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Abstract. The key property of models@run.time systems is their use
and provision of manageable reflection, which is characterized to be
tractable and predictable and by this overcomes the limitation of reflec-
tive systems working on code, which face the problem of undecidability
due to Turing-completeness. To achieve tractability, they abstract from
certain aspects of their code, maintaining runtime models of themselves,
which form the basis for reflection. In these systems, models form abstrac-
tions that neglect unnecessary details from the code, details which are not
pertinent to the current purpose of reflection. Thus, models@run.time
systems are a new class of reflective systems, which are characterized by
their tractability, due to abstraction, and their ability to predict certain
aspects of their own behavior for the future. This chapter outlines a ref-
erence architecture for models@run.time systems with the appropriate
abstraction and reflection components and gives a roadmap comprised
of short- and long-term research challenges for the area. Additionally, an
overview of enabling and enabled technologies is provided. The chapter
is concluded with a discussion of several application fields and use cases.

1 Introduction

The term “adaptive software system” is somehow a pleonasm, because software
has been first invented to make hardware more flexible and adaptable to varying
situations in its environment. Software has then evolved according to different
paradigms. Object orientation, combined with design patterns, already provides
organized means to customize or even adapt software systems (e.g., Strategy pat-
tern [GHJV95]). Current programming languages (like Java), component-based
platforms (like Fractal [BCL+03] or OpenCOM [CBG+08]) or SOA platforms
(e.g., OSGi [OSG12]) offer reflection APIs, which enable even more powerful
dynamic adaptation (e.g., based on dynamic class loading).
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Traditionally the development of software systems, adaptive or not, used to
be split in distinct steps with a clear distinction between design activities and
runtime execution [BBF09]1. The more critical the system is, the more choices
will be made at design-time in order to reduce the reconfiguration options to a
set of predictable configurations. For example, safety-critical embedded systems
are designed and intensively validated at design-time (e.g., model checking) be-
fore they are actually deployed [AG93,ELLSV02]. At runtime, they have a pre-
dictable behavior, time and resource consumption, which enables certification
bodies to approve these systems. There is, however, a growing need for more
flexible adaptive systems, able to cope with unanticipated situations, still with-
out jeopardizing safety properties. This is typically the case of Cyber-Physical
Systems (CPS) as described in Section 6. Hence, new approaches are needed
to enable unanticipated adaptations while ensuring guarantees. This is, in our
opinion, the ultimate purpose of models@run.time.

The central advance of models@run.time systems is their use and provision
of manageable reflection. In general, a reflective software system is causally con-
nected with its code, i.e., when the code changes, the system changes too. Such
a system can inspect its code (introspection), can generate new code (code gen-
eration), or even change its code (intercession). Because in most cases, Turing-
complete programs are reflected about, the problems to be solved by a reflective
system are undecidable and unpredictable, even at a checkpoint at runtime.
Models@run.time systems improve on this problematic situation. They abstract
from certain aspects of their code, maintaining runtime models of themselves. In
these systems, models form abstractions that neglect unnecessary details from
the code and from the environment, i.e., details which are not pertinent to the
current purpose of reflection. In these steps, care has to be taken. In general,
several models are formed and maintained at runtime, in order to cope with
the information loss of abstraction. Also, it has to be ensured that abstrac-
tions work correctly, i.e., are faithful with regard to the real behavior of the
software system. However, if these precautions are ensured, a models@run.time
system is able to perform tractable reflection, due to the faithful abstractions,
and it may predict certain aspects of its own behavior for the future. Therefore,
models@run.time systems provide and use manageable reflection, which is char-
acterized to be tractable and predictable and by this overcomes the limitation
of classic reflection on code, which faces the problem of undecidability.

Taking this definition into account, models@run.time software systems turn
out to be a new class of reflective systems, which are characterized by their
tractability and predictability. All application domains utilizing reflective sys-
tems benefit from this advancement. In addition, two currently hot application
domains, especially benefit from the advancement of models@run.time systems:

– Cyber-Physical Systems. Models@run.time systems reflecting upon vir-
tual as well as physical processes in comparison to models@run.time systems,
which are meant to reflect on a pure virtual system (i.e., information system).

