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Abstract. Following the “convention over configuration” paradigm,
model-driven software development (MDSD) generates code to imple-
ment the “default” behaviour that has been specified by a template
separate from the input model. On the one hand, developers can pro-
duce end-products without a full understanding of the templates; on the
other hand, the tacit knowledge in the templates is subtle to diagnose
when a runtime software failure occurs. Therefore, there is a gap between
templates and runtime adapted models. Generalising from the concrete
problematic examples in MDSD processes to a model-based problem di-
agnosis, the chapter presents a procedure to separate the automated fixes
from those runtime gaps that require human judgments.
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1 Introduction

Decades after Alan Turing introduced the computing machine that uses a tape
of infinitely long ‘0’ and ‘1’ binary numbers to store data and programs [22],
abstraction levels of programs have become closer to human understanding of
the physical world [13]. High-level programming languages can be automatically
translated and optimised into Turing machines by compilers, freeing program-
mers from having to think in terms of machine instructions [2]. Naturally, one
would like to model the physical world, and generate the code for implementing
the machine from the model, in the same automated way as compiling source
program into binary code. This vision motivates model-driven software develop-
ment methods (MDSD) [10], using an input model much more abstract than the
binary code of Turing machines.

For example, our graphical modeling tool to support the Problem Frames
approach (PF) [12] was created using MDSD method, starting from a concise
domain-specific language for representing or modeling problem diagrams. Given
that diagrammatic notations of the PF have been unambiguously defined by
researchers, and graphical editing is one of the exemplars of mature MDSD tools,
one would assume that developing the PF modeling tool is a straightforward
application of MDSD methods.
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However, this assumption needs to be checked, both from a requirements en-
gineering (RE) perspective and from a practical, problem solving perspective.
From a RE perspective, we need to analyse the requirements of “developing a
graphical modeling tool support for Problem Frames approach”, as an exercise
of both MDSD and Problem Frames. This exercise serves two purposes. First, it
tells us whether MDSD directly meets the requirement of “supporting a graphi-
cal modeling language”; second, it tells us how such MDSD requirements can be
analysed by the PF approach. In doing so, we hope to discover a useful pattern
in the problem solving practice that relates the MDSD solutions to the require-
ments. We also hope to improve our understanding about any generic concerns in
the MDSD methodology. From a practical perspective, we would like to explore
problems that cannot be solved by the current practices of MDSD.

If such problems exist, the practitioners need a new methodology for diag-
nosing them. In this chapter, we will show that runtime diagnosis of the gap
between models in two minds (of a developer and of a user) must be reconciled.
We will also demonstrate the feasibility through a new runtime model diagnosis
framework summarised at the end of the chapter.

Background and Terminology of MDSD

To demonstrate the problems, a chain of automated tool support from the Eclipse
Modeling project! and the terminology used in this chapter will be discussed.
Many techniques have been proposed for MDSD. The general idea is to have one
metametamodel (e.g., OMG MOF) whose instance is a metamodel or a mod-
eling language. An instance of the metamodel is a program in a domain spe-
cific or generic language. For an Eclipse modeling project, the metametamodel
is called ecore, a sublanguage to define metamodels in the XML interchange
(XMI) format. Ecore itself is an instance of the ecore metamodel, which we call
self-defining. In general, an instance of ecore is called EMF model, named after
the de facto standard in the Eclipse modeling community. All these languages
are supported by a chain of EMF tools2.

Using an analogy to language engineering, EMF corresponds to the abstract
syntax of the language without specifying its concrete syntax. The XMI is only
one concrete syntax to represent EMF, and one may choose another concrete
syntax such as a textual DSL language or a graphical language. Transforma-
tions can be written to convert text to model (T2M), model to model (M2M),
and model to text (M2T), following a suite of OMG modeling standards. Since
the Ecore modeling language is a generic implementation of the OMG MOF,
diagrammatic languages such as UML can also be fully supported.

As an example, the xtext framework® is provided to perform the T2M pars-
ing, converting the abstract syntax of a DSL program into its corresponding
EMF model. As the by-product of such a transformation, a syntax-highlighting

1
2

www.eclipse.org/modeling
www.eclipse.org/modeling/emf
3 http://www.eclipse.org/Xtext/


www.eclipse.org/modeling
www.eclipse.org/modeling/emf
http://www.eclipse.org/Xtext/

190 Y. Yu et al.

text editor can be generated for editing the DSL program instances. Similarly,
GMF editors can also be generated for editing the EMF models graphically*. These
feature-rich graphical editors can be generated from the EMF metamodel, the
graph definition models that define the graphical notations, and the mappings
between the elements on the Ecore to the presentations.

