subsequent to the term “mod-
ulo” follows the original works about this field.

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 124–138, 2014.
c© Springer International Publishing Switzerland 2014
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type system, including the calculus of constructions which is the foundation
of the proof assistant Coq [7], or, in fact, any first-order theory [5]. It is then
possible to use automated theorem provers based on Deduction Modulo, such
as iProver Modulo [6] or Zenon Modulo [9]. Moreover, proofs in those theo-
ries can be checked using Dedukti, a proof checker based on Deduction Modulo
(https://www.rocq.inria.fr/deducteam/Dedukti/). Note that if one wants
that the proof systems modulo a rewriting system behave well, in particular, if
one wants the proof search methods to be complete, or the proof calculus to
enjoy usual proof-theoretical properties such as the subformula property or the
witness property, the rewriting system must have the following feature: The cut
rule must be admissible in the sequent calculus modulo the rewriting system.
This is true for the presentations of theories cited above.

Even if any first-order theory can be presented as a rewriting system with cut
admissibility, these presentations may be quite unnatural. This is particularly the
case when equality is involved. Indeed, the work [5] does not handle the equality
predicate 2 in a special way, and for instance an axiom s 2 t would be presented
by a proposition rewriting rule s 2 t→ / and not by a term rewriting rule s→ t.
There are also cases in which the most natural candidate to present an axiom as
a rewriting rule would be a conditional rewriting rule, for instance in the case of
an axiom of the shape A(x)⇒ s(x) 2 t(x). In particular, this is the case of one
of the axioms of the theory used in the provers of the HOL family (HOL4, HOL
Light, or even Isabelle/HOL). In the translation of proofs in the OpenTheory
format [17] into proofs that can be checked by Dedukti [1], this axiom could
not be easily presented as a rewriting rule, and should therefore remain as an
axiom, losing partially the benefit of working modulo the theory. As we will see in
Example 8, this axiom can be naturally presented as a conditional rewriting rule.
In this paper, we therefore introduce Deduction Modulo Conditional Rewriting
Rules, which strictly subsumes the usual presentation of Deduction Modulo.

We therefore need a criterion that ensures that cut admissibility holds in
the sequent calculus modulo the conditional rewriting system. To do so, we
study links between saturation processes and cut admissibility. In [12], Dowek
proved that in the case were there are only term rewriting rules, cut admissi-
bility is equivalent to the confluence of the rewriting system. In the case where
there are proposition rewriting rules, this is no longer true; for instance the rule
A→ A⇒ B is confluent but does not admit cuts. Now, consider a term rewrit-
ing system that does not admit cuts. Equivalently, it is not confluent. One way to
recover confluence, and thus cut admissibility, is to use the completion technique
of Knuth and Bendix [19], that has been refined into Unfailing Completion [2].
Unfailing Completion is a saturation process: starting from a set of equations,
new equations are generated, and older ones are simplified, until all newly gener-
ated equations are redundant. The set of equations is then called saturated, and
in the case of Unfailing Completion, the corresponding rewriting system is con-
vergent on ground terms. Consequently, cut admissibility is ensured for ground
terms, which is enough for cut admissibility since we can restrict ourselves to
ground sequents (if one considers Eigenvariables as constants). In other words,

https://www.rocq.inria.fr/deducteam/Dedukti/
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when it succeeds, Unfailing Completion allows to recover cut admissibility. In
this paper, we investigate how a saturation technique can help at regaining cut
admissibility in the more general case when there are proposition rewriting rules.

To better apprehend how it works, let us remark that there are usually two
ways to see rewriting systems: The first one is to consider them as particular
cases of abstract reduction systems whose objects are terms. The second one
is to consider them as a set of equations oriented by some reduction ordering.
It is this second point of view that is considered in Unfailing Completion, and
more generally in the automated theorem proving community. Of course, the
two views generally coincide, in particular in the case of terminating rewrite
systems. Let us now look at what would correspond to a proposition rewriting
rule following the second point of view. According to Dowek [13], a rewriting
rule P → C would coincide to what he calls a one-way clause ¬P ∨ C, where
¬P is selected, which means it is the only literal that can be used to resolve
the clause in the Resolution method. This idea of selected literal is reminiscent
of Ordered Resolution with Selection [4], where literals are selected according
to a well-founded ordering and a selection function choosing negative literals.
Therefore, the analogue of seeing term rewriting rules as equations oriented by
an ordering is to see proposition rewriting rules as clauses oriented by an ordering
and a selection function. Then, Ordered Resolution with Selection can be used
as a saturation process that allows to recover cut admissibility, as we prove in
Theorem 7.

We can go a step further. Unfailing Completion and Ordered Resolution with
Selection can be combined into Superposition, which is therefore a proof search
method for first-order logic with equality. Superposition includes in particular
the following inference rule:

s 2 u ∨C L[t]p ∨D
Superposition σ = mgu(s, t)

σ(L[u]p ∨ C ∨D)

with ordering restrictions to prevent the proliferation of such inferences. If we
look at the inference rule, it behaves as if L[t]p was rewritten (or more precisely
narrowed) into L[u]p, provided no condition in C holds. Following our analogy
between rewriting rules, equations and clauses, we can therefore see the clause
s 2 u ∨ C as a conditional rewriting rule s → u if ¬C. We then prove that
when a set of clauses is saturated using Superposition, its corresponding rewrit-
ing system, consisting of both proposition rewriting rules and conditional term
rewriting rules, admits cuts (Theorem 7 again, since Ordered Resolution with
Selection is a special case of Superposition when equality is not present).

In the following section, we will present Deduction Modulo in more details.
Then in Section 2 we say a few words about saturation processes, in particu-
lar saturation up to compositeness which is a modular form of redundancy. In
Section 3 we introduce Deduction Modulo Conditional Rewriting Rules, in par-
ticular by means of a sequent calculus. In Section 4, we prove the main result of
this paper, namely that when a set of clauses is saturated up to compositeness,
then a corresponding conditional rewriting system admits cuts.
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1 Deduction Modulo

1.1 Sequent Calculi Modulo

We use standard definitions for terms, predicates, propositions (with connectives
¬,⇒,∧,∨ and quantifiers ∀, ∃), sequents, substitutions, term rewriting rules and
term rewriting. The substitution of a variable x by a term t in a term or a
proposition A is denoted by {t/x}A, and more generally the application of a
substitution σ in a term or a proposition A by σA. A literal is an atomic propo-
sition or the negation of an atomic proposition. The negation of a literal L⊥ is
defined by P⊥ = ¬P and ¬P⊥ = P . A proposition is in clausal form if it is
the universal quantification of a disjunction of literals ∀x1, . . . , xn. L1 ∨ . . .∨Lp

where x1, . . . , xn are the free variables of L1, . . . , Lp. In the following, we will
often omit the quantifiers, and we will identify propositions in clausal form with
clauses (i.e. set of literals) as if ∨ were associative, commutative and idempotent.
This will be justified in Section 3. The symbol +, represents the empty clause.
The polarity of a position in a proposition can be defined as follows: the root is
positive, and the polarity switches when going under a ¬ or on the left of a ⇒.

In deduction modulo, term rewriting is extended to propositions by congru-
ence on the proposition structure. In addition, there are also proposition rewrit-
ing rules whose left-hand side is an atomic proposition and whose right-hand side
can be any proposition. Such rules can also be applied to non-atomic proposi-
tions by congruence on the proposition structure. We call a rewriting system
the combination of a term rewriting system and a proposition rewriting system.
Deduction modulo consists in applying the inference rules of an existing proof
system modulo such a rewriting system.

In this setting, rewriting rules can be applied indifferently to the left- or the
right-hand side of a sequent. Consequently, they can be considered semantically
as an equivalence between their left- and right-hand sides. To be able to con-
sider implications, a polarized version of deduction modulo was introduced [11].
Proposition rewriting rules are tagged with a polarity + or −; they are then
called polarized rewriting rules. A proposition A is rewritten positively into a
proposition B (A−→+B) if it is rewritten by a positive rule at a positive po-
sition or by a negative rule at a negative position. It is rewritten negatively
(A−→−B) if it is rewritten by a positive rule at a negative position or by a
negative rule at a positive position. Intuitively, a positive rule A→+ B (resp. a
negative rule B →− A) corresponds to an implication B ⇒ A. Term rewriting
rules (but not proposition rewriting rules) are considered as both positive and

negative.
∗−→± is the reflexive transitive closure of −→±. This gives the polar-

ized sequent calculus modulo, some of whose rules are presented in Figure 1.

Example 1. Consider the polarized rewriting system

A ⊆ B →− ∀x. x ∈ A⇒ x ∈ B A ⊆ B →+ ¬dw (A,B) ∈ A
A ⊆ B →+ dw(A,B) ∈ B
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�− A
∗−→
R

−C + ∗←−
R

B
Γ,A− B,Δ

Γ,A − Δ Γ − B,Δ−
�

A − ∗←−
R

C
∗−→
R

+B
Γ − Δ

Γ,B − Δ Γ − A,Δ
⇒− C

∗−→
R

−A ⇒ B
Γ, C − Δ

Γ,A − Δ
−¬ B

∗−→
R

+¬A
Γ − B,Δ

Γ, {t/x}A − Δ
∀− B

∗−→
R

−∀x. A
Γ,B − Δ

Γ − A,B,Δ
−∵

C
∗−→
R

+A

C
∗−→
R

+BΓ − C,Δ

Fig. 1. Some inference rules of the Polarized Sequent Calculus Modulo R

(dw can be seen as the Skolem symbol introduced by the CNF transformation of
the definition of the subset relation, dw (A,B) is a witness that A is not included
in B if it is the case.) We can build the following proof of the transitivity of the
inclusion in the polarized sequent calculus modulo this system:

�−
dw(A,C) ∈ C − A ⊆ C

�−
dw(A,C) ∈ B − dw (A,C) ∈ B

⇒−
dw (A,C) ∈ B ⇒ dw (A,C) ∈ C, dw (A,C) ∈ B − A ⊆ C

∀−
B ⊆ C, dw (A,C) ∈ B − A ⊆ C �−

dw(A,C)∈A−dw(A,C)∈A
⇒−

dw(A,C) ∈ A⇒ dw (A,C) ∈ B,B ⊆ C, dw (A,C) ∈ A − A ⊆ C
∀−

A ⊆ B,B ⊆ C, dw (A,C) ∈ A − A ⊆ C
−¬

A ⊆ B,B ⊆ C − A ⊆ C,A ⊆ C
−∵

A ⊆ B,B ⊆ C − A ⊆ C

We denote by Γ �R Δ the fact that the sequent Γ − Δ is provable in the
Polarized Sequent Calculus Modulo R. A theory Γ and a rewriting system R
are called compatible if for all formulæ A, then Γ � A (without rewriting) if and
only if �R A.

The cut rule is admissible in the sequent calculus modulo R if, whenever a
sequent can be proved in it, then it can be proved without using the cut rule (−

�

in Figure 1). Abusing terminology, we say that a rewriting system R admits cut
if the cut rule is admissible in the sequent calculus modulo R. The admissibility
of the cut rule has a strong proof-theoretical as well as practical importance:
it entails that normal forms exist for proofs; it implies the consistency of the
theory associated to R; it is equivalent to the completeness of the proof search
procedures based on deduction modulo R; etc.

1.2 Resolution Modulo and One-Way Clauses

An extension of resolution based on deduction modulo, called ENAR for Ex-
tended Narrowing and Resolution, was proposed by Dowek, Hardin and Kirch-
ner [14]. It consists of adding a new inference rule to the method of Robinson [20].
This rule, called Extended Narrowing, narrows a clause using the rewrite system
modulo which the proof is searched for. However, in ENAR, there is a need to
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P ∨ C ¬Q ∨D
Resolution σ = mgu(P,Q)

σ(C ∨D)

L ∨K ∨ CFactoring σ = mgu(L,K)
σ(L ∨ C)

P ∨ C
Ext. Narr.−

σ = mgu(P, Q)

Q →− D ∈ Rσ(D ∨ C)

¬Q ∨D
Ext. Narr.+

σ = mgu(P, Q)

P →+ ¬C ∈ Rσ(C ∨D)

Fig. 2. Polarized Resolution Modulo

transform formulæ into clausal normal form during proof search, and not only
before as it is usually the case with resolution methods. Therefore, Dowek refined
ENAR into Polarized Resolution Modulo, whose rules are presented in Figure 2.
In Polarized Resolution Modulo, proposition rewrite rules are assumed to be
clausal, which means that positive rewrite rules are of the form P →+ ¬C, and
negative rules are of the form P →− C, where C is in clausal form. This ensures
that formulæ generated by Extended Narrowing are still in clausal form.

Applying Extended Narrowing to a clause P ∨ C using the rule Q →− D
produces the same clause (namely σ(D∨C), where σ = mgu(P,Q)) as applying
Resolution to this clause P ∨C and the clause ¬Q∨D. Similarly, narrowing with
P →+ ¬C amounts to resolving with P ∨ C. Therefore, the polarized rewrite
rule Q →− D (resp. P →+ ¬C) can be identified with what Dowek [13] called
the one-way clause ¬Q ∨D (resp. P ∨ C) where

– two one-way clauses cannot be resolved together;
– only the selected (underlined) literal of a one way-clause can be used in

resolution.

Conversely, given a clause C and a literal L in C, it is always possible to
associate a polarized rewrite rule polar (C,L): polar (P ∨C,P ) is P →+ ¬C and
polar (¬Q∨D,¬Q) is Q→− D. Therefore, the same way that it is possible to see
a term rewriting rule as an equation in which one side is selected, it is possible
to see clausal polarized rewriting rules as clauses in which a literal is selected.

2 Saturation

If there are only term rewriting rules in R, and no proposition rewriting rules,
Dowek [12] showed that cut admissibility in the asymmetric sequent calculus
modulo R is equivalent to confluence of R. If R is not confluent, a way to get
an equivalent rewriting system which is confluent is to apply the Knuth-Bendix
standard completion [19], which was extended into Unfailing Completion [2].
Unfailing completion can be seen as a saturation process: one applies all possible
inferences to a starting set of formulæ (in that case, positive unit equations) until
all newly inferred formulæ are redundant, that is, can be simplified. In that case,
the resulting set is called saturated, and the correctness of the procedure shows
that a saturated set has the required property, namely ground convergence in
the case of Unfailing Completion. Of course, since the required property is in
general not decidable, the saturation process may not terminate. Resolution and
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its refinements can also be seen as saturation processes: the set of clauses is
completed until either the empty clause is generated, in which case the initial
set was inconsistent, or until all newly generated clauses are redundant, in which
case it is possible to construct a model of the saturated set of clauses.

It would be preferable that the saturation process were modular, in the sense
that, if a set Γ of formulæ is saturated, then saturating Γ ∪Δ should not need
to apply inferences between formulæ of Γ only. (This is in particular crucial for
implementing resolution using the given clause algorithm, to ensure that clauses
that were redundant remains redundant when a new given clause is chosen.)
Therefore, redundancy should be modular, in the sense that if C is redundant in
Γ , then it should be redundant in Γ ∪Δ. This refinement of redundancy is called
compositeness by Bachmair and Ganziger [3]. In fact, resolution-based provers
saturate their input in general not up to redundancy but up to compositeness
(Bachmair and Ganziger call saturation up to compositeness completeness, but
we will keep writing “saturation up to compositeness” to keep things clear.) Of
course, saturation up to compositeness implies saturation up to redundancy.

To deal with full first-order logic with equality, and not only unit clauses, Un-
failing Completion can be extended into Superposition [3], which is consequently
a complete proof-search method for first-order logic with equality. In pure Su-
perposition, the only predicate is the equality predicate (noted 2), and clauses
are therefore sets of equations and inequations. It is possible to encode other
predicates using function symbols, as is done for instance in the prover E. How-
ever, to separate more clearly reasoning about equality and about propositions,
we will use the inference for Superposition in addition to the rules for Ordered
Resolution with Selection [4] (a refinement of resolution inspired by Superposi-
tion), as is done in the prover SPASS. As in Unfailing Completion, we consider a
reduction ordering (, that is, an ordering that is stable under substitution and
context. Literals are compared as the multisets of multisets {{s}, {t}} for the
positive literal s 2 t and {{s, %}, {t, %}} for the negative literal s �2 t, where % is
a special symbol not part as the signature, which is assumed to be smaller than
any term. A clause s 2 t ∨ C is reductive for s 2 t if t �3 s and s 2 t is strictly
maximal in s 2 t∨C. We also consider a selection function S that, given a clause
C, returns a subset of the negative literals of C. Without considering simplifi-
cations, Superposition consists of the four inference rules presented in Figure 3,
in addition to which we also consider the two rules of Ordered Resolution with
Selection presented in Figure 4.

As we can see, Superposition has strong restrictions on the application of infer-
ence rules, which explain in part its efficiency. In particular, ordering restrictions
are performed after the application of the unifier σ. Let us note notwithstanding
that, thanks to the stability of ( by substitution, the calculus remains of course
complete if the restriction is applied on the premises, although it makes the proof
search space bigger.

In Superposition, compositeness can be defined as follows: A ground clause C
is called composite with respect to Γ if there exists ground instances C1, . . . , Cn

of clauses of Γ such that C1, . . . , Cn entails C and C ( Cj for all 1 ≤ j ≤ n. A
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s �� t ∨ C
Equality Resolution

σ(C)

s � u ∨ C ¬P [t]p ∨D
Negative Superposition

σ(¬P [u]p ∨ C ∨D)

s � u ∨ C P [t]p ∨D
Positive Superposition

σ(P [u]p ∨ C ∨D)

s � u ∨ t � v ∨ CEq. Factoring
σ(u �� v ∨ t � v ∨ C)

where

1. in all rules above, σ = mgu(s, t);
2. in Equality Resolution, either s �� t ∈ S(s � u ∨ C), or (S(s � u ∨ C) = ∅ and

σ(s �� t) is maximal in σ(s � u ∨ C);
3. in both Superpositions, σ(s � u∨C) is reductive for σ(s � u) and t is not a variable;
4. in Negative Superposition, either ¬P [t]p ∈ S(¬P [t]p, D) or S(¬P [t]p ∨D) = ∅ and

σ(¬P [t]p) is maximal in σ(¬P [t]p ∨D);
5. in Positive Superposition, S(P [t]p∨D) = ∅ and σ(P [t]p∨D) is reductive for σ(P [t]p);
6. in Equality Factoring, S(s � u ∨ t � v ∨ C) = ∅ and σ(s � u) is maximal in

σ(s � u ∨ t � v ∨ C);
7. in both Superpositions, if P [t]p is an equation v[t]p′ � w, then σw �� σv[t]p′ .

Fig. 3. Inference Rules of Superposition

P ∨ C ¬Q ∨D
Resolution

σ(C ∨D)

P ∨Q ∨ C
Factoring

σ(P ∨ C)
where

1. in both cases, σ = mgu(P,Q);
2. in Resolution, σP is strictly maximal in σ(P ∨ C) and S(σ(P ∨ C)) = ∅;
3. in Resolution, either σ(¬Q) ∈ S(σ(¬Q ∨ D) or S(σ(¬Q ∨ D) = ∅ and σ(¬Q) is

maximal in σ(¬Q ∨D);
4. in Factoring, σP is maximal in σ(P ∨ C) and S(σ(P ∨ C)) = ∅.

Fig. 4. Inference Rules of Ordered Resolution with Selection

non-ground clause is called composite with respect to Γ if all its ground instances
are. Lemma 11 of [3] tells us that if C is composite in Γ , then it is composite in
Γ ∪Δ, and that all composite clauses can be safely removed from Γ , as expected.

3 Deduction Modulo Conditional Rewriting Rules

We now present an extension of deduction modulo to the case of conditional
rewriting rules.

Definition 2 (Conditional rewriting rule). A conditional rewriting rule is
given by a pair of terms t and s and a set of formalæ Γ . It is denoted by s →
t if Γ .

A term u rewrites to a term v and conditions Δ using the conditional rewriting
rule s → t if Γ if there is a position p and a substitution θ such that u|p = θs,
v = u[θt]p and Δ = θΓ . This rewrite relation is denoted by u−→ v 4Δ. This is
extended to propositions by congruence on the proposition structure.
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Note that our definition of conditional rewriting differs from the usual definition
as can be found in [10], because conditions are not checked before applying the
rewriting rule, but they are delayed and, as we will see, they are checked using
a proof system and not just using normalization. This allows to have arbitrary
first-order formulæ as conditions.

We can combine conditional (term) rewriting rules C with polarized (proposi-
tion) rewriting rules P to get what we call a polarized and conditional rewriting

system : A proposition A rewrites positively to B and Δ in CP (A
∗−→
CP

+B 4Δ) if

– either A = B and Δ = ∅
– or A

∗−→
CP

+A′ 4Δ1 and

• either A′−→
P

+B and Δ = Δ1

• or A′−→
C
B 4 Δ2 and Δ = θΔ1 ∪ Δ2 where θ is a renaming of the free

variables of Δ1 to avoid clashes with those of Δ2.

Negative rewriting can be defined similarly. Let us remark that a conditional
rewriting step is therefore both a positive or a negative step.

Definition 3. A formula does not involve equality if 2 is not present in it. A
conditional rewriting rule s→ t if C does not involve equality if all formulæ in
C do not involve equality.

Given a rewriting system that does not involve equality, we can define the
Sequent Calculus Modulo Polarized and Conditional Rules. We only give the
main rules in Figure 5, the others can be induced from them:

Γ − θA1,Δ . . . Γ − θAn,Δ�− A
∗−→

CP
−C � {A1; . . . ;Ai} and B

∗−→
CP

+C � {Ai+1; . . . ;An}
Γ,A − B,Δ

Γ,A− Δ Γ − B,Δ Γ − θA1, Δ . . . Γ − θAn,Δ−
�

C
∗−→

CP
−A � {A1; . . . ;Ai}

C
∗−→

CP
+B{Ai+1; . . . ;An}Γ − Δ

Γ,B − Δ Γ − A,Δ Γ − θA1,Δ . . . Γ − θAn,Δ⇒− C
∗−→

CP
−A ⇒ B � {A1; . . . ;An}

Γ,C − Δ

Γ − θA1,Δ . . . Γ − θAn,Δ−
 A
∗−→

CP
+� � {A1; . . . ;An}

Γ − A,Δ

Γ, {t/x}A − Δ Γ − θA1,Δ . . . Γ − θAn,Δ
∀− B

∗−→
CP

−∀x. A � {A1; . . . ;An}
Γ,B − Δ

where θ is a substitution of the free variables of all Ai.

Fig. 5. Some Inference Rules of the Sequent Calculus Modulo Polarized and Condi-
tional Rules
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Example 4. Consider the following polarized and conditional rewriting system,
inspired by Collatz conjecture:

syracuse(X)→ syracuse(half(X)) if {even(X)} half(s(o))→ o if ∅
syracuse(X)→ syracuse(tnpo(X)) if {odd(X)} half(o)→ o if ∅
half(s(s(X))→ s(half(X)) if ∅ even(s(X))→+ odd(x)

tnpo(s(X))→ s(s(s(tnpo(X)))) if ∅ odd(s(X))→+ even(x)

tnpo(o)→ s(o) if ∅ even(o)→+ /

and let us denote by n the term s(. . . s(︸ ︷︷ ︸
n times

o)).

Then, syracuse(5)
∗−→ 1 4 {odd(5); even(16); even(8); even(4); even(2)}, and

we have the following proof of odd(syracuse(5)):

−�
− odd(5)

−�
− even(16)

−�
− even(8)

−�
− even(4)

−�
− even(2)

−�
− odd(syracuse(5))

Note that Deduction Modulo Polarized and Conditional Rules strictly sub-
sumes Polarized Deduction Modulo, which is exactly the case when there are no
conditions in the term rewriting rules.

Lemma 5. The inference rules ∀−, ∨−, ¬− and −¬ are invertible in the Sequent
Calculus Modulo Polarized and Conditional Rules, which means that their con-
clusion is provable if and only if their premises are. Moreover, if the proof of the
conclusion does not use −

�
, neither do the proofs of the premises.

Proof. By induction on the proof of the conclusion. +,

This lemma implies that we can handle formulæ in clausal normal form as
clauses, that is, set of literals. See for instance [16].

4 Ensuring Cut Admissibility Using Saturation

Given an ordering ( and a selection function S, we define the polarized and
conditional rewriting system associated to a set of clauses, and state that the
saturation of the set of clauses implies the cut admissibility for the corresponding
rewriting system.

Definition 6. Given a set of clauses Γ , an ordering on terms ( and a selection
function S, then the rewrite system CS(Γ,(, S) contains all rewrites rules

– polar(C,L) for all clauses C such that S(C) �= ∅ and for all L in S(C) that
does not involve equality;

– polar(C,L) for all clauses C such that S(C) = ∅ and for all L maximal in
C w.r.t. ( that does not involve equality;



134 G. Burel

– s → t if {L⊥1 , . . . , L⊥n } for all clauses C = s 2 t ∨ L1 ∨ · · · ∨ Ln such that
S(C) = ∅, s 2 t is maximal in C and t �( s.

Theorem 7. If the set Γ of clauses is saturated by Superposition up to com-
positeness, and CS(Γ,(, S) does not involve equality, then the sequent calculus
modulo CS(Γ,(, S) is compatible with Γ and it admits cuts.

Note that the Sequent Calculus Modulo Polarized and Conditional Rules is only
defined to prove formulæ that do not involve equality.

Before we prove Theorem 7, let us look at an example.

Example 8. In provers of the HOL family, it is possible to define a new type
corresponding to the (non-empty) set of terms that satisfies a predicate p. To do
so, two function symbols abs and rep are introduced that go respectively from
the initial type to the new one and conversely, as is represented in the following
figure:

rep

abs

p

These function symbols satisfy the axioms ∀X. p(X)⇔ abs(rep(X)) 2 X and
∀Y. rep(abs(Y )) 2 Y , which correspond to the clauses

p(X) ∨ ¬abs(rep(X)) 2 X (1)

¬p(X) ∨ abs(rep(X)) 2 X (2)

rep(abs(Y )) 2 Y (3)

Without a selection function, and with the lexicographic path ordering with
precedence abs ( p and rep ( p, the resulting conditional rewriting system is

abs(rep(X))→ X if {p(X)} rep(abs(Y ))→ Y if ∅

The sequent calculus modulo this system is not compatible with the initial
theory. Indeed, it is not possible to prove ∀Y. p(abs(Y )), although this is a
consequence of the axioms. This comes from the fact that the set of clauses
is not saturated for Superposition. To saturate the set of clause, for instance
using E, we only need to add a new clause, namely p(abs(Y )), obtained by
applying Negative Superposition on (3) and (1), and then Equality Resolution on
p(abs(X)) ∨ ¬abs(X) 2 abs(X), which is then composite. Note that all other
generated clauses are tautologies, and therefore are composite.

Consequently, the polarized and conditional rewriting system

abs(rep(X))→ X if {p(X)} rep(abs(Y ))→ Y if ∅ p(abs(X))→+ ¬⊥

admits cut for formulæ that do not involve equality.
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Let us mention Holide [1], a translator of proofs in the OpenTheory [17] format
into Dedukti, a proof checker based on deduction modulo. Most of the theory of
HOL can be expressed as rewriting rules, except a few axioms that cannot be
easily oriented. The first axiom defining rep and abs is one of these axioms, and
as we have seen, it could be oriented as a conditional rewriting rule.

To prove Theorem 7, we need to prove that if A is proved in the sequent
calculus modulo CS(Γ,(, S), then it can be proved in Γ , and that if A can be
proved in Γ , then it can be proved in the sequent calculus modulo CS(Γ,(, S)
without −

�
. The proof is partially based on the work of Dowek [13] who proves

that a derivation in PRM can be translated into a cut-free proof in the polarized
sequent calculus modulo.

Lemma 9. If A
∗−→−B 4 {L1, . . . , Ln}, then Γ,A � B,L⊥1 , . . . , L⊥n .

If A
∗−→+B 4 {L1, . . . , Ln}, then Γ,B � A,L⊥1 , . . . , L⊥n .

Proof. By induction on the length of the derivation; several steps can be com-
bined using −

�
. Note the importance of renaming free variables between several

steps. A single step can be proved by induction on the rewritten formula. If the
rewriting occurs in a subformula, we can use the induction hypothesis to con-
clude. Let us therefore assume that A is atomic. We have two cases depending
on whether a polarized or a conditional rule is used.

– A−→B 4 {L1, . . . , Ln}. There is a rule s → t if {L′1, . . . , L′n} in CS(Γ,(, S)
and a substitution σ such that A|p = σs, B = A[σt]p and Lk = σL′k. This

rule corresponds to a clause s 2 t∨L′1
⊥∨· · · ∨L′n

⊥
in Γ . From Γ,A one can

therefore deduce B ∨ L1
⊥ ∨ Ln

⊥, and thus Γ,A � B,L⊥1 , . . . , L⊥n .
– A−→−B. There exists a rule P →− C in CS(Γ,(, S) and a substitution σ

such that A|p = σP and B = σC. Therefore, there is a clause ¬P ∨ C in Γ ,
and from Γ,A one can therefore deduce σC, thus Γ,A � B. +,

Corollary 10. If Π �CS(Γ,�,S) Δ then Γ,Π � Δ.

Proof. By induction on the proof, using Lemma 9 to convert rewriting steps. +,

Lemma 11. If the set Γ of clauses is saturated by Superposition up to compos-
iteness, and CS(Γ,(, S) does not involve equality, if A does not involve equal-
ity and A is valid in Γ , then it can be proved in the sequent calculus modulo
CS(Γ,(, S) without −

�
.

Proof. Since Superposition is complete, there is a derivation of the empty clause
from Γ and C�(¬A) (the clausal normal form of ¬A). We are going to translate
this derivation into a cut-free proof of C�(¬A) −, by induction of the length of
the derivation.

Let us show that all new clauses in the derivation of +, do not involve equality:
Since Γ is saturated up to compositeness, all inferences using only premises in
Γ are redundant and therefore can be discarded. So by induction hypothesis at
least one of the premises does not involve equality. The only way to obtain an
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equality would be to apply Resolution or Superposition on a literal L of a clause
L ∨ C of Γ . In the former case, the restriction on the application of Resolution
implies that polar (C,L) is in CS(Γ,(, S). Because it does not involve equality,
this means that C, and thus the new clause, neither do. In the latter case, the
clause involving equality is necessarily the left one in the Superposition inference
rule, so that L = s 2 t for some s and t, and C = L1 ∨ · · · ∨Ln. The restriction
on the application of Superposition implies that s → t if {L⊥1 , . . . , L⊥n } is in
CS(Γ,(, S), so that L1, . . . , Ln do not involve equality, and thus the new clause
neither.

Therefore, since Γ is saturated up to compositeness, we can assume that the
derivation of +, does not contain applications of Equality Resolution or Equality
Factoring. Let us look at the remaining cases. To ease the proof, we can decom-
pose the application of the inference rules into the application of an instantiation
and the application of the rule without unification, as in the PEIR calculus of
[13]. We have the following cases:

– Instantiation of a clause C outside Γ into σC. By induction hypothesis we
have a cut-free proof of Δ,C, σC −. We can build a cut-free proof of Δ,C −
by applying a contraction of C and then ∀− to instantiate the variables as
in σ. (Remind that we omit to write quantifiers in clauses, so that C stands
in fact for ∀x1, . . . , xn, C where x1, . . . , xn are the free variable of C.)

– Resolution between two clauses P ∨C and ¬P ∨D outside Γ . Let us suppose
that we have a cut-free proof of Δ,P ∨C,¬P ∨D,C∨D −, then Proposition
7 of [13] implies that we have a proof of Δ,P ∨ C,¬P ∨D −.

– Resolution between a clause P ∨ C outside Γ and a clause obtained by in-
stantiating a clause ¬Q ∨ D of Γ with substitution σ. Then Q →− D is in
CS(Γ,(, S), and P ∗−→−σD 4 ∅. By induction hypothesis, we have a cut-free
proof of Δ,P ∨ C,C ∨ σD −. We can obtain a cut-free proof of Δ,P ∨ C −
by applying a contraction of P ∨ C and rewriting P into σD.

– Resolution between a clause ¬P ∨ C outside Γ and a clause obtained by
instantiating a clause Q ∨D of Γ : similar to the previous case, except that
we need to eliminate a double negation.

– Superposition between an clause obtained by instantiating a clause s 2 t ∨
L1 ∨ · · · ∨ Ln of Γ with substitution σ and a clause L[σs]p ∨ D outside
Γ . The restriction on the application of Superposition implies that the rule
s→ t if {L⊥1 , . . . , L⊥n } is in CS(Γ,(, S), and consequently L[σs]p

∗−→L[σt]p 4
{σL⊥1 , . . . , σL⊥n }. By induction hypothesis, we have a cut-free proof of Δ,
L[σs]p ∨D,L[σt]p ∨D ∨ L1 ∨ · · · ∨ Ln −. Since ∨− is cut-free invertible, we
therefore have (cut-free) proofs ofΔ,L[σs]p∨D,L[σt]p∨D − and Δ,L[σs]p∨
D,Li − for all 1 ≤ i ≤ n. Starting from Δ,L[σs]p ∨D −, we can apply con-
traction and rewrite L[σs]p, so that it remains to proveΔ,L[σs]p∨D,L[σt]p∨
D −, which we have, and Δ,L[σs]p ∨D − σLi

⊥ for all 1 ≤ i ≤ n, which can
be obtained by application of −¬ or inversion of ¬− in the proofs above.
Note that to make the proof more clear, we did not take the universal quan-
tifiers into account: this is not a problem since ∀− is invertible, and we took
care of renaming the free variables of the conditions during rewriting.
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The last point to show is that from a cut-free proof of C�(¬A) − one can build
a cut-free proof of − A. This can be proved by slightly adapting the proof of
Proposition 3 of [16]. +,

5 Conclusion and Further Works

We have introduced an extension of Deduction Modulo that handles conditional
rewriting rules. To get a criterion for cut admissibility in that setting, we have
examined how rewriting rules can be seen as oriented equations and oriented
clauses. This reflection has lead us to study how saturation techniques can help
presenting a theory through a rewriting system with cut admissibility. Our main
result is that whenever a set of clauses is saturated, we can build a corresponding
rewriting system admitting cuts. We can therefore use state-of-the-art automated
theorem provers, which are based on saturation techniques, to orient a theory
so that it can be used in Deduction Modulo. These notable results could be
extended in several directions.

First, the conditions in the conditional rewriting rules obtained from a satu-
rated set of clauses are simple, since they are only a set of literals. This comes
from the fact that we start from clauses, and not arbitrary formulæ. To get more
interesting conditions, an idea would be to consider the work of Ganzinger and
Stuber [15] that extend Superposition with formulæ that need not be in clausal
normal form.

Second, our work is restricted to the case where equality appears only in the
rewriting rules, not in the conditions nor in the formulæ to be proved. If we
allowed equations in them, Negative Superposition could be applied to clauses
of the theory in which a negative equation is selected. Therefore, these clauses
could not be discarded as it is the case in Definition 6. Another issue would
be the design of a sequent calculus modulo for first-order logic with equality. It
could be handled by extending one of the calculi of [8].

Third, saturation implies cut admissibility, but the converse is not true in
general. It would be interesting to be able to characterize cut admissibility as
precisely as can be done when only terms are rewritten, where it is equivalent
to the well studied notion of confluence.

Finally, it would be interesting to see how our work on conditional rewriting
rules can be extended to the λΠ-calculus modulo, the system at the heart of
the proof checker Dedukti. By doing so, we would be able to orient the theory
used in the provers of the HOL family without using axioms, thus improving the
performance of the translator Holide [1].
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Abstract. We implement an online judge for context-free grammars.
Our system contains a list of problems describing formal languages, and
asking for grammars generating them. A submitted proposal grammar
receives a verdict of acceptance or rejection depending on whether the
judge determines that it is equivalent to the reference solution grammar
provided by the problem setter. Since equivalence of context-free gram-
mars is an undecidable problem, we consider a maximum length � and
only test equivalence of the generated languages up to words of length �.
This length restriction is very often sufficient for the well-meant submis-
sions. Since this restricted problem is still NP-complete, we design and
implement methods based on hashing, SAT, and automata that perform
well in practice.

Keywords: grammars, equivalence, hashing, SAT, automata.

1 Introduction

Nowadays, there is an increasing interest in offering college-level courses online.
Websites like Khan Academy [10], Coursera [13], Udacity [15] and edX [1], pro-
vide online courses on numerous topics. The users/students have access to videos
and texts explaining several subjects, as well as tools for automated evaluation
by means of exercises. In the specific context of computer science, the use of
online judges for testing correctness of programs is used in several academic do-
mains as a self-learning tool for students, as well as a precise method in exams
for scoring their programming skills (see, e.g., [14,7,2]).

For the last two years we have developed a specific online judge for the subject
of Theory of Computation [9], located at http://racso.lsi.upc.edu/juez.
The site offers exercises about deterministic finite automata, context-free gram-
mars, push-down automata, reductions between undecidable problems, and re-
ductions between NP-complete problems. Users can submit their solutions, the
judge evaluates them, and offers a counterexample when the submission is re-
jected. This is very useful to make students understand why their solutions are
wrong, and to keep them motivated during the learning process. We have used

� The authors were supported by an FPU grant (first author) and the FORMALISM
project (TIN2007-66523) from the Spanish Ministry of Education and Science.
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the judge in the classroom, not only as a support tool for the students, but also
as an evaluation method on exams. This has had a marked effect on the motiva-
tion and involvement of the students: during a fifteen-week course, each student
has solved more than 150 problems in average, with more than 680 submissions.
This means that each problem needed over 4 submissions to get acceptance from
the judge, and the students were motivated enough to perform new attempts to
reach an acceptance verdict.

In this paper we explain the techniques used to automatically evaluate the
problems on context-free grammars. Each of such problems describes a language
L and asks the student to submit a grammar Gsub generating L. In some cases, it
asks specifically for an unambiguous grammar. The judge checks the correctness
of Gsub by testing that it generates the same language as a reference gram-
mar Gsol provided by the problem setter. Since it is well-known that grammar
equivalence is an undecidable problem [9], we cannot expect the judge to behave
correctly for every input. Therefore, we focus on performing well with the well-
meant grammars submitted by students to academic problems. These grammars
are very simple, and when they are wrong, there is usually a small counterex-
ample, i.e., a small word in L(Gsub)5L(Gsol). For this reason, we tackle the
problem by fixing a length � and looking for a word w ∈ L(Gsub)5L(Gsol) with
length bounded by �. Since this is still NP-complete, we develop methods that
in practice behave well enough for small �, Gsub, and Gsol. In particular, our
judges1 are based on automata and hashing techniques, and we also study pos-
sible optimizations for the reduction in [3] of the grammar equivalence to the
SAT problem.

The paper is organized as follows. In Section 2 we summarize notations and
basic concepts. In Section 3 we explain the different developed methods, and in
Section 4 compare them with others from the literature. In Section 5 we describe
our online system and our experience using it. We conclude in Section 6.

2 Preliminaries

Words are finite-length lists of symbols chosen over an underlying alphabet Σ.
The length of a word w is denoted by |w|, and its i’th symbol, for 1 ≤ i ≤ |w|, is
denoted by w[i]. Similarly, its subword between i and j, inclusive, is denoted by
w[i..j]. The empty word is denoted by ε. We assume that the reader is familiar
with the concept of context-free grammar (cfg) as a structure G = 〈V , Σ,R, S〉,
where V is the set of non-terminal symbols, Σ is the alphabet of terminal sym-
bols, R ⊂ V × (V ∪ Σ)∗ is the set of rules, and S ∈ V is the initial symbol.
We denote non-terminals with uppercase letters X,Y, Z, . . . and terminals with
lowercase letters a, b, c, . . ., with possible subscripts. Often, grammars are just
represented by a list of rules, where the non-terminal at the left-hand side of
the first rule is considered the initial symbol. Also, rules with common left-hand
side are usually described in compact form, e.g., two rules X → u, X → v are
represented by X → u | v. In order to simplify definitions and arguments, we

1 Source code available at http://www.lsi.upc.edu/~ggodoy/publications.html

http://www.lsi.upc.edu/~ggodoy/publications.html
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assume without loss of generality that the sets of non-terminals of any two gram-
mars are disjoint. We assume that our grammars are reduced and in cnf [9],
and hence we only deal with rules of the form X → Y Z and X → a. Recall
that the standard transformation to cnf produces a quadratic increase in size,
and can be adapted to detect when ambiguity is lost due to the transformation.
For a detailed definition of the language L(G) generated by the cfg G, and the
concept of ambiguity see, e.g., [9]. We assume that the reader is familiar with
the concept of deterministic finite automata (dfa) and their properties [9].

3 Judging Methods

3.1 Exhaustive

The JudgeExhaustive approach consists in enumerating all the words up to
length � that can be generated by each of the grammars and checking whether
there exists some word w that is generated by just one of them. This brute force
solution has some benefits in our setting. First, it is trivial to give the minimal
counterexample in size, whenever one exists in our search space. Second, besides
enumerating the words, it is easy to count the amount of different derivations
that generate each of them. This additional information allows to check whether
the grammar is ambiguous in the subset of words with length bounded by �.

3.2 Hash

The JudgeHash approach is based on a hash function H that maps languages
to natural numbers. We focus on the subsets LGsub,� ⊆ L(Gsub) and LGsol,� ⊆
L(Gsol) of words of length � of L(Gsub) and L(Gsol), respectively, and check
LGsub,� = LGsol,� indirectly with H(LGsub,�) = H(LGsol,�). Note that by using
hash functions we may obtain false positives due to collisions, but never false
negatives. We use a typical definition [11] for a hash function for words:

H(w) =
(∑|w|

i=1 w[i] · bi−1
)
mod m

where m is a “big” prime and b is a “small” prime satisfying b > |Σ|. Note that
we interpret the terminal symbols in Σ as numbers, assuming that they are in
{1, . . . , b− 1} and are pairwise different. An extension of H to languages like

H(L) =
(∑

w∈LH(w)
)
mod m

suffices to detect when LGsub,� and LGsol,� differ, and in such case a counterex-
ample w ∈ LGsub,�5LGsol,� can easily be constructed one symbol at a time: it
suffices to check that the symbol appended to w is valid for w to become the
counterexample, i.e., to check that H({wu ∈ LGsub,�}) �= H({wv ∈ LGsol,�}).

Due to the lack of space and for explanation purposes, instead of giving the
formal definition of the efficient computation ofH(LG,�) making use of the struc-
ture of G, we just give an example. Consider the language L = {anbn | n > 0}
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and the following cfg generating L (already in cnf):

S → AX | AB
X → SB
A → a
B → b

By H(W, �) we denote H({w ∈ Σ∗ | W →∗
G w ∧ |w| = �}) and by C(W, �) we

denote |{w ∈ Σ∗ |W →∗
G w ∧ |w| = �}|. Such values can be recursively obtained

using the structure of G. For the direct cases we have H(A, 1) = a, H(B, 1) = b,
C(A, 1) = C(B, 1) = 1, and H(A, n) = H(B, n) = C(A, n) = C(B, n) = 0 for
n > 1. Since the right-hand sides of rules of S and X have size 2, H(S, 1) =
H(X, 1) = C(S, 1) = C(X, 1) = 0. Since X only has the rule X → SB, C(X, 2) =
C(S, 1) · C(B, 1) = 0, and H(X, 2) = H(S, 1) · C(B, 1) + C(S, 1) · H(B, 1) · b = 0.
Proceeding analogously, we obtain C(S, 2) = 1, H(S, 2) = a + bb. Since S has
the rules S → AX, S → AB,

C(S, 3) = C(A, 1) · C(X, 2) + C(A, 2) · C(X, 1)+
C(A, 1) · C(B, 2) + C(A, 2) · C(B, 1) = 0

H(S, 3) = H(A, 1) · C(X, 2) + C(A, 1) · H(X, 2) · b+
H(A, 2) · C(X, 1) + C(A, 2) · H(X, 1) · b2+
H(A, 1) · C(B, 2) + C(A, 1) · H(B, 2) · b+
H(A, 2) · C(B, 1) + C(A, 2) · H(B, 1) · b2 = 0

Proceeding analogously, we obtain C(X, 3) = 1, H(X, 3) = a+ bb+ bb2.
JudgeHash only works correctly when Gsol is unambiguous because deriva-

tions generating the same word are counted independently. The generated coun-
terexample w to the correctness ofGsub will be either a word in L(Gsub)5L(Gsol)
or a word ambiguously generated by Gsub. A membership test can determine
which one of these cases takes place.

3.3 SAT

The JudgeSAT is based on the work of [3] and consists in testing equiva-
lence of Gsub and Gsol by reducing the problem to the satisfiability of boolean
propositional formulas. More specifically, the idea is to first construct a formula
F�,Gsub,Gsol

such that it is satisfiable if and only if there exists a counterexample
word of length at most �, and then to solve the formula with a state-of-the-art
SAT solver. We have reimplemented this method with the idea of trying some
possible optimizations. One of them consists in splitting F�,Gsub,Gsol

in two inde-
pendent formulas F�,Gsub\Gsol

and F�,Gsol\Gsub
, where F�,Gi\Gj

is satisfiable if and
only if there exists a word of length � in L(Gi) \ L(Gj). We recall the reduction
process of [3] just for F�,Gsub\Gsol

.
The formula F�,Gsub\Gsol

is defined by means of two kinds of propositional
variables: X a

i and XX
i,j , where 1 ≤ i ≤ j ≤ �, a ∈ Σ and X ∈ V . The first

kind of variable, X a
i , represents the fact that the counterexample w has the

terminal a at position i. The second kind of variable, XX
i,j , represents the fact
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that the subword w[i..j] can be generated from the non-terminal X . The formula
F�,Gsub\Gsol

can be decomposed into four different parts. First, it guarantees that
the counterexample w[1..�] is a valid word in Σ∗ by forcing each position of the
word to contain exactly one terminal symbol of Σ:∧�

i=1

(∨
a∈Σ X a

i

)∧�
i=1

∧
a∈Σ

(
X a

i →
∧

b∈Σ\{a} ¬X b
i

)
Second, F�,Gsub\Gsol

states that w[1..�] is generated by Gsub but not by Gsol with

the two unit clauses (XSsub

1,� ) and (¬XSsol

1,� ), where Ssub and Ssol are the starting
symbols of Gsub and Gsol, respectively. Third, it formalizes the fact that Gsub

generates w[1..�]:∧�−1
i=1

∧�
j=i+1

∧
X∈Vsub

(
XX

i,j →
∨

(X→Y Z)∈Rsub

∨j−1
s=i (X Y

i,s ∧ XZ
s+1,j)

)
∧�

i=1

∧
X∈Vsub

(
XX

i,i →
∨

(X→a)∈Rsub
X a

i

)
where Vsub and Rsub are the sets of non-terminals and rules ofGsub. And fourth, it
formalizes the fact that Gsol does not generate w[1..�] with a formula analogous
to the previous one, but with the direction of the implications reversed.

It is clear that a counterexample w of length � exists if and only if either
F�,Gsub\Gsol

or F�,Gsol\Gsub
is satisfiable. Moreover, w can be derived from any

assignment η that satisfies a formula by analysing all the values η(X a
i ).

One additional optimization with respect to [3] that we have considered is
to simplify the formulas as follows: whenever we detect that a non-terminal X
cannot generate any word of length k, we simply create a unit clause (¬XX

i,i+k−1)
for any relevant i. This allows us to ignore for length k all the rules with X as
left-hand side and all the possible split indexes s ∈ {i, . . . , i+ k − 1}.

3.4 DFA

The approach of JudgeDFA is based on automata techniques. The idea is to
construct the minimum dfa Asub,� and Asol,� recognizing the words of length �
generated by Gsub and Gsol, and testing whether Asub,� and Asol,� are identical.
In order to be able to compute the automata directly on the grammars, we use
the following function A : V ×N→ dfa mapping a non-terminal X and a length
� to an automaton recognizing the words of length � generated from X :

A(X, �) =

{⋃
(X→a)∈R Aa if �=1⋃
(X→Y Z)∈R

⋃�−1
i=1 A(Y, i) · A(Z, � − i) if �>1

where concatenation and union are not set operations, but automata operations
producing automata recognizing the concatenation and union of the languages
of the given automata, and Aa denotes the automaton recognizing the word
a ∈ Σ. Moreover, we assume that the dfa recognizing the empty language is the
neutral element of the automata union. Note that we do not explicitly detect
whether the grammars are ambiguous, but an approximation could be checked
while evaluating A by testing whether the unions performed are disjoint.
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4 Performance

4.1 Complexity Analysis

For JudgeExhaustive, when we restrict to small alphabets and small �, words
can be encoded as natural numbers using the native representation of the com-
puter, and then the running time is in O(|R| ·� · |Σ|�) and its space in O(V ·|Σ|�).

In the case of JudgeHash, using a dynamic programming scheme, the space
requirements to compute C and H up to the current counterexample w are in
O(|V|·�2) and it takes time in O(|R|·�3). The construction of the counterexample
w requires the recomputation of Cw and Hw at most � · |Σ| times, giving a global
running time in O(|R| · �4 · |Σ|).

The number of variables of the form X a
i and XX

i,j of JudgeSAT is in O(�·|Σ|+
�2 · |V|), and hence, the cost of solving F�,Gi\Gj

is in 2O(�·|Σ|+�2·|V|). Fortunately,
state-of-the-art SAT solvers perform much better than this in practice, and in-
cremental SAT-solver techniques [8,16] lead to noticeable speed-ups since the
solver can reuse for F�+1,Gi\Gj

the knowledge obtained when solving F�,Gi\Gj
.

Finally, for JudgeDFA, first note that the size of a minimum dfa recognizing
a set of words of length � is in 2O(log(|Σ|)·�). Second, recall that the concatenation
operation on automata might lead to exponential blowup and the union opera-
tion multiplies the sizes of the automata being considered [9]. This implies that

the computations of JudgeDFA have space requirements in 22
O(log(|Σ|)·�)

. How-
ever, this extreme bound is only reached when the languages generated by the
grammars require excessive memorization, e.g., the language of palindromes and
the language of well-parenthesized words. In other cases, JudgeDFA can “com-
press” the language by sharing states and obtains much better performance.

4.2 Benchmarks

We have compared the performance of our judges using the set of benchmarks
from [3], comprising 35910 different pairs of grammars. As a reference, we have
also tested the prototype implementation of [3], cfganalyzer2. Additionally,
we have also compared our proposals with Hampi

3, a state-of-the-art string-
constraint solver developed in [6] which is expressive enough to approximate
grammar equivalence. Hampi works by internally transforming the grammars to
fixed-length regular expressions and then solving the constraints for them.

Figure 1 shows the results obtained4 for each judge when testing grammar
equivalence up to length � = 15. The plot can be interpreted as follows: all
the 35910 tests are run in parallel in independent machines, the abscissa is the
elapsed time, and the ordinate is the number of tests that have not reached a
verdict. It is easy to see in the chart that most of the tests can be solved in less

2 Version 2012-12-26, http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/
3 Version 2012-2-13, http://people.csail.mit.edu/akiezun/hampi/
4 Measurements taken on a 64-bit IntelR© PentiumR© T4200, at 2GHz and with 4GB of
RAM, timings available at http://www.lsi.upc.edu/~ggodoy/publications.html

http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/
http://people.csail.mit.edu/akiezun/hampi/
http://www.lsi.upc.edu/~ggodoy/publications.html


Automatic Evaluation of Context-Free Grammars (System Description) 145

1 10 100 1000 10000 100000

Elapsed time (milliseconds)

1
10

10
0

10
00

10
00

0
Am

ou
nt

 o
f u

nfi
ni

sh
ed

 te
st

s

cfganalyzer JudgeHash JudgeDFA JudgeSAT JudgeSATsplit JudgeExhaustive Hampi

Fig. 1. Results using the benchmarks from [3], comprising 35910 grammar pairs, testing
equivalence up to length � = 15

than 10 milliseconds by all the judges. This is because in such cases either the
counterexamples were small, i.e., the empty word, or the grammars were deemed
wrongly formatted. Timings for cfganalyzer and JudgeSAT correspond to the
builds using the latest version of MiniSat

5 [5] (the solvers zChaff [12] and Pi-

coSat [4] were also considered, but finally discarded due to lower performance).
Clearly, the plots for JudgeSAT closely follow cfganalyzer, with our opti-
mizations giving only a small benefit. The results for JudgeExhaustive and
JudgeDFA are comparable to cfganalyzer, and even significantly better when
considering the most expensive tests. JudgeExhaustive is competitive with the
rest because the alphabets are small and the languages are sparse. The timings
obtained for JudgeHash are quite remarkable: the worst running time was just
12 milliseconds. Finally, in the case of Hampi, we had to limit the execution
time to 2 minutes and the memory to 512 MB, since in some tests the program
hung consuming all the available memory. Due to these problems, we only used
a subset of the tests. Overall, results for Hampi are rather poor when compared
to the rest of judges.

4.3 Stressing the Judges

To highlight the differences between our judges, we have devised an additional
set of grammar pairs that focus on particular bottlenecks of each judge:

– Language of words with same number of a’s and b’s:

Gnumab = {S → aXbS | bY aS | ε, G′
numab = {S → aSbS | bSaS | ε}

X → aXbX | ε,
Y → bY aY | ε}

– Palindromes over an alphabet Σi with i different terminal symbols:

Gpali =
⋃

a∈Σi
{S → aSa | a | ε} G′

pali
=

⋃
a∈Σi
{S → Aa | a | ε, Aa → aSa}

5 Version 2.2.0, http://www.minisat.se

http://www.minisat.se
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– Language of the well-parenthesized words:

Gparen = {S → (S)S | [S]S | G′
paren = {S → S(S)S | S[S]S |

{S}S | <S>S | ε} S{S}S | S<S>S | ε}

– Language of the valid expressions over the alphabet Σ = {+, *, (, ), 0, . . . , 9}:

Gexpr = {E → P+E | P, P → B*P | B, G′
expr = {E → E+E | E*E | N | (E),

B → N | (E), N → ND | D, N → DN | D,
D → 0 | 1 | . . . | 9} D→ 0 | 1 | . . . | 9}

Figure 2 shows the obtained running times. As expected, JudgeExhaustive
achieves acceptable performance only when the alphabet is small and the lan-
guages sparse. The cases of JudgeDFA and JudgeSAT are related: the latter
improves the times of the former when the languages require excessive mem-
orization. For instance, Gpali

, G′
pali

, Gparen and G′
paren force the automata to

memorize almost all the read word. When no such excessive memorization is
required, like in Gnumab, G

′
numab, Gexpr and G′

expr, the automata of JudgeDFA

are small and it obtains better performance than JudgeSAT.
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Fig. 2. Running times in seconds (ordinate) in terms of the maximum length � tested
(abscissa) for the different judges (dotted lines correspond to JudgeExhaustive, long-
dashed to JudgeDFA, short-dashed to JudgeSAT)

We have an extra test to stress JudgeHash. This is necessary since its worst
case scenario is not with equivalent grammars, but when there is a big coun-
terexample. We test the language of words of length i over Σj = {a1, . . . , aj}:

Garti,j = {S →
i︷ ︸︸ ︷

T . . . T , T → a1 | . . . | aj} G′
arti,j

= Garti,j ∪ {S →
i︷ ︸︸ ︷

aj . . . aj}

Note that the lexicographically last word is ambiguously generated by G′
arti,j

,
thus being the counterexample. Figure 3 depicts the obtained times, where it is
clear that competitive performance is achieved even with rather big i and j.
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Fig. 3. JudgeHash’s running times in seconds (ordinate) in terms of the word length
i (abscissa) for Garti,j vs. G′

arti,j

5 Online Judging System

Our website currently offers 46 problems on cfg’s and 21 on push-down au-
tomata, which are checked by the same judges by a prior standard transformation
into cfg’s. Our system is configured as follows. For problems with languages over
alphabets with 2 or 3 symbols we use JudgeExhaustive with � = 10, because it
is fast enough, has a rather uniform running time, and the answer is guaranteed
to be correct up to the chosen �. For problems over alphabets larger than 3 and
asking for an unambiguous grammar we use JudgeHash and � = 15, which is
combined with JudgeExhaustive with � = 3 in order to reduce the chances of
hash collisions. For the rest of problems we use either JudgeSAT or JudgeDFA,
depending on the language, and with � = 10. Essentially, JudgeDFA is used
for those languages for which the expected natural grammar solutions produce
small automata, according to the problem setter criterion.

We have been using the online judge since September 2012 with the students
of the Theory of Computation subject at the Computer Science course of the
Universitat Politècnica de Catalunya. For the first two semesters it was offered to
the students as an optional support tool to do exercises. During the fall semester
of 2013 we also used our system to hold online exams, and the students made
over 12000 submissions in total, for an average of 250 submissions per student.

6 Conclusions

We have developed several techniques for determining if two given context-free
grammars generate the same language. The methods we have implemented work
sufficiently well in practice. In the case of the SAT-based judge, the performance
of our implementation is similar to the state of the art. The hash-based method
has much better performance than the others. Nevertheless, besides the fact that
this method cannot be used with ambiguous solution grammars, the extension
of the hash function from words to languages degrades some of its properties,
and it may happen that some collisions take place independently of the chosen
primes m, b. For instance, the following languages L1, L2 give rise to the same
value through the hash:

L1 = {anbn | n ≥ 0} ∪ {cndn | n ≥ 0}
L2 = {andn | n ≥ 0} ∪ {cnbn | n ≥ 0}



148 C. Creus and G. Godoy

This problem takes place only in specific languages in practice, but defining
alternative hashing functions to avoid it should be matter of further work.

According to the students’ opinions, the judge is a good support tool that helps
them know if they are understanding the matter. In our opinion, it has all the
benefits of online judges: it is a good support-learning tool, gives instant feedback,
and motivates users to practice. Note that the tool just checks that the submitted
solutions are correct, but neither the quality of such solutions nor that the students
have understood them well enough to justify their correctness. In this sense, the
professor is essential to adquire a good comprehension of the matter.

Although many problems in the list are artificial, they help students to under-
stand the limits of expressivity of cfg’s, and how context-free conditions can be
combined with regular conditions. We are interested in studying whether simi-
lar techniques perform well for evaluating grammars designed for descending or
ascending parsing, and for the construction of abstract syntax trees. This can
be useful to develop support-learning tools for the Compilers subject.
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Abstract. We define the tree automata with height constraints between
brothers (TACBBH). Constraints of equalities and inequalities between
heights of siblings that restrict the applicability of the rules are allowed
in TACBBH. These constraints allow to express natural tree languages like
complete or balanced (like AVL) trees. We prove decidability of empti-
ness and finiteness for TACBBH, and also for a more general class that
additionally allows to combine equality and disequality constraints be-
tween brothers.

Keywords: Tree-Automata, Constraints, Emptiness, Finiteness.

1 Introduction

For a long time, tree automata have been regarded as a fundamental tool in
many theoretical areas of computer science. These automata are a generalization
of word automata that work on structured input, namely trees. Due to their
good computational properties, tree automata have been used as the formalism
for, e.g., describing parse trees of a context-free grammar or the well-formed
terms over a sorted signature [17], to characterize the solutions of formulas in
monadic second-order logic [11], and to naturally capture type formalisms for
XML data [19].

Unfortunately, expressiveness of plain tree automata is limited since they only
have finite memory. For instance, a set like L = {f(t1, t2) | t1 �= t2} is a typical
example of language that cannot be recognized by any tree automaton. In this
case, the reason is that it is not possible to check that arbitrary t1 and t2 are
different using only a finite number of states. In order to overcome such limi-
tation, many extensions to tree automata have been considered in recent years.
One of the most studied cases consists in enhancing the automaton with the
possibility to test equality and disequality of certain subterms of the input tree.
This kind of automata are said to have (dis)equality constraints and, depending
on how the tests are defined, they can be roughly classified as either local [18]
or global [12,2]. We focus on the local case. In this model, each transition rule
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of the automaton has an associated Boolean combination of atomic predicates
of the form p1 = p2 and p1 �= p2, for positions p1, p2. Such an atomic constraint
holds for a given rule application if the subterms pending at p1 and p2, rela-
tive to the position where the rule is applied, are equal in the first case and
different in the second one. The previous example language L can be recognized
with such automata: it suffices to force the predicate 1 �= 2 to be tested at the
root position. However, the increase in expressiveness obtained with constraints
comes at the expense of other desirable properties. For instance, when arbitrary
positions p1 and p2 are allowed in the atoms, emptiness and finiteness are un-
decidable for this kind of automata [18,7]. Nevertheless, several particular cases
enjoy better properties and have been successfully used to tackle different prob-
lems: tree automata with constraints between brother positions allowed to prove
decidability of fragments of quantifier-free formulas on one-step rewriting [4], as
well as the recognizability problem for regular tree languages under particular
cases of tree homomorphisms [3]; arbitrary local disequality constraints were
used to prove EXPTIME-completeness of ground reducibility [5]; arbitrary lo-
cal disequality constraints combined with a restricted version of local equality
constraints, called HOM equalities, were used to prove EXPTIME-completeness
of the recognizability problem for regular tree languages under tree homomor-
phisms [15,9]; and automata with arbitrary local constraints but with a bound
on the maximum number of equality tests that can be performed at each branch
of the input tree lead to the decidability of fragments of the first-order theory of
reduction [10]. Other models originated in the study of secrecy in cryptographic
protocols consider extending the automata with one tree-shaped memory, allow-
ing the transition rules to update such memory and to perform comparisons [6,8].
These models are expressive enough to generalize certain cases of local equality
constraints between brothers.

We propose a new kind of automata with local constraints between brother
positions that differs from the previous literature in that, instead of checking
subterms for either syntactic equality or some notion of equivalence (like, e.g.,
in [16,2]), the restrictions are imposed on the height of the subterms involved
in the constraints. We call them tree automata with height constraints between
brothers, TACBBH for short. More precisely, our basic atomic predicates are of
the form h(i) = h(j), for positions i and j of length 1, and are satisfied when
the subterms pending at i and j, relative to the application of the rule, have
identical height. We also consider inequality predicates of the form h(i) < h(j)
and comparisons introducing an integer constant x of the form h(i) = h(j) + x
and h(i) < h(j) + x, with the straightforward interpretations. It is easy to see
that our notion of constraints is incomparable with syntactic equality constraints.
For instance, the language of complete trees over a signature with two constant
symbols a, b and a binary symbol f can be recognized by a TACBBH with the
transition rules

a→ q, b→ q, f(q, q)
h(1)=h(2)−−−−−−→ q

but such language cannot be recognized by the automata with (dis)equality con-
straints between brothers (AWCBB) from [3]. Intuitively, this is because, even if
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two terms t1 and t2 were inductively guaranteed to be complete, it is not pos-
sible to check with only (dis)equality constraints whether t1 and t2 have equal
height, and thus, whether f(t1, t2) is also complete. Actually, it can be proved
that with AWCBB it is only possible to recognize the language of complete trees
when the underlying signature has a single constant symbol and a single non-
constant symbol. This limitation also holds for generalizations of AWCBB like the
TAB from [2], where equalities are interpreted modulo flat theories. Another inter-
esting language that can be recognized by TACBBH using the inequality predicates
on height is the language of AVL trees, i.e., the set of trees where the heights of
the two direct children of any internal node differ by at most one. It suffices to
replace the previous rule for f with

f(q, q)
(h(1)<h(2)+2) ∧ (h(2)<h(1)+2)−−−−−−−−−−−−−−−−−−−−−→ q

Note that the constraint forces the height of each child to be at most one more
than the height of the other child.

We prove decidability of the emptiness and finiteness problems for TACBBH.
Our approach consists in transforming the automaton into a normalized form,
and obtaining a recursive formulation to describe the set of reachable states when
recognizing terms of a specific height. The decision algorithm follows directly
from such result. We adapt the method to automata that combine the height
constraints of TACBBH with the (dis)equality constraints of AWCBB, which we call
TACBBHe. Note that this kind of automata strictly generalizes TACBBH and AWCBB,
and hence, decidability of emptiness and finiteness is EXPTIME-hard [7].

The definition of TACT in [20] is incomparable with TACBBHe. Nevertheless, a
given tree automaton with height constraints is transformable into a TACT by
preserving emptiness (but not the language). But this does not help in our set-
ting to decide emptiness of our model, since emptiness of TACT is undecidable.
The definition of VTAMR

¬R in [8] captures our automata models. Nevertheless,
emptiness is only decidable for some particular subclasses that are incomparable
with TACBBHe since, although they can recognize the particular set of complete
trees, height of subtrees cannot be compared in general.

The paper is structured as follows. In Section 2 we introduce standard no-
tations and definitions, and in Section 3 we define our model of automata. In
Section 4 we tackle the case where only simple height constraints are allowed, i.e.,
TACBBH whose atomic predicates are restricted to h(i) = h(j) and h(i) < h(j).
In Section 5 we generalize those results to TACBBHe. We conclude in Section 6.

2 Preliminaries

The size of a finite set S is denoted by |S|, and the powerset of S is denoted by 2S .
Given two sets of sets S1, S2, by S1�S2 we denote the set of sets that are obtained
by choosing a set Ŝ1 from S1 and a set Ŝ2 from S2 and making their union, i.e.,
{Ŝ1 ∪ Ŝ2 | Ŝ1 ∈ S1 ∧ Ŝ2 ∈ S2}. For example, {{a, b}, {c}} � {{d, e}, {f}} =
{{a, b, d, e}, {a, b, f}, {c, d, e}, {c, f}}. A partition P of a set S is a set of non-
empty sets (the parts) that are pairwise disjoint and whose union is S. By i ≡P j
we denote that i, j belong to the same part of P .
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We introduce notation for terms and positions, for a survey see [1]. A signature
consists of an alphabet Σ, i.e., a finite set of symbols, together with a mapping
that assigns to each symbol in Σ a natural number (possibly 0), its arity. We
denote by Σ(m) the subset of symbols in Σ of arity m, and by maxar(Σ) the
maximum m such that Σ(m) is not empty. We write simply maxar when Σ is
known by the context. Symbols in Σ(0), called constants, are denoted by a, b,
with possible subscripts. The set T (Σ) of ground terms (or just terms) over Σ
is the smallest set such that f(t1, . . . , tm) is in T (Σ) whenever f ∈ Σ(m), and
t1, . . . , tm ∈ T (Σ). For a term of the form a() we simply write a. A language
over Σ is a set of ground terms. A position is a sequence of natural numbers.
The symbol λ denotes the empty sequence, also called the root position, and p.p′

denotes the concatenation of the positions p and p′. The set of positions of a term
t, denoted Pos(t), is defined recursively as Pos(f(t1, . . . , tm)) = {λ} ∪ {i.p | i ∈
{1, . . . ,m} ∧ p ∈ Pos(ti)}. The subterm of a term t at a position p, denoted t|p,
is defined recursively as t|λ = t and f(t1, . . . , tm)|i.p = ti|p. The height of a term
t, denoted height(t), is defined recursively as height(t) = 0 if t is a constant, and
as height(f(t1, . . . , tm)) = 1 +max{height(t1), . . . , height(tm)} otherwise.

Tree automata and regular tree languages are well-known concepts of theoret-
ical computer science [13,14,7]. Here we only recall the notion of tree automata.

Definition 1. A tree automaton, TA for short, is a tuple A = 〈Q,Σ, F,Δ〉,
where Q is a finite set of states, Σ is a signature, F ⊆ Q is the set of final
states, and Δ is a set of rules of the form f(q1, . . . , qm)→ q, where q1, . . . , qm, q
are in Q, and f is in Σ(m).

A run of A on a term t ∈ T (Σ) is a mapping r : Pos(t) → Δ such that, for
each position p ∈ Pos(t), if t|p is of the form f(t1, . . . , tm), then r(p) is a rule
of the form f(q1, . . . , qm) → q, and the rules r(p.1), . . . , r(p.m) have q1, . . . , qm
as right-hand sides, respectively. We say that r(p) is the rule applied at position
p. The run r is called accepting if the right-hand side of r(λ) is a state in F .
A term t is accepted by A if there exists an accepting run of A on t. The set
of accepted terms by A, also called the language recognized by A, is denoted by
L(A). A language L is regular if there exists a TA A such that L(A) = L holds.

3 Tree Automata with Height and Equality Constraints
between Brothers

In this paper we deal with several classes of tree automata with constraints
between brothers. The only difference between such classes is the form of the
constraints and the way such constraints are interpreted. In this section we give
a general definition of tree automata with constraints between brothers that is
instantiated later. To simplify notations, we consider a fixed signature Σ.

Definition 2. A constraint structure is a tuple 〈C,PosVar, |=, |.|,Width〉. Here,
C (notion of syntax) is a set of elements called constraints. PosVar is a function
that maps each element of C to a finite set of natural numbers. Given c ∈ C,
any partial mapping I : N → T (Σ) satisfying PosVar(c) ⊆ Dom(I) is called
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an interpretation of c. |= (notion of satisfaction) maps each pair c ∈ C and
interpretation I of c to either true (denoted I |= c) or false (denoted I �|= c). |.|
(notion of size) maps each constraint c to a natural number. Width maps each
constraint c to a natural number.

Given two constraints c1, c2 (not necessarily from the same constraint struc-
ture) holding PosVar(c1) = PosVar(c2), we say that c1, c2 are compatible if there
exists I satisfying I |= c1 and I |= c2 (where |= refers to the satisfaction notion
of each corresponding structure). Otherwise, we say that c1, c2 are incompatible.

A set of constraints {c1, . . . , cn} of the same constraint structure and holding
PosVar(c1) = · · · = PosVar(cn) is called deterministic if all ci, cj are pairwise
incompatible for 1 ≤ i < j ≤ n. It is called complete if, for each I : PosVar(c1)→
T (Σ), I |= ci for some 1 ≤ i ≤ n.

Given two constraints c1, c2 (not necessarily from the same constraint struc-
ture) holding PosVar(c1) ⊇ PosVar(c2), we say that c1 implies c2, denoted
c1 |= c2, if for each I satisfying I |= c1, I |= c2 also holds (where |= refers
to the satisfaction notion of each corresponding structure).

Definition 3. Let S = 〈C,PosVar, |=, |.|,Width〉 be a constraint structure. A tree
automaton with constraints between brothers based on S, TACBBS for short, is a
tuple A = 〈Q,Σ, F,Δ〉, where Q is a finite set of states, Σ is a signature, F ⊆ Q
is the set of final states, and Δ is a set of rules of the form f(q1, . . . , qm)

c→ q,
where q1, . . . , qm, q are in Q, f is in Σ(m), and c is a constraint of C satisfying
PosVar(c) ⊆ {1, . . . ,m}. The rule is fully constrained if PosVar(c) = {1, . . . ,m}.
The size of such rule is m + 2 + |c|. The size of A is |Q| plus the sum of sizes

of all rules in Δ. The width of a rule f(q1, . . . , qm)
c→ q of A is Width(c). The

width of A is the maximum among the widths of its rules. A is fully constrained,
denoted TACBBFS , if each of its rules is fully constrained.

A run of A on a term t ∈ T (Σ) is a mapping r : Pos(t) → Δ such that,
for each position p ∈ Pos(t), if t|p is of the form f(t1, . . . , tm), then r(p) is a

rule of the form f(q1, . . . , qm)
c→ q, the rules r(p.1), . . . , r(p.m) have q1, . . . , qm

as right-hand sides, respectively, and I = {1 �→ t|p.1, . . . ,m �→ t|p.m} |= c. We
say that r(p) is the rule applied at position p. The run r is called accepting if
the right-hand side of r(λ) is a state in F . A term t is accepted by A if there
exists an accepting run of A on t. The set of accepted terms by A, also called
the language recognized by A, is denoted by L(A). By L(A, q) we denote the set
of terms for which there exists a run r of A on them holding that the right-hand
side of r(λ) is q.

Definition 4. A height and equality constraint c is a boolean combination (in-
cluding negation) of atoms of the form either h(i) = h(j) or h(i) < h(j) or
h(i) = h(j) + x or h(i) < h(j) + x or i = j for natural numbers i, j and in-
teger number x. The width of c, denoted Width(c), is 1 plus the maximum of
the absolute values of such x. The size of c, denoted |c|, is the number of such
atoms occurring in c. By PosVar(c) we denote the set of such naturals i, j oc-
curring in c. An interpretation of c is a partial mapping I : N → T (Σ) such
that PosVar(c) ⊆ Dom(I). I satisfies ( is a solution of) c, denoted I |= c if, by
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replacing in c each i by I(i), the expression evaluates to true by interpreting
h as the height function, = as syntactic equality when it compares terms or as
equality of the evaluated expressions when it compares integer numbers, <,+ as
the less and addition operators on integer numbers, and the boolean operators in
the usual way.

By CHe we denote the set of all height and equality constraints. By CH we
denote the subset of CHe of constraints with no occurrences of atoms of the
form i = j (i.e., only height constraints). By Che we denote the subset of CHe

whose atoms are of the form h(i) = h(j) or h(i) < h(j) or i = j (i.e., equality
constraints and only simple height constraints). By Ch we denote the subset
of Che whose atoms are of the form h(i) = h(j) or h(i) < h(j) (i.e., only
simple height constraints). The constraint structures He, he, H, h are defined
as 〈C,PosVar, |=, |.|,Width〉, by replacing C by CHe, Che, CH , Ch, respectively,
and where PosVar, |=, |.|,Width are defined as above.

We will show that emptiness and finiteness of TACBBHe are decidable, obtaining
different time complexities depending on the restrictions of the constraints. For
explanation purposes, we deal with the most particular case TACBBh in Section 4,
and the most general case TACBBHe in Section 5, where the results for TACBBH
and TACBBhe are also stated.

4 The Case with Simple Height Constraints

In this section we prove decidability of emptiness and finiteness of TACBBh. A
usual way to deal with automata with constraints is to transform them into a
normalized form that is easy to deal with. We proceed in this way by normalizing
simple height constraints according to the following definitions and lemma.

Definition 5. A normalized simple height constraint is an expression c of the
form S1 < S2 < · · · < Sn, where all S1, . . . , Sn are non-empty finite sets of
natural numbers, and each natural number occurs in at most one Si. By PosVar(c)
we denote the set of natural numbers occurring in S16. . .6Sn. An interpretation
of c is a partial mapping I from natural numbers to terms in T (Σ), whose domain
includes PosVar(c). We say that I satisfies ( is a solution of) c, denoted I |= c if:

– for each i ∈ {1, . . . , n}, the natural numbers occurring in Si are mapped by
I to terms with the same height, and

– for each i ∈ {1, . . . , n− 1}, each i1 ∈ Si and each i2 ∈ Si+1, height(I(i1)) <
height(I(i2)).

The size of c is |c| = |PosVar(c)|. The width of c is Width(c) = 1 (in the simple
case the width plays no important role). The structure of normalized simple
height constraints is the constraint structure nh = 〈Cnh,PosVar, |=, |.|,Width〉,
where Cnh is the set of all normalized simple height constraints, and PosVar, |=
, |.|,Width are defined as above.

Lemma 1. Let A = 〈Q,Σ, F,Δ〉 be a TACBBh. Then, a TACBBFnh A′ =

〈Q,Σ, F,Δ′〉 satisfying L(A′) = L(A) can be computed in time O(|A| · 2maxar2).
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Proof. Sketch: it suffices to define Δ′ as {f(q1, . . . , qm)
c′→ q | c′ ∈ Cnh ∧

PosVar(c′) = {1, . . . ,m} ∧ ∃(f(q1, . . . , qm)
c→ q) ∈ Δ : (c′ |= c)}.

To decide emptiness of a TACBBFnh A, we will need to compute, for each h,
which states are reachable by runs of A on terms with height h. To this end, we
need to determine which rules can be applied at the root of such terms, and this
leads to a more general computation: we need to know which part of a constraint
is satisfied by taking into account runs on terms smaller than h.

Definition 6. Let A = 〈Q,Σ, F,Δ〉 be a TACBBFnh. Let h be a natural number.
Let q be a state in Q. Then, we define ExistTermA(h, q) as true if there exists
a term with height h in L(A, q), and as false otherwise. Let c be a normalized
simple height constraint. Let I be a solution of c. Let N be a partial mapping
from natural numbers to Q such that Dom(N) ⊇ Dom(I). We say that N and
I are compatible with respect to A if, for each i ∈ Dom(I), I(i) ∈ L(A,N(i)).
We define ExistSolA(h, c,N) as true if there exists I : PosVar(c) → T (Σ) such
that I is compatible with N and a solution of c, and the highest term occur-
ring in I(PosVar(c)) has height h, and as false otherwise. Moreover, we define
AccExistSolA(h, c,N) as

∨
h′≤h ExistSolA(h

′, c, N). When A is clear from the con-
text, we omit the subindex of ExistTermA, ExistSolA, AccExistSolA.

We define CA as the set of pairs {〈c,N〉 | ∃(f(q1, . . . , qm)
c′→ q) ∈

Δ : (c is a non-empty prefix of c′ or a set occurring in c′) ∧ N = {1 �→
q1, . . . ,m �→ qm}}. Note that |CA| is bounded by 2 · maxar · |Δ|. The con-
figuration of A for height h is the description of all values ExistSolA(h, c,N),
AccExistSolA(h, c,N), ExistTermA(h, q) for 〈c,N〉 ∈ CA and q ∈ Q.

The following lemma gives a computable definition of ExistSol, AccExistSol
and ExistTerm, and a way to argue that the configuration for h > 0 depends
only on the configuration for h− 1. It can be proved by induction on h and |c|.

Lemma 2. Let A = 〈Q,Σ, F,Δ〉 be a TACBBFnh. ExistSol, AccExistSol and
ExistTerm can also be defined recursively as follows:

– Consider the case h = 0. Then, ExistTerm(h, q) is true if and only if there
exists a ∈ Σ(0) satisfying a ∈ L(A, q). Moreover, if c is not just a set, then
ExistSol(h, c,N) = AccExistSol(h, c,N) = False, and otherwise if c is a set S,
ExistSol(h, c,N) and AccExistSol(h, c,N) are defined to be true if and only if∧

q∈N(S) ExistTerm(h, q) holds. In the rest of cases assume h > 0.

– AccExistSol(h, c,N) = AccExistSol(h− 1, c, N) ∨ ExistSol(h, c,N)
– ExistSol(h, c′ < S,N) = AccExistSol(h− 1, c′, N) ∧ ExistSol(h, S,N)
– ExistSol(h, S,N) =

∧
q∈N(S) ExistTerm(h, q)

– ExistTerm(h, q) =
∨

(f(q1,...,qm)
c→q)∈Δ,m>0

ExistSol(h− 1, c, {1 �→ q1, . . . ,m �→
qm})

Corollary 1. Let A = 〈Q,Σ, F,Δ〉 be a TACBBFnh. Let h be a natural number.
The configuration of A for height h+1 can be obtained from the configuration of
A for height h with time in O(|CA|·maxar+|Q|+|Δ|), i.e, in O(maxar2 ·|Δ|+|Q|).
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The previous result leads to the fact that, when we find the same configura-
tion for heights h1 < h2, the sequence of configurations is periodic with period
h2−h1 starting from h1. Thus, deciding emptiness corresponds to check whether
there exists an accepting state q satisfying ExistTerm(h, q) for h < h2, and de-
ciding finiteness corresponds to check whether there exists an accepting state q
satisfying ExistTerm(h, q) for h1 ≤ h < h2. The final time complexity depends
on Corollary 1 and the number of different possible configurations.

Lemma 3. Let A = 〈Q,Σ, F,Δ〉 be a TACBBFnh. The number of different config-
urations of A considering all possible h is bounded by 2|Q| · (2 ·maxar · |Δ|+ 1).

Proof. Consider any two heights 0 < h1 < h2 satisfying that AccExistSol for
h1−1 is equal to AccExistSol for h2−1, and ExistTerm for h1 is equal to ExistTerm
for h2. Since ExistSol for any height h > 0 depends only on AccExistSol for h− 1
and ExistTerm for h, it follows that ExistSol for h1 is equal to ExistSol for h2.
Moreover, it also follows that AccExistSol for h1 is equal to AccExistSol for h2.
Thus, the configurations of A for h1 and h2 are equal, and hence, to prove the
statement it suffices to bound the number of different combinations of AccExistSol
and ExistTerm. To this end, note that there are at most 2|Q| different ExistTerm,
and since AccExistSol(h, c,N) ⇒ AccExistSol(h + 1, c, N) holds for any h and
〈c,N〉 ∈ CA, there are at most |CA|+1 = 2 ·maxar · |Δ|+1 different AccExistSol.

Corollary 2. Emptiness and finiteness of the language recognized by a TACBBFnh
A = 〈Q,Σ, F,Δ〉 are decidable with time in 2O(|Q|+log(maxar·|Δ|)).

As a consequence of Lemma 1 we also obtain decidability for TACBBh.

Corollary 3. Emptiness and finiteness of the language recognized by a TACBBh
A = 〈Q,Σ, F,Δ〉 are decidable with time in 2O(|Q|+maxar2+log(|A|)).

5 Decidability of the General Case

The global approach for proving decidability of emptiness and finiteness for the
general case of height and equality constraints is analogous to the case of simple
height constraints. We start with a process of normalization of the automata.

Definition 7. A normalized height and equality constraint is an expression c of
the form P1 ⊗1 P2⊗2 · · · ⊗n−1 Pn, where P1, . . . , Pn are partitions of non-empty
finite sets of natural numbers, each natural number occurs in at most one Pi, and
each ⊗i is an operator of the form either =h or ≤h for a natural number h > 0.
By PosVar(c) we denote the set of natural numbers occurring in P1, . . . , Pn. An
interpretation of c is a partial mapping I : N → T (Σ) whose domain includes
PosVar(c). We say that I satisfies ( is a solution of) c, denoted I |= c, if:

– for each i ∈ {1, . . . , n}, the natural numbers occurring in Pi are mapped to
terms with the same height, and two natural numbers are mapped to the same
term if and only if they occur in the same part, and
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– for each i ∈ {1, . . . , n − 1} such that ⊗i is of the form =h, each i1 ∈
PosVar(Pi) and each i2 ∈ PosVar(Pi+1), height(I(i1)) + h = height(I(i2)),
and

– for each i ∈ {1, . . . , n − 1} such that ⊗i is of the form ≤h, each i1 ∈
PosVar(Pi) and each i2 ∈ PosVar(Pi+1), height(I(i1)) + h ≤ height(I(i2)).

The size of c is |c| = |PosVar(c)|. The width of c, denoted Width(c), is the maxi-
mum among the natural numbers h occurring in the subscripts of the operators in
c. The structure of normalized height and equality constraints is the constraint
structure nHe = 〈CnHe,PosVar, |=, |.|,Width〉, where CnHe is the set of all nor-
malized height and equality constraints, and PosVar, |=, |.|,Width are defined as
above.

Since we will need to compute not only if a state q is reachable by some
term with height h, but also how many of such different terms reach q, we will
determinize the automaton in order to ease this task.

Definition 8. We say that a TACBBFnHe A = 〈Q,Σ, F,Δ〉 is deterministic and
complete (or a dcTACBBFnHe) if:

– for each f ∈ Σ with arity m and states q1, . . . , qm ∈ Q, and each normal-
ized height and equality constraint c, there is at most one q ∈ Q holding
(f(q1, . . . , qm)

c→ q) ∈ Δ, and
– for each f ∈ Σ with arity m and states q1, . . . , qm ∈ Q, the set {c | ∃q ∈ Q :

(f(q1, . . . , qm)
c→ q) ∈ Δ} is non-empty, deterministic, and complete.

Note that, for each dcTACBBFnHe A and each t ∈ T (Σ), there exists one and
only one run of A on t. We denote by A(t) the state reached by such run at λ. In
order to obtain a deterministic and complete set of constraints, we will construct
them from a limited number of operators.

Definition 9. Let m,w be natural numbers. A normalized constraint with re-
spect to m and w is a normalized height and equality constraint c over the
operators =1,=2, . . . ,=w−1 and ≤w and satisfying PosVar(c) = {1, . . . ,m}.

For a set of constraints to be deterministic, it must satisfy that its constraints
are pairwise incompatible.

Lemma 4. Let m,w be natural numbers. Let c, d be two different normalized
constraints with respect to m and w. Then, c and d are incompatible.

For a set of constraints to be complete, it must satisfy that any interpretation
is a solution of at least one of the constraints of the set.

Definition 10. Let w be a natural number. Let I : N → T (Σ) be a partial
function holding Dom(I) = {1, . . . ,m} for some m. Let h1 < h2 < · · · < hn
be the elements of height(I({1, . . . ,m})). The constraint induced from I and w
is the normalized constraint P1 ⊗1 P2 ⊗2 · · · ⊗n−1 Pn with respect to m and w,
where:
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– for i ∈ {1, . . . , n}, Pi is a partition of {j ∈ {1, . . . ,m} | height(I(j)) = hi}
satisfying (j1 ≡Pi j2)⇔ (I(j1) = I(j2)), and

– for i ∈ {1, . . . , n− 1}, ⊗i is =hi+1−hi if hi+1 − hi < w, and ≤w otherwise.

Given w and an interpretation I, the fact that the constraint c induced from
I and w holds I |= c follows by definition.

Lemma 5. Let w be a natural number. Let I : N→ T (Σ) be a partial function
holding Dom(I) = {1, . . . ,m} for some m. Let c be the constraint induced from
I and w. Then, I |= c.
Corollary 4. Let m,w be natural numbers. Let C be the set of normalized con-
straints with respect to m and w. Then, C is deterministic and complete.

Proof. By Lemma 4, any two different constraints in C are incompatible, and
thus C is deterministic. By Lemma 5, any interpretation I : {1, . . . ,m} → T (Σ)
satisfies the constraint c induced from I and w. Since such c is in C by definition,
it follows that C is complete.

In order to normalize a TACBBHe A, we construct a dcTACBBFnHe A
′ that sim-

ulates all possible runs of A. To this end, each rule of A′ needs to determine
exactly which rules of A are applicable. In particular, A′ needs to determine
which constraints are satisfied. For this reason, we will need to use the fact that
the normalized constraints are, in some sense, more precise than the original
ones, that is, given a normalized constraint c1 and an original constraint c2,
either c1 and c2 are incompatible, or c1 |= c2 holds.

Lemma 6. Let m,w be natural numbers. Let c1 be a normalized constraint with
respect to m and w. Let c2 be a height and equality constraint whose width is
smaller than or equal to w and satisfying PosVar(c2) ⊆ {1, . . . ,m}. Then, either
c1 and c2 are incompatible, or c1 |= c2 holds.

Proof. Sketch: it suffices to note that for any two solutions I1, I2 of c1 and any
atom c′2 occurring in c2, either I1 |= c′2 and I2 |= c′2, or I1 �|= c′2 and I2 �|= c′2.

Definition 11. Let A = 〈Q,Σ, F,Δ〉 be a TACBBHe. Let w be the width of A. For
each natural numberm, let Cm be the set of normalized constraints with respect to
m and w. Then, the normalization of A is defined as the TACBBFnHe 〈2Q, Σ, {F ′ ∈
2Q | F ′ ∩ F �= ∅}, Δ′〉, where Δ′ is the set of rules {f(S1, . . . , Sm)

c→ S | f ∈
Σ(m) ∧ c ∈ Cm ∧ S1, . . . , Sm, S ∈ 2Q ∧ S = {q ∈ Q | ∃q1 ∈ S1, . . . , qm

∈ Sm, c′ : ((f(q1, . . . , qm)
c′→ q) ∈ Δ ∧ (c |= c′))}}.

Lemma 7. Let A = 〈Q,Σ, F,Δ〉 be a TACBBHe having width w. Then, the nor-
malization A′ of A is deterministic and complete, i.e., a dcTACBBFnHe, and can be
computed with time in 2O(log(Σ)+maxar·(|Q|+maxar+log(w))+log(|A|)).

Proof. The fact that A′ is a dcTACBBFnHe follows from Definition 8, Corollary 4
and Definition 11. The time complexity follows from these observations: each rule
of A′ can be computed with time in O(|A|), the number of rules of A′ is bounded
by |Σ| · 2|Q|·maxar · |Cmaxar|, where Cmaxar is the set of normalized constraints with

respect to maxar and w, and |Cmaxar| is in 2O(maxar2+maxar·log(w)).
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In order to see that A′ preserves the language recognized by A, we show that,
for any term t, the unique state A′(t) is precisely the set of states that are
reachable by runs of A on t.

Lemma 8. Let A = 〈Q,Σ, F,Δ〉 be a TACBBHe. Let A
′ be the normalization of

A. Let t ∈ T (Σ) be a term. Then, the state reached at λ by the unique run of A′

on t is S = {q ∈ Q | t ∈ L(A, q)}.

Proof. We prove it by induction on height(t). Without loss of generality, let t be
of the form f(t1, . . . , tm). By induction hypothesis, the states reached at λ by the
unique runs of A′ on t1, . . . , tm are S1, . . . , Sm, respectively, where Si = {q ∈ Q |
ti ∈ L(A, q)}. Let c be the constraint induced from I = {1 �→ t1, . . . ,m �→ tm}
and the width of A. By Definition 11, A′ has the rule f(S1, . . . , Sm)

c→ S′ where

S′ = {q ∈ Q | ∃q1 ∈ S1, . . . , qm ∈ Sm, c′ : ((f(q1, . . . , qm)
c′→ q) ∈ Δ ∧ (c |= c′))}.

Such rule can be applied at the root of t since I |= c holds by Lemma 5, and
moreover, by Corollary 4 no other rule can. It remains to prove S′ = S:

(⊆) Let q ∈ S′. By definition there are q1 ∈ S1, . . . , qm ∈ Sm and c′ such that

(f(q1, . . . , qm)
c′→ q) ∈ Δ and c |= c′. Thus, I |= c′, and since we had that

t1 ∈ L(A, q1), . . . , tm ∈ L(A, qm), it follows t ∈ L(A, q), and hence, q ∈ S.
(⊇) Let q ∈ S. By definition there is a run of A on t with a rule of the form

f(q1, . . . , qm)
c′→ q applied at the root. Note that I |= c′, and since I |= c,

by Lemma 6, c |= c′. Since we had that q1 ∈ S1, . . . , qm ∈ Sm, it follows
q ∈ S′.

Corollary 5. Let A be a TACBBHe. Let A′ be the normalization of A. Then,
L(A′) = L(A).

To decide emptiness of a dcTACBBFnHe A, we will need to compute, for certain
h’s, how many runs (up to a certain bound) of A on terms with height h reach
each state. We start by a previous definition describing which terms (and not
only how many of them) are reached, in order to ease later arguments.

Definition 12. Let A = 〈Q,Σ, F,Δ〉 be a dcTACBBFnHe. Let h be a natural num-
ber. Let q be a state in Q. Then, TermsA(h, q) is defined as {t ∈ T (Σ) | A(t) =
q ∧ height(t) = h}. Let c be a normalized height and equality constraint. Let I
be a solution of c. Let N be a partial mapping from natural numbers to Q such
that Dom(N) ⊇ Dom(I). We say that N and I are compatible with respect to
A if, for each i ∈ Dom(I), A(I(i)) = N(i). We define SolsA(h, c,N) as the set
of interpretations I : PosVar(c) → T (Σ) such that I is compatible with N and
a solution of c, and the highest term occurring in I(PosVar(c)) has height h.
Moreover, we define AccSolsA(h, c,N) as

⋃
h′≤h SolsA(h

′, c, N). When A is clear
from the context, we omit the subindex of TermsA, SolsA, AccSolsA.

We define CA as the set of pairs {〈c,N〉 | ∃(f(q1, . . . , qm)
c′→ q) ∈ Δ :

(c is a non-empty prefix of c′ or a partition occurring in c′) ∧ N = {1 �→
q1, . . . ,m �→ qm}}. Note that |CA| is bounded by 2 ·maxar · |Δ|.
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The following lemma provides a computable definition of the sets Sols, AccSols
and Terms, as well as a way to argue that the configuration for a certain h
depends only on the configurations for h− i, with i bounded by the width of A.
It can be straightforwardly proved by induction on h and on the size of c.

Lemma 9. Let A = 〈Q,Σ, F,Δ〉 be a dcTACBBFnHe. Sols, AccSols and Terms can
also be defined recursively as follows:

– If h < 0, then Terms(h, q) = Sols(h, c,N) = AccSols(h, c,N) = ∅ for any
q, c,N .

– Consider the case h = 0. Then, Terms(h, q) = {a ∈ Σ(0) | A(a) = q}.
Moreover, if c is not just a partition, then Sols(h, c,N) = AccSols(h, c,N) =
∅, and otherwise if c is a partition P , Sols(h, c,N) and AccSols(h, c,N) are
{I : PosVar(P ) → Σ(0) | ∀i ∈ PosVar(P ) : I(i) ∈ Terms(h,N(i)) ∧ ∀i, j ∈
PosVar(P ) : (I(i) = I(j)⇔ i ≡P j)}. In the rest of cases assume h > 0.

– AccSols(h, c,N) = AccSols(h− 1, c, N) ∪ Sols(h, c,N)
– Sols(h, c′ =h′ P,N) = Sols(h− h′, c′, N)� Sols(h, P,N)
– Sols(h, c′ ≤h′ P,N) = AccSols(h− h′, c′, N)� Sols(h, P,N)
– Sols(h, P,N) = {I : PosVar(P ) → T (Σ) | ∀i ∈ PosVar(P ) : I(i) ∈

Terms(h,N(i)) ∧ ∀i, j ∈ PosVar(P ) : (I(i) = I(j)⇔ i ≡P j)}
– Terms(h, q) = {f(I(1), . . . , I(m)) | (f(q1, . . . , qm)

c→ q) ∈ Δ ∧ m > 0 ∧ I ∈
Sols(h− 1, c, {1 �→ q1, . . . ,m �→ qm})}

As we have mentioned above, we are not interested in computing all the
reached terms at a certain height h, but only how many of them reach each
state, up to a certain bound: the maximum arity of the function symbols in Σ.

Definition 13. Let A = 〈Q,Σ, F,Δ〉 be a dcTACBBFnHe. Let h be a nat-
ural number. Let q be a state in Q. Then, #TermsA(h, q) is defined as
min(maxar, |TermsA(h, q)|). Let c be a normalized height and equality constraint.
Let N be a partial mapping from natural numbers to Q such that Dom(N) ⊇
PosVar(c). Then, #SolsA(h, c,N) and #AccSolsA(h, c,N) are respectively defined
as min(maxar, |SolsA(h, c,N)|) and min(maxar, |AccSolsA(h, c,N)|). When A is
clear from the context, we omit the subindex of #TermsA, #SolsA, #AccSolsA.

The configuration of A for height h is the description of all values
#SolsA(h, c,N), #AccSolsA(h, c,N), #TermsA(h, q) for 〈c,N〉 ∈ CA and q ∈ Q.

The following recursive definition follows from Definition 13 and Lemma 9.

Lemma 10. Let A = 〈Q,Σ, F,Δ〉 be a dcTACBBFnHe. #Sols, #AccSols and
#Terms can also be defined recursively as follows, where B(P,N, q) denotes
|{P ′ ∈ P | N(P ′) = {q}}|:

– If h < 0, then #Terms(h, q) = #Sols(h, c,N) = #AccSols(h, c,N) = 0 for
any q, c,N .

– Consider the case h = 0. Then, #Terms(h, q) is defined as min(maxar, |{a ∈
Σ(0) | A(a) = q}|). Moreover, if c is not just a partition, then
#Sols(h, c,N) = #AccSols(h, c,N) = 0, and otherwise if c is a
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partition P , then #Sols(h, c,N) and #AccSols(h, c,N) are defined as

min(maxar,
∏

q∈N(PosVar(P ))

(#Terms(h,q)
B(P,N,q)

)
·B(P,N, q)!). In the rest of cases as-

sume h > 0.
– #AccSols(h, c,N) = min(maxar,#AccSols(h− 1, c, N) + #Sols(h, c,N))
– #Sols(h, c′ =h′ P,N) = min(maxar,#Sols(h− h′, c′, N) ·#Sols(h, P,N))
– #Sols(h, c′ ≤h′ P,N) = min(maxar,#AccSols(h− h′, c′, N) ·#Sols(h, P,N))

– #Sols(h, P,N) = min(maxar,
∏

q∈N(PosVar(P ))

(#Terms(h,q)
B(P,N,q)

)
·B(P,N, q)!)

– #Terms(h, q) = min(maxar,
∑

(f(q1,...,qm)
c→q)∈Δ,m>0

#Sols(h − 1, c, {1 �→
q1, . . . ,m �→ qm}))

Corollary 6. Let A = 〈Q,Σ, F,Δ〉 be a dcTACBBFnHe having width w. Let h
be a natural number. The configuration of A for height h + w can be obtained
from the configurations of A for heights h, h + 1, . . . , h + w − 1 with time in
O((maxar2 · |Δ|+ |Q|) · (log(maxar) + log(w))).

The previous result leads to the fact that, when we find the same w consec-
utive configurations starting at two different heights h1 < h2, the sequence of
configurations is periodic with period h2 − h1 starting from h1. Thus, decid-
ing emptiness corresponds to check whether there exists an accepting state q
satisfying #Terms(h, q) ≥ 1 for h < h2, and deciding finiteness corresponds to
check whether there exists an accepting state q satisfying #Terms(h, q) ≥ 1 for
h1 ≤ h < h2. The time complexity depends on Corollary 6 and the number of
different possible groups of w consecutive configurations.

Lemma 11. Let A = 〈Q,Σ, F,Δ〉 be a dcTACBBFnHe. The number of different
configurations of A considering all possible h is bounded by (maxar+1)|Q|+|CA| ·
(|CA| ·maxar+ 1), i.e., by (maxar + 1)|Q|+2·maxar·|Δ| · (2 ·maxar2 · |Δ|+ 1).

Proof. Similar to Lemma 3, except that instead of dealing with truth values
we have numbers in {0, . . . ,maxar}, and that we need to take into account the
number (maxar + 1)|CA| of different #Sols.

Corollary 7. Emptiness and finiteness of the language recognized by a
dcTACBBFnHe A = 〈Q,Σ, F,Δ〉 having width w are decidable with time in
2O(w·log(maxar)·(|Q|+maxar·|Δ|)).

As a consequence of Lemma 7 we also obtain decidability for TACBBHe.

Corollary 8. Emptiness and finiteness of the language recognized by a TACBBHe

A = 〈Q,Σ, F,Δ〉 are decidable with time in 22
O(log(|Σ|)+maxar·(|Q|+maxar+log(w))+log(|A|))

,
where w is the width of A.

As a final remark, we consider the simpler cases of TACBBhe and TACBBH. For
the normalization A′ of a TACBBhe A, since the normalized constraints would
only have operators of the form ≤1, we could refine Lemma 11 as we did in
Lemma 3 and ignore the number of different #Sols, thus obtaining (maxar +
1)|Q

′| · (2 · maxar2 · |Δ′| + 1) as the number of possible configurations of A′.
Moreover, for the sequence of configurations to become periodic it would suffice
that two configurations coincided (since we look for identical groups of w = 1
consecutive configurations), and hence we would get the following result.
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Corollary 9. Let A = 〈Q,Σ, F,Δ〉 be a TACBBhe. Emptiness and finiteness of

L(A) are decidable with time in 2O(log(maxar)·2|Q|+log(|Σ|)+maxar·(|Q|+maxar)+log(|A|)).

For the normalization A′ of a TACBBH A, it is not required to obtain a deter-
ministic and complete automaton, and instead of partitions we deal with sets, as
for TACBBh. Thus, a refined normalization process can preserve the same state set
and generate the rule set Δ′ combining ideas from Lemmas 1 and 7 with time in
2O(maxar2+maxar·log(w)+log(|A|)). Also, we do not need to count the number of terms
for each state, just a truth value. Hence, the cost of computing a new configura-
tion of A′ (refinement of Corollary 6) would be in O((maxar2 · |Δ′|+ |Q|)· log(w)),
and the number of configurations of A′ (refinement of Lemma 11) would be
bounded by 2|Q|+2·maxar·|Δ′| · (2 ·maxar · |Δ′|+ 1).

Corollary 10. Let A = 〈Q,Σ, F,Δ〉 be a TACBBH having width w. Emptiness

and finiteness of L(A) are decidable with time in 22
O(maxar2+maxar·log(w)+log(|A|))

.

6 Conclusion

We have defined a new kind of automata with constraints between brothers,
extending the current literature by allowing constraints that test the height of
subterms. The obtained time complexity for deciding emptiness and finiteness
is exponential for the simplest case TACBBh, and double exponential for TACBBH,
TACBBhe, and TACBBHe. For TACBBhe and TACBBHe both problems are at least
EXPTIME-hard due to the equality tests, but the precise hardness for our au-
tomata is unknown and deserves further analysis. It would also be interesting to
study other extensions of the constraints. In particular, we have focused on con-
straints between brother positions, but emptiness and finiteness with arbitrary
positions for the height constraints might also be decidable. Moreover, several
classes of (dis)equality constraints with non-brother positions are known to be
decidable, such as reduction automata [10] or TAhom, �≈ [15]. Extending those
models with height constraints might preserve the decidability, and should also
be considered.
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Abstract. We give a coinductive proof of confluence, up to equivalence
of root-active subterms, of infinitary lambda-calculus. We also show con-
fluence of Böhm reduction (with respect to root-active terms) in infini-
tary lambda-calculus. In contrast to previous proofs, our proof makes
heavy use of coinduction and does not employ the notion of descendants.

1 Introduction

Infinitary lambda-calculus is a generalization of lambda-calculus that allows in-
finite lambda-terms and transfinite reductions. This enables the consideration
of “limits” of terms under infinite reduction sequences. For instance, for a term
M ≡ (λmx.mm)(λmx.mm) we have

M →β λx.M →β λx.λx.M →β λx.λx.λx.M →β . . .

Intuitively, the “value” of M is an infinite term L satisfying L ≡ λx.L, where
by ≡ we denote identity of terms. In fact, L is the normal form ofM in infinitary
lambda-calculus.
In [6] it is shown that infinitary reductions may be defined coinductively. The

standard non-coinductive definition makes explicit mention of ordinals and limits
in a certain metric space [11,14,2]. Arguably, a coinductive approach is better
suited to formalization in a proof-assistant.
We prove confluence of infinitary reduction up to equivalence of root-active

subterms, and confluence of infinitary Böhm reduction w.r.t. root-active terms.
These results have already been obtained in [11] with proofs involving the notion
of descendants. However, our proof is coinductive. We show that the theory of
infinitary lambda-calculus, to the extent studied here, may be entirely based on
coinductive definitions and proofs, without even mentioning ordinals or metric
convergence.

1.1 Related Work

Infinitary lambda-calculus was introduced in [11,10]. All results of this paper
were already obtained in [11], by a different proof method. See also [14,2,5] for an
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overview of various results in infinitary lambda-calculus and infinitary rewriting.
The coinductive definition of infinitary reductions was introduced in [6].
Our proof differs from the proof in [11]. Instead of using the notion of descen-

dants, we rely on coinduction. Nonetheless, the overall structure of the whole
proof and proofs of some lemmas are analogous to [11].
A method of coinductive confluence proofs somewhat similar to ours was

given by Joachimski in [9]. However, Joachimski’s notion of reduction does not
correspond to strongly convergent reductions. Essentially, it allows for infinitely
many parallel contractions in one step, but only finitely many reduction steps.
There are three well-known variants of infinitary lambda-calculus: the Λ111,

Λ001 and Λ101 calculi [2,5,11,10]. The superscripts 111, 001, 101 indicate the
depth measure used: abc means that we shall add a/b/c to the depth when
going down/left/right in the tree of the lambda-term [11, Definition 6]. We are
concerned only with Λ111. In this calculus, after addition of appropriate ⊥-rules,
every term has its Berarducci tree [10,3] as the normal form. In Λ001 and Λ101,
the normal forms are, respectively, Böhm trees and Levy-Longo trees [11,10].
With the addition of infinite eta reductions it is possible to also capture eta-
Böhm trees as normal forms [13].

2 Preliminaries

2.1 Coinduction

In this section we give an introduction to coinduction, to the extent necessary
to understand the proofs in this paper. Because of space limits and for the sake
of readability we only present several examples from which we hope the general
method should be clear. For more background on coinduction see e.g. [8,12], or
see [4] for a practical introduction to the usage of coinduction in the Coq proof
assistant. Our use of coinduction does not correspond exactly to the coinduction
principle of Coq [7] and some of our proofs cannot be directly formalized in
Coq. They could probably be formalized in recent versions of Agda extended
with copatterns and sized types [1]. Also, we do not directly employ the usual
coinduction principle from [8]. The correctness criterion for our proofs is that
they may all be interpreted in the way outlined below.
We do not attempt here to formulate a general coinduction principle or pro-

vide a formal system in which our proofs could be easily formalized. This is an
interesting question by itself, but a seperate one from simply ensuring correct-
ness of the proofs in each particular case, by indicating how to interpret them
in ordinary set theory without using coinduction. In other words, our use of
coinduction may be seen as a way of leaving implicit the tedious, annoying and
purely technical details which would be necessary if the proofs were to be made
inductive.
Consider the following definition by a grammar of a set T of terms, where V

is an infinite set of variables.

T ::= V ‖ A(T) ‖ B(T,T)
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Conventionally, this definition is interpreted inductively: the set T consists of all
finite terms built up from variables and the constructors A and B. When inter-
preted coinductively, both finite and infinite terms are allowed. So then e.g. a
term Aω satisfying Aω ≡ A(Aω) also belongs to T. Formally, under the coin-
ductive interpretation T is a final coalgebra of an appropriate endofunctor [8].
We will not get into details here. One may think of T as the set of all possibly
infinite labelled trees with labels specified by the grammar.
A definition of a function f with codomain T is by guarded corecursion if each

(co)recursive call of f occurs directly inside a constructor for T. Such a definition
determines a well-defined function and with the introduction of some technicali-
ties it may be reformulated as an ordinary inductive definition (by induction on
the length of positions in a term). An example of a function defined by guarded
corecursion is substitution: a function taking two terms and a variable.

x[t/x] ≡ t A(s)[t/x] ≡ A(s[t/x])
y[t/x] ≡ y if y �= x B(s1, s2)[t/x] ≡ B(s1[t/x], s2[t/x])

Now consider a relation defined by the following derivation rules.

x→0 x

t→0 t
′

A(t)→0 B(t
′, t′)

t→0 t
′

A(t)→0 A(t
′)

s→0 s
′ t→0 t

′

B(s, t)→0 B(s
′, t′)

When interpreted coinductively, in addition to finite derivations we also allow
infinite ones. More formally, one may interpret the relation →0 as the greatest
fixpoint of a function F : P(T× T)→ P(T× T) defined as follows.

F (R) = {〈t1, t2〉 | (t1 ≡ t2 ≡ x)∨
∃t, t′ (t1 ≡ A(t) ∧ t2 ≡ B(t′, t′) ∧R(t, t′))∨
∃t, t′ (t1 ≡ A(t) ∧ t2 ≡ A(t′) ∧R(t, t′))∨
∃s, t, s′, t′ (t1 ≡ B(s, t) ∧ t2 ≡ B(s′, t′) ∧R(s, s′) ∧R(t, t′))}

The function F is monotone, so by the Knaster-Tarski theorem its greatest
fixpoint exists and may be obtained in the following way. By transfinite induction
we define: R0 = T×T, Rα+1 = F (Rα), and Rλ =

⋂
α<λRα for λ a limit ordinal.

Then there exists an ordinal ζ such that Rζ =→0 is the greatest fixpoint of F .
All coinductive proofs in this paper show statements of one of two forms:

∀x (φ(x)→ R(f(x))) or ∀x (φ(x)→ ∃y (R(x, y) ∧ S(x, y))), where R and S are
relations defined coinductively by some derivation rules, x ranges over tuples of
terms, y ranges over terms, and f is a function from tuples to tuples of terms.
In coinductive proofs we appeal to the “coinductive hypothesis”, which at first

sight may seem like assuming what we are supposed to prove. The trick is that
we are allowed to use the result of an application of the coinductive hypothesis
only in certain ways: we have to use it directly as a premise of some derivation
rule, and we must not manipulate the resulting derivation in any other way.
In contrast, in an inductive proof, the result of an application of the inductive
hypothesis may be used in an arbitrary way, but there is a restriction on the
parameters of the hypothesis – they should be smaller in an appropriate sense.
We shall now give an example of a coinductive proof.
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Example 1. We show by coinduction: if t ∈ T then t →0 t. If t ≡ x then t →0 t
holds by the first rule. If t ≡ A(s) then s →0 s by the coinductive hypothesis.
So t →0 t by the third rule. If t ≡ B(t1, t2) then t1 →0 t1 and t2 →0 t2 by the
coinductive hypothesis. Hence t→0 t by the fourth rule.

Formally, a coinductive proof of ∀x (φ(x)→ R(f(x))) may be interpreted as
a proof by transfinite induction on an ordinal α of ∀x (φ(x)→ Rα(f(x))) for
α ≤ ζ. The cases α = 0 and α a limit ordinal are trivial and left implicit. A
coinductive proof may be read as a proof of the inductive step for α a successor
ordinal, where “coinductive hypothesis” means “inductive hypothesis” and the
ordinal indices are left implicit.
In a few proofs we actually violate the above interpretation slightly by apply-

ing derivation rules to the result of an application of the coinductive hypothesis
more than once. However, this is easily seen to be correct by using F ′(R) =⋃

n∈N+
Fn(R) instead of F . We have Fn(Rα) = Rα+n ⊆ Rα+1 = F (Rα) for

n ∈ N+, which implies F ′(Rα) = F (Rα). Hence, F ′ has the same greatest fix-
point as F .
The formal interpretation of a coinductive proof of a statement of the form

∀x (φ(x)→ ∃y (R(x, y) ∧ S(x, y))) is slightly more involved. With the following
example, we indicate how to reduce such a proof to coinductive proofs of state-
ments of the form ∀x (φ(x)→ R(f(x))).

Example 2. We show: if t →0 t1 and t →0 t2 then there exists t3 such that
t1 →0 t3 and t2 →0 t3. Coinduction with case analysis on t→0 t1. For instance,
assume t ≡ A(t′) and t1 ≡ B(t′1, t′1) with t′ →0 t

′
1. There are two cases.

1. t2 ≡ B(t′2, t
′
2) with t

′ →0 t
′
2. By the coinductive hypothesis there is t

′
3 such

that t′1 →0 t
′
3 and t

′
2 →0 t

′
3. Thus t1 ≡ B(t′1, t

′
1) →0 B(t

′
3, t

′
3) and t2 ≡

B(t′2, t
′
2)→0 B(t

′
3, t

′
3), by the last rule. Hence, we may take t3 ≡ B(t′3, t′3).

2. t2 ≡ A(t′2) with t
′ →0 t

′
2. By the coinductive hypothesis there is t

′
3 such

that t′1 →0 t
′
3 and t

′
2 →0 t

′
3. Hence t1 ≡ B(t′1, t

′
1) →0 B(t

′
3, t

′
3) by the last

rule, and t2 ≡ A(t′2) →0 B(t
′
3, t

′
3) by the second rule. Thus we may take

t3 ≡ B(t′3, t′3).

Formally, the above proof may be interpreted as actually showing: if t→0 t1
and t→0 t2 then t1 ↓ t2, for a relation ↓ defined coinductively as follows.

x ↓ x
t ↓ s

A(t) ↓ B(s, s)
t ↓ s

B(t, t) ↓ A(s)
t ↓ s

A(t) ↓ A(s)
s ↓ s′ t ↓ t′

B(s, t) ↓ B(s′, t′)

The rules for ↓ come from appropriate pairs of rules for →0. By guarded core-
cursion we define a function h which given two terms t1, t2 such that t1 ↓ t2
returns a term s such that t1 →0 s and t2 →0 s.

h(x, x) = x
h(A(t), B(s, s)) = B(h(t, s), h(t, s))
h(B(t, t), A(s)) = B(h(t, s), h(t, s))
h(A(t), A(s)) = A(h(t, s))

h(B(s, t), B(s′, t′)) = B(h(s, s′), h(t, t′))
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It may be shown by coinduction that if t1 ↓ t2 then t1 →0 h(t1, t2) and t2 →0

h(t1, t2). We give a proof for t1 →0 h(t1, t2). If t1 ≡ x then h(t1, t2) ≡ x and
we are done. If t1 ≡ B(s, t) and t2 ≡ B(s′, t′) with s ↓ s′ and t ↓ t′ then by
the coinductive hypothesis s →0 h(s, s

′) and t →0 h(t, t
′). So t1 ≡ B(s, t) →0

B(h(s, s′), h(t, t′)) ≡ h(t1, t2). The other cases are analogous.

2.2 Infinitary Lambda-Calculus

In this section we define the syntax of infinitary lambda-calculus. We also pro-
vide definitions of various notions of reduction and other relations in infinitary
lambda-calculus. Our definitions are coinductive. For standard introduction to
infinitary lambda-calculus see e.g. [14,11].

