

N. Bencomo et al. (Eds.): Models@run.time, LNCS 8378, pp. 279–318, 2014.
© Springer International Publishing Switzerland 2014

Safety Assurance of Open Adaptive Systems – A Survey

Mario Trapp and Daniel Schneider

Fraunhofer Institute for Experimental Software Engineering
Kaiserslautern, Germany

{mario.trapp,daniel.schneider}@iese.fraunhofer.de

Open adaptive systems are the basis for a promising new generation of embed-
ded systems with huge economic potential. In many application domains,
however, the systems are safety-critical and an appropriate safety assurance
approach is still missing.

In recent years, models at runtime have emerged as a promising way to
systematically engineer adaptive systems. This approach seems to provide the
indispensable leverage for applying safety assurance techniques in adaptive sys-
tems. Therefore, this survey analyzes the state-of-the-art of models at runtime
from a safety engineering point of view in order to assess the potential of this
approach and to identify open gaps that have to be closed in future research to
yield a safety assurance approach for open adaptive systems.

1 Introduction

The development of safety-critical embedded systems has to follow strict rules and a
rigorous safety assurance case is required before a product can be introduced to the
market. Developers therefore avoid using flexible and progressive concepts like dy-
namic adaptation in safety-critical contexts. Many safety standards such as IEC
61508[47] even prohibit the use of techniques like dynamic reconfiguration or self-
healing.

Over the last decade, however, new applications have emerged, which are today
often subsumed under the popular term cyber-physical systems. In some sense, cyber-
physical systems are Open Adaptive Systems (OAS), i.e. systems of systems that
dynamically connect to each other (openness) and adapt to a changing context at run-
time (adaptive). Industry sees huge economic potential in such systems -particularly
because their openness and adaptivity enables new kinds of promising applications in
different application domains. Many application domains of cyber-physical systems,
however, are safety-critical. This includes, for example, car2car scenarios,
plug’n’play operating rooms, or collaborative autonomous mobile machines.

This means that two different worlds, which have intentionally been kept separate,
have to grow together in the near future. Using the full potential of OAS without
endangering a product’s safety is therefore one of the primary challenges today.
Regarding the state-of-the-art, however, there are only a few approaches that explicit-
ly address the safety assurance of OAS. Whereas the adaptive systems community
mostly considers safety as one of many quality properties, the safety engineering

280 M. Trapp and D. Schneider

community is still mainly concerned with design time variability, and only a few
groups focus on the safety of Open Adaptive Systems. Therefore, safety could easily
become a bottleneck preventing the successful transition of a promising idea into
business success.

From a safety point of view, there are, in fact, a few approaches that could be ex-
tended to assure safety in OAS. For example, some groups are pursuing the idea of
safety bags [47], which detect and handle failures at runtime. By this means, even
failures that potentially result from system adaptations would be covered so that the
system adaptation as such would not be the subject of safety assurance anymore. In
practice, however, the effectiveness of such approaches is still very limited. A further
alternative would be to assure safety completely at design time by predicting all poss-
ible system adaptations and covering the complete adaptation space already during
safety assurance at development time. Such approaches could easily run into a state
space explosion problem and for open systems in particular, the structure cannot be
completely predicted at development time.

Therefore, this article focuses on alternative approaches enabling safety assurance
at runtime. To this end, we particularly regard Models@Runtime, which have
emerged as a possible means for the systematic development and runtime manage-
ment of adaptive systems. It is our perception that Models@Runtime as a new para-
digm could be an appropriate catalyst for accelerating progress in the safety assurance
of OAS. In particular, they seem to provide an efficient basis for the safety assurance
of Open Adaptive Systems: Models@Runtime provide a kind of formal basis for
reasoning about the current system state at runtime, for reasoning about necessary
adaptations, and for analyzing or predicting the consequences of possible system
adaptations. This makes dynamic adaptation tractable, traceable and in some sense
predictable. Therefore, having explicit Models@Runtime may provide the indispens-
able leverage needed for applying safety assurance techniques at runtime, hence
bridging the gap between traditional adaptive systems and safety engineering re-
search. At the same time, however, a Models@Runtime framework imposes addition-
al complexity that potentially detriments the assurance of safety. As a consequence, it
will be important to find the right balance between capabilities and complexity of the
Models@Runtime framework on the one hand and the corresponding complexity and
feasibility of the safety assurance on the other hand. Moreover, in order to be ac-
cepted, any safety assurance concept must still fit into the safety engineers’ and certi-
fication bodies’ views of the world.

Using conventional safety assurance approaches as a reference, however, would
immediately lead to the result that dynamic adaptation must not be applied at all. In
order to identify the current position and missing steps on the way to safety assurance
in OAS, it is nonetheless necessary to know the target we want to reach. Therefore,
we have to look ahead in order to get an idea of what such a safety assurance frame-
work based on Models@Runtime could look like. To this end, we use an established,
conventional safety engineering lifecycle as starting point which is introduced in
Chapter 2. By applying the idea of Models@Runtime to the models and activities of
the safety lifecycle we create a projection of a possible future safety assurance
framework in Chapter 3. In a subsequent step, we analyze the state-of-the-art with

 Safety Assurance of Open Adaptive Systems – A Survey 281

respect to adequate starting points and building blocks for our envisioned future safe-
ty assurance framework. The state-of-the-art analysis will thereby be twofold. On the
one hand, in Chapter 4, the state-of-the-art of the safety engineering community will
be investigated with respect to promising approaches and concepts that might be em-
ployed in the context of the envisioned framework and runtime assurance measures.
On the other hand, in Chapter 5, the same will be done for the adaptive systems com-
munity. In addition, for the adaptive systems community there will also a brief over-
view on current Models@Runtime approaches that might serve as a technological
basis or starting point for the envisioned safety assurance approach. In Chapter 6.1 the
state-of-the-art is then being categorized based on the different conceptual classes of
safety assurance approaches that have been identified in the context of the envisioned
framework. Based thereon, open gaps are pointed out and possible future research
directions are devised in Chapter 6.2.

2 Safety Engineering for Traditional Embedded Systems

2.1 Safety Engineering in a Nut-Shell

The precise definition of a safety engineering lifecycle, and particularly of the terms
used, depends on the concrete application domain. The principal idea, however, is
similar across all safety-related application domains. For the sake of simplicity, we
therefore use the terms as defined in the ISO 26262[55], which is the relevant safety
standard for automotive systems. It is at the same time one of the most recent safety
standards.

The overall goal of safety engineering is to ensure ‘freedom from unacceptable
risk’[55]. The term risk is defined as the ‘combination of the probability of occur-
rence of harm and the severity of that harm’[55]. Usually, however, it is not possible
to directly assess the harm that is potentially caused by a system. Instead, safety man-
agers identify the hazards of a system, i.e., ‘potential sources of harm’[55]. In many
domains, this vague definition is further refined. In the automotive domain, for exam-
ple, ‘hazards shall be defined in the terms of conditions and events that can be
observed at the vehicle level’[55]. Usually, harm is only caused when a hazard, a
specific environmental situation, and a specific operation mode of the system coin-
cide. This coincidence is called ‘hazardous event’.

The identification of these hazardous events and the assessment of the associated
risks is the first step in any safety engineering lifecycle, namely the ’hazard analysis
and risk assessment (HRA)’ as shown in Figure 1. This step is performed during the
very early phases of the development process, at the latest when the system require-
ments are available.

As a result of this step, safety goals are defined as top-level safety requirements,
which have to be incrementally refined during the safety engineering lifecycle. Usual-
ly, any safety requirement consists of a functional part and an associated integrity
level. The functional part defines what the system must (not) do, whereas the integrity
level defines the rigor demanded for the implementation of this requirement.
The integrity level depends on the risk associated with the hazardous event, which is

282 M. Trapp and D. Sch

addressed by the safety go
safety integrity levels (ASIL

Once the safety goals
through different phases lik
software architecture, the d
same way that the validatio
the development, the subse
performed in parallel as w
end, the available developm
identify potential causes of
analysis techniques is avai
Fault Tree Analysis (FTA)
niques in practice.

Fig. 1. Safety En

Based on these results,
idea of ISO 26262, a safet
requirements, their allocatio
to achieve the safety goals,
same way as the developer
opment phases, the safety m
step and refines the safety c

hneider

oal. For example, ISO 26262 defines so-called automot
L).
have been defined, the system development contin

ke the definition of a network of functions, the system
design, and finally the implementation of the system. In
on and verification of the system should run in paralle
equent steps in the safety engineering process should

well (though this is often not the case in practice). To
ment artifacts are used as input to safety analyses in orde
f the identified system failures. A wide range of differ
ilable. Failure Modes and Effects Analysis (FMEA)
) are certainly the most widely used safety analysis te

ngineering Lifecycle and possible countermeasures

a safety manager derives a safety concept. Following
ty concept can be defined as a ‘specification of the saf
on to architectural elements and their interaction necess
and information associated with these requirements. In

rs incrementally refine the system over the different dev
manager analyzes the refined development artifacts step
concept accordingly.

tive

nues
and
the

el to
d be
this

er to
rent
and

ech-

the
fety
sary
the

vel-
p by

 Safety Assurance of Open Adaptive Systems – A Survey 283

The safety concept plays a very important role in safety engineering. It defines
which countermeasures have to be applied and how the measures in combination shall
ensure the safety goals. Following the definition of Avižienis et al. [21], there are
three principal classes of countermeasures, as shown in the middle of Figure 1.
Any measure available can be assigned to one of these classes. First of all, fault
avoidance measures shall mitigate the creation of faults from the very beginning. This
includes measures such as strict development processes or coding rules. Usually,
however, it is not possible to avoid all kinds of faults using such measures. Therefore,
it is additionally necessary to apply fault removal measures. This particularly includes
validation and verification activities, which try to reveal and remove faults during the
development phase. Since we cannot assume that these measures are sufficient to
yield a fault-free system, it is also necessary to apply fault tolerance measures. Fault
tolerance measures detect and handle errors at runtime in order to prevent system
failures.

Finally the safety manager has to define a safety case, which forms the basis for
certification. A safety case can be defined as an ‘argument why an item is safe sup-
ported by evidence compiled from work products of all safety activities during the
whole lifecycle.’[55]. Evidence might be anything supporting an argument in the
safety case. Evidences of particular importance are the results of validation and verifi-
cation activities as well as safety analysis results. Since a safety case compiles all
evidences that are relevant for proving the system’s safety, it is an efficient basis for
safety certification.

2.2 Modular Certification

In most domains, safety managers follow a comparable approach to assure the
functional safety of systems. Usually, however, the resulting safety certificate is valid
for a specific system configuration only. Even a single change requires the system to
be recertified. For example, in the avionics domain, even small system changes
cause recertification costs approaching or even exceeding the original costs [73].
Considering that in the avionics domain 60%-70% of the overall development costs
are caused by verification and certification activities, this leads to tremendous costs
for recertification.

Consequently, in the last decade, safety research has focused on approaches called
modular or incremental certification, as described in more detail in Chapter 4. As
illustrated in Figure 2, the idea of modular certification is that the individual subsys-
tems are modularly certified and provide a modular safety certificate. When the
system is integrated, the certification effort shall be reduced to a composition of the
subsystem certificates. In fact, most of the current approaches do not consider mod-
ular certificates, but modular safety cases, which have to be composed into a safety
case for the overall system. The overall system certification is then a traditional, ma-
nual process based on the composed safety case.

