
Living with Uncertainty

in the Age of Runtime Models

Holger Giese1, Nelly Bencomo2, Liliana Pasquale3, Andres J. Ramirez4,
Paola Inverardi5, Sebastian Wätzoldt1, and Siobhán Clarke6

1 Hasso Plattner Institute at the University of Potsdam, Germany
{Holger.Giese,Sebastian.Waetzoldt}@hpi.uni-potsdam.de

2 Aston University, UK
nelly@acm.org

3 Lero - Irish Software Engineering Research Centre, Ireland
liliana.pasquale@lero.ie

4 Michigan State University, USA
ramir105@cse.msu.edu

5 University of L’Aquila, Italy
paola.inverardi@di.univaq.it
6 Trinity College Dublin, Ireland
siobhan.clarke@scss.tcd.ie

Abstract. Uncertainty can be defined as the difference between infor-
mation that is represented in an executing system and the information
that is both measurable and available about the system at a certain point
in its life-time. A software system can be exposed to multiple sources
of uncertainty produced by, for example, ambiguous requirements and
unpredictable execution environments. A runtime model is a dynamic
knowledge base that abstracts useful information about the system, its
operational context and the extent to which the system meets its stake-
holders’ needs. A software system can successfully operate in multiple
dynamic contexts by using runtime models that augment information
available at design-time with information monitored at runtime. This
chapter explores the role of runtime models as a means to cope with
uncertainty. To this end, we introduce a well-suited terminology about
models, runtime models and uncertainty and present a state-of-the-art
summary on model-based techniques for addressing uncertainty both at
development- and runtime. Using a case study about robot systems we
discuss how current techniques and the MAPE-K loop can be used to-
gether to tackle uncertainty. Furthermore, we propose possible extensions
of the MAPE-K loop architecture with runtime models to further handle
uncertainty at runtime. The chapter concludes by identifying key chal-
lenges, and enabling technologies for using runtime models to address
uncertainty, and also identifies closely related research communities that
can foster ideas for resolving the challenges raised.

N. Bencomo et al. (Eds.): Models@run.time, LNCS 8378, pp. 47–100, 2014.
c© Springer International Publishing Switzerland 2014



48 H. Giese et al.

1 Introduction

Uncertainty can be defined as the difference between information that exists in
an executing system and the information that is both measurable and available
at a certain point in time [1]. Within the context of software systems, uncer-
tainty can arise from ambiguous stakeholders’ needs, the system itself, or its
operational or execution environment. For example, a stakeholder can introduce
uncertainty by formulating an ambiguous specification [2], the system itself can
introduce uncertainty by gathering monitoring information that may be inac-
curate and/or imprecise [3], and the surrounding environment can introduce
uncertainty by generating inputs that the system cannot interpret [4]. Unfor-
tunately, these sources of uncertainty rarely occur independently of each other.
Instead, the effects produced by these sources of uncertainty tend to compound
and thereby inhibit the system from fully satisfying its requirements.

Traditional software design approaches tend to address these forms of uncer-
tainty by identifying robust solutions at development-time that can continuously
exhibit good performance at runtime. Nevertheless, identifying these robust so-
lutions is a challenging task that requires identifying the set of operational con-
texts that the system might have to support. For systems that will be deployed in
highly dynamic environments, identifying a robust solution might be infeasible
since it is often impractical to anticipate or enumerate all environmental condi-
tions a software system will encounter throughout its lifetime. Increasingly, soft-
ware systems, such as context-aware systems and self-adaptive systems (SAS),
use runtime models to cope with uncertainty [5,6] by either partially or, if
possible, fully resolving sources of uncertainty at runtime. These models, when
fed with data monitored at runtime, allow for the dynamic computation of a
predictable behaviour of the system.

A runtime model is a knowledge base that abstracts useful information about
the executing system, its environment, and the stakeholders’ needs and that can
be updated during the system’s life time. It can be used by either the system
itself, humans or other systems. Different types of development-time models and
abstractions can be used to this end, including requirements, architectural, and
behavioural models. Furthermore, we envision that other kinds of models (e.g.,
[7]), linking different development models and abstractions, can be used as well.
Runtime models can support resolution of some forms of uncertainty, which can
manifest, for example, when information that was previously unavailable be-
comes available during execution. In some cases, however, uncertainty remains
present in one form or another, such as when physical limitations in monitoring
devices result in monitoring data that is insufficiently accurate and precise for
assessing the task at hand. In both cases, model-based techniques can be applied
at either development- and runtime to address uncertainty. While development-
time techniques focus on the explicit representation of sources of uncertainty
that can affect a software system, runtime techniques focus on refining and



Living with Uncertainty in the Age of Runtime Models 49

augmenting runtime models with monitoring information collected as the system
executes.

Research communities are increasingly exploring the concept of uncertainty
and how it impacts their respective fields. Some of these research communities
include economics [8], artificial intelligence [9], robotics [10], and software engi-
neering [11]. While uncertainty has been studied in parallel by different research
communities, a definitive solution for engineering systems that are able to handle
uncertainty has not been provided yet. Within software engineering in partic-
ular, a key step forward in this direction is to first explicitly represent sources
of uncertainty in models of the software system. Current modeling techniques
such as variation point modeling [12,13], however, cannot be directly applied as
uncertainty cannot be represented by enumerating all possible behavioural al-
ternatives [4]. Thus, new abstractions must be provided to declaratively specify
sources of uncertainty in a model at development-time, and then partially resolve
such uncertainty at runtime as more information is gathered by the system.

This chapter first elaborates the relation between uncertainty and models -
runtime models in particular. Furthermore, it reviews the fundamentals of han-
dling uncertainties such as the relevant forms of uncertainty, the specific relation
between time and uncertainty and the current approaches for development-time
and runtime. In particular, it explores the role of feedback loops and the typi-
cal types of systems with runtime models. It also explores how runtime models
can be leveraged to handle and reduce the level of uncertainty in an executing
system. Ideally, if uncertainty is viewed as a function over the life-time of the
system, then the level of uncertainty should monotonically decrease as design
decisions are made and new information becomes available. In practice, how-
ever, the level of uncertainty in a software system might increase as new events
emerge that were not anticipated previously. Thus, the vision of this roadmap
chapter is to use development-time models to identify and represent sources
and impacts of uncertainty. If possible, uncertainty should be resolved at devel-
opment time. Furthermore, once monitoring information provides new insights
about the system’s behaviour and its surrounding execution environment, the
running system should resolve and manage the remaining sources of uncertainty
during execution by using runtime models.

This chapter is organized as follows. Section 2 presents a robotic system
that will be used throughout the remainder of the chapter as an example of
how to address uncertainty through runtime models. Section 3 discusses the
general relationships between models and uncertainty. Model-based techniques
for addressing uncertainty at development- and runtime are presented and dis-
cussed in Section 4. Emerging techniques to handle uncertainty in the context
of epistemic, linguistic and randomized uncertainty are discussed in Section 5.
Finally, Section 6 summarizes findings, presents research challenges, and future
directions.



50 H. Giese et al.

2 Case Study

In this section, we describe a simplified version of a real robot system. This case
study simulates a distributed factory automation scenario1. It is used as a run-
ning example in this paper to discuss how development-time models and runtime
models can be employed to cope with uncertainty. An extended description of
our toolchain and development environment can be found in [10]. In the next
Section we explain the possible types of uncertainty present in the case study.
We also provide a goal, an environmental and an initial behavioural model to
illustrate the requirements and the behaviour of the case study.

Fig. 1. Case Study: Factory automation robot scenario

In the factory automation scenario depicted in Figure 1, three autonomous
robots have to fulfill different tasks to reach overall goals in an uncertain en-
vironment. The regular behaviour of one robot is to move around, transport
pucks, or charge the batteries. Sensors and actuators are used to monitor the
current situation and to navigate through different rooms along changing paths.
Each robot is able to communicate with other robots inside the scenario and
computational nodes (e.g., servers, mobile phones) outside the scenario. Strict
behavioural constraints ensure safety as well as reliability requirements, such as
avoiding battery exhaustion and collisions. Beside the transportation of pucks,
which is a functional goal, the robots should also satisfy other goals related to
the quality of how the functional goals are met (called softgoals). Examples of
softgoals are minimization of energy consumption and maximization of through-
put. Note that in this scenario throughput is estimated in terms of number of

1 For more information about our related lab see: http://www.cpslab.de

http://www.cpslab.de


Living with Uncertainty in the Age of Runtime Models 51

Stock
Delivery Area

(ASD)

21 qm

D

Packaging Area
(AP)

30 qm

RP

Sorting Area
(AS)

25 qm
RS

RSt

Stock
(St)

Packaging
Room

Sorting
Room

Stock
Room

Delivery
Room

Door

Puck

Puck
Dispenser

Charging
Point

C
ha

rg
in
g

P
oi
ntDoor Control

Unit

Robotino
Robot

Band-
Conveyor

Band-
Conveyor

Fig. 2. Structural sketch of the robotic system including three autonomous robots. RP

is a robot that transports pucks from the packaging to the sorting room. Robot RS

(sorting) decides whether the puck is for a customer or the stock. Robot RSt transports
the puck to the stock.

pucks transported to their final destination within a specific time unit (e.g., a
day).

Figure 2 depicts a structural overview of the robot system. The whole simu-
lation scenario is separated into four different rooms (Stock Room St, Delivery
Room ASD, Door Control Unit AP and the Sorting Area RS). In the room lower
left of Figure 2, the pucks are packed and dropped for transportation in area
AP by a puck dispenser. The robot RP transports the pucks from the packaging
room to a second room (lower right) and drops it within the sorting area AS .
To maximize the throughput of puck transportation, another robot RS picks up
the puck from the sorting area and drops it on a band-conveyor. Depending on
the current goals, the conveyor transports the puck to a customer delivery area
outside the scenario (not shown in the picture) or to the stock delivery area ASD

(upper right room in the figure). A third robot RSt transfers the puck to the
stock St. Each robot acts as an autonomous unit. Therefore, the tasks trans-
portation, sorting and stocking are independent from each other. Within this
scenario the execution conditions can be changed over time to handle certain
loads, optimizing the puck transportation routes or cope with robot failures. As
a result, the doors can be opened or closed dynamically. For example, robots can
recalculate routes or take over additional transportation tasks. Furthermore, a
robot can charge its battery at one of the two charging points if necessary. In



52 H. Giese et al.

the following sections we will use this scenario to illustrate possible types of
uncertainty.

3 Models and Uncertainty

To set the stage for our chapter in this section we first introduce the meaning
of fundamental terms such as models, runtime models and uncertainty by using
an exemplary goal, context and behavioural model for one robot of the factory
automation example. Furthermore, we identify which kinds of runtime models
are employed and outline the most common types of systems using such runtime
models. Furthermore, we discuss the role that runtime models can play for the
different types of systems.

3.1 Models

The definition of a model can vary depending on its purpose of usage. In this
chapter, we define a model as follows [14].

Definition 1. A model is characterized by the following three elements: an (fac-
tual or envisioned) original the model refers to, a purpose that defines what the
model should be used for, and an abstraction function that maps only purposeful
and relevant characteristics of the original to the model.

It is important to note that a model always refers to an original. This original
can be factual, and either it may exist already or, it may be an envisioned system
which does not exist yet. In both cases, the model is used as a representation of
the original to ease development or runtime activities.

Models may differ in their purpose. For instance, the purpose of a goal-based
model [15] is to capture the requirements of a system, while the purpose of a
finite-state machine (FSM) is to capture the possible behaviours of the system.

In this paper, we use three different kinds of models for the robotic example.
First, a goal model represents the requirements of our scenario. Second, a rep-
resentation of the structure of the physical space (map) including the location
of agents and objects in the physical space is adopted as an exemplary model to
specify context information about the system operational environmnet, which
may change at runtime. Third, we use a model based on state machines to de-
scribe the behaviour of the system with respect to the current goals and the
context.

To start, we cover different requirements and constraints in the goal model of
our robotic scenario shown in Figure 3. We use the KAOS notation [16] to repre-
sent the goal model. This model has a hierarchical structure, since goals can be
refined into conjoined subgoals (AND-refinement) or into alternative combina-
tions of subgoals (OR-refinement). When a goal cannot be decomposed anymore,
(i.e. it is a leaf goal), it corresponds to a functional or non-functional require-
ment of the system [16] . In Figure 3, the main goal of the robot system is to



Living with Uncertainty in the Age of Runtime Models 53

G1
Perform 

tasks

G1.1
Transport 

pucks

G1.2
Charge 
battery

G1.3
HIgh 

throughput

G1.4
Low energy 
consumption

G1.1.2
Reach puck

G1.1.4
Bring puck to 
destination

G1.1.3
Take 
puck

G1.1.5
Release 

puck 

G1.2.1
Reach 

charge point

G1.2.2
Charge

AND

AND

AND
Up

Left
Down

Right

Take Up

Left Down

Right

Release

Up

Left Down

Right

Charge

OR

OR
OR

OR

OR

G1.1.1
Detect pucks

Read 
Sensor Data

Identify puck 
position

AND

AND

Fig. 3. The KAOS goal model of the Robot System

- name: string
- priority: int

Goal

- type: TypeEnum
GoalRefinement

- type: TypeEnum
OpRefinement

superGoal [1]

subGoals [1..*]

superGoal [1]

- name: string
Operation

operations [1...*]

- AND
- OR

TypeEnum

Fig. 4. An excerpt of the KAOS goal metamodel

perform its standard tasks, such as transport pucks (G1.1) and charge its bat-
tery (G1.2). To achieve the goal G1.1, the robot has to achieve the following
functional requirements: detect a puck (G1.1.1), reach the puck (G1.1.2), take
the puck (G1.1.3), bring the puck to its destination (G1.1.4) and finally release
the puck (G1.1.5). A leaf goal that corresponds to a functional requirement can
be “operationalized”, that is, it can be decomposed into a set of conjoined or
disjoined operations that should be executed to meet it [16]. For example, goal
G1.1.2 is operationalized by operations Up, Left, Down, and Right, since the
robot can move up, left, down, and right to reach the puck location. Note that
the robot must also perform its standard tasks while satisfying the following non-
functional requirements: high throughput (G1.3) and low energy consumption
(G1.4).

In the robot system, we represent these goals according to a simplified KAOS
metamodel as depicted in Figure 4. Note that each goal is associated with a



54 H. Giese et al.

subGoal

- name: Perform tasks
- priority: 5

G1: Goal
 

- type: AND

nement
 

superGoal

- name: Transport pucks
- priority: 4

G1.1: Goal
 

- name: Change battery
- priority: 3

G1.2: Goal
 

subGoal subGoal

...

