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Open adaptive systems are the basis for a promising new generation of embed-
ded systems with huge economic potential. In many application domains,  
however, the systems are safety-critical and an appropriate safety assurance  
approach is still missing.  

In recent years, models at runtime have emerged as a promising way to  
systematically engineer adaptive systems. This approach seems to provide the 
indispensable leverage for applying safety assurance techniques in adaptive sys-
tems. Therefore, this survey analyzes the state-of-the-art of models at runtime 
from a safety engineering point of view in order to assess the potential of this 
approach and to identify open gaps that have to be closed in future research to 
yield a safety assurance approach for open adaptive systems. 

1 Introduction 

The development of safety-critical embedded systems has to follow strict rules and a 
rigorous safety assurance case is required before a product can be introduced to the 
market. Developers therefore avoid using flexible and progressive concepts like dy-
namic adaptation in safety-critical contexts. Many safety standards such as IEC 
61508[47] even prohibit the use of techniques like dynamic reconfiguration or self-
healing. 

Over the last decade, however, new applications have emerged, which are today 
often subsumed under the popular term cyber-physical systems. In some sense, cyber-
physical systems are Open Adaptive Systems (OAS), i.e. systems of systems that 
dynamically connect to each other (openness) and adapt to a changing context at run-
time (adaptive). Industry sees huge economic potential in such systems -particularly 
because their openness and adaptivity enables new kinds of promising applications in 
different application domains. Many application domains of cyber-physical systems, 
however, are safety-critical. This includes, for example, car2car scenarios, 
plug’n’play operating rooms, or collaborative autonomous mobile machines.  

This means that two different worlds, which have intentionally been kept separate, 
have to grow together in the near future. Using the full potential of OAS without  
endangering a product’s safety is therefore one of the primary challenges today.  
Regarding the state-of-the-art, however, there are only a few approaches that explicit-
ly address the safety assurance of OAS. Whereas the adaptive systems community 
mostly considers safety as one of many quality properties, the safety engineering 
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community is still mainly concerned with design time variability, and only a few 
groups focus on the safety of Open Adaptive Systems. Therefore, safety could easily 
become a bottleneck preventing the successful transition of a promising idea into 
business success. 

From a safety point of view, there are, in fact, a few approaches that could be ex-
tended to assure safety in OAS. For example, some groups are pursuing the idea of 
safety bags [47], which detect and handle failures at runtime. By this means, even 
failures that potentially result from system adaptations would be covered so that the 
system adaptation as such would not be the subject of safety assurance anymore. In 
practice, however, the effectiveness of such approaches is still very limited. A further 
alternative would be to assure safety completely at design time by predicting all poss-
ible system adaptations and covering the complete adaptation space already during 
safety assurance at development time. Such approaches could easily run into a state 
space explosion problem and for open systems in particular, the structure cannot be 
completely predicted at development time.  

Therefore, this article focuses on alternative approaches enabling safety assurance 
at runtime. To this end, we particularly regard Models@Runtime, which have 
emerged as a possible means for the systematic development and runtime manage-
ment of adaptive systems. It is our perception that Models@Runtime as a new para-
digm could be an appropriate catalyst for accelerating progress in the safety assurance 
of OAS. In particular, they seem to provide an efficient basis for the safety assurance 
of Open Adaptive Systems: Models@Runtime provide a kind of formal basis for  
reasoning about the current system state at runtime, for reasoning about necessary 
adaptations, and for analyzing or predicting the consequences of possible system 
adaptations. This makes dynamic adaptation tractable, traceable and in some sense 
predictable. Therefore, having explicit Models@Runtime may provide the indispens-
able leverage needed for applying safety assurance techniques at runtime, hence 
bridging the gap between traditional adaptive systems and safety engineering re-
search. At the same time, however, a Models@Runtime framework imposes addition-
al complexity that potentially detriments the assurance of safety. As a consequence, it 
will be important to find the right balance between capabilities and complexity of the 
Models@Runtime framework on the one hand and the corresponding complexity and 
feasibility of the safety assurance on the other hand. Moreover, in order to be ac-
cepted, any safety assurance concept must still fit into the safety engineers’ and certi-
fication bodies’ views of the world.  

Using conventional safety assurance approaches as a reference, however, would 
immediately lead to the result that dynamic adaptation must not be applied at all. In 
order to identify the current position and missing steps on the way to safety assurance 
in OAS, it is nonetheless necessary to know the target we want to reach. Therefore, 
we have to look ahead in order to get an idea of what such a safety assurance frame-
work based on Models@Runtime could look like. To this end, we use an established, 
conventional safety engineering lifecycle as starting point which is introduced in 
Chapter 2. By applying the idea of Models@Runtime to the models and activities of 
the safety lifecycle we create a projection of a possible future safety assurance 
framework in Chapter 3. In a subsequent step, we analyze the state-of-the-art with 



 Safety Assurance of Open Adaptive Systems – A Survey 281 

 

respect to adequate starting points and building blocks for our envisioned future safe-
ty assurance framework. The state-of-the-art analysis will thereby be twofold. On the 
one hand, in Chapter 4, the state-of-the-art of the safety engineering community will 
be investigated with respect to promising approaches and concepts that might be em-
ployed in the context of the envisioned framework and runtime assurance measures. 
On the other hand, in Chapter 5, the same will be done for the adaptive systems com-
munity. In addition, for the adaptive systems community there will also a brief over-
view on current Models@Runtime approaches that might serve as a technological 
basis or starting point for the envisioned safety assurance approach. In Chapter 6.1 the 
state-of-the-art is then being categorized based on the different conceptual classes of 
safety assurance approaches that have been identified in the context of the envisioned 
framework. Based thereon, open gaps are pointed out and possible future research 
directions are devised in Chapter 6.2. 

2 Safety Engineering for Traditional Embedded Systems 

2.1 Safety Engineering in a Nut-Shell 

The precise definition of a safety engineering lifecycle, and particularly of the terms 
used, depends on the concrete application domain. The principal idea, however, is 
similar across all safety-related application domains. For the sake of simplicity, we 
therefore use the terms as defined in the ISO 26262[55], which is the relevant safety 
standard for automotive systems. It is at the same time one of the most recent safety 
standards. 

The overall goal of safety engineering is to ensure ‘freedom from unacceptable 
risk’[55]. The term risk is defined as the ‘combination of the probability of occur-
rence of harm and the severity of that harm’[55]. Usually, however, it is not possible 
to directly assess the harm that is potentially caused by a system. Instead, safety man-
agers identify the hazards of a system, i.e., ‘potential sources of harm’[55]. In many 
domains, this vague definition is further refined. In the automotive domain, for exam-
ple, ‘hazards shall be defined in the terms of conditions and events that can be  
observed at the vehicle level’[55]. Usually, harm is only caused when a hazard, a 
specific environmental situation, and a specific operation mode of the system coin-
cide. This coincidence is called ‘hazardous event’.  

The identification of these hazardous events and the assessment of the associated 
risks is the first step in any safety engineering lifecycle, namely the ’hazard analysis 
and risk assessment (HRA)’ as shown in Figure 1. This step is performed during the 
very early phases of the development process, at the latest when the system require-
ments are available. 

As a result of this step, safety goals are defined as top-level safety requirements, 
which have to be incrementally refined during the safety engineering lifecycle. Usual-
ly, any safety requirement consists of a functional part and an associated integrity 
level. The functional part defines what the system must (not) do, whereas the integrity 
level defines the rigor demanded for the implementation of this requirement.  
The integrity level depends on the risk associated with the hazardous event, which is 
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The safety concept plays a very important role in safety engineering. It defines 
which countermeasures have to be applied and how the measures in combination shall 
ensure the safety goals. Following the definition of Avižienis et al. [21], there are 
three principal classes of countermeasures, as shown in the middle of Figure 1.  
Any measure available can be assigned to one of these classes. First of all, fault 
avoidance measures shall mitigate the creation of faults from the very beginning. This 
includes measures such as strict development processes or coding rules. Usually, 
however, it is not possible to avoid all kinds of faults using such measures. Therefore, 
it is additionally necessary to apply fault removal measures. This particularly includes 
validation and verification activities, which try to reveal and remove faults during the 
development phase. Since we cannot assume that these measures are sufficient to 
yield a fault-free system, it is also necessary to apply fault tolerance measures. Fault 
tolerance measures detect and handle errors at runtime in order to prevent system 
failures. 

Finally the safety manager has to define a safety case, which forms the basis for 
certification. A safety case can be defined as an ‘argument why an item is safe sup-
ported by evidence compiled from work products of all safety activities during the 
whole lifecycle.’[55]. Evidence might be anything supporting an argument in the 
safety case. Evidences of particular importance are the results of validation and verifi-
cation activities as well as safety analysis results. Since a safety case compiles all 
evidences that are relevant for proving the system’s safety, it is an efficient basis for 
safety certification. 

2.2 Modular Certification 

In most domains, safety managers follow a comparable approach to assure the  
functional safety of systems. Usually, however, the resulting safety certificate is valid 
for a specific system configuration only. Even a single change requires the system to 
be recertified. For example, in the avionics domain, even small system changes  
cause recertification costs approaching or even exceeding the original costs [73]. 
Considering that in the avionics domain 60%-70% of the overall development costs 
are caused by verification and certification activities, this leads to tremendous costs 
for recertification. 