Definition 1. The set of Λ∞-terms is defined coinductively:

Λ∞ ::= V ‖ λV.Λ∞ ‖ Λ∞Λ∞

where V is an infinite set of variables.
Capture-avoiding substitution is defined by guarded corecursion.

x[t/x] ≡ t (s1s2)[t/x] ≡ s1[t/x]s2[t/x]
y[t/x] ≡ y when x �= y (λy.s)[t/x] ≡ λy.s[t/x] when y /∈ FV (t)

The relation→β of β-contraction is defined inductively by the following rules.

(λx.s)t→β s[t/x]

s→β s
′

st→β s
′t

t→β t
′

st→β st
′

s→β s
′

λx.s→β λx.s
′

The relation →∗
β of β-reduction is the transitive-reflexive closure of →β .

The relation →∞
β of infinitary β-reduction is defined coinductively.

s→∗
β x

s→∞
β x

s→∗
β t1t2 t1 →∞

β t′1 t2 →∞
β t′2

s→∞
β t′1t

′
2

s→∗
β λx.r r →∞

β r′

s→∞
β λx.r′

We will disregard the usual problems with α-conversion. In the infinitary
setting it presents some additional, but purely technical difficulties [11,6].
The idea with the definition of →∞

β is that the depth at which a redex is
contracted should tend to infinity. This is achieved by defining →∞

β in such a
way that always after finitely many reduction steps the subsequent contractions
may be performed only under a constructor. So the depth of the contracted redex
always ultimately increases. In [6] it is shown that the above definition of →∞

β

coincides with the standard definition based on strongly convergent reductions.

Definition 2. Let ⊥ be a constant, i.e. a variable which is assumed to never
occur bound. A Λ∞-term t is root-stable if either t ≡ x with x �≡ ⊥, or t ≡ λx.t′,
or t ≡ t1t2 and there does not exist s such that t1 →∞

β λx.s. A Λ∞-term t is
root-active if there does not exist a root-stable s such that t→∞

β s.
Given t, s ∈ Λ∞, the relation t ∼ s is defined by coinduction.

t, s are root-active
t ∼ s x ∼ x

t ∼ s
λx.t ∼ λx.s

t1 ∼ s1 t2 ∼ s2
t1t2 ∼ s1s2



A Coinductive Confluence Proof for Infinitary Lambda-Calculus 169

We finish this section with several lemmas concerning the introduced notions.
The first three lemmas have essentially been shown in [6, Lemma 4.3-4.5].

Lemma 1. If s→∞
β s′ and t→∞

β t′ then s[t/x]→∞
β s′[t′/x].

Lemma 2. If t1 →∞
β t2 →β t3 then t1 →∞

β t3.

Lemma 3. If t1 →∞
β t2 →∞

β t3 then t1 →∞
β t3.

Lemma 4. If s is root-active and s→∞
β t, then t is root-active.

Proof. If t→∞
β t′ for some root-stable t′, then also s→∞

β t′ by Lemma 3.

The following lemma was first shown in [11, Lemma 43] by a different proof.

Lemma 5. If t1, t2 ∈ Λ∞ and t1 is root-active, then so is t1[t2/x].

Proof. We write s (x s
′ if x is not bound in s′, i.e. s′ does not contain subterms

of the form λx.u, and s′ may be obtained from s by changing some arbitrary
subterms in s into some terms having the form xu1 . . . un. It is easy to show by
induction that

(a) if t→∗
β s and t (x t

′, then there exists s′ such that t′ →∗
β s

′ and s (x s
′,

(b) if t′ →∗
β s

′ and t (x t
′, then there exists s such that t→∗

β s and s (x s
′.

By coinduction we show

(c) if t→∞
β s and t (x t

′, then there exists s′ such that t′ →∞
β s′ and s (x s

′,
(d) if t′ →∞

β s′ and t (x t
′, then there exists s such that t→∞

β s and s (x s
′.

We only give the proof for (c), since the proof for (d) is analogous. There are
three cases.

– t→∗
β s ≡ y. Then the claim follows directly from (a).

– t →∗
β t1t2, s ≡ s1s2 and ti →∞

β si. By (a) there is u such that t′ →∗
β u and

t1t2 (x u. If u has the form xu1 . . . un then we may take s′ ≡ u. Otherwise
u ≡ u1u2 with ti (x ui. By the coinductive hypothesis there are s′1, s

′
2 such

that ui →∞
β s′i and si (x s

′
i. Thus we may take s

′ ≡ s′1s′2.
– t→∗

β λy.u, s ≡ λy.u′ and u→∞
β u′. By (a) there is w such that t′ →∗

β w and
λy.u (x w. If w has the form xu1 . . . un then we may take s′ ≡ w. Otherwise
w ≡ λy.w0 with u (x w0. By the coinductive hypothesis there is w1 such
that w0 →∞

β w1 and u′ (x w1. So we may take s′ ≡ λy.w1.

Now we show

(e) if s (x s
′ and s is root-stable, then so is s′.

So suppose s (x s
′ and s is root-stable. If s′ has the form xu1 . . . un then it is

obviously root-stable. Otherwise, s′ ≡ y, s′ ≡ λy.s′′ or s′ ≡ s′1s
′
2 with s ≡ s1s2

and si (x s′i. In the first two cases s
′ is root-stable. So assume s′ ≡ s′1s

′
2,

s ≡ s1s2 and si (x s
′
i. If s

′ is not root-stable, then s′1 →∞
β λz.u′. But then

by (d) there is w such that s1 →∞
β w and w (x λz.u

′. So w must have the form
λz.u. Contradiction.
Finally, suppose t1[t2/x] is not root-active. Then t1[t2/x] →∞

β s with s root-
stable. Without loss of generality t1[t2/x] (x t1. Hence by (c) there is s′ such
that t1 →∞

β s′ and s (x s
′. By (e) we conclude that s′ is root-stable. This means

that t1 is not root-active.
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3 Confluence Up to Equivalence of Root-Active Subterms

In this section we show that the relation→∞
β is confluent up to ∼. More precisely,

we prove the following theorem.

Theorem 1. If t ∼ t′, t →∞
β s and t′ →∞

β s′, then there exist r, r′ such that
s→∞

β r, s′ →∞
β r′ and r ∼ r′.

The general proof strategy is similar to that in [11] and is illustrated in Fig. 1.
We introduce an ε-calculus – a modified infinitary lambda-calculus. We show
confluence of infinitary reduction in the ε-calculus and then translate this result
into confluence of →∞

β up to ∼.

t

β

����
��
��
��

t0

ε

����
��
��
��

≺ �
ε

���
��

��
��

� t′

β

���
��

��
��

�

s

β

���
��

��
��

� s0

ε

���
��

��
��

�≺ s′0

ε

����
��
��
��

s′�

β
��		
		
		
		

r r0≺ � r′

Fig. 1. Confluence proof for →∞
β up to ∼

Definition 3. The set of Λε-terms is defined by coinduction.

Λε ::= V ‖ λV.Λε ‖ ΛεΛε ‖ ε(Λε)

We say that t ∈ Λε starts with ε if t ≡ ε(t′) for some t′. The relation −→ε of
ε-contraction is defined as the compatible closure of the reduction rules

εn(λx.s)t −→ε ε(s[t/x])

for n ∈ N. The relation→∗
ε of ε-reduction is the transitive-reflexive closure of −→ε.

The relation →1 is defined coinductively.

x→1 x

s→1 s
′

λx.s→1 λx.s
′

s→1 s
′ t→1 t

′

st→1 s
′t′

t→1 t
′

ε(t)→1 ε(t
′)

t1[t2/x]→1 t
′

εn(λx.t1)t2 →1 ε(t
′)

The relation →∞
ε of infinitary ε-reduction is defined coinductively.

x→∞
ε x

s→∞
ε s′

λx.s→∞
ε λx.s′

s→∞
ε s′ t→∞

ε t′

st→∞
ε s′t′

s→∗
1 ε(t) t→∞

ε t′

s→∞
ε ε(t′)
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For s ∈ Λε and s′ ∈ Λ∞, the relation s ( s′ is defined coinductively

εn(x) ( x
s′ is root-active

εω ( s′
s ( s′

εn(λx.s) ( λx.s′
s ( s′ t ( t′
εn(st) ( s′t′

where n ∈ N. If s ( s′ then s′ is an erasure of s.

The purpose of our ε-calculus is similar to the ε-calculus in [11]. To make a di-
rect coinductive confluence proof feasible, each contraction must produce at least
one new constructor. In [11] the ε-contraction rule is εn(λx.s)t → εn+2(s[t/x]),
so it additionally does not decrease the depth of other redexes. This is not neces-
sary for a coinductive proof. The relation→1 is analogous to a development, but
it also allows contracting some redexes which were not present in the original
term. The difference is for purely technical reasons. If we used a development,
then in the proof of Lemma 8 we would have to apply Lemma 7 to derivations
obtained from the coinductive hypothesis. Hence, the proof would not conform to
the interpretation from Sect. 2.1 which would make its correctness non-obvious.
Our first aim is to show that →∞

ε has the Church-Rosser property. For this
we need several lemmas.

Lemma 6. Let t1, t2, t3 ∈ Λε and y /∈ FV (t3). Then:

t1[t2/y][t3/x] ≡ t1[t3/x][(t2[t3/x])/y].

Proof. By coinduction with case analysis on t1. See also [14, Chapter 12].

Lemma 7. If s→1 s
′ and t→1 t

′ then s[t/x]→1 s
′[t′/x].

Proof. Coinduction with case analysis on s→1 s
′, using Lemma 6.

Lemma 8. If t →1 t1 and t →1 t2 then there exists t3 such that t1 →1 t3 and
t2 →1 t3.

Proof. By coinduction. We have the following cases.

1. t ≡ t1 ≡ x. Then we must also have t2 ≡ x and we may take t3 ≡ x.
2. t ≡ λx.t′ and t1 ≡ λx.t′1 with t

′ →1 t
′
1. Then t2 ≡ λx.t′2 with t

′ →1 t
′
2. By

the coinductive hypothesis, there is t′3 with t
′
1 →1 t

′
3 and t

′
2 →1 t

′
3. Thus

take t3 ≡ λx.t′3.
3. t ≡ s1s2 and t1 ≡ u1u2 with s1 →1 u1 and s2 → u2. Then one of the
following holds.
(a) t2 ≡ r1r2 with s1 →1 r1 and s2 →1 r2. By the coinductive hypothesis
there are v1, v2 with r1 →1 v1, u1 →1 v1, r2 →1 v2 and u2 →1 v2. So
t1 ≡ u1u2 →1 v1v2 and t2 ≡ r1r2 →1 v1v2. Thus take t3 ≡ v1v2.

(b) t2 ≡ ε(t′2) and s1 ≡ εn(λx.s′1) with s
′
1[s2/x] →1 t

′
2. It follows directly

from the definition of →1 that u1 ≡ εn(λx.u′1) with s
′
1 →1 u′1. By

Lemma 7, s′1[s2/x] →1 u
′
1[u2/x]. By the coinductive hypothesis there

exists t′3 such that u
′
1[u2/x] →1 t

′
3 and t

′
2 →1 t

′
3. Hence t1 ≡ u1u2 ≡

εn(λx.u′1)u2 →1 ε(t
′
3) and t2 ≡ ε(t′2)→1 ε(t

′
3). Thus take t3 ≡ ε(t′3).
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4. t ≡ ε(t′) and t1 ≡ ε(t′1) with t
′ →1 t

′
1. Then t2 ≡ ε(t′2) with t

′ →1 t
′
2. By

the coinductive hypothesis there exists t′3 such that t
′
1 →1 t

′
3 and t

′
2 →1 t

′
3.

Hence we may take t3 ≡ ε(t′3).
5. t ≡ εn(λx.s)r and t1 ≡ ε(t′1) with s[r/x]→1 t

′
1. There are two possibilities.

(a) t2 ≡ u1u2 with εn(λx.s) →1 u1 and r→1 u2. Then the proof is analogous
to case 3(b).

(b) t2 ≡ ε(t′2) with s[r/x] →1 t
′
2. By the coinductive hypothesis there ex-

ists t′3 such that t
′
1 →1 t

′
3 and t

′
2 →1 t

′
3. Hence we may take t3 ≡ ε(t′3).

Lemma 9. If t1 →1 t2 →∞
ε t3 then t1 →∞

ε t3.

Proof. Coinduction with case analysis on t2 →∞
ε t3.

Lemma 10. If ε(t)→∞
ε s then s ≡ ε(s′) with t→∞

ε s′.

Proof. It follows directly from the definition of →∞
ε that s ≡ ε(s′) with ε(t)→∗

1

ε(t′) and t′ →∞
ε s′. From the definition of →1 it follows that t →∗

1 t
′. Thus

t→∞
ε s′ by repeated application of Lemma 9.

Lemma 11. If s→∞
ε s′ and t→∞

ε t′ then s[t/x]→∞
ε s′[t′/x].

Proof. Coinduction with case analysis on s →∞
ε s′, using that s →∗

1 t implies
s[u/x]→∗

1 t[u/x], which follows from Lemma 7.

Lemma 12. If t→∞
ε t1 and t→1 t2 then there exists t3 such that t1 →1 t3 and

t2 →∞
ε t3.

Proof. Coinduction, analysing t→∞
ε t1. There are two interesting cases.

1. t ≡ εn(λx.s)r, t1 ≡ u1u2, t2 ≡ ε(t′2) with ε
n(λx.s) →∞

ε u1, r →∞
ε u2 and

s[r/x] →1 t
′
2. Because ε

n(λx.s) →∞
ε u1, it follows from Lemma 10 and the

definition of →∞
ε that u1 ≡ εn(λx.u′1) with s →∞

ε u′1. Hence s[r/x] →∞
ε

u′1[u2/x] by Lemma 11. By the coinductive hypothesis there exists t
′
3 such

that u′1[u2/x] →1 t
′
3 and t

′
2 →∞

ε t′3. Hence t2 ≡ ε(t′2) →∞
ε ε(t′3) and t1 ≡

u1u2 ≡ εn(λx.u′1)u2 →1 ε(t
′
3). Thus we may take t3 ≡ ε(t′3).

2. t1 ≡ ε(t′1) with t →∗
1 ε(s) and s →∞

ε t′1. Since t →∗
1 ε(s) and t →1 t2, it

follows from Lemma 8 by an easy diagram chase that there exists s′ such
that t2 →∗

1 ε(s
′) and ε(s) →1 ε(s

′). From the definition of →1 we obtain
s →1 s

′. By the coinductive hypothesis there exists t′ such that s′ →∞
ε t′

and t′1 →1 t
′. Hence t2 →∞

ε ε(t′), because t2 →∗
1 ε(s

′) and s′ →∞
ε t′. Also

t1 ≡ ε(t′1)→1 ε(t
′). We may thus take t3 ≡ ε(t′).

Lemma 13. If t →∞
ε t1 and t →∞

ε t2 then there exists t3 such that t1 →∞
ε t3

and t2 →∞
ε t3.

Proof. By coinduction. There is one non-trivial case, when e.g. t2 ≡ ε(t′2) with
t →∗

1 ε(s) and s →∞
ε t′2. By repeated application of Lemma 12 we obtain u

with t1 →∗
1 u and ε(s) →∞

ε u. By Lemma 10, u ≡ ε(s′) with s →∞
ε s′. By the

coinductive hypothesis there is t′3 with t
′
2 →∞

ε t′3 and s
′ →∞

ε t′3. So t1 →∞ ε(t′3),
since t1 →∗

1 ε(s
′) and s′ →∞

ε t′3. Also t2 ≡ ε(t′2)→∞
ε ε(t′3). So take t3 ≡ ε(t′3).
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The above lemma states the Church-Rosser property of→∞
ε . Now we need to

translate this result into confluence of→∞
β up ∼. For this purpose we need to be

able to transform infinitary ε-reductions on Λε-terms into infinitary β-reductions
on their erasures, and vice versa. This is achieved in Lemmas 16, 21.

Lemma 14. If t1 ( u1 and t2 ( u2 then t1[t2/x] ( u1[u2/x].

Proof. Coinduction with case analysis on t1 ( u1, using Lemma 5.

Lemma 15. If t1 ( u1 →β u2 then there exists t2 such that t1 →ε t2 ( u2.
Moreover, if the contraction u1 →β u2 occurs at the root, then t2 starts with ε.

Proof. Induction on u1 →β u2. If t1 ≡ εω then u1 is root-active. By Lemma 4
so is u2, since u1 →β u2. Thus take t2 ≡ εω. If t1 �≡ εω then it suffices to
consider the case when t1 ≡ εm(εn(λx.s1)s2), u1 ≡ (λx.v1)v2 and u2 ≡ v1[v2/x]
with s1 ( v1 and s2 ( v2. But then t1 →ε ε

m+1(s1[s2/x]). Also s1[s2/x] (
v1[v2/x] ≡ u2 by Lemma 14. If s1[s2/x] ≡ εω then εm+1(s1[s2/x]) ≡ εω, and
thus εm+1(s1[s2/x]) ( u2. Otherwise εm+1(s1[s2/x]) ( u2 from the definition
of (. So take t2 ≡ εm+1(s1[s2/x]).

Lemma 16. If t1 ( u1 →∞
β u2 then there exists t2 such that t1 →∞

ε t2 ( u2.

Proof. Coinduction with case analysis on u1 →∞
β u2. There are three cases.

1. u2 ≡ x and u1 →∗
β x. By repeated application of Lemma 15 we obtain t2

such that t1 →∗
ε t2 ( x. Then also t1 →∞

ε t2 and we are done.
2. u2 ≡ v′1v

′
2 with u1 →∗

β v1v2 and vi →∞
β v′i. By Lemma 15 there is s such

that t1 →∗
ε s ( v1v2. There are two possibilities.

(a) s ≡ εω and v1v2 is root-active. Since v1v2 →∞
β v′1v

′
2 ≡ u2, by Lemma 4,

u2 is root-active. Thus t1 →∞
ε εω ( u2 and we take t2 ≡ εω.

(b) s ≡ εn(s1s2) with si ( vi. If n = 0 then t1 ≡ r1r2 and u1 ≡ w1w2 with
ri ( wi. Moreover, by the second part of Lemma 15, no contraction in
u1 →∗

β v1v2 occurs at the root. Thus wi →∗
β vi →∞

β v′i. Hence wi →∞
β v′i.

By the coinductive hypothesis there are s′1, s
′
2 with ri →∞

ε s′i ( v′i.
Hence t1 ≡ r1r2 →∞

ε s′1s
′
2 ( v′1v

′
2 ≡ u2 and we take t2 ≡ s′1s

′
2. Now

assume n > 0. Since si ( vi →∞
β v′i, by the coinductive hypothesis

there are s′1, s
′
2 with si →∞

ε s′i ( v′i. Hence ε
n(s′1s

′
2) ( v′1v

′
2 ≡ u2. Also

t1 →∞
ε εn(s1s2), because t1 →∗

1 ε(ε
n−1(s1s2)) and si →∞

ε s′i (to obtain
the derivation apply once the penultimate rule and then n times the the
last rule). Thus take t2 ≡ εn(s1s2).

3. u2 ≡ λx.u′2 with u1 →∗
β λx.u

′
1 and u

′
1 →∞

β u′2. By Lemma 15 there is s
with t1 →∗

ε s ( λx.u′1. Obviously, λx.u
′
1 is not root-active, so the only

possibility for s ( λx.u′1 to hold is when s ≡ εn(λx.s′) with s′ ( u′1. If
n = 0 then t1 ≡ λx.t′1 and u1 ≡ λx.u0 with t′1 ( u0 →∗

β u
′
1 →∞

β u′2. Thus
t′1 ( u0 →∞

β u′2. By the coinductive hypothesis there is r with t
′
1 →∞

ε r ( u′2.
So t1 ≡ λx.t′1 →∞

ε λx.r ( λx.u′2 ≡ u2. So take t2 ≡ λx.r. Now assume
n > 0. Since s′ ( u′1 →∞

β u′2, by the coinductive hypothesis there is r with
s′ →∞

ε r ( u′2. Thus ε
n(λx.r) ( u′2. Because t1 →∗

1 s ≡ ε(εn−1(λx.s′)) and
s′ →∞

ε r, also t1 →∞
ε εn(λx.r). So take t2 ≡ εn(λx.r).
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Lemma 17. If t →∗
1 ε(t

′) then there exists s such that t →∗
ε ε(s) and s →∗

1 t
′,

where the length of s→∗
1 t

′ is not larger than the length of t→∗
1 ε(t

′).

Proof. Induction on the length l of the reduction t →∗
1 ε(t

′). If t ≡ ε(u) then
u→∗

1 t
′ follows from the definition of→1. Hence, take s ≡ u. Otherwise t ≡ u1u2

and we may decompose t→∗
1 ε(t

′) into reductions: u1 →∗
1 ε

m(λx.v) of length l1,
u2 →∗

1 w of length l1, ε
m(λx.v)w →1 ε(r) and r →∗

1 t
′ of length l2, where

l1+l2 < l. By applying the inductive hypothesism times, we conclude there is u′1
with u1 →∗

ε ε
m(u′1) and u

′
1 →∗

1 λx.v, where the length of u
′
1 →∗

1 λx.v is at most l1.
By the definition of →1, we have u′1 ≡ λx.v0 with v0 →∗

1 v of length at most l1.
By repeated application of Lemma 7, there is a reduction v0[u2/x] →∗

1 v[w/x]
of length at most l1. Since εm(λx.v)w →1 ε(r), v[w/x] →1 r. Hence, there is a
reduction v0[u2/x]→∗

1 v[w/x]→1 r →∗
1 t

′ of length at most l1 + l2 + 1 ≤ l. Also
t ≡ u1u2 →∗

ε ε
m(λx.v0)u2 →ε v0[u2/x]. Thus take s ≡ v0[u2/x].

Lemma 18. If s →∞
ε t and t �≡ εω, then there exists s′ such that s →∗

ε s
′ and

one of the following holds:

– s′ ≡ εn(x) ≡ t, or
– s′ ≡ εn(λx.r) and t ≡ εn(λx.r′) with r →∞

ε r′, or
– s′ ≡ εn(r1r2) and t ≡ εn(r′1r′2) with r1 →∞

ε r′1 and r2 →∞
ε r′2.

Proof. By the definition of →∞
ε there is s

′ such that s →∗
1 s

′ and one of the
three conditions hold. For instance, suppose s′ ≡ εn(r1r2) and t ≡ εn(r′1r′2) with
r1 →∞

ε r′1 and r2 →∞
ε r′2. By applying Lemma 17 n times we obtain s1, s2 with

s→∗
ε ε

n(s1s2) and s1s2 →∗
1 r1r2. By the definition of →1 we have s1 →∗

1 r1 and
s2 →∗

1 r2. By Lemma 9, s1 →∞
ε r′1 and s2 →∞

ε r′2. This finishes the proof.

Lemma 19. If t1 →ε t2 and t1 ( u1, then there exists u2 such that u1 →β u2
and t2 ( u2. Moreover, if t1 does not start with ε but t2 does, then the contraction
u1 →β u2 occurs at the root.

Proof. We proceed by induction on t1 →ε t2. All cases are trivial except when
t1 ≡ εm(εn(λx.s)t) →ε ε

m+1(s[t/x]) ≡ t2. Then u1 ≡ (λx.v1)v2 with s ( v1 and
t ( v2. Thus u1 →β v1[v2/x]. By Lemma 14, s[t/x] ( v1[v2/x]. Let u2 ≡ v1[v2/x].
If s[t/x] ≡ εω then εm+1(s[t/x]) ≡ εω, and thus εm+1(s[t/x]) ( u2. Otherwise
εm+1(s[t/x]) ( u2 also holds by the definition of (.

Lemma 20. If t→∞
ε εω and t ( u, then u is root-active.

Proof. Suppose u →∞
β u′ with u′ root-stable. Then by Lemma 16 there is t′

with t →∞
ε t′ ( u′. Since εω is in normal form w.r.t. infinitary ε-reduction, by

Lemma 13, t′ →∞
ε εω. Since t′ ( u′ and u′ is not root-active, t′ ≡ εn(s) where s

does not start with ε. From the definition of→∞
ε we have s→∗

1 ε(s
′) for some s′.

By Lemma 17 there is r with s →∗
ε ε(r). Since t

′ ( u′ we have s ( u′. By
Lemma 19 there is w such that u′ →∗

β w with at least one contraction occuring
at the root. But this contradicts the fact that u′ is root-stable.

Lemma 21. If t1 →∞
ε t2 and t1 ( u1, then there exists u2 such that t2 ( u2

and u1 →∞
β u2.
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Proof. We proceed by coinduction. First, assume that t2 ≡ εω. By Lemma 20, u1
is root-active. Take u2 ≡ u1. So assume t2 �≡ εω. Then by Lemmas 18, 19 there
are s, u′1 with t1 →∗

ε s ( u′1, u1 →∗
β u

′
1 and we have one of three possibilities.

– s ≡ εn(x) ≡ t2. Then u′1 ≡ x and u1 →∞
β x. So we may take u2 ≡ u′1.

– s ≡ εn(λx.r) and t2 ≡ εn(λx.r′) with r →∞
ε r′. Then u′1 ≡ λx.w with r ( w.

By the coinductive hypothesis there is w′ with w →∞
β w′ and r′ ( w′.

So t2 ≡ εn(λx.r′) ( λx.w′. Also u1 →∞
β λx.w′, since u1 →∗

β λx.w and
w →∞

β w′. Thus take u2 ≡ w′.
– s ≡ εn(r1r2) and t2 ≡ εn(r′1r′2) with r1 →∞

ε r′1 and r2 →∞
ε r′2. Analogous to

the previous case.

Lemma 22. If u1, u2 ∈ Λ∞ then: u1 ∼ u2 iff there exists t ∈ Λε such that
t ( u1 and t ( u2.

Proof. By coinduction.

Theorem 1. If t ∼ t′, t →∞
β s and t′ →∞

β s′, then there exist r, r′ such that
s→∞

β r, s′ →∞
β r′ and r ∼ r′.

Proof. By Lemma 22 there is t0 ∈ Λε such that t0 ( t and t0 ( t′. By Lemma 16
there are s0, s′0 such that s0 ( s, s′0 ( s′, t0 →∞

ε s0 and t0 →∞
ε s′0. By Lemma 13

there is r0 such that s0 →∞
ε r0 and s′0 →∞

ε r0. By Lemma 21 there are r, r′ such
that r0 ( r, r0 ( r′, s→∞

β r and s′ →∞
β r′. By Lemma 22, r ∼ r′. See Fig. 1.

4 Confluence of Böhm Reduction

In this section we show that the relation →∞
β⊥ of infinitary Böhm reduction is

confluent. The high-level strategy of the proof resembles that of the correspond-
ing proof in [11]. At the end of this section we also indicate how to show that
our definition of infinitary Böhm reduction corresponds to the definition in [11].

Definition 4. Given the ⊥-rules

t→ ⊥ if t is root-active and t �≡ ⊥

we define the relation→β⊥ of β⊥-contraction as the compatible closure of the β-
rule and the ⊥-rules. The relation→∗

β⊥ of β⊥-reduction is the transitive-reflexive
closure of →β⊥.
The relation →∞

β⊥ of infinitary Böhm reduction is defined coinductively.

s→∗
β⊥ x

s→∞
β⊥ x

s→∗
β⊥ t1t2 t1 →∞

β⊥ t
′
1 t2 →∞

β⊥ t
′
2

s→∞
β⊥ t

′
1t

′
2

s→∗
β⊥ λx.r r →∞

β⊥ r
′

s→∞
β⊥ λx.r

′

The relation →⊥ is defined coinductively.

s is root-active and s �≡ ⊥
s→⊥ ⊥ x→⊥ x

s1 →⊥ t1 s2 →⊥ t2
s1s2 →⊥ t1t2

s→⊥ s
′

λx.s→⊥ λx.s
′
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Lemma 23. If s→⊥ s
′ and t→⊥ t

′ then s[t/x]→⊥ s
′[t′/x].

Proof. Coinduction with case analysis on s→⊥ s
′, using Lemma 5.

Lemma 24. If t1 →⊥ t2 →β t3 then there exists t′1 such that t1 →β t
′
1 →⊥ t3.

Proof. Induction on t2 →β t3. The only interesting case is when t2 ≡ (λx.s1)s2
and t3 ≡ s1[s2/x]. We exclude t2 ≡ ⊥, because then t3 ≡ ⊥. So t1 ≡ (λx.u1)u2
with ui →⊥ si. By Lemma 23, u1[u2/x]→⊥ s1[s2/x]. Thus take t′1 ≡ u1[u2/x].

Lemma 25. If t ( u and u is root-active, then t→∞
ε εω.

Proof. By coinduction. If t ≡ εω then the claim is obvious, so suppose otherwise.
Since u is root-active, u ≡ u1u2 with u1 →∞

β λx.s. Then u1 →∗
β λx.s

′ for some s′.
Since t �≡ εω, we have t ≡ εn(t1t2) with t1 ( u1 and t2 ( u2. By Lemma 15 there
is t′1 such that t1 →∗

ε t
′
1 ( λx.s′. We have t′1 ≡ εm(λx.r) with r ( s′. Hence

t ≡ t1t2 →∗
1 ε

m(λx.r)t2 →1 ε(r[t2/x]). By Lemma 14, r[t2/x] ( s′[u2/x]. Since u
is root-active and u ≡ u1u2 →∞

β s′[u2/x], by Lemma 4 we conclude that s′[u2/x]
is root-active. By the coinductive hypothesis r[t2/x]→∞

ε εω. Therefore t→∞
ε εω,

by applying the last rule in the definition of →∞
ε .

Lemma 26. If s→⊥ t then s ∼ t.

Proof. By coinduction.

Lemma 27. If t is root-active and s→⊥ t or t→⊥ s, then s is root-active.

Proof. By Lemma 26, s ∼ t. By Lemma 22 there is r with r ( s and r ( t.
Since t is root-active, by Lemma 25, r →∞

ε εω. But r ( s, so s is root-active by
Lemma 20.

Lemma 28. If t1 →⊥ t2 →⊥ t3 then t1 →⊥ t3.

Proof. Coinduction with case analysis on t2 →⊥ t3, using Lemma 27.

Lemma 29. If s→∗
β⊥ t then there exists r such that s→∗

β r →⊥ t.

Proof. Induction on the length of s→∗
β⊥ t, using Lemma 24 and Lemma 28.

Lemma 30. If t1 →⊥ t2 →∞
β⊥ t3 then t1 →∞

β⊥ t3.

Proof. Coinduction with case analysis on t2 →∞
β t3, using Lemmas 29, 24, 28.

Lemma 31. If s→∞
β⊥ t then there exists r such that s→∞

β r →⊥ t.

Proof. By coinduction with case analysis on s→∞
β⊥ t, using Lemmas 29, 30.

Lemma 32. If t →⊥ t1 and t →⊥ t2 then there exists t3 such that t1 →⊥ t3
and t2 →⊥ t3.
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Proof. Coinduction with case analysis on t →⊥ t1. The only non-trivial case is
when t ≡ s1s2 is root-active and e.g. t1 ≡ ⊥. But since t→⊥ t2, by Lemma 27,
t2 is also root-active. Thus t2 →⊥ ⊥ ≡ t1 and we take t3 ≡ t1.
Lemma 33. If t1 ∼ t2 then there is s with t1 →⊥ s and t2 →⊥ s.

Lemma 34. If t1 ∼ t2 →∞
β t3 then there is t′2 such that t1 →∞

β t′2 ∼ t3.
Proof. By Lemma 22 there is s with s ( t1 and s ( t2. Since s ( t2 →∞

β t3,
by Lemma 16 there is s′ with s →∞

ε s′ ( t3. Since s ( t1 and s →∞
ε s′, by

Lemma 21 there is t′2 with t1 →∞
β t′2 and s

′ ( t′2. Since s ( t′2 and s
′ ( t3, by

Lemma 22 we obtain t′2 ∼ t3.
Lemma 35. If t→∞

β s and s is root-active, then so is t.

Proof. Suppose t→∞
β t′ for a root-stable t′. By Theorem 1 there are s1, s2 with

t′ →∞
β s2, s→∞

β s1 and s1 ∼ s2. First, we show s2 is root-stable, from which we
obtain that s1 is root-stable – a contradiction. Without loss of generality, assume
t′ ≡ t1t2, s2 ≡ r1r2 with ti →∞

β ri. If r1 →∞
β λx.r0 for some r0, then t1 →∞

β λx.r0
by Lemma 3, which would contradict the fact that t′ is root-stable. Since s2 is
root-stable, s1 ≡ u1u2 with ui ∼ ri. Because s1 is root-active, there is w with
u1 →∞

β λx.w. Then by Lemma 34 there is w′ with r1 →∞
β λx.w′ ∼ λx.w. This

contradicts the fact that s2 is root-stable.

Lemma 36. If t→∞
β⊥ s and s is root-active, then so is t.

Proof. Follows from Lemmas 31, 27, 35.

Lemma 37. If t1 →∞
β t2 →⊥ t3 then t1 →∞

β⊥ t3.

Proof. Coinduction with case analysis on t1 →∞
β t2, using Lemma 36.

Theorem 2. If t→∞
β⊥ t1 and t→∞

β⊥ t2 then there exists t3 such that t1 →∞
β⊥ t3

and t2 →∞
β⊥ t3.

Proof. The proof is illustrated by the following diagram.
t

β

∞ ��

β

∞

��

t′1

β

∞

��

⊥
�� t1

β

∞

��
r1

⊥ ��
s1 ⊥

��

⊥ ��

w1

⊥ ��
t′2 β

∞ ��

⊥ ��

s2

⊥ ��

⊥
�� s

⊥ ��

⊥
�� •

⊥ ��
t2

β

∞ �� r2 ⊥
�� w2 ⊥

�� •
⊥
�� •

By Lemma 31 there are t′1, t
′
2 with t →∞

β t′i →⊥ ti. By Theorem 1 there
are s1, s2 with t′i →∞

β si and s1 ∼ s2. By Lemma 33 there is s with si →⊥ s.
By Lemma 26, t′i ∼ ti. By Lemma 34 there are r1, r2 with ti →∞

β ri ∼ si. By
Lemma 33 there are w1, w2 with ri →⊥ wi and si →⊥ wi. The remaining squares
follow from Lemma 32. The claim then follows from Lemmas 28, 37.
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4.1 Equivalence with the Standard Definition

Let→B,→i
β and→i

⊥ denote infinitary Böhm reduction w.r.t. root-active terms,
infinitary β-reduction and parallel ⊥-reduction, all as defined in [11] by means
of strong convergence. From [6] we have: (a) t →i

β s iff t →∞
β s. We show: (b)

t →B s iff t →∞
β⊥ s. This could probably be shown by easy modification of the

proof of (a) from [6]. We derive (b) from (a) using some results from [11]. Suppose
t→B s. In [11] it is shown that then there is r with t→i

β r →i
⊥ s. By (a), t→∞

β r.
From definitions r →i

⊥ s implies r →⊥ s. Then t →∞
β⊥ s by Lemma 37. Now

suppose t →∞
β⊥ s. Then by Lemma 31 there is r with t →∞

β r →⊥ s. By (a),
t→i

β r. From definitions r →i
⊥ s. Then t→B s.
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Abstract. We define the class of constrained cons-free rewriting systems
and show that this class characterizes P , the set of languages decidable
in polynomial time on a deterministic Turing machine. The main nov-
elty of the characterization is that it allows very liberal properties of
term rewriting, in particular non-deterministic evaluation: no reduction
strategy is enforced, and systems are allowed to be non-confluent.

We present a class of constructor term rewriting systems that characterizes the
complexity class P—the set of languages decidable in polynomial time on a deter-
ministic Turing machine. The class is an analogue of similar classes in functional
programming that use cons-freeness–the inability of a program to construct
new compound data during its evaluation–to characterize a range of complex-
ity classes, including L and P [1, 2], and for higher-order programs PSPACE
and hierarchies of exponential space and time classes [3]. The primary novelty
is that while previous work has crucially utilized the deterministic evaluation
(in particular, call-by-value) and typing disciplines usually found in functional
programming languages, we allow for the full rewriting relation to be used, and
we allow non-orthogonal systems.

The ability to use non-orthogonal and non-confluent systems means that we
do not have access to standard results on orthogonality such as normalization
or finite developments of sets of redexes, and we cannot appeal to results con-
necting deterministic Turing machines to confluent rewriting [4], or to functional
programming without overlapping function declarations [1, 3, 5]. These are the
main reasons that our proofs are substantially more difficult than similar work
by Bonfante showing that introducing non-determinism to a cons-free functional
language characterizes P [2].

Related Work

The original impetus for devising languages or calculi characterizing complexity
classes was the seminal work of Bellantoni and Cook [6] who introduced a scheme
of constrained recursion in function declarations in applicative languages, called
safe recursion, later followed by similar constraints, tiered or ramified recursion

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 179–193, 2014.
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[7, 5]. Roughly, the idea of this approach is to partition the arguments of every
function into “normal” and “safe” variables, where only normal variables are used
for recursion. Our approach contains no such constraints. Other approaches have
used type systems, typically based on variants of linear logic [8–10]; in contrast,
we employ no type system, but enforce a simple syntactic criterion to constrain
copying.

Much effort has been directed towards performing polynomial complexity anal-
ysis in term rewriting, that is, devising methods to automatically infer that spe-
cific TRSs have polynomial runtime or derivational complexity. This work has
almost invariably considered analogues of call-by-value semantics, e.g. innermost
evaluation; in this vein of research, several reduction orders have been defined
such that TRSs are compatible with the orders iff they have polynomial runtime
complexity [11, 12]. The main difference with our work is that we do not nec-
essarily enforce polynomial runtime complexity, but use a form of memoization
to ensure that our class of systems can be evaluated in polynomial time on a
Turing machine. For full rewriting with no constraints on reduction strategy,
Avanzini and Moser [4] have shown that a confluent constructor rewriting sys-
tem characterizes a language in P iff it has polynomial runtime complexity, that
is, if the maximal reduction lengths starting from appropriately formed terms
are polynomially bounded. Most research in this vein has focused on functional
complexity classes, whereas we only consider the case of decision problems; we
believe our results can be extended to the function classes, but with some diffi-
culty as input constructors may not be used as output constructors in cons-free
systems.

The restriction to cons-free systems was originally developed in functional
programming by Jones [1], [3] inspired by similar work by Goerdt in recursion-
theoretic settings [13, 14], and leading to similar characterizations in other lan-
guage paradigms [15], [2]. The primary difference between this work and ours is
that we do not consider a particular reduction order, and work in a completely
untyped setting, that is, the standard liberal setting of term rewriting; the cost
of this freedom is that we need to enforce technical demands on our class of
systems leading to constrained cons-free systems, rather than merely cons-free
ones.

1 Constrained Cons-Free Term Rewriting Systems

We presuppose basic knowledge about rewriting, corresponding to the introduc-
tory chapters of [16]. Throughout the text, we assume a denumerable set X of
variables.

Let Σ be a signature (i.e., a function from a set F of function symbols to N
which associates with every f ∈ F its arity ar(f)); we then denote by T (Σ) the
set of terms built from Σ and X . The set of ground terms over Σ is denoted by
T0(Σ). By abuse of language, if F0 is a set of function symbols, we will write also
T (F0) instead of T (Σ F0) (or T0(F0) instead of T0(Σ F0)). The set of positions
in a term t is denoted by Pos(t) (a position q is said to be below the position
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p if p ≤ q): if p is a position in a term t, then p determines the subterm t p of
t occurring at position p and the symbol t(p) occurring in t at p. If s and t are
terms, we write s � t if s is a subterm of t; note that s � t iff (∃p ∈ Pos(t))s = t p.
For any term t, we denote by Oc(t) the set of variables occurring in t, that is,
Oc(t) = {x ∈ X ; (∃p ∈ Pos(t))t(p) = x} and, for any x ∈ X , by Oc(x, t) the
number of occurrences of x in t, that is, Oc(x, t) = Card({p ∈ Pos(t); t(p) = x}).

A constructor TRS is a term rewriting system (TRS) in which the set of
function symbols F is partitioned into a set D of defined function symbols and
a set C of constructors, such that for every rewrite rule (l, r) ∈ R, the left-hand
side l has the form f(t1, . . . , tn) with f ∈ D and t1, . . . , tn ∈ T (C), the set of
terms built from variables and constructors.

We introduce cons-free TRS that corresponds essentially to the functional
programming language called “F+ro” (ro for “read-only”) in [17].

Definition 1. A cons-free TRS is a finite constructor TRS such that, for every
rewrite rule (l, r), for any c(u1, . . . , un) � r such that c is a constructor and
n > 0, we have c(u1, . . . , un) � l.

The functional programming languages considered in [3] and in [17] have
a call-by-value semantics, and proofs generally assume terminating programs;
in contrast, terms in (cons-free) term rewriting systems may be subjected to
different reduction strategies, are not necessarily terminating, and terms may
have more than one normal form. To obviate technical problems due to these
facts, we restrict the class of term rewriting systems to the constrained cons-free
term rewriting systems.

Definition 2. A cons-free TRS R is said to be constrained if there exists some
subset A ⊆ D such that, for any rule (f(c1, . . . , cq), r) ∈ R and for any x ∈
X ∩ {c1, . . . , cq}, we have:

– (∀p, p′ ∈ Pos(r))(r(p) = x⇒ (p′ < p⇒ r(p′) ∈ A))

– and f ∈ A ⇒ Oc(x, r) ≤ 1.

Every variable occurring just below the root symbol of a left-hand side of
a rule occur only below defined symbols of a certain kind that do not allow
for non-linear recursion. Note that duplication may occur in constrained cons-
free TRSs, both for variables that occur “deep” in a left-hand side (i.e., below
constructor symbols), and for variables occurring just below the root of defined
symbols not in the special subset A ⊆ D. E.g., if f/1, g/2 ∈ D and c/1 ∈ C, the
TRS {f(c(x)) → g(x, x), g(c(x), y) → y, g(c(x), c(y)) → g(x, y)} is constrained
cons-free (set A = {g} or A = {f, g}).

In Sections 2 and Section 3, we will prove some properties of cons-free term,
respectively constrained cons-free TRSs that will allow for efficient simulation
on Turing machines. The main aim of the two sections is to prove Proposition 1,
respectively Corollary 1.
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2 Computation in Cons-Free TRS

In this section, we introduce a class of “generalized terms”, and we show that
any reduction sequence in a cons-free TRS from a ground term to a ground
constructor term can be simulated by some “innermost” reduction sequence of
such “generalized terms” (i.e. some sequence of �-reductions).

We are given a cons-free TRS with R the set of rules, D the set of defined
function symbols, and C the set of constructors. Moreover, for any m ∈ N, we
denote by Dm the set of defined function symbols of arity m and by Cm the set
of constructors of arity m. We first set notations used in the remainder of the
paper.

Notations: As usual, the reflexive transitive closure of a relation E is denoted by
E∗. Throughout the text, A ⇀ B refers to the type of partial maps with domain
A and co-domain B. If f : A ⇀ B, we denote by dom(f) the set of x ∈ A such
that f(x) is defined and by im(f) the set f(dom(f)) = {f(x) : x ∈ dom(f)}.

For any t ∈ T (D ∪ C), we denote by |t| the size of t, i.e., |x| = |c| = 1 for
all variables x and nullary c ∈ D0 ∪ C0, and |f(s1, . . . , sm)| = 1 +

∑m
i=1 |si| for

f ∈ Dm ∪ Cm.
Let u, v, t ∈ T (D ∪ C). We denote by Seq(u, v) the set of (finite) reduction

sequences from u to v and we set Seq(u,−) =
⋃

v∈T (D∪C) Seq(u, v). If ρ1 ∈
Seq(t, u) and ρ2 ∈ Seq(u, v), then we denote by (ρ1; ρ2) the reduction sequence
from t to v consisting in ρ1 followed by ρ2.

For any reduction step ρ : t →C0[],(l,r) u, for any occurrence 〈v|C[]〉 of v in
t = C[v], we denote by 〈v|C[]〉 \ ρ the set of descendants of 〈v|C[]〉 in u after ρ.

We denote by U0 the set of ground terms that may be written as C[t1, . . . , tn]
for some n ∈ N where C[·, . . . , ·] is an n-hole context over D, and t1, . . . , tn are
ground terms over C. Notice that, if v ∈ U0 and v → u in some cons-free TRS,
then u ∈ U0.

For any i ∈ N, we denote by Φi the set of i-hole contexts obtained by sub-
stituting exactly i distinct occurrences of constants in an element of U0 such
that, for any hole, the unique path from the root to the hole passes through only
elements of D.

Recall that a semi-ring is an algebraic structure (R, ·,+) satisfying the stan-
dard ring axioms with the exceptions that every element need not have a +-
inverse. Recall further that a semi-module is an algebraic structure satisfying
the usual module axioms over a commutative semi-ring. We denote by 2 the
semi-ring with exactly two elements 0 and 1, where 1+1 = 1. Let E be some set.
We denote by 2〈E〉 the free 2-semi-module on E . For any V ∈ 2〈E〉, we denote
by Supp(V ) the unique F ⊆ E such that V =

∑
v∈F v. If F = {v}, then we still

denote by v the vector
∑

v∈F v ∈ 2〈E〉.

We will use the notation 2〈E〉 either with E = T0(C) or E = Δ, the set of
“generalized terms” defined just below. In those cases, an element of 2〈E〉 may
be thought of as a “formal sum” of (generalized) terms, and Supp(V ) as the
set of (generalized) terms occurring in the sum. A benefit of considering formal
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sums instead of finite sets is that it allows to painlessly identify a term with the
singleton containing this term. In later developments, we shall use the sum to
track the possible reducts of subterms, i.e. each summand will correspond to a
possible reduct.

Definition 3. For any i ∈ N, we define Δi by induction on i:

– Δ0 = T0(C);
– Δi+1 = Δi ∪

(⋃
m∈N{f(U1, . . . , Um); f ∈ Dm and U1, . . . , Um ∈ 2〈Δi〉}

)
.

We set Δ =
⋃

i∈NΔi. For any u ∈ Δ, we set level(u) = min {i ∈ N; u ∈ Δi}.

Thus, e.g., if D = {f/1, g/2} and C′ = {s/1, n/0}, then f(s(n)+s(s(n))) ∈ Δ1

and g(f(s(n)) + f(s(s(n))), s(n) + s(s(n))) ∈ Δ2. Note further that U0 ⊆ Δ and
every term on the form C[c1, . . . , cm], where C[·, . . . , ·] is an m-hole context over
D and C1, . . . , Cm ∈ 2〈T0(C)〉, is an element of Δ.

Now, we want to define a notion of reduction on 2〈Δ〉: we will denote this
reduction by �. First, we define an auxiliary binary relation �Δ. For any r ∈
T (D∪C0), we homomorphically extend the notation rϕ with ϕ : X ⇀ T (D∪C0)
to any ϕ : X ⇀ 2〈T0(C)〉 such that Oc(r) ⊆ dom(ϕ): instead of having rϕ ∈
T (D ∪ C0), we have rϕ ∈ 2〈Δ〉.

Definition 4. We define the relation �Δ ⊆ (Δ1\Δ0)×2〈Δ〉 as follows: u�ΔV
if, and only if, there exist q ∈ N, f ∈ Dq, (f(c1, . . . , cq), r) ∈ R, V1, . . . , Vq ∈
2〈T0(C)〉 and ϕ : X ⇀ 2〈T0(C)〉 such that, for any j ∈ {1, . . . , q}, we have

– Oc(cj) ⊆ dom(ϕ) and (cj /∈ X ⇒ (∀x ∈ Oc(cj))ϕ(x) ∈ T0(C));
– and Vj = cj

ϕ

and u = f(V1, . . . , Vq) and V = rϕ.

If u�ΔV , then U may be replaced by V inside a one-hole generalized context
C[]; this gives rise to a reduction step C[u]�C[]C[V ]. We also write C[u]�C[]C[0],
i.e. whenever u is erased. However, in this last case, we will not count this step
when we define the length of �-reductions (see Definition 6). The set of one-hone
generalized contexts is denoted by Θ1 and is defined by setting Θ1 =

⋃
i∈NΔ

�
i ,

where Δ�
i is defined by induction on i:

– Δ�
0 = {U +�; U ∈ 2〈Δ〉};

– Δ�
i+1 =

⋃
m∈N

⎧⎨⎩ U+
f(U1, . . . , Um)

;
U ∈ 2〈Δ〉, f ∈ Dm and

(∃j ∈ {1, . . . ,m})(Uj ∈ Δ�
i and

U1, . . . , Uj−1, Uj+1, . . . , Um ∈ 2〈Δ〉)

⎫⎬⎭.

More generally, we can define the set Θi of i-hole generalized contexts: if i = 0,
then Θi = 2〈Δ〉; if i = 1, then Θi is already defined. Now, for i > 1, if D[] ∈
Θi, then D[] = C[f(U1, . . . Um)] with C[] ∈ Θ1 and U1 ∈ Θi1 , . . . , Um ∈ Θim ,
i1 + . . .+ im = i, so the several holes have to be in the same summand.

Definition 5. Let C[] ∈ Θ1. We define the binary relation �C[] on 2〈Δ〉 as
follows: for any U,U ′ ∈ 2〈Δ〉, we have U �C[] U

′ if, and only if, there exist
u ∈ Δ and V ∈ 2〈Δ〉 such that U = C[u], U ′ = C[V ] and (u�Δ V or V = 0).
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Then we define the binary relation � on 2〈Δ〉 by writing (as usual) U � V if,
and only if, there exists C[] ∈ Θ1 such that U �C[] V .

For any generalized term t ∈ Δ, we denote by ‖t‖ the maximum number of
distict summands occurring anywhere in t. In particular, if t ∈ Δ0 = T0(C), we
have ‖t‖ = 1. We generalize this notation to any element U of 2〈Δ〉 by setting

‖U‖ =
{
0 if U = 0;
max{‖u‖; u ∈ Supp(U)} otherwise.

For any k ∈ N, we denote by 2〈Δ〉k the set {U ∈ 2〈Δ〉; ‖U‖ ≤ k} and by �k

the restriction of the binary relation � to 2〈Δ〉k, i.e. 2〈Δ〉k = � 2〈Δ〉k×2〈Δ〉k .
For any k ∈ N, the relation �∗

k enjoys the following properties:

– For any U, V ∈ 2〈Δ〉k, we have U + V �∗
k V .

– Let q ∈ N. Let W1, . . . ,Wq, V1, . . . , Vq ∈ 2〈Δ〉k such that W1 �∗
k V1, . . . ,

Wq �∗
k Vq. Then we have

∑q
j=1Wj �∗

k

∑q
j=1 Vj . Moreover, for any C[] ∈ Θq

such that C[W1, . . . ,Wq] ∈ 2〈Δ〉k, we have C[W1, . . . ,Wq]�∗
k C[V1, . . . , Vq].

Definition 6. Let k ∈ N and let U, V ∈ 2〈Δ〉.
We denote by SeqΔ(U, V ) (resp. SeqΔ,k(U, V )) the set of finite sequences

(U1, . . . , Un) ∈ 2〈Δ〉<∞ such that U = U1, V = Un and, for any i ∈ {1, . . . , n−
1}, we have Ui � Ui+1 (resp. Ui �k Ui+1).

For any (U1, . . . , Un) ∈ SeqΔ(U, V ), we denote by lengthΔ((U1, . . . , Un)) the

integer Card(

{
i ∈ {1, . . . , n− 1}; (∃C[] ∈ Θ1, u ∈ Δ1 \Δ0, V ∈ 2〈Δ〉)

(u�Δ V, Ui = C[u] and Ui+1 = C[V ])

}
).

Definition 7. For any (ρ, v, C[]) ∈ Seq × U0 × Φ1 such that ρ ∈ Seq(C[v],−),
we define R(ρ, v, C[]) ⊆ Seq(v,−) by induction on length(ρ) as follows:

– if length(ρ) = 0, then R(ρ, v, C[]) = {idv};
– if ρ = C0[u] →C0[],(l,r) C0[u

′]; ρ0 with C0[] = C[C′[]], then R(ρ, v, C[]) =
{(v →C′[],(l,r) C

′[u′]; ρ′0); ρ
′
0 ∈ R(ρ0, C

′[u′], C[])};
– if ρ = C0[u]→C0[],(l,r) C0[u

′]; ρ0 and there is no C′[] ∈ Φ1 such that C0[] =
C[C′[]], then R(ρ, v, C[]) is the set

{idv} ∪

⎛⎜⎜⎜⎜⎜⎝
⋃

C′′[] ∈ Φ1

〈v|C′′[]〉 ∈ 〈v|C[]〉 \ C0[u]→C0[],(l,r) C0[u
′]

R(ρ0, v, C
′′[])

⎞⎟⎟⎟⎟⎟⎠
and we set N (ρ, v, C[]) = {c ∈ T0(C); R(ρ, v, C[])) ∩ Seq(v, c) �= ∅}.

In other words,N (ρ, v, C[]) is the set of constructor terms that are descendants
of the occurrence 〈v|C[]〉 of v in C[v] during the reduction ρ. Notice that in the
case ρ is an innermost reduction sequence, the set R(ρ, v, C[]) is a singleton.

Lemma 1. Let m ∈ N. Let E[] ∈ Φm. Let u1, . . . , um ∈ U0. Let c ∈ T0(C).
Let ρ ∈ Seq(E[u1, . . . , um], c). For any l ∈ {1, . . . ,m}, let Ul ∈ 2〈Δ〉 such that
N (ρ, ul, E[u1, . . . , ul−1,�, ul+1, . . . , um]) ⊆ Supp(Ul). Then E[U1, . . . , Um]�∗ c.
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Definition 8. Let t ∈ U0. For any u ∈ Δ, we define the relation t ↓ u by
induction on level(u) as follows:

– if u ∈ Δ0, then t ↓ u if, and only if, t→∗ u;
– if u = f(V1, . . . , Vq) ∈ Δi+1 \ Δi, then t ↓ u if, and only if, there exist
v1, . . . , vq ∈ U0 such that t→∗ f(v1, . . . , vq) and, for any j ∈ {1, . . . , q}, for
any v ∈ Supp(Vj), vj ↓ v.

This relation is extended to the relation ↓⊆ U0 × 2〈Δ〉 defined by: t ↓ U if, and
only if, for any u ∈ Supp(U), t ↓ u.

Notice that, for any t, u ∈ U0, we have t ↓ u if, and only if, t→∗ u.

Lemma 2. Let C[] ∈ Θ1. Let t ∈ U0, U, V ∈ 2〈Δ〉 such that t ↓ U and U�C[]V .
Then t ↓ V .
Proposition 1. Let t ∈ U0, c ∈ T0(C). We have t→∗ c if, and only if, t�∗ c.

Proof: Assume that t →∗ c. We have t ∈ Φ0 and Seq(t, c) �= ∅. Therefore, by
Lemma 1, we have t�∗ c.

Conversely, we prove, by induction on n and applying Lemma 2, that, for any
n ∈ N, for any U0, . . . , Un ∈ 2〈Δ〉 such that t = U0 � U1 . . . Un−1 � Un, we have
t ↓ Un.

Example 1. Consider the following (constrained) cons-free TRS: the set D is
{k/1, h/2, p/1} and the set C is {c/2, n/0, true/0, false/0} with the following
rewrite rules:

– p(c(x, c(y, z)))→ x
– p(c(x, c(y, z)))→ y
– h(x, false)→ x
– k(x)→ h(x, x)

We have k(p(c(true, c(false, n))))→ h(p(c(true, c(false, n))), p(c(true, c(false, n))))
→∗ h(true, false) → true (notice that there is no innermost reduction sequence
from k(p(c(true, c(false, n)))) to true). Now, we have

k(p(c(true, c(false, n)))) �2 k(p(c(true, c(false, n))) + false)

�2 k(true+ false)

�2 h(true+ false, true+ false)

�∗
2 h(true, false)

�2 true

3 Computation in Constrained Cons-Free TRS

In this section, we show that, for any constrained cons-free TRS, it is enough to
consider �-reduction sequences (Ui)i∈N of elements of 2〈Δ〉K (i.e. �K-reduction
sequences) for some integer K depending only on the TRS.

We are given a constrained cons-free TRS and we set B = D \ A and as the
TRS is finite, we let K ≥ 1 be an integer such that, for any (f(c1, . . . , cq), r) ∈ R
for any x ∈ X ∩ {c1, . . . , cq}, Oc(x, r) ≤ K.
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Definition 9. Let i ∈ N. For any U ∈ 2〈Δi〉, we define U∗ ∈ 2〈Δi〉 ∩ 2〈Δ〉K
by induction on i:

– i = 0: we set U∗ = U ;
– i > 0, U = f(U1, . . . , Uq) ∈ Δi \Δi−1: we set

U∗ =
∑

W1, . . . ,Wq ∈ 2〈Δi−1〉
Supp(Wj) ⊆ Supp(Uj

∗)
Card(Supp(Wj)) = min{Z,Card(Supp(Uj

∗)})}
for j ∈ {1, . . . , q}

f(W1, . . . ,Wq),

where Z =

{
1 if f ∈ A;
K if f ∈ B.

– i > 0, U ∈ 2〈Δi〉 \ (Δi ∪ 2〈Δi−1〉): we set U∗ =
∑

u∈Supp(U) u
∗.

Definition 10. Let q ∈ N. Let c1, . . . , cq ∈ T (C). Let ϕ : X ⇀ 2〈T0(C)〉. Assume
that, for any l ∈ {1, . . . , q}, we have Oc(cl) ⊆ dom(ϕ) and (cl /∈ X ⇒ cl

ϕ ∈
T0(C)). Let W1, . . . ,Wq ∈ 2〈T0(C)〉 such that, for any l ∈ {1, . . . , q}, (cl /∈ X ⇒
Wl = cl

ϕ) and Supp(Wl) ⊆ Supp(cl
ϕ). Then we denote by ϕ(W1,...,Wq) the partial

function X ⇀ 2〈T0(C)〉 such that, for any x ∈ X , we have ϕ(W1,...,Wq)(x) ={
Wl if x = cl;
ϕ(x) otherwise.

Lemma 3. Let (f(c1, . . . , cq), r) ∈ R. Let ϕ : X ⇀ 2〈T0(C)〉. Assume that, for
any j ∈ {1, . . . , q}, we have Oc(cj) ⊆ dom(ϕ) and (cj /∈ X ⇒ cj

ϕ ∈ T0(C)).
Then

∑
W1∈W1,...,Wq∈Wq

rϕ(W1 ,...,Wq) �∗
K (rϕ)∗, where, for any j ∈ {1, . . . , q}, Wj

is the following subset of 2〈T0(C)〉:

– {cjϕ} in the case cj /∈ X ;

–

{
W ∈ 2〈T0(C)〉;

Supp(W ) ⊆ Supp(cj
ϕ) and

Card(Supp(W )) = min{Oc(cj , r),Card(Supp(cj
ϕ))}

}
in

the case cj ∈ X .

Proposition 2. Let i ∈ N. Let C[] ∈ Δ�
i . For any U, V ∈ 2〈Δ〉 such that

U �C[] V , we have U∗ �∗
K V

∗.

Proof: The proof is by induction on i.

– If i = 0, then C[] = U0 +� for some U0 ∈ 2〈Δ〉; we distinguish between two
cases:
• V = U0 and there exists u ∈ Δ such that U = U0 + u: in this case, we
have ‖U∗‖, ‖U0

∗‖ ≤ K. Thus we have U∗ = U0
∗ + u∗ �∗

K U0
∗ = V ∗.

• U = U0+f(c1, . . . , cq)
ϕ, V = U0+r

ϕ with f ∈ Dq, c1, . . . , cq ∈ T (C), ϕ :
X ⇀ 2〈T0(C)〉 such that, for any j ∈ {1, . . . , q}, cj /∈ X ⇒ cj

ϕ ∈ T0(C):
For any j ∈ {1, . . . , q}, we define Wj as in Lemma 3 and we define W ′

j

as follows:
∗ if cj /∈ X , then W ′

j = {cjϕ};
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∗ if cj ∈ X , then W ′
j is the set{

W ∈ 2〈T0(C)〉;
Supp(W ) ⊆ Supp(cj

ϕ) and
Card(Supp(W )) = min{Z,Card(Supp(cjϕ))}

}

with Z =

{
1 if f ∈ A;
K if f ∈ B.

We have

(f(c1, . . . , cq)
ϕ)

∗
=

∑
W1∈W′

1,...,Wq∈W′
q

f(c1
ϕ(W1,...,Wq) , . . . , cq

ϕ(W1,...,Wq))

�∗
K

∑
W1∈W1,...,Wq∈Wq

f(c1, . . . , cq)
ϕ(W1,...,Wq)

�∗
K

∑
W1∈W1,...,Wq∈Wq

rϕ(W1,...,Wq)

�∗
K (rϕ)

∗
(by Lemma 3).

We have U0 ∈ 2〈Δ〉K , so U∗ = U0
∗+(f(c1, . . . , cq)

ϕ)
∗�∗

K U0
∗+(rϕ)

∗
= V ∗.

– If i > 0, U = C[U0], V = C[V0], C[] = U ′ + f(U1, . . . , Um), k ∈ {1, . . . ,m},
Uk ∈ Δ�

i−1 and U0 �� V0, then, by the induction hypothesis, Uk[U0
∗] �∗

K

Uk[V0
∗]. Let V1, . . . , Vm ∈ 2〈Δ〉 such that

• for any j ∈ {1, . . . ,m} \ {k}, we have

Supp(Vj) ⊆ Supp(Uj
∗) and Card(Supp(Vj)) = min{1,Card(Supp(Uj

∗))}

• and Supp(Vk) ⊆ Supp(Uk[V0]
∗
) and

Card(Supp(Vk)) =

{
min{1,Card(Supp(Uk[V0]

∗
))} if f ∈ A;

min{K,Card(Supp(Uk[V0]
∗))} if f ∈ B.

There exists V ∈ 2〈Δ〉 such that Supp(V ) ⊆ Supp(Uk[U0]), Card(Supp(V )) ≤
Card(Supp(Vk)) and V �∗

KVk, and hence f(V1, . . . , Vk−1, V, Vk+1, . . . , Vm)�∗
K

f(V1, . . . , Vk). We obtain

f(U1, . . . , Uk−1, Uk[U0], Uk+1, . . . , Um)
∗

�∗
K f(U1, . . . , Uk−1, Uk[V0], Uk+1, . . . , Um)

∗
;

moreover we have ‖U ′∗‖ ≤ K, hence

U∗ = U ′∗ + f(U1, . . . , Uk−1, Uk[U0], Uk+1, . . . , Um)
∗

�∗
K U ′∗ + f(U1, . . . , Uk−1, Uk[V0], Uk+1, . . . , Um)

∗

= V ∗

Corollary 1. Let q ∈ N. Let C1, . . . , Cq ∈ 2〈T0(C)〉 such that Card(Supp(C1)),
. . . , Card(Supp(Cq)) ≤ K, let c ∈ T0(C) and f ∈ Dq. We have f(C1, . . . , Cq)�∗ c
if, and only if, f(C1, . . . , Cq)�∗

K c.

Proof: Apply Proposition 2, noticing that f(C1, . . . , Cq)
∗
= f(C1, . . . , Cq) and

c∗ = c.
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4 A Polynomial Time Algorithm

In this section we describe a polynomial time algorithm that computes the con-
structor terms obtained by �K-reduction sequences in a constrained cons-free
TRS. Assume that we are given a constrained cons-free TRS. We assume that
R = {(l1, r1), . . . , (lR, rR)} and

⋃R
j=1 Oc(lj) = {x1, . . . , xV }. We set TR =

⋃
{t ∈

T (D∪C); (∃j ∈ {1, . . . , R})(t � lj or t � rj)}. We set A = max{ar(f); f ∈ D∪
C}, O = max{1,max{Oc(f, rj); f ∈ D and j ∈ {1, . . . , R}}}, Q = Card(D) and
S = Card(C0). For any c0 ∈ T0(C), we set I(c0) = {c ∈ T0(C); c ∈ C0 or c � c0}.

Remark 1. For any c0 ∈ T0(C), we have Card(I(c0)) = S + |c0|.

Definition 11. For any c0 ∈ T0(C), we set V(c0) =
⋃

i∈N Vi(c0), where Vi(c0)
is a subset of {U ∈ 2〈Δi〉; ‖U‖ ≤ K} defined by induction on i:

– V0(c0) = {U ∈ 2〈T0(C)〉; Card(Supp(U)) ≤ K and Supp(U) ⊆ I(c0)}
– Vi+1(c0) = Vi(c0) ∪

⋃A
m=1{f(V1, . . . , Vm); f ∈ Dm and V1, . . . , Vm ∈ Vi(c0)}

Given c0 ∈ T0(C), the algorithm will compute, for every element u of V1(c0) \
V0(c0), the set of constructor terms c such that u�∗

K c. In particular, by Propo-
sition 1 and Corollary 1, if K is large enough, then, for every f ∈ Dm and every
c1, . . . , cm ∈ I(c0), it will return exactly all the constructor terms c such that
f(c1, . . . , cm)→∗ c.

Remark 2. For any c0 ∈ T0(C), we have Card(V0(c0)) ≤ Card(I(c0))K+1, hence
Card(V1(c0) \ V0(c0)) ≤ Q · Card(I(c0))A·(K+1).

Definition 12. For any c0 ∈ T0(C), for any i ∈ N \ {0}, for any V ∈ Vi(c0) \
Vi−1(c0), we define, by induction on i, the leftmost-innermost redex 〈U |E[]〉 of
V with U ∈ V1(c0) \ V0(c0) and E[] ∈ Θ1:

– if i = 1, then the leftmost-innermost redex of V is 〈V |�〉;
– if i > 1 and V = f(V1, . . . , Vm), then the leftmost-innermost redex of V is
〈W |f(V1, . . . , Vj−1, C[], Vj+1, . . . , Vm)〉, where j = min{k ∈ {1, . . . ,m}; Vk /∈
V0} and 〈W |C[]〉 is the leftmost-innermost redex of Vj.

From now M will be an integer and E the subset {1, . . . ,M} of N; L will be
a function E → D ∪ C ∪ {x1, . . . , xV ,⊥}, Succ will be a partial function E ⇀
(E ∪ {⊥}){1,...,A} and Comp will be a partial function E ⇀ (E ∪ {⊥}){1,...,K}.

Definition 13. For any t ∈ T (D ∪ C), for any n ∈ E, we define, by induction
on t, FT (t, n) ∈ {0, 1} as follows: FT (f(t1, . . . , tm), n) = 1 if, and only if, n ∈
dom(Succ), L(n) = f and FT (t1, Succ(n)(1)) = . . . = FT (tm, Succ(n)(m)) = 1.

Notice that FT (t, n) = FT (t
′, n) = 1 ⇒ t = t′, hence we can define a partial

function �·�T : E ⇀ T (D∪C) by setting �n�T = t if, and only if, FT (t, n) = 1. In
the same way, we define a partial function �·�V,c0 : E ⇀ V(c0) for any c0 ∈ T0(C):

Definition 14. Let c0 ∈ T0(C). For any i ∈ N, for any V ∈ Vi(c0), for any
n ∈ E, we define, by induction on i, FV,c0(V, n) ∈ {0, 1}:



Implicit Characterization of P by Cons-Free Rewriting 189

– if i = 0, then FV,c0(V, n) = 1 if, and only if, �n�T = V or the following holds:
L(n) = ⊥, n ∈ dom(Comp) and

∑
k ∈ {1, . . . ,K}
Comp(n)(k) �= ⊥

�Comp(n)(k)�T = V ;

– if i > 0 and V = f(V1, . . . , Vm) /∈ Vi−1, then FV,c0(V, �n�V,c0) = 1 if,
and only if, n ∈ dom(Succ), L(n) = f and �Succ(n)(1)�V,c0 = V1, . . . ,
�Succ(n)(ar(f))�V,c0 = Var(f).

Since, for any c0 ∈ T0(C), we have FV,c0(V, v) = FV,c0(V
′, n) = 1 ⇒ V = V ,

we can define a partial function �·�V,c0 : E ⇀ V(c0) by setting �n�V,c0 = V if,
and only if, FV,c0(V, n) = 1.

In the two following definitions, we restrict the partial functions �·�T and
�·�V,c0 to elements of E that unshare (hence the symbol U) defined symbol
functions.

Definition 15. For any n ∈ dom(�·�T ), we define ReachT (n) ⊆ E by induction
on �n�T : if L(n) /∈ D, then ReachT (n) = ∅; if L(n) ∈ D, then ReachT (n) =

{n} ∪
⋃ar(L(n))

j=1 ReachT (Succ(n)(j)).
We set UT = {n ∈ dom(�·�T ); (∀m,m′ ∈ ReachT (n))(L(m) = L(m′) ⇒

(m �= m′ or L(m) /∈ D))} and �·�T ,U = �·�T UT
.

Definition 16. For any c0 ∈ T0(C), for any i ∈ N, for any V ∈ Vi(c0), for any
n ∈ E such that �n�V,c0 = V , we define ReachV,c0(n) by induction on i:

– if i = 0 and L(n) = ⊥, then

ReachV,c0(n) =
⋃

k ∈ {1, . . . ,K}
Comp(n)(k) �= ⊥

ReachT (Comp(n)(k))

– if i = 0 and L(n) �= ⊥, then ReachV,c0(n) = ReachT (n)

– if i > 0, then ReachV,c0(n) = {n} ∪
⋃ar(L(n))

j=1 ReachV,c0(Succ(n)(j))

For any c0 ∈ T0(C), we denote by UV(c0) the set of n ∈ dom(�·�V,c0) such that
(∀m,m′ ∈ ReachV,c0(n))(L(m) = L(m′) ⇒ (m �= m′ or L(m) /∈ D)) and we set
�·�V,c0,U = �·�V,c0 UV (c0)

.

From now, we assume that, for any c0 ∈ T0(C), we are given a bijection

inp(c0) :
{1, . . . , Inp-Max} → V1(c0) \ V0(c0)

i �→ �i�V,c0
. By Remark 2, we can assume that

Inp-Max ≤ Q · Card(I(c0))A·(K+1).
The algorithm begins with a procedure Inst-Init() which performs the following

one: for any c0 ∈ T0(C), after the execution of the procedure, we have

– {�Inp(i)�V,c0 ; 1 ≤ i ≤ Inp-Max} = V1(c0) \ V0(c0)
– and, for any i ∈ {1, . . . , Inp-Max}, we have {�Inst(i)(s)�V,c0,U ; 1 ≤ s ≤
R} \ {⊥} = {V ∈ 2〈Δ〉; �Inp(i)�V,c0 �Δ V }.
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Here we used the following crucial property of cons-free term rewriting sys-
tems: whenever we perform a reduction step u �Δ V with u ∈ V1(c0) \ V0(c0),
we have V ∈ V(c0) (and not only in 2〈Δ〉).

The algorithm calls the procedure Inf-Inp(i, j) with i, j ∈ {1, . . . , Inp-Max}.
This procedure performs the following one: for any c0 ∈ T0(C), if there exist
q ∈ N, f ∈ Dq and C1, . . . , Cq, C

′
1, . . . , C

′
q ∈ 2〈T0(C)〉 such that

– �Inp(i)�V,c0 = f(C′
1, . . . , C

′
q),

– �Inp(j)�V,c0 = f(C1, . . . , Cq)
– and Supp(C′

1) ⊆ Supp(C1), . . . , Supp(C
′
q) ⊆ Supp(Cq),

then the procedure Inf-Inp(i, j) returns true; otherwise it returns false.

Definition 17. Let c0 ∈ T0(C). For any i ∈ N, we define some subset Ψi(c0) of
Δ�

i by induction on i as follows: Ψ0(c0) = {�} and

Ψi+1(c0) =
⋃

m∈N

⎧⎨⎩f(V1, . . . , Vm);
f ∈ Dm and (∃j ∈ {1, . . . ,m})
(Vj ∈ Ψi(c0) and
V1, . . . , Vj−1, Vj+1, . . . , Vm ∈ V(c0))

⎫⎬⎭.

We set Ψ(c0) =
⋃

i∈N Ψi(c0).

Definition 18. Let c0 ∈ T0(C). Let Y : V1(c0)\V0(c0)→ {true, false}I. For any
C[] ∈ Ψ(c0), we define the binary relation on V(c0) as follows: V �Y,C[] V

′ if,
and only if, there exist u ∈ V1(c0)\V0(c0) and V0 ∈ V0(c0) such that Supp(V0) ⊆
{c ∈ I(c0); Y (u)(c) = true}, V = C[u] and V ′ = C[V0].

We define the binary relation �Y on V(c0) as follows: V �Y V
′ if, and only

if, there exists W ∈ 2〈T0(C)〉 such that

– Card(Supp(W )) ≤ K,
– for any w ∈ Supp(W ), Y (U)(w) = true
– and V ′ = E[W ],

where 〈U |E[]〉 is the leftmost-innermost redex of V .

The algorithm uses a procedure Computation, which has the following proper-
ties: Let c0 ∈ T0(C). Let Q ≤ O. Let V ∈ VQ(c0). Let n ∈ E such that �n�V,c0,U =

V . Let Y : V1(c0) \ V0(c0) → {true, false}I(c0) such that, for any V ′ ∈ V1(c0) \
V0(c0), for any c ∈ I(c0), Y (V ′)(c) = true if, and only if, Val(inp(c0)

−1(V ′))(c) =
true. After the execution of the procedure Computation(n), we have:

– apart from M and D, which increased, and apart from Result, no value of
any global variable changed;

– the increasing of D is bound by (Card(I(c0)) + 1)Q·K ·K;
– for any c ∈ I(c0), there exists j ∈ {1, . . . , D} such that Result(j) = c if, and

only if, there exists V ′ ∈ V0(c0) such that c ∈ Supp(V ′) and V �∗
Y V

′.

The execution time of the procedure Computation is polynomial in the size of c0.
The key-point to notice is that the execution time of the algorithm is in

O(|c0|H) for some constantH is that the size of the table Val is Card(Inp-Max)×
Card(I(c0)) ≤ (Q · Card(I(c0))A·(K+1))× (S + |c0|). Hence, for any c0 ∈ T0(C),
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Inst-Init(); change := true;
while change do

change := false;
for i := 1 to Inp-Max do

D := 0; for s := 1 to R do Computation(Inst(i)(s)); od;
for o := 1 to Inp-Max do

if Inf-Inp(i, o) then
for j := 1 to D do

if Val(o)(Result(j)) �= false
then change := true;

Val(o)(Result(j)) := true;
fi;

od;
fi;

od; od; od;

Fig. 1. The algorithm

for any m ∈ N, for any f ∈ Dm, for any C1, . . . , Cm ∈ 2〈T0(C)〉 such that
Card(Supp(C1)), . . . , Card(Supp(Cm)) ≤ K, for any c ∈ {c′ ∈ T (C); c′ �
c0 or c′ ∈ C0}, the problem of deciding whether f(C1, . . . , Cm) �∗

K c holds is
solvable in time polynomial in the size of c0.

5 Characterizing P

Let Γ be the signature {one/1, zero/1, nil/0}. For each t = f1(f2(· · · fn(nil))) ∈
T0(Γ ), we define the string 〈t〉 to be 〈f1〉〈f2〉 · · · 〈fn〉 where 〈one〉 =‘1’ and
〈zero〉 =‘0’. Clearly, T0(Γ ) is in bijective correspondence with {0, 1}<∞ under
〈·〉.

Jones [3] considers (deterministic) cons-free functional programs. Now, the
following lemma holds:

Lemma 4. Any (deterministic) cons-free functional program taking only zeroth-
order data and involving only terminating functions can be simulated by an or-
thogonal cons-free TRS.

Proof: Given a (deterministic) cons-free functional program p taking only zeroth-
order data, we consider the following cons-free TRS: for any declaration of the
form f x1 . . . xn = ef in p, we have the rewrite rule f(x1, . . . , xn) → (ef )

∗
,

where (ef )
∗
is defined by induction on ef : for instance, if ef = if e1 e2 e3, then

(ef )
∗
= if(e1

∗, e2
∗, e3

∗); moreover we have the rewrite rules if(true, x, y)→ x and
if(false, x, y)→ y.

As the language of [3] involves only a single function declaration per function
name, and all left-hand sides of such declaration have the form f(x1, . . . , xn) (for
distinct x1, . . . , xn), it is straightforward that the cons-free TRS we obtained is
orthogonal. The operational semantics in [3] is essentially call-by-value and can
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be straightforwardly simulated by innermost reduction steps (the exceptions are
whenever we have expressions of the form if e1 e2 e3: following the evaluation of
e1, either e2 or e3 will not be evaluated). Hence, if f c1 . . . cn evaluates to some
normal form in the functional program, then t reduces to the same normal form
in the corresponding TRS. Conversely, as orthogonal TRSs are confluent (hence
each term has at most one normal form), and the functions are terminating, if
f(c1, . . . , cn) reduces to some normal form c in the TRS, then f c1 . . . cn evaluates
to the value c in the functional program.

Theorem 1. Let L ⊆ {0, 1}<∞. Then, L ∈ P if, and only if, there exists a
constrained cons-free TRS over some signature F = D ∪ C such that (i) Γ ⊆ C,
and there is f ∈ D and true ∈ C0 such that, for any t ∈ T0(Γ ), we have f(t)→∗

true if, and only if, 〈t〉 ∈ L.

Proof: Corollary 24.2.4 of [17] (or Theorem 6.12 of [3] in the case k = 0) shows
that we can simulate any polynomial-time Turing Machine by a (deterministic)
cons-free (called read-only in [17]) functional program taking only zeroth-order
data (Note that cons-free in the above setting is slightly stronger than our notion:
No constructors are allowed in the right-hand side of function declarations).
This simulation involves only terminating functions, hence, by Lemma 4, any
polynomial-time Turing Machine can be simulated by an orthogonal cons-free
TRS.

The cons-free term rewriting system R obtained from a functional program is
not necessarily constrained. To obtain a constrained system, we do the following
for each function declaration def f(x1, . . . , xn) = ef (where the function body
ef is an expression in the functional language): Let f(x1, . . . , xn) → r be the
corresponding cons-free rule. For every such rule, let {x1, . . . , xn} be the set
of variables that occur immediately beneath the defined symbol at the root of
the left-hand side. Choose a set {y1, . . . , yn} of distinct variables, and let M
be the set of all n-tuples w = (s1, . . . , sn) where si (for 1 ≤ i ≤ n) is either
zero(yi), one(yi), or nil. Then replace the rule f(x1, . . . , xn) → r by the |M |
rules on the form f(s1, . . . , sn) → r[s1/x1, . . . , sn/xn], where (s1, . . . , sn) ∈ M
and r[s1/x1, . . . , sn/xn] denotes the obvious substitution. Observe that (i) each
of the new rules is left-linear if the original rule was, and (ii) that the only
overlaps between these rules occur when the left-hand sides are equal. Thus,
as R was orthogonal, so is R′, and it is clearly constrained as no variable in a
left-hand side occurs immediately below the defined symbol at the root.

It is obvious that, for any terms t and t′ such that t→ t′ in R′, we have t→ t′

in R: indeed if t→(l,r) t
′ and (l, r) is not a rule of R, then there exists a unique

rule (l0, r0) of R such that (l, r) is obtained from (l0, r0); we have t→(l0,r0) t
′. Re-

ciprocally, if t and t′ are two terms such that t = C[f(t1, . . . , tm)σ]→(f(t1,...,tm),r)

C[rσ ] = t′ is a innermost reduction step in R, then t1
σ, . . . , tm

σ are constructor
terms, hence there exists a rule (l, r) in R′ such that t→(l,r) t

′. Now, since R is
confluent and the functions are terminating, for any term t and any constructor
term c, we have t→∗ c in R if, and only if, t reduces to c in R by some innermost
strategy.
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To see that every constrained, cons-free TRS can be suitably simulated by a
polynomial-time Turing machine, let K ≥ 1 be an integer such that, for any rule
(f(c1, . . . , cq), r), for any x ∈ X ∩ {c1, . . . , cq}, Oc(x, r) ≤ K. By Proposition 1
and Corollary 1, we have f(t) →∗ true if, and only if, f(t) �∗

K true. And the
previous section showed that the problem of deciding whether f(t)�∗

K true holds
is solvable in time polynomial in the size of t.
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Abstract. The notion of subtyping has gained an important role both
in theoretical and applicative domains: in lambda and concurrent calculi
as well as in programming languages. The soundness and the complete-
ness, together referred to as the preciseness of subtyping, can be consid-
ered from two different points of view: denotational and operational. The
former preciseness is based on the denotation of a type which is a math-
ematical object that describes the meaning of the type in accordance
with the denotations of other expressions from the language. The latter
preciseness has been recently developed with respect to type safety, i.e.
the safe replacement of a term of a smaller type when a term of a bigger
type is expected.

We propose a technique for formalising and proving operational pre-
ciseness of the subtyping relation in the setting of a concurrent lambda
calculus with intersection and union types. The key feature is the link
between typings and the operational semantics. We then prove sound-
ness and completeness getting that the subtyping relation of this calculus
enjoys both denotational and operational preciseness.

1 Introduction

Preciseness, Soundness and Completeness of Subtyping. A subtyping
relation is a pre-order (reflexive and transitive relation) on types that validates
the principle: if σ is a subtype of τ (notation σ ≤ τ), then a term of type σ may
be provided whenever a term of type τ is needed; see Pierce [20] (Chapter 15)
and Harper [14] (Chapter 23).

The soundness and the completeness, together referred to as the preciseness
of subtyping, can be considered from two different points of view: denotational
and operational.
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Denotational Preciseness: A usual approach to preciseness of subtyping for a cal-
culus is to consider the interpretation of a type σ (notation [[σ]]) to be a set that
describes the meaning of the type in accordance with the denotations of the terms
of the calculus, in general a subset of the domain of a model of the calculus. Then
a subtyping relation is denotationally sound when σ ≤ τ implies [[σ]] ⊆ [[τ ]] and
denotationally complete when [[σ]] ⊆ [[τ ]] implies σ ≤ τ . This well-established pow-
erful technique is applied to the pure λ-calculus with arrow and intersection types
by Barendregt et al. [3], to a call-by-value λ-calculus with arrow, intersection and
union types by van Bakel et al. [1] and by Ishihara and Kurata [16], and to a wide
class of calculi with arrow, union and pair types by Vouillon [25].

Operational Preciseness: Blackburn et al. [4] bring a new operational approach
to preciseness of subtyping and apply it to subtyping iso-recursive types. They
assume a multi-step reduction M −→∗ N between terms (including error), stan-
dard typing judgements Γ �M : σ and evaluation contexts C.

A subtyping relation is operationally sound when σ ≤ τ implies that if
x : τ � C[x] : ρ (for some ρ) and � M : σ, then C[M ] �−→∗ error, for all C
and M . A subtyping relation is operationally complete when σ �≤ τ implies that
x : τ � C[x] : ρ and �M : σ and C[M ] −→∗ error, for some ρ, C and M .

Semantic subtyping of Frisch et al. [12,13] supports both notions of preciseness
for a typed calculus with arrow, intersection, union and negation types. Each
type is interpreted as the set of values having that type. The subtyping rela-
tion is defined semantically rather than syntactically and the typing algorithms
are directly derived from semantics. In this way denotational preciseness is ob-
tained by construction. On the other hand, operational preciseness holds as well,
because of the presence of a type case operator in the calculus.

The Concurrent λ-Calculus. Dezani et al. [9] develop the concurrent λ+‖-
calculus, which is an enriched λ-calculus with a demonic non-deterministic choice
operator + [19], and an angelic parallel operator ‖ [5]. Their type system embod-
ies arrow, intersection and union types and a subtyping relation which enables
the construction of filter models. The choice of the subtyping relation on types
is crucial, since it determines the structure of the set of filters and provides a
denotational semantics which ensures soundness and completeness of the type
assignment.

Main Contributions. In this paper, we adapt the ideas of Blackburn et al. [4]
to the setting of the concurrent λ+‖-calculus with intersection and union types of
[9]. We propose a technique for formalising and proving denotational and opera-
tional preciseness of subtyping, operational completeness being the real novelty.
The key feature is the link between typings and the operational semantics. For
the denotational preciseness we interpret a type as the set of terms having that
type. For the operational preciseness we take the view that well-typed terms al-
ways evaluate to values. In this calculus applicative contexts are enough. Lastly,
we can make soundness and completeness more operational by asking that some
applications converge instead of being typable. To sum up, our definition of
operational preciseness becomes:
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A subtyping ≤ is operationally precise when σ ≤ τ if and only if there are no
closed terms M,N such that MP converges for all closed terms P of type τ and
N has type σ and MN diverges.

Overview of the Paper. Section 2 presents the syntax and the operational
semantics of the λ+‖-calculus. Section 3 presents the type system with inter-
section and union types for the λ+‖-calculus. These sections just review some
definitions and results of [9]. Denotational and operational preciseness are shown
in Section 4, where a crucial role is played by the construction of terms which
fully characterise the functional behaviour of types. Section 5 discusses related
and further work.

2 The Calculus and Its Operational Semantics

This section revisits the syntax of the λ-calculus with a non-deterministic choice
operator + and a parallel operator ‖, which was introduced and developed in [9].
The obtained calculus is dubbed λ+‖-calculus. There are two sorts of variables,
namely the set Vn of call-by-name variables, denoted by x, y, z, and the set Vv
of call-by-value variables, denoted by v, w. The symbol χ will range over the set
Vn ∪ Vv. The terms of the concurrent λ-calculus are defined by the following
grammar

M ::= x | v | (λx.M) | (λv.M) | (MM) | (M +M) | (M‖M).

The set of terms is denoted by Λ+‖. For any M ∈Λ+‖, FV (M) denotes the set
of free variables of M ; Λ0

+‖ is the set of terms M such that FV (M) = ∅.
Notation. As usual for pure λ-calculus, we omit parentheses by assuming that
application associates to the left and λ-abstraction associates to the right. More-
over, application and abstraction have precedence over + and ‖, e.g. MN + P
stands for ((MN) + P ) and λx.M +N for ((λx.M) +N). The operator ‖ takes
precedence over +: for example M‖P + Q is short for ((M‖P ) + Q). As usual
λχ1. · · ·χn.M is short for λχ1. · · ·λχn.M .

We will abbreviate some λ-terms as follows

I = λx.x K = λxy.x O = λxy.y
Δ = λx.xx Ω = ΔΔ Y = λy.(λx.y(xx))(λx.y(xx)).

In pure λ-calculus values are either value variables or λ-abstractions [21]. Here
we need to distinguish between partial and total values: the difference concerns
the parallel operator. In fact we require both M and N to be total values to
ensure thatM‖N is a total value, while in general it suffices that either M or N
is a value to have that M‖N is a value. As it is clear from the next definition,
a value is either a total or a partial value.

Definition 1. We define the set Val of values according to the grammar

V ::= v | λx.M | λv.M | V ‖M |M‖V
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and the set TVal of total values as the subset of Val

W ::= v | λx.M | λv.M |W‖W.

A value V is partial if and only if V �∈ TVal.

We now introduce a reduction relation which is intended to formalise the
expected behaviour of a machine which evaluates in a synchronous way parallel
compositions, until a value is produced. Partial values can be further evaluated
(rule (‖app)), and this is essential for applications of a call-by-value abstraction
(rule (βv‖)).

Definition 2. The reduction relation −→ is the least binary relation over Λ0
+‖

such that

(β) (λx.M)N −→M [N/x] (βv)
W ∈ TVal

(λv.M)W −→M [W/v]

(μv)
N −→ N ′ N �∈ Val

(λv.M)N −→ (λv.M)N ′ (βv‖)
V −→ V ′ V ∈ Val

(λv.M)V −→M [V/v]‖(λv.M)V ′

(ν)
M −→M ′ M �∈ Val

⋃
Par

MN −→M ′N
(‖app) (M‖N)L −→ML‖NL

(‖s)
M −→M ′ N −→ N ′

M‖N −→M ′‖N ′ (‖a)
M −→M ′ W ∈TVal

M‖W −→M ′‖W, W‖M −→W‖M ′

(+L) M +N −→M (+R) M +N −→ N

We denote by −→∗ the reflexive and transitive closure of −→.

In rule (ν) we use Par defined by

Par = {M‖N |M,N ∈ Λ+‖}.

2.1 Rule (βv‖)
We need to justify the rule (βv‖). Let us consider the context C[ ] = (λv.vv)[ ]ΩI,
the value V = I‖(K + O), and the total values W1 = I‖K, W2 = I‖O. Then
V −→ W1 and V −→ W2. Now considering ‖ associative to spare parentheses,

and writing
n−→ when rules (βv), (‖app), (+L) or (+R) are applied n times:

C[W1] −→ (I‖K)(I‖K)ΩI
3−→ (I(I‖K)ΩI)‖(K(I‖K)ΩI)
2−→ ((I‖K)ΩI)‖((λy.(I‖K))ΩI)
2−→ ((IΩ‖KΩ)I)‖((I‖K)I)
2−→ (IΩI)‖(KΩI)‖(II)‖(KI)
4−→ (ΩI)‖((λy.Ω)I)‖I‖(λy.I)
−→ (ΩI)‖Ω‖I‖(λy.I)
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which is a value, and it is not hard to see that this is the only reduction out of
C[W1] according to the rules given in Definition 2. Similarly,

C[W2] −→ (I‖O)(I‖O)ΩI
−→∗ (ΩI)‖I‖(ΩI)

and again this is the only reduction out of C[W2]. But now consider the following
reduction of C[V ]

C[V ] −→ (I‖(K+O))(I‖(K+O))ΩI
3−→ (I(I‖(K+O))ΩI)‖((K+O)(I‖(K+O))ΩI)
2−→ ((I‖(K+O))ΩI)‖(O(I‖(K+O))ΩI) choosing O ...
4−→ (IΩI)‖((K+O)ΩI)‖(ΩI)
2−→ (ΩI)‖(KΩI)‖(ΩI) ... choosing K
2−→ (ΩI)‖Ω‖(ΩI)

and from (ΩI)‖Ω‖(ΩI) we will never reach a value.
The problem of designing the β-contraction rule for call-by-value is that, given

a value V , we cannot decide whether it has been computed enough to perform
the reduction step (λv.M)V −→ M [V/v], or if it is necessary to reduce V fur-
ther, before contracting the outermost β-redex. We cannot reduce V as long as
possible, since this could not terminate. In the meantime, M [V/v] can diverge,
while M [V ′/v] can converge for all V ′ which are reducts of V , as shown by the
previous example. On the other hand, any effective description of the operational
semantics calls for a definition of a recursive one step reduction relation.

Now the solution we propose is to distinguish two cases: if V is a total value,
then the standard call-by-value β-contraction rule applies (rule (βv)). If, instead,
V can be reduced further, to compute (λv.M)V we want to “take the best”
between the terms M [V ′/v], for any V ′ such that V−→∗V ′. We realise this by
evaluating in parallel M [V/v] and (λv.M)V ′ for any V ′ such that V−→V ′ (rule
(βv‖)).

The previous example also shows that there are values V0, V1 and V2 such that
V0‖(V1 + V2) and (V0‖V1) + (V0‖V2) have different behaviours in some context.
Indeed, (λv.vv)(V0‖(V1 + V2)) can reduce to

(V0‖(V1 + V2))(V0‖(V1 + V2)), (1)

while (λv.vv)((V0‖V1) + (V0‖V2)) can reduce either to (V0‖V1)(V0‖V1) or to
(V0‖V2)(V0‖V2), but never to (1). Note that in the present context call-by-name
and call-by-value implement run-time-choice and call-time-choice, respectively
(see [17]).

2.2 Convergence

In order to define convergence (Definition 4) it is useful to consider reduction
trees of closed terms and their bars.
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Fig. 1. (i) Reduction tree of YM . (ii) Reduction tree of YP

Definition 3. Let M ∈Λ0
+‖.

1. tree(M) is the (unordered) reduction tree of M .

2. A bar of tree(M) is a subset of the nodes of tree(M) such that each maximal
path intersects the bar at exactly one node.

Inspecting the reduction rules, we see that tree(M) is a finitely branching
tree for all M ∈Λ0

+‖. This implies by König’s Lemma that if we cut tree(M) at
a fixed height we obtain a finite tree. This does not contradict the fact that a
term may have infinite reduction paths. For example, let us consider the infinite
reduction tree of YM withM = λx.(I+x), which is shown in Figure 1(i), where
N = (λx.M(xx))(λx.M(xx)). Admittedly, the set of nodes in tree(YM) which
are labeled by I is infinite, but it is not a bar. Indeed the infinite path in this
tree does not have any node in such set and every bar of tree(YM) must contain
exactly one node of this path.

A bar is always relative to a tree and cannot be identified with the set of the
labels of its nodes. For example tree(YP ) with P = λx.x + Ix has the shape
shown in Figure 1(ii), where Q = (λx.P (xx))(λx.P (xx)). Now the indicated set
of nodes b is a bar whose set of labels is the singleton {Q}. But the set containing
a single node labeled by Q is not a bar of this tree.

We now define the convergence predicate. A term is convergent if and only if
all reduction paths will eventually reach a value.

Definition 4. Let M ∈ Λ0
+‖, then M converges (notation M ⇓) if there is a

bar b in tree(M) such that each node of b is labelled by a value. A term in Λ0
+‖

diverges if it does not converge.
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Fig. 2. Reduction tree of II‖Ω +K‖Ω

For example, both YM and YP above diverge, while the term II‖Ω + K‖Ω
converges, as shown by the bar in Figure 2, in spite of the fact that tree(II‖Ω+
K‖Ω) is infinite.

Note that (M + N) ⇓ if and only if both M ⇓ and N ⇓. On the other hand
(M‖N) ⇓ if and only if either M ⇓ or N ⇓ (or both). In general, if for some
b ∈ bar(M) we have M ′ ⇓ for all M ′ ∈ b, then M ⇓. The converse is obviously
true.

3 Types and Typing Rules

We consider the type system introduced in [9]. This type system has intersection
and union types, dually reflecting the conjunctive and disjunctive operational
semantics of ‖ and +. The only atomic type is the universal type ω. Note that
ω carries no information, but it is not a unit type, since all terms have type ω,
see the typing rule (ω) in Definition 7. The type syntax is then as follows

σ ::= ω | σ → σ | σ ∧ σ | σ ∨ σ

and we call Type the resulting set. In writing types, we assume that ∧ and ∨
take precedence over →.

The subtyping takes into account:

1. the meaning of ω as universal type;

2. the conjunctive and disjunctive meanings of intersection and union, respec-
tively;

3. the meaning of arrow as functional type constructor.

Definition 5. Let σ ≤ τ be the smallest pre-order on types such that

1. 〈Type,≤〉 is a distributive lattice, in which ∧ is the meet, ∨ is the join and
ω is the top;

2. the arrow satisfies
(a) σ → ω ≤ ω → ω;
(b) (σ → ρ) ∧ (σ → τ) ≤ σ → ρ ∧ τ ;
(c) σ ≥ σ′, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′.
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Two types σ and τ are equivalent (notation σ = τ) if σ ≤ τ and τ ≤ σ.

Axiom 2a tells that each function maps an arbitrary term in a term.

The subtyping of the previous definition without the axioms on type ω (i.e,
σ ≤ ω for all σ and axiom 2a) coincides with the implication in the minimal
relevant logic B+ [22] and with the semantic subtyping [12,13] restricted to the
present type constructors, but for the absence of rule (σ → ρ) ∧ (τ → ρ) ≤
σ ∨ τ → ρ. This is proved in [10]. We will show at the end of this section that
this rule is unsound for λ+‖.

A special role is played by coprime types. A type σ is coprime if and only if

σ ≤ τ ∨ ρ implies σ ≤ τ or σ ≤ ρ

for any τ, ρ. Let CType be the set of coprime types different from ω. Observe
that, because of distributivity, coprime types are closed under ∧. Since 〈Type,≤〉
is the free distributive lattice satisfying the arrow axioms, each type is the join
of a finite number of coprime types. To see this, it suffices to define the following
mapping Θ from types to finite sets of coprime types:

Θ(ω) = {ω}
Θ(σ → τ) = {σ → τ}
Θ(σ ∧ τ) = {σ′ ∧ τ ′ | σ′ ∈ Θ(σ) & τ ′ ∈ Θ(τ)}
Θ(σ ∨ τ) = Θ(σ) ∪Θ(τ).

If Θ(σ) = {σ1, . . . , σn}, it is easy to verify that σi is coprime for each i and
σ = σ1 ∨ · · · ∨ σn.

To introduce the type assignment system we start with the notion of basis. We
state that only coprime types different from ω can be assumed for call-by-value
variables. This agrees with the fact that values cannot be choices and with the
correspondence between choices and union types.

Definition 6. A basis Γ : (Vn → Type) ∩ (Vv → CType) is a mapping such
that Γ (x) = ω for all x but a finite subset of Vn and Γ (v) = ω → ω for all v but
a finite subset of Vv.

The notation Γ, χ : σ is a shorthand for the function Γ ′(χ′) = σ if χ′ = χ,
Γ (χ′) otherwise.

Definition 7. The axioms and rules of the type assignment system are given in
Figure 3.

To help the understanding of rule (→ Iv), we consider the following example.
Let W1,W2 be total values such that � Wi : σi (i = 1, 2) for some coprime
types σ1, σ2. Clearly this implies � W1 +W2 : σ1 ∨ σ2 by rule (+ I). Consider
(λv.M)(W1+W2): it reduces toM [W1/v] andM [W2/v]. Therefore v : σi �M : τ
for i = 1, 2 suffices to assure that (λv.M) has type σ1 ∨ σ2 → τ .

An inversion lemma can be easily proved by induction on derivations and by
cases on the last applied rule. In particular we need the inversion of rule (→ E).
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(Ax) Γ � χ : Γ (χ) (ω) Γ �M : ω

(→ In)
Γ, x : σ �M : τ

Γ � λx.M : σ → τ
(→ Iv)

Γ, v : σ′ �M : τ ∀σ′ ∈ Θ(σ)
Γ � λv.M : σ → τ

(→ E)
Γ �M : σ → τ Γ � N : σ

Γ �MN : τ

(∧ I)
Γ �M : σ Γ �M : τ

Γ �M : σ ∧ τ (≤) Γ �M : σ σ ≤ τ
Γ �M : τ

(+ I)
Γ �M : σ Γ � N : τ

Γ �M +N : σ ∨ τ (‖ I) Γ �M : σ Γ � N : τ

Γ �M‖N : σ ∧ τ

Fig. 3. Type assigmment system

Lemma 1. If Γ �MN : σ, then Γ �M : τ → σ and Γ � N : τ for some τ .

As expected (and shown in [9]) this type assignment system enjoys subject
reduction.

Theorem 1 (Subject Reduction). IfΓ �M : σ andM−→∗N , thenΓ � N : σ.

The main property of the present type assignment system is that convergence
implies typability by ω → ω and vice versa. Therefore this type completely
characterises terms whose meaning is a function, even if not a unique one. For
a proof see [9].

Theorem 2. A closed term is convergent if and only if it has type ω → ω.

It is easy to verify that each type is either a subtype of ω → ω or it is
equivalent to ω. Therefore Theorem 2 can be rephrased as follows:

A closed term is convergent if and only if it has a type not equivalent to ω.

As an immediate consequence we get:

Corollary 1. A closed term is divergent if and only if it has only types equiva-
lent to ω.

Note that the subtyping (σ → ρ)∧ (τ → ρ) ≤ σ ∨ τ → ρ is unsound, since we
would lose subject reduction. In fact we can derive

� λx.xIΩ‖xΩI : (σ → ρ) ∧ (τ → ρ) and �K+O : σ ∨ τ

where σ = ρ → ω → ρ, τ = ω → ρ→ ρ and ρ = ω → ω. From these judgments
using (σ → ρ) ∧ (τ → ρ) ≤ σ ∨ τ → ρ we could conclude

� (λx.xIΩ‖xΩI)(K +O) : ρ

Since
(λx.xIΩ‖xΩI)(K +O) −→ (K+O)IΩ‖(K+O)ΩI)

−→ OIΩ‖KΩI −→ Ω‖Ω
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subject reduction would imply � Ω‖Ω : ρ, which cannot be derived by Corol-
lary 1, since Ω‖Ω diverges. As a matter of fact, K + O has type σ ∨ τ , but it
has neither type σ nor type τ .

4 Preciseness

We are now able to specialise the definitions of soundness, completeness and
preciseness to the calculus and the subtyping of the present paper.

To define denotational preciseness we need to interpret types. Following a
common practice [15], we take the set of closed terms having type σ as the
interpretation of σ. So the denotational preciseness particularises in our setting
as follows.

Definition 8 (Denotational Preciseness). The subtyping ≤ is denotation-
ally precise when σ ≤ τ if and only if

{M | �M : σ} ⊆ {M | �M : τ}.

The left-to-right implication is denotational soundness and the right-to-left im-
plication is denotational completeness.

Frisch et al. [12,13] interpret a type as the set of values (instead of the set of
terms) having that type. With this interpretation our subtyping is denotationally
incomplete, since the set of all values is the meaning of both ω and ω → ω.

For operational preciseness we take convergency as the test of safety.

Definition 9 (Operational Preciseness)

1. The subtyping ≤ is sound if σ ≤ τ implies that for all closed terms M
wheneverMP converges for all closed terms P of type τ , thenMN converges
also for all closed terms N of type σ.

2. The subtyping ≤ is complete if σ �≤ τ implies that there are closed terms
M,N such that MP converges for all closed terms P of type τ and N has
type σ and MN diverges.

3. The subtyping ≤ is precise if it is both sound and complete.

In order to show preciseness of our subtyping we define for each type σ a
closed term Rσ which is the “worst” (with respect to convergence) term of type
σ and a closed term Tσ which applied to an arbitrary closed term M reduces to
the call-by-name identity if and only if M has type σ.

Definition 10. The characteristic terms Rσ and the test terms Tσ are defined
by simultaneous induction on σ:

Rω = Ω; Tω = λxy.y;
Rσ→τ = λx.(Tσx)Rτ ; Tσ→τ = λv.Tτ (v Rσ);
Rσ∧τ = Rσ‖Rτ ; Tσ∧τ = λx.(Tσ x+ Tτ x);
Rσ∨τ = Rσ + Rτ . Tσ∨τ = λv.(Tσ v ‖Tτ v) where σ ∨ τ �= ω.



204 M. Dezani-Ciancaglini and S. Ghilezan

For example Rω→ω = λx.Ω, Tω→ω = λv.I.
More interestingly R(ω→ω)→ω→ω = λx.((λv.I)x)(λy.Ω) applied to a term returns
λy.Ω only if the term reduces to a value. Similarly

T(ω→ω)→ω→ω = λv.(λv′.I)(v(λx.Ω))

applied to a term which reduces to a value, first applies this term to λx.Ω, and
then reduces to I only if the result of this application reduces to a value too.

In the previous definition we start from the term Ω, but we can replace safely
Ω by any divergent term.

Notice the different use of call-by-value variables in the definition of Tσ→τ

and Tσ∨τ : the term Tσ→τ must check that its argument has type σ → τ which
implies that it has to be convergent, see Theorem 2. On the other hand the
argument of Tσ∨τ may reduce to a sum P + Q having type σ ∨ τ because P
has type σ and Q has type τ , but neither σ nor τ can be deduced for P + Q.
Therefore it is essential that it is evaluated before the application in parallel of
Tσ and Tτ .

The types which can be deduced for Rσ and Tσ are meaningful for their
operational behaviour. In fact one can verify by induction on types that:

– Rσ has exactly the types greater than or equal to σ;
– Tσ has type τ → ρ→ ρ only if τ ≤ σ.

To establish the main result of this paper we use the types of characteristic
terms and the discriminability power of test terms. For a proof see [9].

Theorem 3. 1. Rσ has type τ if and only if σ ≤ τ .
2. Let M be a closed term. Then TσM converges if and only if M has type σ.

We can then conclude by showing soundness, completeness and preciseness of
the current subtyping for the given calculus.

Theorem 4 (Denotational Preciseness). The subtyping ≤ is denotationally
precise for the λ+‖-calculus.

Proof. Soundess follows immediately by the typing rule (≤), which implies
{M | �M : σ} ⊆ {M | �M : τ}

whenever σ ≤ τ . For completeness it is enough to notice that if σ �≤ τ , then
the characteristic term Rσ belongs to [[σ]], but it does not belong to [[τ ]] by
Theorem 3(1).

Theorem 5 (Operational Preciseness). The subtyping ≤ is operationally
precise for the λ+‖-calculus.

Proof. For soundness ifMN converges for all N of type τ , thenMRτ converges.
By Theorem 2 this implies that MRτ has type ω → ω. Lemma 1 gives

�M : ρ→ ω → ω (2)
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and � Rτ : ρ for some ρ. Theorem 3(1) implies τ ≤ ρ. If � N : σ and σ ≤ τ we
derive

� N : ρ (3)

by rule (≤). Applying rule (→ E) to (2) and (3) we get

�MN : ω → ω.

We conclude that MN converges for all N of type σ by Theorem 2.
For completeness if σ �≤ τ we can take M = Tτ and N = Rσ. In fact by

Theorem 3(2) TτN converges for all N of type τ . Since � Rσ : ρ implies σ ≤ ρ
by Theorem 3(1) and σ �≤ τ by hypothesis, we have that TτRσ diverges by
Theorem 3(2).

5 Related Work and Conclusion

There is a large literature on intersection and union types, a very interesting
paper is [11], where the reader can also find references to the main publications.
We will only consider works dealing with completeness of subtyping.

Barendregt et al. [3] interpret a type as the set of filters containing that type
and get denotational preciseness for the restriction of our subtyping to arrow
and intersection types.

Barbanera et al. [2] consider the subtyping obtained by adding to the axioms
and rules of Definition 5 the axioms

ω ≤ ω → ω (σ → ρ) ∧ (τ → ρ) ≤ σ ∨ τ → ρ

and the rule

PP(σ) implies σ → τ ∨ ρ ≤ (σ → τ) ∨ (σ → ρ)

where PP(σ) is the predicate defined by PP(ω) = true, PP(τ → ρ) = PP(ρ),
PP(τ ∧ ρ) = PP(τ) & PP(ρ) and PP(τ ∨ ρ) = false. Types are interpreted as
subsets of domains of λ-models and different conditions for denotational sound-
ness are discussed. Our completeness results imply that the subtyping of [2] is
neither denotationally nor operationally sound for the λ+‖-calculus.

The subtyping considered in [1,16] is that of Definition 5 plus the axiom
(σ → ρ) ∧ (τ → ρ) ≤ σ ∨ τ → ρ. A type is interpreted as the set of filters
over types which contain it and denotational preciseness is easily shown. In the
same papers a λ-model (whose domain is the set of filters over types) of the
call-by-value λ-calculus is built.

Vouillon [25] interprets types as sets of terms built out of functions, pairs and
constants. These sets of terms must be closed with respect to indistinguishable
terms, and they can only contain terms which are safe (do not produce error)
and do not always diverge. The subtyping which is shown to be denotationally
precise in [25] coincides with our subtyping when both relations are restricted
to arrow and union types.
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As already said in the introduction, to the best of our knowledge operational
preciseness of subtyping was first introduced in [4]. In that paper Blackburn et
al. showed that the subtyping of iso-recursive types with the Amber rule is not
complete and they propose a new subtyping rule which gives preciseness.

Chen et al. [8] consider operational preciseness for session calculi. This is
interesting since for these calculi also the denotational preciseness was never
studied, to our knowledge. We conjecture that denotational preciseness holds for
the synchronous and asynchronous subtypings as defined in [8].

Semantic subtyping is always studied for a rich set of types including arrow,
intersection, union and negation type constructors. Various calculi have been
considered: a λ-calculus with pairs and pattern matching in [12,13], a π-calculus
with a patterned input in [6] and a session calculus with internal and external
choices and typed input in [7]. For all these subtypings denotational preciseness
holds by construction and operational preciseness holds by the discriminating
power of the calculi.

In the present paper we have shown operational and denotational preciseness
of the subtyping relation for the λ+‖-calculus [9].

Operational completeness requires that all empty (i.e. not inhabited) types
are less than all inhabited types. This makes unfeasible an operationally com-
plete subtyping for the pure λ-calculus, both in the case of polymorphic types
[18] and of intersection and union types. In fact inhabitation is undecidable for
polymorphic types being equivalent to derivability in second order logic, while
[24] shows undecidability of inhabitation for intersection types, which implies
undecidability of inhabitation for intersection and union types.

An interesting open problem we plan to study is an extension of λ-calculus en-
joying operational preciseness for the decidable subtypings between polymorphic
types discussed in [18,23].

Acknowledgments. The authors gratefully thank the anonymous referees for
their numerous constructive remarks.
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Abstract. We propose an abstract datatype for a closed interval of
real numbers to type theory, providing a representation-independent
approach to programming with real numbers. The abstract datatype
requires only function types and a natural numbers type for its formula-
tion, and so can be added to any type theory that extends Gödel’s Sys-
tem T. Our main result establishes that programming with the abstract
datatype is equivalent in power to programming intensionally with rep-
resentations of real numbers. We also consider representing arbitrary real
numbers using a mantissa-exponent representation in which the mantissa
is taken from the abstract interval.

1 Introduction

Exact real-number computation uses infinite representations of real numbers
to compute exactly with them, avoiding round-off errors [16,2,3]. In practice,
such representations can be implemented as streams or functions, allowing any
computable (and hence a fortiori continuous) function to be programmed.

This approach of programming with representations of real numbers has draw-
backs from the programmer’s perspective. Great care must be taken to ensure
that different representations of the same real number are treated equivalently.
Furthermore, a programmer ought to be able to programwith real numbers with-
out knowing how they are represented, leading to more transparent programs,
and also allowing the underlying implementation of real-number computation to
be changed, e.g., to improve efficiency. In short, the programmer would like to
program with an abstract datatype of real numbers.

Various interfaces for an abstract datatype for real numbers have been in-
vestigated in the context of typed functional programming languages based on
PCF, e.g., [6,7,10,8,1,9], making essential use of the presence of general recur-
sion. In this paper, we consider the more general scenario of typed functional
programming with primitive recursion. This generality has the advantage that
it can be seen as a common core both to standard functional programming lan-
guages with general recursion (ML, Haskell, etc.), and also to the type theories
used in dependently-typed programming languages such as Agda [4], and proof
assistants such as Coq [13], in which all functions are total.

To maximize generality, we keep the type theory in this paper as simple as
possible. Our base calculus is just simply-typed λ-calculus with a base type of
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natural numbers, otherwise known as Gödel’s System T. To this, we add a new
type constant I, which acts as an abstract datatype for the interval [−1, 1] of real
numbers, together with an associated interface of basic operations. Our main
result (Theorem 1) establishes that programming with the abstract datatype is
equivalent in power to programming intensionally with representations of reals.

The development in this paper builds closely on our LICS 2001 paper [11],
where we gave a category-theoretic universal property for the interval [−1, 1].
The interface we provide for the type I is based directly on the universal property
defined there. In [11], the definability power of the universal property was already
explored, to some extent, via a class of primitive interval functions on [−1, 1],
named by analogy to the primitive recursive functions. The role of a crucial
doubling function was identified, relative to which all continuous functions on
[−1, 1] were shown to be primitive-interval definable relative to oracles N→ N.

The new departure of the present paper is to exploit these ideas in a type-
theoretic context. The cumbersome definition of primitive interval functions is
replaced by a very simple interface for the abstract datatype I (Sect. 3). The
role of the doubling function is again crucial, with its independence from the
other constants of the interface now being established by a logical relations ar-
gument (proof of Prop. 4). And the completeness of the interface once doubling
is added (Theorem 1) is now established relative to the setting at hand (Sys-
tem T computability) rather than relative to oracles (Sect. 4). In addition, we
show that the type theoretic framework provides a natural context for proving
equalities between functions on reals (based on the equalities in Fig. 2), and
for programming on the full real line R via a mantissa-exponent representation
(Sect. 5).

2 Real-Number Computation in System T

In this section, we recall how exact real-number computation is rendered possi-
ble by choosing an appropriate representation of real numbers. A natural first
attempt would be to represent real numbers using streams or functions to im-
plement one of the standard digit representations (decimal, binary, etc.). For
example, a real number in [0, 1] would be represented via a binary expansion as
an infinite sequence of 0s and 1s. As is well known (see, e.g., [5,6,7]), however,
such representations makes it impossible to compute even simple functions (on
the interval) such as binary average on real numbers. The technical limitation
here is that there is no continuous function {0, 1}ω × {0, 1}ω → {0, 1}ω that
given sequences α, β as input, representing x, y ∈ [0, 1] respectively, returns a
representation of x+y

2 as result. In general, it is impossible to return even a single
output digit without examining all (infinitely many) input digits.

