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Preface

Traditionally, research on model-driven engineering (MDE) has mainly focused
on the use of models at the design, implementation, and verification stages of de-
velopment. This work has produced relatively mature techniques and tools that
are currently being used in industry and academia. However, software models
also have the potential to be used at runtime, to monitor and verify particular as-
pects of runtime behavior, and to implement self-* capabilities (e.g., adaptation
technologies used in self-healing, self-managing, self-optimizing systems). A key
benefit of using models at runtime is that they can provide a richer semantic base
for runtime decision-making related to runtime system concerns associated with
autonomic and adaptive systems. The research topic models@run.time has been
explored since the first international workshop of the same name in 2006 with
novel research results. The need for advancing the research in this area motivated
the organization of the Dagstuhl Seminar 11481 on models@run.time that was
held from November 27 to December 2, 2011. The seminar comprised valuable
discussions about the foundations, techniques, mechanisms, state of the art, re-
search challenges, and applications for the use of runtime models. The seminar
also provided an exceptional opportunity to bring together different communities
in order to share insights and to expand and strengthen the cross-fertilization
and momentum that had been initiated at previously organized workshops on
models@runtime.

This book is one of the outcomes of the Dagstuhl Seminar. The book com-
prises four research roadmaps and seven research papers from experts in the
area. The four roadmap papers were developed by groups of Dagstuhl partici-
pants that detail the issues discussed during the five-day Dagstuhl Seminar and
provide insights to key features of the use of runtime models. All the papers
in this book were peer reviewed including the roadmap papers. The roadmap
papers were written by the original participants of the Dagstuhl Seminar over
the course of two years following the seminar.

The first part of the book consists of the four roadmap papers. The roadmap
papers elaborate on the research challenges for runtime models identified by each
of the four working groups of the Dagstuhl Seminar: the need for a reference
architecture, uncertainty tackled by runtime models, mechanisms for leveraging
runtime models for self-adaptive software, and the use of models at runtime to
address assurance for self-adaptive systems.

The first roadmap paper by Aßmann, Götz, Jézéquel, Morin, and Trapp, ti-
tled “A Reference Architecture and Roadmap for Models@run.time Systems,”
outlines a reference architecture for systems that use models@run.time. The au-
thors highlight as a key property of this kind of system their use and provision
of manageable reflection to overcome the limitation of reflective systems used in
the past. The chapter also presents a roadmap comprising short- and long-term
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research challenges for the area, an overview of enabling and enabled technolo-
gies, and several application fields and use cases.

The second roadmap paper by Bennaceur, France, Tamburrelli, Vogel, Moster-
man, Cazzola, Costa, Pierantonio, Tichy, Akşit, Emmanuelson, Gang, Geor-
gantas, and Redlich, titled “Mechanisms for Leveraging Models at Runtime
in Self-Adaptive Software,” elaborates on challenges associated with develop-
ing mechanisms that leverage models at runtime to support runtime software
adaptation. Specifically, the paper discusses challenges associated with develop-
ing effective mechanisms for supervising running systems, reasoning about and
planning adaptations, maintaining consistency among multiple runtime models,
and maintaining fidelity of runtime models with respect to the running system
and its environment. The paper also describes related problems, state-of-the-art
mechanisms, and open research challenges in the area.

The third roadmap paper by Giese, Bencomo, Pasquale, Ramirez, Inverardi,
Wätzoldt, and Clarke, titled “Living with Uncertainty in the Age of Runtime
Models,”explores the role of runtime models as a means to cope with uncertainty.
The chapter introduces a terminology suite for models, runtime models, and
uncertainty, which is followed by a state-of-the-art summary on model-based
techniques for addressing uncertainty both at development and runtime. Using
a case study about robot systems, the chapter discusses how current techniques
and the MAPE-K loop can be used together to tackle uncertainty. The chapter
proposes possible extensions of the MAPE-K loop architecture with runtime
models to further handle uncertainty at runtime. Key challenges and enabling
technologies for using runtime models to address uncertainty are identified.

The fourth roadmap paper by Cheng, Eder, Gogolla, Grunske, Litoiu, Muller,
Pelliccione, Perini, Qureshi, Rumpe, Schneider, Trollmann, and Villegas, titled
“Using Models at Runtime to Address Assurance for Self-Adaptive Systems,” ex-
plores the state of the art for using models at runtime to address the assurance
of self-adaptive software systems. It defines what assurance information can be
captured by models at runtime and puts this definition into the context of exist-
ing work according to different categories of assurance techniques. The chapter
also outlines key research challenges for using models to address assurance at
runtime. The chapter concludes with an exploration of selected application ar-
eas where models at runtime could provide significant benefits beyond existing
assurance techniques for adaptive systems.

Part two of this book comprises the following research papers.
The first paper by DeLoach, Ou, Zhuang, and Zhang, titled “Model-Driven,

Moving-Target Defense for Enterprise Network Security”presents the design and
initial simulation results for a prototype moving-target defense (MTD) system,
whose goal is to exponentially increase the difficulty of attacks on enterprise net-
works. The novelty of the presented approach lies in the use of runtime models
that explicitly capture a network’s operational and security goals, the function-
ality required to achieve those goals, and the configuration of the system. The
MTD system reasons over these models to determine how to make changes to the
system that are invisible to legitimate users but appear chaotic to an attacker.
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The presented system uses these runtime models to analyze both known and
unknown vulnerabilities to ensure that the necessary adaptations occur in the
right areas to protect the system against specific attacker profiles.

The second paper by Autili, Ruscio, Inverardi, Pelliccione, and Tivoli, titled
“ModelLAND: Where Do Models Come from?,” presents the thesis that there
is the need of explore techniques to automatically extract models from existent
software. The chapter proposes a general overview of the motivating problem
and shows two different techniques, tailored to specific domains, to automatically
build models of different nature from software artefacts.

The third paper by Yu, Tun, Bandara, Zhang, and Nuseibeh, titled “Model-
Driven Software Development Processes to Problem Diagnoses at Runtime,”dis-
cusses the problem of the existing gap between templates and runtime-adapted
models. In order to tackle this problem, the paper presents a generalization from
concrete problematic examples in model-driven software development (MDSD)
processes to a model-based problem diagnosis. The chapter presents a procedure
that separates the automated fixes from those runtime gaps that require human
judgments.

The fourth paper by Redlich, Blair, Rashid, Molka, and Gilani titled “Re-
search Challenges for Business Process Models at Runtime” examines the po-
tential role of business process models at runtime by discussing the state of the
art of both business process modeling and models@run.time, reflecting on the
nature of business processes at runtime, and highlighting key research challenges
that need to be addressed to enable their use.

The fifth paper by Cazzola, Rossini, Bennett, Pradeep, and France, titled
“Fine-Grained Semi-Automated Runtime Evolution,” describes an approach to
updating Java software at runtime through the use of runtime models consisting
of UML class and sequence diagrams. Changes to models are transformed to
changes on Java source code, which is then propagated to the runtime system
using the JavAdaptor technology. In particular, the presented approach permits
in-the-small software changes, i.e., changes at the code statement level, as op-
posed to in-the-large changes, i.e., changes at the component level. The chapter
presents a case study that demonstrates the major aspects of the approach and
its use, including results of a preliminary evaluation of the approach.

The sixth paper by Cazzola, titled “Evolution as Reflections on the Design,”
revisits the role that reflection and design information have in the development
of self-evolving artefacts. Moreover, the author summarizes the lesson learned
using a high-level reflective architecture to support dynamic self-evolution in
various contexts and shows how some of the existing frameworks adhere to such
architecture and how the evolution affects their structure.

The seventh paper by Trapp and Schneider titled “Safety Assurance of Open
Adaptive Systems - A Survey” presents a survey that analyses the state-of-the-
art of models at runtime from a safety engineering point of view in order to assess
the potential of this approach and to identify gaps that have to be filled in future
research to yield a safety assurance approach for open adaptive systems.
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While the papers in this book cover a wide range of topics regarding the
use of runtime models, additional research challenges and related research topics
still exist for further investigation. For example, the following topics are prime
areas for further study: (1) synthesis of software during execution using runtime
models, (2) inference of new knowledge during runtime based on, for example,
machine learning techniques, should be further studied to enable the incorpo-
ration of new information during the execution of the system, (3) the use of
runtime models that embody distributed and composable abstractions that can
be leveraged by complex forms of systems, such as cyber-physical systems, or
systems of systems. Nevertheless, as organizers of the Dagstuhl meeting and ed-
itors of this collection of papers, it is our hope that this book will prove useful
for both researchers and practitioners who work in the area of runtime models
as guidance and a stepping-stone for future research with models@run.time.

Finally, we would like to thank all the authors of the chapters of this book for
their excellent contributions, and we also thank the participants of the Dagstuhl
Seminar 11481 on “Models@run.time” for their dynamic participation during
the meeting and their diligent efforts afterwards in completing the roadmap
chapters. Special thanks to Prof. Gordon S. Blair for the support and help in
the organization of the Dagstuhl Seminar and this book. Thanks also to Alfred
Hofmann and his team at Springer for helping us to publish this book. Last but
not least, we deeply appreciate the great efforts of the following expert reviewers
who helped us ensure that the contributions are of high quality: Thais Batista,
Gordon Blair, Franck Chauvel, Peter Clarke, Laurence Duchien, Sebastian Götz,
Paul Grace, Marin Litoiu, Brice Morin, Liliana, Pasquale, Patrizio Pelliccione,
Rui Moreira, Vı́tor E. Silva Souza, Arnor Solberg, Hui Song, Matthias Tichy,
Mario Trapp, Norha M. Villegas, Yijun Yu, and Gang Huang.

April 2014 Nelly Bencomo
Robert France

Betty H.C. Cheng
Uwe Aßmann
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Abstract. The key property of models@run.time systems is their use
and provision of manageable reflection, which is characterized to be
tractable and predictable and by this overcomes the limitation of reflec-
tive systems working on code, which face the problem of undecidability
due to Turing-completeness. To achieve tractability, they abstract from
certain aspects of their code, maintaining runtime models of themselves,
which form the basis for reflection. In these systems, models form abstrac-
tions that neglect unnecessary details from the code, details which are not
pertinent to the current purpose of reflection. Thus, models@run.time
systems are a new class of reflective systems, which are characterized by
their tractability, due to abstraction, and their ability to predict certain
aspects of their own behavior for the future. This chapter outlines a ref-
erence architecture for models@run.time systems with the appropriate
abstraction and reflection components and gives a roadmap comprised
of short- and long-term research challenges for the area. Additionally, an
overview of enabling and enabled technologies is provided. The chapter
is concluded with a discussion of several application fields and use cases.

1 Introduction

The term “adaptive software system” is somehow a pleonasm, because software
has been first invented to make hardware more flexible and adaptable to varying
situations in its environment. Software has then evolved according to different
paradigms. Object orientation, combined with design patterns, already provides
organized means to customize or even adapt software systems (e.g., Strategy pat-
tern [GHJV95]). Current programming languages (like Java), component-based
platforms (like Fractal [BCL+03] or OpenCOM [CBG+08]) or SOA platforms
(e.g., OSGi [OSG12]) offer reflection APIs, which enable even more powerful
dynamic adaptation (e.g., based on dynamic class loading).

N. Bencomo et al. (Eds.): Models@run.time, LNCS 8378, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014



2 U. Aßmann et al.

Traditionally the development of software systems, adaptive or not, used to
be split in distinct steps with a clear distinction between design activities and
runtime execution [BBF09]1. The more critical the system is, the more choices
will be made at design-time in order to reduce the reconfiguration options to a
set of predictable configurations. For example, safety-critical embedded systems
are designed and intensively validated at design-time (e.g., model checking) be-
fore they are actually deployed [AG93,ELLSV02]. At runtime, they have a pre-
dictable behavior, time and resource consumption, which enables certification
bodies to approve these systems. There is, however, a growing need for more
flexible adaptive systems, able to cope with unanticipated situations, still with-
out jeopardizing safety properties. This is typically the case of Cyber-Physical
Systems (CPS) as described in Section 6. Hence, new approaches are needed
to enable unanticipated adaptations while ensuring guarantees. This is, in our
opinion, the ultimate purpose of models@run.time.

The central advance of models@run.time systems is their use and provision
of manageable reflection. In general, a reflective software system is causally con-
nected with its code, i.e., when the code changes, the system changes too. Such
a system can inspect its code (introspection), can generate new code (code gen-
eration), or even change its code (intercession). Because in most cases, Turing-
complete programs are reflected about, the problems to be solved by a reflective
system are undecidable and unpredictable, even at a checkpoint at runtime.
Models@run.time systems improve on this problematic situation. They abstract
from certain aspects of their code, maintaining runtime models of themselves. In
these systems, models form abstractions that neglect unnecessary details from
the code and from the environment, i.e., details which are not pertinent to the
current purpose of reflection. In these steps, care has to be taken. In general,
several models are formed and maintained at runtime, in order to cope with
the information loss of abstraction. Also, it has to be ensured that abstrac-
tions work correctly, i.e., are faithful with regard to the real behavior of the
software system. However, if these precautions are ensured, a models@run.time
system is able to perform tractable reflection, due to the faithful abstractions,
and it may predict certain aspects of its own behavior for the future. Therefore,
models@run.time systems provide and use manageable reflection, which is char-
acterized to be tractable and predictable and by this overcomes the limitation
of classic reflection on code, which faces the problem of undecidability.

Taking this definition into account, models@run.time software systems turn
out to be a new class of reflective systems, which are characterized by their
tractability and predictability. All application domains utilizing reflective sys-
tems benefit from this advancement. In addition, two currently hot application
domains, especially benefit from the advancement of models@run.time systems:

– Cyber-Physical Systems. Models@run.time systems reflecting upon vir-
tual as well as physical processes in comparison to models@run.time systems,
which are meant to reflect on a pure virtual system (i.e., information system).

1 See in particular the side note by Finkelstein.
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– Safety-Critical Systems. Systems, which demand for verification and cer-
tification (e.g., due to their ability to endanger the safety of human beings)
in comparison to systems, which do not have such requirements.

Both application domains face the limitation of current reflective systems:
undecidability. Models@run.time enable both domains to abstract all concerns
of interest to reflection to the information required for the respective decisions.
By this, reflection becomes manageable due to abstraction. Furthermore, both
domains demand for predictive reflection, i.e., the ability to reflect upon possible
future states of the system in comparison to reflect only upon the current system
state (and structure).

To summarize, the key advantage of models@run.time systems over reflective
software systems, achieved by modeling and separation of concerns principles, is
decidability and tractability. By approaching the capabilities of intelligent think-
ing, we believe models@run.time is the next step in the evolution of software.
Models@run.time allow to “mentally” build several potential models of reality
and to mentally evaluate these models by means of what-if scenarios [BBF09]2:
what would happen if I would do this action? During this mental reasoning,
the manipulation of the model does not impact the reality, until an acceptable
solution has been found. Then, this solution is actually realized, which has an
impact on the real world. In other words, the mental model is re-synchronized
with the reality. In the case where a relevant aspect of the reality changes during
the reasoning process, the model is updated and the reasoning process should
re-build mental models, ideally by updating already existing models. This char-
acterizes predictive reflection based on abstraction, i.e., manageable reflection.
Models@run.time enable systems to reason about alternatives to reach their
goals and consequences of the particular actions in comparison to classical sys-
tems which basically learn and react (i.e., animal-like behavior). This includes
that the system is able to justify why it takes a certain decision or not. Mod-
els@run.time have, thus, the potential to provide both flexibility and assurance,
instead of a mere trade off. It can reconcile users, domain experts, engineers
(aware of the obvious need for runtime adaptivity), with certification bodies
(which need stringent guarantees).

In the following section we discuss, which technologies form the prerequisite for
systems following the models@run.time paradigm and how models@run.time en-
able the development of modern software systems. Next, in section 3, we present
a reference architecture for models@run.time to expose the key advancements
of models@run.time over reflective systems. We summarize related work as in-
stantiation of this reference architecture and discuss associated communities in
section 4. In section 5, we provide a roadmap for models@run.time by a discussion
of central, open research questions on the uses and purposes of models@run.time
systems. Finally, we conclude the chapter and present compelling applications
in section 6.

2 See in particular the side note by Selic.
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2 Enabled and Enabling Technologies for
Models@run.time

In the following, we will first discuss the technologies forming the basis for
models@run.time systems and then discuss the technologies enabled by mod-
els@run.time in turn.

2.1 Technologies Required by Models@run.time

Systems, according to the models@run.time paradigm, are based on the reflection
principles, as defined by Bobrow et al.:

The ability of a program to manipulate as data something representing
the state of the program during its own execution. There are two aspects
of such manipulation: introspection and intercession. Introspection is the
ability of a program to observe and therefore reason about its own state.
Intercession is the ability of a program to modify its own execution state
or alter its own interpretation or meaning. [BGW93]

In practice however, reflection is a powerful yet hazardous process (see for
example the drawbacks of the Java reflection API, clearly reported by Oracle3),
since it provides no support to “preview” what will be the result of an adapta-
tion. Basically, erroneous adaptation based on reflection can only be detected a
posteriori, or even post mortem if the rollback mechanisms were not able to put
the system back to a safe state. The fundamental idea behind models@run.time
is to complement classic reflection with strong modeling foundations as defined
by Rothenberg:

Modeling, in the broadest sense, is the cost-effective use of something in
place of something else for some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than reality instead of reality
for some purpose. A model represents reality for the given purpose; the
model is an abstraction of reality in the sense that it cannot represent all
aspects of reality. This allows us to deal with the world in a simplified
manner, avoiding the complexity, danger and irreversibility of
reality. [RWLN89]

The key characteristic of a models@run.time system is then its ability to
project some aspects of the reality (its context, its behavior, its goals, etc.) to
the modeling space in order to enable tractable decisions, in a safe space, to
produce decidable plans. This is basically separation of concerns [Dij82] applied
in a disciplined way at runtime, and to some extent, how human thinking works.

What to my taste is characteristic for all intelligent thinking. It is,
that one is willing to study in depth an aspect of one’s subject matter in
isolation for the sake of its own consistency, all the time knowing that

3 http://docs.oracle.com/javase/tutorial/reflect/

http://docs.oracle.com/javase/tutorial/reflect/
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one is occupying oneself only with one of the aspects. It is “the separation
of concerns”. It does not mean ignoring the other aspects, it is just doing
justice to the fact that from this aspect’s point of view, the other is irrel-
evant. It is being one- and multiple-track minded simultaneously. [Dij82]

We perceive reflection, modeling and separation of concerns as the three main
pillars to achieve models@run.time and make future software systems able of
intelligent thinking, i.e., abstract, predictive reflection.

2.2 Technologies Enabled by Models@run.time

Models@run.time as a technology enables various further technologies. Of partic-
ular interest is the possibility to realize safe adaptive systems. The key problem of
such systems is the contradiction between safety and adaptivity. To ensure safety,
all variants of the system have to be checked against possible threats, usually at
design time. In highly adaptive systems, the number of system variants usually
grows exponentially and, thus, prolongs the safety check to an unfeasible degree.
The reasoner of models@run.time systems allows for postponing safety checks
to the runtime of the system as has been shown in [ST11]. In consequence, only
those variants of the system have to be checked, which are reachable from the
current variant. This significantly lowers the amount of variants to be considered
and, thus, enables the realization of safe adaptive systems.

Furthermore, models@run.time enable the realization of Cyber-Physical Sys-
tems (CPS), which are adaptive systems integrating the virtual and physical
world. A central requirement for CPS is safety, due to the physical part of the
system. This is because the physical actions of a CPS are able to threat hu-
man life, the environment or the system itself. In addition, CPS are adaptive
systems, because they naturally adjust themselves continuously to the their en-
vironment. In consequence, models@run.time is the key enabling technology for
CPS, because models@run.time enable the realization of safe adaptive systems.

Besides these two particular application domains, all domains, which already
make use of reflection, benefit from the advancements by models@run.time.

3 A Reference Architecture for Models@run.time
Systems

The goal of this section is to understand how models@run.time are key enablers
for modern software systems, to clarify their typical use cases and fundamen-
tal interests, as well as to define a reference architecture for models@run.time.
Based on our recent experiences (e.g., in the DiVA project [FS09,MBNJ09] and
the MQuAT approach [GWCA11,GWCA12]), we propose the generic reference
architecture (RA) depicted in Figure 1, which provides a generic framework for
models@run.time, and which is meant to be instantiated for different domains.

According to the reference architecture, a models@run.time system always
interfaces with a managed system, which is monitored and controlled by the
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Fig. 1. Reference Architecture for models@run.time Systems

managing models@run.time system. Notably, a models@run.time system is not
directly interfaced to the environment. Instead, the managed system’s sensors
and actuators are utilized for this purpose. The managed system can be any
observable and controllable system (e.g., a personal computer, a wireless sensor
network, a robot or a managing models@run.time system again). Each mod-
els@run.time system comprises three layers, comparable to the layers of Kramer
and Magee [KM09]. From bottom to top these are:

– a base layer comprising models of the managed system,
– a configuration management layer comprising active components of the sys-

tem realizing the feedback loop on the managed system and
– a goal management layer comprising models of the system’s goals, realizing

an internal feedback loop between the goal management layer as managing
element and the configuration management layer as managed element.

3.1 Runtime Models of the Base Layer

The base layer comprises four types of models, which are abstractions of specific
aspects of the system for a given purpose:

Context Models contain relevant information about the current state of
the managed system’s environment, e.g., the current temperature, or higher
level context information such as an alert information derived by aggregating or
interpreting the information of different sensors. The interpretation of context
information is context-dependent itself. For example, a temperature of 50 ◦C
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will be interpreted as “hot” as a room temperature, but as “cold” for a furnace.
To keep this type of model synchronous to the environment, the sensors of the
managed system are utilized. Context models do not cover information about
the managed system, but only of the environment’s observable state.

Configuration Models express the current configuration of the managed
system, i.e., its current state. Current models@run.time approaches usually pro-
vide an architectural view on the managed system (i.e., which services are cur-
rently deployed and running on which resources). Both, configuration and con-
text models, cover the abstracted runtime state subject to tractable, predictive
reflection.

Capability Models describe the features available to influence the managed
system (e.g., whether software components can be added/removed and rebound,
whether parameters of system components can be adjusted), which actuators
are available and how they can affect the environment. Typically this model is
rather static and depends on the underlying infrastructure. However, this model
can be updated, e.g., after a new actuator has been added in the system.

Plan Models describe a set of actions (according to the capability models)
to be performed by the system to realize an adaptation. They represent recon-
figuration or action scripts, which describe how the managed system shall be
reconfigured and how the actuators of the managed systems shall be used to
effect the environment.

3.2 The Configuration Management Layer

The configuration management layer contains the active entities of a mod-
els@run.time system, which make use of the models of the base layer. This layer
typically comprises a reasoner, an analyzer and optionally a learner.

The reasoner’s evaluates alternative future configurations of the system. This
includes (1) to realize the predictive reflection, (2) to identify the best configura-
tion w.r.t. the goals specified on the top layer, and (3) to derive reconfiguration
or action plans to establish the envisioned system configuration. To evaluate
possible future configurations, the reasoner uses the information provided by
the context and configuration models, representing the managed system and its
environment’s state, and derives possible variations of them, which are reachable
in the future, based on the capabilities of the managed system covered by the
capability models. To identify the best future configuration w.r.t. the system’s
goals, the reasoner evaluates each possible future system variant against the goal
models of the top layer. To derive reconfiguration plans, the system compares
the current system configuration with the envisioned system configuration and
deduces a sequence of actions to be taken based on the capability model of the
base layer. By these means, the reasoner creates the plan models of the base
layer.

The analyzer has two tasks. First, the analyzer has to detect whether the
whole system (i.e., managed and managing system) should be re-evaluated. To
do so, the current system state has to be evaluated against the system’s goals. If
the current system state deviates from the goals, the analyzer will trigger the rea-
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soner, to compute a reconfiguration plan. Second, the analyzer further abstracts
the information contained in the models of the base layer. This raises the level
of abstraction of the models and, in turn, to lower the complexity of predictive
reflection. The analyzer has to abstract the context, configuration and capabil-
ity models of the base layer to ensure the existence of a capability model on the
same level of abstraction for the abstracted context and configuration models.
Based on this, models@run.time systems can manage models@run.time system
too. The analyzer realizes the bridge between the models@run.time system on
lower and higher abstraction level.

The learner has two tasks, too. On the one side, the learner is responsible
to keep the models of the base layer synchronized with the system. Thus, the
learner utilizes the managed systems sensors to capture the environment’s state
and continuously observes the managed system itself to update the context and
configuration model on the base layer. On the other side, the learner can observe
the reasoner to detect, whether the decisions of the reasoner are beneficial on the
long run or not. Thus, whereas the reasoner evaluates possible future scenarios
based on the current system’s state, the learner takes into account the system’s
history to deduce, whether the comparably shortsighted decisions of the reasoner
are meaningful and correct on the long run. Based on this, the learner can provide
the reasoner with additional (historical) information, to improve the quality of
decision making over time.

3.3 The Goal Management Layer

Finally, the goal management layer comprises goal models of the system, which
are used by the reasoner to evaluate the alternative future configurations with
respect to the fulfillment of the specified goals. Notably, these goal models can
and should be able to change over time, because changes in the context of the
system could require adjustments to the goals. This depicts the need for the last
feature of the reference architecture: as models@run.time systems are systems
themselves, they can be stacked. That is a models@run.time system could mon-
itor and control another models@run.time system. As each models@run.time
system realizes a feedback loop, the proposed reference architecture allows for
the development of layered feedback loops as has been shown in the Collab-
orative Research Centre 614 [ADG+09], which focused on self-optimizing sys-
tems in mechanical engineering. The proposed architecture is represented as an
operator-controller-module (OCM), which realizes three layers of feedback loops.
The bottommost layer contains the controller, which directly controls the phys-
ical system. On top of the controller, the reflective operator is situated, which
is capable of operation scheduling. That is—in contrast to the controller layer—
the reflective operator is able to plan the future behavior of the physical system.
Finally, the topmost layer comprises the cognitive operator, which is capable of
more complex planning methods and utilizes techniques from machine learning.
Thus, from bottom to top, the models of the system, utilized by the layers,
get more and more abstract, but the applicable techniques get more and more
powerful.
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In summary, the key advancements over state of the art of models@run.time
systems are realized by the reasoner and the analyzer respectively:

1. Predictive Reflection. The ability of reasoning about future configura-
tions of the system is the advance of models@run.time systems over reflec-
tive systems, which are able to reason on the current, but not on future
configurations of a system.

2. Tractability by Abstraction. The ability of the analyzer to abstract the
information used by the reasoner (possibly multiple times) allows for reduc-
tion of the reasoning task’s complexity and, thus, to get decidability and,
finally, tractability of the overall system.

4 Literature Review

4.1 Instantiations of the Reference Architecture

The DiVA project proposes a reference architecture which leverages mod-
els@run.time to support dynamic variability [MBNJ09, MBJ+09]. A feature
model describes the variability of the system. A reasoner component takes this
variability model as input, as well as a model of the context, to compute a set of
features well suited to the current context (not necessarily the best). A weaver
component then composes these features to produce an architectural model, de-
scribing the configuration. This configuration is checked at runtime (since it is
not possible to check all possible configuration at design time) and the system is
automatically adapted to reflect this architectural model. If the model is invalid,
the reasoner computes another configuration.

In [FMS11], the DiVA reference architecture has been instantiated in a dif-
ferent way to fit the need of low-power embedded systems (8-bits, 16MHz, 1Kb
RAM). In this setup, the adaptation logic is fully simulated at design-time, so the
number of configurations to be addressed by such a small node remains tractable.
The adaptation process is compiled into a state machine, which is then merged
with the core logic (also expressed as a state machine). The resulting state ma-
chine is finally compiled into C code to be deployed on the micro-controller.