284 M. Trapp and D. Sch

Fig. 2

Nonetheless, this simpli
are composed of various d
different suppliers. Even m
tion, since a change of a co
ponent and re-composition

Such an approach is ob
Adaptive Systems, which a
however, safety research is
certification at developmen

3 Models@Runtim
Systems

In modular certification, a
apply such concepts for O
expert to check the system
This leads to a series of new
be formalized and utilized
solving the problems of m
Systems seems to be a very
ments of safety engineering
ty assurance approaches for
way as Open Adaptive Sys
must be a change of paradig

Regarding the future saf
sued the idea of combining
Models@Runtime, as alrea
implies the additional bene
safety engineering to the fu
could facilitate the acceptan
ceptual safety assurance fra

hneider

2. Principal idea of modular certification

ifies the certification process for complex systems, wh
different systems purchased off-the-shelf or delivered

more importantly, such an approach simplifies recertifi
omponent only requires recertification of the changed co
of the overall system certificate.
viously very interesting for the safety assurance of O
are subject to continuous changes at runtime. In pract
s still dealing with different challenges raised by modu
t time.

me for Safety Assurance in Open Adaptive

safety expert assesses the integrated system. If we wan
pen Adaptive Systems, however, there will be no hum

m’s safety. Rather, the system must assure its own saf
w challenges as to how the safety-relevant information
an adequate way. Considering that safety research is

modular certification, safety assurance in Open Adapt
y challenging endeavor. Extrapolating the current devel
g, it would take much too long until urgently required sa
r Open Adaptive Systems would be available. In the sa
stems form a new paradigm in system development, th
gms in safety assurance as well.
fety assurance framework for OAS, we consequently p
g a typical safety assurance approach with the principle
ady motivated above. Starting from traditional techniq
efit that a clear trace can be provided from conventio
uture concepts supporting Open Adaptive Systems, wh
nce of the framework. In essence, we understand the c

amework as a means to:

hich
d by
fica-
om-

Open
tice,
ular

nt to
man
fety.
can
still
tive
lop-
afe-
ame
here

pur-
e of
ques
onal
hich
con-

 Safety Assurance of Open Adaptive Systems – A Survey 285

• Raise awareness within the research communities for the specific chal-
lenges of safety assurance in OAS

• Provide orientation for researchers by interconnecting different kinds of
research into a bigger picture

• Provide clear interfaces for future research
In order to create the conceptual safety assurance framework, we incrementally

project elements (i.e., typical safety models) of the safety engineering lifecycle to
runtime. To do so, we start with SafetyCertificates@Runtime and extend the approach
backward step by step along the safety engineering lifecycle. Shifting an element into
runtime always implies that corresponding runtime mechanisms need to be estab-
lished that operate on the element. These are required to automate the tasks that used
to be conducted by safety experts. It is obvious that the earlier the shifted element is
in the lifecycle, the more engineering activities need to be automated, the more intel-
ligence is required at runtime – and the more difficult it will be for the approach to be
realized and accepted.

In accordance with the above, we first describe the ideas of SafetyCertifi-
cates@Runtime (section 3.1), then SafetyCases@Runtime (section 3.2), followed by
validation and verification of Models@Runtime (section 3.3), and finally Hazard
Analysis and Risk Assessment@Runtime (section 3.4). These different options are
evaluated in section 3.5 before section 3.6 shows a possible safety assurance frame-
work integrating the different approaches. The framework will finally be the basis for
assessing the state-of-the-art and assigning existing work and research directions to
the different classes of the framework according to their respective suitability.

3.1 SafetyCertificates@Runtime

Following the idea described above, making safety certificates available at runtime is
the first option. SafetyCertificates@Runtime contain all information that is necessary
to identify which safety requirements are fulfilled with which integrity by the asso-
ciated system. Just like conventional safety certificates, SafetyCertificates@Runtime
do not contain any white-box information on how the system was realized to yield the
certification. A clear advantage of such an approach is that the runtime models and
their evaluation can be quite simple and efficient as, for instance, shown by the Con-
Sert approach [70] [71] [76]. This would also imply that an overly complex Mod-
els@Runtime framework would not be required, thus alleviating the safety assurance
of the framework itself.

Classification Criteria: SafetyCertificates@Runtime are modular certificates that
can be interpreted, composed, and adapted at runtime. They are dynamically adapted
to represent the safety state of the system at runtime. The certificates of subsystems
can be composed at runtime in order to yield an overall safety approval for a given
composition.

Using SafetyCertificates@Runtime, it is particularly possible to compose systems
at runtime. As illustrated in Figure 3, the individual subsystems provide a runtime
representation of the modular certificates (SafetyCertificate@Runtime). In order to
assess the safety of the resulting system of systems, the single certificates have to be

286 M. Trapp and D. Sch

composed. In order to yield
to modular certification. A
manual certification proces
a single subsystem at desig
certification is based on va
demands on other subsystem
modes of a received signal
specific safety integrity lev
text in general, such as the
quality of the communic
cates@Runtime often follow
antees provided by the subs
to be fulfilled by the integr
mation on which safety pro
dition that the defined dem
mands is checked and the re
not a completely modular p
necessarily lead to a safe c
Therefore, it is often necess
at runtime (cf. section 5.1).

Fig. 3. SafetyCertif

When subsystems are co
cates@Runtime as well. To
must be checked. In the sim
all preconditions of all con
tem must not be used. In m
tems are not harmonized w
safe match at all. In fact, su
the Certificate@Runtime to

hneider

d such a Certificate@Runtime, the process is very sim
fter the subsystem has been developed, it must underg
s at design time. Usually, however, the safety assurance
gn time can only yield a conditional certificate, since
arious assumptions. These assumptions might be concr
ms. For example, there might be a demand that the fail
l must be mitigated by another subsystem according t

vel. Other assumptions might consider the integration c
maximal number of collaborating subsystems, the type
cation system used, etc. Consequently, SafetyCert
w the idea of safety contracts defining a set of safety gu
system and a set of safety demands the subsystems requ
ration context. This means that they provide runtime inf
operties can be guaranteed by the system under the prec
mands are fulfilled. At runtime, the fulfillment of the
esulting guarantees are derived. Usually, however, safet
property, i.e., the composition of safe components does
composition, even though the safety demands are fulfill
sary to perform additional checks in the integration cont

ficates@Runtime enable dynamic system composition

omposed at runtime, it is possible to compose the Cert
o this end, the conditions defined in the runtime certifica
mplest approach, a system of systems is considered saf
ditional certificates are true. Otherwise, the system of s
most cases, however, the certificates of the single subs
with each other. So it is very unlikely that there will b
uch an approach is only reasonable if it is possible to ad
o the current integration context.

milar
go a
e of
the

rete
lure
to a
con-
and
tifi-
uar-
uire
for-

con-
de-

ty is
not
led.
text

tifi-
ates
fe if
sys-
sys-
be a
dapt

 S

Fig. 4. Runtime

Actually, the possibilitie
as adaptation in general. Th
ically selected in a given c
adaptations of the certificat
ceable, or even provable s
illustrated in Figure 4. If w
defining how the system a
used to adapt the certificate

Alternatively or addition
elements that are affected
adaptations. In fact, traceab
the safety assurance of OA
traditional safety engineerin
the revalidation effort. As
anticipated classes of syste
handled by simple variants

As a further extension,
adjust the runtime certificat

Usually, the adaptation g
antees in the given context
nally fulfilled safety deman

3.2 SafetyCases@Runt

The more adaptive a syste
adaptations in a Certificate
time since the complete a
process. Alternatively, it c
es@Runtime. Safety cases
however, they include the

Safety Assurance of Open Adaptive Systems – A Survey

e adaptation of certificates provides more flexibility

es of how a runtime certificate could adapt are as versa
here could be different pre-defined variants that are dyna
context. Or there could be more sophisticated and flexi
te. From a safety point of view, however, predictable,
solutions are more likely to be accepted. Some ideas
we assume, for example, that there is an adaptation mo
adapts in certain situations, this information could also
e.
nally, a traceability model could be used to identify th
by system adaptations and to derive necessary certific
bility Models@Runtime might play an important role

AS. An efficient impact analysis is of utmost importance
ng in order to identify necessary changes and thus red
long as the effects of adaptations can be traced back

em changes, even complex system adaptations could
in the SafetyModel@Runtime.
it could be possible to use error detection mechanisms
tes using up-to-date runtime error information.
goal for the certificates is to provide the best possible gu
. The context, in turn, is usually given by the set of ex

nds and the internal state of the system.

time

em is, the more difficult it is to consider all the differ
@Runtime. This particularly increases the effort at des

adaptation space must be considered in the certificat
could therefore be another option to provide SafetyC
are direct input to certification. In contrast to certifica
complete argument of why a system is considered s

287

atile
am-
ible
tra-
are

odel
o be

hose
cate
for

e in
duce
k to
d be

s to

uar-
xter-

rent
sign
tion

Cas-
ates,
afe.

288 M. Trapp and D. Sch

A good safety case model i
the detailed requirements re
dence proving that the argu
fulfilled.

SafetyCases@Runtime t
more flexible adaptation of
plex to handle, since there i
a safety case to certification
quence, this will most likel
SafetyCertificates@Runtim

Classification Criteria:
case that can be interprete
can be dynamically checke
With adaptation, the line a
tion, the revalidation of evi
tations lead to the invalidat

As shown in Figure 5,
cates@Runtime. Instead of
possible to describe the
es@Runtime to adapt the sa

Fig. 5. Conceptua

A certificate certifies th
models the argument of wh
at runtime, the resulting arg
mously which safety guaran

A basic element of safet
and validation results or the
time, it is possible to adapt
rently given context. As
straightforward solution wo

hneider

includes a complete breakdown of top-level safety goal
ealized in the system. And it particularly includes the e

uments used are sound and that the requirements have b

therefore provide more information at runtime and ena
f the system. In consequence, however, they are more co
is no pre-certification at design time and all the steps fr
n have to be shifted to runtime as well. As a further con
ly reduce the acceptance of such an approach compared

me.
A SafetyCase@Runtime is a formalized, modular saf

ed and adapted at runtime. Based on the interpretation
ed to which extent the safety goals of subsystems are m
argument can be adjusted to system adaptations. In ad
idences at runtime must be supported in case system ad
tion of evidences.
SafetyCases@Runtime extend the idea of SafetyCert

f explicitly defining the adaptation of the certificates, i
adaptation of the safety cases and use the SafetyC
afety certificates automatically.

al model of how safety cases could be used at runtime

hat certain safety guarantees are fulfilled. The safety c
hy these guarantees are fulfilled. If a safety case is adap
gumentation should enable the system to conclude auto
ntees can still be provided at which integrity level.
ty cases are evidences, which are, for example, verificat
e results of safety analyses. By shifting safety cases to r
t (1) the argumentation and/or (2) the evidences to the c

regards the adaptation of the argumentation, a v
ould be to include different variants of the argumentati

s to
evi-

been

able
om-
rom
nse-
d to

afety
n, it
met.
ddi-
dap-

tifi-
it is

Cas-

case
pted
ono-

tion
run-
cur-
very
ion.

 Safety Assurance of Open Adaptive Systems – A Survey 289

In more complex versions, more intelligence might be integrated that is able to derive
new lines of argumentation.

With regard to the evidences, it is necessary to attach constraints to the evidences
used in the safety case. At runtime it is then necessary to evaluate whether or not
these constraints are still fulfilled. If not, there are basically two combinable options.
First, it is possible to find an alternative argumentation based on the remaining valid
evidences – including argumentations that potentially require a reduction of the safety
guarantees that can be provided in the given context. A second option would be the
revalidation of evidences. This requires the capability to re-perform safety analyses as
well as validation and verification activities at runtime. For SafetyCases@Runtime,
let us assume that this revalidation is limited to repeating the checks defined at design
time in order to provide the evidence. This presumes that the system adaptation does
not lead to a change of requirements or a change of the system’s interface.

If the respective pass-criteria are met, the newly created evidence can replace the
invalidated original evidence and be integrated into a new argumentation. Otherwise,
the evidence remains invalid and the system must either find an alternative line of
argumentation or invalidate the affected safety goals.

3.3 V&V-Models@Runtime

SafetyCases@Runtime already provide a very flexible means for safety assurance at
runtime. Some system adaptations, however, might require a new set of verification
and validation checks to provide the evidence required for the argument. Moreover, it
might be desirable to be able to remove the faults identified during runtime V&V
instead of being limited to only checking the pass-criteria.

For the former aspect, it is necessary to additionally enable the system to define ve-
rification and validation suites autonomously. Realizing the latter aspect even requires
systems that are able to localize the causing faults, and to isolate or even remove
them. Considering how difficult this step easily becomes for developers at design
time, it is obviously a very challenging task to shift these activities to runtime.

Classification Criteria: V&V-Models@Runtime presume that all models that are
necessary to perform validation and verification activities (e.g., test cases, pass/fail-
criteria etc.) can be interpreted and adapted at runtime in order to create new evi-
dences after system adaptations.