This problem is avoided by choosing a different representation. To be ap-
propriate for computation, any representation must be computably admissible
in the sense of [15]. Each of the examples below is a computably admissible
representation of real numbers, in the interval [−1, 1], using streams:
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type I = [Int] -- Represents [-1,1] in binary using digits -1,0,1.

minusOne, one :: I

minusOne = repeat (-1)

one = repeat 1

type J = [Int] -- Represents [-n,n] in binary using digits |d| <= n

divideBy :: Int -> J -> I

divideBy n (a:b:x) = let d = 2*a+b

in if d < -n then -1 : divideBy n (d+2*n:x)

else if d > n then 1 : divideBy n (d-2*n:x)

else 0 : divideBy n (d:x)

mid :: I -> I -> I

mid x y = divideBy 2 (zipWith (+) x y)

bigMid :: [I] -> I

bigMid = (divideBy 4).bigMid’

where bigMid’((a:b:x):(c:y):zs) = 2*a+b+c : bigMid’((mid x y):zs)

affine :: I -> I -> I -> I

affine a b x = bigMid [h d | d <- x]

where h (-1) = a

h 0 = mid a b

h 1 = b

Fig. 1. Haskell programs using signed binary notation

q0 : q1 : q2 : q3 : q4 : q5 : . . .

of discrete data.

1. Fast Cauchy sequences: Require qi to be rational numbers in [−1, 1] such
that |qi+1−qi| ≤ 2−i for all i. The stream represents the real number limi qi.

2. Signed binary: Require qi ∈ {−1, 0, 1}. The stream represents the real num-
ber

∑
i≥0 2−(i+1) qi.

Many other variations are possible. Crucially, all computably admissible repre-
sentations are computably interconvertible. For representations used in practice,
the conversions can be defined in System T.

Both to illustrate the style of programming that is required with such rep-
resentations, and for later reference, Fig. 1 presents some simple functions on
real numbers, in Haskell, using signed binary notation. The code defines a type
I for the interval [−1, 1], and constants one and minusOne of type I, for the
streams 1:1:1:1:1:. . . and -1:-1:-1:-1:-1:. . . , which represent 1 and −1 re-
spectively. The function mid represents the binary average function, for which
we use a convenient algebraic notation:

x⊕ y =
x+ y

2
.
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The function bigMidmaps infinite streams of real numbers to real numbers, and
represents the function M: [−1, 1]ω → [−1, 1] defined by

M((xn)n) =
∑
n≥0

xn
2n+1

.

Finally, affine represents aff : [−1, 1]→ [−1, 1]→ [−1, 1]→ [−1, 1] defined by

aff x y z =
(1− z)x+ (1 + z) y

2
.

The type J and function divideBy just provide auxiliary machinery.
At this point, the selection of example functions in Fig. 1 will appear peculiar.

The reasons behind the choice will be clarified in Sect. 3.
Although presented in Haskell, the above algorithms can be formalized in al-

most any type theory containing a type of natural numbers and function types.
Moreover, the recursive structure of the algorithms is tame enough to be formu-
lated using primitive recursion. Thus a natural basic type theory for studying
this approach to real number computation is Gödel’s System T, see, e.g., [12],
which is simply-typed λ-calculus with a natural numbers type with associated
primitive recursion operator. Since this type theory will form the basis of the
rest of the paper we now review it in some detail.

Types (we include product types for convenience in Sect. 5) are given by:

σ ::= N | σ × τ | σ → τ .

These have a set-theoretic semantics with types being interpreted by their set-
theoretic counterparts:

[[N]] = N [[σ × τ ]] = [[σ]] × [[τ ]] [[σ → τ ]] = [[σ]]→ [[τ ]] .

We use standard notation for terms of the simply-typed λ-calculus; e.g., we
write Γ � t : τ to mean that term t has type τ in type context Γ . The constants
associated with the type N are:

0 : N s : N→ N primrecσ : σ → (σ → N→ σ)→ N→ σ

with semantics defined by:

[[0]] = 0 [[s]] n = n+ 1

[[primrec]] x f 0 = x [[primrec]] x f (n+ 1) = f ([[primrec]] x f n) n .

We have two main interests in System T. The first is that it serves as a basic
functional programing language, for which, the standard strongly normalizing
and confluent β-reduction relation is used. The second is that System T serves
as the basis of a formal system for reasoning about equality between functions.
For this, we introduce axioms and rules for deriving typed equations of the form
Γ � t = u : σ between terms t, u such that Γ � t : σ and Γ � u : σ. These rules
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include the usual ones asserting that equality is a typed congruence relation.
Also, whenever Γ � t : σ and t β-reduces to u, we have an equation Γ � t = u : σ.
Finally, we add extensionality equations, which comprise the usual η-equalities
for product and function types, together with the rule below, which asserts the
uniqueness of the primrec iterator.

Γ � t u v 0 = u : σ Γ, x :N � t u v (s(x)) = v u (t u v x) : σ

Γ � t u v = primrec u v : N→ σ

(The types of the component terms are not stated explicitly since they can be
inferred from the context.)

The term language of System T, in the version we are considering, can be
interpreted in any cartesian-closed category with natural numbers object; and
our equational rules are sound and complete with respect to such interpretations.

Exact-real-number computation can be carried out in System T by encoding
any of the usual computably admissible representation of [−1, 1] using the type
N→ N, and these representations are all interconvertible in System T.

We examine just the case of signed binary in detail. We consider a function
α : N→ N as encoding the signed binary stream

((α(0) mod 3)−1) : ((α(1) mod 3)−1) : ((α(2) mod 3)−1) : ((α(3) mod 3)−1) : . . .

All the Haskell programs in Fig. 1 are then routinely translatable into System T
terms of appropriate type. (Just a little effort is needed to translate the general
recursion into uses of primrec.)

Consider the function real: (N→ N)→ [−1, 1] defined by

real(α) =
∑
i≥0

2−(i+1) ((α(i) mod 3)− 1) .

We say that a function f : [−1, 1]k → [−1, 1] is T-representable if there exists a
closed term t : (N→ N)k → N→ N making the following diagram commute.

(N→ N)k
[[t]]� (N→ N)

[−1, 1]k

realk

�

f
� [−1, 1]

real

�

Since the vertical maps are topological quotients relative to the product (Baire
space) topology on N → N, and every T-definable [[t]] is continuous, it follows
that every T-representable function f is continuous.

The programs in Fig. 1, when recast as System T terms, provide examples
of representations of functions on reals. But programming in this style has the
disadvantages discussed in Sect. 1. Accordingly, we now turn to the alternative
approach of defining an abstract datatype for real numbers.
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3 System I

We add a new type constant I to our base type theory to act as an abstract
datatype for the closed interval [−1, 1] of real numbers. In the case of System T,
we call the resulting extension System I; it has types

σ ::= N | I | σ × τ | σ → τ ,

and we extend the set-theoretic semantics with the clause

[[ I ]] = [−1, 1] .

The interface for the type will roughly implement the idea that the closed
interval is determined as the free convex set on 2 generators (−1 and 1) with
respect to affine maps. However, since the notion of convexity requires a pre-
existing interval for its formulation, we replace convexity with the existence
of iterated midpoints and we replace affineness with preservation of (iterated)
midpoints, following [11].

The term language is generated by adding the following new typed constants.
We pair each with its denotational interpretation in order to specify its intended
meaning. In doing so, we make use of the functions defined in Sect. 2.

1 : I [[1]] = 1

−1 : I [[−1]] = −1
m : I× I→ I [[m]](x, y) = x⊕ y
M : (N→ I)→ I [[M]] = M

aff : I→ I→ I→ I [[aff]] = aff

We have here adopted a convention that we shall continue to follow of using
sans-serif for λ-calculus constants and defined terms and using the same symbol
in roman the corresponding mathematical function.

Figure 2 presents equational axioms and rules extending those for System T. A
simple consequence of the equational rules for midpoints and iterated midpoints
is that

x, y :I � m(x, y) = M(x, y, y, y, y, . . . ) : I ,

where we write (x, y, y, y, y, . . . ) as a convenient shorthand for the System I
term primrec (x) (λz : I. λn : N. y), i.e., the function that is x at 0, and y at
every natural number > 0. (Henceforth, we shall adopt other similar notational
shorthands, without discussion.) Thus the constant m is redundant, and could
be removed from the system. We include it, however, since the equations are
more perspicuous with m included as basic. In fact, m is used frequently in the
sequel, and we adopt the more suggestive notation t⊕u in preference to m(t, u).
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(m) Midpoint equations.

Γ � m(t, t) = t : I Γ � m(t, u) = m(u, t) : I

Γ � m(m(t, u),m(v, w)) = m(m(t, v),m(u, w)) : I

(M) Iterated midpoint equations.

Γ � M(t) = m(t(0), M(λi :N. t(i+ 1))) : I
Γ, i :N � t(i) = m(u(i), t(i+ 1)) : I

Γ � t(0) = M(u) : I

(a) Equations for aff.

Γ � aff t u (−1) = t : I Γ � aff t u 1 = u : I

Γ � aff t u (m(v, w)) = m(aff t u v, aff t uw) : I

Γ, x : I, y : I � f (m(x, y)) = m(f(x), f(y)) : I

Γ � f = aff (f(−1)) (f(1)) : I→ I

(C) Cancellation
Γ � m(t, v) = m(u, v) : I

Γ � t = u : I

(E) Joint I-epimorphicity of m( · , 1) and m( · ,−1).
Γ, x :I � f(m(x, 1)) = g(m(x, 1)) : I Γ, x :I � f(m(x,−1)) = g(m(x,−1)) : I

Γ � f = g : I→ I

Fig. 2. Equations for System I

We now develop some simple programming in System I, to explore its power
as a programming language for defining real numbers, and functions on them.

0 := (−1)⊕ 1

−x := aff 1 (−1) x
xy := aff (−x) x y
1

3
:= M(1,−1, 1,−1, 1,−1, 1,−1, . . . )

More generally, any rational number is definable usingM applied to an eventually
periodic sequence of 1s and (−1)s. Even more generally, any real number with
a System-T-definable binary expansion is definable.
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Proposition 1. The following equalities are derivable from the axioms and rules
in Fig. 2 (without using (M), (C) and (E)).

−− x = x (x y) z = x (y z)

x⊕−x = 0 x (−y) = −(x y)
x 0 = 0 x (y ⊕ z) = (x y)⊕ (x z)

x y = y x

So far, we have seen that the type I supports the arithmetic of multiplication
and average, together with its expected equational properties. We now look at
possibilities for defining functions that arise in analysis. Suppose we have a
function f defined by a power series

f(x) =
∑
n≥0

an x
n

where an ∈ [−1, 1]. Then

1

2
f
(x
2

)
= M

n
anx

n (which abbreviates M(λn. anx
n)).

As a consequence, using the arithmetic defined above, the following are all de-
finable in System I.

1

2− x := M
n
xn

1

2
exp

(x
2

)
:= M

n

xn

n!
1

2
cos
(x
2

)
:= M

n
(1− parity(n)) (−1)n

2
xn

n!

These (and other similar) examples cover many functions from analysis, in ver-
sions with very particular scalings. We shall return to the issue of scaling below.

All functions defined above are continuous and smooth on [−1, 1]. System I is
also powerful enough to define non-smooth functions. We present two examples,
exhibiting different degrees of non-smoothness. Define:

times∗(x, y) := aff (−1) x y
sq∗(x) := times∗(x, x)

g(x) := times∗
(
7

9
, sq∗(−sq∗(−x))

)
h(x) := M

i
g3(i+1)(x)

H(x) := M
i
(g3(i+1)(x))2

Here times∗ and sq∗ are so named because they encode multiplication and square
if the endpoints of the interval are renamed from [−1, 1] to [0, 1]. Keeping to our
convention that the interval is [−1, 1] the function g defined by g above is
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g(x) =
1

9
x4 − 4

9
x3 − 2

9
x2 +

4

3
x

which satisfies g(0) = 0 and g′(0) = 4
3 . Hence, (g

n)
′
(0) = (43 )

n. This leads to the
result below.

Proposition 2. 1. The function defined by h has derivative ∞ at 0.
2. The function defined by H has derivative∞ when 0 is approached from above,

and derivative −∞ when 0 is approached from below.

Since I is an abstract datatype, to compute with system I terms, we must give
the datatype an implementation. In Sect. 2, we have implicitly discussed one
such implementation in System T: the type N→ N implements I, and System T
versions of the programs in Fig. 1 implement the functions in the interface.
Given this implementation, Prop. 3 below is immediate. We say that a function
f : [−1, 1]k → [−1, 1] is I-definable if there exists a closed System I term u : Ik → I
such that [[u]] = f .

Proposition 3. Every I-definable function is T-representable.

The converse, however, does not hold. We use square brackets for the trunca-
tion function [ · ] : R→ [−1, 1] defined by:

[x] := min(1, max(−1, x)) .

We write dbl for the function x �→ [2x] : [−1, 1]→ [−1, 1].

Proposition 4. The function dbl is T-representable but not I-definable.

The non-definability of dbl shows that System I is, as already hinted above,
limited in its capacity for rescaling the interval.

We end the section with the proof of Prop. 4. Using the notation of Fig. 1, a
Haskell program computing dbl is:

dbl :: I -> I dbl (0:x) = x

dbl (1:1:x) = one dbl ((-1):(-1):x) = minusOne

dbl (1:0:x) = 1:(dbl (1:x)) dbl ((-1):0:x) = (-1):(dbl ((-1):x))

dbl (1:(-1):x) = 1:x dbl ((-1):1:x) = (-1):x

This is easily converted into a System T term, showing that dbl is T-representable.
The non-definability proof uses logical relations. For every type τ we define a

binary relation Δτ ⊆ [[τ ]] × [[τ ]] by:

ΔN(m,n) ⇐⇒ m = n

ΔI(x, y) ⇐⇒ if x ∈ {−1, 1} or y ∈ {−1, 1} then x = y

Δσ→τ (f, g) ⇐⇒ ∀x, y ∈ [[σ]]. Δσ(x, y) implies Δτ (f(x), g(y))

Δσ×τ ((x, x
′), (y, y′)) ⇐⇒ Δσ(x, y) and Δτ (x

′, y′)

Lemma 1. For every System I constant c : τ , it holds that Δτ ([[c]], [[c]]).
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Proof. We consider two cases. To show that Δ(N→I)→I(M,M), suppose
ΔN→I(f, f

′). Then, for all n, we have ΔI(f(n), f
′(n)). We must show that if

M(f) ∈ {−1, 1} or M(f ′) ∈ {−1, 1} then M(f) = M(f ′). We consider just the
case that M(f) = −1 (the others are similar). If M(f) = −1 then f(n) = −1,
for all n ≥ 0. Since ΔI(f(n), f

′(n)), we have f ′(n) = −1, for all n ≥ 0. Thus
M(f ′) = −1 = M(f). We have thus shown that ΔI(M(f),M(f ′)) as required.

To show that ΔI→I→I→I(aff, aff), suppose

ΔI(x, x
′) and ΔI(y, y

′) and ΔI(z, z
′) . (1)

We must show that if aff x y z ∈ {−1, 1} or aff x′ y′ z′ ∈ {−1, 1} then aff x y z =
aff x′ y′ z′. Suppose, without loss of generality, that aff x y z = −1, i.e.,
((1− z)x+ (1 + z) y)/2 = −1. Then there are three possible cases: (i) x = z =
−1; (ii) y = −1 and z = 1; (iii) x = y = −1. In each case, by (1), the correspond-
ing equations hold for x′, y′, z′. Thus indeed aff x′ y′ z′ = −1 = aff x y z. +,

Lemma 2. For every closed System I term t : τ , it holds that Δτ ([[t]], [[t]]).

Proof. This is an immediate consequence of the previous lemma, by the funda-
mental lemma of logical relations. +,

Proposition 5. If f : [−1, 1] → [−1, 1] is I-definable and f(x) ∈ {−1, 1} for
some x ∈ (−1, 1) then f is a constant function.

Proof. Let x ∈ (−1, 1) be such that f(x) ∈ {−1, 1}. Consider any y ∈ (−1, 1).
Then ΔI(x, y). By Lemma 2, ΔI→I(f, f). Thus ΔI(f(x), f(y)), whence f(x) =
f(y). Thus f is constant on (−1, 1), hence on [−1, 1] since continuous. +,

The non-definability statement of Proposition 4 is an immediate consequence,
as are many other non-definability results. For example, cos(x) and cos(x2 ) are
not I-definable, even though 1

2 cos(
x
2 ) is (see above).

4 System II

We address the weakness identified above in the obvious way. System II (“dou-
ble I”) is obtained by adding dbl to System I.

dbl : I→ I [[dbl]] = dbl .

The equations from Fig. 2 are then augmented with:

(d) Equations for dbl:

Γ � dbl(m(1, m(1, t))) = 1 : I Γ � dbl(m(−1, m(−1, t))) = −1 : I

Γ � dbl(m(0, t)) = t : I .

Proposition 6. 1. Using (m), (a) and (E) only, dbl is the unique (up to prov-
able equality) term of type I→ I for which equations (d) hold.
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2. Using (m), (a) and (d) only, cancellation (C) is a consequence.

Using dbl, we can define, in System II, several useful functions (using the
square bracket truncation notation from Sect. 3).

[x+ y] := dbl(x⊕ y) max(0, x) := [[x− 1] + 1]

x9 y := x⊕ (−y) max(x, y) := dbl
([x

2
+max (0, y 9 x)

])
[x− y] := dbl(x9 y) min(x, y) := −max(−x,−y)

|x| := max(−x, x)

Question 1. Are max(0, x), max(x, y) and |x| definable in System I?

(The logical relation used in the proof of Prop. 4 does not help here.)
Having defined truncated versions of arithmetic functions, a very useful way

of combining functions is by taking limits of Cauchy sequences. For fast Cauchy
sequences (see Sect. 2), a limit-finding function fastlim : (N→ I)→ I is definable:

fastlim := λf :N→ I. dbl
(
M
n

dbln+1(f(n+ 1)9 f(n))
)
.

We write fastlim for the function (N→ [−1, 1])→ [−1, 1] defined by fastlim.

Lemma 3. Let (xn)n be a sequence from [−1, 1]. If |xn+1−xn| ≤ 2−n, for all n,
then fastlim(n �→ xn) is the limit of the (fast) Cauchy sequence (xn)n.

Of course, fastlim(n �→ xn) always returns a value, even if (xn)n is
non-convergent. Also if (xn)n converges, but too slowly, then fastlim(n �→ xn)
need not be the limit value.

We have seen that dbl is representable in System T. Thus the System T im-
plementation of System I extends to an implementation of System II. Naturally,
we say that f : [−1, 1]k → [−1, 1] is II-definable if there exists a closed System II
term u : Ik → I such that [[u]] = f . Proposition 7 below is immediate.

Proposition 7. Every II-definable function is T-representable.

The main result of the paper is the converse.

Theorem 1. Every T-representable function is II-definable.

The rest of this section is devoted to the proof of Theorem 1. We need some
auxiliary definitions.

Define glue : (I→ I)2 → I→ I by

glue := λ f g x. dbl

(
dbl

((
f

(
dbl

[
x+

1

2

])
⊕ g

(
dbl

[
x− 1

2

]))
9 1

2
f(1)

))
.

which, whenever f(1) = g(−1), satisfies

glue f g x =

{
f(2x+ 1) if −1 ≤ x ≤ 0

g(2x− 1) if 0 ≤ x ≤ 1 .
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Next, for every k ≥ 1, we define a System II term:

apprk : N→ ((N→ N) k → I)→ (Ik → I)

The base case appr1 is defined by primitive recursion on N to satisfy:

appr1 0 h = aff (h(−1)) (h( 1 )) (where −1 and 1 represent −1 and 1)

appr1 (n+ 1) h = glue (appr1 n (λx. h(x ⊕ (−1)))) (appr1 n (λx. h(x ⊕ 1))) .

Given apprk, the term apprk+1 is given by

apprk+1 n h x0 x1 . . . xk = appr1 n (λy0. apprk n (h y0) x1 . . . xk) x0 .

Let apprk be the denotation of apprk. If h : (N → N)k → [−1, 1] is real-
extensional then the application apprk n h produces a piecewise multilinear
approximation to the function h, with the argument types changed from N→ N
to [−1, 1].

More precisely, the apprk n function uses k-tuples of values from the set

Qn := {qin | 0 ≤ i ≤ 2n} where qin :=
i

2n−1
− 1

to form a lattice of (2n+1)k rational partition points in [−1, 1]k. The application
apprk n h then results in a function [−1, 1]k → [−1, 1] that agrees with h at the
partition points, and is (separately) affine in each coordinate between partition
points. It is also affine in the h argument. The lemma below formalises this.

Lemma 4. If h : (N→ N)k → [−1, 1] represents f : [−1, 1]k → [−1, 1] then:

1. For all r0, . . . , rk−1 ∈ Qn we have:

apprk n h r0 . . . rk−1 = f r0 . . . rk−1

2. For 0 ≤ j < k, 0 ≤ i < 2n, and 0 ≤ λ ≤ 1

apprk n h x0 . . . xj−1

(
i+λ
2n−1 − 1

)
xj+1 . . . xk−1 =

(1− λ) apprk n h x0 . . . xj−1 q
i
n xj+1 . . . xk−1

+λ apprk n h x0 . . . xj−1 q
i+1
n xj+1 . . . xk−1

Note that
(

i+λ
2n−1 − 1

)
= ((1 − λ) qin + λ qi+1

n ).

Also, if h1, h2 : (N→ N)k → [−1, 1] are real-extensional then

3. For 0 ≤ λ ≤ 1, we have:

apprk n ((1 − λ)h1 + λh2) x0 . . . xk−1 =

(1− λ) apprk n h1 x0 . . . xk−1 + λ apprk n h2 x0 . . . xk−1
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In fact, under the conditions of the lemma, λn. apprk n h is a sequence of
functions [−1, 1]k → [−1, 1] that converges pointwise, and hence uniformly, to h.
All that remains to be done is to extract a fast-converging subsequence, since
then h can be defined using the fastlim function. In order to get a handle on the
rate of convergence, we exploit the following classic fact [14]. (For α : N → N,
and k ∈ N, we write α�k for the sequence α(0), . . . , α(k − 1) ∈ Nk.)

Lemma 5 (Definable modulus of uniform continuity). Suppose we have
a closed System T term

t : (N→ N)→ (N → N)

Then there exists a closed System T term

Ut : N→ N

satisfying: for all e ≥ 0, and for all β, γ : N → {0, 1, 2} such that β �Ut(e)=
γ �Ut(e), it holds that [[t]](β)�e= [[t]](γ)�e.

We now complete the proof of Theorem 1. Suppose t : (N→ N)k → N→ N is a
closed term that T-represents f : [−1, 1]k → [−1, 1]. Let Ut be a uniform modulus
for continuity for t on N → {0, 1, 2}, as given by Lemma 5. Let gn : [−1, 1]k →
[−1, 1] be defined by:

apprk (Ut(n+ 1)) (real ◦ t) : Ik → I .

Then for all x1, . . . , xk ∈ [−1, 1]

|f(x1, . . . , xn)− gn(x1, . . . , xn)| ≤ 2−n .

Therefore the term below II-defines f (where real is the easily defined system I
term of type (N→ N)→ I implementing the function real from Section 2).

λx0 . . . xk−1. fastlim (λn. apprk (Ut(n+ 1)) (real ◦ t)x0 . . . xk−1) .

5 Mantissa-Exponent Representation

There are many ways of extending signed binary to represent the full real line.
Typically, one represents real number by a pair 〈α, z〉 where α ∈ {−1, 0, 1}ω,
is the signed binary representation of real(α) ∈ [−1, 1] and z ∈ Z. One natural
option is for 〈α, z〉 to represent the real number z + real(α), thus treating z as
an offset. Another is to use α as a mantissa and z as an exponent, giving the
real number 2z real(α). Again, both representations are intertranslatable.

In Systems I and II, a variation on such representations is available. Instead
of using signed binary to represent a number in [−1, 1], it is natural to use the
type I itself. Thus we can encode real numbers in Systems I and II, using the
type I× Z, where we write Z as an alternative notation for N to emphasise that
the type is being used to encode all (including negative) integers (and we shall
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adopt similar suggestive notation for manipulation of integers). Curiously, under
this approach, even the most basic functions cannot be programmed using the
offset representation, so we are forced to use mantissa-exponent. Thus a term
〈t, u〉 : I×Z, represents the real number 2[[u]] [[t]], where we mildly abuse notation to
give u an interpretation [[u]] ∈ Z. We call this representation semi-extensional,
since it combines a continuous value t, which is extensional, with a discrete
scaling u, which is intensional. Although representations of real numbers are not
unique, the continuous part is determined once the scaling is fixed.

It is straightforward to extend our main definability result to a characterisa-
tion of functions on R definable in System II. We say that a function f : Rk → R
is T-representable, if there exists a System T term

t : ((N→ N)× Z)k → (N→ N)× Z

that computes f under mantissa-exponent representation. And we say that f is
I (resp. II)-representable if there exists a System I (resp. II) term

t : (I× Z)k → I× Z

that computes f under mantissa-exponent representation.

Theorem 2. A function f : Rk → R is T-representable if and only if it is II-
representable.

This result is essentially just an N-indexed version of Theorem 1. We omit the
proof for space reasons.

Curiously, we do not know whether dbl is necessary for Theorem 2.

Question 2. Is every II-representable function f : Rk → R also I-representable?

A positive answer may sound implausible. But we now show that surprisingly
many functions on real numbers can be defined in System I. At the same time,
we show that reasoning about equality between functions on R can be reduced
to equational reasoning in System I.

Equivalence between representations is given by the smallest equivalence re-
lation on [−1, 1]× Z satisfying

〈x,m〉 ∼
(x
2
, m+ 1

)
.

Indeed, this equivalence relation is defined explicitly by

〈x,m〉 ∼ 〈y, n〉 ⇐⇒ x

2max(m,n)−m
=

y

2max(m,n)−n
,

where the right-hand-side is an equality expressible in System I.

Proposition 8. The relation ∼ is provably an equivalence relation in System I.

The intended formulation of the proposition is that the transitivity (symmetry
and reflexivity being trivial) of ∼ is a derivable inference rule in System I. The
proof makes essential use of cancellation (C) from Fig. 2.
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The basic arithmetic operations on R are definable in System I.

0 := 〈0, 0〉
1 := 〈1, 0〉

−〈x,m〉 := 〈−x,m〉

〈x,m〉+ 〈y, n〉 :=
〈 x

2max(m,n)−m
⊕ y

2max(m,n)−n
, max(m,n) + 1

〉
〈x,m〉 × 〈y, n〉 := 〈x y, m+ n〉

It is provable in System I that the above operations respect ∼. (Once again, by
this, we mean that the inference rule expressing this property is derivable.) Also,
the usual equations for the arithmetic operations are provable (commutativity,
associativity, distributivity, etc.).

Since every rational number is System I definable, it follows that polynomials
with rational coefficients are I-representable. We now show that we can also
define limits of fast Cauchy sequences, as long the Cauchy sequences come with
a witness to their speed of convergence.

Suppose we have a sequence (xi)i given by x(−) : N → I × Z, such that the

inequalities |xi+1 − xi| ≤ 2−(i+1) are witnessed by d(−) : N→ I satisfying

xi+1 − xi ∼ 〈di, −(i+ 1)〉 .

Then we define
lim
i
xi := x0 + 〈M

i
di, 0〉 .

Given the definability of rational polynomials and Cauchy limits, it is not implau-
sible that a positive answer to Question 2 might be modelled on a constructive
proof of the Stone-Weierstrass theorem. But this needs further investigation.

Another direction to explore is how much analysis can be developed using
the mantissa-exponent representation of real numbers with the mantissa taken
from our abstract datatype I. It would be interesting to explore this both using
just the equational logic of Systems I and II, and also in the richer context of
dependent type theory.
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Abstract. We revisit lambda encodings of data, proposing new solu-
tions to several old problems, in particular dependent elimination with
lambda encodings. We start with a type-assignment form of the Calcu-
lus of Constructions, restricted recursive definitions and Miquel’s implicit
product. We add a type construct ιx.T , called a self type, which allows
T to refer to the subject of typing. We show how the resulting System S
with this novel form of dependency supports dependent elimination with
lambda encodings, including induction principles. Strong normalization
of S is established by defining an erasure from S to a version of Fω with
positive recursive type definitions, which we analyze. We also prove type
preservation for S.

1 Introduction

Modern type-theoretic tools Coq and Agda extend a typed lambda calculus with
a rich notion of primitive datatypes. Both tools build on established foundational
concepts, but the interactions of these, particularly with datatypes and recur-
sion, often leads to unexpected problems. For example, it is well-known that
type preservation does not hold in Coq, due to the treatment of coinductive
types [14]. Arbitrary nesting of coinductive and inductive types is not supported
by the current version of Agda, leading to new proposals like co-patterns [2]. And
new issues are discovered with disturbing frequency; e.g., an unexpected incom-
patibility of extensional consequences of Homotopy Type Theory with both Coq
and Agda was discovered in December, 2013 [21].

The above issues all are related to the datatype system, which must determine
what are the legal inductive/coinductive datatypes, in the presence of indexing,
dependency, and generalized induction (allowing functional arguments to con-
structors). And for formal study of the type theory – either on paper [23], or
in a proof assistant [5] – one must formalize the datatype system, which can be
daunting, even in very capable hands (cf. Section 2 of [6]).

Fortunately, an alternative to primitive datatypes exists: lambda encodings,
like the well-known Church and Scott encodings [7,10]. Utilizing the core typed
lambda calculus for representing data means that no datatype system is needed
at all, greatly simplifying the formal theory. We focus here just on inductive
types, since in extensions of System F, coinductive types can be reduced to
inductive ones [12].

Several problems historically prevented lambda encodings from being adopted
in practical type theories. Scott encodings are efficient but do not inherently
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provide a form of iteration or recursion. Church encodings inherently provide
iteration, and are typable in System F. Due to strong normalization of System
F [15], they are thus suitable for use in a total (impredicative) type theory, but:

1. The predecessor of n takes O(n) time to compute instead of constant time.
2. We cannot prove 0 �= 1 with the usual definition of �=.
3. Induction is not derivable [13].

These issues motivated the development of the Calculus of Inductive Construc-
tions (cf. [22]). Problem (1) is best known but has a surprisingly underappreciated
solution: if we accept positive recursive definitions (which preserve normalization),
then we can use Parigot numerals, which are like Church numerals but based on
recursors not iterators [20]. Normal forms of Parigot numerals are exponential in
size, but a reasonable term-graph implementation should be able to keep them
linear via sharing. The other three problems have remained unsolved.

In this paper, we propose solutions to problems (2) and (3). For problem
(2) we propose to change the definition of falsehood from explosion (∀X.X ,
everything is true) to equational inconsistency (∀X.Πx : X.Πy : X.x =X y,
everything is equal for any type). We point out that 0 �= 1 is derivable with
this notion. Our main contribution is for problem (3). We adapt CC to support
dependent elimination with Church or Parigot encodings, using a novel type
construct called self types, ιx.T , to express dependency of a type on its subject.
This allows deriving induction principles in a total type theory, and we believe it
is the missing piece of the puzzle for dependent typing of pure lambda calculus.

We summarize the main technical points of this paper:

– System S, which enables us to encode Church and Parigot data and derive
induction principles for these data.

– We prove strong normalization of S by erasure to a version of Fω with
positive recursive type definitions. We prove strong normalization of this
version of Fω by adapting a standard argument.

– Type preservation for S is proved by extending Barendregt’s method [4] to
handle implicit products and making use of a confluence argument.

Detailed arguments omitted here may be found in an extended version [11].

2 Overview of System S

System S extends a type-assignment formulation of the Calculus of Construc-
tions (CC) [9]. We allow global recursive definitions in a form we call a closure:

{(xi : Si) �→ ti}i∈N ∪ {(Xi : κi) �→ Ti}i∈M

The xi are term variables which cannot appear in the terms ti, but can appear in
the types Ti. And N,M are nonempty index set. Occurrences in types are used to
express dependency, and are crucial for our approach. Erasure to Fω with positive
recursive definitions will drop all such occurrences. TheXi are type variables that
can appear positively in the Ti or at erased positions (explained later).
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The essential new construct is the self type ιx.T . Note that this is different
from self typing in the object-oriented (OO) literature, where the central problem
has been to allow self-application while still validating natural record-subtyping
rules [19,1]. Typing the self parameter of an object’s methods appears different
from allowing a type to refer to its subject, though Hickey proposes a type-
theoretic encoding of objects based on very dependent function types {f |x :
A→ B}, where the range B can depend on both x and values of the function f
itself [16]. The self types we propose appear to be simpler.

2.1 Induction Principle

Let us take a closer look at the difficulties of deriving an induction principle for
Church numerals in CC, and then consider our solutions. In CC à la Curry, let
Nat := ∀X.(X → X)→ X → X . One can obtain a notion of indexed iterator by
It := λx.λf.λa.x f a and It : ∀X.Πx : Nat.(X → X) → X → X . Thus we have
It n̄ =β λf.λa.n̄ f a =β λf.λa. f(f(f...(f︸ ︷︷ ︸

n

a)...)). One may want to know if we

can obtain a finer version, namely, the induction principle-Ind such that:

Ind : ∀P : Nat→ ∗.Πx : Nat.(Πy : Nat.(Py → P (Sy)))→ P 0̄→ P x

Let us try to construct such Ind. First observe the following beta-equalities and
typings:

Ind 0̄ =β λf.λa.a
Ind 0̄ : (Πy : Nat.(Py → P (Sy)))→ P 0̄→ P 0̄
Ind n̄ =β λf.λa. f n− 1(...f 1̄ (f︸ ︷︷ ︸

n>0

0̄ a))

Ind n̄ : (Πy : Nat.(Py → P (Sy)))→ P 0̄→ P n̄
with f : Πy : Nat.(Py → P (Sy)), a : P 0̄

These equalities suggest that Ind := λx.λf.λa.x f a, using Parigot numerals [20]:

0̄ := λs.λz.z
n̄ := λs.λz.s n− 1 (n− 1 s z)

Each numeral corresponds to its terminating recursor.
Now, let us try to type these lambda numerals. It is reasonable to assign

s : Πy : Nat.(P y → P (S y)) and z : P 0̄. Thus we have the following typing
relations:

0̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 0̄
1̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 1̄
n̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄

So we want to define Nat to be something like:

∀P : Nat→ ∗.Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Two problems arise with this scheme of encoding. The first problem involves
recursiveness. The definiens of Nat contains Nat, S and 0̄, while the type of S
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is Nat → Nat and the type of 0̄ is Nat. So the typing of Nat will be mutually
recursive. Observe that the recursive occurrences of Nat are all at the type-
annotated positions; i.e., the right side of the “:”.

Note that the subdata of n̄ is responsible for one recursive occurrence of Nat,
namely, Πy : Nat. If one never computes with the subdata, then these numerals
will behave just like Church numerals. This inspires us to use Miquel’s implicit
product [18]. In this case, we want to redefine Nat to be something like:

∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Here ∀y : Nat is the implicit product. Now our notion of numerals are exactly
Church numerals instead of Parigot numerals. Even better, this definition of
Nat can be erased to Fω. Since Fω’s types do not have dependency on terms,
P : Nat → ∗ will get erased to P : ∗. It is known that one can also erase the
implicit product [3]. The erasure of Nat will be ΠP : ∗.(P → P ) → P → P ,
which is the definition of Nat in Fω.

The second problem is about quantification. We want to define a type Nat
for any n̄, but right now what we really have is one Nat for each numeral n̄. We
solve this problem by introducing a new type construct ιx.T called a self type.
This allows us to make this definition (for Church-encoded naturals):

Nat := ιx.∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P x
We require that the self type can only be instantiated/generalized by its own
subject, so we add the following two rules:

Γ � t : [t/x]T
Γ � t : ιx.T selfGen

Γ � t : ιx.T
Γ � t : [t/x]T selfInst

We have the following inferences1:

n̄ : ∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P n̄

n̄ : ιx.∀P : Nat→ ∗.∀y : Nat.(P y → P (S y))→ P 0̄→ P x

2.2 The Notion of Contradiction

In CC à la Curry, it is customary to use ∀X : ∗.X as the notion of contradiction,
since an inhabitant of the type ∀X : ∗.X will inhabit any type, so the law of ex-
plosion is subsumed by the type ∀X : ∗.X . However, this notion of contradiction
is too strong to be useful. Let t =A t

′ denote ∀C : A→ ∗.C t→ C t′ with t, t′ : A.
Then 0 =Nat 1 can be expanded to ∀C : Nat→ ∗.C 0→ C 1 (0 is Leibniz equals
to 1). One can not derive a proof for (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X ,
because the erasure of (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X in System F
would be (∀C : ∗.C → C) → ∀X : ∗.X , and we know that ∀C : ∗.C → C is
inhabited. So the inhabitation of (∀C : Nat → ∗.C 0 → C 1) → ∀X : ∗.X will
imply the inhabitation of ∀X : ∗.X in System F, which does not hold. If we take
Leibniz equality and use ∀X : ∗.X as contradiction, then we can not prove any
negative results about equality.

1 The double bar means that the converse of the inference also holds.
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On the other hand, an equational theory is considered inconsistent if a = b
for all term a and b. So we propose to use ∀A : ∗.Πx : A.Πy : A.x =A y as
the notion of contradiction in CC. We first want to make sure it is uninhabited.
The way to argue that is first assume it is inhabited by t. Since CC is strongly
normalizing, the normal form of t must be of the form2 [λA : ∗.]λx[: A].λy[:
A].[λC : A→ ∗].λz[: C x].n for some normal term n with type C y, but we know
that there is no combination of x, y, z to make a term of type C y. So the type
∀A : ∗.Πx : A.Πy : A.∀C : A→ ∗.Cx→ Cy is uninhabited. We can then prove
the following theorem3:

Theorem 1. 0 = 1 → ⊥ is inhabited in CC, where ⊥ := ∀A : ∗.Πx : A.Πy :
A.∀C : A→ ∗.C x→ C y, 0 := λs.λz.z, 1 := λs.λz.s z.

Once ⊥ is derived, one can not distinguish the domain of individuals. Note
that this notion of contradiction does not subsume law of explosion.

3 System S

We use gray boxes in this section to highlight the terms, types and rules that
are not in Fω with positive recusive definitions4.

3.1 Syntax

Terms t ::= x | λx.t | tt′
Types T ::= X | ∀X : κ.T | Πx : T1.T2 | ∀x : T1.T2 |

ιx.T | T t | λX.T | λx.T | T1T2
Kinds κ ::= ∗ | Πx : T.κ | ΠX : κ′.κ
Context Γ ::= · | Γ, x : T | Γ,X : κ | Γ, μ
Closure μ ::= {(xi : Si) �→ ti}i∈N ∪ {(Xi : κi) �→ Ti}i∈M

Closures. For {(xi : Si) �→ ti}i∈N , we mean the term variable xi of type Si is
defined to be ti for some i ∈ N ; similarly for {(Xi : κi) �→ Ti}i∈M .

Legal Positions for Recursion in Closures. For {(xi : Si) �→ ti}i∈N , we
do not allow any recursive (or mutually recursive) definitions. For {(Xi : κi) �→
Ti}i∈M , we only allow singly recursive type definitions, but not mutually re-
cursive ones. This is not a fundamental limitation of the approach; it is just
for simplicity of the normalization argument. The recursive occurrences of type
variables can only be at positive or erased positions. Erased positions, following
the erasure function we will see in Section 5.1, are those in kinds or in the types
for ∀-bound variables.

Variable Restrictions for Closures. Let FV(e) denote the set of free term
variables in expression e (either term, type, or kind), and let FVar(T ) denote the

2 We use square brackets [ ] to show annotations that are not present in the inhabiting
lambda term in Curry-style System F.

3 Coq code for this is in the extended version.
4 Full specification of Fω with positive recursive definitions is in the extended version.
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set of free type variables in type T . Then for {(xi : Si) �→ ti}i∈N ∪ {(Xi : κi) �→
Ti}i∈M , we make the simplifying assumption that for any 1 ≤ i ≤ n, FV(ti) = ∅.
Also, for any 1 ≤ i ≤ m, we require FV(Ti) ⊆ dom(μ), and FVar(Ti) ⊆ {Xi}.
All our examples below satisfy these conditions.

3.2 Kinding and Typing

Some remarks on the typing and kinding rules:

Notation for Accessing Closures. (ti : Si) ∈ μ means (xi : Si) �→ ti ∈ μ and
(Ti : κi) ∈ μ means (Xi : κi) �→ Ti ∈ μ. Also, xi �→ ti ∈ μ means (xi : Si) �→ ti ∈
μ for some Si and Xi �→ Ti ∈ μ means (Xi : κi) �→ Ti ∈ μ for some κi.

Well-FormedAnnotatedClosures.Γ � μ ok stands for {Γ, μ � tj : Tj}(tj :Tj)∈μ

and {Γ, μ � Tj : κj}(Tj:κj)∈μ. In other words, the defining expressions in closures
must be typable with respect to the context and the entire closure.

Notation for Equivalence. ∼= is the congruence closure of →β .

Self Type Formation. Typing and kinding do not depend on well-formedness
of the context, so the self type formation rule self is not circular.

Well-formed Contexts Γ � wf

· � wf
Γ � wf Γ � T : ∗

Γ, x : T � wf
Γ � wf Γ � κ : �

Γ,X : κ � wf

Γ � wf Γ � μ ok

Γ, μ � wf

Well-Formed Kinds Γ � κ : �

Γ � ∗ : �
Γ,X : κ′ � κ : � Γ � κ′ : �

Γ � ΠX : κ′.κ : �
Γ, x : T � κ : � Γ � T : ∗

Γ � Πx : T.κ : �

Kinding Γ � T : κ

(X : κ) ∈ Γ

Γ � X : κ

Γ � T : κ Γ � κ ∼= κ′ Γ � κ′ : �
Γ � T : κ′

Γ � T1 : ∗ Γ, x : T1 � T2 : ∗
Γ � Πx : T1.T2 : ∗

Γ,X : κ � T : ∗ Γ � κ : �
Γ � ∀X : κ.T : ∗

Γ, x : T1 � T2 : ∗ Γ � T1 : ∗
Γ � ∀x : T1.T2 : ∗

Γ, x : ιx.T � T : ∗
Γ � ιx.T : ∗ Self

Γ,X : κ � T : κ′ Γ � κ : �
Γ � λX.T : ΠX : κ.κ′

Γ, x : T ′ � T : κ Γ � T ′ : ∗
Γ � λx.T : Πx : T ′.κ

Γ � S : Πx : T.κ Γ � t : T
Γ � S t : [t/x]κ

Γ � S : ΠX : κ′.κ Γ � T : κ′

Γ � S T : [T/X]κ
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Typing Γ � t : T

Γ 
 t : T1 Γ 
 T1
∼= T2 Γ 
 T2 : ∗

Γ 
 t : T2
Conv

(x : T ) ∈ Γ

Γ 
 x : T
Var

Γ 
 t : [t/x]T Γ 
 ιx.T : ∗
Γ 
 t : ιx.T

SelfGen
Γ 
 t : ιx.T

Γ 
 t : [t/x]T
SelfInst

Γ, x : T1 
 t : T2 Γ 
 T1 : ∗ x /∈ FV(t)

Γ 
 t : ∀x : T1.T2
Indx

Γ 
 t : ∀x : T1.T2 Γ 
 t′ : T1

Γ 
 t : [t′/x]T2
Dex

Γ 
 t : Πx : T1.T2 Γ 
 t′ : T1

Γ 
 tt′ : [t′/x]T2
App

Γ,X : κ 
 t : T Γ 
 κ : �
Γ 
 t : ∀X : κ.T

Poly

Γ 
 t : ∀X : κ.T Γ 
 T ′ : κ
Γ 
 t : [T ′/X]T

Inst
Γ, x : T1 
 t : T2 Γ 
 T1 : ∗

Γ 
 λx.t : Πx : T1.T2
Func

Reductions Γ � t→β t
′ , Γ � T →β T

′

(x �→ t) ∈ Γ

Γ � x→β t Γ � (λx.t)t′ →β [t′/x]t
(X �→ T ) ∈ Γ

Γ � X →β T

Γ � (λx.T )t→β [t/x]T Γ � (λX.T )T ′ →β [T ′/X]T

4 Lambda Encodings in S

Now let us see some concrete examples of lambda encoding in S. For convenience,
we write T → T ′ for Πx : T.T ′ with x /∈ FV(T ′), and similarly for kinds.

4.1 Natural Numbers

Definition 1 (Church Numerals). Let μc be the following closure:
(Nat : ∗) �→ ιx.∀C : Nat→ ∗.(∀n : Nat.C n→ C (S n))→ C 0→ C x
(S : Nat→ Nat) �→ λn.λs.λz.s (n s z)
(0 : Nat) �→ λs.λz.z

With s : ∀n : Nat.C n→ C (S n), z : C 0, n : Nat, we have μc � wf (using selfGen
and selfInst rules). Also note that the μc satisfies the constraints on recursive
definitions. Similarly, if we choose to use explicit product, then we can define
Parigot numerals.

Definition 2 (Parigot Numerals). Let μp be the following closure:

(Nat : ∗) �→ ιx.∀C : Nat→ ∗.( Π n : Nat.C n→ C (S n))→ C 0→ C x
(S : Nat→ Nat) �→ λn.λs.λz.s n (n s z)
(0 : Nat) �→ λs.λz.z
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Note that the recursive occurences of Nat in Parigot numerals are at positive
positions. The rest of the examples are about Church numerals, but a similar
development can be carried out with Parigot numerals.

Theorem 2 (Induction Principle)
μc � Ind : ∀C : Nat→ ∗.(∀n : Nat.C n→ C (S n))→ C 0→ Πn : Nat.C n
where Ind := λs.λz.λn.n s z
with s : ∀n : Nat.C n→ C (S n), z : C 0, n : Nat.

Proof. Let Γ = μc, C : Nat → ∗, s : ∀n : Nat.C n → C (S n), z : C 0, n : Nat.
Since n : Nat, by selfInst, n : ∀C : Nat → ∗.(∀y : Nat.C y → C (S y)) → C 0 →
C n. Thus n s z : C n.

It is worth noting that it is really the definition of Nat and the selfInst rule that
give us the induction principle, which is not derivable in CC [8].

Definition 3 (Addition). m+ n := Ind S n m

One can check that μc � + : Nat→ Nat→ Nat by instantiating the C in the type
of Ind by λy.Nat, then the type of Ind is (Nat→ Nat)→ Nat→ (Nat→ Nat).

Definition 4 (Leibniz’s Equality). Eq := λA[: ∗].λx[: A].λy[: A].∀C : A →
∗.C x→ C y.

Note that we use x =A y to denote Eq A x y. We often write t = t′ when the
type is clear. One can check that if � A : ∗ and � x, y : A, then � x =A y : ∗.

Theorem 3. μc � Πx : Nat.x+ 0 =Nat x

Proof. We prove this by induction. We instantiate C in the type of Ind with
λn.(n + 0) =Nat n. So by beta reduction at type level, we have (∀n : Nat.(n +
0 =Nat n) → ((S n) + 0 =Nat S n)) → 0 + 0 =Nat 0 → Πn : Nat.n + 0 =Nat n.
So for the base case, we need to show 0 + 0 =Nat 0, which is easy. For the
step case, we assume n + 0 =Nat n (Induction Hypothesis), and want to show
(S n) + 0 =Nat S n. Since (S n) + 0→β S (n S 0) =β S(n+ 0), by congruence on
the induction hypothesis, we have (S n)+0 =Nat S n. ThusΠx : Nat.x+0 =Nat x.

The above theorem is provable inside S. It shows how to inhabit the type
Πx : Nat.x+ 0 =Nat x given μc, using Ind.

4.2 Vector Encoding

Definition 5 (Vector). Let μv be the following definitions:
(vec : ∗ → Nat→ ∗) �→
λU : ∗.λn : Nat. ιx .∀C : Πp : Nat.vec U p→ ∗ .
(Πm : Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y)))
→ C 0 nil→ C n x

(nil : ∀U : ∗.vec U 0) �→ λy.λx.x
(cons : Πn : Nat.∀U : ∗.U → vecU n→vecU (Sn)) �→ λn.λv.λl.λy.λx.y n v (l y x)
where n : Nat, v : U, l : vec U n, y : Πm : Nat.Πu : U.∀z : vec U m.(C m z →
C (S m) (cons m u z)), x : C 0 nil.
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Typing: It is easy to see that nil is typable to ∀U : ∗.vec U 0. Now we show
how cons is typable to Πn : Nat.∀U : ∗.U → vec U n → vec U (S n). We
can see that l y x : C n l (using selfinst on l). After the instantiation with
l, the type of y n v is C n l → C (S n) (cons n v l). So y n v (l y x) :

C (S n) (cons n v l). So λy.λx.y n v (l y x) : ΠC : (Nat→ vec U p→ ∗).(Πm :

Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y))) → C 0 nil →
C (S n) (λy.λx.y n v (l y x)) . So by selfGen, we have λy.λx.y n v (l y x) :

vec U(S n). Thus cons : Πn : Nat.∀U : ∗.U → vec U n→ vec U (S n).

Definition 6 (Induction Principle for Vector)
μv � Ind :
∀U : ∗.Πn : Nat.∀C : Nat→ vec U p→ ∗.
(Πm : Nat.Πu : U.∀y : vec U m.(C m y → C (S m) (cons m u y)))
→ C 0 nil→ Πx : vec U n.(C n x)

where Ind := λn.λs.λz.λx.x s z
n : Nat, s : ∀C : (Πp : Nat.vec U p→ ∗).(Πm : Nat.Πu : U.∀y : vec U m.(C m y
→ C (S m) (cons m u y))), z : C 0 nil, x : vec U n.

Definition 7 (Append)
μv � app : ∀U : ∗.Πn1 : Nat.Πn2 : Nat.vec U n1 → vec U n2 → vec U (n1 + n2)
where app := λn1.λn2.λl1.λl2.(Ind n1) (λn.λx.λv.cons (n+ n2) x v) l2 l1.

Typing: We want to show app : ∀U : ∗.Πn1 : Nat.Πn2 : Nat.vec U n1 →
vec U n2 → vec U (n1 + n2). Observe that λn.λx.λv.cons(n + n2) x v : Πn :
Nat.Πx : U.vec U (n + n2) → vec U (n + n2 + 1). We instantiate C :=
λy.(λx.vec U (y + n2)) , where x free over vec U (y + n2), in Ind n1. By beta
reductions, we get Ind n1 : (Πm : Nat.Πu : U.∀y : vec U m.(vec U (m + n2) →
vec U ((S m) + n2))→ vec U (0 + n2)→ Πx : vec U n1.vec U (n1 + n2).
So (Ind n1) (λn.λx.λv.cons(n+n2) x v) : vec U (0+n2)→ Πx : vec U n1.vec U (n1+n2).

We assume l1 : vec U n1, l2 : vec U n2. Thus (Ind n1) (λn.λx.λv.cons(n+n2) x v) l2 l1 :

vec U (n1 + n2).

5 Metatheory

We first outline the erasure from S to Fω with positive recursive definitions. Then
we conclude strong normalization for S by the strong normalization of Fω with
positive recursive definitions. The strong normalization proof is an extension
of the method describes in [17]. We also prove type preservation for S, which
involves confluence analysis (Section 5.2) and morph analysis (Section 5.3). All
omitted proofs may be found in the extended version [11].

5.1 Strong Normalization

We prove strong normalization of S through the strong normalization of Fω with
positive recursive definitions. We first define the syntax for Fω with positive
recursive definitions. We work with kind-annotated types to avoid the interpre-
tation for ill-formed types like λX.X → λX.X .
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Definition 8 (Syntax for Fω with positive definitions)

Terms t ::= x | λx.t | tt′
Kinds κ ::= ∗ | κ′ → κ
Types T κ ::= Xκ | (∀Xκ.T ∗)∗ | (T ∗

1 → T ∗
2 )

∗ | (λXκ1 .T κ2)κ1→κ2 | (T κ1→κ2
1 T κ1

2 )κ2

Context Γ ::= · | Γ, x : T κ | Γ, μ
Definitions μ ::= {(xi : Sκ

i ) �→ ti}i∈N ∪ {Xκ
i �→ T κ

i }i∈M

Term definitions ρ ::= {xi �→ ti}i∈N

Note that for every x �→ t,Xκ �→ T κ ∈ μ, we require FV(t) = ∅ and
FVar(T κ) ⊆ {Xκ}; and the Xκ can only occur at the positive position in T κ,
no mutually recusive definitions are allowed. We elide the typing rules for space
reason.

Definition 9 (Erasure for kinds). We define a function F which maps kinds
in S to kinds in Fω with positive definitions.
F (∗) := ∗
F (Πx : T.κ) := F (κ)
F (ΠX : κ′.κ) := F (κ′)→ F (κ)

Definition 10 (Erasure relation). We define a relation Γ � T � T ′κ (intu-
itively, it means that type T can be erased to T ′κ under the context Γ ), where
T, Γ are types and context in S, T ′κ is a type in Fω with positive definitions.

F (κ′) = κ (X : κ′) ∈ Γ

Γ � X � Xκ

Γ � T � T κ
1

Γ � ιx.T � T κ
1

Γ,X : κ � T � T ∗
1

Γ � ∀X : κ.T � (∀XF (κ).T ∗
1 )

∗
Γ � T1 � T

∗
a Γ � T2 � T

∗
b

Γ � Πx : T1.T2 � (T
∗
a → T ∗

b )
∗

Γ � T2 � T
κ

Γ � ∀x : T1.T2 � T
κ

Γ � T1 � T
κ1→κ2
a Γ � T κ1

b

Γ � T1T2 � (T
κ1→κ2
a T κ1

b )κ2

Γ,X : κ � T � T κ′
a

Γ � λX.T � (λXF (κ).T κ′
a )κ→κ′

Γ � T � T κ
1

Γ � T t � T κ
1

Γ � T � T κ
1

Γ � λx.T � T κ
1

Definition 11 (Erasure for Context). We define relation Γ �Γ ′ inductively.

Γ � T � TF (κ)
a Γ � Γ ′

Γ, (X : κ) �→ T � Γ ′, XF (κ) �→ T
F (κ)
a

Γ � Γ ′

Γ,X : κ � Γ ′ · � ·

Γ � T � T κ
a Γ � Γ ′

Γ, (x : T ) �→ t � Γ ′, x : T κ
a �→ t

Γ � T � T κ
a Γ � Γ ′

Γ, x : T � Γ ′, x : T κ
a

Theorem 4 (Erasure Theorem)
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1. If Γ � T : κ, then there exists a T
F (κ)
a such that Γ � T � TF (κ)

a .

2. If Γ � t : T and Γ � wf, then there exist T ∗
a and Γ ′ such that Γ � T � T ∗

a ,
Γ � Γ ′ and Γ ′ � t : T ∗

a .

Now that we obtained an erasure from S to Fω with positive definitions.
We continue to show that the latter is strongly normalizing. The development
below is in Fω with positive definitions. Let Rρ be the set of all reducibility
candidates5. Let σ be a mapping between type variable of kind κ to element of
ρ�κ�.

Definition 12

– ρ�∗� := Rρ.

– ρ�κ→ κ′� := {f | ∀a ∈ ρ�κ�, f(a) ∈ ρ�κ′�}.
– ρ�Xκ�σ := σ(Xκ).

– ρ�(T ∗
1 → T ∗

2 )
∗�σ := {t | ∀u. ∈ ρ�T ∗

1 �σ, tu ∈ ρ�T ∗
2 �σ}.

– ρ�(∀Xκ.T ∗)∗�σ :=
⋂

f∈ρ�κ� ρ�T
∗�σ[f/X].

– ρ�(λXκ′
.T κ)κ

′→κ�σ := f where f is the map a �→ ρ�T κ�σ[a/X] for any a ∈
ρ�κ′�.

– ρ�(T κ′→κ
1 T κ′

2 )κ�σ := ρ�T κ′→κ
1 �σ(ρ�T

κ′

2 �σ).

Let | · | be a function that retrieves all the term definitions from the context Γ .

Definition 13. Let ρ = |Γ |, and FVar(Γ ) be the set of free type variables in Γ .
We define σ ∈ ρ�Γ � if σ(Xκ) ∈ ρ�κ� for undefined variable Xκ; and σ(Xκ) =
lfp(b �→ ρ�T κ�σ[b/Xκ]) for b ∈ ρ�κ� if Xκ �→ T κ ∈ Γ .

Note that the least fix point operation in lfp(b �→ ρ�T κ�σ[b/Xκ ]) is defined since
we can extend the complete lattice of reducibility candidate to complete lattice
(ρ�κ�,⊆κ,∩κ).

Definition 14. Let ρ = |Γ | and σ ∈ ρ�Γ �. We define the relation δ ∈ ρ�Γ �
inductively:

· ∈ ρ�·�
δ ∈ ρ�Γ � t ∈ ρ�T κ�σ

δ[t/x] ∈ ρ�Γ, x : T κ�

δ ∈ ρ�Γ �

δ ∈ ρ�Γ, (x : T κ) �→ t�

Theorem 5 (Soundness theorem6). Let ρ = |Γ |. If Γ � t : T ∗ and Γ � wf,
then for any σ, δ ∈ ρ�Γ �, we have δt ∈ ρ�T ∗�σ, with ρ�T

∗�σ ∈ Rρ.

Theorem 4 and 5 imply all the typable term in S is strongly normalizing.

5 The notion of reducibility candidate here slightly extends the standard one [15] to
handle definitional reduction: ρ � x→β t, where x �→ t ∈ ρ. So it is parametrized by
ρ.

6 Please note that since we are in Curry style assignment, the infinite reduction se-
quence in term will not be thrown away.
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5.2 Confluence Analysis

The complications of proving type preservation are due to several rules which
are not syntax-directed. To prove type preservation, one needs to ensure that if
Πx : T.T ′ can be transformed to Πx : T1.T2, then it must be the case that T can
be transformed to T1 and T ′ can be transformed to T2. This is why we need to
show confluence for type-level reduction. We first observe that the selfGen rule
and selfInst rule are mutually inverse, and model the change of self type by the
following reduction relation.

Definition 15
Γ � T1 →ι T2 if T1 ≡ ιx.T ′7 and T2 ≡ [t/x]T ′ for some fix term t.

Note that →ι models the selfInst rule, →−1
ι models the selfGen rule. Impor-

tantly, the notion of ι-reduction does not include congruence; that is, we do
not allow reduction rules like if T →ι T

′, then λx.T →ι λx.T
′. The purpose of

ι-reduction is to emulate the typing rule selfInst and selfGen.
We first show confluence of →β by applying the standard Tait-Martin Löf

method, and then apply Hindley-Rossen’s commutativity theorem to show →ι

commutes with →β . We use →∗ to denote the reflexive symmetric transitive
closure of →.

Lemma 1. →β is confluent.

Definition 16 (Commutativity). Let →1,→2 be two notions of reduction.
Then →1 commutes with →2 iff ←1 · →2 ⊆ →1 · ←2.

Proposition 1. Let →1,→2 be two notions of reduction. Suppose both →1 and
→2 are confluent, and →∗

1 commutes with →∗
2. Then →1 ∪ →2 is confluent.

Lemma 2. →β commutes with →ι. Thus →β,ι is confluent, where →β,ι=→β

∪ →ι.

Theorem 6 (ι-elimination). If Γ � Πx : T1.T2 =β,ι Πx : T ′
1.T

′
2, then Γ �

T1 =β T
′
1 and Γ � T2 =β T

′
2.

Proof. If Γ � Πx : T1.T2 =β,ι Πx : T ′
1.T

′
2, then by the confluence of →β,ι, there

exists a T such that Γ � Πx : T1.T2 →∗
ι,β T and Γ � Πx : T ′

1.T
′
2 →∗

ι,β T . Since all
the reductions on Πx : T1.T2 preserve the structure of the dependent type, one
will never have a chance to use →ι-reduction, thus Γ � Πx : T1.T2 →∗

β T and
Γ � Πx : T ′

1.T
′
2 →∗

β T . So T must be of the form Πx : T3.T4. And Γ � T1 →∗
β T3,

Γ � T ′
1 →∗

β T3, Γ � T2 →∗
β T4 and Γ � T ′

2 →∗
β T4. Finally, we have Γ � T1 =β T

′
1

and Γ � T2 =β T
′
2.

7 We use ≡ to mean syntactic identity.
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5.3 Morph Analysis

The methods of the previous section are not suitable for dealing with implicit
polymorphism, since as a reduction relation, polymorphic instantiation is not
confluent. For example, ∀X : κ.X can be instantiated either to T or to T → T .
The only known syntactic method (to our knowledge) to deal with preservation
proof for Curry-style System F is Barendregt’s method [4]. We will extend his
method to handle the instantiation of ∀x : T.T ′.

Definition 17 (Morphing Relations)

– ([Γ ], T1) →i ([Γ ], T2) if T1 ≡ ∀X : κ.T ′ and T2 ≡ [T/X ]T ′ for some T such
that Γ � T : κ.

– ([Γ,X : κ], T1)→g ([Γ ], T2) if T2 ≡ ∀X : κ.T1 and Γ � κ : �.
– ([Γ ], T1) →I ([Γ ], T2) if T1 ≡ ∀x : T.T ′ and T2 ≡ [t/x]T ′ for some t such

that Γ � t : T .
– ([Γ, x : T ], T1)→G ([Γ ], T2) if T2 ≡ ∀x : T.T1 and Γ � T : ∗.

Intuitively, ([Γ ], T1) → ([Γ ′], T2) means T1 can be transformed to T2 with a
change of context from Γ to Γ ′. One can view morphing relations as a way to
model typing rules which are not syntax-directed. Note that morphing relations
are not intended to be viewed as rewrite relation. Instead of proving confluence
for these morphing relations, we try to use substitutions to summarize the effects
of a sequence of morphing relations. Before we do that, first we “lift” =β,ι to a
form of morphing relation.

Definition 18. ([Γ ], T ) =β,ι ([Γ ], T ′) if Γ � T =β,ι T
′ and Γ � T : ∗ and

Γ � T ′ : ∗.

The best way to understand the E,G mappings below is through understand-
ing Lemmas 4 and 5. They give concrete demonstrations of how to summarize
a sequence of morphing relations.

Definition 19
E(∀X : κ.T ) := E(T ) E(X) := X E(Πx : T1.T2) := Πx : T1.T2
E(λX.T ) := λX.T E(T1T2) := T1T2 E(∀x : T ′.T ) := ∀x : T ′.T
E(ιx.T ) := ιx.T E(T t) := T t E(λx.T ) := λx.T

Definition 20
G(∀X : κ.T ) := ∀X : κ.T G(X) := X G(Πx : T1.T2) := Πx : T1.T2

G(λX.T ) := λX.T G(T1T2) := T1T2 G(∀x : T ′.T ) := G(T )

G(ιx.T ) := ιx.T G(T t) := T t G(λx.T ) := λx.T

Lemma 3. E([T ′/X ]T ) ≡ [T ′′/X ]E(T ) for some T ′′; G([t/x]T ) ≡ [t/x]G(T ) .

Proof. By induction on the structure of T .

Lemma 4. If ([Γ ], T )→∗
i,g([Γ

′], T ′), then there exists a type substitution σ such
that σE(T ) ≡ E(T ′).
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Proof. It suffices to consider ([Γ ], T )→i,g([Γ
′], T ′). If T ′ ≡ ∀X : κ.T and Γ =

Γ ′, X : κ, then E(T ′) ≡ E(T ). If T ≡ ∀X : κ.T1 and T ′ ≡ [T ′′/X ]T1 and
Γ = Γ ′, then E(T ) ≡ E(T1). By Lemma 3, we know E(T ′) ≡ E([T ′′/X ]T1) ≡
[T2/X ]E(T1) for some T2.

Lemma 5. If ([Γ ], T )→∗
I,G([Γ

′], T ′), then there exists a term substitution δ such
that δG(T ) ≡ G(T ′).

Proof. It suffices to consider ([Γ ], T )→I,G([Γ
′], T ′). If T ′ ≡ ∀x : T1.T and Γ =

Γ ′, x : T1, then G(T
′) ≡ G(T ). If T ≡ ∀x : T2.T1 and T ′ ≡ [t/x]T1 and Γ = Γ ′,

then E(T ) ≡ E(T1). By Lemma 3, we know E(T ′) ≡ E([t/x]T1) ≡ [t/x]E(T1).

Lemma 6. If ([Γ ], Πx : T1.T2)→∗
i,g([Γ

′], Πx : T ′
1.T

′
2), then there exists a type

substitution σ such that σ(Πx : T1.T2) ≡ Πx : T ′
1.T

′
2.

Proof. By Lemma 4.

Lemma 7. If ([Γ ], Πx : T1.T2)→∗
I,G([Γ

′], Πx : T ′
1.T

′
2), then there exists a term

substitution δ such that δ(Πx : T1.T2) ≡ Πx : T ′
1.T

′
2.

Proof. By Lemma 5.

Let→∗
ι,β,i,g,I,G denote (→i,g,I,G ∪ =ι,β)

∗. Let→ι,β,i,g,I,G denote→i,g,I,G ∪ =ι,β.
The goal of confluence analysis and morph analysis is to establish the following
compatibility theorem.

Theorem 7 (Compatibility). If ([Γ ], Πx : T1.T2) →∗
ι,β,i,g,I,G ([Γ ′], Πx :

T ′
1.T

′
2), then there exists a mixed substitution8 φ such that ([Γ ], φ(Πx : T1.T2))

=ι,β ([Γ ], Πx : T ′
1.T

′
2). Thus Γ � φT1 =β T

′
1 and Γ � φT2 =β T

′
2 (by Theorem 6).

Proof. By Lemma 7 and 6, making use of the fact that if Γ � t =ι,β t
′, then for

any mixed substitution φ, we have Γ � φt =ι,β φt
′.

Theorem 8 (Type Preservation). If Γ � t : T and Γ � t→β t
′ and Γ � wf,

then Γ � t′ : T .

6 0 �= 1 in S

The proof of 0 �= 1 follows the same method as in Theorem 1, while emptiness
of ⊥ needs the erasure and preservation theorems. Notice that in this section,
by a = b, we mean ∀C : A→ ∗.C a→ C b with a, b : A.

Definition 21. ⊥ := ∀A : ∗.∀x : A.∀y : A.x = y.

Theorem 9. There is no term t such that μc � t : ⊥
8 A substitution that contains both term substitution and type substitution.
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Proof. Suppose μc � t : ⊥. By the erasure theorem (Theorem 4) in Section
5.1, we have F (μc) � t : ∀A : ∗.∀C : ∗.C → C in Fω. We know that ∀A :
∗.∀C : ∗.C → C is the singleton type9, which is inhabited by λz.z. This means
t→∗

β λz.z (the term reductions of Fω with let-bindings are the same as S) and
μc � λz.z : ⊥ in S (by type preservation, Theorem 8). Let Γ = μc, A : ∗, x :
A, y : A,C : A → ∗, z : C x. Then we would have Γ � z : C y. So by inversion,
we have Γ � C x→∗

ι,β,i,g,I,G C y, which means Γ � C x→∗
β C y. We know this

is impossible by confluence of →β .

Theorem 10. μc � 0 = 1→ ⊥.

Proof. This proof follows the method in Theorem 1. Let Γ = μc, a : (∀B : Nat→
∗.B 0 → B 1), A : ∗, x : A, y : A,C : A → ∗, c : C x. We want to construct a
term of type C y. Let F := λn[: Nat].n [λp : Nat.A] (λq[: A].y)x, and note
that F : Nat → A. We know that F 0 =β x and F 1 =β y. So we can indeed
convert the type of c from C x to C (F 0). And then we instantiate the B in
∀B : Nat→ ∗.B 0→ B 1 with λx[: Nat].C (F x). So we have C (F 0)→ C (F 1)
as the type of a. So a c : C (F 1), which means a c : C y. So we have just shown
how to inhabit 0 = 1→ ⊥ in S.

7 Conclusion

We have revisited lambda encodings in type theory, and shown how a new self
type construct ιx.T supports dependent eliminations with lambda encodings,
including induction principles. We considered System S, which incorporates self
types together with implicit products and a restricted version of global pos-
itive recursive definition. The corresponding induction principles for Church-
and Parigot-encoded datatypes are derivable in S. By changing the notion of
contradiction from explosion to equational inconsistency, we are able to show
0 �= 1 in both CC and S. We proved type preservation, which is nontrivial for
S since several rules are not syntax-directed. We also defined an erasure from S
to Fω with positive definitions, and proved strong normalization of S by show-
ing strong normalization of Fω with positive definitions. Future work includes
further explorations of dependently typed lambda encodings for practical type
theory. In particular, we would like to implement our system and carry out some
case studies. Last but not least, we want to thank anonymous reviewers for their
helpful comments.
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Abstract. This paper discusses the method of formative rules for first-
order term rewriting, which was previously defined for a higher-order
setting. Dual to the well-known usable rules, formative rules allow drop-
ping some of the term constraints that need to be solved during a ter-
mination proof. Compared to the higher-order definition, the first-order
setting allows for significant improvements of the technique.

1 Introduction

In [12,13] C. Kop and F. van Raamsdonk introduce the notion of formative rules.
The technique is similar to the method of usable rules [1,9,10], which is commonly
used in termination proofs, but has different strengths and weaknesses.

Since, by [15], the more common first-order style of term rewriting, both
with and without types, can be seen as a subclass of the formalism of [13], this
result immediately applies to first-order rewriting. In an untyped setting, we
will, however, lose some of its strength, as sorts play a relevant role in formative
rules.

On the other hand, by omitting the complicating aspects of higher-order term
rewriting (such as λ-abstraction and “collapsing” rules l → x · y) we also gain
possibilities not present in the original setting; both things which have not been
done, as the higher-order dependency pair framework [11] is still rather limited,
and things which cannot be done, at least with current theory. Therefore, in this
paper, we will redefine the method for (many-sorted) first-order term rewriting.

New compared to [13], we will integrate formative rules into the dependency
pair framework [7], which is the basis of most contemporary termination provers
for first-order term rewriting. Within this framework, formative rules are used
either as a stand-alone processor or with reduction pairs, and can be coupled
with usable rules and argument filterings. We also formulate a semantic charac-
terisation of formative rules, to enable future generalisations of the definition.
Aside from this, we present a (new) way to weaken the detrimental effect of
collapsing rules.

This paper is organised as follows. After the preliminaries in Section 2, a first
definition of formative rules is given and then generalised in Section 3. Section 4
shows various ways to use formative rules in the dependency pair framework.
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Section 5 gives an alternative way to deal with collapsing rules. In Section 6 we
consider innermost termination, Section 7 describes implementation and exper-
iments, and in Section 8 we point out possible future work and conclude. All
proofs and an improved formative rules approximation are provided in [5].

2 Preliminaries

We consider many-sorted term rewriting: term rewriting with sorts, basic types.
While sorts are not usually considered in studies of first-order term rewrite sys-
tems (TRSs) and for instance the Termination Problems Data Base1 does not
include them (for first-order TRSs),2 they are a natural addition; in typical ap-
plications there is little need to allow untypable terms like 3+apple. Even when
no sorts are present, a standard TRS can be seen as a many-sorted TRS with
only one sort.3

Many-Sorted TRSs. We assume given a non-empty set S of sorts ; these
are typically things like Nat or Bool, or (for representing unsorted systems)
S might be the set with a single sort {o}. A sort declaration is a sequence
[κ1 × . . .× κn]⇒ ι where ι and all κi are sorts. A sort declaration []⇒ ι is just
denoted ι.

A many-sorted signature is a set Σ of function symbols f , each equipped with
a sort declaration σ, notation f : σ ∈ Σ. Fixing a many-sorted signature Σ and
an infinite set V of sorted variables, the set of terms consists of those expressions
s over Σ and V for which we can derive s : ι for some sort ι, using the clauses:

x : ι if x : ι ∈ V
f(s1, . . . , sn) : ι if f : [κ1 × . . .× κn]⇒ ι ∈ Σ and s1 : κ1, . . . , sn : κn

We often denote f(s1, . . . , sn) as just f(s). Clearly, every term has a unique sort.
Let Var(s) be the set of all variables occurring in a term s. A term s is linear if
every variable in Var(s) occurs only once in s. A term t is a subterm of another
term s, notation s�t, if either s = t or s = f(s1, . . . , sn) and some si�t. A substi-
tution γ is a mapping from variables to terms of the same sort; the application
sγ of a substitution γ on a term s is s with each x ∈ domain(γ) replaced by γ(x).

A rule is a pair �→ r of terms with the same sort such that � is not a variable.4

A rule is left-linear if � is linear, and collapsing if r is a variable. Given a set of
rules R, the reduction relation →R is given by: �γ →R rγ if �→ r ∈ R and γ a

1 More information on the TPDB : http://termination-portal.org/wiki/TPDB
2 This may also be due to the fact that currently most termination tools for first-order
rewriting only make very limited use of the additional information carried by types.

3 However, the method of this paper is stronger given more sorts. We may be able to
(temporarily) infer richer sorts, however. We will say more about this in Section 6.

4 Often also Var(r) ⊆ Var(�) is required. However, we use filtered rules π(�) → π(r)
later, where the restriction is inconvenient. As a rule is non-terminating if Var(r) �⊆
Var(�), as usual we forbid such rules in the inputR and in dependency pair problems.

http://termination-portal.org/wiki/TPDB
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substitution; f(. . . , si, . . .)→R f(. . . , s′i, . . .) if si →R s
′
i. A term s is in normal

form if there is no t such that s→R t.
The relation →∗

R is the transitive-reflexive closure of →R. If there is a rule
f(l)→ r ∈ R we say that f is a defined symbol ; otherwise f is a constructor.

A many-sorted term rewrite system (MTRS) is a pair (Σ,R) with signature
Σ and a set R of rules �→ r with Var(r) ⊆ Var(�). A term s is terminating if
there is no infinite reduction s →R t1 →R t2 . . . An MTRS is terminating if all
terms are.

Example 1. An example of a many-sorted TRS (Σ,R) with more than one sort
is the following system, which uses lists, natural numbers and a RESULT sort:

O : NAT Cons : [NAT× LIST]⇒ LIST Run : [LIST]⇒ RESULT

S : [NAT]⇒ NAT Ack : [NAT× NAT]⇒ NAT Return : [NAT]⇒ RESULT

Nil : LIST Big : [NAT× LIST]⇒ NAT Rnd : [NAT]⇒ NAT

Err : RESULT Upd : [LIST]⇒ LIST

1. Rnd(x)→ x 6. Big(x, Nil)→ x
2. Rnd(S(x))→ Rnd(x) 7. Big(x, Cons(y, z))→ Big(Ack(x, y), Upd(z))
3. Upd(Nil)→ Nil 8. Upd(Cons(x, y))→ Cons(Rnd(x), Upd(y))
4. Run(Nil)→ Err 9. Run(Cons(x, y))→ Return(Big(x, y))
5. Ack(O, y)→ S(y) 10. Ack(S(x), y)→ Ack(x, S(y))

11. Ack(S(x), S(y))→ Ack(x, Ack(S(x), y))

Run(lst) calculates a potentially very large number, depending on the elements
of lst and some randomness. We have chosen this example because it will help
to demonstrate the various aspects of formative rules, without being too long.

The Dependency Pair Framework. As a basis to study termination, we will
use the dependency pair (DP) framework [7], adapted to include sorts.

Given an MTRS (Σ,R), let Σ� = Σ ∪{f � : [ι1× . . .× ιn]⇒ dpsort | f : [ι1×
. . .×ιn]⇒ κ ∈ Σ∧f a defined symbol ofR}, where dpsort is a fresh sort. The set
DP(R) of dependency pairs (DPs) of R consists of all rules of the form f �(l1, . . . ,
ln)→ g�(r1, . . . , rm) where f(l)→ r ∈ R and r � g(r) with g a defined symbol.

Example 2. The dependency pairs of the system in Example 1 are:

Rnd�(S(x))→ Rnd�(x) Big�(x, Cons(y, z))→ Big�(Ack(x, y), Upd(z))
Upd�(Cons(x, y))→ Rnd�(x) Big�(x, Cons(y, z))→ Ack�(x, y)
Upd�(Cons(x, y))→ Upd�(y) Big�(x, Cons(y, z))→ Upd�(z)
Run�(Cons(x, y))→ Big�(x, y) Ack�(S(x), S(y))→ Ack�(x, Ack(S(x), y))

Ack�(S(x), y)→ Ack�(x, S(y)) Ack�(S(x), S(y))→ Ack�(S(x), y)

For sets P and R of rules, an infinite (P ,R)-chain is a sequence [(�i → ri,
γi) | i ∈ N] where each �i → ri ∈ P and γi is a substitution such that riγi →∗

R
�i+1γi+1. This chain is minimal if each riγi is terminating with respect to →R.

Theorem 3. (following [1,7,9,10]) An MTRS (Σ,R) is terminating if and only
if there is no infinite minimal (DP(R),R)-chain.
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A DP problem is a triple (P ,R, f ) with P and R sets of rules and f ∈ {m, a}
(denoting {minimal, arbitrary}).5 A DP problem (P ,R, f ) is finite if there is no
infinite (P ,R)-chain, which is minimal if f = m. A DP processor is a function
which maps a DP problem to a set of DP problems. A processor proc is sound
if, for all DP problems A: if all B ∈ proc(A) are finite, then A is finite.

The goal of the DP framework is, starting with a set D = {(DP(R),R,m)}, to
reduce D to ∅ using sound processors. Then we may conclude termination of the
initial MTRS (Σ,R).6 Various common processors use a reduction pair, a pair
(�,() of a monotonic, stable (closed under substitutions) quasi-ordering � on
terms and a well-founded, stable ordering ( compatible with � (i.e., ( · � ⊆ ().

Theorem 4. (following [1,7,9,10]) Let (�,() be a reduction pair. The processor
which maps a DP problem (P ,R, f ) to the following result is sound:

– {(P \ P�,R, f )} if:
• � ( r for �→ r ∈ P� and � � r for �→ r ∈ P \ P� (with P� ⊆ P);
• � � r for �→ r ∈ R.

– {(P ,R, f )} otherwise

Here, we must orient all elements of R with �. As there are many processors
which remove elements from P and few which remove fromR, this may give many
constraints. Usable rules, often combined with argument filterings, address this:

Definition 5. (following [9,10]) Let Σ be a signature and R a set of rules. An
argument filtering is a function that maps each f : [ι1 × . . . × ιn] ⇒ κ to a
set {i1, . . . , ik} ⊆ {1, . . . , n}.7 The usable rules of a term t with respect to an
argument filtering π are defined as the smallest set UR(t,R, π) ⊆ R such that:

– if R is not finitely branching (i.e. there are terms with infinitely many direct
reducts), then UR(t,R, π) = R;

– if t = f(t1, . . . , tn), then UR(ti,R, π) ⊆ UR(t,R, π) for all i ∈ π(f);
– if t = f(t1, . . . , tn), then {�→ r ∈ R | � = f(. . .)} ⊆ UR(t,R, π);
– if �→ r ∈ UR(t,R, π), then UR(r,R, π) ⊆ UR(t,R, π).

For a set of rules P, we define UR(P ,R, π) =
⋃

s→t∈P UR(t,R, π).

Argument filterings π are used to disregard arguments of certain function
symbols. Given π, let fπ : [ιi1 × . . . × ιik ] ⇒ κ be a fresh function symbol for
all f with π(f) = {i1, . . . , ik} and i1 < . . . < ik, and define π(x) = x for x a
variable, and π(f(s1, . . . , sn)) = fπ(π(si1 ), . . . , π(sik)) if π(f) = {i1, . . . , ik} and
i1 < . . . < ik. For a set of rules R, let π(R) = {π(l) → π(r) | l → r ∈ R}.
The idea of usable rules is to only consider rules relevant to the pairs in P after
applying π.

5 Here we do not modify the signature Σ of a DP problem, so we leave Σ implicit.
6 The full DP framework [7] can also be used for proofs of non-termination. Indeed,
by [7, Lemma 2], all processors introduced in this paper (except Theorem 17 for
innermost rewriting) are “complete” and may be applied in a non-termination proof.

7 Usual definitions of argument filterings also allow π(f) = i, giving π(f(s)) = π(si),
but for usable rules, π(f) = i is treated the same as π(f) = {i}, cf. [9, Section 4].
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Combining usable rules, argument filterings and reduction pairs, we obtain:

Theorem 6. ([9,10]) Let (�,() be a reduction pair and π an argument filtering.
The processor which maps a DP problem (P ,R, f ) to the following result is
sound:

– {(P \ P�,R,m)} if f = m and:

• π(�) ( π(r) for �→ r ∈ P� and π(�) � π(r) for �→ r ∈ P \ P�;
• π(�) � π(r) for �→ r ∈ UR(P ,R, π) ∪ Cε,
where Cε = {cι(x, y)→ x, cι(x, y)→ y | all sorts ι}.

– {(P ,R, f )} otherwise

We define UR(P ,R) as UR(P ,R, πT ), where πT is the trivial filtering:
πT (f) = {1, . . . , n} for f : [ι1× . . .×ιn]⇒ κ ∈ Σ. Then Theorem 6 is exactly the
standard reduction pair processor, but with constraints on UR(P ,R)∪Cε instead
of R. We could also use a processor which maps (P ,R,m) to {(P ,UR(P ,R) ∪
Cε, a)}, but as this loses the minimality flag, it is usually not a good idea (various
processors need this flag, including usable rules!) and can only be done once.

3 Formative Rules

Where usable rules [1,9,10] are defined primarily by the right-hand sides of P and
R, the formative rules discussed here are defined by the left-hand sides. This has
consequences; most importantly, we cannot handle non-left-linear rules very well.

We fix a signature Σ. A term s : ι has shape f with f : [κ]⇒ ι ∈ Σ if either
s = f(r1, . . . , rn), or s is a variable of sort ι. That is, there exists some γ with
sγ = f(. . .): one can specialise s to have f as its root symbol.

Definition 7. Let R be a set of rules. The basic formative rules of a term t are
defined as the smallest set FRbase(t,R) ⊆ R such that:

– if t is not linear, then FRbase(t,R) = R;
– if t = f(t1, . . . , tn), then FRbase(ti,R) ⊆ FRbase(t,R);
– if t = f(t1, . . . , tn), then {�→ r ∈ R | r has shape f} ⊆ FRbase(t,R);
– if �→ r ∈ FRbase(t,R), then FRbase(�,R) ⊆ FRbase(t,R).

For rules P, let FRbase(P ,R) =
⋃

s→t∈P FRbase(s,R). Note that FRbase(x,R) =
∅.

Note the strong symmetry with Definition 5. We have omitted the argument
filtering π here, because the definitions are simpler without it. In Section 4 we will
see how we can add argument filterings back in without changing the definition.

Example 8. In the system from Example 1, consider P = {Big�(x, Cons(y, z))→
Big�(Ack(x, y), Upd(z))}. The symbols in the left-hand side are just Big� (which
has sort dpsort, which is not used in R) and Cons. Thus, FRbase(P ,R) = {8}.
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Intuitively, the formative rules of a dependency pair � → r are those rules
which might contribute to creating the pattern �. In Example 8, to reduce a
term Big�(Ack(S(O), O), Upd(Cons(O, Nil))) to an instance of Big�(x, Cons(y, z)),
a single step with the Upd rule 8 gives Big�(Ack(S(O), O), Cons(Rnd(O), Upd(Nil)));
we need not reduce the Ack() or Rnd() subterms for this. To create a non-linear
pattern, any rule could contribute, as a step deep inside a term may be needed.

Example 9. Consider Σ = {a, b : A, f� : [B × B] ⇒ dpsort, h : [A] ⇒ B},
R = {a → b} and P = {f�(x, x) → f�(h(a), h(b))}. Without the linearity
restriction, FRbase(P ,R) would be ∅, as dpsort does not occur in the rules and
FRbase(x,R) = ∅. But there is no infinite (P , ∅)-chain, while we do have an in-
finite (P ,R)-chain, with γi = [x := h(b)] for all i. The a → b rule is needed
to make h(a) and h(b) equal. Note that this happens even though the sort of x
does not occur in R!

Thus, as we will see, in an infinite (P ,R)-chain we can limit interest to rules in
FRbase(P ,R). We call these basic formative rules because while they demonstrate
the concept, in practice we would typically use more advanced extensions of the
idea. For instance, following the TCap idea of [8, Definition 11], a rule l → f(O)
does not need to be a formative rule of f(S(x))→ r if O is a constructor.

To use formative rules with DPs, we will show that any (P ,R)-chain can be
altered so that the riγi →∗

R �i+1γi+1 reduction has a very specific form (which
uses only formative rules of �i+1). To this end, we consider formative reductions.
A formative reduction is a reduction where, essentially, a rewriting step is only
done if it is needed to obtain a result of the right form.

Definition 10 (Formative Reduction). For a term �, substitution γ and
term s, we say s →∗

R �γ by a formative �-reduction if one of the following
holds:

1. � is non-linear;
2. � is a variable and s = �γ;
3. � = f(l1, . . . , ln) and s = f(s1, . . . , sn) and each si →∗

R liγ by a formative
li-reduction;

4. � = f(l1, . . . , ln) and there are a rule �′ → r′ ∈ R and a substitution δ such
that s →∗

R �′δ by a formative �′-reduction and r′δ = f(t1, . . . , tn) and each
ti →∗

R liγ by a formative li-reduction.

Point 2 is the key: a reduction s →∗
R xγ must be postponed. Formative reduc-

tions are the base of a semantic definition of formative rules:

Definition 11. A function FR that maps a term � and a set of rules R to a set
FR(�,R) ⊆ R is a formative rules approximation if for all s and γ: if s→∗

R �γ
by a formative �-reduction, then this reduction uses only rules in FR(�,R).

Given a formative rules approximation FR, let FR(P ,R) =
⋃

s→t∈P FR(s,R).

As might be expected, FRbase is indeed a formative rules approximation:

Lemma 12. A formative �-reduction s→∗
R �γ uses only rules in FRbase(�,R).
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Proof. By induction on the definition of a formative �-reduction. If � is non-
linear, then FRbase(�,R) = R, so this is clear. If s = �γ then no rules play a
part.

If s = f(s1, . . . , sn) and � = f(l1, . . . , ln) and each si →∗
R liγ by a formative

li-reduction, then by the induction hypothesis each formative li-reduction si →∗
R

liγ uses only rules in FRbase(li,R). Observing that by definition FRbase(li,R) ⊆
FRbase(�,R), we see that all steps of the reduction use rules in FRbase(�,R).

If s→∗
R �

′δ →R r
′δ = f(t1, . . . , tn)→∗

R f(l1, . . . , ln)γ = �γ, then by the same
reasoning the reduction r′δ →∗

R �γ uses only formative rules of �, and by the
induction hypothesis s →∗

R �′δ uses only formative rules of �′. Noting that r′

obviously has the same sort as �, and either r′ is a variable or a term f(r′1, . . . , r
′
n),

we see that r′ has shape f , so �′ → r′ ∈ FRbase(�,R). Therefore FRbase(�
′,R) ⊆

FRbase(�,R), so all rules in the reduction are formative rules of �. +,

In the following, we will assume a fixed formative rules approximation FR. The
relevance of formative rules is clear from their definition: if we can prove that a
(P ,R)-chain can be altered to use formative reductions in the →R steps, then
we can drop all non-formative rules from a DP problem.

The key result in this paper is the following technical lemma, which allows us
to alter a reduction s→∗

R �γ to a formative reduction (by changing γ):

Lemma 13. If s →∗
R �γ for some terms s, � and a substitution γ on domain

Var(�), then there is a substitution δ on the same domain such that s→∗
FR(�,R) �δ

by a formative �-reduction.

Proof. For non-linear � this is clear, choosing δ := γ. So let � be a linear term.
By definition of FR, it suffices to see that s →∗

R �δ by a formative �-reduction.
This follows from the following claim: If s −→‖ R

k �γ for some k, term s, linear
term � and substitution γ on domain Var(�), then there is a substitution δ on
Var(�) such that s→∗

R �δ by a formative �-reduction, and each δ(x) −→‖ R
k γ(x).

Here, the parallel reduction relation −→‖ R is defined by: x −→‖ R x; �γ −→‖ R rγ
for �→ r ∈ R; if si −→‖ R ti for 1 ≤ i ≤ n, then f(s1, . . . , sn) −→‖ R f(t1, . . . , tn).
The notation −→‖ R

k indicates k or fewer successive −→‖ R steps. Note that −→‖ R
is reflexive, and if each si −→‖ R

Ni ti, then f(s) −→‖ R
max(N1,...,Nn) f(t).

We prove the claim by induction first on k, second on the size of �.
If � is a variable we are immediately done, choosing δ := [� := s].
Otherwise, let � = f(l1, . . . , ln) and γ = γ1 ∪ . . . ∪ γn such that all γi have

disjoint domains and each liγi = liγ; this is possible due to linearity.
First suppose the reduction s −→‖ R

k �γ uses no topmost steps. Thus, we can
write s = f(s1, . . . , sn) and each si −→‖ R

k liγ. By the second induction hypothesis
we can find δ1, . . . , δn such that each si →∗

R liδi by a formative li-reduction and
each δi(x) −→‖ R

k γi(x). Choose δ := δ1 ∪ . . . ∪ δn; this is well-defined by the
assumption on the disjoint domains. Then s→∗

R �δ by a formative �-reduction.
Alternatively, a topmost step was done, which cannot be parallel with other

steps: s −→‖ R
m �′γ′ →R r

′γ′ −→‖ R
k−m−1 �γ for some �′ → r′ ∈ R and substitution

γ′; we can safely assume that r′γ′ −→‖ R
k−m−1 �γ does not use topmost steps

(otherwise we could just choose a later step). Since m < k, the first induction
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hypothesis provides δ′ such that s→∗
R �

′δ′ by a formative �′-reduction and each
δ′(x) −→‖ R

m γ′(x). But then also r′δ′ −→‖ R
m r′γ′. Since r′γ′ −→‖ R

k−m−1 �γ, we
have that r′δ′ −→‖ R

k−1 �γ. Thus, by the first induction hypothesis, there is δ
such that r′δ′ →∗

R �δ by a formative �-reduction, and each δ(x) −→‖ R
k−1 γ(x).

We are done if the full reduction s→∗
R �

′δ′ →R r
′δ′ →∗

R �δ is �-formative; this
is easy with induction on the number of topmost steps in the second part. +,

Lemma 13 lays the foundation for all theorems in this paper. To start:

Theorem 14. (Σ,R) is non-terminating if and only if there is an infinite min-
imal formative (DP(R),FR(DP(R),R))-chain. Here, a chain [(�i → ri, γi) |
i ∈ N] is formative if always riγi →∗

FR(�i+1,R) �i+1γi+1 by a formative �i+1-
reduction.

Proof Sketch: Construct an infinite (DP(R),R)-chain following the usual proof,
but when choosing γi+1, use Lemma 13 to guarantee that riγi →∗

FR(�i+1,R)

�i+1γi+1 by a formative �i+1-reduction. +,
Note that this theorem extends the standard dependency pairs result (The-
orem 3) by limiting interest to chains with formative reductions.

Example 15. The system from Example 1 is terminating iff there is no infinite
minimal formative (P , Q)-chain, where P = DP(R) from Example 2 and Q =
{1, 2, 3, 5, 6, 7, 8, 10, 11}. Rules 4 and 9 have right-hand sides headed by symbols
Err and Return which do not occur in the left-hand sides of DP or its formative
rules.

4 Formative Rules in the Dependency Pair Framework

Theorem 14 provides a basis for using DPs with formative rules to prove termin-
ation: instead of proving that there is no infinite minimal (DP(R),R)-chain, it
suffices if there is no infinite minimal formative (DP(R),FR(DP(R),R))-chain.
So in the DP framework, we can start with the set {(DP(R),FR(DP(R),R),m)}
instead of {(DP(R),R,m)}, as we did in Example 15. We thus obtain a similar
improvement to Dershowitz’ refinement [3] in that it yields a smaller initial DP
problem: by [3], we can reduce the initial set DP(R); by Theorem 14 we can
reduce the initial set R. However, there (currently) is no way to keep track of
the information that we only need to consider formative chains. Despite this,
we can define several processors. All of them are based on this consequence of
Lemma 13:

Lemma 16. If there is a (P ,R)-chain [(�i → ri, γi) | i ∈ N], then there are δi
for i ∈ N such that [(�i → ri, δi) | i ∈ N] is a formative (P ,FR(P ,R))-chain.

Proof. Given [(�i → ri, γi) | i ∈ N] we construct the formative chain as follows.
Let δ1 := γ1. For given i, suppose δi is a substitution such that δi →∗

R γi, so still
riδi →∗

R �i+1γi+1. Use Lemma 13 to find δi+1 such that riδi →∗
FR(�i+1,R) �i+1δi+1

by a formative �i+1-reduction, and moreover δi+1 →∗
R γi+1. +,
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This lemma for instance allows us to remove all non-formative rules from a
DP problem. To this end, we use the following processor:

Theorem 17. The DP processor which maps a DP problem (P ,R, f ) to the set
{(P ,FR(P ,R), a)} is sound.

Proof Sketch: This follows immediately from Lemma 16. +,

Example 18. Let Q = FRbase(DP(R),R) from Example 15, and let P = {Big�(x,
Cons(y, z))→ Big�(Ack(x, y), Upd(z))} as in Example 8. If, during a termination
proof with dependency pairs, we encounter a DP problem (P , Q,m), we can
soundly replace it by (P , T, a), where T = FRbase(P , Q) = {8}.

Thus, we can (permanently) remove all non-formative rules from a dependency
pair problem. This processor has a clear downside, however: given a problem
(P ,R,m), we lose minimality. This m flag is very convenient to have, as several
processors require it (such as reduction pairs with usable rules from Theorem 6).

Could we preserve minimality? Unfortunately, the answer is no. By modifying
a chain to use formative reductions, we may lose the property that each riγi is
terminating. This happens for instance for (P ,R,m), where P = {g�(x) →
h�(f(x)), h�(c) → g�(a)} and R = {a → b, f(x) → c, f(a) → f(a)}. Here,
FRbase(P ,R) = {f(x) → c, f(a) → f(a)}. While there is an infinite minimal
(P ,R)-chain, the only infinite (P ,FRbase(P ,R))-chain is non-minimal.

Fortunately, there is an easy way to use formative rules without losing any
information: by using them in a reduction pair, as we typically do for usable
rules. In fact, although usable and formative rules seem to be opposites, there is
no reason why we should use either one or the other; we can combine them. Con-
sidering also argument filterings, we find the following extension of Theorem 6.

Theorem 19. Let (�,() be a reduction pair and π an argument filtering. The
processor which maps (P ,R, f ) to the following result is sound:

– {(P \ P�,R, f )} if:
• π(�) ( π(r) for �→ r ∈ P� and π(�) � π(r) for �→ r ∈ P \ P�;
• u � v for u→ v ∈ FR(π(P), π(U)),
where U = R if f = a and U = UR(P ,R, π) ∪ Cε if f = m;

– {(P ,R, f )} otherwise.

Proof Sketch: Given an infinite (P ,R)-chain, we use argument filterings and
maybe usable rules to obtain a (π(P), π(U))-chain which uses the same de-
pendency pairs infinitely often (as in [9]); using Lemma 16 we turn this chain
formative. +,
Note that we use the argument filtering here in a slightly different way than for
usable rules: rather than including π in the definition of FR and requiring that
π(�) � π(r) for �→ r ∈ FR(P ,R, π), we simply use FR(π(P), π(R)). For space
reasons, we give additional semantic and syntactic definitions of formative rules
with respect to an argument filtering in the technical report [5, Appendix C].
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Example 20. To handle (P , Q,m) from Example 18, we can alternatively use a
reduction pair. Using the trivial argument filtering, with a polynomial interpret-
ation with Big�(x, y) = x+y, Ack(x, y) = 0, Upd(x) = x and Cons(x, y) = y+1,
all constraints are oriented, and we may remove the only element of P .

Note that we could have handled this example without using formative rules;
Ack and Rnd can be oriented with an extension of�, or we might use an argument
filtering with π(Big�) = {2}. Both objections could be cancelled by adding extra
rules, but we kept the example short, as it suffices to illustrate the method.

Discussion. It is worth noting the parallels between formative and usable
rules. To start, their definitions are very similar; although we did not present
the semantic definition of usable rules from [16] (which is only used for innermost
termination), the syntactic definitions are almost symmetric. Also the usage cor-
responds: in both cases, we lose minimality when using the direct rule removing
processor, but can safely use the restriction in a reduction pair (with argument
filterings).

There are also differences, however. The transformations used to turn a chain
usable or formative are very different, with the usable rules transformation
(which we did not discuss) encoding subterms whose root is not usable, while
the formative rules transformation is simply a matter of postponing reduction
steps.

Due to this difference, usable rules are useful only for a finitely branching sys-
tem (which is standard, as all finite MTRSs are finitely branching); formative
rules are useful mostly for left-linear systems (also usual, especially in MTRSs
originating from functional programming, but typically seen as a larger restric-
tion). Usable rules introduce the extra Cε rules, while formative rules are all
included in the original rules. But for formative rules, even definitions extend-
ing FRbase, necessarily all collapsing rules are included, which has no parallel in
usable rules; the parallel of collapsing rules would be rules x→ r, which are not
permitted.

To use formative rules without losing minimality information, an alternative to
Theorem 17 allows us to permanently delete rules. The trick is to add a new
component to DP problems, as for higher-order rewriting in [11, Ch. 7]. A DP
problem becomes a tuple (P ,R, f1, f2), with f1 ∈ {m, a} and f2 ∈ {form, arbitrary},
and is finite if there is no infinite (P ,R)-chain which is minimal if f1 = m, and
formative if f2 = form. By Theorem 14, R is terminating iff (DP(R),R,m, form)
is finite.

Theorem 21. In the extended DP framework, the processor which maps
(P ,R, f1, f2) to {(P ,FR(P ,R), f1, f2)} if f2 = form and {(P ,R, f1, f2)} otherwise,
is sound.

Proof: This follows immediately from Lemma 12. +,
The downside of changing the DP framework in this way is that we have to re-

visit all existing DP processors to see how they interact with the formative flag. In
many cases, we can simply pass the flag on unmodified (i.e. if proc((P ,R, f1)) = A,
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then proc ′((P ,R, f1, f2)) = {(P ′,R′, f ′1 , f2) | (P ′,R′, f ′1) ∈ A}). This is for ex-
ample the case for processors with reduction pairs (like the one in Theorem 19),
the dependency graph and the subterm criterion. Other processors would have to
be checked individually, or reset the flag to arbitrary by default.

Given how long the dependency pair framework has existed (and how many
processors have been defined, see e.g. [16]), and that the formative flag clashes
with the component for innermost rewriting (see Section 6), it is unlikely that
many tool programmers will make the effort for a single rule-removing processor.

5 Handling the Collapsing Rules Problem

A great weakness of the formative rules method is the matter of collapsing rules.
Whenever the left-hand side of a dependency pair or formative rule has a symbol
f : [ι] ⇒ κ, all collapsing rules of sort κ are formative. And then all their
formative rules are also formative. Thus, this often leads to the inclusion of all
rules of a given sort. In particular for systems with only one sort (such as all first-
order benchmarks in the Termination Problems Data Base), this is problematic.

For this reason, we will consider a new notion, building on the idea of formative
rules and reductions. This notion is based on the observation that it might suffice
to include composite rules rather than the formative rules of all collapsing rules.
To illustrate the idea, assume given a uni-sorted system with rules a→ f(b) and
f(x) → x. FRbase(c) includes f(x)→ x, so also a → f(b). But a term f(b) does
not reduce to c. So intuitively, we should not really need to include the first rule.

Instead of including the formative rules of all collapsing rules, we might ima-
gine a system where we combine rules with collapsing rules that could follow
them. In the example above, this gives R = {a → f(b), a → b, f(x) → x}.
Now we might consider an alternative definition of formative rules, where we
still need to include the collapsing rule f(x) → x, but no longer need to have
a→ f(b).

To make this idea formal, we first consider how rules can be combined. In
the following, we consider systems with only one sort ; this is needed for the
definition to be well-defined, but can always be achieved by replacing all sorts
by o.

Definition 22 (Combining Rules). Given an MTRS (Σ,R), let A :=
{f(x) → xi | f : [ι1 × . . . × ιn] ⇒ κ ∈ Σ ∧ 1 ≤ i ≤ n} and B := {� → p |
�→ r ∈ R∧ r� p}. Let X ⊆ A∪B be the smallest set such that R ⊆ X and for
all �→ r ∈ X:

a. if r is a variable, �� f(l1, . . . , ln) and li � r, then f(x1, . . . , xn)→ xi ∈ X;
b. if r = f(r1, . . . , rn) and f(x1, . . . , xn)→ xi ∈ X, then �→ ri ∈ X.

Let Cl := A∩X and NC = {�→ r ∈ X | r not a variable}. Let AR := Cl ∪NC.

It is easy to see that →∗
R is included in →∗

AR
: all non-collapsing rules of R

are in NC , and all collapsing rules are obtained as a concatenation of steps in
Cl .
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Example 23. Consider an unsorted version of Example 1. Then for (P , Q) as
in Example 18, we have U := UR(P , Q) = {1, 2, 3, 5, 8, 10, 11}. Unfortunately,
only (3) is not formative, as the two Rnd rules cause inclusion of all rules in
FRbase(S(x), U). Let us instead calculate X , which we do as an iterative proced-
ure starting from R. In the following, C ⇒ D1, . . . , Dn should be read as: “by
requirement a, rule C enforces inclusion of each Di”, and C,D ⇒ E similarly
refers to requirement b.

2, 1⇒ 12 5, 13⇒ 14 10, 15⇒ 16 16, 13⇒ 18 17, 15⇒ 19
12⇒ 1, 13 14⇒ 15 11, 15⇒ 17 18⇒ 15, 13 19⇒ 15, 13

12. Rnd(S(x))→ x 15. Ack(x, y)→ y 18. Ack(S(x), y)→ y
13. S(x)→ x 16. Ack(S(x), y)→ S(y) 19. Ack(S(x), S(y))→ y
14. Ack(O, y)→ y 17. Ack(S(x), S(y))→ Ack(S(x), y)

Now Cl = {1, 13, 15} and NC = {2, 3, 5, 8, 10, 11, 16, 17}, and AU = Cl ∪ NC .

Although combining a system R into AR may create significantly more rules,
the result is not necessarily harder to handle. For many standard reduction pairs,
like RPO or linear polynomials over N, we have: if s � x where x ∈ Var(s) occurs
exactly once, then f(. . . , t, . . .) � t for any t with s� t� x. For such a reduction
pair, AR can be oriented whenever R can be (if R is left-linear).
AR has the advantage that we never need to follow a non-collapsing rule

l→ f(r) by a collapsing step. This is essential to use the following definition:

Definition 24. Let A be a set of rules. The split-formative rules of a term t
are defined as the smallest set SR(t, A) ⊆ A such that:

– if t is not linear, then SR(t, A) = A;

– all collapsing rules in A are included in SR(t, A);

– if t = f(t1, . . . , tn), then SR(ti, A) ⊆ SR(t, A);
– if t = f(t1, . . . , tn), then {�→ r ∈ A | r has the form f(. . .)} ⊆ SR(t, A);

– if �→ r ∈ SR(t, A) and r is not a variable , then SR(�, A) ⊆ SR(t, A).

For a set of rules P, we define SR(P , A) =
⋃

s→t∈P SR(s, A).

Definition 24 is an alternative definition of formative rules, where collapsing

rules have a smaller effect (differences to Definition 7 are highlighted ). SR is

not a formative rules approximation, as shown by the a-formative reduction
f(a) →R g(a) →R a with R = {f(x) → g(x), g(x) → x} but SR(a,R) =
{g(x) → x}. However, given the relation between R and AR, we find a similar
result to Lemma 12:

Lemma 25. Let (Σ,R) be an MTRS. If s →∗
R �γ by a formative �-reduction,

then s→∗
SR(�,AR) �γ by a formative �-reduction.

Unlike Lemma 12, the altered reduction might be different. We also do not
have that SR(P , AR) ⊆ R. Nevertheless, by this lemma we can use split-formative
rules in reduction pair processors with formative rules, such as Theorem 19.
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Proof Sketch: The original reduction s→∗
R �γ gives rise to a formative reduction

over AR, simply replacing collapsing steps by a sequence of rules in Cl . So, we
assume given a formative �-reduction over AR, and prove with induction first on
the number of non-collapsing steps in the reduction, second on the length of the
reduction, third on the size of s, that s→∗

SR(�,AR) �γ by a formative �-reduction.
This is mostly easy with the induction hypotheses; note that if a root-rule in

NC is followed by a rule in Cl , there can be no internal→∗
R reduction in between

(as this would not be a formative reduction); combining a rule in NC with a rule
in Cl gives either a rule in NC (and a continuation with the second induction
hypothesis) or a sequence of rules in Cl (and the first induction hypothesis). +,

Note that this method unfortunately does not transpose directly to the higher-
order setting, where collapsing rules may have more complex forms. We also had
to give up sort differentiation, as otherwise we might not be able to flatten a
rule f(g(x)) → x into f(x) → x, g(x) → x. This is not such a great problem,
as reduction pairs typically do not care about sorts, and we circumvented the
main reason why sorts are important for formative rules. We have the following
result:

Theorem 26. Let (�,() be a reduction pair and π an argument filtering. The
processor which maps a DP problem (P ,R, f ) to the following result is sound:

– {(P \ P�,R, f )} if:
• π(�) ( π(r) for �→ r ∈ P� and π(�) � π(r) for �→ r ∈ P \ P�;
• u � v for u → v ∈ SR(π(P), Aπ(U)), and Var(t) ⊆ Var(s) for s → t ∈
π(U), where U = R if f = a and U = UR(P ,R, π) ∪ Cε if f = m;

– {(P ,R, f )} otherwise.

Proof Sketch: Like Theorem 19, but using Lemma 25 to alter the created form-
ative (π(P), π(U))-chain to a split-formative (π(P), SR(π(P), Aπ(U)))-chain. +,

Example 27. Following Example 23, SR(Big�(x, Cons(y, z)) → Big�(Ack(x, y),
Upd(z)), AU ) = Cl ∪ {8}, and Theorem 26 gives an easily orientable problem.

6 Formative Rules for Innermost Termination

So far, we have considered only full termination. A very common related query
is innermost termination; that is, termination of →in

R, defined by:

– f(l)γ →in
R rγ if f(l)→ r ∈ R, γ a substitution and all liγ in normal form;

– f(s1, . . . , si, . . . , sn)→in
R f(s1, . . . , s

′
i, . . . , sn) if si →in

R s
′
i.

The innermost reduction relation is often used in for instance program analysis.
An innermost strategy can be included in the dependency pair framework by

adding the innermost flag [9] to DP problems (or, more generally, a component
Q [7] which indicates that when reducing any term with →P or →R, its strict
subterms must be normal with respect to Q). Usable rules are more viable for
innermost than normal termination: we do not need minimality, the Cε rules
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do not need to be handled by the reduction pair, and we can define a sound
processor that maps (P ,R, f , innermost) to {(P ,UR(P ,R), f , innermost)}.

This is not the case for formative rules. Innermost reductions eagerly evaluate
arguments, yet formative reductions postpone evaluations as long as possible. In
a way, these are exact opposites. Thus, it should not be surprising that format-
ive rules are weaker for innermost termination than for full termination. The-
orem 14 has no counterpart for→in

R; for innermost termination we must start the
DP framework with (P ,R,m, innermost), not with (P ,FR(P ,R),m, innermost).
Theorem 17 is only sound if the innermost flag is removed: (P ,R, f , innermost) is
mapped to {(P ,FR(P ,R), a, arbitrary)}. Still, we can safely use formative rules
with reduction pairs. For example, we obtain this variation of Theorem 19:

Theorem 28. Let (�,() be a reduction pair and π an argument filtering. The
processor which maps a DP problem (P ,R, f1, f2) to the following result is sound:

– {(P \ P�,R, f1, f2)} if:

• π(�) ( π(r) for �→ r ∈ P� and π(�) � π(r) for �→ r ∈ P \ P�;
• u � v for u → v ∈ FR(π(P), π(U)), where U is: UR(P ,R, π) if f2 =
innermost; otherwise UR(P ,R, π) ∪ Cε if f1 = m; otherwise R.

– {(P ,R, f1, f2)} otherwise.

Proof Sketch: The proof of Theorem 19 still applies; we just ignore that the given
chain might be innermost (aside from getting more convenient usable rules). +,

Theorem 26 extends to innermost termination in a similar way.
Conveniently, innermost termination is persistent [4], so modifying Σ does

not alter innermost termination behaviour, as long as all rules stay well-sorted.
In practice, we could infer a typing with as many different sorts as possible, and
get stronger formative-rules-with-reduction-pair processors. With the innermost
switch processor [16, Thm. 3.14], which in cases can set the innermost flag on a
DP problem, we could also often use this trick even for proving full termination.

In Section 4, we used the extra flag f2 as the formative flag. It is not contra-
dictory to use f2 in both ways, allowing f2 ∈ {arbitrary, form, innermost}, since it
is very unlikely for a (P ,R)-chain to be both formative and innermost at once!
When using both extensions of the DP framework together, termination provers
(human or computer) will, however, sometimes have to make a choice which flag
to add.

7 Implementation and Experiments

We have performed a preliminary implementation of formative rules in the termin-
ation tool AProVE [6]. Our automation borrows from the usable rules of [8] (see [5,
Appendices B+D]) and uses a constraint encoding [2] for a combined search for
argument filterings and corresponding formative rules. While we did not find any
termination proofs for examples from the TPDB where none were known before,
our experiments show that formative rules do improve the power of reduction pairs
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for widely used term orders (e.g., polynomial orders [14]). For more information,
see also: http://aprove.informatik.rwth-aachen.de/eval/Formative.

For instance, we experimented with a configuration where we applied depend-
ency pairs, and then alternatingly dependency graph decomposition and reduc-
tion pairs with linear polynomials and coefficients ≤ 3. On the TRS Standard
category of the TPDB (v8.0.7) with 1493 examples, this configuration (without
formative rules, but with usable rules w.r.t. an argument filter) shows termina-
tion of 579 examples within a timeout of 60 seconds (on an Intel Xeon 5140 at
2.33 GHz). With additional formative rules, our implementation of Theorem 19
proved termination of 6 additional TRSs. (We did, however, lose 4 examples to
timeouts, which we believe are due in part to the currently unoptimised imple-
mentation.)

The split-formative rules from Theorem 26 are not a subset of R, in contrast
to the usable rules. Thus, it is a priori not clear how to combine their encodings
w.r.t. an argument filtering, and we conducted experiments using only the stand-
ard usable rules. Without formative rules, 532 examples are proved terminating.
In contrast, adding either the formative rules of Theorem 19 or the split-formative
rules of Theorem 26 we solved 6 additional examples each (where Theorem 19 and
Theorem 26 each had 1 example the other could not solve), losing 1 to timeouts.

Finally, we experimented with the improved dependency pair transformation
based on Theorem 14, which drops non-formative rules from R. We applied DPs
as the first technique on the 1403 TRSs from TRS Standard with at least one DP.
This reduced the number of rules in the initial DP problem for 618 of these TRSs,
without any search problems and without sacrificing minimality.

Thus, our current impression is that while formative rules are not the next
“killer technique”, they nonetheless provide additional power to widely-used or-
ders in an elegant way and reduce the number of term constraints to be solved in a
termination proof. The examples from the TPDB are all untyped, and we believe
that formative rules may have a greater impact in a typed first-order setting.

8 Conclusions

In this paper, we have simplified the notion of formative rules from [13] to the
first-order setting, and integrated it in the dependency pair framework. We did so
by means of formative reductions, which allows us to obtain a semantic definition
of formative rules (more extensive syntactic definitions are discussed in [5]).

We have defined three processors to use formative rules in the standard depend-
ency pair framework for full termination: one is a processor to permanently remove
rules, the other two combine formative rules with a reduction pair.

We also discussed how to strengthen the method by adding a new flag to the
framework – although doing so might require too many changes to existing pro-
cessors and strategies to be considered worthwhile – and how we can still use the
technique in the innermost case, and even profit from the innermost setting.

http://aprove.informatik.rwth-aachen.de/eval/Formative
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RelatedWork. In the first-order DP framework two processors stand out as rel-
evant to formative rules. The first is, of course, usable rules; see Section 4 for a de-
tailed discussion. The second is the dependency graph, which determines whether
any two dependency pairs can follow each other in a (P ,R)-chain, and uses this
information to eliminate elements of P , or to split P in multiple parts.

In state-of-the-art implementations of the dependency graph (see e.g. [16]), both
left- and right-hand side of dependency pairs are considered to see whether a pair
can be preceded or followed by another pair. Therefore it seems quite surprising
that the same mirroring was not previously tried for usable rules.