1 See in particular the side note by Finkelstein.
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– Safety-Critical Systems. Systems, which demand for verification and cer-
tification (e.g., due to their ability to endanger the safety of human beings)
in comparison to systems, which do not have such requirements.

Both application domains face the limitation of current reflective systems:
undecidability. Models@run.time enable both domains to abstract all concerns
of interest to reflection to the information required for the respective decisions.
By this, reflection becomes manageable due to abstraction. Furthermore, both
domains demand for predictive reflection, i.e., the ability to reflect upon possible
future states of the system in comparison to reflect only upon the current system
state (and structure).

To summarize, the key advantage of models@run.time systems over reflective
software systems, achieved by modeling and separation of concerns principles, is
decidability and tractability. By approaching the capabilities of intelligent think-
ing, we believe models@run.time is the next step in the evolution of software.
Models@run.time allow to “mentally” build several potential models of reality
and to mentally evaluate these models by means of what-if scenarios [BBF09]2:
what would happen if I would do this action? During this mental reasoning,
the manipulation of the model does not impact the reality, until an acceptable
solution has been found. Then, this solution is actually realized, which has an
impact on the real world. In other words, the mental model is re-synchronized
with the reality. In the case where a relevant aspect of the reality changes during
the reasoning process, the model is updated and the reasoning process should
re-build mental models, ideally by updating already existing models. This char-
acterizes predictive reflection based on abstraction, i.e., manageable reflection.
Models@run.time enable systems to reason about alternatives to reach their
goals and consequences of the particular actions in comparison to classical sys-
tems which basically learn and react (i.e., animal-like behavior). This includes
that the system is able to justify why it takes a certain decision or not. Mod-
els@run.time have, thus, the potential to provide both flexibility and assurance,
instead of a mere trade off. It can reconcile users, domain experts, engineers
(aware of the obvious need for runtime adaptivity), with certification bodies
(which need stringent guarantees).

In the following section we discuss, which technologies form the prerequisite for
systems following the models@run.time paradigm and how models@run.time en-
able the development of modern software systems. Next, in section 3, we present
a reference architecture for models@run.time to expose the key advancements
of models@run.time over reflective systems. We summarize related work as in-
stantiation of this reference architecture and discuss associated communities in
section 4. In section 5, we provide a roadmap for models@run.time by a discussion
of central, open research questions on the uses and purposes of models@run.time
systems. Finally, we conclude the chapter and present compelling applications
in section 6.

2 See in particular the side note by Selic.
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2 Enabled and Enabling Technologies for
Models@run.time

In the following, we will first discuss the technologies forming the basis for
models@run.time systems and then discuss the technologies enabled by mod-
els@run.time in turn.

2.1 Technologies Required by Models@run.time

Systems, according to the models@run.time paradigm, are based on the reflection
principles, as defined by Bobrow et al.:

The ability of a program to manipulate as data something representing
the state of the program during its own execution. There are two aspects
of such manipulation: introspection and intercession. Introspection is the
ability of a program to observe and therefore reason about its own state.
Intercession is the ability of a program to modify its own execution state
or alter its own interpretation or meaning. [BGW93]

In practice however, reflection is a powerful yet hazardous process (see for
example the drawbacks of the Java reflection API, clearly reported by Oracle3),
since it provides no support to “preview” what will be the result of an adapta-
tion. Basically, erroneous adaptation based on reflection can only be detected a
posteriori, or even post mortem if the rollback mechanisms were not able to put
the system back to a safe state. The fundamental idea behind models@run.time
is to complement classic reflection with strong modeling foundations as defined
by Rothenberg:

Modeling, in the broadest sense, is the cost-effective use of something in
place of something else for some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than reality instead of reality
for some purpose. A model represents reality for the given purpose; the
model is an abstraction of reality in the sense that it cannot represent all
aspects of reality. This allows us to deal with the world in a simplified
manner, avoiding the complexity, danger and irreversibility of
reality. [RWLN89]

The key characteristic of a models@run.time system is then its ability to
project some aspects of the reality (its context, its behavior, its goals, etc.) to
the modeling space in order to enable tractable decisions, in a safe space, to
produce decidable plans. This is basically separation of concerns [Dij82] applied
in a disciplined way at runtime, and to some extent, how human thinking works.