- type: AND

nement
 

superGoal

subGoal

-  name: Charge
-  priority: 3

G1.2.2: Goal
 

...

subGoal

- type: OR

nement
 

- name: Charge

Operation
 

superGoal

operation

Fig. 5. An instance situation of the goal model shown in Fig. 3 of our robot system

position() : x,y
up(), down(), left(), right()
take()

-energy : int {0..100}
-x : int {1..20}
-y : int {1..15}

Robot Map
1

-x : int {1..20}
-y : int {1..15}
obs : Obstacle
puck : boolean
type : Type

Field

0..*

empty
door_open
door_closed
wall
robot

<< enumeration >>

Obstacle
normal
charging_point
area_packaging
area_sorting
area_delivery
area_stock
band_conveyor

<< enumeration >>

Type

constraints:
{target field is free}
{energy >= 2 percent}
{energy is reduced by 2
during operation}

constraints:
{target field contains puck}
{energy >= 10 percent}
{energy is reduced by 10
during operation}

energy = 85
x = 6
y = 10

rp : Robot
energy = 60
x = 16
y = 11

rs : Robot
energy = 85
x = 13
y = 3

rst : Robot

x = 6
y = 10
obs = robot
puck = false
type = normal

f1:Field
x = 9
y = 8
obs = wall
puck = false
type = normal

f2:Field
x = 18
y = 5
obs = empty
puck = true
type = area_delivery

f3:Field

m : Map

Fig. 6. On the left, the context metamodel of the robot as well as the internal map
representation. On the right, an example snapshot of possible instance objects.

name and a priority. Context changes can affect goal priorities and therefore
the tasks execution by the robots at runtime. Depending on the priority and
the relation among the goals, the robot system weights the requirements during
task execution and selects a set of tasks to be performed. Figure 5 presents an
excerpt of an instance situation of the goal model shown in Figure 3. Because of
the higher priority of the transportation task we have supposed, the robot will
prefer this goal until it is necessary to charge the battery. Further constraints
can also restrict the robot behaviour charging the battery only in adequate given
situations (e.g. the power supply reaches a critical low level).

The second type of model is a structural context model of the robots. With
this model we can represent the internal state of the robot, its internal represen-
tation of the environment (Map) as well as the possible relations between them
according to the metamodel on the left in Figure 6. Each robot has an overall



Living with Uncertainty in the Age of Runtime Models 55

CP

CP

RP

RS

RSt

Packaging Room Sorting Room

Stock Room Delivery Room

B
and-

C
onveyorAP

AS

ASD

St1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 7. Discrete grid map representation of the robot laboratory (cf. Fig. 2)

battery power supply with an energy level comprised between 0 and 100 percent.
Additionally, its position is given by a x and y coordinate of the map associ-
ated with the laboratory. Furthermore, it can perform operations up(), down(),
left(), and right() moving through the laboratory. Executing an operation con-
sumes power as robots have to read sensor data necessary to detect pucks, and
move inside the building. Therefore, each operation reduces the overall energy
level of the battery. If the robot detects a puck, it can take it for transporta-
tion. Each robot maintains an environmental representation for navigation and
localization issues.

The environment is represented as a discrete grid (Map) as shown in Figure 7.
The smallest area in this map grid is a field (cell) with an unique position on the
grid. It can contain obstacles as closed doors, walls, or other robots. Furthermore,
a puck may lie on a field. Each cell has a type information that indicates special
positions in the laboratory as charging points for the robot or the band conveyor
(cf. Figure 2).

We assume that a robot is positioned on exactly one field at any time during
its movement through the laboratory. Therefore, the operations up, down, left
and right can be seen as atomic behaviours. There are no intermediate positions
of objects (pucks) and a robot must be on the same field as a puck to grip it.

On the right in Figure 6, three robot instances with different positions and
three field objects are shown. The battery of robot RP contains 85 percent of
the overall possible energy and the robot is on the position x = 6 and y = 10 in



56 H. Giese et al.

do / up(), down(), left(), right(),
take()

active

entry / stopRobot()

passive

[battery < 10]

name : string

State

Transition

Guard

0..*
in

0..*
out

0..*
condition

...

name = ”active“

s1:State
name = ”passive“

s2:State

t1:Transition
o1 : out i1 : in

...g1:Guard

Fig. 8. On the left side: excerpt of the FSM metamodel; in the middle: initial example
abstract syntax; on the right side: concrete syntax

the laboratory. The field f2 on position (9, 8) is a wall and the field f3 on (18, 5)
contains a puck and is part of the delivery area.

The third and last model type for our robot example is a behavioural model in
the form of a finite-state machine. Figure 8 shows an excerpt of the metamodel
on the left as well as a very abstract initial example of the robot behaviour that
is extended later (abstract syntax in the middle, concrete syntax on the right).
In this version, the robot has two states. After an activation signal, the robot
starts processing its tasks in the active state according to the goal model (cf.
Fig. 3) until the battery is lower than a threshold of 10 percent. In this case, it
will enter the passive state and stops all sensors, processing steps and actuators.
Consequently, charging the battery automatically is not considered in this first
version of our example.

Each model presented focuses on a specific concern of the robot scenario.
The definition of a model explicitly states that the abstraction function is to
eliminate characteristics of the original that are irrelevant as far as the purpose
of the model is concerned. At the same time, the model abstraction should
preserve the intent and semantics of those details that are relevant to the task
at hand.

The same type of models can be used to represent different levels of abstrac-
tion. Several types of models and abstractions are often combined in a Hierar-
chical State Machine (HSM) [17] to provide a unique and comprehensive view of
the same software system. In our robotic example, while one FSM can capture
only the most abstract states of the robot, such as “the robot is stopped”, an-
other FSM can map those abstract states to finer-grained behaviours and state
transitions.

If we consider the KAOS goal model (cf. Fig. 3) of our robot example, the
original would be the real requirements that are in the stakeholders’ minds and
the purpose would be to represent the requirements of the system. Note that, for
reasons of time and costs, some requirements may not be included in the system
implementation, but only those that are relevant to the stakeholders. For this
reason, the goal model abstracts the irrelevant goals and requirements and only
focuses on the ones that will be implemented in the robotic system.



Living with Uncertainty in the Age of Runtime Models 57

Moreover, if we consider the map representation, the difference between the
real simulation area in the real world and the simplified field representation
maintained by the robot is obvious. However, the map model abstraction cov-
ers all important aspects that are needed for the robot system offering special
functionality, e.g., path planning as well as obstacle detection and avoidance.

In the case of the FSM (see Fig. 8), the original would be the robot and the
purpose would be to capture the possible behaviours of the robot. Another case
of abstraction is that only the relevant abstract states (modes) of the robot,
like moving (active) or stopped (passive) as well as possible transitions between
relevant abstract states, are captured.

A fundamental property of a model is its validity. This means that the model
must correctly reflect the characteristics (i.e., goals, requirements, behaviours,
and components) observed on the original. For example, in a goal model this
property would imply that a set of goal operationalizations lead to the satisfac-
tion of the requirements they are associated with. Likewise, given an appropriate
input sequence for the FSM presented in Figure 8, a certain sequence of abstract
states must be traversed. These states should correspond to the observable be-
haviour of the robot.

Even if a model is valid, it might not exactly predict the same behaviour of
the original as this correlation depends on the model abstraction. Furthermore,
it may be difficult to capture and interpret the non-determinism associated with
unpredictable events and conditions in a model. In general, it is expected for
a model to provide an acceptable degree of accuracy and precision. Accuracy
measures how correct the model is at representing observable characteristics of
the original. That is, accuracy measures the error between a predicted value and
the value observed in the original. In contrast, precision measures how small the
variation is in the prediction made by the model, as compared to the original.

With over-approximation, a model is guaranteed to include all possible be-
haviour of the original, but may also include behaviour that cannot be observed
in the original. Therefore, over-approximation can result in false negatives, when
a behaviour present in the model results in a failure that is never observed for
the original. In contrast, with under-approximation, all behaviour captured in
the model must also be possible for the original, but not necessarily vice versa.
As such, under-approximation can prevent false negatives by ensuring that the
characteristics represented in the model are also observable in the original. Note
that under-approximation does not preclude the possibility of introducing false
positives that take place when the model does not represent all behaviour that
the original can exhibit. See for example [18] for a discussion about over- and
under-approximation in the specific context of model checking.

3.2 Uncertainty and Uncertainty in Models

The definition of uncertainty depends on its context, origin, and effects upon
the system. For the purposes of this chapter, we adopt and modify the definition
proposed in [1,19] as follows:



58 H. Giese et al.

Definition 2. Uncertainty can be defined as the difference between the amount
of information required to perform a task and the amount of information already
possessed.

This concept of uncertainty can be better understood by distinguishing be-
tween three main non-mutually exclusive forms of uncertainty: epistemic, ran-
domized, and linguistic.

Epistemic uncertainty is a result of incomplete knowledge. For instance, the
operationalization of requirements might be incomplete during system specifica-
tion, and it can happen as the system designer might not know in advance what
operations the system will provide.

Randomized uncertainty can occur due to system and environmental con-
ditions that are either inherently random or cannot be predicted reliably. For
instance, a sensor might introduce noise unpredictably into gathered values,
thereby preventing a software system from accurately measuring the value of a
property.

Lastly, linguistic uncertainty can result from a lack of precision or formality
in linguistic concepts. For example, the satisfaction of requirements G1.3 and
G1.4 in Figure 3 is vague because there is no precise way to express the notion
of “high” throughput and “low” energy consumption.

The concept of uncertainty within a model can then be defined by extending
Definition 2 as follows:

Definition 3. Uncertainty is the difference between the information that a model
represents about the original - that is relevant to its purpose - and the informa-
tion that the model could, in theory, represent about the original that would be
relevant for its purpose at a certain instant in the system lifetime.

Uncertainty within a model can affect both the accuracy and precision of a
model. Accuracy of a model refers to its the degree of closeness to the original,
while precision refers to the degree to which the model is consistent (e.g., lead the
system to the same behaviour under the same conditions). Although uncertainty
may uniformly affect the entire model, its effects might be irrelevant if they
are constrained within attributes that are never queried or evaluated. Thus,
the relevance of uncertainty depends upon the criticality of the element that is
affected with respect to the purpose of the model.

Dynamic models tend to increase the level of uncertainty over time because of
the (possible) continuous updates which are performed to reflect changes in the
original. A good example is our context model of the environment. It would be
very hard for a robot to maintain a highly accurate model if humans or other mov-
ing obstacles frequently appear and disappear in the scenario. These observations
can affect the behaviour of a single robot (e.g., path planning and route recalcula-
tion) as well as the overall scenario (e.g., new task distribution). As a consequence,
this can also render the model imprecise, since the robots’ behaviour might not
be consistent with respect to previous and equivalent environmental situations.
However, this phenomenon is not observable in static models.



Living with Uncertainty in the Age of Runtime Models 59

In general, uncertainty in a model can be addressed by using internal or
external techniques. Internal techniques address uncertainty by increasing the
accuracy of the model at the expense of decreasing its precision. Thus, although
the outcome of a model prediction might be inconsistent, it is closer to the
possible outcomes of the original. External techniques, on the other hand, tend
to under-approximate the original by increasing the precision of the model at
the expense of decreasing its accuracy. For this reason, post-processing is usually
required to ensure the outcome of a model prediction does not exceed certain
bounds or thresholds of what the original can exhibit.

For the remainder of this chapter we focus on addressing uncertainty with
internal techniques. We consider the predictions of a model, whether it is a re-
quirements, structural or behavioural model, and its post-processing analysis as
a combined prediction of an extended model. Furthermore, we also acknowledge
that a model prediction might be correct while not being fully accurate, and
that upper bounds on the prediction error might not necessarily be accounted
for in such predictions.

3.3 Runtime Models

Definition 4. A runtime model is a model that complies with Definition 1 and,
in addition, is characterized as follows: part of its purpose is to be employed at
runtime in a system and its encoding enables its processing at runtime. The run-
time model is causally-connected to the original (running system), meaning that
a change in the runtime model triggers a corresponding change in the running
system and/or vice versa (extended from [20]).

As outlined in the definition, runtime models differ from other types of models
in both their purpose and encoding. Specifically, while development-time models,
such as state machines, primarily support the specification, design, implemen-
tation, and testing, of a software system, a runtime model captures relevant
information of the running system for different purposes, which either are part
of the system functional features or are subject to assurance and analysis (non-
functional features). Due to the encoding that enables its processing at runtime,
other running systems, stakeholders (e.g., final users) and the system itself can
alter these models at runtime.

A runtime model can span different types of models (e.g., structural or be-
havioural models), and can have different degrees of accuracy and precision.
Independently on whether changes are automatically included or are externally
applied on the model, a runtime model can be used for different purposes. It
can be used as a knowledge repository about the system, its requirements, or its
execution environment. It can also support adaptation of the system and/or its
execution environment, as new information about the original becomes available.
An overview about different runtime model categories and the relations between
runtime models are described in [21].

In the following sections, we discuss a feedback-loop-based approach that en-
ables handling of runtime models during system operation. Afterwards, we dis-
cuss some most common types of system that typically employ runtime models.



60 H. Giese et al.

Fig. 9. MAPE-K feedback loop architecture according to [22]

3.3.1 The Feedback Loop in Systems with Runtime Models

Different types of software systems already adopt runtime models to control sev-
eral aspects of their execution. In some cases, runtime models can be simply used
to reconfigure system properties. In other cases, these models can be dynami-
cally updated to reflect changes in the system and its context (the observable
part of the surrounding environment).

The MAPE-K feedback loop [22], shown in Figure 9, emphasizes the role of
feedback for autonomic computing. At first, it splits the system into a managed
element (core system) and an autonomic manager (adaptation engine). It then
defines four key activities that operate on the basis of a common knowledge
base: Monitoring, Analysis, Planning, and Execution. Monitoring is primarily
responsible for gathering raw data, such as measurements and events, about the
state of the managed system. Analysis is used to interpret data collected by
the monitoring activity and detects changes in the managed system that might
warrant adaptation. Both monitored and analyzed data are used to update the
knowledge base of the MAPE loop. Planning reasons over the knowledge base
to identify how the managed system should adapt in response to their mutual
changes. Execution applies the adaptations selected by the planning activity on
the system.