Formative rules have been previously defined, for higher-order term rewriting,
in [13], which introduces a limited DP framework, with formative rules (but not
formative reductions) included in the definition of a chain: we simply impose the
restriction that always riγi →∗

FR(P,R) �i+1γi+1. This gives a reduction pair pro-
cessor which considers only formative rules, although it cannot be combined with
usable rules and argument filterings. The authors do not yet consider rule remov-
ing processors, but if they did, Theorem 21 would also go through.

In the second author’s PhD thesis [11], a more complete higher-orderDP frame-
work is considered.Here, we do see formative reductions, and a variation of Lemma 13
which, however, requires that s is terminating: the proof style used here does not
go through there due to β-reduction. Consequently, Lemma 16 does not go through
in the higher-order setting, and there is no counterpart to Theorems 17 or 19. We
do, however, have Theorem 21. Furthermore, the results of Section 5 are entirely
new to this paper, and do not apply in the higher-order setting, where rules might
also have a form l→ x · s1 · · · sn (with x a variable).

FutureWork. In the future, it would be interesting to look back at higher-order
rewriting, and see whether we can obtain some form of Lemma 16 after all. Al-
ternatively, we might be able to use the specific form of formative chains to obtain
formative (and usable) rules w.r.t. an argument filtering.

In the first-order setting, we might turn our attention to non-left-linear rules.
Here, we could think for instance of renaming apart some of these variables; a rule
f(x, x)→ g(x, x) could become any of f(x, y)→ g(x, y), f(x, y)→ g(y, x), . . .
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Abstract. In this paper we present a simple technique for analysing
the runtime complexity of rewrite systems. In complexity analysis many
techniques are based on reduction orders. We show how the monotonic-
ity condition for orders can be weakened by using the notion of context-
sensitive rewriting. The presented technique is very easy to implement,
even in a modular setting, and has been integrated in the Tyrolean Com-
plexity Tool. We provide ample experimental data for assessing the via-
bility of our method.
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1 Introduction

This paper is concerned with runtime complexity analysis of term rewrite sys-
tems. In recent years the field of complexity analysis of rewrite systems has been
dramatically revived. Nowadays this area provides a wide range of different tech-
niques to analyse the time complexity of rewrite systems, fully automatically.
Techniques range from direct methods, like polynomial interpretations, matrix in-
terpretations of polynomial path orders (e.g. [1–3]) to transformation techniques,
like adaptions of the dependency pair method [4,5] or modular techniques [6,7].
See [8] for an overview of complexity analysis methods for term rewrite systems.
Furthermore the connection between (runtime) complexity analysis and implicit
computational complexity [9] is by now well-understood, cf. [10]. Despite this
wealth of results, very simple examples cannot be handled and in particular the
enormous power of today’s termination provers for rewrite systems is still far
beyond the ability of today’s complexity analysers. Modern termination provers
provide termination or non-termination certificates for upto 90 % of the prob-
lems Termination Problem Database (TPDB for short), while with respect to

� This research is partly supported by JSPS KAKENHI Grant Number 25730004 and
FWF (Austrian Science Fund) project I 963-N15.

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 257–271, 2014.
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automated polynomial runtime complexity analysis of rewrite systems, we see a
success rate of 38 %.1

Consider Example 1 below. The example encodes division in a natural way.
It can be analysed with the techniques mentioned above, but the optimal linear
bound on the runtime complexity is not attainable.

Example 1. Consider the following TRS Rdiv
2

1: x− 0→ x 3: 0÷ s(y)→ 0

2: s(x) − s(y)→ x− y 4: s(x)÷ s(y)→ s((x− y)÷ s(y)) .

The example also clarifies a difference between the derivational and the run-
time complexity of rewrite systems. The derivational complexity function with
respect to a terminating TRS relates the maximal derivation height to the size of
the initial term, cf. [12, 13]. On the other hand the runtime complexity function
with respect to a terminating TRS restricts the derivational complexity function
so that only basic terms are considered as starting terms. Here basic terms refer
to terms that contain a defined symbol only at root. This terminology was sug-
gested in [4]. Related notions have been studied in [1, 14]. It is easy to see that
the derivational complexity with respect to Rdiv bounded from below by an ex-
ponential function, while the runtime complexity is linear. Essentially this is due
to the fact that, in the computation of division, no contraction is ever required
below the second argument. Furthermore, dependency on the first argument is
linear.

An inspection of the motivating example in the context of runtime complex-
ity analysis reveals that direct methods are not applicable as the monotonicity
constraints are too restrictive. While monotonicity is no longer an issue for trans-
formation techniques, neither the weak dependency pair method [4] nor the de-
pendency tuple method [5] can deduce the linear (innermost) runtime complexity,
as essential constraints cannot be met. In this paper we extend the applicabil-
ity of direct techniques for complexity results by showing how the monotonicity
constraints can be significantly weakened through the employ of usable replace-
ment maps, which govern those argument position actually used in rewriting.
As usable replacement maps are not computable in general, we provide suffi-
ciently expressive approximations of usable replacement maps. More generally,
we show how notions from context-sensitive rewriting can be made applicable in
the context of complexity analysis.

This paper is structured as follows. In the next section we cover basics. In Sec-
tion 3 we define usable replacement maps. In Section 4 we provide experimental
data that verifies that the proposed technique makes a difference in practice.
Furthermore, in Section 5 we present related work and conclude in Section 6.

1 We base the comparison on last year’s run of TERMCOMP, where we consider the
categories TRS Standard and Runtime Complexity – Innermost Rewriting. Note that
for termination YES and NO answers have been counted.

2 This is Example 3.1 in Arts and Giesl’s collection of TRSs [11].
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2 Runtime Complexity Analysis Based on Matrix
Interpretations

We assume familiarity with term rewriting [13, 15] but briefly review basic con-
cepts and notations from term rewriting, context-sensitive rewriting and recall
matrix interpretations. In particular we will adapt triangular matrix interpreta-
tions for runtime complexity analysis.

Let V denote a countably infinite set of variables and F a signature, such
that F contains at least one constant. The set of terms over F and V is denoted
by T (F ,V). The set of positions Pos(t) of a term t is defined as usual. We
write PosG(t) ⊆ Pos(t) for the set of positions of subterms whose root symbol is
contained in G ⊆ F . The subterm of t at position p is denoted as t|p, and t[u]p
denotes the term that is obtained from t by replacing the subterm at p by u. The
subterm relation is denoted as �. Var(t) denotes the set of variables occurring
in a term t. The size |t| of a term is defined as the number of symbols in t.

A term rewrite system (TRS ) R over T (F ,V) is a finite set of rewrite rules
l → r. In the sequel, R always denotes a TRS. The rewrite relation is denoted
as→R and we use the standard notations for its transitive and reflexive closure.
We simply write → for →R if R is clear from context. Let s and t be terms. If
exactly n steps are performed to rewrite s to t, we write s→n t. With NF(R) we
denote the set of all normal forms of a term rewrite system R. The innermost
rewrite relation i−→R of a TRS R is defined on terms as follows: s i−→R t if there
exist a rewrite rule l → r ∈ R, a context C, and a substitution σ such that
s = C[lσ], t = C[rσ], and all proper subterms of lσ are normal forms of R.
Defined symbols of R are symbols appearing at root in left-hand sides of R. The
set of defined function symbols is denoted as D, while the constructor symbols
F \ D are collected in C. We call a term t = f(t1, . . . , tn) basic or constructor
based if f ∈ D and ti ∈ T (C,V) for all 1 � i � n. The set of all basic terms are
denoted by Tb. We call a TRS (innermost) terminating if no infinite (innermost)
rewrite sequence exists.

A replacement map μ is a function with μ(f) ⊆ {1, . . . , n} for all n-ary func-
tions with n � 1 [16]. The set Posμ(t) of μ-replacing positions in t is defined as
follows:

Posμ(t) :=
{
{ε} if t is a variable ,

{ε} ∪ {ip | i ∈ μ(f) and p ∈ Posμ(ti)} if t = f(t1, . . . , tn) .

A μ-step s
μ−→ t is a rewrite step s → t whose rewrite position is in Posμ(s).

The set of all non-μ-replacing positions in t is denoted by Posμ(t); namely,
Posμ(t) := Pos(t) \ Posμ(t).

A monotone F-algebra is a pair (A,() where A is an F -algebra and ( is a
proper order such that for every function symbol f ∈ F , fA is strictly monotone
in all coordinates with respect to (. A (monotone) F -algebra (A,() is called
well-founded if ( is well-founded. Any monotone F -algebra (A, R) induces a
binary relation RA on terms: define s RA t if [α]A(s) R [α]A(t) for all assign-
ments α. We say A is compatible with a TRS R if R ⊆ RA. Let μ denote a
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replacement map. Then we call a well-founded algebra (A,() μ-monotone if for
every function symbol f ∈ F , fA is strictly monotone on μ(f), i.e. fA is strictly
monotone with respect to every argument position in μ(f). Similarly a relation
R is called μ-monotone if it is strictly monotone on μ(f) for all f ∈ F . Let R be
a TRS compatible with a μ-monotone relation R. Then clearly any μ-step s

μ−→ t
implies s R t.

We recall the concept of matrix interpretations on natural numbers (see [17]
but compare also [18]). Let F denote a signature. We fix a dimension d ∈ N
and use the set Nd as the carrier of an algebra A, together with the following
extension of the natural order > on N: (x1, x2, . . . , xd) > (y1, y2, . . . , yd) :⇐⇒
x1 > y1 ∧ x2 � y2 ∧ . . . ∧ xd � yd. Let μ be a replacement map. For each n-
ary function symbol f , we choose as an interpretation a linear function of the
following shape:

fA : (v1, . . . ,vn) �→ F1v1 + · · ·+ Fnvn + f ,

where v1, . . . ,vn are (column) vectors of variables, F1, . . . , Fn are matrices (each
of size d× d), and f is a vector over N. Moreover, suppose for any i ∈ μ(f) the
top left entry (Fi)1,1 is positive. Then it is easy to see that the algebra A forms a
μ-monotone well-founded algebra Let A be a matrix interpretation, let α0 denote
the assignment mapping any variable to 0, i.e. α0(x) = 0 for all x ∈ V , and let
t be a term. In the following we write [t], [t]j as an abbreviation for [α0]A(t), or
([α0]A(t))j (1 � j � d), respectively, if the algebra A is clear from the context.

The derivation height of a term s with respect to a well-founded, finitely
branching relation → is defined as: dh(s,→) = max{n | ∃t s→n t}.
Definition 2. We define the runtime complexity function rcR(n) and the in-
nermost runtime complexity function rciR(n) as follows:

rcR(n) := max{dh(t,→R) | t is basic and |t| � n}
rciR(n) := max{dh(t, i−→R) | t is basic and |t| � n} .

We may say the (innermost) runtime complexity of R is linear, quadratic,
or polynomial if there exists a (linear, quadratic) polynomial p(n) such that

rc
(i)
R (n) � p(n) for sufficiently large n.
Note that dh(t,() is undefined, if the relation ( is not well-founded or not

finitely branching. In fact compatibility of a constructor TRS with the polyno-
mial path order >pop∗ ([3]) induces polynomial innermost runtime complexity,
whereas f(x) >pop∗ gn(x) >pop∗ · · · >pop∗ · · · >pop∗ g2(x) >pop∗ g(x) >pop∗ x
holds for all n ∈ N, when precedence f > g is used. Hence dh(t, >pop∗) is un-
defined, while the order >pop∗ can still be employed in complexity analysis. Let
R be a binary relation over terms, let ( be a proper order on terms, and let
G denote a mapping associating a term with a natural number. Then ( is G-
collapsible on R if G(s) > G(t), whenever s R t and s ( t holds. An order ( is
collapsible (on R), if there is a mapping G such that ( is G-collapsible (on R).

Lemma 3. Let R be a finitely branching and well-founded relation. Further,
let ( be a G-collapsible order with R ⊆ (. Then dh(t, R) � G(t) holds for all
terms t.
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If a TRS R and a μ-monotone matrix interpretation A are compatible, G(t)
can be given by [t]1. In order to estimate derivational or runtime complexity,
one needs to associate [t]1 to |t|. For this sake we define degrees of matrix inter-
pretations.

Definition 4. A matrix interpretation is of (basic) degree k if there is a con-
stant c such that [t]i � c · |t|k for all (basic) terms t and i, respectively.

An upper triangular complexity matrix is a matrix M in Nd×d such that we
haveMj,k = 0 for all 1 � k < j � d, andMj,j � 1 for all 1 � j � d. We say that a
(μ-)monotone well-founded algebra A is a triangular matrix interpretation (TMI
for short) if A is a matrix interpretation (over N) and all matrices employed are
of upper triangular complexity form. The following result can be easily distilled
from the literature, cf. [19, 20].

Theorem 5. Let A be a TMI and let M denote the component-wise maximum
of all matrices occurring in A. Further, let k denote the number of ones occurring
along the diagonal of M . Then, (A is O(nk)-collapsible.

In order to cope with runtime complexity, a similar idea to restricted poly-
nomial interpretations (see [1]) can be integrated to triangular matrix interpre-
tations. We call A a restricted matrix interpretation (RMI for short) if A is a
matrix interpretation, but for each constructor symbol f ∈ C, the interpreta-
tion fA of f employs upper triangular complexity matrices, only. The following
theorem is obtained from the combination of existing results [1, 2, 19].

Theorem 6. Let A be an RMI and let t be a basic term. Further, let M de-
note the component-wise maximum of all matrices used for the interpretation
of constructor symbols, and let k denote the number of ones occurring along the
diagonal of M . Then A is of basic degree k. Furthermore, if M is the unit matrix
then A is of basic degree 1.

It is not difficult to see that Theorem 6 also holds for RMIs based on lower
triangular complexity matrices. We refrain from given the formal details, but
rather exemplify the definition below.

Example 7. Consider the TRS Rsum
3

1: sum(0)→ 0 3: sum1(0)→ 0

2: sum(s(x))→ sum(x) + s(x) 4 : sum1(s(x))→ s(sum1(x) + (x+ x))

where, sum and sum1 are defined symbols, and 0, s, and + are constructor sym-
bols. Consider the 2-dimensional RMI A (based on lower triangular complexity
matrices) with

3 The TRS is Example 2.17 in Steinbach and Kühler’s collection of TRSs [21].
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0A =

(
0
1

)
sumA(x) =

(
1 2
1 3

)
x+

(
0
1

)
sA(x) =

(
1 0
1 1

)
x+

(
2
2

)
sum1A(x) =

(
1 2
0 3

)
x

+A(x,y) =

(
1 0
0 0

)
x+

(
1 0
0 0

)
y .

The rules in Rsum are interpreted and ordered as follows.

1 :

(
2
4

)
>

(
0
1

)
3:

(
2
3

)
>

(
0
1

)
2:

(
3 2
4 3

)
x+

(
6
9

)
>

(
2 2
0 0

)
x+

(
2
0

)
4:

(
3 2
3 3

)
x+

(
6
6

)
>

(
3 2
3 2

)
x+

(
2
2

)
.

Therefore, Rsum ⊆ >A holds. By an application of Theorem 6 we conclude that
the runtime complexity is quadratic. As we see later, there is a tighter bound.

3 Usable Replacement Maps

Unfortunately, there is no RMI compatible with the TRS of our running ex-
ample (Example 1). The reason is that the monotonicity requirement of matrix
interpretations is too severe for complexity analysis. Inspired by the idea of
Fernández [22], we show how context-sensitive rewriting is used in complexity
analysis. Here we briefly explain our idea. Let n denote the numeral sn(0). Con-
sider the derivation from 4÷ 2:

4÷ 2→ s((3− 1)÷ 2)→ s((2− 0)÷ 2)→ s(2÷ 2)→ · · ·

where redexes are underlined. Observe that e.g. any second argument of ÷ is
never rewritten. More precisely, any derivation from a basic term consists of
only μ-steps with the replacement map μ: μ(s) = μ(÷) = {1} and μ(−) = ∅.

Recall that Posμ(t) denotes the set of μ-replacing positions in t and Posμ(t) =
Pos(t) \ Posμ(t). Further, a term t is a μ-replacing term with respect to a TRS
R if p ∈ Posμ(t) implies t|p ∈ NF(R). The set of all μ-replacing terms is denoted
by T (μ). Below [L](→∗) denotes the set {t | s→∗ t for some s ∈ L}.

The above observation is cast in the following definition, borrowed from [23].
Usable replacement maps satisfy a desired property for runtime complexity anal-
ysis, as detailed in this section.

Definition 8. Let → denote a binary relation. A replacement map μ is called
a usable replacement map with respect to → and the set of starting terms Tb if
[Tb](→∗) ⊆ T (μ).

The main result of this section is the definition of suitable approximations
of usable replacement maps. For that we adapt the cap-function ICAP suitably,
cf. [24]. Let μ be a replacement map. Clearly the function μ is representable as
set of ordered pairs (f, i). Below we often confuse the notation of μ as a function
or as a set.
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Definition 9. Let R be a TRS and let μ be a replacement map. We define the
operator ΥR as follows:

ΥR(μ) := {(f, i) | l → C[f(r1, . . . , rn)] ∈ R and CAPl
μ(ri) �= ri} .

Here CAPs
μ(t) is inductively defined on t as follows:

CAPs
μ(t) =

⎧⎪⎨⎪⎩
t if t = s|p for some p ∈ Posμ(s) ,
u if t = f(t1, . . . , tn) and u and l unify for no l→ r ∈ R ,

y otherwise ,

where, u = f(CAPs
μ(t1), . . . ,CAP

s
μ(tn)), y is a fresh variable, and we assume

that Var(l) ∩ Var(u) = ∅ holds.

We define the approximated innermost usable replacement map μRi as follows
μRi := ΥR(∅) and let the approximated usable replacement map μRf denote
the least fixed point of ΥR. The existence of ΥR follows from the monotonicity
of ΥR. If R is clear from context, we simple write μi, μf , and Υ , respectively.
In the remainder of the section we establish that μi and μf constitute usable
replacement maps for i−→ and → respectively. Suppose s ∈ T (μ): observe that
the function CAPs

μ(t) replaces a subterm u of t by a fresh variable if uσ is a
redex for some sσ ∈ T (μ). This is exemplified below.

Example 10. Consider the TRS Rdiv. Let l→ r be rule 4, namely, l = s(x)÷s(y)
and r = s((x− y)÷ s(y)). Suppose μ(f) = ∅ for all functions f and let w and z
be fresh variables. The next table summarises CAPl

μ(t) for each proper subterm t
in r. To see the computation process, we also indicate the term u in Definition 9.

t x y x− y s(y) (x− y)÷ s(y)

CAPl
μ(t) x y w s(y) z
u – – x− y s(y) w ÷ s(y)

By underlining proper subterms t in r such that CAPl
μ(t) �= t, we have

s((x − y)÷ s(y))

which indicates (s, 1), (÷, 1) ∈ Υ (μ).

The next lemma clarifies the rôle played by the cap function CAPs
μ(t).

Lemma 11. Let s and t be terms, and σ a substitution such that sσ ∈ T (μ)
and CAPs

μ(t) = t. Then tσ ∈ NF(R).

Proof. We use induction on t. Suppose sσ ∈ T (μ) and CAPs
μ(t) = t. If t = s|p

for some p ∈ Posμ(s) then tσ = (sσ)|p ∈ NF follows by definition of T (μ).
We can assume that t = f(t1, . . . , tn). Assume otherwise that t = x ∈ V , then

CAPs
μ(x) = x entails that xσ occurs at a non-μ-replacing position in sσ. Hence

xσ ∈ NF follows from sσ ∈ T (μ). Moreover, by assumption we have:
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1. CAPs
μ(ti) = ti for each i, and

2. there is no rule l → r ∈ R such that t and l unify.

Due to 2) lσ is not reducible at the root, and the induction hypothesis yields
tiσ ∈ NF because of 1). Therefore, we obtain tσ ∈ NF. +,

For a smooth inductive proof of the key lemma, Lemma 14, we develop an
alternative characterisation of the set of μ-replacing terms T (μ).

Definition 12. The set {(f, i) | f(t1, . . . , tn) � t and ti �∈ NF(R)} is denoted
by υ(t).

The next lemma shows that the set of μ-replacing terms T (μ) can be charac-
terised through the above definition.

Lemma 13. T (μ) = {t | υ(t) ⊆ μ}.

Proof. For the inclusion from left to right, let t ∈ T (μ) and let (f, i) ∈ υ(t).
We show (f, i) ∈ μ. By Definition 12 there is a position p ∈ Pos(t) with t|p =
f(t1, . . . , tn) and t|pi �∈ NF. Thus pi ∈ Posμ(t) and i ∈ Posμ(t|p). Hence (f, i) ∈ μ
is concluded.

Next we consider the opposite direction {t | υ(t) ⊆ μ} ⊆ T (μ). Let t be a
minimal counter-example such that υ(t) ⊆ μ and t �∈ T (μ). One can write
t = f(t1, . . . , tn). Then, there exists a position p ∈ Posμ(t) such that t|p �∈ NF.
Because ε �∈ Posμ(t) by definition, p = iq with i ∈ N. As iq ∈ Posμ(t) one of
(f, i) �∈ μ or q ∈ Posμ(t|i) must hold. Consider the first alternative. Then by
Definition 12, (f, i) ∈ υ(t) ⊆ μ and we obtain a contradiction. Now, consider
the second alternative. Note that t|iq �∈ NF implies t|i �∈ NF. In conjunction with
q ∈ Posμ(t|i) this yields that ti is counter-example which is smaller than t. This
contradicts the definition of t. +,

The next lemma about the operator Υ is a key for the main theorem. Note
that every subterm of a μ-replacing term is a μ-replacing term.

Lemma 14. If l → r ∈ R and lσ ∈ T (μ) then rσ ∈ T (μ ∪ Υ (μ)).

Proof. Let l→ r ∈ R and suppose lσ ∈ T (μ). By Lemma 13 we have

T (μ) = {t | υ(t) ⊆ μ} T (μ ∪ Υ (μ)) = {t | υ(t) ⊆ μ ∪ Υ (μ)} .

Hence it is sufficient to show υ(rσ) ⊆ μ ∪ Υ (μ). Let (f, i) ∈ υ(rσ). There is
p ∈ Pos(rσ) with rσ|p = f(t1, . . . , tn) and ti �∈ NF. If p is below some variable
position of r, rσ|p is a subterm of lσ, and thus υ(rσ|p) ⊆ υ(lσ) ⊆ μ. Otherwise, p
is a non-variable position of r. We may write r|p = f(r1, . . . , rn) and riσ = ti �∈
NF. Due to Lemma 11 we obtain CAPl

μ(ri) �= ri. Therefore, (f, i) ∈ Υ (μ). +,

Lemma 15. For the approximated usable replacement maps T (μi) and T (μf),
the following implications hold:
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1. If s ∈ T (μi) and s
i−→ t then t ∈ T (μi).

2. If s ∈ T (μf) and s→ t then t ∈ T (μf).

Proof. We show property 1). Suppose s ∈ T (μi) and s i−→ t is a rewrite step
at p. Due to the definition of innermost rewriting, we have s|p ∈ T (∅). Hence,
t|p ∈ T (μi) is obtained by Lemma 14. Because s ∈ T (μi) we have p ∈ Posμi(s).
Hence due to t|p ∈ T (μi) we conclude t = s[t|p]p ∈ T (μi) due to the above remark.
The proof of 2) proceeds along the same pattern and is left to the reader. +,

We arrive at the main result of this section.

Theorem 16. The inclusions [T (∅)]( i−→∗
R) ⊆ T (μi) and [T (∅)](→∗

R) ⊆ T (μf)
hold. In particular μi and μf constitute usable replacement maps for i−→ and →,
respectively.

Proof. We focus on the second part of the theorem, where we have to prove that
t ∈ T (μf), whenever there exists s ∈ T (∅) such that s→∗

R t. As T (∅) ⊆ T (μf)
this follows directly from Lemma 15.

Note that T (∅) is the set of all argument normalised terms. Therefore, Tb ⊆
T (∅). Hence the second half of the theorem follows. +,

Given a TRS R we write
μi−→ for the μi-step relation of R, and

μf−→ for the
μf-step relation. The following corollary to Theorem 16 is immediate.

Corollary 17. We have dh(t, i−→R) � dh(t,
μi−→) and dh(t,→R) = dh(t,

μf−→) for
all terminating terms t ∈ Tb.

An advantage of the use of context-sensitive rewriting is that the compatibility
requirement of monotone algebra in termination or complexity analysis is relaxed
to μ-monotone algebra. We illustrate its use in the next examples.

Example 18. Recall the TRS Rdiv given in Example 1 above. The usable re-
placement maps are as follows:

μi(−) = ∅ μi(s) = μi(÷) = {1} μf(s) = μf(−) = μf(÷) = {1} .

Consider the 1-dimensional RMI A (i.e. linear polynomial interpretations) with
0A = 1, sA(x) = x + 2, −A(x, y) = x + 1, and ÷A(x, y) = 3x; A is strictly
μi-monotone and μf-monotone. The rules in Rdiv are interpreted and ordered as
follows.

1 : x+ 1 > x 3: 3 > 1

2: x+ 3 > x+ 1 4: 3x+ 6 > 3x+ 5 .

Therefore, Rdiv ⊆ >A holds. Applying Theorem 6 in the context of usable re-
placement maps, we conclude that the (innermost) runtime complexity is linear,
which is optimal.
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Example 19. Recall the TRS Rsum of Example 7. The usable replacement map
for full rewriting is as follows:

μf(sum) = μf(sum1) = ∅ μf(s) = μf(+) = {1} .

Consider the 1-dimensional RMI A with

0A = 2 sA(x) = x+ 2 +A(x, y) = x sumA(x) = 2x sum1(x, y) = 2x .

which is strictly μf-monotone. The rules in Rdiv are interpreted and ordered as
follows.

1 : 4 > 2 3: 4 > 2

2: 2x+ 4 > 2x 4: 2x+ 4 > 2x+ 2 .

Therefore, Rdiv ⊆ >A holds. By an application of Theorem 6 we conclude that
the runtime complexity is linear, which is optimal.

We cast the observations in the example into another corollary to Theorem 16.

Corollary 20. Let R be a TRS and let A be a d-degree μi-monotone (or μf-
monotone) RMI compatible with R. Then the (innermost) runtime complexity

function rc
(i)
R with respect to R is bounded by a d-degree polynomial.

Proof. It suffices to consider the case for full rewriting. Let s, t be terms such
that s →R t. By the theorem, we have s

μf−→ t. Furthermore, by assumption
R ⊆ (A and for any f ∈ F , fA is strictly monotone on all μf(f). Thus s (A t
follows. Finally, the corollary follows by application of Theorem 6. +,

4 Experiments

The usable replacement map method has been incorporated into the Tyrolean
Complexity Tool TCT [25]. We note that the established method can easily com-
bined with existing modular frameworks and the implementation in TCT makes
(essential) use of this. In this section we present an experimental evaluation
of the technique based on version 8.0.6 of the Termination Problems Database
(TPDB for short). We consider TRSs without theory annotation, where the run-
time complexity analysis is non-trivial, that is the set of basic terms is infinite.
This testbed comprises 1249 TRSs.

All experiments were conducted on a machine that is identical to the official
competition server (8 AMD Opteron® 885 dual-core processors with 2.8GHz,
8x8 GB memory). As timeout we use 60 seconds. The complete experimen-
tal data can be found at http://cl-informatik.uibk.ac.at/software/tct/
experiments/rtatlca14, where also the testbed employed is detailed.

Table 1 summarises the experimental results of the use of usable replace-
ment maps for full and innermost runtime complexity analysis. The tests employ

http://cl-informatik.uibk.ac.at/software/tct/experiments/rtatlca14
http://cl-informatik.uibk.ac.at/software/tct/experiments/rtatlca14
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Table 1. Experimental results I (one- to three-dimensional RMIs)

full innermost

result RMI(1-3),(−) RMI(1-3), (+) RMI(1-3), (−) RMI(1-3), (+)

O(n) 103 134 104 140
O(n2) 174 209 174 226

O(nk) 183 225 183 247

timeout (60s) 113 109 113 117

Table 2. Experimental results II (overall effect)

full innermost

result TCT (−) TCT (+) TCT (−) TCT (+)

O(1) 92 100 326 325
O(n) 408 421 500 508
O(n2) 423 428 554 555
O(n3) 424 429 564 565
O(nk) 426 431 568 569

timeout (60s) 714 711 617 615

one- to three-dimensional RMIs.4 The tests clearly indicate the power of the es-
tablished technique. This power is not only in the absolute number of examples,
but more importantly in the precision of the analysis. We note that our tests only
make use of the simplest notion of RMIs for runtime complexity analysis cf. [26].
This is a rather mundane method, more sophisticated methods have been re-
ported in [2, 19]. However, to assess the power of the established technique this
restriction is insignificant.

In Table 2 we present the overall power obtained for the automated runtime
complexity analysis. Here we test the current version of TCT using a strategy
that avoids the new method, in contrast to its standard strategy. It is to be ex-
pected that the effect of the proposed technique is smaller than in Table 1. This
is due to the presence of transformation techniques, like the weak dependency
pair method [4] or the dependency tuple method [5] and the use of a modular
framework [7]. While the usable argument method is still effective for weak de-
pendency pairs, as it may lighten the weight gap constraint, the dependency tuple
method allows to remove all monotonicity constraints. Note that the dependency
tuple method is only applicable for innermost runtime complexity.

4 Note that matrix interpretations, that is the test “RMI(1-3)”, cannot discern between
innermost versus full rewriting. Hence the practical differences noted in the table are
coincidental.
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Despite these theoretical facts, the method has a significant impact on full
and innermost rewriting. While the overall effect is a lot smaller than for direct
techniques, we emphasise that the method allows to win some examples that
can be handled with linear rather than with quadratic complexity. The alert
reader may wonder, why there is a positive effect at all in the innermost case,
as transformation techniques do not require monotonicity. This is due to the
case that even for innermost runtime complexity analysis, direct methods are
currently not superseded by transformational techniques.

5 Related Work

Usable replacement maps Usable replacement maps were originally introduced
by Fernández [22] for proving termination of innermost rewriting. This notion
is already applicable for analysing innermost runtime complexity. More pre-
cisely, we link Theorem 16 to Fernández’ work. In [22] an application of context-
sensitive rewriting for innermost termination has been established.

Proposition 21 ([22]). A TRS R is innermost terminating if
μi−→ is terminat-

ing.

Proof. We show the contraposition. If R is not innermost terminating, there is
an infinite sequence t0

i−→ t1
i−→ t2

i−→ · · · , where t0 ∈ T (∅). From Theorem 16
and Lemma 15 we obtain t0

μi−→ t1
μi−→ t2

μi−→ · · · . Hence, μi−→ is not terminating.
+,

We lifted Fernández’ notion to full rewriting, exploiting the cap function ICAP
in [24]. Realisation of a fixed point calculation of usable replacement maps is
considered as a primary result of this paper. Note that Proposition 21 does not
generalise to full termination, even if one replaces the innermost replacement
map μi, by the replacement map μf .

Example 22. Consider the famous Toyama’s example R

f(a, b, x)→ f(x, x, x) g(x, y)→ x g(x, y)→ y .

The replacement map μf is empty. Thus, the algebra A over N

fA(x, y, z) = max{x− y, 0} gA(x, y) = x+ y + 1 aA = 1 bA = 0 .

is μf -monotone and we have R ⊆ >A. However, we should not conclude termi-
nation of R, because f(a, b, g(a, b)) is non-terminating.

Cap functions In [22] usable replacement maps for innermost rewriting are de-
fined as {(f, i) | l → C[f(r1, . . . , rn)] ∈ R and ri|p �� l, for some p ∈ PosD(r)}.
This and our definition μi coincide if the following cap function is used during
the computation of ΥR:

CAPs
μ(t) =

⎧⎪⎨⎪⎩
t if t � s ,

u if t = f(t1, . . . , tn) and f ∈ C ,

y otherwise ,
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where, u = f(CAPs
μ(t1), . . . ,CAP

s
μ(tn)) and y is a fresh variable. In the light of

this reformulation one can (easily) verify that the usable replacement map μi in
Section 3 is always a subset of the above set.

There exists a cap function for context-sensitive rewriting, introduced by
Alarcón et al. [27] for termination analysis. Their definition is the following:

CAPs
μ(t) =

⎧⎪⎨⎪⎩
t if t is a variable ,

u if t = f(t1, . . . , tn) and u and l unify for no l → r ∈ R ,

y otherwise ,

where, y is a fresh variable and u = f(u1, . . . , un). Each ui stands for CAP
s
μ(ti)

if i ∈ μ(f), and ti otherwise. This definition cannot be used for calculation of
usable replacement maps: It is designed for exploiting a given replacement map μ
to ignore potential rewrite positions, while our cap function is aimed at detecting
potential reducible positions to build a usable replacement map.

DependencyPairs. Weakdependency pairs [4] anddependency tuples [5] are trans-
formational approaches that split a rewrite relation into two relations.This split al-
lows us to weaken the monotonicity condition. Although these approaches exploit
dependencies of defined symbols, they do not analyse how variables in rewrite rules
or dependency pairs (tuples) are instantiated in rewriting.5 As a consequence, the
transformationsdo not resolve the problemof variable duplication addressed in the
introduction. We emphasise that usable replacement maps and dependency pairs
(tuples) are complementary and the combination is beneficial, as seen in Section 4.
A similar observation holds for techniques employing modularity.

6 Conclusion

In this paper we have defined the notion of usable replacement maps. It is a
straightforward observation that only usable arguments need to be considered for
monotonicity conditions. In a nutshell, we have shown how monotonicity condi-
tions for orders can be weakened by using the notion of context-sensitive rewriting.

The presented technique is very easy to implement and has been integrated
in the Tyrolean Complexity Tool. Above we have provided ample experimen-
tal data for assessing the viability of our method. The positive experimental
evaluation, even in the innermost case, is somewhat surprising. One might have
assumed that transformation techniques, as for example the dependency tuple
method introduced in [5] supersede direct methods and thus refrain us from
concerns about monotonicity. Our experiments clearly show that this is not the
case. We emphasise that the here proposed method directly extends to modular
frameworks and our implementation in TCT makes essential use of this fact.

Apart from its practical value the proposed technique allows to incorporate
features of complexity analysis of functional programs into rewrite systems. We
consider a reformulation of our motivating example in an ML-like language,

5 Approximation techniques for dependency graphs may be considered an exception.
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minus : (nat , nat) -> nat

minus (m, n) = match m with

| 0 -> 0

| S m’ -> match n with

| 0 -> m

| S n’ -> minus (m’, n’);

quot : (nat , nat) -> nat

quot (m, n) = match m with

| 0 -> 0

| S m’ -> match n with

| 0 -> 0

| S n’ ->

(quot (minus (m’, n’), n)) + 1;

Fig. 1. Division in RaML

cf. Figure 1. This functional program is subject to the analysis of the RaML-
prototype, developed by Hoffmann et al. [28]. The prototype is based on an
amortised resource analysis that employs a potential-based type system. Appli-
cation of the method on the example yields the optimal linear bound on the
innermost runtime complexity. Inspection of the complexity proof reveals that
the method assigns zero potential to the second argument of minus and div,
which is related to the fact that these arguments can be safely ignored in our
setting, cf. Example 18. However, the potential-based method depends on the
presence of types as detailed in [29]. We emphasise that the usable arguments
method allows a similar fine-grained control for the runtime complexity analysis,
even without the introduction of types.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments that greatly helped in improving the presentation.

References

1. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1), 33–53 (2001)

2. Middeldorp, A., Moser, G., Neurauter, F., Waldmann, J., Zankl, H.: Joint spectral
radius theory for automated complexity analysis of rewrite systems. In: Winkler,
F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 1–20. Springer, Heidelberg (2011)

3. Avanzini, M., Moser, G.: Polynomial path orders. LMCS 9(4) (2013)
4. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency

pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

5. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. JAR 51(1), 27–56 (2013)

6. Zankl, H., Korp, M.: Modular complexity analysis via relative complexity.
LMCS 10(1:19), 1–33 (2014)



Automated Complexity Analysis Based on Context-Sensitive Rewriting 271

7. Avanzini, M., Moser, G.: A combination framework for complexity. In: Proc. 24th
RTA. LIPIcs, vol. 21, pp. 55–70 (2013)

8. Moser, G.: Proof Theory at Work: Complexity Analysis of Term Rewrite Systems.
CoRR abs/0907.5527 (2009) Habilitation Thesis.

9. Baillot, P., Marion, J.Y., Rocca, S.R.D.: Guest editorial: Special issue on implicit
computational complexity. TOCL 10(4) (2009)

10. Avanzini, M., Moser, G.: Closing the gap between runtime complexity and polytime
computability. In: Proc. 21st RTA. LIPIcs, vol. 6, pp. 33–48 (2010)

11. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-2001-09, RWTH Aachen (2001)

12. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)

13. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

14. Choppy, C., Kaplan, S., Soria, M.: Complexity analysis of term-rewriting systems.
TCS 67(2-3), 261–282 (1989)

15. TeReSe: Term Rewriting Systems. Cambridge Tracks in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

16. Lucas, S.: Context-sensitive rewriting strategies. IC 178(1), 294–343 (2002)
17. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-

mination of term rewriting. JAR 40(3), 195–220 (2008)
18. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpre-

tations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer,
Heidelberg (2006)

19. Neurauter, F., Zankl, H., Middeldorp, A.: Revisiting matrix interpretations for poly-
nomial derivational complexity of term rewriting. In: Fermüller, C.G., Voronkov, A.
(eds.) LPAR-17. LNCS, vol. 6397, pp. 550–564. Springer, Heidelberg (2010)

20. Waldmann, J.: Polynomially bounded matrix interpretations. In: Proc. 21st RTA.
LIPIcs, vol. 6, pp. 357–372 (2010)

21. Steinbach, J., Kühler, U.: Check your ordering – termination proofs and open
problems. Technical Report SR-90-25, Universität Kaiserslautern (1990)

22. Fernández, M.L.: Relaxing monotonicity for innermost termination. Information
Processing Letters 93(1), 117–123 (2005)

23. Avanzini, M.: Verifying Polytime Computability Automatically. PhD thesis, Uni-
versity of Innsbruck (2013)

24. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

25. Avanzini, M., Moser, G.: Tyrolean Complexity Tool: Features and usage. In: Proc.
24th RTA. LIPIcs, vol. 21, pp. 71–80 (2013)

26. Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based
on matrix and context dependent interpretations. In: Proc. 28th FSTTCS. LIPIcs,
vol. 2, pp. 304–315 (2008)

27. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs.
IC 208(8), 922–968 (2010)

28. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg
(2012)

29. Hofmann, M., Moser, G.: Amortised resource analysis and typed polynomial inter-
pretations. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 272–287.
Springer, Heidelberg (2014)



Amortised Resource Analysis and Typed

Polynomial InterpretationsΛ

Martin Hofmann1 and Georg Moser2

1 Institute of Computer Science, LMU Munich, Germany
hofmann@ifi.lmu.de

2 Institute of Computer Science, University of Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. We introduce a novel resource analysis for typed term rewrite
systems based on a potential-based type system. This type system gives
rise to polynomial bounds on the innermost runtime complexity. We
relate the thus obtained amortised resource analysis to polynomial in-
terpretations and obtain the perhaps surprising result that whenever a
rewrite system R can be well-typed, then there exists a polynomial in-
terpretation that orients R. For this we adequately adapt the standard
notion of polynomial interpretations to the typed setting.

Keywords: term rewriting, types, amortised resource analysis, com-
plexity of rewriting, polynomial interpretations.

1 Introduction

In recent years there have been several approaches to the automated analysis of
the complexity of programs.Without hope for completeness, we mention work by
Albert et al. [1] that underlies COSTA, an automated tool for the resource analy-
sis of Java programs. Related work, targeting C programs, has been reported by
Alias et al. [2]. In Zuleger et al. [3] further approaches for the runtime complex-
ity analysis of C programs is reported, incorporated into LOOPUS. Noschinski
et al. [4] study runtime complexity analysis of rewrite systems, which has been
incorporated in AProVE. Finally, the RaML prototype [5] provides an automated
potential-based resource analysis for various resource bounds of functional pro-
grams and TCT [6] is one of the most powerful tools for complexity analysis of
rewrite systems.

Despite the abundance in the literature on complexity analysis of programs,
almost no comparison results are known that relate the sophisticated methods
developed. Indeed a precise comparison proves often difficult. Consider Exam-
ple 1; Rque encodes an efficient implementation of a queue in functional program-
ming. A queue is represented as a pair of two lists que(f, r), encoding the initial
part f and the reversal of the remainder r. The invariant of the algorithm is that
the first list never becomes empty, which is achieved by reversing r if necessary.
Should the invariant ever be violated, an exception (err head or err tail) is raised.
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Example 1. Consider the following term rewrite system (TRS for short) Rque,
encoding a variant of an example by Okasaki [7, Section 5.2].

1 : chk(que(nil, r))→ que(rev(r), nil) 7 : enq(0)→ que(nil, nil)

2 : chk(que(x 0 xs, r))→ que(x 0 xs, r) 8 : rev′(nil, ys)→ ys

3: tl(que(x 0 f, r))→ chk(que(f, r)) 9 : rev(xs)→ rev′(xs, nil)

4 : snoc(que(f, r), x) → chk(que(f, x 0 r)) 10 : hd(que(x 0 f, r)) → x

5: rev′(x 0 xs, ys)→ rev′(xs, x 0 ys) 11 : hd(que(nil, r)) → err head

6: enq(s(n))→ snoc(enq(n), n) 12 : tl(que(nil, r)) → err tail .

We exemplify the physicist’s method of amortised analysis [8]. We assign to
every queue que(f, r) the length of r as potential. Then the amortised cost for
each operation is constant, as the costly reversal operation is only executed if the
potential can pay for the operation, cf. [7]. Thus, based on an amortised analy-
sis, we deduce the optimal linear runtime complexity for R. Let us attempt to
apply the interpretation method instead. Termination proofs by interpretations
are well-established and can be traced back to work by Turing [9]. It is straight-
forward to restrict polynomial interpretations [10] so that compatibility with
a TRS R induces polynomial runtime complexity of R, cf. [11]. Such polyno-
mial interpretations are called restricted. However, we can see that no restricted
polynomial interpretation can exist that is compatible withRque. The constraints
induced by Rque imply that the function snoc has to be interpreted by a linear
polynomial. Thus an exponential interpretation is required for enqueuing (enq).
Looking more closely at the different proofs, we observe the following. While in
the amortised analysis the potential of a queue que(f, r) depends only on the
remainder r, the interpretation of que has to be monotone in both arguments by
definition. This difference induces that snoc is assigned a strongly linear poten-
tial in the amortised analysis, while only a linear interpretation is possible for
snoc.

Still it is possible to relate amortised analysis to polynomial interpretations
if we base our investigation on many-sorted (or typed) TRSs and make suitable
use of the concept of annotated types originally introduced in [12]. We note that
Example 1 is also subject to other techniques like quasi-interpretations [13] and
can also be handled fully automatically in AProVE or TCT. However, our interest
in the example stems from the fact that it shows a separation between amortised
analysis and restricted polynomial interpretations.

We establish a novel innermost runtime complexity analysis for typed con-
structor rewrite systems R. This complexity analysis is based on a potential-
based amortised analysis incorporated into a type system. From the annotated
type of a term its derivation height with respect to innermost rewriting can be
read off, inducing polynomial bounds on the runtime complexity with respect to
R (see Theorem 12). The correctness proof of the obtained bound rests on an
operational big-step semantics decorated with counters for the derivation height
of the evaluated terms. We complement this big-step semantics with a similar
decorated small-step semantics and prove equivalence between these semantics.
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Furthermore we establish a second soundness result based on the small-step se-
mantics (see Theorem 20). Exploiting the small-step semantics we prove our
main result that from the well-typing of R we can read off a typed polynomial
interpretation that orients R (see Theorem 23).

While the type system exhibited is inspired by Hoffmann et al. [14] we gen-
eralise their use of annotated types to arbitrary (data) types. Furthermore the
introduced small-step semantics (and our main result) directly establish that any
well-typed TRS is terminating, cf. [15]. As a corollary to our main result, we ob-
tain that the physicist’s method of amortised analysis conceptually amounts to
the interpretation method, if we allow for the following changes: (i) every term
bears a potential, not only values, (ii) polynomial interpretations are defined
over annotated types, and (iii) compatibility is replaced by orientability.

Our study is purely theoretic, and we have not (yet) an implementation of the
provided techniques. However, automation is straightforward and seems to yield
fairly precise bounds on the runtime complexity. Furthermore, we have restricted
our study to typed (constructor) TRSs. In the conclusion we sketch application
of the established results to innermost runtime complexity analysis of untyped
TRSs.

This paper is structured as follows. In the next section we cover basics. In
Section 3 we provide our first soundness result. In Section 4 we establish our
second soundness result. Our main result will be stated and proved in Section 5.
Finally, we conclude in Section 6. Due to space limitations some proofs are only
sketched, or have been completely omitted. The reader is kindly referred to the
extended version of this paper [16].

2 Typed Term Rewrite Systems

Let C denote a finite, non-empty set of constructor symbols and D a finite set of
defined function symbols. Let S be a finite set of (data) types. A family (XA)A∈S

of sets is called S-typed and denoted as X . Let V denote an S-typed set of
variables, such that the VA are pairwise disjoint. In the following, variables will
be denoted by x, y, . . . , possibly extended by subscripts.

Following [17], a type declaration is of the form [A1 × · · · ×An] → C, where
Ai and C are types. Type declarations serve as input-output specifications for
function symbols. We write A instead of [] → A. A signature F (with respect
to the set of types S) is a mapping from C ∪ D to type declarations. We often
write f : [A1 × · · · ×An]→ C, if F(f) = [A1 × · · · ×An]→ C and refer to a type
declaration as a type, if no confusion can arise.

We define the S-typed set of terms T (D ∪ C,V) (or T for short): (i) for each
A ∈ S: VA ⊆ TA, (ii) for f ∈ C ∪ D such that F(f) = [A1, . . . , An] → C and
ti ∈ TAi , we have f(t1, . . . , tn) ∈ TC . Type assertions are denoted t:A. Terms of
type A will sometimes be referred to as instances of A: a term of list type, is
simply called a list. If t ∈ T (C,∅) then t is called a ground constructor term or
a value. The set of values is denoted T (C). The (S-typed) set of variables of a
term t is denoted Var(t). The root of t is denoted rt(t) and the size of t, that is
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the number of symbols in t, is denoted |t|. In the following terms are denoted by
s, t, u, v, . . . , possibly extended by subscripts. Furthermore, we use v (possibly
extended by subscripts) to denote values.

A substitution σ is a mapping from variables to terms that respects types.
Substitutions are denoted as sets of assignments: σ = {x1 �→ t1, . . . , xn �→
tn}. We write dom(σ) (rg(σ)) to denote the domain (range) of σ. Let σ be a
substitution and V be a set of variables; σ � V denotes the restriction of the
domain of σ to V . The substitution τ is called an extension of substitution σ if
τ �dom(σ) = σ. Let σ, τ be substitutions such that dom(σ)∩ dom(τ) = ∅. Then
we denote the (disjoint) union of σ and τ as σ 6 τ . We call a substitution σ
normalised if all terms in the range of σ are values. In the following all considered
substitutions will be normalised.

A typing context is a mapping from variables V to types. Type contexts are
denoted by upper-case Greek letters. Let Γ be a context and let t be a term. The
typing relation Γ t:A expresses that based on context Γ , t has type A (with
respect to the signature F). The typing rules that define the typing relation are
given in Figure 2, where we forget the annotations. In the sequel we sometimes
make use of an abbreviated notation for sequences of terms t := t1, . . . , tn.

A typed rewrite rule is a pair l → r of terms, such that (i) the types of l and
r coincide, (ii) rt(l) ∈ D, and (iii) Var(l) ⊇ Var(r). An S-typed term rewrite
system (TRS for short) over the signature F is a finite set of typed rewrite
rules. We define the innermost rewrite relation i−→R for typed TRSs R. For
well-typed terms s and t, s i−→R t holds, if there exists a context C, a normalised
substitution σ and a rewrite rule l → r ∈ R such that s = C[lσ] and t = C[rσ]. In
the sequel we are only concerned with innermost rewriting. A TRS is orthogonal
if it is left-linear and non-overlapping [10,18]. A TRS is completely defined if all
ground normal-forms are values. These notions naturally extend to typed TRS.
In particular note that an orthogonal typed TRS is confluent. Let s and t be
terms, such that t is in normal-form. Then an (innermost) derivation D : s i−→∗

R t
with respect to a TRS R is a finite sequence of rewrite steps. The derivation
height of a term s with respect to a well-founded, finitely branching relation →
is defined as: dh(s,→) = max{n | ∃t s →n t}. A term t = f(t1, . . . , tk) is called
basic if f is defined, and all ti ∈ T (C,V).

Definition 2. We define the runtime complexity (with respect to R): rcR(n) :=
max{dh(t, i−→R) | t is basic and |t| � n}.

We study typed constructor TRSs R, that is, for each rule f(l1, . . . , ln) → r
we have that the arguments li are constructor terms. Furthermore, we restrict
to completely defined and orthogonal systems. These restrictions are natural in
the context of functional programming. If no confusion can arise from this, we
simply call R a TRS. F denotes the signature underlying R. In the sequel, R
and F are kept fixed.

Example 3 (continued from Example 1). Consider the TRS Rque and let S =
{Nat, List,Q}, where Nat, List, and Q represent the type of natural numbers,
lists over natural numbers, and queues respectively. Then Rque is an S-typed
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xσ = v

σ
0
x⇒ v

c ∈ C x1σ = v1 · · · xnσ = vn

σ
0
c(x1, . . . , xn)⇒ c(v1, . . . , vn)

f(l1, . . . , ln)→ r ∈ R ∃τ ∀i : xiσ = liτ σ � τ
m

r ⇒ v

σ
m+1

f(x1, . . . , xn)⇒ v

all xi are fresh

σ � ρ
m0

f(x1, . . . , xn)⇒ v σ
m1

t1 ⇒ v1 · · · σ
mn

tn ⇒ vn m =
∑n

i=0 mi

σ
m

f(t1, . . . , tn)⇒ v

Here ρ := {x1 �→ v1, . . . , xn �→ vn}. Recall that σ, τ , and ρ are normalised.

Fig. 1. Operational Big-Step Semantics

TRSs over signature F . We exemplify the signature of some constructors: 0:Nat,
s: [Nat]→ Nat, nil: List, 0: [Nat× List]→ List, que: [List× List]→ Q. Finally, con-
sider snoc: [Q× Nat]→ Q.

As R is completely defined, any derivation ends in a value. In connection
with innermost rewriting this yields a call-by-value strategy. Furthermore, as R
is non-overlapping any innermost derivation is determined modulo the order in
which parallel redexes are contracted. This allows us to recast innermost rewrit-
ing into an operational big-step semantics instrumented with resource counters,
cf. Figure 1. Its definition is instrumental in the proof of our first soundness
theorem. The semantics resembles similar definitions given in the literature on
amortised resource analysis (see for example [14, 19, 20]).

Proposition 4. Let f be a defined function symbol of arity n and σ a substitu-
tion. Then σ

m
f(x1, . . . , xn)⇒ v holds iff dh(f(x1σ, . . . , xnσ),

i−→R) = m.

Proof. In the proof of the direction form left to right, we show the stronger state-
ment that σ

m
t⇒ v implies dh(tσ, i−→R) = m by induction on the derivation of

σ
m
t⇒ v. For the opposite direction, we show that if dh(tσ, i−→R) = m, then

σ
m
t⇒ v by induction on the length of the derivation D : tσ i−→∗

R v. +,

3 Annotated Types

Let S be a set of types. We call a type A ∈ S annotated, if A is decorated with
resource annotations. These annotations will allow us to read off the potential
of a well-typed term t from the annotations.

Definition 5. An annotated type Ap, is a pair consisting of a type A ∈ S and
a vector p = (p1, . . . , pk) over non-negative rational numbers, typically natural
numbers. The vector p is called resource annotation.
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Resource annotations are denoted by p, q, u, v, . . . , possibly extended by
subscripts and we write A for the set of such annotations. For resource annota-
tions (p) of length 1 we write p. We will see that a resource annotation does not
change its meaning if zeroes are appended at the end, so, conceptually, we can
identify () with (0) (and also with 0). If p = (p1, . . . , pk) we write k = |p| and
maxp = maxi pi. We define the notations p � q and p + q and λp for λ � 0
component-wise, filling up with 0s if needed. So, for example (1, 2) � (3, 4, 5)
and (1, 2) + (3, 4, 5) = (4, 6, 5).

Furthermore, we recall the additive shift [14] given by �(p1, . . . , pk) = (p1 +
p2, p2+p3, . . . , pk−1+pk, pk). We also define the interleaving p�q by (p1, q1, p2, q2,
. . . , pk, qk) where, as before the shorter of the two vectors is padded with 0s.
Finally, we use the notation ♦p = p1 for the first entry of an annotation vector.
If no confusion can arise, we refer to annotated types simply as types. In contrast
to Hoffmann et al. [14, 21], we generalise the concept of annotated types to
arbitrary (data) types. In [14] only list types, in [21] list and tree types have
been annotated.

Definition 6. Let F be a signature. Suppose F(f) = [A1 × · · · ×An] → C,
such that the Ai (i = 1, . . . , n) and C are types. Consider the annotated types
Aui

i and Av. Then an annotated type declaration for f is a type declaration

over annotated types, decorated with p ∈ N: [Au1
1 × · · · ×Aun

n ]
p−→ Cv. The set

of annotated type declarations is denoted Fpol.

We lift signatures to annotated signatures F : C ∪ D → (P(Fpol) \ ∅) by
mapping a function symbol to a non-empty set of annotated type declara-
tions. Hence for any function symbol f we allow multiple types. If f has
result type C, then for each annotation Cq there should exist exactly one dec-

laration of the form [Ap1

1 × · · · ×Apn
n ]

p−→ Cq in F(c). Moreover, constructor
annotations are to satisfy the superposition principle: If a constructor c ad-

mits the annotations [Ap1

1 × · · · ×Apn
n ]

p−→ Cq and [A
p′
1

1 × · · · ×Ap′
n

n ]
p′

−→ Cq′

then it also has the annotations [Aλp1

1 × · · · ×Aλpn
n ]

λp−→ Cλq (λ � 0) and

[A
p1+p′

1
1 × · · · ×Apn+p′

n
n ]

p+p′

−−−→ Cq+q′
.

Note that, in view of superposition and uniqueness, the annotations of a given
constructor are uniquely determined once we fix the annotated types for result
annotations of the form (0, . . . , 0, 1) (remember the implicit filling up with 0s).
An annotated signature F is simply called signature, where we sometimes write

f : [A1 × · · · ×An]
p−→ C instead of [A1 × · · · ×An]

p−→ C ∈ F(f). Note that the
Ai (i = 1, . . . , n) and C denote annotated types.

Example 7 (continued from Example 3). In order to extend F to an annotated

signature we can set F(0) := {[] 0−→ Natp | p ∈ A} and F(s) := {[Nat�(p)] ♦p−−→
Natp | p ∈ A}. Furthermore, we set F(nil) := {[] 0−→ Listp | p ∈ A} and

F(0) := {[Nat0 × List�(p)]
♦p−−→ Listp | p ∈ A} and F(que) := {[Listp × Listq]

0−→
Qp�q | p, q ∈ A}. In particular, we have the typings 0: [Nat0 × List7]

7−→ List7 and

0: [Nat0 × List(10,7)]
3−→ List(3,7) and que: [List1 × List3]

0−→ Q(1,3).
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We omit annotations for the defined symbols and refer to Example 13 for a
complete signature with a different annotation for the constructor symbol que.

The next definition introduces the notion of the potential of a value.

Definition 8. Let v = c(v1, . . . , vn) ∈ T (C) and let C be an annotated type.
The potential of v under C, written Φ(v:C), is defined recursively by Φ(v:C) :=

p+ Φ(v1:A1) + · · ·+ Φ(vn:An) when [A1 × · · · ×An]
p−→ C ∈ F(c).

Note that by assumption the declaration in F(c) is unique.

Example 9 (continued from Example 7). It is easy to see that for any term t of
type Nat, we have Φ(t:Nat0) = 0 and Φ(t:Natλ) = λt.

If l is a list then Φ(l: List(p,q)) = p · |l|+ q ·
(|l|
2

)
. where |l| denotes the length of

l, that is the number of 0 in l. More generally, we have Φ(l: Listp) =
∑

i pi
(|l|
i

)
.

Finally, if que(l, k) has type Q then Φ(que(l, k):Qp�q) = Φ(l: Listp)+Φ(k:Listq).

The sharing relation �(Ap | Ap1 , Ap2) holds if p1 + p2 = p. The subtype
relation is defined as follows: Ap <: Bq, if A = B and p � q.

Lemma 10. If �(Ap |Ap1 , Ap2) then Φ(v:Ap) = Φ(v:Ap1)+Φ(v:Ap2) holds for
any value of type A. If Ap <: Bq then Φ(v:Ap) � Φ(v:Bq) again for any v:A.

Proof. The proof of the first claim is by induction on the structure of v. We
note that by superposition together with uniqueness the additivity property
propagates to the argument types. For example, if we have the annotations

s : [Nat2]
4−→ Nat3 and s : [Nat4]

6−→ Nat5 and s : [Natx]
10−→ Naty then we can

conclude x = 6, y = 8, for this annotation must be present by superposition and
there can only be one by uniqueness.

The second claim follows from the first one and nonnegativity of potentials. +,

The set of typing rules for TRSs R are given in Figure 2. Observe that the type
system employs the assumption that R is left-linear. In a nutshell, the method
works as follows: Let Γ be a typing context and let us consider the typing
judgement Γ

p
t:A derivable from the type rules. Then p is an upper-bound

to the amortised cost required for reducing t to a value. The derivation height
of tσ (with respect to innermost rewriting) is bound by the difference in the
potential before and after the evaluation plus p. Thus if the sum of the potential
of the arguments of tσ is in O(nk), where n is the size of the arguments, then
the runtime complexity of R lies in O(nk).

Recall that any rewrite rule l → r ∈ R can be written as f(l1, . . . , ln) → r
with li ∈ T (C,V). We introduce well-typed TRSs.

Definition 11. Let f(l1, . . . , ln)→ r be a rewrite rule in R and let Var(f(l)) =
{y1, . . . , y�}. Then f ∈ D is well-typed wrt. F , if we obtain

y1:B1, . . . , y�:B�

p−1+
∑n

i=1 ki

r:C , (1)
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f ∈ C ∪ D [Au1
1 × · · · × Aun

n ]
p−→ Cv ∈ F(f)

x1:A
u1
1 , . . . , xn:A

un
n

p
f(x1, . . . , xn):C

v

Γ
p
t:C p′ � p

Γ
p′

t:C

all xi are fresh

x1:A1, . . . , xn:An
p0

f(x1, . . . , xn):C

p =
∑n

i=0 pi

Γ1
p1

t1:A1 · · · Γn
pn

tn:An

Γ1, . . . , Γn
p
f(t1, . . . , tn):C

Γ
p
t:C

Γ,x:A
p
t:C

Γ, x:A1, y:A2
p
t[x, y]:C �(A |A1, A2) x, y are fresh

Γ, z:A
p
t[z, z]:C

Γ,x:B
p
t:C A <: B

Γ, x:A
p
t:C x:A

0
x:A

Γ
p
t:D D <: C

Γ
p
t:C

Fig. 2. Type System for Rewrite Systems

for all [A1 × · · · ×An]
p−→ C ∈ F(f), for all types Bj (j ∈ {1, . . . , �}), and all

costs ki, such that y1:B1, . . . , y�:B�
ki
li:Ai is derivable. A TRS R over F is

well-typed if any defined f is well-typed.

Let Γ be a typing context and let σ be a substitution. We call σ well-typed
(with respect to Γ ) if for all x ∈ dom(Γ ), xσ is of type Γ (x). We extend the
definition of potential to substitutions σ and typing contexts Γ . Suppose σ is
well-typed with respect to Γ . Then Φ(σ:Γ ) :=

∑
x∈dom(Γ ) Φ(xσ:Γ (x)). We es-

tablish our first soundness result.

Theorem 12. Let R and σ be well-typed. Suppose Γ
p
t:A and σ

m
t⇒ v.

Then Φ(σ:Γ )− Φ(v:A) + p � m.

Proof. LetΠ be the proof deriving σ
m
t⇒ v and let Ξ be the proof of Γ

p
t:A.

The proof of the theorem proceeds by main-induction on the length of Π and
by side-induction on the length of Ξ.

We exemplify the pattern of the proof on one case. We employ the notation
from Figure 1. Suppose the last rule in Π has the form

σ 6 ρ m0
f(x1, . . . , xn)⇒ v σ

m1
t1 ⇒ v1 · · · σ

mn
tn ⇒ vn

σ
m
f(t1, . . . , tn)⇒ v ,

wherem =
∑n

i=0mi. W.l.o.g. we can assume that t is linear. Otherwise we would
consider the case, where Ξ ends with the type rule for sharing. Thus, we assume
the last rule in the type inference Ξ is of the following form.

=:Δ︷ ︸︸ ︷
x1:A1, . . . , xn:An

p0
f(x):C Γ1

p1
t1:A1 · · · Γn

pn
tn:An

Γ1, . . . , Γn
p
f(t1, . . . , tn):C ,
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such that p =
∑n

i=0 pi. By induction hypothesis: Φ(σ:Γi)−Φ(vi:Ai)+pi � mi for
all i = 1, . . . , n. Hence (i)

∑n
i=1 Φ(σ:Γi)−

∑n
i=1 Φ(vi:Ai) +

∑n
i=1 pi �

∑n
i=1mi

Again by induction hypothesis we obtain: (ii) Φ(σ 6 ρ:Δ) − Φ(v:C) + p0 � m0

Now Φ(σ:Γ ) =
∑n

i=1 Φ(σ:Γi) and Φ(σ 6 ρ:Δ) = Φ(ρ:Δ) =
∑n

i=1 Φ(vi:Ai). By
(i) and (ii), we obtain

Φ(σ:Γ ) +

n∑
i=0

pi =

n∑
i=1

Φ(σ:Γi) +

n∑
i=1

pi + p0

�
n∑

i=1

Φ(vi:Ai) +

n∑
i=1

mi + p0 � Φ(v:C) +

n∑
i=0

mi ,

and thus Φ(σ:Γ )− Φ(v:C) + p � m. +,

Example 13 (continued from Example 1). We extend our example signature with
annotated typings for the defined functions as follows.

chk : [Q(0,1)]
3−→ Q(0,1) tl : [Q(0,1)]

4−→ Q(0,1) hd : [Q(0,1)]
1−→ Nat0

rev′ : [List1 × List0]
1−→ List0 rev : [List1]

2−→ List0

snoc : [Q(0,1) × Nat0]
5−→ Q(0,1) enq : [Nat6]

1−→ Q(0,1) ,

where the annotations of the constructors are as in Example 7, with the exception

of que: [List0 × List1]
0−→ Q(0,1). It is not difficult to verify that Rque is well-typed

wrt. F . We show in detail that enq is well-typed. Consider rule 6. First, we
observe that 6 resource units become available for the recursive call, as n:Nat6

6

s(n):Nat6 is derivable. Second, we have the following partial type derivation;
missing parts are easy to fill in.

q:Q(0,1),m:Nat0
5
snoc(q,m):Q(0,1)

n2:Nat
0 0

n2:Nat
0

n1:Nat
6 1

enq(n1):Q
(0,1)

n1:Nat
6, n2:Nat

0 6
snoc(enq(n1), n2):Q

(0,1)

n:Nat6
6
snoc(enq(n), n):Q(0,1)

Considering rule 7, we see that n:Nat6
0
que(nil, nil):Q(0,1) is derivable. Thus

enq is well-typed and we conclude optimal linear runtime complexity of Rque.

Polynomial bounds Note that if the type annotations are chosen such that for
each type A we have Φ(v:A) ∈ O(nk) for n = |v| then rcR(n) ∈ O(nk) as well.
The following proposition gives a sufficient condition as to when this is the case
and in particular subsumes the type system in [14].

Theorem 14. Suppose that for each constructor c with [Au1
1 × · · · ×Aun

n ]
p−→

Cw ∈ F(c), there exists ri ∈ A such that ui � w+ri where max ri � maxw =:
r and p � r with |ri| < |w| =: k. Then Φ(v:Cw) � r|v|k.
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xσ = v
0 〈x, σ〉 → 〈v, σ〉

c ∈ C x1σ = v1 · · · xnσ = vn
0 〈c(x1, . . . , xn), σ〉 → 〈c(v1, . . . , vn), σ〉

∀i : vi is a value ρ = {x1 �→ v1, . . . , xn �→ vn} f is defined and all xi are fresh
0 〈f(v1, . . . , vn), σ〉 → 〈f(x1, . . . , xn), σ � ρ〉

f(l1, . . . , ln)→ r ∈ R ∀i : xiσ = liτ
1 〈f(x1, . . . , xn), σ〉 → 〈r, σ � τ〉

1 〈ti, σ〉 → 〈u, σ′〉
1 〈f(. . . , ti, . . . ), σ〉 → 〈f(. . . , u, . . . ), σ′〉

Note that the substitutions σ, σ′, τ , and ρ are normalised.

Fig. 3. Operational Small-Step Semantics

Proof. The proof is by induction on the size of v. Note that, if k = 0 then
Φ(v:Cw) = 0. Otherwise, we have Φ(c(v1, . . . , vn):C

w) � r + Φ(v1:A
w+r1
1 ) +

· · ·+Φ(vn:Aw+rn
n ) � r(1+ |v1|k + |v1|k−1 + · · ·+ |vn|k + |vn|k−1) by application

of the induction hypothesis in conjunction with Lemma 10. The latter quantity
can be bounded by r(1 + |v1| + · · · + |vn|)k = r|v|k due to the multinomial
theorem. +,

We note that our running example satisfies the premise to the proposition.
In concrete cases more precise bounds than those given by Theorem 14 can
be computed as has been done in Example 9. The next example clarifies that
potentials are not restricted to polynomials.

Example 15. Consider that we annotate the constructors for natural numbers

as 0: []
0−→ Natp and s: [Nat2p]

♦p−−→ Natp. We then have, for example, Φ(t:Nat1) =
2t+1 − 1.

As mentioned in the introduction, foundational issues are our main concern.
However, the potential-based method detailed above are susceptible to automa-
tion. One conceives the resource annotations as variables and encodes the con-
straints of the typing rules in Figure 2 over these resource variables.

4 Small-Step Semantics

The big-step semantics, the type system, and Theorem 12 provide a potential-
based resource analysis for typed TRSs that yields polynomial bounds. However,
Theorem 12 is not directly applicable, if we want to link this analysis to the
interpretation method. We recast the method and present a small-step seman-
tics, used in our second soundness result (Theorem 20 below), cf. Figure 3. As
the big-step semantics, the small-step semantics is decorated with counters for
the derivation height of the evaluated terms. Its definition is instrumental in the
proof of our second soundness theorem.

The transitive closure of the judgement
m 〈s, σ〉 → 〈t, τ〉 is defined as follows:



282 M. Hofmann and G. Moser

–
m 〈s, σ〉� 〈t, τ〉 if m 〈s, σ〉 → 〈t, τ〉 (m ∈ {0, 1})

–
m1+m2 〈s, σ〉� 〈u, ρ〉 if m1 〈s, σ〉 → 〈t, τ〉 and m2 〈t, τ〉� 〈u, ρ〉.

The next lemma proves the equivalence of big-step and small-step semantics.

Lemma 16. Let σ be a substitution, let t be a term, Var(t) ⊆ dom(σ), and let

v be a value. Then σ
m
t⇒ v if and only if

m 〈t, σ〉� 〈v, σ′〉, where σ′ is an
extension of σ.

Proof. Let Π be the proof deriving σ
m
t⇒ v and let D denote the sequence

of reductions that make up
m 〈t, σ〉� 〈v, σ′〉.

One proves the direction left-to-right by induction on the length of Π . We
observe that if σ

m
t⇒ v and if σ′ is an extension of σ, then σ′

m
t⇒ v.

Furthermore the sizes of the derivations of the corresponding judgements are
the same. This follows by straightforward inductive argument.

In proof of the lemma, we consider one, significant case. We employ the no-
tation from Figure 3. Suppose the last rule in Π has the form

σ 6 ρ m0
f(x1, . . . , xn)⇒ v σ

m1
t1 ⇒ v1 · · · σ

mn
tn ⇒ vn

σ
m
f(t1, . . . , tn)⇒ v ,

where t = f(t1, . . . , tn) and m =
∑n

i=0mi. By induction hypothesis we have for

all i = 1, . . . , n:
mi 〈t1, σi−1〉� 〈v1, σi〉, where we set σ0 = σ and note that all

σi are extensions of σ. From
0 〈f(v1, . . . , vn), σn〉 → 〈f(x1, . . . , xn), σn 6 ρ〉 we

obtain: ∑n
i=1 mi 〈f(t1, . . . , tn), σ〉� 〈f(x1, . . . , xn), σn 6 ρ〉 .

Furthermore, by the above and the induction hypothesis there exists a sub-
stitution σ′ such that

m0 〈f(x1, . . . , xn), σn 6 ρ〉� 〈v, σ′〉 where σ′ extends
σn 6 ρ (and thus also σ as dom(σn) ∩ dom(ρ) = ∅). From above, we obtain
m 〈t, σ〉� 〈v, σ′〉.
The direction from right to left follows by induction on the sum of the size of

the proofs of the single-step execution inD. The proof is based on the observation
that if

m 〈s, σ〉 → 〈t, σ′〉, m ∈ N, then σ′ extends σ and sσ = sσ′. +,

We extend the notion of potential (cf. Definition 8) to ground terms. Recall
that by assumption the declaration in F(f) is unique.

Definition 17. Let t = f(t1, . . . , tn) ∈ T (D∪C) and let [A1 × · · · ×An]
p−→ C ∈

F(f). Then the potential of t is defined as follows: Φ(t:C) := p + Φ(t1:A1) +
· · ·+ Φ(tn:An).

Example 18 (continued from Example 13). Recall the type of chk. Let q =
que(f, r) be a queue. We obtain Φ(chk(q):Q(0,1)) = 3 + Φ(q:Q(0,1)) = 3 +
Φ(f : List0) + Φ(r: List1) = 3 + |r|.

Lemma 19. Let R and σ be well-typed. Suppose Γ
p
t:A. Then we have

Φ(σ:Γ ) + p � Φ(tσ:A).
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Proof. Let Ξ denote the proof of Γ
p
t:A. Then the lemma follows by induction

on Ξ. +,

We obtain our second soundness result.

Theorem 20. Let R and σ be well-typed. If Γ
p
t:A and

m 〈t, σ〉� 〈u, σ′〉,
then Φ(σ:Γ )−Φ(uσ′:A)+ p � m. Thus if for all ground basic terms t and types
A: Φ(t:A) ∈ O(nk), where n = |t|, then rcR(n) ∈ O(nk).

Proof. Let D denote the derivation of
m 〈t, σ〉� 〈u, σ′〉 and let Ξ denote the

proof of Γ
p
t:A. The proof proceeds by main induction on the size of D and

by side induction on the length of Ξ.
We exemplify the pattern of the proof on one case. Let Π denote the proof of

the judgement
m1 〈t, σ〉 → 〈w, γ〉 where m2 〈w, γ〉� 〈u, σ′〉 andm = m1+m2.

Suppose Π has the form

f(l1, . . . , ln)→ r ∈ R ∀i : xiσ = liτ
1 〈f(x1, . . . , xn), σ〉 → 〈r, σ 6 τ〉 .

Then t = f(x1, . . . , xn) and f(x1, . . . , xn)σ = f(l1, . . . , ln)τ . Let Var(f(l)) =
{y1, . . . , y�} and let Var(li) = {yi1, . . . , yili} for i ∈ {1, . . . , n}. As R is left-linear
we have Var(f(l1, . . . , ln)) =

⊎n
i=1 Var(li). We set Γ = x1:A1, . . . , xn:An. By the

assumption Γ
p
t:A and well-typedness of R we obtain

=:Δ︷ ︸︸ ︷
y1:B1, . . . , y�:B�

p−1+
∑n

i=1 ki

r:A , (2)

similar to (1). We have Φ(σ:Γ ) + p =
∑n

i=1 (ki + Φ(yi1τ :Bi1) + · · ·+
Φ(yiliτ :Bili)) + p = Φ(τ :Δ) +

∑n
i=1 ki + (p − 1) + 1. The first equality fol-

lows by an inspection on the cases for the constructors. Furthermore note that
rτ = r(σ 6 τ), as dom(σ) ∩ dom(τ) = ∅. The theorem follows by appli-
cation of the main induction hypothesis on r in conjunction with the typing
judgement (2). +,

5 Typed Polynomial Interpretations

We adapt the concept of polynomial interpretation to typed TRSs. For that we
suppose a mapping �·� that assigns to every annotated type C a subset of the
natural numbers, whose elements are ordered with > in the standard way. The
set �C� is called the interpretation of C.

Definition 21. An interpretation γ of function symbols is a mapping from
function symbols and types to functions over N. Consider a function symbol f and

an annotated type C such that [A1 × · · · ×An]
p−→ C ∈ F(f). Then the interpre-

tation γ(f, C) : �A1�×· · ·×�An� → �C� of f is defined as: γ(f, C)(x1, . . . , xn) :=
x1 + · · ·+ xn + p.
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Note that by assumption the declaration in F(f) is unique and thus γ(f, C) is
unique. Interpretations of function symbols naturally extend to interpretations
on ground terms. �f(t1, . . . , tn):C�γ := γ(f, C)(�t1:A1�

γ , . . . , �tn:An�γ). Let R
be well-typed and let the interpretation γ of function symbols in F be induced by
the well-typing of R as in Definition 21. Then by construction �t:A�γ = Φ(t:A).

Example 22 (continued from Example 13). We obtain the following definitions of
the interpretation of function symbols γ. We start with the constructor symbols.

γ(0,Natp) = 0 γ(s,Natp)(x) = x+ p γ(err head,Natp) = 0

γ(nil, Listq) = 0 γ(0, Listq)(x, y) = x+ y + q γ(err tail,Q(0,1)) = 0

γ(que,Q(0,1))(x, y) = x+ y ,

where p, q ∈ N. Similarly the definition of γ for defined symbols follows from
the signature detailed in Example 13. Then for any rule l → r ∈ Rque and any
substitution σ, we obtain �lσ�γ > �rσ�γ . We show this for rule 1.

�chk(que(nil, rσ)):Q(0,1)�γ = �rσ: List1�γ + 3 > 0

= �rev(rσ): List0�γ + �nil: List1�γ

= �que(rev(rσ), nil):Q(0,1)�γ .

Orientability of Rque with the above given interpretation implies the optimal
linear innermost runtime complexity.

We lift the standard order > on the interpretation domain N to an order
on terms. Let s and t be terms of type A. Then s > t if for all well-typed
substitutions σ we have �sσ:A�γ > �tσ:A�γ .

Theorem 23. Let R be well-typed, constructor TRS over signature F and let
the interpretation of function symbols γ be induced by the type system. Then
l > r for any rule l→ r ∈ R. Thus if for all ground basic terms t and types A:
�t:A�γ ∈ O(nk), where n = |t|, then rcR(n) ∈ O(nk).

Proof. Let l = f(l1, . . . , ln) and let x1, . . . , xn be fresh variables. Suppose further

[A1 × · · · ×An]
p−→ C ∈ F(f). As R is well-typed we have

=:Γ︷ ︸︸ ︷
x1:A1, . . . , xn:An

p
f(x1, . . . , xn):C ,

for p ∈ N. Now suppose that τ denotes any well-typed substitution for the
rule l → r. In the standard way, we extend τ to a well-typed substitution σ
such that lτ = f(x1, . . . , xn)σ. By definition of the small-step semantics, we

obtain
1 〈f(x1, . . . , xn), σ〉 → 〈r, σ 6 τ〉. Then by Theorem 20, Φ(σ:Γ ) + p >

Φ(r(σ 6 τ):C) and by definitions, we have:

Φ(lτ :C) = Φ(f(x1σ, . . . , xnσ):C) =

n∑
i=1

Φ(xiσ:Ai) + p = Φ(σ:Γ ) + p .
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Furthermore, observe that r(σ 6 τ) = rτ as dom(σ) ∩ dom(τ) = ∅. In sum, we
obtain Φ(lτ :C) > Φ(rτ :C), from which we conclude �lτ :C�γ > �rτ :C�γ . As τ
was chosen arbitrarily, we obtain R ⊆ >. +,

We say that an interpretation orients a typed TRS R, if R ⊆ >. As an
immediate consequence of the theorem, we obtain the following corollary.

Corollary 24. Let R be a well-typed and constructor TRS. Then there exists a
typed polynomial interpretation over N that orients R.

At the end of Section 3 we have remarked on the automatabilty of the ob-
tained amortised analysis. Observe that Theorem 23 gives rise to a related but
conceptually different implementation. Instead of encoding the constraints of
the typing rules in Figure 2 one directly encodes the orientability constraints for
each rule, cf. [22].

6 Conclusion

This paper is concerned with the connection between amortised resource anal-
ysis, originally introduced for functional programs, and polynomial interpreta-
tions, which are frequently used in complexity and termination analysis of rewrite
systems.

In order to study this connection we have established a novel resource analysis
for typed term rewrite systems based on a potential-based type system. This type
system gives rise to polynomial bounds for innermost runtime complexity. A key
observation is that the classical notion of potential can be altered so that not
only values but any term is assigned a potential. Ie. the potential function Φ
is conceivable as an interpretation. Based on this observation we have shown
that well-typedness of a TRSs R induces a typed polynomial interpretation that
orients R.

Apart from clarifying the connection between amortised resource analysis and
polynomial interpretation our results induce two new methods for the innermost
runtime complexity of typed TRSs. If we restrict the length of the resource an-
notations, standard techniques for type inference performed on our type system
yield linear constraints that can be solved with a linear constraint solver. On the
other hand considering the synthesis of typed polynomial interpretations on fixes
abstract polynomials and feeds the obtained constraints into an SMT solver. A
prototype is in preparation.

We emphasise that these methods are not restricted to typed TRSs, as our
cost model gives rise to a persistent property. A property is called persistent if for
any typed TRS R the property holds iff it holds for the corresponding untyped
TRS R′. While termination is in general not persistent [18], it is not difficult
to see that runtime complexity is persistent. This is due to the restricted set of
starting terms. Thus the proposed techniques directly give rise to novel methods
of automated runtime complexity analysis. In future work we will clarify whether
the established results extend to the multivariate amortised resource analysis
presented in [20].
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Abstract. Knuth and Bendix showed that confluence of a terminating first-order
rewrite system can be reduced to the joinability of its finitely many critical pairs.
We show that this is still true of a rewrite system RT ∪ RNT such that RT is ter-
minating and RNT is a left-linear, rank non-increasing, possibly non-terminating
rewrite system. Confluence can then be reduced to the joinability of the critical
pairs of RT and to the existence of decreasing diagrams for the critical pairs of
RT inside RNT as well as for the rigid parallel critical pairs of RNT.

1 Introduction

Rewriting is a non-deterministic rule-based mechanism for describing intentional com-
putations. Confluence is the property expressing that the associated extensional relation
is functional. It is well-known that confluence of a set of rewrite rules is undecidable.
There are two main methods for showing confluence of a binary relation: the first ap-
plies to terminating relations [8] and is the basis of the Knuth-Bendix test, reducing
confluence to the joinability of its so-called critical pairs obtained by unifying left-
hand sides of rules at subterms [7]. Based on the Hindley-Rosen Lemma, the second
applies to non-terminating relations [9] and is the basis of Tait’s confluence proof for
the pure λ-calculus. Reduction to critical pairs is also possible under strong linearity
assumptions [3], although practice favors orthogonal (left-linear, critical pair free) sys-
tems for which there are no pairs. It is our ambition to develop a critical-pair criterion
capturing both situations together.

Problem. Van Oostrom succeeded in capturing both confluence methods within a sin-
gle framework thanks to the notion of decreasing diagram of a labelled abstract rela-
tion [12]. In [5], the method is applied to concrete rewrite relations on terms, opening
the way to an analysis of non-terminating rewrite relations in terms of the joinability
of their critical pairs. The idea is to split the set of rules into a set RT of terminating
rules and a set RNT of non-terminating ones. While left-linearity is required from RNT

as shown by simple examples, it is not from RT. This problem has however escaped
efforts so far.

Contributions. We deliver the first true generalization of the Knuth-Bendix test to
rewrite systems made of two subsets, RT of terminating rules and RNT of possibly non-
terminating, rank non-increasing, left-linear rules. Confluence is reduced – via decreas-
ing diagrams – to joinability of the finitely many critical pairs of rules inRT within rules

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 287–302, 2014.
c© Springer International Publishing Switzerland 2014
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inRT∪RNT and the finitely many rigid parallel critical pairs of rules inRNT within rules
inRT∪RNT. The result is obtained thanks to a new notion, sub-rewriting, which appears
as the key to glue together many concepts that appeared before in the study of termi-
nation and confluence of union systems, namely: caps and aliens, rank non-increasing
rewrites, parallel rewriting, decreasing diagrams, stable terms, and constructor-lifting
rules. This culminates with the solution of an old open problem raised by Huet who
exhibited a critical pair free, non-terminating, non-confluent system [3]. We show that
the computation of critical pairs should then involve unification over infinite rational
trees, and then, indeed, Huet’s example is no longer critical-pair free.

Organization. Sections 4 and 5 are devoted to the main result, its proof, and extension
to Huet’s open problem. Relevant literature is analyzed in Sect. 6.

2 Term Algebras

Given a signature F of function symbols and a denumerable set X of variables,
T (F ,X ) denotes the set of terms built up from F and X . Terms are identified with
finite labelled trees as usual. Positions are strings of positive integers, identifying the
empty string Λ with the root position. We use “·” for concatenation of positions, or sets
thereof. We assume a set of variables Y disjoint fromX and a bijective mapping ξ from
the set of positions to Y . We use FPos(t) to denote the set of non-variable positions
of t, t(p) for the function symbol at position p in t, t|p for the subterm of t at position
p, and t[u]p for the result of replacing t|p with u at position p in t. We may omit the
position p, writing t[u] for simplicity and calling t[·] a context. We use ≥ for the partial
order on positions (further from the root is bigger), p#q for incomparable positions
p, q, called disjoint. The order on positions is extended to sets as follows: P ≥ Q (resp.
P > Q) if (∀p ∈ P )(∃q ∈ max(Q)) p ≥ q (resp. p > q), where max(P ) is the set
of maximal positions in P . We use p for the singleton set {p}. We write u[v1, . . . , vn]Q
for u[v1]q1 . . . [vn]qn if Q = {qi}n1 . By Var(t) we mean the set of variables occurring
in t. We say that t is linear if no variable occurs more than once in t.

Substitutions are mappings from variables to terms, called variable substitutions
when mapping variables onto variables, and variable renamings when also bijective.
We denote by σ|X the restriction of σ to a subset X of variables. We use Greek let-
ters for substitutions and postfix notation for their application. The strict subsump-
tion order � on terms (resp. substitutions) associated with the quasi-order s •≥ t (resp.
σ •≥ τ ) iff s = tθ (resp. σ = τθ) for some substitution θ, is well-founded. Given
terms s, t, computing the substitution σ whenever it exists such that t = sσ (resp.
tσ = sσ) is called matching (resp. unification) and σ is called a match (resp. unifier).
Two unifiable terms s, t have a unique (up to variable renaming) most general uni-
fier mgu(s, t), which is the smallest with respect to subsumption. The result remains
true when unifying terms s, t1, . . . , tn at a set of disjoint positions {pi}n1 such that
s|p1σ = t1σ∧ . . .∧ s|pnσ = tnσ, of which the previous result is a particular case when
n = 1 and p1 = Λ.

Given F ⊆F , a term t is F -headed if t(Λ) ∈ F . The notion extends to substitutions.
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3 Rewriting

Our goal is to reduce the Church-Rosser property of the union of a terminating rewrite
relationRT and a non-terminating relationRNT to that of finitely many critical pairs. The
particular case where RNT is empty was carried out by Knuth and Bendix and is based
on Newman’s result stating that a terminating relation is Church-Rosser provided its
local peaks are joinable. The other particular case, where RT is empty, was considered
by Huet and is based on Hindley’s result stating that a (non-terminating) relation is
Church-Rosser provided its local peaks are joinable in at most one step from each side.
The general case requires using both, which has been made possible by van Oostrom,
who introduced labelled relations and decreasing diagrams to replace joinability.

Definition 1. A rewrite rule is a pair of terms, written l→ r, whose left-hand side l is
not a variable and whose right-hand side r satisfies Var(r) ⊆ Var(l). A rewrite system
R is a set of rewrite rules. A rewrite system is left-linear (resp. linear) if for every rule
l→ r, the left-hand side l is a linear term (resp. l and r are linear terms).

Definition 2. A term u rewrites in parallel to v at a set P = {pi}n1 of pairwise disjoint
positions, written u⇒P

l→r v, if (∀pi ∈ P )u|pi = lσi and v = u[rσ1, . . . , rσn]P . The
term lσi is a redex. We may omit P or replace it by a property that it satisfies.

We call our notion of parallel rewriting rigid. It departs from the literature [3,1] by
imposing the use of a single rule. Rewriting extends naturally to lists of terms of the
same length, hence to substitutions of the same domain. Rewriting terminates if there
exists no infinite sequence of rewriting issuing from an arbitrary term.

Plain rewriting is obtained as the particular case of parallel rewriting when n = 1.
We then also write u→p

l→r v. As a consequence, most of the following definitions will
be given for parallel rewriting, while also applying to plain rewriting.

Consider two parallel rewrites issuing from the same term u with possibly different
rules, say u⇒P

l→r v and u⇒Q
g→d w. Following Huet [3], we distinguish three cases,

P#Q, that is, (∀p ∈ P ∀q ∈ Q) p#q, (disjoint case)
P = {p},Q > p · FPos(l), (ancestor case)
P = {p},Q ⊆ p · FPos(l), (critical case)

all other cases being a combination of the above three.

Definition 3 (Rigid parallel critical pairs). Given a rule l → r, a set P = {pi ∈
FPos(l)}n1 of disjoint positions and n copies {gi → di}n1 of a rule g → d sharing no
variable among themselves nor with l → r, such that σ is a most general unifier of the
terms l, g1, . . . , gn at P . Then lσ is the overlap and 〈rσ, lσ[d1σ, . . . , dnσ]P 〉 the rigid
(parallel) critical pair of {gi → di}n1 on l → r at P (a critical pair if n = 1).

Definition 4. A labelled rewrite relation is a pair made of a rewrite relation → and a
mapping from rewrite steps to a set of labels L equipped with a partial quasi-order �
whose strict part � is well-founded. We write u⇒P,m

R v for a parallel rewrite step from
u to v at positions P with label m and rewrite system R. Indexes P,m,R may be
omitted. We also write α� l (resp. l�α) ifm� l (resp. l�m) for allm in the multiset
α.
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Given an arbitrary (possibly labelled) rewrite step →l, we denote its projection on
terms by →, its inverse by l←, its reflexive closure by →=l, its symmetric closure by
←→l , its reflexive and transitive closure by →→α for some word α on the alphabet of
labels, and its reflexive, symmetric, transitive closure, called conversion, by←←→→α. We
sometimes consider the word α to be a multiset. Given u, {v |u→→ v} is the set of
reducts of u. We say that a reduct of u is reachable from u.

The triple v, u, w is said to be a local peak if v l←u→m w, a peak if v α←←u→→β w,
a joinability diagram if v→→α u β←←w. The local peak v p,m

l→r←u→q,n
g→d w is a disjoint,

critical, ancestor local peak if p#q, q ∈ p ·FPos(l), q > p ·FPos(l), respectively. The
pair v, w is convertible if v←←→→α w, divergent if v α←←u→→β w for some u, and join-
able if v→→α t β←←w for some t. The relation → is locally confluent (resp. confluent,
Church-Rosser) if every local peak (resp. divergent pair, convertible pair) is joinable.

Decreasing Diagrams. Given a rewrite relation → on terms, we first consider specific
conversions made of a local peak and an associated conversion called a local diagram
and recall the important subclass of van Oostrom’s decreasing diagrams and their main
property: a relation all whose local diagrams are decreasing enjoys the Church-Rosser
property, hence confluence. Decreasing diagrams were introduced in [12], where it is
shown that they imply confluence. Van Oostrom’s most general form of decreasing
diagrams is discussed in [5].

Definition 5 (Local diagrams). A local diagram D is a conversion made of a local
peak Dpeak = v ←u→ w and a conversion Dconv = v←←→→ u. We call diagram
rewriting the rewrite relation ⇒D on conversions associated with a set D of local dia-
grams, in which a local peak is replaced by one of its associated conversions:

P Dpeak Q⇒D P Dconv Q for someD ∈ D

Definition 6 (Decreasing diagrams [12]). A local diagramD with peak v l←u→m w
is decreasing if Dconv = v→→α s→=m s′→→δ←←δ′ t′ =←l t←←β w, with labels in α (resp.
β) strictly smaller than l (resp. m), and labels in δ, δ′ strictly smaller than l or m. The
rewrites v→→α s and t←←β w, s→=ms′ and t′=←lt, s′→→δ←←δ′ t′ are called the side steps,
facing steps, and middle steps of the diagram, respectively. A decreasing diagramD is
stable if C[Dγ] is decreasing for arbitrary context C[·] and substitution γ.

Theorem 1 ([5]). The relation ⇒D terminates for any set D of decreasing diagrams.

Corollary 1. Assume that T ⊆ T (F ,X ) and D is a set of decreasing diagrams in T
such that T is closed under ⇒D . Then the restriction of → to T is Church-Rosser if
every local peak in T has a decreasing diagram in D.

This simple corollary of Theorem 1 implies van Oostrom decreasing diagram theo-
rem by taking T = T (F ,X ). With a different choice of the set T , it will be the basis of
our main Church-Rosser result to come.

Layering. From now on, we assume two signatures FT and FNT satisfying
(A1) FT ∩ FNT = ∅.
and proceed by slicing terms into homogeneous subparts, following definitions in [4].
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Definition 7. A term s ∈ T (FT ∪ FNT,X ) is homogeneous if it belongs to T (FT,X )
or to T (FNT,X ); otherwise it is heterogeneous.

Thanks to assumption (A1), a heterogeneous term can be uniquely decomposed
(w.r.t. Y and ξ introduced in Section 2) into a topmost homogeneous part, its cap, and
a multiset of remaining subterms, its aliens, headed by symbols of the other signature.

Definition 8 (Cap, aliens). Let t ∈ T (FT ∪ FNT,X ). An alien of t is a maximal non-
variable subterm of t whose head does not belong to the signature of t’s head. We use
APos(t) for its set of pairwise disjoint alien positions, A(t) for its list of aliens from
left to right, and CPos(t) = {p ∈ Pos(t) | p �≥ APos(t)} for its set of cap positions.
We define the cap t and alien substitution γt of t as follows: (i) Pos(t) = CPos(t) ∪
APos(t); (ii) (∀p ∈ CPos(t)), t(p) = t(p); (iii) (∀p ∈ APos(t)), t(p) = ξ(p) and
γt(ξ(p)) = t|p. The rank of t, denoted rk(t), is 1 plus the maximal rank of its aliens.

Fact. Given t ∈ T (FT ∪ FNT,X ), then t = tγt.

Example 1. Let FT = {G}, FNT = {F, 0, 1}, t = F (G(0, 1, 1), G(0, 1, x), G(0, 1, 1)).
Then t has cap F (y1, y2, y3) and aliens G(0, 1, 1) and G(0, 1, x). G(0, 1, 1) has cap
G(y1, y2, y3) and homogeneous aliens 0 and 1, while G(0, 1, x) has cap G(y1, y2, x)
and same set of homogeneous aliens. Hence, the rank of t is 3.

4 From Church-Rosser to Critical Pairs

Definition 9. A rewrite rule l → r is rank non-increasing iff for all rewrites u→l→r v,
rk(u) ≥ rk(v). A rewrite system is rank non-increasing iff all its rules are.

From now on, we assume we are given two rewrite systems RT and RNT satisfying:
(A2) RT is a terminating rewrite system in T (FT,X );
(A3) RNT is a set of rank non-increasing, left-linear rules f(s)→ g(t) s.t. f, g ∈ FNT,

s, t ∈ T (FT ∪ FNT,X );
(A4) if g → d ∈ RT overlaps l → r ∈ RNT at p ∈ FPos(l), then l|p ∈ T (FT,X ).

Our goal is to show that RT ∪ RNT is Church-Rosser provided its critical pairs have
appropriate decreasing diagrams.

Strategy. Since RT and RNT are both rank non-increasing, by assumption for the latter
and homogeneity assumption of its rules for the former, we shall prove our result by
induction on the rank of terms. To this end, we introduce the set Tn(FT ∪ FNT,X ) of
terms of rank at most n. Since rewriting is rank non-increasing, Tn(FT ∪ FNT,X ) is
closed under diagram rewriting. This is why we adopted this restricted form of decreas-
ing diagrams rather than the more general form studied in [5].

We say that two terms in Tn(FT ∪ FNT,X ) are n-(RT ∪ RNT)-convertible (in short,
n-convertible) if their conversion involves terms in Tn(FT ∪ FNT,X ) only. We shall
assume that n-(RT ∪RNT)-convertible terms are joinable, and show that (n+ 1)-(RT ∪
RNT)-convertible terms are joinable as well by exhibiting decreasing diagrams for all
their local peaks, using Corollary 1.

SinceRNT may have non-linear right-hand sides, we classically use parallel rewriting
with RNT rules to enable the existence of decreasing diagrams for ancestor peaks in
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case RNT is below RNT. The main difficulty, however, has to do with ancestor peaks
v q

RNT
← u →p

RT
w for which RNT is below RT. Due to non-left-linearity of the rules

in RT, the classical diagram for such peaks, v →→RNT
s →p

RT
t ←←RNT

w, can hardly be
made decreasing in case s →p

RT
t must be a facing step and v →→RNT

s side steps with
labels identical to that of the top RNT-step. A way out is to group them together as a
single facing step from v to t. To this end, we introduce a specific rewriting relation:

Definition 10 (Sub-rewriting). A term u sub-rewrites to v at p ∈ Pos(u) with l → r
in RT, written u→p

RTsub
v if the following conditions hold: (i) FPos(l) ⊆ CPos(u|p);

(ii) u (→≥p·APos(u|p)
RT∪RNT

)∗ w = u[lσ]p ; (iii) v = u[rσ]p.

Condition (ii) allows arbitrary rewriting in A(u|p) until an RT-redex is obtained.
Thanks to assumptions (A1–3), these aliens remain aliens along the derivation from u to
w, implying (i). Condition (i) will however be needed later when relaxing assumptions
(A1) and (A3). Note also that the cap ofw|p may collapse in the last step, in which case
v|p becomes FNT-headed.

A Hierarchy of Decompositions. Sub-rewriting needs another notion of cap for FT-
headed terms. Let ζn be a bijective mapping from Y ∪X to n-(RT∪RNT)-convertibility
classes of terms in T (FT ∪ FNT,X ), which is the identity onX . The rank of a term being
at least one, 0-(RT∪RNT)-convertibility does not identify any two different terms; hence
ζ0 is a bijection from Y ∪X to T (FT ∪ FNT,X ). Similarly we denote by ζ∞ a bijective
mapping from Y ∪ X to (RT ∪RNT)-convertibility classes, abbreviated as ζ.

Definition 11 (Hat). The hat at rank n of a term t ∈ T (FT ∪ FNT,X ) is the term t̂n

defined as: if t is FNT-headed, t̂n = ζ−1
n (t); otherwise, (∀p ∈ CPos(t)) t̂n(p) = t(p)

and (∀p ∈ APos(t)) t̂n(p) = ζ−1
n (t|p).

Since n-(RT∪RNT)-convertibility is an infinite hierarchy of equivalences identifying
more and more terms, given t, t̂n is an infinite sequence of terms, each of them being
an instance of the previous one, which is stable from some index nt. We use t̂ for t̂∞.

Lemma 1. Let t ∈ T (FT ∪ FNT,X ) andm ≥ n ≥ 0. Then t̂ •≥ t̂m •≥ t̂n •≥ t.

The associated variable substitution from t̂n to t̂m is ξn,m, omittingm when infinite.
Note that ξn,m does not actually depend on the term t, but only on the m- and n-

convertibility classes. Also, t̂0 corresponds to the case where identical terms only are
identified by ζ−1

0 , while t̂ corresponds to the case where any two (RT∪RNT)-convertible
terms are identified by ζ−1. In the literature, t̂0 is usually called a hat (or a cap!).

Example 2. Let FNT = {F}, FT = {G, 0, 1} and RT = {1→ 0}. Then,
G(F (1, 0, x), F (1, 0, x), 1)→2·1

1→0 G(F (1, 0, x), F (0, 0, x), 1). 0-hats of these terms
are G(y, y, 1) and G(y, y′, 1), respectively. Their 1-hats are the same as their 0-hats,
since their aliens have rank 2, hence cannot be 1-convertible. On the other hand,
their (i ≥ 2)-hats are G(y, y, 1) and G(y, y, 1), since F (1, 0, x) and F (0, 0, x) are
2-convertible.

The following lemmas are standard, with ζt = ζ0|Var(t̂0).
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Lemma 2. Let t ∈ T (FT ∪ FNT,X ). Then t = t̂0ζt.

Lemma 3. Let u→p
RT
v, p ∈ CPos(u). Then û0→p

RT
v̂0 and (∀y ∈ Var(v̂0)) ζu(y) =

ζv(y).

Lemma 4. Let u(Λ) ∈ FT and u→p
RT∪RNT

v at p ≥ APos(u). Then CPos(u) =
CPos(v), (∀q ∈ CPos(u))u(q) = v(q), APos(u) = APos(v), (∀q ∈
APos(u))u|q→=RT∪RNT

v|q .

Key properties of sub-rewriting are the following:

Lemma 5. Let u be an FT-headed term of rank n+1 s.t. u→≥APos(u)
RT∪RNT

v. Then, (∀i ≥
n)ûi = v̂i.

Proof. Rules in RNT being FNT-headed, APos(u) = APos(v), and rewriting in aliens
does not change CPos(u). It does not change (i ≥ n)-convertibility either, hence the
statement. +,

Lemma 6. Let u of rank n + 1, p ∈ CPos(u), and u→p
RTsub

v. Then, (∀i ≥
n) ûi→p

RT
v̂i.

Proof. By definition of sub-rewriting, we get u(→≥APos(u)
RT∪RNT

)∗w→p
l→r∈RT

v, therefore
w|p = lσ for some substitution σ and v = w[rσ]p. Let i ≥ n.

By Lemma 3, ŵ0→p
l→r v̂

0. By repeated applications of Lemma 4, CPos(u) =
CPos(w), (∀q ∈ CPos(u))u(q) = w(q), and A(u) rewrites to A(w); hence aliens
in A(u) are n-convertible iff the corresponding aliens in A(w) are n-convertible. By
definition 11, we get ûn = ŵn.

Putting things together, ûi = ûnξn,i = ŵnξn,i = ŵ0ξ0,nξn,i→ v̂0ξ0,nξn,i = v̂i. +,

Definition 12 (Rewrite root). The root of a rewrite u→p
RTsub

v is the minimal position,
written p̂, such that (∀q : p ≥ q ≥ p̂ )u(q) ∈ FT.

Note that u|p is a subterm of u|p̂. By monotony of rewriting:

Corollary 2. Let u→p
RTsub

v. Then û|p̂→RT
v̂|p̂.

Main Result. We assume from here on that rules are indexed, those in RT by 0, and
those in RNT by (non-zero) natural numbers, making RNT into a disjoint union {Ri}i∈I

where I ⊆ i > 0. Having a strictly smaller index for RT rules is no harm nor necessity.
Our relations, parallel rewriting with RNT and sub-rewriting with RT, are labelled

by triples made of the rank of the rewritten term first, the index of the rule used, and
– approximately – the hat of the considered redex, ordered by the well-founded order
� := (>,>,→+

RT
)lex. More precisely,

u⇒P
Ri>0

v is given label 〈k, i, _〉, where k = max{rk(u|pi)}pi∈P ;

u→q
RTsub

v is given label 〈k, 0, û|q′〉, where k = rk(u|q) and q′ is the root q̂ of q.

The third component of an RNT-rewrite is never used. Decreasing diagrams for critical
pairs need be stable and satisfy a variable condition introduced by Toyama, see also [1]:
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Definition 13. The RNT rigid critical peak v←Λ u⇒Qw (resp. rigid critical pair
(v, w)) is naturally decreasing if it has a stable decreasing diagram in which:

(i) step s⇒−Q′
s′ facing u⇒ w uses the same rule and satisfies Var(s′|Q′) ⊆

Var(u|Q);
(ii) step t⇒− t′ facing u→ v uses the same rule.

Note the variable condition is automatically satisfied for an overlapping at the root.

Definition 14. The RNT-RT critical peak v←Λ
RNT
u→q

RT
w (resp. critical pair (v, w))

is naturally decreasing if it has a stable decreasing diagram whose step t⇒−P t′ facing
u→ v uses the same rule.

Theorem 2 (Church-Rosser unions). A rewrite union RT ∪ RNT satisfying: (A1–4),
RNT-RT critical pairs are naturally decreasing, RNT rigid critical pairs are naturally
decreasing, is Church-Rosser iff its RT critical pairs are joinable in RT.

Proof. While the “only if” direction is trivial, we are going to prove the “if” direction.
Since→RT∪RNT

⊆→RTsub
∪⇒RNT

and (→RTsub
∪⇒RNT

)∗ = (→RT∪RNT
)∗,RT∪RNT

is Church-Rosser iff →RTsub
∪⇒RNT

is. By induction on the rank, we therefore show
that every local peak v ( RTsub

←∪⇐RNT
)u (→RTsub

∪⇒RNT
)w, where rk(u) = n+1,

enjoys a decreasing diagram, implying confluence on terms of rank n+1 by Corollary 1.
The proof is divided into three parts according to the considered local peak. Each

key case is described by a picture to ease the reading, in which →, → and → are used
for plain steps with RT, RTsub andRT ∪RNT, respectively, while → is used for parallel
(sometimes plain) steps with RNT. Every omitted case is symmetric to some considered
case, or is easily solved by induction in case all rewrites take place in the aliens of u.
1) Consider a local peak v⇐P,〈k,i,_〉

RNT
u⇒Q,〈m,j,_〉

RNT
w. Following [1], we carry out first

the particular case of a root peak, for which a rule l→ r ∈ Ri applies at the root of u
(a) Root case. Although our labelling technique is different from [1], with ranks playing
a prominent role here, the proof can be adapted without difficulty, as described in Fig. 1.
Let Q1 := {q ∈ Q | q ∈ FPos(l)}. We first split the parallel rewrite from u to w into
two successive parallel steps, at positions in Q1 first, then at positions inQ2 = Q \Q1.
Note that the peak is specialized into ancestor peak whenQ1 = ∅. The inner part of the
figure uses the fact that l unifies atQ1 with someRNT rule, yielding a rigid critical peak
(v′, u′, w′) of which the peak (v, u, w′σ) is a σ-instance. By assumption, (v′, w′) has
a stable diagram which is instantiated by σ in the figure. Since Q1 ∪ Q2 are pairwise
disjoint positions and Q2 > FPos(w′), by left-linearity of RNT, w′σ⇒Q2

Rj
w′σ′ = w.

Now, we can push that parallel rewrite from w′σ to s′σ as indicated, using stability and
monotony of rewriting, thereby making ancestor redexes commute.

Finally, Toyama’s variable condition ensures that Q′
1 and Q′

2 are disjoint sets of
positions; hence sσ rewrites to s′σ′ in one parallel step with the same j-rule as u⇒w.
The obtained diagram is decreasing as a consequence of stability of the rigid critical
pair diagram and rank non-increasingness of rewrites.
(b) For the general case, we proceed again as in [1]. For every position
p ∈ min(P ∪ Q), the peak v⇐P,〈k,i,_〉

RNT
u⇒Q,〈m,j,_〉

RNT
w induces a root-peak

v|p⇐P ′,〈k′,i,_〉
RNT

u|p⇒Q′,〈m′,j,_〉
RNT

w|p. As just shown, root-peaks have decreasing dia-
grams; hence, for each p, we have a decreasing diagram between v|p and w|p. Notice
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Fig. 2. RNT above RT critical peak

that in the decreasing diagram we have shown, each facing step – if it exists – uses the
same rule as that one it faces. Since positions inmin(P ∪Q) are pairwise disjoint, these
decreasing diagrams combine into a single decreasing diagram: in particular, the facing

steps ⇒〈m′,j,_〉
RNT

(resp. ⇐〈k′,i,_〉
RNT

) yield the facing step ⇒〈m,j,_〉
RNT

(resp. ⇐〈k,i,_〉
RNT

).

2) Consider a local peak v
p,〈k,0,û|p̂〉
RTsub

←u→q,〈m,0,û|q̂〉
RTsub

w. We denote by l → r and g → d
the RT-rules applied from u to v at p and u to w at q, respectively. We discuss cases
depending on p, p̂, q, q̂, instead of only p, q as usual.
(a) Disjoint case: p#q. The usual commutation lemma yields v→q,〈m,0,v̂|q̂〉

RTsub

t
p,〈k,0,ŵ|p̂〉
RTsub

←w for some t. It is decreasing easily by Corollary 2 or Lemma 5, decided
by p̂, q̂.
(b) Root ancestor case: q̂ > p. By Definition 12, m < k; hence q ≥ APos(u|p̂).
This case is thus similar to the RT aboveRNT ancestor case considered later, pictured at
Fig. 4.
(c) Ancestor case: q̂ = p̂; hence k = m, with q > p·FPos(l). This is the usual ancestor
case, within a given layer. The proof is depicted in Fig. 3, simplified by taking p = Λ.

Using Definition 8 and Lemma 2, then, by Definition 10, the rewrite from u = uγu,

to v = v̂0ζv (resp. w = ŵ0ζw) factors out through v′ = v̂′
0
ζv′ (resp., w′ = ŵ′0ζw′).

By Lemma 3, ζv and ζv′ coincide on Var(v̂′
0
), and so do ζw and ζw′ on Var(ŵ′0). By

Lemma 4, A(u) rewrites to both A(v′) and A(w′), hence each alien in A(v) and A(w)
originates from some in A(u). It follows that the aliens in A(v) and A(w) originating
from the same one in A(u) are n-convertible. For each y ∈ Var(v̂n) ∪ Var(ŵn), we
choose all aliens of v and w which belong to the n-convertibility class ζn(y), and apply
induction hypothesis to get a common reduct ty of them, mapping y to ty to construct
the substitution ζv↓nw. Letting vn be the term v̂nζv↓nw, v rewrites to vn. Similarly,
w rewrites to wn. This technique, which we call equalization, of equalizing all
n-convertible aliens to construct ζv↓nw is somewhat crucial in our proof. The last three
steps follow from the inner ancestor diagram between hats of u, v, w, which upper part
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follows from Lemma 6 and bottom part from the fact that q > p · FPos(l), resulting in
an ancestor peak between homogeneous terms. Such an ancestor peak has an easy stable
decreasing diagram, which bottom part can be therefore lifted to the outside diagram.
Checking that the obtained diagram is decreasing is routine.
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Λ

Λ

Fig. 4. RT above RNT ancestor peak

(d) Critical case: q̂ = p̂; hence k = m, with q ∈ FPos(l). This is the usual critical case,
happening necessarily within same layer. The proof works as in Case (2c), except that
the inner diagram is now of a critical peak. Since the RT critical peak has a joinability
diagram by assumption, thanks to stability of rewriting, it can be lifted to the outer
diagram, yielding a decreasing diagram for the starting peak.

3) Consider a local peak v p,〈k,0,û|p̂〉
RTsub

←u⇒Q,〈m,j,_〉
RNT

w. There are three cases.
(a) Disjoint case: p#Q. We get the usual commuting diagram with two facing steps.
(b) Ancestor case. There are two sub-cases: (α) p > Q; hencem > k. SinceRNT is left-

linear, then v⇒〈m′,j,_〉
RNT

t←←〈k,0,?〉
RTsub

w for some t andm′ ≤ m, being a clearly decreasing
diagram. (β) p < Q. This case is a little bit more delicate, since the RT-rule l→ r used
at position p may be non-left-linear. We use equalization as for Case (2c), depicted in
Fig. 4 in the particular case where p = Λ for simplicity. The main difference with Case
(2c) is that the RNT-step must occur in an alien; hence ŵn = ûn, which somewhat
simplifies the figure.
(c) Critical case. By assumption (A1-3), Q = {qi}i and p ∈ qi · FPos(l) for some qi.
The proof is depicted at Fig. 2 withQ = {Λ} for simplicity, implying a unique redex for
that parallel rewrite at the top. Note that the RT- and RNT-redexes must have different
ranks, hencem > k.

By assumption, u = lθ⇒Λ
l→r rθ = w and u(→≥APos(u|p)

RT∪RNT
)∗u[gθ]p→p

g→d v for
some substitution θ (assuming l and g are renamed apart). The key of the proof is the
fact that u[gθ]p = lθ′ for some substitution θ′ such that θ→→ θ′. By assumption (A4), if
o is a variable position in g and p · o ∈ FPos(l), then l|p·o ∈ T (FT,X ). This indeed
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ensures that the sub-rewrites from u to v cannot occur at positions inFPos(l), therefore
ensuring the fact u[gθ]p = lθ′ since l is linear. It follows that lθ′ rewrites to rθ′ at the
root, and to v at p ∈ FPos(l), which proves the existence of a critical pair of RT inside
RNT. The rest of the proof is routine, the lifting part being ensured by stability.

To conclude, we simply remark that any two (RT ∪ RNT)-convertible terms are
n-(RT ∪ RNT)-convertible for some n possibly strictly larger than their respective
ranks. +,

5 Relaxing Assumptions

One must understand that there is no room for relaxing the conditions on RT and little
for RNT. Left-linearity is mandatory, rank non-increasingness as well, and the fact that
left-hand sides are headed by symbols which do not belong to FT serves avoiding criti-
cal pairs of RNT inside RT. This does not forbid left-hand sides to stretch over possibly
several layers, making our result very different from known modularity results. There-
fore, the only potential relaxations apply to the right-hand sides of RNT-rules, which
need not be headed by FNT-symbols, as we assumed to make the proof more comfort-
able. We will allow them to be headed by some symbols from FT.

From now on, we replace our assumption (A1) by the following: Let FC = FT ∩FNT

be the set of constructor symbols s.t. no rule in RT ∪ RNT can have an FC-headed left-
hand side. We use FT\C and FNT\C as shorthand for FT \FC and FNT \FC, respectively.

Terms in T (FC,X ) are constructor terms, trivial ones if in X . The definitions of
rank, cap and alien for terms headed by FT\C- or FNT\C-symbols are as before with
respect to FT and FNT, respectively. An FC-headed term has its cap and aliens defined
with respect to FC, and its rank is the maximal rank of its aliens, which are headed
in FT\C or FNT\C. The rank of a homogeneous constructor term is therefore 0, which
explains why we started with rank 1 before.

Definition 15. We introduce names for three important categories of terms:
– type 1: FNT\C-headed terms have a variable as cap and themselves as alien;
– type 2: terms u whose cap u ∈ T (FC,Y) and aliens are all FNT\C-headed;
– type 3: FT\C-headed terms whose cap u ∈ T (FT,X ∪ Y), and aliens are FNT\C-
headed.

We also modify our assumption (A3), which becomes:
(A3)RNT is a left-linear, rank non-increasing rewrite system whose rules have the form
f(l)→ r, f ∈ FNT\C, l ∈ T (FT ∪ FNT,X ), r is a term of type 2.
Previous assumption (A3) is a particular case of the new one when r has type 1 ⊆
type 2.

The proof structure of Theorem 2 depends on layering and labelling. Allowing con-
structor lifting rules in RNT invalidates Lemmas 5, 6 used to control the label’s third
component ofRT-sub-rewriting steps, sinceRNT-rewrites in aliens may now modify the
cap of an FT-headed term. Our strategy is to modify the notion of hat and get analogs
of Lemmas 5, 6, making the whole proof work by changing the third component of the
label of an RT-sub-rewriting step. Following [4], the idea is to estimate the construc-
tors which can pop up at the head of a given FNT\C-headed term, by rewriting it until
stabilization.
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From here on, we assume the Church-Rosser property for n-convertible terms of
rank up to n. Being fixed throughout this section, the rank n will often be left implicit.

Finite Constructor Lifting

Definition 16. A derivation s→→ u, where s : type 1 and u : type 2 \ type 1, is said
to be constructor lifting. RT ∪ RNT is a finite constructor lifting rewrite system if (∀s :
type 1)∃ns ≥ 0 s.t. for all constructor lifting derivation s→→ u, |u| ≤ ns.