The multi-quality auto-tuning (MQuAT) approach [GWCA11, GWCA12]
developed in the collaborative research center 912 and preceding projects partic-
ularly focuses on self-optimizing systems following economic principles by multi-
objective optimization (i.e., the system is optimized w.r.t. the optimal tradeoff
between multiple objectives, which represent either cost or utilities). The main
constituents of MQuAT are: (1) the cool component model (CCM) and the qual-
ity contract language (QCL), which are meta-model defined concepts to be used
to specify self-optimizing systems, and (2) the runtime environment THEATRE
(THE Auto-Tuning Runtime Environment), which comprises resource managers
to monitor and control the target system and control loop managers, which re-
alize the reasoner component by means of an adaptive multi-objective optimizer
(i.e., various implementations of the optimizer exist, whereof continuously the
best is chosen, based on the current context). A key characteristic of MQuAT
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is the application of quality contracts, which cover dependencies between non-
functional properties of system components (both software and hardware), to
reduce the amount of system configurations, which need to be considered during
optimization.

In [SCG+12] the MQuAT reference architecture has been instantiated for
multi-tenant applications—applications hosted in the cloud, which are config-
ured by tenants, whose customers use the application. This type of application
introduces a further restrictions on possible system configurations, due to tenant
constraints like the exclusive use of a single server or the restriction to only use
servers within a certain country.

A further reference architecture is ConFract [CCOR06], which particularly
focuses on self-healing systems. In this approach functional contracts are used
to specify how a valid system is characterized and to initiate self-healing in case
of contract violations. The developer is able to explicitly specify resource usage
profilers as part of the system. In consequence, the functional contracts, which
use data generated by these profilers, can be used as non-functional contracts,
so dependencies between non-functional properties can be expressed too.

In [CGK+11], Calinescu et al. present QoSMOS–a generic architecture for
adaptive service-based systems (SBS). The central constituents of QoSMOS are
formal specifications of QoS requirements (using probabilistic temporal logics)
including the specification of dependencies between QoS requirements, model-
based QoS evaluation using verification techniques, learning monitoring of QoS
properties and reasoning techniques, based on high-level, user-specified goals
and multi-objective utility functions. QoSMOS is an instance of our proposed
reference architecture, which focuses specifically on SBS comprised of a set of
web services under the control of a workflow engine.

4.2 Relevant Communities

Models@run.time are relevant to several research communities as depicted in
Fig. 2. Among them two types of communities can be distinguished. First, com-
munities which provide fundamental techniques for models@run.time. Second,
communities which benefit from the advancements by models@run.time and pro-
vide use cases in turn.

Three communities are relevant to models@run.time in particular: the self-
adaptive systems (SAS), the autonomous computing and middleware
community. The first two communities investigate systems, which adjust them-
selves according to changes in their environment. The middleware community
covers, among others, the problem how to coordinate multiple independent sys-
tems. Whereas the SAS community focuses on a top-down approach w.r.t. the
coordination of multiple systems, the autonomous computing community focuses
on bottom-up approaches (self-organization), where the coordination originates
from each individual system [ST09]. For this purpose, all three communities
rely on reflection to observe and adjust the systems they manage or coordi-
nate. Hence, the advanced reflection mechanisms of models@run.time enable
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Fig. 2. Research Communities Relevant to Models@run.time

advancements in these communities, which provide use cases to models@run.time
in turn.

All three communities rent many concepts from the control theory and
the artificial intelligence community. Whereas control theory covers systems
adjusting themselves to external influences in general, artificial intelligence pro-
vides, among others, planning and analysis techniques to coordinate autonomous
systems.

Another set of communities relevant to models@run.time are those focusing
on quality-of-service optimization and assurance. This includes various spe-
cialized communities which cover particular non-functional properties. For ex-
ample, performance, fault-tolerance, safety, physical dynamics and energy. Each
community requires means to model the (non-functional) behavior of a system
subject to optimization or assurance w.r.t. the specific non-functional property
of interest. To realize optimization or assurance, again reflection is used as a
basis. Especially, the prediction capabilities of models@run.time are beneficial
for these communities. In turn, they provide use cases to models@run.time.

Themodel-driven engineering community provides fundamental techniques
to models@run.time. Besides general modeling techniques, solutions to particular
problems for models@run.time are addressed by this community. For example,
model evolution, model transformation, model synchronization and model-based
diagnostics, where each problem usually forms its own community.

To cover multiple aspects of a system’s non-functional behavior, modeling
techniques from different domains are to be integrated or bridged. This challenge
is addressed by the multi-domain/multi-paradigm modelling community.
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Hence, this community provides fundamental techniques to the models@run.time
community that can be useed by the quality-of-service community.

Moreover, especially the cyber-physical systems community demands for
multi-domain modelling (physical dynamics combined with computational mod-
els). It is yet another community, which makes use of models@run.time. This is
because cyber-physical systems are self-adaptive or autonomous systems, where
a particular challenge is the management of multiple non-functional proper-
ties from different domains. This includes the embedded systems community,
which starts to investigate networked embedded systems. Notably, embedded
systems are inherently self-adaptive, because they are embedded in an environ-
ment and are meant to observe and/or influence it.

5 Short and Long-Term Research Questions - A Roadmap

In the following, open research challenges for models@run.time will be discussed.
We examine short-term research topics, followed by long-term research topics.

5.1 Short-Term Research Challenges

As short-term research challenges, we identified the application of MDE tech-
niques, the optimization of reasoning and reconfiguration in terms of efficiency
(i.e., optimal tradeoff between cost and utility), the management of uncertainty
inherent to models@run.time, synchronization of reflexive models and safety as-
surance at runtime. In the following, we elaborate on each challenge.

Model-Driven Engineering. Modeling is a central constituent of mod-
els@run.time. Hence, in theory, models@run.time could directly benefit from
tools and approaches developed by the Model-Driven Engineering (MDE) com-
munity: metamodels, editors, simulators, compilers, etc. In practice, however, it
is difficult to embedded MDE tools at runtime, since these tools, usually thought
for design-time usages in a rather standalone and controlled environment (IDE),
come with important memory and performance (time) penalties. Thus, current
MDE techniques should be investigated, extended, adjusted and/or directly be
applied to models@run.time.

Efficiency @ Runtime. Dynamic adaptation of a software application is a
process that might take some time, which–depending on the context–might or
might not be an issue. For example doing some reconfiguration to better balance
load and energy consumption in a cloud might afford a reconfiguration delay of
several seconds, while an interactive system should be able to handle the overall
reconfiguration in less than 200 ms. Even worse, if we want to push these system
towards safety critical, real-time embedded systems, the constraints might be
much harsher.

In our experience, the two main limiting factors in reconfiguring an application
are (1) the time and resources taken for the reasoning itself (compute which



A Reference Architecture and Roadmap for Models@run.time Systems 13

configuration is to be chosen) and the (2) the adaptation itself (e.g., stopping
and starting components, loading new code, transferring state, etc.).

On the first account, one challenge is of course to leverage reasoning tech-
niques that might be able to make the right tradeoff between time and intel-
ligence. New advances in incremental reasoning, or time constrained reasoners
might also be needed. The layering ability of models@run.time (i.e., the ability
to manage models@run.time systems by models@run.time systems themselves)
allows to adapt or optimize the reasoning and reconfiguration itself. The key
challenge to be addressed here are (a) the assessment of reasoners and recon-
figurations in terms of their costs (time, energy, etc.) and resulting utility and
(b) the determination of cost budgets, which most not be exceeded by reasoning
and reconfiguration. For example, if a system can perform a task either in one
minute or, if reconfigured, in half a minute, the time budget for reasoning and
reconfiguration is less than half a minute. If reasoning and reconfiguration take
more than half a minute, the gain of running the task on the reconfigured system
is lost.

Additionally, on the adaptation process itself, a few points are subject to
possible optimizations, combining system issues (such as maintaining caches for
frequently used configurations, efficient code loading, light component models
etc.) with optimizations in the reconfiguration planning algorithms taking into
account the specificity of the underlying platforms.

Managing Uncertainty. Systems adhering to the models@run.time paradigm
have to cope with the uncertainty of the systems they manage or, in other
words, uncertainty is inherent to models@run.time systems. This is because the
managed systems environment is uncertain by nature. Hence, novel approaches,
which enable reasoning in the presence of uncertainty are required.

Handling Reflexive Models of Distributed Systems. Handling reflexive
models of distributed systems is a well-known issue in the distributed systems
community. Having a centralized reasoner working on a centralized model of
a distributed system makes little sense for reliability and robustness reasons,
but managing a distributed model implies that the reasoner has to also handle
consensus and synchronization issues. Several works already go into that direc-
tion [ECBP11], but more is to be done to also deal with performance issues and
real-time constraints.

Realizing Safety Assurance at Runtime. Most of the safety-critical business
nowadays follows very stringent procedures that are statically checked, most
often under strict legal regulation as it is the case in the aerospace domain. Such
systems can still be somehow adaptive within well defined boundaries (often
calledmodes). There are typically very few modes (such as normal mode, recovery
mode, survival mode, panic mode, etc.). They are well identified and individually
checked for safety. All possible transitions between modes are also checked.



14 U. Aßmann et al.

Providing the same level of safety for systems having modes only computed at
runtime would imply having the same level of safety checking done on the fly at
runtime. While using verification technologies such asModel Checking at runtime
(using, e.g., the power of the cloud) is no longer considered as science-fiction, it
is clear that this is still a challenge, and the proof that models@run.time can be
safe and adaptive concurrently even in principle remains to be made.

5.2 Longer-Term Research Challenges

Several challenges of models@run.time, which demand for long-term investiga-
tion, can be identified. This includes the handling of quality interferences, the
handling of interconnected control loops and the attainment of predictability by
top-level feedback loops.

Quality Interferences. As has been pointed out by Salehie and Tahvildari
[ST09], most of the current approaches to self-adaptive software exploit only a
single quality. The exclusive focus on either reliability or energy or performance
or security hides the problem of interferences and general dependencies between
qualities. To consider multiple qualities simultaneously, their interdependent be-
havior needs to be determined and considered in the reasoning approaches. Thus,
the monitoring and analysis phase need to be aware of the dependencies between
qualities, which leads to a combinatorial explosion of cases to be considered in
these two phases (i.e., all situations need to be investigated for all combinations
of qualities). In addition, the reasoning approaches for the decision or planning
phase need to support multi-objective decision-making, which is known to be
an NP-hard problem. Finally, approaches for the act or execute phase need to
consider quality interferences too, because their actions might imply a chain of
reactions w.r.t. the quality assurance of the system. Thus, all phases of the feed-
back loop need to be investigated w.r.t. dependencies and interferences between
qualities.

Interconnection of Multiple Feedback Loops. The need for multiple, in-
terconnected feedback loops arises from the need for seamless system integration
as envisioned by the CPS or Systems-of-Systems community. If multiple mod-
els@run.time systems are meant to cooperate, their feedback loops need to be
capable of cooperation too. But, the interconnection of multiple feedback loops
(e.g., in terms of layers as has been shown in CRC 614 [ADG+09]) opens fur-
ther research questions, which affect all aspects of self-adaptive systems. The
monitoring and analysis phase need to be aware that the system under inves-
tigation might not be a (continuous) physical system, but is itself a (discrete)
models@run.time system. The same holds for the decision-making or planning
and the act or execute phase, which, for example, need to differentiate between
continuous and discrete systems. Clear interfaces between models@run.time sys-
tems, which are subject to integration, are required. Besides differentiating be-
tween continuous and discrete systems, the architecture or architectural style of
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a models@run.time system is a key characteristic, which needs to be considered
throughout the complete feedback loop of a dependent models@run.time system.

Predictability. Maybe the central challenge of models@run.time system is to
reach full predictability of their behavior. The underlying problem is the di-
chotomy of adaptivity and predictability. Models@run.time systems are highly
adaptive systems, but demand for precise predictability to enable more intel-
ligent reasoning approaches. Precise predictability is a key enabler for several
technologies as explained in section 2.

6 Conclusion

As highlighted by important roadmaps in research and industry, cyber-physical
systems [Lee08] are considered to be the next generation of embedded systems.
For example, in the agricultural domain already today it is possible to connect
a tractor with another autonomously driving tractor [Fen11]. In the near future,
this kind of interconnection of different systems is expected to increase rapidly
throughout a broad range of further application domains such as automotive
and healthcare. In the former, cars will dynamically connect to each other to
implement functionalities like automated cross roads assistants [Con11]. In the
latter, medical devices, telecommunication infrastructure and IT-based service
systems will build dynamic ecosystems leading to a new generation of health
care systems [All11].

All of these examples share the commonality that different devices, machines,
and vehicles are integrated at runtime and that they have to adapt to dynami-
cally changing environment contexts. In consequence, neither the structure nor
the behavior of the cyber-physical systems can entirely be predicted at design
time. This greatly complicates the assurance of important functional and non-
functional properties - up to the point of impossibility for some cases. One of
these particularly difficult cases is the assurance of safety, which is nevertheless
mandatory since many of these cyber-physical systems are inherently safety-
critical. As of today, only proprietary approaches are used to ensure safety of
strictly predefined machine combinations. This obviously requires an immense
effort and strongly limits the desired flexibility. Since traditional approaches are
not expected to scale to adequately address cyber-physical systems, safety is a
bottle neck preventing the transition from a promising idea to a real business
success. Thus, there is an inescapable need for new approaches enabling the
development of dynamically adaptive yet safe cyber-physical systems.

Solving this challenge can be a killer application for models@run.time. Re-
garding the examples mentioned above, it is not any longer the question whether
dynamic adaptation is necessary or not. It is the question how important proper-
ties such as safety can be assured in the context of open adaptive cyber-physical
systems. A general solution approach is to shift parts of the required assurance
measures into runtime by means of adequate models@run.time. As opposed to
other approaches, models@run.time explicitly define all facets of the dynamic
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adaptation behavior of a system. Moreover, models@run.time enable a system
to systematically reason at runtime about its current quality state, to predict
the impact of possible system modifications on system quality, and, therefore, to
select safe adaptation strategies following predictable and traceable rationales.

Particularly safety, as a bottleneck to business success, can be an important
factor to create the pressure necessary to introduce a new technology. So the idea
of using models@run.time for assuring safety in cyber-physical system can be a
door opening killer application for models@run.time. Once the door is opened,
the application can easily be extended to any other quality properties.

In summary, models@run.time advance over reflective systems in that they
offer abstract, tractable and predictive reflection as shown by the reference ar-
chitecture presented in section 3. This enables improvements to existing appli-
cation domains, which already make use of reflection, and–in particular–enables
the realization of safety-critical, cyber-physical systems.
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Abstract. Modern software systems are often required to adapt their
behavior at runtime in order to maintain or enhance their utility in dy-
namic environments. Models at runtime research aims to provide suitable
abstractions, techniques, and tools to manage the complexity of adapt-
ing software systems at runtime. In this chapter, we discuss challenges
associated with developing mechanisms that leverage models at runtime
to support runtime software adaptation. Specifically, we discuss chal-
lenges associated with developing effective mechanisms for supervising
running systems, reasoning about and planning adaptations, maintain-
ing consistency among multiple runtime models, and maintaining fidelity
of runtime models with respect to the running system and its environ-
ment. We discuss related problems and state-of-the-art mechanisms, and
identify open research challenges.

1 Introduction

Many modern distributed and open software-based systems are required to adapt
their behavior at runtime in order to maintain or enhance their utility [19, 58].
Models at runtime (M@RT) research focuses on how models describing different
aspects of a software system and its environment (e.g., requirements, design, run-
time configuration) can be used to manage the complexity of effectively adapting
software systems at runtime [11, 40]. This chapter is a distillation of discus-
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sions held in a working group at the Dagstuhl Seminar on Models@run.time1.
The working group discussions focused on challenges associated with develop-
ing M@RT mechanisms to support runtime software adaptation. Specifically, we
discussed challenges associated with developing mechanisms for (1) creating run-
time models, and updating them in response to changes in the system and its
environment, (2) reasoning about changes in the system, its requirements, or the
environment to select or produce appropriate adaptation strategies, (3) analyz-
ing and maintaining multiple runtime models, which represent different aspects
of the running system or its environment, and (4) establishing and maintaining
fidelity of the runtime models with respect to the running system, its require-
ments, and its environment.

It is important to notice that M@RT can support a plethora of tasks other
than software adaptation, such as for example software auditing and monitor-
ing. However, software adaptation is by far the most challenging application
of M@RT mechanisms and thus represents the focus of our discussions. Analo-
gously, it also important to mention that M@RT is not the only way to implement
self-adaptive systems even if it represents a common approach.

We developed a conceptual M@RT reference model to provide a framework for
our discussions. The reference model is based on what we considered to be core
M@RT concepts and terminology, and it was used to situate the mechanisms we
discussed. For each mechanism we identified challenges associated with its devel-
opment and use in the context of the reference model. In addition, we reviewed
the state of the art and formulated open research challenges for the mechanisms.
The discussions raised a number of challenging research questions, for example,
What are the key abstractions needed to support effective M@RT adaptation? and
How can these abstractions be used to create appropriate adaptation mechanisms
in open settings, e.g., in Internet of Things and Cyber-Physical Systems?

In contrast to other work that discusses the state of the art and research
challenges for self-adaptive software systems [19, 58, 75, 79], our discussions
focused on adaptive systems based on M@RT.

The chapter is structured as follows. Section 2 presents the terminology and
the conceptual reference model we used to frame our discussions. Section 3
discusses the challenges associated with developing appropriate M@RT mecha-
nisms. Section 4 reviews the state of the art and discuss open research challenges.
Finally, Section 5 concludes with an overview of the major contributions of this
chapter.

2 Terminology and Reference Model for M@RT

In this section, we define the terminology underlying the conceptual reference
model for M@RT that will be presented afterwards and used to frame our dis-
cussions in the rest of the paper. The terminology and the conceptual reference
model presented here are generic so that they can be applied to a wide variety

1 Dagstuhl Seminar 11481: http://www.dagstuhl.de/11481

http://www.dagstuhl.de/11481
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Fig. 1. A Terminological Framework for M@RT

of adaptive software systems driven by M@RT, including open, distributed, and
embedded systems (e.g., cyber-physical systems) and cloud-based systems.

2.1 Terminology

One of the key questions we attempted to answer was the following: What con-
stitutes a M@RT system?, i.e., What are the major parts of an adaptive software
system in which adaptation is driven by models? The terminological framework
we converged on during the discussion is shown in Figure 1. The Running System
shown in the framework represents the executing software system. The Environ-
ment represents the external elements that the Running System interacts with
to fulfill its requirements. The Environment corresponds to the concept of World
that interacts with the Machine (i.e., the Running System) in the seminal work
by Jackson and Zave [51, 101].

The usage and operation of a M@RT system can be influenced by one or
more Contexts, that is, a context can determine how a M@RT system adapts
itself to changes in its environment. For example, the types of adaptations that
software on a mobile device can undergo may vary based on the device’s lo-
cation and time at which the change occurred; both time and location define
the context. Context elements may include elements from the Running System,
including hardware resources and network elements, and elements from the en-
vironment, for example, the location and time. Moreover, it is important to note
that different contexts may also overlap.

A Running System consists of two major parts:

The Application: This part of the system is concerned with delivering the
desired functionality and with adapting how the desired functionality is de-
livered to users or other systems.

The Runtime Platform: This part of the system provides the infrastructure
on top of which the Application runs. For example, it can consist of middle-
ware, a language runtime environment, an operating system, a virtualization
system, and hardware resources.
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The Application may be further broken down into the following parts:

Core: This is the “default” functionality used to meet users’ functional require-
ments. It is the functionality that executes when the system is first started.

Supervision: This component is concerned with supervising the behavior of
the Running System and monitoring the Environment. It triggers appro-
priate adaptations by calling functionality in the Adaptation part of the
Application (see below). The monitoring performed by this component is
model-driven, that is, monitoring involves providing and maintaining run-
time models of the running system and its environment. Note that this
component is responsible for the monitoring aspect of the MAPE-K (Moni-
tor, Analyse, Plan, Execute, Knowledge) model [50] proposed for autonomic
control systems.

Adaptation: This component is in charge of reasoning, planning, and enforcing
adaptations on parts of the Running System. The adaptation functionality is
triggered by the Supervision component. In a M@RT system, the adaptation
functionality is driven by models. Note that this component is responsible
for the analysis, planning, and execution aspects of the MAPE-K model.

It is important to understand what can and cannot be adapted by a M@RT
system. Therefore, the concepts in the terminological framework are classified as
adaptable, non-adaptable, or semi-adaptable. Adaptable entities are those whose
behaviors can be modified at runtime by the system. The Core part of an Ap-
plication is an adaptable entity because it has been designed for adaptability by
software developers. The Supervision and Adaptation parts can conceivably be
designed for adaptation, for example, it may be possible to use what the system
“learned” from past applications of adaptation rules to improve the adaptation
mechanisms. On the other hand, the environment is typically a non-adaptable
entity since it consists of entities external to the system (e.g., users) that cannot
be controlled by the system2 Some elements in the Runtime Platform may be
semi-adaptable, that is, it may be possible to partially modify or configure them
at runtime (e.g., by tuning certain parameters of the operating system, or setting
the configuration of hardware devices).

The conceptual reference model for M@RT presented in the following subsec-
tion is based on the above terminological framework.

2.2 A Conceptual Reference Model for M@RT

The conceptual reference model we propose is structured into four levels (M0,
M1, M2, and M3) as illustrated in Figure 2. The M0 level consists of the Run-
ning System that observes and interacts with the Environment. A detailed view
of this level is depicted in Figure 3. The view refines the Running System and its
relationship to the Environment. The Supervision and Adaptation components
provide the means to effect adaptations on the Core functionality and on the
2 Notice that, in some particular domains, the environment may be partially control-

lable as for cyber-physical systems.
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Runtime Platform, based on observations made on the Environment, the Core,
and the Runtime Platform. The Supervision component triggers the Adapta-
tion component to reason and plan an adaptation based on observations of the
Environment, Core, or Runtime Platform. An adaptation, performed by the
Adaptation component, adjusts the Core or the Runtime Platform. The Adap-
tation component may request more detailed information from the Supervision
component that triggered its behavior. The Supervision component, on receiv-
ing such a request, monitors the Environment, Core, or Runtime Platform at
a more fine-grained level in order to provide this information. The Core func-
tionality interacts with the Environment (as is typical of software applications),
and with the Runtime Platform (e.g., to use middleware services). The Runtime
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Platform also interacts with the Environment (e.g., to establish communication
with external devices or services).

While level M0 includes adaptation mechanisms, it does not restrict the forms
of information used to drive the adaptation and thus, it is applicable to many
types of adaptive systems, including those that do not use models. Level M1
and above specialize the form of adaptive systems to M@RT systems because
they make models the primary drivers of the adaptation.

Level M1 includes the runtime models, relations between these models, and
constraints on these models and relations. The models are used to drive the
adaptation mechanisms at level M0. This level may have a variety of diverse
models, for example, Queuing Networks, Simulink models, and UML Diagrams.
The models may be derived from other models or may be composed of other
models defined in the level.

M1 models are causally connected with (1) events and phenomena occurring in
M0, specifically, those observed and handled by the Supervision component, and
(2) change actions enacted by the Adaptation component. The Supervision com-
ponent uses theM1models in its event-handling processes.The processing of these
events updates M1 models such that the models properly reflect the Running Sys-
tem and Environment. Event processing can lead to the invocation of adaptation
functionality in the Adaptation component. Adaptations are performed by chang-
ing the models and propagating the changes to the Running System through causal
connections between the models and the Running System.

Conceptually, this part of the reference model describes a feedback control
loop between the models in level M1 and the Running System at M0, and
it is based on the autonomic control loop discussed in [13, 54]. At runtime,
the Running System provides data (feedback) used to attain a desired level of
fidelity between the models and the system and between the models and the
environment. Adaptations produced by the adaptation reasoning and planning
mechanisms in the Supervision and Adaptation components are performed on
the models and changes in the models are propagated to the Running System.

It is important to note that M1 may consist of several models representing
different aspect of the Running System and Environment. These models may
overlap and, as a consequence, may be in conflict in terms of actions to be
triggered in the adaptation step. Inter-model conflicts and dependencies within
one level are discussed later in this chapter.

The languages used to create M1 models are defined by metamodels. Such
metamodels are located in the M2 level. Examples of languages defined by meta-
models are UML, SysML, SPEM, BPMN, or ADLs. Likewise, languages for spec-
ifying constraints on M1 models are part of the M2 level, for instance, OCL [72]
can be used as a language defined at the M2 level to describe constraints for
M1 models created with UML. In addition, the types of relationships that can
be defined among the different M1 models are defined at the M2 level.

The M2 level is relevant since it determines the languages that are used to cre-
ate M1 models and thus, it determines the syntax and semantics of these models.
Proper syntax and semantic definitions are required for automated processing of
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models. For instance, model transformation techniques transform a source model
to a target model at the M1 level and such a transformation is typically specified
by referring to the abstract syntax (i.e., the metamodel) of the source and target
M1 models [82]. Specifying a transformation using metamodels makes use of the
syntax and semantic definitions and it supports the application and reuse of the
transformation for all possible models that are instances of these metamodels. Such
reuse eases the engineering of mechanisms. In contrast, without an M2 level, each
individual model in the M1 would require a specific transformation.

Finally, the top level in the conceptual reference architecture is M3 which
is the meta-metamodeling level. This level defines models for interoperation,
integration, and management of the modeling stack and, thus, it is used to define
the metamodels contained in M2. An example for a meta-metamodel model at
the M3 level is the Meta Object Facility (MOF) [71] that is used to define the
UML and other languages such as SPEM [69]. In this case, having a common
meta-metamodel eases the integration of the UML and SPEM languages at the
M2 level, which in turn, enables interoperability between UML and SPEM model
processing activities.

3 M@RT Engineering Challenges

In this section we present the challenges associated with engineering adaptive
systems that follow the M@RT reference model described in the previous section.
Specifically, we consider (1) the development and evolution of runtime models
for supervision, (2) the reasoning and planning of adaptation based on run-
time models, (3) the maintenance of multiple and different runtime models, and
(4) the maintenance of fidelity of runtime models with respect to the running
system and its environment. Mechanisms that realize the reference model can
be used to tackle these challenges.

3.1 Developing and Updating Runtime Models for Supervision

Supervision is concerned with observing the running system and its environment
in order to trigger the necessary adaptation. These observations may relate to
functional and non-functional concerns, which should be explicitly captured in
runtime models. Realizing the conceptual M@RT reference model requires one
to tackle issues related to how the runtime models at levels M1, M2, and M3
(cf. Figure 2) are created and updated at runtime. For M3, a meta-metamodel
can be developed or an existing one such as the Meta Object Facility (MOF) [71],
can be used. This meta-metamodel is used to define M2 metamodels. The M2
metamodels define the languages used to express M1 models.

Runtime models describe entities in a running software system and in its en-
vironment. Unlike development models, they capture dynamic runtime behavior.
For this reason, meta-metamodels and metamodels that capture runtime aspects
are required at the M3 and M2 levels, in addition to the meta-metamodels and
metamodels used at development. Runtime and development meta-metamodels
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and metamodels must be integrated in a M@RT system, and thus it is important
to seamlessly connect model-driven development processes with the processes for
creating and evolving runtime models.

The state of a runtime model should correspond as closely as possible/needed
with the current state of the running system and its environment. Timely in-
formation on a running system and its environment provided by sensors can be
used by a Supervision component (cf. Section 2) to update the runtime models.
This requires instrumentation mechanisms that allow the Supervision compo-
nent to connect runtime models with running systems and their environments.
These mechanisms causally connect levels M1 to M0. It is a challenge to main-
tain this causal connection such that the models and the running system with
its environment do not drift.

3.2 Reasoning and Planning Adaptation Based on Runtime Models

Runtime models reflecting the running system and its environment are also uti-
lized by the adaptation process. Reasoning about the system and its environment
to identify the need for adaptation involves manipulating these models. The need
to adapt can be raised through actual or predicted violations of functional or
non-functional properties. If reasoning determines the need to adapt, changes are
planned and analyzed using the runtime models before they are propagated to
the running system. Such model-driven adaptations require automatic reasoning
and planning mechanisms that work on-line and on top of runtime models.

Reasoning and planning mechanisms themselves can be adapted, as in adap-
tive or reconfigurable control architectures [55]. Such adaptations can be sup-
ported by explicitly describing these mechanisms in runtime models. The most
popular adaptation models are rule-based or goal-based models.

3.3 Maintaining Multiple and Different Runtime Models

As discussed in Section 2, many different runtime models may have to be main-
tained in a M@RT-based adaptive system. This necessity arises because of the
need to manage multiple concerns, for example, performance, reliability, and
functional concerns. Each concern typically requires specific models that are able
to capture the individual concern and to provide a basis for reasoning about it.