The explicit consideration of runtime models leads to an extended MAPE-K
architecture as depicted in Figure 10. A first major refinement is that now the
adaptation engine also takes into account - in addition to the core system - its
context and requirements as a knowledge base.

In this more refined view Monitoring is gathering raw data, such as measure-
ments and events, about the state of the system and its context. Additionally,
monitoring may recognize updates of the requirements. In any case, the ac-
cumulated knowledge is stored in the runtime models (M@RT). The Analysis
interprets the collected data and detects changes to the system, context and/or
requirements that might warrant adaptation. Then it updates the runtime mod-
els accordingly. The Planning employs the runtime models to reason about how
the running system should adapt in response to changes. The Execution uses
the runtime models as basis to realize planned adaptations.



Living with Uncertainty in the Age of Runtime Models 61

Fig. 10. Runtime Models in an extended MAPE-K architecture

3.3.2 Kinds of Runtime Models

As depicted in Figure 10, we can distinguish different kinds of runtime models
depending on their possible original (i.e. subject):

System Models. The first and most common subject of a runtime model is
the system itself. On the one hand, a runtime model provides an abstract view
on the running system. Consequently, to maintain the causal relation, the run-
time model has to be adjusted when a represented characteristics of its original
changes [23,24]. On the other hand, the runtime model can be used to describe
possible future configurations of the running system. Then, to realize the causal
relation a related update of the running system has to be triggered. What can
be controlled and observed via the runtime model is the system behaviour, as
required sensors and actuators can be incorporated into the system if they min-
imally impact the system non-functional requirements.

Context Models. The context of the system – the part of the environment that
can be observed by the system – can be a subject of a runtime model. Then, the
runtime model represents some characteristics of the context observable via some
sensors and the causal connection implies that the runtime model is accordingly
updated when the context changes as indicated by changing measurements of
the sensors. The case in which the runtime model is used to describe how the
context should be changed is more subtle. Here only those changes that are under
the indirect control of related actuators can be triggered via a runtime model
and its causal connection. Often, only a small fraction of the context can be
indirectly controlled via the actuators and sensors. Therefore, while only a few



62 H. Giese et al.

characteristics are controllable, more characteristics are usually observable via
sensors. However, sometimes relevant characteristics cannot be observed directly
and then a dedicated analysis is required to derive them indirectly from other
observations.

Requirement Models. Last but not least the requirements of the system may
be subject of a runtime model [25,26]. In this case, either some form of online
representation of the requirements exists that is linked to the runtime model by
a causal connection or changes of the requirements have to be manually reflected
on to the runtime model. In both cases the runtime model carries information
about the currently relevant requirements within the system and therefore the
system can, for example, check whether the current requirements are fulfilled
or try to adjust its behaviour such that the fulfillment of the requirements in-
creases. However, a bidirectional causal relation between the requirements and
the runtime model has not been usually considered. This relation would trigger
modification of the system requirements from changes in the runtime model.
However, if the requirements define a whole set of possible goals for the system,
the runtime model can be used to capture which goals are currently selected.

Besides these typical kinds of runtime models, in practice it is also possible
to find cases where a single runtime model has multiple subjects. For example,
a single model may reflect knowledge about a fraction of the system and the
context at once in order to allow analyzing their interplay.

3.3.3 Types of Systems with Runtime Models

Different kinds of systems leverage activities of the MAPE loop to control some
aspects of their execution. The rest of this section provides a non exhaustive list
of the most common types of systems leveraging runtime models. Note also that
these categories may overlap.

Configurable Systems. Configurable systems [27] are perhaps the simplest
type of software systems that leverage runtime models. Such systems often use
runtime models in form of configuration files to determine the concrete con-
figuration and the values of operational parameters that control the behaviour
of the overall system. For this reason, no monitoring and analysis process is
performed to automatically update the runtime model. Instead, planning and
execution processes respectively read the configuration and parameters stored
in the runtime model and reconfigure the system accordingly.

Context-Awareness w.r.t. Pervasive Systems. Context-awareness [28] de-
scribes that a system is able to monitor its context. Context-awareness is re-
garded as an enabling feature for pervasive systems [29,30] that offers “anytime,
anywhere, anyone” computing by integrating devices and appliances in the ev-
eryday lives of its users. Pervasive systems select and apply suitable adaptations
depending on their context. As the user’s activity and location are crucial for



Living with Uncertainty in the Age of Runtime Models 63

many applications, context-awareness has been focused on location awareness
and activity recognition. Pervasive systems can leverage runtime models to rep-
resent the context and cover all processes of the MAPE loop to foster adaptation.
Monitoring acquires the necessary information about the context (e.g. using sen-
sors to perceive a situation). Analysis abstracts and understands the context (e.g.
matching a perceived sensory stimulus to a context) and updates the runtime
models accordingly. Planning identifies the actions that the system should per-
form based on the recognized context and execution applies these actions at
runtime.

Requirements-Aware Systems. Requirement-awareness is the capability of a
system to identify changes to its own requirements. Requirements-aware adaptive
systems [26,31] use runtime models to represent their requirements [32,33], track
their changes [25,34] and trigger adaptation in the system behaviour in order to
increase requirements satisfaction [35]. Other work [36] proposes to explicitly
collect users’ feedback during the lifetime of a system to assess the validity and
the quality of a system behaviour as a means to meet the requirements. In these
systems, requirements are conceived as first-class runtime entities that can be
revised and reappraised over short periods of time. Modifications of require-
ments can be triggered due to different reasons, for example, by their varying
satisfaction, or new/changing market needs and final users preferences.

These systems also leverage the activities of the MAPE loop to support
requirements-awareness and adaptation. Monitoring collects the necessary data
from the system and the context. In addition, if the system is requirements-
aware, changes in the requirements are taken into consideration. Analysis uses
the data about the system and context to update the requirements model or
recompute the requirements satisfaction. Planning computes the adaptations to
be performed by taking into account the current requirements and assumptions
as captured by the runtime models. As a special case, this includes that a re-
quirements changes may result in changes to the system itself (e.g., architectural
or behavioural changes). Execution applies selected adaptations on the system.

It has to be emphasized that the use of requirements models at runtime
during analysis and planning is conceptually independent of their monitoring
(requirements-awareness).

Self-adaptive Systems. Self-awareness [37] is the capability of a system to
monitor itself. The system can thus detect and reason on its internal changes
(e.g., system behaviour, components, failures). Self-adaptive systems can in ad-
dition to self-awareness also react to observed changes by applying proper adap-
tations to themselves.

Nowadays, the term self-adaptive systems is used in a very broad sense and it
can include self-awareness, context-awareness as well as requirements-awareness.
Such systems manage different runtime models that represent the system itself,
its context, and its requirements, respectively.



64 H. Giese et al.

The next section explains how runtime models can be used to handle un-
certainty. In particular, Section 4.3 provides further discussion of self-adaptive
systems and the use of runtime models in the context of the case study and the
MAPE-K loop.

4 Handling of Uncertainty

Nowadays, we can observe the trend to handle uncertainty later at runtime and
not already at development-time, as discussed in Section 4.1. To better under-
stand the benefits and drawbacks of using runtime models to handle uncertainty,
we first discuss the classical approach to handle uncertainty using development-
time models in Section 4.2. In Section 4.3 we explain more advanced solutions to
handle uncertainty at runtime and outline how these solutions can benefit from
runtime models. The case study has been used to provide specific examples.

4.1 Trend of Handling Uncertainty Later

In classical engineering, uncertainty in the available information about the sys-
tem and its environment is a major problem. In particular, for models that
capture characteristics of the environment it is frequently the case that the ex-
act characteristics are not known at development-time. External techniques for
uncertainty for a model such as safety-margins and robustness with respect to
these known margins are then often employed to ensure that the developed so-
lutions satisfy the system goals for all expected circumstances (cf. [38]).

Consequently, also in software engineering the classical approach is to build
systems that work under all expected circumstances. This is achieved by using
models at development-time, which capture the uncertainty internally. Alter-
natively external techniques can be employed to handle the uncertainty, such
that the developed systems work under all circumstances predicted by these
development-time models.

However, nowadays it has been recognized that we can achieve smarter and
more efficient solutions, when we build systems that are context-aware [28]
and/or self-aware [37]. Due to the self-awareness, context-awareness and require-
ment-awareness, self-adaptive systems become capable of adjusting their struc-
ture and behaviour to the specific needs of the current system state, context,
and/or requirements. This results in a number of benefits: (1) achievement of
better performance and less resource consumption at the same time, (2) mini-
mization of manual adjustments required to the administrators or users, and (3)
provisioning of functionality that would be infeasible without the information
about the context.

In contrast to the classical software engineering approach, in self-adaptive
systems uncertainty concerning the system or context can be handled - to some
extent - at runtime and not just at development-time. The classical software
engineering approach can only cope with uncertainty that can be handled based
on reasonably complex development-time models. A self-adaptive system can in



Living with Uncertainty in the Age of Runtime Models 65

contrast employ runtime measurements to reduce the uncertainty and adjust
its behaviour accordingly. Consequently, self-adaptive systems can handle more
situations than classical solutions and their ability to address uncertainty more
actively is one of their major advantages. In [39] it is therefore argued that
uncertainty should be considered as a first class element when designing self-
adaptive systems.

4.2 Handling Uncertainty at Development-Time

This section discusses how models can be used to address uncertainty during
development-time. We describe the classical approach, through our case study
and then explain the various forms of uncertainty that can arise.

The classical approach tries to exclude uncertainty at the level of requirements
in order to have a solid basis for the later development activities. However, it
has been observed that stable requirements rarely exist on the long run (cf.
[40,41,42]). Watts Humphrey observed that one of the principles of software
engineering is that requirements are inherently uncertain [40]: “This creative
design process is complicated by the generally poor status of most requirements
descriptions. This is not because the users or the system’s designers are incom-
petent but because of what I call the requirements uncertainty principle: For a
new software system, the requirements will not be completely known until after
the users have used it.” Also Lehman’s Software Uncertainty Principle [41] states
that for a variable-type program, despite many past satisfactory executions, a
new execution may yield unsatisfactory results. This is based on the observation
that software inevitably reflects assumptions about the real world [43].

During design and implementation, the uncertainty in environment models is
usually handled by building robust solutions that simply work for all possible
cases. Therefore, the development-time model employed for the environment has
to capture all relevant and possible future environments the system will face.
In this way, a system designed according to a development-time model should
guarantee that in any relevant and possible future environment the required
goals and constraints can be satisfied.

[battery = 100]

entry / gotoPosition(3,11,AP)
do / fetchPuck()
exit /gotoPosition(12,12,AS)

fetching
do / move(), dropPuck()
exit / gotoPosition(8,14,CP)

dropping

do / chargeBattery()

charging

start

[puck dropped]

[puck fetched]

stop

Dropping point of the puck
dispenser in area AP.

Dropping point in the
sorting area AS.

Point for
charging
the battery.

Fig. 11. Behaviour development model of the robot system



66 H. Giese et al.

Example 1 (Robot Design with Development-Time Models Only). For our case
study, the developer must make several design decisions. If we assume that each
of our three robots has a clear task and that their overall behaviour fulfills the
given goals, a possible solution is the fixed encoding of the different tasks.

According to Figure 2 on page 51, robot RP must transport pucks from the
Packaging Room to the Sorting Room in the specific Areas AP and AS respec-
tively. We can model at development-time a state machine that representes the
states and transitions necessary for the robot to solve this task. The behaviour
model depicted in Figure 11 has three states. First, the robot fetches the puck
in the Packaging Room (cf. Fig. 2) and transports it according to the sorting
position. Due to our discrete grid map model of the laboratory, we can pinpoint
the target locations for the robot navigation. The developer knows the maximal
distance and whether the robot has enough power for puck transportation. Af-
terwards, the robot always loads its battery at a fixed charging point avoiding to
exhaust its power supply, which is one of the constraints of the system. Further-
more, one can stop the puck transportation while the robot loads the battery or
it will fetch and transport the next puck.

There are many restrictions to the environment, e.g., pucks must always be
at the same position, the environment must be very static without relevant dis-
turbances, and goals should not change at runtime ensuring that such a fixed
transportation scenario works. This is the case for many systems, such as an
assembly line with static working steps in a fixed area. In practice the robot will
increasingly diverge over time from the planned trajectory as the move commands
are inherently imprecise. In fact only in more restricted cases for embedded sys-
tems, such as automation systems with a fixed track layout where the errors
of the vehicle movements do not accumulate over time, a solution that is not
context-aware really works.

In our specific system design, the handling of the battery loading is one ex-
ample of resolving uncertainty during development-time. It does not matter how
much the power level of the battery is decreased during the task as long as the
robot reaches the charging point. Furthermore, the amount can be estimated or
measured upfront and results in a simple, not context-aware system solution.
Additionally, the fixed encoding of the task further reduces uncertainty due to
the fact that no communication between robots and runtime task distribution
capabilities are needed.

All the development models are only used for code generation or system imple-
mentation. The running system does not reflect or use these models but simply
complies with them.

4.2.1 Forms of Uncertainty

The problems of uncertain requirements according to [40,41,42] relate to epis-
temic uncertainty where the requirements captured at development-time may
not precisely and accurately reflect the real needs when the system is operating.
In the case of the Example 1, the designed behaviour is not able to handle a
shift in the priorities of the goals by the operating organization that may occur



Living with Uncertainty in the Age of Runtime Models 67

over time. Thus, in this case the performance will not be rated as good as in the
beginning when the shift in the prioritization of the goals by the operating orga-
nization has occurred, as expectations have evolved while the system behaviour
stays the same. As a result, a new state machine model must be developed
and deployed to the robot. Another related reason for epistemic uncertainty is
that stakeholders may formulate ambiguous requirements specifications [2], or
they may have conflicting interests or uncertain expectations on the resulting
software quality. The changes that will occur for the system and environment in
between the development-time and when the system is executing may also result
in epistemic uncertainty. The development-time model of the system or context
cannot precisely and accurately reflect the real system and its environment as it
is characterized later when the system is under operation.

Also, practical limitations in development and measurement tools can, in prin-
ciple, cause epistemic uncertainty where a development-time model of the system
or context cannot precisely and accurately reflect the real system and its exe-
cution environment as it is known at development-time. For instance, in the
Example 1, it is only possible to measure the initial characteristics of the floor
plan with a certain precision and accuracy and at certain points in time. As
a result, a development-time model of the floor plan may perhaps never truly
reflect the real environment unless, due to abstraction, neither the measurement
precision or changes matter after the measurement are relevant.