Definition 17 (Stable terms). A term whose multisetM of aliens only contains FNT\C-
headed terms of rank at most n, is stable if M is stable. A multiset M of FNT\C-headed
terms of rank at most n is stable if (i) reducts of terms inM are FNT\C-headed; (ii) any
two convertible terms inM are equal.

Example 3. Let RT = {G(x, x, y) → y,G(x, y, x) → y,G(y, x, x) → y, 1 → 0},
RNT = {F (0, 1, x) → F (x, x, x), F (1, 0, x) → F (x, x, x), F (0, 0, x) → F (x, x, x)}.
Then, u = G(F (0, 1, G(0, 0, 0)), F (0, 0, 0), F (1, 0, 0)) is not stable since its
aliens are all convertible but different. But u rewrites to stable G(F (0, 0, 0),
F (0, 0, 0), F (0, 0, 0)).

From rank non-increasingness and the Church-Rosser assumption, we get:

Lemma 7. Let u a stable term of type 1 s.t. u→→ v. Then v is a stable term of type 1.

Lemma 8. Let u a stable term whose aliens are of rank up to n. Then, (∀i ≤ n) ûi =
û0.

Lemma 9 (Stabilization). A term s of type 1, 2, 3 whose aliens have rank up to n has
a stable term t such that t̂n = ŝn θ for some constructor substitution θ which depends
only on the aliens of s.

Proof. Let M be a multiset of type 1 terms, and u ∈ M . By assumption (A3), the
set of constructor positions on top can only increase along a derivation from u. Being
bounded, it has a maximum. Let v be such a reduct. If v is of type 1, then it is sta-
ble. Otherwise, we still needto equalize its convertible aliens, using the Church-Rosser
property of terms of rank up to n, and we are done. Applying this procedure to all terms
in M , we are left equalizing as above the convertible stable terms which are stable by
Lemma 7. Taking now a type 2/3 term, we apply the procedure to its multiset of aliens,
all of which have type 1. The relationship between the hats of s and t is clear: θ is gen-
erated by constructor lifting, which is the same for equivalent aliens, hence for equal
aliens. +,

Lemma 10 (Structure). Let s be a term of type 1,2,3 whose aliens have rank up to n,
and u, v be two stable terms obtained from s by stabilization. Then, (∀i ≤ n) ûi = v̂i.

Proof. Let p ∈ APos(s). By stabilization u|p and v|p are convertible stable terms of
type 2. By Church-Rosser assumption u|p→→ t←← v|p. Since constructors cannot be
rewritten, u|p and v|p must have the same constructor cap, thus u, v have the same cap.
Since they are stable, two convertible aliens of u (resp., v) must be equal, hence u, v
have the same 0-hat. We conclude by Lemma 8. +,
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Definition 18 (Estimated hat). Let u be a term of type 1,2,3 whose aliens have rank
up to n and v a stable term obtained from u by stabilization. The estimated hat

�n
uv of u

w.r.t. v is the term v̂n.

By Lemma 10, the choice of v has no impact on
�n
uv , hence the short notation

�
u .

Lemma 11 (Alien rewriting). Let u, v be terms of type 3 whose aliens are of rank up
to n, such that u→≥APos(u)

RT∪RNT
v. Then

�
u=

�
v .

Proof. Follows from Lemmas 9 and 10: any stable term for v is a stable term for u. +,

Lemma 12. Let u be a term of type 3 whose aliens have rank up to n, s.t. u→p
RTsub

v
with p ∈ CPos(u). Then

�
u →RT

�
v .

Proof. By definition of sub-rewriting u→→≥APos(u) w→p
RT
v. By Lemma 11,

�
u=

�
w.

By Lemma 6, ŵn→p
RT
v̂n, and aliens of v are aliens ofw. Let noww′, v′ be stable terms

obtained from w, v by stabilization, hence ŵ′n = ŵnθw and v̂′
n
= v̂nθv by Lemma 9,

where θv, θw depend only on the aliens of v, w, respectively; hence θv and θw coincide
on Var(v̂n) ⊆ Var(ŵn) and v̂′

n
= v̂nθw. We conclude by stability of rewriting and

definition of estimated hats. +,

Theorem 3. Theorem 2 holds with finite constructor lifting.

Proof. Same as for Theorem 2, with the exception of the crucial sub-rewriting
cases, which are marginally modified by using stabilization instead of equalization of
terms. +,

Infinite Constructor Lifting. It is easy to see that the only difficult case in the
main proof is the elimination of sub-rewriting critical peaks. Consider the critical peak
v Λ

l→r← v′←←≥APos(u)
RT∪RNT

u→→≥APos(u)
RT∪RNT

w′→p
g→d w, p∈FPos(l) and l → r, g → d∈RT.

To obtain a term instance of l whose subterm at position p is an instance of g, v′ and w′

must be equalized into a term s whose hat rewrites at Λ with l→ r and at p with g → d
to the hats of the corresponding equalizations of v and w. The heart of the problem
lies therefore in equalization which constructs here a solution in the signature of FT to
FT-unification problems associated with critical pairs by rewriting in RT ∪RNT. Hence,

Theorem 4. With new assumption (A3), Theorem 2 holds if RT critical pairs modulo
RT ∪RNT are joinable in RT.

Because sub-rewriting can only equalize aliens, RT ∪RNT-unification sole purpose
is to solve occurs-check failures that occur in the plain unification problem l|p = g.

Definition 19. Let l → r and g → d be two rules in RT s.t. g Prolog unifies with l at
position p ∈ FPos(l). Let

∧
i xi = si ∧

∧
j yj = tj be a dag solved form returned

by Prolog unification, where
∧

i xi = si is the finite substitution part, and
∧

j yj = tj
the occurs-check part. Let now σ be the substitution {xi �→ si}i and τ = {yj �→ tj}j .
Then 〈rσ, lσ[dσ]p〉 is a Prolog critical pair of RT, constrained by the occurs checks
yj = tj .



300 J. Liu, N. Dershowitz, and J.-P. Jouannaud

If the critical pairs obtained by Prolog unification are joinable in RT constrained by
the occurs-check equations, then the Church-Rosser property is satisfied:

Conjecture 1. With new assumption(A3), Theorem 2 holds if RT critical pairs are join-
able inRT and Prolog critical pairs ofRT are joinable inRT modulo their occurs checks.

f(c(x), x) = f(y, c(y))

�
�	




�

a(x) b(y)

�
�

�
��

e(x) e(c(y))�
τ

� �θ1 θ2a(cn(g)) b(cm(g))

�
�
�
��

�
�

�
���

�
��

	
	


θ1 θ2

e(cn(g)) e(cm+1(g))��

f(cn+1(g), cn(g)) f(cm(g), cm+1(g))

�
�

�
�

��	











�

� �θ1 θ2

�
�	
�

�	



�




�

f(ck1(g), ck2(g))

� �

Example 4 (Variation of Huet’s exam-
ple [3]). Let

RT = { f(c(x), x)→ a(x),
f(y, c(y))→ b(y),
a(x)→ e(x),
b(y)→ e(c(y)) },

RNT = { g → c(g) }.
Then the unification problem
f(c(x), x) = f(y, c(y)) results in an
empty substitution and the occurs-check
equations
τ = {x = c(y), y = c(x)}. The crit-
ical pair 〈a(x), b(y)〉 is then joinable
by a(x)→ e(x) = e(c(y)) ← b(y),
as exemplified in the figure, where
θ1 = {x �→ cn(g)}, θ2 = {y �→ cm(g)}.

Fig. 5. Variation of Huet’s example

The idea is shown in Fig. 5. Note that the red bottom steps operate on aliens, hence
have a small rank, making the whole joinability diagram decreasing. We have no clear
formulation of the converse yet. Confluence is indeed satisfied if the occurs check is un-
solvable, that is, when there exists no FNT\C-headed substitution θ of the yj’s such that
yjθ ←←→→RT∪RNT tjθ. We suspect this condition can be reinforced as yjθ→→RT∪RNT

tjθ,
possibly leading to interesting sufficient conditions for unsolvability of occurs checks.

6 Related Work

In [5], it is shown that confluence can be characterized by the existence of decreasing
diagrams for the critical pairs in RT ∪RNT provided all rules are linear (an assumption
that was forgotten [but used] for RT, as pointed out to the third author by Aart Middel-
dorp). This is a particular case of a recent result of Felgenhauer [1] showing that RNT is
confluent if rules are left-linear and parallel critical pairs have decreasing diagrams with
respect to rule indexes used as labels. When FT is empty, all terms have rank 1, hence
our labels for non-linear rules reduce to his. A difference is that we assumeRNT-rules to
be non-collapsing. One could argue that RNT collapsing rules can be moved to RT, but
this answer is not satisfactory for two different reasons: the resulting change of labels
may affect the search for decreasing diagrams, and it can also impact condition (A1).
A second difference is that we use rigid parallel rewriting, which yields exponentially
fewer parallel critical pairs than when allowing parallel steps with different rules of a
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given index (which we could have done too). The price to pay – having less flexibility
for finding decreasing diagrams – should not make a difference in practice.

A very recent result of Klein and Hirokawa, generalizing [2], extends Knuth
and Bendix’s critical pair test to relatively terminating systems [6]. It is an ex-
tension in the sense that it boils down to it when RNT = ∅. Otherwise, it re-
quires computing critical pairs of RT modulo a confluent RNT, hence modifies the
critical pair test for the subset of terminating rules. Further, it requires proving
relative termination (termination of →→RNT

→RT
→→RNT

), complete unification mod-
ulo RNT, and absence of critical pairs between RT and RNT, all tests implemented
in CSI[http://dx.doi.org/10.1007/978-3-642-22438-6_38] – to our
surprise! This is used to detect that Huet’s example is non-confluent.

Theorem 2 can be seen as a modularity theorem to some extent, since rewriting a
term in T (FT,X ) can only involveRT rules. But left-hand sides of RNT rules may have
FT-symbols. That is why we need to compute critical pairs ofRT inside RNT. Our proof
uses many concepts and techniques inherited from previous work on modularity, such as
the decomposition of terms (caps and aliens, hats and estimated caps [10]). We have not
tried using van Oostrom’s notion of cap, in which aliens must have maximal rank [13],
nor the method developed by Klein and Hirokawa for studying the Church-Rosser prop-
erty of disjoint rewrite relations on terms [6], which we could do by considering cap
rewriting with RT-rules and alien rewriting with all rules. This remains to be done.

7 Conclusion

Decreasing diagrams opened the way for generalizing Knuth and Bendix’s critical-pair
test for confluence to non-terminating systems, re-igniting these questions. Our results
answer important open questions, in particular by allowing both non-left-linear and non-
terminating rules. While combining many existing as well as new techniques, our proof
has proved quite robust. Two technical questions have been left open: having collapsing
rules in RNT, following [1], and eliminating assumption (A4).

A major theoretical question is whether layering requires assumption (A1). Our proof
is based on two key properties, layering and the absence of overlaps of RNT inside RT.
Currently, (A1) serves both purposes. The question is however open whether the latter
property is sufficient to define some form of layering, as we suspect.

We end up with our long term goal, applying this technique in practice. The need for
showing the Church-Rosser property of mixed terminating and non-terminating rewrite
computations arises in at least two areas, first-order and higher-order. The develop-
ment of sophisticated type theories with complex elimination rules requires proving
Church-Rosser before strong-normalization and type preservation, directly on untyped
terms. Unfortunately, besides being collapsing, β-reduction is also rank-increasing in
the presence of another signature. We therefore need to develop another notion of rank
that would apply to pure λ-calculus, a question related to the previous one.

Transformation valuation is a static analysis that tries to verify that an optimizer is
semantics preserving by constructing a value graph for both programs and showing
their equivalence by rewriting techniques [11]. Here, the user has a good feeling of
which subset of rules is a candidate for RNT. Where this is not the case, work is of

http://dx.doi.org/10.1007/978-3-642-22438-6_38
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course needed to find good splits automatically. Implementers are invited to lead the
way.
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gram 2010CB328003 and Nat. Key Tech. R&D Program SQ2012BAJY4052 of China.
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Abstract. We generalize the notion of proof term to the realm of trans-
finite reduction. Proof terms represent reductions in the first-order term
format, thereby facilitating their formal analysis. Transfinite reductions
can be faithfully represented as infinitary proof terms, unique up to infini-
tary associativity. We use proof terms to define equivalence of transfinite
reductions on the basis of permutation equations. A proof of the compres-
sion property via proof terms is presented, which establishes permutation
equivalence between the original and the compressed reductions.

Keywords: infinitary rewriting, proof terms, permutation equivalence.

1 Introduction

We study infinitary left-linear rewriting, based on the notion of strong conver-
gence, as developed in [5]. Proof terms denoting reductions for finitary rewriting
have been introduced in [11], Chap. 8. The use of proof terms marks a shift
of attention from reduction as a relation between terms, towards reductions as
objects by themselves. Proof terms represent reductions in the first-order term
format, thereby facilitating their formal analysis. For example, proof-theoretic
analysis, equational reasoning, and even rewriting techniques, can now be ap-
plied in the study of properties of rewriting such as standardisation and the like.
This use of proof terms in finitary rewriting has been well developed. See [11],
Chaps. 8 and 9.

The main objective of our work is to generalize the notion of proof term to
the realm of infinite reduction, and to use this to define and study the notion of
permutation equivalence for transfinite reduction. The representation of trans-
finite reductions by proof terms can be exploited to yield transparent proofs of
results like standardisation and compression. As a matter of fact, strong versions
of these theorems: the standardised or compressed reductions thus obtained are
permutation equivalent to the original ones. The compression proof will be pre-
sented here, standardisation is beyond the scope of this paper.

We will prove in Section 5 that any transfinite reduction can be faithfully rep-
resented as an infinitary, so-called stepwise proof term. Moreover, the original
reduction can be reconstructed from the stepwise proof term: the representa-
tion is injective. The proof terms formalism is broader, however. Apart from
sequential reduction, also parallel and multi-step reduction can be represented.
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An alternative, co-inductive approach to the study of infinitary rewriting, was
proposed in [3]. Proof objects emerge there as witnesses in the co-inductive char-
acterisation of the reduction relation. Their focus, however, is on techniques for
proving properties of the reduction relation, rather than the fine structure of
the space of transfinite reductions, which is our primary interest. We use induc-
tive techniques. Although a term can be infinite, the distance of each symbol to
its root is finite, allowing for inductive reasoning about occurrences in a term.
Likewise, transfinite induction can be used to reason about infinite reduction
sequences, of which the length can always be expressed as an ordinal.

An extended version of the present article, containing full details of the defi-
nitions and proofs, is available as [8].

2 Preliminaries

We assume acquaintance with term rewriting, both finitary and infinitary, and
with ordinal numbers. As background sources on rewriting we mention [1], [11],
[5], [7]. The following survey fixes some notations and terminology.

Ordinals. Properties of countable ordinals (cf. e.g. [10]) are extensively used in
this work. Especially we will make use of the following cofinality result.

Lemma 1. Let α be a countable limit ordinal. Then there exists a sequence of
ordinals 〈αi〉i<ω such that 0 < αi < α for all i < ω, and α = Σ

i<ω
αi.

Positions, terms. A position is a finite sequence of elements of �>0. We will
use p, q, r for positions. The length of a position p is called its depth, denoted
|p|. The empty position is denoted by ε. Concatenation of positions is denoted
by an infix dot, i.e. p · q. The dot will be mostly omitted. The prefix order on
positions is denoted by ≤, i.e. p ≤ q iff q = pq′.

A tree domain (cf. [2]) is a set of positions P , such that P �= ∅, P is prefix-
closed, and pj ∈ P and i < j imply pi ∈ P . Note that a tree domain can be
infinite. However, the depth of any position in a tree domain is finite. A signature
Σ is a function from a set of symbols to �≥0; the value of this function for a
symbol f is called its arity, denoted as ar(f). We write f/m ∈ Σ to indicate
ar(f) = m. We assume a countably infinite set Var of variables. An infinitary
(i.e. finite or infinite) term over Σ is a pair 〈P, F 〉 where P is a tree domain, and
F : P → (Σ ∪ Var) verifying the following: if p ∈ P , then pi ∈ P iff F (p) ∈ Σ
and ar(F (p)) ≥ i. We denote the set of infinitary terms over Σ as Ter∞(Σ). If
t = 〈P, F 〉, then we define pos(t) := P and t(p) := F (p); we say that t is finite
iff pos(t) is. If f is a unary symbol, then fω denotes the term f(f(f . . .)).

Given t, u terms and p a position in t, we let t|p denote the subterm of t at p,
and t[u]p the term that results by replacing that subterm of t by u.

The distance between two terms t and u is defined as follows: d(t, u) := 0 if
t = u; otherwise, d(t, u) := 2−|p| where t and u coincide on q if |q| < |p|, and
t(p) �= u(p). Given this notion of distance, the limit of any Cauchy-convergent
sequence of terms is defined.
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Term rewriting systems, reduction. A rule over a signature Σ is a pair
〈l, h〉 of terms over Σ such that l /∈ Var, l is a finite term, and all the variables
occurring in h occur also in l. We denote the rule 〈l, h〉 as μ : l → h; here μ is the
name of the rule, a symbol from a signature disjoint with Σ. A term rewriting
system (TRS) is a pair T = 〈Σ,R〉, where Σ is a signature and R a set of
rules over Σ. We only consider left-linear TRSs, i.e., if 〈l, h〉 ∈ R then l has
no multiple occurrences of the same variable. If the rules are used for infinitary
rewriting, as in this paper, then T is also called an infinitary TRS (iTRS).

A reduction step over a TRS T = 〈Σ,R〉 is a triple a = 〈t, p, μ〉 where t is a
term, p ∈ pos(t), and μ : l → h ∈ R, iff t |p= σl for some substitution σ. We
define the source term, target term, activity position and depth of a = 〈t, p, μ〉
as follows: src(a) := t, tgt(a) := t[σh]p, rpos(a) := p, d(a) := |p|.

A reduction sequence is: either Idt, the empty reduction sequence for the term
t, or else a non-empty sequence of reduction steps δ := 〈δ[α]〉α<β , where β >
0 and the following conditions are met: (1) for all α such that α + 1 < β,
src(δ[α + 1]) = tgt(δ[α]); and for all limit ordinals β0 < β: (2.a) the sequence
〈tgt(δ[α])〉α<β0 has a limit, (2.b) that limit coincides with src(δ[β0]), and (2.c)
for all n < ω, there exists β′ < β0 such that d(δ[α]) > n if β′ < α < β0. We
say that a reduction sequence δ is strongly convergent if either δ = Idt for some
term t, or else δ = 〈δ[α]〉α<β , and either β is a successor ordinal, or else β is a
limit ordinal and conditions (2.a) and (2.c) hold for β as well. By convergence,
we will always mean strong convergence.

The symbols→, � and �� denote the one-step, finite rewrite, and convergent
infinitary rewrite relations respectively.

We will denote the step a = 〈t, p, μ〉 as t a→u, or t
〈p,μ〉→ u where u = tgt(a).

Analogously for � and ��. We indicate the TRS below the arrow if needed.
WN∞ is the property of having an infinitary normal form and UN∞ of unicity

of normal forms. SN∞ is more complicated, but boils down to the absence of
non-convergent reduction sequences. All orthogonal iTRSs are UN∞, see [11],
Chap. 13 or [7].

3 Finitary and Infinitary Proof Terms

The idea motivating the definition and application of proof terms, as they were
introduced in [11], Chap. 8, is to denote reductions of a TRS T as terms over
an extended signature. For each reduction rule ρ : l → r of T a rule symbol is
introduced, which we will also denote by ρ. The arity of the rule symbol ρ equals
the number of different variables occurring in l. So e.g., the signature of proof
terms for a TRS T = 〈Σ,R〉 with rules μ : f(x) → g(x), ρ : h(m(x),m(y)) →
k(x) and ν : g(x)→ k(x) adds to Σ rule symbols μ/1, ρ/2 and ν/1.

We describe some valid proof terms along with the T -reductions they denote.
Proof terms with only one occurrence of a rule symbol denote single reduction
steps: μ(a) : f(a) → g(a) and g(ρ(a, b)) : g(h(m(a),m(b))) → g(k(a)). With
more occurrences of rule symbols, they denote multi-steps, like h(μ(a), μ(b)) :
h(f(a), f(b)) � h(g(a), g(b)) and ρ(μ(a), b) : h(m(f(a)),m(b)) � k(g(a)). A
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proof term ψ without rule-symbol occurrences denotes an empty step. It will
also be denoted by the symbol 1ψ, or just briefly 1.

The beginning and end terms of the corresponding reductions are called the
source and target of the proof term. For the proof terms considered so far,
they can be obtained via rewriting in two companion TRSs, denoted as SRC
and TGT respectively. For each rule symbol ρ : l → r, SRC includes a rule
ρ(x1, . . . , xm) → l[x1, . . . , xm] and TGT a rule ρ(x1, . . . , xm) → r[x1, . . . , xm].
Source and target of a proof term are its normal forms in SRC and TGT ,
respectively. It is easy to see that SRC and TGT are orthogonal and terminating.

To complete the definition of the set of finitary proof terms, we add a new
binary function symbol · (written infix), expressing concatenation, or composi-
tion, of reductions. There is a restriction on term formation, though: ψ · φ is a
valid proof term only if tgt(ψ) = src(φ). Computing source and target for proof
terms containing the symbol · is made possible by schematically adding rewrite
rules ψ · φ→ ψ to SRC and ψ · φ→ φ to TGT .

Just to give a simple example, the proof term f(μ(a)) · f(ν(a)) denotes the
two-step reduction f(f(a)) → f(g(a)) → f(k(a)). The same reduction is repre-
sented by the proof term f(μ(a) · ν(a)).

Proof terms without the symbol · are called multi-steps, with one-step proof
terms, multi-steps with precisely one rule-symbol occurrence, as a special case.

3.1 Infinitary Proof Terms

We extend the concept of proof terms to the setting of infinitary rewriting.
Infinitary multi-steps are finite or infinite terms over the signature extended
with rule symbols. A multi-step may now contain infinitely many rule symbol
occurrences, as e.g. in the proof term μω : fω → gω. As in the finite case,
infinitary multi-steps with just one rule-symbol occurrence are called one-steps.

Source src(ψ) and target tgt(ψ) for an infinitary multi-step ψ can again be
defined using the TRSs SRC and TGT , now considered as infinitary TRSs, as
the respective infinitary normal forms of ψ. Of course there are the questions of
existence and uniqueness. First note that UN∞ holds for both SRC and TGT ,
since they are orthogonal iTRSs. It is also not hard to verify WN∞ for SRC.
For TGT , however, we have WN∞ only if the object TRS does not include
collapsing rules. We conclude that the source of an infinitary multi-step ψ is
always uniquely defined. The target is only defined if ψ is WN∞, but if so, it is
also unique. If ψ is not WN∞ for TGT , then we say that tgt(ψ) is undefined.

The set of redexes in src(ψ) corresponding to the rule symbol occurrences in
ψ admits at least one convergent development (respectively, all developments
are convergent) precisely if ψ is WN∞ (respectively SN∞) in the TRS TGT .
An infinitary multi-step is called convergent, if its target can be computed.

Composition is expressed, as before, by the binary symbol · of which a proof
term may now contain an infinite number of occurrences. Not all terms over the
thus extended signature are valid proof terms though, but only those that can
be constructed starting from the infinitary multi-steps by the following three
inductive clauses.
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First, closure under application of function or rule symbols: if ψ1, . . . , ψn are
proof-terms, then so are f(ψ1, . . . , ψn) and μ(ψ1, . . . , ψn).

Secondly, binary composition: if ψ, φ are proof terms, then so is ψ · φ, provided
that tgt(ψ) = src(φ). This presupposes convergence of ψ. The proof term ψ · φ
is convergent iff φ is.

Thirdly, infinite composition: the term corre-
sponding to the figure is a proof term, if ψ0, ψ1, ψ2, . . .
are, provided that for each i < ω we have convergence
of ψi and tgt(ψi) = src(ψi+1). A linear rendering
would be ψ0 · (ψ1 · (ψ2 · . . .)). We use ·i<ω ψi as
shorthand for this proof term.

·
��


 		��

��

ψ0 ·


��� ��



ψ1 ·
����
� �

�

ψ2
. . .

For ψ = ·i<ω ψi, we define src(ψ) = src(ψ0). That leaves convergence for
·i<ω ψi to be defined, and the target, if it exists. For this we need the notion of
minimal activity depth of a proof term ψ, notation mind(ψ). This can be defined
as the minimal depth of a rule symbol occurrence, where dot occurrences are not
counted when computing the depth of a symbol. (If ψ does not have any rule
symbol occurrence, then we call ψ trivial and definemind(ψ) = ω. ) For example:
if ψ = μ(a) · ν(a) : f(a)→ g(a)→ k(a), then mind(ψ) = 0. This is the correct
value since ψ denotes a reduction including contractions at the root.

Now we define ψ = ·i<ω ψi to be convergent if the sequence 〈mind(ψi)〉i<ω

tends to infinity, and if so, tgt(ψ) is defined as the limit of the sequence tgt(ψi).
In [8] infinitary proof terms are defined in layers corresponding to ordinal

numbers. We implicitly refer to these layers when applying induction on proof
terms. Let ν(ψ) denote the ordinal layer for ψ. We have ν(ψ1 · ψ2) = ν(ψ1) +
ν(ψ2) + 1, and ν( ·i<ω ψi) = Σi<ω ν(ψi). Hence ν(ψi) < ν(ψ1 · ψ2) for i = 1, 2,
ν(ψ0 · . . . · ψn) < ν( ·i<ω ψi) for all n < ω, and ν(ψ) is a limit ordinal iff ψ is
an infinite composition.

By the above definition of proof terms an infinite composition is also a binary
composition: ·i<ω ψi = ψ0 · ( ·i<ω ψi+1). However, since proof terms have unique
layers, in the layered definition the proof term is constructed only once, as infinite
composition, and with layer a limit ordinal. We still have unique constructibility.

3.2 Examples

The definition of infinitary proof terms extends that of the finitary ones so that
the examples given earlier are infinitary proof terms as well.

Let us show some infinite examples. Let μ : f(x)→ g(x) and ν : g(x)→ k(x).
Consider fω �� gω taken as the simultaneous reduction of all the μ redexes
present in the term fω. Such a simultaneous reduction can be denoted by the
infinitary multi-step ψ1 := μω. To compute src(ψ1) = fω and tgt(ψ1) = gω we
observe that the “companion TRSs” SRC and TGT include the rules μ(x) →
f(x) and μ(x)→ g(x) respectively, leading to the convergent reduction sequences
μω → f(μω)→ f2(μω) �� fω and μω → g(μω)→ g2(μω) �� gω.

Consider the reduction sequence fω → g(fω) → g2(fω) �� gω having length
ω. The i-th step of this sequence, namely gi(fω) → gi+1(fω), can be described
by the proof term gi(μ(fω)). It is straightforward to check that the sequence
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formed by these proof terms verifies the conditions of the infinitary composi-
tion rule, and that the depth of the denoted activity tends to infinity. There-
fore ψ2 := ·i<ω gi(μ(fω)) is a valid and convergent proof term; we observe
src(ψ2) = fω. In order to obtain tgt(ψ2) = g

ω, it is enough to observe that the se-
quence of targets of each gi(μ(fω)), namely g(fω), g2(fω), . . ., converges to that
term. Analogously, the reduction sequence fω → g(fω)→ k(fω)→ k(g(fω))→
k2(fω) �� kω can be denoted by either ψ3 := ·i<ω (ki(μ(fω)) · ki(ν(fω))) or
ψ4 := ·i<ω (ki(μ(fω) · ν(fω))).

The rules defining the set of proof terms can be combined in different ways.
E.g., the reduction fω �� gω �� kω, can be denoted by either ·i<ω g

i(μ(fω)) ·
·i<ω k

i(ν(gω)) (if taken as a sequence having length ω×2) or μω · νω (if considered
as the composition of two infinite simultaneous reductions). The reduction fω →
f(g(fω)) → f(k(fω)) → f(k(g(fω))) → f(k2(fω)) �� f(kω) → g(kω) can be
denoted by ·i<ω f(k

i(μ(fω) · ν(fω))) · μ(kω).
Particularly, infinite composition can be combined with itself. Let us consider

a reduction sequence having length ω2, and φij be a proof term denoting its
ω ∗ i + j-th step, so that for each i < ω, ·j<ω φij denotes the subsequence
including the steps from the ω ∗ i-th up to the ω ∗ (i+1)-th. Then ·i<ω ·j<ω φij
is a proof term denoting the entire reduction sequence. By iteration of this
pattern, proof terms can be built denoting reduction sequences of any countable
ordinal length. This claim is proved in Sec. 5.

4 Permutation Equivalence

Two proof terms can be the result of arranging the same contraction activity
in different ways, regarding parallelism/nesting degree, sequential order, and/or
localisation of contractions. Such proof terms should be recognised as being
permutation equivalent.

In this section we give the definition of equivalence between infinitary proof
terms. We do this by extending permutation equivalence, as it is defined in [11]
Sec. 8.3, to the infinitary setting. Permutation equivalence, which will be de-
noted ≈ henceforth, is defined there for finitary proof terms as the congruence
generated by the following six basic equivalences.

(IdLeft) 1 · ψ ≈ ψ
(IdRight) ψ · 1 ≈ ψ
(Assoc) ψ · (φ · χ) ≈ (ψ · φ) · χ
(Struct) f(ψ1, . . . , ψm) · f(φ1, . . . , φm) ≈ f(ψ1 · φ1, . . . , ψm · φm)
(OutIn) μ(ψ1, . . . , ψm) ≈ μ(s1, . . . , sm) · r[ψ1, . . . , ψm]
(InOut) μ(ψ1, . . . , ψm) ≈ l[ψ1, . . . , ψm] · μ(t1, . . . , tm)

where μ : l → r, si = src(ψi) and ti = tgt(ψi) in (InOut) and (OutIn).
In the present, infinitary setting, three elements must be added in order to

obtain an adequate characterisation of infinitary permutation equivalence. Two
of these elements are related with infinitary composition.
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First, we add one basic equation, the analogue of (Struct) for infinite compo-
sition:

(InfStruct) ·i<ω f(ψ
1
i , . . . , ψ

m
i ) ≈ f( ·i<ω ψ

1
i , . . . , ·i<ω ψ

m
i )

Secondly, we need an infinitary equational logic rule in order to ensure that ≈
behaves as a congruence also w.r.t. infinite composition:

ψi ≈ φi for all i < ω
·i<ω ψi ≈ ·i<ω φi

InfComp

Lastly, we need a limit rule, by which permutation equivalence of two convergent
reductions can be concluded, roughly, from permutation equivalence up to any
finite depth. In the following Lim-rule this is implemented by requiring that for
any k the reductions can be factorised into prefixes that coincide and “tails” for
which all activity occurs at depth greater than k.

ψ ≈1 χk · ψ′k mind(ψ′k) > k
φ ≈1 χk · φ′k mind(φ′k) > k

}
for all k < ω

ψ ≈ φ
Lim

Here ≈1 is the congruence generated by the six basic equations, (InfStruct) and
InfComp, but excluding the Lim-rule itself. Variations of the Lim-rule can be
considered; we will briefly discuss this point in the conclusions.

The equational logic that we use to define permutation equivalence is infinitary
in two ways. It involves the infinite proof terms, and two of the rules, InfComp
and Lim, require an infinite number of premises. In order to obtain a sound
(transfinite) induction principle to reason about infinitary permutation equiva-
lence, its definition can be layered by ordinals, analogously to the definition of
the set of proof terms. For details we refer to [8].

In the remainder of this section, we will give some examples of infinitary
permutation equivalence. Let μ : f(x)→ g(x), ν : g(x)→ k(x), σ : k(x)→ m(x),
ρ : h(x, y)→ x, π : a→ b, τ : i(x)→ x, and κ : f(x)→ g(f(x)).

Consider ψ = ψ1 · ψ2 where ψ1 = ·i<ω g
i(μ(fω)) and ψ2 := ·i<ω k

i(ν(gω)),
and φ = ·i<ω χi where χi = ki(μ(fω) · ν(fω)). These proof terms denote different
sequentialisations of the same contraction activity, namely, the transformation
of each occurrence of f in fω to g and subsequently to k, by means of the μ-
and ν-rules respectively.

Using the augmented congruence, including the Lim rule, the assertion ψ ≈ φ
can be justified as follows. Let n < ω. Then

ψ ≈1 μ(f
ω) · g(ψ1) · ν(gω) · k(ψ2) ≈1 μ(fω) · ν(fω) · k(ψ1) · k(ψ2)

≈1 χ0 · k(ψ) ≈1 χ0 · k(χ0 · k(ψ))
≈1 χ0 · k(χ0) · k2(ψ) = χ0 · χ1 · k2(ψ)
. . . ≈1 χ0 · χ1 · . . . · χn · kn+1(ψ)

by applying (InfStruct), (InOut), (OutIn), (Struct), repeating this for the copy of
ψ in k(ψ) followed by (Struct), and so on. For φ we have φ ≈1 χ0 · χ1 · . . . χn ·
·i<ω χn+1+i. Hence Lim yields ψ ≈ φ.



310 C. Lombardi, A. Ŕıos, and R. de Vrijer

We point out the infinitary aspects of this transformation. An infinite number
of ν-steps must be permuted, each one over an infinite number of μ-steps. Per-
muting a ν-step requires equations (InOut) and (OutIn). The equation (InfStruct)
is used to extract the pattern g(�) of ν, obtaining g(ψ1), thereby allowing per-
mutation of a ν step over an infinite number of μ-steps, using (InOut) and
(OutIn) just once. The infinite number of ν-permutations take place at ever-
bigger depths. This makes it possible to apply Lim.

4.1 The Role of the InfComp Rule

We consider the following variation of the first permutation equivalence example
discussed: let ψ = ψ1 · ψ2 where ψ1 = ·i<ω k

i(μ(fω)) · ki(ν(fω)) and ψ2 =
·i<ω m

i(σ(kω)), and φ = ·i<ω χi where χi = mi(μ(fω) · ν(fω) · σ(fω)). Let
ψ′1 := ·i<ω ki+1(μ(fω)) · ki+1(ν(fω)). The proof terms ψ and φ denote the
transformation of fω to mω, where at each depth level the rules μ, ν and σ are
applied successively.

The idea of a judgement allowing to assert ψ ≈ φ is similar to that of the
previous example: in order to transform ψ into φ, ψ′1 must be transformed into
k(ψ1), so that the first σ step can be permuted. But in this case, for any i < ω, the
(Struct) equation gives ki+1(μ(fω)) · ki+1(ν(fω)) ≈1 k(k

i(μ(fω)) · ki(ν(fω))).
Consequently, InfComp yields ψ′1 ≈1 ·i<ω k(k

i(μ(fω)) · ki(ν(fω))). Therefore,
ψ ≈1 μ(f

ω) · ν(fω) · ψ′1 · σ(kω) · ·i<ω m
i+1(σ(kω))

≈1 μ(f
ω) · ν(fω) ·

(
·i<ω k(k

i(μ(fω)) · ki(ν(fω)))
)
· σ(kω) · ·i<ω m

i+1(σ(kω))
≈1 μ(f

ω) · ν(fω) · k
(
·i<ω k

i(μ(fω)) · ki(ν(fω))
)
· σ(kω) ·m( ·i<ω m

i(σ(kω)))
= μ(fω) · ν(fω) · k(ψ1) · σ(kω) ·m(ψ2)
≈1 μ(f

ω) · ν(fω) · σ(fω) ·m(ψ1) ·m(ψ2)
≈1 χ0 ·m(ψ)

by (Assoc), the previous argument, (InfStruct), (InOut) followed by (OutIn), and
(Struct) respectively. An iteration of this argument yields ψ ≈1 χ0 · . . . · χn ·
mn+1(ψ) for any n < ω. From this result, it is easy to conclude ψ ≈ φ by
resorting to the Lim rule.

4.2 Infinitary Erasure

As for the finitary setting, this characterisation of permutation equivalence mod-
els adequately the phenomenon of erasure of some contraction activity by step
permutation.A simple example follows: by applying twice the (OutIn) equation,
we obtain ρ(μ(a), τω) ≈ ρ(f(a), iω) · μ(a) ≈ ρ(μ(a), iω).

Now consider ψ = f(π) · ·i<ω g
i(κ(b)) and φ = ·i<ω g

i(κ(a)). These proof
terms are sequential descriptions of the reduction sequences f(a) → f(b) →
g(f(b)) → g2(f(b)) �� gω and f(a) → g(f(a)) → g2(f(a)) �� gω respectively.
Observe that the π step in the former sequence can be permuted with each κ
step in turn, yielding f(a)→ g(f(a)) → . . .→ gn(f(a))→ gn(f(b)) �� gω. The
latter sequence can be seen as the result of taking the limit of this sequence of
step permutations.
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This example shows the existence of a form of erasure unique to infinitary
rewriting: some contraction activity (in this case the π step) is erased as the
result of a limit of step permutations.We call this phenomenon infinitary erasure.

According to this view, ψ and φ denote equivalent contraction activities, and
they therefore should be stated as permutation equivalent. Observe that

ψ ≈1 f(π) · κ(b) · g( ·i<ω g
i(κ(b)))

≈1 κ(a) · g(f(π)) · g(κ(b)) · g2( ·i<ω g
i(κ(b)))

≈1 κ(a) · g(κ(a)) · g2(f(π)) · g2(κ(b)) · g3( ·i<ω g
i(κ(b))) . . .

where the first component of each successive infinitary concatenation is extracted
by (Assoc), (Struct) and (InfStruct), and each inversion involves (Struct) (except
for the first one), (InOut) and (OutIn). Consequently, for any n < ω, we can
obtain ψ ≈1 κ(a) · . . . · gn(κ(a)) · gn+1(f(π)) · gn+1( ·i<ω g

i(κ(b))). On the
other hand, it is straightforward to get φ ≈1 κ(a) · . . . · gn(κ(a)) · gn+1(φ).
Hence, the Lim rule yields ψ ≈ φ.

This example adequately describes infinitary erasure: the equivalence between
ψ and φ is obtained by a limit argument.

5 Denotation

In this section we show that any reduction sequence can be faithfully denoted by
a proof term. Since also simultaneous reduction can be expressed by proof terms,
in the form of infinitary multi-steps, not every proof term uniquely denotes a
reduction sequence. However, we will define a subclass of so-called stepwise proof
terms, which do have unique denotations. We will show that any reduction can
be represented by a stepwise proof term, which is unique up to an equivalence
which we baptized “rebracketing”, and which results from applying associativity
of composition in this infinitary setting.

5.1 Existence

A stepwise proof term is inductively defined as: either a one-step proof term,
or a binary or infinite concatenation of stepwise proof terms. A stepwise-or-nil
proof term is either a stepwise proof term or a term in Ter∞(Σ).

Given a stepwise-or-nil proof term ψ, we define the number of steps and
the α-th step of ψ, notation ns(ψ) and ψ[α] respectively. The definitions are
straightforward. For number of steps: ns(ψ) := 0 if ψ ∈ Ter∞(Σ), ns(ψ) := 1
if ψ is a one-step, ns(ψ1 · ψ2) := ns(ψ1) + ns(ψ2), ns( ·i<ω ψi) := Σi<ωns(ψi).
Moreover, α-th step is defined for α < ns(ψ) by: ψ[0] := ψ if ψ is a one-step,
·i<ω ψi[α] := ψk[γ] where α = Σi<kns(ψi)+γ and γ < ns(ψk)

†, and analogously
for binary concatenation.

Observe that the steps of stepwise proof terms are one-step proof terms. A
stepwise proof term is a representation of the sequence of its steps, organised

† Properties of ordinal infinitary sum imply uniqueness of k and γ here.
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by means of binary and infinite compositions. In this way, one-step proof terms
denote reduction steps, while stepwise proof terms denote reduction sequences.

Properties that support this view of stepwise proof terms can be proved
by analysing their form. Specifically, if ψ is a stepwise proof term: src(ψ) =
src(ψ[0]), tgt(ψ) = tgt(ψ[α]) if ns(ψ) = α + 1, tgt(ψ) = limα→ns(ψ) tgt(ψ[α])
if ns(ψ) is a limit ordinal, src(ψ[α + 1]) = tgt(ψ[α]) if α + 1 < ns(ψ), and
mind(ψ) = min{d(ψ[α]) | α < ns(ψ)}.

We formalise the relation between stepwise proof terms and reduction se-
quences as follows: a stepwise-or-nil proof term ψ denotes a reduction sequence
δ iff ns(ψ) = length(δ), src(ψ) = src(δ), and for all α < ns(ψ), ψ[α] coincides in
source term, redex position and rule (symbol) with δ[α]. This relation preserves
convergence: if ψ denotes δ, then ψ is convergent if and only if δ is, cf. [8].

In this setting, the existence requirement amounts to the following:

Proposition 1. Let δ be a reduction sequence having countable length. Then
there exists a stepwise-or-nil proof term ψ such that ψ denotes δ.

Proof. By induction on length(δ). If length(δ) = 0, i.e. δ = Idt, then just take
ψ := t. If length(δ) = 1, then replacing the pattern of the contracted redex in
the source term by the corresponding rule symbol yields a one-step proof term
denoting δ. If length(δ) is a successor (resp. limit) ordinal, then it is easy to split
δ in two (resp. ω, cf. Lem. 1) parts, so that IH can be applied on each part and
then the results joined by binary (resp. infinite) concatenation.

5.2 Uniqueness

We say that two stepwise-or-nil proof terms ψ and φ are denotationally equivalent
iff they contain exactly the same sequence of steps, organised in possibly different
ways. Formally, ψ ≡ φ iff ns(ψ) = ns(φ) and either ns(ψ) = 0 and ψ = φ, or
ns(ψ) > 0 and ψ[α] = φ[α] if α < ns(ψ). It is straightforward to verify that
two stepwise-or-nil proof terms are denotationally equivalent iff they denote the
same reduction sequence.

We define rebracketing equivalence, notation ≈(), as the congruence generated
using (Assoc) as the only basic equation, and including InfComp and Lim as
equational logic rules.‡ The corresponding base rebracketing equivalence, nota-
tion ≈(1), is defined analogously but not including Lim as a rule. In the premises
of Lim for ≈(), the occurrences of ≈1 must be replaced by ≈(1).

We claim that the denotation of reduction sequences by using proof terms is
unique modulo rebracketing. To verify this claim, we show that the relations ≡
and ≈() coincide.

Lemma 2. Let ψ be a stepwise proof term, and α an ordinal verifying 0 < α <
ns(ψ). Then there exist stepwise proof terms φ, χ such that ψ ≈(1) φ · χ and
ns(φ) = α. Moreover, ν(φ) < ν(ψ) and ν(χ) ≤ ν(ψ).
‡ This is part of what in [11], Table 8.1, are called the reduction identities, adapted to
the infinitary setting.



Proof Terms for Infinitary Rewriting 313

Proof. Easy induction on ψ. Cf. the stated properties about ν in Sec. 3.1.

Proposition 2. Let ψ, φ be stepwise-or-nil proof terms such that ψ ≈() φ. Then
ψ ≡ φ.

Proof. Induction on the judgement ψ ≈() φ, observing the rule used to conclude
it. We give some details w.r.t. the Lim rule. We prove ns(ψ) = ns(φ) by contra-
diction. Assume wlog that ns(φ) > ns(ψ), implying that the step φ[ns(ψ)] exists.
Let n := d(φ[ns(ψ)]), observe n < ω. Then the premises of the Lim rule yield
ψ ≈(1) χ · ψ′ and φ ≈(1) χ · φ′, where mind(ψ′) > n and mind(φ′) > n. In turn,
ψ ≈(1) χ · ψ′ implies ns(ψ) ≥ ns(χ), while φ ≈(1) χ · φ′, IH, and mind(φ′) >
n = d(φ[ns(ψ)]), imply φ[ns(ψ)] = χ[ns(ψ)], then ns(χ) > ns(ψ); hence, a con-
tradiction. Let γ < ns(ψ), and consider ψ ≈(1) χ · ψ′ and φ ≈(1) χ · φ′ where
mind(ψ′) > d(ψ[γ]) and mind(φ′) > d(ψ[γ]). Then IH on these premises and
the definition of ≡ imply that ψ[γ] = (χ · ψ′)[γ] and φ[γ] = (χ · φ′)[γ]. In turn,
the conditions on mind(ψ′) imply that γ < ns(χ), so that ψ[γ] = φ[γ] = χ[γ].

Proposition 3. Let ψ, φ be convergent stepwise-or-nil proof terms such that
ψ ≡ φ. Then ψ ≈() φ.

Proof. We proceed by induction on 〈ψ, φ〉. The interesting cases are when ψ is
either a binary or an infinite concatenation.

Assume ψ = ψ1 · ψ2. It is easy to see that also φ must be of this form: φ = φ1 ·
φ2. If ns(ψ1) = ns(φ1), then ψi ≡ φi for i = 1, 2, so that IH and then congruence
suffice to conclude. Assume ns(ψ1) < ns(φ1). Then Lem. 2 implies φ1 ≈() χ1 · χ2

where ns(χ1) = ns(ψ1), and therefore φ ≈() (χ1 · χ2) · φ2 ≈() χ1 · (χ2 · φ2).
Hence hypotheses and Prop. 2 imply ψ1 · ψ2 = ψ ≡ φ ≡ χ1 · (χ2 · φ2). From this,
since ns(χ1) = ns(ψ1), it is easy to show ψ1 ≡ χ1, and also ψ2 ≡ χ2 · φ2. The
result then follows by applying IH twice, congruence and transitivity. Finally, if
ns(ψ1) > ns(φ1), an analogous argument yields χ1 · (χ2 · ψ2) ≡ ψ ≡ φ = φ1 · φ2
where ns(χ1) = ns(φ1), and hence χ1 ≡ φ1 and χ2 · ψ2 ≡ φ2. Again using
ψ1 ≈() χ1 · χ2, it is now easy to obtain ν(χ1) < ν(ψ) and ν(χ2 · ψ2) ≤ ν(ψ).
Hence the result follows again by IH, congruence and transitivity.

Assume ψ = ·i<ω ψi. Then also φ is an infinite concatenation: φ = ·i<ω φi. By
recombining the steps of ψ, a proof term χ = ·i<ω χi can be built satisfying: (i)
χ ≡ ψ, (ii) ns(χi) = ns(φi) for all i < ω, and (iii) for all p < ω, χ0 · . . . · χp ≈(1)

ψ0 · . . . · ψj · ξ, where ns(χ0 · . . . · χp) = ns(ψ0 · . . . · ψj) + α, α < ns(ψj+1),
ψj+1 ≈(1) ξ · ξ′ and ns(ξ) = α; cf. Lem. 2. E.g. if ns(φ0) = ns(ψ0)+α such that
α < ns(ψ1), then we define χ0 := ψ0 · ξ1 and χ1 such that χ1[0] = ξ2[0], where
ψ1 ≈(1) ξ1 · ξ2 and ns(ξ1) = α.

Let n < ω, p such that mind(χi) > n if i > p, and j, ξ, ξ′ as in condition
(iii) above. Let us call ξn := χ0 · . . . · χp, ψ

′
n := ξ′ · ·i<ω ψj+2+i, and χ

′
n :=

·i<ω χp+1+i. Then ξn ≈(1) ψ0 · . . . · ψj · ξ, implying ψ ≈(1) ξn · ψ′n. Prop. 2
yields ξn ≡ ψ0 · . . . · ψj · ξ, from this and (i) it is easy to obtain χ′n ≡ ψ′n, and
therefore mind(ψ′n) = mind(χ′n) > n. Hence we can obtain ψ ≈() χ by applying
the Lim equation.
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Moreover, (i) and ψ ≡ φ imply φ ≡ χ. From this and considering (ii), it is
easy to obtain χi ≡ φi for all i. Furthermore, for any i < ω it can also be proved
that ν(χi) < ν(ψ), so that we can apply IH to obtain χi ≈() φi.

We conclude by building the following rebracketing equivalence judgement.

. . .
ψ ≈(1) ξn · ψ′n
χ ≈(1) ξn · χ′n

. . .

Lim
ψ ≈() χ

. . .

. . . IH . . .

χn ≈() φn . . .
InfComp

χ ≈() φ

ψ ≈() φ

6 Compression

The compression lemma, [5,11,6] states that the full power of (strongly) con-
vergent reduction can be achieved by reductions having length at most ω. For-
mally: if t δ−��u, then there exists a convergent reduction t

γ−��u, such that
length(γ) ≤ ω. In [5] a more precise statement is given: for orthogonal TRSs, γ
can be chosen such that it is Lévy-equivalent (cf. [4]) to δ.

We present the compression result for arbitrary proof terms. Moreover, it
establishes permutation equivalence between the original and the compressed
proof terms. Via the faithful representation of reduction sequences as stepwise
proof terms, our compression result extends to the original reductions as well.

As in [6], we do not require orthogonality for compression (although our gen-
eral assumption of left-linearity is crucial here). However, as far as we know
the combination of not assuming orthogonality and yet obtaining equivalence
between original and compressed form is new.

The compression proof uses as a key technical result, that any proof term can
be factorised into a leading part denoting finite contraction activity, composed
with a tail denoting activity at arbitrary depths. That is, for any proof term ψ
and n < ω, we obtain two proof terms χ and φ, such that ψ ≈1 χ · φ, χ is a
finite stepwise-or-nil proof term, and mind(φ) > n.

Collapsing rules make factorisation non-trivial for infinitary multi-steps. We
need the notion of a collapsing chain for an infinitary multi-step ψ: a sequence
of positions 〈pi〉i≤n (resp. 〈pi〉i<ω), such that for all i < n (i < ω), ψ(pi) :
l[x1, . . . , xm] → xj is a collapsing rule symbol, and pi+1 = pi j. We consider
particularly chains starting at ε, i.e. such that p0 = ε.

Lemma 3. Let ψ be an infinitary multi-step such that an infinite collapsing
chain for ψ starting at ε exists. Then ψ is not TGT -weakly normalising.

Proof. It is enough to verify that if ψ δ−��φ by using the TGT companion TRS,
then φ includes an infinite collapsing chain starting at ε, implying that φ(ε) is a
(collapsing) rule symbol, and therefore it is not a TGT -normal form.

Lemma 4. Let ψ be an infinitary multi-step and n, 1 < n < ω, such that there
is no collapsing chain of length n for ψ, starting at ε. Then there exists a TGT-
reduction sequence δ, such that ψ δ−�

TGT
φ, length(δ) < n, d(δ[i]) = 0 for all

i < length(δ), and φ(ε) ∈ Σ.
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Proof. By induction on n. If n = 2, then either ψ(ε) ∈ Σ so that we conclude
immediately, or ψ(ε) = μ where μ : l[x1, . . . , xm] → f(t1, . . . , tk), and then
ψ

〈ε,μ〉−→
TGT

f(t′1, . . . , t
′
k), thus we conclude. Assume n = n′+1. Then ψ(ε) not being a

collapsing rule symbol allows an argument similar to that of the previous case.
Otherwise, i.e. if ψ(ε) = μ where μ : l[x1, . . . , xm]→ xk, and ψ

〈ε,μ〉−→
TGT

ψ|k , it is not
difficult to verify that a collapsing chain having length n′ in ψ|k would imply the
existence of a collapsing chain having length n in ψ, contradicting the lemma
hypotheses. Then IH can be applied on ψ|k , which suffices to conclude.

Lemma 5. Let ψ be a convergent infinitary multi-step. Then there exist χ, φ
such that ψ ≈1 χ · φ , χ is a finite stepwise-or-nil proof term, d(χ[i]) = 0 for all
i < ns(χ), and φ is a convergent infinitary multi-step verifying mind(φ) > 0.

Proof. Convergence of ψ implies that ψ isWN∞ in TGT , so that Lem. 3 implies
the existence of some n < ω such that ψ does not have a collapsing chain of length
n starting with ε. Therefore, Lem 4. implies ψ δ−�

TGT
φ, length(δ) < n, d(δ[i]) = 0

for all i < length(δ), and φ(ε) ∈ Σ. Then, it is not difficult to prove that ψ δ−�
TGT

φ

implies ψ ≈1 χ · φ, where χ is a stepwise-or-nil proof term verifying ns(χ) =
length(δ) and d(χ[i]) = d(δ[i]) if i < length(δ): induction on d(δ[0]) yields the
property for one-steps, and then induction on length(δ) suffices. Observe that
φ(ε) ∈ Σ implies mind(φ) > 0. To verify that φ is convergent, the strip lemma
or parallel moves lemma, valid for TGT since it is an orthogonal iTRS, yields
that ψ convergent implies φ convergent. Thus we conclude.

To extend factorisation to any proof term we need to be able to swap its
components. The (InOut) and (OutIn) equations allow for this swapping in sim-
ple cases, e.g. as in the following permutation equivalence judgement: f(μ(a)) ·
μ(g(a)) ≈1 μ(μ(a)) ≈1 μ(f(a)) · g(μ(a)), where μ : f(x) → g(x). The following
lemma shows that such an operation can be performed in a general case.

Lemma 6. Let ψ be a finite stepwise-or-nil proof term. Then there exist two
numbers n, n′ < ω such that, for any convergent proof term ξ verifying tgt(ξ) =
src(ψ) and mind(ξ) ≥ n+ n′, a finite stepwise-or-nil proof term ψ′ and a con-
vergent proof term ξ′ can be found, such that ξ · ψ ≈1 ψ

′ · ξ′, ns(ψ′) = ns(ψ),
d(ψ′[i]) = d(ψ[i]) for all i, and mind(ξ′) ≥ mind(ξ)− n′ ≥ n.

Proof. Induction on ns(ψ), the interesting case being when ψ is a one-step.
Let μ be the rule symbol occurring in ψ, and p the position of the occurrence

of μ in ψ. We consider n := |p| and n′ to be the depth of the deepest variable
occurrence in the left-hand side of μ. It is not difficult to obtain that ψ =
C[t1, . . . , tj−1, μ(u1, . . . , um), tj+1, . . . , tk] where the depth of all the holes in C
is exactly n. By carefully defining the compressed to fixed prefix form of a proof
term for which no activity is performed at any position in a prefix-closed set, we
can obtain that ξ ≈1 C[ξ1, . . . , ξj−1, l[φ1, . . . , φm], ξj+1, . . . , ξk]. Therefore
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ξ · ψ
≈1 C[ξ1 ·t1, ... , ξj−1 ·tj−1, l[φ1, ... , φm] · μ(u1, ... , um), ξj+1 ·tj+1, ... , ξk ·tk]
≈1 C[ξ1, ... , ξj−1, μ(φ1, ... , φm), ξj+1, ... , ξk]
≈1 C[s1 ·ξ1, ... , sj−1 ·ξj−1, μ(w1, ... , wm) · h[φ1, ... , φm], sj+1 ·ξj+1, ... , sk ·ξk]
≈1 C[s1, ... , sj−1, μ(w1, ... , wm), sj+1, ... , sk] ·

C[ξ1, ... , ξj−1, h[φ1, ... , φm], ξj+1, ... , ξk]

where μ : l → h, si = src(ξi) and wi = src(φi).
We consider ψ′ = C[s1, . . . , sj−1, μ(w1, . . . , wm), sj+1, . . . , sk] and

ξ′ = C[ξ1, . . . , ξj−1, h[φ1, . . . , φm], ξj+1, . . . , ξk]. Convergence of ξ′ stems from
convergence of each ξi and each φi. Finally, a careful analysis of minimal activity
depth yields the desired condition about mind(ξ′).

Now we can prove the general factorisation result.

Proposition 4. Let ψ be a convergent proof term and n < ω. Then there exist
χ and φ such that ψ ≈1 χ · φ, χ is a finite stepwise-or-nil proof term, φ is
convergent and mind(φ) > n.

Proof. We proceed by induction on ψ.
If ψ is an infinitary multi-step, then we proceed by induction on n. Lem. 5 im-

plies ψ ≈1 χ0 · f(ψ1, . . . , ψm). If n = 0 then we are done. Otherwise convergence
of all ψi can be obtained from convergence of f(ψ1, . . . , ψm) by a careful study of
projections. Then IH applied to the ψi’s yields ψ ≈1 χ0 · f(χ1 · φ1, . . . , χm · φm).
From this proof term, a permutation equivalence argument allows to conclude.

Assume ψ = ψ1 · ψ2. Then IH on ψ2 yields ψ ≈1 ψ1 · χ2 · φ2. IH applies also
on ψ1 w.r.t. a sufficiently big n′, yielding ψ ≈1 χ1 · φ1 · χ2 · φ2. Then Lem. 6
on φ1 · χ2 implies ψ ≈1 χ1 · χ′2 · φ′1 · φ2, which suffices to conclude.

If ψ = ·i<ω ψi, then it is enough to observe that IH can be applied to ψ0 ·
. . . · ψk, where mind(ψi) > n if i > k.

If ψ = f(ψ1, . . . , ψm) then an easy inductive argument suffices.
Finally, if ψ = μ(ψ1, . . . , ψm), then two cases must be considered: μ is collaps-

ing or not. In either case an easy argument suffices. If μ is not collapsing, then
observe that the (Struct) equation can be extended to arbitrary contexts having
a finite number of holes.

Theorem 1. Let ψ be a convergent proof term. Then there exists some stepwise
proof term φ verifying ψ ≈ φ and ns(φ) ≤ ω.

Proof. We define the sequences of proof terms 〈ψi〉i<ω and 〈φi〉i<ω as follows.
We start defining ψ0 := ψ. Then, for each i < ω, we define φi and ψi+1 to be
proof terms such that ψi ≈1 φi · ψi+1, φi is a finite stepwise-or-nil proof term
and either mind(ψi+1) > mind(ψi) or mind(ψi+1) = mind(ψi) = ω; cf. Prop. 4.
Observe that mind(ψi) < ω implies mind(φi) = mind(ψi), so in that case φi
is a stepwise proof term, i.e. it is not trivial. Moreover, an easy induction on n
yields ψ ≈1 φ0 · . . . · φn · ψn+1 for all n.

There are two cases to consider. If there is some n such that ψn is trivial, then
it is enough to take φ := φ0 · . . . · φn−1 for the minimal such n (or just φ := src(ψ)
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if ψ0 = ψ is trivial). Otherwise, it is easy to prove that ψ ≈ ·i<ω φi using the
Lim rule, and, moreover, φi being finite for all i implies ns( ·i<ω φi) ≤ ω.

7 Conclusions and Future Work

The reasoning in the compression proof in Sec. 6 can be extended in order to
obtain standardisation results. As noted in [6], a concept of standard reduction
being adequate for infinitary rewriting should be used, leftmost-outermost re-
duction does not fit in this setting. We claim that it is possible to prove the
existence of a unique standard reduction in each permutation equivalence class,
using depth-leftmost standardness as defined in [6].

It seems natural to consider a variant of permutation equivalence in which the
Lim-rule can be used at most once in a derivation, and only as its last step. The
derivations of permutation equivalence in our examples in Sec. 4 are all of this
form. By a proof-theoretic analysis using the purported standardisation result,
one can show that the restricted variant is equivalent to the more general version
used in this paper. We plan to present these results in a future paper.

Another area for further exploration is the comparison of permutation equiv-
alence as defined in this paper with other notions of equivalence of reduction.
Compare [11], Ch. 8 and [9], where the equivalence of several such notions is es-
tablished for finitary rewriting. An obvious first candidate would be Lévy equiv-
alence as defined in [5] and [11], Ch. 12, via projections of reductions.
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Abstract. In this work we present a paradigm of focusing proof search
based on an incremental construction of retractile (i.e, correct or sequen-
tializable) proof structures of the pure (units free) multiplicative and ad-
ditive fragment of linear logic. The correctness of proof construction steps
(or expansion steps) is ensured by means of a system of graph retraction
rules; this graph rewriting system is shown to be convergent, that is,
terminating and confluent. Moreover, the proposed proof construction
follows an optimal (parsimonious, indeed) retraction strategy that, at
each expansion step, allows to take into account (abstract) graphs that
are ”smaller” (w.r.t. the size) than the starting proof structures.

Keywords: linear logic, sequent calculus, focusing proofs, proof search,
proof construction, proof nets, proof net retraction, graph rewriting.

1 Introduction

This work aims to make a further step towards the development of a research
programme, firstly launched by Andreoli in 2001 (see [1], [2] and [3]), which
points to a theoretical foundation of a computational programming paradigm
based on the construction of linear logic proofs (LL, [8]). Naively, this paradigm
relies on the following isomorphism: proof = state and construction (or inference)
step = state transition. Traditionally, this paradigm is presented as an incremen-
tal (bottom-up) construction of possibly incomplete (i.e., open or with proper
axioms) proofs of the bipolar focusing sequent calculus (see Sect. 2 for a brief
introduction). This calculus satisfies the property that the complete (i.e., closed
or with logical axioms) bipolar focusing proofs are fully representative of all
closed proofs of linear logic: this correspondence is, in general, not satisfied by
the polarized fragments of linear logic. Bipolarity and focusing properties ensure
more compact proofs since they get rid of some irrelevant intermediate steps
during proof search (or proof construction).

Now, while the view of sequent proof construction is well adapted to the-
orem proving, it is inadequate when we want to model some proof-theoretic
intuitions behind, e.g., concurrent logic programming which requires very flex-
ible and modular approaches. Due to their artificial sequential nature, sequent
proofs are difficult to cut into modular (reusable) concurrent components.

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 319–333, 2014.
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A much more appealing solution consists of using the technology offered by
proof nets of linear logic or, more precisely, some forms of de-sequentialized (ge-
ometrical, indeed) proof structures in which the composition operation is simply
given by (possibly, constrained) juxtaposition, obeying some correctness criteria.
Actually, the proof net construction, as well the proof net cut reduction, can be
performed in parallel (concurrently), but despite the cut reduction, there may
not exist executable (i.e., sequentializable) construction steps: in other words,
construction steps must satisfy a, possibly efficient, correctness criterion. Here,
a proof net is a particular ”open” proof structure, called transitory net (see
Sect. 3), that is incrementally built bottom-up by juxtaposing, via construction
steps, simple proof structures or modules, called bipoles. Roughly, bipoles cor-
respond to Prolog-like methods of Logic Programming Languages: the head is
represented by a multiple trigger (i.e., a multiset of positive atoms) and the body
is represented by a layer of negative connectives with negative atoms. We say
that a construction step is correct (that is, a transaction) when it preserves,
after juxtaposition, the property of being a transitory net: that is the case when
the given abstract transitory structure retracts (after a finite sequence of rewrit-
ing steps) to an elementary collapsed graph (i.e., single node with only pending
edges). Each retraction step consists of a simple (local) graph deformation or
graph rewriting. The resulting rewriting system is shown to be convergent (i.e.,
terminating and confluent), moreover, it preserves, step by step, the property of
being a transitory structure (see Theorem 1 and Lemma 1 in Sect. 3.1). Tran-
sitory nets (i.e., retractile structures) correspond to derivations of the focusing
bipolar sequent calculus (Sect. 4, Theorem 2).

The first retraction algorithm for checking correctness of the proof structures
of the pure multiplicative fragment of linear logic (MLL), was given by Danos in
his Thesis ([6]); the complexity of this algorithm was later shown to be linear,
in the size of the given proof structure, by Guerrini in [10]. Then, the retraction
criterion was extended, respectively, by the author, in [14], to the pure mul-
tiplicative and additive (MALL) proof nets with boolean weights and then by
Fouqueré and Mogbil, in [7], to polarized multiplicative and exponential proof
structures.

Traditionally, concerning proof nets of linear logic, the main interest on the
retraction system is oriented to study the complexity of correctness criteria or
cut reduction. Here, our (original) point of view is rather to exploit retraction
systems for incrementally building (correct) proof structures. Indeed, the conver-
gence of our retraction system allows to focus on particular retraction strategies
that turn out to be optimal (in the graph size) w.r.t. the problem of incremen-
tally constructing transitory nets. Actually, checking correctness of an expanded
proof structure is a task which may involve visiting (i.e., retracting) a large por-
tion of the so obtained net: some good bound for these task would be welcome.
Here, we show that checking correctness (retraction) of a MALL transitory net,
after a construction attempt, is a task that can be performed by restricting to
some ”minimal” (i.e., already partially retracted) transitory nets. The reason is
that some subgraphs of the given transitory net will not play an active role in
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the construction process, since they are already correct and encapsulated (i.e.,
border free): so, their retraction can be performed regardless of the construction
process (that is the main content of Corollary 1, in Sect. 3.2).

Finally, we give in Sect. 5 a comparing with some related works concerning:

1. analogous attempts to give a theoretical foundation of computational pro-
gramming paradigms based on the construction of proofs of intuitionistic or
linear logic (notably, some works of Pfenning and co-authors, [4], and some
works of Miller and co-authors, [15] and [5]);

2. alternative syntaxes for additive-multiplicative proof structures (mainly,
those ones given, respectively, by Girard [8] and Hughes–van Glabbeek
in [11]).

2 Construction of Bipolar Focusing Proofs

In this section we give a brief presentation of the bipolar focusing sequent calculus
introduced by Andreoli; more technical details can be found in [1]. We start with
the basic notions of the MALL fragment of LL, without units and Mix rule. We
arbitrarily assume literals a, a⊥, b, b⊥, ... with a polarity: negative for atoms and
positive for their duals. A formula is built from literals by means of the two
groups of connectives:
– negative, � (”par”) and & (”with”);
– positive, ⊗ (”tensor”) and ⊕ (”plus”).
A proof is then built by the following rules of the MALL sequent calculus:

id
A,A⊥

Γ,A Δ,A⊥
cut

Γ,Δ

Γ,A Δ,B ⊗
Γ,Δ,A⊗B

Γ,A,B
�

Γ,A�B

Γ,A Γ,B
�

Γ,A�B

Γ,Ai ⊕i=1,2
Γ,A1 ⊕i A2

The bipolar focusing sequent calculus is a refinement of the previous one,
based on the crucial properties of focusing and bipolarity (see, also, [12]). The
focusing property states that, in proof search (or proof construction), we can
build (bottom up) a sequent proof by alternating clusters of negative inferences
with clusters of positive ones. As consequence of this bipolar alternation we get
more compact proofs in which we get rid of the most part of the bureaucracy
hidden in sequential proofs (as, for instance, irrelevant permutations of rules).
Remind that, w.r.t. proof search, negative (resp., positive) connectives involve a
kind of don’t care non-determinism (resp., true non-determinism).

A monopole is a formula built on negative atoms using only the negative
connectives, while a bipole is a formula built from monopoles and positive atoms,
using only positive connectives; moreover, bipoles must contain at least one
positive connective or be reduced to a positive atom, so that they are always
disjoint from monopoles. Given a set F of bipoles, the bipolar focusing sequent
calculus Σ[F ] is a set of inferences of the form

Γ1 . . . Γn
B

Γ

where the conclusion Γ is a sequent made by a multiset of negative atoms and the
premises Γ1, ..., Γn are obtained by fully focusing decomposition of some bipole
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B ∈ F in the context Γ (therefore, Γ1, ..., Γn are mutiset of negative atoms
too). More precisely, due to the presence of additives (in particular the sum ⊕
connective) a bipole B is naturally associated to a set of inferences B1, ..., Bm+1,
where m is the number of ⊕ connectives present in B. For instance, in the purely
multiplicative fragment of LL (i.e, MLL), the bipole B = a⊥ ⊗ b⊥ ⊗ (c�d)⊗ e,
where a, b, c, d and e are (negative) atoms, yields the inference below (on the left
hand side), more compact than the explicit one (on the right hand side):

Γ, c, d Δ, e
B

Γ,Δ, a, b
⇔

Γ, c, d
�

Γ, c�d Δ, e ⊗
Γ,Δ, (c�d)⊗ e b, b⊥ a, a⊥

⊗
Γ,Δ, a, b, a⊥ ⊗ b⊥ ⊗ (c�d) ⊗ e

where Γ and Δ range over a multiset of negative atoms; the identity axioms
a, a⊥ and b, b⊥ are omitted in the bipolar sequent proof for simplicity. Observe,
the couple a and b plays the role of a trigger (or multi-focus) of the B inference;
more generally, a trigger (of a bipole) is a multi-set of duals of the positive atoms
occurring in the bipole. Intuitively, the main feature of the bipolar focusing se-
quent calculus is that its inferences are triggered by multiple focus, like in [15]
and and [5]. Bipoles are clearly inspired by the methods used in logic program-
ming languages: the positive layer of a bipole corresponds to the head, while the
negative layer corresponds to the body of a Prolog-like method.

The bipolar focusing sequent calculus, with only logical axioms (id), has been
proven in [1] to be isomorphic to the focusing sequent calculus, so that (closed)
proof construction can be performed indifferently in the two systems. The main
idea behind this isomorphism is the bipolarisation technique, that is a simple
procedure that allows to transform any provable formula F of the LL sequent
calculus into a set of bipoles, called universal program of the bipolar sequent
calculus. In Example 1 we give an instance of (closed) bipolar focusing derivation.

Example 1. Assume the universal program U = {B1 = f⊥ ⊗ (x�g�h�(d&e)),
B2 = x⊥ ⊗ (a&b), B3 = g⊥ ⊗ ((a⊥ ⊕ b⊥)⊗ c⊥) a B4 = h⊥ ⊗ c⊗ (d⊥ ⊕ e⊥)}.

Each bipole induces a non empty set of bipolar inferences as follows:
– both bipoles B1 and B2 induce a single inference

Γ, x, g, h, d Γ, x, g, h, e
B1

Γ, f
resp., Γ, a Γ, b

B2Γ, x

– while both bipoles B3 and B4 induce two inferences

Γ B′
3Γ, g, a, c

and
Γ B′′

3Γ, g, b, c
resp.,

Γ, c
B′

4Γ, h, d
and

Γ, c
B′′

4Γ, h, e

Then, the resulting bipolar focusing proof Π of f if built as follows:

B′
3g, a, c
B′

4a, g,h,d

B′′
3g,b, c
B′

4b, g,h,d
B2x, g, h, d

B′
3g, a, c
B′′

4a, g,h, e

B′′
3g,b, c
B′′

4b, g,h, e
B2x, g, h, e

B1
f

Although this derivation is quite compact and abstract, it still presents some
structural drawbacks like duplications of some sub-proofs. Therefore, we will
move, in the next section, to more flexible proof structures.
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3 Bipolar Transitory Structures

In this section we introduce the de-sequentialized version of the bipolar focusing
sequent calculus, i.e. a graphical representation of bipolar structures (eventually
correct, i.e. bipolar nets) which preserves only essential sequentializations.

Definition 1 (links). Assume an infinite set L of resource places a, b, c, ... (also
ports or addresses). A link consists of two disjoint sets of places, top and bottom,
together with a polarity, positive or negative, and s.t. a positive link must have
at least one bottom place, while a negative link must have exactly one bottom
place. The border or frontier of a link is the set of its top and bottom places.

Graphically, links are represented like in Fig. 1 and distinguished by their
shape: triangular for negative and round for positive links. Top (resp., bottom)
places are drawn as edges incident to a vertex. We may use variables xp, yp, zp, ...
for links with a polarity p ∈ {+,−}, and the compact expression link+ (resp.,
link−) for a positive (resp., negative) link. Moreover, we define some relations
on the set of links; in particular, given two links, x and y, we say:

– they are adjacent if they have (or share) a common place;
– x is just above (resp., just below) y if there exists a place that is both at the

bottom (resp., top) of x and at the top (resp., bottom) of y;
– they are connected if they belong to the transitive closure of the adjacency

relation.

Definition 2 (transitory structure). A transitory structure (TS) is a set π
of links satisfying the following conditions:

1. if two links are one above the other, then they have opposite polarity;
2. if two links have a top (resp. bottom) place in common, then they must have

the same polarity;
3. if two negative links have a top place in common, then they must share their

(unique) bottom place.

Moreover, a TS π is called:

– bipolar (BTS), if any place occurring at the top of some positive link of
π also occurs at the bottom of some negative link of π and vice-versa (the
bottom place of any negative link also occurs at the top of some positive link);

– negative hyperlink, if it is a set of, at least two, negative links with same
bottom place;

– positive hyperlink, if it is a set of connected positive links;
– bipole, when it contains exactly one positive link; a bipole is then called ele-

mentary (or multiplicative) when it does not contain any negative hyperlink.

Finally, in a TS π, the set of bottom (resp., top) places that do not occur at the
top (resp., bottom) of any link of π is called the bottom (resp., top) border or
frontier of π. If the top border of π is empty, then π is called closed. A place
shared by at least two links of the same polarity is called (additive) multiport.
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A CB

� �

&

A�(B&C) = (A�B)&(A�C)

⊗ ⊗

A B C

ED

⊕

((A⊗D⊥)⊕ C))⊗ B ⊗ E⊥ = (A⊗D⊥ ⊗ B ⊗E⊥)⊕ (C ⊗ B ⊗ E⊥)
⊕

� � �

&

⊗ ⊗

Fig. 1. Links, hyperlinks, bipoles and bipolar transitory structures

Intuitively, w.r.t. the standard syntax of proof nets of linear logic, negative
(resp., positive) links correspond to generalized (i.e., n-ary) �-links (resp., ⊗-
links). Similarly, negative (resp., positive) hyperlinks correspond, modulo dis-
tributivity and associativity of linear connectives, to generalized & (resp., ⊕)
of negative (resp., positive) links. Instances of negative and positive hyperlinks
are, respectively, given in the leftmost and middle side pictures of Fig. 1, where
links are enclosed within dashed lines; graphically, these hyperlinks represent the
distributive law of negative (�/&), respectively, positive (⊗/⊕) connectives. An
instance of BTS is also given in the rightmost picture of Fig. 1, with two bipoles
enclosed within dashed lines (bullets, •, graphically represent multiports). Intu-
itively, bipoles correspond to bipolar inferences of the sequent calculus.

3.1 Retraction of Bipolar Transitory Structures

We are interested in those BTSs that correspond to bipolar focusing sequent
proofs: these correct BTSs will be called bipolar transitory nets (BTN). In the
following we will give a geometrical way to characterize BTNs: actually we will
show that BTNs are those BTSs whose abstract structures retract, by means
of sequences of rewriting rules (graph deformation steps), to special terminal
collapsed graphs . This retraction technique was primarily exploited by Danos
in his thesis ([6]), limited to the multiplicative proof structures (see rules R1, R2

and R3 of Definition 5) and then extended by Maieli in [14] to the multiplicative
and additive proof structures. The latter work provides a binary version of rules
R5 and R6 of Definition 5 that only works with closed proof structures labeled
by boolean monomial weights (see [9]). Here, we further extend these techniques,
by generalizing the rules above, to weightless proof structures that are focusing,
bipolar, possibly open and with n-ary links.

Definition 3 (abstract structure). An abstract structure (AS) is a undi-
rected graph π∗ equipped with a set C(π∗) of pairs of coincident edges: two edges
are coincident if they share at least a vertex, called base of the pair. Each pair
has a type α ∈ {�,&, C} (where C denotes the additive contraction). We call
cluster of type α a tuple of edges that are pairwise pairs of C(π∗) with type α.
A pair (resp., cluster) is graphically denoted by a crossing arc close to the base.
Some pending edges (i.e., edges that are incident to only one node) of an AS are
called conclusions (resp. hypotheses) of the AS. We call collapsed any acyclic
AS π∗ with at most a single node and C(π∗) = ∅.
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Notation: a dashed edge incident to a vertex v is a compact representation of
possibly several edges (with possibly clusters) incident to v; variables a, b, c, ...
denote (dashed) edges; possibly partially dotted arcs with labels α ∈ {�,&, C}
are compact representations of pairs (clusters) of type α; vertices may be denoted
by naturals inside (dotted) circles ➀, ➁, ... . A cluster of n edges, a1, ..., an, with
type α, is denoted by α(a1, ..., an) (sometimes, simply αn).

Definition 4 (abstraction). We may transform (abstract) a given BTS π,
with bottom border Γ and top border Δ, in to an AS π∗ (also abstraction of π)
with conclusions Γ and hypothesis Δ, built by applying the following procedure:

1. a link+ with border a1, ..., an becomes a vertex with incident edges a1, ..., an;
2. a link− with top places a1, ..., an and bottom place b becomes a vertex that

is base for a cluster �(a1, ..., an) and with b as an additional incident edge;
3. a place (multiport) a that is bottom (resp., top) place of n links− becomes

a vertex that it is base of a cluster &(a1, ..., an) (resp., C(a1, ..., an)) with n
copies of a, and with an additional incident edge labeled by a;

4. a place (multiport) a that is top (resp., bottom) place of n links+ becomes a
vertex that is base of a cluster C(a1, ..., an), with n copies of a, and with an
additional incident edge labeled by a;

5. we may compact π∗ by some applications of structural retractions R1, R2.

Definition 5 (retraction system). Given an AS π∗, a retraction step is a
replacement (also, deformation or rewriting) of a subgraph S (called, retrac-
tion graph) of π∗ with a new graph S′ (called, retracted graph), leading to π′∗

according to one of the following rules R1, ..., R9.

R1 (structural): with the condition that, like in Fig. 2, the retraction graph of
π∗ contains a vertex ➀ with only two incident edges, a and b, none of them
pending; then, this graph is replaced in π′∗ by a single new edge c s.t. any
pair of C(π∗) containing a or b is replaced in C(π′∗) by a pair of the same
type and with c at the place of a or b.

R2 (structural): with the condition that, like in Fig. 2, the retraction graph
of π∗ contains two distinct vertices ➀ and ➁ with a common edge c not
occurring in any pair of C(π∗); then, one of these two nodes, ➀ or ➁, together
with the edge c, does not occur in π′∗; moreover, C(π∗) = C(π′∗).

R3 (multiplicative):1 with the condition that, w.r.t. the retraction graph of π∗

in Fig. 2, all vertices are distinct and there exists a cluster �(a1, ..., an), with
base in ➀, whose edges, an−1 and an are also incident to vertex ➁; moreover,
an−1 and an do not occur in any pair, except the cluster �(a1, ..., an). Then,
π′∗ (resp. C(π′∗)) is obtained from π∗ (resp. from C(π∗)) by erasing an (resp.,
by replacing �(a1, ..., an) with �(a1, ..., an−1)).

R4 (associative):2 with the conditions that, w.r.t. the retraction graph of π∗ in
the Fig. 2 (all vertices are distinct):
1. vertex ➀ is a base for the cluster α(a1, ..., an);

1 Intuitively, this rule corresponds to the replacement of an axiom by its η-expansion.
2 Intuitively, this rule corresponds to the associativity of, respectively, �,& and C.
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2. vertex ➁ is a base for the cluster α(b1, ..., bm);
3. α ∈ {�,&, C} and n,m ≥ 2;
4. the only edges incident to the vertex ➁ are b1, ..., bm, an.
Then, the edge an (resp., vertex ➁) does not occur in π′∗ and both clusters,
α(a1, ..., an) and α(b1, ..., bm) of C(π∗), are replaced in C(π′∗) by an unique
cluster α(a1, ..., an−1, b1, ..., bm) with base in vertex ➀.
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Fig. 2. Structurals (R1, R2), multiplicative (R3) and associative (R4) retractions

R5 (distributive):3 with the condition that, w.r.t. the retraction graph of π∗ in
Fig. 3, all vertices are distinct and each vertex vi (1 ≤ i ≤ n) has only ai, bi
and ci (1 ≤ i ≤ n) as incident edges with the following conditions:
1. ci is an edge occurring in the cluster &(c1, ..., cn, d) with base in vh;
2. bi is an edge occurring both in the cluster C(b1, ..., bn), with base in vertex
vk, and in the cluster �i(ai, bi), with base in vertex vi;

3. ai is a non empty bundle of edges occurring in the cluster �(ai, bi);
moreover, each edge e ∈ ai must satisfy one of the following conditions:
(a) either it is a pending edge or an edge incident to a vertex with only

pending edges not labeled by any conclusion of π∗; in that case, there
must exist at least such an analogous edge for each bundle a1, ..., an;

(b) or it must occur in a C cluster and, in that case, for each bundle
a1, ..., an, there must exist exactly one edge that occurs in this C
cluster too.

Then, π∗ retracts to π′∗ like in Fig. 3. Observe that edges b1, ..., bn, except
one, bi, do not occur in π′∗; similarly, the cluster C(b1, ..., bn) /∈ C(π′∗).
Moreover, new edges g and e are added to π′∗ (similarly, new pairs,
�(bi, g) and &(d, e) occur in C(π′∗) with base, respectively, in the new
vertex vh′ and vh′′).

R6 (semi-distributive):4 with the condition that, w.r.t. the retraction graph of
π∗ in Fig. 3, all vertices are distinct and each vertex vi, with 1 ≤ i ≤ n, has
only ai, bi and ci (1 ≤ i ≤ n) as incident edges with the following conditions:
1. ci is an edge occurring in the cluster &(c1, ..., cn, d) with base in vh;
2. bi is an edge occurring in the cluster C(b1, ..., bn) with base in vk;
3. ai is, possibly, a bundle of edges occurring neither in a pair with bi nor

in a pair containing ci.

3 A reminiscence of the distributivity (&n
i=1(ai�f))&d !� (&n

i=1(ai)�f)&d (see [14]).
4 Reminiscence of the semi-distributivity (&n

i=1(f⊗ai))&d ! (f ⊗ (&n
i=1(ai))&d ([14]).
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Then, π∗ retracts to π′∗ like in Fig. 3. Observe, π′∗ does not contain any
b1, ..., bn except one, bi, (resp., C(b1, ..., bn) /∈ C(π′∗)). Finally, in π′∗ we add
a new edge g and a new vertex vh′ (resp., a, possibly, new cluster &(d, g′) ∈
C(π′∗) with base vh′).
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Fig. 3. Retraction rules: distributive (R5) and semi-distributive (R6)

R7 (&-annihilation): with the conditions that, w.r.t. the retraction graph of π∗

in Fig. 4, all vertices are distinct and each ai, with 1 ≤ i ≤ n, is an edge
occurring in the cluster &(a1, ..., an); moreover, each ai must belong to a
collapsed subgraph of π∗ non containing conclusions of π∗, with the condition
that any couple ai, aj (1 ≤ i, j ≤ n) cannot belong to the same collapsed
graph. Then, in π′∗, each ai will be disconnected from vh (so, &(a1, ..., an) /∈
C(π′∗)).

R8 (�-annihilation): with the condition that, w.r.t. the retraction graph of π∗

in Fig. 4, all vertices are distinct and edges a1, ..., an occur in a cluster
�(a1, ..., an); then, π

∗ retracts to π′∗, like in Fig. 4, whenever d is:

1. either a bundle of pending edges not labeled by any conclusion of π∗ and
not occurring in a pair with any ai;

2. or a bundle of pending edges not occurring in any pair with any ai and
e is also a bundle of pending edges with at least one of them labeled by a
conclusion of π∗ and none of them occurring in a pair with any ai.

Then, in π′∗ the edge an will be disconnected form vertex ➀; therefore, C(π′∗)
will contain all the pairs of C(π∗) except those one containing an.

R9 (merge): with the condition that, w.r.t. the retraction graph of π∗ in Fig. 4,
all vertices are distinct and χ∗1 and χ∗2 are both collapsed AS made, resp., by
a vertex ➀ and a vertex ➁, with, resp., only pending edges a1, ..., an≥1 and
b1, ..., bm≥1, with bm that is neither a conclusion nor an hypothesis of π∗.
Then, π′∗ is obtained by gluing χ∗1 with χ∗2 and erasing ➁ and bm.

We say that π∗ retracts to π′∗ when there exists a non empty finite sequence
of retraction steps starting at π∗ and terminating at π′∗; then, we say that π∗ is
retractile when there exists a σ∗ �= π∗ s.t. π∗ retracts to σ∗. A non retractile AS
is called terminal. A sequence of retraction steps is said complete when it ends
with a terminal AS. An AS collapes when it retracts to a collapsed graph. A pair
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of possible (or admissible) retraction instances for π∗, Ri and Rj , with i �= j, is
called a critical pair (denoted by Ri|Rj) when the application of Ri inhibits the
application of Rj (or vice-versa).

Theorem 1 (convergence of retraction). If π∗ is an AS with conclusions
Γ and hypothesis Δ then, any complete retraction sequence starting at π∗ ends
with a terminal AS χ∗; moreover, if χ∗ is collapsed, then any complete retraction
sequence starting at π∗ ends with χ∗.

Proof. Termination is proved by (lexicographic) induction on the complexity
degree of π∗, that is, the triple 〈0P, 0N, 0E〉, where ”0P”, ”0N” and ”0E” denotes
respectively the number of pairs, nodes and edges of π∗.

For the confluence, we reason, analogously, by induction on the complexity
degree of the starting π∗. It is not difficult to show that for each critical pair,
R5|R5, R5|R8 and R8|R8, we can find, in a few steps, an almost local confluence
strategy that allows to apply the induction reasoning.

Next Lemma 1 intuitively says that abstraction commutes under retraction;
it will play a crucial role in the sequentialization of BTSs (Theorem 2, Sect. 4).

Lemma 1 (abstraction). Assume π∗ is an AS that retracts to π′∗ by an in-
stance of Ri (i = 1, ..., 9) and assume there exists a BTS π that abstracts to π∗;
then, we can find a BTS π′ whose abstraction is π′∗.

Proof. It is to show, for each Ri=1,...,9, how to locally deform some bipoles of
the given BTS π in such a way to get a BTS π′ whose abstraction is π′∗.

Definition 6 (bipolar transitory net). A BTS π with bottom border Γ and
top border Δ, is correct, that is a bipolar transitory net (BTN), when its ab-
straction π∗, with conclusions Γ and hypothesis Δ, collapses.

Example 2. In Fig. 5 we give an instance of (closed) BTS π (Pic. A1) obtained
by juxtaposing bipoles β1, β2, β

′
3, β

′′
3 , β

′
4 and β′′4 . Observe, π is correct (it is a

BTN) since its abstraction π∗ (Pic. A2) collapses after few retraction steps:

1. first we get the AS of Pic. A3 after some instances of distributive retraction
R5 applied to the dotted retraction graph of Pic. A2;

2. then we get the AS of Pic. A4 after a couple of instances of semi-distributive
retractions R6 applied to the dotted retraction graphs of Pic. A3;

3. finally, we get the collapsed graph after three multiplicative retractions in-
stances R3 applied to the dotted retraction graphs of Pic. A4 (modulo some
structural retractions).
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Fig. 5. Bipolar net (Pic. A1) with its collapsing abstractions (Pics. A2,3,4)

3.2 Construction of Transitory Nets via Optimal Retraction

Analogously to the construction of bipolar focusing sequent proof seen in Sect. 2,
in the construction of BTNs, places are decorated by type information, that is,
occurrences of negative atoms. A bipole β is viewed as an agent which contin-
uously attempts to perform a bottom-up expansion step of the given BTN π:
this step consists of adding (by a gluing operation ”�”) a non empty cluster
(a sum, indeed) of bipoles from the top border places whose types match the
trigger, i.e. the bottom places, of the given bipoles. Not all construction steps
are admissible. We will only consider those ones that preserve correctness by
retraction. Now, checking correctness of an expansion is a task which, a-priori,
repeatedly involves visiting (i.e., retracting) the whole portion of the expanded
BTS. Actually, we could avoid, at each construction step, considering the whole
structure built up, by e.g. taking advantage of the incremental construction in
such a way to reduce the complexity of the contraction task. That is exactly
the content of the next Corollary 1, immediate consequence of the Convergence
Theorem 1. Intuitively, Corollary 1 allows us to incrementally pursue an optimal
retraction strategy that manages, when they exist, abstract correction graphs
that are strictly smaller (w.r.t. the complexity degree) than the starting ones.

Corollary 1 (optimal retraction). Let π be a BTN (with a non empty top
border) and let β a non empty cluster (a sum) of bipoles, whose bottom border
matches some places of the top border of π. Assume π abstracts to π∗ and assume
η∗ is the AS, which π∗ retracts to, by only applying those retraction instances
whose retraction graph does not contain pending (border) edges. Then, (π � β)∗

collapses iff η∗ � β∗ collapses too.
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Example 3. We graphically show a reason why Corollary 1 ”delays” those re-
tractions that involve the border of the abstraction associated to the BTN to be
expanded. Actually, assume π abstracts to an AS π∗ with hypothesis a, b, d, e, f
and conclusion c, like in the graph below the dotted line of Pic. B1 in Fig. 6.
Assume π′∗ is obtained from π∗ by an instance of distributivity R5 applied to
the couple of �-pairs with, respectively, base ➁ and ➂, like in the graph below
the dotted line of Pic. B2: this retraction involves the border a, b and d. Now, if
we expand π∗ by the (abstract) sum of bipoles (β1 ⊕ β2)∗, through the border
d, e, we get the AS π∗ � (β1⊕β2)∗ (the whole Pic. B1) whose retraction does not
collapse5 while the expanded AS π′∗ � (β1 ⊕ β2)∗ (the whole Pic. B2) collapses.

1

2 3 4

5

b

c

a f

π∗:

�

C

d e
C

��

(β1 ⊕ β2)
∗

&

Picture B1

3 4

f

�

C

e

(β1 ⊕ β2)
∗

&

5

&

�

π′∗:

1

2

c

a

b d

P icture B2

+

− −

ba

g h

+ +

+ +

c

⊕

⊕

&2

β ′
3

β ′′
3

β ′
4

β ′′
4

− −

&1

+

−

x

+

f

d e

β2

β ′
1

β ′′
1

y

P icture C

Fig. 6. Expansion steps (Pics. B1, B2) and a BTS (Pic. C)

4 Sequentialization of Bipolar Transitory Nets

In this section we show that correct BTSs correspond (sequentialize) to proofs
of the bipolar focusing sequent calculus and vice-versa.

There exists an almost direct correspondence (modulo associativity and dis-
tributivity of linear connectives) between a sequential bipole B and a an additive
sum of bipoles B = {β1 ⊕ · · · ⊕ βn≥1}, as follows:

1. the positive layer of B corresponds to the positive hyperlink made by the
positive links of B connected through the border (see Definition 1);

2. the negative layer of B corresponds to the set of negative hyperlinks of B;
3. the negative literals (i.e., atoms) of B correspond to the top places of B while

(the dual of) the positive literals of B correspond to the bottom places of B;

5 It is no longer possible to apply rule R5 since condition 3b of Definition 5 is violated.
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4. each bipole βi corresponds to the i-th bipolar inference induced by the se-
quential bipole B (see Example 1 in Sect. 2).

In general, ports (resp. multiports) correspond to a single (resp., multiple) occur-
rence of literals. Then, we say that a bipolar sequential proof Π with hypothesis
Δ and conclusions Γ de-sequentializes to π, when π is a BTN with top border Δ
(resp., bottom border Γ ) and each instance of the i-th bipolar inference induced
by B ∈ Π corresponds to a bipole βi ∈ π. The other way round, from BTNs to
bipolar sequential proofs, is called sequentialization.

Theorem 2 ((de-)sequentialization). A sequent proof ΠΔ
Γ , with conclusions

Γ and hypothesis Δ, de-sequentializes in to a BTN π, with bottom places Γ and
top places Δ and vice-versa (sequentialization).

Proof of the de-sequentialization part: we proceed by induction on the size
of Π , via the correspondence stated above between sequential bipoles and
graphical bipoles, modulo associativity and distributivity of connectives.

Proof of the sequentialization part: it is given by induction on the com-
plexity degree of the abstraction π∗ corresponding to the given π. By the
Abstraction Lemma 1, we show that at each retraction step π∗ �Ri π

′∗, for
i = 1, ..., 9, it is possible to recover a BTN π′ from the retracted AS π′∗,
with same border. Then, by hypothesis of induction, π′ sequentializes to a
proof Π

′Δ′

Γ ′ from which, finally, by deformations of Π ′ (i.e., permuting some
bipolar inferences of Π ′), we get a sequential proof ΠΔ

Γ . We reason by cases,
according to Ri, with 1 ≤ i ≤ 9.

Example 4. Observe, the closed bipolar net given in Example 2 (Fig. 5, Pic.
A1), sequentializes in to the bipolar focusing proof Π displayed at the end of
Example 1; we illustrates how the sequentialization works in that case. Assume
π (Pic. A1, Fig. 5) abstracts to π

∗ (Pic. A2) and assume π∗ retracts to π′∗ like
in Pic. A3, after a block of distributive retractions (without losing generality, we
may treats a sequence of retractions of the same type R5 as a single generalized
retraction R5). By Abstraction Lemma 1 we may build a BTN π′ from π′∗ like in
Pic. C of Fig. 6; then, by hypothesis of induction we know that π′ sequentializes
to the bipolar sequent proof Π ′ below:

B′
3g, a, c
B′

4a, g,h,d

B′′
3g,b, c
B′

4b, g,h,d
B2

x, g, h, d

B′
3g, a, c
B′′

4a, g,h, e

B′′
3g,b, c
B′′

4b, g,h, e
B2

x, g, h, e
B′′

1x, g, h,y
B′

1f

Clearly, π is nothing else that π′ in which we replaced bipoles β′1 and β′′1 with
the single bipole β1. Since bipole β′1 (resp., β′′1 ) corresponds (sequentializes) to
the inference B′

1 (resp., B′′
1 ), then π sequentializes to Π obtained from Π ′ by

simply replacing the two inferences B′
1 and B′′

1 with the unique inference B1

which trivially corresponds to bipole β1.
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5 Conclusions, Related and Future Works

In this work we provided:

1. a very simple syntax for open proof structures (BTSs) that allows to extend
the paradigm of proof construction to the MALL fragment of LL. In partic-
ular, we set a precise correspondence, called sequentialization (Theorem 2)
between focusing bipolar sequent proofs and correct BTSs (i.e., BTNs);

2. a convergent retraction system to check correctness of BTNs (Theorem 1);
3. an optimal strategy for incrementally building BTNs (Corollary 1).

Concerning other attempts to give a theoretical foundation of computational
paradigms based on sequent proof construction, we only mention:

– some works of Pfenning and co-authors, from 2002 and later (see, e.g., [4]),
which rely neither on focusing (or polarities) nor on proof nets but on softer
notions of sequent calculus proofs;

– some works of Miller and co-authors which generalize focused sequent proofs
to admit multiple ”foci”: see, e.g., [15] and [5]; the latter also provides a bi-
jection to the unit-free proof nets of the MLL fragment, but it only discusses
the possibility of a similar correspondence for larger fragments. At this mo-
ment, we are exploring a direct sequentialization from retractile transitory
nets to, possibly open, multi-focus sequential calculi.

Concerning the related literature on additive proof nets, although there currently
exist several satisfactory syntaxes for MALL proof structures, we briefly discuss
some reasons that lead us to avoid most of them (at least in this first approach):

– Girard, [8]: requiring boolean (monomial) weights over proof structures is a
condition that prevents certain transactional structures: take e.g. a simple
BTS containing a single positive hyperlink or the rightmost BTS of Fig. 1;

– Hughes-van Glabbeek, [11]: similarly to the previous one, this syntax seems
well adapt to take in to account only closed proof structures; actually, it has
the inconvenient of allowing additive contractions only immediately below
the axiom links; although this canonical form has great advantages for se-
mantical reasons, it does not seem adapted to the composition of arbitrary
modules that may require ”non canonical” contractions.

Moreover, since these syntaxes make, more or less, explicit reference to graph
dependencies (like jumps) they, a-priori, seem to garble the ”principle of locality”
required by retraction systems. Finally, as future works, we aim at investigating:

– the complexity class of the optimal BTNs construction;
– an extension of the retraction system that could preserve BTNs under the

(almost local) cut reduction proposed by Laurent and Maieli in [13].
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Local States in String Diagrams
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Abstract. We establish that the local state monad introduced by
Plotkin and Power is a monad with graded arities in the category
[Inj, Set]. From this, we deduce that the local state monad is associ-
ated to a graded Lawvere theory �מ which is presented by generators and
relations, depicted in the graphical language of string diagrams.

1 Introduction

In this paper, we elaborate an algebraic and graphical account of the local state
monad on the category [Inj, Set] of covariant presheaves on the category Inj

L : [Inj, Set] −→ [Inj, Set]

formulated ten years ago by Plotkin and Power [12] themselves inspired by sem-
inal ideas developed by O’Hearn and Tennent [11] on the presheaf semantics
of local states. Much work has been dedicated in the past decade in order to
understand the algebraic nature of this specific local state monad, in particular
by Power [14, 15] and by Staton [17, 18]. One main purpose of the present paper
is to recast these two lines of work in the language of monads with arities. An
immediate benefit of the reformulation is that every monad with arities comes
together with a notion of Lawvere theory with arities formulated in [9]. By prov-
ing that the local state monad is a monad with graded arities, we are thus able
to define its graded Lawvere theory �מ (a letter pronounced mem in hebrew).
The whole point of the paper is that the category �מ is sufficiently simple to be
presented by generators and relations easily adapted from [12, 15, 18]. The shift
from finitely presentable arities to graded arities is fundamental to that purpose.

Recall that the category Inj has natural numbers n, p, q ∈ N as objects, and
injective functions f : [p] → [q] as morphisms, where [n] denotes the finite set
[n] = {1, . . . , n} of cardinal n. As any presheaf category, the category [Inj, Set]
is cartesian closed and thus provides a model of the simply-typed λ-calculus,
where every simple type is interpreted as a presheaf A. Moreover, the local state
monad L defines a computational monad on the category [Inj, Set] in the sense
of Moggi [10]. For that reason, the category [Inj, Set] together with the monad L
defines an interpretation of an imperative call-by-value λ-calculus where registers
may be alternatively written, read, allocated and collected, see [12] for details.

� This work has been partly supported by the ANR RECRE.
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The elements M in An are called elements of degree n in the presheaf A. The
idea underlying the model is that a programM with n registers in the language
should be interpreted as an element of degree n in the presheaf A associated to
the type of the program.

Now, let us recall how the monad L is defined. By convention, we suppose
that every register of our language may be assigned the same finite set V of
values. In that situation, the covariant presheaf LA obtained by applying the
monad L on a covariant presheaf A is conveniently expressed by the formula

LA : n �→ Sn ⇒
( ∫ p∈Inj

Sp ×Ap × Inj(n, p)
)

(1)

where the contravariant presheaf

S : n �→ V n : Inj op −→ Set

transports every number n to the set Sn of states possibly taken by n registers:

Sn := V n =
{
(val1, . . . , valn) | ∀i ∈ {1, ..., n}, vali ∈ V

}
.

Although the formula (1) may appear slightly intimidating, the intuition under-
lying it is easy to grasp. It simply reflects the idea that a programM of type LA
with n registers behaves in the following way: first, the programM reads the state
sin ∈ Sn of its n registers, then, depending on the value sin = (val1, . . . , valn)
which has been just read, the program M allocates a number p− n of registers
(with p ≥ n) and returns three pieces of information to the context:

1. a state sout = (wal1, . . . , walp) ∈ Sp of the p registers,
2. a return value M(sin) ∈ Ap depending on the p registers,
3. and finally, an injective function f : [n] → [p] which tracks the n registers

originally appearing in the programM among the p registers of the returned
program M(sin).

A nice aspect of the formula (1) is that it takes care of the fact that the p − n
registers may be allocated with different names in the memory. This is indeed
the purpose of the colimit (or more precisely the coend) formula∫ p∈Inj

Sp ×Ap × Inj(n, p) =
( ∐

p∈N

Sp ×Ap × Inj(n, p)
)
/ ∼ (2)

which is defined as the set of triples (val1, . . . , valp,M, f) in S
p×Ap× Inj(n, p)

modulo the least equivalence relation ∼ identifying all triples

(valh(1), · · · , valh(p),M, f : [n]→ [p]) ∼ (val1, · · · , valq, Ah(M), h◦ f : [n]→ [q])

for an injection h : [p]→ [q]. Here, the element Ah(M) ∈ Aq denotes the image
(or pushforward) of the elementM ∈ Ap of degree p along the injection h : [p]→
[q], which is typically obtained in the case of a program M by h-reindexing the
names of its p registers.
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2 The Global State Monad

In their work, Plotkin and Power [12] made the important observation that the
local state monad L may be alternatively presented by a series of well-chosen
generators and relations. One ambition of this paper is to illustrate the additional
principle advocated by the author in [9] that any concise formulation such as (1)
of a monad L presented by generators and relations can be derived from the
existence of a class of canonical forms for the terms of the associated algebraic
theory. This general principle was succesfully applied in [9] on the global state
monad

T : A �→ S ⇒ (S ×A ) : Set −→ Set (3)

induced by a finite set S of states on the category Set. For simplicity, we will
suppose from now on that all the registers manipulated by the language are
boolean, and thus that the set of values is equal to V = {true, false}. We will
also suppose for the sake of the discussion that S = V = {true, false}. This
leads to the following definition. A mnemoid in a cartesian category C is defined
as an object A equipped with a binary operation lookup and a unary operation
update〈val〉 for each value val ∈ {true, false} of the register:

lookup : A×A −→ A update〈val〉 : A −→ A

moreover satisfying three families of equations.

1. Creation lookup – update. Reading the value val of the register and then
writing the very same value val in the register is like doing nothing at all. This
leads to the equation below:

lookup(update〈true〉(term), update〈false〉(term)) = term

2. Interaction update – update. Storing a value val1 and then a value val2 inside
the register is just like storing directly the value val2. In particular, the value val1
is lost in the process.

update〈val1〉 ◦ update〈val2〉 = update〈val2〉

3. Interaction update – lookup. When one stores a value val in the register and
then reads the value of the register, one gets back the value val.

update〈val〉 ◦ lookup
[
term(true) , term(false)

]
= update〈val〉( term(val) ).

The two operations lookup and update〈val〉 of a mnemoid may be conveniently
depicted in the language of string diagrams in the following way:

left branch

root

right branch

val rootbranch
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Here, the lookup operation is depicted as an “eye” which inspects the value of
the register at the root and then branches on the left when the value is true and
on the right when the value is false. The update〈val〉 operation is depicted as
a “cartouche” which erases the value of the register at the root and writes its
own value val ∈ {true, false} on the branch. The arrows on the wires indicate
the direction of execution, which goes from the root to the leaves of the tree
of operations. The three equations 1, 2 and 3(a, b) required of a mnemoid are
depicted as follows in the language of string diagrams:

rootx
(1)
=

x

false

root

true

x

val root1val2x
(2)
= rootval2x

x

y

true root
(3a)
=

x

true root

x

y

false root
(3b)
=

y

false root

The main theorem established by Plotkin and Power [12] for the global state
monad may be formulated as follows for the cartesian category C = Set:

Theorem 1. The category of mnemoids is equivalent to the category of algebras
of the global state monad for S = {true, false}.
The theorem is obtained in the original paper by Plotkin and Power [12] by
applying the Beck theorem in order to establish the monadicity of an adjunction
of interest. We advocate in [9] that a more conceptual way to obtain the same
result is to deduce it from two separate facts. First of all, the global state monad
is finitary. Then, the following canonical form theorem for mnemoids:

Theorem 2. Every term of the theory of mnemoids with n variables x1, . . . , xp
is equivalent to a term of the form

lookup
[

update〈val〉 (xp) , update〈wal〉 (xq)
]

Moreover, this canonical form is unique for a given term.

Expressed graphically, this means that every such term with n variables of the
theory of mnemoids is equivalent to a unique term of the form:

p

wal

root

val

q

x

x

with val, wal ∈ {true, false} and p, q ∈ [n]. In other words, every sequence of
operations performed in the theory of mnemoids on the finite set [n] = {1, . . . , n}
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of variables is equal to a lookup operation followed on each branch true and false
by an update operation and a choice of an element in [n]. We explain in [9] how
to apply the philosophy of Lawvere in order to deduce from this canonical form
theorem that the free mnemoid generated by a given set A coincides in fact
with the result TA of applying the global state monad T to the set A. More
conceptually, one recovers in this way the result by Plotkin and Power (Thm 1)
that the category of mnemoids is equivalent to the category of algebras of the
global state monad T . The existence of the canonical form was independently
observed by Pretnar [16] who uses it in order to establish that the theory is
Hilbert-Post complete.

3 The Five Operations of the Local State Monad

One main purpose of the present article is to establish a similar result for the
local state monad L. In particular, we would like to derive the formula (1) for
the monad L from the existence of a canonical form for a particular algebraic
presentation of its operations. To this effect, we start from a mild adaptation of
the algebraic presentation given by Plotkin and Power in their seminal paper [12].
The resulting algebraic presentation is based on the distinction between four
families of operations. First of all, for each natural number n ∈ N and each
location loc ∈ [n], the operations of a mnemoid:

lookup〈loc〉 : An ×An −→ An update〈loc,val〉 : An −→ An (4)

where val ∈ {true, false}. Note that these two operations do not alter the
degree n of the elements. Then, for each natural number n ∈ N, for each loca-
tion loc ∈ [n+ 1] and for each value val ∈ {true, false}, an operation

fresh〈loc,val〉 : An+1 −→ An (5)

whose intuitive purpose is to allocate among n registers a fresh register at loca-
tion loc ∈ [n+ 1] moreover initialized with the value val ∈ {true, false}. Then,
for each natural number n ∈ N and for each location loc ∈ [n+ 1], an operation

collect〈loc〉 : An −→ An+1 (6)

whose intuitive purpose is to deallocate or garbage collect the register at loca-
tion loc ∈ [n + 1]. Finally, for each natural number n ∈ N and for each pair of
locations loc, loc+ 1 ∈ [n], an operation

permute〈loc,loc+1〉 : An −→ An (7)

whose intuitive purpose is to permute the two registers at location loc and
loc+ 1. One main conceptual difficulty of the local state monad, and also one
main reason for studying it so closely, is that it entangles in a sophisticated
way the read/write operations (4) of the mnemoid to the structural operations
(5–6–7) whose function is to reorganize the shape of the memory by allocating,
collecting or permuting registers. There seems to be here a general principle
of interaction between effects and resources, which one would like to better
understand.
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4 A Notion of Graded Arity in [Inj, Set]

An apparent obstruction to the idea of canonical form in the case of the local
state monad L is the fact that its definition relies on the coend formula (2).
According to a naive but reasonable understanding of Lawvere’s principles, there
should be exactly one canonical form for each element of the set (TA)n and such
a one-to-one correspondence seems difficult to achieve for a general covariant
presheaf A because of the presence of the non-trivial equivalence relation ∼ in
the formula (2). In order to tackle the situation, we thus need to specialize the
formula (1) to a specific class of covariant presheaves, provided in this cas by
the finite sums

[ p0 , . . . , pm ] = 〈0〉+ · · ·+ 〈0〉︸ ︷︷ ︸
p0 times

+ · · · + 〈m〉+ · · ·+ 〈m〉︸ ︷︷ ︸
pm times

of representable covariant presheaves

〈 k 〉 := yk : n �→ Inj(k, n) : Inj −→ Set.

Note in particular that it follows from the Yoneda lemma that

[Inj, Set] ( [p0 , . . . , pm ] , A ) =

m∏
k=0

Ak × . . .×Ak︸ ︷︷ ︸
pk times

=

m∏
k=0

Apk

k

for every covariant presheaf A over the category Inj. This equation justifies
thinking of the presheaves [ p0, . . ., pm ] as an appropriate notion of generalized
arity in the category of presheaves [Inj, Set] which we call graded arity. Indeed,
in the same way a function from [n] = {1, . . . , n} to a set A defines a word
of length n in the alphabet A, a morphism from [ p0, . . . , pm ] to a covariant
presheaf A defines a word of length n =

∑
pk in the graded alphabet A, con-

sisting of m words of length pk in the alphabet Ak of elements of grade k ∈ [m]
in the covariant presheaf A. Note that the full subcategory of such arities in the
category [Inj, Set] is isomorphic to the free category with finite sums Σ Injop

generated by the category Injop. Moreover, the resulting full and faithful functor

i : Σ Injop −→ [Inj, Set]

is dense in the category [Inj, Set]. As such, the category ΣInjop together with
the functor i defines a notion of arities on the presheaf category [Inj, Set] in the
sense of Weber [20] who developed the notion in his study of globular operads,
see also [9].

5 From a Coend Formula to a Coproduct Formula

It appears that when applied to a graded arity A = [ p0, . . . , pm], the coend
formula (2) suddenly becomes a coproduct formula. Let us briefly explain why.
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The phenomenon is in fact slightly more general. Consider the categoryNat with
natural numbers n ∈ N as objects and no morphisms except for the identities.
The object-preserving functor � : Nat −→ Inj induces an adjunction

[Nat, Set]

∃�

		⊥

�∗

�� [Inj, Set] (8)

where the forgetful functor �∗ is defined by precomposition with � and its left
adjoint functor ∃� is defined by left Kan extension along �. The computation of
this left Kan extension is easy. Namely, given a presheaf A on the category Nat,
one obtains:

∃�A : n �→
∐
m∈N

Am × Inj(m,n) = { (M, f) |M ∈ Am, f ∈ Inj(m,n) }

Observe that the covariant presheaves of the form ∃�A are precisely the (possibly
infinite) sums of representable presheaves over Inj. In particular, every graded
arity [ p0, . . . , pm ] is of that form. Now, a simple computation shows that the
coend formula (2) applied to such a covariant presheaf ∃�A yields a coproduct
formula:∫ p∈Inj

Sp ×
[ ∐

m∈N

Am × Inj(m, p)
]
× Inj(n, p) ∼=

∐
m∈N

Am × 〈m,n |S 〉

where the set 〈m,n |S 〉 is defined as

〈m,n |S 〉 :=

∫ p∈Inj

Inj(m, p) × Inj(n, p)× Sp.

This slightly enigmatic result convinces us to study more closely the monad

LNat := �∗ ◦ L ◦ ∃� : [Nat, Set] −→ [Nat, Set]

obtained by pre and post-composing the monad L with the two components of
the adjunction ∃� 1 �∗. The image of a presheaf A on Nat (also called a graded
set) is thus defined as

LNatA : n �→ Sn ⇒
∐
m∈N

Am × 〈m,n |S 〉. (9)

From now on, and in order to differentiate the two local state monads, we write
LInj for the local state monad L on the category [Inj, Set].

6 The Category Res of Resource Management

The monad LNat is so simple that it deserves further analysis. In particular,
remember from §3 that we are interested in clarifying the intricate interplay
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between read/write effects (lookup,update) and resource management (fresh,
collect, permute) in the local state monad. This idea has been already explored
quite far by Power [15] in his work on indexed Lawvere theories. Here, it pro-
vides us with a precious guide in our analysis. Indeed, it is folklore that the
category Inj is presented (in some sense which will be later elaborated) by
the collect and permute operations. This preliminary observation leads us to
introduce a category Res already considered by Staton [18] whose intuitive pur-
pose is to reflect all the resource management operations (not just collect

and permute but also fresh) of the local state monad. By definition, the cat-
egory Res has natural numbers n ∈ N as objects, and resource morphisms
[m] → [n] as morphisms m → n, where a resource morphism f : [m] → [n]
is defined as a function f : [m] → [n] + {true, false} satisfying the following
injectivity property: every element k ∈ [n] has at most one antecedent in [m].
The resource morphism g ◦ f : [m] → [n] obtained by composing two resource
morphisms f : [m] → [p] and g : [p] → [n] is defined just as expected. Note
in particular that the category Res is a subcategory of the Kleisli category in-
duced by the exception monad A �→ A+ {true, false} on the category Set with
natural numbers m,n ∈ N as objects and functions [m]→ [n] as morphisms. Ac-
cordingly, the reader should note that there exists an object-preserving functor
ι : Inj → Res which transports every injection f : [m]→ [n] of the category Inj
to the function η ◦f : [m]→ [n]+{true, false} defined by composing f with the
unit η of the exception monad in Fin. An interesting fact to mention regard-
ing the category Res is that there exists for every pair of numbers m,n ∈ N a
one-to-one correspondence

〈m,n |S 〉 ∼= Sn ×Res(m,n). (10)

From this follows that Formula (9) may be conveniently rewritten as

LNatA : n �→ Sn ⇒ Sn ×
∐
m∈N

Am × Res(m,n). (11)

7 Main Theorem

Together with the functor � : Nat → Inj, the functor ι : Inj → Res induces a
pair of adjunctions on the associated presheaf categories:

[Nat, Set]

∃�

��⊥

�∗

�� [Inj, Set]

∃ι

��⊥

ι∗

�� [Res, Set] (12)

This pair of adjunctions ∃� 1 �∗ and ∃ι 1 ι∗ induces in turn a monad

BNat := �∗ ◦ ι∗ ◦ ∃ι ◦ ∃� : [Nat, Set] −→ [Nat, Set]
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on the presheaf category [Nat, Set]. The image of a graded set A is defined as

BNatA : n �→
∐
m∈N

Am×Res(m,n) = { (M, f) |M ∈ Am, f ∈ Res(m,n) }.