However, dealing with multiple concerns raises issues of maintaining multi-
ple models at runtime and keeping them consistent with each other. The first
issue can be handled by mechanisms that architect the runtime environment
by organizing and structuring multiple runtime models in a system. In terms
of the reference model, handling this issue involves refining the concepts of the
Supervision and Adaptation components to realize concrete model architectures
and component implementations. The second issue is concerned with defining
dependency and other relationships between runtime models. Models describing
a running system and its environment from different viewpoints are likely depen-
dent on each other; they all need to provide views that are consistent with each
other. Moreover, when separating concerns in different models for reasoning,
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these concerns must be integrated at a certain point in time, at the latest when
it comes to planning adaptations. Thus, relationships across models reify depen-
dencies among concerns. This requires mechanisms to manage such relationships
between models, especially consistency relationships among models.

3.4 Establishing and Maintaining Fidelity of the Runtime Models
with the Running System and Its Environment

Runtime models also provide the basis for propagating changes to the running
system. Thus, planned adaptations are performed on runtime models and then
enacted on the running system. This requires mechanisms to map changes at
the model level to changes at the system level. For this mapping mechanism, the
typically significant abstraction gap between a running system and the runtime
models imposes the need for refining changes on the models. For example, re-
moving a model element that represents a component from a runtime model in
order to uninstall the component might result in several system-level changes,
including identifying, stopping, and uninstalling the component and to perform
further clean-up activities.

Moreover, mechanisms enabling safe adaptations of the running system are
required. This includes establishing and maintaining fidelity of runtime models
with the running system and its environment. This is especially relevant in situ-
ations when adaptation fails. If the enactment of planned model changes to the
running system fails, the runtime models and the running system may drift and
therefore the fidelity decreases. Mechanisms that ensure fidelity, at least to a
certain degree, in the face of dynamic environments and failing adaptations are
needed in M@RT-based adaptive software systems.

4 M@RT Mechanisms: State of the Art and Research
Challenges

This section discusses the state of the art and research challenges for M@RT
mechanisms in adaptive software systems. The discussion is structured around
the engineering challenges we identified in the previous section. For each of them,
we discuss existing approaches based on a literature review and we identify open
research challenges for the mechanisms. Finally, we present a research challenge
that cross-cuts many of the challenges we discuss.

4.1 Developing and Updating Runtime Models for Supervision

State of the Art

There is currently no systematic way to develop runtime models and especially
their metamodels. There are some initial ideas on how to manually move from
design-time metamodels to runtime metamodels by following an abstract meta-
modeling process [57]. To increase the level of automation of such a process,
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approaches aim at providing support for inferring metamodels for runtime mod-
els by statically analyzing the source code of client programs that use system
management APIs [84]. However, these inferred metamodels are preliminary and
have to be revised by engineers. Thus, there is a lack of means to systemat-
ically, seamlessly, and automatically generate or transform runtime metamod-
els/models from design-time metamodels/models. Moreover, most M@RT ap-
proaches [57, 84, 85, 94, 98] typically use a subset of MOF as a meta-metamodel,
but the suitability of MOF as a runtime meta-metamodel has not been analyzed
or even assessed so far. The use of MOF is motivated by relying on existing
MDE frameworks, like the Eclipse Modeling Framework Project (EMF)3 that
provides an implementation of a subset of MOF, which is similar to Essential
MOF (EMOF) [71].

Besides such MDE frameworks, earlier work originating from the software
architecture field employs architecture description languages (ADLs) [61] to de-
scribe a running system from an architectural viewpoint. Examples are the work
by Oreizy et al. [74] and Garlan et al. [41]. Both approaches connect an architec-
tural model to a running system. Such a connection is the key to M@RT-based
systems since it allows one to maintain a runtime model for a running system.

The most direct manner to achieve a causal connection between a model and a
running system is to require the running system to be organized in a pre-defined
form that is directly linked with the model. For example, Oreizy et al. [74] pre-
scribe an architectural style for the running system. Concepts of this style are
first class elements in the system implementation and in the runtime model, and
there is a direct one-to-one mapping between the system and model elements.
This eases developing the causal connection since there is no abstraction gap be-
tween the model and the system. Others, like Garlan et al. [41], take a framework
perspective and specifically consider probes and executors as part of a frame-
work. Probes and executors instrument the running system and they realize the
mapping and connection between the system and its runtime model. In contrast,
recent work [83, 85, 94, 98] relies on management capabilities already offered by
Runtime Platforms (cf. Section 2), like the management APIs provided by a
middleware or application servers. On top of such APIs, a causal connection
is often manually implemented while there exists preliminary work to simplify
the development by increasing the level of automation using code generation
techniques [85]. Similar to developing runtime models and metamodels, there
is no systematic way to develop a causal connection when engineering a sys-
tem that should provide M@RT-based reflection capabilities, that is, models at
higher-levels of abstraction than those known from computational reflection [11].

Another relevant stream of research that considers models of running systems
is the field of reverse engineering. The goal is to extract models from an existing
system to obtain a high-level view of it. Besides creating models statically from
the source code, they can also be extracted by tracing a running system. One
approach is to leverage features provided by reflective programming languages to
extract runtime models [52], which, however, requires that the (legacy) system

3 http://www.eclipse.org/modeling/emf/ (last visited on July 2nd, 2012).

http://www.eclipse.org/modeling/emf/
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is implemented in such a language. Another reverse engineering approach is
MoDisco [14]. This project provides a library for a number of widely-used systems
to assist the development of so called model discoverers, which represent the
implicit system state in models.

A key task for developers constructing runtime models/metamodels and causal
connections is to understand what kinds of data can be obtained from the run-
ning system and how to obtain them. Some existing approaches to inferring
system data and management APIs may be helpful for this task. Garofalakis et
al. [42] provide an automated approach to infer the schema of XML files, and
Fisher et al. [36] provide tools to extract types from the plain-text files and to
automatically generate the text processing tools from the extracted types. An-
tkiewicz [2] provides a code analysis approach to infer how to use the system
APIs provided by different frameworks. All these approaches may help in sys-
tematically developing runtime models and metamodels and, as discussed above,
similar ideas for M@RT have already been proposed [84].

Research Challenges

Finding the right abstractions: A key research challenge is identifying the ab-
stractions that models need to represent in order to support effective adaptation.
Once identified, further research is needed to determine the most effective rep-
resentations for the abstractions. These representations should precisely capture
the information needed to describe the phenomena and should do so in a manner
that allows the M@RT-based system to efficiently process the representation as it
steers the behavior of the system. Finding and describing the right abstractions
is key to building effective M@RT systems. Abstractions that are fine-grained
may be able to deal with a variety of adaptations, but can lead to the produc-
tion and manipulation of large amounts of data that are difficult to manage and
costly to process. Higher-level abstractions can have representations that can be
more efficiently processed, but can also ignore details that may be the actual
causes of behaviors that require adaptation. Determining the right abstractions
is typically a trade-off between the effectiveness of the representations and the
types of adaptations that can be effectively supported.

Creating and maintaining models at runtime: In a M@RT-based system, the
models should be faithful representations of the system and environment they
abstract over. Techniques for creating faithful models and for maintaining the
fidelity of the models as the system and its environment change are critical for
the successful use and operation of M@RT systems. Maintaining fidelity involves
monitoring (observing) runtime phenomena to be represented by models and up-
dating the models in a timely manner when monitoring detects the phenomena.

To support effective monitoring we need to develop guidelines for determining
what to monitor as well as how often and at which level of precision to monitor.
These issues can dramatically impact the system performance and fidelity of the
models. In addition, M@RT-based systems may also need to transform, sum-
marize, and correlate the observations collected into pieces of information that
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meaningfully correspond to abstractions supported by the models at runtime.
Techniques for transforming and aggregating information in an efficient manner
are therefore needed. Inefficient techniques can lead to significant drift in model
fidelity or less powerful adaptation opportunities.

Distribution of resources also adds to the complexity of aggregating informa-
tion. For many kinds of modern systems, such as Internet of Things and Cloud
Computing systems, components are often distributed across different nodes or
devices. In order to maintain a global model at runtime, we need to integrate
the local information from different nodes. The challenges here include when to
perform the integration, what local information to retrieve and integrate, how to
ensure the temporal correctness and timeliness of the global model, and how to
achieve a better performance by reducing the communication between different
nodes as well as the information exchanged during the communication.

4.2 Reasoning and Planning Adaptation Based on Runtime Models

State of the Art

Runtime models reflecting the running system and its environment are the ba-
sis for reasoning and planning adaptations of the system. Different techniques
for reasoning and planning have been proposed and according to Fleurey and
Solberg [38], they can be generally classified into two types of adaptation models.

First, rule-based approaches specify the adaptation by some form of event-
condition-action (ECA) rules or policies [18, 27, 37, 41, 43, 45, 64]. An event
triggers the adaptation process and conditions determine which reconfiguration
action should be performed. According to Fleurey and Solberg [38], such ap-
proaches can be efficiently implemented with respect to runtime performance,
and they can be simulated and verified early in the development process. How-
ever, if the number of rules grows, the approach suffers from scalability issues
concerning the management and validation of the rules. The variability space
of a system may be too large to enumerate all possible configurations, which
is, however, required to some extent for rule-based approaches that explicitly
specify the adaptation.

Therefore, the second type of adaptation models has emerged, which avoids
the explicit specification of the adaptation. These search-based approaches pre-
scribe goals that the running system should achieve, and guided by utility func-
tions they try to find the best or at least a suitable system configuration fulfilling
these goals [21, 22, 39, 76]. Other search-based mechanisms are based on model
checking techniques to find plans on how to adapt the running system [90].
In general, search-based approaches solve the scalability problem of rule-based
approaches, but they suffer from costly reasoning and planning processes, and
weaker support for validation (cf. [38]). Since these processes have to be car-
ried out at runtime, the runtime performance is crucial for any reasoning and
planning mechanism.

Basedon thedifferent characteristics of rule-basedand search-basedapproaches,
Fleurey and Solberg [38] propose a mixture of them to balance their advantages
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and disadvantages. Their general idea is to use rules to reduce the variability space
of the system and environment that subsequently has to be searched for suitable
configurations.

Overall, more work needs to be done to understand different reasoning and
planning techniques or mechanisms and their characteristics. This is a prereq-
uisite for selecting and tuning existing techniques or developing new techniques
for a specific system. Moreover, the impact of M@RT and the benefits offered
by M@RT on reasoning and planning mechanisms have to be more thoroughly
investigated. Therefore, requirements for adaptation models, that is, for reason-
ing and planning mechanisms operating on runtime models, have been proposed
in [96]. Such requirements are helpful to evaluate existing adaptation models
and to systematically develop new ones.

Research Challenges

Reasoning about adaptations: Research is needed to produce efficient and effec-
tive analysis techniques for reasoning about adaptations in environments that
are highly dynamic and that offer limited computational resources. The limited
computational resources and time constraints make design-time formal analy-
sis techniques too costly to apply at runtime. The identification of appropriate
heuristics can dramatically improve model analysis at runtime. The language
used to express the models has a direct bearing on analysis efficiency and thus
should be considered when developing the metamodels to be used for runtime
models. Another consideration related to model analysis concerns the exploita-
tion of structural deltas between model changes. Techniques that allow analysis
to focus only on the parts of the model that have changed can significantly
reduce the time for analysis when the deltas affect small parts of the models.

Performance and reliability analysis: We identified the following key technolo-
gies to analyze the performance and reliability of a running system: Probabilistic
model checkers, for example, PRISM [49, 56], and Queueing Network solvers,
for example, MT [7, 8]. These technologies support efficient and effective model
checking of complex performance and reliability models against required proper-
ties described in appropriate formalisms. Their adoption at runtime may require
specific forms of optimization [15, 32, 33, 44], and thus investigating their appli-
cability may lead to other research challenges. In the specific context of cloud
computing, auto scaling technologies, which provide the means to automatically
scale up or scale out a given architecture, may be used to implement automatic
performance adaptation in the cloud [59].

User-centric models: During the Dagstuhl seminar, it was largely acknowledged
that human users will inevitably be part of the process of system evolution
through adaptation. To the extent that models are appropriate artifacts to com-
municate system requirements and functionality at a high level of abstraction,
it makes sense to use them as handles for the end-user to exert some form of
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control over how the system behaves at runtime. The exercise remains in terms
of how to enable such high-level models to be causally connected with the system
in meaningful ways and in particular how to fill the gap between the model and
implementation in order to render effectively the provided control.

An example in this direction is the Communication Virtual Machine tech-
nology [25]. It enables non-expert end-users to input high-level communication
models that are then interpreted to configure the desired communication ses-
sions out of a selection of underlying communication providers. It also allows
users to dynamically update the communication session by changing the model
at runtime. The interpretation of such high-level, user-defined models is made
possible by the adoption of a layered architecture, which contributes bridging
the abstraction gap between the model and the underlying basic services in an
incremental way, as well as by focusing on a specific domain, which limits the
scope of choices in the interpretation process. While this approach is currently
limited to the communication domain, generalizations for other domains, as well
as to aspects of the middleware itself can be the subject for further research.

Analysis and Planning based on M@RT: Analysis and planning is concerned
with reasoning about the running system and its environment and, if needed,
with planning an adaptation of the system. Therefore, reasoning mechanisms are
employed that operate on runtime models.

Different reasoning mechanisms have been proposed such as rule-based or
search-based techniques as discussed previously. Such techniques have different
effectiveness and efficiency characteristics. To systematically select or develop
appropriate reasoning techniques when engineering adaptive systems requires
an understanding of these characteristics. For example, the results of reasoning
may differ between the techniques. A technique may provide one optimal so-
lution at the end of the reasoning, while another technique may provide a list
of all possible solutions. Considering efficiency, a technique may incrementally
return solutions as soon as they are found. Moreover, techniques need not be
deterministic in the sense that repeated runs of reasoning may result in different
solutions for the same problem. Thus, it is important to identify and understand
these characteristics when applying reasoning techniques in different application
contexts. This leads to a major challenge in understanding which specific rea-
soning technique is best for which problems, adaptation models, or domains of
adaptive systems.

In this context, influential factors, like the exponential growth of the problem
size (number of environment conditions, constraints, or adaptation options), the
time and resource limitations for reasoning, the accuracy or in general the quality
of the resulting solution, or assurance for the resulting solution, are critical. This
likely requires trade-offs between these factors, for example, between the quality
of a solution and the acceptable time in which a solution has to be found.

Considering these different influential factors as well as the different reasoning
techniques, it is a challenge to identify the most suitable technique and accept-
able trade-offs for a certain system or problem. On the one hand, this is addi-
tionally impeded by a lack of traceability between the reasoning results and the
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reasoning goals or problems. Thus, it is often difficult to understand why a cer-
tain solution has been chosen by a reasoning technique for a given problem. This
is even more complicated for adaptive systems with their inherent uncertainty
related to the systems’ functional and non-functional goals and actual behavior
as well as to the systems’ operational environments. Thus, incomplete and insuf-
ficient knowledge about a system and its environment makes the development
or even the selection of suitable reasoning techniques challenging. Furthermore,
it impedes the software engineer’s understandability and traceability of the rea-
soning decisions.

All these issues motivate the need for smart reasoning techniques that lever-
age, among others, learning techniques, incremental techniques, abstraction,
problem partitioning, and decentralized reasoning to enable acceptable trade-
offs considering effectiveness and efficiency of the reasoning results. Thereby,
each individual system and even each situation of a running system may need
different trade-offs, which requires reasoning techniques to be adaptive. System-
atically engineering or employing such techniques is challenging since it requires
one to grasp the influential factors for reasoning, the uncertainty in adaptive
systems, and the traceability between all of the constituent parts in reasoning.

4.3 Maintaining Multiple and Different Runtime Models in an
Adaptive System

State of the Art

M@RT-based systems are likely to use several runtime models for different as-
pects of the system and at different abstraction levels (cf. Figure 2 or [99]). This
calls for mechanisms to structure and operationalize multiple runtime models and
the relationships among those models. A similar problem exists in model-driven
software development where a plethora of interdependent models are employed
to describe the requirements, design, implementation, and deployment of a soft-
ware system. The field of Multiparadigm Modeling has made much progress in
defining, relating, transforming, and analyzing models of potentially different
paradigms [65–67] based on the premise that out of a set of issues to tackle, each
problem is best solved by employing the most appropriate abstractions using
the most appropriate formalisms. This generally leads to a complex overall or-
ganization of a large set of models. Therefore, the concept of megamodels, which
are models that contain other models and relationships between those models,
has emerged in the model management research field [4, 9, 10, 31]. The goal is
to capture the different development models and their dependencies to address
traceability and consistency in the development process.

Recently, such megamodel concepts have been proposed for runtime models
employed in self-adaptive software [99]. In this context, megamodels are used to
specify and execute adaptation processes by means of feedback loops. Besides
structuring runtime models, megamodels describe the activities of a feedback
loop as a flow of model operations working on runtime models. Additionally,
such megamodels are kept alive at runtime to actually maintain runtime models
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and to directly execute a feedback loop using a megamodel interpreter. Overall,
megamodels together with an interpreter support the explicit specification and
execution of feedback loops, while the flexibility provided by interpreted models
also leverages the adaptation and composition of feedback loops [95, 97].

While megamodels help in structuring the interplay of runtime models, mech-
anisms are required that substantiate the megamodel’s model operations, that is,
the relationships between runtime models. Such operations are, for example, rea-
soning and planning mechanisms discussed previously. A particular relationship
between runtime models is concerned with consistency among models describing
the same running system from different viewpoints.

Consistency can be tackled by model transformation and synchronization
mechanisms. Transformations are suitable for initially deriving runtime models
from other models, while synchronizations support the continuous consistency
by propagating changes between models. A lot of research has gone into the
development of model transformation and synchronizations languages (cf. [23,
24, 63, 86]). Many such languages are based on graphs and graph transforma-
tions [29, 45, 78] that have a sound formal basis in category theory. Thus, they
enable formal reasoning [5, 77] in addition to their execution. Prominent ap-
proaches are Progress [81], Story Diagrams [35], AGG [88], and Henshin [3]. A
graph transformation contains a left hand side and a right hand side which are
both specified as graphs. If an occurrence of the left hand side is found in the
host graph, that is, in the model, it is replaced by the right hand side. Several
approaches have been developed to ensure structural constraints [5, 48] which
can be used to ensure consistency.

The aforementioned transformation languages mainly address the transforma-
tion of single models. Triple Graph Grammars (TGGs) [47, 80] are an approach
to handle two models (with extensions to an arbitrary number of models) po-
tentially conforming to different metamodels. TGGs specify how a subgraph in
one model corresponds to a subgraph in another model. They can be used for
a forward transformation from a source model to a target model, a backward
transformation from a target model to a source model as well as for keeping
models synchronized [46]. By construction, TGGs ensure that the specified corre-
spondence relations exist, which can be used for consistency purposes. However,
TGGs are best suited for models whose metamodels share structural similari-
ties. Query/View/Transformation (QVT) [70] is a set of standardized languages.
While QVT-Operational enables the operational specification of model transfor-
mations, QVT-Relational targets a declarative specification of relations between
models similar to TGGs. Further model transformation approaches are the Atlas
Transformation Language (ATL) [53], PMT [93], and the Janus Transformation
Language (JTL) [20]. The latter focuses on non-bijective bidirectional model
transformations. In the context of M@RT, this also enables the handling of
models that do not share structural similarities.

Several approaches have been developed that deal with inconsistencies by
constructing repair actions [28, 34, 68]. They address the problem of consis-
tency preservation in the context of user induced changes. Consequently, those
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approaches rely on the user to select the appropriate repair action. Thus, they
are employable in the context of M@RT systems that incorporate the user in the
adaptation process.

In general, model transformation and synchronization mechanisms are
designed for off-line usage. They are employed in model-driven development
processes but not on-line within a running M@RT system. Performing model
transformations and synchronizations on-line requires light-weight and efficient
mechanisms. For instance, Song et al. [83] apply a model transformation mecha-
nism based on QVT-Relational [70] (QVT-R) on-line to support runtime software
architectures. Vogel et al. [94, 98] employ on-line a model synchronization mecha-
nism based on TGGs [45] to support self-adaptation. In particular, the efficiency
of this synchronization mechanism for runtime models is shown in [98].

Overall, model transformation and synchronization mechanisms are promising
for M@RT systems to maintain and keep multiple runtime models consistent to
each other. However, more research is required to address scalability, efficiency,
and especially assurances for such mechanisms.

Research Challenges

Maintaining model consistency: A M@RT system may require different types
of models to support adaptation. In these cases, mechanisms for ensuring con-
sistency between the models before, during, and after adaptations are needed.
Short-term research in this area should focus on gaining a better understanding
of what it means for models to be consistent in dynamically changing systems.
This requires an understanding of the degrees of inconsistency that can be tol-
erated (if any) and when consistency must be established. The notion of consis-
tency should also be applied to the cases where runtime models are organized in
abstraction layers, that is, when the models are related by abstraction or refine-
ment relationships. In these cases, it is important to understand when and how
consistency is established across the abstraction layers.

Runtime model interoperability: The problem of model interoperability at run-
time and its management present researchers with significant challenges. Any
solution must include practical methods and techniques that are based on theo-
retical foundations. Keeping different models in a coherent and consistent state
is an intrinsically difficult problem. In general, model interoperability can be
pursued through i) consistency specification – describing not only the views but
also the correspondences they have with one another, and ii) consistency as-
surance and enforcement – guaranteeing consistency before, during, and after
adaptations. In essence, whenever a model describing an aspect of the Running
System undergoes modifications (regardless of whether the change is performed
manually or automatically), the overall consistency may be compromised. Any
procedure to restore the consistency must propagate the changes and consistently
adapt the other models.

Bidirectional model transformation languages seem the most adequate instru-
ment for addressing this problem. For instance, QVT-Relational [70] (QVT-R)
support the specification of correspondences as relations and the management of
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the consistency by means of the rule check-only and check-then-enforce seman-
tics. Unfortunately, although non-bijectivity in bidirectional model transforma-
tion is recognized to be useful and natural (see [92]) the way it is supported and
implemented in current languages is not always satisfactory: even the QVT-R
specification is in this respect ambivalent [87]. The main difficulty is address-
ing non-determinism in change propagation. This occurs when model changes
that are propagated through model correspondences give rise to more than one
alternative adaptation of the linked models. As typically required in current
bidirectional languages (e.g., QVT-R [70], TGGs [80]), the ambiguities among
transformation solutions are solved programmatically by means of choices that
a designer can make when writing the transformation. In other words, these
solutions require the mapping to be bijective by adding additional constraints,
which have to be known before the transformation is implemented. In this way,
the problem of consistency enforcement among different models is reduced to
the problem of model synchronization which is inherently difficult. However, in
many cases the constraints to make the mapping bijective are unknown or can-
not be formalized beforehand, thus it is important to deal with non-bijectivity
by managing multiple solutions.

Existing work proposes mechanisms to deal with non-bijectivity in an explicit
way. For instance, PROGRES [6] is a TGG solution to create integration tools
capable of dealing with non-deterministic cases, that is, when multiple rules
can be applied in the current direction of a transformation. A similar approach
is proposed by JTL [20], a bidirectional model transformation language specifi-
cally designed to support non-bijective transformations and change propagation.
In particular, the language propagates changes occurring in a model to one or
more related models according to the specified transformation regardless of the
transformation direction, that is, JTL transformations can generate all possible
solutions at once. Both PROGRESS and JTL have the drawback of requiring
human intervention: The former requires the designer to choose the rule to be
applied among the candidate rules, whereas the latter requires the modeler to
choose the correct model in the solution space. Adopting these approaches re-
quires that the knowledge necessary to resolve the non-determinism at runtime
is made accessible to the transformations. For example, this knowledge can take
the form of heuristics. The overall problem is worsened by the fact that model
adaptations reflect or drive adaptations on the Running System (regardless of
the causal dependency). This is clearly a coupled evolution case, where adapta-
tions written in a transformation language (at the M1 layer) must correspond
to adaptation at the M0 layer which can be expressed, for instance, in terms of
aspect-oriented programming techniques.

4.4 Establishing and Maintaining Fidelity of the Runtime Models
with the Running System and Its Environment

State of the Art

An essential aspect of M@RT is the causal connection between runtime models
and the running software system. On the one hand, this includes the Supervi-



Mechanisms for Leveraging Models at Runtime 37

sion (cf. Figure 3) to reflect changes of the running system or environment in the
model as discussed in Section 4.1. On the other hand, this includes the Adapta-
tion, that is, that planned changes are performed on the runtime models before
they are executed to the system. Both Supervision and Adaptation realize the
causal connection and must ensure the fidelity of the models with the running
system and its environment.

While the Supervision has been discussed in Section 4.1, two general kinds
of mechanisms are employed to enact changes of a runtime model to the run-
ning system. First, state-based approaches compare the runtime model before the
change with the runtime model after the change. Thus, changes to the model are
actually performed on a copy of the model or applying changes results in a copy.
Mechanisms for comparing models are provided, for example, by EMF4. The
resulting differences are the changes that have been performed and they serve as
a basis to derive a reconfiguration script to be executed to the running system.
Such an approach is followed by [64]. Second, operation-based approaches mon-
itor a model to directly obtain the operations that constitute the changes, for
example, setting attribute values or relationships. For example, EMF provides a
notification mechanism that emits events representing these change operations.
These events serve as a basis to obtain a reconfiguration script or to map the
performed operations to system-level changes [94].

In this context, the problem of refining changes performed on abstract runtime
models to system-level changes is discussed in [94]. The problem is tackled by
model synchronization and graph transformation techniques between abstract
runtime models used for reasoning and planning adaptation and a system-level
runtime model at the same abstraction level as the system implementation. Thus,
the changes are refined between models before they can be directly mapped to
the management capabilities provided by the running system.

Such an abstraction gap between runtime models and the running system
has to be addressed for M@RT-based systems. Developing a causal connection
between a model that is at the same abstraction level as the system is simpler,
which is the motivation to follow this approach in [74]. However, such a model
does not provide problem-oriented views at appropriate abstractions, which is
the goal of M@RT [11]. Providing runtime models that abstract from platform-
or implementation-specific details, and thus from the solution space, must cope
with an abstraction gap. This abstraction gap created by the Supervision through
discarding system-level details may complicate the Adaptation when moving
from abstract runtime models down to the concrete Running System (cf. [94]).

Besides realizing the Supervision and Adaptation components by connecting
runtime models to the running system, these components have to cooperate to
maintain fidelity of the models and the system. If the Adaptation part fails in
executing model changes to the system, the models and the system drift, which
has to be recognized by the Supervision part. Then, both parts have to cope
with the failure to ensure again fidelity and consistency between the model and

4 EMF Compare Project, http://www.eclipse.org/emf/compare/ (last visited on
July 2nd, 2012).

http://www.eclipse.org/emf/compare/
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the system. In general, the M@RT research field lacks work on assurances for
the causal connection and for the co-evolution of the runtime models and the
Running System over time. This is mandatory for safe adaptations and for coping
with partially correct/valid runtime models in the face of uncertainty inherent to
dynamically adaptive systems. Moreover, there is also a lack of work addressing
the systematic engineering of causal connections, which has to be seamlessly
integrated with work on engineering of the Application (cf. Section 2) and the
runtime models/metamodels (cf. Section 4.1).

Research Challenges

Propagating model changes to the Runtime System: Several research issues need
to be investigated for developing effective causal links between models and the
running system. We obviously need to identify how to propagate changes from
the model down to the system efficiently and effectively. This requires the iden-
tification of the points in the Running System where changes need to be applied,
as well as constraints on when the changes can be applied. One possible approach
to solve the problem of identifying the points of adaptation in the running system
is to adopt a programming model that allows for changes at specific points in
an execution of a program. Component-based and aspect-oriented programming
models are typical examples. In addition, we need to develop mechanisms that
support rollback of current operations when changes occur while the system is
processing transactions.

Maintaining model fidelity: Middleware technologies can be used to facilitate
the adaptation of applications in response to changes in the environment. In
particular, reflective middleware technologies [60] use causally connected self-
representations [16] to support the inspection and adaptation of the middleware
system [89]. Components defined at the model level are directly mapped to spe-
cific artifacts that realize those components at the implementation level. From a
software-quality perspective, this mapping is a form of traceability. In general,
the term traceability can refer to any mechanism for connecting different soft-
ware artifacts. In this context we specifically mean traceability from model to
implementation elements, and vice-versa [91]. Maintaining the traceability link
allows the model and implementation to co-evolve. Model evolution can be trig-
gered by changes in, for example, (1) the requirements, (2) the environment, and
(3) resource availability.