In a nutshell, generating a graphical editor in MDSD is now feasible by provid-
ing the language design in an abstract way using the extended BNF rules, plus
the mapping decisions to show the modeling elements in appropriate graphical
notations.

Example: Describing PF Modeling as a PF Model

Before analysing the general problem, we first describe the requirements and
the stakeholders involved in a specific example. In this example, our primary
requirement is that “a PF graphical modeling tool must allow users to create and
edit problem diagrams as defined by the PF researchers”. For the PF modeling
tool to be developed, this requirement also involves stakeholders such as users
who use the PF modeling tool and researchers who define the PF language.

To solve this problem without using the MDSD approach, a Model-View-
Controller (MVC) design pattern or a Workpiece frame [12] can be used.

A Workpiece frame is a general class of problems identified by a requirement
of users to edit a piece of work through a tool. Any editing problem fits this
frame: the PF Graphical Modeling Tool (see Figure 1) is no exception.
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PF Tool
c d
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Fig. 1. A Work Piece frame and its instantiation for the PF editing problem
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Basic PF notations A requirement is represented by a dashed ellipse shape, la-
belled by the name of the requirement and its abbreviation; and a solution to
the problem is represented by a rectangle, marked with double strips on the left.
When marked with a single strip on the left, the domain is “designed” by other
problem solving steps. A physical domain can also be represented by a rectangle
with names and abbreviation labels without the strips. The behaviour type of a
domain node can be classified by a letter mark at the lower-right corner of the
rectangle. For example, a lexical domain marked with “X” indicates a passive
behaviour that does not cause change itself, a biddable domain marked with “B”
indicates an active behaviour that can change by itself non-deterministically, a
causal domain marked with “C” indicates an active behaviour that is determin-
stic. Domains can share an interface between each other. The shared interface is
represented by an undirected solid link, marked with a letter abbreviating a set
of shared phenomena such as events and states. A requirement can constrain a
domain’s behaviour, indicated by a dashed arrow to the constrained domains; a
requirement can also refer to a domain, shown as a dashed link between them.

In fact, a textual or graphical editing tool may already meet this requirement.
Most PF diagrams documented in the literature so far were drawn using either a
text editing tool such as LaTeX, or a diagramming tool such as Dia®. This raises
many interesting questions: “What can MDSD add to the available solutions for
the PF modeling tool requirement” and “Who can benefit from MDSD”?

Naturally such an investigation brings us to a new type of role — “Developer”.
In fact, a developer opts for the MDSD method mainly because it promises two
more quality requirements: “productivity” and “maintainability”. It must take
little effort for a developer to create a PF modeling tool from scratch, and it
must take little effort for a developer to adjust the tool when the researcher
makes some refinement to the PF language.

Even with these productivity and maintainability requirements in mind, there
is still one alternative solution to these requirements without resorting to the
MDSD technology: to customise existing functionalities in graphical editing tool
such as Visio, e.g., by creating a new stencil or template for PF notations. In
fact, this is what the graphical drawing tool Dia already offered. So, why do we
still bother with MDSD?

Let us revisit the initial requirement of the “Users” and the “Researchers”.
There is one additional requirement “modeling conformance” that a customised
general diagramming tool cannot easily meet. “How can one be sure that the
modeling elements are uniquely named? How can one check whether there is
a single machine node and a single requirement node in a problem diagram?
How can one make sure all the nodes are linked and all the links are con-
nected to certain nodes? How can one make sure the dashed arrows are always
from requirement nodes to the domain nodes?” In short, the key advantage
of providing PF Modeling Tool through MDSD is the additional capability to
satisfy these “domain-specific” modeling requirements. Syntax checking aside,
syntax highlighting, syntax-driven editing, auto completion, pattern matching,

® http://projects.gnome.org/dia/
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transformations, and various form of inconsistency checks such as type checks
and uniqueness checks, are amongst the various benefits a MDSD derived PF
Modeling tool brings about, in addition to the graphical editing features such
as drag-and-drop, zooming, panning, layouting, and printing. Instead of asking
“why bother with MDSD”, one would ask “why bother with implementing all
these nice features yourself” instead.

Note that we had a similar experience in creating other requirements modeling
tool using the MDSD approach (e.g., OpenOME for i*). In the following section,
we discuss several examples of problems found during the development time of
our research prototype.

2 Problems and Concerns in the MDSD Process

Given the analysis so far, we established how a MDSD process benefits the
developers in creating and maintaining a PF modeling tool for the PF researchers
and users alike.

Now we now look at the darker corners of the MDSD approach, explaining
some issues experienced when applying it. A possibly shocking concern we doc-
umented here resembles the experience in several non-trivial instances. It is our
belief that this may be a general concern for MDSD development.