Consequently, in the last decade, safety research has focused on approaches called 
modular or incremental certification, as described in more detail in Chapter 4. As 
illustrated in Figure 2, the idea of modular certification is that the individual subsys-
tems are modularly certified and provide a modular safety certificate. When the  
system is integrated, the certification effort shall be reduced to a composition of the 
subsystem certificates. In fact, most of the current approaches do not consider mod-
ular certificates, but modular safety cases, which have to be composed into a safety 
case for the overall system. The overall system certification is then a traditional, ma-
nual process based on the composed safety case. 
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• Raise awareness within the research communities for the specific chal-
lenges of safety assurance in OAS  

• Provide orientation for researchers by interconnecting different kinds of 
research into a bigger picture 

• Provide clear interfaces for future research 
In order to create the conceptual safety assurance framework, we incrementally 

project elements (i.e., typical safety models) of the safety engineering lifecycle to 
runtime. To do so, we start with SafetyCertificates@Runtime and extend the approach 
backward step by step along the safety engineering lifecycle. Shifting an element into 
runtime always implies that corresponding runtime mechanisms need to be estab-
lished that operate on the element. These are required to automate the tasks that used 
to be conducted by safety experts. It is obvious that the earlier the shifted element is 
in the lifecycle, the more engineering activities need to be automated, the more intel-
ligence is required at runtime – and the more difficult it will be for the approach to be 
realized and accepted. 

In accordance with the above, we first describe the ideas of SafetyCertifi-
cates@Runtime (section 3.1), then SafetyCases@Runtime (section 3.2), followed by 
validation and verification of Models@Runtime (section 3.3), and finally Hazard 
Analysis and Risk Assessment@Runtime (section 3.4). These different options are 
evaluated in section 3.5 before section 3.6 shows a possible safety assurance frame-
work integrating the different approaches. The framework will finally be the basis for 
assessing the state-of-the-art and assigning existing work and research directions to 
the different classes of the framework according to their respective suitability. 

3.1 SafetyCertificates@Runtime 

Following the idea described above, making safety certificates available at runtime is 
the first option. SafetyCertificates@Runtime contain all information that is necessary 
to identify which safety requirements are fulfilled with which integrity by the asso-
ciated system. Just like conventional safety certificates, SafetyCertificates@Runtime 
do not contain any white-box information on how the system was realized to yield the 
certification. A clear advantage of such an approach is that the runtime models and 
their evaluation can be quite simple and efficient as, for instance, shown by the Con-
Sert approach [70] [71] [76]. This would also imply that an overly complex Mod-
els@Runtime framework would not be required, thus alleviating the safety assurance 
of the framework itself. 

Classification Criteria: SafetyCertificates@Runtime are modular certificates that 
can be interpreted, composed, and adapted at runtime. They are dynamically adapted 
to represent the safety state of the system at runtime. The certificates of subsystems 
can be composed at runtime in order to yield an overall safety approval for a given 
composition. 

Using SafetyCertificates@Runtime, it is particularly possible to compose systems 
at runtime. As illustrated in Figure 3, the individual subsystems provide a runtime 
representation of the modular certificates (SafetyCertificate@Runtime). In order to 
assess the safety of the resulting system of systems, the single certificates have to be 



286 M. Trapp and D. Sch

 

composed. In order to yield
to modular certification. A
manual certification proces
a single subsystem at desig
certification is based on va
demands on other subsystem
modes of a received signal
specific safety integrity lev
text in general, such as the 
quality of the communic
cates@Runtime often follow
antees provided by the subs
to be fulfilled by the integr
mation on which safety pro
dition that the defined dem
mands is checked and the re
not a completely modular p
necessarily lead to a safe c
Therefore, it is often necess
at runtime (cf. section 5.1). 

 

Fig. 3. SafetyCertif

When subsystems are co
cates@Runtime as well. To
must be checked. In the sim
all preconditions of all con
tem must not be used. In m
tems are not harmonized w
safe match at all. In fact, su
the Certificate@Runtime to

hneider 

d such a Certificate@Runtime, the process is very sim
fter the subsystem has been developed, it must underg
s at design time. Usually, however, the safety assurance
gn time can only yield a conditional certificate, since 
arious assumptions. These assumptions might be concr
ms. For example, there might be a demand that the fail
l must be mitigated by another subsystem according t

vel. Other assumptions might consider the integration c
maximal number of collaborating subsystems, the type 
cation system used, etc. Consequently, SafetyCert
w the idea of safety contracts defining a set of safety gu
system and a set of safety demands the subsystems requ
ration context. This means that they provide runtime inf
operties can be guaranteed by the system under the prec
mands are fulfilled. At runtime, the fulfillment of the 
esulting guarantees are derived. Usually, however, safet
property, i.e., the composition of safe components does 
composition, even though the safety demands are fulfill
sary to perform additional checks in the integration cont

ficates@Runtime enable dynamic system composition 

omposed at runtime, it is possible to compose the Cert
o this end, the conditions defined in the runtime certifica
mplest approach, a system of systems is considered saf
ditional certificates are true. Otherwise, the system of s
most cases, however, the certificates of the single subs
with each other. So it is very unlikely that there will b
uch an approach is only reasonable if it is possible to ad
o the current integration context. 

milar 
go a 
e of 
the 

rete 
lure 
to a 
con-
and 
tifi-
uar-
uire 
for-

con-
de-

ty is 
not 
led. 
text 

 

tifi-
ates 
fe if 
sys-
sys-
be a 
dapt 



 S

 

Fig. 4. Runtime

Actually, the possibilitie
as adaptation in general. Th
ically selected in a given c
adaptations of the certificat
ceable, or even provable s
illustrated in Figure 4. If w
defining how the system a
used to adapt the certificate

Alternatively or addition
elements that are affected 
adaptations. In fact, traceab
the safety assurance of OA
traditional safety engineerin
the revalidation effort. As 
anticipated classes of syste
handled by simple variants 

As a further extension, 
adjust the runtime certificat

Usually, the adaptation g
antees in the given context
nally fulfilled safety deman

3.2 SafetyCases@Runt

The more adaptive a syste
adaptations in a Certificate
time since the complete a
process. Alternatively, it c
es@Runtime. Safety cases 
however, they include the 

Safety Assurance of Open Adaptive Systems – A Survey 

 

e adaptation of certificates provides more flexibility 

es of how a runtime certificate could adapt are as versa
here could be different pre-defined variants that are dyna
context. Or there could be more sophisticated and flexi
te. From a safety point of view, however, predictable, 
solutions are more likely to be accepted. Some ideas 
we assume, for example, that there is an adaptation mo
adapts in certain situations, this information could also
e.  
nally, a traceability model could be used to identify th
by system adaptations and to derive necessary certific
bility Models@Runtime might play an important role 

AS. An efficient impact analysis is of utmost importance
ng in order to identify necessary changes and thus red
long as the effects of adaptations can be traced back

em changes, even complex system adaptations could
in the SafetyModel@Runtime.  
it could be possible to use error detection mechanisms
tes using up-to-date runtime error information. 
goal for the certificates is to provide the best possible gu
. The context, in turn, is usually given by the set of ex

nds and the internal state of the system. 

time 

em is, the more difficult it is to consider all the differ
@Runtime. This particularly increases the effort at des

adaptation space must be considered in the certificat
could therefore be another option to provide SafetyC
are direct input to certification. In contrast to certifica
complete argument of why a system is considered s

287 

atile 
am-
ible 
tra-
are 

odel 
o be 

hose 
cate 
for 

e in 
duce 
k to 
d be 

s to 

uar-
xter-

rent 
sign 
tion 

Cas-
ates, 
afe.  



288 M. Trapp and D. Sch

 

A good safety case model i
the detailed requirements re
dence proving that the argu
fulfilled. 

SafetyCases@Runtime t
more flexible adaptation of 
plex to handle, since there i
a safety case to certification
quence, this will most likel
SafetyCertificates@Runtim

Classification Criteria: 
case that can be interprete
can be dynamically checke
With adaptation, the line a
tion, the revalidation of evi
tations lead to the invalidat

As shown in Figure 5, 
cates@Runtime. Instead of
possible to describe the 
es@Runtime to adapt the sa

Fig. 5. Conceptua

A certificate certifies th
models the argument of wh
at runtime, the resulting arg
mously which safety guaran

A basic element of safet
and validation results or the
time, it is possible to adapt
rently given context. As 
straightforward solution wo

hneider 

includes a complete breakdown of top-level safety goal
ealized in the system. And it particularly includes the e

uments used are sound and that the requirements have b

therefore provide more information at runtime and ena
f the system. In consequence, however, they are more co
is no pre-certification at design time and all the steps fr
n have to be shifted to runtime as well. As a further con
ly reduce the acceptance of such an approach compared

me. 
A SafetyCase@Runtime is a formalized, modular saf

ed and adapted at runtime. Based on the interpretation
ed to which extent the safety goals of subsystems are m
argument can be adjusted to system adaptations. In ad
idences at runtime must be supported in case system ad
tion of evidences. 
SafetyCases@Runtime extend the idea of SafetyCert

f explicitly defining the adaptation of the certificates, i
adaptation of the safety cases and use the SafetyC
afety certificates automatically. 

al model of how safety cases could be used at runtime 

hat certain safety guarantees are fulfilled. The safety c
hy these guarantees are fulfilled. If a safety case is adap
gumentation should enable the system to conclude auto
ntees can still be provided at which integrity level. 
ty cases are evidences, which are, for example, verificat
e results of safety analyses. By shifting safety cases to r
t (1) the argumentation and/or (2) the evidences to the c

regards the adaptation of the argumentation, a v
ould be to include different variants of the argumentati

s to 
evi-

been 

able 
om-
rom 
nse-
d to 

afety 
n, it 
met. 
ddi-
dap-

tifi-
it is 

Cas-

 

case 
pted 
ono-

tion 
run-
cur-
very 
ion. 