In addition to the monad BNat, there is also a state monad

FNatA : n �→ Sn ⇒ (Sn ×An) : [Nat, Set] −→ [Nat, Set]

on the presheaf category [Nat, Set], simply obtained by applying the global state
monad on n registers

Tn : A �→ Sn ⇒ (Sn ×A) : Set −→ Set

on each set An of elements of grade n in the presheaf A. Note in particular that

(FNatA)n := Tn (An).

The notations BNat and FNat are mnemonics for basis monad BNat and fiber
monad FNat. The intuition is that the basis monad BNat acts on the basis Nat
of the covariant presheaf A by an appropriate change of basis from Nat to Res
while the fiber monad FNat acts on each of its fibers An of elements of grade n.
Each of the two monads FNat and BNat captures one disjoint aspect of the
local state monad LNat. Intuitively, the monad FNat deals with the read/write
operations while the monad BNat deals with memory management. The question
is thus to understand how the two monads FNat and BNat interact. The nature
of this interaction is nicely captured by the existence of a distributivity law in
the sense of Beck [1] between the two monads:

Theorem 3. The local state monad LNat is equal to the monad FNat ◦ BNat

associated to a distributivity law λ[Nat] : BNat ◦FNat ⇒ FNat ◦BNat between the
two monads BNat and FNat.

Once this decomposition of the monad LNat performed, it appears that a similar
decomposition of the local state monad LInj is also possible. One recovers in this
way the distributivity law noticed by Staton in [18]. Recall that the presheaf
category [Inj, Set] is equivalent to the category of algebras of the monad �∗ ◦ ∃�
encountered in §5. There exists moreover a distributivity law λ between the two
monads FNat and �

∗ ◦ ∃�. For these two reasons, the monad FNat extends to a
monad FInj on the presheaf category [Inj, Set] defined in just the same way:

(FInjA)n := Tn (An).

For the sake of comparison, it is worth mentioning here that the algebras of
the monad FInjA coincide with the models of the indexed Lawvere theory L⊗
formulated by Power in [15]. For that reason, the distributivity law λ may be
seen as an alternative but equivalent way as the functor L⊗ : Inj → Law to
“glue” together the global state monads Tn into the monad FInj . Besides the
monad FInj just defined on [Inj, Set], one finds the monad BInj = ι

∗◦∃ι induced
from the adjunction ∃ι 1 ι∗ mentioned in (12). This leads us to the following
variant of Theorem 3, established this time for the local state monad LInj:
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Theorem 4. The local state monad LInj is equal to the monad FInj ◦ BInj

associated to a distributivity law λ[Inj] : BInj ◦ FInj ⇒ FInj ◦ BInj between the
two monads BInj and FInj.

This leads us to the main theorem of the paper:

Theorem 5. The local state monad LInj is a monad with graded arities ΣInjop

on the presheaf category [Inj, Set].

The property is a direct consequence of the fact that the local state monad LInj

factors as a pair of monads FInj and BInj with graded arities. Note that one
establishes in the same way that the monad LInj is a monad with finitary arities,
where the notion of finitary arities is defined as the full and dense subcategory
FinGrad of finite graded sets in [Nat, Set].

8 The Graded Lawvere Theory �מ

One important consequence of Theorem 5 is that the monad LInj may be entirely
reconstructed from its Lawvere theory �מ with graded arities. This result holds
for every monad with arities and thus applies in particular to the monad LInj .
See [9] for details. The graded Lawvere theory �מ is defined as the category with
graded arities [ p0, . . . , pk ] as objects and with morphisms

�מ ( [ p0, . . . , pj ] , [ q0 , . . . , qk ] ) = [Inj, Set] ( [ q0 , . . . , qk ] , , LInj [ p0 , . . . , pj ] ).

Note that following Lawvere’s philosophy, the category �מ is defined as a full
subcategory of the opposite of the Kleisli category induced by the local state
monad LInj on the presheaf category [Inj, Set]. The very last part of the pa-
per is devoted to an algebraic presentation by generators and relations of the
graded Lawvere theory .�מ To that purpose, we take advantage that the cate-
gory �מ coincides with the Lawvere theory (with finitary arities) associated to
the monad LNat. The algebraic presentation is then performed in four easy
steps. We start by describing in §9 the generators and relations of the fiber
monad FNat and then carry on in §10 and §11 with a description of the genera-
tors and relations of the basis monad BNat. We conclude in §12 by the series of
equations involved in the algebraic presentation of the distributivity law λ[Nat].
This concludes the algebraic presentation of the graded Lawvere theory .�מ

9 The Global State Monad in String Diagrams

A handy graphical notation for the update and lookup operations on the global
state is to depict each location loc as a specific wire on a ribbon of registers.
Typically, the lookup and update operations on the register loc = loc2 for a
machine with four registers L = {loc1, loc2, loc3, loc4} are depicted as
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lookup〈loc〉 =

1

2

3

4

1

2

3

4

1

2

3

4

update〈loc,val〉 =
val

1

2

3

4

1

2

3

4

where in each case the “eye” and the “cartouche” are positioned on the regis-
ter loc = loc2. One recovers the three equations of mnemoids in this multi-wire
setting. The first equation creation lookup – update is depicted as

x (1)
=

true

false

x

x

the second equation update – update interaction is depicted as:

val1val2 (2)
=

val2

and the true case of the equation update – lookup interaction is depicted as:

true

x

y

(3a)
=

true
x

There is also a fourth equation (4) which states that two updates on different
registers loc and loc′ commute:

update〈loc,val〉 ◦ update〈loc′,val′〉
(4)
= update〈loc′,val′〉 ◦ update〈loc,val〉

and is depicted in the following way:

val′

val (4)
=

val

val′

This last equation is sufficient to ensure that all the lookup/update operations
applied on two different wires commute. In particular, the resulting algebraic
theory for the monad Tn reflects the fact that for every two natural numbers
p, q ∈ N, one has Tp+q = Tp ⊗ Tq where ⊗ denotes the tensor product of algebraic
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theories (or equivalently of Lawvere theories) on the category Set. Hence, Tn may
be seen as the n-fold tensor product of the algebraic theory T1 of mnemoids given
in §2. From this follows that the monad F is presented by the two families of
operations lookup and update together with the four equations 1, 2, 3, 4.

10 The Action of the Category Inj in String Diagrams

An important ingredient of the local state monad is the action of the category Inj
on the names of registers. Indeed, the very definition of the monad T relies on
the equivalence relation ∼ between various choices of a representative Sp×Ap×
Inj(n, p) modulo an action of the category Inj on the set [p] = {1, . . . , p} of
registers. For that reason, it is natural to introduce the notion of Inj-module C ,
defined as an action ∗ : Inj × C −→ C of the monoidal category (Inj,+, 0) on
the category C . Lawvere observed that a monad T on a category C is the same
thing as an action of the monoidal category (Δ,+, 0) on the category C , where
the category Δ of so-called simplices has finite numbers p, q ∈ N as objects and
monotone functions f : [p] → [q] as morphisms. Similarly, an Inj-module C is
the same thing as a category C equipped with a functor D : C −→ C and two
natural transformations

permute : D ◦D −→ D ◦D collect : Id −→ D

depicted as follows in the language of string diagrams:

D

D

D

D
D

and satisfying the familiar Yang-Baxter equation:

D

D

D

D

D

D

(1)
=

D

D

D

D

D

D

as well as the expected equation for a symmetry:

D

D

D

D

(2)
=

D

D

D

D

as well as two equations regulating the interaction between the permutation and
the dispose combinator, the first one among them:

D D

D

(3a)
=

D D

D
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11 The Category Res in String Diagrams

An important instance of Inj-module is provided by the category Res. Just like
the category Inj, the category Res is monoidal with tensor product p⊗q defined
as the sum p+ q. Moreover, the functor ι : Inj → Res is monoidal in the strict
sense. From this follows that Inj acts on the category Res. As a matter of fact,
the category Res may be defined as the free Inj-module where the functor D is
moreover equipped with a natural transformation

fresh〈val〉 : D −→ Id

for each value val ∈ {true, false} and depicted as:

valD

The two operations fresh〈val〉 of allocation should satisfy a series of equations
depicted below. The main equation interaction fresh – collect is depicted as:

val
(1)
= Identity

One of the two equations interaction fresh – permutation is depicted as:

D

D

D

val

(2a)
=

D

D

Dval

while the equation commutation fresh – fresh is depicted as:

D val2

D val1 (3)
=

D val2

D val1

12 The Distributivity Law in String Diagrams

The distributivity law λ is reflected as a series of equalities whose purpose is
to permute all the collect/permute/allocate operations generating the monad B
after (from the point of view of the evaluation) the update/lookup operations
generating the monad F . Typically, in the case of the two combinators fresh and
update, the first equation interaction fresh – update is depicted as

D

D

D

D

D

D

val1val2D (1)
=

D

D

D

D

D

D

val2D

while the second equation commutation fresh – update is depicted as

D

D

D

D

D

D

val2

D val1 (2)
=

D

D

D

D

D

D

val2

D val1
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In the case of the operations fresh and lookup, the equation commutation fresh
– update is depicted as follows:

D

D

D

x

y

val

(3)
=

D

D

D

x

y val

val

Similarly, there is an equation interaction collect – update depicted as

D

D

D

D

D

D val

D

(4)
=

D

D

D

D

D

D val

D

together with an equation commutation collect – lookup. Similar interaction and
commutation equations should be then depicted for all pairs consisting of a
lookup or an update operation and a permute operation. Typically, one of the
two equations interaction permute – lookup is depicted as:

D

D

D

D

D

D

D

D

val (5a)
=

D

D

D

D

D

D

D

Dval

Note that the expected equation interaction fresh – lookup may be derived from
the two equations interaction fresh – update and interaction update – lookup.

Finally, it should be mentioned that there exists a canonical form theorem
extending Theorem 2 to the local state monad: informally speaking, the theorem
states that every morphism of the category �מ factors uniquely as a series of
lookup operations followed by a series of update operations (just as in the case
of Theorem 2) then followed by a series of collect operations followed by a
series of permute operations followed by a series of fresh operations.

13 Conclusion and Related Works

Much work has been devoted in the past decade in order to understand the alge-
braic and combinatorial nature of the local state monad formulated by Plotkin
and Power’s seminal paper [12]. Besides the works by Power [13, 15] and Sta-
ton [17, 18] already mentioned, our work is close in spirit to the line of work
on nominal algebraic theories developed by various authors, see in particular
[2–4, 8]. A substantial work thus remains to be done in order to clarify the
connection between these various notions of nominal algebraic theories and the
notion formulated here of graded algebraic theory. The present paper is also
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tightly connected to the work by Hyland, Plotkin and Power on combining com-
putational monads, see [5, 7]. In that respect, we are currently interested in
clarifying the connection of our work with Power’s notion of indexed Lawvere
theories [13, 15]. Finally, Staton [19] has recently developed a work on paramet-
ric effects very close in spirit to this work, but based on abstract clones rather
than on Lawvere theories with arities.
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for Extensional Lambda-mu Calculus
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Abstract. The πμ-calculus is an extension of Parigot’s λμ-calculus.
For the untyped πμ-calculus, Saurin proved some fundamental proper-
ties such as the standardization and the separation theorem. Nakazawa
and Katsumata gave extensional models, called stream models, in which
terms are represented as functions on streams. This paper introduces a
conservative extension of the πμ-calculus, called πμcons, from which the
open term model is straightforwardly constructed as a stream model,
and for which we can define a reduction system satisfying several fun-
damental properties such as confluence, subject reduction, and strong
normalization.

1 Introduction

The λμ-calculus was originally introduced by Parigot [16] as a term assignment
system for the classical natural deduction, and then a lot of studies have been
devoted to the λμ-calculus from both sides of logic and computer science. An
extension of the λμ-calculus was given by de Groote [6] to study continuation-
passing-style translations for the calculus. As Saurin showed in [18,20], an
untyped variant of this extension, called the Λμ-calculus, enjoys fundamental
properties such as the standardization and the separation theorem. In partic-
ular, the latter does not hold for the original λμ-calculus as shown by David
and Py [5].

For the untyped Λμ-calculus, Nakazawa and Katsumata [14] gave a exten-
sional model, called stream model. The stream model is a simple extension of
the λ-model and similar to Streicher and Reus’ continuation semantics for the
λμ-calculus [22]. The stream model naturally reflects the idea that the Λμ-terms
represent functions on streams. Nakazawa and Katsumata showed the soundness
and gave an algebraic characterization for the stream model, but they have not
discussed on completeness.

Regarding types, some type assignment systems for the Λμ-calculus has been
introduced. Pagani and Saurin [15,21] gave a type system for the Λμ-calculus
as a stream calculus, and Gaboardi and Saurin [10] proposed its extension with
recursive types. De’Liguoro [8] gave an intersection type system and filter models
for the Λμ-calculus, based on the stream model. However, the results on the
stream model in [14] have not been adapted to typed calculi.

The main results of this paper are the following: (1) An extension Λμcons of the
Λμ-calculus and its reduction system are proposed. The calculus Λμcons induces

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 349–363, 2014.
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a term model as a stream model, and hence it is sound and complete with respect
to the stream model. It is proved that the reduction on the untyped Λμcons is
confluence. (2) A type assignment for Λμcons based on de’Liguoro’s type system
is proposed, and subject reduction and strong normalization of the reduction on
the typed Λμcons are proved.

In Section 2 and 3, we define the equational theory and the reduction system
for the untyped Λμcons, and prove confluence. The calculus Λμcons explicitly
contains stream expressions, and this extension is similar to the λμ-calculus of
Streicher and Reus [22]. The reduction system proposed in this paper avoids
the expansion rule in the Λμ-calculus, called (fst) in [18,21], and adopts a new
rule (exp), which we can define with the new explicit stream expressions. The
reduction system is confluent for whole of the untyped Λμcons including open
terms in contrast to the Λμ-calculus in [21], where confluence holds for only the
stream closed terms.

In Section 4 and 5, a typed variant of Λμcons is proposed, and subject reduction
and strong normalization are proved. Following the structure of the stream model
and de’Liguoro’s type system [8], our type system restricts functional types to
those from stream types to term types. For types of streams, we adopt (restricted
forms of) recursive types for finiteness of the calculus, similarly to Gaboardi and
Saurin’s type system [10].

In Section 6, we discuss on the relationship with the existing calculi, such as
the extended stack calculus [3], the untyped Λμ-calculus, and some type systems
in [16,15,21,10]. In particular, we will see that the untyped Λμcons is conservative
over the untyped Λμ-calculus (and hence over the λ-calculus), and inherits the
separation theorem from Λμ.

2 Λμcons

2.1 Definition of Untyped Λμcons

As in [18], we adopt the notation tα to denote the named term [α]t in the original
λμ-calculus, that can be read as a function application of t to a stream α. We
use the constructors car and cdr to represent the head and the tail of a stream,
respectively.

Definition 1 (Untyped Λμcons). Suppose to have two sorts of variables: term
variables, denoted by x, y, · · · , and stream variables, α, β, · · · .

The terms and the streams of Λμcons are defined as

t, u ::= x | λx.t | tu | μα.t | tS | carS S ::= α | t :: S | cdrS

The sets of terms and streams are denoted by Tm and St, respectively. Oc-
currences of x in λx.t and α in μα.t are considered to be bound. A variable
occurrence which is not bound is called free. A term which contains no free
stream variables is called stream closed. The size of t (and S) is defined as usual,
and it is denoted by |t| (and |S|, respectively).
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The axiom schema of Λμcons are the following:

(λx.t)u = t[x := u] (βT )

(μα.t)S = t[α := S] (βS)

λx.tx = t (ηT )

μα.tα = t (ηS)

(carS) :: (cdrS) = S (surj)

car(t :: S) = t (car)

cdr(t :: S) = S (cdr)

t(u :: S) = (tu)S (assoc)

where, t contains no free x in (ηT ), and t contains no free α in (ηS). The con-
gruence relation =Λμcons is defined from the above axiom schema.

We write cdriS to denote the i-time application of cdr to S for i ≥ 0, and use
the abbreviation cadriS ≡ car(cdri S).

Example 1. 1. The usual μ-rule (μα.t)u = μα.t[[]α := []uα] is admissible as
follows, where the special substitution t[[]α := []uα] recursively replaces subterm
occurrences of the form vα in t with (vu)α.

(μα.t)u =Λμcons μβ.(μα.t)uβ (ηS)

=Λμcons μβ.t[α := u :: β] (assoc, βS)

=Λμcons μα.t[[]α := []uα] (assoc).

2. By a fixed-point combinator Y in the λ-calculus, the n-th function on
streams is defined as

nth ≡ Y (λf.μα.λn.ifzero n then (carα) else f(cdrα)(pred n)),

where ifzero and pred are defined on the Church numerals, and then we have
nthS k =Λμcons cadr

kS, where k is the Church numeral representing k.

The calculus Λμcons is a natural extension of the Λμ-calculus, and it is also
close to the λμ-calculus in [22], which explicitly has the expressions for continu-
ations but no cdr operator. The main difference from these existing calculi is the
surjectivity axiom (surj). We will discuss the relationship with existing calculi in
Section 6.

2.2 Stream Models for Untyped Λμcons

The stream models are defined as in [14]. We use λ to denote the meta-level
function abstraction.

Definition 2. The set S is called a stream set on a set D if there is a bijective
mapping (::) from D × S to S. For a stream set S, the inverse of (::) is denoted
by 〈Car,Cdr〉.
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Definition 3. A stream model consists of
a non-empty set D and a stream set S on D,
a subset [S → D] of the set of functions from S to D,
Ψ : [S → D]→ D a bijective mapping,

such that the meaning function [[·]]ρ can be defined for any function ρ from term

variables to D and stream variables to S as follows, where d�s denotes Ψ−1(d)(s).

[[x]]ρ = ρ(x) [[α]]ρ = ρ(α)

[[λx.t]]ρ = Ψ(λs ∈ S.[[t]]ρ[x �→Car s]�(Cdr s)) [[t :: S]]ρ = [[t]]ρ :: [[S]]ρ

[[tu]]ρ = Ψ(λs ∈ S.[[t]]ρ�([[u]]ρ :: s)) [[cdrS]]ρ = Cdr[[S]]ρ

[[μα.t]]ρ = Ψ(λs ∈ S.[[t]]ρ[α�→s])

[[tS]]ρ = [[t]]ρ�[[S]]ρ

[[carS]]ρ = Car[[S]]ρ

The set Tm/ =Λμcons is a stream model, which we call open term model.

Proposition 1 (Open term model). Let [t] and [S] be the equivalence classes
of t and S with respect to =Λμcons , and define

D = {[t] | t ∈ Tm} S = {[S] | S ∈ St} [S → D] = {f[t] | t ∈ Tm},

where f[t] denotes the function λ[S] ∈ S.[tS]. Ψ is defined as Ψ(f[t]) = [t]. Then,
these give a stream model with the meaning function given by [[t]]ρ = [tθρ], where
θρ is the substitution such that θρ(x) = u for ρ(x) = [u] and θρ(α) = S for
ρ(α) = [S].

Proof. Straightforward. Note that [tθρ] is independent of the choice of θρ.

Then, the following is easy to show.

Theorem 1 (Soundness and completeness). For any t and u, t =Λμcons u
holds if and only if [[t]]ρ = [[u]]ρ holds for any stream model and ρ.

Some properties of the stream models are shown in [14]. One of them guaran-
tees existence of a non-trivial stream model, which gives a semantical proof of
the consistency of the equational theory of Λμcons.

Proposition 2 ([14]). For any pointed CPO D, there exists a stream model
DS

∞ into which D can be embedded.

Corollary 1 (Consistency). There exist closed Λμcons-terms t and u such that
t =Λμcons u does not hold.
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3 Reduction System

3.1 Reduction for Untyped Λμcons

Definition 4. 1. The one-step reduction → on terms and streams of Λμcons is
the least compatible relation satisfying the following axioms.

(μα.t)u→ μα.t[α := u :: α] (βT )

(μα.t)S → t[α := S] (βS)

λx.t→ μα.t[x := carα](cdrα) (exp)

t(u :: S)→ tuS (assoc)

car(u :: S)→ u (car)

cdr(u :: S)→ S (cdr)

μα.tα→ t (α �∈ FV (t)) (ηS)

(carS) :: (cdrS)→ S (η::)

t(carS)(cdrS)→ tS (η′::)

Here, α in (exp) is a fresh stream variable. The relation →∗ is the reflexive
transitive closure of →, the relation →+ is the transitive closure of →, and the
relation →= is the reflexive closure of →.

2. The relations →B and →E are defined as the least compatible relations
satisfying the following axioms, respectively.
→B: (βT ), (βS), (exp), (assoc), (car), and (cdr)
→E: (ηS), (η::), (η

′
::), (car), and (cdr)

We also use →∗
B, →+

E , and so on.

Note that the →B-normal forms are characterized by

t ::= a | μα.t a ::= x | cadrnα | at | a(cdrnα).

We can easily see that the usual β- and η-rules in the λ-calculus are derivable,
that is, (λx.t)u→∗ t[x := u] and λx.tx→∗ t for x �∈ FV (t) hold. Hence, the βη-
reduction of the λ-calculus and the reduction of Parigot’s λμ-calculus including
the renaming and the η-rules for μ-abstractions can be simulated in Λμcons.
Furthermore, the following holds.

Proposition 3. The equivalence closure of → coincides with =Λμcons .

It is known that näıvely adding the η-rule λx.tx →η t to the λμ-calculus
destroys confluence [5]. The counterexample is t = λx.(μα.yβ)x, and then

t→η μα.yβ, t→β λx.μα.yβ.

In order to recover confluence, the rule called (fst) in [21] has been proposed as

μα.t→ λx.μα.t[[]α := []xα] (fst).
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It seems natural since it means the surjectivity of the bound variable α. However,
if we consider type systems, it induces a type dependent reduction for subject
reduction and strong normalization.

Alternatively, by the explicit stream syntax in Λμcons, we can define the new
rule (exp), and the above critical pair is solved as

λx.μα.yβ →exp μγ.(μα.yβ)(cdrγ)→βS μγ.yβ(= μα.yβ).

The reduction system with (exp) will be adapted to the typed Λμcons without
any restriction of types, and subject reduction and strong normalization will be
proved.

3.2 Confluence

We prove confluence of → by (1) confluence of →B, (2) confluence of →E, and
(3) commutativity of them. In contrast to the Λμ-calculus [21], the result is not
restricted to stream closed terms, and hence the Church-Rosser theorem directly
follows from the confluence.

Proposition 4. →B and →E are respectively confluent.

Proof. (B) By a generalized notion of complete development, which is indepen-
dently introduced in [7,11]. We define the mapping (·)† as follows.

x† = x α† = α

(λx.t)† = μα.t†[x := carα](cdrα) (cdr(t :: S))† = S†

(μα.t)† = μα.t† (cdrS)† = cdrS† (otherwise)

((μα.t)u)† = μα.t†[α := u† :: α] (t :: S)† = t† :: S†

(tu)† = t†u† (otherwise)

((μα.t)S)† = t†[α := S†]

((μα.t)uS)† = t†[α := u† :: S†]

(t(u :: S))† = t†u†S† (t �= μ-abst.)

(tS)† = t†S† (otherwise)

(car(t :: S))† = t†

(carS)† = carS† (otherwise)

Then, we can prove that t →B u implies u →∗
B t† →∗

B u†, from which the
confluence follows. The only non-trivial point is that we exceptionally define
((μα.t)uS)† = t†[α := u† :: S†] (not (μα.t†[α := u† :: α])S†), since we have
to show that ((μα.t)(u :: S))† →∗

B ((μα.t)uS)†, the left-hand side of which is
t†[α := (u :: S)†] = t†[α := u† :: S†].

(E) Since →E is clearly strongly normalizing, it is sufficient to prove local
confluence. It is straightforward.
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In order to prove commutativity of B and E, we consider the following re-
stricted E-reduction.

Definition 5. The relation→E− is the least compatible relation satisfying (ηS),
(car), (cdr), and the restricted forms of (η::) and (η′::) as follows.

(car cdrnα) :: (cdr cdrnα)→ cdrnα (η−:: )

t(car cdrnα)(cdr cdrnα)→ t(cdrnα) (η′−:: )

The relation →cdr is the least compatible relation satisfying (cdr).

The relation →E− is introduced to show a variant of strong commutativity,
that is Lemma 2.2. Note that t→E− t′ does not necessarily imply t[α := S]→E−

t′[α := S] due to the restriction. Instead, we have the following lemma.

Lemma 1. 1. Any S is reduced by →cdr to a term of the form either t′ :: S′ or
cdrnα for some n ≥ 0.

2. For any S, there exists S′ such that S →∗
cdr S

′ and (carS) :: (cdrS)→∗
E− S′.

3. If t→E− t′, then t[α := S]→E− u and t′[α := S]→∗
cdr u for some u.

Proof. 1. By induction on S.
2. By 1, there exists S′ such that S →∗

cdr S
′ and S′ is of the form t′0 :: S′0

or cdrnα. In the former case, we have (carS) :: (cdrS) →∗
cdr (car(t′0 :: S′0)) ::

(cdr(t′0 :: S′0)) →∗
car,cdr t

′
0 :: S′0. In the latter case, we have (carS) :: (cdrS) →∗

cdr

(car cdrnα) :: (cdr cdrnα)→E− cdrnα.
3. By induction on t →E− t′. Consider the case of car cdrnα :: cdr cdrnα →E−

cdrnα by (η−:: ). By 2, there exists S′ such that (car cdrnS) :: (cdr cdrnS)→∗
E− S′

and (cdrnS)→∗
cdr S

′. The case of η′−:: is similarly proved, and the other cases are
straightforward.

Lemma 2. The following commuting diagrams hold.

1. · cdr ��

E−

��

·
= E−

��
·

cdr

= �� ∃ ·

2. · B ��

E−

��

·

E−∗
��

· =

B
�� · ∗

cdr
�� ∃ ·

3. ·
E ∗
��

cdr

∗
�� ·

E−∗
��

·
cdr

∗ �� ∃ ·

Proof. 1. By induction on the size of terms and streams.
2. By induction on the terms and streams. We only show the case of

(μα.t)S →B t[α := S] and (μα.t)S →E− (μα.t′)S where t→E− t′. By Lemma 1,
there exists u such that t[α := S]→∗

E− u and (μα.t′)S →B t
′[α := S]→∗

cdr u.
3. By induction on the length of →∗

E. By 1, →∗
E− and →∗

cdr commute, so it
is sufficient to consider each step of (η::) and (η′::) which is not restricted. It is
proved since t→E t

′ implies that there exists u such that t→∗
E− u and t′ →∗

cdr u,
that is proved by Lemma 1.2.

If we consider the full E-reduction, →= in 1 and 2 does not necessarily hold.
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Proposition 5. →∗
B and →∗

E commute.

Proof. By Lemma 2.3, the left triangle in the following diagram commute. By 1
and 2 of Lemma 2, →∗

B and →∗
E− commute, and hence →∗

B and →∗
E commute.

· B

∗
��

E ∗
��

E−

∗
��

·

E−∗
��

·
cdr

∗ �� ·
B

∗ �� ·

Theorem 2 (Confluence). The reduction → is confluent.

Proof. It follows from Proposition 4 and 5.

Corollary 2 (Church-Rosser theorem). If t =Λμcons t
′ holds, then there ex-

ists u such that t→∗ u and t′ →∗ u.

The Church-Rosser theorem gives a syntactic proof of consistency of the equa-
tional logic of Λμcons, since, for example, μα.carα and μα.cadrα are different
normal forms.

Corollary 3 (Consistency of Λμcons). There exists two closed Λμcons-terms t
and u such that t =Λμcons u does not hold.

4 Typed Λμcons

We will give a type assignment system for Λμcons, inspired by de’Liguoro’s type
system for the Λμ-calculus [8], and adopting recursive types to represent types
for streams like [10].

4.1 Definition of Typed Λμcons

The types of streams will be introduced as non-empty lists of types of individual
data such as [δ0, δ1], which is a special case of the recursive types, and which
is just an abbreviation for μχ.δ0 × δ1 × χ. The following axiomatization for the
equivalence on the types are borrowed from the well-known results for recursively
defined trees in [17,12,1,2].

Definition 6 (Typed Λμcons). The types consist of two sorts, term types and
stream types, which are inductively defined as

δ ::= X | σ → δ σ ::= [δ0, · · · , δn−1] | δ × σ,

where X ranges over the base types, and [δ0, · · · , δn−1] is a non-empty finite list
of types. The relation ∼ on the types is defined as the least congruence relation
satisfying the following.

[δ0, · · · , δn−1] ∼ δ0 × [δ1, · · · δn−1, δ0]
(Fld)

δ0 × · · · δn−1 × σ ∼ σ
[δ0, · · · , δn−1] ∼ σ

(Ctr)
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Note that ∼ is also defined on the term types as σ → δ ∼ σ′ → δ′ if σ ∼ σ′ and
δ ∼ δ′.

A term context Γ and a stream context Δ are finite lists of pairs of the form
(x : δ) and (α : σ), respectively, in which each variable occurs at most once.

The typing rules of Λμcons are the following.

Γ, x : δ | Δ � x : δ Γ | Δ,α : σ � α : σ

Γ | Δ � S : δ × σ
Γ | Δ � carS : δ

Γ, x : δ | Δ � t : σ → δ′

Γ | Δ � λx.t : δ × σ → δ′
Γ | Δ � t : δ × σ → δ′ Γ | Δ � u : δ

Γ | Δ � tu : σ → δ′

Γ | Δ,α : σ � t : δ
Γ | Δ � μα.t : σ → δ

Γ | Δ � t : σ → δ Γ | Δ � S : σ

Γ | Δ � tS : δ

Γ | Δ � t : δ Γ | Δ � S : σ

Γ | Δ � t :: S : δ × σ
Γ | Δ � S : δ × σ
Γ | Δ � cdr, S : σ

Γ | Δ � t : δ δ ∼ δ′

Γ | Δ � t : δ′
Γ | Δ � S : σ σ ∼ σ′

Γ | Δ � S : σ′

The relation Γ | Δ � t1 = t2 : δ means Γ | Δ � ti : δ (i = 1, 2) and t1 =Λμcons t2.

We consider the restricted recursive types only for finiteness of the type sys-
tem, and the choice of the equivalence ∼ is not essential for the following dis-
cussion. We can adopt the equivalence defined by only the fold/unfold axiom
as in [10]. Indeed, the discussion in the following sections can be done in more
general setting in which types of streams are represented as infinite product
types, called expanded types. Some notions such as the stream models and the
reducibility predicate for the strong normalization proof will be defined on the
expanded types.

Definition 7. 1. The expanded types are defined by

δ ::= X | σ → δ σ ::= Πi∈Nδi.

We also use the notation δ ×Πi∈Nδ
′
i, which is straightforwardly defined.

2. Given a stream type σ and i ∈ N, we define (σ)i by

([δ0, · · · , δn−1])i = δimodn (δ × σ)i =
{
δ (i = 0)

(σ)i−1 (i > 0),

where imodn denotes the remainder of the division of i by n. We also define
the function (σ)i for the expanded types as (Πj∈Nδj)i = δi.

3. The expansion of the types is defined as follows.

〈|X |〉 = X 〈|σ → δ|〉 = 〈|σ|〉 → 〈|δ|〉 〈|σ|〉 = Πi∈N〈|(σ)i|〉

Note that the relation � on expanded types defined as σ, δ � σ → δ and
δi � Πi∈Nδi is a well-founded order, and we use the induction on this order.
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Proposition 6. δ ∼ δ′ iff 〈|δ|〉 = 〈|δ′|〉.

It follows from the completeness of the axiomatization, for example, in [1].

Example 2. In [14], SCL is proposed as a combinatory calculus which is equiv-
alent to the Λμ-calculus. However, some combinators of SCL are not typable
in the original typed λμ-calculus. On the other hand, the SCL combinators are
typable in Λμcons such as

(K1) · | · � λx.μα.x : δ × σ → δ

(W1) · | · � λx.μα.xαα : (σ → σ → δ)× σ → δ

for any term type δ and any stream type σ.

We will discuss the related typed calculi in Section 6 and in [13].

4.2 Stream Models for Typed Λμcons

In [13], it is shown that the stream models are adapted to the typed Λμcons, and
we briefly introduce the results.

A stream model for the typed Λμcons consists of

– family of sets Aδ and Aσ indexed by the expanded types
– an operation (�) : Aσ→δ ×Aσ → Aδ for each σ and δ such that

∀f, g ∈ Aσ→δ .[∀s ∈ Aσ.[f�s = g�s]⇒ f = g].

– a bijection (::) : Aδ × Aσ → Aδ×σ for each δ and σ, the inverse of which
consists of the projection functions 〈Car,Cdr〉.

– a meaning function [[·]] such that [[λxδ
′
.tσ→δ]]ρ ∈ Aδ′×σ→δ and

[[λxδ
′
.tσ→δ]]ρ�s = [[t]]ρ[x �→Car(s)]�Cdr(s) for any s ∈ Aδ′×σ, and so on.

In particular, a stream model is called full if Aσ→δ is the whole function space
from Aσ to Aδ for any σ and δ, and Aσ is Πi∈NA(σ)i for any σ.

The typed Λμcons is sound and complete with respect to the stream model.
Furthermore, we can show the following property, corresponding to Friedman’s
theorem [9]: the extensional equality in λ→ is characterized by an arbitrary
individual full type hierarchy with infinite domains for base types. This theorem
is proved by giving the logical relation on the stream models between the open
term model and the full stream model.

Theorem 3 (Friedman’s theorem for Λμcons, [13]). Suppose that a stream
model F is full and all of FX are infinite. Then, for any closed typable t and u,
t =Λμcons u holds if and only if [[t]]

F
= [[u]]

F
holds.

5 Reduction System for Typed Λμcons

In this section, we show two fundamental properties of the reduction on the
typed Λμcons: subject reduction and strong normalization.
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5.1 Subject Reduction

We omit the proof of the subject reduction since it is straightforwardly proved
using the usual generation lemma modulo ∼.

Theorem 4 (Subject reduction). If Γ | Δ � t : δ and t → u hold, then we
have Γ | Δ � u : δ.

5.2 Strong Normalization

First, we prove the strong normalization of →B by the usual reducibility, and
then extend it to the full reduction →. The set of terms and streams which
are strongly normalizable with respect to →B are denoted by SNT and SNS,
respectively. Moreover, the applicative contexts are defined as C ::= [] | Ct | CS,
and SNC is the set of the applicative contexts in which t ∈ SNT and S ∈ SNS.

Definition 8. The predicates Red indexed by the expanded types are defined
as

RedX = SNT,
t ∈ Redσ→δ iff, for any S ∈ Redσ, tS ∈ Redδ,
S ∈ Redσ iff, for any n ≥ 0, cadrnS ∈ Red(σ)n .

For (not expanded) types, Redδ and Redσ mean Red〈|δ|〉 and Red〈|σ|〉, respectively.

Note that, S ∈ Redδ×σ iff carS ∈ Redδ and cdrS ∈ Redσ by the definition.

Lemma 3. 1. Redδ ⊆ SNT and Redσ ⊆ SNS hold.
2. For any C ∈ SNC, C[x] ∈ Redδ and C[cadrnα] ∈ Redδ hold.
3. α ∈ Redσ holds.

Proof. They are simultaneously proved by induction on the expanded types.

Lemma 4. For any expanded types δ, σ, and any applicative context C, the
following hold.

1. For any u ∈ SNT, C[μα.t[α := u :: α]] ∈ Redδ implies C[(μα.t)u] ∈ Redδ.
2. For any S ∈ SNS, C[t[α := S]] ∈ Redδ implies C[(μα.t)S] ∈ Redδ.
3. C[μα.t[x := carα](cdrα)] ∈ Redδ implies C[λx.t] ∈ Redδ.
4. For any S ∈ SNS, if C[t] ∈ Redδ implies C[car(t :: S)] ∈ Redδ.
5. For any t ∈ SNT, if C[cadr

nS] ∈ Redδ implies C[cadrn+1(t :: S)] ∈ Redδ.

Proof. We give only the proof of 2, and the others are proved similarly. In this
proof, #t for t ∈ SNT denotes the maximum length of reduction sequences from
t, and #S for S ∈ SNS is similarly defined.

First, we show that, for any S ∈ SNS, C[t[α := S]] ∈ SNT implies C[(μα.t)S] ∈
SNT, by induction on the triple 〈#S, |S|,#C[t[α := S]]〉 with the lexicographical
order. It is sufficient to show that u ∈ SNT for any u such that C[(μα.t)S]→B u.

Case C[(μα.t)S]→B C[t[α := S]]. C[t[α := S]] ∈ SNT is the assumption.
Case C[(μα.t)S] →B C

′[(μα.t′)S]. We have C[t[α := S]] →B C
′[t′[α := S]],

and hence C′[(μα.t′)S] ∈ SNT follows from the induction hypothesis since
#C[t[α := S]] > #C′[t′[α := S]].
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Case C[(μα.t)S] →B C[(μα.t)S′]. It follows from the induction hypothesis
since #S > #S′.

Case C[(μα.t)(t0 :: S0)]→B C[(μα.t)t0S0] by (assoc). Since #(t0 :: S0) ≥ #S0
and |t0 :: S0| > |S0|, we have C[(μα.t[α := t0 :: α])S0] ∈ SNT by the induction
hypothesis. Since t0 ∈ SNT, we have C[(μα.t)t0S0] ∈ SNT by 1.

Secondly, the lemma is proved by induction on the expanded types. The base
case is shown above, and the induction steps are straightforward.

Definition 9. RedΓ |Δ denotes the set of substitutions θ such that θ(x) ∈ Redδ
for any x : δ ∈ Γ and θ(α) ∈ Redσ for any α : σ ∈ Δ.

Lemma 5. If Γ | Δ � t : δ and θ ∈ RedΓ |Δ, then we have tθ ∈ Redδ.

Proof. By induction on the derivation of Γ | Δ � t : δ, using Lemma 4. Note
that δ ∼ δ′ implies Redδ = Redδ′ .

Proposition 7. Every typable term is in SNT.

Proof. By 2 and 3 of Lemma 3, the identity substitution θ is in RedΓ |Δ for any
Γ and Δ. Hence, by Lemma 3.1 and Lemma 5, we have t = tθ ∈ Redδ ⊆ SNT.

Theorem 5 (Strong normalization). Every typable term is strongly normal-
izing with respect to →.

Proof. For any reduction sequence, we can postpone any E-reduction, that is,
we can prove that t →E · →B u implies t →+

B · →∗
E u. Since →E is strongly

normalizable, if we have an infinite sequence of →, we can construct an infinite
sequence of →B, that contradicts Proposition 7.

6 Related Work

In this section, we discuss the relationship between Λμcons and the existing re-
lated systems such as the stack calculus in [4,3], the untyped Λμ-calculus in [18],
Parigot’s original typed λμ-calculus [16], Pagani and Saurin’s ΛS in [15], and
Gaboardi and Saurin’s ΛS in [10].

6.1 Extended Stack Calculus

The calculus Λμcons can be seen as an extension of the nil-free fragment of the
extended stack calculus in [3]. The stack calculus contains neither term vari-
ables, λ-abstractions, nor term applications, but they can be simulated. It is
straightforward to see that the reduction of Λμcons is conservative over the stack
calculus, that is, for terms t and u of the extended stack calculus without nil,
t→∗ u in the stack calculus if and only if t→∗ u in Λμcons. Moreover, our type
system can be adapted to the extended stack calculus without nil in a straight-
forward way. The discussion in this paper on the stream models for the untyped
and typed variants of Λμcons can be adapted to the extended stack calculus.
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6.2 Untyped Λμ-Calculus

The calculus Λμcons is conservative over the Λμ-calculus.

Proposition 8 (Conservativity over Λμ). For any Λμ-terms t and u, t = u
holds in Λμcons if and only if t = u holds in Λμ.

Corollary 4. For any Λμ-terms t and u, t = u holds in the Λμ-calculus if and
only if [[t]]ρ = [[u]]ρ for any stream model A and ρ.

Saurin [18] proved the separation theorem of the Λμ-calculus. By the conser-
vativity, Λμcons inherits the separation theorem from Λμ for stream closed terms.
The canonical normal forms in the Λμ-calculus are defined as terms which are
η-normal and contain no subterm of the form either (λx.t)u, (λx.t)β, (μα.t)u,
or (μα.t)β. The stream applicative contexts are defined as C ::= [] | Ct | Cα.

Theorem 6 (Separation theorem for Λμ, [18]). Let Λμ-terms t1 and t2
be closed canonical normal forms. If t1 �= t2 in Λμ, then there exists a stream
applicative context C such that C[t1]→∗ λxy.x and C[t2]→∗ λxy.y hold in Λμ.

By this theorem, the separation theorem for Λμcons is proved.

Theorem 7 (Separation theorem for Λμcons). Let Λμcons-terms t1 and t2 be
distinct closed normal forms. For any normal u1 and u2, there exists a stream
applicative context C such that C[t1]→∗ u1 and C[t2]→∗ u2 hold in Λμcons.

In [19], Saurin also gave an interpretation of the Λμ-calculus (and its general-
ization, called stream hierarchy) with a CPS translation into the λ-calculus with
surjective pairs, called λSP , and proved the completeness of the CPS transla-
tion. The term model induced from λSP is a special case of the stream models
with D = S, so his result can be seen as the completeness of Λμ with respect to
the stream model.

6.3 Type Assignment for Λμ-Calculus

On the related type systems, more detailed discussion is found in [13].
In the typed Λμcons, only functional types from streams to individual data are

considered, inspired by the type system of de’Liguoro [8]. However, every typable
term in Pagani and Saurin’s ΛS [15,21] is also typable in Λμcons. Therefore, every
typable term in Parigot’s propositional typed λμ-calculus [16] is also typable in
Λμcons.

Here, we show the translation from the λμ-calculus to Λμcons, which is based
on the same idea of translations in Saurin [21] and van Bakel et al. [24]. They
show that their type systems correspond to the image of negative translations
from the classical logic to the intuitionistic logic. The following translation cor-
responds to the continuation-passing-style translation of Thielecke [23].
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Definition 10 (Negative translation). We fix a type variable O and an ar-
bitrary stream type θ, and we write ¬σ for σ → O. The negative translation (·)
from the implicational formulas to term types in Λμcons is defined as

A = ¬A• p• = θ (A→ B)• = ¬A• ×B•.

Proposition 9. If Γ � t : A;Δ holds in the propositional typed λμ-calculus,
then ¬Γ •;Δ• � t : ¬A• holds in Λμcons.

Hence, every typable term in either λ→, λμ, or ΛS is typable also in Λμcons.
On the other hand, due to the recursive stream types, there is a λ-term which
is typable in Λμcons, and not typable in λ→. An example of such terms is
x(y(zw))(y(zww)), where zw and zww can have the same type in the typed
Λμcons under the context z : [X ]→ X,w : X .

Gaboardi and Saurin [10] proposed another type system ΛS as an extension
of the type system in [15,21], equipped with the recursive types and coercion
operator from streams to terms, which enables to represent functions returning
streams such as cdr. We can define a translation from Λμcons to ΛS preserving
typability.

Acknowledgments. The authors would like to thank Kentaro Kikuchi, Shogo
Ehara, and the anonymous referees for their helpful comments.
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Abstract. We investigate possible extensions of arbitrary given Pure
Type Systems with additional sorts and rules which preserve the nor-
malization property. In particular we identify the following interesting
extensions: the disjoint union P + Q of two PTSs P and Q, the PTS
∀P .Q which intuitively captures the “Q-logic of P-terms” and PPoly

which intuitively denotes the predicative polymorphism extension of P .
These results suggest a new approach to the study of the meta-theory

of PTSs, by examination of the relationships between different calculi and
predicative extensions which allow more expressiveness with equivalent
logical strength.

Keywords: Pure Type Systems, Type Theory, weak normalization, con-
servative extension, predicativity.

1 Introduction

When describing a logical system or, as is equivalent through the Curry-Howard
lens, a type system, one often wishes to describe a generic situation, in which
one wishes not to describe a single construct, but a family of constructs ranging
over a set of parameters, which themselves are particular to the constructs being
defined. This is often referred to as a schema in logic, as in the description of the
induction rule in the usual presentation of Peano Arithmetic. This can be seen
as a meta-level quantification: the rule is defined for all possible instance of the
quantifier. It is then very natural to ask the following question: “is it possible
to reify this meta-level quantification?”. The immediate practical advantage to
such a reification is that it now has a finite description: the meta-level quantifi-
cation, which can be seen as an infinite conjunction at the object level, is now
encapsulated in a single construct of the theory.

In the case that such a reification is possible, the next natural question is
this: “is the resulting theory a conservative extension to the original theory?”.
This question can be quite tricky, and in general depends on what we mean by
“reification”. Is the reification of the implicit quantification over propositions
in Peano Arithmetic second-order Arithmetic or ACA0, where comprehension
is restricted to first-order formulas? In the first case we have a very powerful
extension to arithmetic, whereas in the second case, the extension is conservative,
comforting us in the feeling that such an extension does not “add anything” to
our logic (in particular, the enriched theory is consistent if and only if the original
theory is).
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Our first contribution is to formalize, in part, a process which allows us to
perform such an enrichment. We place ourselves in the framework of Pure Type
Systems (PTSs) as described by Barendregt [3]. This framework has the advan-
tage of allowing a very fine and rich account of quantification and dependency.
In this framework, there is in general no clear notion of consistency; for this rea-
son we concentrate on normalization/cut elimination, which generally implies
consistency in the frameworks in which both concepts exist (by showing that no
well-typed normal proof of falsity exists).

The second observation is that there are modular constructions which allow us
to combine or extend pure type systems into new systems, and identify certain
transformations which preserve weak (and strong) normalization. This suggests
a novel approach to describing a logical framework: first identify the components
of the framework, e.g. the proof language and the term language, and the rela-
tionships between them with respect to quantification. Then use one or several
of the combination methods to construct the desired framework. We identify two
particularly interesting such constructs: the first takes two PTSs P and Q, and
forms the PTS ∀P .Q which informally captures the “Q-logic of P-terms”. The
second takes a single PTS P and forms the PTS PPoly which adds predicative
quantification over every sort of P .

2 Pure Type Systems

Pure type systems are defined as a set of type assignment systems, parametrized
by the types one is allowed to form. This is prescribed by the dependent function
space formation rule, itself entirely described by a triple (S,A,R) consisting of
a set s, k ∈ S of Sorts, a set A ⊆ S × S of Axioms and a set R ⊆ S × S × S of
Rules.

We use these rules to assign types to terms. The untyped terms and types
have the same syntax, which is given by the BNF

t, u, A,B ∈ Λ := s | x | λx :A. t | t u | Πx :A. B .

Conversion is restricted to β-conversion: the equivalence relation generated by
the contextual closure of the rule

(λx : A. t) u→β t{x �→ u} .

We adopt the usual Barendregt convention for renaming variables in terms and
contexts. The typing rules are standard and are given in Figure 1.

Given a PTS P = (S,A,R), we will write s1 : s2 for axioms (s1, s2) and

s1
s3� s2 to denote rules (s1, s2, s3). We say that t has sort s if there are Γ, A

such that Γ � t : A and Γ � A : s in P .
This deceptively simple framework is in fact quite expressive: it is possible

to find instances of PTSs that allow the encoding of very expressive logics like
higher-order arithmetic or Zermelo set-theory [16]. In general soundness of these
logics can be proven by proving normalization of the corresponding PTS.
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leaf � Γ � A : s
wf s ∈ S , x /∈ dom(ζ )

Γ, x : A �

Γ, x : A,Δ �
var

Γ, x : A,Δ � x : A

Γ �
axiom (s1, s2) ∈ A

Γ � s1 : s2

Γ � A : s1 Γ, x : A � B : s2
prod (s1, s2, s3) ∈ R

Γ � Πx :A. B : s3

Γ, x : A � t : B Γ � Πx :A. B : s
abs s ∈ S

Γ � λx :A. t : Πx :A. B

Γ � t : Πx :A. B Γ � u : Aapp
Γ � t u : B{x �→ u}

Γ � t : A Γ � A′ : sconv A �β A′, s ∈ S
Γ � t : A′

Fig. 1. Typing Rules for PTS

Definition 1. Let P be a Pure Type System. A term is well typed in P if there
is a context Γ and a type A such that

Γ � t : A.

The PTS P is weakly normalizing (resp. strongly normalizing) if every well-
typed term t in P has a normal form (resp. there is no infinite chain of reductions
starting with t).

In the remainder of the article, we use normalizing interchangeably with weakly
normalizing.

We can consider a PTS to be fully described simply by the triple (S,A,R).
Using this fact, the class of PTSs can be seen as a category where the morphisms
between P and Q is the set of functions φ : SP → SQ such that φ(s1) : φ(s2)

whenever s1 : s2 and φ(s1)
φ(s3)� φ(s2) when s1

s3� s2. Any such function induces
a morphism on terms and contexts which we denote φ as well. We then have by
simple induction, for every morphism of PTSs φ : P → Q that

Γ �P t : T ⇒ φ(Γ) �Q φ(t) : φ(T ) .

We can now make our first non-trivial remark:

Remark 1. (Morphisms preserve non-normalization). Let P ,Q be PTSs. If Q is
WN (resp. SN) and if there is a morphism φ : P → Q, then P is WN (resp. SN).

This can be seen simply by observing that φ preserves β-reduction steps:

t→β t
′ ⇔ φ(t)→β φ(t

′) .
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The converse does not hold, since the terminal object in this category is not
normalizing.

Now it is interesting, if not terribly useful, to observe that this category inher-
its rich structure from that of sets: it admits all limits and co-limits! In particular,
it admits products and co-products.

It is immediate that if sorts, axioms and rules are simply restricted, then there
is an inclusion morphism from the restricted system to the full system.

The terminal object of the category of PTSs is the “Martin-Löf inconsistent
type theory” (see Martin-Löf [14]), which we note ∗ : ∗, which has the unique

sort ∗, the axiom ∗ : ∗ and the rule ∗ ∗� ∗, and was shown to be non-normalizing
by Girard [10] (see also Hurkens [11]).

Finally the fact that the co-product of PTSs preserves normalization is non-
trivial, and is the object of Theorem 1. It is intuitively clear, however, that every
term typed in P+Q must be well-typed in either P or Q. We will make this kind
of reasoning precise, and extend it to prove the main results of this work. More
generally, we show that we may track the rules which give rise to each redex and
show that the subterm which contains the redex is either typable in one of the
original systems, or obeys certain combinatorial commutation properties which
allow such a redex to be safely eliminated.

The results we prove allow extending pure type systems with certain forms of
quantifications while preserving normalization. This is the first step of a struc-
turalist program to study pure type systems: rather than trying to find properties
that are true of each PTS independently of the others, we study some partic-
ular pure type systems, like system F , Fω or the ECC of Luo [13], which have
“atomic” complexity and show that the systems we are interested in can be built
using known transformations such as those described above. This approach is
quite natural in other fields of algebra, as for example how representations of
groups can be classified in terms of irreducible representations.

While we believe that this is the first time such a program has explicitly been
stated, there are several instances of such an approach being used in the study
of the meta-theory of pure type systems: most notably the work of Bernardy
and Lasson [4] has served as inspiration for this approach.

However there have been other instances, as for example the work of Peyton-
Jones and Meijer [12] who propose a particular PTS (the Calculus of Construc-
tions) as a possible intermediate language for the Haskellprogramming language.
Uncomfortable with the power of the impredicative quantification, they then de-
fine a predicative variant by duplicating certain sorts and restricting product for-
mation. We argue that our second main theorem (Theorem 3) addresses exactly
this step: the addition of predicative quantification over any given sort of the sys-
tem preserves normalization.

3 Disjoint Union

To introduce the basic lemmas and techniques that will be used in the next
section, we first prove that disjoint unions of PTSs (co-products in the PTS
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category) preserve normalization. To the knowledge of the authors, this obser-
vation has never explicitly been stated in the literature.

Theorem 1. Suppose P and Q are two PTSs such that their respective sets of
sorts are disjoint. Then the PTS P +Q formed by

SP+Q = SP 6 SQ AP+Q = AP 6 AQ RP+Q = RP 6RQ

is WN if and only if P and Q are WN.

The main difficulty for proving this theorem is to prove that by applying the
conversion rule, one cannot move from one PTS to the other. It is possible to
prove this directly using subject reduction. However, we prove it using techniques
which can more easily generalize to the results in the following sections. We work
in a modified presentation of PTSs in which we label well-typed terms with
information about which rules and sorts were involved in their construction.

The labeling is similar to a number of labellings used for meta-theoretical
studies of pure type systems, see e.g. Melliès and Werner [15], in which they note
that it is a crucial device for building models for the Calculus of Constructions.

We want to label each variable x : A with its sort. However, it is not possible
in general to attribute a unique sort s to A. To circumvent this failure, we
refine the classical result on uniqueness of types on functional PTSs in order to
characterize the ways in which it may fail in the non-functional case. We define
a relation ∼κ on S that will have the property that if Γ � A : s and Γ � A : s′,
then s ∼κ s

′.

Definition 2. Given a PTS (S,A,R), we define ∼κ⊆ S × S inductively:

s ∼κ s

k : s ∧ k′ : s′ ∧ k ∼κ k
′ ⇒ s ∼κ s

′

k1 ∼κ k
′
1 ∧ k2 ∼κ k

′
2 ∧ k1

s� k2 ∧ k′1
s′� k′2 ⇒ s ∼κ s

′ .

Note that this relation is reflexive and symmetric, but not transitive in general.
However, we may easily turn ∼κ into an equivalence relation by taking the
transitive closure ∼∗

κ. This allows us to take the equivalence classes of sorts

modulo ∼∗
κ; the class of a sort s will be denoted s. Similarly, for rules r = s1

s3� s2

we write r = s1
s3� s2. In the rest of this document, we write ∼ instead of ∼∗

κ.
We notice that taking equivalence classes of sorts gives rise to a functional

PTS Pfun defined by

S =
{
s | s ∈ S

}
A =

{
k : s | (k, s) ∈ A

}
R =

{
r | r ∈ R

}
.

It is straightforward to verify that this is indeed a functional PTS, and that
there is a morphism φ : P → Pfun that sends s to s.

Lemma 1. In every PTS P, if Γ � A : s, s′, then s ∼ s′.
Similarly, if t has both sorts s and s′ then s ∼ s′.
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Proof of Lemma 1. We only prove the first statement, the second is proven sim-
ilarly. Given the morphism φ defined above, from the statement

Γ � A : s, s′

we have

φ(Γ) � φ(A) : φ(s), φ(s′)

in Pfun. But in functional PTSs, we have unicity of types modulo β-conversion
(Barendregt [3], Lemma 5.2.21), which gives:

φ(s) = s 2β s′ = φ(s)

confluence of β-conversion gives s = s′, which is what we needed. +,

This observation allows us to give an alternative version of PTSs with rule-
labeled abstraction, application and products and sort-labeled variables. This
system will allow extraction of sort information by straightforward induction on
terms.

Definition 3. Let P be a PTS. Define the P-labeled calculus P with the labeled
terms

t, u, A,B ∈ Λlab := s | xs | λrxs : A. t | (t u)r | Πrxs : A. B

where s ∈ S and r ∈ R.
We define the unlabeling |t| to be the term t in which all sort and rule labels

are removed.
We define the typing judgment �lab as consisting of (the obvious labeling of)

the rules given in Figure 1 with the following modifications:

Γ �lab A : s
wf s ∈ S, x /∈ dom(ζ )

Γ, xs : A �lab

Γ �lab A : s1 Γ, xs1 : A �lab B : s2
prod r = s1

s3� s2 ∈ R
Γ �lab Πrxs1 : A. B : s3

Γ, xs1 : A �lab t : B Γ �lab Πrx : A. B : s3
abs r = s1

s3� s2 ∈ R
Γ �lab λ

rxs1 : A. t : Πrxs1 : A. B

Γ �lab t : Π
rxs1 : A. B Γ �lab u : A

app r = s1
s3� s2

Γ �lab (t u)r : B{xs1 �→ u}

Γ �lab t : A Γ �lab A : s1 Γ �lab A
′ : s2conv |A| �β |A′| , s1 ∼ s2

Γ �lab t : A
′
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We remove labels in the conversion to simplify the meta-theory: if we had
introduced the rule ((λrx : A. t) u)r →β t{x �→ u} then confluence would fail on
ill-typed terms, making the meta-theory more complex, and our completeness
result below significantly more difficult to prove.

A labeling of an unlabeled term t is a labeled term t̂ such that
∣∣t̂∣∣ = t. We

extend labeling and unlabeling to contexts in the obvious manner.
In the following section, we fix a given PTS P . The next lemma is immediate

by induction on the derivation.

Lemma 2. Suppose that Γ �lab t : A in P. Then |Γ| � |t| : |A|.
There is a clear characterization of the sort of a well-typed term, that is on

the type of its type, or simply its type if that is a top-sort.

Lemma 3. Suppose that Γ �lab t : A. Then there is s ∈ SP such that either
Γ �lab A : s or A = s.

Lemma 4. The judgment Γ � t : A is derivable in P if and only if there is a
(unique) labeling Γ̂, t̂ and Â such that Γ̂ �lab t̂ : Â in P.

Given this theorem, we will often write t for both |t| and t̂ indistinguishably
for a given well-typed term t, and � instead of �lab. This more explicit type-
system allows us to give a straightforward proof of Theorem 1 by induction over
the labeled type derivation.

Proof of Theorem 1. Suppose P +Q is WN. The inclusions i1 : P → P +Q and
i2 : Q → P +Q are morphisms, which implies that P and Q are WN.

Now suppose that P and Q are WN and let Γ �P+Q t : A. Then we have
Γ � A : s or A = s. W.l.o.g. we may suppose that s ∈ SP . Let Δ be the subset
of Γ with only the type declarations of the form

xk : B

for k ∈ SP . We show by induction on the typing derivation of t in P +Q that

Δ �P t : A

is derivable.
Now we can conclude that t is weakly normalizable, as it is typable in P . +,

4 The PTS ∀P.Q
The main result of this section is an extension of the previous one. We wish for
not only P and Q to coexist, but for Q types to be built by quantification over
P types.

Theorem 2. Let P and Q be as in Theorem 1. Let ∀P .Q be the PTS P + Q
with the additional rules:

I =
{
s

k� k | s ∈ SP , k ∈ SQ
}
.

Then ∀P .Q is WN iff P and Q are WN.
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Now suppose we call P-types term(-sets) and Q-types propositions. Then the
rules we introduced allow us to build Q-propositions which depend on P-terms.

The proof of Theorem 2 is more involved than that of Theorem 1 as there
are non-trivial interactions between the two systems generated by the rules in
I. Our proof is directly adapted from Bernardy and Lasson [4].

The idea is to split each term into subterms typable in P and erased terms
typable in Q. The “interaction redexes” built by the rules in I will be handled
separately, as they strictly decrease in number after each such β-reduction, and
can not duplicate Q-redexes.

This proof bears many similarities with the Geuvers and Nederhof’s [9] proof
that normalization of system Fω implies that of the Calculus of Constructions
(Barendregt [3] Theorem 5.3.14), which tends to indicate that these proofs are
instances of a general approach based on erasure and labeling.

Definition 4 (Erasure). Let P = (S,A,R) be a PTS and D ⊆ R (a set of
dependencies). Suppose in addition that D is closed under ∼; that is if r ∈ D
and r = r′ then r′ ∈ D. The D-erasure :t;D of a term t is defined by induction
on the labeled term:

:s;D = s
:xs;D = xs

:Πrxs : t. u;D = :u;D if r ∈ D
:Πrxs : t. u;D = Πrxs : :t;D. :u;D otherwise
:λrxs : t. u;D = :u;D if r ∈ D
:λrxs : t. u;D = λrxs : :t;D. :u;D otherwise

:(t u)r;D = :t;D if r ∈ D
:(t u)r;D = (:t;D :u;D)r otherwise.

We sometimes omit the superscript if it is clear in the context.

Note that in general, the D-erasure of a well-typed term is not well typed, or
indeed, even stable by reduction (or variable binding). However in the current
case, we have enough structure to guarantee typability of erased terms. In the
following section we fix D = RP ∪ I.

We want to distinguish “P-terms” from “Q-terms.”

Definition 5. Suppose that Γ �∀P.Q t : A. We say that t has a sort in P (resp.
Q) when there is a sort s ∈ SP (resp. SQ) such that either Γ �∀P.Q A : s or
A = s.

By Lemma 3 we know that every well-typed term in ∀P .Q has a sort in either P
or Q. Using Lemma 1 and Lemma 5 (below) we know that a term cannot have
both.

Lemma 5. Suppose s ∼ s′ in ∀P .Q. Then s, s′ ∈ SP or s, s′ ∈ SQ.

We have three kind of redexes in terms, the redexes from rules in P , from
rules in Q and the redexes in I.
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Definition 6. Given a term t well typed in ∀P .Q, we say that the redex at
position p is a P-redex, resp. Q-redex, I-redex if the redex is of shape

((λrxs : A.t) u)r

with r ∈ RP , resp. RQ, resp. I.

We will sometimes write t →P t
′ if t′ is obtained from t by contraction of a

P-redex (similarly for Q- and I-redexes).
Furthermore, conversion is preserved by erasure on well-typed terms.

Lemma 6. Suppose t, t′ are well typed in ∀P .Q with sort in Q. Then

t→Q t
′ ⇒ :t; →β :t′; .

Proof. We only treat head reduction: in that case we have t=((λrxs : A. t1) t2)
r′ .

Well typedness gives r = r′. Again we treat the three cases:

1. r ∈ RP . This is not possible as t has a sort in Q.
2. r ∈ RQ. In this case we have

:t; = ((λrxs : :A;. :t1;) :t2;)r →β :t1;{xs �→ :t2;} = :t1{xs �→ t2};

where the last equality is proven by simple induction over the structure of t1.
3. r ∈ I. In this case we have xs /∈ FV(:t1;) This gives

:t; = :t1; = :t1;{xs �→ :t2;} = :t1{xs �→ t2}; = :t′; .

+,

In particular, due to confluence of β-reduction, we have

t 2β t
′ ⇒ :t; 2β :t′;

for terms with sort in Q.
Now this allows us to show that well-typed terms in ∀P .Q are either well

typed in P or their erasure is well typed in Q.

Proposition 1. Suppose Γ �∀P.Q t : A. We have the following:

1. If t has a sort in P, then there is a subcontext Δ of Γ such that Δ �P t : A.
2. If t has a sort in Q, then we have :Γ; �Q :t; : :A;.

Proof. First suppose t has a sort in P . Choose Δ to be the declarations xk : B
in Γ with k ∈ SP . Then we proceed by induction on the type derivation of the
labeled term t. The proof is similar to that of Theorem 1.

Now if t has a sort in Q we proceed similarly. The only difficult case is con-
version, which is handled by appeal to Lemma 6. +,

Lemma 7. If t is well-typed term in ∀P .Q then →I reductions of t are finite.
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Proof. We will show that the number of I-abstractions will strictly decrease
when contracting a I-redex. Let ((λrxs : T.t) u)r be the redex in question. We
have by Inversion and Proposition 1 that

– u is of sort s ∈ SP
– u is well typed in P

In particular, u can contain no subterm of the form λr
′
xs

′
: A.v with r′ ∈ I. This

means that no I-abstraction can be duplicated. So the number of I-abstractions
in t must strictly decrease at each I-reduction step, which implies termination
of I-reductions. +,

The converse of Lemma 6 is not true in general, as I-redexes can “hide”
possible Q-redexes, illustrated in the following example.

Example 1. Consider the following term:

t = (λxP : A.(λyQ : B.uQ1 )
RQ)IuP2 u

Q
3 .

The sort labels mean that the variable/term belongs to a sort in that set, and
the rule annotations means the rule belongs to that set (for clarity we didn’t
annotate the applications). It is possible to make explicit choices such that t is
well-typed. Note that

:t; = (λyQ : B.u1)
RQu3 →β u1{y �→ u3}.

However, t is in →Q normal form. The Q-redex is hidden by the I-redex in t.
In contrast, it is not possible for P-redexes to create Q- or I-redexes.

To show that terms typable in ∀P .Q have (Q ∪ I)-normal forms, we need
to lift reductions in the erased domain up to the richer pure type system. The
crucial observation is the following:

Lemma 8. Suppose t is well typed in ∀P .Q with a sort in Q and suppose that
:t; →β v. Then there exists a term ṽ such that :ṽ; = v and

t→∗
I→Q ṽ .

Proof of Theorem 2. Suppose that t is well typed in ∀P .Q. If t has a sort in P ,
then t is well typed in the PTS P by Proposition 1 and we are done. Otherwise, t
has a sort in Q, and we proceed as follows. We will first find a→QI normal form.
Since :t; is typable in Q (again by Proposition 1) and Q is weakly normalizing,
there exists a Q-normal form t1 of :t;. By Lemma 8 we can lift every step of
this reduction chain to ∀P .Q by adding I-reductions. This way we obtain a lift
t̃1 of t1 such that t→∗

QI t̃1. Lemma 7 tells us that we can find a I normal form
t′ of t̃1. Since contracting I-redexes doesn’t change the erasure, we know that
:t′; = :t̃1; = t1. By Lemma 6 we conclude that t′ is also in Q normal form.
Hence t′ is a →QI normal form of t.
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Now we prove by induction on terms in →QI normal form that they have a
→β normal form. The only interesting case is when the term is an application
which is part of a redex. Since the term is in →QI normal form, this must be a
P-redex. By Proposition 1 this means that the term is well-typed in P , so it has
a →P normal form. Since contracting P-redexes cannot create I- or Q-redexes,
this means the normal form is actually an →β normal form. This completes the
induction, which shows that t′, and hence t has a →β normal form. +,

Additionally, Proposition 1 gives us the following logical conservativity result.

Corollary 1. Suppose A is well typed in ∀P .Q of type s ∈ SQ. Suppose further-
more that A only contains subterms which have a sorts in Q. Then we have

A is inhabited in ∀P .Q iff A is inhabited in Q.

5 The PTS PPoly

In this section, we show that we may extend a PTS P with quantification of every
sort over every other sort, provided the result lives in a “fresh” sort. This allows
internalizing quantification over free variables: in general if a term t contains
a free variable x of sort s, one may instantiate x with any term u of the same
type. However it is not in general possible to quantify over x. The following result
shows that it is possible to safely form the term λx : T. t (if x : T ) within the
theory, by pushing the resulting term into a new sort. This is sometimes referred
to as predicative polymorphism, ML-style polymorphism or prenex polymorphism.
We feel that it is natural to try to capture such a concept in its most general
form.

Additionally, such a practice seems quite useful in general for extensions of
type theory with such things as size-types (See Blanqui [5] or Abel [1]) or uni-
verses [17] in order to obtain an object theory that naturally allows terms poly-
morphic in sizes or universes. Note that these particular extensions are impossible
in the theory of pure type systems, but there is good hope that our approach
still applies.

In the following we fix a PTS P = (S,A,R).

Definition 7. Let s2
s1 /∈ S, be a new sort for each pair of sorts s1, s2 ∈ S. We

define the PTS PPoly = (SPoly,APoly,RPoly) by

SPoly = S ∪
{
s2

s1 | s1, s2 ∈ S
}

APoly = A

RPoly = R∪
{
s1

s2
s1� s2 | s1, s2 ∈ S

}
∪
{
s1

s2
s1� s2

s1 | s1, s2 ∈ S
}
.

This construction also preserves normalization, by a similar argument to
above.
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Theorem 3. If P is WN, then so is PPoly.

Proof. (Sketch)
We identify, in the same manner as in the proof of Theorem 2, two types of

redexes: those coming from a rule in R, and those coming from the new rules,
which we call P-redexes and I-redexes respectively.

In the same manner as before, we can show

1. Every P-redex belongs to a subterm typable in P .
2. Reducing a I-redex can not create any redexes.

Due to this observation, and subject reduction, we may proceed as previously
and reduce every I-redex, then normalize each subterm that contains a P-redex.
Both operations normalize by the above observation, and the final term is in
normal form.

6 Examples

We may verify that the PTS P2 given in Bernardi and Lasson [4] is a sub-PTS
of ∀P . P ′ (where P ′ is a renaming of P to make it disjoint from the latter), and
as such, is normalizing if P is. The only-if direction does not follow immediately,
as a sub-PTS of a non-normalizing PTS may be normalizing. In the case of that
paper however, it is trivial to verify that it in fact does.

It is also easy to use the predicative polymorphism transformation to turn the
simply-typed λ-calculus (STLC) into a calculus with ML-style polymorphism:
define STLC to be the PTS defined by

S =
{
∗,�

}
A =

{
∗ : �

}
R =

{
∗ ∗� ∗

}
.

In the PTS STLCPoly we can for example form the polymorphic term

id = λX :∗. λx :X. x : ΠX :∗. X → X .

By use of the rule � ∗�� ∗.
It is amusing to note that there is the rule ∗ �∗� � in STLCPoly, which seems

to allow for the construction of dependent types. However this ability is quite
restricted, in opposition to “true” dependent types as those in the λΠ-calculus
or Martin-Löf Type Theory.

Unfortunately, we do not quite have the predicative system described by
Peyton-Jones and Meijer [12], as they have the additional rules

∗� ∗�� ∗ ∗� ∗�� ∗� .

We do not know whether such rules can be added in a general way to every PTS.
Now let us give a slightly more elaborate example in which we construct a

system of interest out of more elementary systems. We wish to build a predicate
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logic over terms. We therefore consider an elementary PTS with a single sort ∗s
which represents the universe of basic sets of terms, and a sort �s with ∗s : �s

which allows declaring type variables such as

Nat : ∗s, Bool : ∗s .

We call TERM this PTS with two sorts, one axiom and no rules. It is easy to
see that there are no possible λ-abstractions in this PTS, and so every term is
trivially normalizing.

As this is a quite poor framework in which to define even first order terms,
we add function spaces to be able to declare variables of a function type, e.g.
S : Nat→ Nat. To do this, we add a third sort, ∗f , to represent function spaces,
along with the rules

∗s ∗f� ∗s, ∗s ∗f� ∗f .
This allows us to declare variables of functional type such as S : Nat → Nat
in a well-formed context. But this new PTS, which we call TERMext, is just a
sub-PTS of TERMPoly, where ∗f = ∗s∗s ! Without any additional work, we can
therefore conclude, using Theorem 3 that this PTS admits normalization.

Now we wish to reason about such terms using a propositional framework. If
we choose that framework to be STLC, then we can simply form the sub-PTS
of ∀TERMext. STLC obtained by adding the rules

∗s �� � ∗s ∗� ∗

to obtain a dependently-typed system which captures the ∀,⇒ fragment of (mini-
mal, intuitionistic) first-order logic. This system admits cut elimination by The-
orem 2 and normalization of STLC. Such a system was in fact described by
Berardi (see Barendregt [3]) by a direct construction, and in the above reference
cut elimination is derived by translation into a system with dependent types,
rather than our modular approach.

We can also apply Theorem 3 a second time to obtain a system with the

additional rule � ∗�� ∗. In this system, we are now able to express axiom schemas:
in the context

Γ = Nat : ∗s, 0 : Nat, S : Nat→ Nat

we have

Γ � ΠP : Nat→ ∗. P 0→ (Πn : Nat . P n→ P (S n))→ Πm : Nat . P m : ∗�

which allows us to build a well-formed context with a variable ind of that type.
This is possible without fear of losing normalization under the β-rule. Note that
this fact does not help much when trying to prove meta-theoretical properties
about arithmetic like consistency, which requires more elaborate cut-elimination
rules.

One can iterate this construction to get an arbitrary number of “universes”.

However, since there is no rule ∗� ∗�� ∗�, the resulting system is weaker than
the usual Martin-Löf type theory with universes.
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7 Conclusions

We have presented various operations allowing one to combine or extend arbi-
trary PTSs, and shown certain of these combinations to preserve normalization.

On the technical side, it is clear that sort-labeling and erasure are powerful
techniques for proving properties about reduction in pure type systems, and more
investigation is warranted to understand the extent of these techniques. Ideally
we would like a general syntactic theorem (which depends only on combinatorial
properties of S, A and R) which captures the extensions to a system (or a set
of systems) that can be proven sound with this method.

Natural applications of this approach include the analysis of dependently-
typed programming languages. Such languages aim to model programs and
proofs using a single framework. However, the construction of a proof language
and of a programming language are often at odds, as there are many features of
an environment for proofs (impredicativity, normalization, irrelevance) which are
not desirable for a programming environment. One approach is to compartmen-
talize the system into two (or more) universes, along with sometimes complex
rules to guide their interaction. In particular the Trellys project (see e.g. Sjöberg
et al. [18]) aims at exploring the consequences of such distinctions. We believe
that our approach may allow a systematic study of these interactions, lightening
the burden of meta-theoretical study.

There has been some effort concerning the use of dependently-typed languages
to serve as a framework in which to recast, or replay proofs done in different,
more complex systems. The language Dedukti [8], for instance, has been used
to embed proofs coming from Coq [6], and HOL [2] using a suitable encoding.
It is a natural question to ask whether the combination of these encodings is
still coherent, or more generally under which conditions one can combine such
encodings. While in general this question is quite difficult, our Theorem 1, and
to a lesser extent Theorem 3 can be seen as a first step in that direction.

All the theorems in this paper can be generalized to hold with strong nor-
malization as well, by adapting the proof to use well-known modularity results
in the theory of rewrite systems. We concentrate on weak normalization, as it is
sufficient to imply consistency of logical systems based on PTS.
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Abstract. Motivated by the question whether sound and expressive
applicative similarities for program calculi with should-convergence ex-
ist, this paper investigates expressive applicative similarities for the un-
typed call-by-value lambda-calculus extended with McCarthy’s ambigu-
ous choice operator amb. Soundness of the applicative similarities w.r.t.
contextual equivalence based on may- and should-convergence is proved
by adapting Howe’s method to should-convergence. As usual for non-
deterministic calculi, similarity is not complete w.r.t. contextual equiv-
alence which requires a rather complex counter example as a witness.
Also the call-by-value lambda-calculus with the weaker nondeterminis-
tic construct erratic choice is analyzed and sound applicative similarities
are provided. This justifies the expectation that also for more expres-
sive and call-by-need higher-order calculi there are sound and powerful
similarities for should-convergence.

1 Introduction

Our motivation for investigating program equivalences is to show correctness of
program optimizations, more generally of program transformations, and also to
get more knowledge of program semantics, since the induced equivalence classes
can be viewed as the semantics of the program.

A foundational notion of equality of higher-order programs is contextual
equivalence, which holds for two expressions s, t, if the evaluation of program
P [s] (may-)terminates successfully if and only if the evaluation of program P [t]
(may-)terminates successfully, for all programs P [·]. Here we denote by P [t] the
program P , where the expression s is replaced by t. For concurrent and/or non-
deterministic languages, the situation is a bit more complex, since contextual
equivalence based only on successful may-termination is too weak, since it ig-
nores paths that lead to errors, nontermination or deadlocks. There are proposals
to remedy this weakness by adding another test: either a must-convergence test,
where the test is that every possible evaluation is finite; another proposal is
should-convergence, where the test only requests that for every (finite) reduc-
tion sequence there is always a possible may-termination. Contextual equivalence
based on the combination of may- and should-convergence has been used for sev-
eral extended, nondeterministic lambda calculi e.g. [3, 24], for process calculi and
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algebras [9, 5, 23], and also for concurrent lambda calculi that model real con-
current programming languages e.g. Concurrent Haskell, STM Haskell and Alice
ML (see [20, 25–27]).

Although contextual equivalence provides a natural notion of program equiv-
alence, proving expressions to be contextually equivalent is usually hard, since
all program contexts need to be taken into account. Establishing equivalence
proofs is often easier using an applicative (bi)-similarity. For may-convergence,
applicative (bi)similarity is the coinductive test consisting of evaluating the ex-
pressions to abstractions, applying them to arguments, and showing that the
resulting expressions are again applicative (bi)similar.

It is known that applicative (bi)similarities in many (usually deterministic)
cases are sound and complete for contextual equivalence (see e.g. [1, 7]). On the
other hand, there are also some negative results when more expressive and com-
plex languages are considered, e.g. applicative similarity (for may-convergence)
is unsound in impure lambda calculi with direct storage modifications [17, 30]
and also in nondeterministic languages with recursive bindings [29].

While there are several approaches for an applicative similarity for must-
convergence (e.g. [21, 13, 12, 10]), to the best of our knowledge, no notion of
applicative similarity for should-convergence has been studied. So in this paper
we will make a first step to close this gap and investigate a notion of applicative
similarity for should-convergence.

We choose a rather small calculus for our foundational investigation to not
get sidetracked by the syntactic complexity of the calculus. Hence, we investi-
gate the untyped call-by-value lambda calculus extended by the nondeterministic
primitive amb. We choose McCarthy’s amb-operator[18], since its implementation
requires concurrency: amb s t can be implemented by executing two concurrent
threads – one evaluates s and the other one evaluates t, and the first result ob-
tained from one of the two threads is used as the result for amb s t. Clearly, if
both threads return a result, then the program is free to choose one of them.
In a concrete implementation this will depend on the scheduling of the threads.
Semantically, any (fair) scheduling must be allowed to ensure the correct imple-
mentation of amb. The operator amb is (locally) bottom-avoiding, i.e. speaking
denotationally where ⊥ represents diverging programs, amb ⊥ s and amb s ⊥
are equal to s, and for the case s �= ⊥ �= t the amb-operator may freely choose
between s and t, i.e. then (amb s t) ∈ {s, t}.

The amb-operator is also very expressive compared to other nondeterministic
operators, e.g. using amb one can encode an erratic choice which chooses arbi-
trarily between its arguments, a demonic choice which is the strict variant of
erratic choice and requires termination of both of its arguments before choosing
between the arguments, and a parallel or. Also semantically, amb is challenging,
since usual semantic properties do not hold for calculi with amb, e.g. nonterminat-
ing programs are not least elements w.r.t. the ordering of contextual semantics.
A further reason for analyzing the calculus with amb is that it is being studied for
several decades (e.g. [18, 2, 19, 13, 11, 10, 14]) and for the contextual equivalence
with may- and must-convergence it is a long standing open question whether a
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Variables: x, xi ∈ V
Expressions: s, t ∈ ExprLCA ::= x | λx.s | (s t) | (amb s t)
Values: v, vi ∈ Val ::= λx.s
Contexts: C,Ci ∈ CLCA ::= [·] | λx.C | (C s) | (s C) | (amb C s) | (amb s C)
Evaluation contexts: E ∈ E ::= [·] | (E s) | (v E) | (amb E s) | (amb s E)
Reduction rules:

(cbvbeta) ((λx.s) (λy.t)) → s[(λy.t)/x] where FV (λy.t) ∩ BV (λx.s) = ∅
(ambl) (amb (λx.s) t) → (λx.s)
(ambr) (amb t (λx.s)) → (λx.s)

Call-by-value reduction:
s→ t, by (cbvbeta), (ambl) or (ambr) E ∈ E

E[s]
LCA−−−→ E[t]

Fig. 1. Syntax and Operational Semantics of LCA

sound applicative similarity exists (see e.g. [10]). A negative result is provided
by [14], however it requires a typed calculus and the given counterexample is no
longer valid if should-convergence is used instead of must-convergence.

Results. Our main theorem (Main Theorem 3.6) states that an expressive
applicative similarity is sound for a contextual equivalence defined as a conjunc-
tion of may- and should-contextual equivalence, in the untyped call-by-value
calculus with amb. The proof is an adaption of Howe’s method [7, 8, 22] to
should-convergence. We also show that the applicative similarity is not complete
w.r.t. contextual equivalence by providing a counter-example. We also explore
and discuss other possible definitions of applicative similarity and compare them
to our definition. Finally, we consider the call-by-value lambda calculus with er-
ratic choice (which is weaker than amb) and show that the coarser applicative
similarity for may- and should-convergence (called convex similarity) is sound in
the calculus with choice, but unsound in the calculus with amb.

Outline. In Sect. 2 we introduce the call-by-value lambda-calculus with amb,
and in Sect. 3 we define the applicative similarities for may- and should-
convergence, state our main theorem, and discuss other definition of applicative
similarity. The proof of the main theorem is accomplished in Sect. 4. In Sect. 5
we consider the call-by-value calculus with erratic choice and show soundness of
applicative similarity for this calculus. We conclude in Sect. 6. For readability,
some proofs are omitted, but they can be found in the technical report [28].

2 Call-by-Value AMB Lambda-Calculus

We introduce the call-by-value lambda-calculus with the amb-operator, and de-
fine the contextual semantics based on may- and should-convergence.

Let V be an infinite set of variables. The syntax of expressions and values of
the calculus LCA is shown in Fig. 1. In λx.s variable x becomes bound in s.
With FV (s) (BV (s), resp.) we denote the set of free (bound resp.) variables of
expression s, which are defined as usual. If FV (s) = ∅ then s is called closed, oth-
erwise s is an open expression. Note that values v ∈ Val include all abstractions
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(also open ones). We assume the distinct variable convention to hold, i.e. bound
names are pairwise distinct and BV (s)∩FV (s) = ∅. This convention can always
be fulfilled by applying α-renamings. Contexts C,Ci ∈ CLCA (see Fig. 1) are ex-
pressions where one subexpression is replaced by a hole, denoted with [·]. With
C[s] we denote the expression where in C the hole is replaced by expression s.

The reduction rules (cbvbeta), (ambl) and (ambr) and the call-by-value small-

step reduction
LCA−−−→ are defined in Fig. 1. Call-by-value reduction applies the

reduction rules inside call-by-value evaluation contexts E ∈ E. With
LCA,∗−−−−→

we denote the reflexive-transitive closure of
LCA−−−→. The reduction is non-

deterministic, i.e. the arguments of amb can be reduced non-deterministically
in any sequence, and if one argument is already evaluated to an abstraction,
then it is also permitted to project the amb-expression to this argument.

Definition 2.1 (May- and Should-Convergence). If s
LCA,∗−−−−→ λx.s′ for

some abstraction λx.s′, then we say s may-converges and write s↓, otherwise

s is must-divergent, denoted as s⇑. If s LCA,∗−−−−→ λx.s′ then we also write s↓λx.s′.
If for all s′ with s

LCA,∗−−−−→ s′, also s′↓ holds, then we say s should-converges
and write s⇓, and otherwise s may-diverges (denoted by s↑). Note that s↑ iff

there is an expression s′, such that s′⇑ and s
LCA,∗−−−−→ s′.

Definition 2.2 (Contextual Preorder & Equivalence). For ξ ∈ {↓,⇓, ↑,⇑}
the contextual ξ-preorder ≤ξ and contextual ξ-equivalence are defined as

– s ≤ξ t iff for all C ∈ CLCA s.t. C[s] and C[t] are closed: C[s]ξ =⇒ C[t]ξ.
– s ∼ξ t iff s ≤ξ t and t ≤ξ s.

Contextual preorder ≤LCA is defined by s ≤LCA t, iff s ≤↓ t and s ≤⇓ t; and
contextual equivalence ∼LCA is defined by s ∼LCA t, iff s ∼↓ t and s ∼⇓ t.

Some abbreviations for expressions that we will use in later examples are
Ω = (λx.(x x)) (λx.(x x)), Id = λx .x , True = λx .λy.x , False = λx .λy.y,
Y = λf.(λx.f λz.(x x z)) (λx.f λz.(x x z)), Top = (Y True). We will also write
λx1, x2, . . . , xn.s abbreviating nested abstractions λx1.λx2. . . . λxn.s.

The given operational semantics does not take fairness into account, e.g. call-

by-value reduction may reduce the left argument in amb Ω Id
LCA−−−→ amb Ω Id

infinitely often ignoring the right argument Id . So the bottom-avoidance of the
amb-operator is not fully captured by our operational semantics. However, the
convergence predicates may- and should-convergence and thus also the contex-
tual semantics capture this behavior, i.e. if we restrict the allowed reduction
sequences to fair ones (i.e. no redex is ignored infinitely often in an infinite
reduction sequence), then the corresponding predicates for may- and should-
convergence are identical to our predicates, i.e. should-convergence already has
this kind of fairness built-in (see e.g. [24]). So our operational semantics is a sim-
plification (which greatly simplifies reasoning), but all of our results also hold
for an operational semantics which includes the fairness requirement.
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The amb-operator is more expressive than a lot of other nondeterministic
operators. E.g., amb can encode erratic choice which freely chooses between
its two arguments and thus we will use choice s t as an abbreviation for
(amb (λx.s) (λx.t)) Id , where x is a fresh variable. Also a demonic choice oper-
ator dchoice is expressible, which requires termination of both of its arguments
before choosing between them: dchoice s t := (amb (λx , y.x ) (λx , y.y)) s t .

Unlike calculi with erratic or demonic choice, in LCA the inequation s ≤⇓ t
implies t ≤↓ s, since there is the so-called “bottom-avoiding context” which can
be used to test for must-divergence using the should-convergence test. This also
implies that contextual equivalence and ∼⇓ coincide.

Proposition 2.3. ≤⇓ ⊆ ≤⇑ and thus ≤LCA ⊆ ∼↓ as well as ∼LCA = ∼⇓.

Proof. For the context BA := (amb ((λx .λy.Ω) [·]) Id) Id and any LCA-
expression s the equivalence BA[s ]⇓ ⇐⇒ s⇑ holds: if s⇑, then the amb-
expression can only evaluate to its right argument Id , and thus BA[s ] is

should-convergent in this case. If s↓, then the reduction sequence BA[s ]
LCA,∗−−−−→

(amb (λy.Ω) Id) Id
LCA,∗−−−−→ Ω shows BA[s ]↑. Now let s ≤⇓ t and assume s �≤⇑ t.

Then there exists a context C s.t. C[s], C[t] are closed and C[s]⇑ but C[t]↓. Then
BA[C [s ]],BA[C [t ]] are closed and BA[C [s ]]⇓ and BA[C [t ]]↑, which contradicts
s ≤⇓ t. Thus our assumption was wrong and s ≤⇑ t must hold. +,

3 Applicative Similarities for LCA

In this section we define applicative similarities for may- and should-convergence
in LCA. Then we present our main theorem: the applicative similarities are sound
for contextual preorder. We also discuss our definitions and also consider and
analyze alternative definitions of similarity. Due to its complexity, the proof of
the main theorem is not included in this section, but given in the subsequent
section. We use several binary relations on expressions. Sometimes the relations
are defined on closed expressions only, and thus we deal with their extensions to
open expressions and vice versa with the restrictions to closed expressions:

Definition 3.1. For a binary relation η on closed LCA-expressions, ηo is the
open value-extension on LCA: For (open) LCA-expressions s1, s2, the relation
s1 η

o s2 holds, if for all value-substitutions σ, i.e. that replace the free variables
in s1, s2 by closed abstractions, and where σ(s1), σ(s2) are closed, the relation
σ(s1) η σ(s2) holds. Conversely, for a binary relation μ on open expressions,
(μ)c is its restriction to closed expressions.

Lemma 3.2. Let η be a binary relation on closed expressions, and μ be a bi-
nary relation on open expressions. Then 1. ((η)o)c = η, and 2. s ηo t implies
σ(s) ηo σ(t) for any value-substitution σ, and 3. μ ⊆ ((μ)c)o is equivalent to:
∀s, t and all closing value-substitutions σ: s μ t =⇒ σ(s) μ σ(t)
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3.1 Applicative Similarities for May- and Should-Convergence

We define applicative similarity �↓ for may-convergence and applicative simi-
larity �↑ for should-convergence (where in fact its negation may-divergence is
used). Also mutual similarities and applicative bisimilarities are defined.

Definition 3.3. We will define operators Fα on binary relations of closed ex-
pressions, where α is a name or a mark. The corresponding similarity, de-
noted as �α is the greatest fixpoint gfp(Fα) of Fα, and the mutual similarity
is ≈α := �α ∩ �α. If Fα is symmetric, then it is a bisimilarity, denoted as 2α.

We always define monotone operators Fα, hence the greatest fixpoints exist. For
closed s, t and a binary relation η on closed expressions let LR(s, t, η) be the
condition: s↓λx.s′ =⇒

(
∃λx.t′ with t↓λx.t′ and s′ ηo t′

)
.

Definition 3.4 (Similarities for LCA). On closed expressions we define:

May-Similarity in LCA, �↓ := gfp(F↓): Let s F↓(η) t hold iff LR(s, t, η).

Should-Similarity in LCA, �↑ := gfp(F↑):
Let s F↑(η) t hold iff s↑ =⇒ t↑, t �↓ s and LR(s, t, η).

Should-Bisimilarity in LCA, 2⇓ := gfp(F⇓):
Let s F⇓(η) t hold iff s↑ ⇐⇒ t↑, LR(s, t, η), and LR(t, s, η).

Since gfp(Fα) :=
⋃
{η | η ⊆ Fα(η)} by the Knaster-Tarski-Theorem on fix-

points, the following principle of coinduction holds (see e.g. [4, 6]):

Proposition 3.5 (Coinduction). If a relation η on closed expressions is Fα-
dense, i.e. η ⊆ Fα(η), then η ⊆ �α, and also (η)o ⊆ (�α)

o holds.

We now present our main theorem, i.e. soundness of may- and should-
similarity and also should-bisimilarity. Here we state it for the open extensions
of the relations, however it also holds for the relations on closed expressions and
the restriction of contextual preorders and equivalence on closed expressions.

Main Theorem 3.6 The similarities �o
↓ and �o

↑ are precongruences, the mu-
tual similarities ≈o

↓, ≈o
↑, and the bisimilarity 2o

⇓ are congruences. Moreover, the
following soundness results hold:

1. �o
↓ ⊂ ≤↓ and ≈o

↓ ⊂ ∼↓.

2. �o
↑ ⊂ ≥LCA and ≈o

↑ ⊂ ∼LCA.

3. 2o
⇓ ⊆ ≈o

↑ ⊂ ∼LCA.

We prove Main Theorem 3.6 in Sect. 4: the results for may-similarity �↓ are
standard and a sketch is given in Theorem 4.6, the full proof is given in [28,
Appendix B]. The results for should-similarity �↑ are proved in Theorems 4.14
and 4.15. For should-bisimilarity the inclusion 2o

⇓ ⊆ ≈o
↑ holds, since 2⇓ is F↑-

dense. The congruence property for 2⇓ requires a separate proof which is in [28,
Appendix C]. Strictness of the inclusions will be proved by counter-examples.
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3.2 Discussion on Similarities for Should-Convergence

In this section we discuss other variants of should-similarity for LCA. As we
show, the first and second are unsound, the third may be a slight generalization,
and the status of the fourth is unknown.

Definition 3.7. Naive Should-Similarity in LCA, �↑N := gfp(F↑N ):
Let s F↑N (η) t hold iff s↑ =⇒ t↑ and LR(s, t, η).

Convex Should-Similarity in LCA, �↑X := gfp(F↑X ):
Let s F↑X (η) t hold iff s↑ =⇒ t↑, t �↓ s, and t⇓ =⇒ LR(s, t, η).

Should-Similarity in LCA, variant �↑C := gfp(F↑C ):
Let s F↑C (η) t hold iff s↑ =⇒ t↑, t ≤↓ s, and LR(s, t, η).

Should-Similarity in LCA, variant �↑′ := gfp(F↑′):
Let s F↑′(η) t hold iff s↑ =⇒ t↑, LR(s, t, η), and LR(t, s, η−1).

Obviously, (choice False True) �≤↑ True using the context ([·] Id Ω). This
suggests the naive should-similarity �↑N which, however, is insufficient:

Lemma 3.8. �↑N is unsound w.r.t. ≤↑.

Proof. While Id �↑N λx .choice x Id holds, we have (Y (λx.choice x Id) Id)⇓,
but (Y Id Id)⇑. Thus �↑N is not a precongruence and not sound w.r.t. ≤↑. +,

In the definition of �↑ this is the reason for the additional condition t �↓ s
inside F↑ (which in fact implies s ≈↓ t, since �↑ ⊂ �↓). Further generalizing
the definition of �↑ by requiring the recursive test to hold only if the right
expression is should-convergent leads to the convex should-similarity,�↑X , which
is analogous to the definition of so-called (unsound) “convex similarity” in [19]
for a call-by-name lambda-calculus with amb, but using must-convergence instead
of should-convergence. However, also for LCA the similarity �↑X is unsound:

Lemma 3.9. �↑X is unsound w.r.t. ≤↑.

Proof. Let s1 := amb (λx.Ω) (λx, y, z.Ω) and s2 := amb s1 (λx, y.Ω). Then
s2 �↑X s1, but s2 �≤↑ s1, since for the context C := (amb ([·] Id) Id) Id we have

C[s2]
LCA,∗−−−−→ Ω and thus C[s2] ↑, but C[s1] ⇓.

For calculi with only erratic or demonic choice, �↑X is sound (see Sect. 5).
A further generalization of the successful similarity �↑ by replacing the t �↓ s

condition by t ≤↓ s leads to �↑C , for which it is easy to see that �↑ ⊆ �↑C , and
we conjecture that it is sound, but a soundness proof would require at least a
ciu-Lemma for LCA. As another strengthening of the conditions inside F↑N we
added the condition LR(t, s, η−1) resulting in the should-similarity �↑′ We did
neither find a soundness proof for �↑′ , since the condition ∀t ↓ λx.t′∃s ↓ λx.s′
is inappropriate for Howe’s method, nor did we find a counter-example showing
unsoundness, so we leave soundness of �↑′ as an open question.
Our results imply that the following properties hold for �↑′ :

Lemma 3.10. �↑′ ⊆ �↓ ⊆ ≤↓ and 2⇓ ⊆ ≈↑′ ⊆ ≈↓ ⊆ ∼↓.
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Proof. The first chain of inclusions is valid, since �↑′ is F↓-dense, i.e. �↑′ ⊆
F↓(�↑′), and since �↓ is sound for ≤↓ (Main Theorem 3.6). In the second chain,
the inclusion 2⇓ ⊆ ≈↑′ holds, since 2⇓ ⊆ F↑′(2⇓) and since 2⇓ is symmetric.
The remaining inclusions follow from the first chain. +,

4 Soundness Proofs for Similarity in LCA

4.1 Preliminaries on Howe’s Method

In this section we will introduce the necessary notions to apply Howe’ method
for the soundness proofs of similarities w.r.t. contextual preorder and contextual
equivalence in LCA. Here we employ higher order abstract syntax as e.g. in [7]
for the proof and write τ(..) for an expression with top operator τ , which may be
λ, application, or amb. For consistency of terminology and treatment with that
in other papers such as [7], we assume that removing the top constructor λx in
relations is done after a renaming. For example, λx.s μ λy.t is renamed to the
same bound variable before further reasoning about s, t, to λz.s[z/x] μ λz.t[z/y]
for a fresh variable z. A relation μ is operator-respecting, iff si μ ti for i = 1, . . . , n
implies τ(s1, . . . , sn) μ τ(t1, . . . , tn).In these preliminaries for Howe’s method we
assume that there is a preorder �, which is a reflexive and transitive relation on
closed expressions. The goal is to show that � is a precongruence. We then define
the Howe candidate relation �H and show its properties. Later � is instantiated
by the may- or should-similarity or by the should-bisimilarity.

Definition 4.1. Given a reflexive and transitive relation � on closed expres-
sions, the Howe (precongruence candidate) relation �H is a binary relation on
open expressions defined inductively on the structure of the left hand expression:

1. If x �o s then x �H s.
2. If there are expressions s, si, s

′
i s.t. τ(s′1, . . . , s

′
n) �o s with si �H s′i for

i = 1, . . . , n, then τ(s1, . . . , sn) �H s.

Lemma 4.2. We have x �H s iff x �o s; and τ(s1, . . . , sn) �H s iff there is
some expression τ(s′1, . . . , s

′
n) �o s such that si �H s′i for i = 1, . . . , n.

Lemma 4.3. The following properties are proved in [28, Appendix A]:

1. �H is reflexive.

2. �H and (�H )c are operator-respecting.

3. �o ⊆ �H and � ⊆ (�H )c.

4. �H ◦�o ⊆ �H .

5. (v �H v′ ∧ t �H t′) =⇒ t[v/x] �H t′[v′/x] for values v, v′.

6. s �H t implies that σ(s) �H σ(t) for every value-substitution σ.

7. �H ⊆ ((�H )c)o.

8. If (�H )c = �, then �H = �o.
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9. If s, t are closed, s = τ(s1, . . . , sar(τ)) and s �H t holds, then there are s′i,
such that τ(s′1, . . . , s

′
ar(τ)) is closed, ∀i : si �H s′i and τ(s

′
1, . . . , s

′
ar(τ)) � t.

As a general outline, the goal of Howe’s method is to show that �H = �o,
which implies that �o is operator-respecting and hence it is a precongruence.

Lemma 4.4. The relations �α, �o
α from Definition 3.4 are reflexive and tran-

sitive. The relations 2⇓, and 2o
⇓ are equivalence relations.

Lemma 4.5. s �o
α t ⇐⇒ λx.s �o

α λx.t.

4.2 Soundness of May-Similarity

Theorem 4.6. May-similarity behaves as expected: The similarity �↓ for may-
convergence is a precongruence on closed expressions and sound for ≤c

↓. Extend-
ing this on all expressions: �o

↓ is a precongruence and sound for ≤↓.

Proof (Sketch, see [28, Appendix B]). Use Howe’s method. Define �↓H as an
extension of �↓ using Definition 4.1. Then show that �c

↓H satisfies the fixpoint
conditions for �↓, which implies �c

↓H ⊆ �↓, and so �c
↓H = �↓, which implies

the precongruence property, and �↓H = �o. +,

Corollary 4.7. The mutual similarity ≈↓ is a congruence and sound for ∼c
↓.

Also ≈o
↓ is a congruence and sound for ∼↓.

But note that ≈↓ is not complete using a similar example as in [15]:

Proposition 4.8. ≈o
↓ �= ∼↓

Proof. With F = λf.λz.choice (λx .Ω) ((λx1 , x2 .x1 ) (f z )) one can verify that
Y F Id reduces to λx1, . . . , xn.Ω for any n ≥ 1. Using a context lemma for LCA,
one can show that Y F Id ∼↓ Top. However, Top ��↓ Y F Id , since after evaluat-
ing Top to λz.(True Top z ) = v1 , we have to choose a value λx1, . . . , xn.Ω = v2
of (Y F Id) for a fixed number n, and applying v1 to n arguments converges,
but the application of v2 to n arguments diverges. +,

4.3 Soundness of Should-Similarity

In this section we present a proof for soundness of should-similarity,
i.e. �o

↑ ⊆ ≤LCA. We first show some properties of �↑:

Lemma 4.9. �↑ ⊆ ≈↓ ⊆ ∼↓ and 2⇓ ⊆ ≈↑ ⊆ ∼↓.

Proof. The first inclusion holds, since �↑ ⊆ �↓ by definition, �↑ ⊆ �↓ (since �↑
is F↓-dense), and �↓ ⊆ ≤↓ by Theorem 4.6. In the second chain, the inclusion
2⇓ ⊆ ≈↑ holds, since 2⇓ satisfies all the conditions of F↑, and since 2⇓ is
symmetric. The remaining inclusion follows from the first chain.
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The goal in the following is to show that the candidate relation �↑H derived
from �↑ can be treated using Howe’s method to prove its soundness. Our proof
relies on the precongruence property of �o

↓ (which is already proved in Theorem
4.6) for the transfer of may-divergence over the candidate relation.

Definition 4.10. The candidate relation �↑H is defined w.r.t. the relation �↑.

Lemma 4.11. �↑H ⊆ ≈o
↓.

Proof. To show that s �↑H t =⇒ s ≈o
↓ t, we use induction on the structure of

s. In the case s = x the definition of the candidate implies x �o
↑ t, which implies

x ≈o
↓ t by Lemma 4.9. If s = τ(s1, . . . , sn), there is some τ(t1, . . . , tn) �o

↑ t with
si �↑H ti for all i. The induction hypothesis implies si ≈o

↓ ti for all i, and the
congruence property of ≈o

↓ shows τ(s1, . . . , sn) ≈o
↓ τ(t1, . . . , tn). Transitivity of

≈o
↓ and �o

↑ ⊆ ≈o
↓ now shows s = τ(s1, . . . , sn) ≈o

↓ t. +,

Proposition 4.12. Let s, t be closed expressions, s �↑H t and s↓λx.s′. Then
there is some λx.t′ such that t↓λx.t′ and s′ �↑H t′.

Proof. The proof is by induction on the length of the reduction of s↓λx.s′.

– If s = λx.s′, then there is some closed λx.t′ with s′ �↑H t′ and λx.t′ �↑ t.
The latter implies that there is some closed λx.t′′ with t↓λx.t′′ and t′ �o

↑ t
′′,

and so s′ �↑H t′′ by Lemma 4.3 (4).
– Case s = amb s1 s2, and s↓λx.s′. Then there is some closed expression

amb t1 t2 �↑ t with si �↑H ti for i = 1, 2. W.l.o.g. let s1↓λx.s′. Then by
induction, there is some λx.t′ with t1↓λx.t′ and s′ �↑H t′. Obviously, also
amb t1 t2↓λx.t′. From amb t1 t2 �↑ t, we obtain that there is some λx.t′′

with t↓λx.t′′ and t′ �o
↑ t

′′, which implies s′ �↑H t′′ by Lemma 4.3 (4).
– If s = (s1 s2), then there is some closed t′ = (t′1 t

′
2) �↑ t with si �↑H t′i

for i = 1, 2. Since (s1 s2)↓λx.s′ there is a reduction sequence (s1 s2)
LCA,∗−−−−→

(λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) (λx.s′2)

LCA−−−→ s′1[λx.s
′
2/x]

LCA,∗−−−−→ λx.s′ such that
si↓λx.s′i for i = 1, 2. By induction, there are expressions λx.t′′i with t′i↓λx.t′′i
and s′i �↑H t′′i . Lemma 4.3 (5) now shows s′1[λx.s

′
2/x] �↑H t′′1 [λx.t

′′
2/x]. Now

we can again use the induction hypothesis which shows that there is some
λx.t′′ with t′′1 [λx.t

′′
2/x]↓λx.t′′ and s′ �↑H t′′. The relation (t′1 t

′
2) �↑ t implies

that t↓λx.t0 with t′′ �o
↑ t0, and hence s′ �↑H t0 by Lemma 4.3 (4). +,

Proposition 4.13. Let s, t be closed expressions, s �↑H t and s↑. Then t↑.

Proof. The proof is by induction on the number of reductions of s to a must-
divergent expression, and on the size of expressions as a second measure.

– The base case is that s⇑. Then Lemma 4.11 shows t⇑.
– Let s = amb s1 s2 with s↑. Then there is some closed expression t′ = amb t1 t2

with si �↑H ti for i = 1, 2 and amb t1 t2 �↑ t. It follows that s1↑ as well
as s2↑. Applying the induction hypothesis shows that t1↑ as well as t2↑, and
hence (amb t1 t2)↑. From amb t1 t2 �↑ t we obtain t↑.
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– Let s = (s1 s2) with s↑. Then there is some closed expression t′ = (t1 t2) �↑ t
and si �↑H ti for i = 1, 2. There are several cases:

1. If (s1 s2)
LCA,∗−−−−→ (s′1 s2) and s

′
1⇑, then s1↑ and by the induction hypoth-

esis also t1↑, and hence t′↑, which implies t↑.
2. If (s1 s2)

LCA,∗−−−−→ (λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) s

′
2 and s′2⇑, then s2↑ and by

induction hypothesis also t2↑, and hence t′↑, which implies t↑.
3. If (s1 s2)

LCA,∗−−−−→ (λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) (λx.s′2)

LCA−−−→
s′1[λx.s

′
2/x]

LCA,∗−−−−→ s0 where s0⇑. Then si↓λx.s′i for i = 1, 2 and by
Proposition 4.12 there are reductions ti↓λx.t′i for i = 1, 2 with s′i �↑H t′i.
Thus s′1[λx.s

′
2/x] �↑H t′1[λx.t

′
2/x], and hence by the induction hypothe-

sis t′1[λx.t
′
2/x]↑. Thus (t1 t2)↑, and now (t1 t2) �↑ t implies t↑. +,

Theorem 4.14. The relation �↑ is a precongruence on closed expressions and
�o
↑ is a precongruence on all expressions.

Proof. We have �↑ ⊆ �c
↑H by Lemma 4.3 (3). Since �c

↑H satisfies the fixpoint
conditions of �↑ (using Propositions 4.12 and 4.13), coinduction shows that
�c
↑H ⊆ �↑. Hence, �c

↑H = �↑ and also �↑H = �o
↑.

Theorem 4.15. �o
↑ is sound for ≥LCA.

Proof. Let s �o
↑ t, and let C be a context such that C[s], C[t] are closed. First

assume that C[s]↑. Theorem 4.14 shows that C[s] �o
↑ C[t], and so C[t]↑. Lemma

4.9 and Theorem 4.6. imply C[s]↓ ⇐⇒ C[t]↓. Hence s ≥LCA t. +,

Theorem 4.16. The similarity �↑ is incomplete for ≥⇓.

Proof. We give a counterexample (details are in [28]): Let A =
choice Ω (λx.A), B0 = Top, Bi+1 = λx.choice Ω Bi; and B =
choice Ω (choice B0 (choice B1 . . .)). Then Top 2↓ A 2↓ Bi for all i and
Top 2↓ B . Also Bi <↑ A for all i. Using a context lemma for closed expressions
it can be shown that A ∼LCA B. It is easy to see that B �↑ A, but A ��↑ B. �

Comparing s, t for ≤↑, the incompleteness of �↑ cannot appear if t reduces to
only finitely many abstractions.

Proposition 4.17. Assume that s is a closed abstraction and t is a closed ex-
pression such that s ≤↑ t and there is a nonempty set T := {t1, . . . , tn} of closed
abstractions, such that t↓λx.t′ implies λx.t′ ∈ T . Then there is some i with
s ≤↑ ti.

Proof. Suppose this is false. Then there are contexts C1, . . . , Cn, such that
Ci[s], Ci[ti] are closed for all i, and for all i = 1, . . . , n: Ci[s]↑ and Ci[ti]⇓. The
context C = (λx.amb C1[x] (amb . . . (amb Cn−1[x] Cn[x]))) [·] has the property:
C[s]↑, but C[t]⇓, which is a contradiction.

Soundness of the applicative similarities implies:
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Proposition 4.18. Let s, t be closed expressions, such that for all λx.s′:
s↓λx.s′ ⇐⇒ t↓λx.s′ (the same results modulo alpha-equivalence), and s↑ ⇐⇒
t↑, then s ≈↑ t, and hence also s ∼LCA t.
If s, t are open expressions, such that for all value substitutions σ, such that
σ(s), σ(t) are closed: σ(s)↓λx.s′ ⇐⇒ σ(t)↓λx.s′ (modulo alpha-equivalence),
and σ(s)↑ ⇐⇒ σ(t)↑, then s ≈o

↑ t, and hence also s ∼LCA t.

Corollary 4.19. Several identities obviously hold in LCA:

(λx.s) (λx.t) ∼LCA s[λx.t/x] (amb Ω s) ∼LCA s (amb s s) ∼LCA s
(amb s t) ∼LCA (amb t s) amb s1 (amb s2 s3) ∼LCA amb (amb s1 s2) s3

An example that is a bit more complex is:

Example 4.20. Let F = λf.λx.amb x (f x). We show that Y F ∼ Id using
similarities. It is easy to see that for all closed abstrations r: Id r↓r and also
(Y F r)↓r′ =⇒ r = r′. Note that (Y F r) has arbitrary long successful
reduction sequences to r. We also have (Id r) ⇓ as well as (Y F r) ⇓. The
simulation definitions imply Id 2 (Y F ), and hence Id ∼ (Y F ).

5 Simulations for the Call-by-Value Choice Calculus

Even though amb can simulate choice in different variants, if only (erratic or
demonic) choice is permitted instead of amb, then the expressivity is different,
which is reflected in different contextual equivalences. For example Ω is the
smallest element if only choice is permitted, which is false in LCA. In this section
we consider erratic choice only, since demonic and erratic choice can encode each
other in a call-by-value calculus.

Definition 5.1 (The calculus LCC). The calculus LCC is defined analogous
to LCA with the following differences:

– Instead of amb the syntax has a binary operator choice.
– The hole of evaluation contexts is not inside arguments of choice.
– The reduction rules are (cbvbeta) and choice-reductions:

(choicel) : (choice s t)→ s; and (choicer) : (choice s t) → t.

– Reduction
LCC−−−→ applies the reduction rules in evaluation contexts.

– The definitions of contextual equivalences are as for LCA.

The general properties on similarities and the candidate relation presented in
Sect. 4.1 also hold for LCC. We immediately start with the similarity definitions
and use the convex variant. In abuse of notation, we use the same symbols for
the relations as for LCA.

Definition 5.2. We define simulations for LCC on closed expressions:

May-Similarity in LCC, �↓ := gfp(F↓): Let s F↓(η) t hold iff LR(s, t, η).
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Should-Similarity in LCC, �↑X := gfp(F↑X ):
Let s F↑X (η) t hold iff s↑ =⇒ t↑, t �↓ s, and t⇓ =⇒ LR(s, t, η).

Doing the same using Howe’s method for �↑X as for LCA shows:

Theorem 5.3. May-similarity �↓ in LCC is a precongruence and sound for
the contextual may-preorder, and the mutual may-similarity ≈↓ is a congruence
and sound for may-equivalence.

Definition 5.4. The candidate relation �↑XH is defined w.r.t. the relation �↑X .

Lemma 5.5. �↑XH ⊆ �o
↓.

Mostly, the proofs are the same as for LCA. So we only exhibit the differences.

Proposition 5.6. Let s, t be closed LCC-expressions, s �↑XH t, t⇓, s↓λx.s′.
Then there is some λx.t′ such that t↓λx.t′ and s′ �↑XH t′.

Proof. We work in the calculus LCC. The proof is by induction on the length
of the reduction of s↓λx.s′. There are three cases: s = λx.s′, s = (choice s1 s2)
and s = (s1 s2), where the first and third cases are the same as for LCA. So we
only show the case for the choice-expression:
Case s = choice s1 s2, and s↓λx.s′. Then there is some closed expression
choice t1 t2 �↑X t with si �↑XH ti for i = 1, 2. Note that t⇓ implies t1⇓ and
t2⇓. W.l.o.g. let s1↓λx.s′. Then by induction, there is some λx.t′ with t1↓λx.t′
and s′ �↑XH t′. Obviously, also choice t1 t2↓λx.t′. From choice t1 t2 �↑X t
and t⇓, we obtain that there is some λx.t′′ with t↓λx.t′′ and t′ �o

↑X t
′′, which

implies s′ �↑XH t′′ by Lemma 4.3 (4). �

Note that in the calculus LCA this proof fails, since the induction hypothesis
cannot be proved for si, ti.

Proposition 5.7. Let s, t be closed expressions, s �↑XH t, and s↑. Then t↑.

Proof. The proof is by induction on the number of reductions of s to a must-
divergent expression, and on the size of expressions as a second measure.
The base case is that s⇑. Then Lemma 5.5 shows t⇑, since t �↓ s must hold,
which implies s ≥↓ t and thus s ≤⇑ t.
Let s = choice s1 s2 with s↑, and assume that t⇓. Then there is some closed
expression t′ = choice t1 t2 with si �↑XH ti for i = 1, 2 and choice t1 t2 �↑X t.
This implies t1⇓ and t2⇓. It follows that s1↑ or s2↑. Applying the induction
hypothesis shows that t1↑ or t2↑, which contradicts the assumption t⇓.

Theorem 5.8. The relation �↑X in LCC is a precongruence on closed expres-
sions and �o

↑X is a precongruence on all expressions.

Proof. We already have�↑X ⊆ �c
↑XH by Lemma 4.3 (3). Propositions 5.6 and 5.7

show that (�↑XH )c satisfies the fixpoint conditions of �↑X and thus coinduction
shows (�↑XH )c ⊆ �↑X . Hence we have (�↑XH )c = �↑X . Lemma 4.3.(8) then
shows the equation �↑XH = �o

↑X . �
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Theorem 5.9. �o
↑X is sound for ≥LCC, and ≈o

↑X is sound for ∼LCC.

Proof. We first show that �o
↑X is sound for ≤↑,LCC (and thus also for ≥⇓,LCC):

Let s �o
↑X t, and let C be a context such that C[s], C[t] are closed. First assume

that C[s]↑. Theorem 5.8 shows that C[s] �↑X C[t], and so C[t]↑. Since s �o
↑X t

also implies t �o
↓ s and thus t ≤↓,LCC s, we have �o

↑X ⊆ ≥LCC . The second
part of the theorem follows by symmetry. �

Proposition 5.10. Let s, t be closed with s↑, t↑. Then s ≈↓ t =⇒ s ∼LCC t.

Proof. First note that Ω ≤LCC r for all r, which follows from Theorems 5.3
and 5.9. Theorem 5.9 shows that s ≈↓ t, s↑, t↑ implies that s ∼LCC t.

Note that this proposition is not valid in LCA.

Proposition 5.11. Convex should-simulation �↑X is not complete for ≤↑,LCC.