Furthermore, randomization plays a role that may be covered appropriately
by probabilistic models such as probabilistic automatas [44]. In our Example 1
the known likelihood of failed operations can be described by probabilistic transi-
tions and still we can determine upper bounds for related unsafe behaviour using
probabilistic reachability analysis. If no exact probabilities but rather only prob-
ability intervals are known due to epistemic uncertainty, interval probabilistic
automata and related analysis techniques (cf. [45]) could still be used.

4.2.2 Time and Uncertainty

For a development-time model, we can observe that the uncertainty may change
over time. It may stay stable, increase or even, in rare cases, decrease over time.
If the energy level maintained by the robot in our Example 1 changes over time
and a design-time model is used, the three cases mentioned above can result in
the following situations:

The uncertainty is increasing over time as outlined before, which may happen
if the set of possible reached states grows over time. If for all activities of the
robot only rough upper and lower bounds for the energy consumption are known,
after a number of operations, the uncertainty concerning the consumed energy
will be quite large. In this case, the model still provides enough information
about the system at development-time to build a sufficiently robust design for
the system by simply calculating the worst-case and therefore act accordingly.
However, the resulting behaviour will be rather sub-optimal as the robot will
recharge the battery very early.



68 H. Giese et al.

The uncertainty remains constant over time if the set of possible reached
states remains the same size over time. In the case of the robot and the energy
consumption this would require that the energy consumption of each operation
is exactly known such that the initial uncertainty concerning the state of the
battery is neither increasing nor reduced. In this unrealistic case this knowl-
edge can be exploited to build a robust design where the initial worst-case plus
the exactly known consumption is employed to determine when to recharge the
battery.

The uncertainty is reduced over time when after a certain time the state is
exactly known as the set of possible reached set of states has collapsed into a
smaller set or even a single state. In our example, if loading the battery is blocked
we could be certain that after a while the battery will be empty. However, it
is rarely the case that such a decrease of the uncertainty in a model can be
guaranteed.

While all three cases are possible, we can conclude that unless actively tack-
led, the uncertainty will increase over time. Consequently, identifying means
to counteract this growth in uncertainty is crucial for handling uncertainty
properly.

4.2.3 Maintenance and Reengineering for Handling Uncertainty

The standard approach to tackle the aging problem for software is maintenance,
where required adjustments to changes in the context or requirements are taken
into account by a dedicated additional development step. Since the development
of the original system has been stopped, in this step the changes in the context
and requirements should be identified such that the related uncertainties are
reduced. However, often the time for a maintenance step is rather limited and
therefore the related analysis is superficial and potentially incomplete. Also,
maintenance teams might differ from design and implementation teams, possibly
leading to more uncertainty in the form of incomplete understanding.

If the internal quality of the software deteriorates considerably, maintenance is
no longer feasible and, instead, dedicated reengineering activities with a reverse-
engineering part that recovers lost information about the software and a forward
engineering phase are required. Here, reengineering addresses the uncertainty
that results from the loss of information concerning the system. Usually, reengi-
neering also has to address changes in the context and requirements since the
development of the original system has been stopped to minimize related uncer-
tainties.

4.3 Handling Uncertainty at Runtime

Using runtime models during system operation, as for example it is done for
self-adaptive systems, brings up different forms of uncertainty that must be
handled. In contrast to the classical software engineering approach, these forms
of uncertainty are tackled at runtime and not at development-time.



Living with Uncertainty in the Age of Runtime Models 69

Before discussing the different forms of uncertainty at runtime, we illustrate
in the following example the use of runtime models for the planning step of the
MAPE-K feedback loop for our robot case study.

[battery <= 30]

do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

Plan

entry / stopRobot()

passive

[battery < 10]

<<create>>

<<create>>
<<create>>

<<create>>

<<create>><<delete>>

<<delete>>

<<delete>>

<<create>>

Fig. 12. The planning step of the MAPE-K loop creates a new version of the state
machine runtime model

Example 2 (Robot Scenario with Runtime Models). We use the following runtime
models in our case study scenario: First, we have an environment model that
captures the current position in the floor plan represented by discrete fields in an
overall map with current puck positions, obstacles and charging points (cf. Fig. 6
in Section 3) and available puck transportation requests. Second, a goal runtime
model exists that includes priorities and constraints of our system and reflects
the requirements of the overall system behaviour. Furthermore, the behaviour
of the robot should fulfill those constraints and performs according to the given
goals and priorities. The abstract syntax as well as a concrete instance situation
are depicted in Fig. 3 and 4. The current state information of a robot during
operation is represented by a finite state machine runtime model (cf. Fig. 8).

These runtime models can be used and changed within the different activities
of the MAPE-K loop. In the following, we assume that the robot system has at
least self-awareness capabilities concerning its battery functionality including the
current battery level and is context-aware for its current goals. We consider the
following exemplary execution steps inside one robot: the monitor activity re-
trieves information about the current map situation, the possible available pool
of operations, the current behaviour specification in the form of a state machine
as well as a goal model. It updates this information in the runtime model repre-
sentation of the robot.

In a next step, the analyze activity is aware of the goals and constraints and it
is able to conclude that the battery should not be exhausted. Furthermore, it de-
tects in the possible operation pool of the robot the battery charging capability. As



70 H. Giese et al.

a result of applying strategies to fulfill the goals, it decides to include a charging
mechanism into the robot behaviour. The following third activity of the MAPE
approach is the planning step according to the decision of the analyze step before.
For example, the planner can adapt the retrieved simple state machine (repre-
senting the robot behaviour) depicted in Figure 8. It comes up with a detailed
plan to adapt the behaviour from the current state to the envisioned one. An
excerpt of the new adapted state machine is shown in Fig. 12. The passive state
as well as ingoing and outgoing transitions are marked as to be deleted and two
states charging and critical (with underlying behaviour) must be created. New
transitions reflect the constraints from the goal model. In this case, the robot
processes incoming puck transportation tasks in the active state. If the battery
power level drops below 30 percent, the robot behaviour changes by entering the
critical state. There, it searches for a charging point nearby and tries to reach it.
If the robot successfully reaches one, it charges the battery until it is full in the
charging state and returns to normal execution behaviour. Otherwise, the battery
is exhausted and the robot stops the execution of the task.

Afterwards, the last activity in the MAPE-K loop takes the plan and applies
the planned changes to the real system (it synchronizes the updated runtime
model with the real system). After a successful update, the behaviour of the real
robot is adapted according to the current goals and constraints.

4.3.1 Forms of Uncertainty

For the case of runtime models epistemic uncertainty can arise from multiple
sources that include sensing - when building or updating the models - and the
passing of time. If the original of a runtime model is monitored at runtime, the
resulting update of the corresponding runtime model should, in principle, lead
to less uncertainty. This effect may be limited because the measurements at
runtime usually include randomized errors and they are limited concerning the
when and what. Looking at epistemic uncertainty in our Example 2, retrieval
of environment information and subsequent update of the runtime model with
information about which fields are blocked as well as the positions of the charg-
ing points based on measurements by the robot, would help reduce the level
of uncertainty. However, there are details we should take into account as, for
example, if the blocked fields change frequently, the effect of reducing the un-
certainty would only be temporary. In contrast, if we continuously update the
information concerning the location of permanent obstacles (e.g., walls) in the
robot of Example 2, the robot will - on the long run, after it has explored the
whole area - derive a sufficient floor plan of those permanent obstacles. This will
contain only the unavoidable uncertainty due to measurement errors.

If a runtime model is also employed to store the planned changes, its state is
somehow permanently evaluated against the original. This should, in principle,
lead to a high consistency between the two and therefore a lower level of un-
certainty. However, this effect may be limited as also changing the original may
include a randomized error due to actuator errors.



Living with Uncertainty in the Age of Runtime Models 71

When we are able to learn what can happen in the environment, we may
be even able to improve the prediction of behaviour for the case of uncertainty
associated with randomization. For example, in the case of the robot scenario,
we may learn how likely temporal blocks occur for certain fields. If a certain
transition relates to an activity such as a measurement that fails with a given
probability, we may be able to learn the probability for a longer sequence of
measurements, as it will be very likely that the number of failed attempts to
take the transition divided by the total number of tries converges towards the
failure probability. However, there may be problems while using this kind of
assumptions. For example, if the assumption that the observed phenomena is
related to a probability is not correct, we will likely see no convergence and thus
the learning will fail.

The case of linguistic ambiguities is slightly different since it covers the cases
when the concepts in the model are not known in a precise way. Approaches
such as fuzzy automata can be used to deal with this issue. They include a
fuzzification and de-fuzzification of the linguistic concepts which allows them to
handle this form of uncertainty, while complicating the analysis considerably [46].
If we consider the soft goals in Figure 3 that describe a low energy consumption
and high throughput, these constraints could be good candidates to be specified
in a fuzzy automata. Note that the translation of those goals from a linguistic
concept to a manageable runtime model may introduce additional uncertainty.

Unfortunately, the sources of uncertainty described above rarely occur inde-
pendently from each other. Instead, the effects produced by these sources of
uncertainty can compound and thereby inhibit the system from clearly assessing
the extent to which it satisfies its requirements. Therefore, solutions to tackle
composed sources of uncertainty are required. For example, having temporary
blocks of certain fields arising in the robot scenario can be related to random-
ization as well as epistemic uncertainty and therefore, tackling this issue by
only learning probability values would not be enough. Instead, intervals for the
probabilities as provided by interval probabilistic automata would be required.

4.3.2 Time and Uncertainty

Furthermore, as in the case of development-time models, for runtime models we
can also observe that uncertainty may stay stable, decrease or even increase over
time. In case of the energy level maintained by the robot that changes over time,
the three cases can result in the following situations:

Even if certain parameters are measured, the uncertainty increases over time
as the parameters that are not updated over time may also be uncertain. In
this case the runtime model represents a partial view that may not provide
enough information of the system at runtime to be able to support a solution
to cope with the situation. As an example, currently we have not considered in
a runtime model that hardware parts of the robot can be worn out. Therefore,
the uncertainty about the status of those parts is not handled in any activity of
the MAPE-K loop. We can only assume that the quality of the hardware parts



72 H. Giese et al.

decreases over time but as long as those parts are not broken or fail, we cannot
reason about the impact on the robot’s behaviour.

The uncertainty remains constant over time if the measurements are sufficient
to keep the uncertainty within certain bounds. In this case the runtime model
can be exploited to chose a proper behaviour that works with the captured
circumstances. In the Example 2, the battery level is measured periodically to
decide when it is time to load it. We can cope with two constant uncertainty
issues in this example. First, if we know the period of the measurement, we can
estimate lower and upper bounds of energy decreasing for that specific time slot.
Secondly, the used hardware sensor and the runtime model representation has a
certain precision that is known upfront and stay in a bound too (assuming that
the sensor works correctly).

The uncertainty is reduced over time if measurements collect information
about the system status and step-by-step increase the accuracy of the corre-
sponding model representation of the system. As an effect, this will reduce the
uncertainty over time. Usually, there is saturation of this effect after a while
and a certain level of the uncertainty remains (see former case). Otherwise, after
a certain time the uncertainty would have been completely eliminated and the
characteristics of the original as far as covered by the model are exactly known.
A very simple example is the exhaustion of the battery. In that specific case,
there is no uncertainty and we exactly know that the battery is empty (even if
this is not very helpful).

4.3.3 Feedback Loops and Uncertainty

In classical engineering feedback loops are a well known solution to address
uncertainty concerning the environment [47]. Consequently, feedback loops have
also been identified as the core element for engineering self-adaptive systems
[48]. See also [49] for a discussion of uncertainty in autonomic systems with
feedback loops. Therefore, the role of uncertainty in systems with runtime models
and related concepts such as self-awareness, context-awareness, and requirement-
awareness is best discussed referring to the extended architecture of a feedback
loop as outlined in Figure 9.

As explained earlier, the more detailed view of the architecture comprises
four key activities which are Monitoring, Analysis, Planning, and Execution
(see Figure 13). Each of these activities can be seen as relying on the use of
runtime models that serve as a knowledge-base. The runtime models of the
system, context, and requirements plus additional strategic knowledge can then
be seen as driving the feedback loop.

The basic MAPE-K architecture can be extended to leverage models that
can evolve, thereby enabling a software system to cope with uncertainty by
learning new properties about itself and its execution environment based on
monitoring information that can only be collected at runtime. Specifically, to
gradually reduce the level of uncertainty in the system, the four key processes in
the MAPE-K architecture can analyze system and environmental data in order



Living with Uncertainty in the Age of Runtime Models 73

Fig. 13. Resolving uncertainty at run time with an extended MAPE-K architecture

to refine, augment, and revise the information stored in the runtime models, and
then leverage that information to guide the adaptation process as necessary.

Next, we will review the objective of each of the four key activities and explore
how uncertainty affects each of them. We will also review identified research
questions associated with each phase of the MAPE-K loop that can potentially
be tackled with the use of runtime models.

Monitor. In the detailed view on the architecture proposed in Figure 14, the
monitoring process is primarily responsible for measuring raw data, about the
current state and/or occurring events of the system, the context, and the require-
ments, and to update the runtime models representing the knowledge about the
state, context and requirements.

The monitoring helps the software system to cope with uncertainty by con-
tinuously updating the information contained in a runtime model. Nevertheless,
as explained above, the sensors used to obtain this monitoring information are
limited by the precision and accuracy of their measurements. Moreover, sensors
may fail at runtime or report values that the software system may simply be un-
able to interpret. As a result, even if monitoring reduces the level of uncertainty
in a software system, it will depend on its accuracy, precision and frequency. The
information it provides ultimately reflects an approximation that may contain
some uncertainty.

Research questions associated with the Monitoring phase of the MAPE-K
loop that can potentially be tackled with the use of runtime models and related
to the fact that sensing and monitoring can be imprecise and partial are:How can
we determine the imprecision caused by temporal constraints / delays? Does the
monitor engine also need to adapt (i.e., monitoring periods)? How can runtime



74 H. Giese et al.

Fig. 14. Monitoring and resolving uncertainty with runtime models

models incorporate or learn new information using machine learning techniques
and preserving at the same time the system under a reasonable behaviour? How
does the runtime model represent what to monitor and how to do it?

Analyze. The architecture uses the analysis process to interpret data collected
by the monitoring process and detect system and environmental changes that
might warrant adaptation (see Figure 15).