Keeping the model and the running system synchronized is a challenging prob-
lem, involving issues such as safety and consistency, especially when changes can
be initiated in either the model or at the implementation level [17, 26, 62]. An in-
teresting approach that has received a lot of attention over the years is generating
(parts of) implementations directly from their designs using model-driven devel-
opment technologies [73]. Such technologies can be used to generate (partial)
implementations from detailed design models, and thus is an attractive strategy
for maintaining the fidelity of models with respect to the running system they
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describe. For example, given a sufficiently detailed architectural specification, in-
cluding structural, interface, and complete behavioral specifications, it is possible
to generate a full implementation of a component, connector, or even an entire
system [100]. In theory, architectural drift and erosion can be eliminated, by
generating new implementation parts from the models as the models evolve [12].
For this to be practical, the description of the detailed models must require
significantly less effort than writing the implementations in a programming lan-
guage. This is often not the case, primarily because the abstractions supported
by the modeling languages used to describe detailed behavior are often at a level
that is close to the abstractions provided by programming languages. More re-
search is needed for developing behavioral modeling languages that are based
on abstractions that allow a developer to build a model that can be efficiently
transformed to code using significantly less effort than that of directly writing
the implementation in a programming language.

Another approach is to generate models from running code [17, 30, 62]. The
challenge here is to generate models that are based on abstractions that are at
a higher level than those found in the runtime environment of the programming
languages. For example, it is relatively straightforward to obtain class diagram
and sequence diagram descriptions of code, but it quickly becomes clear to any-
one looking at the diagrams that they simply present views of the code with very
little abstraction. Generating abstractions from code is a very difficult challenge.
Some progress can be made in the context of domain-specific applications where
known patterns and heuristics can be used to identify potentially useful abstract
concepts.

4.5 A Cross-Cutting Research Challenge: Developing Development
Processes for M@RT Systems

Research that focuses on producing effective processes, methods, and techniques
for developing M@RT-based adaptive systems is needed in the short term to
support systematic development and operation of these systems. Methods, tech-
niques, and tools should be tied together to provide an end-to-end development
approach that supports evolution before and after the M@RT-based system be-
comes operational. This problem has also been identified in [1] for self-adaptive
software systems in general.

5 Conclusion

This chapter presents a summary of the Dagstuhl discussions on the mechanisms
used to manage runtime software adaptation. The chapter is based on a concep-
tual model for M@RT developed at the seminar to provide a common concept
and terminology framework for the discussions.

By relying on the reference model the chapter provides an analysis of the
related open problems for each M@RT mechanism identified. We analyzed and
classified them into four distinct areas: (1) developing and updating runtime
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models, (2) reasoning and planning for adaptation, (3) maintaining different
runtime models, and (4) establishing fidelity and consistency among models and
the running system.

The identified problems and their classification into such areas were also used
to structure discussions on existing related work. By matching the identified
problems with the existing work we formulate a set of open research challenges
and goals classified in the same four areas. The identified research directions
constitute an early roadmap which is the main contribution of the chapter. The
roadmap’s goal consists of stimulating, organizing, and driving the ongoing ef-
forts of the research community on M@RT. Clearly, such a roadmap will be
refined and extended as research that tackles the identified research goals un-
covers further challenges.
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Abstract. Uncertainty can be defined as the difference between infor-
mation that is represented in an executing system and the information
that is both measurable and available about the system at a certain point
in its life-time. A software system can be exposed to multiple sources
of uncertainty produced by, for example, ambiguous requirements and
unpredictable execution environments. A runtime model is a dynamic
knowledge base that abstracts useful information about the system, its
operational context and the extent to which the system meets its stake-
holders’ needs. A software system can successfully operate in multiple
dynamic contexts by using runtime models that augment information
available at design-time with information monitored at runtime. This
chapter explores the role of runtime models as a means to cope with
uncertainty. To this end, we introduce a well-suited terminology about
models, runtime models and uncertainty and present a state-of-the-art
summary on model-based techniques for addressing uncertainty both at
development- and runtime. Using a case study about robot systems we
discuss how current techniques and the MAPE-K loop can be used to-
gether to tackle uncertainty. Furthermore, we propose possible extensions
of the MAPE-K loop architecture with runtime models to further handle
uncertainty at runtime. The chapter concludes by identifying key chal-
lenges, and enabling technologies for using runtime models to address
uncertainty, and also identifies closely related research communities that
can foster ideas for resolving the challenges raised.
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1 Introduction

Uncertainty can be defined as the difference between information that exists in
an executing system and the information that is both measurable and available
at a certain point in time [1]. Within the context of software systems, uncer-
tainty can arise from ambiguous stakeholders’ needs, the system itself, or its
operational or execution environment. For example, a stakeholder can introduce
uncertainty by formulating an ambiguous specification [2], the system itself can
introduce uncertainty by gathering monitoring information that may be inac-
curate and/or imprecise [3], and the surrounding environment can introduce
uncertainty by generating inputs that the system cannot interpret [4]. Unfor-
tunately, these sources of uncertainty rarely occur independently of each other.
Instead, the effects produced by these sources of uncertainty tend to compound
and thereby inhibit the system from fully satisfying its requirements.

Traditional software design approaches tend to address these forms of uncer-
tainty by identifying robust solutions at development-time that can continuously
exhibit good performance at runtime. Nevertheless, identifying these robust so-
lutions is a challenging task that requires identifying the set of operational con-
texts that the system might have to support. For systems that will be deployed in
highly dynamic environments, identifying a robust solution might be infeasible
since it is often impractical to anticipate or enumerate all environmental condi-
tions a software system will encounter throughout its lifetime. Increasingly, soft-
ware systems, such as context-aware systems and self-adaptive systems (SAS),
use runtime models to cope with uncertainty [5,6] by either partially or, if
possible, fully resolving sources of uncertainty at runtime. These models, when
fed with data monitored at runtime, allow for the dynamic computation of a
predictable behaviour of the system.

A runtime model is a knowledge base that abstracts useful information about
the executing system, its environment, and the stakeholders’ needs and that can
be updated during the system’s life time. It can be used by either the system
itself, humans or other systems. Different types of development-time models and
abstractions can be used to this end, including requirements, architectural, and
behavioural models. Furthermore, we envision that other kinds of models (e.g.,
[7]), linking different development models and abstractions, can be used as well.
Runtime models can support resolution of some forms of uncertainty, which can
manifest, for example, when information that was previously unavailable be-
comes available during execution. In some cases, however, uncertainty remains
present in one form or another, such as when physical limitations in monitoring
devices result in monitoring data that is insufficiently accurate and precise for
assessing the task at hand. In both cases, model-based techniques can be applied
at either development- and runtime to address uncertainty. While development-
time techniques focus on the explicit representation of sources of uncertainty
that can affect a software system, runtime techniques focus on refining and
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augmenting runtime models with monitoring information collected as the system
executes.

Research communities are increasingly exploring the concept of uncertainty
and how it impacts their respective fields. Some of these research communities
include economics [8], artificial intelligence [9], robotics [10], and software engi-
neering [11]. While uncertainty has been studied in parallel by different research
communities, a definitive solution for engineering systems that are able to handle
uncertainty has not been provided yet. Within software engineering in partic-
ular, a key step forward in this direction is to first explicitly represent sources
of uncertainty in models of the software system. Current modeling techniques
such as variation point modeling [12,13], however, cannot be directly applied as
uncertainty cannot be represented by enumerating all possible behavioural al-
ternatives [4]. Thus, new abstractions must be provided to declaratively specify
sources of uncertainty in a model at development-time, and then partially resolve
such uncertainty at runtime as more information is gathered by the system.

This chapter first elaborates the relation between uncertainty and models -
runtime models in particular. Furthermore, it reviews the fundamentals of han-
dling uncertainties such as the relevant forms of uncertainty, the specific relation
between time and uncertainty and the current approaches for development-time
and runtime. In particular, it explores the role of feedback loops and the typi-
cal types of systems with runtime models. It also explores how runtime models
can be leveraged to handle and reduce the level of uncertainty in an executing
system. Ideally, if uncertainty is viewed as a function over the life-time of the
system, then the level of uncertainty should monotonically decrease as design
decisions are made and new information becomes available. In practice, how-
ever, the level of uncertainty in a software system might increase as new events
emerge that were not anticipated previously. Thus, the vision of this roadmap
chapter is to use development-time models to identify and represent sources
and impacts of uncertainty. If possible, uncertainty should be resolved at devel-
opment time. Furthermore, once monitoring information provides new insights
about the system’s behaviour and its surrounding execution environment, the
running system should resolve and manage the remaining sources of uncertainty
during execution by using runtime models.

This chapter is organized as follows. Section 2 presents a robotic system
that will be used throughout the remainder of the chapter as an example of
how to address uncertainty through runtime models. Section 3 discusses the
general relationships between models and uncertainty. Model-based techniques
for addressing uncertainty at development- and runtime are presented and dis-
cussed in Section 4. Emerging techniques to handle uncertainty in the context
of epistemic, linguistic and randomized uncertainty are discussed in Section 5.
Finally, Section 6 summarizes findings, presents research challenges, and future
directions.



50 H. Giese et al.

2 Case Study

In this section, we describe a simplified version of a real robot system. This case
study simulates a distributed factory automation scenario1. It is used as a run-
ning example in this paper to discuss how development-time models and runtime
models can be employed to cope with uncertainty. An extended description of
our toolchain and development environment can be found in [10]. In the next
Section we explain the possible types of uncertainty present in the case study.
We also provide a goal, an environmental and an initial behavioural model to
illustrate the requirements and the behaviour of the case study.

Fig. 1. Case Study: Factory automation robot scenario

In the factory automation scenario depicted in Figure 1, three autonomous
robots have to fulfill different tasks to reach overall goals in an uncertain en-
vironment. The regular behaviour of one robot is to move around, transport
pucks, or charge the batteries. Sensors and actuators are used to monitor the
current situation and to navigate through different rooms along changing paths.
Each robot is able to communicate with other robots inside the scenario and
computational nodes (e.g., servers, mobile phones) outside the scenario. Strict
behavioural constraints ensure safety as well as reliability requirements, such as
avoiding battery exhaustion and collisions. Beside the transportation of pucks,
which is a functional goal, the robots should also satisfy other goals related to
the quality of how the functional goals are met (called softgoals). Examples of
softgoals are minimization of energy consumption and maximization of through-
put. Note that in this scenario throughput is estimated in terms of number of

1 For more information about our related lab see: http://www.cpslab.de

http://www.cpslab.de
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Fig. 2. Structural sketch of the robotic system including three autonomous robots. RP

is a robot that transports pucks from the packaging to the sorting room. Robot RS

(sorting) decides whether the puck is for a customer or the stock. Robot RSt transports
the puck to the stock.

pucks transported to their final destination within a specific time unit (e.g., a
day).

Figure 2 depicts a structural overview of the robot system. The whole simu-
lation scenario is separated into four different rooms (Stock Room St, Delivery
Room ASD, Door Control Unit AP and the Sorting Area RS). In the room lower
left of Figure 2, the pucks are packed and dropped for transportation in area
AP by a puck dispenser. The robot RP transports the pucks from the packaging
room to a second room (lower right) and drops it within the sorting area AS .
To maximize the throughput of puck transportation, another robot RS picks up
the puck from the sorting area and drops it on a band-conveyor. Depending on
the current goals, the conveyor transports the puck to a customer delivery area
outside the scenario (not shown in the picture) or to the stock delivery area ASD

(upper right room in the figure). A third robot RSt transfers the puck to the
stock St. Each robot acts as an autonomous unit. Therefore, the tasks trans-
portation, sorting and stocking are independent from each other. Within this
scenario the execution conditions can be changed over time to handle certain
loads, optimizing the puck transportation routes or cope with robot failures. As
a result, the doors can be opened or closed dynamically. For example, robots can
recalculate routes or take over additional transportation tasks. Furthermore, a
robot can charge its battery at one of the two charging points if necessary. In
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the following sections we will use this scenario to illustrate possible types of
uncertainty.

3 Models and Uncertainty

To set the stage for our chapter in this section we first introduce the meaning
of fundamental terms such as models, runtime models and uncertainty by using
an exemplary goal, context and behavioural model for one robot of the factory
automation example. Furthermore, we identify which kinds of runtime models
are employed and outline the most common types of systems using such runtime
models. Furthermore, we discuss the role that runtime models can play for the
different types of systems.

3.1 Models

The definition of a model can vary depending on its purpose of usage. In this
chapter, we define a model as follows [14].

Definition 1. A model is characterized by the following three elements: an (fac-
tual or envisioned) original the model refers to, a purpose that defines what the
model should be used for, and an abstraction function that maps only purposeful
and relevant characteristics of the original to the model.

It is important to note that a model always refers to an original. This original
can be factual, and either it may exist already or, it may be an envisioned system
which does not exist yet. In both cases, the model is used as a representation of
the original to ease development or runtime activities.

Models may differ in their purpose. For instance, the purpose of a goal-based
model [15] is to capture the requirements of a system, while the purpose of a
finite-state machine (FSM) is to capture the possible behaviours of the system.

In this paper, we use three different kinds of models for the robotic example.
First, a goal model represents the requirements of our scenario. Second, a rep-
resentation of the structure of the physical space (map) including the location
of agents and objects in the physical space is adopted as an exemplary model to
specify context information about the system operational environmnet, which
may change at runtime. Third, we use a model based on state machines to de-
scribe the behaviour of the system with respect to the current goals and the
context.

To start, we cover different requirements and constraints in the goal model of
our robotic scenario shown in Figure 3. We use the KAOS notation [16] to repre-
sent the goal model. This model has a hierarchical structure, since goals can be
refined into conjoined subgoals (AND-refinement) or into alternative combina-
tions of subgoals (OR-refinement). When a goal cannot be decomposed anymore,
(i.e. it is a leaf goal), it corresponds to a functional or non-functional require-
ment of the system [16] . In Figure 3, the main goal of the robot system is to



Living with Uncertainty in the Age of Runtime Models 53

G1
Perform 

tasks

G1.1
Transport 

pucks

G1.2
Charge 
battery

G1.3
HIgh 

throughput

G1.4
Low energy 
consumption

G1.1.2
Reach puck

G1.1.4
Bring puck to 
destination

G1.1.3
Take 
puck

G1.1.5
Release 

puck 

G1.2.1
Reach 

charge point

G1.2.2
Charge

AND

AND

AND
Up

Left
Down

Right

Take Up

Left Down

Right

Release

Up

Left Down

Right

Charge

OR

OR
OR

OR

OR

G1.1.1
Detect pucks

Read 
Sensor Data

Identify puck 
position

AND

AND

Fig. 3. The KAOS goal model of the Robot System

- name: string
- priority: int

Goal

- type: TypeEnum
GoalRefinement

- type: TypeEnum
OpRefinement

superGoal [1]

subGoals [1..*]

superGoal [1]

- name: string
Operation

operations [1...*]

- AND
- OR

TypeEnum

Fig. 4. An excerpt of the KAOS goal metamodel

perform its standard tasks, such as transport pucks (G1.1) and charge its bat-
tery (G1.2). To achieve the goal G1.1, the robot has to achieve the following
functional requirements: detect a puck (G1.1.1), reach the puck (G1.1.2), take
the puck (G1.1.3), bring the puck to its destination (G1.1.4) and finally release
the puck (G1.1.5). A leaf goal that corresponds to a functional requirement can
be “operationalized”, that is, it can be decomposed into a set of conjoined or
disjoined operations that should be executed to meet it [16]. For example, goal
G1.1.2 is operationalized by operations Up, Left, Down, and Right, since the
robot can move up, left, down, and right to reach the puck location. Note that
the robot must also perform its standard tasks while satisfying the following non-
functional requirements: high throughput (G1.3) and low energy consumption
(G1.4).

In the robot system, we represent these goals according to a simplified KAOS
metamodel as depicted in Figure 4. Note that each goal is associated with a
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Fig. 5. An instance situation of the goal model shown in Fig. 3 of our robot system

position() : x,y
up(), down(), left(), right()
take()

-energy : int {0..100}
-x : int {1..20}
-y : int {1..15}

Robot Map
1

-x : int {1..20}
-y : int {1..15}
obs : Obstacle
puck : boolean
type : Type

Field

0..*

empty
door_open
door_closed
wall
robot

<< enumeration >>

Obstacle
normal
charging_point
area_packaging
area_sorting
area_delivery
area_stock
band_conveyor

<< enumeration >>

Type

constraints:
{target field is free}
{energy >= 2 percent}
{energy is reduced by 2
during operation}

constraints:
{target field contains puck}
{energy >= 10 percent}
{energy is reduced by 10
during operation}

energy = 85
x = 6
y = 10

rp : Robot
energy = 60
x = 16
y = 11

rs : Robot
energy = 85
x = 13
y = 3

rst : Robot

x = 6
y = 10
obs = robot
puck = false
type = normal

f1:Field
x = 9
y = 8
obs = wall
puck = false
type = normal

f2:Field
x = 18
y = 5
obs = empty
puck = true
type = area_delivery

f3:Field

m : Map

Fig. 6. On the left, the context metamodel of the robot as well as the internal map
representation. On the right, an example snapshot of possible instance objects.

name and a priority. Context changes can affect goal priorities and therefore
the tasks execution by the robots at runtime. Depending on the priority and
the relation among the goals, the robot system weights the requirements during
task execution and selects a set of tasks to be performed. Figure 5 presents an
excerpt of an instance situation of the goal model shown in Figure 3. Because of
the higher priority of the transportation task we have supposed, the robot will
prefer this goal until it is necessary to charge the battery. Further constraints
can also restrict the robot behaviour charging the battery only in adequate given
situations (e.g. the power supply reaches a critical low level).

The second type of model is a structural context model of the robots. With
this model we can represent the internal state of the robot, its internal represen-
tation of the environment (Map) as well as the possible relations between them
according to the metamodel on the left in Figure 6. Each robot has an overall
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Fig. 7. Discrete grid map representation of the robot laboratory (cf. Fig. 2)

battery power supply with an energy level comprised between 0 and 100 percent.
Additionally, its position is given by a x and y coordinate of the map associ-
ated with the laboratory. Furthermore, it can perform operations up(), down(),
left(), and right() moving through the laboratory. Executing an operation con-
sumes power as robots have to read sensor data necessary to detect pucks, and
move inside the building. Therefore, each operation reduces the overall energy
level of the battery. If the robot detects a puck, it can take it for transporta-
tion. Each robot maintains an environmental representation for navigation and
localization issues.

The environment is represented as a discrete grid (Map) as shown in Figure 7.
The smallest area in this map grid is a field (cell) with an unique position on the
grid. It can contain obstacles as closed doors, walls, or other robots. Furthermore,
a puck may lie on a field. Each cell has a type information that indicates special
positions in the laboratory as charging points for the robot or the band conveyor
(cf. Figure 2).

We assume that a robot is positioned on exactly one field at any time during
its movement through the laboratory. Therefore, the operations up, down, left
and right can be seen as atomic behaviours. There are no intermediate positions
of objects (pucks) and a robot must be on the same field as a puck to grip it.

On the right in Figure 6, three robot instances with different positions and
three field objects are shown. The battery of robot RP contains 85 percent of
the overall possible energy and the robot is on the position x = 6 and y = 10 in
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do / up(), down(), left(), right(),
take()

active

entry / stopRobot()

passive

[battery < 10]

name : string

State

Transition

Guard

0..*
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0..*
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0..*
condition
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name = ”active“

s1:State
name = ”passive“

s2:State

t1:Transition
o1 : out i1 : in

...g1:Guard

Fig. 8. On the left side: excerpt of the FSM metamodel; in the middle: initial example
abstract syntax; on the right side: concrete syntax

the laboratory. The field f2 on position (9, 8) is a wall and the field f3 on (18, 5)
contains a puck and is part of the delivery area.

The third and last model type for our robot example is a behavioural model in
the form of a finite-state machine. Figure 8 shows an excerpt of the metamodel
on the left as well as a very abstract initial example of the robot behaviour that
is extended later (abstract syntax in the middle, concrete syntax on the right).
In this version, the robot has two states. After an activation signal, the robot
starts processing its tasks in the active state according to the goal model (cf.
Fig. 3) until the battery is lower than a threshold of 10 percent. In this case, it
will enter the passive state and stops all sensors, processing steps and actuators.
Consequently, charging the battery automatically is not considered in this first
version of our example.

Each model presented focuses on a specific concern of the robot scenario.
The definition of a model explicitly states that the abstraction function is to
eliminate characteristics of the original that are irrelevant as far as the purpose
of the model is concerned. At the same time, the model abstraction should
preserve the intent and semantics of those details that are relevant to the task
at hand.

The same type of models can be used to represent different levels of abstrac-
tion. Several types of models and abstractions are often combined in a Hierar-
chical State Machine (HSM) [17] to provide a unique and comprehensive view of
the same software system. In our robotic example, while one FSM can capture
only the most abstract states of the robot, such as “the robot is stopped”, an-
other FSM can map those abstract states to finer-grained behaviours and state
transitions.

If we consider the KAOS goal model (cf. Fig. 3) of our robot example, the
original would be the real requirements that are in the stakeholders’ minds and
the purpose would be to represent the requirements of the system. Note that, for
reasons of time and costs, some requirements may not be included in the system
implementation, but only those that are relevant to the stakeholders. For this
reason, the goal model abstracts the irrelevant goals and requirements and only
focuses on the ones that will be implemented in the robotic system.
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Moreover, if we consider the map representation, the difference between the
real simulation area in the real world and the simplified field representation
maintained by the robot is obvious. However, the map model abstraction cov-
ers all important aspects that are needed for the robot system offering special
functionality, e.g., path planning as well as obstacle detection and avoidance.

In the case of the FSM (see Fig. 8), the original would be the robot and the
purpose would be to capture the possible behaviours of the robot. Another case
of abstraction is that only the relevant abstract states (modes) of the robot,
like moving (active) or stopped (passive) as well as possible transitions between
relevant abstract states, are captured.

A fundamental property of a model is its validity. This means that the model
must correctly reflect the characteristics (i.e., goals, requirements, behaviours,
and components) observed on the original. For example, in a goal model this
property would imply that a set of goal operationalizations lead to the satisfac-
tion of the requirements they are associated with. Likewise, given an appropriate
input sequence for the FSM presented in Figure 8, a certain sequence of abstract
states must be traversed. These states should correspond to the observable be-
haviour of the robot.

Even if a model is valid, it might not exactly predict the same behaviour of
the original as this correlation depends on the model abstraction. Furthermore,
it may be difficult to capture and interpret the non-determinism associated with
unpredictable events and conditions in a model. In general, it is expected for
a model to provide an acceptable degree of accuracy and precision. Accuracy
measures how correct the model is at representing observable characteristics of
the original. That is, accuracy measures the error between a predicted value and
the value observed in the original. In contrast, precision measures how small the
variation is in the prediction made by the model, as compared to the original.

With over-approximation, a model is guaranteed to include all possible be-
haviour of the original, but may also include behaviour that cannot be observed
in the original. Therefore, over-approximation can result in false negatives, when
a behaviour present in the model results in a failure that is never observed for
the original. In contrast, with under-approximation, all behaviour captured in
the model must also be possible for the original, but not necessarily vice versa.
As such, under-approximation can prevent false negatives by ensuring that the
characteristics represented in the model are also observable in the original. Note
that under-approximation does not preclude the possibility of introducing false
positives that take place when the model does not represent all behaviour that
the original can exhibit. See for example [18] for a discussion about over- and
under-approximation in the specific context of model checking.

3.2 Uncertainty and Uncertainty in Models

The definition of uncertainty depends on its context, origin, and effects upon
the system. For the purposes of this chapter, we adopt and modify the definition
proposed in [1,19] as follows:
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Definition 2. Uncertainty can be defined as the difference between the amount
of information required to perform a task and the amount of information already
possessed.

This concept of uncertainty can be better understood by distinguishing be-
tween three main non-mutually exclusive forms of uncertainty: epistemic, ran-
domized, and linguistic.

Epistemic uncertainty is a result of incomplete knowledge. For instance, the
operationalization of requirements might be incomplete during system specifica-
tion, and it can happen as the system designer might not know in advance what
operations the system will provide.

Randomized uncertainty can occur due to system and environmental con-
ditions that are either inherently random or cannot be predicted reliably. For
instance, a sensor might introduce noise unpredictably into gathered values,
thereby preventing a software system from accurately measuring the value of a
property.

Lastly, linguistic uncertainty can result from a lack of precision or formality
in linguistic concepts. For example, the satisfaction of requirements G1.3 and
G1.4 in Figure 3 is vague because there is no precise way to express the notion
of “high” throughput and “low” energy consumption.

The concept of uncertainty within a model can then be defined by extending
Definition 2 as follows:

Definition 3. Uncertainty is the difference between the information that a model
represents about the original - that is relevant to its purpose - and the informa-
tion that the model could, in theory, represent about the original that would be
relevant for its purpose at a certain instant in the system lifetime.

Uncertainty within a model can affect both the accuracy and precision of a
model. Accuracy of a model refers to its the degree of closeness to the original,
while precision refers to the degree to which the model is consistent (e.g., lead the
system to the same behaviour under the same conditions). Although uncertainty
may uniformly affect the entire model, its effects might be irrelevant if they
are constrained within attributes that are never queried or evaluated. Thus,
the relevance of uncertainty depends upon the criticality of the element that is
affected with respect to the purpose of the model.

Dynamic models tend to increase the level of uncertainty over time because of
the (possible) continuous updates which are performed to reflect changes in the
original. A good example is our context model of the environment. It would be
very hard for a robot to maintain a highly accurate model if humans or other mov-
ing obstacles frequently appear and disappear in the scenario. These observations
can affect the behaviour of a single robot (e.g., path planning and route recalcula-
tion) as well as the overall scenario (e.g., new task distribution). As a consequence,
this can also render the model imprecise, since the robots’ behaviour might not
be consistent with respect to previous and equivalent environmental situations.
However, this phenomenon is not observable in static models.
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In general, uncertainty in a model can be addressed by using internal or
external techniques. Internal techniques address uncertainty by increasing the
accuracy of the model at the expense of decreasing its precision. Thus, although
the outcome of a model prediction might be inconsistent, it is closer to the
possible outcomes of the original. External techniques, on the other hand, tend
to under-approximate the original by increasing the precision of the model at
the expense of decreasing its accuracy. For this reason, post-processing is usually
required to ensure the outcome of a model prediction does not exceed certain
bounds or thresholds of what the original can exhibit.

For the remainder of this chapter we focus on addressing uncertainty with
internal techniques. We consider the predictions of a model, whether it is a re-
quirements, structural or behavioural model, and its post-processing analysis as
a combined prediction of an extended model. Furthermore, we also acknowledge
that a model prediction might be correct while not being fully accurate, and
that upper bounds on the prediction error might not necessarily be accounted
for in such predictions.

3.3 Runtime Models

Definition 4. A runtime model is a model that complies with Definition 1 and,
in addition, is characterized as follows: part of its purpose is to be employed at
runtime in a system and its encoding enables its processing at runtime. The run-
time model is causally-connected to the original (running system), meaning that
a change in the runtime model triggers a corresponding change in the running
system and/or vice versa (extended from [20]).

As outlined in the definition, runtime models differ from other types of models
in both their purpose and encoding. Specifically, while development-time models,
such as state machines, primarily support the specification, design, implemen-
tation, and testing, of a software system, a runtime model captures relevant
information of the running system for different purposes, which either are part
of the system functional features or are subject to assurance and analysis (non-
functional features). Due to the encoding that enables its processing at runtime,
other running systems, stakeholders (e.g., final users) and the system itself can
alter these models at runtime.

A runtime model can span different types of models (e.g., structural or be-
havioural models), and can have different degrees of accuracy and precision.
Independently on whether changes are automatically included or are externally
applied on the model, a runtime model can be used for different purposes. It
can be used as a knowledge repository about the system, its requirements, or its
execution environment. It can also support adaptation of the system and/or its
execution environment, as new information about the original becomes available.
An overview about different runtime model categories and the relations between
runtime models are described in [21].