The poor experience came from the attempt to stretch the tool to support
analysing the requirements problems in two complementary modeling languages,
namely PF and i* [24]. While the PF approach focuses on understanding the
entailment relationship W, S F R between the requirements R, solutions S and
the world context domains W, the goal-oriented modeling approach focuses on
understanding the relationships between the stakeholders (i.e., the “Who”) and
their intentional requirements (i.e., the “why”). Since their diagramming tools
have been both developed using MDSD, we would consider a generalisation of
the graphical modeling tool support.

The first attempt was to use the grammar “mixin” feature in xtext. By
inheriting concrete syntax from both grammars of PF and i*, we obtained such
a modeling language that can navigate between them: (1) a requirement node in
PF could be expanded into a detailed i* diagram where the requirement is one
of the goals; (2) an intention node in i* diagrams (goal, task, resource, softgoal)
could be expanded into a PF diagram where the requirement corresponding
to the expanded goal. After applying the xtext MDSD generation, we then
obtained a text-based parser that can transform the concrete syntax into an
abstract syntax expressed by the combined EMF model. As a result, the new
EMF model was compliant to both the metamodel in PF and the metamodel in
i*, making it much easier to perform new kinds of analysis such as programmatic
scoping of the contexts for alternatively refined subgoals [5].

However, several subtle problems arose when the two Java code bases
generated from the EMF models were used together, complicating the MDSD
experience.

Figure 2 summarises the alphabet concern in the “convention over configu-
ration” MDSD paradigm. By “convention”, the template code is generated by
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Fig. 2. The additional alphabet (or tacit knowledge) concern in the “convention over
configuration” MDSD paradigm. Developers of the templates may not know the re-
quirements of individual programmers, and the individual programmers may not fully
understand the rationale behind the default behaviours in the generated template code.

instantiating the templates behind the scenes with the input model; by “configu-
ration” users can further modify the generated code according to their individual
requirements. The additional alphabet concern applies because neither does the
designer of the templates understand the individual users’ requirements, nor do
the users fully understand the rationale behind the “default” behaviours.

When the two misunderstand each other, a glitch is inevitable. In the following
subsections, we document four example problems that are caused by this kind
of misunderstanding as the “additional alphabet” or “tacit knowledge” concern
of MDSD.

The “Detached” Requirement Phenomena. The first problem was related
to an unwanted behaviour in the graphical editing. As described earlier, a re-
quirement node in PF is an ellipse shape, which should connect to other domain
nodes through links by the design of language. However, while moving such a
node to an angle not aligned horizontally or vertically with the node on the
other side of the link, the end of the link would not be connected to the re-
quirement node, appearing as if they were detached. A search on the developers
forum revealed that this problem was to do with the org.eclipse.draw2d.
ChopboxAnchor class used by default in the generated code, rather than the
proper org.eclipse.draw2d.EllipseAnchor. The ChopboxAnchor in effect cal-
culates the connection anchors based on a rectangle shaped outline, whilst the
EllipseAnchor class uses the ellipse shape instead. After replacing ChopboxAn-
chor with EllipseAnchor in the generated code, however, we found that the prob-
lem were not solved. By tracing the execution in a debugger, we found that the
real problem was rooted deeply in the path resolution mechanism at the time of
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dynamic class loading. In fact, our customised uk.ac.open.problem.diagram.
edit.parts. NodeEditPart class generated from the MDSD tool was never in-
voked. Instead, the GMF runtime system loaded a org.eclipse.gef.
NodeEditPart class in the runtime class library of GEF framework. When such
an “import” statement in the customised class was removed, the GMF editor
loaded our class instead, which solved the problem. However, when we did the
same for the LinkEditPart class, the IDE automatically inserted the unwanted
“import” statement back into the code. Ultimately, we had to explicitly coerce
the class by casting the expression to the NodeEditPart class, prefixed with our
exact package name.

Figure 3 illustrates the “detached” requirement problem in details. First of all,
(a) is observed to behave like a Chopbox with respect to the connections to the
requirement node, this is highlighted as a “runtime abnormal behaviour”. The
method implementing this behaviour is all in the generated code. The arrows
point backward along the chain of causality. First, the ChopboxAnchor was
used in the generated method body, which implements a default behaviour.
Furthermore, the parent class of the generated code is one of the predefined
classes in the GMF runtime class library. Without changing that inheritance,
the default behaviour cannot be overridden. Second, (b) is observed to behave
normally, such that the connection to the requirement nodes are not clipped
by the rectangle. The fixing changes required are (1) a customization of the
method default implementation to switch the anchor class to ellipse shape if the
node type is a requirement; (2) the generated import statements are removed
manually, such that the ShapeEditPart class in the domain-specific package is to
be used, overriding the default behaviour of the predefined GMF runtime class
library.