3.4 Hazard Analysis and Risk Assessment@Runtime (HRA@Runtime)

In the previous alternatives, we assume that the requirements and the resulting safety
goals are not adapted. As a consequence, it has only been necessary to adapt the ar-
gumentation that the safety goals are still met in spite of system adaptations based on
the safety case and the evidences created at runtime. Some adaptation approaches,
however, also consider a change of requirements at runtime. If we apply the safety
lifecycle to the idea of Models@Runtime, this means that we require a hazard and
risk analysis at runtime, i.e. that the system must adapt and extend the hazard and risk

290 M. Trapp and D. Schneider

analysis and potentially have to adapt and extend the set of safety goals. By doing so,
the complete existing argumentation for a changed safety goal might be invalidated.
For new safety goals, an argumentation is completely missing. On the one hand, this
type of runtime assurance certainly provides the highest possible flexibility. On the
other hand, however, it requires very intelligent mechanisms for defining a safety
argumentation and generating the necessary evidence autonomously at runtime.

Classification Criteria: HRA@Runtime implies that a hazard and risk analysis
model can be interpreted and adapted at runtime. This includes the identification of
new hazards and the reassessment of existing hazards after adaptations at the re-
quirement level.

3.5 Evaluation of the Different Approaches

Regarding the approaches described above, they obviously build upon each other.
This means that a HRA@Runtime requires V&V-Models@Runtime, which in turn
require SafetyCases@Runtime and so on. So it is necessary to decide to which extent
we want to shift the safety lifecycle to runtime. This results in a trade-off decision.
From a safety point of view, it is certainly preferable to leave as much responsibility
as possible with a human expert. Consequently, it would be reasonable to have only
SafetyCertificates@Runtime. From an adaptation point of view, however, it is prefer-
able to have as much flexibility as possible in order to tap the full potential of dynam-
ic adaptation. In consequence, this would require shifting elements of the complete
safety lifecycle to runtime.

In order to further illustrate this trade-off, Figure 6 shows the relations of the dif-
ferent approaches to their acceptance on the one hand and to their flexibility on the
other hand. Acceptance in this case refers to the probability of acceptance by safety
authorities and legislation. Since there is no practical experience available, this is a
qualitative estimation. First, we assume that acceptance is inversely proportional to
the responsibility and intelligence given to the system. Second, the acceptance of an
approach is usually inversely proportional to its complexity. Or vice versa: The simp-
ler an approach can be realized, the more probable is its acceptance. For obvious rea-
sons, it is very probable that the required intelligence as well as the resulting com-
plexity will grow with the number of safety assurance steps that are shifted to run-
time. Consequently, in our opinion, SafetyCertificates@Runtime have the best
chances of being accepted, whereas the acceptance of an HRA@Runtime (i.e., shift-
ing all safety assurance activities to runtime) is quite improbable. As a further aspect,
acceptance will be higher if the Safety-Models@Runtime are reconfigured at runtime
to predefined variants only, whereas acceptance will rapidly decrease if the safety
models themselves are adapted more flexibly at runtime.

Flexibility, on the other hand, represents the degree of which different types of
adaptations are supported. More precisely, in this case we refer to the type of adapta-
tion used to adapt the system itself and not to the type of adaptation used to adapt the
safety models, since different adaptation approaches might be used for the system
itself on the one hand and the safety models on the other hand. In order to classify the

 S

supported flexibility of sy
classes. We first differentia
In the former case, we assu
has been anticipated at de
needs to flexibly adapt to
the system structure or beh
ther subdivided the ‘unkno
one hand and at the require
sume that the requirements
(e.g., at the architecture lev
case, the adaptation also in
new requirements.

SafetyCertificates@Runt
an adaptation of certificate
dering the underlying safet
argumentation of a certifica
ration space might be too la
level. Therefore, it might b
ciently support ‘known unk

Fig. 6. Qualita

If we consider ‘unknown
the requirements and thus t
gree of system modificatio
V&V-Models@Runtime ar
limited to running predefin
Models@Runtime addition
modification of test cases o
tions must be, the more lik
required in addition to Safe

Safety Assurance of Open Adaptive Systems – A Survey

ystem adaptations, we differentiate between three ba
ate between ‘known unknowns’ and ‘unknown unknown
me that the system can only adapt to a runtime context t

esign time. In the latter case, we assume that the syst
situations not anticipated at design time. In consequen

havior is hard or even impossible to predict. We have f
own unknowns’ into adaptations at the design level on
ements level on the other hand. In the former case, we
can remain unchanged and an adaptation of the realizat

vel) is sufficient to adapt to the context given. In the la
ncludes the adaptation of existing and/or the definition

time can only be used to address ‘known unknowns’ si
es to an unpredicted context is not possible without con
ty case, which forms the indispensable basis for a sou
ate’s validity. But even for ‘known unknowns’ the confi
arge to be covered completely by variants at the certific
e reasonable to use SafetyCases@Runtime already to e

knowns’.

ative relations between acceptance and flexibility

n unknowns’ at the design level, this means especially t
the safety goals remain unchanged. Depending on the

ons required for the adaptation, SafetyCases@Runtime
re therefore sufficient. While SafetyCases@Runtime

ned validation and verification activities at runtime, V&
nally support the modification of V&V models, e.g.,
or pass/fail criteria. The more flexible the system adap
kely it is that V&V-Models@Runtime approaches will
tyCases@Runtime.

291

asic
ns’.
that
tem
nce,
fur-
the
as-

tion
atter
n of

ince
nsi-
und
igu-
cate
effi-

that
de-

e or
are

&V-
the

pta-
l be

292 M. Trapp and D. Sch

As soon as the adaptatio
requirements, it is additiona
resulting safety goals at ru
new hazards or to re-assess
able to appropriately create
lifecycle.

3.6 Conceptual Safety A

Models@Runtime obvious
safety assurance of Open A
one particular approach tha
tance in general. In fact, w
approaches into an assuran
sate for the disadvantages o

Fig. 7. Integrated

Some ideas for such a fr
safety engineering, we rec

hneider

on to ‘unknown unknowns’ also requires an adaptation
ally necessary to adapt the hazard and risk analysis and

untime. As described above, it is not sufficient to iden
s the associated risk at runtime. In fact, the system must
e or adapt all affected artifacts along the complete saf

Assurance Framework for Open Adaptive Systems

sly provide a wide range of possible approaches for
Adaptive Systems and it is certainly not possible to pick
at leads to the best trade-off between flexibility and acc
we believe that it will be necessary to integrate differ
ce framework in order to use the advantages and comp

of the different approaches.

d Conceptual Safety Assurance Framework for OAS

ramework are shown in Figure 7. Learning from traditio
commend using modularity as the basic ingredient fo

n of
the

ntify
t be
fety

the
out

cep-
rent
pen-

onal
or a

 Safety Assurance of Open Adaptive Systems – A Survey 293

safety assurance framework from the very beginning. First, this obviously reduces
complexity. Second, this enables us to use different assurance approaches for different
modules. In this context, we use the term module very flexibly to express a modula-
rized entity that can range from a complete system in a system of systems to a single
software component. Since the required types of adaptation usually differ widely
across the different modules, it reasonable to limit more complex assurance approach-
es to those modules that actually have to adapt very flexibly.

Following the idea of modular certification, it seems to be reasonable to use Safe-
tyCertificates@Runtime as the basic building blocks to enable the modularization and
runtime integration of different subsystems. In this case, SafetyCertificates@Runtime
are the common denominator enabling the combination of a wide range of different
assurance approaches used for the single modules.

Assume, for example, that we have a module that adapts to ‘known unknowns’ on-
ly, as shown in the upper left corner of Figure 7. Then it might be sufficient to per-
form the major safety assurance activities at development time and limit the runtime
models to SafetyCertificates@Runtime only. If we have a module that has too large a
configuration space or that also adapts to ‘unknown unknowns’, it might be necessary
to have SafetyCases@Runtime as well, as shown in the upper right corner of Figure
3-5. As described above, SafetyCases@Runtime are an extension of SafetyCertifi-
cates@Runtime, so a runtime certificate is still available at the module’s interface,
facilitating the safe integration of the components. In some cases, a module might
adapt so flexibly that we will need V&V-Models@Runtime or even an
HRA@Runtime. However, realizing this is very complex, so it seems reasonable to
keep the complexity of such modules very small. To this end, it is helpful that the
modularization of the framework can be applied recursively to achieve hierarchical
decomposition, as illustrated in the lower left corner of Figure 7. This decomposition
additionally illustrates an alternative way of composing SafetyCertificates@Runtime.
If we assume systems of systems for example, each providing a SafetyCertifi-
cate@Runtime, the single systems are usually sufficiently independent from each
other that composition at the certificate level is likely to be sufficient. If we assume
the runtime integration of different software modules running on the same platform,
there are usually tight interdependencies. Merely the fact that they share the same
resources, for example, creates a safety-relevant dependency. For this reason, it is
likely that additional evidences will be required for proving that the integration of the
single modules is safe as well. Therefore, it might also be reasonable to have Safety-
Cases@Runtime at the integration level.

The acceptance of sophisticated assurance approaches, in particular, is very low.
An alternative way to ensure the safety of highly adaptive systems is given by differ-
ent traditional approaches, particularly in the field of fault tolerance. So-called safety
bags (cf. e.g., [47]), for example, are a typical concept for monitoring a function to
detect anomalies and trigger counter-reactions. Assuming that it would be possible to
define a safety bag that can detect and handle any safety-related failure of an adaptive
module, it would not be necessary to provide further assurance of that module.
Though such approaches are based on traditional mechanisms rather than Mod-
els@Runtime, they would nonetheless fit into our conceptual framework as shown in
the lower right corner of Figure 7.

294 M. Trapp and D. Schneider

Summarizing, this conceptual framework has been created based on a prognostic
evolution of state-of-the-practice safety engineering lifecycles using the idea of Mod-
els@Runtime as a catalyst, which it uses to build a conceptual bridge between the
world of safety engineering on the one hand and Models@Runtime on the other hand.
Being based on safety engineering principles makes acceptance of the approach more
likely. Yet it provides sufficient flexibility to integrate various different solution ap-
proaches based on Models@Runtime. Therefore, in the subsequent chapters we will
analyze the state-of-the-art with respect to the suitability of the different approaches
to fit into specific parts of the framework. We will further identify ‘white spots’ and
interfaces for future research.

4 State-of-the-Art from the Safety Engineering Community’s
Point of View

As already discussed above, Open Adaptive Systems have long been beyond the
scope of the safety engineering research community. However, the work that has been
done in the direction of modular certification might well prove to be a sound founda-
tion for tackling the safety-related challenges posed by Open Adaptive Systems.
Moreover, there are some first approaches advocating the introduction of runtime
measures. The state-of-the-art presented in this chapter consequently focuses on ap-
proaches from the safety engineering community that either belong to the aspiring
research field of modular certification, or that advocate certain runtime measures for
the context of OAS.

In general, modular certification can be characterized as a means for the modulari-
zation of safety cases. The safety case is modularized such that components devel-
oped by different suppliers, and components that are likely to be replaced or reused,
specify a self-contained modular safety case. These modular safety cases, specified by
the module developer, are connected on the system level by the integrator to build the
system safety case. In order to be able to assemble the system safety case, each mod-
ule must provide an interface specification containing the module’s guaranteed beha-
vior and the behavior demanded of other interacting modules. Demands are necessary
since the behavior of the module at hand depends on the behavior of the other
modules it is interacting with. Therefore, the module at hand is only able to give guar-
antees under the premise of a certain behavior of the interacting modules. These pre-
mises are called demands and, together with the afore-mentioned guarantees, shape
demand/guarantee contracts.

The idea to use contracts as a metaphor for describing the interaction of compo-
nents with mutual obligations and benefits can also be found in approaches that do not
specifically focus on safety, such as those presented in Section 5.1.1. These approach-
es do, however, focus on specifying the nominal behavior and/or specific quality cha-
racteristics of components and do not consider a component’s failure behavior (how
does the component fail, what failures of other components can the component tole-
rate), which is essential for safety-related modularization.