Proof. Let s = choice Ω (λx.Ω) and t = choice Ω Top. Then s ≤↑,LCC t,
as well as t ≤↑,LCC s holds, since for every context C, if C[s]↑, then also C[t]↑
by selecting always the Ω in a choice-reduction, and also vice versa. However,
t ��↓ s (since Top ��↓ λx .Ω), and thus s �↑X t does not hold. +,

6 Conclusion

We have shown that in the call-by-value lambda calculus with amb there exists
a very expressive (an argument for this is Proposition 4.17) mutual similarity
for should-convergence, which is a congruence and sound for contextual equiv-
alence. We also showed that the used method can be transferred to the call-
by-value lambda calculus with choice. This novel and encouraging result may
enable further research for more expressive non-deterministic and/or concurrent
calculi and languages and for call-by-need lambda calculi using the approxima-
tion techniques from e.g. [15, 16].

Acknowledgements We thank the anonymous reviewers for their valuable
comments.
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Implicational Relevance Logic

is ��������	-Completeν
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Abstract. We show that provability in the implicational fragment of
relevance logic is complete for doubly exponential time, using reductions
to and from coverability in branching vector addition systems.

Keywords: Relevance logic, branching VASS, focusing proofs,
complexity.

1 Introduction

Relevance logic R [1, 7] provides a formalisation of ‘relevant’ implication: in such
a system, the formula A→ B indicates that the truth of A is actually useful in
establishing B; an example of an irrelevant implication valid in classical logic
would be B → (A→ B).

The pure implicational fragment R→ of R was developed independently by
Moh [15] in 1950 and Church [4] in 1951, and is as such the oldest of the relevance
logics. Kripke already presented in 1959 a decision algorithm for provability in
R→ [10], which was later extended to larger and larger subsets of R, like the
conjunctive-implicational fragment R→,∧. Several negative results by Urquhart
would however foil any hope for elementary algorithms: first in 1984 when he
showed the undecidability of the full logic R [20]; later in 1999 with a proof
that R→,∧ suffers from a non primitive-recursive complexity: it is Ackermann-
complete [22]. This left a gigantic gap for the implicational fragment R→, be-
tween an earlier ExpSpace lower bound [21] and the Ackermann upper bound
shared by the variants of Kripke’s procedure.

In this paper, we close this gap and show that provability inR→ is 2-ExpTime-
complete. Our proof relies crucially on a recent result by Demri et al. [6], who show
the 2-ExpTime-completeness of the coverability problem in branching vector ad-
dition systems with states (BVASS). These systems form a natural generalisation
of vector addition systems, and have been defined independently in a variety of
contexts (see the survey [18] and Sec.3 below), notably that of provability inmul-
tiplicative exponential linear logic (MELL, see [9]). More precisely:

– In Sec. 4, we show that so-called expansive BVASSs can simulate proofs
in R→ in a natural manner by exploiting the subformula property of its
usual sequent calculus LR→. We then show how to reduce reachability in
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expansive BVASS to coverability, thereby providing a decision procedure in
doubly exponential time.

– The matching hardness proof in Sec. 5 relies on the one hand on comprehen-
sive instances of the BVASS coverability problem, and on the other hand on
a new focusing sequent calculus FR→ for R→.

– The reduction from R→ provability to expansive BVASS reachability is
actually a special case of a more general reduction proved in [11] for the
multiplicative exponential fragment of intuitionistic contractive linear logic
(IMELLC), i.e. IMELL with structural contraction. Our reduction in
Sec. 4.3 from expansive reachability to coverability thus entails that
IMELLC provability is 2-ExpTime-complete, as explained in Sec. 6.

Due to space constraints, some material is omitted and can be found in the full
paper available from http://arxiv.org/abs/1402.0705.

Let us first recall the formal definition ofR→ before turning to that of BVASSs
in Sec. 3.

2 The Implicational Fragment R→

The reader will find in [7, Sec. 4] a nice overview of the decision problem for R,
covering in particular Kripke’s solution for R→ [10] and Urquhart’s lower bound
argument for R→,∧ [22].

2.1 A Sequent Calculus

We recall here the formal definition of R→ as a sequent calculus LR→ in
Gentzen’s style. Let A be a countable set of atomic propositions; we define
the set of formulæ as following the abstract syntax

A ::= a | A→ A (implicational formulæ)

where a ranges over A. We consider → to be right-associative, e.g. A→ B → C
denotes A → (B → C). In the following rules, we use A,B,C, . . . to denote
implicational formulæ and Γ,Δ, . . . to denote multisets of such formulæ; commas
in e.g. ‘Γ,A’ and ‘Γ,Δ’ denote multiset unions of Γ with the singleton A and
with Δ respectively; finally, a sequent is a pair ‘Γ � A’ stating that the succedent
A is valid assuming the antecedent Γ to be relevant:

A � A (Id)
Γ,A,A � B
Γ,A � B (C)

Γ � A Δ,B � C
Γ,Δ,A→ B � C (→L)

Γ,A � B
Γ � A→ B

(→R)

As we work with multisets, this sequent calculus includes implicitly the structural
‘exchange’ rule. It does however not feature the classical ‘weakening’ rule—which
would defeat the very point of relevance—nor the ‘cut’ rule—which is admissible.
A visible consequence of this definition is that the calculus enjoys the subfor-
mula property: all the formulæ in rule premises are subformulæ of the formulæ
appearing in the corresponding consequences.

http://arxiv.org/abs/1402.0705
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2.2 Decidability and Complexity

With hindsight, the decision procedure of Kripke [10] for provability in the im-
plicational fragment of relevance logic can be seen as a precursor for many later
algorithms that rely on the existence of a well quasi ordering (wqo) for their
termination [17]. This decision procedure can be understood as an application
of Dickson’s Lemma to prove the finiteness of ‘irredundant’ proof trees for the
target sequent � A. Furthermore, combinatorial analyses of Dickson’s Lemma as
e.g. in [8] provide explicit upper bounds on the size of those irredundant proofs,
in the form of the Ackermann function in the size of A, yielding an Ackermann

upper bound for R→ provability, as shown by Urquhart [22].
Regarding lower bounds, Urquhart in [21, Sec. 9] explains how to derive Exp-

Space-hardness for R→, using model-theoretic techniques to reduce from the
word problem for finitely presented commutative semigroups [14].

2.3 Strict τ-Calculus

The implicational fragmentR→ is in bijection with the typing rules of the simply
typed λI-calculus, where abstracted terms λx.t are well-formed only if x appears
free in t; see [5, Sec. 9F]. This means that R→ provability can be restated as
the type inhabitation problem for the simply typed λI-calculus. Our complexity
results should then be contrasted with the PSpace-completeness of the same
problem for the simply typed λ-calculus [19].

3 Branching VASS

Branching vector addition systems with states (BVASS) have been independently
defined in several contexts; see [18] for a survey.

3.1 Formal Definitions

Given d in N, we write ‘0̄’ for the null vector in Nd, and for 0 < i ≤ d, ‘ēi’
for the unit vector in Nd with 1 on coordinate i and 0 everywhere else. Let

Ud
def
= {ēi,−ēi | 0 < i ≤ d}. Syntactically, an ordinary BVASS is a tuple B =

〈Q, d, Tu, Ts〉 where Q is a finite set of states, d is a dimension in N, and Tu ⊆
Q × Ud × Q and Ts ⊆ Q3 are respectively finite sets of unary and split rules.

We denote unary rules (q, ū, q1) in Tu with ū in Ud by ‘q
ū−→ q1’ and split rules

(q, q1, q2) in Ts by ‘q → q1 + q2’.
We define the semantics of an ordinary BVASS through a deduction system

over configurations (q, v̄) in Q× Nd:

q, v̄

q1, v̄ + ēi
(incr)

q, v̄ + ēi

q1, v̄
(decr)

q, v̄1 + v̄2

q1, v̄1 q2, v̄2
(split)

respectively for unary rules q
ēi−→ q1 and q

−ēi−−→ q1 in Tu and a split rule q → q1+q2
in Ts; in (split) ‘+’ denotes component-wise addition in Nd. Such a deduction
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system can be employed either top-down or bottom-up depending on the decision
problem at hand (as with tree automata); the top-down direction will correspond
in a natural way to goal-directed proof search in the sequent calculus of Sec. 2.

Ordinary BVASSs are a slight restriction over BVASSs, which would in gen-
eral allow any vector in Zd in unary rules. Because they often lead to more
readable proofs, we only employ ordinary BVASSs in this paper. This is at no
loss of generality, since one can build an ordinary BVASS ‘equivalent’ to a given
BVASS in logarithmic space, where equivalence should be understood relative
to the reachability and coverability problems; see [18] for details.

Reachability. Branching VASSs are associated with a natural decision problem:
reachability asks, given a BVASS B, a root state qr, and a leaf state q�, whether
there exists a deduction tree with root label (qr, 0̄) and every leaf labelled (q�, 0̄);
such a deduction tree is called a reachability witness. De Groote et al. [9] have
shown that this problem is recursively equivalent to MELL provability, and it is
currently unknown whether it is decidable—both problems are however known
to be of non-elementary computational complexity [11].

Let us introduce some additional notation that will be handy in proofs. We
write ‘B, T, q� � q, v̄’ if there exists a deduction tree of B with root label (q, v̄)
and leaves labelled by (q�, 0̄), which uses each rule in T ⊆ Tu 6 Ts at least once.
Such root judgements can be derived through the deduction system

B, ∅, q� � q�, 0̄
B, T, q� � q1, v̄ + ēi

B, T ∪ {q ēi−→ q1}, q� � q, v̄

B, T, q� � q1, v̄
B, T ∪ {q −ēi−−→ q1}, q� � q, v̄ + ēi

B, T1, q� � q1, v̄1 B, T2, q� � q2, v̄2
B, T1 ∪ T2 ∪ {q → q1 + q2}, q� � q, v̄1 + v̄2

We write more simply ‘B, q� � q, v̄’ if there exists T ⊆ Tu6Ts such that B, T, q� �
q, v̄. With these notations, the reachability problem asks whether B, q� � qr, 0̄.

3.2 Root Coverability

Our interest in this paper lies in a relaxation of the reachability problem, where
we ask instead to cover the root: given as before 〈B, qr, q�〉, we ask whether there
exists a coverability witness, i.e. a deduction tree with root (qr , v̄) for some v̄ in
Nd and leaves (q�, 0̄); in other words whether B, q� � qr, v̄ for some v̄ in Nd.

This problem was shown decidable by Verma and Goubault-Larrecq [23], and
was later proven 2-ExpTime-complete by Demri et al. [6] in a slight variant
called branching vector addition systems (BVAS):

Fact 1 (6, Thm.8 and Thm.21). BVAS coverability is 2-ExpTime-complete.

Branching VAS are not equipped with a state space Q. Their coverability prob-
lem is stated slightly differently, but is easy to reduce in both directions to
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BVASS coverability. This would not be worth mentioning here if it were not for
the following instrumental corollary of their proof, which exploits an encoding
of d-dimensional BVASSs into (d+ 6)-dimensional BVASs:

Corollary 2. Coverability in a BVASS B = 〈Q, d, Tu, Ts〉 can be solved in de-

terministic time 22
O(n·log(n·log |Q|))

, where n denotes the size of the representation
of 〈d, Tu〉.
Corollary 2 entails that coverability remains in 2-ExpTime for BVASSs with
double exponential state space. This is an easy result, which we show in the full
paper.

4 Upper Bound

In order to show a 2-ExpTime upper bound for R→ provability, we introduce as
an intermediate decision problem the expansive reachability problem for BVASS
(Sec. 4.1). Then, the first step of our proof in Sec. 4.2 takes us from the sequent
calculus LR→ to reachability in expansive BVASS. This is a simple construction
that relies on the subformula property of LR→, and is actually a particular case
of a more general reduction shown in [11, Prop.9]. The new technical result here
is the second step: a reduction from expansive BVASS reachability to BVASS
coverability, which is shown in Sec. 4.3. This new reduction also entails new
upper bounds for provability in extensions of LR→ studied in [11]; see Sec. 6.

4.1 Expansive Reachability

An expansive BVASS is a BVASS with an additional deduction rule:

q, v̄+ ēi

q, v̄ + 2ēi
(expansion)

Note that expansions could be simulated by unary rules q
−ēi−−→ qi

ēi−→ q′i
ēi−→ q for

all q in Q and 0 < i ≤ d; we prefer to see them as new deduction rules.
This yields a new rule for root judgements, which we denote using ‘�e’ to

emphasise that we allow expansion rules:

B, T, q� �e q, v̄ + 2ēi
B, T, q� �e q, v̄ + ēi

The expansive reachability problem then asks, given an expansive BVASS B and
two states qr and q�, whether B, q� �e qr, 0̄.

4.2 From LR→ to Expansive Reachability

We prove here the following reduction:

Proposition 3. There is a logarithmic space reduction from provability in R→
to expansive reachability in ordinary BVASSs.
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AId: q�
−ēA

C→L: +

A

C

−ēA→B

ēB

A→ B→R: B
ēA

Fig. 1. The rules and intermediate states of BF

Let us consider an instance 〈F 〉 of the provability problem for R→ for an
implicational formula F . The instance is positive if and only if we can find a
proof for � F in LR→. Thanks to the subformula property, we know that in
such a proof, all the sequents Γ � A must use subfomulæ of F . That is, if we
denote by S the set of subformulæ of F , then Γ is in NS and A in S.

We construct from F an expansive BVASS BF that implements proof search

in LR→ restricted to subformulæ of F . We define for this BF
def
= 〈QF , |S|, Tu, Ts〉

where the state space QF includes S and a distinguished leaf state q�. It also
includes some intermediate states as introduced in the translations of the rules of
LR→ into rules in Tu∪Ts depicted in Fig. 1. Note that (C) has no associated rule;
it relies instead on expansions in BF . The full state space QF of BF , including
intermediate states, is thus of size O(|F |2).

Let us write v̄Γ for the vector in N|S| associated with a multiset Γ in NS . The
proof of Thm. 3 is a consequence of the following claim instantiated with A = F
and Γ = ∅:

Claim 3.1. For all Γ in NS and A in S, Γ � A if and only if BF , q� �e A, v̄Γ .

This results from a straightforward induction on the structure of proofs in LR→
and expansive root judgements for BF ; see the full paper for details.

4.3 From Expansive Reachability to Coverability

The second step of our proof that R→ provability is in 2-ExpTime is then to
reduce expansive reachability to coverability in BVASS. Our reduction incurs
an exponential blow-up in the number of states, but thanks to Thm. 2, this still
results in a 2-ExpTime algorithm:

Proposition 4. There is a polynomial space reduction from BVASS expansive
reachability to BVASS coverability.

Topmost Increments. Consider an instance 〈B, qr, q�〉 of the expansive reach-
ability problem with B = 〈Q, d, Tu, Ts〉. Because the root vector of an expansive
reachability witness must be 0̄, we can identify along each branch of the wit-
ness and for each coordinate 0 < i ≤ d the topmost (i.e. closest to the root)
application of an (incr) rule—possibly no such increment ever occurs on some
branches.
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Assume without loss of generality that q� has no outgoing transition in B.
We construct a new BVASS B† = 〈Q†, d, T †

u, Ts〉 with additional states qi� and

unary rules q�
ēi−→ qi�

−ēi−−→ q� for every 0 < i ≤ d. Then B, q� �e qr, 0̄ if and only
if B†, q� �e qr, 0̄ (observe in particular that no expansion in qi� can occur in an
expansive reachability witness). Additionally, the new rules allow us to assume
that there is a topmost increment for each branch and every coordinate of an
expansive reachability witness of B†.

Let [d]
def
= {1, . . . , d}. The root judgement relation can be refined as ‘�se’ with

a set s ⊆ [d] of coordinates. The intended semantics for i ∈ s is that there is
at least one increment on coordinate i earlier on the path from the root in the
expansive reachability witness. Formally, at the leaves

B†, ∅, q� �[d]e q�, 0̄

since by assumption every coordinate must see an increase. Then, an increment
is either topmost or not:

B†, T, q� �
s#{i}
e q1, w̄+ ēi

B†, T ∪ {q ēi−→ q1}, q� �se q, w̄
B†, T, q� �

s∪{i}
e q1, v̄ + ēi

B†, T ∪ {q ēi−→ q1}, q� �s∪{i}e q, v̄

where w̄(i) = 0 and ‘6’ denotes disjoint union. Decrements and expansions are
necessarily dominated by the topmost increment:

B†, T, q� �
s∪{i}
e q1, v̄

B†, T ∪ {q −ēi−−→ q1}, q� �s∪{i}e q, v̄ + ēi

B†, T, q� �
s∪{i}
e q, v̄ + 2ēi

B†, T, q� �
s∪{i}
e q, v̄+ ēi

Finally, the same topmost increments have been seen on both branches of a split:

B†, T1, q� �
s
e q1, v̄1 B†, T2, q� �

s
e q2, v̄2

B†, T1 ∪ T2 ∪ {q → q1 + q2}, q� �se q, v̄1 + v̄2

The refined root judgements verify

B, q� �e qr, 0̄ implies B†, q� �
∅
e qr, 0̄ , (1)

the converse implication being immediate by removing the ‘s’ annotations.

Reduction to Coverability. We construct a BVASS B‡ = 〈Q†×2[d], d, T ‡
u, T

‡
s 〉

and build a coverability instance 〈B‡, (qr, ∅), (q�, [d])〉. The idea is to maintain a
set s ⊆ [d] as in the refined judgements �se; however since we cannot test to zero
we will rely instead on nondeterminism. Let

T ‡
u

def
= {(q, s) ēi−→ (q1, s ∪ {i}) | q

ēi−→ q1 ∈ T †
u, s ⊆ [d]} (incr‡)

∪ {(q, s ∪ {i}) −ēi−−→ (q1, s ∪ {i}) | q
−ēi−−→ q1 ∈ T †

u, s ⊆ [d]} , (decr‡)

T ‡
s

def
= {(q, s)→ (q1, s) + (q2, s) | q → q1 + q2 ∈ T †

s , s ⊆ [d]} . (split‡)

For s ⊆ [d] and v̄ in Nd, we define s · v̄ for each 0 < i ≤ d by

(s · v̄)(i) def
=

{
v̄(i) if i ∈ s ,
0 otherwise.

(2)
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We show the following claims in the full paper:

Claim 4.1. If B†, q� �
s
e, q, v̄, then there exists v̄′ ≥ v̄ such that B‡, (q�, [d]) �

(q, s), v̄′.

Claim 4.2. If B‡, (q�, [d]) � (q, s), v̄, then B†, q� �e q, s · v̄.

Proof of Thm. 4. If B, q� �e qr, 0̄, then by (1), B†, q� �
∅
e qr, 0̄, thus by Claim 4.1,

there exists v̄ such that B‡, (q�, [d]) � (qr, ∅), v̄, i.e. we can cover (qr, ∅) in B‡.
Conversely, if B‡, (q�, [d]) � (qr , ∅), v̄, then by Claim 4.2, B†, q� �e qr, ∅· v̄ where

∅ · v̄ = 0̄. Therefore B, q� �e qr, 0̄ in the original BVASS B.

Theorem 5. Provability in R→ is in 2-ExpTime.

Proof. By Thm. 3 and Thm. 4, from a provability instance 〈F 〉, we can reduce to

a coverability instance 〈B‡
F , (qr, ∅), (q�, [|F |])〉 where B

‡
F has dimension |F | and

a number of states in 2p(|F |) for a polynomial p. By Thm. 2, this coverability in-
stance can be solved in double exponential time in |F |. Note that the coverability
check can be performed on-the-fly from F to avoid the explicit construction of
B‡
F .

5 Lower Bound

In this section, we exhibit a reduction from BVASS coverability to R→ provabil-
ity, thereby showing its 2-ExpTime-hardness.

Previous reductions from counter machines to substructural logics in [12, 22,
11] actually reduce to provability in the logic extended with a theory encoding
the rules of the system, which is then reduced to the basic logic. This last step
relies in an essential way on the presence of exponential or additive connectives
to ‘dispose’ of unused rules.

Having neither exponential nor additive connectives at our disposal, we intro-
duce in Sec. 5.1 a comprehensive variant of the expansive reachability problem,
where every rule should be employed at least once in the deduction. We further
avoid the use of a theory and define in Sec. 5.2 a focusing calculus for R→, from
which the correctness of the reduction given in Sec. 5.3 will be facilitated.

5.1 Comprehensive Reachability

Given an expansive BVASS B = 〈Q, d, Tu, Ts〉 and two states qr and q�, the
comprehensive reachability problem asks whether there exists a deduction tree
of B with root label (qr, 0̄) and leaves label (q�, 0̄), such that every rule in Tu∪Ts
is used at least once. Termed differently, it asks whether B, Tu ∪ Ts, q� �e qr, 0̄.
We show that BVASS coverability can be reduced to comprehensive expansive
reachability, hence by Thm. 1:

Proposition 6. Comprehensive reachability in expansive ordinary BVASS is 2-

ExpTime-hard.
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q‡r q‡ qr
ēd+1 −ēd+1

q‡ q

t:

q1 qt q‡
ēt ēi −ēi −ēt

q‡ qt q

t:

q1 q‡
ēt ēi −ēi −ēt

q‡ qt q +

t:

q1

q2

q‡
ēt ēt

−ēt

−ēt

Fig. 2. The rules of B‡ in the proof of Thm. 6, where t ranges over T †
u ∪ Ts

Increasing Reachability. Let us consider an instance 〈B, qr, q�〉 of the cov-
erability problem in an ordinary BVASS B = 〈Q, d, Tu, Ts〉. As a first step,

we construct an ordinary BVASS B† def
= 〈Q, d, T †

u, Ts〉 with additional increases

q
ēi−→ q for every q in Q and 0 < i ≤ d. We claim that coverability in B is

equivalent to reachability in B†:

Claim 6.1. There exists v̄ in Nd such that B, q� � qr, v̄ iff B†, q� � qr, 0̄.

Proof Sketch. Clearly, if B, q� � qr, v̄ for some v̄ in Nd, then B†, q� � qr, v̄, and
using increases in qr shows B†, q� � qr, 0̄. Conversely, if there is a reachability

witness for 〈B†, qr, q�〉, then we can assume that increases q
ēi−→ q occur as close to

the root as possible. As increases occurring right below increments, decrements,
or splits can be permuted locally to occur right above, such a reachability witness
has all its increases at the root. The deduction tree below those increases is
labelled (qr, v̄) for some v̄ in Nd and is also a deduction tree of B.

Comprehensive Root Rules. The second step of the reduction from BVASS

coverability builds an ordinary BVASS B‡ def
= 〈Q‡, d+1+ |T †

u ∪Ts|, T ‡
u, Ts〉 where

Q‡ def
= Q6{q‡, q‡r}6{qt | t ∈ T †

u∪Ts}. It features an additional set of unary ‘root’
rules—depicted in Fig. 2—designed to allow any rule in T ‡

u ∪ Ts to be employed
in a reachability witness.

The idea is to introduce a new state q‡ and a new coordinate for each rule t
in T †

u ∪ Ts. Starting from q‡, B‡ can simulate any rule t from T †
u ∪ Ts by first

incrementing by the corresponding unit vector ēt, then applying the rule, and
finally decrementing by ēt to return to q‡. This ensures that, if B‡, T, q� �e q

‡, v̄
for some v̄ in Nd, then B‡, T ′, q� �e q

‡, v̄ where T †
u ∪ Ts ⊆ T ′. The additional

states and rules from q‡r and to qr then show that:

Claim 6.2. If B†, T, q� � qr, 0̄ for some T ⊆ T †
u ∪ Ts, then B‡, T ‡

u ∪ Ts, q� �e q‡r, 0̄.
Conversely, assume that B‡, q� �e q

‡
r, 0̄. This entails B‡, q� �e q

‡, ēd+1.
First assume that no decrement by ēt for any t in T †

u ∪ Ts is ever used in
the corresponding expansive reachability witness. Then also no increment by ēt
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occurs, and the only rule applicable at this point is q‡
−ēd+1−−−−→ qr. This yields a

node n labelled (qr, 0̄), and a deduction subtree rooted by n where only rules of
B† and expansions are applied. Because any expansion can be simulated in B†

using an increase, this yields B†, q� � qr, 0̄.
Assume now the opposite: there is at least one occurrence of a decrement by ēt

in the expansive reachability witness. Consider the bottommost such occurrence
along some branch, necessarily yielding a node with q‡ as state label. Then in
the same way, below this bottommost occurrence, no increment by ēt occurs,

and the only rule applicable at this point is q‡
−ēd+1−−−−→ qr, which yields a node n

labelled (qr, v̄) for some v̄ in Nd. The deduction subtree rooted by n only uses
rules of B† and expansions, thus as in the previous case B†, q� � qr, v̄. Using
increases in qr then shows B†, q� � qr, 0̄. Therefore, in all cases:

Claim 6.3. If B‡, T ‡
u ∪ Ts, q� �e q‡r , 0̄, then B†, q� � qr, 0̄.

By Claims 6.1, 6.2, and 6.3, B‡, T ‡
u ∪ Ts, q� �e q‡r , 0̄ if and only if there exists v̄

in Nd such that B, q� � qr, v̄, thereby showing the correctness of our reduction.

5.2 Focusing Proofs in R→
We enforce a particular proof policy in our simulation of BVASSs in R→,
which is inspired by the focusing proof techniques [2] employed to reduce non-
determinism during proof search in sequent calculi. With only implication at our
disposal, we find ourselves in a ‘negative fragment’, where focusing proofs have
a very simple calculus FR→. This is equivalent to restricting oneself to long
normal forms in the associated λ-calculus.

A focusing sequent is of one of the two forms ‘Γ, [A]  B’ or ‘Γ  A’ where
‘[A]’ is called a focused formula. We let Γ,Δ, . . . denote as before multisets of
implicational formulæ and A,B,C implicational formulæ. Here are the rules of
the focusing calculus FR→:

[a]  a
(atomic)

Γ, [A]  a
Γ,A  a

(focus)
Γ,A,A  a
Γ,A  a

(Cf )

Γ  A Δ, [B]  a
Γ,Δ, [A→ B]  a (→f

L)
Γ,A  B
Γ  A→ B

(→f
R)

Note that our focusing calculus FR→ gives the priority to right implications
(→f

R) over the left implications (→f
L), focus (focus) and contractions (Cf ): the

latter can only be applied to sequents with atomic succedents a in A. A similar
observation is that a focusing sequent Γ, [a]  A is provable if and only if A = a
is atomic and Γ = ∅ is the empty multiset, since (atomic) is the only rule yielding
a sequent with a focused atomic formula [a].

Theorem 7 (FR→ is sound and complete). A sequent Γ � A is provable
in LR→ if and only if the focusing sequent Γ  A is provable in FR→.

We prove Thm. 7 in the full paper, using the admissibility of a suitable cut rule
in FR→.
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5.3 From Comprehensive Expansive Reachability to FR→

Let us consider a comprehensive expansive reachability instance 〈B, qr, q�〉 with
B = 〈Q, d, Tu, Ts〉. We are going to construct an implicational formula F such
that � F if and only if B, Tu ∪ Ts, q� �e qr, 0̄.

We work for this on the set of atomic formulæ Q 6 {ei | 0 < i ≤ d}, and
associate to a root judgement B, T, q� �e q, v̄ a focusing sequent

q�, ΔT , Γv̄  q (3)

where ΔT encodes the rules in T ⊆ Tu∪Ts and Γv̄ encodes v̄: let T = {t1, . . . , tk}
and v̄ = c1ē1 + · · ·+ cdēd, then

ΔT
def
= �t1�, . . . , �tk� , (4)

Γv̄
def
= ec11 , . . . , e

cd
d , (5)

where ‘�t�’ is the individual encoding of rule t and ‘Ac’ stands for c repetitions
of the formula A. We use the following individual rule encodings:

�q ēi−→ q1� def
= (ei → q1)→ q , (6)

�q −ēi−−→ q1� def
= q1 → (ei → q) , (7)

�q → q1 + q2� def
= q1 → (q2 → q) . (8)

Then proof search in FR→ is easily seen to implement deductions in B:

Claim 8.1 (Completeness). If B, T, q� �e q, v̄, then q�, ΔT , Γv̄  q.

Proof. We proceed by induction on the structure of the root judgement. For the
base case, i.e. for B, ∅, q� �e q�, 0̄, we have

(atomic)

[q�]  q�
(focus)

q�  q�
as desired.

For the induction step, if the last applied rule is an increment t = q
ēi−→ q1 on

a judgement B, T, q� �e q1, v̄ + ēi, then

i.h.
q�, ΔT , Γv̄, ei  q1

(→f
R
)

q�, ΔT , Γv̄  ei → q1
(atomic)

[q]  q
(→f

L
)

q�, ΔT , Γv̄, [(e1 → q1)→ q]  q
(focus)

q�, ΔT , Γv̄, (e1 → q1)→ q  q

and an additional contraction (Cf ) if t ∈ T shows q�, ΔT∪{t}, Γv̄  q as desired.
If the last applied rule is a decrement t = q

−ēi−−→ q1 on a judgement B, T, q� �e
q1, v̄, then
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i.h.
q�, ΔT , Γv̄  q1

(atomic)

[ei]  ei
(focus)

ei  ei
(atomic)

[q]  q
(→f

L
)

ei, [ei → q]  q
(→f

L
)

q�, ΔT , Γv̄, ei, [q1 → (ei → q)]  q
(focus)

q�, ΔT , Γv̄, ei, q1 → (ei → q)  q
and a contraction (Cf ) if t ∈ T shows q�, ΔT∪{t}, Γv̄+ēi  q as desired.

If the last applied rule is an expansion on a judgement B, T, q� �e q, v̄ + 2ēi,
then

i.h.
q�, ΔT , Γv̄, ei, ei  q

(Cf )

q�, ΔT , Γv̄, ei  q
as desired.

Finally, if the last applied rule is a split t = q → q1 + q2 on two judgements
B, T1, q� �e q1, v̄1 and B, T2, q� �e q2, v̄2, then

i.h.
q�, ΔT1 , Γv̄1  q1

i.h.
q�, ΔT2 , Γv̄2  q2

(atomic)

[q]  q
(→f

L
)

q�, ΔT2 , Γv̄2 , [q2 → q]  q
(→f

L
)

q�, q�, ΔT1 , ΔT2 , Γv̄1 , Γv̄2 , [q1 → (q2 → q)]  q
(Cf )

q�, ΔT1∪T2∪{t}, Γv̄1+v̄2  q
as desired.

The interest of the focusing calculus FR→ is that, starting from a sequent
q�, Δ, Γ, [�t�]  q where Δ is in NΔTu∪Ts and Γ in N{ei|0<i≤d} and the focus is
on the encoding of a rule t, there is no choice but to follow the proof trees shown
in the proof of Claim 8.1. Given a multiset m in NE for some set E, we write

σ(m)
def
= {e ∈ E | m(e) > 0} (9)

for the support of m.

Claim 8.2 (Soundness). Let Δ be in NΔTu∪Ts , Γ in N{ei|0<i≤d}, q in Q, and
n > 0. Then qn� , Δ, Γ  q implies B, σ(Δ), q� �e q, v̄Γ .

Proof. Note that n = 0 would yield an unprovable sequent. We proceed by
induction on the structure of a proof tree for the focusing sequent. The only
applicable rules in a proof search from qn� , Δ, Γ  q are (focus) and (Cf ). In the
latter case, we distinguish three cases depending on the contracted formula A:

– If A = q�, i.e. if q
n+1
� , Δ, Γ  q, then by induction hypothesis B, σ(Δ), q� �e

q, v̄Γ as desired.
– If A = ei in Γ , then by induction hypothesis B, σ(Δ), q� �e q, v̄Γ + ēi, and

an expansion yields B, σ(Δ), q� �e q, v̄Γ as desired.
– If A = �t� for some rule t in Δ, then the support σ(Δ) is not changed and

by induction hypothesis B, σ(Δ), q� �e q, v̄Γ as desired.
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AtL: A
ēt

C◦L C
−ēA◦B ēA + ēB

A ◦B◦R: +

A

B

Fig. 3. The additional BVASS rules for LRt
→,◦

In the former case, we also distinguish three cases depending on which formula
A receives the focus:

– If A = q�, necessarily Δ and Γ are empty and q = q�, and indeed B, ∅, q� �e
q�, 0̄.

– If A = ei in Γ , then proof search fails since q �= ei.
– If A = �t� in Δ, then proof search needs to follow the proof trees used in

the proof of Claim 8.1, and applying the induction hypothesis on the open
leaves of these trees allows to conclude in each case.

Theorem 8. Provability in R→ is 2-ExpTime-hard.

Proof. We reduce from the comprehensive expansive reachability problem,
which is 2-ExpTime-hard by Thm.6. From an instance 〈B, qr, q�〉 where

B = 〈Q, d, Tu, Ts〉, we construct a formula F
def
= q� → ϕ(Tu ∪ Ts, qr) defined by

ϕ(∅, qr)
def
= qr , ϕ(T 6 {t}, qr)

def
= �t�→ ϕ(T, qr) . (10)

By Thm. 7, � F if and only if  F . The latter holds if and only if q�, ΔTu∪Ts  qr
since we can only apply (→f

R). Then this occurs if and only if B, Tu∪Ts, q� �e qr, 0̄
by Claim 8.1 and Claim 8.2.

6 Extensions

Adding Multiplicatives. The sequent system LR→ for R→ can be extended to
accommodate further multiplicative connectives: the fusion connective ◦ (aka.
‘co-tenability’ in [1]) and the sentential constant t:

Γ � A
Γ, t � A (tL) � t

(tR)

Γ,A,B � C
Γ,A ◦B � C (◦L)

Γ � A Δ � B
Γ,Δ � A ◦B (◦R)

Let us call LRt
→,◦ the resulting sequent system. The BVASS BF presented in

Sec. 4.2 can be extended in a straightforward manner with the rules of Fig. 3
and by identifying q� with t. Thanks to Thm. 4 and Thm. 2, this shows that
provability in LRt

→,◦ is in 2-ExpTime.
Note that the sequent system LRt

→,◦ is the same as that of intuitionistic
multiplicative contractive linear logic (IMLLC), where →, ◦, and t are usually
noted respectively �, ⊗, and 1.
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Adding Exponentials. In fact, essentially the same reduction from sequent cal-
culus to expansive BVASS reachability can be carried over for the more general
multiplicative exponential fragment of intuitionistic contractive linear logic with
bottom IMELZC, see [11, Prop. 9]. The main differences are that:

1. The exponential connectives incur an exponential blow-up in the number of
states of the constructed BVASS BF : its state space now contains S × 2S!

where S! is the set of exponential subformulæ of F . The subsequent reduction
to coverability in Sec. 4.3 then performs a product with 2S\S! (contractions
in exponential subformulæ being already handled), hence the resulting state
space remains of size 2p(|F |) for some polynomial p.

2. The exponential connectives also require an additional operation of full zero
test : as shown in [11, Lem.3], this operation can be eliminated at no cost in
complexity.

By Thm. 8, Thm. 4 and Thm. 2, we conclude:

Theorem 9. Provability in any logic betweenR→ and IMELZC is 2-ExpTime-
complete.

This applies in particular to Rt
→, IMLLC, and IMELLC. It seems likely that

the non-intuitionistic variantsMLLC and MELLC, i.e. multiplicative and mul-
tiplicative exponential contractive linear logic, are also 2-ExpTime-complete:
the upper bound follows from the bound on IMELZC.

7 Concluding Remarks

Besides closing a longstanding open problem, the proof that R→ is 2-ExpTime-
complete paves the way for new investigations:

– In spite of the high worst-case complexity of BVASS coverability, Majumdar
and Wang [13] have recently presented a practical algorithm with encourag-
ing initial results. The reduction in Sec. 4 allows to transfer their techniques
to R→ provability, but might incur a worst-case exponential blow-up.

– Provability in the related implicational fragmentT→ of ticket entailment has
recently been proven decidable independently by Padovani [16] and Bimbó
and Dunn [3]. Although the complexity of this problem is currently un-
known, the latter proof relies on provability in LRt

→, which we prove to be
2-ExpTime-complete in Sec. 6.

Acknowledgements. The author thanks David Baelde for his excellent sug-
gestion of employing focusing proofs and helpful discussions around their uses.
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Abstract. A connection between lambda calculus and the algebra of
near semi-rings is discussed. Among the results is the following com-
pleteness theorem.

A first-order equation in the language of binary associative distribu-
tive algebras is true in all such algebras if and only if the interpretations
of the first order terms as lambda terms beta-eta convert to one another.
A similar result holds for equations containing free variables.

1 Near Semirings and Bad Algebra

A “near semi-ring” consists of a monoid (S,+, 0) together with a semigroup
(S, ∗) satisfying the right distributive law (x + y) ∗ z = x ∗ z + y ∗ z and the
left annihilator law 0 ∗ x = 0 [11] (for motivation see [13]). Examples are the
non-negative integers (natural numbers), which is a near ring, and the ordinal
numbers. An interesting case is when (S, ∗) possesses an identity 1, and the
monoid (S, ∗, 1) replaces (S, ∗). Now if (S, ∗, 1) is any monoid then Cayley’s
representation sends the point s : S to the function fs : S → S defined by
fs(t) = s∗t ,with f1 = the identity function. This is sometimes called the regular
representation, [12]. Now if + is defined pointwise (fr + fs)(t) = fr(t) + fs(t)
from (S,+, 0), then the Cayley representation satisfies

f0 = the function identically 0
fr + fs = fr+s.

This is the representation theorem of Hoogewijs [7]. Thus if we begin with a
pair of monoids we can use the Cayley representation of (S,+, 0), say (S′,+′, 0′),
where +′ is composition of functions f : S′ → S′, with ∗ lifted to some operation
∗′ on S′ → S′ × S′ → S′. Now we can apply the above Cayley representation of
the result embedding it in (S′ → S′)→ (S′ → S′) so that the operations become

final+ = pointwise composition
final ∗ = composition.

There are, however, interesting examples with more than two binary opera-
tions. One example is the polynomial ring over a field together with substitu-
tion. A second is finite cardinal numbers together with inf , sup, + and ∗. In

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 410–424, 2014.
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each case “lower” operations distribute over “higher” ones. In the latter case,
although each semigroup is a monoid the law of left annihilation fails. This sug-
gests the following definition. A “binary associative distributive (bad) algebra
of height n” consists of a set S together with n+ 1 binary operations ∗0, ..., ∗n
such that for each i = 0, . . . , n, (S, ∗i) is a semigroup and the distributive laws
(r ∗i s) ∗j t = (r ∗j t) ∗i (s ∗j t) hold when j < i. We say that the bad alge-
bra is “monoidal” if there exist n+ 1 elements I0, ..., In : S, such that for each
i = 0, . . . , n, (S, ∗i, Ii) is a monoid and when j > i Ij ∗i x = Ij .

For a given S, a type structure is a map S(0) = S, S(m + 1) is non- empty,
and S(m + 1) ⊂ S(m) → S(m). We can generalize Hoogewijs’ representation
theorem as follows.

Theorem 1. Every bad algebra can be embedded into a type structure.

Proof. The construction embeds a bad algebra of height n into S(n + 1) re-
cursively by starting with ∗n−1 and ∗n and working down the ∗i while up the
S(n − i + 1). At the stage for ∗i the ∗j for j > i are embedded pointwise and
the ∗j for j < i are embedded by definition. The construction clearly works for
the monoidal case. End of proof.

2 Bad Algebra and Lambda Calculus

Some notation will be useful. We adopt for the most part the notation and
terminology of [1].

B := λxyz. x(yz)
K := λxy. x
I := λx. x
1 := λxy. xy.
∼ := beta− eta conversion
→0 := beta− eta reduction.

For the most part we shall use the colon “:” for membership and as an abbre-
viation for “has type”, except when it is used in “:=” for syntactic identity and
definitional equality.

Both Church and Curry observed that the combinators form a monoid under
multiplication B, identity I, left zero KI, and beta-eta conversion. The same is
true for addition λxyuv. xu(yuv), identity KI (the Church numeral 0), left zero
K, and beta-eta conversion ∼. Since these satisfy the right distributive law

(λxyz. x(yz))((λxyuv. xu(yuv))ab) c
∼ (λxyuv. xu(yuv)) ((λxyz. x(yz))ac) ((λxyz. x(yz))bc)

they form a near semi-ring.
Many years ago, see [6], I noticed a generalization of this near semi-ring struc-

ture to a hierarchy of monoids. Define
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An := λxyu1 . . . unv. xu1 . . . un(yu1 . . . unv)

so A0 := B and A1 is Church’s addition. Then combinators form a monoid with
multiplication An, identity K

nI, left zero Kn+1 and beta-eta conversion. There
are level m+ 1 integers n ∼

Am+1(K
mI)(. . . (Am+1(K

mI)(KmI)) . . .) ∼ λu1 . . . umxy. x(. . . (xy) . . .),

which for m = 1 coincide with Church’s finite ordinals. Again the right distribu-
tive law holds. More precisely we have

(associativity) Am(Anxy) ∼ A0(Anx)(Any) if m = n, (distributivity)
Am(Anxy) ∼ An+1(Amx)(Amy) if m < n,

and in addition,

(i) x ∼ Amx(K
mI)

(ii) Amx ∼ Am+1(Kx)I
(iii) K(Amxy) ∼ Am+1(Kx)(Ky)
(iv) Knx ∼ Am(Knx) if m < n.

Thus we have a monoidal bad algebra of height n.
The entire hierarchy of near semi-rings admits a very simple combinatory

theory. If we endow the combinators I,K, and An for n = 0, . . . with their weak
beta reduction rules

I x →1 x
K xy →1 x
Anxyu1...unv →1 xu1 . . . un(yu1 . . . unv)

then termination can be proved. Indeed, one way to prove termination is to
interpret the re-write arrow “→1” as strict descent in a well-ordered structure
with a strictly monotone function. The following was observed in [9].

Let O be the set of countable ordinals and V : O ×O→ O Veblen’s function
defined by

V (0, b) = ωb

V (a, b) = the bth common fixed point of the functions λyV (x, y) for x < a.

LetW = (O, V, 1).W is a structure, in the logician’s sense, for any language with
a single binary function symbol interpreted as V , and any number of individual
constants interpreted as the (finite) ordinal 1. A proper combinator P with
reduction rule

Px1 . . . xn →1 X

is said to terminate in W if for all x1, . . . , xn in O we have
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X < Px1 . . . xn

Theorem 2. [9]; The proper combinators which terminate in W are precisely
those which convert to applicative combinations of I,K and the An.

For our purposes we need only the weaker result that if the simpler structure
(ω, λxy. 2x+ y, 1) is used, then I,K, and all the An terminate. But we can add
to this the reductions

(associativity) Am (Amxy)z →2 Amx(Amyz)
(monoidalitry) Am (KmI)x →2 x

Am x(KmI) →2 x
(annihilation) Am (KnI)x →2 K

nI if n > m

which will be useful below. Our use of the symbol→2 is intended to also include
→1 as our use of the symbol →3 below is intended to include →2. Since →2

obviously satisfies the weak diamond property, each →2 reduction terminates
with a unique normal form. If we add

(distributivity) Am(Anxy)z →3 An+1(Amxz)(Amyz) if m < n

then the weak diamond property holds but it is not so straightforward to verify
Church-Rosser as before. We shall do this in the needed context by a roundabout
argument below. The congruence generated by associativity, monoidalitry, anni-
hilation and distributivity will be referred to as “bad conversion”. Interestingly,
when viewed as lambda terms there are non normalizable combinations; for ex-
ample,

A1IK →→0 λxy. xx

and

(λxy. xx)(λxy. xx)→0 λz. (λxy. xx)(λxy. xx→0 ... .

We believe that this can only happen if K is not in function position. We shall
prove that this can only happen with K or an Am not in function position.

3 Functional Completeness of Bad Algebra for Lambda
Calculus

Simple types are built up from type variables p, q, r, ... by→. We shall adopt the
Church typing discipline for terms requiring sub-terms to be explicitly typed.
Nevertheless, it will be convenient to use Curry style notation

X : T

for X has type T . Fix a type variable s. We define the numerical types
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Num(m) by
Num(0) = s
Num(m+ 1) = Num(m)→ Num(m).

Our combinators have most general (principal) types

Am : (r1 → (...(rm → (p→ q))...))

→ ((r1 → (...(rm → (r → p))...))
→ (r1 → (...(rm → (r → q))...)))

K : p→ (q → p)
I : p→ p.

Now substituting Num(n) for p, q, r and Num(m− i+ n+1) for ri we obtain

Am : Num(m+ n+ 1)→ Num(m+ n+ 2)
K : Num(n)→ Num(n+ 1)
I : Num(n+ 1).

If we suppose thatM is an applicative combination of the Am,K and I such that
every occurrence of an Am or K is in function position then M has a numerical
type and is strongly beta-eta normalizable. Indeed, we may assume that M is in
combinatory normal form, and by conversion (ii), that every occurrence of Am

has two arguments, and by conversion (iii), that every occurrence ofK is in a sub-
term of the form KmI. ThusM is the interpretation of a term in the language of
monoidal bad algebras under the generalized Hoogewijs representation. A term,
not assumed to be in combinatory normal form, where every Am has at least two
arguments and each K occurs is in a sub-term KmI is said to be “equable”. A
conversion generated by the reduction relation →3 is said to be equable if every
term in the conversion is equable.

It is easily seen that every term in an equable conversion can be simply typed
with a numerical type using the typings above for Am,K, and I

If M is equable let M ! result from M by replacing each sub-term AnXY by
λu1...unv. Xu1...un(Y u1...unv), and each maximal KnI by λu1...unv. v. M ! is
a beta reduct of M and M ! has the property

(modesty) If a free variable z occurs in a sub-term Z then Z has numerical
type not larger than the type of z.

Modesty is preserved under beta reduction and eta expansion so it is shared by
the long beta-eta normal form of M !. We now proceed to show the converse.

We say that X is “openly equable” if X is a combination of Am,K, I and the
variables xk, xk+1, ..., xn, for k < or = n, such that X : Num(k), xi : Num(i)
for i = k, ..., n, each occurrence of Am has at least two arguments, and each
occurrence of K is in a sub-term KmI. If X is openly equable and X is in com-
binatory normal form then X ! is modest. If X is openly equable we inductively
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construct a term [xk]X satisfying the same properties as X with k replaced by
k+1 such that ([xk]X)xk →→1 X . This is “bracket abstraction” for our context.

The basis case is X := xk in which case we let [xk]X := I. We can also include
in this step X := KmI in which case we set [xk]X := Km+1I. For the induction
step we distinguish three cases with l > 0.

Case 1: X := xjX1...Xl. Then xj : Num(j), X1 : Num(j − 1)..., X(l) : Num(j−
l) = Num(k), so by modesty xk occurs only in Xl. In this case we can put
[xk]X := A0(xjX1...Xl−1)([xk]X(l)).

Case 2: X := AmX1...Xl. This case is similar to Case 1 if l > 2. If l = 2 then
Xi : Num(k) for i = 1, 2 and we can put [xk]X := Am+1([xk]X1)([xk]X2).

Case 3: X := (KmI)X1...Xl[xk]X := A0((KmI)X1...Xl−1)([xk]Xl).

Theorem 3. (functional completeness) If M is a modest simply typed term of
numerical type then M beta-eta converts to an equable applicative combination
of Am,K, and I.

Proof. By a previous remark it suffices to consider normal M . For modest nor-
mal X with variables xk, xk+1, ..., xn, for k < or = n, such that X : Num(k) and
xi : Num(i) for i = k, ..., n, we construct $X , a combinatory normal applicative
combination of Am,K, I, and the variables xk, xk+1, ..., xn such that X →→1 $X ,
each occurrence of Am has two arguments, and each occurrence of K is in a
sub-term KmI. We proceed by induction and we can write
X := λxk−1...xk−l. xiX1...Xi−k+l where by assumption xj : Num(j), and
Xj : Num(i − j). If l > 0 the induction hypothesis applies to
λxk−2...xk−l. xiX1...Xi−k+l and we can apply [xk−1]. Otherwise, xk can only
occur in Xi−k by modesty. Thus X := Y Z and the induction hypothesis applies
to Y and Z. End of proof.

4 Logical Completeness of Lambda Calculus for Bad
Algebra

Lemma 1. If X is openly equable, X ! is modest and X →1 Y then

[xk]X →→3 [xk]Y.

Proof. By induction on the length of X . The result follows immediately from
the induction hypothesis unless the contracted redex is the head redex. If the
contracted redex is the head redex we distinguish two cases

Case 1: X = KmIX1...Xl.
Subcase 1: m > 0. If l > 1 then Y = Km−1IX2...Xl and [xk]X →1 [xk]Y . If
l = 1 then [xk]X →2 [xk]Y
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Subcase 2: m = 0. In case l = 1, [xk]X →2 [xk]Y . In case l > 1, by modesty
xk occurs only in Xl so [xk]X = A0(IX1...Xl−1)([xk]X1) →1 [xk]Y , since X is
(openly) equable.

Case 2: X = AmX1X2X3...Xl. This case is clear if l > 3 since X is modest. If
l = 3 then

Subcase 1: m = 0. So Y = X1(X2X3), [xk]X = A0(A0X1X2)([xk]X3) →2 by
associativity A0X1(A0X2([xk]X3)) = [xk]Y

Subcase 2: m > 0. Then Y = Am−1(X1X3)(X2X3). As before [xk]X =
A0(AmX1X2)([xk]X3) →3 by distributivity = Am(A0X1[xk]X3)(A0X2[xk]X3)
= [xk]Y . End of proof.

Lemma 2. If X is openly equable, X ! is modest and X →3 Y then [xk]X)→→3

[xk]Y .

Proof. We have [xk](Am(Am′XY )Z = by modesty (Am(Am′ [xk]X [xk]Y )
[xk]Z →3 by distributivity (Am′(Am[xk]X [xk]Z)(Am[xk]Y [xk]Z) = [xk]
(Am′(AmXZ)(AmY Z) whenm

′ > m. Also whenm′ = m, [xk](Am(AmXY )Z =
by modesty (Am(Am[xk]X [xk]Y )[xk]Z →2 by associativity (Am([xk]
X(Am[xk]Y [xk]Z) = [xk](AmX(AmY Z). The lemma now follows from Lemma
1. End of proof.

Lemma 3. If X is openly equable, X ! is modest, and Y is the beta normal form
of X then X →→3 $Y where $Y is as in the proof of Theorem 3.

Proof. There is a standard reduction ofX to Y . The proof is by induction on the
length of the standard reduction with a subsidiary induction on the length of X .
Here we note that if X is an application then either X begins with a variable or
X begins with a combinatory redex and contracting the redex commutes with
the ! operation, or X is combinatory head normal and X ! begins with λ. We
consider these cases.

Case 1: X begins with a variable. Then the induction hypothesis applies to the
arguments of the variable.

Case 2:X has a combinatory head redex. Then the induction hypothesis applies
to the result of contracting the head redex.

Case 3: X is in combinatory head normal form, say X := AmUV . Thus
X ! = λu1...unv. Uu1...un(V u1...unv). Now Y = λu1...unv. Z and the induction
hypothesis applies to Uu1...un(V u1...unv) and Z. Thus Uu1...un(V u1...unv) →
→3 $Z, so by Lemma 2

[u1, ..., un, v]Uu1...un(V u1...unv)→→3 [u1, ..., un, v]$Z hence

X = [u1, ..., un, v]Uu1...un(V u1...unv)

→→3 [u1, ..., un, v]$Z = $Y . End of proof.

Lemma 3 clearly extends to beta-eta normal forms since [x](Xx) = A0XI.
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Proposition 1. (Church-Rosser theorem for →3) If M and N are equable and
are linked by an equable conversion then there exists an equable P such that
M →→3 P3 ←← N . Moreover P can be taken to be in combinatory normal form.

Proof. If M and N are linked by an equable conversion then they beta-eta
convert. Thus there exists beta-eta normal Q such thatM and N both beta- eta
reduce to Q. By Lemma 3 M →→3 Q3 ←← N . End of proof.

Theorem 4. (logical completeness); If M and N are normal equable applicative
combinations of Am,K and I thenM bad converts to N if and only ifM beta-eta
converts to N .

We can state a corollary to Theorem 4 in informal terms as follows. A first-
order equation in the language of monoidal bad algebras is true in all monoidal
bad algebras if, and only if, the corresponding lambda terms beta-eta convert.
A similar result holds for equations containing free variables. For this it suffices
to extend our typing to intersection types. The first order free variables appear
as parameters with types which are intersections of numerical types. We shall
have a less trivial application of intersection types below.

5 The B, I Monoid

The lowest level, the monoid generated by B and I alone, turns out to be of
independent interest. It is the “positive part” of Richard Thompson’s group F ,
and it generates this group. In 1965, Thompson discovered this group in connec-
tion to his theorem characterizing the groups with solvable word problems. The
group F was rediscovered by Peter Freyd and Alex Heller in 1993 in connection
with homotopy retracts x ∗ x ≡ x which do not split y ∗ z ≡ I and x ≡ z ∗ y. It
will be convenient to write Bxy in infix “monoid” notation x ∗ y. The following
beta-eta conversions hold

Nx ∼ x ∗ ... ∗ x ∗ 1 if N is the Church numeral for n
and there are n occurrences of x

B(x ∗ y) ∼ Bx ∗By
B ∗N ∼ N ∗B
B(Bx) ∗B ∼ B ∗Bx
K(x ∗ y) ∼ Bx ∗Ky
Kx ∼ Bx ∗ 0
B(Bx) ∗K ∼ K ∗ x.

Note that the 3rd and 4th equation have B not in function position in contrast
to the previous paragraphs. “Monomials” have the form

B(...(BA)...) d occurrences of B

where A is one of the atoms B,K or a Church numeral N . d is the “degree” of
the monomial and A is its “sort”. A product of monomials is a “multinomial”.
We have the
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Lemma 4. Every applicative combination of B,K, I and Church numerals con-
verts to a multinomial.

Proof. Observe that if P is normal w.r.t. weak beta reductions and associativity
then P can be reduced a product of monomials by the reductions

BI →4 1
Nx→4 x ∗ ... ∗ x ∗ 1 if N is the Church numeral for n

and there are n occurrences of x

B(x ∗ y)→4 Bx ∗By
K(x ∗ y)→4 Bx ∗Ky
Kx→4 Bx ∗ 0.

In a multinomial M , if for any two consecutive monomials
B(...(BA′)...) ∗B(.....(BA”).....),
of degrees d′ and d′′, we have |d′′ − d′| < 2, M is said to be “semi-regular”. A
maximal consecutive sub-product of monomials of the same degree is called a
“block” of M . If M is semi-regular and all of its blocks have the same number
of monomials we say that M is “regular”.

Proposition 2. Every multinomial converts to one which is regular.

This can be seen by inserting factors B(...(B1)...).
Church observed that the Church numeral for n applied to the Church nu-

meral for m beta reduces to the Church numeral for mn. Consequently, every
applicative combination of Church numerals beta-eta strongly normalizes. We
have already proved that every applicative combination of B,K, I, and Church
numerals, where every occurrence of B and K is in function position, is strongly
normalizable. We shall now show that the condition on K can be relaxed. Given
a regular multinomial M we may writeM =M(m) ∗ ... ∗M(1) where eachM(i)
is a block. Put s(i) = the number of monomials in M(i) whose sort is B or K.
We call the sequence s(1)...s(m) the “statistics of M”.

Theorem 5. An applicative combination of B,K, and Church numerals where
each occurrence of B is in function position is strongly normalizable.

Proof. First we will show that if a→1 or→4 reduct of a combination is strongly
beta-eta normalizable then so is the combination. We show this by showing that
intersection types [4] lift from contracta to redexes. Lifting is straightforward
for combinatory redexes. As to →4 consider the following beta-eta conv’s. Note
that in each, eta is only used in the reductions from right to left. We observe
that in the reduction from left to right, if a given r.h.s. has an intersection type
then its expansion has the same type. In addition, in the reduction from right to
left, if a term has an intersection type then its reduct has the same type by the
subject reduction theorem. This includes eta reductions. These remarks cover all
→4 except the special case (1x)→4 x. For this case, observe that in application
x will always be a closed term beginning with lambda, so (1x) has the desired
type by the normal form for intersection types.
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(i) B(Bxy)z →→0 λv. (Bxy)(zv)→→0 λv. x(y(zv))0 ←← Bx(Byz)
(ii) Kx →0 λy. x 0 ← λyv. xv 0 ←← λyv. x(KIyv) 0 ←← λy. Bx(KIy) 0 ←

(Bx)(KI)
(iii) K(Bxy)→0 λu(Bxy)→→0 λuv. x(yv) 0 ←← λuv. x(yv) 0 ←← λuv. x(Kyu)

0 ←← λu.(Bx)(Kyu)0 ←← B(Bx)(Ky)
(iv) B(Bxy)→→0 λuv. (Bxy)(uv)→0 λuv. x(y(uv))

0 ←← λuv. x(Byuv) 0 ←← λu. (Bx)(Byu) 0 ←← B(Bx)(By)
(v) Nx →0 λy. x(. . . (xy) . . .) 0 ←← . . . 0 ←← λy. x((...(Bxx)...)y) 0 ←←

Bx(. . . (Bxx) . . .). The cases for the remaining are straightforward.

Now suppose that M is a multinomial all of whose sorts are either K or
Church numerals. We shall show that M has an intersection type. To simplify
notation we shall assume that each Church numeral is 2. The cases of 0 and 1
are straightforward and the cases of n > 2 are treated exactly like the case of 2,
except for much notational complication. Suppose that M = M(m) ∗ ... ∗M(1)
where each M(i) is a monomial of degree d(i) with sort 2 or K. We construct a
rooted tree with the following properties.

(0) The root is a line incident with only a single point; the “low point”.
(1) The tree is binary branching; that is, each point has either 0 (a leaf), 1, or

2 ancestors. All points, except the low point, have a unique descendent.
(2) Each path from the root to a leaf has length m + 1, as measured by the

number of points on the path.
(3) Each line of the tree is labeled with a simple type. This includes the root.

The types associated with lines joining a point to its ancestors are “ancestor
types”, and the type associated with the line joining a point to its descendent
(or, in the case of the low point, the type associated with the root) is the
“descendent type”.

The tree will be constructed and the types will be assigned in such a way that

(i) if M(i) has a Church numeral sort then each point at depth i has exactly
two ancestors and if T ”, T ′ are the types associated with these two ancestors
and T is the descendent type then

M(i) : (T ” ∧ T ′)→ T

(ii) If M(i) has K as its sort then each point at depth i has a unique ancestor
and if T ′ is a type associated with this ancestor and T is the descendent
type then

M(i) : T ′ → T.

First we construct the tree without labels. This is completely determined by
(i) and (ii). Next, we label each line with 1 or 2 simple types s.t.

(a) A line incident with a leaf, and the root, are labeled with a single simple
type.
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(b) All other lines are labeled with two simple types: +type and −type. The
pair of types associated with a given line will have to be unified in order to
achieve the final labelling. This preliminary labelling goes as follows.

We define the revised degree

d(i)′ =

{
d(i) if the sort of M(i) is K
d(i) + 1 is the sort of M(i) is 2

and let d = max{d(i)′|i = 1, . . . ,m}. Set e(i) = d− d(i) + s(1) + . . .+ s(i− 1).
If the sort of M(i) is 2 then we consider any point at depth i and select new

type variables r1 . . . rd(i), p1, . . . pe(i), p, q1, . . . , qe(i), q, r. The left ancestor of this
point gets −type
r1 → (. . . (rd(i) → ((q1 → (. . . (qe(i) → q) . . .)))) . . .)
and the right ancestor gets −type

r1→(. . . (rd(i) → ((q1 → (. . . (qe(i) → q) . . .))→ (p1 → (. . . (pe(i) → r) . . .)))) . . .)

and the descendent of this point gets +type

r1 → (. . . (rd(i) → (p→ (p1 → (. . . (pe(i) → r) . . .))) . . .).

If the sort of this point is K then we consider any point at depth i and select
new type variables r1 . . . rd(i), p, q1, . . . , qe(i), q. The ancestor point of this point
gets −type

r1 → (. . . (rd(i) → (q1 → (. . . (qe(i) → q) . . .))) . . .)

and the descendent of this point gets +type

r1 → (. . . (rd(i) → (p→ (q1 → (. . . (qe(i) → q) . . .)))) . . .).

Now if M(i) has sort 2 then

r1 → (. . . (rd(i) → (p→ (q1 → (. . . (qe(i) → q) . . .)))) . . .)∧
r1→ (. . . (rd(i) → ((q1→ (. . . (qe(i) → q) . . .))→ (p1 → (. . . (pe(i) → r) . . .)))) . . .)

which is Coppo and Dezani [4] type equivalent to

r1 →
(
. . .
(
rd(i) →

((
p→

(
q1 →

(
. . .
(
qe(i) → q

)
. . .
)))

∧
((q1 →

(
. . .
(
qe(i) → q

)
. . .
)
→
(
p1 →

(
. . .
(
pe(i) → r

)
. . .
))))

. . .
)

so (i) and (ii) are clearly satisfied.
Finally there is a single substitution which simultaneously unifies all the pairs

of +type and −type. This is defined directly by recursion on m− the depth of
the point noting that any such pair have the same number of components.

Now if we put the same variable x at each leaf with type Coppo and Dezani
equivalent to the intersection of all the types at the leaves we see that Mx has
and is strongly normalizable. End of proof.
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6 Church’s Theorem

If we endow the set of natural numbers with the discrete topology and the set of
functions from natural numbers to natural numbers with the product topology
then a term M could compute a uniformly continuous functional from functions
to numbers if there exists a k such that for any sequence of Church numerals
N(1) . . .N(k)

MN(1) . . .N(k)

converts to a Church numeral.
A consequence of our simple type assignment is that if M is an applicative

combination of the Am,K and I such that every occurrence of an Am or K
is in function position then M computes a uniformly continuous functional.
The reason is that M has a numerical type, and so we can pick the types of
N(1), . . . , N(k) so that the type of

MN(1) . . .N(k)

is Num(2), and the only long beta-eta normal forms of type Num(2) are Church
numerals. Similarly, if M is an applicative combination of B,K and Church
numerals such that every Church numeral is in function position then M is
strongly normalizable and M computes a uniformly continuous functional. This
can be seen as follows. We have the following beta-eta conversions

B(x ∗ y) ∼ Bx ∗By
K(x ∗ y) ∼ Bx ∗Ky
K(Bx) ∼ B ∗Kx
B(Kx) ∼ K(Kx)
Kx ∗ y ∼ Kx
K ∗Bx ∼ B(Bx) ∗K
K ∗B ∼ BB ∗K

K ∗KmI ∼ KmI if m > 0.
The first four permit a multinomial form where each monomial has the form

(a) BmB
(b) Bm(KI)
(c) K

The fifth conversion insures that if a monomial of the form (b) withm = 0 occurs
then it is the rightmost monomial in the multinomial. Finally, the conversions
six, seven, and eight, together with the first, insure that all K’s occur rightmost
left of such a monomial, and all B’s rightmost left of them.

It follows that every monomial is beta-eta convertible to one built up from I
by the operation

X →5 BX ∗B . . .B ∗K . . .K
possibly with KI appended. Now it is clear that
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B . . .B ∗K . . .K ∗KI

has a simple type of the form Num(n2)→ Num(n1). Thus by induction if X has
a simple type

Num(nk)→ (. . . (Num(n2)→ Num(n1) . . .))

then

BX ∗B . . .B ∗K . . . ∗K ∗KI

has simple type

Num(n′k+1)→ (. . . (Num(n′2)→ Num(n′1) . . .).

Now we can proceed as before. The multinomialM is said to be non-decreasing
(non-increasing) if the degrees of the blocks of M are non-decreasing (non-
increasing) from right to left.

Examples:

(i) An applicative combination of B,K and Church numerals where each pos-
itive Church numeral is in function position converts to a non-decreasing
multinomial.

(ii) An applicative combination of B,K, and Church numerals where each oc-
currence of B, and K is in function position converts to a multinomial all
of whose sorts are Church numerals (statistics all 0’s).

(iii) A regular,non-decreasing multinomial with no sort a positive integer, whose
statistics s(1) . . . s(m) satisfies

i > s(i) + . . .+ s(1)

converts to a non-increasing multinomial.

A binary product M ′′ ∗M ′ of regular monomials with the same number of
blocks and statistics s(1)′′ . . . s(m)′′, s(1)′ . . . s(m)′ respectively is called an “os-
cillator” ifM ′′ is non-increasing,M ′ is non-decreasing, and s(i)′′ = s(m+1−i)′.
A multinomial M is said to be “harmonic” if it is a product of oscillators.

Examples(cont’d): the following kinds of multinomials convert to harmonic ones

(iv) Monomials where every sort is an integer.

(v) M ∗M , whereM is regular,non-decreasing, no sort is a positive integer and
the statistics s(1) . . . s(m) satisfy i > s(i) + . . .+ s(1).

We have the following generalization of Church’s theorem.
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Theorem 6. If M is harmonic then M is strongly normalizable and for suffi-
ciently large k, for any sequence of Church numerals N(1) . . . N(k)

MN(1) . . .N(k)

converts to a Church numeral.

Proof. Ommitted for lack of space.

7 The Game of Alonzo

We would like to know Theorem 5 for all applicative combinations of B,K, and
Church numerals. We would like to know that every applicative combination of
B,K, and Church numerals is strongly normalizable. Indeed, we would like to
know the truth of the following conjecture.

Conjecture: If M is a product of monomials each of whose sorts is either B or
the Church numeral 2, then for sufficiently large k,

M 1 . . . 1︸ ︷︷ ︸ conv.1
|
k .

Now M 1 can be calculated as follows:

BP (M 1) ∼ P ∗ (M 1)
B(P ∗Q) ∼ BP ∗BQ
B 1 ∼ 1
2 P ∼ P ∗ P

so we can formulate an equivalent conjecture about a game, which we call the
“game of Alonzo”. The game of Alonzo consists of n players and a dealer. The
players and the dealer are seated around a circular table. Play takes place
counter-clockwise around the table (right to left). Each player has a stack of
1, 000$ chips and is dealt a single card, which is either an ace (2) or a duce (B),
by the dealer. As play rotates counter-clockwise to a given player three rules
apply; the “ante”, the “cashout”, and the “split”.

(1) If the player has at least one chip then he ante’s up by putting one 1, 000$
chip in the center of the table. This is the “ante”.

(2) If the player has no chips and his card is a duce then he must pay for and
give one 1, 000$ chip to each player to his left and to the right of the dealer.
These chips are bought and payed for at a bank separate from the game.
This is “cashing out”. The player then leaves the game, unless he is the last
player.

(3) If a player has no chips and his card is an ace then he gets to play a copy
of each of the hands of the players to his left and to the right of the dealer.
Each copy gets the corresponding number of chips and all can be played
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independently. This is “splitting”. If there are no such players to his left he
leaves the game unless he is the last player. Play continues to rotate counter-
clockwise through the dealer and no new cards are dealt. Play ends when
there is only one player left, and he wins the pot.

Conjecture: Every game ends.
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Abstract. This paper presents a language-independent proof system for reach-
ability properties of programs written in non-deterministic (e.g. concurrent) lan-
guages, referred to as all-path reachability logic. It derives partial-correctness
properties with all-path semantics (a state satisfying a given precondition reaches
states satisfying a given postcondition on all terminating execution paths). The
proof system takes as axioms any unconditional operational semantics, and is
sound (partially correct) and (relatively) complete, independent of the object lan-
guage; the soundness has also been mechanized (Coq). This approach is imple-
mented in a tool for semantics-based verification as part of the K framework.

1 Introduction

Operational semantics are easy to define and understand. Giving a language an opera-
tional semantics can be regarded as “implementing” a formal interpreter. Operational
semantics require little formal training, scale up well and, being executable, can be
tested. Thus, operational semantics are typically used as trusted reference models for
the defined languages. Despite these advantages, operational semantics are rarely used
directly for program verification (i.e. verifying properties of a given program, rather
than performing meta-reasoning about a given language), because such proofs tend to
be low-level and tedious, as they involve formalizing and working directly with the
corresponding transition system. Hoare or dynamic logics allow higher level reason-
ing at the cost of (re)defining the language as a set of abstract proof rules, which are
harder to understand and trust. The state-of-the-art in mechanical program verification
is to develop and prove such language-specific proof systems sound w.r.t to a trusted
operational semantics [1–3], but that needs to be done for each language separately.

Defining more semantics for the same language and proving the soundness of one
semantics in terms of another are highly uneconomical tasks when real programming
languages are concerned, often taking several years to complete. Ideally, we would like
to have only one semantics for a language, together with a generic theory and a set of
generic tools and techniques allowing us to get all the benefits of any other semantics
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without paying the price of defining other semantics. Recent work [4–7] shows this
is possible, by proposing a language-independent proof system which derives program
properties directly from an operational semantics, at the same proof granularity and
compositionality as a language-specific axiomatic semantics. Specifically, it introduces
(one-path) reachability rules, which generalize both operational semantics reduction
rules and Hoare triples, and give a proof system which derives new reachability rules
(program properties) from a set of given reachability rules (the language semantics).

However, the existing proof system has a major limitation: it only derives reachabil-
ity rules with a one-path semantics, that is, it guarantees a program property holds on
one but not necessarily all execution paths, which suffices for deterministic languages
but not for non-deterministic (concurrent) languages. We here remove this limitation,
proposing the first generic all-path reachability proof system for program verification.

Using matching logic [8] as a configuration specification formalism (Section 2),
where a pattern ϕ specifies all program configurations that match it, we first introduce
the novel notion of an all-path reachability rule ϕ ⇒∀ ϕ′ (Section 3), where ϕ and ϕ′

are matching logic patterns. Rule ϕ ⇒∀ ϕ′ is valid iff any program configuration satis-
fying ϕ reaches, on any complete execution path, some configuration satisfying ϕ′. This
subsumes partial-correctness in non-deterministic languages. We then present a proof
system for deriving an all-path reachability rule ϕ⇒∀ ϕ′ from a set S of semantics rules
(Section 4). S consists of reduction rules ϕl ⇒∃ ϕr, where ϕl and ϕr are simple patterns
as encountered in operational semantics (Section 6), which can be non-deterministic.
The proof system derives more general sequents “S,A �C ϕ ⇒∀ ϕ′”, with A and
C two sets of reachability rules. Intuitively,A’s rules (axioms) are already established
valid, and thus can be immediately used. Those in C (circularities) are only claimed
valid, and can be used only after taking execution steps based on the rules in S or A.
The most important proof rules are

Step :
|= ϕ→

∨
ϕl⇒∃ϕr ∈ S ∃FreeVars(ϕl) ϕl

|= ∃c (ϕ[c/�] ∧ ϕl[c/�]) ∧ ϕr → ϕ′ for each ϕl ⇒∃ ϕr ∈ S
S,A �C ϕ⇒∀ ϕ′

Circularity :

S,A �C∪{ϕ⇒∀ϕ′} ϕ⇒∀ ϕ′

S,A �C ϕ⇒∀ ϕ′

Step is the key proof rule which deals with non-determinism: it derives a sequent where
ϕ reaches ϕ′ in one step on all paths. The first premise ensures that any configuration
satisfying ϕ has successors, the second that all successors satisfy ϕ′ (� is the configu-
ration placeholder). Circularity adds the current goal to C at any point in a proof, and
generalizes language-independently the various language-specific axiomatic semantics
invariant rules (this form was introduced in [4]).

We illustrate on examples how our proof system enables state exploration (similar
to symbolic model-checking), and verification of program properties (Section 6). We
show that our proof system is sound and relatively complete (Section 5). We describe
our implementation of the proof system as past of the K framework [9] (Section 7).
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Contributions. This paper makes the following specific contributions:

1. A language-independent proof system for deriving all-path reachability properties,
with proofs of its soundness and relative completeness; the soundness result has
also been mechanized in Coq, to serve as a foundation for certifiable verification.

2. An implementation of it as part of the K framework.

2 Matching Logic

Here we briefly recall matching logic [8], which is a logic designed for specifying
and reasoning about arbitrary program and system configurations. A matching logic
formula, called a pattern, is a first-order logic (FOL) formula with special predicates,
called basic patterns. A basic pattern is a configuration term with variables. Intuitively,
a pattern specifies both structural and logical constraints: a configuration satisfies the
pattern iff it matches the structure (basic patterns) and satisfies the constraints.

Matching logic is parametric in a signature and a model of configurations, making it
a prime candidate for expressing state properties in a language-independent verification
framework. The configuration signature can be as simple as that of IMP (Fig. 3), or as
complex as that of the C language [10] (with more than 70 semantic components).

We use basic concepts from multi-sorted first-order logic. Given a signature Σ which
specifies the sorts and arities of the function symbols (constructors or operators) used
in configurations, let TΣ(Var) denote the free Σ-algebra of terms with variables in Var.
TΣ,s(Var) is the set of Σ-terms of sort s. A valuation ρ :Var→T with T a Σ-algebra ex-
tends uniquely to a (homonymous) Σ-algebra morphism ρ : TΣ(Var)→T . Many math-
ematical structures needed for language semantics have been defined as Σ-algebras,
including: boolean algebras, natural/integer/rational numbers, lists, sets, bags (or mul-
tisets), maps (e.g., for states, heaps), trees, queues, stacks, etc.

Let us fix the following: (1) an algebraic signature Σ, associated to some desired
configuration syntax, with a distinguished sort Cfg, (2) a sort-wise infinite set Var of
variables, and (3) a Σ-algebra T , the configuration model, which may but need not be a
term algebra. As usual,TCfg denotes the elements ofT of sort Cfg, called configurations.

Definition 1. [8] A matching logic formula, or a pattern, is a first-order logic (FOL)
formula which additionally allows terms in TΣ,Cfg(Var), called basic patterns, as predi-
cates. A pattern is structureless if it contains no basic patterns.

We define satisfaction (γ, ρ) |= ϕ over configurations γ∈TCfg, valuations ρ : Var→T
and patterns ϕ as follows (among the FOL constructs, we only show ∃):

(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ :Var→T with ρ′(y) = ρ(y) for all y ∈ Var\X
(γ, ρ) |= π iff γ = ρ(π) where π ∈ TΣ,Cfg(Var)

We write |= ϕ when (γ, ρ) |= ϕ for all γ ∈ TCfg and all ρ : Var→ T .

A basic pattern π is satisfied by all the configurations γ that match it; in (γ, ρ) |= π
the ρ can be thought of as the “witness” of the matching, and can be further constrained
in a pattern. For instance, the pattern from Section 6
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〈x :=x+1 || x :=x+1, x �→n〉 ∧ (n = 0 ∨ n = 1)

is matched by the configurations with code “x :=x+1 || x :=x+1” and state mapping
program variable x into integer n with n being either 0 or 1. We use italic for mathe-
matical variables in Var and typewriter for program variables (program variables are
represented in matching logic as constants of sort PVar, see Section 6).

Next, we recall how matching logic formulae can be translated into FOL formulae, so
that its satisfaction becomes FOL satisfaction in the model of configurations, T . Then,
we can use conventional theorem provers or proof assistants for pattern reasoning.

Definition 2. [8] Let � be a fresh Cfg variable. For a pattern ϕ, let ϕ� be the FOL
formula formed from ϕ by replacing basic patterns π ∈ TΣ,Cfg(Var) with equalities� = π.
If ρ : Var→ T and γ ∈ TCfg then let the valuation ργ : Var ∪ {�} → T be such that
ργ(x) = ρ(x) for x ∈ Var and ργ(�) = γ.

With the notation in Definition 2, (γ, ρ) |= ϕ iff ργ |= ϕ�, and |= ϕ iff T |= ϕ�. Thus,
matching logic is a methodological fragment of the FOL theory of T . We drop � from
ϕ� when it is clear in context that we mean the FOL formula instead of the matching
logic pattern. It is often technically convenient to eliminate � from ϕ, by replacing �
with a Cfg variable c and using ϕ[c/�] instead of ϕ. We use the FOL representation in
the Step proof rule in Fig. 1, and to establish relative completeness in Section 5.

3 Specifying Reachability

In this section we define one-path and all-path reachability. We begin by recalling some
matching logic reachability [6] notions that we need for specifying reachability.

Definition 3. [6] A (one-path) reachability rule is a pair ϕ⇒∃ ϕ′, where ϕ and ϕ′ are
patterns (which can have free variables). Rule ϕ ⇒∃ ϕ′ is weakly well-defined iff for
any γ ∈ TCfg and ρ : Var→ T with (γ, ρ) |= ϕ, there exists γ′ ∈ TCfg with (γ′, ρ) |= ϕ′. A
reachability system is a set of reachability rules. Reachability system S is weakly well-
defined iff each rule is weakly well-defined. S induces a transition system (T ,⇒TS ) on
the configuration model: γ ⇒TS γ

′ for γ, γ′ ∈ TCfg iff there is some rule ϕ ⇒∃ ϕ′ in S
and some valuation ρ : Var→ T with (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′. A⇒TS -path is a finite
sequence γ0⇒TS γ1⇒TS ...⇒

T
S γn with γ0,...,γn ∈ TCfg. A ⇒TS -path is complete iff it is

not a strict prefix of any other⇒TS -path.

We assume an operational semantics is a set of (unconditional) reduction rules “l⇒∃
r if b”, where l, r ∈ TΣ,Cfg(Var) are program configurations with variables and b ∈
TΣ,Bool(Var) is a condition constraining the variables of l, r. Styles of operational seman-
tics using only such (unconditional) rules include evaluation contexts [11], the chemical
abstract machine [12] and K [9] (see Section 6 for an evaluation contexts semantics).
Several large languages have been given semantics in such styles, including C [10]
(about 1200 rules) and R5RS Scheme [13]. The reachability proof system works with
any set of rules of this form, being agnostic to the particular style of semantics.

Such a rule “l⇒∃ r if b” states that a ground configuration γ which is an instance of
l and satisfies the condition b reduces to an instance γ′ of r. Matching logic can express
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terms with constraints: l ∧ b is satisfied by exactly the γ above. Thus, we can regard
such a semantics as a particular weakly well-defined reachability system S with rules
of the form “l ∧ b ⇒∃ r”. The weakly well-defined condition on S guarantees that if γ
matches the left-hand-side of a rule in S, then the respective rule induces an outgoing
transition from γ. The transition system induced by S describes precisely the behavior
of any program in any given state. In [4–6] we show that reachability rules capture
one-path reachability properties and Hoare triples for deterministic languages.

Formally, let us fix an operational semantics given as a reachability system S. Then,
we can specify reachability in the transition system induced by S

Definition 4. An all-path reachability rule is a pair ϕ⇒∀ ϕ′ of patterns ϕ and ϕ′.
An all-path reachability rule ϕ ⇒∀ ϕ′ is satisfied, S |= ϕ⇒∀ ϕ′, iff for all complete

⇒TS -paths τ starting with γ ∈ TCfg and for all ρ : Var → T such that (γ, ρ) |= ϕ, there
exists some γ′ ∈ τ such that (γ′, ρ) |= ϕ′.

A one-path reachability rule ϕ ⇒∃ ϕ′ is satisfied, S |= ϕ⇒∃ ϕ′, iff for all γ ∈ TCfg

and ρ : Var→ T such that (γ, ρ) |= ϕ, there is either a⇒TS -path from γ to some γ′ such
that (γ′, ρ) |= ϕ′, or there is a diverging execution γ⇒TS γ1 ⇒TS γ2 ⇒TS · · · from γ.

The racing increment example in Section 6 can be specified by

〈x :=x+1 || x :=x+1, x �→m〉 ⇒∀ ∃n (〈skip, x �→n〉 ∧ (n = m +Int 1 ∨ n = m +Int 2)

which states that every terminating execution reaches a state where execution of both
threads is complete and the value of x has increased by 1 or 2 (this code has a race).

A Hoare triple describes the resulting state after execution finishes, so it corresponds
to a reachability rule where the right side contains no remaining code. However, all-path
reachability rules are strictly more expressive than Hoare triples, as they can also specify
intermediate configurations (the code in the right-hand-side need not be empty) Reach-
ability rules provide a unified representation for both language semantics and program
specifications: ϕ ⇒∃ ϕ′ for semantics and ϕ ⇒∀ ϕ′ for all-path reachability specifi-
cations. Note that, like Hoare triples, reachability rules can only specify properties of
complete paths (that is, terminating execution paths). One can use existing Hoare logic
techniques to break reasoning about a non-terminating program into reasoning about its
terminating components.

4 Reachability Proof System

Fig. 1 shows our novel proof system for all-path reachability. The target language is
given as a weakly well-defined reachability system S. The soundness result (Thm. 1)
guarantees that S |= ϕ ⇒∀ ϕ′ if S � ϕ ⇒∀ ϕ′ is derivable. Note that the proof system
derives more general sequents of the form S,A �C ϕ ⇒∀ ϕ′, where A and C are
sets of reachability rules. The rules in A are called axioms and rules in C are called
circularities. If either A or C does not appear in a sequent, it means the respective set
is empty: S �C ϕ ⇒∀ ϕ′ is a shorthand for S, ∅ �C ϕ ⇒∀ ϕ′, and S,A � ϕ ⇒∀ ϕ′ is
a shorthand for S,A �∅ ϕ ⇒∀ ϕ′. Initially, bothA and C are empty. Note that “→” in
Step and Consequence denotes implication.
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Step :
|= ϕ→

∨
ϕl⇒∃ϕr ∈ S ∃FreeVars(ϕl) ϕl

|= ∃c (ϕ[c/�] ∧ ϕl[c/�]) ∧ ϕr → ϕ′ for each ϕl ⇒∃ ϕr ∈ S
S,A �C ϕ⇒∀ ϕ′

Axiom :

ϕ⇒∀ ϕ′ ∈ A
S,A �C ϕ⇒∀ ϕ′

Reflexivity :
·

S,A � ϕ⇒∀ ϕ

Transitivity :

S,A �C ϕ1 ⇒∀ ϕ2 S,A∪ C � ϕ2 ⇒∀ ϕ3

S,A �C ϕ1 ⇒∀ ϕ3

Case Analysis :

S,A �C ϕ1 ⇒∀ ϕ S,A �C ϕ2 ⇒∀ ϕ
S,A �C ϕ1 ∨ ϕ2 ⇒∀ ϕ

Abstraction :

S,A �C ϕ⇒∀ ϕ′ X ∩ FreeVars(ϕ′) = ∅
S,A �C ∃X ϕ⇒∀ ϕ′

Consequence :

|= ϕ1 → ϕ′1 S,A �C ϕ′1 ⇒∀ ϕ′2 |= ϕ′2 → ϕ2

S,A �C ϕ1 ⇒∀ ϕ2

Circularity :

S,A �C∪{ϕ⇒∀ϕ′} ϕ⇒∀ ϕ′

S,A �C ϕ⇒∀ ϕ′

Fig. 1. Proof system for reachability. We make the standard assumption that the free variables of
ϕl ⇒∃ ϕr in the Step proof rule are fresh (e.g., disjoint from those of ϕ⇒∀ ϕ′).

The intuition is that the reachability rules inA can be assumed valid, while those in
C have been postulated but not yet justified. After making progress from ϕ (at least one
derivation by Step or by Axiom with the rules in A), the rules in C become (coinduc-
tively) valid (can be used in derivations by Axiom). During the proof, circularities can
be added to C via Circularity, flushed into A by Transitivity, and used via Axiom.
The desired semantics for sequent S,A �C ϕ ⇒∀ ϕ′ (read “S with axioms A and
circularities C proves ϕ⇒∀ ϕ′”) is: ϕ⇒∀ ϕ′ holds if the rules inA hold and those in C
hold after taking at least on step from ϕ in the transition system (⇒TS ,T ), and if C � ∅
then ϕ reaches ϕ′ after at least one step on all complete paths. As a consequence of this
definition, any rule ϕ ⇒∀ ϕ′ derived by Circularity has the property that ϕ reaches ϕ′

after at lest one step, due to Circularity having a prerequisiteS,A �C∪{ϕ⇒∀ϕ′} ϕ⇒∀ ϕ′
(with a non-empty set of circularities). We next discuss the proof rules.

Step derives a sequent where ϕ reaches ϕ′ in one step on all paths. The first premise
ensures any configuration matching ϕ matches the left-hand-side ϕl of some rule in S
and thus, as S is weakly well-defined, can take a step. Formally, if (γ, ρ) |= ϕ, then
there exists some rule ϕl ⇒∃ ϕr ∈ S and some valuation ρ′ of the free variables of
ϕl such that (γ, ρ′) |= ϕl, and thus γ has at least one ⇒TS -successor generated by the
rule ϕl ⇒∃ ϕr. The second premise ensures that each⇒TS -successor of a configuration
matching ϕ matches ϕ′. Formally, if γ ⇒TS γ

′ and γ matches ϕ then there is some rule
ϕl ⇒∃ ϕr ∈ S and ρ : Var → T such that (γ, ρ) |= ϕ ∧ ϕl and (γ′, ρ) |= ϕr; then the
second part implies γ′ matches ϕ′.

Designing a proof rule for deriving an execution step along all paths is non-trivial.
For instance, one might expect Step to require as many premises as there are tran-
sitions going out of ϕ, as is the case for the examples presented later in this paper.
However, that is not possible, as the number of successors of a configuration match-
ing ϕ may be unbounded even if each matching configuration has a finite branching
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factor in the transition system. Step avoids this issue by requiring only one premise
for each rule by which some configuration ϕ can take a step, even if that rule can
be used to derive multiple transitions. To illustrate this situation, consider a language
defined by S ≡ {〈n1〉 ∧ n1 >Int n2 ⇒∃ 〈n2〉}, with n1 and n2 non-negative integer
variables. A configuration in this language is a singleton with a non-negative integer.
Intuitively, a positive integer transits into a strictly smaller non-negative integer, in a
non-deterministic way. The branching factor of a non-negative integer is its value. Then
S |= 〈m〉 ⇒∀ 〈0〉. Deriving it reduces (by Circularity and other proof rules) to deriving
〈m1〉 ∧ m1 >Int 0 ⇒∀ ∃m2 (〈m2〉 ∧ m1 >Int m2). The left-hand-side is matched by any
positive integer, and thus its branching factor is infinity. Deriving this rule with Step
requires only two premises, |= (〈m1〉 ∧ m1 >Int 0) → ∃n1n2 (〈n1〉 ∧ n1 >Int n2) and
|= ∃c (c = 〈m1〉 ∧m1 >Int 0 ∧ c = 〈n1〉 ∧ n1 >Int n2) ∧ 〈n2〉 → ∃m2 (〈m2〉 ∧m1 >Int m2).
A similar situation arises in real life for languages with thread pools of arbitrary size.

Axiom applies a trusted rule. Reflexivity and Transitivity capture the corresponding
closure properties of the reachability relation. Reflexivity requires C to be empty to
ensure that all-path rules derived with non-empty C take at least one step. Transitivity
enables the circularities as axioms for the second premise, since if C is not empty,
the first premise is guaranteed to take at least one step. Consequence, Case Analysis

and Abstraction are adapted from Hoare logic. Ignoring circularities, these seven rules
discussed so far constitute formal infrastructure for symbolic execution.

Circularity has a coinductive nature, allowing us to make new circularity claims.
We typically make such claims for code with repetitive behaviors, such as loops, recur-
sive functions, jumps, etc. If there is a derivation of the claim using itself as a circularity,
then the claim holds. This would obviously be unsound if the new assumption was avail-
able immediately, but requiring progress (taking at least on step in the transition system
(T ,⇒TS )) before circularities can be used ensures that only diverging executions can
correspond to endless invocation of a circularity.

One important aspect of concurrent program verification, which we do not address
in this paper, is proof compositionality. Our focus here is limited to establishing a
sound and complete language-independent proof system for all-path reachability rules,
to serve as a foundation for further results and applications, and to discuss our current
implementation of it. We only mention that we have already studied proof composi-
tionality for earlier one-path variants of reachability logic [5], showing that there is a
mechanical way to translate any Hoare logic proof derivation into a reachability proof
of similar size and structure, but based entirely on the operational semantics of the lan-
guage. The overall conclusion of our previous study, which we believe will carry over
to all-path reachability, was that compositional reasoning can be achieved methodolog-
ically using our proof system, by proving and then using appropriate reachability rules
as lemmas. However, note that this works only for theoretically well-behaved languages
which enjoy a compositional semantics. For example, a language whose semantics as-
sumes a bounded heap size, or which has constructs whose semantics involve the entire
program, e.g., call/cc, will lack compositionality.
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5 Soundness and Relative Completeness

Here we discuss the soundness and relative completeness of our proof system. Unlike
the similar results for Hoare logics and dynamic logics, which are separately proved
for each language taking into account the particularities of that language, we prove
soundness and relative completeness once and for all languages.

Soundness states that a syntactically derivable sequent holds semantically. Because
of the utmost importance of the result below, we have also mechanized its proof. Our
complete Coq formalization can be found at http://fsl.cs.illinois.edu/rl.

Theorem 1 (Soundness). If S � ϕ⇒∀ ϕ′ then S |= ϕ⇒∀ ϕ′.

Proof (sketch — complete details in [14]). Unfortunately, due to Circularity, a simple
induction on the proof tree does not work. Instead, we prove a more general result
(Lemma 1 below) allowing sequents with nonempty A and C, which requires stating
semantic assumptions about the rules inA and C.

First we need to define a more general satisfaction relation than S |= ϕ ⇒∀ ϕ′. Let
δ ∈ {+, ∗} be a flag and let n ∈ N be a natural number. We define a new satisfaction
relation S |=δn ϕ ⇒∀ ϕ′ by restricting the paths in the definition of S |= ϕ ⇒∀ ϕ′ to
length at most n, and requiring progress (at least one step) when δ = +.

Formally, we define S |=δn ϕ ⇒∀ ϕ′ to hold iff for any complete path τ = γ1...γk

of length k ≤ n and for any ρ such that (γ1, ρ) |= ϕ, there exists i ∈ {1, ..., k} such that
(γi, ρ) |= ϕ′. Additionally, when δ = +, we require that i � 1 (i.e. γ makes progress).
The indexing on n is required to prove the soundness of circularities. Now we can state
the soundness lemma.

Lemma 1. If S,A �C ϕ ⇒∀ ϕ′ and S |=+n A and S |=+n−1 C then S |=∗n ϕ ⇒∀ ϕ′, and
furthermore, if C is nonempty then S |=+n ϕ⇒∀ ϕ′.

Theorem 1 follows by showing that S |= ϕ⇒∀ ϕ′ iff S |=n ϕ⇒∀ ϕ′ for all n ∈ N.
Lemma 1 is proved by induction on the derivation (with each induction hypothe-

sis universally quantified over n). Consequence, Case Analysis, and Abstraction are
easy. Axiom may only be used in cases where S |=+n A includes S |=+n ϕ ⇒∀ ϕ′ (as
S contains only one-path rules). Reflexivity may only be used when C is empty, and
S |=∗ ϕ ⇒∀ ϕ unconditionally. The premises of Step are pattern implications which
imply that any configuration matching ϕ is not stuck in ⇒TS , and all of its immedi-
ate successors satisfy ϕ′. This directly establishes that S |=+ ϕ ⇒∀ ϕ′. Transitivity
requires considering execution paths more carefully. If C is empty, then the proof is
trivial. Otherwise the induction hypothesis gives that ϕ1 ⇒∀ ϕ2 holds with progress.
Therefore, when proving ϕ2 ⇒∀ ϕ3, the circularities are enabled soundly. Circularity
proceeds by an inner well-founded induction on n. The outer induction over the deriva-
tion gives an induction hypothesis showing the desired conclusion under the additional
assumption that ϕ ⇒∀ ϕ′ holds for any m strictly less than n, which is exactly the in-
duction hypothesis provided by the inner induction on n. ��

We next show relative completeness: any valid all-path reachability property of any pro-
gram in any language with an operational semantics given as a reachability system S is

http://fsl.cs.illinois.edu/rl
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step(c, c′) ≡
∨

μ≡ϕl⇒∃ϕr∈S

∃FreeVars(μ) (ϕl[c/�] ∧ ϕr[c
′/�])

coreach(ϕ) ≡ ∀n∀c0...cn

(

� = c0 →
∧

0≤i<n

step(ci, ci+1)→ ¬∃cn+1 step(cn, cn+1)→
∨

0≤i≤n

ϕ[ci/�]

)

Fig. 2. FOL encoding of one step transition relation and all-path reachability

derivable with the proof system in Fig. 1 from S. As with Hoare and dynamic logics,
“relative” means we assume an oracle capable of establishing validity in the first-order
theory of the state, which here is the configuration model T . An immediate conse-
quence of relative completeness is that Circularity is sufficient to derive any repetitive
behavior occurring in any program written in any language, and that Step is also suffi-
cient to derive any non-deterministic behavior! We establish the relative completeness
under the following assumptions: (1) S is finite; (2) the model T includes natural num-
bers with addition and multiplication; and (3) the set of configurationsTCfg is countable
(the model T includes some injective function α : TCfg→ N). Assumption (1) ensures
Step has a finite number of prerequisites. Assumption (2) is a standard assumption (also
made by Hoare and dynamic logic completeness results) which allows the definition of
Gödel’s β predicate. Assumption (3) allows the encoding of a sequence of configura-
tions into a sequence of natural numbers. We expect the operational semantics of any
reasonable language to satisfy these conditions. Formally, we have the following

Theorem 2 (Relative Completeness). If S |= ϕ⇒∀ ϕ′ then S � ϕ⇒∀ ϕ′, for any
semantics S satisfying the three assumptions above.

Proof (sketch — complete details in [14]). Our proof relies on the fact that pattern rea-
soning in first-order matching logic reduces to FOL reasoning in the model T . A key
component of the proof is defining the coreach(ϕ) predicate in plain FOL. This pred-
icate holds when every complete⇒TS -path τ starting at c includes some configuration
satisfying ϕ. We express coreach(ϕ) using auxiliary predicate step(c, c′) which encodes
the one step transition relation (⇒TS ). Fig. 2 shows both definitions. As it is, coreach(ϕ)
is not a proper FOL formula, as it quantifies over a sequence of configurations. This
is addressed using the injective function α to encode universal quantification over a
sequence of configurations into universal quantification over a sequence of integers,
which is in turn encoded into quantification over two integer variables using Gödel’s β
predicate (encoding shown in [14]).

Next, using the definition above we encode the semantic validity of an all-path reach-
ability rule as FOL validity: S |= ϕ ⇒∀ ϕ′ iff |= ϕ → coreach(ϕ′). Therefore, the theo-
rem follows by Consequence from the sequent S � coreach(ϕ′) ⇒∀ ϕ′. We derive this
sequent by using Circularity to add the rule to the set of circularities, then by using
Step to derive one ⇒TS -step, and then by using Transitivity and Axiom with the rule
itself to derive the remaining ⇒TS -steps (circularities can be used after Transitivity).
The formal derivation uses all eight proof rules. ��



434 A. S, tefănescu et al.

IMP language syntax

PVar � program variables
Exp� PVar | Int | Exp op Exp
Stmt � skip | PVar := Exp

| Stmt; Stmt | Stmt || Stmt
| if(Exp) Stmt else Stmt
| while(Exp) Stmt

IMP evaluation contexts syntax

Context� �
| 〈Context, State〉
| Context op Exp | Int op Context
| PVar := Context | Context; Stmt
| Context || Stmt | Stmt || Context
| if(Context) Stmt else Stmt

IMP operational semantics

lookup 〈C, σ〉[x]⇒∃ 〈C, σ〉[σ(x)] op i1 op i2 ⇒∃ i1 opInt i2

asgn 〈C, σ〉[x := i]⇒∃ 〈C, σ[x← i]〉[skip] seq skip; s⇒∃ s
cond1 if(i) s1 else s2 ⇒∃ s1 if i � 0 cond2 if(0) s1 else s2 ⇒∃ s2

while while(e) s⇒∃ if(e) s; while(e) s else skip finish skip || skip ⇒∃ skip

Fig. 3. IMP language syntax and operational semantics based on evaluation contexts

6 Verifying Programs

In this section we show a few examples of using our proof system to verify programs
based on an operational semantics. In a nutshell, the proof system enables generic sym-
bolic execution combined with circular reasoning. Symbolic execution is achieved by
rewriting modulo domain reasoning.

First, we introduce a simple parallel imperative language, IMP. Fig. 3 shows its syn-
tax and an operational semantics based on evaluation contexts [11] (we choose evalua-
tion contexts for presentation purposes only). IMP has only integer expressions. When
used as conditions of if and while, zero means false and any non-zero integer means
true (like in C). Expressions are formed with integer constants, program variables, and
conventional arithmetic constructs. Arithmetic operations are generically described as
op. IMP statements are assignment, if, while, sequential composition and parallel
composition. IMP has shared memory parallelism without explicit synchronization. The
examples use the parallel construct only at the top-level of the programs. The second
example shows how to achieve synchronization using the existing language constructs.

The program configurations of IMP are pairs 〈code, σ〉, where code is a program
fragment and σ is a state term mapping program variables into integers. As usual, we
assume appropriate definitions for the integer and map domains available, together with
associated operations like arithmetic operations (i1 opInt i2, etc.) on the integers and
lookup (σ(x)) and update (σ[x ← i]) on the maps. We also assume a context domain
with a plugging operation (C[t]) that composes a context and term back into a config-
uration. A configuration context consists of a code context and a state. The definition
in Fig. 3 consists of eight reduction rules between program configurations, which make
use of first-order variables: x is a variable of sort PVar; e is a variable of sort Exp;
s, s1, s2 are variables of sort Stmt; i, i1, i2 are variables of sort Int; σ is a variable of sort
State; C is a variable of sort Context. A rule reduces a configuration by splitting it into
a context and a redex, rewriting the redex and possibly the context, and then plugging
the resulting term into the resulting context. As an abbreviation, a context is not men-
tioned if not used; e.g., the rule op is in full 〈C, σ〉[i1 op i2] ⇒∃ 〈C, σ〉[i1 opInt i2]. For
example, configuration 〈x := (2 + 5) − 4, σ〉 reduces to 〈x := 7 − 4, σ〉 by applying the
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〈
x:=x+1 || x:=x+1,
x�→m

〉 〈
x:=x+1 || x:=m+1,
x�→m

〉 〈
x:=x+1 || x:=m+Int1,
x�→m

〉 〈
x:=x+1 || skip,
x�→m+Int1

〉

〈
x:=m+1 || x:=x+1,
x�→m

〉 〈
x:=m+1 || x:=m+1,
x�→m

〉 〈
x:=m+1 || x:=m+Int1,
x�→m

〉 〈
x:=m+1 || skip,
x�→m+Int1

〉 〈
x:=m+Int1+1 || skip,
x�→m+Int1

〉

〈
x:=m+Int1 || x:=x+1,
x�→m

〉 〈
x:=m+Int1 || x:=m+1,
x�→m

〉 〈
x:=m+Int1 || x:=m+Int1,
x�→m

〉 〈
x:=m+Int1 || skip,
x�→m+Int1

〉 〈
x:=m+Int2 || skip,
x�→m+Int1

〉

〈
skip || x:=x+1,
x�→m+Int1

〉 〈
skip || x:=m+1,
x�→m+Int1

〉 〈
skip || x:=m+Int1,
x�→m+Int1

〉 〈
skip || skip,
x�→m+Int1

〉

〈
skip || x:=m+Int1+1,
x�→m+Int1

〉 〈
skip || x:=m+Int2,
x�→m+Int1

〉 〈
skip || skip,
x�→m+Int2

〉

Fig. 4. State space of the racing increment example

op+ rule with C ≡ x :=� − 4, σ ≡ σ, i1 ≡ 2 and i2 ≡ 5. We can regard the operational
semantics of IMP above as a set of reduction rules of the form “l ⇒∃ r if b”, where l
and r are program configurations with variables constrained by boolean condition b. As
discussed in Section 3, our proof system works with any rules of this form.

Next, we illustrate the proof system on a few examples. The first example shows
that our proof system enables exhaustive state exploration, similar to symbolic model-
checking but based on the operational semantics. Although humans prefer to avoid such
explicit proofs and instead methodologically use abstraction or compositional reasoning
whenever possible (and such methodologies are not excluded by our proof system), a
complete proof system must nevertheless support them. The code x := x+1 || x := x+1
exhibits a race on x: the value of x increases by 1 when both reads happen before either
write, and by 2 otherwise. The all-path rule that captures this behavior is

〈x :=x+1 || x :=x+1, x �→m〉 ⇒∀ ∃n (〈skip, x �→n〉 ∧ (n = m +Int 1 ∨ n = m +Int 2)

We show that the program has exactly these behaviors by deriving this rule in the proof
system. Call the right-hand-side pattern G. The proof contains subproofs of c ⇒∀ G
for every reachable configuration c, tabulated in Fig. 4. The subproofs for c match-
ing G use Reflexivity and Consequence, while the rest use Transitivity, Step, and
Case Analysis to reduce to the proofs for the next configurations. For example, the
proof fragment below shows how 〈x := m + 1 || x := x + 1, x �→ m〉 ⇒∀ G reduces to
〈x := m +Int 1 ||x := x+1, x �→ m〉 ⇒∀ G and 〈x := m+1 ||x := m+1, x �→ m〉 ⇒∀ G:

Step
...

〈
x:=m+1 || x:=x+1,
x �→m

〉
⇒∀
〈
x:=m+Int1 || x:=x+1,
x�→m

〉

∨
〈
x:=m+1 || x:=m+1,
x�→m

〉

...
〈
x:=m+Int1 || x:=x+1,
x �→m

〉
⇒∀G

...
〈
x:=m+1 || x:=m+1,
x �→m

〉
⇒∀G

〈
x:=m+Int1 || x:=x+1,
x �→m

〉
∨
〈
x:=m+1 || x:=m+1,
x �→m

〉
⇒∀ G

CA

〈x := m + 1 || x := x + 1, x �→ m〉 ⇒∀ G
Trans

For the rule hypotheses of Step above, note that all rules but lookup and op+ make
the overlap condition ∃c

(〈
x:=m+1 || x:=x+1,
x �→m

〉
[c/�] ∧ ϕl[c/�]

)
unsatisfiable, and only one

choice of free variables works for the lookup and op+ rules. For lookup, ϕl is 〈C, σ〉[x]
and the overlap condition is only satisfiable if the logical variables C, σ and x are equal
to (x := m + 1 || x := � + 1), (x �→ m), and x, resp. Under this assignment, the pattern
ϕr = 〈C, σ〉[σ(x)] is equivalent to 〈x := m + 1 ||x := m + 1, x �→ m〉, the right branch of
the disjunction. The op+ rule is handled similarly. The assignment for lookup can also
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witness the existential in the progress hypothesis of Step. Subproofs for other states in
Fig. 4 can be constructed similarly.

f0 = 1;
turn = 1;
while (f1 && turn)
skip

x = x + 1;
f0 = 0;

f1 = 1;
turn = 0;
while (f0 && (1 - turn))
skip

x = x + 1;
f1 = 0;

Fig. 5. Peterson’s algorithm (threads T0 and T1)

The next two examples use loops and
thus need to state and prove invariants.
As discussed in [4], Circularity general-
izes the various language-specific invari-
ant proof rules encountered in Hoare log-
ics. One application is reducing a proof of
ϕ ⇒∀ ϕ′ to proving ϕinv ⇒∀ ϕinv ∨ ϕ′ for some pattern invariant ϕinv. We first show
|= ϕ → ϕinv, and use Consequence to change the goal to ϕinv ⇒∀ ϕ′. This is claimed
as a circularity, and then proved by transitivity with ϕinv ∨ ϕ′. The second hypothesis
{ϕinv ⇒∀ ϕ′} � ϕinv ∨ ϕ′ ⇒∀ ϕ′ is proved by Case Analysis, Axiom, and Reflexivity.

Next, we can use Peterson’s algorithm for mutual exclusion to eliminate the race as
shown in Fig. 5. The all-path rule ϕ⇒∀ ϕ′ that captures the new behavior is

〈T0 || T1, (f0 �→ 0, f1 �→ 0, x �→ N)〉
⇒∀ ∃t 〈skip, (f0 �→ 0, f1 �→ 0, x �→ N +Int 2, turn �→ t)〉

Similarly to the unsynchronized example, the proof contains subproofs of c ⇒∀ ϕ′
for every configuration c reachable from ϕ. The main difference is that Circularity is
used with each of these rules c ⇒∀ ϕ′ with one of the two threads of c in the while
loop (these rules capture the invariants). Thus, when we reach a configuration c visited
before, we use the rule added by Circularity to complete the proof.

The final example is the program SUM ≡ “s := 0; LOOP” (where LOOP stands for
“while (n>0) (s := s+n; n := n-1)”), which computes in s the sum of the num-
bers from 1 up to n. The all-path reachability rule ϕ⇒∀ϕ′ capturing this behavior is

〈SUM, (s �→ s, n �→ n)〉 ∧ n ≥Int 0 ⇒∀ 〈skip, (s �→ n ∗Int (n +Int 1)/Int2, n �→ 0)〉

We derive the above rule in our proof system by using Circularity with the invariant
rule ∃n′(〈LOOP, (s �→ (n−Int n′)∗Int (n+Int n′+Int 1)/Int2, n �→n′)〉 ∧ n′ ≥Int 0) ⇒∀ ϕ′. Pre-
vious work [4–7] presented a proof system able to derive similar rules, but which hold
along some execution path, requiring a separate proof that the program is deterministic.

7 Implementation

Here we briefly discuss our prototype implementation of the proof system in Fig. 1 in
K [9]. We choose K because it is a modular semantic language design framework, it is
used for teaching programming languages at several universities, and there are several
languages defined in it including C [10], PHP [15], Python, and Java. Due to space
limitations, we do not present K here. We refer the reader to http://kframework.org
for language definitions, a tutorial, and our prototype. As discussed in Section 3, we
simply view a K semantics as a set of reachability rules of the form “l ∧ b⇒∃ r”.

The prototype is implemented in Java, and uses Z3 [16] for domain reasoning.
It takes an operational semantics and uses it to perform concrete or symbolic exe-
cution. At its core, it performs narrowing of a conjunctive pattern with reachability

http://kframework.org
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rules between conjunctive patterns, where a conjunctive pattern is a pattern of the
form ∃X(π ∧ ψ), with X a set of variables, π a basic pattern (program configurations
with variables), and ψ a structureless formula. Narrowing is necessary when a con-
junctive pattern is too abstract to match the left-hand side of any rule, but is unifiable
with the left-hand sides of some rules. For instance, consider the IMP code fragment
“if (b) then x = 1; else x = 0;”. This code does not match the left-hand sides
of either of the two rules giving semantics to if (similar to cond1 and cond2 in Fig. 3),
but it is unifiable with the left-hand sides of both rules. Intuitively, if we use the rules
of the semantics, taking steps of rewriting on a ground configuration yields concrete
execution, while taking steps of narrowing on a conjunctive pattern yields symbolic ex-
ecution. In our practical evaluation, we found that conjunctive patterns tend to suffice
to specify both the rules for operational semantics and program specifications.

For each step of narrowing, the K engine uses unification modulo theories. In our
implementation, we distinguish a number of mathematical theories (e.g. booleans, in-
tegers, sequences, sets, maps, etc) which the underlying SMT solver can reason about.
Specifically, when unifying a conjunctive pattern ∃X(π∧ψ) with the left-hand side of a
rule ∃Xl(πl ∧ ψl) (we assume X ∩ Xl = ∅), the K engine begins with the syntactic unifi-
cation of the basic patterns π and πl. Upon encountering corresponding subterms (π′ in
π and π′l in πl) which are both terms of one of the theories above, it records an equality
π′ = π′l rather than decomposing the subterms further (if one is in a theory, and the other
one is in a different theory or is not in any theory, the unification fails). If this stage of
unification is successful, we end up with a conjunction ψu of constraints, some having
a variable in one side and some with both sides in one of the theories. Satisfiability of
∃X∪Xl(ψ∧ψu∧ψl) is then checked by the SMT solver. If it is satisfiable, then narrowing
takes a step from ∃X(π∧ψ) to ∃X ∪ Xl ∪ Xr(πr ∧ψ∧ψu ∧ψl ∧ψr), where ∃Xr(πr ∧ψr)
is the right-hand side of the rule. Intuitively, “collecting” the constraints ψu ∧ ψl ∧ ψr

is similar to collecting the path constraint in traditional symbolic execution (but is done
in a language-generic manner). For instance, in the if case above, narrowing with the
two semantics rules results in collecting the constraints b = true and b = false.

The K engine accepts a set of user provided rules to prove together, which capture
the behavior of the code being verified. Typically, these rules specify the behavior of
recursive functions and while loops. For each rule, the K engine searches starting from
the left-hand side for formulae which imply the right-hand side, starting with S the se-
mantics and C all the rules it attempts to prove. By a derived rule called Set Circularity,
this suffices to show that each rule is valid. As an optimization, Axiom is given priority
over Step (use specifications rather than stepping into the code).

Most work goes into implementing the Step proof rule, and in particular calculating
how ρ |= ∃c (ϕ[c/�] ∧ ϕl[c/�]) can be satisfied. This holds when ργ |= ϕ and ργ |= ϕl,
which can be checked with unification modulo theories. To use Step in an automated
way, the K tool constructs ϕ′ for a given ϕ as a disjunction of ϕr ∧ψu ∧ψ∧ψl over each
rule ϕl ⇒∃ ϕr ∈ S and each way ψu of unifying ϕ with ϕl. As discussed in Section 4,
in general this disjunction may not be finite, but it is sufficient for the examples that we
considered. The Consequence proof rule also requires unification modulo theories, to
check validity of the implication hypothesis |= ϕ1 → ϕ′1. The main difference from Step
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is that the free variables of ϕ′ become universality quantified when sending the query
to the SMT solver. The implementation of the other proof rules is straight-forward.

8 Related Work

Using Hoare logic [17] to prove concurrent programs correct dates back to Owicki and
Gries [18]. In the rely-guarantee method proposed by Jones [19] each thread relies on
some properties being satisfied by the other threads, and in its turn, offers some guaran-
tees on which the other threads can rely. O’Hearn [20] advances a Separation Hypoth-
esis in the context of separation logic [21] to achieve compositionality: the state can be
partitioned into separate portions for each process and relevant resources, respectively,
satisfying certain invariants. More recent research focuses on improvements over both
of the above methods and even combinations of them (e.g., [22–25]).

The satisfaction of all-path-reachability rules can also be understood intuitively in
the context of temporal logics. Matching logic formulae can be thought of as state for-
mulae, and reachability rules as temporal formulae. Assuming CTL∗ on finite traces, the
semantics rule ϕ⇒∃ ϕ′ can be expressed as ϕ→ E© ϕ′, while an all-path reachability
rule ϕ ⇒∀ ϕ′ can be expressed as ϕ → A�ϕ′. However, unlike in CTL∗, the ϕ and ϕ′

formulae of reachability rules ϕ ⇒∃ ϕ′ or ϕ ⇒∀ ϕ′ share their free variables. Thus,
existing proof systems for temporal logics (e.g., the CTL∗ one by Pnueli and Kesten)
are not directly comparable with our approach.

Bae et al [26], Rocha and Meseguer [27], and Rocha et al [28] use narrowing to
perform symbolic reachability analysis in a transition system associated to a uncondi-
tional rewrite theory for the purposes of verification. There are two main differences
between their work and ours. First, they express state predicates in equational theories.
Matching logic is more general, being first-order logic over a model of configurations
T. Consequently, the Step proof rule takes these issues into account when considering
the successors of a state. Second, they use rewrite systems for symbolic model check-
ing. Our work is complementary, in the sense that we use the operational semantics for
program verification, and check properties more similar to those in Hoare logic.

Language-independent proof systems. A first proof system is introduced in [6], while
[5] presents a mechanical translation from Hoare logic proof derivations for IMP into
derivations in the proof system. The Circularity proof rule is introduced in [4]. Finally,
[7] supports operational semantics given with conditional rules, like small-step and big-
step. All these previous results can only be applied to deterministic programs.

9 Conclusion and Future Work

This paper introduces a sound and (relatively) complete language-independent proof
system which derives program properties holding along all execution paths (capturing
partial correctness for non-deterministic programs), directly from an operational se-
mantics. The proof system separates reasoning about deterministic language features
(via the operational semantics) from reasoning about non-determinism (via the proof
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system). Thus, all we need in order to verify programs in a language is an operational
semantics for the respective language.

We believe that existing techniques such as rely-guarantee and concurrent separa-
tion logic could be used in conjunction with our proof system to achieve semantically
grounded and compositional verification.