 Safety Assurance of Open Adaptive Systems – A Survey 289 

 

In more complex versions, more intelligence might be integrated that is able to derive 
new lines of argumentation. 

With regard to the evidences, it is necessary to attach constraints to the evidences 
used in the safety case. At runtime it is then necessary to evaluate whether or not 
these constraints are still fulfilled. If not, there are basically two combinable options. 
First, it is possible to find an alternative argumentation based on the remaining valid 
evidences – including argumentations that potentially require a reduction of the safety 
guarantees that can be provided in the given context. A second option would be the 
revalidation of evidences. This requires the capability to re-perform safety analyses as 
well as validation and verification activities at runtime. For SafetyCases@Runtime, 
let us assume that this revalidation is limited to repeating the checks defined at design 
time in order to provide the evidence. This presumes that the system adaptation does 
not lead to a change of requirements or a change of the system’s interface. 

If the respective pass-criteria are met, the newly created evidence can replace the 
invalidated original evidence and be integrated into a new argumentation. Otherwise, 
the evidence remains invalid and the system must either find an alternative line of 
argumentation or invalidate the affected safety goals.  

3.3 V&V-Models@Runtime 

SafetyCases@Runtime already provide a very flexible means for safety assurance at 
runtime. Some system adaptations, however, might require a new set of verification 
and validation checks to provide the evidence required for the argument. Moreover, it 
might be desirable to be able to remove the faults identified during runtime V&V 
instead of being limited to only checking the pass-criteria. 

For the former aspect, it is necessary to additionally enable the system to define ve-
rification and validation suites autonomously. Realizing the latter aspect even requires 
systems that are able to localize the causing faults, and to isolate or even remove 
them. Considering how difficult this step easily becomes for developers at design 
time, it is obviously a very challenging task to shift these activities to runtime. 

Classification Criteria: V&V-Models@Runtime presume that all models that are 
necessary to perform validation and verification activities (e.g., test cases, pass/fail-
criteria etc.) can be interpreted and adapted at runtime in order to create new evi-
dences after system adaptations. 

3.4 Hazard Analysis and Risk Assessment@Runtime (HRA@Runtime) 

In the previous alternatives, we assume that the requirements and the resulting safety 
goals are not adapted. As a consequence, it has only been necessary to adapt the ar-
gumentation that the safety goals are still met in spite of system adaptations based on 
the safety case and the evidences created at runtime. Some adaptation approaches, 
however, also consider a change of requirements at runtime. If we apply the safety 
lifecycle to the idea of Models@Runtime, this means that we require a hazard and 
risk analysis at runtime, i.e. that the system must adapt and extend the hazard and risk 
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analysis and potentially have to adapt and extend the set of safety goals. By doing so, 
the complete existing argumentation for a changed safety goal might be invalidated. 
For new safety goals, an argumentation is completely missing. On the one hand, this 
type of runtime assurance certainly provides the highest possible flexibility. On the 
other hand, however, it requires very intelligent mechanisms for defining a safety 
argumentation and generating the necessary evidence autonomously at runtime. 

Classification Criteria: HRA@Runtime implies that a hazard and risk analysis 
model can be interpreted and adapted at runtime. This includes the identification of 
new hazards and the reassessment of existing hazards after adaptations at the re-
quirement level. 

3.5 Evaluation of the Different Approaches 

Regarding the approaches described above, they obviously build upon each other. 
This means that a HRA@Runtime requires V&V-Models@Runtime, which in turn 
require SafetyCases@Runtime and so on. So it is necessary to decide to which extent 
we want to shift the safety lifecycle to runtime. This results in a trade-off decision. 
From a safety point of view, it is certainly preferable to leave as much responsibility 
as possible with a human expert. Consequently, it would be reasonable to have only 
SafetyCertificates@Runtime. From an adaptation point of view, however, it is prefer-
able to have as much flexibility as possible in order to tap the full potential of dynam-
ic adaptation. In consequence, this would require shifting elements of the complete 
safety lifecycle to runtime. 

In order to further illustrate this trade-off, Figure 6 shows the relations of the dif-
ferent approaches to their acceptance on the one hand and to their flexibility on the 
other hand. Acceptance in this case refers to the probability of acceptance by safety 
authorities and legislation. Since there is no practical experience available, this is a 
qualitative estimation. First, we assume that acceptance is inversely proportional to 
the responsibility and intelligence given to the system. Second, the acceptance of an 
approach is usually inversely proportional to its complexity. Or vice versa: The simp-
ler an approach can be realized, the more probable is its acceptance. For obvious rea-
sons, it is very probable that the required intelligence as well as the resulting com-
plexity will grow with the number of safety assurance steps that are shifted to run-
time. Consequently, in our opinion, SafetyCertificates@Runtime have the best 
chances of being accepted, whereas the acceptance of an HRA@Runtime (i.e., shift-
ing all safety assurance activities to runtime) is quite improbable. As a further aspect, 
acceptance will be higher if the Safety-Models@Runtime are reconfigured at runtime 
to predefined variants only, whereas acceptance will rapidly decrease if the safety 
models themselves are adapted more flexibly at runtime. 

Flexibility, on the other hand, represents the degree of which different types of 
adaptations are supported. More precisely, in this case we refer to the type of adapta-
tion used to adapt the system itself and not to the type of adaptation used to adapt the 
safety models, since different adaptation approaches might be used for the system 
itself on the one hand and the safety models on the other hand. In order to classify the 
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safety assurance framework from the very beginning. First, this obviously reduces 
complexity. Second, this enables us to use different assurance approaches for different 
modules. In this context, we use the term module very flexibly to express a modula-
rized entity that can range from a complete system in a system of systems to a single 
software component. Since the required types of adaptation usually differ widely 
across the different modules, it reasonable to limit more complex assurance approach-
es to those modules that actually have to adapt very flexibly. 

Following the idea of modular certification, it seems to be reasonable to use Safe-
tyCertificates@Runtime as the basic building blocks to enable the modularization and 
runtime integration of different subsystems. In this case, SafetyCertificates@Runtime 
are the common denominator enabling the combination of a wide range of different 
assurance approaches used for the single modules.  

Assume, for example, that we have a module that adapts to ‘known unknowns’ on-
ly, as shown in the upper left corner of Figure 7. Then it might be sufficient to per-
form the major safety assurance activities at development time and limit the runtime 
models to SafetyCertificates@Runtime only. If we have a module that has too large a 
configuration space or that also adapts to ‘unknown unknowns’, it might be necessary 
to have SafetyCases@Runtime as well, as shown in the upper right corner of Figure 
3-5. As described above, SafetyCases@Runtime are an extension of SafetyCertifi-
cates@Runtime, so a runtime certificate is still available at the module’s interface, 
facilitating the safe integration of the components. In some cases, a module might 
adapt so flexibly that we will need V&V-Models@Runtime or even an 
HRA@Runtime. However, realizing this is very complex, so it seems reasonable to 
keep the complexity of such modules very small. To this end, it is helpful that the 
modularization of the framework can be applied recursively to achieve hierarchical 
decomposition, as illustrated in the lower left corner of Figure 7. This decomposition 
additionally illustrates an alternative way of composing SafetyCertificates@Runtime. 
If we assume systems of systems for example, each providing a SafetyCertifi-
cate@Runtime, the single systems are usually sufficiently independent from each 
other that composition at the certificate level is likely to be sufficient. If we assume 
the runtime integration of different software modules running on the same platform, 
there are usually tight interdependencies. Merely the fact that they share the same 
resources, for example, creates a safety-relevant dependency. For this reason, it is 
likely that additional evidences will be required for proving that the integration of the 
single modules is safe as well. Therefore, it might also be reasonable to have Safety-
Cases@Runtime at the integration level. 

The acceptance of sophisticated assurance approaches, in particular, is very low. 
An alternative way to ensure the safety of highly adaptive systems is given by differ-
ent traditional approaches, particularly in the field of fault tolerance. So-called safety 
bags (cf. e.g., [47]), for example, are a typical concept for monitoring a function to 
detect anomalies and trigger counter-reactions. Assuming that it would be possible to 
define a safety bag that can detect and handle any safety-related failure of an adaptive 
module, it would not be necessary to provide further assurance of that module. 
Though such approaches are based on traditional mechanisms rather than Mod-
els@Runtime, they would nonetheless fit into our conceptual framework as shown in 
the lower right corner of Figure 7. 
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Summarizing, this conceptual framework has been created based on a prognostic 
evolution of state-of-the-practice safety engineering lifecycles using the idea of Mod-
els@Runtime as a catalyst, which it uses to build a conceptual bridge between the 
world of safety engineering on the one hand and Models@Runtime on the other hand. 
Being based on safety engineering principles makes acceptance of the approach more 
likely. Yet it provides sufficient flexibility to integrate various different solution ap-
proaches based on Models@Runtime. Therefore, in the subsequent chapters we will 
analyze the state-of-the-art with respect to the suitability of the different approaches 
to fit into specific parts of the framework. We will further identify ‘white spots’ and 
interfaces for future research. 

4 State-of-the-Art from the Safety Engineering Community’s 
Point of View 

As already discussed above, Open Adaptive Systems have long been beyond the 
scope of the safety engineering research community. However, the work that has been 
done in the direction of modular certification might well prove to be a sound founda-
tion for tackling the safety-related challenges posed by Open Adaptive Systems. 
Moreover, there are some first approaches advocating the introduction of runtime 
measures. The state-of-the-art presented in this chapter consequently focuses on ap-
proaches from the safety engineering community that either belong to the aspiring 
research field of modular certification, or that advocate certain runtime measures for 
the context of OAS. 