We were wondering why a generated class name such as NodeEditPart clashes
with the runtime library, only to realise that the MDSD tool itself had been
developed using the MDSD approach. Their choice of using “Node” to name a
class of nodes and using “Link” to name a class of links happened to be the same
as ours. In other words, the clash was due to our shared “common sense”.

On second thought, this incident could have revealed an interesting type of
pitfall in MDSD, which we called “model feature interaction” [21]. The design
details abstracted away in the language specification could indeed be interacting
with the generated code because they refer to the same name in different names-
paces. The runtime class loader is not smart enough to distinguish them, and
a sophisticated mechanism is needed to prevent this from happening again. For
example, a developer may want to avoid using the names “Node/Link” when
modeling the graphical language. If this is the case, the alphabet of the names-
pace must be restricted, leading to the following discussions.

In general, when abstracting away design details, the advantages gained must
be revisited. First one needs to maintain the traceability between the abstract de-
scription and the concrete implementations, and second, one must be aware that
the designer of the MDSD tools could have introduced some alphabets that may
lead to unwanted behaviours when they are composed with the generated code.



From Model-Driven Software Development Processes 195

0 runtime abnormal expected
e behaviour : it behaviour
’ = : ™ d a RB
o™ l‘ ff . RB :

package uk.ac.open.problem.diagram.edit.parts; package uk.ac.open.problem.diagram.edit.parts;

import org.eclipse.gnf.runtime.diagram.ui.editparts.ConnectionfditPart;
import org.eclipse.gmf.runtime.diagram.ui.editparts.IGraphicallditPart; S
import org.eclipse.gnf.runtine.diagram.ui.editparts.ShapeNodeEditPart;  : b
Jee * */

* public class NodeEditPart extends ShapeNodeEditPart {
*
public class ModeEditPart extends ShapeNodeEditPart { Je
- erat NOT
e ./

. protected ConnectionAnchor getConnectionAnchor() {

9, \M g : if (anchor == null ) §
protectad Comect oo e Cchr) ¢ : e o Bl paacnor a3
) return anchor; =lsennchnr = new ChopboxAnchar(getFigure());
return anchor;
: 1
(a) generated code : (b) modified code

Fig. 3. Contrasting the observable problems and the code implementations respectively
for the abnormal and correct behaviours

The developer’s interpretations of the additional alphabet may not be the same as
the original designer’s. This might have a serious implication to security problems,
adding further difficulty in maintaining and checking the traceability [27].

The Manual Refactoring Phenomena. The second major problem we en-
countered could be a headache to other developers too. As we discussed earlier,
it was fine when MDSD tool were applied separately to PF and i* languages.
Each application generates a separate EMF metamodel in Ecore (Ecore is a
self-defining metamodel). The PF ecore model was newly “generated” from the
concrete syntax in xtext, while the i* ecore model was imported from the exist-
ing release of OpenOME maintained at the University of Toronto. The generated
classes for i* plugins were thereby prefixed by “edu.toronto.cs”. The xtext tool
could not know this, as a result of its code generation, no package prefix was
added to the generated classes.

However, the combined metamodel needs to reference the i* classes in hun-
dreds of places. For example, every time a problem node is accessed, it could
refer to an i* model element specified in the none-prefixed classes. A subtle but
annoying behaviour was caused by this because the generated classes without
prefixes were the skeleton code that should work if no customisation had been
applied. However, developers at the University of Toronto have made substan-
tial improvements to almost every aspect in the graph editing tool. It is thereby
necessary to switch to use the Toronto classes and keep their prefix. Instead of
manually renaming all these places where the class names were referenced, we
used automated refactoring for the name of generated plugin projects to rein-
troduce the missing prefix. After such refactorings, we still had to remove the
refactored plugin projects such that at runtime the class loader would not get
confused by the class paths to throw the ClassNotFound exceptions.
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Automated refactoring on Eclipse project names using LTK could have been
applied here [28], however, to accommodate every change in the PF language,
one must specify which classes need to be renamed to which, and remember to
manually change the references to the class names in the plugin specification
too. Not a trivial task, without further customising the automated refactoring
tool.

The Dependency Injection Phenomena. Instead of Aspect-Oriented Pro-
gramming (AOP) [14], the designer of MDSD tool xtext uses the Dependency
Injection pattern implemented by the Google Guice framework to inject function-
alities at runtime. Similar to aspectJ, the new functionalities could be injected
into the base system by specifying an adaptor class that uses the reflection mech-
anism of Java. Unlike aspectJ, the behaviour of the weaved system is somewhat
controlled by the base system, in order to make the potential joinpoints explicit.