 Safety Assurance of Open Adaptive Systems – A Survey 295

4.1 Foundational Work on Modular Certification

To enable modularization of safety cases, it is crucial to formalize the relevant infor-
mation in an appropriate way. As a first step, it is necessary to enable modular safety
analyses. A corresponding starting point is given by techniques from the class of fail-
ure logic modeling (FLM) [48], where the failure logic is modeled separately for each
component and the failure logic model defines how deviations at the input of a com-
ponent propagate to deviations at the outputs of the component. Architecture models,
which are (should be) available anyway, define how the components are connected.
Based on the architecture, it is therefore possible to also connect the failure logic
models of the component, and the failure propagation throughout the overall system
can be analyzed automatically. Prominent solutions in this regard are the ‘Hierarchi-
cally Performed Hazard Origin and Propagation Studies’ – HiP-HOPS [49] and the
‘Failure Propagation and Transformation Notation’ – FPTN [50]. Another approach
that is based on safety contracts has been proposed by Hawkins and McDermid[51].
Moreover, component fault trees [52] provide an extension for the well-known tech-
nique of fault trees that supports the modular, component-based definition of fault
trees [53]. Fault trees and CFTs generally also enable probabilistic analyses by anno-
tating faults with respective probabilities of occurrence. Since it is often not possible
to determine concrete probabilities for a given event, Foerster and Schneider intro-
duced an approach that uses intervals of probabilities to efficiently deal with such
uncertainties during development [54].

4.2 Modular Certification as Represented by Current Standards

Some concepts related to modular certification have already been adopted by current
standards and thus found their way into the state of the practice. This is particularly
true for the fields of automotive systems and avionic systems because the trend to-
wards modularized architectures has been particularly strong in these fields. The fol-
lowing paragraphs provide a brief overview of the corresponding standards and the
modularization concepts they advocate.

4.2.1 ISO 26262
The international standard ISO 26262 for the functional safety of street vehicles con-
tains the so-called concept of Safety Element out of Context (SEooC) [55]. A SEooC
is defined as a component for which there is no single predestinated application in a
specific system. Therefore, the SEooC developer does not know the concrete role the
product has to play in the safety concept. Subsystems, hardware components, and
software components may be developed as SEooCs. Typical software SEooCs are
reusable, application-independent components such as operating systems, libraries, or
middleware in general.

For SEooC development, the standard suggests specifying assumed safety re-
quirements and developing the system according to these requirements. When the
SEooC is to be used in a specific system, the system developer has to specify the
demanded requirements, which can subsequently be checked against the assumed

296 M. Trapp and D. Schneider

requirements. If there is a match between the demanded and the guaranteed (assumed)
requirements, system and component are compatible. The standard does not provide
any suggestions or methods on how to identify safety requirements such as to increase
the chance that assumed and real requirements match. Neither does the standard pro-
vide information on how to perform the verification of the assumed requirements
during integration of the SEooC. The standard specifies a relatively coarse-grained
process for embedding a SEooC development into the standard’s safety lifecycle. In
general, SEooC integration is expected to be done at development time and thus there
is no explicit support for open systems where components are to be integrated dynam-
ically. Moreover, there is no explicit support with respect to the management of va-
riabilities, be it at development time or at runtime.

4.2.2 DO-297
The DO-297 [56] standard regulates the modular certification of components in an
Integrated Modular Avionic (IMA) system. The terminology of the standard talks of
incremental acceptance instead of modular certification. Acceptance is defined as the
confirmation of a certification body that a module of an IMA system (a general-
purpose execution platform or an application) fulfills its specification. This accep-
tance can be achieved for an IMA system and is one building block of the final
certification, with the latter always being in the context of a specific airplane or en-
gine. The wording incremental has been chosen because the process of the DO-297
allows step-wise acceptance of single modules of a system and because it allows in-
crementally extending a system with new applications, without having to re-certify all
the modules in the system.

4.3 State-of-the-Art for Modular Certification Approaches

This section briefly describes a selection of prospective modular certification ap-
proaches. All these approaches are briefly described and their applicability in the
context of Open Adaptive Systems is considered.

4.3.1 Concepts for Modular Certification by Rushby
Rushby provides some theoretical considerations on the use of modular certification
for software components in IMA architectures. The goal is to enable the certification
of software components in order to allow them to perform their functions in a given
(aircraft) context based solely on assumptions about other related software compo-
nents. Three key elements were identified as the potential backbone of a correspond-
ing approach [60]:

1. Partitioning creates an environment that enforces the interfaces between compo-
nents; thus, the only failure modes that need be considered are those in which
software components perform their function incorrectly, or deliver incorrect be-
havior at their interfaces.

 Safety Assurance of Open Adaptive Systems – A Survey 297

2. Assume-guarantee reasoning is a technique that allows one component to be
verified in the presence of assumptions about another, and vice versa.

3. Separation of properties into normal and abnormal properties. Abnormal proper-
ties capture behavior in the presence of failures.

To ensure that the assumptions are closed and the system is safe, three classes of
properties that must be established using assume-guarantee reasoning were identified:

1. Safe function ensures that each component performs its function safely under all

conditions consistent with its fault hypothesis;
2. True guarantees ensure that each component delivers its appropriate guarantees;
3. Controlled failure is used to prevent a ‘domino effect’ where the failure of one

component causes others to fail, too.

It is important to note that the publication presents conceptual foundations but does
not provide concrete solutions. Still, the presented concepts are clearly relevant and
likely to be of avail for future work in the context of the envisioned framework.

4.3.2 Modular Goal Structuring Notation
The Goal Structuring Notation (GSN) [61] is a graphical notation for modeling a safe-
ty argument, which is the core part of every safety case. A safety case has been de-
fined in the context of the GSN as follows:

‘A safety case communicates a clear, comprehensive and defensible argument that
a system is acceptably safe to operate in a particular context.’

Therefore, a safety case serves the purpose of specifying a comprehensive argu-
ment to prove the safety of a system. To this end, the GSN allows modeling tree-like
arguments beginning with safety goals, and iteratively connecting them through
chains of logical argumentation and sub-goals, with the evidences created during
system development. Evidences can be performed tests or analysis reports from an
FMEA or an FTA that are used for underpinning the fulfillment of the goals.

In order to deal with modular systems and modular certification, there is an exten-
sion to GSN that allows modularizing safety cases [62]. The interface of a safety case
module is defined by a set of public items that are available for use in other safety
case modules and a set of items that the safety case module at hand demands from
other modules. Those items can be goals, evidences, and context.

A strategy for the construction of a modular safety case architecture is given in
[63]. These guidelines are based upon the guidelines for general modular system de-
sign and comprise the following requirements:

• Modules must be as independent as possible.
• Modules must exhibit high cohesion and low coupling.
• Modular safety cases and safety case architectures must be constructed

top-down.
• Modules must have well-defined interfaces.
• All modular dependencies must be captured.

298 M. Trapp and D. Schneider

In summary, modular GSN is a graphical notation that allows modeling modular
safety arguments. As described above, there are also product-related guidelines for the
specification of modular safety arguments. Openness and adaptivity are not explicitly
addressed, whereas the modularization concepts would at least provide a starting
point for corresponding augmentations. Apart from that, it has been shown that the
GSN can be utilized in conjunction with a software product line approach [64]. Con-
sidering SafetyCases@Runtime, a GSN-like notation might be a possible starting
point. Usually, however, the single elements of a GSN-based safety case are described
in natural language. Using GSN at runtime will require an appropriate means for for-
malizing the notation in order to enable runtime evaluation and adaptation.

4.3.3 The Generic Safety Case in DECOS
The DECOS (Dependable Embedded Components and Systems) project [65] was a
European Integrated Project in the FP6 Embedded Systems area which ran from 2004
to 2007. The main objective of the project was to make a significant contribution to
the safety of dependable embedded systems by facilitating the systematic design and
deployment of integrated systems [66]. In order to reach this objective, a generic safe-
ty case approach for incremental certification was developed, which improves the
efficiency of the certification process and thus shall facilitate significant cost savings
during the development of safety-critical systems.

According to [66] and [67], modularity is achieved by separating the certification
of core services and architectural services from applications (enabling generic appli-
cation safety cases (for the class of applications) and individual (specific) safety cases
by supporting independent safety arguments for different distributed application sub-
systems).

1. Separating certification of architectural services from certification of applica-
tions: The clear interfaces between the platform and the applications provided
via the platform interface are a prerequisite for the separation of the certifica-
tion of architectural services from the certification of applications.

2. Separating certification of different distributed application subsystems: The
integrated architecture allows the independent certification of different appli-
cation subsystems, instead of considering the system as an indivisible whole in
the certification process. The safety argument for each subsystem is provided
to the integrator by the suppliers along with the compiled application code of
the jobs in the corresponding subsystem. In order to construct the safety argu-
ment for the overall system, the system integrator combines the safety argu-
ments of the independently developed subsystems and acquires additional
evidence, such as the results of a formal verification of the architectural ser-
vices. The decomposition of the overall system into encapsulated subsystems
with different criticality levels reduces the overall certification efforts and al-
lows focusing on the most critical parts. Furthermore, the separate certification
of subsystems is beneficial if functionality is reused in different systems.
In this case, the safety argument for the functionality needs to be constructed
only once.

 Safety Assurance of Open Adaptive Systems – A Survey 299

Like the approaches above, DECOS supports the modularization of development
time safety artifacts. Openness and adaptivity are not explicitly supported and all
certification activities are to be conducted at development time. However, the incre-
mental approach adopted by DECOS seems to be well suited to handling variability at
development time, maybe in conjunction with an adequate software product line ap-
proach as it has already been explored for the GSN.

4.3.4 Vertical Safety Interfaces
The goal of the VerSaI (Vertical Safety Interfaces) method is to assist the integrator of
an integrated architecture in checking whether the application software components
are able to run safely on the execution platforms of the system, and if so, provide
assistance in generating appropriate evidence [72].

Before safety compatibility between the application and the platform can be
checked with the VerSaI approach, demands and guarantees have to be specified.
Demands are typically used to express all the properties a platform needs to have for
an application to be executed safely, whereas guarantees represent the safety-related
properties the platform possesses. A compatibility check is successful if a sound
argument for the fulfillment of the demands with the available guarantees can be es-
tablished. To enable tool-supported integration, the VerSaI approach offers a semi-
formal language for modeling these demands and guarantees. The language consists
of a number of elements, each representing a certain type of demand or guarantee
exchanged by an application and a platform. This implies the noteworthy fact that
there is a finite number of language elements and, therefore, also a finite number of
dependencies that can be expressed with the language. First evaluations have shown
that this is suitable, because the typical service relationships between an application
and a platform are finite and regular, too, which is also the reason why platforms have
been standardized in the first place.

The final step of the method is to check whether each demand can be met with the
guarantees identified as relevant in the previous step. In contrast to conventional inter-
faces, it is usually not possible to simply match demands and guarantees, respectively.
In fact, it is necessary to generate an additional fragment in the safety case providing
the arguments and evidences that the demands of the platform are met by the guaran-
tees given by the platform. To this end, this step is supported by a so-called strategy
repository. The repository contains expert strategies that are selected and presented to
the integrator and describe what guarantees are needed to fulfill the current type of
demand and how to generate a piece of evidence containing a sound argument.

Like the other modular certification approaches, Versa focuses on development
time integration. However, it provides some interesting aspects that could be of relev-
ance for SafetyModels@Runtime. First, it already provides a formalization of the
interface language, thus facilitating automated checks of interface consistency.
Second, it introduces first ideas of how missing fragments of a safety case could be
generated automatically. Though this is currently not possible without human interac-
tion, some ideas could be a starting point for extending/modifying safety case argu-
mentations at runtime. However, VerSaI is limited to the vertical interface between
application and platform software. This has the advantage that the typical safety

300 M. Trapp and D. Schneider

requirements concerning this vertical interface are quite limited - thus simplifying the
formalization of the interface language. For OAS, this approach would have to be
extended to horizontal interfaces as well. However, those interfaces are usually appli-
cation dependent so that the formalization approach used in VerSaI cannot be easily
extended to support horizontal interfaces as well.

4.4 Runtime Certification

First ideas with respect to runtime certification have been introduced by Rushby[68],
[69]. In contrast to most of the other approaches presented in this section (which are
already quite mature and have partly even been proven in use), Rushby`s work re-
mains on a rather conceptual level. However, considering its motivation and the solu-
tion concepts presented, it is very important in the context of safety assurance of
OAS.