In the following sections, we discuss a feedback-loop-based approach that en-
ables handling of runtime models during system operation. Afterwards, we dis-
cuss some most common types of system that typically employ runtime models.
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Fig. 9. MAPE-K feedback loop architecture according to [22]

3.3.1 The Feedback Loop in Systems with Runtime Models

Different types of software systems already adopt runtime models to control sev-
eral aspects of their execution. In some cases, runtime models can be simply used
to reconfigure system properties. In other cases, these models can be dynami-
cally updated to reflect changes in the system and its context (the observable
part of the surrounding environment).

The MAPE-K feedback loop [22], shown in Figure 9, emphasizes the role of
feedback for autonomic computing. At first, it splits the system into a managed
element (core system) and an autonomic manager (adaptation engine). It then
defines four key activities that operate on the basis of a common knowledge
base: Monitoring, Analysis, Planning, and Execution. Monitoring is primarily
responsible for gathering raw data, such as measurements and events, about the
state of the managed system. Analysis is used to interpret data collected by
the monitoring activity and detects changes in the managed system that might
warrant adaptation. Both monitored and analyzed data are used to update the
knowledge base of the MAPE loop. Planning reasons over the knowledge base
to identify how the managed system should adapt in response to their mutual
changes. Execution applies the adaptations selected by the planning activity on
the system.

The explicit consideration of runtime models leads to an extended MAPE-K
architecture as depicted in Figure 10. A first major refinement is that now the
adaptation engine also takes into account - in addition to the core system - its
context and requirements as a knowledge base.

In this more refined view Monitoring is gathering raw data, such as measure-
ments and events, about the state of the system and its context. Additionally,
monitoring may recognize updates of the requirements. In any case, the ac-
cumulated knowledge is stored in the runtime models (M@RT). The Analysis
interprets the collected data and detects changes to the system, context and/or
requirements that might warrant adaptation. Then it updates the runtime mod-
els accordingly. The Planning employs the runtime models to reason about how
the running system should adapt in response to changes. The Execution uses
the runtime models as basis to realize planned adaptations.
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Fig. 10. Runtime Models in an extended MAPE-K architecture

3.3.2 Kinds of Runtime Models

As depicted in Figure 10, we can distinguish different kinds of runtime models
depending on their possible original (i.e. subject):

System Models. The first and most common subject of a runtime model is
the system itself. On the one hand, a runtime model provides an abstract view
on the running system. Consequently, to maintain the causal relation, the run-
time model has to be adjusted when a represented characteristics of its original
changes [23,24]. On the other hand, the runtime model can be used to describe
possible future configurations of the running system. Then, to realize the causal
relation a related update of the running system has to be triggered. What can
be controlled and observed via the runtime model is the system behaviour, as
required sensors and actuators can be incorporated into the system if they min-
imally impact the system non-functional requirements.

Context Models. The context of the system – the part of the environment that
can be observed by the system – can be a subject of a runtime model. Then, the
runtime model represents some characteristics of the context observable via some
sensors and the causal connection implies that the runtime model is accordingly
updated when the context changes as indicated by changing measurements of
the sensors. The case in which the runtime model is used to describe how the
context should be changed is more subtle. Here only those changes that are under
the indirect control of related actuators can be triggered via a runtime model
and its causal connection. Often, only a small fraction of the context can be
indirectly controlled via the actuators and sensors. Therefore, while only a few
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characteristics are controllable, more characteristics are usually observable via
sensors. However, sometimes relevant characteristics cannot be observed directly
and then a dedicated analysis is required to derive them indirectly from other
observations.

Requirement Models. Last but not least the requirements of the system may
be subject of a runtime model [25,26]. In this case, either some form of online
representation of the requirements exists that is linked to the runtime model by
a causal connection or changes of the requirements have to be manually reflected
on to the runtime model. In both cases the runtime model carries information
about the currently relevant requirements within the system and therefore the
system can, for example, check whether the current requirements are fulfilled
or try to adjust its behaviour such that the fulfillment of the requirements in-
creases. However, a bidirectional causal relation between the requirements and
the runtime model has not been usually considered. This relation would trigger
modification of the system requirements from changes in the runtime model.
However, if the requirements define a whole set of possible goals for the system,
the runtime model can be used to capture which goals are currently selected.

Besides these typical kinds of runtime models, in practice it is also possible
to find cases where a single runtime model has multiple subjects. For example,
a single model may reflect knowledge about a fraction of the system and the
context at once in order to allow analyzing their interplay.

3.3.3 Types of Systems with Runtime Models

Different kinds of systems leverage activities of the MAPE loop to control some
aspects of their execution. The rest of this section provides a non exhaustive list
of the most common types of systems leveraging runtime models. Note also that
these categories may overlap.

Configurable Systems. Configurable systems [27] are perhaps the simplest
type of software systems that leverage runtime models. Such systems often use
runtime models in form of configuration files to determine the concrete con-
figuration and the values of operational parameters that control the behaviour
of the overall system. For this reason, no monitoring and analysis process is
performed to automatically update the runtime model. Instead, planning and
execution processes respectively read the configuration and parameters stored
in the runtime model and reconfigure the system accordingly.

Context-Awareness w.r.t. Pervasive Systems. Context-awareness [28] de-
scribes that a system is able to monitor its context. Context-awareness is re-
garded as an enabling feature for pervasive systems [29,30] that offers “anytime,
anywhere, anyone” computing by integrating devices and appliances in the ev-
eryday lives of its users. Pervasive systems select and apply suitable adaptations
depending on their context. As the user’s activity and location are crucial for
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many applications, context-awareness has been focused on location awareness
and activity recognition. Pervasive systems can leverage runtime models to rep-
resent the context and cover all processes of the MAPE loop to foster adaptation.
Monitoring acquires the necessary information about the context (e.g. using sen-
sors to perceive a situation). Analysis abstracts and understands the context (e.g.
matching a perceived sensory stimulus to a context) and updates the runtime
models accordingly. Planning identifies the actions that the system should per-
form based on the recognized context and execution applies these actions at
runtime.

Requirements-Aware Systems. Requirement-awareness is the capability of a
system to identify changes to its own requirements. Requirements-aware adaptive
systems [26,31] use runtime models to represent their requirements [32,33], track
their changes [25,34] and trigger adaptation in the system behaviour in order to
increase requirements satisfaction [35]. Other work [36] proposes to explicitly
collect users’ feedback during the lifetime of a system to assess the validity and
the quality of a system behaviour as a means to meet the requirements. In these
systems, requirements are conceived as first-class runtime entities that can be
revised and reappraised over short periods of time. Modifications of require-
ments can be triggered due to different reasons, for example, by their varying
satisfaction, or new/changing market needs and final users preferences.

These systems also leverage the activities of the MAPE loop to support
requirements-awareness and adaptation. Monitoring collects the necessary data
from the system and the context. In addition, if the system is requirements-
aware, changes in the requirements are taken into consideration. Analysis uses
the data about the system and context to update the requirements model or
recompute the requirements satisfaction. Planning computes the adaptations to
be performed by taking into account the current requirements and assumptions
as captured by the runtime models. As a special case, this includes that a re-
quirements changes may result in changes to the system itself (e.g., architectural
or behavioural changes). Execution applies selected adaptations on the system.

It has to be emphasized that the use of requirements models at runtime
during analysis and planning is conceptually independent of their monitoring
(requirements-awareness).

Self-adaptive Systems. Self-awareness [37] is the capability of a system to
monitor itself. The system can thus detect and reason on its internal changes
(e.g., system behaviour, components, failures). Self-adaptive systems can in ad-
dition to self-awareness also react to observed changes by applying proper adap-
tations to themselves.

Nowadays, the term self-adaptive systems is used in a very broad sense and it
can include self-awareness, context-awareness as well as requirements-awareness.
Such systems manage different runtime models that represent the system itself,
its context, and its requirements, respectively.
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The next section explains how runtime models can be used to handle un-
certainty. In particular, Section 4.3 provides further discussion of self-adaptive
systems and the use of runtime models in the context of the case study and the
MAPE-K loop.

4 Handling of Uncertainty

Nowadays, we can observe the trend to handle uncertainty later at runtime and
not already at development-time, as discussed in Section 4.1. To better under-
stand the benefits and drawbacks of using runtime models to handle uncertainty,
we first discuss the classical approach to handle uncertainty using development-
time models in Section 4.2. In Section 4.3 we explain more advanced solutions to
handle uncertainty at runtime and outline how these solutions can benefit from
runtime models. The case study has been used to provide specific examples.

4.1 Trend of Handling Uncertainty Later

In classical engineering, uncertainty in the available information about the sys-
tem and its environment is a major problem. In particular, for models that
capture characteristics of the environment it is frequently the case that the ex-
act characteristics are not known at development-time. External techniques for
uncertainty for a model such as safety-margins and robustness with respect to
these known margins are then often employed to ensure that the developed so-
lutions satisfy the system goals for all expected circumstances (cf. [38]).

Consequently, also in software engineering the classical approach is to build
systems that work under all expected circumstances. This is achieved by using
models at development-time, which capture the uncertainty internally. Alter-
natively external techniques can be employed to handle the uncertainty, such
that the developed systems work under all circumstances predicted by these
development-time models.

However, nowadays it has been recognized that we can achieve smarter and
more efficient solutions, when we build systems that are context-aware [28]
and/or self-aware [37]. Due to the self-awareness, context-awareness and require-
ment-awareness, self-adaptive systems become capable of adjusting their struc-
ture and behaviour to the specific needs of the current system state, context,
and/or requirements. This results in a number of benefits: (1) achievement of
better performance and less resource consumption at the same time, (2) mini-
mization of manual adjustments required to the administrators or users, and (3)
provisioning of functionality that would be infeasible without the information
about the context.

In contrast to the classical software engineering approach, in self-adaptive
systems uncertainty concerning the system or context can be handled - to some
extent - at runtime and not just at development-time. The classical software
engineering approach can only cope with uncertainty that can be handled based
on reasonably complex development-time models. A self-adaptive system can in
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contrast employ runtime measurements to reduce the uncertainty and adjust
its behaviour accordingly. Consequently, self-adaptive systems can handle more
situations than classical solutions and their ability to address uncertainty more
actively is one of their major advantages. In [39] it is therefore argued that
uncertainty should be considered as a first class element when designing self-
adaptive systems.

4.2 Handling Uncertainty at Development-Time

This section discusses how models can be used to address uncertainty during
development-time. We describe the classical approach, through our case study
and then explain the various forms of uncertainty that can arise.

The classical approach tries to exclude uncertainty at the level of requirements
in order to have a solid basis for the later development activities. However, it
has been observed that stable requirements rarely exist on the long run (cf.
[40,41,42]). Watts Humphrey observed that one of the principles of software
engineering is that requirements are inherently uncertain [40]: “This creative
design process is complicated by the generally poor status of most requirements
descriptions. This is not because the users or the system’s designers are incom-
petent but because of what I call the requirements uncertainty principle: For a
new software system, the requirements will not be completely known until after
the users have used it.” Also Lehman’s Software Uncertainty Principle [41] states
that for a variable-type program, despite many past satisfactory executions, a
new execution may yield unsatisfactory results. This is based on the observation
that software inevitably reflects assumptions about the real world [43].

During design and implementation, the uncertainty in environment models is
usually handled by building robust solutions that simply work for all possible
cases. Therefore, the development-time model employed for the environment has
to capture all relevant and possible future environments the system will face.
In this way, a system designed according to a development-time model should
guarantee that in any relevant and possible future environment the required
goals and constraints can be satisfied.

[battery = 100]

entry / gotoPosition(3,11,AP)
do / fetchPuck()
exit /gotoPosition(12,12,AS)

fetching
do / move(), dropPuck()
exit / gotoPosition(8,14,CP)

dropping

do / chargeBattery()

charging

start

[puck dropped]

[puck fetched]

stop

Dropping point of the puck
dispenser in area AP.

Dropping point in the
sorting area AS.

Point for
charging
the battery.

Fig. 11. Behaviour development model of the robot system
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Example 1 (Robot Design with Development-Time Models Only). For our case
study, the developer must make several design decisions. If we assume that each
of our three robots has a clear task and that their overall behaviour fulfills the
given goals, a possible solution is the fixed encoding of the different tasks.

According to Figure 2 on page 51, robot RP must transport pucks from the
Packaging Room to the Sorting Room in the specific Areas AP and AS respec-
tively. We can model at development-time a state machine that representes the
states and transitions necessary for the robot to solve this task. The behaviour
model depicted in Figure 11 has three states. First, the robot fetches the puck
in the Packaging Room (cf. Fig. 2) and transports it according to the sorting
position. Due to our discrete grid map model of the laboratory, we can pinpoint
the target locations for the robot navigation. The developer knows the maximal
distance and whether the robot has enough power for puck transportation. Af-
terwards, the robot always loads its battery at a fixed charging point avoiding to
exhaust its power supply, which is one of the constraints of the system. Further-
more, one can stop the puck transportation while the robot loads the battery or
it will fetch and transport the next puck.

There are many restrictions to the environment, e.g., pucks must always be
at the same position, the environment must be very static without relevant dis-
turbances, and goals should not change at runtime ensuring that such a fixed
transportation scenario works. This is the case for many systems, such as an
assembly line with static working steps in a fixed area. In practice the robot will
increasingly diverge over time from the planned trajectory as the move commands
are inherently imprecise. In fact only in more restricted cases for embedded sys-
tems, such as automation systems with a fixed track layout where the errors
of the vehicle movements do not accumulate over time, a solution that is not
context-aware really works.

In our specific system design, the handling of the battery loading is one ex-
ample of resolving uncertainty during development-time. It does not matter how
much the power level of the battery is decreased during the task as long as the
robot reaches the charging point. Furthermore, the amount can be estimated or
measured upfront and results in a simple, not context-aware system solution.
Additionally, the fixed encoding of the task further reduces uncertainty due to
the fact that no communication between robots and runtime task distribution
capabilities are needed.

All the development models are only used for code generation or system imple-
mentation. The running system does not reflect or use these models but simply
complies with them.

4.2.1 Forms of Uncertainty

The problems of uncertain requirements according to [40,41,42] relate to epis-
temic uncertainty where the requirements captured at development-time may
not precisely and accurately reflect the real needs when the system is operating.
In the case of the Example 1, the designed behaviour is not able to handle a
shift in the priorities of the goals by the operating organization that may occur
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over time. Thus, in this case the performance will not be rated as good as in the
beginning when the shift in the prioritization of the goals by the operating orga-
nization has occurred, as expectations have evolved while the system behaviour
stays the same. As a result, a new state machine model must be developed
and deployed to the robot. Another related reason for epistemic uncertainty is
that stakeholders may formulate ambiguous requirements specifications [2], or
they may have conflicting interests or uncertain expectations on the resulting
software quality. The changes that will occur for the system and environment in
between the development-time and when the system is executing may also result
in epistemic uncertainty. The development-time model of the system or context
cannot precisely and accurately reflect the real system and its environment as it
is characterized later when the system is under operation.

Also, practical limitations in development and measurement tools can, in prin-
ciple, cause epistemic uncertainty where a development-time model of the system
or context cannot precisely and accurately reflect the real system and its exe-
cution environment as it is known at development-time. For instance, in the
Example 1, it is only possible to measure the initial characteristics of the floor
plan with a certain precision and accuracy and at certain points in time. As
a result, a development-time model of the floor plan may perhaps never truly
reflect the real environment unless, due to abstraction, neither the measurement
precision or changes matter after the measurement are relevant.

Furthermore, randomization plays a role that may be covered appropriately
by probabilistic models such as probabilistic automatas [44]. In our Example 1
the known likelihood of failed operations can be described by probabilistic transi-
tions and still we can determine upper bounds for related unsafe behaviour using
probabilistic reachability analysis. If no exact probabilities but rather only prob-
ability intervals are known due to epistemic uncertainty, interval probabilistic
automata and related analysis techniques (cf. [45]) could still be used.

4.2.2 Time and Uncertainty

For a development-time model, we can observe that the uncertainty may change
over time. It may stay stable, increase or even, in rare cases, decrease over time.
If the energy level maintained by the robot in our Example 1 changes over time
and a design-time model is used, the three cases mentioned above can result in
the following situations:

The uncertainty is increasing over time as outlined before, which may happen
if the set of possible reached states grows over time. If for all activities of the
robot only rough upper and lower bounds for the energy consumption are known,
after a number of operations, the uncertainty concerning the consumed energy
will be quite large. In this case, the model still provides enough information
about the system at development-time to build a sufficiently robust design for
the system by simply calculating the worst-case and therefore act accordingly.
However, the resulting behaviour will be rather sub-optimal as the robot will
recharge the battery very early.
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The uncertainty remains constant over time if the set of possible reached
states remains the same size over time. In the case of the robot and the energy
consumption this would require that the energy consumption of each operation
is exactly known such that the initial uncertainty concerning the state of the
battery is neither increasing nor reduced. In this unrealistic case this knowl-
edge can be exploited to build a robust design where the initial worst-case plus
the exactly known consumption is employed to determine when to recharge the
battery.

The uncertainty is reduced over time when after a certain time the state is
exactly known as the set of possible reached set of states has collapsed into a
smaller set or even a single state. In our example, if loading the battery is blocked
we could be certain that after a while the battery will be empty. However, it
is rarely the case that such a decrease of the uncertainty in a model can be
guaranteed.

While all three cases are possible, we can conclude that unless actively tack-
led, the uncertainty will increase over time. Consequently, identifying means
to counteract this growth in uncertainty is crucial for handling uncertainty
properly.

4.2.3 Maintenance and Reengineering for Handling Uncertainty

The standard approach to tackle the aging problem for software is maintenance,
where required adjustments to changes in the context or requirements are taken
into account by a dedicated additional development step. Since the development
of the original system has been stopped, in this step the changes in the context
and requirements should be identified such that the related uncertainties are
reduced. However, often the time for a maintenance step is rather limited and
therefore the related analysis is superficial and potentially incomplete. Also,
maintenance teams might differ from design and implementation teams, possibly
leading to more uncertainty in the form of incomplete understanding.

If the internal quality of the software deteriorates considerably, maintenance is
no longer feasible and, instead, dedicated reengineering activities with a reverse-
engineering part that recovers lost information about the software and a forward
engineering phase are required. Here, reengineering addresses the uncertainty
that results from the loss of information concerning the system. Usually, reengi-
neering also has to address changes in the context and requirements since the
development of the original system has been stopped to minimize related uncer-
tainties.

4.3 Handling Uncertainty at Runtime

Using runtime models during system operation, as for example it is done for
self-adaptive systems, brings up different forms of uncertainty that must be
handled. In contrast to the classical software engineering approach, these forms
of uncertainty are tackled at runtime and not at development-time.
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Before discussing the different forms of uncertainty at runtime, we illustrate
in the following example the use of runtime models for the planning step of the
MAPE-K feedback loop for our robot case study.

[battery <= 30]

do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

Plan

entry / stopRobot()

passive

[battery < 10]

<<create>>

<<create>>
<<create>>

<<create>>

<<create>><<delete>>

<<delete>>

<<delete>>

<<create>>

Fig. 12. The planning step of the MAPE-K loop creates a new version of the state
machine runtime model

Example 2 (Robot Scenario with Runtime Models). We use the following runtime
models in our case study scenario: First, we have an environment model that
captures the current position in the floor plan represented by discrete fields in an
overall map with current puck positions, obstacles and charging points (cf. Fig. 6
in Section 3) and available puck transportation requests. Second, a goal runtime
model exists that includes priorities and constraints of our system and reflects
the requirements of the overall system behaviour. Furthermore, the behaviour
of the robot should fulfill those constraints and performs according to the given
goals and priorities. The abstract syntax as well as a concrete instance situation
are depicted in Fig. 3 and 4. The current state information of a robot during
operation is represented by a finite state machine runtime model (cf. Fig. 8).

These runtime models can be used and changed within the different activities
of the MAPE-K loop. In the following, we assume that the robot system has at
least self-awareness capabilities concerning its battery functionality including the
current battery level and is context-aware for its current goals. We consider the
following exemplary execution steps inside one robot: the monitor activity re-
trieves information about the current map situation, the possible available pool
of operations, the current behaviour specification in the form of a state machine
as well as a goal model. It updates this information in the runtime model repre-
sentation of the robot.

In a next step, the analyze activity is aware of the goals and constraints and it
is able to conclude that the battery should not be exhausted. Furthermore, it de-
tects in the possible operation pool of the robot the battery charging capability. As
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a result of applying strategies to fulfill the goals, it decides to include a charging
mechanism into the robot behaviour. The following third activity of the MAPE
approach is the planning step according to the decision of the analyze step before.
For example, the planner can adapt the retrieved simple state machine (repre-
senting the robot behaviour) depicted in Figure 8. It comes up with a detailed
plan to adapt the behaviour from the current state to the envisioned one. An
excerpt of the new adapted state machine is shown in Fig. 12. The passive state
as well as ingoing and outgoing transitions are marked as to be deleted and two
states charging and critical (with underlying behaviour) must be created. New
transitions reflect the constraints from the goal model. In this case, the robot
processes incoming puck transportation tasks in the active state. If the battery
power level drops below 30 percent, the robot behaviour changes by entering the
critical state. There, it searches for a charging point nearby and tries to reach it.
If the robot successfully reaches one, it charges the battery until it is full in the
charging state and returns to normal execution behaviour. Otherwise, the battery
is exhausted and the robot stops the execution of the task.

Afterwards, the last activity in the MAPE-K loop takes the plan and applies
the planned changes to the real system (it synchronizes the updated runtime
model with the real system). After a successful update, the behaviour of the real
robot is adapted according to the current goals and constraints.

4.3.1 Forms of Uncertainty

For the case of runtime models epistemic uncertainty can arise from multiple
sources that include sensing - when building or updating the models - and the
passing of time. If the original of a runtime model is monitored at runtime, the
resulting update of the corresponding runtime model should, in principle, lead
to less uncertainty. This effect may be limited because the measurements at
runtime usually include randomized errors and they are limited concerning the
when and what. Looking at epistemic uncertainty in our Example 2, retrieval
of environment information and subsequent update of the runtime model with
information about which fields are blocked as well as the positions of the charg-
ing points based on measurements by the robot, would help reduce the level
of uncertainty. However, there are details we should take into account as, for
example, if the blocked fields change frequently, the effect of reducing the un-
certainty would only be temporary. In contrast, if we continuously update the
information concerning the location of permanent obstacles (e.g., walls) in the
robot of Example 2, the robot will - on the long run, after it has explored the
whole area - derive a sufficient floor plan of those permanent obstacles. This will
contain only the unavoidable uncertainty due to measurement errors.

If a runtime model is also employed to store the planned changes, its state is
somehow permanently evaluated against the original. This should, in principle,
lead to a high consistency between the two and therefore a lower level of un-
certainty. However, this effect may be limited as also changing the original may
include a randomized error due to actuator errors.
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When we are able to learn what can happen in the environment, we may
be even able to improve the prediction of behaviour for the case of uncertainty
associated with randomization. For example, in the case of the robot scenario,
we may learn how likely temporal blocks occur for certain fields. If a certain
transition relates to an activity such as a measurement that fails with a given
probability, we may be able to learn the probability for a longer sequence of
measurements, as it will be very likely that the number of failed attempts to
take the transition divided by the total number of tries converges towards the
failure probability. However, there may be problems while using this kind of
assumptions. For example, if the assumption that the observed phenomena is
related to a probability is not correct, we will likely see no convergence and thus
the learning will fail.

The case of linguistic ambiguities is slightly different since it covers the cases
when the concepts in the model are not known in a precise way. Approaches
such as fuzzy automata can be used to deal with this issue. They include a
fuzzification and de-fuzzification of the linguistic concepts which allows them to
handle this form of uncertainty, while complicating the analysis considerably [46].
If we consider the soft goals in Figure 3 that describe a low energy consumption
and high throughput, these constraints could be good candidates to be specified
in a fuzzy automata. Note that the translation of those goals from a linguistic
concept to a manageable runtime model may introduce additional uncertainty.

Unfortunately, the sources of uncertainty described above rarely occur inde-
pendently from each other. Instead, the effects produced by these sources of
uncertainty can compound and thereby inhibit the system from clearly assessing
the extent to which it satisfies its requirements. Therefore, solutions to tackle
composed sources of uncertainty are required. For example, having temporary
blocks of certain fields arising in the robot scenario can be related to random-
ization as well as epistemic uncertainty and therefore, tackling this issue by
only learning probability values would not be enough. Instead, intervals for the
probabilities as provided by interval probabilistic automata would be required.

4.3.2 Time and Uncertainty

Furthermore, as in the case of development-time models, for runtime models we
can also observe that uncertainty may stay stable, decrease or even increase over
time. In case of the energy level maintained by the robot that changes over time,
the three cases can result in the following situations:

Even if certain parameters are measured, the uncertainty increases over time
as the parameters that are not updated over time may also be uncertain. In
this case the runtime model represents a partial view that may not provide
enough information of the system at runtime to be able to support a solution
to cope with the situation. As an example, currently we have not considered in
a runtime model that hardware parts of the robot can be worn out. Therefore,
the uncertainty about the status of those parts is not handled in any activity of
the MAPE-K loop. We can only assume that the quality of the hardware parts



72 H. Giese et al.

decreases over time but as long as those parts are not broken or fail, we cannot
reason about the impact on the robot’s behaviour.

The uncertainty remains constant over time if the measurements are sufficient
to keep the uncertainty within certain bounds. In this case the runtime model
can be exploited to chose a proper behaviour that works with the captured
circumstances. In the Example 2, the battery level is measured periodically to
decide when it is time to load it. We can cope with two constant uncertainty
issues in this example. First, if we know the period of the measurement, we can
estimate lower and upper bounds of energy decreasing for that specific time slot.
Secondly, the used hardware sensor and the runtime model representation has a
certain precision that is known upfront and stay in a bound too (assuming that
the sensor works correctly).

The uncertainty is reduced over time if measurements collect information
about the system status and step-by-step increase the accuracy of the corre-
sponding model representation of the system. As an effect, this will reduce the
uncertainty over time. Usually, there is saturation of this effect after a while
and a certain level of the uncertainty remains (see former case). Otherwise, after
a certain time the uncertainty would have been completely eliminated and the
characteristics of the original as far as covered by the model are exactly known.
A very simple example is the exhaustion of the battery. In that specific case,
there is no uncertainty and we exactly know that the battery is empty (even if
this is not very helpful).

4.3.3 Feedback Loops and Uncertainty

In classical engineering feedback loops are a well known solution to address
uncertainty concerning the environment [47]. Consequently, feedback loops have
also been identified as the core element for engineering self-adaptive systems
[48]. See also [49] for a discussion of uncertainty in autonomic systems with
feedback loops. Therefore, the role of uncertainty in systems with runtime models
and related concepts such as self-awareness, context-awareness, and requirement-
awareness is best discussed referring to the extended architecture of a feedback
loop as outlined in Figure 9.

As explained earlier, the more detailed view of the architecture comprises
four key activities which are Monitoring, Analysis, Planning, and Execution
(see Figure 13). Each of these activities can be seen as relying on the use of
runtime models that serve as a knowledge-base. The runtime models of the
system, context, and requirements plus additional strategic knowledge can then
be seen as driving the feedback loop.

The basic MAPE-K architecture can be extended to leverage models that
can evolve, thereby enabling a software system to cope with uncertainty by
learning new properties about itself and its execution environment based on
monitoring information that can only be collected at runtime. Specifically, to
gradually reduce the level of uncertainty in the system, the four key processes in
the MAPE-K architecture can analyze system and environmental data in order
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Fig. 13. Resolving uncertainty at run time with an extended MAPE-K architecture

to refine, augment, and revise the information stored in the runtime models, and
then leverage that information to guide the adaptation process as necessary.

Next, we will review the objective of each of the four key activities and explore
how uncertainty affects each of them. We will also review identified research
questions associated with each phase of the MAPE-K loop that can potentially
be tackled with the use of runtime models.

Monitor. In the detailed view on the architecture proposed in Figure 14, the
monitoring process is primarily responsible for measuring raw data, about the
current state and/or occurring events of the system, the context, and the require-
ments, and to update the runtime models representing the knowledge about the
state, context and requirements.