What to my taste is characteristic for all intelligent thinking. It is,
that one is willing to study in depth an aspect of one’s subject matter in
isolation for the sake of its own consistency, all the time knowing that

3 http://docs.oracle.com/javase/tutorial/reflect/

http://docs.oracle.com/javase/tutorial/reflect/
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one is occupying oneself only with one of the aspects. It is “the separation
of concerns”. It does not mean ignoring the other aspects, it is just doing
justice to the fact that from this aspect’s point of view, the other is irrel-
evant. It is being one- and multiple-track minded simultaneously. [Dij82]

We perceive reflection, modeling and separation of concerns as the three main
pillars to achieve models@run.time and make future software systems able of
intelligent thinking, i.e., abstract, predictive reflection.

2.2 Technologies Enabled by Models@run.time

Models@run.time as a technology enables various further technologies. Of partic-
ular interest is the possibility to realize safe adaptive systems. The key problem of
such systems is the contradiction between safety and adaptivity. To ensure safety,
all variants of the system have to be checked against possible threats, usually at
design time. In highly adaptive systems, the number of system variants usually
grows exponentially and, thus, prolongs the safety check to an unfeasible degree.
The reasoner of models@run.time systems allows for postponing safety checks
to the runtime of the system as has been shown in [ST11]. In consequence, only
those variants of the system have to be checked, which are reachable from the
current variant. This significantly lowers the amount of variants to be considered
and, thus, enables the realization of safe adaptive systems.

Furthermore, models@run.time enable the realization of Cyber-Physical Sys-
tems (CPS), which are adaptive systems integrating the virtual and physical
world. A central requirement for CPS is safety, due to the physical part of the
system. This is because the physical actions of a CPS are able to threat hu-
man life, the environment or the system itself. In addition, CPS are adaptive
systems, because they naturally adjust themselves continuously to the their en-
vironment. In consequence, models@run.time is the key enabling technology for
CPS, because models@run.time enable the realization of safe adaptive systems.

Besides these two particular application domains, all domains, which already
make use of reflection, benefit from the advancements by models@run.time.

3 A Reference Architecture for Models@run.time
Systems

The goal of this section is to understand how models@run.time are key enablers
for modern software systems, to clarify their typical use cases and fundamen-
tal interests, as well as to define a reference architecture for models@run.time.
Based on our recent experiences (e.g., in the DiVA project [FS09,MBNJ09] and
the MQuAT approach [GWCA11,GWCA12]), we propose the generic reference
architecture (RA) depicted in Figure 1, which provides a generic framework for
models@run.time, and which is meant to be instantiated for different domains.

According to the reference architecture, a models@run.time system always
interfaces with a managed system, which is monitored and controlled by the
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Fig. 1. Reference Architecture for models@run.time Systems

managing models@run.time system. Notably, a models@run.time system is not
directly interfaced to the environment. Instead, the managed system’s sensors
and actuators are utilized for this purpose. The managed system can be any
observable and controllable system (e.g., a personal computer, a wireless sensor
network, a robot or a managing models@run.time system again). Each mod-
els@run.time system comprises three layers, comparable to the layers of Kramer
and Magee [KM09]. From bottom to top these are:

– a base layer comprising models of the managed system,
– a configuration management layer comprising active components of the sys-

tem realizing the feedback loop on the managed system and
– a goal management layer comprising models of the system’s goals, realizing

an internal feedback loop between the goal management layer as managing
element and the configuration management layer as managed element.

3.1 Runtime Models of the Base Layer

The base layer comprises four types of models, which are abstractions of specific
aspects of the system for a given purpose:

Context Models contain relevant information about the current state of
the managed system’s environment, e.g., the current temperature, or higher
level context information such as an alert information derived by aggregating or
interpreting the information of different sensors. The interpretation of context
information is context-dependent itself. For example, a temperature of 50 ◦C
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will be interpreted as “hot” as a room temperature, but as “cold” for a furnace.
To keep this type of model synchronous to the environment, the sensors of the
managed system are utilized. Context models do not cover information about
the managed system, but only of the environment’s observable state.

Configuration Models express the current configuration of the managed
system, i.e., its current state. Current models@run.time approaches usually pro-
vide an architectural view on the managed system (i.e., which services are cur-
rently deployed and running on which resources). Both, configuration and con-
text models, cover the abstracted runtime state subject to tractable, predictive
reflection.