In the first publication, Rushby presents the general idea that certain elements of a
conventional certification case could be transferred to runtime. The focus is on those
elements that apply formal analyses (e.g., automated verification) to representations
of a software component and its local safety or other critical requirements. Formal
analyses are usually employed at development time to formally verify that a compo-
nent follows a certain prescribed behavior. At runtime it would be possible to employ
monitors to control the component’s behavior during execution and to trigger ade-
quate measures when deviations occur. Such monitors might be synthesized from the
model that specifies the component’s behavior using very similar—and equally trust-
worthy—techniques as those used in formal verification.

In the second publication, Rushby outlines a framework in which the basis for
certification is changed from compliance with standards to the construction of explicit
goals, evidences, and arguments (generally called an ‘assurance case’). He then de-
scribes how runtime verification can be used within this framework, thereby allowing
certification to be partly performed at runtime. The core of this approach is again
the usage of runtime monitors, which have been defined outside the context of an
assurance case in order to dynamically monitor assumptions, anomalies, and safety,
respectively.

Overall, the presented work is still very conceptual but nevertheless provides a
good starting point for future work in the context of the envisioned framework. One
of the main ideas advocated by Rushby, namely to shift parts of the safety assurance
measures into runtime to cater to the specific challenges within OAS, has also been
adopted by us in the framework presented here.

4.5 Discussion

From the state-of-the-art in safety engineering approaches that support modularization
it becomes apparent that openness and adaptivity have been largely out of scope and
thus are not explicitly supported by most approaches. Moreover, even though the
umbrella term ‘modular certification’ seems to suggest otherwise, all of the consi-
dered approaches and standards rather focus on the modularization of pre-certification

 Safety Assurance of Open Adaptive Systems – A Survey 301

safety artifacts, particularly safety cases. The only exceptions are the approaches on
runtime certification, which build on pre-certification of the system. Since most ap-
proaches have been designed to support engineers during their development time
activities, they lack an adequate degree of formalization, which would be required for
automated runtime evaluations. All of these approaches nevertheless provide sound
conceptual starting points for new safety engineering approaches for Open Adaptive
Systems. As for supporting adaptivity, some of the presented modular certification
approaches (such as the GSN) have at least been used in conjunction with software
product lines. Others, such as the approach introduced by Rushby, DECOS and Ver-
SaI, seem to be well-suited in this regard as well.

As the considered approaches are more or less established in the safety engineering
community, using them as a starting point for Models@Runtime certainly increases
the probability of acceptance. Since the approaches are mainly based on safety cases,
they would provide a good starting point for research in the direction of SafetyCertifi-
cates@Runtime or for SafetyCases@Runtime.

Apart from the modular certification approaches discussed above, the runtime cer-
tification approach presented by Rushby builds on dynamic monitoring (and repair) of
the systems’/components’ behavior. This approach could fit into the category of
V&V-Models@Runtime. Based on the conceptual descriptions, however, it seems
that mainly predefined verifications can be executed at runtime. So depending on the
concrete realization of these concepts, they will rather support the re-validation of
evidences as part of SafetyCases@Runtime.

5 State-of-the-Art from the Adaptive Systems Community’s
Point of View

Some of the first significant research efforts for adaptive systems emerged from the
middleware community, where adaptive middleware platforms have been designed to
meet the new demands of flexible, distributed heterogeneous systems. Examples in
this regard are the solutions proposed by Blair et al. [4], Kon et al. [5], Capra et al.
[6], and Truyen[7]. These solutions were mainly designed to enable adaptability (i.e.,
reconfiguration of the middleware or platform to fit a given setting) or even self-
adaptation (i.e., an adaptive middleware or platform that dynamically adapts itself to
provide optimized service functionality and quality in any situation). A related field of
research, where the topic of self-adaptivity also gained momentum quite early, is the
field of adaptive quality of service (QoS) assurance. Corresponding research has
mostly focused on communication systems and end-to-end consideration of QoS. The
results have been platforms, middleware, and frameworks enabling adaptive QoS.

It was soon recognized that quality assurance for adaptive systems is an important
topic with significant scientific challenges. Initial corresponding research efforts have
mostly focused on the issues of validation and verification (V&V) of adaptive sys-
tems. First results were based on development time V&V, but recently we have seen
that V&V measures are being increasingly shifted into runtime. The upcoming topic

302 M. Trapp and D. Schneider

of Models@Runtime seems to be a catalyst in this regard. Thus, even more capable
Models@Runtime-based approaches for runtime V&V can be expected in the future.

In recent years, one main research focus of the community has been to investigate
sound engineering methodologies for adaptive systems. Such methodologies ideally
span all typical phases of software development (from requirements engineering to
the validation of the final product) and explicitly consider important non-functional
properties. This methodological research focus has been pushed by community re-
search roadmaps [1]and has been advocated strongly by conferences in the area of
adaptive systems, e.g., the SEAMS symposium [8] and the SASO conference [9]. In
the context of engineering frameworks, the different fields of adaptive systems re-
search are growing together ever more. The current Models@Runtime research land-
scape underlines this trend, since researchers from the fields of adaptive middleware,
V&V, and engineering methodologies are working together to develop seamless ap-
proaches combining all these important aspects under the umbrella of the Mod-
els@Runtime topic[2][3]. Relatedly, Baresi and Ghezzi argue that the clear separation
between development-time and run-time is blurring and is probably doing so even
further in future [74].

From the perspective of the envisioned safety assurance framework, there are con-
sequently two categories of approaches that will be considered in more detail in the
following:

1. Approaches concentrating on V&V in the context of adaptive systems. V&V
is here not necessarily aimed at safety assurance. Nevertheless, the approaches
can be valuable input for future approaches in the context of the envisioned
framework. A short overview of the state-of-the-art will be provided and the
assurance scope of the different approaches will be considered. Note that com-
pleteness cannot be a goal for this article, thus we rather tried to identify a rep-
resentative set of approaches covering the most important different classes.

2. Frameworks and approaches for adaptive systems that enable the utilization of
Models@Runtime for different relevant concerns. Such approaches provide a
possible technological basis and therefore define the frame the envisioned
safety assurance framework would have to be integrated into. The approaches
will be briefly presented and analyzed with respect to their runtime assurance
capabilities and their usage of Models@Runtime. Again, completeness was
not the goal. For this part of the state of the art we also compiled a possibly
representative set of approaches to indicate the current status quo of Mod-
els@Runtime approaches in relation of assurances – and safety in particular.

5.1 Approaches Using Validation and Verification as a Means for Assurances

The approaches considered in this section focus on ensuring certain properties
through the application of adequate V&V techniques. Some approaches rely on de-
velopment time measures alone, whereas others utilize runtime measures or a combi-
nation of both. For both cases, this section will provide an overview of the respective
state-of-the-art. Prior to that, however, there will be a paragraph on contract-based

 Safety Assurance of Open Adaptive Systems – A Survey 303

design, since this is an enabling technology for efficient V&V. Moreover, safety con-
tracts and assume-guarantee reasoning are likely to be enabling technologies for im-
portant parts of the envisioned framework.

5.1.1 Design by Contract
About twenty years ago, Meyer introduced a set of basic principles of Design by Con-
tract in the context of his Eiffel language [23]. Since then, a wide range of related
approaches have been developed for the specification and utilization of different kinds
of functional and non-functional contracts. Beugnard et al. provide a recent overview
of the general use of Design by Contract concepts in the domains of embedded sys-
tems, component architectures, and service oriented architectures [24]. The work in
the respective domains is classified according to a scheme introduced in an earlier
publication by the authors [25]. Essentially, the types of contracts are classified into
four levels:

1. Syntactic (or basic): The goal is to make the system work. It is generally speci-
fied with Interface Definition Languages (IDLs), as well as typed object-based or
object-oriented languages. It ensures the components can be assembled.

2. Behavioral: The goal is to specify each operation. It is generally specified with a
couple of assertions: a precondition and a post-condition. It ensures the opera-
tions offered and required are not only syntactically compatible but also semanti-
cally.

3. Synchronization: The goal is to specify the coordination of operations. It can be
specified with an automaton labeled with operations. It ensures the operations are
used in the proper order.

4. Quality of Service: The goal is to quantify a few features associated with opera-
tions. Performance, availability, and quality of result can be specified and nego-
tiated at that level.

An interesting and widely recognized approach for contract-based design (even
though not specifically addressing adaptive systems) is the Rich Component Model
(RCM). The RCM is the backbone of the embedded systems design approach devel-
oped in the SPEEDS project (Speculative and Exploratory Design in Systems Engi-
neering) [26]. One primary goal of the RCM is to optimize the reuse of embedded
applications. Safety-relevant applications are explicitly included. The main ideas
forming the foundation of the approach are described in [28].

The language typically used to describe such contracts is hybrid automata as shown
in [27], [28] and [29]. There are formal definitions for the semantics of the hierarchic-
al and horizontal composition of the contracts, which allows checking the fulfillment
of system-level requirements after the system has been integrated, using a model
checker for example. The formality of the approach increases the achievable degree of
automation while equally increasing the upfront effort for modeling the system. The
RCM is therefore a modeling paradigm that allows specifying the contract interface of
a modular safety argument.

In relation to assurances and adaptable systems, Inverardi et al. recently presented
a theoretical assume-guarantee framework for adaptable systems [30] that can be used

304 M. Trapp and D. Schneider

as a basis for establishing runtime contracts and thus also for V&V in adaptive
systems. The major aim of this framework is to define efficient conditions to be
proved at runtime to guarantee the correctness of the adaptation of a composed
adaptive system.

Conditional Safety Certificates (ConSerts) are a means for facilitating safety certi-
fication in the context of OAS [70] [71] [76]. This is one of the approaches explicitly
addressing Open Adaptive Systems. There are three main differences between Con-
Serts and standard certificates that are owed to the nature of open systems: A ConSert
is not static but conditional; it usually comprises a number of variants; and it must be
available in an executable (and composable) form at runtime. Conditions within a
ConSert manifest in relations between potentially guaranteed safety requirements
(denoted as guarantees for the remainder of this article) and the corresponding de-
manded safety requirements (i.e., demands). The demands always represent safety
requirements relating to the environment of a component, which consequently cannot
be verified yet at design time. A ConSert therefore certifies that the guarantees will
hold with acceptable probability under the precondition that the specified safety de-
mands are fulfilled by the environment. Variants come into play because ConSerts
usually comprise not only one but a series of different potential guarantees. Eventual-
ly, the ConSerts must be available at runtime in an executable representation and the
systems need to possess mechanisms for composing and analyzing these runtime
models. Using these means makes it possible to establish and maintain safety con-
tracts at runtime that span all levels of a composition hierarchy through pairs of Con-
Sert-based guarantees and demands.

In the same way as standard certificates, ConSerts shall be issued by safety experts,
independent organizations, or authorized bodies after a stringent manual check of the
system. To this end, it is mandatory to prove all claims regarding the fulfillment of
safety requirements by means of suitable evidence. The guarantees that can be pro-
vided by a system usually depend on the fulfillment of demands. On the one hand,
these demands might directly relate to the required functionalities of other systems. In
other cases, some evidences must be acquired at the integration level, since safety is
not completely composable. To this end, ConSerts support the concept of so-called
runtime evidences. The resulting variability (of the fulfillment of demands) ultimately
leads to variants and conditions within the safety case, which are the basis for the
definition of ConSerts.

In terms of the conceptual assurance framework, ConSerts belong to the class of
SafetyCertificates@Runtime. But they also support single elements of SafetyCas-
es@Runtime through the instrument of runtime evidences.