The monitoring helps the software system to cope with uncertainty by con-
tinuously updating the information contained in a runtime model. Nevertheless,
as explained above, the sensors used to obtain this monitoring information are
limited by the precision and accuracy of their measurements. Moreover, sensors
may fail at runtime or report values that the software system may simply be un-
able to interpret. As a result, even if monitoring reduces the level of uncertainty
in a software system, it will depend on its accuracy, precision and frequency. The
information it provides ultimately reflects an approximation that may contain
some uncertainty.

Research questions associated with the Monitoring phase of the MAPE-K
loop that can potentially be tackled with the use of runtime models and related
to the fact that sensing and monitoring can be imprecise and partial are:How can
we determine the imprecision caused by temporal constraints / delays? Does the
monitor engine also need to adapt (i.e., monitoring periods)? How can runtime
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Fig. 14. Monitoring and resolving uncertainty with runtime models

models incorporate or learn new information using machine learning techniques
and preserving at the same time the system under a reasonable behaviour? How
does the runtime model represent what to monitor and how to do it?

Analyze. The architecture uses the analysis process to interpret data collected
by the monitoring process and detect system and environmental changes that
might warrant adaptation (see Figure 15).

In case more subtle updates are required, the analysis may, in addition to the
monitoring, take as input the most recent data available as well as older data to
obtain more accurate initial analysis models of the system and the environment.
For example, techniques such as smoothening may allow better capturing of
what is known about the system or environment than simply using the last
measurement. In this context the complex update can be seen as a learning step
that uses the observations made to provide a better runtime model. Accordingly,
the employed learning/update strategy can have high impact on how successful
the uncertainty is reduced. While more specific strategies may provide highly
accurate runtime models, unless severe changes in the system or environment
occur, more generic strategies may provide more robustness but solutions that
performe worse.

In addition, the analysis activity verifies in a second step that monitoring in-
formation satisfies the requirements given, for example, in the form of relevant
system and environmental goals and constraints. If necessary, this process also
has to trigger an adaptation by the subsequent planning process if it detects
that a requirement is, or could potentially become, unsatisfied. Moreover this
analysis step concerning the goals and constraints is highly affected by the un-
certainty in the runtime models. The analysis step can here only result in the
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Fig. 15. Analysis and resolving uncertainty with runtime models

required precision and accuracy when the uncertainty present in the runtime
model can be successfully handled and therefore, does not make an analysis in-
feasible. Depending on how the analysis results are presented as models, these
runtime models can, due to a higher level of abstraction, contain considerable
less uncertainty than what could have been observed for the monitoring.

As diagnosis and analysis can also be ambiguous and imprecise, the following
research questions associated with the Analysis phase of the MAPE-K loop arise:
What is the effect of analysis techniques to resolve unknown uncertainty? Does
the perspective on what is ”relevant” for the runtime model need to adapt at run
time? Should the criteria for decision-making adapt itself? How can we retain
the ability of analysis even if we have incorporated newly learned information?
How do the objectives of the analysis are represented and how can they be mapped
onto a specific analysis technique?

Plan. The Planning, if triggered, reads the runtime models enriched by the
analysis and performs some reasoning to identify how the running system should
be best adapted to changes of the system, context, and/or requirements. It may,
for example, identify a plan to change the running system to also take into
account a novel system goal.

The planning activity therefore reads the system, context and requirement
runtime models and records the planned changes also in the form of a runtime
model (see Figure 16). The identified changes can, for example, be captured by
modifications of a runtime model of the system that we call system′ (see the
entity system′ in Figure 16). Here, uncertainty only plays a role when identified
changes cannot be safely planned as the related current state of the system is
not available in the current runtime model of the system. The precision and
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Fig. 16. Planning and resolving uncertainty with runtime models

accuracy of the planning is again determined by the uncertainty of the employed
runtime models. For the case of the resulting prescriptive runtime model of the
system, the runtime model usually captures only what should be changed and
thus will not include any uncertainty at all.

For the Planning phase of the MAPE-K loop holds that the final outcome of an
applied strategy cannot be accurately predicted and thus the following research
questions result: Should the planner take uncertainty into account? If so, how
does it handles strategies when uncertainty exist or what kind of runtime models
are more suitable? Furthermore, how can the planning activity be instrumented
to achieve a specific objective (e.g., minimise the number of changes to be applied
onto the system).

Execute. The Execution activity directly applies a set of changes for the run-
ning system stored in some runtime models (see system′ in Figure 17) by the
planner. Even if these changes can have the direct consequences limited to the
system itself, the changes may also indirectly affect the context in the longer run.
The execute activity can be seen as the mechanism that support the causal con-
nection which influences the running system according to the updated runtime
models.

Assuming that applying the changes always works, the execute activity would
guarantee that the employed runtime model of the system is now perfectly in
sync with the system. However, in practice the execution activity cannot give
such guarantees as its actuators provide only limited accuracy or may even
completely fail. Furthermore, the system may have evolved in parallel to the
feedback loop such that the planned updates become impossible or the changes
do not result exactly in the planned outcome. Overcoming this problem, the
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Fig. 17. Executing and resolving uncertainty with runtime models

next loop iteration should detect it and try to solve the inconsistencies again, or
otherwise one can try to exclude it in such a way that changes occurring in the
managed system can never result in inconsistencies with planned changes.

The effects of the Execution phase of the MAPE-K loop on the running system
may not be as expected as also external influences as for example, disturbances
from the environment or user interactions may exist which are not under control
of the MAPE-K loop. Therefore, the following research questions have to be
addressed: Do temporal delays create an inconsistent view of the runtime model?
How are the runtime models affected by external influences outside the MAPE-K
loop?

Summary. Uncertainty in self-adaptive systems can arise from multiple sources
that include, but are not limited to, the system itself, its environment, and its
stakeholders. For instance, the system itself uses its monitoring infrastructure,
which may be inaccurate and imprecise, to measure properties about itself (self-
awareness). Similarly, the surrounding context can introduce uncertainty because
it is dynamic, unpredictable and ever changing, perhaps even leading to the
violation of domain assumptions (context-awareness). Lastly, stakeholders can
also introduce uncertainty by either modifying the current set of requirements
that the system must satisfy, or by the emergence of new business needs or
regulations that the system must comply with (requirement-awareness).

The uncertainty in the runtime models usually increases when time passes
as the monitored information becomes outdated after a while as discussed in
Section 4.3.2. A more frequent execution of the feedback loop can counteract this
tendency and also guarantee faster adaptation reactions. However, the chosen
frequency has to be cost-effective since it must balance a trade-off between the
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quality of the feedback loop and the overhead added to the execution of the
system.

Also, a suitable trade-off decision has to be made concerning the accuracy of
the runtime models. It is usually not cost-effective to monitor frequently as this
not only increases the monitoring costs but also the subsequent analysis and
planning activities. Therefore, enough monitoring to enable a suitable analysis
and planning is necessary. Again, as in case of the updating/learning strategies,
we have here also a trade-off between well-performing solutions within an en-
velope of expected likely changes and a robust solution. While for the former
the required effort can be optimized, for the latter more overhead has to be ac-
cepted. Adjusting different activities such as monitoring, analysis and planning
that are covered by the runtime models during system operation of higher-level
adaptation loops (see Section 4.3.4) enables solutions where the overhead for
robustness can be reduced by adjusting and intensifying the specific activities
when necessary rather than always run them with a maximal overhead.

4.3.4 Types of Systems with Runtime Models

In the following, we will discuss the implications of using runtime models for
different classes of systems ranging from configurable systems to those with full
self-managing capabilities.

Configurable Systems. The simplest case of an adaptation loop (not a com-
plete MAPE-K loop) is a runtime model, in which an externally initiated update
triggers an adaptation of the system.

This kind of systems is neither self-aware nor context-aware and does not
monitor the system itself or the environment. A requirement of self-awareness
is that the system must consider itself at a higher level of abstraction. Instead,
configurable systems do not actively change themselves and thus the required
adaptation triggered by the external update can simply be enforced from outside
the running system.

As a typical case, the user configures or changes requirements at runtime. A
very simple configurable system takes the potentially updated runtime require-
ments model and checks it during operation. If constraints are not fulfilled an
exception is thrown. Otherwise, the system will perform according to the given
configuration parameters. A more elaborated version is that the updated runtime
requirement model is used to derive the required behaviour. For example, the
system selects a strategy with a good/optimal expected revenue by evaluating
possible alternative behaviours and chooses the best performing one according
to the actual requirements.

Example 3 (Configurable Robot Scenario with Runtime Models).
In this system scenario, the robot is neither self-aware nor context-aware. For

this reason it cannot sense the environment. In this case, the runtime model is a
valid map configuration that informs the robot about the actual position of pucks
and obstacles. The robot gets an initial model of the environment according to
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x = 6
y = 10
obs = robot
puck = false
type = normal

f1:Field
x = 9
y = 8
obs = wall
puck = false
type = normal

f2:Field
x = 12
y = 12
obs = empty
puck = false
type = area_sorting

f3:Field

m:Map

...
x = 6
y = 10
obs = robot
puck = false
type = normal

f1:Field
x = 9
y = 8
obs = wall
puck = false
type = normal

f2:Field

m:Map

...
x = 12
y = 12
obs = empty
puck = true
type = area_sorting

f3:Field

Configuration 1: Configuration 2:

Fig. 18. Static map and instance situation with two possible configuration for the
Example 3

the metamodel in Fig. 6 in Sec. 3, maintains all fields in this map and uses the
given instance situation for navigation as well as fulfilling its goals. A snapshot
of two (partial) environment configurations is depicted in Fig. 18. In this case,
a puck is placed on field f3.

The robot behaves according to the simple state machine in Fig. 19. Each
time the robot enters the active state, it checks the current map configuration
data ( loadCurrentMap()), searches for pucks to transport and calculates routes
accordingly. We assume that the parameters in the configuration are valid and
triggered from outside. In the critical and charging states, no adaptation is pos-
sible in this example.

Each change in the map influences the behaviour of the robot because each one
must reschedule the transportation tasks or recalculate routes. We have three
robots in our scenario (cf. Fig. 2). The RP robot transports pucks from the
packaging room to the sorting room and this causes a change in the map of
the example. The second robot RS is affected by the map change because of a
new incoming transportation task. The third robot, which transports pucks to the
stock, can simply ignore the change of the map or the overall system does not
update the local map of this robot.

The configuration of the system can easily be extended to other runtime mod-
els. However, if the system has to deal with very frequent changes, which causes,
for example, a map update, the robots have to read the configuration file and
possibly change their behaviour too often. Consequently, this solution is only ap-
plicable to rather static environments such as assembly lines with fixed mounted

[battery <= 30]

entry/loadCurrentMap(...)
do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do /searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

configuration changed

Fig. 19. State machine of a configurable robotic system
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robot arms or runtime data that does not change often over time (e.g., the soft-
goals throughput and low energy consumption).

Context-Awareness and/or Pervasive Systems. According to our defini-
tion of context-awareness provided in Section 3.3.3, a context-aware system that
is not self-aware does not monitor the system itself but only the environment.
Therefore, it usually requires that the system characteristics of interest do not
change and thus the required adaptation according to the observed changes in
the environment can be simply enforced without taking any changes of the sys-
tem itself into account.

Example 4 (Context-Aware Robot Scenario with Runtime Models). A context-
aware version of the Example 3 has additional sensing capabilities for monitoring
the environment. As a result, it continuously corrects the internal environment
model according to the measurements and needs no external trigger for updating
the map. Additionally to the error correction of the map, the robot corrects its
position over time to reduce the error introduced by the wheel actuators.

At deployment time, the robot system gets the same static map instance situ-
ation as in Example 3 (cf. Fig. 18). But now, it searches for pucks and resched-
ule the transportation tasks by itself. The context-aware state machine is shown
in Fig. 20. The new sensing, updateMap, searchPuck() and correctPosition-
InMap() functions are the context-aware parts of the robot and influence the
behaviour, e.g., by updating the internal map and a better path planning with
less uncertainty over time due to the better environment sensing capabilities.

Requirement-Aware Systems. These kind of systems conceive requirements
as first class entities in the runtime models (c.f. Section 3.3.3). They take care of
changes of their own requirements as well as track them over time. According to
current constraints or varying needs, the systems adapt the behaviour to fulfill
current requirements.

Example 5 (Requirement-Aware Robot Scenario with Runtime Models). In the
previous Examples 3 and 4, we have the implicit assumption that the behaviour
of the robot system always conforms to the given goals. In a requirement-aware
adaptive system, these goals can be considered explicitly. In this example, the
runtime model is a valid goal configuration that influences the behaviour of the

[battery <= 30]

do / up(), …, take(),
sensing(), updateMap(),
searchPuck(),
correctPositionInMap()

active

do / chargeBattery()

charging

do /searchForChargingPoint(),
moveToChargingPoint()

critical success

[battery = 100]

fail

Fig. 20. State machine of a context-aware robotic system
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name = Perform tasks
priority = 5

G1:Goal

name = High throughput
priority = 2

G1.3:Goal
name = Low energy consumption
priority = 1

G1.4:Goal

AND

...

name = Perform tasks
priority = 5

G1:Goal

name = High throughput
priority = 2

G1.3:Goal
name = Low energy consumption
priority = 4

G1.4:Goal

AND

...

Configuration 1: Configuration 2:

Fig. 21. Two goal configurations for the requirement-aware robotic system

robot. A snapshot of the partial goal configurations is depicted in Fig. 21. The
difference between the left and right configuration in the picture is the prior-
ity of saving energy during task execution. The robot behaves according to the
state machine in Fig. 22. Each time the robot enters the active state, it checks
the current configuration data and calculates the normal drive speed accordingly
( calculateSpeed(config)). We assume that the parameters in the configuration
are valid and triggered from outside. In the critical and charging states, no
adaptation is possible in this example.

For the two configurations in Fig. 21, the speed of the robot might be much
higher for configuration 1 than for the second one, because of the different prior-
ities of the goals. Saving energy has a higher priority in the second goal configu-
ration, which implies (among other changes) a reduction of the movement speed
to an optimal power saving level.

Self-adaptive Systems. Self-adaptive systems as introduced in Sec. 3.3.3 use
the feedback loop to identify and compensate several changes in the system or
environment. In essence, it provides the capability to live with the uncertainty
related to the changes in the system or environment. They adjust to specific
current needs of the different situations that can be identified at runtime.

Example 6 (Self-Adaptive Robot Scenario with Runtime Models).
A self-adaptive version of our robotic scenario extends the monitor activity

from the context-aware system in Example 4. The analysis and planning steps
are also extended. More precisely, the system runtime models are now an environ-
ment model (the first version is initially loaded), a goal model with constraints,

[battery <= 20]

entry/calculateSpeed(config)
do / up(), …, take(), sensing(),
updateMap(), searchPuck(),
correctPositionInMap()

active
do / chargeBattery()

charging

do /searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

configuration changed

Fig. 22. State machine of a requirement-aware robotic system
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Analyze Plan

Monitor Execute

M@RT
requirements context system

[battery <= 10]

entry / this.speed = 100%
do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery >= 80]

fail

[battery <= 30]

entry / this.speed = 50%
do / up(), down(), left(), right(),
take()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
moveToChargingPoint()

critical
success

[battery = 100]

fail

a) b)

causal connection

Fig. 23. Self-Adaptive robotic system scenario. The MAPE-K loop has a casual con-
nection to the runtime model in form of a state machine. This state machine is adapted
over time from variant a) to b).

and an initial behaviour model in form of a finite state machine. The runtime
models are not static in this scenario, which is different from Examples 3 and 4.

Due to the sensing capabilities, the robot system can update its position in the
map during runtime observations. Furthermore, it is aware of its requirements
and goals. During the analysis and planning step, the self-adaptive system gener-
ates a state machine according to the current instance situation and constraints
as depicted in Fig. 23.

Let us assume, the analysis step is aware of the possible configuration space of
the behaviour parameter in the robot. The first goal parameters can look like the
right instance situation in Fig. 21. The subgoal High throughput has a higher
priority than the subgoal Low energy consumption. Therefore the planning step
can generate a new behaviour model or adapt the existing one as depicted on the
lower left in Fig 23 (state machine (a)). Here, the driving speed is set to a maxi-
mum and the robot moves are risky because of the reduced battery safety margins
(only if battery is lower than 10 percent, the critical behaviour state is entered).
Additionally, loading takes a lot of time (especially the last 20 percent) so that
this timing behaviour is optimized in a second step. The overall behaviour of the
robot must still guarantee that other constraints, e.g., exhausting the battery, are
fulfilled during the execution.

The robot can perform its task according to this specialized state machine until
the goals change. Goals can be changed by the user or the system itself. For ex-
ample, the system can adapt its strategy according to the monitored environment
information.
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Let us assume, the goals change to the situation as depicted in the second con-
figuration of Fig. 21. Now, the energy saving subgoal has a much higher priority.
This is sensed and updated in the runtime model by the monitor step. The an-
alyze activity decides that a behaviour adaptation is necessary and the planning
step tries to fulfill the new constraints. In this case, the MAPE-K loop will gen-
erate/ adapt the existing state machine as depicted on the right in Fig. 23 (state
machine (b)). The new behaviour model (state machine) uses a fix drive speed
of 50 percent, which is much more energy efficient than before. Additionally, the
safety margin of the battery is much higher (30 percent) and the battery is loaded
to the maximum.

Therefore, our adaptive robot system is able to change its behaviour model
according to the runtime requirements, context as well as system models. The
analysis step must decide whether the adaptation to a new behaviour model is
necessary and convenient. Indeed, the planning step must find an acceptable so-
lution in the configuration space and the execute step changes or generates a
new behaviour model that is directly used by the robot and therefore forces an
adaptation of the system behaviour.

Self-adaptive Systems with Multiple Layers. As advocated in [50] more
sophisticated self-management capabilities do not result from a single adaptation
feedback loop but from the combination of two loops in two layers. Similarly to
adaptive control schemes and robot control architectures, multiple layers - where
multiple adaptation loops operate on top of a regular feedback loop - have to
be employed. It is outlined in [50] that adaptation related to context-awareness
and self-awareness can be handled by a lower level change management layer if
the core system stays within certain bounds. For changes of the requirements a
higher level goal management layer that adjusts the change management layer
is proposed.

Example 7 (2 Layered Self-Adaptive Robot Scenario with Runtime Models). An
extended version of our self-adaptive Example 6 includes also adaptation be-
haviour that happens at the 2nd layer. There, we will determine error handling
capabilities if necessary. Furthermore, we assume the same adaptation loop as
before in Example 6 with the same change in the requirements.

Fig. 24 shows the influence of each loop to the outcome of the system be-
haviour (state machine) on two layers. On top, the error handling loop monitors
upcoming failures of the system (e.g., the robot does not find a charging station
and therefore fails during operation) and the adaptation rate of the underlying
MAPE loop. In our example, the analyze step decides to add more robust robot
behaviour to guarantee better task execution performance. The key idea for hi-
erarchical loops is that the upper loop only changes the runtime models of the
loop below. In our case, the planning activity of the error handling loop manip-
ulates the knowledge base of our introduced MAPE loop in Example 6 by adding
additional robot operations (functions) and better analyzing as well as planning
capabilities for that loop.
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Therefore, if the loop at the bottom is executed, it will detect those new capa-
bilities and can come up with a more sophisticated state machine, which includes
now the error handling extensions (or a subset according to the current needs).
The bold parts in the state machine depicted in Fig. 24 (state machine (a)) as
well as the new error state are the outcome of the indirect influence of the er-
ror handling MAPE loop. In another case, the robot can correct its position at
runtime in the active state and/or has more possibilities finding the charging sta-
tion using the advancedLaserScan() operation. Additionally, the robot can now
inform other robots about failures and tries to recover its own state in case of
failure.

Another scenario is that the error handling loop detects the decreasing capacity
of the battery over time. An additional repairBattery() function (state machine
(b)) can solve this problem and can be removed afterwards in the next adaptation
cycle if the full capacity is restored.

At this point, it is important to mention that the different adaptation loops
can influence or work against each other. For example, if the upper loop wants to
compensate losses by recharging the battery but the lower loop must consider the
High throughput subgoal (cf. the first configuration in Fig. 18) it may decide to
exclude the repairBattery() function as shown in the left state machine in Fig. 24
to reach this goal (because repairing the battery will take a lot of additional time).
This is one example that the influences of several adaptation loops can be rather
complex and has to be designed with care.

Again, the required subset of all these changes is handled by the upper loop,
which can influence the lower loop in each cycle by manipulating the correspond-
ing runtime models accordingly. As an overall effect, the lower loop will generate
an adapted state machine that integrates all these changes but still ensures the
system goals.

5 Runtime Models for Handling Uncertainty

In this section, we focus on the state-of-the-art in the use of models to mitigate
uncertainty. As discussed in earlier sections of this chapter, epistemic, random-
ized, and linguistic forms of uncertainty can affect the design and operation of a
software system. Both epistemic and linguistic forms of uncertainty prevail dur-
ing the requirements analysis and design, while randomized forms of uncertainty
- for the most part - directly affect a software system during runtime.

Development-time uncertainty can compound the different forms of uncer-
tainty explained above and can prevent a software system from delivering its
functionality. Therefore, these consequent effects need to be treated during the
system execution. During execution, uncertainty may appear in the form of en-
vironmental conditions that might have not been foreseen during development-
time, because they may be unpredictable by nature. Other sources of uncertainty
may be due to unreliable monitoring infrastructure.

We focus on the state-of-the-art of approaches that tackle uncertainty, due
to the causes explained above, and which are or can be supported by runtime
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[battery <= 10]

entry / this.speed = 100%
do / up(), down(), left(), right(),
take(), correctPosition()

active
do / chargeBattery()

charging

do / searchForChargingPoint(),
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success

[battery >= 80]

fail
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Fig. 24. Self-Adaptive robotic system scenario with multiple MAPE-K loops. The
causal connection of the error handling loop influences the knowledge base of the
MAPE-K loop below and therefore the outcome of the adapted state machines a)
and b) indirectly.
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models. The approaches described in the rest of this section are relevant in the
context of the use of runtime models, although they focus on system’s abstrac-
tions that characterize different stages and different qualities of the system life
time.

5.1 Forms of Uncertainty

Next we provide a literature review of approaches that use runtime techniques
to tackle epistemic, linguistic uncertainty as well as randomized uncertainty.

5.1.1 Epistemic Uncertainty

In [43] authors propose a technique to explicitly document the existence of un-
certainty about how architectural decisions contribute towards satisfying non-
functional properties (in the form of softgoals). The technique allows developers
to deal with uncertainty during both development time and runtime [51]. A
Claim can also be monitored at runtime to prove or disprove its validity [51].
Claims are particularly useful for ensuring that developers can revisit sources
of uncertainty further along the development life cycle, including runtime, when
new information may become available [52] tackling directly epistemic uncer-
tainty.

In [53], probabilistic automatas are used to represent uncertainty for dynam-
ically discovered and/or learned behavioural models and, as far as functional
property validation is concerned, the uncertainty can be potentially tamed by
using appropriate architectural models. Hidden Markov Models (HMM) [54] are
typically used to model systems that have markovian characteristics in their be-
haviour, but they also have some states (and transitions) for which only limited
knowledge is available. An example of an approach based on HMM that aims
at evaluating the reliability of a software component with partial knowledge of
its internal behaviour has been provided in [55]. Feature-based abstract models
have been used to represent system’s variability and configurations like in [56]
to allow efficient symbolic model checking of product-line systems. Variability in
the code is provided in context-oriented programming approach [57] as well as in
the Chamaleon framework that supports a java extension to allow programming
variability explicitly in the code [58]. Such variability is then solved by means
of a resource-based analysis at deployment time when information about the
execution context becomes available.

5.1.2 Linguistic Uncertainty

Fuzzy sets theory, which represents elements as partial members of a set, has
been used in linguistics to deal with vagueness and ambiguity of the statements.
In terms of self-adaptive systems, several techniques have been developed to deal
with linguistic uncertainty.

An example of the use of Fuzzy theory RELAX [4], a specification language
to express requirements that can be affected by uncertainty due to unanticipated
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system and environmental conditions. RELAX has been applied [59] to identify
sources of uncertainty in the environment and monitor those conditions that
pose uncertainty. Using RELAX and KAOS, Ramirez et al. [6] have tackled the
fact that design assumptions can also be subject to uncertainty with potential
negative consequences on the behaviour of the adaptive system. FLAGS [35] is
an approach that distinguishes between crisp and fuzzy goals where goals are
specified using linguistics constructors. FLAGS also defines the concept of an
adaptive goal to express countermeasures that can be executed when goals are
not satisfied.

Torres et al. [46] use Fuzzy sets to underpin an approach that encourages
architects to specify the set of requirements of a system as an abstract spec-
ification model by using linguistic variables instead of numerical variables, as
the latter are more prone to give allow the obsolescence of requirements. By
doing so, the authors mitigate the obsolescence of the specification model of the
system. The approach allows analysts to create specifications at design-time,
while preserving the flexibility afforded by dynamic changes in the “meaning” of
non-functional requirements as specific values, thus allowing to effectively assess
runtime requirements compliance in non-stationary environments.

5.1.3 Randonmized Uncertainty

Randomized uncertainty is caused both by system and environmental conditions
that are either inherently random or cannot be predicted reliably. Therefore, run-
time techniques that help provide reliable reasoning and prediction have been de-
veloped. This kind of uncertainty has been traditionally expressed in approaches
that consider system non functional properties, like performance and reliability.
The uncertainty can therefore be accounted for by the use of stochastic models
as non functional models. In [60] several techniques have been proposed to take
into account non-functional attributes of software under uncertainty. In [61],
parametric queuing network models of the performance of different system’s
configurations are managed at runtime in order to support dynamic reconfigura-
tions of the system in response to unpredictable context variations. Probabilistic
automatas [53] discussed earlier also consider dealing with uncertainty about
non-functional properties as reliability on the behaviour of components to meet
a goal and its costs during runtime.

Feature-based systems representation has been used to support predictive and
non predictive system evolution [62], where the feature model can be dynamically
evolved to support consistent configuration building. Bayesian models (such as
Bayesian Networks [63]) provide a way to express in the non functional setting
approaches a la assume-guarantee, typically adopted in the functional world and
that we will briefly recall in the following. Bayesian probabilities enable stochas-
tic models to be ’conditioned’ to specific events that, in turn, have their own
probability distributions. Other sophisticated stochastic models can be used to
take into account uncertainty in non-functional validation processes. Discrete-
Time Markov Chains (DTMCs) and Continuous-Time Markov Chains (CTMCs)
have been used both at development and runtime, in [64] to reason about the
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reliability and performance of adaptable service-based application. In particu-
lar, the authors have started to study probability-based approaches to tackle the
impact of the changes in the environment on the compositions of services and
therefore the quality properties or QoS of the the service-based applications [64].
Their focus is on verification and dependability and in particular, on reliability
and performance properties. In [7], the authors also focus on non-functional
properties that can be specified quantitatively in a probabilistic way and target
the challenge of making adaptation decisions under uncertainty. Given a deci-
sion that requires a certain configuration, the satisficement of a non-functional
property can be modeled using probability distributions. However, differently
from [64] they use Dynamic Decision Networks and focus on any non-functional
property. Both [7] and [64] use Bayesian machine learning techniques to obtain
information and support decision-making for self-adaptation during runtime.

5.2 Kinds of Runtime Models

The techniques described in this section recognize the need to produce, manage
and maintain software models all along the softwares life time to support the
realization and validation of systems adaptations while the system is already
executing. In this section we describe more in depth the different techniques
illustrated in the previous section and crucially focus on the runtime models
they may involve. Furthermore, examples of the application of some of these
techniques have already been introduced in Section 4.3. Additional information
about model operations and a categorization of runtime models are further de-
scribed in [21].

Furthermore, the purpose of this section is to show how to deal with uncer-
tainty by focusing on system’s abstractions (i.e. models) that characterize differ-
ent stages and different relevant qualities of the system’s life time. We consider
two dimensions: the abstractions’ dimension - and its corresponding software
artifacts - that are used to explicitly represent uncertainty and system proper-
ties, and the properties’ dimension. In particular, a system’s abstractions have
been considered that concern the following: systems models (e.g. architectural
and behavioural system models, and coarse grain and fine grain system models),
context models, and requirements models. On the properties’ dimension, both
the functional and non functional properties have been considered. The models
described here represent uncertainty explicitly. More precisely, all these models
are “loose” representations of the final system, i.e. the system that is actually
running. All the approaches reviewed propose techniques to asses either func-
tional or non functional properties on the system’s artifact of reference. These
models “contain” uncertainty but nevertheless are informative enough to allow
assessment of some kinds of properties on the final system. The assessment allows
the resolution of uncertainty at runtime.