In case more subtle updates are required, the analysis may, in addition to the
monitoring, take as input the most recent data available as well as older data to
obtain more accurate initial analysis models of the system and the environment.
For example, techniques such as smoothening may allow better capturing of
what is known about the system or environment than simply using the last
measurement. In this context the complex update can be seen as a learning step
that uses the observations made to provide a better runtime model. Accordingly,
the employed learning/update strategy can have high impact on how successful
the uncertainty is reduced. While more specific strategies may provide highly
accurate runtime models, unless severe changes in the system or environment
occur, more generic strategies may provide more robustness but solutions that
performe worse.

In addition, the analysis activity verifies in a second step that monitoring in-
formation satisfies the requirements given, for example, in the form of relevant
system and environmental goals and constraints. If necessary, this process also
has to trigger an adaptation by the subsequent planning process if it detects
that a requirement is, or could potentially become, unsatisfied. Moreover this
analysis step concerning the goals and constraints is highly affected by the un-
certainty in the runtime models. The analysis step can here only result in the



Living with Uncertainty in the Age of Runtime Models 75

Fig. 15. Analysis and resolving uncertainty with runtime models

required precision and accuracy when the uncertainty present in the runtime
model can be successfully handled and therefore, does not make an analysis in-
feasible. Depending on how the analysis results are presented as models, these
runtime models can, due to a higher level of abstraction, contain considerable
less uncertainty than what could have been observed for the monitoring.

As diagnosis and analysis can also be ambiguous and imprecise, the following
research questions associated with the Analysis phase of the MAPE-K loop arise:
What is the effect of analysis techniques to resolve unknown uncertainty? Does
the perspective on what is ”relevant” for the runtime model need to adapt at run
time? Should the criteria for decision-making adapt itself? How can we retain
the ability of analysis even if we have incorporated newly learned information?
How do the objectives of the analysis are represented and how can they be mapped
onto a specific analysis technique?

Plan. The Planning, if triggered, reads the runtime models enriched by the
analysis and performs some reasoning to identify how the running system should
be best adapted to changes of the system, context, and/or requirements. It may,
for example, identify a plan to change the running system to also take into
account a novel system goal.

The planning activity therefore reads the system, context and requirement
runtime models and records the planned changes also in the form of a runtime
model (see Figure 16). The identified changes can, for example, be captured by
modifications of a runtime model of the system that we call system′ (see the
entity system′ in Figure 16). Here, uncertainty only plays a role when identified
changes cannot be safely planned as the related current state of the system is
not available in the current runtime model of the system. The precision and



76 H. Giese et al.

Fig. 16. Planning and resolving uncertainty with runtime models

accuracy of the planning is again determined by the uncertainty of the employed
runtime models. For the case of the resulting prescriptive runtime model of the
system, the runtime model usually captures only what should be changed and
thus will not include any uncertainty at all.

For the Planning phase of the MAPE-K loop holds that the final outcome of an
applied strategy cannot be accurately predicted and thus the following research
questions result: Should the planner take uncertainty into account? If so, how
does it handles strategies when uncertainty exist or what kind of runtime models
are more suitable? Furthermore, how can the planning activity be instrumented
to achieve a specific objective (e.g., minimise the number of changes to be applied
onto the system).

Execute. The Execution activity directly applies a set of changes for the run-
ning system stored in some runtime models (see system′ in Figure 17) by the
planner. Even if these changes can have the direct consequences limited to the
system itself, the changes may also indirectly affect the context in the longer run.
The execute activity can be seen as the mechanism that support the causal con-
nection which influences the running system according to the updated runtime
models.

Assuming that applying the changes always works, the execute activity would
guarantee that the employed runtime model of the system is now perfectly in
sync with the system. However, in practice the execution activity cannot give
such guarantees as its actuators provide only limited accuracy or may even
completely fail. Furthermore, the system may have evolved in parallel to the
feedback loop such that the planned updates become impossible or the changes
do not result exactly in the planned outcome. Overcoming this problem, the



Living with Uncertainty in the Age of Runtime Models 77

Fig. 17. Executing and resolving uncertainty with runtime models

next loop iteration should detect it and try to solve the inconsistencies again, or
otherwise one can try to exclude it in such a way that changes occurring in the
managed system can never result in inconsistencies with planned changes.

The effects of the Execution phase of the MAPE-K loop on the running system
may not be as expected as also external influences as for example, disturbances
from the environment or user interactions may exist which are not under control
of the MAPE-K loop. Therefore, the following research questions have to be
addressed: Do temporal delays create an inconsistent view of the runtime model?
How are the runtime models affected by external influences outside the MAPE-K
loop?

Summary. Uncertainty in self-adaptive systems can arise from multiple sources
that include, but are not limited to, the system itself, its environment, and its
stakeholders. For instance, the system itself uses its monitoring infrastructure,
which may be inaccurate and imprecise, to measure properties about itself (self-
awareness). Similarly, the surrounding context can introduce uncertainty because
it is dynamic, unpredictable and ever changing, perhaps even leading to the
violation of domain assumptions (context-awareness). Lastly, stakeholders can
also introduce uncertainty by either modifying the current set of requirements
that the system must satisfy, or by the emergence of new business needs or
regulations that the system must comply with (requirement-awareness).

The uncertainty in the runtime models usually increases when time passes
as the monitored information becomes outdated after a while as discussed in
Section 4.3.2. A more frequent execution of the feedback loop can counteract this
tendency and also guarantee faster adaptation reactions. However, the chosen
frequency has to be cost-effective since it must balance a trade-off between the



78 H. Giese et al.

quality of the feedback loop and the overhead added to the execution of the
system.

Also, a suitable trade-off decision has to be made concerning the accuracy of
the runtime models. It is usually not cost-effective to monitor frequently as this
not only increases the monitoring costs but also the subsequent analysis and
planning activities. Therefore, enough monitoring to enable a suitable analysis
and planning is necessary. Again, as in case of the updating/learning strategies,
we have here also a trade-off between well-performing solutions within an en-
velope of expected likely changes and a robust solution. While for the former
the required effort can be optimized, for the latter more overhead has to be ac-
cepted. Adjusting different activities such as monitoring, analysis and planning
that are covered by the runtime models during system operation of higher-level
adaptation loops (see Section 4.3.4) enables solutions where the overhead for
robustness can be reduced by adjusting and intensifying the specific activities
when necessary rather than always run them with a maximal overhead.

4.3.4 Types of Systems with Runtime Models

In the following, we will discuss the implications of using runtime models for
different classes of systems ranging from configurable systems to those with full
self-managing capabilities.

Configurable Systems. The simplest case of an adaptation loop (not a com-
plete MAPE-K loop) is a runtime model, in which an externally initiated update
triggers an adaptation of the system.

This kind of systems is neither self-aware nor context-aware and does not
monitor the system itself or the environment. A requirement of self-awareness
is that the system must consider itself at a higher level of abstraction. Instead,
configurable systems do not actively change themselves and thus the required
adaptation triggered by the external update can simply be enforced from outside
the running system.

As a typical case, the user configures or changes requirements at runtime. A
very simple configurable system takes the potentially updated runtime require-
ments model and checks it during operation. If constraints are not fulfilled an
exception is thrown. Otherwise, the system will perform according to the given
configuration parameters. A more elaborated version is that the updated runtime
requirement model is used to derive the required behaviour. For example, the
system selects a strategy with a good/optimal expected revenue by evaluating
possible alternative behaviours and chooses the best performing one according
to the actual requirements.

Example 3 (Configurable Robot Scenario with Runtime Models).
In this system scenario, the robot is neither self-aware nor context-aware. For

this reason it cannot sense the environment. In this case, the runtime model is a
valid map configuration that informs the robot about the actual position of pucks
and obstacles. The robot gets an initial model of the environment according to



Living with Uncertainty in the Age of Runtime Models 79

x = 6
y = 10
obs = robot
puck = false
type = normal

f1:Field
x = 9
y = 8
obs = wall
puck = false
type = normal

f2:Field
x = 12
y = 12
obs = empty
puck = false
type = area_sorting

f3:Field

m:Map

...
x = 6
y = 10
obs = robot
puck = false
type = normal

f1:Field
x = 9
y = 8
obs = wall
puck = false
type = normal

f2:Field

m:Map

...
x = 12
y = 12
obs = empty
puck = true
type = area_sorting

f3:Field

Configuration 1: Configuration 2:

Fig. 18. Static map and instance situation with two possible configuration for the
Example 3

the metamodel in Fig. 6 in Sec. 3, maintains all fields in this map and uses the
given instance situation for navigation as well as fulfilling its goals. A snapshot
of two (partial) environment configurations is depicted in Fig. 18. In this case,
a puck is placed on field f3.

The robot behaves according to the simple state machine in Fig. 19. Each
time the robot enters the active state, it checks the current map configuration
data ( loadCurrentMap()), searches for pucks to transport and calculates routes
accordingly. We assume that the parameters in the configuration are valid and
triggered from outside. In the critical and charging states, no adaptation is pos-
sible in this example.

Each change in the map influences the behaviour of the robot because each one
must reschedule the transportation tasks or recalculate routes. We have three
robots in our scenario (cf. Fig. 2). The RP robot transports pucks from the
packaging room to the sorting room and this causes a change in the map of
the example. The second robot RS is affected by the map change because of a
new incoming transportation task. The third robot, which transports pucks to the
stock, can simply ignore the change of the map or the overall system does not
update the local map of this robot.

The configuration of the system can easily be extended to other runtime mod-
els. However, if the system has to deal with very frequent changes, which causes,
for example, a map update, the robots have to read the configuration file and
possibly change their behaviour too often. Consequently, this solution is only ap-
plicable to rather static environments such as assembly lines with fixed mounted

[battery <= 30]

entry/loadCurrentMap(...)
do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do /searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

configuration changed

Fig. 19. State machine of a configurable robotic system



80 H. Giese et al.

robot arms or runtime data that does not change often over time (e.g., the soft-
goals throughput and low energy consumption).

Context-Awareness and/or Pervasive Systems. According to our defini-
tion of context-awareness provided in Section 3.3.3, a context-aware system that
is not self-aware does not monitor the system itself but only the environment.
Therefore, it usually requires that the system characteristics of interest do not
change and thus the required adaptation according to the observed changes in
the environment can be simply enforced without taking any changes of the sys-
tem itself into account.

Example 4 (Context-Aware Robot Scenario with Runtime Models). A context-
aware version of the Example 3 has additional sensing capabilities for monitoring
the environment. As a result, it continuously corrects the internal environment
model according to the measurements and needs no external trigger for updating
the map. Additionally to the error correction of the map, the robot corrects its
position over time to reduce the error introduced by the wheel actuators.

At deployment time, the robot system gets the same static map instance situ-
ation as in Example 3 (cf. Fig. 18). But now, it searches for pucks and resched-
ule the transportation tasks by itself. The context-aware state machine is shown
in Fig. 20. The new sensing, updateMap, searchPuck() and correctPosition-
InMap() functions are the context-aware parts of the robot and influence the
behaviour, e.g., by updating the internal map and a better path planning with
less uncertainty over time due to the better environment sensing capabilities.

Requirement-Aware Systems. These kind of systems conceive requirements
as first class entities in the runtime models (c.f. Section 3.3.3). They take care of
changes of their own requirements as well as track them over time. According to
current constraints or varying needs, the systems adapt the behaviour to fulfill
current requirements.

Example 5 (Requirement-Aware Robot Scenario with Runtime Models). In the
previous Examples 3 and 4, we have the implicit assumption that the behaviour
of the robot system always conforms to the given goals. In a requirement-aware
adaptive system, these goals can be considered explicitly. In this example, the
runtime model is a valid goal configuration that influences the behaviour of the

[battery <= 30]

do / up(), …, take(),
sensing(), updateMap(),
searchPuck(),
correctPositionInMap()

active

do / chargeBattery()

charging

do /searchForChargingPoint(),
moveToChargingPoint()

critical success

[battery = 100]

fail

Fig. 20. State machine of a context-aware robotic system



Living with Uncertainty in the Age of Runtime Models 81

name = Perform tasks
priority = 5

G1:Goal

name = High throughput
priority = 2

G1.3:Goal
name = Low energy consumption
priority = 1

G1.4:Goal

AND

...

name = Perform tasks
priority = 5

G1:Goal

name = High throughput
priority = 2

G1.3:Goal
name = Low energy consumption
priority = 4

G1.4:Goal

AND

...

Configuration 1: Configuration 2:

Fig. 21. Two goal configurations for the requirement-aware robotic system

robot. A snapshot of the partial goal configurations is depicted in Fig. 21. The
difference between the left and right configuration in the picture is the prior-
ity of saving energy during task execution. The robot behaves according to the
state machine in Fig. 22. Each time the robot enters the active state, it checks
the current configuration data and calculates the normal drive speed accordingly
( calculateSpeed(config)). We assume that the parameters in the configuration
are valid and triggered from outside. In the critical and charging states, no
adaptation is possible in this example.

For the two configurations in Fig. 21, the speed of the robot might be much
higher for configuration 1 than for the second one, because of the different prior-
ities of the goals. Saving energy has a higher priority in the second goal configu-
ration, which implies (among other changes) a reduction of the movement speed
to an optimal power saving level.

Self-adaptive Systems. Self-adaptive systems as introduced in Sec. 3.3.3 use
the feedback loop to identify and compensate several changes in the system or
environment. In essence, it provides the capability to live with the uncertainty
related to the changes in the system or environment. They adjust to specific
current needs of the different situations that can be identified at runtime.

Example 6 (Self-Adaptive Robot Scenario with Runtime Models).
A self-adaptive version of our robotic scenario extends the monitor activity

from the context-aware system in Example 4. The analysis and planning steps
are also extended. More precisely, the system runtime models are now an environ-
ment model (the first version is initially loaded), a goal model with constraints,

[battery <= 20]

entry/calculateSpeed(config)
do / up(), …, take(), sensing(),
updateMap(), searchPuck(),
correctPositionInMap()

active
do / chargeBattery()

charging

do /searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

configuration changed

Fig. 22. State machine of a requirement-aware robotic system



82 H. Giese et al.

Analyze Plan

Monitor Execute

M@RT
requirements context system

[battery <= 10]

entry / this.speed = 100%
do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery >= 80]

fail

[battery <= 30]

entry / this.speed = 50%
do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

a) b)

causal connection

Fig. 23. Self-Adaptive robotic system scenario. The MAPE-K loop has a casual con-
nection to the runtime model in form of a state machine. This state machine is adapted
over time from variant a) to b).

and an initial behaviour model in form of a finite state machine. The runtime
models are not static in this scenario, which is different from Examples 3 and 4.