5.1.2 Approaches Utilizing Development Time V&V for Assurances
In [31], Zhang and Cheng introduce a method for constructing and verifying adapta-
tion models using Petri nets. In [32], linear temporal logic is extended with an ‘adapt’
operator for specifying requirements that a given system must match before, during,
and after adaptation. An approach for ensuring the correctness of component-based
adaptation was presented in [33], where theorem proving techniques are used to show
that a program is always in a correct state in terms of invariants. [34]introduces a

 Safety Assurance of Open Adaptive Systems – A Survey 305

formal model of reconfiguration and an associated set of high-level system dependa-
bility properties that can be verified. Giese and Tichy introduced a development-time
hazard analysis approach for analyzing all configurations a self-adaptive system can
reach during runtime [35]. In [75], Becker et al. present a further development time
verification technique for the invariant verification of structural properties. This tech-
nique has been designed to be appropriate for large multi-agent systems that are sub-
ject to structural adaptations at runtime.
Mohammad and Alagar recently introduced a formal approach for the specification
and verification of trustworthy component-based systems [36] that advocates formal
specifications and dedicated safety properties as a basis for V&V. The properties can
be defined as constraints (such as time or data constraints) at the component level and
are to be understood as invariants over the component behavior. The behavior can be
defined using timed automata. Eventually, the specifications enable automated analy-
sis and verification (through model checking) of the considered properties.

All of the above approaches have in common that they try to analyze (with respect
to safety or other specific properties) all possible variants that a given system might
assume during runtime. Based on the analysis results, engineers can implement ade-
quate measures to improve or ensure the considered properties.

5.1.3 Approaches Utilizing Runtime V&V for Assurances
Runtime V&V measures are typically applied in a complementary way together with
corresponding development-time activities. On the one hand, there are runtime verifi-
cation techniques that utilize runtime monitoring to record software execution traces
that can then be analyzed [37]. On the other hand, there are approaches that employ
quantitative model checking at runtime as an assurance technique for the context of
adaptive systems (e.g., [38], [39], and [40]). In [43], Goldsby et al. present
AMOEBA-RT, a run-time monitoring and verification technique that provides assur-
ance (based on dynamic model checking) that dynamically adaptive software satisfies
its requirements. Calinscu and Grunske introduced the QoSMOS (QoS Management
and Optimization of Service-based systems) framework for the development of adap-
tive service-based systems that are able to manage their QoS adaptively and predicta-
bly [44]. QoSMOS utilizes probabilistic model checking at runtime to evaluate if the
system satisfies the given QoS requirements. In the traditional development-time
versions of these kinds of approaches, the analysis of temporal-logic properties (in-
cluding probabilities, costs, and rewards) is commonly used to assess relevant non-
functional properties of a system. At runtime, such analyses can be performed on a
model base that is continually updated as the underlying system evolves. In general,
this introduction of runtime measures for the context of adaptive systems is particular-
ly promising since traditional development-time techniques do not scale sufficiently
well. Moreover, at runtime, detected issues can be addressed directly with adequate
adaptations (i.e., countermeasures). A short related survey (which is not limited
to V&V) considering runtime assurance techniques for adaptive systems has recently
been published by Calinescu[42]. A further approach that is particularly focused on

306 M. Trapp and D. Schneider

safety has been proposed by Priesterjahn et al. in [41]. The main idea of this approach
is to ensure the safety of adaptive systems during runtime by checking whether recon-
figuration is allowed based on associated hazard probabilities and potential damage
that would be imminent after the reconfiguration. To this end, adapted hazard and risk
analysis techniques are applied during runtime.

5.2 Frameworks for Adaptive Systems and Models@Runtime

5.2.1 MADAM and MUSIC
The MADAM (Mobility and Adaptation Enabling Middleware) European project and
its follow-up MUSIC (Self-Adapting Applications for Mobile USers In Ubiquitous
Computing Environments) aimed at providing techniques and tools for reducing the
time and effort needed to develop self-adaptive mobile applications [10][11]. To this
end, these projects propose an architecture-centric approach where dynamic adapta-
tion is realized in an application-independent adaptation middleware. Architectural
models of the applications are made available at runtime and serve as a basis for rea-
soning about and controlling the adaptation. Meta-models for the specification of
these models are provided by means of a dedicated component framework.

In order to realize runtime adaptation, MADAM and MUSIC employ an applica-
tion-independent adaptation middleware that is implementing a typical adaptation
control loop with the following responsibilities:

1. Monitor both system and user context. The system context consists of system
resources such as battery level, CPU utilization, memory usage, and network
resources. The user context subsumes information on the environment and on
the user’s (maybe correlated) needs.

2. Analyze the context and the context changes that occur and plan reasonable
changes of the system. To this end, utility functions are used to assess which
implementation variant of a certain component type would fit the given adap-
tation goals best. On the system level, global utility functions are used (which
can aggregate the component-level utility functions) to compute the overall
utility of an application. This allows evaluating all the different configuration
possibilities (i.e., it is a brute-force approach) and the most useful one in the
given circumstances can be chosen at the end.

3. Implement the changes – preferably without noticeably interrupting the opera-
tion of the system.

Regarding assurances, MADAM and MUSIC explicitly address the management of
functional and non-functional properties. However, the properties are only addressed
in a generic way and managed via ‘best-effort’ without ‘hard’ guarantees.

5.2.2 DiVA – Dynamic Variability in Complex, Adaptive Systems
The European DiVA project can be considered as a predecessor of the
MADAM/MUSIC series. In detail, the project had the following main research objec-
tives [45]:

 Safety Assurance of Open Adaptive Systems – A Survey 307

• To provide both build-time and runtime management of the adaptive system
(re)configuration of co-existing, co-dependent configurations that can span across
several administrative boundaries in a distributed, heterogeneous environment.

• To provide efficient management of the number of potential configurations that
may grow exponentially with each new variability dimension.

• To increase the quality and productivity of adaptive system development and help
the designers to model, control, and validate adaptation policies as well as the tra-
jectory from one safe configuration to another.

DiVA tackles these challenges by applying and combining techniques from the
fields of software product lines (SPL), model-driven engineering (MDE), and aspect-
oriented modeling (AOM). Moreover, DiVA has a strong focus on utilizing such
Models@Runtime, in accordance with the Models@Runtime paradigm. In [46], the
DiVA contribution is summarized as follows:

At design time, engineers can avoid manually designing all of the system’s possi-
ble configurations and transitions by explicitly defining an adaptive system as a Dy-
namic Software Product Line (DSPL). At runtime, the system analyzes the context
and explicitly constructs a suitable configuration using AOM techniques. It also vali-
dates this configuration using traditional MDE techniques: invariant checking, simu-
lation, and so on. Finally, the system automatically generates a safe reconfiguration
script to actually adapt the running business system. If the produced configuration is
not consistent, the system simply discards the configuration and derives a new one.
Since the running business system has not been adapted yet, it is not necessary to
perform a rollback. This process is open to evolution—designers can make the DSPL
evolve by seamlessly adding or removing variants, constraints, rules, and so on.

Note that assurances were not the focus of DiVA and non-functional properties
were only considered in a generic way. Still, the management of generic properties
through models at runtime and runtime self-adaptation was foreseen.

5.2.3 Robocop, Space4U and Trust4ALL
The main goal of the ROBOCOP, Space4U, and Trust4ALL [12][13][14] series of
European projects was to establish an adequate component-based architecture and
middleware for OAS. According to [15], Robocop introduced a component-based
framework for high-volume embedded devices with a focus on robust and reliable
operation, upgrading, and component trading, while the focus of Space4U was on the
validation, maturation, and extension of the Robocop architecture by introducing fault
management, power management, and terminal management. Trust4All essentially
extended the component-based middleware developed in the course of its two prede-
cessors with respect to a trust management framework.

Correspondingly, according to the Trust4All innovation report [16], the project
‘has defined, designed and developed a middleware software architecture specifically
targeted at embedded systems that require a predefined level of trust, due to the nature
of the services they provide. The project focuses on the trustworthiness-related as-
pects of the middleware software architecture in domains such as home medical care,
security and automation, as well as on-the-move applications, for which dependability
is particularly important’. A further important result of the project is the ISO/IEC
23004 standard on middleware, where seven of the eight parts of the standard were

308 M. Trapp and D. Schneider

contributed by Trust4All (Architecture, Component Model, Resource and Quality
Management, Component Download, Fault Management, System Integrity Manage-
ment, and Reference Software).

In essence, the main scientific contribution of Trust4All, the trustworthiness
management approach, is enabled through a trustworthiness model and a trust man-
agement framework model. The assurance scope of Trust4All can be classified as
‘assurance of trust-related properties’, although the reputation- and recommendation-
based approach is not compatible with safety assurance in a traditional sense (i.e.,
certification would not be possible on that basis). Trust4All explicitly supports self-
adaptation for assurance purposes, utilizing a runtime configurable fault management
mechanism [14].

5.3 Discussion

Adaptive systems and Models@Runtime frameworks and approaches contribute the
technological basis and knowledge for representing and utilizing runtime models for
different concerns. Regarding the assurance and management of non-functional prop-
erties, however, these approaches remain very generic and are not designed to provide
‘hard’ guarantees. Accordingly, these approaches do not provide a sufficient metho-
dological backbone, which is indispensable for safety assurance and certification.

Due to reasons of complexity, development time V&V as the sole measure for en-
suring important properties of an adaptive system is only really feasible for closed
adaptive systems. In contrast to OAS, for closed adaptive systems it is generally poss-
ible (although potentially very complex, depending on the applied adaptation con-
cepts) to conduct sufficient safety analysis based on holistic system models already at
development time. Therefore, one commonality of these approaches is that they focus
on closed systems and on specific adaptation concepts that facilitate controlling the
size of the adaptation space.

The runtime V&V approaches provide specific concepts for dynamically obtaining
and evaluating V&V-related information in an adaptive systems context. These tech-
niques would obviously be well suited for tackling challenges related to the runtime
V&V parts of the envisioned framework. However, there is no conceptual integration
with existing safety engineering approaches up to now. Nor is there support with re-
spect to variability within the certificates, the safety case, and correspondingly the
dynamic V&V measures. In other words, there can only be one ‘static’ certificate that
is to be validated and verified, which consequently limits the flexibility of the open
adaptive system, as elaborated before in this article. Nevertheless, in conjunction with
a sound and comprehensive safety engineering backbone, these approaches would be
a good starting point for future research and could play a vital role in safety assurance
for OAS.

An approach that has an explicit focus on safety and is thus particularly relevant
for this article has been proposed by Priesterjahn et al. in [41]. This approach is well
suited to exemplify what has been stated above. The main idea of this approach is to
ensure the safety of adaptive systems during runtime by checking whether reconfigu-
ration is allowed based on associated hazard probabilities and potential damage that
would be imminent after the reconfiguration. To this end, a compositional hazard and
risk analysis technique is applied during runtime. However, all the safety engineering

 Safety Assurance of Open Adaptive Systems – A Survey 309

activities that are typically applied in addition to the safety analyses in order to get a
system certified are omitted. Under the premise that safety-critical applications need
to be certified, these steps would still be required. Assuming that corresponding safety
engineering and certification were done at development time already, this would con-
strain the flexibility of the approach since a given system would need to be pre-
analyzed comprehensively with respect to the acceptability of the failure probabilities
of its configurations. A further potential problem of the approach is that emergent
safety properties within a system of systems, such as common cause failures, feature
interactions, and emergent dysfunctions, are not addressed.

The ConSerts approach directly addresses the idea of SafetyCertificates@Runtime.
It is therefore one possible starting point for a safety assurance framework. Additional
ConSerts support runtime evidences, which are a first step towards SafetyCas-
es@Runtime. The approach has been successfully applied in different industry
applications, which underscore the principal applicability of the idea of SafetyCertifi-
cates@Runtime.

6 Evaluation

6.1 Status Quo

Obviously, there are different kinds of approaches that address different aspects of
safety assurance at runtime. The following tables summarize the main findings in the
different communities.

Approach
Safety Engineering

supported foundation status quo open issues

Certificate

@Runtime

∅ [60] - no established approach

- modular certification

provides a sound basis

- formalization

- variability

- runtime representation

SafetyCase

@Runtime

([68],

[69])

[60], [61],

[62], [64],

[65], [66],

[67], [Ver-

SaI]

- many design approaches

supports modular safety

cases

- safety case models availa-

ble

- assumes human interac-

tion (no formalization)

- first ideas on runtime

certification at conceptual

level only

- formalization

- runtime representation

- adaptation of argumen-

tations

- realization of runtime

evidences

V&V

@Runtime
∅ ∅

not considered

HRA

@Runtime
∅ ∅

not considered

310 M. Trapp and D. Schneider

For the safety engineering community, it is obvious that runtime assurance has not
been in the focus of research. Actually, there is no approach that deals with modular
certificate models. The reason for this could be that certificates as such do not play an
important role at development time. In fact, they are not more than a piece of paper
issued at the end of an assessment, which can be used as evidence in a super-ordinate
safety case. This means that certificates are not direct working artifacts for safety
engineers. The importance of certificate models mainly arises from the need to dy-
namically compose systems, which requires formal representation at the information
level of the certificates (and an explicit specification of the variation points) that can
be evaluated at runtime.