Capability Models describe the features available to influence the managed
system (e.g., whether software components can be added/removed and rebound,
whether parameters of system components can be adjusted), which actuators
are available and how they can affect the environment. Typically this model is
rather static and depends on the underlying infrastructure. However, this model
can be updated, e.g., after a new actuator has been added in the system.

Plan Models describe a set of actions (according to the capability models)
to be performed by the system to realize an adaptation. They represent recon-
figuration or action scripts, which describe how the managed system shall be
reconfigured and how the actuators of the managed systems shall be used to
effect the environment.

3.2 The Configuration Management Layer

The configuration management layer contains the active entities of a mod-
els@run.time system, which make use of the models of the base layer. This layer
typically comprises a reasoner, an analyzer and optionally a learner.

The reasoner’s evaluates alternative future configurations of the system. This
includes (1) to realize the predictive reflection, (2) to identify the best configura-
tion w.r.t. the goals specified on the top layer, and (3) to derive reconfiguration
or action plans to establish the envisioned system configuration. To evaluate
possible future configurations, the reasoner uses the information provided by
the context and configuration models, representing the managed system and its
environment’s state, and derives possible variations of them, which are reachable
in the future, based on the capabilities of the managed system covered by the
capability models. To identify the best future configuration w.r.t. the system’s
goals, the reasoner evaluates each possible future system variant against the goal
models of the top layer. To derive reconfiguration plans, the system compares
the current system configuration with the envisioned system configuration and
deduces a sequence of actions to be taken based on the capability model of the
base layer. By these means, the reasoner creates the plan models of the base
layer.

The analyzer has two tasks. First, the analyzer has to detect whether the
whole system (i.e., managed and managing system) should be re-evaluated. To
do so, the current system state has to be evaluated against the system’s goals. If
the current system state deviates from the goals, the analyzer will trigger the rea-
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soner, to compute a reconfiguration plan. Second, the analyzer further abstracts
the information contained in the models of the base layer. This raises the level
of abstraction of the models and, in turn, to lower the complexity of predictive
reflection. The analyzer has to abstract the context, configuration and capabil-
ity models of the base layer to ensure the existence of a capability model on the
same level of abstraction for the abstracted context and configuration models.
Based on this, models@run.time systems can manage models@run.time system
too. The analyzer realizes the bridge between the models@run.time system on
lower and higher abstraction level.

The learner has two tasks, too. On the one side, the learner is responsible
to keep the models of the base layer synchronized with the system. Thus, the
learner utilizes the managed systems sensors to capture the environment’s state
and continuously observes the managed system itself to update the context and
configuration model on the base layer. On the other side, the learner can observe
the reasoner to detect, whether the decisions of the reasoner are beneficial on the
long run or not. Thus, whereas the reasoner evaluates possible future scenarios
based on the current system’s state, the learner takes into account the system’s
history to deduce, whether the comparably shortsighted decisions of the reasoner
are meaningful and correct on the long run. Based on this, the learner can provide
the reasoner with additional (historical) information, to improve the quality of
decision making over time.

3.3 The Goal Management Layer

Finally, the goal management layer comprises goal models of the system, which
are used by the reasoner to evaluate the alternative future configurations with
respect to the fulfillment of the specified goals. Notably, these goal models can
and should be able to change over time, because changes in the context of the
system could require adjustments to the goals. This depicts the need for the last
feature of the reference architecture: as models@run.time systems are systems
themselves, they can be stacked. That is a models@run.time system could mon-
itor and control another models@run.time system. As each models@run.time
system realizes a feedback loop, the proposed reference architecture allows for
the development of layered feedback loops as has been shown in the Collab-
orative Research Centre 614 [ADG+09], which focused on self-optimizing sys-
tems in mechanical engineering. The proposed architecture is represented as an
operator-controller-module (OCM), which realizes three layers of feedback loops.
The bottommost layer contains the controller, which directly controls the phys-
ical system. On top of the controller, the reflective operator is situated, which
is capable of operation scheduling. That is—in contrast to the controller layer—
the reflective operator is able to plan the future behavior of the physical system.
Finally, the topmost layer comprises the cognitive operator, which is capable of
more complex planning methods and utilizes techniques from machine learning.
Thus, from bottom to top, the models of the system, utilized by the layers,
get more and more abstract, but the applicable techniques get more and more
powerful.
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In summary, the key advancements over state of the art of models@run.time
systems are realized by the reasoner and the analyzer respectively:

1. Predictive Reflection. The ability of reasoning about future configura-
tions of the system is the advance of models@run.time systems over reflec-
tive systems, which are able to reason on the current, but not on future
configurations of a system.