Due to the sensing capabilities, the robot system can update its position in the
map during runtime observations. Furthermore, it is aware of its requirements
and goals. During the analysis and planning step, the self-adaptive system gener-
ates a state machine according to the current instance situation and constraints
as depicted in Fig. 23.

Let us assume, the analysis step is aware of the possible configuration space of
the behaviour parameter in the robot. The first goal parameters can look like the
right instance situation in Fig. 21. The subgoal High throughput has a higher
priority than the subgoal Low energy consumption. Therefore the planning step
can generate a new behaviour model or adapt the existing one as depicted on the
lower left in Fig 23 (state machine (a)). Here, the driving speed is set to a maxi-
mum and the robot moves are risky because of the reduced battery safety margins
(only if battery is lower than 10 percent, the critical behaviour state is entered).
Additionally, loading takes a lot of time (especially the last 20 percent) so that
this timing behaviour is optimized in a second step. The overall behaviour of the
robot must still guarantee that other constraints, e.g., exhausting the battery, are
fulfilled during the execution.

The robot can perform its task according to this specialized state machine until
the goals change. Goals can be changed by the user or the system itself. For ex-
ample, the system can adapt its strategy according to the monitored environment
information.



Living with Uncertainty in the Age of Runtime Models 83

Let us assume, the goals change to the situation as depicted in the second con-
figuration of Fig. 21. Now, the energy saving subgoal has a much higher priority.
This is sensed and updated in the runtime model by the monitor step. The an-
alyze activity decides that a behaviour adaptation is necessary and the planning
step tries to fulfill the new constraints. In this case, the MAPE-K loop will gen-
erate/ adapt the existing state machine as depicted on the right in Fig. 23 (state
machine (b)). The new behaviour model (state machine) uses a fix drive speed
of 50 percent, which is much more energy efficient than before. Additionally, the
safety margin of the battery is much higher (30 percent) and the battery is loaded
to the maximum.

Therefore, our adaptive robot system is able to change its behaviour model
according to the runtime requirements, context as well as system models. The
analysis step must decide whether the adaptation to a new behaviour model is
necessary and convenient. Indeed, the planning step must find an acceptable so-
lution in the configuration space and the execute step changes or generates a
new behaviour model that is directly used by the robot and therefore forces an
adaptation of the system behaviour.

Self-adaptive Systems with Multiple Layers. As advocated in [50] more
sophisticated self-management capabilities do not result from a single adaptation
feedback loop but from the combination of two loops in two layers. Similarly to
adaptive control schemes and robot control architectures, multiple layers - where
multiple adaptation loops operate on top of a regular feedback loop - have to
be employed. It is outlined in [50] that adaptation related to context-awareness
and self-awareness can be handled by a lower level change management layer if
the core system stays within certain bounds. For changes of the requirements a
higher level goal management layer that adjusts the change management layer
is proposed.

Example 7 (2 Layered Self-Adaptive Robot Scenario with Runtime Models). An
extended version of our self-adaptive Example 6 includes also adaptation be-
haviour that happens at the 2nd layer. There, we will determine error handling
capabilities if necessary. Furthermore, we assume the same adaptation loop as
before in Example 6 with the same change in the requirements.

Fig. 24 shows the influence of each loop to the outcome of the system be-
haviour (state machine) on two layers. On top, the error handling loop monitors
upcoming failures of the system (e.g., the robot does not find a charging station
and therefore fails during operation) and the adaptation rate of the underlying
MAPE loop. In our example, the analyze step decides to add more robust robot
behaviour to guarantee better task execution performance. The key idea for hi-
erarchical loops is that the upper loop only changes the runtime models of the
loop below. In our case, the planning activity of the error handling loop manip-
ulates the knowledge base of our introduced MAPE loop in Example 6 by adding
additional robot operations (functions) and better analyzing as well as planning
capabilities for that loop.



84 H. Giese et al.

Therefore, if the loop at the bottom is executed, it will detect those new capa-
bilities and can come up with a more sophisticated state machine, which includes
now the error handling extensions (or a subset according to the current needs).
The bold parts in the state machine depicted in Fig. 24 (state machine (a)) as
well as the new error state are the outcome of the indirect influence of the er-
ror handling MAPE loop. In another case, the robot can correct its position at
runtime in the active state and/or has more possibilities finding the charging sta-
tion using the advancedLaserScan() operation. Additionally, the robot can now
inform other robots about failures and tries to recover its own state in case of
failure.

Another scenario is that the error handling loop detects the decreasing capacity
of the battery over time. An additional repairBattery() function (state machine
(b)) can solve this problem and can be removed afterwards in the next adaptation
cycle if the full capacity is restored.

At this point, it is important to mention that the different adaptation loops
can influence or work against each other. For example, if the upper loop wants to
compensate losses by recharging the battery but the lower loop must consider the
High throughput subgoal (cf. the first configuration in Fig. 18) it may decide to
exclude the repairBattery() function as shown in the left state machine in Fig. 24
to reach this goal (because repairing the battery will take a lot of additional time).
This is one example that the influences of several adaptation loops can be rather
complex and has to be designed with care.

Again, the required subset of all these changes is handled by the upper loop,
which can influence the lower loop in each cycle by manipulating the correspond-
ing runtime models accordingly. As an overall effect, the lower loop will generate
an adapted state machine that integrates all these changes but still ensures the
system goals.

5 Runtime Models for Handling Uncertainty

In this section, we focus on the state-of-the-art in the use of models to mitigate
uncertainty. As discussed in earlier sections of this chapter, epistemic, random-
ized, and linguistic forms of uncertainty can affect the design and operation of a
software system. Both epistemic and linguistic forms of uncertainty prevail dur-
ing the requirements analysis and design, while randomized forms of uncertainty
- for the most part - directly affect a software system during runtime.

Development-time uncertainty can compound the different forms of uncer-
tainty explained above and can prevent a software system from delivering its
functionality. Therefore, these consequent effects need to be treated during the
system execution. During execution, uncertainty may appear in the form of en-
vironmental conditions that might have not been foreseen during development-
time, because they may be unpredictable by nature. Other sources of uncertainty
may be due to unreliable monitoring infrastructure.

We focus on the state-of-the-art of approaches that tackle uncertainty, due
to the causes explained above, and which are or can be supported by runtime



Living with Uncertainty in the Age of Runtime Models 85

[battery <= 10]

entry / this.speed = 100%
do / up(), down(), left(), right(),
take(), correctPosition()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
advancedLaserScan()

critical
success

[battery >= 80]

fail

[battery <= 30]

entry / this.speed = 50%
do / up(), down(), left(), right(),
take(), correctPosition()

active
do / chargeBattery()
repairBattery()

charging

do / searchForChargingPoint()
advancedLaserScan()

critical
success

[battery = 100]

Analyze Plan

Monitor Execute

M@RT
requirements context system

Analyze Plan

Monitor Execute

M@RT
requirements context systemERROR

Handling
Loop

entry / informOtherRobots()
do / recover()

error
error

success

fail

fail

entry / informOtherRobots()
do / recover()

error
error

success

fail

causal connection

a) b)

causal connection

Fig. 24. Self-Adaptive robotic system scenario with multiple MAPE-K loops. The
causal connection of the error handling loop influences the knowledge base of the
MAPE-K loop below and therefore the outcome of the adapted state machines a)
and b) indirectly.



86 H. Giese et al.

models. The approaches described in the rest of this section are relevant in the
context of the use of runtime models, although they focus on system’s abstrac-
tions that characterize different stages and different qualities of the system life
time.

5.1 Forms of Uncertainty

Next we provide a literature review of approaches that use runtime techniques
to tackle epistemic, linguistic uncertainty as well as randomized uncertainty.

5.1.1 Epistemic Uncertainty

In [43] authors propose a technique to explicitly document the existence of un-
certainty about how architectural decisions contribute towards satisfying non-
functional properties (in the form of softgoals). The technique allows developers
to deal with uncertainty during both development time and runtime [51]. A
Claim can also be monitored at runtime to prove or disprove its validity [51].
Claims are particularly useful for ensuring that developers can revisit sources
of uncertainty further along the development life cycle, including runtime, when
new information may become available [52] tackling directly epistemic uncer-
tainty.

In [53], probabilistic automatas are used to represent uncertainty for dynam-
ically discovered and/or learned behavioural models and, as far as functional
property validation is concerned, the uncertainty can be potentially tamed by
using appropriate architectural models. Hidden Markov Models (HMM) [54] are
typically used to model systems that have markovian characteristics in their be-
haviour, but they also have some states (and transitions) for which only limited
knowledge is available. An example of an approach based on HMM that aims
at evaluating the reliability of a software component with partial knowledge of
its internal behaviour has been provided in [55]. Feature-based abstract models
have been used to represent system’s variability and configurations like in [56]
to allow efficient symbolic model checking of product-line systems. Variability in
the code is provided in context-oriented programming approach [57] as well as in
the Chamaleon framework that supports a java extension to allow programming
variability explicitly in the code [58]. Such variability is then solved by means
of a resource-based analysis at deployment time when information about the
execution context becomes available.

5.1.2 Linguistic Uncertainty

Fuzzy sets theory, which represents elements as partial members of a set, has
been used in linguistics to deal with vagueness and ambiguity of the statements.
In terms of self-adaptive systems, several techniques have been developed to deal
with linguistic uncertainty.

An example of the use of Fuzzy theory RELAX [4], a specification language
to express requirements that can be affected by uncertainty due to unanticipated



Living with Uncertainty in the Age of Runtime Models 87

system and environmental conditions. RELAX has been applied [59] to identify
sources of uncertainty in the environment and monitor those conditions that
pose uncertainty. Using RELAX and KAOS, Ramirez et al. [6] have tackled the
fact that design assumptions can also be subject to uncertainty with potential
negative consequences on the behaviour of the adaptive system. FLAGS [35] is
an approach that distinguishes between crisp and fuzzy goals where goals are
specified using linguistics constructors. FLAGS also defines the concept of an
adaptive goal to express countermeasures that can be executed when goals are
not satisfied.

Torres et al. [46] use Fuzzy sets to underpin an approach that encourages
architects to specify the set of requirements of a system as an abstract spec-
ification model by using linguistic variables instead of numerical variables, as
the latter are more prone to give allow the obsolescence of requirements. By
doing so, the authors mitigate the obsolescence of the specification model of the
system. The approach allows analysts to create specifications at design-time,
while preserving the flexibility afforded by dynamic changes in the “meaning” of
non-functional requirements as specific values, thus allowing to effectively assess
runtime requirements compliance in non-stationary environments.

5.1.3 Randonmized Uncertainty

Randomized uncertainty is caused both by system and environmental conditions
that are either inherently random or cannot be predicted reliably. Therefore, run-
time techniques that help provide reliable reasoning and prediction have been de-
veloped. This kind of uncertainty has been traditionally expressed in approaches
that consider system non functional properties, like performance and reliability.
The uncertainty can therefore be accounted for by the use of stochastic models
as non functional models. In [60] several techniques have been proposed to take
into account non-functional attributes of software under uncertainty. In [61],
parametric queuing network models of the performance of different system’s
configurations are managed at runtime in order to support dynamic reconfigura-
tions of the system in response to unpredictable context variations. Probabilistic
automatas [53] discussed earlier also consider dealing with uncertainty about
non-functional properties as reliability on the behaviour of components to meet
a goal and its costs during runtime.

Feature-based systems representation has been used to support predictive and
non predictive system evolution [62], where the feature model can be dynamically
evolved to support consistent configuration building. Bayesian models (such as
Bayesian Networks [63]) provide a way to express in the non functional setting
approaches a la assume-guarantee, typically adopted in the functional world and
that we will briefly recall in the following. Bayesian probabilities enable stochas-
tic models to be ’conditioned’ to specific events that, in turn, have their own
probability distributions. Other sophisticated stochastic models can be used to
take into account uncertainty in non-functional validation processes. Discrete-
Time Markov Chains (DTMCs) and Continuous-Time Markov Chains (CTMCs)
have been used both at development and runtime, in [64] to reason about the



88 H. Giese et al.

reliability and performance of adaptable service-based application. In particu-
lar, the authors have started to study probability-based approaches to tackle the
impact of the changes in the environment on the compositions of services and
therefore the quality properties or QoS of the the service-based applications [64].
Their focus is on verification and dependability and in particular, on reliability
and performance properties. In [7], the authors also focus on non-functional
properties that can be specified quantitatively in a probabilistic way and target
the challenge of making adaptation decisions under uncertainty. Given a deci-
sion that requires a certain configuration, the satisficement of a non-functional
property can be modeled using probability distributions. However, differently
from [64] they use Dynamic Decision Networks and focus on any non-functional
property. Both [7] and [64] use Bayesian machine learning techniques to obtain
information and support decision-making for self-adaptation during runtime.

5.2 Kinds of Runtime Models

The techniques described in this section recognize the need to produce, manage
and maintain software models all along the softwares life time to support the
realization and validation of systems adaptations while the system is already
executing. In this section we describe more in depth the different techniques
illustrated in the previous section and crucially focus on the runtime models
they may involve. Furthermore, examples of the application of some of these
techniques have already been introduced in Section 4.3. Additional information
about model operations and a categorization of runtime models are further de-
scribed in [21].

Furthermore, the purpose of this section is to show how to deal with uncer-
tainty by focusing on system’s abstractions (i.e. models) that characterize differ-
ent stages and different relevant qualities of the system’s life time. We consider
two dimensions: the abstractions’ dimension - and its corresponding software
artifacts - that are used to explicitly represent uncertainty and system proper-
ties, and the properties’ dimension. In particular, a system’s abstractions have
been considered that concern the following: systems models (e.g. architectural
and behavioural system models, and coarse grain and fine grain system models),
context models, and requirements models. On the properties’ dimension, both
the functional and non functional properties have been considered. The models
described here represent uncertainty explicitly. More precisely, all these models
are “loose” representations of the final system, i.e. the system that is actually
running. All the approaches reviewed propose techniques to asses either func-
tional or non functional properties on the system’s artifact of reference. These
models “contain” uncertainty but nevertheless are informative enough to allow
assessment of some kinds of properties on the final system. The assessment allows
the resolution of uncertainty at runtime.

5.2.1 Systems Models

In [65], runtime models of a system are used to reduce the number of con-
figuration and reconfigurations that should be considered when planning the



Living with Uncertainty in the Age of Runtime Models 89

adaptations. In [66] variability models are reused during runtime to support
self-reconfiguration of systems when triggered by changes monitored in the en-
vironment. In [67] architectural models (i.e. configuration graphs) are studied as
a means for monitoring, visualizing and recording information about the system
adaptations.