Ideally such technical details should be hidden from the developers who use
MDSD because in principle one would not bother to know how it works if it
works. However, one must be aware that the Guice framework assumes that
the classes are singletons. If they share the same namespace, e.g., prefixed by
the same package names while being located in different plugin projects scope,
the dependency injection may still result in runtime conflicts.

As watchful observers for research problems, we were “lucky” enough to ex-
perience such a problem when developing the PF/i* integration tool. When we
prefix our DSL language “Problem” and our adapted DSL language “Istar” with
the same prefix “uk.ac.open”, the generated code complained that the IDLink
resolution class was not found even though it was present in the packages of
the plugin component. After changing the prefix of one of these language into
e.g., “uk.ac.open.problem”, this conflict was resolved. A side effect was that we
obtained a package named “uk.ac.open.problem.problem”, in accordance with
the particular naming convention adopted by the developer of the MDSD tool
(i.e., xtext).

The Template-User Synchronisation Phenomena. When model and code
co-evolve, they change concurrently. Since in MDSD, model and generated code
are related by transformations, it is required to propagate changes from one end
to the other.

To illustrate the problem, we use a constructed example here. Suppose an
EMF user initially specifies a simple model that consists of one Entity class
with a single name attribute. Using the code generation feature of EMF, she will
obtain a default implementation which consists of 8 compilation units in Java
(Fig. 4).

Fig. 5 lists parts of the generated code. The Entity Java interface has getter
and setter methods for the name attribute. They are commented with @generated
annotations which indicate that the methods are part of the default implemen-
tation. Similarly, such @generated annotations are added to every generated
element in the code, e.g., shown in the skeleton of EntityImpl Java class.
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v @ src
v i example
b [J] Entity.java
» [J] ExampleFactory.java

" b [J] ExamplePackage.java
H Entity _ .
. v i} example.impl
O name : EString = + [J] Entitylmpl.java
> [1] ExampleFactorylmpl_java

b [J] ExamplePackagelmpl.java

v i} example.util
b [J] ExampleAdapterFactory.java
» [J] ExampleSwitch.java

Fig. 4. Default code generated from the EMF meta-model

The annotation @generated defines a single-trip traceability contract from
the model to the annotated code element. A change in the model or a change in
the modelling framework can be propagated to the generated code; however, a
change in the generated code will not cause a change to the reflected model and
will thus be discarded upon next code generation.

As the default implementation is not always desired, the code generation shall
keep user specified changes as long as they are not inside the range of generated
traceability, the set of methods marked by @generated that keeps the changes of
generated templates. This can be achieved by adapting the @generated annota-
tion into @generated NOT, a non-binding traceability that reflects programmers’
intention that it will not be changed when the implementation code is regener-
ated. Note that such non-binding traceability indicated by @generated NOT is
still different from those without any annotation at all: Without such an anno-
tation, EMF will generate new implementation of a method body following the
templates.

This workaround does not work when a user parametrises the toString()
method to append an additional type to the returned result. To guard the
method from being overwritten by future code generations, the annotation
@generated NOT is used. She also applies a Rename Method refactoring, chang-
ing the getName method into getID. The modified parts are shown in Fig. 6.
Propagating these changes back to the model, the name attribute will be renamed
into iD automatically, following the naming convention that attribute identifiers
start with a lower case character.

Code regeneration results in the changes in Fig. 7: the setter methods and
the implementations of both getter/setter methods are modified according to
the default implementation of the new model. These are expected. However, two
unexpected changes are not desirable. First, a compilation error results from
the change in the default implementation, where the attribute name used in the
user controlled code no longer exists. Second, the default implementation of the
toString () method is generated with the original signature, which will of course
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1 package example;
import org.eclipse.emf.ecore.EODbject;
3 /xx @model /
public interface Entity extends EObject {
/** @model *x/ public String getName() ;
/#% @generated x/ void setName (String value);

6
7y

1 package example.impl;
import example. Entity ;
4 /xx @generated x/
5 public class EntityImpl extends EObjectImpl implements Entity {

7 Jxx @generated %/
8 protected String name = NAME EDEFAULT;

10 Jxx @generated x/

11 public String getName() { return name; }

12 Jxx @generated x/

%i public void setName (String newName) { ... }
15 Jxx @generated x/

16 @Override

17 public String toString () {

18 if (elsProxy ()) return super.toString();
19 StringBuffer result = new StringBuffer (super.toString());
20 result.append(” (name: ”);

21 result .append(name) ;

22 result .append(’)’);

%Z return result.toString () ;

}
25y //EntityImpl

Fig. 5. Parts of the generated code in Fig. 4

become dead code since the user has already modified all call sites of toString()
to reflect the insertion of the new type. Similarly, the user specified toString()
method can also become dead code, if it is no longer invoked by the new default
implementation.