2. Tractability by Abstraction. The ability of the analyzer to abstract the
information used by the reasoner (possibly multiple times) allows for reduc-
tion of the reasoning task’s complexity and, thus, to get decidability and,
finally, tractability of the overall system.

4 Literature Review

4.1 Instantiations of the Reference Architecture

The DiVA project proposes a reference architecture which leverages mod-
els@run.time to support dynamic variability [MBNJ09, MBJ+09]. A feature
model describes the variability of the system. A reasoner component takes this
variability model as input, as well as a model of the context, to compute a set of
features well suited to the current context (not necessarily the best). A weaver
component then composes these features to produce an architectural model, de-
scribing the configuration. This configuration is checked at runtime (since it is
not possible to check all possible configuration at design time) and the system is
automatically adapted to reflect this architectural model. If the model is invalid,
the reasoner computes another configuration.

In [FMS11], the DiVA reference architecture has been instantiated in a dif-
ferent way to fit the need of low-power embedded systems (8-bits, 16MHz, 1Kb
RAM). In this setup, the adaptation logic is fully simulated at design-time, so the
number of configurations to be addressed by such a small node remains tractable.
The adaptation process is compiled into a state machine, which is then merged
with the core logic (also expressed as a state machine). The resulting state ma-
chine is finally compiled into C code to be deployed on the micro-controller.

The multi-quality auto-tuning (MQuAT) approach [GWCA11, GWCA12]
developed in the collaborative research center 912 and preceding projects partic-
ularly focuses on self-optimizing systems following economic principles by multi-
objective optimization (i.e., the system is optimized w.r.t. the optimal tradeoff
between multiple objectives, which represent either cost or utilities). The main
constituents of MQuAT are: (1) the cool component model (CCM) and the qual-
ity contract language (QCL), which are meta-model defined concepts to be used
to specify self-optimizing systems, and (2) the runtime environment THEATRE
(THE Auto-Tuning Runtime Environment), which comprises resource managers
to monitor and control the target system and control loop managers, which re-
alize the reasoner component by means of an adaptive multi-objective optimizer
(i.e., various implementations of the optimizer exist, whereof continuously the
best is chosen, based on the current context). A key characteristic of MQuAT
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is the application of quality contracts, which cover dependencies between non-
functional properties of system components (both software and hardware), to
reduce the amount of system configurations, which need to be considered during
optimization.

In [SCG+12] the MQuAT reference architecture has been instantiated for
multi-tenant applications—applications hosted in the cloud, which are config-
ured by tenants, whose customers use the application. This type of application
introduces a further restrictions on possible system configurations, due to tenant
constraints like the exclusive use of a single server or the restriction to only use
servers within a certain country.

A further reference architecture is ConFract [CCOR06], which particularly
focuses on self-healing systems. In this approach functional contracts are used
to specify how a valid system is characterized and to initiate self-healing in case
of contract violations. The developer is able to explicitly specify resource usage
profilers as part of the system. In consequence, the functional contracts, which
use data generated by these profilers, can be used as non-functional contracts,
so dependencies between non-functional properties can be expressed too.

In [CGK+11], Calinescu et al. present QoSMOS–a generic architecture for
adaptive service-based systems (SBS). The central constituents of QoSMOS are
formal specifications of QoS requirements (using probabilistic temporal logics)
including the specification of dependencies between QoS requirements, model-
based QoS evaluation using verification techniques, learning monitoring of QoS
properties and reasoning techniques, based on high-level, user-specified goals
and multi-objective utility functions. QoSMOS is an instance of our proposed
reference architecture, which focuses specifically on SBS comprised of a set of
web services under the control of a workflow engine.