In [68] the authors tackle a key issue to support runtime software architec-
tures. First, in their approach it is important to maintain a causal connection
between the architecture and the running system to therefore ensure that (i) the
architecture model represents the current system, and (ii) the modifications on
the architecture model cause the corresponding system changes.

In [69] the authors present a model-driven approach to maintain and update
several architectural runtime models using model-driven engineering techniques.
The causal connection to the running system is realized by triple graph gram-
mar transformation rules. The approach is implemented and evaluated for the
Enterprise Java Beans component standard.

So far, researchers have focused on the use of runtime models for the repre-
sentation of the architecture of the system with no much advance in the area of
the use of runtime models to control and generate system behaviour. In [70] the
authors focus on the novel use of runtime models to support the dynamic synthe-
sis of software, and specifically the synthesis of mediators to translate actions of
one system to the actions of another system developed with no prior knowledge
of the former in order to achieve interoperability. Using discovery and learning
methods, the required knowledge of the context and environment. is captured
and refined. The knowledge is explicitly formulated and made available to com-
putational manipulation in the form of a runtime model. This runtime model
is based on labelled transition systems (LTSs) which offer the behavioural se-
mantics needed to model the interaction protocols to enable the interoperability
between the systems. A similar solution to enable components interoperability
is presented in [71] . Specifically, the authors present a model-driven approach
that integrates an automated technique for runtime identification of message
mismatches and the generation of behavioural mediators and their deployment
supported by runtime models. However, further research efforts are needed in
the area.

5.2.2 Context Models

Beside modeling the system, in order to carry out V&V activities it is also nec-
essary to use a model of the context or the environment. In [72] a probabilistic
model of the context evolution is provided in order to allow the dynamic adap-
tation of a system’s configuration by achieving an optimal trade-off between
user benefits and reconfiguration cost. Other approaches provide either explicit
or implicit representation of the context and of its possible evolutions [73] via
context assumptions. Notably in this class we can recall the whole approach to
validation that goes under the name of assume-guarantee techniques. Although
the original motivation for this approach was to provide compositional means to



90 H. Giese et al.

validate large systems, this approach can also be characterized as what can be
proved in terms of the inner knowledge of a component (the known) and what
needs to be provided by the environment in which the component is executed
(the unknown). Many approaches exist in the literature that range from the au-
tomatic synthesis of assumptions [74] for traditional behavioural models to the
extension to probabilistic models [75].

Many other research efforts are devoted to support consistent adaptation of
specific type of systems, notably in the service research arena [76]. These at-
tempts, with reference to the MAPE cycle invest the planning activities, and
provide solutions that can allow the evolution of the system in response to dy-
namic unplanned events. Other work handling uncertainty with the system itself
is based on monitoring the values of properties over time and using statistical
modeling techniques to predict likely future values [77]. For example, estimating
the execution time reliably and precisely provides assurances about the suit-
ability of the dynamically-adaptable software within its current operating en-
vironment, and may result in a requirement to trigger re-adaptation. Using a
dynamically generated predictive model, forecasts are made about the values
of any properties that may be analyzed from a series of values monitored over
time. Such predictions can be used in the decision-making process of the MAPE
feedback loops of self-adaptive systems described earlier.

5.2.3 Requirements Models

As previously discussed, design-time uncertainty can arise due to an imperfect re-
quirements specification where requirements are missing or ambiguous [2,78,79].
Such uncertainty can often lead to a misalignment between the system’s design
and its original intent. Several techniques have been proposed for dealing with
uncertainty at the requirements level, usually focusing either on documenting
the existence of uncertainty or facilitating the analysis of how that uncertainty
can affect the behaviour of the software system. In [52], the authors argue that
requirements for self-adaptive systems need to be runtime entities (i.e. runtime
models) that can be reasoned over at runtime.

Welsh et al. [43] have proposed REAssuRE that allows developers to deal with
uncertainty during both development-time and runtime. Specifically, the authors
used a Claim as a marker of uncertainty that explicitly documents the existence
of uncertainty about how a system’s goal operationalizations contribute towards
the satisficement of soft goals. Techniques such as Claims are particularly useful
for allowing developers to revisit sources of uncertainty further along the devel-
opment life cycle when new information becomes available [52]. In that context,
a Claim can also be monitored at runtime to prove or disprove its validity [51],
thereby triggering an adaptation to reconfigure the system if necessary. Further-
more, in [51], the authors have demonstrated how goal-based runtime models
can be held in memory in a form that allows the running system itself to eval-
uate goal satisfaction during execution and to propagate the effects of falsified
Claims.



Living with Uncertainty in the Age of Runtime Models 91

Fuzzy set theory, has been applied to represent and evaluate the satisfaction
of functional [80] and non-functional requirements [81]. Ramirez et al. [6], rec-
ognize how Claims are also subject to uncertainty, in the form of unanticipated
environmental conditions and unreliable monitoring information, that can ad-
versely affect the behaviour of the adaptive system if it mistakenly falsifies a
Claim. Therefore, the authors of [6] integrate Claims and RELAX, explained
earlier, in order to assess the validity of Claims at runtime while tolerating mi-
nor and unanticipated environmental conditions that can trigger unnecessary
adaptations and overhead.

Sutcliffe et al. [82] with their PC-RE method allow requirements to change
over time in the face of contextual uncertainty. Epifani et al. [83] proposed to
use a feedback control loop between models of non-functional properties and
their implementations. During runtime, the system makes available information
as feedback that is used to update the model to increase its correspondence
with reality (hopefully decreasing uncertainty). Analysis of the updated model
at runtime makes it possible to detect if a desired property (e.g. reliability or per-
formance) is violated, causing automatic reconfigurations or self-healing actions
to therefore meet the desired goals.

6 Research Challenges and Concluding Remarks

In this paper we have studied definitions and different types of uncertainty in
the context of model-driven engineering putting emphasis on the use of mod-
els@run.time. We have revisited the concept of runtime models and have stud-
ied their impact and potential benefits in the management of uncertainty dur-
ing execution. We have used a simple but illustrative example to discuss how
development-time techniques together with runtime models can be used to cope
with uncertainty. Also, we have discussed how runtime models can be used to
extend the architecture of the MAPE-K loop to better manage uncertainty mak-
ing use of abstractions (in the form of runtime models) to treat uncertainty as
a first class entity during the system life cycle.

Based on the above, we summarize what we consider the most important
research challenges, which are mainly explained in the context of the MAPE-K
loop. We also argue the need for formal models and tools to support runtime
models. Finally, we present some concluding remarks.

6.1 Runtime Models and the Feedback Adaptation Loop

The following are research challenges that have been identified and presented in
the context of the MAPE-K loop.

6.1.1 Monitor

Sensing and monitoring can be imprecise and can provide just partial infor-
mation. Runtime models should be able to make explicit this incompleteness



92 H. Giese et al.

of information during monitoring through the use of the right abstractions; to
therefore make it amenable to subsequent phases and specially the Analysis
phase. Finding the right runtime abstractions to use to make available and mea-
surable the uncertainty related to imprecision and partial information during
monitoring is challenge that deserves research efforts.

Furthermore, better ways to explore how the system and the environment
can interact are needed. We think runtime models can extend their application
to represent not only concerns related to the running system but also the sur-
rounding environment. Specifically, testing techniques need to be developed to
explore how the software system interacts with its execution environment. These
tests should measure whether the software system is capable of satisfying its re-
quirements while facing uncertain conditions. Runtime models can be used to
represent uncertainty through a shared boundary between the software system
and its execution environment while more information is captured by the system
while it is running.

6.1.2 Analyze

Currently, a “marker of uncertainty” [43] provides an estimate of a “known-
unknown” [84] that identifies and describes parts of a model that are partially
known. While markers of uncertainty narrow the scope of uncertainty and make
it more manageable at run time, they should be specified in a proper way. Ideally,
a marker of uncertainty should identify parts of a model that are partially known
and, if possible, describe how they can vary. Regardless of whether a marker
of uncertainty is explicit or implicit, techniques applicable at design-time and
also runtime are required to facilitate the analysis of how different sources of
uncertainty, and their severity, can affect the behaviour of a software system.

Moreover, little attention has been directed to techniques for the synthesis
or generation of software using runtime models during execution. In order to
design software systems that are able to tackle uncertainty, inferring the knowl-
edge necessary to reason about system behaviour looks like an essential task.
Such knowledge can be used to build runtime models during execution. An ex-
ample is the work presented by the authors of [70] who present early results on
how to conceive runtime models during execution, based on information about
the running system and inferred using machine learning techniques during the
execution of the system.

As new information is acquired, models should be refined. We argue the need
of further research on how to include machine learning techniques to be able to
incorporate new information while the system is running. Of course, the new
acquired knowledge could solve uncertainty but also could incorporate more. In
either case, what are the techniques to guarantee that some given properties
of the system are preserved to maintain the desired system behaviour remains
an open challenge. For example, while the model is fed with new information,
the related notion of what is “relevant” to the runtime model may change.The
ability of analysis based on the runtime model should be retained in any case.



Living with Uncertainty in the Age of Runtime Models 93

6.1.3 Plan

In the planning step one has to deal with uncertainty and incompleteness of
events in the decision-making process. To evaluate the decision-making process,
uncertainty but also dynamicity should be taken into account. We believe that
due to uncertainty, probabilistic reasoning and decision planning techniques are
required in decision making. Few researchers have already worked using those
techniques to tackle uncertainty. For example, Markov Decision Process (MDP)
and Bayesian networks have been applied for diagnosis and self-recovery in
[85,86]. The authors of [87] use a stochastic Petri net for decision-making in
fault-tolerance. In [88] a stochastic Petri net is used as a model to compute
the optimal monitoring frequency for crashing failures of a service-oriented sys-
tem. Bayesian Dynamic Decision Networks have been used to enhance decision-
making in self-adaptive systems [7].

The research initiatives named above are novel and represent research progress.
However, the runtime models they would require to be applied at runtime would
demand considerable amounts of resources (e.g. memory, and CPU) to be done
during runtime. Therefore, the application of those techniques still remain a big
challenge.

6.1.4 Execute

The use of runtime models imply a causal connection with the running system.
Temporal delays in the MAPE-K loop can create an inconsistent view of the
runtime model with respect to the running systems. The latter remains a big
research challenge.

6.2 The Need for New Forms of Abstractions and Tools

Suitable mathematical abstractions should be applied to formally describe and
analyze uncertainty. We believe probability theory, fuzzy set theory, and machine
learning techniques should be further investigated for this purpose. Probability
theory can be used to describe situations where previous historical data is avail-
able and can provide insights about the current design of a software system.
For instance, developers can analyze execution data gathered from a previous
version of a system to identify which goals and requirements are less likely to be
satisfied at runtime. Similarly, fuzzy set theory can be applied to describe types
of uncertainty where it is not possible to categorically prove or disprove the va-
lidity of a statement. In this manner, fuzzy set theory can be applied to initially
produce a more flexible system design that can be progressively tightened as
more information about the system and its environment becomes known during
the design phase. Fuzzy probability theory extends probability theory with the
possibility of expressing uncertainty in the parameters of the probability density
function. Lastly, further work is required to develop machine learning techniques
to be able to manipulate values of probabilities or parameters of utility func-
tions that change over time and therefore, to be able to quantify the impact of



94 H. Giese et al.

these values on the evaluation of alternative choices during the decision making
process.

6.3 Concluding Remarks

Uncertainty about the running environments of software systems poses issues
that software engineers need to face. Therefore, it is becoming increasingly im-
portant to come up with new methods and techniques to develop software sys-
tems able to deal with uncertainty at runtime. In this chapter we have discussed
how runtime models are relevant in a reconceptualization of the development of
software systems, which we assert is required to deal with uncertainty at runtime.

To establish a common ground for further discussions, we first introduced
fundamental terms such as models, runtime models and uncertainty by using
an exemplary goal, context and behavioural model for one robot of the factory
automation example introduced earlier in the chapter. We also identified which
kinds of runtime models are employed and outlined the most common types
of systems using such runtime models. Furthermore, we discussed the role that
runtime models can play for the different types of systems described.

Nowadays, we can observe the trend to delay decisions to handle uncertainty
at runtime instead of doing it during development-time. To better understand
the benefits and drawbacks of handling uncertainty at runtime by using run-
time models, first we discussed classical approaches to handle uncertainty using
development-time models and followed on considering how more advanced solu-
tions to handle uncertainty at runtime can be used and how they can benefit
from runtime models.

Specifically, we have discussed how the concepts of the MAPE-K loop can
rely on runtime model techniques updating the knowledge data of the loop to
tackle uncertainty during both development and runtime. We have argued how
the above allows the management of uncertainty as a first class entity during
the system life cycle. The envisioned framework includes a perpetual phase in
which the runtime models can evolve, thereby allow the software system to cope
with uncertainty by learning new information about itself and its execution en-
vironment based on monitored information that can only be collected during
execution. We believe that in order to be able to support the extension of the
MAPE-K loop proposed in this paper, several key challenges and enabling tech-
nologies need to be addressed. Crucially, synthesis of software during execution
using runtime models has been identified as key challenge. Furthermore, such
a capability requires inference of new knowledge during runtime. Therefore, we
believe that machine learning techniques should be further studied to enable the
incorporation of new information during the execution of the system while guar-
anteeing that the behaviour of the system is kept in the required behavioural
envelop. Finally, to make this vision feasible new suitable and more efficient
mathematical formalisms are also needed.