In general, modular certification can be characterized as a means for the modulari-
zation of safety cases. The safety case is modularized such that components devel-
oped by different suppliers, and components that are likely to be replaced or reused, 
specify a self-contained modular safety case. These modular safety cases, specified by 
the module developer, are connected on the system level by the integrator to build the 
system safety case. In order to be able to assemble the system safety case, each mod-
ule must provide an interface specification containing the module’s guaranteed beha-
vior and the behavior demanded of other interacting modules. Demands are necessary 
since the behavior of the module at hand depends on the behavior of the other  
modules it is interacting with. Therefore, the module at hand is only able to give guar-
antees under the premise of a certain behavior of the interacting modules. These pre-
mises are called demands and, together with the afore-mentioned guarantees, shape 
demand/guarantee contracts.  

The idea to use contracts as a metaphor for describing the interaction of compo-
nents with mutual obligations and benefits can also be found in approaches that do not 
specifically focus on safety, such as those presented in Section 5.1.1. These approach-
es do, however, focus on specifying the nominal behavior and/or specific quality cha-
racteristics of components and do not consider a component’s failure behavior (how 
does the component fail, what failures of other components can the component tole-
rate), which is essential for safety-related modularization. 
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4.1 Foundational Work on Modular Certification 

To enable modularization of safety cases, it is crucial to formalize the relevant infor-
mation in an appropriate way. As a first step, it is necessary to enable modular safety 
analyses. A corresponding starting point is given by techniques from the class of fail-
ure logic modeling (FLM) [48], where the failure logic is modeled separately for each 
component and the failure logic model defines how deviations at the input of a com-
ponent propagate to deviations at the outputs of the component. Architecture models, 
which are (should be) available anyway, define how the components are connected. 
Based on the architecture, it is therefore possible to also connect the failure logic 
models of the component, and the failure propagation throughout the overall system 
can be analyzed automatically. Prominent solutions in this regard are the ‘Hierarchi-
cally Performed Hazard Origin and Propagation Studies’ – HiP-HOPS [49] and the 
‘Failure Propagation and Transformation Notation’ – FPTN [50]. Another approach 
that is based on safety contracts has been proposed by Hawkins and McDermid[51]. 
Moreover, component fault trees [52] provide an extension for the well-known tech-
nique of fault trees that supports the modular, component-based definition of fault 
trees [53]. Fault trees and CFTs generally also enable probabilistic analyses by anno-
tating faults with respective probabilities of occurrence. Since it is often not possible 
to determine concrete probabilities for a given event, Foerster and Schneider intro-
duced an approach that uses intervals of probabilities to efficiently deal with such 
uncertainties during development [54]. 

4.2 Modular Certification as Represented by Current Standards  

Some concepts related to modular certification have already been adopted by current 
standards and thus found their way into the state of the practice. This is particularly 
true for the fields of automotive systems and avionic systems because the trend to-
wards modularized architectures has been particularly strong in these fields. The fol-
lowing paragraphs provide a brief overview of the corresponding standards and the 
modularization concepts they advocate.  

4.2.1 ISO 26262 
The international standard ISO 26262 for the functional safety of street vehicles con-
tains the so-called concept of Safety Element out of Context (SEooC) [55]. A SEooC 
is defined as a component for which there is no single predestinated application in a 
specific system. Therefore, the SEooC developer does not know the concrete role the 
product has to play in the safety concept. Subsystems, hardware components, and 
software components may be developed as SEooCs. Typical software SEooCs are 
reusable, application-independent components such as operating systems, libraries, or 
middleware in general. 

For SEooC development, the standard suggests specifying assumed safety re-
quirements and developing the system according to these requirements. When the 
SEooC is to be used in a specific system, the system developer has to specify the  
demanded requirements, which can subsequently be checked against the assumed 
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requirements. If there is a match between the demanded and the guaranteed (assumed) 
requirements, system and component are compatible. The standard does not provide 
any suggestions or methods on how to identify safety requirements such as to increase 
the chance that assumed and real requirements match. Neither does the standard pro-
vide information on how to perform the verification of the assumed requirements 
during integration of the SEooC. The standard specifies a relatively coarse-grained 
process for embedding a SEooC development into the standard’s safety lifecycle. In 
general, SEooC integration is expected to be done at development time and thus there 
is no explicit support for open systems where components are to be integrated dynam-
ically. Moreover, there is no explicit support with respect to the management of va-
riabilities, be it at development time or at runtime. 

4.2.2 DO-297 
The DO-297 [56] standard regulates the modular certification of components in an 
Integrated Modular Avionic (IMA) system. The terminology of the standard talks of 
incremental acceptance instead of modular certification. Acceptance is defined as the 
confirmation of a certification body that a module of an IMA system (a general-
purpose execution platform or an application) fulfills its specification. This accep-
tance can be achieved for an IMA system and is one building block of the final  
certification, with the latter always being in the context of a specific airplane or en-
gine. The wording incremental has been chosen because the process of the DO-297 
allows step-wise acceptance of single modules of a system and because it allows in-
crementally extending a system with new applications, without having to re-certify all 
the modules in the system. 

4.3 State-of-the-Art for Modular Certification Approaches 

This section briefly describes a selection of prospective modular certification ap-
proaches. All these approaches are briefly described and their applicability in the 
context of Open Adaptive Systems is considered. 

4.3.1 Concepts for Modular Certification by Rushby  
Rushby provides some theoretical considerations on the use of modular certification 
for software components in IMA architectures. The goal is to enable the certification 
of software components in order to allow them to perform their functions in a given 
(aircraft) context based solely on assumptions about other related software compo-
nents. Three key elements were identified as the potential backbone of a correspond-
ing approach [60]: 

1. Partitioning creates an environment that enforces the interfaces between compo-
nents; thus, the only failure modes that need be considered are those in which 
software components perform their function incorrectly, or deliver incorrect be-
havior at their interfaces.  
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2. Assume-guarantee reasoning is a technique that allows one component to be 
verified in the presence of assumptions about another, and vice versa.  

3. Separation of properties into normal and abnormal properties. Abnormal proper-
ties capture behavior in the presence of failures.  
 

To ensure that the assumptions are closed and the system is safe, three classes of 
properties that must be established using assume-guarantee reasoning were identified: 

 
1. Safe function ensures that each component performs its function safely under all 

conditions consistent with its fault hypothesis; 
2. True guarantees ensure that each component delivers its appropriate guarantees; 
3. Controlled failure is used to prevent a ‘domino effect’ where the failure of one 

component causes others to fail, too. 
 

It is important to note that the publication presents conceptual foundations but does 
not provide concrete solutions. Still, the presented concepts are clearly relevant and 
likely to be of avail for future work in the context of the envisioned framework. 

4.3.2 Modular Goal Structuring Notation 
The Goal Structuring Notation (GSN) [61] is a graphical notation for modeling a safe-
ty argument, which is the core part of every safety case. A safety case has been de-
fined in the context of the GSN as follows: 

‘A safety case communicates a clear, comprehensive and defensible argument that 
a system is acceptably safe to operate in a particular context.’ 

Therefore, a safety case serves the purpose of specifying a comprehensive argu-
ment to prove the safety of a system. To this end, the GSN allows modeling tree-like 
arguments beginning with safety goals, and iteratively connecting them through 
chains of logical argumentation and sub-goals, with the evidences created during 
system development. Evidences can be performed tests or analysis reports from an 
FMEA or an FTA that are used for underpinning the fulfillment of the goals. 

In order to deal with modular systems and modular certification, there is an exten-
sion to GSN that allows modularizing safety cases [62]. The interface of a safety case 
module is defined by a set of public items that are available for use in other safety 
case modules and a set of items that the safety case module at hand demands from 
other modules. Those items can be goals, evidences, and context. 

A strategy for the construction of a modular safety case architecture is given in 
[63]. These guidelines are based upon the guidelines for general modular system de-
sign and comprise the following requirements: 

• Modules must be as independent as possible. 
• Modules must exhibit high cohesion and low coupling. 
• Modular safety cases and safety case architectures must be constructed 

top-down. 
• Modules must have well-defined interfaces. 
• All modular dependencies must be captured. 
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In summary, modular GSN is a graphical notation that allows modeling modular 
safety arguments. As described above, there are also product-related guidelines for the 
specification of modular safety arguments. Openness and adaptivity are not explicitly 
addressed, whereas the modularization concepts would at least provide a starting 
point for corresponding augmentations. Apart from that, it has been shown that the 
GSN can be utilized in conjunction with a software product line approach [64]. Con-
sidering SafetyCases@Runtime, a GSN-like notation might be a possible starting 
point. Usually, however, the single elements of a GSN-based safety case are described 
in natural language. Using GSN at runtime will require an appropriate means for for-
malizing the notation in order to enable runtime evaluation and adaptation.  

4.3.3 The Generic Safety Case in DECOS 
The DECOS (Dependable Embedded Components and Systems) project [65] was a 
European Integrated Project in the FP6 Embedded Systems area which ran from 2004 
to 2007. The main objective of the project was to make a significant contribution to 
the safety of dependable embedded systems by facilitating the systematic design and 
deployment of integrated systems [66]. In order to reach this objective, a generic safe-
ty case approach for incremental certification was developed, which improves the 
efficiency of the certification process and thus shall facilitate significant cost savings 
during the development of safety-critical systems.  

According to [66] and [67], modularity is achieved by separating the certification 
of core services and architectural services from applications (enabling generic appli-
cation safety cases (for the class of applications) and individual (specific) safety cases 
by supporting independent safety arguments for different distributed application sub-
systems). 