Nonetheless, there is a series of approaches that provide valuable starting points
and that could be extended to SafetyCases@Runtime. Most of these approaches need
to be further formalized in order to be used at runtime. Many safety case notations are
still based on informal textual information as they are intended to be used by a human
safety expert. Based on such formalization, it would be possible to evaluate Safety-
Cases@Runtime and identify invalidated evidences, for example. In order to use the
full potential of SafetyCases@Runtime, appropriate approaches are required to dy-
namically adapt the line of argumentation used in the safety case at runtime. Howev-
er, there are currently no approaches that consider doing that.

There exist first ideas on how to use runtime verification to support certification at
runtime [68], [69]. However, these approaches still remain at the superficial level of
concepts and ideas. The dynamic adaptation of V&V models, such as test cases or
pass/fail criteria, or even adaptation of the hazard analysis and risk assessment (HRA)
is completely outside the scope of the safety engineering community. In other words,
the V&V measures that are shifted into runtime are always completely predefined at
development time already.

Approach
Models@Runtime

supported foundation status quo open issues
Develop-
ment-Time
Assurance
of Adaptive
Systems

[31], [32],
[33], [34],
[35], [36]

 - promising results available
- limited to few groups

- maturing approaches
towards applicability and
acceptance

- integration with concepts
like SafetyCertifi-
cates@Runtime to support
open systems as well

Certificate
@Runtime

[ConSert] ∅

- a first approach is availa-
ble, utilizing variable cer-
tificates and Mod-
els@Runtime

- could provide a good
add-on to design time
assurance approaches for
supporting open systems

 Safety Assurance of Open Adaptive Systems – A Survey 311

SafetyCase
@Runtime

 [37], [38],
[39], [40],
[41], [42],
[43], [44]

- some research has focused
on runtime execution of
predefined V&V steps

- currently independent
solutions that can hardly be
combined

- no complete coverage of
safety assurance

- integration of different
approaches to support
complete safety assurance

- currently no direct sup-
port to SafetyCas-
es@Runtime

V&V
@Runtime ∅ ∅

- currently no approaches
available

HRA
@Runtime ∅ ∅

- currently no approaches
available

Regarding the adaptive systems community, a lot of work has been done regarding

the development time verification of adaptive systems and runtime execution of pre-
defined verification steps. Also from a safety point of view, a focus on development
time verification is certainly preferable. Regarding the typical characteristics of OAS,
however, such an approach appears not to be sufficient. Therefore, the idea of having
runtime verification is a good extension. However, the different approaches seem to
be quite independent from each other. Each of the single approaches covers only one
aspect of runtime safety assurance, and it is mostly unclear how the different ap-
proaches could be combined into an integrated framework. Nonetheless, they provide
a very good basis for providing evidences in the context of SafetyCases@Runtime.
Some work is also available on SafetyCertificates@Runtime, which already considers
aspects such as runtime evidences. Obviously, there seems to be a good basis and a lot
of potential could be tapped by a more efficient combination and integration of the
different approaches.

6.2 A Possible Roadmap to Safety Assurance for OAS Using
Models@Runtime

Summarizing the status quo, there is already a lot of work available that directly or
indirectly supports the safety assurance of OAS. However, most approaches seem to
be quite independent from each other. None of the approaches alone is sufficient and
complete to assure safety in OAS, but all of them provide individual puzzle pieces for
a safety assurance approach. Since they have been developed in isolation, it is howev-
er not possible to simply combine them. Nonetheless, the efficient combination of
existing approaches would already lead to significant progress.

From our point of view, a first step towards an efficient safety assurance approach
for OAS therefore seems to be to consider the big picture of safety assurance instead
of regarding single elements in isolation. To this end, a safety assurance framework,
comparable to the one used in this article would be required, but it certainly needs to
be more mature. Such a framework would provide the big picture the single puzzle
pieces have to fit into – thus simplifying classification and combination of the differ-
ent approaches. Moreover, it would define a principal understanding of what safety

312 M. Trapp and D. Schneider

assurance for OAS could look like. Such a commonly accepted foundation is a prere-
quisite to obtaining acceptance of the assurance approaches by certification bodies
and safety assessors.

Taking the framework defined in this article as a starting point, a possible roadmap
to safety assurance is illustrated in Figure 8.
From an industry point of view, the most urgent need for safety assurance is certainly
for open systems in which the single systems only adapt to anticipated situations.
Therefore, assurance of the single systems could be achieved using available assur-
ance approaches applied at development time. If these approaches are tightly inte-
grated into traditional safety engineering lifecycles, safety assurance could happen
completely at development time. All remaining assumptions and variabilities that
must be resolved at runtime could be modeled using SafetyCertificates@Runtime,
which would also enable safe composition of systems of systems at runtime.

Such an approach is also very likely to be accepted by safety assessors. Design
time assurance of adaptive systems is in some sense already considered in safety stan-
dards. For example, ISO26262 explicitly defines how assurance has to deal with large
configuration and parameter spaces. Alternatively, from a safety engineering point of
view, adaptation is nothing but an indistinguishable part of the functionality extending
the system’s state space, which must be completely covered by all safety assurance
activities. The available development time assurance approaches tackle the resulting
challenges. SafetyCertificates@Runtime are very similar to modular certification
approaches. Definition and assurance of the certificates take place at development
time, and only the composition of certificates is shifted to runtime. In order to be ac-
cepted, the verification of the composition mechanisms must become an additional
element of the development time verification activities. This is of course also true in
general for all runtime mechanisms that are introduced as part of the safety assurance
framework. As described in the previous chapter, this scenario can also be extended
with alternative approaches, such as extended safety bags.

If we regard open systems that require more flexible adaptations including adapta-
tions to unanticipated situations, or if the dynamic composition happens at the level of
software components instead of systems, it is additionally necessary to provide Safe-
tyCases@Runtime. To this end, approaches facilitating the modular specification of
safety cases, as they exist in the safety engineering community, could be used as a
starting point. As mentioned above, this requires formalization of the notations in the
first step. For many application scenarios, however, the capability to dynamically
adapt the line of argumentation could be optional. Instead, it might be sufficient to
integrate different variants into the safety case at design time and to reduce runtime
responsibility to the resolution of these variabilities. This would require further exten-
sion of existing safety case approaches. As an additional aspect, it is necessary to
provide evidences at runtime. This step can be supported by different existing runtime
V&V approaches as described above. Nonetheless, some extensions are required in
order to transfer the existing approaches from the idea of a stand-alone solution to an
integrated part of SafetyCases@Runtime.

 S

Fig. 8. Possible roadm

The main aspect in this a
sion of evidences. Howev
defined at development tim
cepted. In order to argue t
similarity to established con

As soon as requirement
proaches available that co
Models@Runtime and HR
work nor is a good basis av
will be accepted in the ne
 the state-of-the-art. In the
will enable new business
recommend reasoning abou

Safety Assurance of Open Adaptive Systems – A Survey

map to safety assurance of OAS using Models@Runtime

approach that complicates acceptance is the runtime pro
ver, assuming that the verification activities are alre
me and ‘only’ executed at runtime, this is likely to be
the appropriateness of the runtime V&V approaches,
ncepts like built-in tests could be used as a starting point
ts are to be adapted as well, there are no established
ould be used as a starting point. The required V&

RA@Runtime are currently neither supported by exist
vailable. Moreover, it is very unlikely that such approac
ear future. So obviously, a significant gap exists here
e long run, we expect that adaptations of requireme
cases – also for safety-critical systems. Therefore,

ut possible assurance approaches right from the beginni

313

ovi-
eady

ac-
the

t.
ap-

&V-
ting
ches
e in
ents
we

ing.

314 M. Trapp and D. Schneider

This is particularly true since the acceptance of such an approach will require a suffi-
ciently long history of experience and empirical evidence.

7 Summary and Conclusion

In recent years, we have witnessed a strong trend towards open adaptive systems in
research and industry. Meanwhile it is quite clear that new kinds of corresponding
applications promise huge benefits for end-users and for businesses. The lack of suit-
able safety assurance approaches for OAS is increasingly turning out to be a limiting
factor in this development. Models at runtime, however, could well prove to be a
potent means for overcoming these problems.

Although the approaches available were not developed with an integrated safety
assurance framework in mind, a promising foundation already exists. The main appli-
cation scenario for the near future is characterized by open systems of systems with
subsystems that only adapt to anticipated situations. Combining and advancing exist-
ing work on SafetyCeritificates@Runtime, development time assurance, and runtime
V&V could already provide a sound basic solution for this scenario.

Existing safety case models in the field of safety engineering provide a sound basis
for further extending the idea to SafetyCases@Runtime in order to support more flex-
ible system adaptations. SafetyCases@Runtime appear to be sufficient to support the
assurance of a wide range of application scenarios of OAS in safety-critical applica-
tions. The largest gap obviously exists if the adaptation includes the requirements.
However, we expect that the application of Requirements@Runtime in safety-critical
applications will only happen in the long run – leaving sufficient time to mature the
safety assurance approaches in parallel.

Summarizing the results, we can safely state that Models@Runtime seem to have
great potential for being successfully used as a basis for safety assurance of OAS.
Since they provide a means for creating a clear trace to established safety assurance
approaches, the resulting assurance approaches are likely to be accepted by safety
assessors. Regarding the current state-of-the-art, there is already a good basis provid-
ing first evidence that a safety assurance framework (comparable to the one used in
this article) is technically feasible.

References

[1] Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer,
Heidelberg (2009)

[2] Blair, G., et al.: Models@Run.Time. IEEE Computer (November 2010)
[3] Dagstuhl Seminar on Models@run.time,

http://www.dagstuhl.de/en/program/calendar/semhp/?
semnr=11481 (last visited June 2012)

 Safety Assurance of Open Adaptive Systems – A Survey 315

[4] Blair, G., Coulson, G., Robin, P., Papathomas, M.: An architecture for next generation
middleware. In: S.J. Davies, N.A.J., Raymond, K. (eds.) IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Middleware 1998 (1998)

[5] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., Campbell, R.: Monitor-
ing, security, and dynamic configuration withthe dynamic tao reflective orb. In: 2nd
ACM/IFIP International Conference on Middleware, New York, pp. 121–143 (2000)

[6] Capra, L., Blair, G., Mascolo, C., Emmerich, W., Grace, P.: Exploiting reflection in mo-
bile computing middleware. ACM SIGMOBILE Mobile Computing and Communications
Review 6, 34–44 (2002)

[7] Truyen, E.: Dynamic and Context-Sensitive Composition in Distributed Systems. Ph.D.
thesis, K.U.Leuven (2004)

[8] http://www.self-adaptive.org/ (last visited in June 2012)
[9] http://www.saso-conference.org/ (last visited in June 2012)

[10] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using Architec-
ture Models for Runtime Adaptability. IEEE Software 23, 62–70 (2006)

[11] Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A.,
Scholz, U.: MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-
Oriented Environments. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525,
pp. 164–182. Springer, Heidelberg (2009)

[12] Muskens, J., Chaudron, M.: Integrity Management in Component Based Systems. In:
Proc. of 30th EUROMICRO Conference (EUROMICRO 2004), pp. 611–619 (2004)

[13] Lenzini, G., Tokmakoff, A., Muskens, J.: Managing Trustworthiness in Component-based
Embedded Systems. Electron. Notes Theor. Comput. Sci. 179, 143–155 (2007)

[14] Su, R., Chaudron, M.R.V., Lukkien, J.J.: Adaptive runtime fault management for service
instances in component-based software applications. IET Software 1(1), 18–28 (2007)

[15] http://www.hitech-projects.com/euprojects/trust4all/
results.htm (last visited in June 2012)

[16] http://www.itea2.org/project/result/download/result/5585 (last
visited in June 2012)