Living with Uncertainty in the Age of Runtime Models 95

References

1. Galbraith, J.: Designing Complex Organizations. Organization development.
Addison-Wesley (1973)

2. Noppen, J.: Imperfect Information in Software Design Processes. PhD thesis,
University of Twente (2007)

3. Ramirez, A., Jensen, A., Cheng, B.H.C., Knoester, D.: Automatically exploring
how uncertainty impacts behavior of dynamically adaptive systems. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 568–571 (2011)

4. Whittle, J., Sawyer, P., Bencomo, N., Chen, B.H.C., Bruel, J.M.: RELAX: Incorpo-
rating uncertainty into the specification of self-adaptive systems. In: The Proceed-
ings of the 17th International Requirements Engineering Conference (RE 2009),
Atlanta, Georgia, USA, pp. 79–88. IEEE Computer Society (September 2009)

5. Welsh, K., Sawyer, P., Bencomo, N.: Towards Requirements Aware Systems:
Run-time Resolution of Design-time Assumptions. In: Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2011, Kansas, USA, November 6-10. ACM (2011) (to appear)

6. Ramirez, A.J., Cheng, B.H.C., Bencomo, N., Sawyer, P.: Relaxing claims: Cop-
ing with uncertainty while evaluating assumptions at run time. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 53–69. Springer, Heidelberg (2012)

7. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision networks for decision-
making in self-adaptive systems: A case study. In: Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS (2013)

8. Laffont, J.J.: The Economics of Uncertainty and Information. The MIT Press
(1989)

9. Uncertainty in Artificial Intelligence, http://www.auai.org/
10. Wätzoldt, S., Neumann, S., Benke, F., Giese, H.: Integrated Software Development

for Embedded Robotic Systems. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J.
(eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 335–348. Springer, Heidelberg (2012)

11. Cheng, S.W., Garlan, D.: Handling Uncertainty in Autonomic Systems. In: Pro-
ceedings of the International Workshop on Living with Uncertainties (IWLU 2007),
Co-located with the 22nd International Conference on Automated Software Engi-
neering (ASE 2007), Atlanta, GA, USA, November 5 (2007)

12. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-
Contextualizable Software. In: Proceedings of the Fourteenth International Confer-
ence on Exploring Modeling Methods in Systems Analysis and Design, pp. 326–338.
Springer-Verlag (2009)

13. Lapouchnian, A., Mylopoulos, J.: Modeling Domain Variability in Requirements
Engineering with Contexts. In: Laender, A.H.F., Castano, S., Dayal, U., Casati,
F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 115–130. Springer,
Heidelberg (2009)

14. Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag (1973)
15. Chung, L., Cesar, J., Leite, S.P.: Non-functional requirements in software engineer-

ing (1999)
16. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. John Wiley (2009)
17. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput.

Program. 8(3), 231–274 (1987)

http://www.auai.org/


96 H. Giese et al.

18. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-Approximations to
Over-Approximations and Back. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 157–172. Springer, Heidelberg (2012)

19. Mula, J., Poler, R., Garciasabater, J., Lario, F.: Models for production planning un-
der uncertainty: A review. International Journal of Production Economics 103(1),
271–285 (2006)

20. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27
(2009)

21. Vogel, T., Seibel, A., Giese, H.: The Role of Models and Megamodels at Runtime.
In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 224–238.
Springer, Heidelberg (2011)

22. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

23. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.-M., Solberg, A., Dehlen, V.,
Blair, G.S.: An aspect-oriented and model-driven approach for managing dynamic
variability. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)

24. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming dynamically adaptive
systems using models and aspects. In: ICSE, pp. 122–132 (2009)

25. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements re-
flection: Requirements as runtime entities. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, Cape Town, South Africa,
pp. 199–202. ACM (May 2010)

26. Sawyer, P., Bencomo, N., Letier, E., Finkelstein, A.: Requirements-aware systems:
A research agenda for re self-adaptive systems. In: Proceedings of the 18th IEEE
International Requirements Engineering Conference, Sydney, Australia, pp. 95–103
(September 2010)

27. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2) (2009)

28. Weiser, M.: The computer for the 21st century. SIGMOBILE Mobile Computing
and Communications Review 3(3), 3–11 (1999)

29. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-
ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

30. Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A Survey on Context Data
Distribution for Mobile Ubiquitous Systems. ACM Computing Surveys (2013)
(to appear)

31. Souza, V.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness re-
quirements for adaptive systems. In: Proceedings of the Sixth International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, Waikiki,
Honolulu, HI, USA, pp. 60–69. ACM (2011)

32. Feather, M.S., Fickas, S., van Lamsweerde, A., Ponsard, C.: Reconciling system re-
quirements and runtime behavior. In: Proceedings of the 8th International Work-
shop on Software Specification and Design, pp. 50–59. IEEE Computer Society
(1998)

33. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In:
Proceedings of the Second IEEE International Symposium on Requirements Engi-
neering, pp. 140–147. IEEE Computer Society (1995)

34. Silva Souza, V., Lapouchnian, A., Mylopoulos, J.: (Requirement) Evolution Re-
quirements for Adaptive Systems. In: Proceedings of the 7th International Sym-
posyum of Software Engineering for Adaptive and Self-Managing Systems. IEEE
Computer Society (2012) (to appear)



Living with Uncertainty in the Age of Runtime Models 97

35. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adap-
tation. In: Proceedings of the 18th IEEE International Requirements Engineering
Conference, RE, Sydney, Australia, pp. 125–134. IEEE (2010)

36. Ali, R., Soĺıs, C., Omoronyia, I., Salehie, M., Nuseibeh, B.: Social Adaptation
- When Software Gives Users a Voice. In: Proceedings of the 7th International
Conference on Evaluation of Novel Approaches to Software Engineering, pp. 75–
84. SciTePress (2012)

37. Maes, P.: Concepts and Experiments in Computational Reflection. In:
Proceedings of the 2nd International Conference on Object-oriented
Programming Systems, Languages and Applications, OOPSLA 1987,
pp. 147–155. ACM, New York (1987)

38. McManus, H., Hastings, D.: A Framework for Understanding Uncertainty and its
Mitigation and Exploitation in Complex Systems. In: Proceedings of the Fifteenth
Annual International Symposium of the International Council on Systems Engi-
neering, INCOSE 2005, Rochester, NY (2005)

39. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, FoSER 2010,
pp. 125–128. ACM, New York (2010)

40. Humphrey, W.: A Discipline for Software Engineering. SEI Series in Software En-
gineering Series. Addison Wesley Professional (1995)

41. Lehman, M.M., Belady, L.A.: Program evolution: Processes of software change.
Academic Press Professional, Inc., San Diego (1985)

42. Parnas, D.L.: Software aging. In: Proceedings of the 16th International Conference
on Software Engineering, ICSE 1994, Los Alamitos, CA, USA, pp. 279–287. IEEE
Computer Society Press (1994)

43. Welsh, K., Sawyer, P.: Understanding the scope of uncertainty in dynamically adap-
tive systems. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182,
pp. 2–16. Springer, Heidelberg (2010)

44. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245
(1963)

45. Piech, H., Siedlecka-Lamch, O.: Interval probabilities of state transitions in proba-
bilistic automata. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz,
R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268,
pp. 688–696. Springer, Heidelberg (2012)

46. Torres, R., Bencomo, N., Astudillo, H.: Mitigating the obsolescence of quality spec-
ifications models in service-based systems. In: MoDRE, pp. 68–76 (2012)

47. Xie, L.L., Guo, L.: How much uncertainty can be dealt with by feedback? IEEE
Transactions on Automatic Control 45(12), 2203–2217 (2000)

48. Brun, Y., et al.: Engineering Self-Adaptive Systems through Feedback Loops.
In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-
Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

49. Cheng, S.W., Garlan, D.: Handling Uncertainty in Autonomic Systems. In: Pro-
ceedings of the International Workshop on Living with Uncertainties (IWLU
2007), Co-located with the 22nd International Conference on Automated
Software Engineering (ASE 2007), Atlanta, GA, USA, November 5 (2007),
http://godzilla.cs.toronto.edu/IWLU/program.html

50. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer
Society, Washington, DC (2007)

http://godzilla.cs.toronto.edu/IWLU/program.html


98 H. Giese et al.

51. Welsh, K., Sawyer, P., Bencomo, N.: Run-time Resolution of Uncertainty. In: Pro-
ceedings of the 19th IEEE International Requirements Engineering Conference,
Trento, Italy, August 29-September 2, pp. 355–356 (2011)

52. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems: A Research Agenda for RE for Self-adaptive Systems. In: Pro-
ceedings of the 18th IEEE International Requirements Engineering Conference,
Sydney, New South Wales, Australia, September 27-October 1, pp. 95–103 (2010)

53. Autili, M., Cortellessa, V., Di Ruscio, D., Inverardi, P., Pelliccione, P., Tivoli,
M.: Integration architecture synthesis for taming uncertainty in the digital space.
In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539,
pp. 118–131. Springer, Heidelberg (2012)

54. Ephraim, Y., Merhav, N.: Hidden markov processes. IEEE Transactions on Infor-
mation Theory 48(6), 1518–1569 (2002)

55. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of soft-
ware component reliability. In: Proceedings of the 30th International Conference
on Software Engineering, ICSE 2008, pp. 111–120. ACM, New York (2008)

56. Cordy, M., Classen, A., Perrouin, G., Schobbens, P.Y., Heymans, P., Legay, A.:
Simulation-based abstractions for software product-line model checking. In: ICSE,
pp. 672–682. IEEE (2012)

57. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming. Jour-
nal of Object Technology 7(3), 125–151 (2008)

58. Autili, M., Benedetto, P.D., Inverardi, P.: Hybrid approach for resource-based com-
parison of adaptable java applications. Science of Computer Programming (2012)
(to appear)

59. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling ap-
proach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009)

60. Mishra, K., Trivedi, K.S.: Uncertainty propagation through software dependability
models. In: Dohi, T., Cukic, B. (eds.) ISSRE, pp. 80–89. IEEE (2011)

61. Caporuscio, M., Marco, A.D., Inverardi, P.: Model-based System Reconfiguration
for Dynamic Performance Management. Journal of Systems and Software 80(4),
455–473 (2007)

62. Inverardi, P., Mori, M.: A Software Lifecycle Process to Support Consistent Evo-
lutions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive
Systems. LNCS, vol. 7475, pp. 239–264. Springer, Heidelberg (2013)

63. Neil, M., Fenton, N., Tailor, M.: Using bayesian networks to model expected and
unexpected operational losses. International Journal on Risk Analysis 25(4), 963–
972 (2005)

64. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software:
Continuous assurance of non-functional requirements. Formal Asp. Comput. 24(2),
163–186 (2012)

65. Morin, B., Barais, O., Jézéquel, J.M., Fleurey, F., Solberg, A.: Models@ Run.time
to Support Dynamic Adaptation. IEEE Computer 42(10), 44–51 (2009)

66. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse
of variability models at runtime: The case of smart homes. Computer 42(10), 37–43
(2009)

67. Georgas, J., van der Hoek, A., Taylor, R.: Using architectural models to manage
and visualize runtime adaptation. Computer 42(10), 52–60 (2009)



Living with Uncertainty in the Age of Runtime Models 99

68. Song, H., Huang, G., Chauvel, F., Xiong, Y., Hu, Z., Sun, Y., Mei, H.: Support-
ing runtime software architecture: A bidirectional-transformation-based approach.
Journal of Systems and Software 84(5), 711–723 (2011)

69. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proceedings of
the 5th Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS 2010) at the 32nd IEEE/ACM International Conference on Software
Engineering (ICSE 2010), Cape Town, South Africa, pp. 39–48. ACM (May 2010)

70. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The role of mod-
els@run.time in supporting on-the-fly interoperability. Springer Computing (2013);
special issue Models@runt.time

71. Hao, R., Morin, B., Berre, A.J.: A semi-automatic behavioral mediation approach
based on models@runtime. In: Models@run.time, pp. 67–71 (2012)

72. Mori, M., Li, F., Dorn, C., Inverardi, P., Dustdar, S.: Leveraging State-Based
User Preferences in Context-Aware Reconfigurations for Self-Adaptive Systems.
In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 286–301. Springer, Heidelberg (2011)

73. Hong, J., Suh, E., Kim, S.J.: Context-aware systems: A literature review and clas-
sification. Expert Syst. Appl. 36(4), 8509–8522 (2009)

74. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. Autom. Softw. Eng. 12(3), 297–320 (2005)

75. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

76. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of
Fragment-based and Context-aware Business Processes. In: Proc. of the 19th Inter-
national Conference on Web Services. IEEE Computer Society (2012) (to appear)

77. Brennan, S., Cahill, V., Clarke, S.: Applying non-constant volatility analysis meth-
ods to software timeliness. In: Proceedings of the 21st Euromicro Conference on
Real-Time Systems (ECRTS), WIP Track (2009)

78. Temponi, C., Yen, J., Tiao, W.A.: Assessment of customer’s and technical require-
ments through a fuzzy logic-based method. In: Proceedings of the International
Conference on Systems, Man and Cybernetics, vol. 2, pp. 1127–1132. IEEE Com-
puter Society (1997)

79. Liu, X.F., Azmoodeh, M., Gerogalas, N.: Specification of non-functional require-
ments for contract specification in the ngoss framework for quality management
and product evaluation. In: Proceedings of the Fifth International Workshop on
Software Quality, pp. 36–41 (2007)

80. Liu, X.F.: Fuzzy requirements. IEEE Potentials, 24–26 (1998)
81. Glinz, M.: On non-functional requirements. In: IEEE International Requirements

Engineering Conference, pp. 21–26 (2007)
82. Sutcliffe, A., Fickas, S., Sohlberg, M.M.: Pc-re: A method for personal and contex-

tual requirements engineering with some experience. Requir. Eng. 11(3), 157–173
(2006)

83. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pp. 111–121. IEEE Computer Society, Wash-
ington, DC (2009)

84. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg
(2009)



100 H. Giese et al.

85. Robertson, P., Laddaga, R.: Model based diagnosis and contexts in self adap-
tive software. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi,
S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460,
pp. 112–127. Springer, Heidelberg (2005)

86. Robertson, P., Williams, B.: Automatic recovery from software failure. Commun.
ACM 49, 41–47 (2006)

87. Porcarelli, S., Castaldi, M., Di Giandomenico, F., Bondavalli, A., Inverardi, P.: A
framework for reconfiguration-based fault-tolerance in distributed systems. In: de
Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems II.
LNCS, vol. 3069, pp. 167–190. Springer, Heidelberg (2004)

88. Tichy, M., Giese, H.: A Self-Optimizing Run-Time Architecture for Configurable
Dependability of Services. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems II. LNCS, vol. 3069, pp. 25–50. Springer,
Heidelberg (2004)


	Living with Uncertainty
in the Age of Runtime Models

	1 Introduction
	2 Case Study
	3 Models and
Uncertainty
	3.1 Models
	3.2 Uncertainty and Uncertainty in Models
	3.3 Runtime Models

	4 Handling of Uncertainty
	4.1 Trend of Handling Uncertainty Later
	4.2 Handling Uncertainty at Development-Time
	4.3 Handling Uncertainty at Runtime

	5 Runtime Models for Handling Uncertainty
	5.1 Forms of Uncertainty
	5.2 Kinds of Runtime Models

	6 Research Challenges and Concluding Remarks
	6.1 Runtime Models and the Feedback Adaptation Loop
	6.2 The Need for New Forms of Abstractions and Tools
	6.3 Concluding Remarks

	References