4.2 Relevant Communities

Models@run.time are relevant to several research communities as depicted in
Fig. 2. Among them two types of communities can be distinguished. First, com-
munities which provide fundamental techniques for models@run.time. Second,
communities which benefit from the advancements by models@run.time and pro-
vide use cases in turn.

Three communities are relevant to models@run.time in particular: the self-
adaptive systems (SAS), the autonomous computing and middleware
community. The first two communities investigate systems, which adjust them-
selves according to changes in their environment. The middleware community
covers, among others, the problem how to coordinate multiple independent sys-
tems. Whereas the SAS community focuses on a top-down approach w.r.t. the
coordination of multiple systems, the autonomous computing community focuses
on bottom-up approaches (self-organization), where the coordination originates
from each individual system [ST09]. For this purpose, all three communities
rely on reflection to observe and adjust the systems they manage or coordi-
nate. Hence, the advanced reflection mechanisms of models@run.time enable
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Fig. 2. Research Communities Relevant to Models@run.time

advancements in these communities, which provide use cases to models@run.time
in turn.

All three communities rent many concepts from the control theory and
the artificial intelligence community. Whereas control theory covers systems
adjusting themselves to external influences in general, artificial intelligence pro-
vides, among others, planning and analysis techniques to coordinate autonomous
systems.

Another set of communities relevant to models@run.time are those focusing
on quality-of-service optimization and assurance. This includes various spe-
cialized communities which cover particular non-functional properties. For ex-
ample, performance, fault-tolerance, safety, physical dynamics and energy. Each
community requires means to model the (non-functional) behavior of a system
subject to optimization or assurance w.r.t. the specific non-functional property
of interest. To realize optimization or assurance, again reflection is used as a
basis. Especially, the prediction capabilities of models@run.time are beneficial
for these communities. In turn, they provide use cases to models@run.time.

Themodel-driven engineering community provides fundamental techniques
to models@run.time. Besides general modeling techniques, solutions to particular
problems for models@run.time are addressed by this community. For example,
model evolution, model transformation, model synchronization and model-based
diagnostics, where each problem usually forms its own community.

To cover multiple aspects of a system’s non-functional behavior, modeling
techniques from different domains are to be integrated or bridged. This challenge
is addressed by the multi-domain/multi-paradigm modelling community.
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Hence, this community provides fundamental techniques to the models@run.time
community that can be useed by the quality-of-service community.

Moreover, especially the cyber-physical systems community demands for
multi-domain modelling (physical dynamics combined with computational mod-
els). It is yet another community, which makes use of models@run.time. This is
because cyber-physical systems are self-adaptive or autonomous systems, where
a particular challenge is the management of multiple non-functional proper-
ties from different domains. This includes the embedded systems community,
which starts to investigate networked embedded systems. Notably, embedded
systems are inherently self-adaptive, because they are embedded in an environ-
ment and are meant to observe and/or influence it.

5 Short and Long-Term Research Questions - A Roadmap

In the following, open research challenges for models@run.time will be discussed.
We examine short-term research topics, followed by long-term research topics.

5.1 Short-Term Research Challenges

As short-term research challenges, we identified the application of MDE tech-
niques, the optimization of reasoning and reconfiguration in terms of efficiency
(i.e., optimal tradeoff between cost and utility), the management of uncertainty
inherent to models@run.time, synchronization of reflexive models and safety as-
surance at runtime. In the following, we elaborate on each challenge.

Model-Driven Engineering. Modeling is a central constituent of mod-
els@run.time. Hence, in theory, models@run.time could directly benefit from
tools and approaches developed by the Model-Driven Engineering (MDE) com-
munity: metamodels, editors, simulators, compilers, etc. In practice, however, it
is difficult to embedded MDE tools at runtime, since these tools, usually thought
for design-time usages in a rather standalone and controlled environment (IDE),
come with important memory and performance (time) penalties. Thus, current
MDE techniques should be investigated, extended, adjusted and/or directly be
applied to models@run.time.

Efficiency @ Runtime. Dynamic adaptation of a software application is a
process that might take some time, which–depending on the context–might or
might not be an issue. For example doing some reconfiguration to better balance
load and energy consumption in a cloud might afford a reconfiguration delay of
several seconds, while an interactive system should be able to handle the overall
reconfiguration in less than 200 ms. Even worse, if we want to push these system
towards safety critical, real-time embedded systems, the constraints might be
much harsher.