5.2.1 Systems Models

In [65], runtime models of a system are used to reduce the number of con-
figuration and reconfigurations that should be considered when planning the



Living with Uncertainty in the Age of Runtime Models 89

adaptations. In [66] variability models are reused during runtime to support
self-reconfiguration of systems when triggered by changes monitored in the en-
vironment. In [67] architectural models (i.e. configuration graphs) are studied as
a means for monitoring, visualizing and recording information about the system
adaptations.

In [68] the authors tackle a key issue to support runtime software architec-
tures. First, in their approach it is important to maintain a causal connection
between the architecture and the running system to therefore ensure that (i) the
architecture model represents the current system, and (ii) the modifications on
the architecture model cause the corresponding system changes.

In [69] the authors present a model-driven approach to maintain and update
several architectural runtime models using model-driven engineering techniques.
The causal connection to the running system is realized by triple graph gram-
mar transformation rules. The approach is implemented and evaluated for the
Enterprise Java Beans component standard.

So far, researchers have focused on the use of runtime models for the repre-
sentation of the architecture of the system with no much advance in the area of
the use of runtime models to control and generate system behaviour. In [70] the
authors focus on the novel use of runtime models to support the dynamic synthe-
sis of software, and specifically the synthesis of mediators to translate actions of
one system to the actions of another system developed with no prior knowledge
of the former in order to achieve interoperability. Using discovery and learning
methods, the required knowledge of the context and environment. is captured
and refined. The knowledge is explicitly formulated and made available to com-
putational manipulation in the form of a runtime model. This runtime model
is based on labelled transition systems (LTSs) which offer the behavioural se-
mantics needed to model the interaction protocols to enable the interoperability
between the systems. A similar solution to enable components interoperability
is presented in [71] . Specifically, the authors present a model-driven approach
that integrates an automated technique for runtime identification of message
mismatches and the generation of behavioural mediators and their deployment
supported by runtime models. However, further research efforts are needed in
the area.

5.2.2 Context Models

Beside modeling the system, in order to carry out V&V activities it is also nec-
essary to use a model of the context or the environment. In [72] a probabilistic
model of the context evolution is provided in order to allow the dynamic adap-
tation of a system’s configuration by achieving an optimal trade-off between
user benefits and reconfiguration cost. Other approaches provide either explicit
or implicit representation of the context and of its possible evolutions [73] via
context assumptions. Notably in this class we can recall the whole approach to
validation that goes under the name of assume-guarantee techniques. Although
the original motivation for this approach was to provide compositional means to
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validate large systems, this approach can also be characterized as what can be
proved in terms of the inner knowledge of a component (the known) and what
needs to be provided by the environment in which the component is executed
(the unknown). Many approaches exist in the literature that range from the au-
tomatic synthesis of assumptions [74] for traditional behavioural models to the
extension to probabilistic models [75].

Many other research efforts are devoted to support consistent adaptation of
specific type of systems, notably in the service research arena [76]. These at-
tempts, with reference to the MAPE cycle invest the planning activities, and
provide solutions that can allow the evolution of the system in response to dy-
namic unplanned events. Other work handling uncertainty with the system itself
is based on monitoring the values of properties over time and using statistical
modeling techniques to predict likely future values [77]. For example, estimating
the execution time reliably and precisely provides assurances about the suit-
ability of the dynamically-adaptable software within its current operating en-
vironment, and may result in a requirement to trigger re-adaptation. Using a
dynamically generated predictive model, forecasts are made about the values
of any properties that may be analyzed from a series of values monitored over
time. Such predictions can be used in the decision-making process of the MAPE
feedback loops of self-adaptive systems described earlier.

5.2.3 Requirements Models

As previously discussed, design-time uncertainty can arise due to an imperfect re-
quirements specification where requirements are missing or ambiguous [2,78,79].
Such uncertainty can often lead to a misalignment between the system’s design
and its original intent. Several techniques have been proposed for dealing with
uncertainty at the requirements level, usually focusing either on documenting
the existence of uncertainty or facilitating the analysis of how that uncertainty
can affect the behaviour of the software system. In [52], the authors argue that
requirements for self-adaptive systems need to be runtime entities (i.e. runtime
models) that can be reasoned over at runtime.

Welsh et al. [43] have proposed REAssuRE that allows developers to deal with
uncertainty during both development-time and runtime. Specifically, the authors
used a Claim as a marker of uncertainty that explicitly documents the existence
of uncertainty about how a system’s goal operationalizations contribute towards
the satisficement of soft goals. Techniques such as Claims are particularly useful
for allowing developers to revisit sources of uncertainty further along the devel-
opment life cycle when new information becomes available [52]. In that context,
a Claim can also be monitored at runtime to prove or disprove its validity [51],
thereby triggering an adaptation to reconfigure the system if necessary. Further-
more, in [51], the authors have demonstrated how goal-based runtime models
can be held in memory in a form that allows the running system itself to eval-
uate goal satisfaction during execution and to propagate the effects of falsified
Claims.
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Fuzzy set theory, has been applied to represent and evaluate the satisfaction
of functional [80] and non-functional requirements [81]. Ramirez et al. [6], rec-
ognize how Claims are also subject to uncertainty, in the form of unanticipated
environmental conditions and unreliable monitoring information, that can ad-
versely affect the behaviour of the adaptive system if it mistakenly falsifies a
Claim. Therefore, the authors of [6] integrate Claims and RELAX, explained
earlier, in order to assess the validity of Claims at runtime while tolerating mi-
nor and unanticipated environmental conditions that can trigger unnecessary
adaptations and overhead.

Sutcliffe et al. [82] with their PC-RE method allow requirements to change
over time in the face of contextual uncertainty. Epifani et al. [83] proposed to
use a feedback control loop between models of non-functional properties and
their implementations. During runtime, the system makes available information
as feedback that is used to update the model to increase its correspondence
with reality (hopefully decreasing uncertainty). Analysis of the updated model
at runtime makes it possible to detect if a desired property (e.g. reliability or per-
formance) is violated, causing automatic reconfigurations or self-healing actions
to therefore meet the desired goals.

6 Research Challenges and Concluding Remarks

In this paper we have studied definitions and different types of uncertainty in
the context of model-driven engineering putting emphasis on the use of mod-
els@run.time. We have revisited the concept of runtime models and have stud-
ied their impact and potential benefits in the management of uncertainty dur-
ing execution. We have used a simple but illustrative example to discuss how
development-time techniques together with runtime models can be used to cope
with uncertainty. Also, we have discussed how runtime models can be used to
extend the architecture of the MAPE-K loop to better manage uncertainty mak-
ing use of abstractions (in the form of runtime models) to treat uncertainty as
a first class entity during the system life cycle.

Based on the above, we summarize what we consider the most important
research challenges, which are mainly explained in the context of the MAPE-K
loop. We also argue the need for formal models and tools to support runtime
models. Finally, we present some concluding remarks.

6.1 Runtime Models and the Feedback Adaptation Loop

The following are research challenges that have been identified and presented in
the context of the MAPE-K loop.

6.1.1 Monitor

Sensing and monitoring can be imprecise and can provide just partial infor-
mation. Runtime models should be able to make explicit this incompleteness
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of information during monitoring through the use of the right abstractions; to
therefore make it amenable to subsequent phases and specially the Analysis
phase. Finding the right runtime abstractions to use to make available and mea-
surable the uncertainty related to imprecision and partial information during
monitoring is challenge that deserves research efforts.

Furthermore, better ways to explore how the system and the environment
can interact are needed. We think runtime models can extend their application
to represent not only concerns related to the running system but also the sur-
rounding environment. Specifically, testing techniques need to be developed to
explore how the software system interacts with its execution environment. These
tests should measure whether the software system is capable of satisfying its re-
quirements while facing uncertain conditions. Runtime models can be used to
represent uncertainty through a shared boundary between the software system
and its execution environment while more information is captured by the system
while it is running.

6.1.2 Analyze

Currently, a “marker of uncertainty” [43] provides an estimate of a “known-
unknown” [84] that identifies and describes parts of a model that are partially
known. While markers of uncertainty narrow the scope of uncertainty and make
it more manageable at run time, they should be specified in a proper way. Ideally,
a marker of uncertainty should identify parts of a model that are partially known
and, if possible, describe how they can vary. Regardless of whether a marker
of uncertainty is explicit or implicit, techniques applicable at design-time and
also runtime are required to facilitate the analysis of how different sources of
uncertainty, and their severity, can affect the behaviour of a software system.

Moreover, little attention has been directed to techniques for the synthesis
or generation of software using runtime models during execution. In order to
design software systems that are able to tackle uncertainty, inferring the knowl-
edge necessary to reason about system behaviour looks like an essential task.
Such knowledge can be used to build runtime models during execution. An ex-
ample is the work presented by the authors of [70] who present early results on
how to conceive runtime models during execution, based on information about
the running system and inferred using machine learning techniques during the
execution of the system.

As new information is acquired, models should be refined. We argue the need
of further research on how to include machine learning techniques to be able to
incorporate new information while the system is running. Of course, the new
acquired knowledge could solve uncertainty but also could incorporate more. In
either case, what are the techniques to guarantee that some given properties
of the system are preserved to maintain the desired system behaviour remains
an open challenge. For example, while the model is fed with new information,
the related notion of what is “relevant” to the runtime model may change.The
ability of analysis based on the runtime model should be retained in any case.
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6.1.3 Plan

In the planning step one has to deal with uncertainty and incompleteness of
events in the decision-making process. To evaluate the decision-making process,
uncertainty but also dynamicity should be taken into account. We believe that
due to uncertainty, probabilistic reasoning and decision planning techniques are
required in decision making. Few researchers have already worked using those
techniques to tackle uncertainty. For example, Markov Decision Process (MDP)
and Bayesian networks have been applied for diagnosis and self-recovery in
[85,86]. The authors of [87] use a stochastic Petri net for decision-making in
fault-tolerance. In [88] a stochastic Petri net is used as a model to compute
the optimal monitoring frequency for crashing failures of a service-oriented sys-
tem. Bayesian Dynamic Decision Networks have been used to enhance decision-
making in self-adaptive systems [7].

The research initiatives named above are novel and represent research progress.
However, the runtime models they would require to be applied at runtime would
demand considerable amounts of resources (e.g. memory, and CPU) to be done
during runtime. Therefore, the application of those techniques still remain a big
challenge.

6.1.4 Execute

The use of runtime models imply a causal connection with the running system.
Temporal delays in the MAPE-K loop can create an inconsistent view of the
runtime model with respect to the running systems. The latter remains a big
research challenge.

6.2 The Need for New Forms of Abstractions and Tools

Suitable mathematical abstractions should be applied to formally describe and
analyze uncertainty. We believe probability theory, fuzzy set theory, and machine
learning techniques should be further investigated for this purpose. Probability
theory can be used to describe situations where previous historical data is avail-
able and can provide insights about the current design of a software system.
For instance, developers can analyze execution data gathered from a previous
version of a system to identify which goals and requirements are less likely to be
satisfied at runtime. Similarly, fuzzy set theory can be applied to describe types
of uncertainty where it is not possible to categorically prove or disprove the va-
lidity of a statement. In this manner, fuzzy set theory can be applied to initially
produce a more flexible system design that can be progressively tightened as
more information about the system and its environment becomes known during
the design phase. Fuzzy probability theory extends probability theory with the
possibility of expressing uncertainty in the parameters of the probability density
function. Lastly, further work is required to develop machine learning techniques
to be able to manipulate values of probabilities or parameters of utility func-
tions that change over time and therefore, to be able to quantify the impact of
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these values on the evaluation of alternative choices during the decision making
process.

6.3 Concluding Remarks

Uncertainty about the running environments of software systems poses issues
that software engineers need to face. Therefore, it is becoming increasingly im-
portant to come up with new methods and techniques to develop software sys-
tems able to deal with uncertainty at runtime. In this chapter we have discussed
how runtime models are relevant in a reconceptualization of the development of
software systems, which we assert is required to deal with uncertainty at runtime.

To establish a common ground for further discussions, we first introduced
fundamental terms such as models, runtime models and uncertainty by using
an exemplary goal, context and behavioural model for one robot of the factory
automation example introduced earlier in the chapter. We also identified which
kinds of runtime models are employed and outlined the most common types
of systems using such runtime models. Furthermore, we discussed the role that
runtime models can play for the different types of systems described.

Nowadays, we can observe the trend to delay decisions to handle uncertainty
at runtime instead of doing it during development-time. To better understand
the benefits and drawbacks of handling uncertainty at runtime by using run-
time models, first we discussed classical approaches to handle uncertainty using
development-time models and followed on considering how more advanced solu-
tions to handle uncertainty at runtime can be used and how they can benefit
from runtime models.

Specifically, we have discussed how the concepts of the MAPE-K loop can
rely on runtime model techniques updating the knowledge data of the loop to
tackle uncertainty during both development and runtime. We have argued how
the above allows the management of uncertainty as a first class entity during
the system life cycle. The envisioned framework includes a perpetual phase in
which the runtime models can evolve, thereby allow the software system to cope
with uncertainty by learning new information about itself and its execution en-
vironment based on monitored information that can only be collected during
execution. We believe that in order to be able to support the extension of the
MAPE-K loop proposed in this paper, several key challenges and enabling tech-
nologies need to be addressed. Crucially, synthesis of software during execution
using runtime models has been identified as key challenge. Furthermore, such
a capability requires inference of new knowledge during runtime. Therefore, we
believe that machine learning techniques should be further studied to enable the
incorporation of new information during the execution of the system while guar-
anteeing that the behaviour of the system is kept in the required behavioural
envelop. Finally, to make this vision feasible new suitable and more efficient
mathematical formalisms are also needed.
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7 Università degli Studi dell’Aquila, Italy
patrizio.pelliccione@univaq.it,

Chalmers University of Technology and University of Gothenburg, Sweden
patrizio.pelliccione@gu.se

8 CIT - FBK - Povo Trento, Italy
perini@fbk.eu

9 National University of Sciences and Technology (NUST), Pakistan
nauman.qureshi@seecs.edu.pk

10 RWTH Aachen, Germany
rumpe@se-rwth.de

11 Fraunhofer IESE - Kaiserslautern, Germany
daniel.schneider@iese.fraunhofer.de

12 TU Berlin, Germany
Frank.Trollmann@dai-labor.de

13 Icesi University, Colombia
nvillega@icesi.edu

Abstract. A self-adaptive software system modifies its behavior at runtime in
response to changes within the system or in its execution environment. The ful-
fillment of the system requirements needs to be guaranteed even in the presence
of adverse conditions and adaptations. Thus, a key challenge for self-adaptive
software systems is assurance. Traditionally, confidence in the correctness of a
system is gained through a variety of activities and processes performed at de-
velopment time, such as design analysis and testing. In the presence of self-
adaptation, however, some of the assurance tasks may need to be performed at
runtime. This need calls for the development of techniques that enable contin-
uous assurance throughout the software life cycle. Fundamental to the develop-
ment of runtime assurance techniques is research into the use of models at runtime
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(M@RT). This chapter explores the state of the art for using M@RT to address the
assurance of self-adaptive software systems. It defines what information can be
captured by M@RT, specifically for the purpose of assurance, and puts this defi-
nition into the context of existing work. We then outline key research challenges
for assurance at runtime and characterize assurance methods. The chapter con-
cludes with an exploration of selected application areas where M@RT could
provide significant benefits beyond existing assurance techniques for adaptive
systems.

1 Introduction

A self-adaptive system (SAS) modifies its behavior at runtime in response to changes in
the system itself or in its environment.1 An SAS generally comprises a component that
delivers the basic function or service, often referred to as the target or managed system,
and another component that controls or manages that target system through an adaptation
process, often referred to as the controller [MAB+02] or autonomic manager [KC03].
The target system can be viewed as a steady-state program [ZC06a, GCZ08]. It is not
adaptive and is applicable to a specific execution environment. The SAS controller can,
via the invocation of an adaptation process that implements adaptive logic [ZC06a],
transform this steady-state program to a different steady-state program—one that is suit-
able for a different set of environmental conditions [ZC06a]. As such, the steady-state
program that delivers the basic function or service of an SAS is the target of the adaptation
process that is managed by the controller. During the adaptation process, it is important
to provide assurance that the system does not become inconsistent (e.g., no data is lost
and transactions are not interrupted) [KM90, ZCYM05, ZC06b].

The IEEE Standard Glossary of Software Engineering Terminology defines assurance
as “a planned and systematic pattern of all actions necessary to provide adequate confi-
dence that an item or product conforms to established technical requirements” [IEE90].2

For non-adaptive systems, assurance is typically performed at design and development
time. In practice, assurance tasks comprise verification, validation, test, measurement,
conformance to standards, and certification. Collectively, these tasks all contribute to
gaining confidence that both the processes employed and the end product satisfy es-
tablished technical requirements, standards, and procedures. In the presence of runtime
adaptations in an SAS, the fulfillment of the system requirements need to be guaranteed at
runtime, even during the adaptation process [ZC05, ZC06b, VMT+11b]. Thus, software
assurance becomes a critical runtime concern, giving rise to the need for continuous as-
surance over the entire life cycle of a software system. Given the increasing use of SASs
in safety-critical applications (e.g., power-grid management, transportation management
systems, telecommunication systems, and health-monitoring), assurance for SASs is of
paramount importance. The development of rigorous methods and techniques that extend

1 This chapter uses the acronym SAS to refer to any software-based system that exposes self-*
features.

2 This chapter uses the term software assurance rather than the more specific term software
quality assurance to not only include software quality concerns but also safety, reliability, and
security concerns.
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assurance from development time to runtime is therefore a high priority on the research
agenda for the SAS research community.

Assurance is required for both functional properties (i.e., those describing specific
functions of the system such as the result of a computation) and non-functional prop-
erties (i.e., those describing the operational qualities of the system such as availability,
efficiency, performance, reliability, robustness, security, stability, and usability)
[VMT+11b]. Guaranteeing these properties at runtime in SASs is particularly challeng-
ing due to the varying assurance needs posed by a changing system or execution en-
vironment, both fraught with uncertainty [RJC12, EM13]. Nevertheless, the properties
specified in the system requirements need to hold before, during, and after adaptation
[ZC06a, ZC06b, ZGC09].

Continuous assurance throughout the entire software life cycle provides unprece-
dented opportunities for monitoring, analyzing, guaranteeing, and predicting system
properties throughout the operation of a software system. The fact that many variables
that are free at development time are bound at runtime enables us to tame the state space
explosion, thus enabling the exploration of states that could not have been considered at
development time. This reduction in state space provides new opportunities for runtime
verification and validation (V&V), leading to assurance of critical system properties at
runtime [TVM+12]. Fundamental to the development of runtime assurance techniques
is research into models that can be used at runtime.

This chapter presents models at runtime (M@RT) as a foundation for the assurance
of SASs and discusses related research challenges. Section 2 reviews assurance criteria,
both functional and non-functional, whose fulfillment depends on or can be affected by
self-adaptation and therefore requires assurance at runtime. Section 3 classifies different
types of models used for M@RT and discusses the application of M@RT to support a
spectrum of assurance issues. Section 4 identifies research challenges in the area of
M@RT for SAS assurance tasks. Section 5 characterizes existing methods used for
assurance of SASs. Section 6 describes selected application areas that exhibit the type of
assurance challenges that we consider amenable to the use of M@RT. Finally, Section 7
concludes the chapter.

2 Assurance Criteria for Self-Adaptive Software Systems

Assurance criteria for SASs include functional and non-functional requirements whose
fulfillment depends on or can be affected by self-adaptation. It is important to distin-
guish between assurance criteria applicable to the target system (i.e., criteria that relate
to properties of the current or a potential future state of that system), and assurance
criteria applicable to the adaptation process itself. Sections 2.1 and 2.2 respectively
discuss functional and non-functional requirements as fundamental assurance criteria
for SASs.

2.1 Functional Requirements

A functional requirement specifies a function that a system or system component must
be able to perform [IEE90]. Functional requirements are typically formulated as pre-
scriptive statements to be satisfied by the system. While it is still a common practice
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to describe functional requirements using natural language, the potential for misinter-
pretation of such descriptions is considerable due to the inherent ambiguity of natural
languages [Ber08, CNdRW06]. Formal languages with well-defined semantics provide
a more rigorous and reliable means for specifying functional requirements in the context
of system design. The following discussion is limited to formal descriptions.

Functional requirements decribe the behavioral objectives of the functions f of a sys-
tem. They are typically defined in terms of relating the inputs I to the system with the
outputs O of the system, with the expectation that f : I → O. A function f may be some
type of computation, data manipulation, or other specific functions that the system should
execute. Accordingly, the input I may be data from a user, values from a sensor, such as
a temperature value or a sequence of images. Similarly, the output O may be pictures,
continuous video, a braking signal for a car, or the opening of a valve. It is important ot
note that functional requirements describe the system behavior that is visible at the system
boundaries (i.e., system interfaces) [ZJ97]. The boundaries can be at the human-computer
interface, sensors, actuators, or even at the boundaries between interacting systems. As
such, functional requirements describe “what” the system has to provide in terms of its
functional behavior to meet the expectations of its users, leaving “how” this functionality
will be achieved to the design and implementation of the system.

System adaptation may become necessary to handle changes in the requirements or
in the environment that are visible at its boundaries and influence its behavior externally.
These adaptations may lead to internal changes that manifest as changed behavior ob-
servable at the system boundary. While the former is a reaction to the system context
and leads to retaining the functional behavior in the presence of external change, the
latter is a reaction to changing user needs or system configuration needs and leads to
behavioral adaptations to accommodate the new requirements.

Because an SAS tends to respond to changes in the environment, functional require-
ments should take into account the context of the system as well as explicit assump-
tions about its behavior. Adaptation provides a means to alter the way a system satisfies
its functional requirements, including the use of machine learning techniques [KM07],
agent-based techniques [SAS14], bio-inspired techniques [BSG+09, MV14], and se-
lecting specific target configuration from a collection of different target configurations
[GCH+04, ZC06a], each of which satisfies the functional requirements, but may be bet-
ter suited for a specific context and/or set of environmental conditions. The functional
requirements may be formalized in an “assume/guarantee” style [JT96]—assuming a set
of conditions or restrictions holds, then the application of the function guarantees that
the results satisfy a set of required properties. The definition of pre- and postconditions
is an example of this style of functional requirements specification.

Common formalisms used to express functional requirements are Linear-Time Tem-
poral Logic (LTL) [Pnu81] and Computational Tree Logic (CTL) [BAMP81], both of
which are included in the logic CTL* [CE82]. Several languages have been proposed to
facilitate the specification of functional properties; examples range from basic assertion
languages such as PSL [Acc04], used in electronic system design, to scenario-based
visual languages, such as Message Sequence Charts [HT04] or Property Sequence
Charts [AIP07]. These languages are often less expressive than pure temporal logic,
but are designed to be intuitive and user friendly.
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Beyond property-based specification, various algebraic specification and system
modeling techniques have been developed, including Statecharts [Har87]; set-theoretic
approaches, such as VDM [BJ78] and Z [ASM80]; process or operational-oriented, in-
cluding SDL [Uni99], the B Method [Abr88], Event-B[ABH+10]; object-oriented lan-
guages, such as UML and its numerous variants3; architectural description languages
[Cle96]; and Matlab/Simulink4 to name a few representative examples. Traditionally,
these techniques are used during system design and development to achieve increased
confidence in the functional correctness of the system. Several of the above listed tech-
niques support automatic code generation from the system model as well as formal
verification at varying levels of abstraction.

Several complementary approaches have been used to specify functional require-
ments of an SAS, where uncertainty of the execution environment is implicitly or ex-
plicitly acknowledged by allowing more flexibility in how requirements can be satisfied.
The SAS determines at runtime how to realize the specified functionality when placed in
its target environment. This flexibility can be achieved by describing functional require-
ments in terms of policies that encode high-level specifications of functional objectives
together with a set of operational constraints. This implicit approach to acknowledg-
ing uncertainty in the execution environment can utilize utility functions and a rule-
based approach in the context of a goal-oriented functional requirements specification.
Another approach is to explicitly acknowledge specific system functionality affected
by uncertainty and thus allow specific points of flexibility in satisfying the require-
ments, such as that provided by the RELAX [WSB+09, CSBW09, RFJB12, FDC14a]
and FLAGS [BPS10, PS11] approaches. Section 5.1 provides further details on these
approaches.

2.2 Non-functional Requirements

If we consider functional requirements of a software system to be a function f that di-
rectly maps input I to output O ( f : I → O), then non-functional requirements refer to
properties about f , I, O or relationships between I and O [CPL09]. Non-functional re-
quirements such as performance, dependability, safety, security, and their corresponding
quality attributes such as latency, throughput, capacity, confidentiality, and integrity can
include assurance concerns from the perspective of both the target system and the adap-
tation mechanism. Avižienis et al. [ALRL04] and Barbacci et al. [BKLW95] provide
two comprehensive taxonomies of software quality attributes useful for the identifica-
tion of assurance criteria in SASs.

It is necessary to validate and continually monitor non-functional requirements on
both the target system and the adaptation process using techniques such as probabilis-
tic monitoring [GZ09, Gru11], requirements monitoring [FF95], [FFvLP98], or utility
function monitoring [GCH+04, RC11]. At runtime, the desired properties of the target
system may no longer hold due to changes in the target system’s context of use (e.g.,
user, platform, or environment context [SCF+06]), or side effects introduced by adapta-
tions. In the latter case, it is possible to derive the impact of adaptations on properties of

3 www.uml.org
4 http://www.mathworks.com

www.uml.org
http://www.mathworks.com
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the target system by analyzing adaptation properties such as stability, accuracy, settling
time, small overshoot, and robustness. Specifically, it may be possible to take advantage
of this relation to detect consequences of adaptations performed by controllers [KC03]
or consequences of a changing environment (e.g., a failing component or a deficient
Internet connection).

Several non-functional assurance criteria may be more easily guaranteed at runtime
than at design time. For example, it is easier to assess latency when it is possible to
measure and continually monitor delay times in the running system. Table 1 presents
examples of non-functional assurance criteria with corresponding quality attributes (cf.
Columns 1 and 2). Adaptation properties (cf. Column 3), defined as assurance criteria
that concern the adaptation process [VMT+11b], can be mapped to quality attributes
measurable at runtime for both the target system and the adaptation mechanism. Where
to measure a given property, either in the adaptation process or in the target system, will
depend on its definition and its assessment metric. For example, settling time defined as
the time required for the adaptation process to take the target system to a desirable state,
must be measured on the target system since the need for the adaptation and the condi-
tions for a desired state can only be observed at this level. Moreover, settling time can be
measured through different quality attributes, depending on the specific non-functional
property that must be satisfied. For example, if the concern is performance, settling time
can be observed in terms of the time the system takes to perform a particular process.
When the accepted time limit for this process is exceeded, the adaptation process will
be invoked. Once the process execution time is back within desired limits, the target
system will have reached its desired state. As such, settling time is the time elapsed
between the moment at which the need for adaptation was detected and the moment
at which the system reaches the desired new state. Villegas et al. [VMT+11b] provide
a comprehensive catalogue of adaptation properties and the corresponding quality at-
tributes needed to identify the assurance criteria applicable to the adaptation process.
This study also surveys definitions for the assurance criteria presented in Table 1.