1. Separating certification of architectural services from certification of applica-
tions: The clear interfaces between the platform and the applications provided 
via the platform interface are a prerequisite for the separation of the certifica-
tion of architectural services from the certification of applications. 

2. Separating certification of different distributed application subsystems: The 
integrated architecture allows the independent certification of different appli-
cation subsystems, instead of considering the system as an indivisible whole in 
the certification process. The safety argument for each subsystem is provided 
to the integrator by the suppliers along with the compiled application code of 
the jobs in the corresponding subsystem. In order to construct the safety argu-
ment for the overall system, the system integrator combines the safety argu-
ments of the independently developed subsystems and acquires additional  
evidence, such as the results of a formal verification of the architectural ser-
vices. The decomposition of the overall system into encapsulated subsystems 
with different criticality levels reduces the overall certification efforts and al-
lows focusing on the most critical parts. Furthermore, the separate certification 
of subsystems is beneficial if functionality is reused in different systems.  
In this case, the safety argument for the functionality needs to be constructed 
only once. 
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Like the approaches above, DECOS supports the modularization of development 
time safety artifacts. Openness and adaptivity are not explicitly supported and all 
certification activities are to be conducted at development time. However, the incre-
mental approach adopted by DECOS seems to be well suited to handling variability at 
development time, maybe in conjunction with an adequate software product line ap-
proach as it has already been explored for the GSN. 

4.3.4 Vertical Safety Interfaces 
The goal of the VerSaI (Vertical Safety Interfaces) method is to assist the integrator of 
an integrated architecture in checking whether the application software components 
are able to run safely on the execution platforms of the system, and if so, provide 
assistance in generating appropriate evidence [72]. 

Before safety compatibility between the application and the platform can be 
checked with the VerSaI approach, demands and guarantees have to be specified. 
Demands are typically used to express all the properties a platform needs to have for 
an application to be executed safely, whereas guarantees represent the safety-related 
properties the platform possesses. A compatibility check is successful if a sound  
argument for the fulfillment of the demands with the available guarantees can be es-
tablished. To enable tool-supported integration, the VerSaI approach offers a semi-
formal language for modeling these demands and guarantees. The language consists 
of a number of elements, each representing a certain type of demand or guarantee 
exchanged by an application and a platform. This implies the noteworthy fact that 
there is a finite number of language elements and, therefore, also a finite number of 
dependencies that can be expressed with the language. First evaluations have shown 
that this is suitable, because the typical service relationships between an application 
and a platform are finite and regular, too, which is also the reason why platforms have 
been standardized in the first place. 

The final step of the method is to check whether each demand can be met with the 
guarantees identified as relevant in the previous step. In contrast to conventional inter-
faces, it is usually not possible to simply match demands and guarantees, respectively. 
In fact, it is necessary to generate an additional fragment in the safety case providing 
the arguments and evidences that the demands of the platform are met by the guaran-
tees given by the platform. To this end, this step is supported by a so-called strategy 
repository. The repository contains expert strategies that are selected and presented to 
the integrator and describe what guarantees are needed to fulfill the current type of 
demand and how to generate a piece of evidence containing a sound argument. 

Like the other modular certification approaches, Versa focuses on development 
time integration. However, it provides some interesting aspects that could be of relev-
ance for SafetyModels@Runtime. First, it already provides a formalization of the 
interface language, thus facilitating automated checks of interface consistency. 
Second, it introduces first ideas of how missing fragments of a safety case could be 
generated automatically. Though this is currently not possible without human interac-
tion, some ideas could be a starting point for extending/modifying safety case argu-
mentations at runtime. However, VerSaI is limited to the vertical interface between 
application and platform software. This has the advantage that the typical safety  
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requirements concerning this vertical interface are quite limited - thus simplifying the 
formalization of the interface language. For OAS, this approach would have to be 
extended to horizontal interfaces as well. However, those interfaces are usually appli-
cation dependent so that the formalization approach used in VerSaI cannot be easily 
extended to support horizontal interfaces as well. 

4.4 Runtime Certification 

First ideas with respect to runtime certification have been introduced by Rushby[68], 
[69]. In contrast to most of the other approaches presented in this section (which are 
already quite mature and have partly even been proven in use), Rushby`s work re-
mains on a rather conceptual level. However, considering its motivation and the solu-
tion concepts presented, it is very important in the context of safety assurance of 
OAS. 

In the first publication, Rushby presents the general idea that certain elements of a 
conventional certification case could be transferred to runtime. The focus is on those 
elements that apply formal analyses (e.g., automated verification) to representations 
of a software component and its local safety or other critical requirements. Formal 
analyses are usually employed at development time to formally verify that a compo-
nent follows a certain prescribed behavior. At runtime it would be possible to employ 
monitors to control the component’s behavior during execution and to trigger ade-
quate measures when deviations occur. Such monitors might be synthesized from the 
model that specifies the component’s behavior using very similar—and equally trust-
worthy—techniques as those used in formal verification. 

In the second publication, Rushby outlines a framework in which the basis for  
certification is changed from compliance with standards to the construction of explicit 
goals, evidences, and arguments (generally called an ‘assurance case’). He then de-
scribes how runtime verification can be used within this framework, thereby allowing 
certification to be partly performed at runtime. The core of this approach is again  
the usage of runtime monitors, which have been defined outside the context of an 
assurance case in order to dynamically monitor assumptions, anomalies, and safety, 
respectively.  

Overall, the presented work is still very conceptual but nevertheless provides a 
good starting point for future work in the context of the envisioned framework. One 
of the main ideas advocated by Rushby, namely to shift parts of the safety assurance 
measures into runtime to cater to the specific challenges within OAS, has also been 
adopted by us in the framework presented here.  

4.5 Discussion 

From the state-of-the-art in safety engineering approaches that support modularization 
it becomes apparent that openness and adaptivity have been largely out of scope and 
thus are not explicitly supported by most approaches. Moreover, even though the 
umbrella term ‘modular certification’ seems to suggest otherwise, all of the consi-
dered approaches and standards rather focus on the modularization of pre-certification 
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safety artifacts, particularly safety cases. The only exceptions are the approaches on 
runtime certification, which build on pre-certification of the system. Since most ap-
proaches have been designed to support engineers during their development time 
activities, they lack an adequate degree of formalization, which would be required for 
automated runtime evaluations. All of these approaches nevertheless provide sound 
conceptual starting points for new safety engineering approaches for Open Adaptive 
Systems. As for supporting adaptivity, some of the presented modular certification 
approaches (such as the GSN) have at least been used in conjunction with software 
product lines. Others, such as the approach introduced by Rushby, DECOS and Ver-
SaI, seem to be well-suited in this regard as well.  

As the considered approaches are more or less established in the safety engineering 
community, using them as a starting point for Models@Runtime certainly increases 
the probability of acceptance. Since the approaches are mainly based on safety cases, 
they would provide a good starting point for research in the direction of SafetyCertifi-
cates@Runtime or for SafetyCases@Runtime. 

Apart from the modular certification approaches discussed above, the runtime cer-
tification approach presented by Rushby builds on dynamic monitoring (and repair) of 
the systems’/components’ behavior. This approach could fit into the category of 
V&V-Models@Runtime. Based on the conceptual descriptions, however, it seems 
that mainly predefined verifications can be executed at runtime. So depending on the 
concrete realization of these concepts, they will rather support the re-validation of 
evidences as part of SafetyCases@Runtime. 

5 State-of-the-Art from the Adaptive Systems Community’s 
Point of View 

Some of the first significant research efforts for adaptive systems emerged from the 
middleware community, where adaptive middleware platforms have been designed to 
meet the new demands of flexible, distributed heterogeneous systems. Examples in 
this regard are the solutions proposed by Blair et al. [4], Kon et al. [5], Capra et al. 
[6], and Truyen[7]. These solutions were mainly designed to enable adaptability (i.e., 
reconfiguration of the middleware or platform to fit a given setting) or even self-
adaptation (i.e., an adaptive middleware or platform that dynamically adapts itself to 
provide optimized service functionality and quality in any situation). A related field of 
research, where the topic of self-adaptivity also gained momentum quite early, is the 
field of adaptive quality of service (QoS) assurance. Corresponding research has 
mostly focused on communication systems and end-to-end consideration of QoS. The 
results have been platforms, middleware, and frameworks enabling adaptive QoS. 

It was soon recognized that quality assurance for adaptive systems is an important 
topic with significant scientific challenges. Initial corresponding research efforts have 
mostly focused on the issues of validation and verification (V&V) of adaptive sys-
tems. First results were based on development time V&V, but recently we have seen 
that V&V measures are being increasingly shifted into runtime. The upcoming topic 
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of Models@Runtime seems to be a catalyst in this regard. Thus, even more capable 
Models@Runtime-based approaches for runtime V&V can be expected in the future.  

In recent years, one main research focus of the community has been to investigate 
sound engineering methodologies for adaptive systems. Such methodologies ideally 
span all typical phases of software development (from requirements engineering to 
the validation of the final product) and explicitly consider important non-functional 
properties. This methodological research focus has been pushed by community re-
search roadmaps [1]and has been advocated strongly by conferences in the area of 
adaptive systems, e.g., the SEAMS symposium [8] and the SASO conference [9]. In 
the context of engineering frameworks, the different fields of adaptive systems re-
search are growing together ever more. The current Models@Runtime research land-
scape underlines this trend, since researchers from the fields of adaptive middleware, 
V&V, and engineering methodologies are working together to develop seamless ap-
proaches combining all these important aspects under the umbrella of the Mod-
els@Runtime topic[2][3]. Relatedly, Baresi and Ghezzi argue that the clear separation 
between development-time and run-time is blurring and is probably doing so even 
further in future [74]. 