[17] http://ercim-news.ercim.eu/adaptable-and-context-aware-
trustworthiness-evaluation (last visited in June 2012)

[18] Wang, Y., Vassileva, J.: A review on trust and reputation for web service selection. In:
Proceeding of the 1st Int. Workshop on Trust and Reputation Management in Massively
Distributed Computing Systems (2007)

[19] Alnemr, R., Quasthoff, M., Meinel, C.: Taking Trust Management to the Next Level. In:
Handbook of Research on P2P and Grid Systems for Service-Oriented Computing: Mod-
els. IGI Global, Hershey (2010)

[20] https://swt.informatik.uni-augsburg.de/tsos/ (last visited in June
2012)

[21] Avižienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Compu-
ting 1, 11–33 (2004)

[22] Schneider, D., Becker, M., Trapp, M.: Approaching Runtime Trust Assurance in Open
Adaptive Systems. In: Proceeding of the 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS 2011), pp. 196–201. ACM,
New York (2011)

[23] Meyer, B.: Applying ‘design by contract’. IEEE Computer 25(10), 40–51 (1992)

316 M. Trapp and D. Schneider

[24] Beugnard, A., Jézéquel, J.-M., Plouzeau, N.: Contract aware components, 10 years after.
Electronic Proceedings in Theoretical Computer Science, 1–11 (2010)

[25] Beugnard, A., Jezéquel, J.-M., Plouzeau, N.: Making components contract aware. IEEE
Computer 32(7), 38–45 (1999)

[26] Website of the SPEEDS project, http://www.speeds.eu.com/ (last visited June
2012)

[27] Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Mul-
tiple viewpoint contract-based specification and design. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 200–225.
Springer, Heidelberg (2008)

[28] Damm, W., Metzner, A., Peikenkamp, T., Votintseva, A.: Boosting Re-use of Embedded
Automotive Applications Through Rich Components. In: Proceedings of the Workshop
on Foundations of Interface Technologies 2005, FIT 2005 (2005)

[29] Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A
Contract-Based Formalism for the Specification of Heterogeneous Systems. In: Proceed-
ings of the Forum on Specification, Verification and Design Languages (FDL 2008),
pp. 142–147. IEEE (2008)

[30] Inverardi, P., Pelliccione, P., Tivoli, M.: Towards an assume-guarantee theory for adapta-
ble systems. In: ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2009 (2009)

[31] Zhang, J., Cheng, B.H.C.: Model-based development of dynami-cally adaptive software.
In: International Conference on Software Engineering (ICSE 2006), Shanghai, China,
pp. 371–380. ACM (2006)

[32] Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: Workshop on Architecting
Dependable Systems (WADS 2005), St. Louis, USA, pp. 1–7. ACM (2005)

[33] Kulkarni, S.S., Biyani, K.N.: Correctness of Component-Based Adaptation. In: Crnković, I.,
Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 48–58.
Springer, Heidelberg (2004)

[34] Strunk, E.A.: Reconfiguration Assurance in Embedded System Software, Ph.D. thesis,
University of Virginia

[35] Giese, H., Tichy, M.: Component-based hazard analysis: Optimal designs, product lines,
and online-reconfiguration. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166,
pp. 156–169. Springer, Heidelberg (2006)

[36] Mohammad, M., Alagar, V.: A formal approach for the specification and verification of
trustworthy component-based systems. J. Syst. Softw. 84(1), 77–104 (2011)

[37] Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic and
Algebraic Programming 78(5), 293–303 (2009)

[38] Calinescu, R., Kwiatkowska, M.: CADS*: Computer-Aided Development of Self-* Sys-
tems. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 421–424.
Springer, Heidelberg (2009)

[39] Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement autonomic IT
systems. In: Proceedings of the 31st International Conference on Software Engineering
(ICSE 2009), pp. 100–110 (2009)

[40] Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by runtime adap-
tation. In: Proceedings of the 31st International Conference on Software Engineering
(ICSE 2009), pp. 111–121 (2009)

 Safety Assurance of Open Adaptive Systems – A Survey 317

[41] Priesterjahn, C., Heinzemann, C., Schäfer, W., Tichy, M.: Runtime Safety Analysis for
Safe Reconfiguration. In: IEEE International Conference on Industrial Informatics
Proceedings of the 3rd Workshop Self -X and Autonomous Control in Engineering Appli-
cations, Beijing, China (2012) (accepted)

[42] Calinescu, R.: When the requirements for adaptation and high integrity meet. In: Proceed-
ings of the 8th Workshop on Assurances for Self-Adaptive Systems (ASAS 2011), pp. 1–4.
ACM, New York (2011)

[43] Goldsby, H.J., Cheng, B.H.C., Zhang, J.: AMOEBA-RT: Run-Time Verification of
Adaptive Software. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 212–224.
Springer, Heidelberg (2008)

[44] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic
QoS Management and Optimization in Service-Based Systems. IEEE Transactions on
Software Engineering, 387–409 (May/June 2011)

[45] http://www.ict-diva.eu/DiVA/results/diva-promo-
material/DiVA-Overview-Feb2009.pdf (last visited June 2012)

[46] Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@ Run.time to
Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)

[47] IEC 61508: Functional safety of electrical/electronic/programmable electronic safety re-
lated systems, International Electrotechnical Commission (1999)

[48] Lisagor, O., McDermid, J.A., Pumfrey, D.J.: Towards a Practicable Process for Auto-
mated Safety Analysis. In: 24th International System Safety Conference, pp. 596–607
(2006)

[49] Papadopoulos, Y., McDermid, J.: Hierarchically Performed Hazard Origin and Propaga-
tion Studies. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608,
pp. 139–152. Springer, Heidelberg (1999)

[50] Fenelon, P., et al.: Towards Integrated Safety Analysis and Design. ACM Applied Com-
puting Review 2(1), 21–32 (1994)

[51] Hawkins, R., McDermid, J.A.: Performing Hazard and Safety Analysis of Object oriented
Systems. In: Proc. of ISSC 2002. System Safety Society, Denver (2002)

[52] Kaiser, B., Liggesmeyer, P., Mäckel, O.: A New Component Concept for Fault Trees. In:
Lindsay, P., Cant, T. (eds.) Proc. Conferences in Research and Practice in Information
Technology. ACS, vol. 33, pp. 37–46 (2004)

[53] Domis, D., Trapp, M.: Integrating Safety Analyses and Component-Based Design. In:
Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 58–71.
Springer, Heidelberg (2008)

[54] Förster, M., Schneider, D.: Flexible, any-time FTA with component logic models. In: In-
ternational Symposium on Software Reliability Engineering, ISSRE (2010)

[55] ISO/CD 26262: Road vehicles, Functional Safety Part 6: Product development at the
software level, Part 10 – ‘Guidelines’ (2011)

[56] DO-297: Integrated Modular Avionics (IMA) Development Guidance and Certification
Considerations, Radio Technical Commision for Aeronautics (RTCA) SC-200, (2005)

[57] Eveleens, R.L.: Integrated Modular Avionics - Development Guidance and Certification
Considerations. In: RTO-EN-SCI-176 Mission Systems Engineering (2006)

[58] AC 20-148: Reusable Software Components, AC 20-148 (2004)
[59] Software Consideration in Airborne Systems and Equipment Certification, DO-178B

(1993)
[60] Rushby, J.: Modular Certification. NASA Contractor Report CR-2002-212130, NASA

Langley Research Center (2002)

318 M. Trapp and D. Schneider

[61] Kelly, T., Weaver, R.: The Goal Structuring Notation – A Safety Argument Notation. In:
Proceedings of the 34th International Conference on Dependable Systems and Networks,
DSN 2004 (2004)

[62] Kelly, T.: Concepts and Principles of Compositional Safety Case Construction. University
of York, sfh (2001)

[63] Bate, I., Bates, S., Hawkins, R., Kelly, T., McDermid, J.: Safety case architectures
to complement a contract-based approach to designing safe systems. In: Proceedings
of the 21st International System Safety Conference (ISSC 2003): System Safety Society,
pp. 182–192 (2003)

[64] Habli, I., Kelly, T.: A Safety Case Approach to Assuring Configurable Architectures of
Safety-Critical Product Lines. In: The Proceedings of the International Symposium on
Architecting Critical Systems (ISARCS), Prague. Czech Republic (2010)

[65] DECOS: Dependable Embedded Components and Systems, Inte-grated Project within the
EU Framework Programme 6, http://www.decos.at (last visited June 2012)

[66] Kopetz, H., Obermaisser, R., Peti, P., Suri, N.: From a Federated to an Integrated Archi-
tecture for Dependable Embedded Real-Time Systems. TU Vienna University of Tech-
nology, Austria, and Darmstadt University of Technology, Germany (2004)

[67] Althammer, E., Schoitsch, E., Sonneck, G., Eriksson, H., Vinter, J.: Modular certification
support — the DECOS concept of generic safety cases. In: 6th IEEE International Confe-
rence on Industrial Informatics (INDIN), pp. 258–263 (2008)

[68] Rushby, J.: Just-in-Time Certification. In: Proceedings of the 12th IEEE International
Conference on the Engineering of Complex Computer Systems (ICECCS), Auckland,
New Zealand, pp. 15–24 (2007)

[69] Rushby, J.: Runtime Certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008)

[70] Schneider, D., Trapp, M.: A Safety Engineering Framework for Open Adaptive Systems.
In: Proceedings of the Fifth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, Ann Arbor, Michigan, USA, October 3-7 (2011)

[71] Schneider, D., Trapp, M.: Conditional Safety Certificates in Open Systems. In: Proceed-
ings of the 1st Workshop on Critical Automotive applications: Robustness & Safety
(CARS), pp. 57–60. ACM, New York (2010)

[72] Zimmer, B., Bürklen, S., Knoop, M., Höfflinger, J., Trapp, M.: Vertical Safety Interfaces
- Improving the Efficiency of Modular Certification. In: Proc. of the 30th International
Conference of Computer Safety, Reliability, and Security (SAFECOMP 2011) (2011)

[73] Fenn, J.L., Hawkins, R.D., Williams, P.J., Kelly, T.P., Banner, M.G., Oakshott, Y.: The
Who, Where, How, Why And When of Modular and Incremental Certification. In: 2007
2nd Institution of Engineering and Technology International Conference on System Safe-
ty, October 22-24, pp. 135–140 (2007)

[74] Baresi, L., Ghezzi, C.: The disappearing boundary between de-velopment-time and
run-time. In: Proceedings Workshop on Future of Software Engineering Research (FoSER
2010), pp. 17–22. ACM (2010)

[75] Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification
for systems with dynamic structural adaptation. In: Int. Conf. on Software Engineering
(ICSE). ACM Press (2006)

[76] Schneider, D., Trapp, M.: Conditional Safety Certification of Open Adaptive Systems.
ACM Trans. Auton. Adapt. Syst. 8(2), Article 8, 20 pages (July 2013)

	Safety Assurance of Open Adaptive Systems – A Survey
	1 Introduction
	2 Safety Engineering for Traditional Embedded Systems
	2.1 Safety Engineering in a Nut-Shell
	2.2 Modular Certification

	3 Models@Runtim me for Safety Assurance in Open Adaptive Systems
	3.1 SafetyCertificates@Runtime
	3.2 SafetyCases@Runt time
	3.3 V&V-Models@Runtime
	3.4 Hazard Analysis and Risk Assessment@Runtime (HRA@Runtime)
	3.5 Evaluation of the Different Approaches
	3.6 Conceptual Safety A Assurance Framework for Open Adaptive Systems

	4 State-of-the-Art from the Safety Engineering Community’s Point of View
	4.1 Foundational Work on Modular Certification
	4.2 Modular Certification as Represented by Current Standards
	4.3 State-of-the-Art for Modular Certification Approaches
	4.4 Runtime Certification
	4.5 Discussion

	5 State-of-the-Art from the Adaptive Systems Community’s Point of View
	5.1 Approaches Using Validation and Verification as a Means for Assurances
	5.2 Frameworks for Adaptive Systems and Models@Runtime
	5.3 Discussion

	6 Evaluation
	6.1 Status Quo
	6.2 A Possible Roadmap to Safety Assurance for OAS Using Models@Runtime

	7 Summary and Conclusion
	References