In our experience, the two main limiting factors in reconfiguring an application
are (1) the time and resources taken for the reasoning itself (compute which
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configuration is to be chosen) and the (2) the adaptation itself (e.g., stopping
and starting components, loading new code, transferring state, etc.).

On the first account, one challenge is of course to leverage reasoning tech-
niques that might be able to make the right tradeoff between time and intel-
ligence. New advances in incremental reasoning, or time constrained reasoners
might also be needed. The layering ability of models@run.time (i.e., the ability
to manage models@run.time systems by models@run.time systems themselves)
allows to adapt or optimize the reasoning and reconfiguration itself. The key
challenge to be addressed here are (a) the assessment of reasoners and recon-
figurations in terms of their costs (time, energy, etc.) and resulting utility and
(b) the determination of cost budgets, which most not be exceeded by reasoning
and reconfiguration. For example, if a system can perform a task either in one
minute or, if reconfigured, in half a minute, the time budget for reasoning and
reconfiguration is less than half a minute. If reasoning and reconfiguration take
more than half a minute, the gain of running the task on the reconfigured system
is lost.

Additionally, on the adaptation process itself, a few points are subject to
possible optimizations, combining system issues (such as maintaining caches for
frequently used configurations, efficient code loading, light component models
etc.) with optimizations in the reconfiguration planning algorithms taking into
account the specificity of the underlying platforms.

Managing Uncertainty. Systems adhering to the models@run.time paradigm
have to cope with the uncertainty of the systems they manage or, in other
words, uncertainty is inherent to models@run.time systems. This is because the
managed systems environment is uncertain by nature. Hence, novel approaches,
which enable reasoning in the presence of uncertainty are required.

Handling Reflexive Models of Distributed Systems. Handling reflexive
models of distributed systems is a well-known issue in the distributed systems
community. Having a centralized reasoner working on a centralized model of
a distributed system makes little sense for reliability and robustness reasons,
but managing a distributed model implies that the reasoner has to also handle
consensus and synchronization issues. Several works already go into that direc-
tion [ECBP11], but more is to be done to also deal with performance issues and
real-time constraints.

Realizing Safety Assurance at Runtime. Most of the safety-critical business
nowadays follows very stringent procedures that are statically checked, most
often under strict legal regulation as it is the case in the aerospace domain. Such
systems can still be somehow adaptive within well defined boundaries (often
calledmodes). There are typically very few modes (such as normal mode, recovery
mode, survival mode, panic mode, etc.). They are well identified and individually
checked for safety. All possible transitions between modes are also checked.
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Providing the same level of safety for systems having modes only computed at
runtime would imply having the same level of safety checking done on the fly at
runtime. While using verification technologies such asModel Checking at runtime
(using, e.g., the power of the cloud) is no longer considered as science-fiction, it
is clear that this is still a challenge, and the proof that models@run.time can be
safe and adaptive concurrently even in principle remains to be made.

5.2 Longer-Term Research Challenges

Several challenges of models@run.time, which demand for long-term investiga-
tion, can be identified. This includes the handling of quality interferences, the
handling of interconnected control loops and the attainment of predictability by
top-level feedback loops.

Quality Interferences. As has been pointed out by Salehie and Tahvildari
[ST09], most of the current approaches to self-adaptive software exploit only a
single quality. The exclusive focus on either reliability or energy or performance
or security hides the problem of interferences and general dependencies between
qualities. To consider multiple qualities simultaneously, their interdependent be-
havior needs to be determined and considered in the reasoning approaches. Thus,
the monitoring and analysis phase need to be aware of the dependencies between
qualities, which leads to a combinatorial explosion of cases to be considered in
these two phases (i.e., all situations need to be investigated for all combinations
of qualities). In addition, the reasoning approaches for the decision or planning
phase need to support multi-objective decision-making, which is known to be
an NP-hard problem. Finally, approaches for the act or execute phase need to
consider quality interferences too, because their actions might imply a chain of
reactions w.r.t. the quality assurance of the system. Thus, all phases of the feed-
back loop need to be investigated w.r.t. dependencies and interferences between
qualities.