Compilation errors are relatively easy to spot by the programmer with the
aid of the Eclipse IDE, but the dead code problems are more subtle because
the IDE will not complain. Therefore, it will be more difficult for developers to
notice the consequences.

In [25], we have developed a two-layered synchronisation framework, blinkit,
to address this problem.

Figure 8 presents an overview of the framework when it is applied to the case
study of EMF/GMF, where EMF is the synchronisation framework for vertical
traceability and blinkit framework is the horizontal synchronisation counterpart.
Examples in [25] indicate that when the complementary changes to templates
and user-modified code are conflicting or redundant, our tool can avoid some
dead code redundancies and raise some warnings as compilation errors.

So far we have enumerated, using the concrete example, several common
MDSD phenomena at the development time. They are all related to the “alpha-
bet mismatch” problem that reveals a gap between the understanding of a model
developer and a model user. Since the model developer and user are guessing
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1 /ex @model %/

2 public interface Entity extends EObject {
/*= @model %/ public String getNameIR();

4 /«x @generated x/ public void setName () ;

9 3
6

T /xx @generated x/
8 public class EntityImpl extends EObjectImpl implements Entity {
Jxx @gemcrated x/

10 public String getNameID() { return name; }
11

12 /#% @generated NOT«/

13 @Override

14 public String toStriug(m) {

15 if (elsProxy()) return super.toString();
16 StringBuffer result = new StringBuffer (super.toString());
17 result .append(” (name: ”);

18 result .append(name) ;

19 result .append(’)’);

20 result.append(type):

%% return result.toString () ;

}
23} //EntityImpl

H Entity
= iD : E5tring

Fig. 6. User modifications to the generated code: insertions are underlined and the
deletions are stroked out; the changes are reflected

each other’s model in mind, ultimately only runtime reconcilation could resolve
their differences.

3 Generalised Problem and Related Work

With the advent of self-adaptive systems, according to Baresi and Ghezzi [6],
the boundary between development time and runtime is disappearing. What is
typically regarded as development time activities in a MDSD process may now
be regarded as runtime activities.

Using the examples presented so far, we identify three gaps in the current
research on the runtime problem diagnosis.

Monitoring mismatching requirements. If one would be able to know require-
ments that are implemented by the default template code, as well as specific
requirements customised by individual users, then it can be promising to add
runtime monitors to places where the mismatches between the two sets of re-
quirements happen at runtime. More generally, developers and users are often
inconsistent in terms of their understanding of requirements. Related to this,
Requirements Awareness [18] is a key issue. Without runtime awareness of the
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¥ G2 src
v 8 example
F [J] Entity.java
b [J] ExampleFactory.java
- b [J] ExamplePackage.java
H Entity ¥ i example.impl
= (D EString = b i] Entitylmpl.java =
b [J] ExampleFactorylmpl.java
>[I ExamplePackagelmpl.java
v £# example.util
k1) ExampleAdapterFactory.java
b [J] ExampleSwitch.java

1 /xx @model %/

2 public interface Entity extends EObject {
3 /«+ @model %/ public String getID ();

4 /«x @generated x/ public void setNamelD () ;

53
6

T /xx @generated x/

8 public class EntityImpl extends EObjectIlmpl implements Entity {
Jx% @genecrated */

10 public String getID () { return nameiD ; }

11
12 {regemerstedr/

14 if (eIsProxy()) return super.toString();
15 StringBuffer result = new StringBuffer(super.toString());
17 resultappend (D)
18 result.append(’)’);
LEUEERPERIY
21 Jxx @generated NOT x/
22 public String toString(String type) {
23 if (elsProxy ()) return super.toString();
24 StringBuffer result = new StringBuffer (super.toString());
25 result .append(” (name: 7);
26 result .append (name) ;
27 result .append(’)’);
28 result.append(type);
29 return result.toString ();

}
31y //EntityImpl

Fig. 7. Regenerated code from the model: insertions are underlined and the deletions
are stroked out, the compilation error is doubly underlined

requirements of individuals, it is harder for developers and users to agree on the
current status of the system with respect to the requirements satisfaction.

In general, the MDSD process would require an additional step to regenerate
the solution from the modified model. However, without explicit modeling of the
generated code and the template code, it is not possible to automate every change
through code generation. Due to the lazy binding of problems and solutions,
at runtime such mismatches become even more severe. Current requirements
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Fig. 8. An overview of the horizontal and vertical traceability links in the bidirectional
invariant traceability framework: blinkit. V1 and V2 are two revisions of model, tem-
plate or user codes extracted from the CVS repository of a software development project
using EMF code generation.

conflict detection techniques require both models to have similar structures (e.g.,
mergeable) [15]. If the two models do not have similar structures, the question
is how to model them so that they are still verifiable. Another research question
is of course to have an explicit encoding of requirements in the templates to
prepare for such verifications.