Our approach handles operational semantics given with unconditional rules, like K

framework, PLT-Redex, and CHAM, but it cannot handle operational semantics given
with conditional rules, like big-step and small-step (rules with premises). Extending
the presented results to work with conditional rules would boil down to extending the
Step proof rule, which derives the fact that ϕ reaches ϕ′ in one step along all execution
paths. Such a extended Step would have as prerequisites whether the left-hand side of
a semantics rule matches (like the existing Step) and additionally whether its premises
hold. The second part would require an encoding of reachability in first-order logic,
which is non-trivial and mostly likely would result in a first-order logic over a richer
model than T . The difficulty arises from the fact that Step must ensure all successors
of ϕ are in ϕ′. Thus, this extension is left as future work.
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9. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. J. Logic and Algebraic
Programming 79(6), 397–434 (2010)
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Abstract. Monotone algebras are frequently used to generate reduction
orders in automated termination and complexity proofs. To be able to
certify these proofs, we formalized several kinds of interpretations in the
proof assistant Isabelle/HOL. We report on our integration of matrix
interpretations, arctic interpretations, and nonlinear polynomial inter-
pretations over various domains, including the reals.

1 Introduction

Since the first termination competition1 in 2004 it is of great interest whether a
proof – that has been automatically generated by a termination or complexity
tool – is indeed correct. The increasing complexity of generated proofs makes cer-
tification (i.e., checking correctness) more and more tedious for humans. Hence
the interest in automated certification of termination and complexity proofs.
This led to the general approach of using proof assistants for certification.

In this paper we present one of the key ingredients of our certifier, CeTA [34],
namely the machinery for checking order constraints for (weakly) monotone al-
gebras in the form of polynomial, matrix, and arctic interpretations. These con-
straints frequently arise in both termination and complexity proofs. For example,
during the full run on the termination problem database in 2013, 3759 certifi-
able proofs have been generated. In 3170 of these proofs interpretations are used.
Hence, they would not be certifiable by CeTA without the results of this paper.

In order to properly certify such proofs – and not just implement an inde-
pendent but untrusted machinery for constraint checking – we take a two-phase
approach. In the first phase, we prove general properties in Isabelle/HOL [25].
For example, we show that indeed all of the above interpretations are sound,
i.e., they may be used for termination proofs.

In the second phase, we have to check concrete applications of interpretations
on a concrete set of constraints. For example, at this point we need to ensure
monotonicity of a given polynomial or to validate the growth rate of some ma-
trix interpretation. To this end, we develop appropriate algorithms, prove them
correct within Isabelle/HOL, and then invoke Isabelle’s code generator [11] to ob-
tain our certifier CeTA. The consequences of applying code generation are twofold:

� Supported by the Austrian Science Fund (FWF) projects P22767 and J3202.
1 http://termination-portal.org/wiki/Termination_Competition

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 441–455, 2014.
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while we obtain a high execution speed, there is the additional requirement that
all the algorithms that are used for certification have to be fully executable (in
the sense of functional programming).

Contribution and Overview. After giving some preliminaries in Section 2, we
present our main contributions. In Section 3 we start with a generic formal-
ization of polynomial and matrix interpretations that may be instantiated by
several carriers like the naturals, the rationals, and the reals; we also support
recent monotonicity criteria that are not present in other certifiers. Our inte-
gration of arctic interpretations (Section 4) reveals how the theory on arctic
naturals and arctic integers can be unified. Moreover, it shows how to support
arctic interpretations which are monotone in presence of a fresh binary symbol,
a novelty. We further report on how we achieve executability for an interesting
subset of the real numbers (Section 5). At this point, we also have to develop
algorithms for computing n-th roots of numbers in order to efficiently factor
numbers. Afterwards, we present our work on certifying complexity proofs (Sec-
tion 6): as far as we know CeTA is the first certifier which supports complexity
proofs at all. We finally conclude in Section 7.

All of the proofs that are presented (or omitted) in the following have been
made available in the archive of formal proofs [29,30,33] or in IsaFoR,2 an Is-
abelle/HOL formalization of rewriting. We further provide example termination
and complexity proofs3 which show applications of the various kinds of interpre-
tations and can all be certified by CeTA.

2 Preliminaries

We assume familiarity with term rewriting (see, e.g., Baader and Nipkow [1]) but
briefly recall notions that are used in the following. Terms are defined inductively:
a term is either a variable x or is constructed by applying a function symbol f
from the signature F to a list of argument terms f(t1, . . . , tn).

A pair of terms (s, t) is sometimes considered a (rewrite) rule, then we write
s → t. A set R of rules is called a term rewrite system (TRS for short). In
contrast to many authors, we do not assume any a priori restrictions on rules
of TRSs (the most frequent ones being that the left-hand side of a rule is not a
variable and that rules do not introduce fresh variables on their right-hand side;
both or either of the previous conditions are sometimes referred to as variable
condition in the literature). Whenever there are restrictions, we mention them
explicitly. TRSs induce a rewrite relation by closing their rules under contexts
and substitutions. More precisely the rewrite relation of R, denoted by →R, is
defined inductively by s →R t whenever there are a rule � → r ∈ R, a context
C, and a substitution σ such that s = C[�σ] and t = C[rσ].

2 http://cl-informatik.uibk.ac.at/software/ceta
3 http://cl-informatik.uibk.ac.at/software/ceta/

experiments/interpretations

http://cl-informatik.uibk.ac.at/software/ceta
http://cl-informatik.uibk.ac.at/software/ceta/experiments/interpretations
http://cl-informatik.uibk.ac.at/software/ceta/experiments/interpretations
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A semiring is a structure (A,+, ·, 0, 1) such that (A,+, 0) is a commutative
monoid with neutral element 0 and (A, ·, 1) is a monoid with neutral element 1.
Moreover, · distributes over +, 0 �= 1, and 0 · x = x · 0 = 0 for all x ∈ A.

An (F-)algebra A is a carrier set A equipped with an interpretation func-
tion fA : An → A for every n-ary f ∈ F . We call an algebra A monotone
w.r.t. a binary relation > when all interpretation functions are monotone, i.e.,
fA(. . . , a, . . .) > fA(. . . , b, . . .) whenever a > b. A well-founded monotone alge-
bra is a monotone algebra (A, >) such that > is well-founded. For any algebra
A, terms can be interpreted w.r.t. an assignment α, written [t]α. Then, s >A t
denotes [s]α > [t]α for all α.

A binary relation → is terminating (or well-founded) if there are no infinite
derivations a1 → a2 → a3 → · · · . Given two binary relations →α, →β we write
→α/→β to abbreviate →∗

β · →α · →∗
β , i.e., the rewrite relation of →α relative to

→β . Termination of→α/→β is also called relative termination of→α w.r.t.→β .
We call a pair of two orders on terms ((,3) a reduction pair whenever it

satisfies the following requirements: ( is well-founded, 3 and ( are compatible
(i.e., 3 · ( ⊆ () and stable (i.e., closed under substitutions), and 3 is monotone
(i.e., closed under contexts). If in addition ( is monotone, we call ((,3) a mono-
tone reduction pair. Reduction pairs are employed for termination proofs inside
the dependency pair framework, monotone reduction pairs for direct termination
and complexity proofs.

3 Polynomial and Matrix Interpretations

Two widely used approaches to synthesize reduction pairs are polynomial inter-
pretations (Lankford [18]) and matrix interpretations (Endrullis et al. [8]).

To support polynomial interpretations within CeTA, we formalized nonlinear
multivariate polynomials [30] within Isabelle/HOL. Since similar tasks have
already been conducted CoLoR [3] and Coccinelle [6] (using the approach of
CiME [7]), we just shortly mention two distinguishing features of our work.

A formalization of polynomial orders has already been described by Blanqui
and Koprowski [3]. Whereas their formalization fixes the carrier to N, our poly-
nomial orders are parametric in the carrier, cf. theory Poly Order. Hence, we
can treat polynomial orders over N, Q, and R within the same framework by just
instantiating the carrier to the respective ordered semiring. Here, for both Q and
R we use δ-orders as the strict order to achieve well-foundedness – as described
by Lucas [20]: x >δ y := x−y ≥ δ∧y ≥ 0 where δ is some fixed positive number.
Notice that each carrier may have its own specialties, e.g., x2 is monotone over
N, but not monotone for δ-orders if δ < 1. This required the addition of prop-
erties in the parametric setting. For example, we added a Boolean parameter
power-mono which describes whether polynomials like xk with k > 1 are strictly
monotone; it is always satisfied for N but demands δ ≥ 1 for Q and R.

As far as we know we provide the first formalization of the improved mono-
tonicity criteria for polynomials over N of Neurauter et al. [24] that can ensure
monotonicity of polynomials like 2x2 − x which are not monotone over Q and
R. We made them available in the archive of formal proofs [30], theory NZM.
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To support matrix interpretations, we basically follow the ideas of Courtieu
et al. [7], i.e., we integrate matrix interpretations as linear polynomial interpre-
tations where the carrier consists of matrices. To this end, we first developed
a list-based and executable formalization of matrices [29] within Isabelle/HOL
and afterwards connected it in the theory Linear Poly Order to obtain matrix
interpretations in IsaFoR. Again, one of the distinguishing features of our work
is the parametric carrier – for example in [7] the carrier is fixed to N. Note that
the demand for other carriers like Q and R was clearly shown by Neurauter and
Middeldorp [23]: matrix interpretations over R are strictly more powerful than
those over Q which in turn are strictly more powerful than those over N.

Having developed the abstract results on these interpretations, it was easy to
integrate executable criteria within CeTA that check applications of polynomial or
matrix interpretations within concrete termination proofs – if the carrier consists
of (matrices over) rational or natural numbers. However, more work had to be
done for the reals. Before we discuss these problems in Section 5, we consider
another kind of semiring in the next section.

4 Arctic Interpretations

The semirings (AN,max,+,−∞, 0) and (AZ,max,+,−∞, 0) are called arctic
semiring and arctic semiring below zero, respectively. Here, AA denotes the
extension of A by the element −∞, i.e., A ∪ {−∞}, max{x,−∞} = x, and
x + −∞ = −∞ + x = −∞ for all x. Waldmann and Koprowski [16] first used
these semirings in the well-founded monotone algebra setting.

In the following we unify and extend (see Sternagel and Thiemann [28] for
an earlier account) the arctic interpretations introduced by Waldmann and Ko-
prowski. To do so, we first introduce the notion of an ordered arctic semiring.

Definition 1. Let (A,+, ·, 0, 1) be a semiring. Then an ordered arctic semiring,
denoted by (A,+, ·, 0, 1, >,≥, pos), satisfies the additional requirements:

– ≥ is reflexive and transitive; > · ≥ ⊆ > and ≥ · > ⊆ >
– 1 ≥ 0; ¬pos(0); pos(1); x > 0; x ≥ 0; and x = 0 whenever 0 > x
– + is left-monotone w.r.t. ≥, i.e., x+ z ≥ y + z whenever x ≥ y
– + is monotone w.r.t. >, i.e., w + x > y + z whenever w > y and x > z
– · is left- and right-monotone w.r.t. ≥ and left-monotone w.r.t. >
– pos(x+ y) whenever pos(x); and pos(x · y) whenever pos(x) and pos(y)
– {(x, y) | x > y ∧ pos(y)} is well-founded

Interpretation into an ordered arctic semiring yields a reduction pair.

Theorem 2. Let A be an algebra over an ordered arctic semiring with interpre-
tations fA(x1, . . . , xn) = f0 + f1 · x1 + · · · + fn · xn such that pos(fi) for some
0 ≤ i ≤ n. Then ((A,3A) is a reduction pair.

Examples for ordered arctic semirings are given in the following:
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Example 3. The arctic semiring, the arctic semiring below zero, and the arctic
rational semiring (AQ,max,+,−∞, 0) are ordered arctic semirings for x > y :=
(y = −∞ ∨ (x �= −∞ ∧ x >A y)) (where >A is >N and >Z for naturals and
integers, respectively; and x >δ y for some δ > 0 for the rationals), x ≥ y :=
(y = −∞∨ (x �= −∞∧ x ≥N/Z/Q y)), and pos(x) := (x �= −∞∧ x ≥N/Z/Q 0).

Note that the ordered arctic semiring overAQ together with Theorem 2, unifies
and extends Theorems 12 and 14 of Waldmann and Koprowski [16]. The main
advantage of our approach is that we only require interpretations to have at
least one positive fi (instead of always requiring the constant part f0 to be
positive). Although our result is slightly more general, we could completely reuse
the original proof structure of [16] to formalize Theorem 2.

Waldmann and Koprowski also showed that for string rewriting (i.e, terms
over a signature of function symbols that are at most unary) arctic interpreta-
tions are monotone and thus may be used for rule removal on standard termina-
tion problems. In order to apply this technique in the dependency pair framework
together with usable rules we also need CE -compatibility, i.e., the rules of the
TRS CE = {c(x, y) → x, c(x, y) → y} must be oriented where c is some fresh
symbol. But by considering CE we leave the domain of string rewriting.

Nevertheless, we want to obtain CE -compatibility for monotone arctic inter-
pretations. As an application consider the technique of Giesl et al. [9, Thm. 28]
which allows us to remove all non-usable rules and all strictly oriented rules from
a dependency pair problem, provided that the dependency pairs and rules are
weakly oriented, the rules in CE are strictly oriented, and ( is monotone. To this
end we first need signature extensions for relative termination (see also [31]).

Theorem 4 (Signature Extensions Preserve Relative Termination). Let
R and S be TRSs over a common signature F . Moreover, suppose that no right-
hand side of a rule in S introduces fresh variables. Then →R/→S terminates
for terms over arbitrary extensions of F , whenever it does so for terms over F .

The above statement is not true when S violates the variable condition.

Example 5. Consider R = {a→ b} relative to S = {c→ x}. Over the common
signature F = {a/0, b/0, c/0} we have relative termination. However, extending
F by {f/2} yields the infinite derivation where C = f(b,�).

s = f(a, c)→R C[c]→∗
S C[s]→R C[C[c]]→∗

S · · ·

Finally, we have to show that for monotone ( we get CE -compatibility.

Lemma 6. Consider a reduction pair ((,3) and TRSs R, S over a common
signature of at most unary function symbols F such that no rule of S introduces
fresh variables. Moreover, let R ⊆ ( and S ⊆ 3. Then monotonicity of (
implies termination of →CE∪R/→CE∪S .

Proof. By Theorem 4 together with monotonicity of (, we obtain termination
of →R/→S for arbitrary extensions of F . Consider a lexicographic path order
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where all symbols are equal in precedence in combination with an argument
filter that projects unary function symbols to their argument and keeps all other
symbols unchanged. Then, this combination yields a monotone reduction pair
(>,≥). Moreover, R and S are compatible with ≥ (since all terms are collapsed
to a single variable or constant). Since also CE ⊆ > we obtain relative termination
of →CE w.r.t. →R∪S and thus termination of →CE∪R/→CE∪S . +,

While the above lemma does not quite yield CE -compatibility, it can be used to
show that from every reduction pair ((,3) that satisfies the above conditions we
obtain a corresponding CE-compatible reduction pair ((′,3′). More specifically,
take (′ = (→CE∪R/→CE∪S)

+ and 3′ =→∗
CE∪S .

Now if we start from a monotone reduction pair ((,3), and a set of rules P
over an at most unary signature and take R = P ∩ ( and S = P ∩ 3, then
the resulting reduction pair ((′,3′) is CE-compatible, monotone, and orients all
rules of P that were also oriented by the original reduction pair.

5 Interpretations over the Reals

Whereas all basic operations on Q are executable, this is not the case for R. To
solve this problem, automated tools only work on a subset of the real numbers
[21,36,37]. For example, in the setting of Zankl and Middeldorp [36] numbers may
be chosen from Q[

√
2], the field extension of Q by

√
2. All these numbers are

of the form p+ q
√
2 where p and q range over Q. In [37], Zankl et al. allow even

more generic forms, e.g., where
√
2 may be replaced by

√
b for a fixed natural

number b with
√
b /∈ Q, i.e., we consider Q[

√
b].

Fixing the base b, all numbers in Q[
√
b] can be represented by pairs (p, q)

(encoding p+ q
√
b), where all ordered semiring operations are again executable.

For example, (p1, q1)·(p2, q2) := (p1p2+bq1q2, p1q2+p2q1) and (p, q) > 0 := (p ≥
0 ∧ q > 0) ∨ (p > 0 ∧ q ≥ 0) ∨ (p ≥ 0 ∧ q < 0 ∧ p2 > bq2) ∨ (p ≤ 0 ∧ q > 0 ∧ p2 <
bq2) where the definition of (p, q) > 0 can be used to decide the comparison
p1 + q1

√
b > p2 + q2

√
b by choosing p = p1 − p2 and q = q1 − q2 [37, Def. 10].

A larger subset of the real numbers, namely the algebraic real numbers, has
been formalized by Cohen [5]. However, since this formalization has been con-
ducted using Coq, it cannot easily be integrated into our Isabelle/HOL devel-
opment. Moreover, as far as we know, all real numbers which are currently
generated by automated termination tools are contained in Q[

√
b] for some fixed

b which can be chosen in the configuration of the tool. Hence, for certification it
suffices to formalize this subset of the real numbers. Although a full integration
of real algebraic numbers in Isabelle might be welcome, we pursued the more
lightweight approach which was sufficient to support Q[

√
b].

We consider some alternatives for representing Q[
√
b] in Isabelle/HOL. The

first alternative is to fix some b and create a new type pair b consisting of pairs
of rational numbers. Then addition, multiplication, comparison, etc. are defined
as above, and we have to prove that this new type forms an ordered semiring
(one that is completely independent from the real numbers). The disadvantage
of this approach is that for each b we have to define a new type. As we can only
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define finitely many types within a finite Isabelle formalization, our certifier will
be limited to a fixed number of choices for b.

For higher flexibility, we can alternatively create a type triples that addition-
ally takes the parameter b as third component. The problem in this approach
is to give a total definition for all operations, e.g., what should be the result of
(1, 1, 2) ·(1, 1, 3), i.e., how can we represent the number (1+1 ·

√
2) ·(1+1 ·

√
3) =

1 +
√
2 +

√
3 +

√
6 as a triple p+ q

√
b for suitable values of p, q ∈ Q and b ∈ N.

A third possibility would be to not create a type at all, but use locales [2] and
explicit domains. We do not go into the details here, but just mention that this
approach is currently not applicable, since other parts of the formalization – like
the theories on nonlinear polynomial interpretations – utilize the type class for
semirings, and do not support the more flexible locales.

Our final solution is to not define a new type to form the semirings Q[
√
b],

but to perform data refinement [10] instead, i.e., provide an implementation
type for the reals. This has the following advantages: For a start, the Isabelle
distribution already contains the result that R is an ordered semiring. Thus all
the properties of the reals can be used when formalizing monotone algebras over
the reals. Moreover, our implementation can be partial, e.g., we do not have to
support the multiplication of arbitrary numbers like (1+

√
2) · (1+

√
3). Finally,

as soon as a better implementation is available, we can just replace the current
one by the new one, and do not have to change the theories which show that the
reals can be used to generate monotone algebras.

5.1 A First Implementation of R via Triples (p, q, b)

In the following we implement the reals by the typemini-alg containing all triples
(p, q, b) ∈ Q×Q× N that satisfy the invariant q = 0 ∨

√
b /∈ Q. Such a quotient

type is easily created and accessed via the lifting and transfer package [15].
For this data refinement, we first have to declare how mini-alg is mapped into

the reals. This is done by a function real-of : mini-alg→ R, defined as:

real-of (p, q, b) = p+ q
√
b

Next, we tell the code generator that real-of should be seen as the constructor
for real numbers, i.e., from now on we consider the reals as being defined by
the datatype definition datatype R = real-of mini-alg where real-of is the unique
constructor which takes a triple as input. Afterwards, the desired operations on
reals must be implemented via lemmas on this new “constructor” real-of . E.g.,
the unary minus operation is implemented by proving the following lemma:

−real-of (p, q, b) = real-of (−p,−q, b)

Often, we only implement partial operations, e.g., for some binary operations we
require triples with compatible bases. For example, addition is defined by the
lemma



448 C. Sternagel and R. Thiemann

real-of (p1, q1, b1) + real-of (p2, q2, b2) =

if compatible (p1, q1, b1) (p2, q2, b2)

then (if q1 = 0 then real-of (p1 + p2, q2, b2) else real-of (p1 + p2, q1 + q2, b1))

else abort (λ . real-of (p1, q1, b1) + real-of (p2, q2, b2)) ()

where compatible (p1, q1, b1) (p1, q2, b2) is defined as q1 = 0 ∨ q2 = 0 ∨ b1 = b2,
and abort f x = f x. That is, two triples are compatible iff one of them encodes
a rational number, or the bases are identical. The equation for abort allows us to
prove the above lemma, but is not used to generate code, since this would lead
to nontermination in case of incompatible triples. Instead, the code generator
issues an appropriate error in the target language at this point. This trick was
already described by Lochbihler [19].

Above we defined several operations on reals like addition, multiplication,
greater-than, and a mapping from Q into R. Some of the binary operations are
partial and require compatible triples as input. However, the above mentioned
operations do not make use of the invariant of mini-alg. The invariant is required
for operations like equality and inverse. For example, for the multiplicative in-
verse of a triple (p, q, b) we use the triple (p/d,−(q/d), b) where the divisor is
d = p2 − bq2. To ensure that d �= 0 whenever real-of (p, q, b) �= 0 we need the
invariant that

√
b is irrational. Similarly, also for equality – which is defined as

p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2) for compatible triples (p1, q1, b1) and
(p2, q2, b2) – we require the invariant that

√
b is irrational. Otherwise, the above

implementation of equality would return false for the inputs (0, 1, 4) and (2, 0, 4),
but real-of (0, 1, 4) = 0 + 1 ·

√
4 = 2 = 2 + 0 ·

√
4 = real-of (2, 0, 4).

So far, we defined all required field operations and comparisons, each of which
is implemented by a constant number of operations on rational numbers. How-
ever, we are lacking a way to really construct irrational numbers. To this end
we provide a partial implementation of the square root function that is only de-
fined for input triples encoding rational numbers. The definition for nonnegative
rational numbers with numerator n and denominator d is

sqrt (
n

d
, 0, b) = if

√
nd ∈ Z then (

√
nd

d
, 0, 0) else (0,

1

d
, nd) (1)

where the case-analysis is solely performed to satisfy the invariant of triples of
type mini-alg. In (1) we make use of a square root function on integers which
can decide for a given integer i whether

√
i ∈ Z or not. If so, it also returns

the resulting number, cf. Thiemann [32, Thm. 14]. We modified this square root
function such that it can additionally compute :

√
i; and >

√
i?. In this way, we

are able to implement :·; and >·? on triples of type mini-alg.
In total, our implementation provides the following operations on reals: +, −,

×, ·−1, >, ≥, =, :·;, >·?, and
√
·. Only the last three require the computation

of square roots. All binary operations succeed if their operands are compatible
(which is always the case if a fixed base b is chosen), and only the last operation
is restricted to rational numbers as input. This implementation supports all
operations that we require for monotone algebras except for one.
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5.2 A Second Implementation of R via Triples (p, q, b)

First note that CeTA not only accepts or rejects a termination proof, but also
provides a detailed error message in case of rejection. To this end, we have to print
numbers occurring in interpretations, i.e., we need a function show : R→ string.

An easy solution might be to postulate such a function and provide an imple-
mentation via the axiom: show (real-of (p, q, b)) = the string “p + q * sqrt(b)”.

One might argue that adding this axiom is not really relevant, as it is only used
for error messages. However, adding it immediately introduces an inconsistency
in the logic:

“4 + 1 * sqrt(18)” = show (real-of (4, 1, 18)) = show (4 + 1 ·
√
18)

= show (4 + 3 ·
√
2) = show (real-of (4, 3, 2)) = “4 + 3 * sqrt(2)”

That is, the wrong fact that the first and the last string are identical is derivable.
As a consequence, we want to avoid this inconsistent axiom which stems from

the fact that real-of is not injective, e.g., the number
√
18 can be represented

by both (0, 3, 2) and (0, 1, 18). To this end, we define a new type of triples,
mini-alg-unique. It is similar to mini-alg but adds another invariant: every triple
(p, q, b) must satisfy q = 0∧b = 0∨q �= 0∧prime-product b, where prime-product b
demands that b is a product of distinct primes. For example, 2 and 6 = 2 · 3 are
prime products, but 18 = 2 · 3 · 3 is not, since 3 occurs twice.

In the remainder of this section we assume that we perform data refinement
of R by implementing it via triples of type mini-alg-unique. While most of the
algorithms work as for mini-alg, we list the most important differences.

The main advantage of mini-alg-unique is that real-of is now injective. As a
result, equality of reals can easily be implemented as equality of triples without
checking for compatibility. For example, since (1, 2, 3) �= (2, 2, 2) we conclude
1 + 2 ·

√
3 �= 2 + 2 ·

√
2. This also allows us to define a total function for com-

parisons which is implemented via :·;: if the numbers are equal, then the re-
sult is determined, and otherwise we multiply both numbers iteratively by 1024
until there is a difference after applying :·;. For example, the algorithm shows
1+2·

√
3 < 2+2·

√
2 since :1024·(1+2·

√
3); = 4571 < 4944 = :1024·(2+2·

√
2);.

As real-of is injective, it is now also possible to define show on the reals, and
later on implement it for triples of type mini-alg-unique. To this end, assume
we have already defined a function mau-show which pretty prints triples t as
strings. The specification of show in the logic is

show x = (if ∃t. x= real-of t then mau-show (THE t. x= real-of t) else “nothing”)

while its implementation is given by the lemma: show (real-of t) = mau-show t,
where THE t. P t results in the unique t satisfying P t, if such a t exists, and
is undefined, otherwise. In the definition of show, existence of t is established
before calling mau-show and uniqueness follows from the injectivity of real-of.

The last algorithm that requires an adaptation is the implementation of sqrt.
The definition from (1) is not suitable any more, as

√
nd /∈ Z does not guarantee

nd to be a prime product. Therefore, a preprocessing is required which factors
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every natural number m (like nd) into m = s2 · p where s, p ∈ N and either p is
a prime product or p is 1. In the latter case,

√
m is the natural number s, and in

the former case the triple (0, s, p) represents the number
√
m and also satisfies

the invariant of mini-alg-unique.
For the factorization algorithm, we do not fully decompose m into prime

factors – which would roughly require
√
m iterations – but use the following

algorithm, requiring only 3
√
m iterations. First check whether

√
m is irrational.

If not, then we are done by returning (
√
m, 1). Otherwise, we check whether m

has a factor between 2 and : 3
√
m;. If we detect such a factor p, then we store p,

and continue to search factors of m/p with a new upper bound of : 3
√
m/p;. If

there is no such factor, then we conclude that m is a prime product as follows:
assume that m is not a prime product, i.e., m = p · p · q for some prime p and
natural number q. Then q �= 1 since otherwise

√
m = p ∈ N is not irrational.

Hence,m has both p and q as factors. But since we tested thatm does not divide
any of the numbers up to : 3

√
m;, we know that both p and q are larger than

3
√
m. Hence, m = p · p · q > ( 3

√
m)3 = m, a contradiction.

Note that, for implementing the factorization algorithm, we not only need the
square root algorithm of [32, Sect. 6], but also require an algorithm to compute
: 3
√
m;. To this end, we extended the work of [32] to arbitrary n-th roots, i.e.,

we can check n
√
p ∈ Q and compute : n

√
p; for every n ∈ N and p ∈ Q. Here,

Porter’s [26] formalization of Cauchy’s mean theorem was extremely helpful to
show soundness of our n-th root algorithm. The algorithm itself uses a variant
of Newton iteration to compute precise roots, which uses integer divisions where
one usually works on rational or floating point numbers.

5.3 Summary

We performed data refinement to implement the subset Q[
√
b] of the reals as

triples (p, q, b) representing p+ q ·
√
b. The first implementation has the advan-

tage of being more efficient, but several operations are only supported partially,
where in binary operations the same basis

√
b must be present. The second im-

plementation is less partial and even allows to define a show function on reals,
at the cost of having to perform a factorization of prime products, which we
implemented via an algorithm with 3

√
n iterations. To this end, we also formal-

ized a generic n-th root algorithm. This part of the formalization has been made
available in the archive of formal proofs [33].

Using this formalization, we are able to certify each application of monotone
algebras over the reals within termination proofs generated by TTT2 [17].

6 Complexity Proofs

Monotone algebras are not only a useful tool for termination analysis, but also
for complexity analysis. In the following, we first introduce basic notions regard-
ing complexity – including a modularity result of Zankl and Korp [35] – and
afterwards provide details on complexity results for matrix interpretations and
polynomial interpretations which have been integrated into IsaFoR and CeTA.
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6.1 Complexity and Modularity

To measure the complexity of a TRS R, we use the following notions and ideas
of [4,12,14]. The derivation height of a term w.r.t. some binary relation → on
terms is defined as dh→(t) = max{n | ∃s. t →n s} and measures the height of
the derivation tree of t. The derivational complexity of → is given by dc→(n) =
max{dh→(t) | |t| ≤ n}. That is, the maximal length of derivations with starting
terms of size n is bounded by dc→(n). While in dc→(n) all starting terms are
considered, allowing for terms like doublen(1), there is the alternative notion
of runtime complexity, where starting terms are restricted to basic terms. In
detail, rc→,C(n) = max{dh→(t) | |t| ≤ n, t ∈ BC} where BC denotes the set of
basic terms, i.e., terms of the form f(c1, . . . , cn), with all the ci only built over
symbols from C. Here C typically is the set of constructors of the TRS of interest.

Note that all of dh→, dc→, and rc→,C are only well-defined if max is applied
to a finite set. However, this is not necessarily the case, as on the one hand →
may be infinitely branching or nonterminating, and on the other hand, there
might be infinitely many terms of size n if the signature is infinite. In order to
avoid having to worry about these side-conditions within our formalization, we
instead define the following function

deriv-bound-rel→ (SE , f) = (∀n t. (t ∈ SE (n) =⇒ �s. t→f(n)+1 s))

checking whether a given function f is an upper bound for the complexity. Here,
SE describes the set of starting elements depending on a natural number n, usu-
ally limiting the size of elements. We can easily model runtime and derivational
complexity: deriv-bound-rel→ (λn. {t | |t| ≤ n}, f) and deriv-bound-rel→ (λn. {t |
|t| ≤ n, t ∈ BC}, f) express that dc→ and rc→,C are bounded by f , respectively.

The above definitions are contained in the theory Complexity, which also
contains the first formalization of the modularity result by Zankl and Korp [35,
Thm. 4.4]. Here, we stay in an abstract setting where →1, →2, and →3 are
arbitrary binary relations (not necessarily ranging over terms), cf. the theorem
deriv-bound-relto-class-union that is part of IsaFoR.

Theorem 7. Let →i be binary relations (with i ∈ {1, 2, 3}). Moreover, let
deriv-bound-rel→1/(→2∪→3) (SE , g1) and deriv-bound-rel→2/(→1∪→3) (SE , g2) for
two functions g1, g2 ∈ O(f). Then there is a function g ∈ O(f) such that
deriv-bound-rel (→1∪→2)/→3

(SE , g).

6.2 Complexity via Monotone Interpretations

In order to ensure complexity bounds via some monotone algebra (A, >) with
carrier A, one first needs a function of type A→ N which bounds the number of
decreases. To be more precise, in the generic setting for semirings within IsaFoR
we require a function bound such that for each a ∈ A there are no a1, a2, . . .
such that a > a1 > . . . > abound(a)+1, and moreover bound has to grow linearly
in its argument, cf. Complexity Carrier for further details.

We defined various valid bound functions for the different kind of carriers. For
example, we have chosen boundN(n) = n for the naturals, boundδ(x) = >x/δ?
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for δ-orders on the rationals and reals, and boundmat(A)(m) = boundA(||m||) for
matrices over carrier A, where || · || denotes the linear norm of a matrix.

Obviously, whenever each reduction step t → s within a derivation corre-
sponds to a decrease [t]α > [s]α then dh→(t) ≤ bound([t]α) for every assign-
ment α and term t. Thus, dh→R/→S (t) ≤ bound([t]α) whenever � >A r for each
�→ r ∈ R and � ≥A r for each �→ r ∈ S. At this point in the formalization we
fix α to be the zero-assignment α0 where α0(x) = 0 for all x.

Since bound has to grow linearly in its argument, to get asymptotic bounds it
suffices to estimate [t]α0 for each t ∈ SE (n), depending on n.

For polynomial interpretations we formalized the criterion of strongly linear
interpretations of Hofbauer [13].

Theorem 8. Let F be a subset of the signature. Whenever fA(x1, . . . , xn) =
cf +

∑n
i=1 xi for each f ∈ F then

– [t]α0 is linearly bounded in |t| whenever F is the full signature.
– [t]α0 is bounded by O(|t|d) whenever F = C, t ∈ BC, and d is the largest

degree of a polynomial within the interpretation.

The two alternatives have been formalized in Poly Order, where the first one
(linear-bound) is used for derivational complexity and the second one (degree-
bound) for runtime complexity. Further note that the above theorem can be
combined with several ordered semirings, so that currently CeTA can check com-
plexity proofs involving polynomial interpretations over N, Q, and R.

Furthermore, we also support complexity proofs via matrix interpretations.
To be more precise, we provide the first formalization of the criterion of Moser,
Schnabl, and Waldmann [22] that for upper triangular matrix interpretations we
get an upper bound of [t]α0 ∈ O(|t|d) where d is the dimension of the matrix.

To this end, we have first proven [22, Lem. 5] that ||mn|| ∈ O(nd−1) is satisfied
for an upper triangular matrix m of dimension d. This fact has been made
available as upper-triangular-mat-pow-value in Matrix Comparison within the
archive of formal proofs [29]. Here, we want to stress that the formalization has
been much more verbose than the paper: in [22] the proof is two lines long,
whereas the formalization takes 300 lines. However, this is not surprising since
the two lines have been expanded to a more detailed paper proof (one full page)
in Schnabl’s PhD thesis [27], and even this proof contains a “straightforward”
inner induction which is not spelled out.

In Matrix Comparisonwe also prove that the linear norm is sub-multiplicative,
i.e., ||m1×m2|| ≤ ||m1|| · ||m2||, a property that is required to achieve [22, Thm.
6], but is not mentioned in the paper.

Again, all of our results have been proven in a generic way for several semi-
rings, which includes the semirings on N, Q, and R. In this way, we generalized
[22, Thm. 6] which was only proven for the natural numbers. Especially the
proof that the linear norm is sub-multiplicative required the development of a
completely new proof: at least three mathematical textbooks contain the same
incomparable statement, which states the property for a whole class of norms,



Formalizing Monotone Algebras 453

but only for the reals. However, we required the property only for the linear
norm, but for matrices of type An×m where A is generic. Therefore, the proofs
within the textbooks – which all use a limit construction on the reals – could
not be formalized. Instead, we performed an inductive proof over the shared
dimension of the matrices, cf. linear-norm-submultiplicative for more details.4

7 Conclusion

We presented an overview of our Isabelle/HOL formalization of interpretations
over various carriers, which is part of the formalized library IsaFoR and employed
in the fully verified certifier CeTA. The kinds of interpretations we support are
linear polynomial interpretations, which also allow for matrix interpretations,
and nonlinear polynomial interpretations. As we have shown above, supported
carriers range from natural numbers, over integers and rational numbers, to real
numbers, as well as corresponding arctic carriers. This unifies and extends pre-
vious work. Since CeTA needs to certify given proofs containing explicit numbers
and interpretation functions we also had to take care that our formalization
supports executable algorithms for all required operations (like addition, multi-
plication, various comparisons, the square root function, etc.). For real numbers
this is not a trivial task. Our solution was to perform data refinement to a subset
of the reals that suffices for our purposes. Finally we presented our formalization
of complexity related results. In contrast to typical formulations in the litera-
ture, we only provide upper bounds, but in return do not have to care about
well-definedness issues that would arise otherwise.

Acknowledgments. We are grateful to Bertram Felgenhauer for pointing us
to Cauchy’s mean theorem when proving soundness of our root algorithm.

The authors are listed in alphabetical order regardless of individual contribu-
tions or seniority.
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Abstract. This paper describes the Conditional Confluence tool, a fully
automatic confluence checker for first-order conditional term rewrite sys-
tems. The tool implements various confluence criteria that have been
proposed in the literature. A simple technique is presented to test condi-
tional critical pairs for infeasibility, which makes conditional confluence
criteria more useful. Detailed experimental data is presented.

Keywords: conditional term rewriting, confluence, automation.

1 Introduction

Confluence of term rewrite systems (TRSs) is an undecidable property. Never-
theless there are a number of tools [1, 10, 17] available to check for confluence
of TRSs. For conditional TRSs (CTRSs) checking confluence is even harder and
to date there was no automatic support. The Conditional Confluence tool—
ConCon—aims to change this picture. The tool implements three different con-
fluence criteria for oriented CTRSs that have been reported in the literature [2,
8, 16]. A simple technique for infeasibility of conditional critical pairs based on
the tcap function is presented to (mildly) enhance the applicability of two of the
confluence criteria.

The remainder of this paper is structured as follows. In Section 2 we sum
up some basic facts about (conditional) rewriting the reader should be familiar
with and we recall two transformations that are used to test for effective termi-
nation and confluence. The three implemented confluence criteria are described
in Section 3. Section 4 is about infeasibility and contains a larger example. The
tool is described in Section 5. A number of experiments have been conducted
with ConCon. They are presented in Section 6. The paper concludes with some
remarks on implementation issues, thoughts on extensions, and future work in
Section 7.

2 Preliminaries

We assume knowledge of the basic notions regarding CTRSs (cf. [3, 15]). Let R
be a CTRS. Let �1 → r1 ⇐ c1 and �2 → r2 ⇐ c2 be variants of rewrite rules
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of R without common variables and let p ∈ PosF(�2) such that �1 and �2|p are
unifiable. Let σ be a most general unifier of �1 and �2|p. If �1 → r1 ⇐ c1 and
�2 → r2 ⇐ c2 are not variants or p �= ε then the conditional equation �2σ[r1σ]p ≈
�2σ ⇐ c1σ, c2σ is called a conditional critical pair of R. A conditional critical
pair s ≈ t⇐ c of a CTRS R is joinable if sσ ↓R tσ for every substitution σ that
satisfies c. Since in this paper we are concerned with oriented CTRSs, the latter
means that uσ →∗

R vσ for every equation u ≈ v in c. We say that s ≈ t ⇐ c
is infeasible if there exists no substitution σ that satisfies c. The TRS obtained
from a CTRS R by dropping the conditional parts of the rewrite rules is denoted
by Ru. We say that R is normal if every right-hand side of every condition in
every rule is a ground normal form with respect to Ru. Rewrite rules �→ r ⇐ c
of CTRSs are classified according to the distribution of variables among �, r,
and c, as follows:

type requirement

1 Var(r) ∪ Var(c) ⊆ Var(�)
2 Var(r) ⊆ Var(�)

type requirement

3 Var(r) ⊆ Var(�) ∪ Var(c)
4 no restrictions

An n-CTRS contains only rules of type n. So a 1-CTRS contains no extra vari-
ables, a 2-CTRS may only contain extra variables in the conditions, and a
3-CTRS may also have extra variables in the right-hand sides provided these
occur in the corresponding conditional part. The set of variables occurring
in a sequence of terms t1, . . . , tn is denoted by Var(t1, . . . , tn). Likewise the
function var(t1, . . . , tn) returns the elements of Var(t1, . . . , tn) in an arbitrary
but fixed order. An oriented CTRS R is called deterministic if for every rule
� → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R we have Var(si) ⊆ Var(�, t1, . . . , ti−1) with
1 � i � n.

An oriented CTRS R is quasi-decreasing if there exists a well-founded or-
der > with the subterm property that extends →R such that �σ > siσ for all
� → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R, 1 � i � n, and substitutions σ with
sjσ →∗

R tjσ for 1 � j < i. Quasi-decreasingness ensures termination and, for
finite CTRSs, computability of the rewrite relation. We recall two transforma-
tions from deterministic 3-CTRSs to TRSs that can be used to show quasi-
decreasingness.

Unravelings were first introduced in [13]. Unravelings split conditional rules
into several unconditional rules and the conditions are encoded using new func-
tion symbols. Originally they were used to study the correspondence between
properties of CTRSs and TRSs as well as modularity of CTRSs. The unraveling
defined below goes back to [12]. We use the formulation in [15, p. 212]. It simu-
lates the conditional rules from a CTRS R by a sequence of applications of rules
from the TRS U(R), in effect verifying the conditions from left to right until all
the conditions are satisfied and the last rule yielding the original right-hand side
may be applied.
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Definition 1. Every deterministic 3-CTRS R is mapped to the TRS U(R) ob-
tained from R by replacing every conditional rule ρ : �→ r ⇐ s1 ≈ t1, . . . , sn ≈
tn with n � 1 in R with

�→ U1
ρ (s1, var(�))

U1
ρ (t1, var(�))→ U2

ρ (s2, var(�, t1))

· · ·
Un
ρ (tn, var(�, t1, . . . , tn−1))→ r

where U i
ρ are fresh function symbols.

In our implementation we use the variant of U sketched in [15, Example 7.2.49]
and formalized in [8, Definition 6]. In this variant certain U -symbols originating
from different rewrite rules are shared, in order to reduce the number of critical
pairs and thereby increasing the chances of obtaining a confluent TRS.

The second transformation, introduced in [2], from deterministic 3-CTRSs
to TRSs does not use any additional symbols and it does not aim to simulate
rewriting in the CTRS. Hence its use is limited to show quasi-decreasingness.

Definition 2. Every deterministic 3-CTRS R is mapped to the TRS V(R) ob-
tained from R by replacing every conditional rule �→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn
with n � 1 in R with

�→ s1σ0 · · · �→ snσn−1 �→ rσn

for the substitutions σ0, . . . , σn inductively defined as follows:

σi =

{
ε if i = 0

σi−1 ∪ {x �→ siσi−1 | x ∈ Var(ti) \ Var(�, t1, . . . , ti−1)} if 0 < i � n

The following lemma shows how the transformations are used to obtain quasi-
decreasingness. The first condition is from [15, p. 214] while the second one is
a combination of [15, Lemma 7.2.6] and [15, Proposition 7.2.68]. It is unknown
whether the first condition is implied by the second (cf. [15, p. 229]).

Lemma 3. A deterministic 3-CTRS R is quasi-decreasing if U(R) is terminat-
ing or V(R) is simply terminating. +,

3 Three Confluence Criteria

Our tool implements three known confluence criteria [2, 8, 16]. The first crite-
rion is from Avenhaus and Loŕıa-Sáenz [2, Theorem 4.1]. Its applicability is
restricted to quasi-decreasing and strongly irreducible deterministic 3-CTRSs. A
term t is called strongly irreducible if tσ is a normal form for every normalized1

1 A normalized substitution maps variables to normal forms.
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substitution σ. We say that R is strongly irreducible if the right-hand side of
every condition in every conditional rewrite rule is strongly irreducible. Strong
irreducibility is undecidable. In our tool we use the following decidable approx-
imation [2]: no non-variable subterm of a right-hand side of a condition unifies
with the left-hand side of a rule (after renaming).

Theorem A. A quasi-decreasing strongly irreducible deterministic 3-CTRS R
is confluent if and only if all critical pairs of R are joinable. +,
The second confluence criterion is from Suzuki et al. [16, Section 7]. It does not
impose any termination assumption, but forbids (feasible) critical pairs and re-
quires the properties defined below, which are obviously computable. A CTRS
R is right-stable if every rewrite rule �→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R satisfies
Var(�, s1, . . . , si, t1, . . . , ti−1) ∩ Var(ti) = ∅ and ti is either a linear constructor
term or a groundRu-normal form, for all 1 � i � n. An oriented CTRSR is prop-
erly oriented if for every rewrite rule � → r ⇐ c with Var(r) �⊆ Var(�) in R the
conditional part c can be written as s1 ≈ t1, . . . , sm ≈ tm, s

′
1 ≈ t′1, . . . , s

′
n ≈ t′n

such that the following two conditions are satisfied: Var(si) ⊆ Var(�, t1, . . . , ti−1)
for all 1 � i � m and Var(r) ∩ Var(s′i, t′i) ⊆ Var(�, t1, . . . , tm) for all 1 � i � n.
Theorem B. Almost orthogonal properly oriented right-stable 3-CTRSs are con-
fluent. +,
The third criterion is a recent result by Gmeiner et al. [8, Theorem 9]. It employs
the notion of weak left-linearity, which is satisfied for a deterministic CTRS R
if x /∈ Var(r, s1, . . . , sn) for every rule � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R and
variable x that appears more than once in �, t1, . . . , tn.

Theorem C. A weakly left-linear deterministic CTRS R is confluent if U(R)
is confluent. +,
Here the modified version of the unraveling U described after Definition 1 is
used. The three criteria are pairwise incompatible, as shown in the following
examples.

Example 4. The oriented 1-CTRS R consisting of the following four rules

a→ b b→ a f(x, x)→ a g(x)→ a ⇐ g(x) ≈ b

is weakly left-linear and deterministic and its unraveling U(R)

a→ b b→ a f(x, x)→ a g(x)→ U(g(x), x) U(b)→ a

is confluent, hence R is confluent by Theorem C. Since R is neither left-linear
nor strongly irreducible, Theorems A and B are not applicable.

Example 5. The normal 2-CTRS consisting of the rule

h(x)→ g(x) ⇐ f(x, y) ≈ b

is orthogonal, properly oriented, and right-stable and therefore confluent by The-
orem B but not deterministic so Theorems A and C do not apply. Hence this
example contradicts the claim in [8] that Theorem B is a corollary of Theorem C.
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Example 6. The normal 1-CTRS consisting of the rule

f(x, x)→ a ⇐ g(x) ≈ b

is quasi-decreasing, strongly irreducible, and non-overlapping, and thus confluent
by Theorem A. Since the system is not (weakly) left-linear, Theorems B and C
do not apply.

4 Infeasibility

The applicability of Theorems A and B strongly depends on the presence of
critical pairs. Many natural examples employ rules which only yield a couple of
critical pairs which are in fact all infeasible.

Infeasibility is undecidable in general. Two sufficient conditions are described
in the literature: [9, Appendix A] and [2, Definition 4.4]. The former method
can only be used in very special cases (left-linear constructor-based join systems
without extra variables and using “strict” semantics). The use of the latter
method is restricted to quasi-decreasing strongly irreducible deterministic 3-
CTRSs (like in Theorem A) and is described below.

Given a critical pair s ≈ t ⇐ c, the conditions in c are transformed into a
TRS C = {u→ v | u ≈ v ∈ c} where t is the result of replacing every x ∈ Var(c)
occurring in t by a fresh constant cx. If there is a left-hand side u in c such that
u2

∗
R∪C← u→∗

R∪C u1 and u1, u2 are strongly irreducible and not unifiable then
s ≈ t⇐ c is infeasible. The same method can also be used as sufficient condition
for joinability [2]: s ≈ t⇐ c is joinable if s→∗

R∪C · ∗
R∪C← t.

Our new technique for infeasibility is based on the tcap function, which was
introduced to obtain a better approximation of dependency graphs [7] and later
used as a sufficient check for non-confluence for TRSs [17]. It is defined as follows.
If t is a variable then tcap(t) is a fresh variable and if t = f(t1, . . . , tn) then we
let u = f(tcap(t1), . . . , tcap(tn)) and define tcap(t) to be u if u does not unify
with the left-hand side of a rule in R, and a fresh variable otherwise.

Lemma 7. Let R be an oriented CTRS. A conditional critical pair s ≈ t ⇐ c
of R is infeasible if there exists an equation u ≈ v ∈ c such that tcap(u) does not
unify with v. +,

We conclude this section with an example illustrating that Theorem A benefits
from the new infeasibility criterion of Lemma 7.

Example 8. Consider the following CTRS Rmin from [11]:

0 < s(x)→ true min(x : nil)→ x (1)

x < 0→ false min(x : xs)→ x ⇐ x < min(xs) ≈ true (2)

s(x) < s(y)→ x < y min(x : xs)→ min(xs) ⇐ x < min(xs) ≈ false (3)

min(x : xs)→ min(xs) ⇐ min(xs) ≈ x (4)



ConCon 461

To check whether Theorem C is able to show confluence of Rmin we look at the
result of the optimized version of the unraveling U from Definition 1 on rules
(2) to (4):

min(x : xs)→ U1(x < min(xs), x, xs) min(x : xs)→ U2(min(xs), x, xs)

U1(true, x, xs)→ x U2(x, x, xs) → min(xs)

U1(false, x, xs)→ min(xs)

There is a peak U1(x < min(xs), x, xs) ← min(x : xs) → U2(min(xs), x, xs)
between different normal forms of U(Rmin) and hence U(Rmin) is non-confluent.
So Theorem C cannot show confluence of Rmin. Theorem B does not apply here
becauseRmin is not right-stable. For Theorem A we compute critical pairs. There
are twelve but for symmetry reasons we only have to consider six of them:

x ≈ x ⇐ x < min(nil) ≈ true (1,2)

min(nil) ≈ x ⇐ x < min(nil) ≈ false (1,3)

min(nil) ≈ x ⇐ min(nil) ≈ x (1,4)

min(xs) ≈ x ⇐ x < min(xs) ≈ true, x < min(xs) ≈ false (2,3)

min(xs) ≈ x ⇐ x < min(xs) ≈ true, min(xs) ≈ x (2,4)

min(xs) ≈ min(xs) ⇐ x < min(xs) ≈ false, min(xs) ≈ x (3,4)

The pairs (1,2) and (3,4) are trivial. The terms tcap(x < min(nil)) = x′ < min(nil)
and false are not unifiable, hence (1,3) is infeasible by Lemma 7. The critical pair
(2,3) can be shown to be infeasible by the method described at the top of page 460
(as well as by Lemma 7) and (1,4) and (2,4) can be shown to be joinable by the
same method. So Theorem A applies and we conclude that Rmin is confluent.

5 Design and Implementation

ConCon is written in Scala 2.10, an object-functional programming language.
Scala compiles to Java byte code and therefore is easily portable to different
platforms. ConCon is available under the LGPL license and may be downloaded
from:

http://cl-informatik.uibk.ac.at/software/concon/

In order to use the full power of ConCon one needs to have some termination
checker understanding the TPDB2 format and some confluence checker under-
standing the same format installed on one’s system. One may have to adjust the
paths and flags of these programs in the file concon.ini, which should reside in
the same directory as the concon executable. For input we support the XML3

format as well as a modified version of the TRS format of the TPDB.4

2 http://www.lri.fr/~marche/tpdb/format.html
3 http://www.termination-portal.org/wiki/XTC_Format_Specification
4 http://termination-portal.org/wiki/TPDB

http://cl-informatik.uibk.ac.at/software/concon/
http://www.lri.fr/~marche/tpdb/format.html
http://www.termination-portal.org/wiki/XTC_Format_Specification
http://termination-portal.org/wiki/TPDB
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The modification concerns a new declaration CONDITIONTYPE, which may be
set to SEMI-EQUATIONAL, JOIN, or ORIENTED. Although for now ConCon works
on oriented CTRSs we designed the CONDITIONTYPE to anticipate future devel-
opments. In the conditional part of the rules we only allow == as relation, since
the exact interpretation is inferred from the CONDITIONTYPE declaration:

(CONDITIONTYPE ORIENTED)

(VAR x)

(RULES

not(x) -> false | x == true

not(x) -> true | x == false

)

This modified TRS format is closer to the newer XML version and makes it
very easy to interpret, say, a given join CTRS as an oriented CTRS (by just
modifying the CONDITIONTYPE).

ConCon is operated through a command line interface described below. In
addition to the command line version there is also an easy to use web interface
available on the ConCon website.

Usage. Just starting the tool without any options or input file as follows

java -jar concon 2.10-1.1.0.0.min.jar

will output a short usage description. We will abbreviate this command by
./concon in the following. The flag --conf may be used to configure the em-
ployed confluence criteria. The flag takes a list of criteria which are tried in the
given order. If a method is successful the rest of the list is skipped. By default
ConCon uses all the available confluence criteria in the following order:5

U Check whether the input system is unconditional, if so give it to an external
unconditional confluence checker.

B Try Theorem B.
C Try Theorem C using an external unconditional confluence checker.
A Try Theorem A using an external termination checker.

One may always add a timeout at the end of ConCon’s parameter list. The default
timeout is 60 seconds. When calling ConCon with an input file like

./concon 292.trs

it will just try to apply all confluence criteria in sequence with the default timeout
as explained above. The first line of the output will be one of YES, NO, or MAYBE,
followed by the input system, and finally a textual description of how ConCon
did conclude the given answer. One may use -a, -s, and -p to prevent output
of the answer, the input system, and the textual description, respectively.

If one is only interested in the critical pairs of the system and which of them
can be shown to be infeasible, one may use the following call

./concon -c 292.trs

5 Theorem B does not need calls to external programs and in our experiments Theo-
rem C produced an answer faster than Theorem A on average.
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the -c causes ConCon to print all overlaps and the associated (conditional) crit-
ical pairs of the system, and indicates whether they could be shown infeasible.

In order to check the input system for quasi-decreasingness the flag -q may be
used. In addition one may use the option --ter together with one of the strings u
or v to restrict the transformation to use for the termination check. This method
gives the transformed unconditional system to an external termination checker.

The flag -tmay be used to tell ConCon to just apply a transformation and out-
put the result. The flag takes a string parameter specifying which transformation
to use. The available options are u, uopt and v standing for the transformations
of Definition 1, its modified version, and Definition 2, respectively.

Many syntactic criteria for CTRSs, like proper-orientedness or weak left-
linearity, are tedious to check by hand. Other properties of interest, like quasi-
decreasingness, are undecidable. Executing the call

./concon -l 292.trs

results in a list of properties of the input CTRS.

6 Experiments

We have collected a number of examples from the literature. Our collection cur-
rently consists of 129 CTRSs, including the 3 new examples in Section 3, which
we extracted from 32 different sources. Of these 129 CTRSs, 101 are presented
as oriented CTRSs in the literature. The corresponding files in the modified
TPDB format can be downloaded from the ConCon website. Additionally they
have been added to the confluence problems database.6 This collection should
also be of interest for the termination competition7 since the CTRS category of
TPDB contains a mere 7 examples.

The experiments we describe here were carried out on a 64bit GNU/Linux
machine with an Intel R© CoreTM i7-3520M processor clocked at 2.90GHz and
8GB of RAM using the tool parallel.8 The kernel version is 3.14.1-1-ARCH.
The version of Java on this machine is 1.7.0 55. We had to increase the stack
size to 20MB using the JVM flag -Xss20M to prevent stack overflows caused by
parsing deep terms like in the file 313.trs. The following external tools were
used in the experiments:

– CSI, version 0.4 (call: csi - trs 30)9

– TTT2, version 1.16 (call: ttt2 - trs 30)10

First we checked confluence of the given systems. The timeout was set to one
minute.

Figure 1a gives an overview of how many systems could be shown to be con-
fluent by which of the three theorems. More details for 6 of the CTRSs are listed

6 http://coco.nue.riec.tohoku.ac.jp/problems/
7 http://termcomp.uibk.ac.at/
8 http://www.gnu.org/s/parallel
9 http://cl-informatik.uibk.ac.at/software/csi/

10 http://cl-informatik.uibk.ac.at/software/ttt2/

http://coco.nue.riec.tohoku.ac.jp/problems/
http://termcomp.uibk.ac.at/
http://www.gnu.org/s/parallel
http://cl-informatik.uibk.ac.at/software/csi/
http://cl-informatik.uibk.ac.at/software/ttt2/
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62

82

A

B

C
(a) 129 CTRSs

theorem CCPs

CTRS source A B C # = αβ ↓
264.trs 6 0.7 − − 0 − − −
286.trs 4 − − 2.1 0 − − −
287.trs 5 − 0.5 − 0 − − −
292.trs 8 0.8 − × 12 4 6 2

324.trs [14] − − × 4 0 0 0

336.trs [16] − 0.6 − 2 0 2 0

(b) 6 selected CTRSs

Fig. 1. Confluence results

in Figure 1b. The columns ‘A’ to ‘C’ list the time in seconds in case of success,
‘−’ if the theorem was not applicable because of the syntactic preconditions, and
‘×’ if the method will never be able to show confluence for the system. The first
3 CTRSs can only be shown to be confluent by one of the theorems. The next
one (292.trs) is Example 8. Example 324.trs cannot be shown confluent by
any of the implemented methods. As can be seen in Figure 1a, this actually holds
for the majority of the 129 CTRSs. Example 336.trs requires the method of
Lemma 7 to show its conditional critical pairs infeasible, afterwards Theorem B
is applicable. In the last four columns we list for each of the 6 CTRSs the number
of conditional critical pairs, and whether they are trivial (column ‘=’), or could
be shown to be infeasible (column ‘��’) or joinable (column ‘↓’).

The ConCon website contains more detailed experimental results, including a
comparison of the two sufficient conditions in Lemma 3 for quasi-decreasingness.

7 Concluding Remarks

We presented a tool which implements three different methods to show conflu-
ence of oriented CTRSs. A simple sufficient criterion for infeasibility increased
the applicability of two of the methods. This is clearly a first step and our ex-
periments show that there is lots of room for improvements:

– Several of the systems in our test bed are in fact non-confluent, so methods
to prove non-confluence of CTRSs are in demand.

– Many of the systems have infeasible critical pairs but our current criterion
for infeasibility is not powerful enough to show this. Our own investigations
show that progress here is hard to achieve. For oriented CTRSs, infeasibility
is a reachability problem and techniques based on tree automata completion
are a natural candidate for investigation.

– Furthermore, so far we have no good support for conditional rewriting,
which is needed to check joinability of (feasible) critical pairs. From early
investigations by Ganzinger [6], Zhang and Rémy [18, 19], Avenhaus and
Loŕıa-Sáenz [2], and others in we know that implementing conditional rewrit-
ing is a highly complex problem.



ConCon 465

Finally, confluence methods for semi-equational [4] and in particular join
CTRSs [5, 16] are well-investigated and should be implemented.
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Abstract. This paper describes the implementation and techniques of
the Nagoya Termination Tool, a termination prover for term rewrite
systems. The main features of the tool are: the first implementation of
the weighted path order which subsumes most of the existing reduction
pairs, and the efficiency due to the strong cooperation with external SMT
solvers. We present some new ideas that contribute to the efficiency and
power of the tool.

1 Introduction

Proving termination of term rewrite systems (TRSs) has been an active field
of research. In this paper, we describe the Nagoya Termination Tool (NaTT), a
termination prover for TRS, which is available at

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

NaTT is powerful and fast; its power comes from the novel implementation
of the weighted path order (WPO) [24, 26] that subsumes most of the existing
reduction pairs, and its efficiency comes from the strong cooperation with state-
of-the-art satisfiability modulo theory (SMT) solvers. In principle, any solver
that complies with the SMT-LIB Standard1 version 2.0 can be incorporated as
a back-end into NaTT.

In the next section, we recall the dependency pair framework that NaTT
is based on, and present existing techniques that are implemented in NaTT.
Section 3 describes the implementation of WPO and demonstrates how to obtain
other existing techniques as instances of WPO. Some techniques on cooperating
with SMT solvers are presented in Section 4. After giving some design details
in Section 5, we assess the tool by its results in the termination competition2 in
Section 6. Then we conclude in Section 7. Due to page limit, some experimental
results are found in the full version of this paper [25].

2 The Dependency Pair Framework

The overall procedure of NaTT is illustrated in Figure 1. NaTT is based on the
dependency pair framework (DP framework) [1,9,10], a very successful technique

� This work was supported by JSPS KAKENHI #24500012.
1 http://www.smtlib.org/
2 http://termination-portal.org/wiki/Termination_Competition

G. Dowek (ed.): RTA-TLCA 2014, LNCS 8560, pp. 466–475, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Flowchart of NaTT

for proving termination of TRSs which is implemented in almost all the mod-
ern termination provers for TRSs. In the DP framework, dependencies between
function calls defined in a TRS R is expressed by the set DP(R) of dependency
pairs. If a function f is defined by a rule

f(s1, . . . , sn)→ C[g(t1, . . . , tm)] ∈ R

where g is also defined in R, then this dependency is described by the following
dependency pair:

f �(s1, . . . , sn)→ g�(t1, . . . , tm) ∈ DP(R)

The DP framework (dis)proves termination of R by simplifying and decompos-
ing DP problems 〈P ,R〉, where initially P = DP(R). To this end, many DP
processors have been proposed. NaTT implements the following DP processors:

Dependency Graph Processor. This processor decomposes a DP problem
〈P ,R〉 into 〈P1,R〉 . . . 〈Pn,R〉 where P1, . . . ,Pn are the strongly connected com-
ponents (SCCs) of the dependency graph [7, 10]. Since the dependency graph is
not computable in general, several approximations called estimated dependency
graphs (EDGs) have been proposed. NaTT implements the EDG proposed in [8].

Reduction Pair Processor. This processor forms the core of NaTT. A reduc-
tion pair is a pair 〈�,(〉 of orders s.t. ( is compatible with � (i.e., �·(·� ⊆ (),
both of � and ( are stable under substitution, � is monotone and ( is well-
founded. From a DP problem 〈P ,R〉, if all the involved rules are weakly decreas-
ing (i.e., P ∪ R ⊆ �), strictly decreasing rules in P (w.r.t. () can be removed.
A great number of techniques for obtaining reduction pairs have been proposed
so far. NaTT supports the following ones:
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– Some simplification orders combined with argument filters [1]:

• the Knuth-Bendix order (KBO) [14] and its variants including KBO with
status [19], the generalized KBO [18] and the transfinite KBO [17, 21],

• the recursive path order [3] and the lexicographic path order (LPO) [13],

– polynomial interpretations (POLO) [1,16] and its variants, including certain
forms3 of POLO with negative constants [11] and max-POLO [6],

– the matrix interpretation method [4], and

– the weighted path order (WPO) [24, 26].

Note that all of the above mentioned reduction pairs are subsumed by WPO.
That is, by implementing WPO we obtain the other reduction pairs for free. We
discuss the implementation details in Section 3.

Rule Removal Processor. In the worst case, the size of dependency pairs is
quadratic in the size of the input TRS R. Hence it is preferable to reduce the
size of R before computing dependency pairs. To this end NaTT applies the rule
removal processor [7]. If all rules in R are weakly decreasing w.r.t. a monotone
reduction pair, then the processor removes strictly decreasing rules from R. The
required monotonicity of a reduction pair is obtained by choosing appropriate
parameters for the implementation of WPO described above.

Uncurrying Processor. Use of uncurrying for proving termination is proposed
for applicative rewrite systems in [12]. The uncurrying implemented in NaTT is
similar to the generalized version proposed in [20], in the sense that it does
not assume application symbols to be binary. A symbol f is considered as an
application symbol if all the following conditions hold:

– f is defined and has positive arity,
– a subterm of the form f(x, . . . ) does not occur in any left-hand-sides of R,
– a subterm of the form f(g(. . . ), . . . ) occurs in some right-hand-side of R.

If such application symbols are found, then R is uncurried w.r.t. the uncurrying
TRS U that consists of the following rules:4

f(f lg(x1, . . . , xm), y1, . . . , yn)→ f l+1g(x1, . . . , xm, y1, . . . , yn)

for every g �= f and l less than the applicative arity5 of g, where f0g denotes g
and f l+1g is a new function symbol of arity m+ n.

3 The Weighted Path Order

As we mentioned in the introduction, NaTT implements only WPO for obtaining
reduction pairs. WPO is parameterized by (1) a weight algebra which specifies

3 Here, negative values are allowed only for the constant part.
4 The notation is derived from the freezing technique [22].
5 Applicative arities are taken so that Γ-saturation is not needed.
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how weights are computed, (2) a precedence on function symbols, and (3) a status
function which specifies how arguments are compared. In the following sections,
we present some options which NaTT provides for specifying search spaces for
these parameters.

3.1 Templates for Weight Algebras

One of the most important tasks in proving termination by WPO is finding
an appropriate weight algebra. In order to reduce the task to an SMT problem,
NaTT considers template algebras over integers. Currently the following template
algebras are implemented:

– The algebra Pol indicates that weights of terms are computed by a linear
polynomial. Interpretations are in the following shape:

fPol(x1, . . . , xn) = wf +

n∑
i=1

cf,i · xi (1)

where the template variables wf and cf,1, . . . , cf,n should be decided by an
external SMT solver.

– The algebra Max indicates that weights are computed using the max op-
erator. A symbol f with arity ≥ 1 is interpreted in the following shape:

fMax(x1, . . . , xn) =
n

max
i=1

(pf,i + cf,i · xi) (2)

where pf,1, . . . , pf,n are template variables. For constant symbols, interpre-
tations of the shape (1) are used. Since the operator max is not usually
supported by SMT solvers, these interpretations are encoded as quantifier-
free formulas using the technique presented in [24].

– The algebra MPol combines both forms of interpretations described above.
Since it is inefficient to consider all combinations of these interpretations,
MPol decides the shape of interpretations according to the following intu-
ition: If a constraint such as f(x) > g(x, x) appears, then g is interpreted as
gMax, because the imposed constraint cf,1 ≥ cg,1 ∧ cf,1 ≥ cg,2 is easier than
cf,1 ≥ cg,1 + cg,2, which would be imposed by the interpretation gPol.

The template variables introduced above are partitioned into two groups: tem-
plate variables wf , pf,1, . . . , pf,n are grouped in the constant part, and template
variables cf,1, . . . , cf,n are in the coefficient part. For efficiency, it is important
to properly restrict the range of these variables.

3.2 Classes of Precedences

NaTT offers “quasi” and “strict” precedences, as well as an option to disable
them (i.e., all symbols are considered to have the same precedence). For reduction
pairs using precedences, we recommend quasi-precedences which are chosen by
default, as the encoding follows the technique of [27] that naturally encodes
quasi-precedences.



470 A. Yamada, K. Kusakari, and T. Sakabe

Table 1. Parameters for some monotone reduction pairs

Technique template coefficient constant precedence status

Linear POLO Pol Z+ N no empty
LPO Max {1} {0} yes total
KBO6 Pol {1} N yes total
Transfinite KBO6 Pol Z+ N yes total

3.3 Classes of Status Functions

NaTT offers three classes of status functions : “total”, “partial” and “empty”
ones. The standard notions of status functions are total ones that were intro-
duced to admit permutation of arguments when comparing them lexicographi-
cally from left to right (cf. [19]). Such a comparison appears in many well-known
reduction pairs; famous examples are LPO and KBO. By combining the idea
of argument filters, status functions have recently been generalized to partial
ones, that do not only permute but may also drop some arguments [23]. A par-
tial status is beneficial for KBO, and even more significant when combined with
WPO [26]. The extreme case of a partial status is the “empty” status, that drops
all arguments and so no comparison of arguments will be performed. This option
corresponds to the nature of interpretation methods, e.g. POLO, if precedences
are also disabled.

3.4 Obtaining Well-Known Reduction Pairs

Although most of the existing reduction pairs are subsumed by WPO, some of
them are still useful for improving efficiency, due to the restricted search space
and simplified SMT encoding. We list parameters that correspond to some known
reduction pairs in Tables 1 and 2. Note here that the effects of non-collapsing
argument filters are simulated by allowing 0-coefficients in the weight algebra.
Thus NaTT has a dedicated implementation only for collapsing argument filters,
and implementations of usable rules for interpretation methods and path orders
are smoothly unified.

4 Cooperation with SMT Solvers

NaTT is designed to work with any SMT-LIB 2.0 compliant solvers that support
at least QF LIA logic, for which various efficient solvers exist.7 NaTT extensively
uses SMT encoding techniques for finding appropriate reduction pairs; the condi-
tions of reduction pair processors are encoded into the following SMT constraint:∧

l→r∈R
[[l � r]] ∧

∧
s→t∈P

[[s � t]] ∧
∨

s→t∈P
[[s ( t]] (3)

6 Further constraints for admissibility are imposed.
7 Cf. the Satisfiability Modulo Theories Competition, http://smtcomp.org/

http://smtcomp.org/
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Table 2. Parameters for some (non-monotone) reduction pairs

Technique template coefficient constant precedence status

Linear POLO Pol N N no empty
Max-POLO MPol N Z no empty
LPO + argument filter Max {0, 1} {0} yes total
KBO + argument filter Pol {0, 1} N yes total

Matrix interpretations Pol Nd×d Nd no empty
WPO(MSum) MPol {0, 1} N yes partial

where each [[l �( ) r]] is an SMT formula that represents the condition l �( ) r.
In the remainder of this section, we present two techniques for handling such
constraints that contribute to the efficiency of NaTT.

4.1 Use of Interactive Features of SMT Solvers

In a typical run of termination verification, constraints of the form (3) are gener-
ated and solved many times, and each encoding sometimes involves thousands of
lines of SMT queries with a number of template and auxiliary variables. Hence
runtime spent for the SMT solver forms a large part of the overall runtime of the
tool execution. NaTT tries to reduce the runtime by using interactive features
of SMT solvers,8 which are specified in SMT-LIB 2.0.

For each technique of reduction pairs, the encoded formula of the constraint∧
l→r∈R[[l � r]] need not be changed during a run, as far as R is not modified.9

Hence, when a reduction pair processor is applied for the first time, the back-end
SMT solver is initialized according to the following pseudo-script:

(assert (
∧

l→r∈R
(
ul→r ⇒ [[l � r]]

)
))

(push)

where ul→r is a boolean variable denoting whether the rule l → r is usable or
not. When the processor is applied to an SCC P , the following script is used:

(assert (
∧

s→t∈P [[s � t]] ∧
∨

s→t∈P [[s ( t]]))
(check-sat)

Then, if a solution is found by the SMT solver, NaTT analyzes the solution using
the get-value command. After this analysis, the command

(pop)

is issued to clear the constraints due to P and go back to the context saved by
the (push) command. In order to derive the best performance of the solver,

(reset)

8 NaTT is not the first tool to use the interactive features of SMT solvers; e.g., Boogie
makes use of these features in its Houdini implementation [15].

9 Although rules in R may be removed by considering usable rules, the formula still
need not be changed, since it can be simulated by negating a propositional variable
that represents whether the rule is usable or not.
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is also issued in case sufficiently many rules become unusable (e.g., 1/3 of the
rules in R) from P . All these commands, push, pop and reset are expected to
be available in SMT-LIB 2.0 compliant solvers.

4.2 Use of Linear Arithmetic

Note that expressions of the form (1) or (2) are nonlinear, due to the coefficients
cf,1, . . . , cf,n. However, not many SMT solvers support nonlinear arithmetic, and
even if they do, they are much less scalable than they are for linear arithmetic.
Hence, we consider reducing the formulas to linear ones by restricting the range of
cf,1, . . . , cf,n e.g. to {0, 1}. Although the idea is inspired by [2], NaTT uses a more
straightforward reduction using ite (if-then-else) expressions. Each coefficient
cf,i is replaced by the expression (ite bf,i 1 0) where bf,i is a propositional
variable, and then multiplications are reduced according to the rule:

(* (ite e1 e2 e3) e4) → (ite e1 (* e2 e4) (* e3 e4))

It is easy to see that this reduction terminates and linearizes expressions of the
form (1) or (2). It is also possible to avoid an explosion of the size of formulas
by introducing a auxiliary variable for the duplicated expression e4.

Example 1. Consider the constraint f(f(a)) > b interpreted in the algebra Pol,
and suppose that the range of c f,1 is restricted to {1, 2}. The interpretation of
the term f(f(a)) is reduced as follows (written as S-expressions):

[[f(f(a))]] = (+ wf (* (ite b f,1 2 1) [[f(a)]]))

→ (+ wf (ite b f,1 (* 2 [[f(a)]]) [[f(a)]]))

Similarly, for f(a) we obtain

[[f(a)]] → (+ wf (ite b f,1 (* 2 wa) wa))

Now, the constraint [[f(f(a)) > b]] is expressed by the following script:

(define-fun v (+ wf (ite b f,1 (* 2 wa) wa)))

(assert (> (+ wf (ite b f,1 (* 2 v) v) wb)))

In contrast to SAT encoding techniques [4–6], we do not have to care about
the bit-width for the constant part and intermediate results. It is also possible
to indicate that NaTT should keep formulas nonlinear, and solve them using
SMT solvers that support QF NIA logic. Our experiments on TPDB10 prob-
lems, however, suggests that use of nonlinear SMT solving is impractical for our
purpose.

10 The Termination Problem Data Base, http://termination-portal.org/wiki/TPDB

http://termination-portal.org/wiki/TPDB
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5 Design

The source code of NaTT consists of about 6000 lines of code written in OCaml.11

About 23% is consumed by interfacing SMT solvers, where some optimizations
for encodings are also implemented. Another 17% is for parsing command-lines
and TRS files. The most important part of the source code is the 40% devoted
to the implementation of WPO, the unified reduction pair processor. Each of
the other processors implemented consumes less than 3%. For computing SCCs,
the third-party library ocamlgraph12 is used.

5.1 Command Line Interface

The command line of NaTT has the following syntax:

./NaTT [FILE] [OPTION]... [PROCESSOR]...

To execute NaTT, an SMT-LIB 2.0 compliant solver must be installed. By de-
fault, z3 version 4.0 or later13 is supposed to be installed in the path. Users can
specify other solvers by the --smt "COMMAND" option, where the solver invoked
by COMMAND should process SMT-LIB 2.0 scripts given on the standard input.

The TRS whose termination should be verified is read from either the specified
FILE or the standard input.14 Each PROCESSOR is either an order (e.g. POLO, KBO,
WPO, etc., possibly followed by options), or a name of other processors (UNCURRY,
EDG, or LOOP). Orders preceding the EDG processor should be monotone reduction
pairs and applied as rule removal processors before computing the dependency
pairs. Orders following the EDG processor are applied as reduction pair processors
to each SCC in the EDG. A list of available OPTIONs and PROCESSORs can be
obtained via NaTT --help.

5.2 The Default Strategy

In case no PROCESSOR is specified, the following default strategy will be applied:

– As a rule removal processor, POLO with coefficients in {1, 2} and constants
in N is applied.

– Then the uncurrying processor is applied.
– The following reduction pair processors are applied (in this order):

1. POLO with coefficients in {0, 1} and constants in N,
2. algebra Max with coefficients in {0, 1} and constants in N,
3. LPO with quasi-precedence, status and argument filter,
4. algebra MPol with coefficients in {0, 1} and constants in Z,
5. WPO with quasi-precedence, partial status, algebra MPol, coefficients

in {0, 1} and constants in N,
6. matrix interpretations with {0, 1}2×2 matrices and N2 vectors.

– If all the above processors fail, then a (naive) loop detection is performed.

11 http://caml.inria.fr/
12 http://ocamlgraph.lri.fr/
13 http://z3.codeplex.com/
14 The format is found at https://www.lri.fr/~marche/tpdb/format.html

http://caml.inria.fr/
http://ocamlgraph.lri.fr/
http://z3.codeplex.com/
https://www.lri.fr/~marche/tpdb/format.html
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6 Assessment

Many tools have been developed for proving termination of TRSs, and the in-
ternational termination competition has been held annually for a decade. NaTT
participated in the TRS Standard category of the full-run 2013, where the other
participants are versions of: AProVE,15 TTT2,

16 MU-TERM,17 and WANDA.18 Us-
ing the default strategy described in Section 5.2, NaTT (dis)proves termination
of 982 TRSs out of 1463 TRSs, and comes next to (the two versions of) AProVE,
the constant champion of the category. It should be noticed that NaTT proved
termination of 34 TRSs out of the 159 whose termination could not be proved
by any other tool. NaTT is notably faster than the other competitors; it con-
sumed only 21% of the time compared to AProVE, the second fastest. We expect
that we can further improve efficiency by optimizing to multi-core architecture;
currently, NaTT runs in almost single thread. NaTT also participated in the SRS
Standard category. However, the result is not as good as it is for TRSs. This
is due to the fact that the default strategy of Section 5.2 is designed only for
non-unary signatures. It should be improved by choosing a strategy depending
on the shape of input TRSs.

7 Conclusion

We described the implementation and techniques of the termination tool NaTT.
The novel implementation of the weighted path order is described in detail,
and some techniques for cooperating SMT solvers are presented. Together with
these efforts, NaTT is one of the most efficient and strongest tools for proving
termination of TRSs.
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Abstract. String rewriting can not only be applied on strings, but also
on cycles and even on general graphs. In this paper we investigate ter-
mination of string rewriting applied on cycles, shortly denoted as cycle
rewriting, which is a strictly stronger requirement than termination on
strings. Most techniques for proving termination of string rewriting fail
for proving termination of cycle rewriting, but match bounds and some
variants of matrix interpretations can be applied. Further we show how
any terminating string rewriting system can be transformed to a termi-
nating cycle rewriting system, preserving derivational complexity.

1 Introduction

A string rewriting system (SRS) consists of a set of rules � → r where � and r
are strings, that is, elements of Σ∗ for some alphabet Σ. String rewriting means
that for such a rule � → r an occurrence of � is replaced by r. In the standard
interpretation this only works on strings: a string of the shape u�v is replaced
by urv. However, it is natural also to apply this on a cycle, that is, a string in
which the start point is connected to its end point. For instance, for an SRS R
containing the rule ab→ cba we want to allow the cycle rewrite step

c

a

a

a b

◦→R

c

a

a

c

b

a

We use the notation ◦→R for a cycle rewrite step. In this paper we investigate
termination of cycle rewriting. It is easy to see that termination of cycle rewriting
implies termination of string rewriting. However, the other way around does not
hold: the single rewrite rule ab → ba is terminating in the setting of string
rewriting, but not in the setting of cycle rewriting, since the cycle ab of length
2 rewrites to the cycle ba which is equal to the cycle ab, so this rewriting can go
on forever.
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Cycle rewriting can be seen as a special instance of graph transformation [2].
In a separate paper [1] we investigate how the techniques of this paper extend
to the general setting of graph transformation. In particular there we show that
for a graph transformation system in which all rules are string rewrite rules,
termination on all cycles coincides with termination on all graphs. So from the
perspective of termination of graph transformation it is more natural to consider
string rewriting to be applied on cycles rather than on strings, justifying an
investigation of cycle rewriting as a separate topic. In describing communication
protocols with message passing on a ring structure, the steps are essentially cycle
rewrite steps, again a motivation for investigating cycle rewriting.

Standard techniques for proving termination of term rewriting and string
rewriting like the recursive path order, dependency pairs and polynomial inter-
pretation fail to prove termination of cycle rewriting as they all easily prove
termination of the single rule ab → ba which is not terminating in the cycle
setting. They all exploit the term structure by which every string has a begin
and an end, while a cycle has not. Nevertheless, for a few other powerful tech-
niques, in particular match bounds, arctic matrices and tropical matrices, we
show that these can be applied to prove termination of cycle rewriting. It turns
out that the techniques of arctic and tropical matrices can be interpreted by
weighting in type graphs: tropical matrices correspond to the requirement that
every morphism of a left hand side to the type graph admits a morphism of the
corresponding right hand side to the type graph of a lower weight, while arctic
matrices correspond to the requirement that every morphism of a right hand
side to the type graph admits a morphism of the corresponding left hand side
to the type graph of a higher weight. Further match bound proofs can be seen
as a particular case of tropical matrix proofs. We developed an implementation
automatically finding proofs based on a combination of these techniques.

We investigate derivational complexity of cycle rewrite systems for which ter-
mination is proved by these techniques. Arctic matrices and match bounds have
been exploited before for proving bounds on derivational complexity of term
rewriting and string rewriting: single applications of these techniques yield lin-
ear bounds, while combined application may yield higher bounds. In this paper
we give similar results in the setting of cycle rewriting. In particular we give ex-
amples of length preserving systems for which termination can be proved by com-
bining the above mentioned techniques, while any polynomial can be achieved
as a lower bound for derivational complexity. For non-length-preserving systems
we show that exponential derivational complexity can be reached.

We investigate a particular shape of SRSs for which we show that termination
of string rewriting and cycle rewriting coincide; it is characterized by end symbols
that only occur as the last symbol of a left hand side or right side of a rule. We
show how any SRS can be transformed to an SRS of this special shape, preserving
termination and derivational complexity. As a consequence, termination of cycle
rewriting is undecidable, and for every computable function an SRS R exists for
which cycle rewriting is terminating and the derivational complexity exceeds the
computable function.
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The paper is organized as follows. Section 2 presents basic definitions and
observations related to cycle rewriting. Section 3 presents the techniques for
proving termination of cycle rewriting. In Section 4 derivational complexity of
these techniques is investigated. Section 5 introduces the special format with end
symbols and presents the corresponding theory. In Section 6 our implementation
is discussed. We conclude in Section 7.

2 Cycle Rewriting

We consider cycles over an alphabet Σ which are essentially strings over Σ in
which the leftmost element is connected to the rightmost element. We represent
cycles by strings, where for all strings u, v the string uv represents the same cycle
as vu. More precisely, for any alphabet Σ we define the set Cycle(Σ) of cycles
over Σ by

Cycle(Σ) = Σ∗/ ∼

where ∼ is the equivalence relation on Σ∗ defined by

u ∼ v ⇐⇒ ∃u1, u2 ∈ Σ∗ : u = u1u2 ∧ v = u2u1.

It is straightforward to check that indeed ∼ is an equivalence relation. The cycle
represented by a string u, i.e., the equivalence class of u w.r.t ∼, is denoted by
[u].

As usual we define a string rewrite system (SRS) over Σ to be a subset R
of Σ∗ × Σ∗. Elements (�, r) of an SRS are called (string rewrite) rules and are
usually written as �→ r, where � is called the left hand side (lhs) and r the right
hand side (rhs) of the rule. As usual, the string rewrite relation →R on Σ∗ is
defined by u→R v ⇐⇒ ∃x, y ∈ Σ∗, �→ r ∈ R : u = x�y ∧ v = xry.

For an SRS R over Σ we define the corresponding cycle rewrite relation ◦→R

on Cycle(Σ) as follows:

[u] ◦→R [v] ⇐⇒ ∃x ∈ Σ∗, �→ r ∈ R : �x ∼ u ∧ rx ∼ v.

Equivalently, one can state [u] ◦→R [v] ⇐⇒ ∃u′ ∈ [u], v′ ∈ [v] : u′ →R v
′.

The main goal of this paper is to study ◦→R , in particular how to prove
termination, that is, does not allow an infinite reduction.

Lemma 1. Let R be an SRS over an alphabet Σ for which the relation ◦→R

on Cycle(Σ) is terminating. Then the string rewrite relation →R on Σ∗ is ter-
minating too.

Proof. If u→R v for u, v ∈ Σ∗ then [u] ◦→R [v]. Hence an infinite →R-reduction
transforms to an infinite ◦→R -reduction, proving the lemma. +,

The converse of Lemma 1 does not hold: the SRS consisting of the single rule
ab → ba is clearly terminating, but since [ab] = [ba] the corresponding cycle
rewrite relation ◦→ is not terminating.
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So termination of ◦→R is a stronger requirement than termination of →R.
A natural question to ask is how confluence of ◦→R is related to confluence of

→R. It turns out that none of the possible implications holds. As a first example
consider the SRS over {a, b} consisting of the two rules ab→ ba, ab→ b. Since
the string ab rewrites to both ba and b, both being normal forms, the relation
→R is not confluent for this SRS. However, with respect to ◦→R every string
containing n b-s rewrites to bn while every string containing no b-s is a normal
form, hence ◦→R is confluent. Conversely consider the SRS consisting of the two
rules ab→ aa, ba→ bb. Straightforward critical pair analysis shows that →R is
locally confluent; since it is terminating (proved e.g. using dependency pairs) it
is confluent too. However, ◦→R is neither confluent since ab admits two normal
forms aa and bb, nor terminating since aab ∼ aba→R abb→R aab.

Also with respect to weak normalization the relations ◦→R and →R are in-
comparable: for the single rule ab → ba the relation →R is weakly normal-
izing, while ◦→R is not. Conversely, for the SRS consisting of the two rules
ab→ ab, ba→ a the relation ◦→R is weakly normalizing, while →R is not.

3 Termination by Type Graphs

From now on we concentrate on developing techniques to prove termination of
◦→R . We start by a most basic technique exploiting decreasing weights. A weight
function W : Σ → IN is extended to a weight function W : Σ∗ → IN by defining
inductively W (ε) = 0 and W (ax) =W (a)+W (x) for a ∈ Σ, x ∈ Σ∗: the weight
of a string is simply the sum of the weights of its elements.

Lemma 2. Let R be an SRS over Σ and let W : Σ → IN satisfy

– W (�) ≥W (r) for all �→ r ∈ R, and
– ◦→R′ is terminating for R′ = {�→ r ∈ R |W (�) =W (r) }.

Then ◦→R is terminating.

Proof. We prove that W (u) = W (v) for all u, v satisfying [u] ◦→R′ [v] and
W (u) > W (v) for all u, v satisfying [u] ◦→R\R′ [v]. Then termination of R follows
from termination of R′ and well-foundedness of >. So let [u] ◦→R\R′ [v], then we
can write u = u1u2, v = v1v2, u2u1 = �x, v2v1 = rx for some � → r ∈ R \ R′.
Then

W (u) =W (u1u2) =W (u1) +W (u2) =W (u2u1)
=W (�x) =W (�) +W (x)
> W (r) +W (x) =W (rx)
=W (v2v1) =W (v2) +W (v1) =W (v1v2) =W (v).

For the remaining case [u] ◦→R′ [v] we obtain exactly the same derivation with
‘>’ replaced by ‘=’, hence concluding W (u) =W (v) which we had to prove. +,

In simple applications of Lemma 2 we have W (�) > W (r) for all � → r ∈ R,
by which R′ is empty and hence ◦→R is trivially terminating. Then the only
thing to be done for proving termination of ◦→R is choosing a W (a) ∈ IN for
every a ∈ Σ such that W (�) > W (r) for all �→ r ∈ R.
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Example 3. For the SRS R consisting of the four rules

aa→ bc, bb→ cd, cc→ ddd, ddd→ ac

the relation ◦→R is terminating due to Lemma 2 by choosingW (a) = 30,W (b) =
27,W (c) = 32 and W (d) = 21, for which it is checked that W (�) > W (r) for all
four rules �→ r. These numbers are the smallest possible ones.

Next we give a generalization of Lemma 2 inspired by the notion of a type
graph as it appears in graph transformation systems [2] and coinciding with the
approach of tropical and arctic matrix interpretations [4,7]. Also the proofs could
be given in the setting of matrices over semirings as we discuss later.

We define a type graph (V,E,W ) over a signature Σ to be a directed graph in
which the edges are labeled by symbols from Σ, and have a weight W (e) ∈ IN,
that is, E ⊆ V ×Σ × V and W : E → IN.

For u = a1a2 · · · an ∈ Σ+ and p, q ∈ V we define a u-path from p to q in a type
graph (V,E,W ) to be a sequence (p1, a1, q1)(p2, a2, q2) · · · (pn, an, qn) of edges in
E such that p1 = p, qn = q and qi = pi+1 for i = 1, . . . , n− 1. The weight W (u)
of such a u-path is defined to be

∑n
i=1W (pi, ai, qi). In case p = q, the u-path is

called a u-cycle.
We distinguish two kinds of criteria to conclude ◦→R termination from mor-

phisms from paths to type graphs: tropical and arctic. Tropical means that every
path morphism of a left hand side to the type graph admits a morphism of the
corresponding right hand side to the type graph of a lower weight, while arctic
means that every path morphism of a right hand side to the type graph admits
a morphism of the corresponding left hand side to the type graph of a higher
weight. This terminology is inspired by the corresponding terminology for matrix
interpretations.

Theorem 4. Let R′ ⊆ R be SRSs over Σ. Let (V,E,W ) be a type graph over
Σ. Assume

– there exists p ∈ V such that (p, a, p) ∈ E for all a ∈ Σ, and
– ◦→R′ is terminating, and
– either

• (tropical) for every �→ r ∈ R, p, q ∈ V and for every �-path from p to q
in (V,E,W ) having weight w there is an r-path from p to q in (V,E,W )
having weight w′ with w ≥ w′, and w > w′ if �→ r �∈ R′, or

• (arctic) for every � → r ∈ R, p, q ∈ V and for every r-path from p to q
in (V,E,W ) having weight w there is an �-path from p to q in (V,E,W )
having weight w′ with w′ ≥ w, and w′ > w if �→ r �∈ R′.

Then ◦→R is terminating, and any ◦→R reduction of a cycle [u] contains at
most |u| · w steps with respect to R \R′ for w = maxe∈EW (e).

Proof. Assume [u0] ◦→R [u1] ◦→R [u2] ◦→R · · · ◦→R [un] contains more than |u0| ·
w steps with respect to R \ R′ for w = maxe∈EW (e). We will derive a contra-
diction; this proves the theorem as termination immediately follows.
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For the tropical case choose any u0-cycle; this exists due to the first assump-
tion of the theorem. Let w0 be the weight of this cycle.

Next, for i = 1, 2, 3, . . . we can choose a ui-cycle by replacing the �-path being
the part of the ui−1-cycle by the corresponding r-path as indicated in the tropical
condition of the theorem, where � → r is the rule applied in [ui−1] ◦→R [ui].
Let wi be the weight of this new cycle; if � → r ∈ R \ R′ then wi < wi−1,
otherwise wi ≤ wi−1. As by the assumption there are more than |u0| · w steps
with ’<’, and wn ≥ 0, we conclude w0 > |u0| ·w. This contradicts the definition
of w = maxe∈EW (e).

For the arctic case choose any un-cycle; this exists due to the first assumption
of the theorem. Let wn be the weight of this cycle.

Next, for i = n − 1, n − 2, n − 3, . . . we can choose a ui-cycle by replacing
the r-path being the part of the ui+1-cycle by the corresponding r-path as indi-
cated in the arctic condition of the theorem, where � → r is the rule applied in
[ui] ◦→R [ui+1]. Let wi be the weight of this new cycle; if � → r ∈ R \ R′ then
wi < wi−1, otherwise wi ≤ wi−1. The rest of the argument is as before. +,

In case the type graph consists of a single node, every path in this type graph
consists of a sequence of edges of this node to itself. In this case the conditions
for the tropical case and the termination conclusion of Theorem 4 coincide with
the conditions and the conclusion of Lemma 2. Hence indeed we can state that
Theorem 4 is a generalization of Lemma 2. The next example shows that it is a
strict generalization.

Example 5. For the SRS R consisting of the single rule aa → aba Lemma 2
does not apply, since 2W (a) > 2W (a) +W (b) has no solutions in the natural

numbers. Instead we define a
type graph consisting of two
nodes 1 and 2, and four edges
(1, a, 1), (1, b, 1), (1, a, 2), (2, b, 1), of
which (1, a, 1) has weight 1 and all
others have weight 0, as indicated in
the picture.

1 2

a,0

b,0

a,1

b,0Now there are exactly two aa-paths:

– 1 →a 1 →a 1 of weight 2 that may be replaced by the aba-path 1 →a 2 →b

1→a 1 of weight 1, and
– 1 →a 1 →a 2 of weight 1 that may be replaced by the aba-path 1 →a 2 →b

1→a 2 of weight 0.

So all conditions of the tropical version of Theorem 4 are satisfied in choosing
R′ to be empty, proving that ◦→R is terminating.

Type graphs can be represented by matrices in the following natural way.
Number the nodes of the type graphs from 1 to n. For every a ∈ Σ let Aa

be the matrix such that Aa(i, j) = w if and only if an edge (i, a, j) exists of
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weight w, while Aa(i, j) = ∞ if no such edge exist. So for example, the type
graph of Example 5 is represented by the following matrices:

Aa =

(
1 0
∞∞

)
, Ab =

(
0∞
0∞

)
.

Now we consider the semiring (IN∪{∞},min,+), that is, the semiring consisting
of IN∪{∞} on which the binary operator min acts as the semiring addition and
the normal addition acts as the semiring multiplications. Here on IN the operators
min and + act as usual, while it is extended to IN ∪ {∞} by defining

min(∞, x) = min(x,∞) = x and ∞+ x = x+∞ =∞

for all x ∈ IN∪{∞}. Now∞ acts as the semiring zero and 0 acts as the semiring
unit. This semiring is called the tropical semiring after its study by the Brazilian
mathematician Imre Simon [8]. Now it is easily checked that path concatenation
corresponds to matrix multiplication over this semiring, more precisely, if Au

is defined by Au(i, j) to be the lowest weight of a u-path from i to j, and ∞
if no such path exists, then Auv = Au × Av, where × is matrix multiplication
with respect to this semiring. For instance, in the above example we have Aab =(

0 ∞
∞∞

)
. In this notation the tropical condition can be reformulated to A� ≥ Ar

for all �→ r ∈ R and A� > Ar for all �→ r not in R′. Here ≥ and > on matrices
are defined by

A ≥ B ⇐⇒ ∀i, j : A(i, j) ≥ B(i, j), A > B ⇐⇒ ∀i, j : A(i, j) > B(i, j),

in which ≥ and > on IN is extended to IN ∪ {∞} by defining ∞ ≥ x and ∞ > x
for all x ∈ IN ∪ {∞}. Note that this also yields ∞ > ∞, by which > is not
well-founded on the full set IN ∪ {∞}.

Indeed, in Example 5 we have

Aaa =

(
2 1
∞∞

)
> Aaba =

(
1 0
∞∞

)
.

Also the arctic condition can be described by a matrix condition over a semi-
ring: the arctic semiring (IN∪{−∞},max,+), so similar to the tropical semiring,
but now with max as the semiring addition, having −∞ as its zero, in which
−∞ is less than all other elements. In this notation the arctic condition can be
reformulated to A� ≥ Ar for all �→ r ∈ R and A� > Ar for all �→ r not in R′.
These arctic matrix interpretations have been studied in [7], being a modification
of matrix interpretations [4]. There the termination proofs for term rewriting
(including string rewriting) are based on monotone algebras. As pointed out by
an anonymous referee the monotone algebra approach can be adjusted for our
cycle setting by taking the trace of a matrix, that is, the sum of the diagonal, as
its interpretation; compatibility with the cycle interpretation then follows from
the well-known property that AB and BA have the same traces for all matrices
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A,B, for any commutative semiring. In this way also matrix interpretations over
the semiring (IN,+,×) can be applied for proving termination of cycle rewriting.

This section is concluded by showing how the method of match-bounds for
proving termination of string rewriting can be seen as a special instance of
tropical type graphs, and therefore also proves termination of cycle rewriting.
Here we refer to the basic version of match-bounds which is also used for proving
linear derivational complexity of string rewriting, and not the version based
on forward closures which is more powerful for proving termination of string
rewriting. Surprisingly, this basic theorem of match-bounds uses exactly the
same data structure of a type graph: a directed graph in which every edge is
labeled by symbols from Σ and has a natural number assigned to it. Where in
type graphs this natural number serves as a weight, denoted by W , in match-
bounds it serves as a height and is denoted by H .

Theorem 6. Let R be SRSs over Σ. Let (V,E,H) be a type graph over Σ.
Assume

– there exists p ∈ V such that (p, a, p) ∈ E for all a ∈ Σ, and
– for every �→ r ∈ R, p, q ∈ V and for every �-path from p to q in (V,E,H)

there is an r-path from p to q in (V,E,H) such that the height of every edge
in this r-path is 1 + m, where m is the smallest height of an edge in the
�-path.

Then ◦→R is terminating.

If the conclusion of Theorem 6 is weakened to termination of→R, it coincides
with the basic version of the match-bound theorem for string rewriting from
[5,10,3].

Proof. For proving Theorem 6 we apply the tropical case of Theorem 4, in which
we define W (u, a, v) = sh−H(u,a,v), where s is a number higher than the length
of the longest right hand side of R, and h is the highest value of H occurring in
the type graph (V,E,H). We choose R′ = ∅. Then all conditions of Theorem 4
hold, where the tropical condition for a rule � → r and an �-path from u to v
with smallest height m follows from

W (�) ≥ sh−m > |r| · sh−(m+1) =W (r),

in which the r path from u to v is chosen according to the second condition of
Theorem 6. So ◦→R is terminating according to Theorem 4. +,

The typical use of match-bounds is that one tries to construct a corresponding
type graph by completion: start by a single node with an a-loop of height 0 for
every a ∈ Σ, and complete it by continuously investigating all �-paths in the
graph and add a corresponding r-path if it does not yet exist. If this process
ends, termination has been proved. Note that the second condition of Theorem
6 may be weakened: the existence an r-path with total weight less than the
weight of the �-path is sufficient, also if not all edges in the r-path have height
exactly m+ 1.
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4 Derivational Complexity

In term rewriting and string rewriting derivational complexity of a terminating
rewrite system is defined to be the longest reduction length expressed in the size
of the initial term. For cycle rewriting we do exactly the same: for an SRS R
over Σ we define

dcR(n) = max{k | ∃t, s ∈ Σ∗ : |t| ≤ n ∧ t ◦→R
ks}.

Here ◦→R
k means the composition of k ◦→R -steps. An SRS R is said to have lin-

ear (quadratic, cubic, . . .) derivational complexity with respect to cycle rewriting
if dcR(n) = Θ(n) (Θ(n

2), Θ(n3), . . .).
Our first theorem on derivational complexity states that combined applica-

tion of Lemma 2 only proves termination of systems with linear derivational
complexity.

Theorem 7. Let n ≥ 1. Let R =
⋃n

i=1 Ri for which for every k = 1, . . . , n

termination of
⋃k

i=1Ri is proved by Lemma 2 by choosing R′ = ∅ for k = 1 and

R′ =
⋃k−1

i=1 Ri for k > 1. Then dcR(n) = O(n).

Proof. We apply induction on n. If n = 1 then Lemma 2 is applied with R′ = ∅,
meaning that W (�) > W (r) for all � → r ∈ R, from which we obtain W (t) >
W (t′) for every t ◦→R t

′. If C is the highest value of W (a) for a ∈ Σ, then from
t ◦→R

ks we conclude k ≤W (t) ≤ C|t|, proving dcR(n) = O(n).
For n > 1 the termination proof of R1 ∪ R2 is given by weights W1 and W2

satisfying W1(�) > W1(r) for � → r ∈ R1, W2(�) = W2(r) for � → r ∈ R1, and
W2(�) > W2(r) for �→ r ∈ R2. Choose C ∈ IN such that C > W1(�)−W1(r) for
all �→ r ∈ R2. Define W (a) = CW2(a) +W1(a) for a ∈ Σ, then combining the
above properties yields W (�) > W (r) for all � → r ∈ R1 ∪ R2. So termination
of R1 ∪ R2 is proved by Lemma 2 by choosing R′ = ∅ and the new weight W .
Now the theorem follows by applying the induction hypothesis on R =

⋃n−1
i=1 R

′
i

in which R′
1 = R1 ∪R2 and R′

k = Rk+1 for k = 2, . . . , n− 1. +,

If termination of ◦→R is proved by applying Theorem 4 for R′ = ∅, then
dcR(n) = O(n) immediately follows from Theorem 4. In particular, this holds
for proofs by match-bounds via Theorem 6, as Theorem 6 was proved by applying
Theorem 4 for R′ = ∅. However, by combined application of Theorem 4 much
longer derivation lengths can be achieved: even by combining a single application
of Theorem 4 with a single application of Lemma 2 exponential derivation lengths
can be obtained, as is shown in the following example.

Example 8. Let the SRS R consist of the four rules

aL→ Lbb, Rb→ aR, BL→ R, RB → LB.

One easily shows that BakLB rewrites to a2kLB for every k ≥ 0, so BkaLB

rewrites to a2
k

LB. As the increase of size is exponential in the size of the original
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string, it has at least exponential derivation length: dcR(n) = Ω(2n). Note that
the reduction does not exploit the cycle structure, so the exponential derivation
length both holds for cycle rewriting and string rewriting.

For proving termination of ◦→R we apply Lemma 2 by choosing W (B) = 2,
W (R) = 1 and W (a) =W (b) =W (L) = 0. As W (�) > W (r) for the last
two rules � → r, and W (�) =
W (r) for the first two rules, it
remains to prove termination
for the first two rules. For do-
ing so we apply the tropical
case of Theorem 4 for R′ = ∅
and the following type graph:
It contains the following paths
labeled by left hand sides:

1 2

L,0

b,0

b,0

a,1

b,2

L,0

R,0

– 1→a 1→L 1 of weight 1 to be replaced by 1→L 2→b 2→b 1 of weight 0,
– 1→a 1→L 2 of weight 1 to be replaced by 1→L 2→b 2→b 2 of weight 0,
– 1→R 1→b 1 of weight 2 to be replaced by 1→a 1→R 1 of weight 1,

by which all requirements of Theorem 4 hold and termination of ◦→R can be
concluded.

In a first view the following observations look quite contradictory to the obser-
vation that R has exponential derivation length. The first two rules have linear
derivation lengths since we found a proof by Theorem 4 in which R′ = ∅, and
by the application of Lemma 2 we concluded that the number of applications of
the other two rules is linear in the size of the original string. But the example
clearly shows what is going on: between consecutive applications of the third
and fourth rule the length of the string is doubled, and after doubling a linear
number of times the length has increased to exponential size, after which the
first two rules can be applied an exponential number of times.

The following theorem states that the situation is quite different if the lengths
of the strings do not increase. An SRS R is called non-length-increasing if |r| ≤ |�|
for all �→ r ∈ R.

Theorem 9. Let R be a non-length-increasing SRS and let R′ ⊆ R satisfy all
requirements of Theorem 4, and assume dcR′(n) = O(f(n)) for some function
f . Then dcR(n) = O(nf(n)).

Proof. Take an arbitrary ◦→R reduction [u0] ◦→R [u1] ◦→R · · · ◦→R [uk] of length
k starting with a string u0 for which |u0| = n. Since R is non-length-increasing
we obtain |ui| ≤ n for all i = 0, . . . , k. From the proof of Theorem 4 we con-
clude that the total number of ◦→R\R′ -steps in this reduction is at most Cn
for some constant C. From |ui| ≤ n for all i = 0, . . . , k and dcR′(n) = O(f(n))
we conclude that the maximal number of consecutive ◦→R′ -steps in this reduc-
tion is at most Df(n) for some constant D. Combining these observations yields
k ≤ Cn+ (1 + Cn)Df(n), from which we conclude k = O(nf(n)). +,
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So as a consequence, we conclude that if for a non-length-increasing SRS
R termination of ◦→R is proved only by consecutive application of Theorem
4, then dcR(n) = O(nk) for k being the number of consecutive applications:
R has polynomial derivational complexity. Next we give an example showing
that every polynomial derivational complexity can be achieved by non-length-
increasing systems for which termination can be proved by repeated application
of Theorem 4.

Example 10. For k ≥ 1 let Rk be the union of

fia0 → aifi, fi → fi−1, aif0 → fi−1a0,

for i running from 1 to k. Let F (n, i) be the number of steps of a particu-
lar reduction from fia

n
0 to f0a

n
0 . We will prove F (n, k) = Θ(nk), from which

dcRk
(n) = Θ(nk) immediately follows, both in the setting of string rewrit-

ing and cycle rewriting. Due to f1a
n
0 →n an1f1 → an1f0 →n f0a

n
0 we obtain

F (n, 1) = 2n+ 1. For i > 1 we consider the reduction

fia
n
0 →n ani fi →i ani f0 → an−1

i fi−1a0 →F (1,i−1) an−1
i f0a0

→ an−2
i fi−1a

2
0 →F (2,i−1) an−2

i f0a
2
0

→ an−3
i fi−1a

3
0 →F (3,i−1) an−3

i f0a
3
0

· · ·
→ fi−1a

n
0 →F (n,i−1) f0a

n
0 ,

yielding F (n, i) ≥
∑n

j=1 F (j, i− 1). Now one proves F (n, i) > (1/i!)ni by induc-

tion on i, using the well-known property
∑n

j=1 j
i−1 ≥ (1/i) ∗ ni, concluding the

proof.
Next we prove termination of ◦→Rk

by repeated application of Theorem 4
and its special instance Lemma 2. First remove fk → fk−1 by counting fk, that
is, choose W (fk) = 1 and W (a) = 0 for all a �= fk in Lemma 2. Next apply
Theorem 4 by choosing the
following type graph, where
both ai and fi in the left
stand for k + 1 copies, for
i running from 0 to k. One
easily checks that both fka0-
paths can be replaced by an
akfk-path of lower weight,
while for all other rules �→ r
all �-paths can be replaced

1 2

ak,0

fk,0

ak,0

ai,1

fi,0

by an r-path of the same weight. So the rule fka0 → akfk may be removed. Next
remove akf0 → fk−1a0 by counting ak. The remaining system now is Rk−1, on
which the argument is repeated until all rules have been removed.

5 End Symbols

In this section we show that for SRSs R of a particular shape termination of
→R and termination of ◦→R coincide. The special shape is characterized by an
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end symbol: a symbol E that only occurs as the last element of left hand sides
and right hand sides of rules. We show that any SRS can be transformed to an
SRS of this special shape, preserving termination and derivational complexity.
As a consequence, termination of ◦→R is undecidable, and for every computable
function F an SRS R exists such that dcR(n) = Ω(F (n)).

Lemma 11. Let R be an SRS over Σ and let E ∈ Σ. Let R′ ⊆ R consist of the
rules of R in which E does not occur. Assume

1. every rule of R \R′ is of the shape uE→ vE for u, v ∈ (Σ \ {E})∗,
2. ◦→R′ is terminating, and
3. →R is terminating.

Then ◦→R is terminating.

Proof. Assume ◦→R admits an infinite reduction [u1] ◦→R [u2] ◦→R [u3] ◦→R · · · .
Then due to assumptions 1 and 2 it contains steps with respect to R \ R′, so
the symbol E occurs in u1, so there is a string of the shape v1E ∈ [u1]. From
[u1] ◦→R [u2] we conclude that v1E = u′u′′ where u′′u′ = �x for some rule �→ r
in R and some x ∈ Σ∗ and rx ∈ [u2]. If u

′′ = ε we may also choose u′ = ε and
u′′ = �x, so in all cases we may assume that u′′ is non-empty and ends in E.

As u′′u′ = �x, and � contains no E other than in its last position by assumption
1, from u′′ ending in E we conclude that u′′ = �y for some y, and x = yu′. If y
is non-empty it ends in E, if y = ε then � ends in E, and then by assumption 1
also r ends in E. In all cases ry ends in E. Write u′ry = v2E, then rx = ryu′ 2
u′ry = v2E, so v2E ∈ [u2] since rx ∈ [u2].

Summarizing, from v1E ∈ [u1] we constructed v2E ∈ [u2] such that

v1E = u′u′′ = u′�y →R u
′ry = v2E ∈ [u2].

Repeating this construction yields the infinite reduction v1E→R v2E→R v3E→R

· · · , contradicting assumption 3. +,

Next we define a transformation φ on SRSs such that an SRS R is termi-
nating if and only if ◦→φ(R) is terminating, exploiting Lemma 11. Moreover,
this transformation preserves reduction lengths. For a signature Σ we define
Σ′ = {f ′ | f ∈ Σ} in which for every f ∈ Σ the symbol f ′ is fresh. Apart from
these f ′s we introduce three more fresh symbols L,R,E, of which E will act as
the end symbol from Lemma 11. Now for an SRS R over Σ the SRS φ(R) over
Σ ∪Σ′ ∪ {L,R,E} is defined to consist of the rules

(a) RE→ LE
(b) fL→ Lf ′ for all f ∈ Σ
(c) Rf ′ → fR for all f ∈ Σ
(d) �L→ rR for all �→ r ∈ R

Theorem 12. In the above setting, for any SRS R over Σ the following three
properties are equivalent:
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1. →R is terminating,
2. →φ(R) is terminating,
3. ◦→φ(R) is terminating.

Moreover, if a string u ∈ Σ∗ admits a →R reduction of n steps for some n, then
uRE admits a →φ(R) reduction of n steps.

For proving this theorem we first need a lemma.

Lemma 13. Let BC consist of the rules of type (b) and (c) above. Then ◦→BC

is terminating.

Proof. Similar to Example 8 we apply Theorem 4 using the following type graph,
in which f stands for all f ∈ Σ
and f ′ stands for all f ′ for
which f ∈ Σ. Now by choos-
ing R = BC and R′ = ∅ all re-
quirements of Theorem 4 hold,
hence proving that ◦→BC is
terminating. +,

1 2

L,0

f ′,0

f ′,0

f ,1

f ′,2

L,0

R,0

Now we arrive at the proof of Theorem 12.

Proof. 1⇒ 2:
Assume →R is terminating and →φ(R) admits an infinite reduction. If this

infinite →φ(R) reduction contains only finitely many (d) steps, then there is
an infinite →φ(R) reduction that only consists of (a), (b), (c) steps. Then by
counting R symbols there is also an infinite →φ(R) reduction only consisting
of (b), (c) steps, contradicting Lemmas 1, 13. So the infinite →φ(R) reduction
contains infinitely many (d) steps. In this reduction remove every L symbol and
every R symbol, and replace every symbol f ′ by f , for every f ∈ Σ. Then every
(a), (b), (c) step is replaced by an equality and every (d) steps is replaced by an
R step, yielding an infinite →R reduction, contradiction.

2⇒ 1:
An infinite →R reduction is transformed to an infinite →φ(R) by putting RE

behind and the following observation, also proving the ’moreover’ remark in the
theorem:

if u→R v then uRE→+
φ(R) vRE.

This is shown as follows: write u = x�y and v = xry for �→ r ∈ R, then

uRE = x�yRE→(a) x�yLE→∗
(b) x�Ly

′E→(d) xrRy
′E→∗

(c) xryRE = vRE.

3⇒ 2: Immediate from Lemma 1.
2⇒ 3:
We apply Lemma 11 on the SRS φ(R). First observe that φ(R) satisfies con-

dition 1 by construction. So it remains to prove condition 2: the rules of type
(b), (c), (d) are terminating. By counting L symbols it suffices to prove that the
rules of type (b), (c) are terminating, which follows from Lemma 13. +,
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Theorem 14. Termination of ◦→R is an undecidable property, and for every
computable function F an SRS R exists such that dcR(n) = Ω(F (n)).

Proof. The main result from [6] states that every Turing machine M can be
transformed to an SRS RM such that→RM is terminating if and only ifM halts
on every input, proving that termination of string rewriting is undecidable. Ap-
plying Theorem 12 we obtain that every Turing machine M can be transformed
to an SRS φ(RM ) such that ◦→φ(RM) is terminating if and only if M halts on
every input. So also termination of ◦→ is undecidable.

For the second claim take a uniformly halting Turing machine M such that
for every n there is a configuration of size O(n) admitting Ω(F (n)) transitions
before halting; a Turing machine computing F (n) satisfies this property. Now due
to Theorem 12 ◦→φ(RM) is terminating and satisfies dcφ(RM )(n) = Ω(F (n)). +,

6 Implementation

We implemented all techniques presented in this paper in our tool TORPAcyc.
More precisely, for a given SRS the tool tries to prove termination stepwise by
tropical and arctic type graphs for increasing graph size running from 1 to 3.
As soon as a rule is found yielding a strict decrease while all other rules yield
a weeks decrease, this rule is removed and the process continues with the rest.
For graph size 1 this corresponds to simple weight arguments, so this is by what
the procedure always starts. Apart from this also the match-bound method is
applied, in which the corresponding type graph is constructed by completion,
typically yielding graphs of up to hundreds of nodes.

For match-bounds the implementation from the tool TORPA has been reused,
as presented in [10]. For searching for type graphs the real work is done by the
external SMT solver Yices: the requirements are expressed in an SMT formula
similar to other implementations of arctic and tropical matrix interpretations,
and whenever Yices finds a satisfying assignment, the corresponding type graph
is constructed from this satisfying assignment and presented in matrix notation.

A zip file containing the source code, a Linux executable, a parameter
file, the external tool Yices and several examples can be downloaded from
http://www.win.tue.nl/~hzantema/torcyc.zip.

The parameter file param contains several parameters which may be edited.
For instance, if you want to find a type graph proof with weights as small as
possible, you may stepwise decrease the maximal value for type graph weights.

7 Conclusions

Syntactically cycle rewriting is the same as string rewriting, but the semantics
is different: as in cycle rewriting the start of the string is connected to the end,
more rewrite steps are possible, and the notion of termination of cycle rewriting
is strictly stronger than termination of string rewriting. Techniques for proving
termination of string rewriting based on monotone algebras and dependency
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pairs strongly exploit the structure of strings having a start and an end, and do
not serve for modifications proving termination of cycle rewriting. In this paper
we showed that tropical matrix interpretations, arctic matrix interpretations and
match-bounds apply for proving termination of cycle rewriting. These techniques
are the same that are used for proving linear derivational complexity for term
and string rewriting in [9]. An anonymous referee pointed out that also matrix
interpretations over natural numbers with the usual addition and multiplication
can be applied for proving termination of cycle rewriting, even for quadratic
derivational complexity.

Our result for match-bounds follows from observing that match-bounds are a
special case of tropical matrix interpretations.

Apart from only proving termination we also investigated derivational com-
plexity of our techniques, and developed transformations by which we could
show that termination of cycle rewriting is undecidable and every computable
derivational complexity can be reached.
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Mereuta, Radu 425

Meseguer, José 61
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