Interconnection of Multiple Feedback Loops. The need for multiple, in-
terconnected feedback loops arises from the need for seamless system integration
as envisioned by the CPS or Systems-of-Systems community. If multiple mod-
els@run.time systems are meant to cooperate, their feedback loops need to be
capable of cooperation too. But, the interconnection of multiple feedback loops
(e.g., in terms of layers as has been shown in CRC 614 [ADG+09]) opens fur-
ther research questions, which affect all aspects of self-adaptive systems. The
monitoring and analysis phase need to be aware that the system under inves-
tigation might not be a (continuous) physical system, but is itself a (discrete)
models@run.time system. The same holds for the decision-making or planning
and the act or execute phase, which, for example, need to differentiate between
continuous and discrete systems. Clear interfaces between models@run.time sys-
tems, which are subject to integration, are required. Besides differentiating be-
tween continuous and discrete systems, the architecture or architectural style of
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a models@run.time system is a key characteristic, which needs to be considered
throughout the complete feedback loop of a dependent models@run.time system.

Predictability. Maybe the central challenge of models@run.time system is to
reach full predictability of their behavior. The underlying problem is the di-
chotomy of adaptivity and predictability. Models@run.time systems are highly
adaptive systems, but demand for precise predictability to enable more intel-
ligent reasoning approaches. Precise predictability is a key enabler for several
technologies as explained in section 2.

6 Conclusion

As highlighted by important roadmaps in research and industry, cyber-physical
systems [Lee08] are considered to be the next generation of embedded systems.
For example, in the agricultural domain already today it is possible to connect
a tractor with another autonomously driving tractor [Fen11]. In the near future,
this kind of interconnection of different systems is expected to increase rapidly
throughout a broad range of further application domains such as automotive
and healthcare. In the former, cars will dynamically connect to each other to
implement functionalities like automated cross roads assistants [Con11]. In the
latter, medical devices, telecommunication infrastructure and IT-based service
systems will build dynamic ecosystems leading to a new generation of health
care systems [All11].

All of these examples share the commonality that different devices, machines,
and vehicles are integrated at runtime and that they have to adapt to dynami-
cally changing environment contexts. In consequence, neither the structure nor
the behavior of the cyber-physical systems can entirely be predicted at design
time. This greatly complicates the assurance of important functional and non-
functional properties - up to the point of impossibility for some cases. One of
these particularly difficult cases is the assurance of safety, which is nevertheless
mandatory since many of these cyber-physical systems are inherently safety-
critical. As of today, only proprietary approaches are used to ensure safety of
strictly predefined machine combinations. This obviously requires an immense
effort and strongly limits the desired flexibility. Since traditional approaches are
not expected to scale to adequately address cyber-physical systems, safety is a
bottle neck preventing the transition from a promising idea to a real business
success. Thus, there is an inescapable need for new approaches enabling the
development of dynamically adaptive yet safe cyber-physical systems.

Solving this challenge can be a killer application for models@run.time. Re-
garding the examples mentioned above, it is not any longer the question whether
dynamic adaptation is necessary or not. It is the question how important proper-
ties such as safety can be assured in the context of open adaptive cyber-physical
systems. A general solution approach is to shift parts of the required assurance
measures into runtime by means of adequate models@run.time. As opposed to
other approaches, models@run.time explicitly define all facets of the dynamic



16 U. Aßmann et al.

adaptation behavior of a system. Moreover, models@run.time enable a system
to systematically reason at runtime about its current quality state, to predict
the impact of possible system modifications on system quality, and, therefore, to
select safe adaptation strategies following predictable and traceable rationales.

Particularly safety, as a bottleneck to business success, can be an important
factor to create the pressure necessary to introduce a new technology. So the idea
of using models@run.time for assuring safety in cyber-physical system can be a
door opening killer application for models@run.time. Once the door is opened,
the application can easily be extended to any other quality properties.

In summary, models@run.time advance over reflective systems in that they
offer abstract, tractable and predictive reflection as shown by the reference ar-
chitecture presented in section 3. This enables improvements to existing appli-
cation domains, which already make use of reflection, and–in particular–enables
the realization of safety-critical, cyber-physical systems.
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