Recently, Akiki et al. [3] proposed the use of interpreted runtime models
instead of static models or generative runtime models. Although it is limited in
the GUI domain, the proposed solution seems to be promising to bring adaptivity
to the runtime systems. A prototype and architecture to support adaptive Ul
has been developed and demonstrated [4] for adaptive UT of enterprise software
applications through service-oriented adaptations.

Runtime traceability. Unlike the use of traceability at development time, runtime
traceability of MDSD systems has to listen to the chain of events at the runtime.
One example of such mechanisms is the event handler in Java runtime virtual
machines. By cascading the listeners to the events, the call traces at the point
of failure can give the user a clue about the fault location. However, such a
mechanism require developers to be cooperative: explicit exceptions must be
thrown or caught in the try-catch blocks. Otherwise, it could be too late to tell
where the exception were generated in the first place.

Several machine learning approaches have been proposed to address this is-
sue, for example, by studying the historical events in stack traces [11]. However,
runtime traceability requires responsive reactions on the mismatching template
and user code which is still not well understood. Earlier work on monitoring
and diagnosing software requirements may be helpful to make use of the goal
models as a priori knowledge to diagnose problems in the event traces [23].
The challenges we are facing here is that the MDSD processes use more compli-
cated models than goal refinements.
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Model interactions problems. As we described earlier, MDSD is a complicated
process which may involve more than one metamodel. The “Tao” is to have
a megamodel to unify the different metamodel code generation processes [9].
However, different metamodels may be created by different people and thereby
inherently embed interaction bombs between the tacit knowledge. They are not
necessarily compatible to each other, yet may not be notified by the developers
and users at the runtime. A mechanism to protect the different MDSD generated
code from feature interaction problems [20] will be very useful. One possible
direction of research is to investigate the use of AOP technique to detect and
resolve undesired interactions between models at runtime. For instance, dynamic
aspect weaving techniques provide a mechanism to inject code to resolve runtime
conflicts between models.

Recently, Bencome et al. [7] proposed a framework to support on-the-fly inter-
operability at runtime by generating emergent middleware that can synthesise
multiple runtime behaviour models in labelled transition systems. In order to
avoid feature interactions at runtime, uncertainty handling is still regarded as
one of the future work. Tun et al [19] addressed the runtime feature interaction
problem by encoding the composition frames using the Event Calculus and re-
solving the conflicts through a composition controller. However, identifying the
composition requirement remains a challenge.

4 Problems Diagnosis at Runtime

This section generalises these runtime concerns into a runtime diagnosis proce-
dure which may become a key component of a self-adaptive problem analysis
framework.

On basis of our earlier work on runtime adaptive model interpretation middle-
ware [3,4], runtime requirements failure diagnoses [19,23], and invariant trace-
ability [25], we propose a new framework in Figure 9 to consider tacit knowledge
for runtime problem diagnosis (PD@runtime). Various sources of information are
brought to the attention at the runtime, these include the template development
hidden from the users, and the assumptions about the environment hidden from
the developers.

The information monitored at runtime includes a context model about the
environment [5] and a self-awareness model about the working of the system. A
mismatch between the system implementation and the environment expectation
is regarded as a system failure or error. To determine what to be included in the
system model, at least two kinds of models owned by different stakeholders need
to be considered. Generalising from the MDSD process, the template system
model captures the knowledge of a developer, whilst the user system model
captures the knowledge or at least the perception of a user. Both template and
user system models need to be monitored to tell whether any change could
lead to a mismatch between the requirements in the way they are understood
by the stakeholder. Given that both models are complex, it is usually hard
to let either the developer or the user to construct them alone. Instead, the
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PD@runtime framework uses a procedure to filter out the changes that can be
handled by the underlying automated fixing mechanisms (such as compilers and
bidirectional model-transformations [25], such that only information relevant to
the requirements mismatch will be passed on to the human stakeholders. Overall,
the requirements awareness problem can be defined as the combination of the
awareness of system failure and the awareness of the requirements mismatch
among stakeholders.