From the perspective of the envisioned safety assurance framework, there are con-
sequently two categories of approaches that will be considered in more detail in the 
following: 

1. Approaches concentrating on V&V in the context of adaptive systems. V&V 
is here not necessarily aimed at safety assurance. Nevertheless, the approaches 
can be valuable input for future approaches in the context of the envisioned 
framework. A short overview of the state-of-the-art will be provided and the 
assurance scope of the different approaches will be considered. Note that com-
pleteness cannot be a goal for this article, thus we rather tried to identify a rep-
resentative set of approaches covering the most important different classes. 

2. Frameworks and approaches for adaptive systems that enable the utilization of 
Models@Runtime for different relevant concerns. Such approaches provide a 
possible technological basis and therefore define the frame the envisioned 
safety assurance framework would have to be integrated into. The approaches 
will be briefly presented and analyzed with respect to their runtime assurance 
capabilities and their usage of Models@Runtime. Again, completeness was 
not the goal. For this part of the state of the art we also compiled a possibly 
representative set of approaches to indicate the current status quo of Mod-
els@Runtime approaches in relation of assurances – and safety in particular. 

5.1 Approaches Using Validation and Verification as a Means for Assurances 

The approaches considered in this section focus on ensuring certain properties 
through the application of adequate V&V techniques. Some approaches rely on de-
velopment time measures alone, whereas others utilize runtime measures or a combi-
nation of both. For both cases, this section will provide an overview of the respective 
state-of-the-art. Prior to that, however, there will be a paragraph on contract-based 
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design, since this is an enabling technology for efficient V&V. Moreover, safety con-
tracts and assume-guarantee reasoning are likely to be enabling technologies for im-
portant parts of the envisioned framework. 

5.1.1 Design by Contract 
About twenty years ago, Meyer introduced a set of basic principles of Design by Con-
tract in the context of his Eiffel language [23]. Since then, a wide range of related 
approaches have been developed for the specification and utilization of different kinds 
of functional and non-functional contracts. Beugnard et al. provide a recent overview 
of the general use of Design by Contract concepts in the domains of embedded sys-
tems, component architectures, and service oriented architectures [24]. The work in 
the respective domains is classified according to a scheme introduced in an earlier 
publication by the authors [25]. Essentially, the types of contracts are classified into 
four levels:  

1. Syntactic (or basic): The goal is to make the system work. It is generally speci-
fied with Interface Definition Languages (IDLs), as well as typed object-based or 
object-oriented languages. It ensures the components can be assembled. 

2. Behavioral: The goal is to specify each operation. It is generally specified with a 
couple of assertions: a precondition and a post-condition. It ensures the opera-
tions offered and required are not only syntactically compatible but also semanti-
cally. 

3. Synchronization: The goal is to specify the coordination of operations. It can be 
specified with an automaton labeled with operations. It ensures the operations are 
used in the proper order. 

4. Quality of Service: The goal is to quantify a few features associated with opera-
tions. Performance, availability, and quality of result can be specified and nego-
tiated at that level. 

An interesting and widely recognized approach for contract-based design (even 
though not specifically addressing adaptive systems) is the Rich Component Model 
(RCM). The RCM is the backbone of the embedded systems design approach devel-
oped in the SPEEDS project (Speculative and Exploratory Design in Systems Engi-
neering) [26]. One primary goal of the RCM is to optimize the reuse of embedded 
applications. Safety-relevant applications are explicitly included. The main ideas 
forming the foundation of the approach are described in [28]. 

The language typically used to describe such contracts is hybrid automata as shown 
in [27], [28] and [29]. There are formal definitions for the semantics of the hierarchic-
al and horizontal composition of the contracts, which allows checking the fulfillment 
of system-level requirements after the system has been integrated, using a model 
checker for example. The formality of the approach increases the achievable degree of 
automation while equally increasing the upfront effort for modeling the system. The 
RCM is therefore a modeling paradigm that allows specifying the contract interface of 
a modular safety argument. 

In relation to assurances and adaptable systems, Inverardi et al. recently presented 
a theoretical assume-guarantee framework for adaptable systems [30] that can be used 
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as a basis for establishing runtime contracts and thus also for V&V in adaptive  
systems. The major aim of this framework is to define efficient conditions to be 
proved at runtime to guarantee the correctness of the adaptation of a composed  
adaptive system. 

Conditional Safety Certificates (ConSerts) are a means for facilitating safety certi-
fication in the context of OAS [70] [71] [76]. This is one of the approaches explicitly 
addressing Open Adaptive Systems. There are three main differences between Con-
Serts and standard certificates that are owed to the nature of open systems: A ConSert 
is not static but conditional; it usually comprises a number of variants; and it must be 
available in an executable (and composable) form at runtime. Conditions within a 
ConSert manifest in relations between potentially guaranteed safety requirements 
(denoted as guarantees for the remainder of this article) and the corresponding de-
manded safety requirements (i.e., demands). The demands always represent safety 
requirements relating to the environment of a component, which consequently cannot 
be verified yet at design time. A ConSert therefore certifies that the guarantees will 
hold with acceptable probability under the precondition that the specified safety de-
mands are fulfilled by the environment. Variants come into play because ConSerts 
usually comprise not only one but a series of different potential guarantees. Eventual-
ly, the ConSerts must be available at runtime in an executable representation and the 
systems need to possess mechanisms for composing and analyzing these runtime 
models. Using these means makes it possible to establish and maintain safety con-
tracts at runtime that span all levels of a composition hierarchy through pairs of Con-
Sert-based guarantees and demands.  

In the same way as standard certificates, ConSerts shall be issued by safety experts, 
independent organizations, or authorized bodies after a stringent manual check of the 
system. To this end, it is mandatory to prove all claims regarding the fulfillment of 
safety requirements by means of suitable evidence. The guarantees that can be pro-
vided by a system usually depend on the fulfillment of demands. On the one hand, 
these demands might directly relate to the required functionalities of other systems. In 
other cases, some evidences must be acquired at the integration level, since safety is 
not completely composable. To this end, ConSerts support the concept of so-called 
runtime evidences. The resulting variability (of the fulfillment of demands) ultimately 
leads to variants and conditions within the safety case, which are the basis for the 
definition of ConSerts. 

In terms of the conceptual assurance framework, ConSerts belong to the class of 
SafetyCertificates@Runtime. But they also support single elements of SafetyCas-
es@Runtime through the instrument of runtime evidences. 

5.1.2 Approaches Utilizing Development Time V&V for Assurances 
In [31], Zhang and Cheng introduce a method for constructing and verifying adapta-
tion models using Petri nets. In [32], linear temporal logic is extended with an ‘adapt’ 
operator for specifying requirements that a given system must match before, during, 
and after adaptation. An approach for ensuring the correctness of component-based 
adaptation was presented in [33], where theorem proving techniques are used to show 
that a program is always in a correct state in terms of invariants. [34]introduces a 
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formal model of reconfiguration and an associated set of high-level system dependa-
bility properties that can be verified. Giese and Tichy introduced a development-time 
hazard analysis approach for analyzing all configurations a self-adaptive system can 
reach during runtime [35]. In [75], Becker et al. present a further development time 
verification technique for the invariant verification of structural properties. This tech-
nique has been designed to be appropriate for large multi-agent systems that are sub-
ject to structural adaptations at runtime. 
Mohammad and Alagar recently introduced a formal approach for the specification 
and verification of trustworthy component-based systems [36] that advocates formal 
specifications and dedicated safety properties as a basis for V&V. The properties can 
be defined as constraints (such as time or data constraints) at the component level and 
are to be understood as invariants over the component behavior. The behavior can be 
defined using timed automata. Eventually, the specifications enable automated analy-
sis and verification (through model checking) of the considered properties.  

All of the above approaches have in common that they try to analyze (with respect 
to safety or other specific properties) all possible variants that a given system might 
assume during runtime. Based on the analysis results, engineers can implement ade-
quate measures to improve or ensure the considered properties. 

5.1.3 Approaches Utilizing Runtime V&V for Assurances 
Runtime V&V measures are typically applied in a complementary way together with 
corresponding development-time activities. On the one hand, there are runtime verifi-
cation techniques that utilize runtime monitoring to record software execution traces 
that can then be analyzed [37]. On the other hand, there are approaches that employ 
quantitative model checking at runtime as an assurance technique for the context of 
adaptive systems (e.g., [38], [39], and [40]). In [43], Goldsby et al. present 
AMOEBA-RT, a run-time monitoring and verification technique that provides assur-
ance (based on dynamic model checking) that dynamically adaptive software satisfies 
its requirements. Calinscu and Grunske introduced the QoSMOS (QoS Management 
and Optimization of Service-based systems) framework for the development of adap-
tive service-based systems that are able to manage their QoS adaptively and predicta-
bly [44]. QoSMOS utilizes probabilistic model checking at runtime to evaluate if the 
system satisfies the given QoS requirements. In the traditional development-time 
versions of these kinds of approaches, the analysis of temporal-logic properties (in-
cluding probabilities, costs, and rewards) is commonly used to assess relevant non-
functional properties of a system. At runtime, such analyses can be performed on a 
model base that is continually updated as the underlying system evolves. In general, 
this introduction of runtime measures for the context of adaptive systems is particular-
ly promising since traditional development-time techniques do not scale sufficiently 
well. Moreover, at runtime, detected issues can be addressed directly with adequate 
adaptations (i.e., countermeasures). A short related survey (which is not limited  
to V&V) considering runtime assurance techniques for adaptive systems has recently 
been published by Calinescu[42]. A further approach that is particularly focused on  
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safety has been proposed by Priesterjahn et al. in [41]. The main idea of this approach 
is to ensure the safety of adaptive systems during runtime by checking whether recon-
figuration is allowed based on associated hazard probabilities and potential damage 
that would be imminent after the reconfiguration. To this end, adapted hazard and risk 
analysis techniques are applied during runtime.  