4.1 Meaningful Changes Detection and Propagation

While the template and user models co-evolve, a systematic approach is required
to propagate the changes from one end to the other. Earlier we have developed
the meaningful change detection tools for identifying changes that are mean-
ingful to different stakeholders [29], as well as the bidirectional transformation
framework to propagate the meaningful changes between the template code and
the user modifications [25]. The meaningful change detection tool can detect any
mismatch between two normalised structures, which covers typically all models
that can be described by a computer language. Although the tool is powerful,
it requires guidance [26] to learn what kind of information is regarded as mean-
ingful from large datasets. Presumably what is meaningful for one stakeholder
may not be meaningful to another. Therefore, we have started a new research
agenda to refine the viewpoints of different stakeholders into concrete rules in
order to judge the relevance to the other stakeholders.

Once the relevant and meaningful information is defined, the tool generates
predefined runtime monitors which can already collect information in such a way
that when the abnormal execution traces are obtained, one can trace backwards
to track the location of faults. If the faults involve any wrong trust assumption
about the environmental contexts, an appropriate adaptation alternative will be
switched to at runtime [16,17].

4.2 Feedback Loops

Debugging programs written in a high-level programming language typically
requires traceability between the location where error is spotted and the cor-
responding location in the source code. Because compiler translations add a
layer of indirection, if the optimisation option such as -0 has been turned on,
diagnosing runtime errors become much harder. Programmers would typically
trust that the optimising transformations do not change the execution behaviour,
while debugging the machine code with as few optimizations as possible, e.g.,
facilitated by the option -g. Since MDSD is motivated by the success of com-
pilers, and the models are at a higher level of abstraction than the high-level
programming languages, trust needs to be established by a solid understanding
of what to diagnose and where to fix problems. However, the template code that
addresses most users’ requirements may not be exactly what the individual user
wanted. Therefore, whenever such diagnoses trace back into the template code,
the problem gets even more difficult.
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Since boundary between development-time and runtime is disappearing, the
distinction between adaptation and evolution in such systems is also getting
blurred. Depending on whether requirements change at runtime, one may sep-
arate evolution from adaptation. Yet, the blurring boundary in practice makes
it necessary to address MDSD concerns at runtime too. Runtime self-adaptive
systems require some form of feedback loops, e.g., using the PID controller [§],
to be able to react to quality requirements changes accordingly. It is our hope
that the tacit knowledge concern of MDSD can be addressed such that one can
also apply the feedback loop mechanisms to the runtime MDSD problems.

Data: E: environment context model, Sp, Sy: developer’s and user’s
system models, ;1(A): meaningful change, 2: mismatching
judgment, T system execution traces, C: program code

Result: Traces

while true do

(AE,AS, AT, AC) = (E' — E,S" =S5, T"-T,C" - C);
w(AE, AS, AT, AC) = (LAE, pAS, pAT, pAC);
if uAT 22 pAC then
program fixed = Abnormal trace fault location and fixing;
if ! program fixed A\pAS 2 AE then
failure fixed = System failure detected and fixing;
if ! failure fived AuASp 2 ASy then
bidirection transformation = Reconcile requirements
mismatch;
if ! bidirection transformation then
inform developer and user about the problem;
(8D, Sty) = update(Sp, Sp);
end
else if bidirectional transformed then
(Sp,Sy) = bidirectional transformed(Sph, Sp);
end
end
else if failure fived then
(E',S") = failuresized(E’, S");
end
end
else if program fized then
(I7,C") = programyized(T’, C’);
end
end
(E,S,T,C)=(E',S",T,C");
end
Algorithm 1. An illustration of the PD@Qruntime procedure
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Fig. 9. PDQ@runtime: tracing the causal chain of events backwards for runtime problem
diagnosis for MDSD processes

The following pseudo code describes and summarises the framework into a
problem diagnosis at runtime procedure. As one can see, a large part of the
procedure can be automated (self-repairing), while some steps still require human
on top of the feedback loop to control the overall diagnosis direction.

5 Conclusion

Following the MDSD process blindly at runtime will create more problems in
the development than it solves. In summary to the three reported problems, we
propose an additional alphabet or tacit knowledge concern to the MDSD process.
The concern can be expressed as follows: “When the MDSD process generates
code with additional alphabet introduced (in the form of plugin names, package
names, class names, or method names), one must ensure these names are not
conflicting with the names (unwittingly) introduced by the developer of the
modeling language”. To avoid such problems at runtime, it is required to have
additional tools to check any violation of the concern.

A more general problem of requirements awareness is derived from the prob-
lems we identified from the MDSD process. To tackle it, we show a systematic
procedure that uses meaningful changes detection to differentiate the changes in
environment contexts (execution traces) and in program implementations (of de-
veloper and of user), or in more abstract terms, the mismatches between models
of different stakeholders. The procedures is controlled by a feedback loop where
automatic fixes are employed with compiler and bidirectional transformations.
However, when the automatic fixes are not available, human must be informed
to handle the more difficult cases.
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