5.2 Frameworks for Adaptive Systems and Models@Runtime 

5.2.1 MADAM and MUSIC 
The MADAM (Mobility and Adaptation Enabling Middleware) European project and 
its follow-up MUSIC (Self-Adapting Applications for Mobile USers In Ubiquitous 
Computing Environments) aimed at providing techniques and tools for reducing the 
time and effort needed to develop self-adaptive mobile applications [10][11]. To this 
end, these projects propose an architecture-centric approach where dynamic adapta-
tion is realized in an application-independent adaptation middleware. Architectural 
models of the applications are made available at runtime and serve as a basis for rea-
soning about and controlling the adaptation. Meta-models for the specification of 
these models are provided by means of a dedicated component framework. 

In order to realize runtime adaptation, MADAM and MUSIC employ an applica-
tion-independent adaptation middleware that is implementing a typical adaptation 
control loop with the following responsibilities: 

1. Monitor both system and user context. The system context consists of system 
resources such as battery level, CPU utilization, memory usage, and network 
resources. The user context subsumes information on the environment and on 
the user’s (maybe correlated) needs.  

2. Analyze the context and the context changes that occur and plan reasonable 
changes of the system. To this end, utility functions are used to assess which 
implementation variant of a certain component type would fit the given adap-
tation goals best. On the system level, global utility functions are used (which 
can aggregate the component-level utility functions) to compute the overall 
utility of an application. This allows evaluating all the different configuration 
possibilities (i.e., it is a brute-force approach) and the most useful one in the 
given circumstances can be chosen at the end.  

3. Implement the changes – preferably without noticeably interrupting the opera-
tion of the system. 

Regarding assurances, MADAM and MUSIC explicitly address the management of 
functional and non-functional properties. However, the properties are only addressed 
in a generic way and managed via ‘best-effort’ without ‘hard’ guarantees.  

5.2.2 DiVA – Dynamic Variability in Complex, Adaptive Systems 
The European DiVA project can be considered as a predecessor of the 
MADAM/MUSIC series. In detail, the project had the following main research objec-
tives [45]: 
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• To provide both build-time and runtime management of the adaptive system 
(re)configuration of co-existing, co-dependent configurations that can span across 
several administrative boundaries in a distributed, heterogeneous environment. 

• To provide efficient management of the number of potential configurations that 
may grow exponentially with each new variability dimension. 

• To increase the quality and productivity of adaptive system development and help 
the designers to model, control, and validate adaptation policies as well as the tra-
jectory from one safe configuration to another. 

DiVA tackles these challenges by applying and combining techniques from the 
fields of software product lines (SPL), model-driven engineering (MDE), and aspect-
oriented modeling (AOM). Moreover, DiVA has a strong focus on utilizing such 
Models@Runtime, in accordance with the Models@Runtime paradigm. In [46], the 
DiVA contribution is summarized as follows:  

At design time, engineers can avoid manually designing all of the system’s possi-
ble configurations and transitions by explicitly defining an adaptive system as a Dy-
namic Software Product Line (DSPL). At runtime, the system analyzes the context 
and explicitly constructs a suitable configuration using AOM techniques. It also vali-
dates this configuration using traditional MDE techniques: invariant checking, simu-
lation, and so on. Finally, the system automatically generates a safe reconfiguration 
script to actually adapt the running business system. If the produced configuration is 
not consistent, the system simply discards the configuration and derives a new one. 
Since the running business system has not been adapted yet, it is not necessary to 
perform a rollback. This process is open to evolution—designers can make the DSPL 
evolve by seamlessly adding or removing variants, constraints, rules, and so on. 

Note that assurances were not the focus of DiVA and non-functional properties 
were only considered in a generic way. Still, the management of generic properties 
through models at runtime and runtime self-adaptation was foreseen.  

5.2.3 Robocop, Space4U and Trust4ALL 
The main goal of the ROBOCOP, Space4U, and Trust4ALL [12][13][14] series of 
European projects was to establish an adequate component-based architecture and 
middleware for OAS. According to [15], Robocop introduced a component-based 
framework for high-volume embedded devices with a focus on robust and reliable 
operation, upgrading, and component trading, while the focus of Space4U was on the 
validation, maturation, and extension of the Robocop architecture by introducing fault 
management, power management, and terminal management. Trust4All essentially 
extended the component-based middleware developed in the course of its two prede-
cessors with respect to a trust management framework. 

Correspondingly, according to the Trust4All innovation report [16], the project 
‘has defined, designed and developed a middleware software architecture specifically 
targeted at embedded systems that require a predefined level of trust, due to the nature 
of the services they provide. The project focuses on the trustworthiness-related as-
pects of the middleware software architecture in domains such as home medical care, 
security and automation, as well as on-the-move applications, for which dependability 
is particularly important’. A further important result of the project is the ISO/IEC 
23004 standard on middleware, where seven of the eight parts of the standard were 
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contributed by Trust4All (Architecture, Component Model, Resource and Quality 
Management, Component Download, Fault Management, System Integrity Manage-
ment, and Reference Software). 

In essence, the main scientific contribution of Trust4All, the trustworthiness  
management approach, is enabled through a trustworthiness model and a trust man-
agement framework model. The assurance scope of Trust4All can be classified as 
‘assurance of trust-related properties’, although the reputation- and recommendation-
based approach is not compatible with safety assurance in a traditional sense (i.e., 
certification would not be possible on that basis). Trust4All explicitly supports self-
adaptation for assurance purposes, utilizing a runtime configurable fault management 
mechanism [14].  

5.3 Discussion 

Adaptive systems and Models@Runtime frameworks and approaches contribute the 
technological basis and knowledge for representing and utilizing runtime models for 
different concerns. Regarding the assurance and management of non-functional prop-
erties, however, these approaches remain very generic and are not designed to provide 
‘hard’ guarantees. Accordingly, these approaches do not provide a sufficient metho-
dological backbone, which is indispensable for safety assurance and certification. 

Due to reasons of complexity, development time V&V as the sole measure for en-
suring important properties of an adaptive system is only really feasible for closed 
adaptive systems. In contrast to OAS, for closed adaptive systems it is generally poss-
ible (although potentially very complex, depending on the applied adaptation con-
cepts) to conduct sufficient safety analysis based on holistic system models already at 
development time. Therefore, one commonality of these approaches is that they focus 
on closed systems and on specific adaptation concepts that facilitate controlling the 
size of the adaptation space. 

The runtime V&V approaches provide specific concepts for dynamically obtaining 
and evaluating V&V-related information in an adaptive systems context. These tech-
niques would obviously be well suited for tackling challenges related to the runtime 
V&V parts of the envisioned framework. However, there is no conceptual integration 
with existing safety engineering approaches up to now. Nor is there support with re-
spect to variability within the certificates, the safety case, and correspondingly the 
dynamic V&V measures. In other words, there can only be one ‘static’ certificate that 
is to be validated and verified, which consequently limits the flexibility of the open 
adaptive system, as elaborated before in this article. Nevertheless, in conjunction with 
a sound and comprehensive safety engineering backbone, these approaches would be 
a good starting point for future research and could play a vital role in safety assurance 
for OAS.  

An approach that has an explicit focus on safety and is thus particularly relevant 
for this article has been proposed by Priesterjahn et al. in [41]. This approach is well 
suited to exemplify what has been stated above. The main idea of this approach is to 
ensure the safety of adaptive systems during runtime by checking whether reconfigu-
ration is allowed based on associated hazard probabilities and potential damage that 
would be imminent after the reconfiguration. To this end, a compositional hazard and 
risk analysis technique is applied during runtime. However, all the safety engineering 
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activities that are typically applied in addition to the safety analyses in order to get a 
system certified are omitted. Under the premise that safety-critical applications need 
to be certified, these steps would still be required. Assuming that corresponding safety 
engineering and certification were done at development time already, this would con-
strain the flexibility of the approach since a given system would need to be pre-
analyzed comprehensively with respect to the acceptability of the failure probabilities 
of its configurations. A further potential problem of the approach is that emergent 
safety properties within a system of systems, such as common cause failures, feature 
interactions, and emergent dysfunctions, are not addressed. 

The ConSerts approach directly addresses the idea of SafetyCertificates@Runtime. 
It is therefore one possible starting point for a safety assurance framework. Additional 
ConSerts support runtime evidences, which are a first step towards SafetyCas-
es@Runtime. The approach has been successfully applied in different industry  
applications, which underscore the principal applicability of the idea of SafetyCertifi-
cates@Runtime. 

6 Evaluation 

6.1 Status Quo 

Obviously, there are different kinds of approaches that address different aspects of 
safety assurance at runtime. The following tables summarize the main findings in the 
different communities. 

 

Approach 
Safety Engineering 

supported foundation status quo open issues 

Certificate 

@Runtime 

∅ [60] - no established approach 

- modular certification 

provides a sound basis 

- formalization 

- variability 

- runtime representation 

SafetyCase 

@Runtime 

([68], 

[69]) 

[60], [61], 

[62], [64], 

[65], [66], 

[67], [Ver-

SaI] 

- many design approaches 

supports modular safety 

cases 

- safety case models availa-

ble 

- assumes human interac-

tion (no formalization) 

- first ideas on runtime 

certification at conceptual 

level only 

- formalization 

- runtime representation 

- adaptation of argumen-

tations 

- realization of runtime 

evidences 

V&V 

@Runtime 
∅ ∅ 

not considered  

HRA 

@Runtime 
∅ ∅ 

not considered  
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For the safety engineering community, it is obvious that runtime assurance has not 
been in the focus of research. Actually, there is no approach that deals with modular 
certificate models. The reason for this could be that certificates as such do not play an 
important role at development time. In fact, they are not more than a piece of paper 
issued at the end of an assessment, which can be used as evidence in a super-ordinate 
safety case. This means that certificates are not direct working artifacts for safety 
engineers. The importance of certificate models mainly arises from the need to dy-
namically compose systems, which requires formal representation at the information 
level of the certificates (and an explicit specification of the variation points) that can 
be evaluated at runtime.  

Nonetheless, there is a series of approaches that provide valuable starting points 
and that could be extended to SafetyCases@Runtime. Most of these approaches need 
to be further formalized in order to be used at runtime. Many safety case notations are 
still based on informal textual information as they are intended to be used by a human 
safety expert. Based on such formalization, it would be possible to evaluate Safety-
Cases@Runtime and identify invalidated evidences, for example. In order to use the 
full potential of SafetyCases@Runtime, appropriate approaches are required to dy-
namically adapt the line of argumentation used in the safety case at runtime. Howev-
er, there are currently no approaches that consider doing that. 

There exist first ideas on how to use runtime verification to support certification at 
runtime [68], [69]. However, these approaches still remain at the superficial level of 
concepts and ideas. The dynamic adaptation of V&V models, such as test cases or 
pass/fail criteria, or even adaptation of the hazard analysis and risk assessment (HRA) 
is completely outside the scope of the safety engineering community. In other words, 
the V&V measures that are shifted into runtime are always completely predefined at 
development time already. 

 

Approach 
Models@Runtime 

supported foundation status quo open issues 
Develop-
ment-Time  
Assurance 
of Adaptive 
Systems 

[31], [32], 
[33], [34], 
[35], [36] 

 - promising results available 
- limited to few groups 

- maturing approaches 
towards applicability and 
acceptance 

- integration with concepts 
like SafetyCertifi-
cates@Runtime to support 
open systems as well 

Certificate 
@Runtime 

[ConSert] ∅ 

- a first approach is availa-
ble, utilizing variable cer-
tificates and Mod-
els@Runtime 

- could provide a good 
add-on to design time 
assurance approaches for 
supporting open systems 
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SafetyCase 
@Runtime 

 [37], [38], 
[39], [40], 
[41], [42], 
[43], [44] 

- some research has focused 
on runtime execution of 
predefined V&V steps 

- currently independent 
solutions that can hardly be 
combined 

- no complete coverage of 
safety assurance 

- integration of different 
approaches to support 
complete safety assurance 

- currently no direct sup-
port to SafetyCas-
es@Runtime 

V&V 
@Runtime ∅ ∅ 

- currently no approaches 
available 

 

HRA 
@Runtime ∅ ∅ 

- currently no approaches 
available 

 

 
Regarding the adaptive systems community, a lot of work has been done regarding 

the development time verification of adaptive systems and runtime execution of pre-
defined verification steps. Also from a safety point of view, a focus on development 
time verification is certainly preferable. Regarding the typical characteristics of OAS, 
however, such an approach appears not to be sufficient. Therefore, the idea of having 
runtime verification is a good extension. However, the different approaches seem to 
be quite independent from each other. Each of the single approaches covers only one 
aspect of runtime safety assurance, and it is mostly unclear how the different ap-
proaches could be combined into an integrated framework. Nonetheless, they provide 
a very good basis for providing evidences in the context of SafetyCases@Runtime. 
Some work is also available on SafetyCertificates@Runtime, which already considers 
aspects such as runtime evidences. Obviously, there seems to be a good basis and a lot 
of potential could be tapped by a more efficient combination and integration of the 
different approaches.  

6.2 A Possible Roadmap to Safety Assurance for OAS Using 
Models@Runtime 

Summarizing the status quo, there is already a lot of work available that directly or 
indirectly supports the safety assurance of OAS. However, most approaches seem to 
be quite independent from each other. None of the approaches alone is sufficient and 
complete to assure safety in OAS, but all of them provide individual puzzle pieces for 
a safety assurance approach. Since they have been developed in isolation, it is howev-
er not possible to simply combine them. Nonetheless, the efficient combination of 
existing approaches would already lead to significant progress.  

From our point of view, a first step towards an efficient safety assurance approach 
for OAS therefore seems to be to consider the big picture of safety assurance instead 
of regarding single elements in isolation. To this end, a safety assurance framework, 
comparable to the one used in this article would be required, but it certainly needs to 
be more mature. Such a framework would provide the big picture the single puzzle 
pieces have to fit into – thus simplifying classification and combination of the differ-
ent approaches. Moreover, it would define a principal understanding of what safety 
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assurance for OAS could look like. Such a commonly accepted foundation is a prere-
quisite to obtaining acceptance of the assurance approaches by certification bodies 
and safety assessors. 

Taking the framework defined in this article as a starting point, a possible roadmap 
to safety assurance is illustrated in Figure 8.   
From an industry point of view, the most urgent need for safety assurance is certainly 
for open systems in which the single systems only adapt to anticipated situations. 
Therefore, assurance of the single systems could be achieved using available assur-
ance approaches applied at development time. If these approaches are tightly inte-
grated into traditional safety engineering lifecycles, safety assurance could happen 
completely at development time. All remaining assumptions and variabilities that 
must be resolved at runtime could be modeled using SafetyCertificates@Runtime, 
which would also enable safe composition of systems of systems at runtime.  

Such an approach is also very likely to be accepted by safety assessors. Design 
time assurance of adaptive systems is in some sense already considered in safety stan-
dards. For example, ISO26262 explicitly defines how assurance has to deal with large 
configuration and parameter spaces. Alternatively, from a safety engineering point of 
view, adaptation is nothing but an indistinguishable part of the functionality extending 
the system’s state space, which must be completely covered by all safety assurance 
activities. The available development time assurance approaches tackle the resulting 
challenges. SafetyCertificates@Runtime are very similar to modular certification 
approaches. Definition and assurance of the certificates take place at development 
time, and only the composition of certificates is shifted to runtime. In order to be ac-
cepted, the verification of the composition mechanisms must become an additional 
element of the development time verification activities. This is of course also true in 
general for all runtime mechanisms that are introduced as part of the safety assurance 
framework. As described in the previous chapter, this scenario can also be extended 
with alternative approaches, such as extended safety bags. 

If we regard open systems that require more flexible adaptations including adapta-
tions to unanticipated situations, or if the dynamic composition happens at the level of 
software components instead of systems, it is additionally necessary to provide Safe-
tyCases@Runtime. To this end, approaches facilitating the modular specification of 
safety cases, as they exist in the safety engineering community, could be used as a 
starting point. As mentioned above, this requires formalization of the notations in the 
first step. For many application scenarios, however, the capability to dynamically 
adapt the line of argumentation could be optional. Instead, it might be sufficient to 
integrate different variants into the safety case at design time and to reduce runtime 
responsibility to the resolution of these variabilities. This would require further exten-
sion of existing safety case approaches. As an additional aspect, it is necessary to 
provide evidences at runtime. This step can be supported by different existing runtime 
V&V approaches as described above. Nonetheless, some extensions are required in 
order to transfer the existing approaches from the idea of a stand-alone solution to an 
integrated part of SafetyCases@Runtime. 
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This is particularly true since the acceptance of such an approach will require a suffi-
ciently long history of experience and empirical evidence. 

7 Summary and Conclusion 

In recent years, we have witnessed a strong trend towards open adaptive systems in 
research and industry. Meanwhile it is quite clear that new kinds of corresponding 
applications promise huge benefits for end-users and for businesses. The lack of suit-
able safety assurance approaches for OAS is increasingly turning out to be a limiting 
factor in this development. Models at runtime, however, could well prove to be a 
potent means for overcoming these problems.  

Although the approaches available were not developed with an integrated safety 
assurance framework in mind, a promising foundation already exists. The main appli-
cation scenario for the near future is characterized by open systems of systems with 
subsystems that only adapt to anticipated situations. Combining and advancing exist-
ing work on SafetyCeritificates@Runtime, development time assurance, and runtime 
V&V could already provide a sound basic solution for this scenario.  

Existing safety case models in the field of safety engineering provide a sound basis 
for further extending the idea to SafetyCases@Runtime in order to support more flex-
ible system adaptations. SafetyCases@Runtime appear to be sufficient to support the 
assurance of a wide range of application scenarios of OAS in safety-critical applica-
tions. The largest gap obviously exists if the adaptation includes the requirements. 
However, we expect that the application of Requirements@Runtime in safety-critical 
applications will only happen in the long run – leaving sufficient time to mature the 
safety assurance approaches in parallel. 

Summarizing the results, we can safely state that Models@Runtime seem to have 
great potential for being successfully used as a basis for safety assurance of OAS. 
Since they provide a means for creating a clear trace to established safety assurance 
approaches, the resulting assurance approaches are likely to be accepted by safety 
assessors. Regarding the current state-of-the-art, there is already a good basis provid-
ing first evidence that a safety assurance framework (comparable to the one used in 
this article) is technically feasible. 
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