Table 1. Examples of non-functional assurance criteria that are better guaranteed at run-
time than at design time (including their mapping to quality attributes and adaptation proper-
ties) [VMT+11b]

Assurance Criteria Quality Attribute Adaptation Properties

Latency Performance Stability, accuracy, settling time, overshoot, scalability
Throughput Performance Stability, accuracy, settling time, overshoot, scalability
Capacity Performance Stability, accuracy, settling time, overshoot, scalability
Safety Dependability Stability
Availability Dependability Robustness, settling time
Reliability Dependability Robustness
Confidentiality Security Security

Assuring these criteria at runtime requires effective monitoring mechanisms and
M@RT to analyze, guarantee, and predict the qualities of the target system and the
adaptation process dynamically. Implementing these mechanisms effectively requires
a thorough analysis of the interdependencies between non-functional assurance crite-
ria, quality attributes, and adaptation properties as presented in Table 1. This mapping
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constitutes a valuable starting point to identify assurance criteria and adaptation prop-
erties. On the one hand, this mapping supports the identification of assurance crite-
ria according to the target system’s desired quality attributes. (For example, latency,
throughput and capacity are relevant assurance criteria when performance is the nego-
tiated quality attribute.) On the other hand, it is useful to identify adaptation properties,
relevant to quality attributes, that are applicable to the adaptation mechanism. (For ex-
ample, when performance is a key quality attribute for the target system, then stability,
accuracy, settling time, small overshoot, and scalability constitute relevant properties to
be guaranteed in the adaptation process.) Of course these mappings also depend on the
actual target system, its technical implementation, and the performed adaptations.

3 Models at Runtime

SASs require rethinking the notion of the software life cycle for which the distinction
between development time and execution time stages is no longer starkly
apparent (e.g., PLASTIC,5, SMScom6). Recent approaches recognize the need to pro-
duce, manage, and maintain software models all along the software’s life time to as-
sist the realization and validation of system adaptations while the system executes
[Inv07, BBF09, BG10, ACR+11, BDM+11, VTM+12, MV14] [CVM14].

Continuing with this line of reasoning, our objective is to explore models of different
aspects of the application (e.g., requirements, specification, design, architecture, im-
plementation, infrastructure, instrumentation, and context-of-use) and life cycle phases
(e.g., design time, development time, configuration time, load time, and runtime) to
deal with the inherent dynamics of self-adaptation in software systems. These abstrac-
tions, combined with suitable instrumentation, could provide effective techniques for
monitoring, analyzing, guaranteeing, and predicting system properties throughout the
operation of an SAS.

The kind of models used at runtime can be classified by (1) their purpose—predictive,
prescriptive, constructive, or descriptive; (2) their underlying modeling languages—for
example, the 14 UML 2.2 structural and behavioral diagrams, State-charts, Petri Nets,
and logic based models (e.g., Temporal Logics); and (3) the aspects they describe—data
structure, task or process state, I/O behavior, or interaction pattern.

One of the main principles of using M@RT for assurance is to exploit the causal
connection [Mae87] between the model and the system under development at runtime.
This connection determines synchronization between the model and the running sys-
tem. For example, M@RT can be updated to reflect changes in the running system
—we say that they are in descriptive causal connection. This type of modeling enables
assurance techniques to analyze abstract models instead of the actual implementation of
the application when collecting information for assurance. In contrast, the model can be
changed to cause an adaptation of the application (i.e., prescriptive causal connection).
This use of modeling can be used to implement adaptations of the running system that
are required to assure system properties.

5 FP6 IST EU PLASTIC project http://www.ist-plastic.org
6 Carlo Ghezzi, Self-Managing Situated Computing Grant, ERC Advanced Investigator Grant

N. 227977, European Union, 2008–2013

http://www.ist-plastic.org
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In the scope of assurance, M@RT can be used as a basis for assuring functional as
well as non-functional properties of the system (cf. Section 2). From this perspective,
models can play various roles. Depending on what the models describe, they can be
used as a source of information about aspects of the running system. For instance, goal
models can represent the requirements that need to be assured, the current state of the
system, adaptations, or the context of use. M@RT can have several purposes for run-
time assurance. Among others, they can be used as information sources for monitoring
aspects of a running system, to influence the system via model manipulation, and as a
basis for analysis methods, such as model-based verification and model-based simula-
tion. For analysis methods, models are usually beneficial as they provide easy to use
high-level knowledge about the system.

Development-time modeling approaches already exploit these advantages and enable
the assertion of certain properties of a developed system. The use of M@RT has the
advantage that some of the analysis constraints are relaxed as the current runtime state is
available for reasoning, reaction, and regulation. At development time, full assurance is
required to reason about all possible states. Several of these variables that are unknown
at development time are bound at runtime and can allow for a more focused analysis
of the current state and possibly several neighboring ones. This variable instantiation
is especially useful for factors that can only be estimated at development time (e.g.,
network delay). A running system can continually monitor these aspects and react to
them. The remainder of this section describes the dynamics of adaptive systems and the
use of models during the adaptation process.

3.1 M@RT and the Dynamics of Self-Adaptive Software

The Software Engineering for Adaptive and Self-Managing Systems (SEAMS) com-
munity has identified three key subsystems needed for the design of effective context-
driven self-adaptation: the control objectives manager, the adaptation controller, and
the context monitoring system [VTM+12]. These subsystems represent three levels of
dynamics in self-adaptation, each of which can be controlled through a corresponding
feedback loop. Villegas et al. [VTM+12] provide a comprehensive characterization of
these three levels of dynamics in SASs.

In general, assurance criteria drive the control objectives, adaptation, and monitoring
feedback loops, as well as their interactions. As such, assurance governs the behavior
of both the target system and the adaptation process. For example, system administra-
tors can provide the control objectives manager with the required specifications. More
specifically, the control objectives manager then sends the adaptation goals to the adap-
tation controller and monitoring requirements to the monitoring system. Thus, these
specifications govern the behavior of the adaptation process and the behavior of the
SAS throughout the adaptation process.

We argue that M@RT provide abstractions that are essential to support the feedback
loops that control the three levels of dynamics identified in SASs. From this perspec-
tive, M@RT (cf. Figure 1) could be developed specifically for each level of dynamics to
support the control objectives manager, adaptation controller, and the monitoring sys-
tem. The figure also shows the interactions between these models and the respective
subsystems in an SAS.
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Fig. 1. The three levels of M@RT for the assurance of SASs

– At the Control Objectives level, M@RT represent requirements specifications sub-
ject to assurance in the form of functional and non-functional requirements.

– At the Adaptation level, M@RT represent states of the managed system, adaptation
plans and their relationships with the assurance specifications.

– At the Monitoring level, M@RT represent context entities, monitoring require-
ments, as well as monitoring strategies and their relationships with assurance crite-
ria and adaptation models.

Most importantly, M@RT at these levels must have efficient and effective meth-
ods of inter-level interaction since changes in requirement specifications may trigger
changes at both the adaptation and the monitoring levels, as well as in the associated
runtime models. Similarly, changes in adaptation models may imply changes in mon-
itoring strategies or context entity models. In any case, M@RT at the adaptation and
monitoring levels must maintain an explicit mapping to the models defined at the con-
trol objectives level that specify the requirements.

In summary, the architecture of SASs contains three interacting but functionally self-
contained levels, each dedicated respectively to control objectives, adaptation, and mon-
itoring of the SAS. Designing an SAS for assurance, as opposed to leaving assurance
until after system design, requires the tight integration of assurance objectives into each
level in the SAS architecture. We argue that this integration can most effectively be
achieved by introducing dedicated M@RT that embody specific assurance criteria, fo-
cused either for the target system or the adaptation process.

3.2 Models at Runtime during the Adaptation Process

As a starting point for a research methodology we analyzed the MAPE-K loop in further
detail. Kephart and Chess proposed this autonomic manager as a foundational compo-
nent of IBM’s autonomic computing initiative [KC03]. It constitutes a reference model
for designing and implementing adaptation mechanisms in SASs. The MAPE-K loop
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is an abstraction of a feedback loop where the dynamic behavior of a managed sys-
tem is controlled using an autonomic manager. The MAPE-K comprises four phases—
Monitor (M), Analyzer (A), Planner (P) and Executor (E)—that operate over a knowl-
edge base (K). Each of these phases is briefly described next.

1. Monitors gather and pre-process relevant context information from entities in the
execution environment that can affect the desired properties and from the target
system;

2. Analyzers support decision making on the necessity of self-adaptation;
3. Planners generate suitable actions to affect the target system according to the sup-

ported adaptation mechanisms and the results of the Analyzer;
4. Executors implement actions with the goal of adapting the target system; and
5. A Knowledge Base enables data sharing, data persistence, decision making, and

communication among the components of the feedback loop, as well as arrange-
ments of multiple feedback loops (e.g., the Autonomic Computing Reference Ar-
chitecture (ACRA) [IBM06]).

In order to illustrate the role of M@RT as enablers of assurance mechanisms for self-
adaptation, Figure 2 presents an extension of the MAPE-K loop, where assurance tasks
complement each stage of the loop [TVM+12], and the knowledge base is replaced by
M@RT. We aptly name the feedback loop depicted in this figure MAPE-MART loop.

MART Target
System

Monitor

Environment

Planner Executor

Analyzer

Adaptation
Monitor

Assurance
Monitor

Adaptation
Analyzer

Assurance
Analyzer

Adaptation
Planner

Assurance
Planner

Adaptation
Executor

Assurance
Executor

MAPE elements-MART interactions
Information and control flow 

Fig. 2. MAPE-MART loop: The MAPE-K loop from autonomic computing extended with
M@RT, and assurance instrumentation as foundational elements for the assessment of SASs

MAPE elements interact with M@RT along the adaptation process to either obtain or
update information about system states, the environment, and assurance criteria. Mon-
itors keep track of relevant context information according to monitoring conditions in
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the system itself (assurance monitors) and its adaptations (adaptation monitors). For
example, monitors interact with M@RT in order to make monitored data available
throughout the adaptation process, or to monitor the states of models or changes in
assurance criteria. Analyzers will then use monitored context to identify whether de-
sired conditions are being or could potentially be violated. Analyzers can also update
models with identified symptoms. Again, we can distinguish between assurance an-
alyzers that analyze the system and adaptation analyzers that analyze the adaptation
process. Adaptation planners use the symptoms provided by analyzers to define a new
adaptation plan. Adaptation plans can be defined in the form of models that are process-
able by executors to adapt the target system. Then assurance planners check whether
the plan is correct with respect to the assurance criteria. Finally, adaptation executors
perform the plan, after which point, assurance executors check whether both the system
remains in a safe state and the desired properties are achieved. These verification tasks
can be optimized using M@RT.

4 Research Challenges for Assurance at Runtime

This section overviews selected research avenues and research challenges for the assur-
ance of SASs using M@RT.

4.1 Research Avenues

Software assurance is a large field with many subfields (e.g., software quality, V&V,
safety, trust, and several ’ilities’) that spans the realms of software engineering, systems
engineering, control engineering, and many other engineering disciplines. From a soft-
ware engineering perspective, assurance at runtime for SASs appears to be an emerg-
ing area of research [GCZ08, FDB+08, IPT09, TVM+12, FGT11, SBT11, FRC13a,
FDC14b]. In contrast, runtime assurance in control engineering traces its roots to the
industrial revolution, applied to devices such as the centrifugal governor. This device
used a flyball mechanism to sense the rotational speed of a steam turbine and to adjust
the flow of steam into the machine. By regulating the turbine’s speed, it provided the
safe, reliable, and consistent operation that enabled the proliferation of steam-powered
factories [MAB+02].

In an instrumented, interconnected, and intelligent world, control and runtime assur-
ance are core components in SASs, providing high performance, high confidence, and
reconfigurable operation in the presence of uncertainties. The continuous integration
of sensors, networks, cloud computing, and control presents significant opportunities
for engineering in general and software engineering in particular. A key goal is to pro-
vide certifiable trust in resulting systems, which is a truly formidable challenge for
researchers in the field of runtime software assurance.

Over the past 20 years, several research venues (i.e., journals, conferences, and work-
shops) have emerged in the broad software engineering research community to discuss
the design and evolution as well as assurance of SASs.

Mining the rich histories, theories and experiences of fields such as biology,
control engineering, and software engineering are worthwhile starting points for as-
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surance at runtime research. In particular, we need survey papers that investigate mod-
els used for design time and runtime assurance techniques in these fields including
research on the synergy between them. Moreover, it is useful to relate canonical prac-
tical applications to these findings. In a most stimulating 2002 control survey paper
Murray et al. [MAB+02] posit that feedback is a central tool for uncertainty manage-
ment in modern control. By measuring the operation of a system, comparing it to a
reference at runtime, and adjusting available control variables, the controller can assure
proper operation even in the presence of external disturbances or if its dynamic be-
havior is not fully known. In software, this reference can be realized with M@RT and
evidence for assurance is gathered by checking conformance to the reference model.
Murray et al. [MAB+02] argue that the challenge is to go from the traditional view
of control systems as a single process with a single controller, to recognizing con-
trol systems as a heterogeneous collection of physical and information systems, with
intricate interconnections and interactions [MAB+02]. One manifestation of this ap-
proach in software engineering is the three levels of runtime control models discussed in
Section 3 [TVM+13].

The self-adaptive and self-managing systems community has produced a spectrum
of runtime models [WMA10] [TVM+13] and patterns [RC10b, GH04] with control-
centric models [KC03, HDPT04, IBM06, BSG+09] at one end and architecture-centric
models [BCD97, OGT+, GCH+04, KM07] at the other end. These models come with
different attributes and properties that can be exploited for runtime assurance. There is
plenty of room for research to compare and evaluate the benefits and synergy of these
different runtime model strategies [MKS09, TVM+13].

4.2 Selected Research Challenges

This section outlines selected open research problems and challenges aligned with the
research avenues presented in the previous section. The focus is on the use of M@RT
as a basis for developing runtime assurance techniques.

Runtime Assurance Criteria and Adaptation Properties. In Section 2.2 we re-
lated selected non-functional assurance criteria (e.g., latency) to adaptation properties
(e.g., settling time) using quality attributes. One challenge is to extend this characteriza-
tion of criteria and properties for the target system, controller, and adaptation process.
While other approaches may be used to characterize and relate assurance criteria and
adaptation properties, the properties are only meaningful if they can actually be mea-
sured. Monitoring infrastructure to measure properties is critical for runtime assurance
methods. Over the past decade, the SAS community has published numerous papers
on various aspects of monitoring. Many of these papers concentrate on the monitor-
ing of raw measures in the managed system but only a limited number of approaches
make the information amenable for runtime assurance assessment purposes, including
functional requirements monitoring [FF95, FFvLP98, BWS+10, DDKM08, MPS08],
assumptions monitoring [WSB11, RCBS12], and adaptive monitoring capabilities for
changing environmental conditions [RC10a].
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M@RT as a Foundation for Run-Time Assurance. While M@RT for SAS are
increasingly being developed for complex SASs, including reference models
[WMA10, VTM+12], few of these models are explicitly designed for runtime assur-
ance. Thus, MART construction for runtime assurance is a key research challenge. The
models introduced in Section 3 present good starting points for integrating assurance
components into common SAS models. The central challenge for MART construction
is to model uncertainty (e.g., environmental disturbances or evolving requirements).
Understanding, managing, and leveraging uncertainty is important for delivering SASs
with assurance guarantees such as reliability. Ramirez and Cheng [RJC12] have de-
veloped a taxonomy of uncertainty commonly faced by SAS, which could be used to
facilitate uncertainty modeling and analysis efforts [EKM11, RCBS12]. Fields such
as performance engineering and queuing theory have developed advanced models for
many different applications. In particular, these fields have developed theories on how
to transduce raw measures from a target system into meaningful measures for selected
assurance criteria. However, performance constitutes just one dimension of the model-
ing and assurance problem. Many other quality criteria are applicable to SASs, such as
trust, where quantification is rather difficult yet certifiable trust is one of the most impor-
tant goals for an SAS [Dah10]. Moreover, models are needed to design trade-off anal-
yses schemes for combinations of quality criteria. Models and quality criteria related
to governance, compliance, and service-level agreements are of particular importance
for service-oriented SASs [BHTV06, TVM+13]. Since M@RT form the foundation of
many assurance tasks, the quality of these tasks directly depends on the quality of the
models. Defining properties (e.g., accuracy, performance, or safety) for the evaluation
of models at runtime is a significant research challenge [TVM+13].

To motivate researchers and practitioners to work on this subject we need compelling
reasons for using M@RT for assurance [TVM+13]. A key goal for the SAS assurance
research community is to develop exemplars that can be used to evaluate SAS runtime
assurance techniques [TVM+13]. Most SAS conferences and workshops regularly call
for exemplars but not usually explicitly targeted for SAS runtime assurance. An exam-
ple of compelling motivation for work in this area is a 20-year science and technology
research agenda and outlook for the US Air Force (USAF) [Dah10]. Approximately
one third of this agenda is devoted to self-adaptive and autonomous systems with ex-
plicit calls for certifiable V&V techniques. V&V is also one of the most promising
subfields of assurance where researchers can mine well-established design time models
and transition them to runtime. The IBM autonomic computing initiative generated the
highly acclaimed MAPE-K [KC03] and ACRA [IBM06] runtime models. The MAPE-
K model separates four phases of the feedback loop and thus effectively decomposes
the feedback loop assurance problem. The three-layer ACRA hierarchy facilitates inte-
grated assurance reasoning from individually-managed resources at the lowest layer, to
managing a collection of resources at the middle layer, to orchestrating an entire system
by trading off resource managers at the top layer.

Run-Time Assurance Methods and Techniques. For SASs, the boundary between
development time and runtime is rapidly disappearing [BG10]. As a result, we need to
re-examine the distribution and effectiveness of assurance tasks over the entire life cycle
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of an SAS. At the same time, we need to determine which models are most appropriate
as a foundation for assurance tasks for the different stages of the software life cycle. In
particular, we need to investigate whether models that are used for design-time assur-
ance can be effectively used at runtime. In particular, what properties can be guaranteed
at development, configuration, or load time as opposed to runtime. While not all assur-
ance tasks can be transitioned to runtime, there is significant opportunity to conduct as-
surance tasks at runtime thereby making the system more resilient, reliable, responsive,
secure, and cost-effective. Regardless of how dynamic a system really is, a substan-
tial part of its assurance will always be done at development time. What (lightweight)
design-time techniques can be readily transitioned to runtime? What development-time
assurance methods, models, and techniques (i.e., descriptive, prescriptive, constructive
and predictive) readily extend to runtime? How do traditional assurance models and
methods from domains such as performance, safety, and reliability extend to runtime?

As illustrated in Figure 2, MART play an important role as the abstraction mecha-
nisms required to support every stage of the SAS adaptation process. A key question
is what MART techniques are useful for supporting the relevance of runtime monitor-
ing with respect to the assurance criteria. Moreover, to deal with the dynamic nature of
functional and non-functional requirements, as well as the execution environment, ev-
ery component of the adaptation process can also be an adaptive component. Thus, how
can M@RT support changes in monitors, analyzers, planners and executors according
to changes in functional and non-functional requirements? In the realm of control sys-
tem engineering, changing the controller is referred to as adaptive control [AW94]. An-
other important avenue of research is how to characterize runtime assurance techniques
according to the different levels of dynamics in SASs (i.e., changes in requirements,
relevant context, adaptation mechanisms, and the target system itself).

Assurance obligations vary from one application domain to another. For example,
the area of safety-critical systems has developed specialized assurance criteria and
models—albeit mostly design-time techniques (e.g., ISO26262 for automotive subsys-
tems,7 and numerous safety standards set by the International Electrotechnical Com-
mission).8 The service-oriented architecture (SOA) community has developed SOA
governance models—a combination of design time and runtime models—for assurance
tasks for service-oriented systems on SOA platforms [SMB+09]. Thus, it is useful for
researchers to classify runtime assurance criteria, models, and techniques according to
their applicability to different domains and applications (e.g., application-independent,
domain-dependent, mission-critical systems, embedded systems, real-time systems,
etc.). Run-time assurance techniques can also be classified according to different types
of runtime changes (e.g., dynamic context, changing requirements, or evolving models).

With the increasing use of computing-based systems for delivering critical societal
services that demand long-running or even continuous operation (e.g., telecommuni-
cation, power grids, financial systems, etc.), even in the face of adversity, adaptation
and runtime evolution [MV14] is a necessity, not a luxury. Even with meaningful reac-
tions to changes, the triggered SAS adaptation should preserve selected core properties,
thus posing a need for incremental and compositional assurance for SASs. An enabling

7 http://www.iso.org/
8 http://www.iec.ch/

http://www.iso.org/
http://www.iec.ch/
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step, in this direction, is to split functional and non-functional requirements into sub-
requirements associated with single services and components of the system. The idea
is to decompose the requirement specification into properties associated with the be-
havior of small parts of the system. Thus, it becomes possible to check these properties
locally and to deduce from local checks whether the system satisfies the overall spec-
ification. By decomposing the assurance task in such a way, it may not be necessary
to build a complete model of the system and thus the combinatorial state explosion
problem is mitigated. The main challenge of this approach is that local properties are
typically not preserved at the global level because of dependencies among the aggre-
gate subparts of the system. Another approach to decomposing the assurance problem
is to separate the verification of the functional properties from the verification of adap-
tation properties. Zhang et al. [ZGC09] developed AMOEBA, a modular verification
approach for SASs where the functional properties are specified in terms of LTL and
the adaptation properties are specified in terms of A-LTL [ZC06b]. With this sepa-
ration of concerns, AMOEBA uses an assume/guarantee approach [JT96] to perform
incremental model checking of both types of properties. AMOEBA-RT is an extension
that monitors the adaptation properties at runtime based on state-based models of the
adaptive logic [GCZ08].

As another example of assurance for the adaptation process, suppose settling time
(i.e., the time required for the adaptation mechanism to take the target system to the
desired state) has been defined as a performance-oriented assurance concern for a par-
ticular adaptive system. As such, the assurance mechanisms must keep track of the
time the adaptation mechanism is taking to complete the adaptation process—generally
goals must be reached within a suitable time interval. An extremely long adaptation pro-
cess could render the system to be useless or even detrimental to the system’s overall
safety. The desired thresholds, monitoring conditions, and entities to be monitored can
be specified using M@RT, such as goal-based models [WSB+09] or contextual RDF
graphs [VMT11a, VMM+11].

5 Characterizing Assurance Methods

Researchers from communities related to the engineering of SASs have contributed a
spectrum of approaches to the assessment of adaptive software. Rather than producing
a comprehensive and systematic literature review of the state of the art, the goal of this
section is to provide an overview of how M@RT have been used as runtime assurance
enablers in selected domains. This characterization of assurance approaches provides
a starting point upon which researchers can build to address the research challenges
posed by model-based runtime assurance of SASs.

5.1 Classifying Assurance Methods According to Techniques

This section presents and classifies selected existing approaches for runtime assurance
of SASs according to the techniques and methods used for their realization.
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Goal-Oriented Approaches. A first step towards assuring software systems is the
articulation of assurance criteria. This task can be complex for functional require-
ments because it requires a deep understanding of the application domain. Nguyen et
al. [NPT+09] argue that goal-oriented techniques are effective for deriving assurance
criteria from functional requirements specifications. At development time (or require-
ments negotiation time), goal models can be used to specify stakeholder expectations
for SASs, and the decision criteria for acceptable system behavior can be derived from
these models. Moreover, goals, and especially high-level goals, have been recognized
as more stable (i.e., less volatile) than specific system requirements [vLDL98]. Thus,
high-level goals provide suitable candidate assurance criteria in highly dynamic sys-
tems. Qureshi et al. [QJP11, QLP11, QP10] rely on this assumption in their work on
continuous requirements engineering. They represent functional behavior in terms of
high-level goals (i.e., functional goals) that are decomposed into sub-goals. Alternative
decompositions are qualified by quality criteria, user preferences, and context that con-
tribute positively or negatively to their ranking. To ensure the expected behavior, the
system must select the most appropriate goal decomposition path.

The effectiveness of the assurance of SASs at runtime is highly dependent on the
changing conditions of the execution environment that can affect not only the target
system, but also the adaptation mechanism and monitoring infrastructure. Ramirez and
Cheng proposed an approach to manage changes in monitoring conditions according
to environmental situations at runtime [RC11]. They specify requirements goal models
using the RELAX language [WSB+09]. Recently, AutoRELAX has been developed to
automatically add RELAX operators to goal models to handle uncertainty in the en-
vironment while minimizing the number of reconfiguration adaptations [FDC14a]. In
a similar approach, Pasquale et al. [BPS10, PS11] developed FLAGS, a KAOS goal
modeling framework that introduces the concept of a fuzzy goal whose satisfaction
can be evaluated through fuzzy logic functions. Both goal-modeling approaches use
fuzzy logic-based functions to add flexibility to the satisfaction criteria of goals in a
goal-oriented model. In contrast to RELAX, however, FLAGS does not focus on iden-
tifying sources of uncertainty, but focuses rather on evaluating the degree to which a
goal is satisfied. Goal-based models can be transitioned from design time to runtime
to track changes in SAS requirements at runtime. Morandini et al. have investigated
the life-cycle of goals at runtime [MPP09]. Souza et al. [SSLRM11] have developed
a system, Zanshin, a requirements monitoring framework based on multiple feedback
loops to monitor awareness requirements and progress towards adaptation objectives at
runtime [ASaP13].

Automatic Test Case Generation- Based Methods. The complexity of system struc-
ture and behavior is growing exponentially, coupled with the comparable volume of
possible scenarios and combinations of environmental conditions to be handled by an
SAS. As such, successful strategies for automatic test case generation used for non-SAS
application areas are being leveraged and explored for SAS testing. For example, given
that multi-agent based software systems expose high levels of runtime dynamism, ap-
plicable testing techniques for these types of systems can be leveraged to assess SASs
using M@RT [NPB+09]. An important challenge in the validation of SASs at runtime
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using direct-testing techniques is the generation of test cases that are relevant to the
system’s current execution context and goals. As a means to evaluate system perfor-
mance, Nguyen et al. [NPT+09] use evolutionary testing techniques to automatically
generate test cases based on quality functions. Quality functions are associated with
stakeholder expectations of the behavior of an autonomous system which are expressed
as goal-oriented requirements. (e.g., the quality function associated with the goal of a
cleaning agent to maintain its battery can be a minimum battery level to be satisfied).
This approach allows the automatic generation of test cases with increasing difficulty
levels, guided by a fitness function associated to the quality of interest (e.g., a func-
tion inversely proportional to the total power consumption of the system throughout
its lifetime). A complementary approach is taken by Fredericks et al. [FRC13b] where
an SAS is exposed to a wide range of adverse environmental conditions that are used
to generate SAS execution traces as the system adapts and reconfigures to handle the
adverse conditions. These traces can then be analyzed for unexpected and/or unwanted
behavior, both in the functional and in the adaptive logic. EvoSuite [FA11] is a frame-
work that implements an evolutionary algorithm to generate test suites that consider a
single coverage criterion, for instance the introduction of artificial defects into a pro-
gram. Finally, a MAPE-T loop [FRC13a] has been proposed to provide a framework
for monitoring the applicability and utility of test cases for an SAS as it undergoes en-
vironmental changes and reconfiguration. A set of research challenges were posed as
part of the proposed framework, including explicit reference to the importance and use
of M@RT. Veritas [FDC14b] is a recent realization of the MAPE-T loop that adapts
test cases to ensure testing relevancy as an SAS reconfigures to handle changing envi-
ronmental conditions.

Model Checking. Model checking [CGP01, PPS09] was proposed in the 1980s inde-
pendently by Clarke and Emerson [CE82], and Quielle and Sifakis [QS82]. It assumes
an available mathematical model of a system and a property to check against the model
expressed in a formal logic, such as Linear Temporal Logic (LTL) [Pnu81] or Compu-
tational Tree Logic (CTL) [BAMP81]. The goal of model checking is to use an algo-
rithmic approach to check the consistency between the given model and the property
specification. Model checking has been used extensively to verify hardware [BLPV95]
and software systems [CGP02] in many application domains to assure desired prop-
erties. Model checking at runtime is a key strategy to verify SASs based on runtime
models. Weyns et al. surveyed formal methods in self-adaptive systems [WIdlIA12].
They showed that there are no standard tools for formal modeling and verification of
self-adaptive systems. According to their survey, however, 40% of the surveyed stud-
ies use tools for formal modeling or verification, and 30% of those studies use model
checking tools.

A number of model checking techniques have been used to analyze various proper-
ties of SASs. Baresi et al. used model checking to check whether an architecture is a re-
finement of another one [BHTV06]. Specifically, they defined refinement relationships
between abstract and concrete styles. The defined refinement criteria guarantee both
semantic correctness and platform consistency. In another approach, Abeywickrama
and Zambonelli proposed to model check goal-oriented requirements for SASs [AZ12].
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Cámara and de Lemos used probabilistic model checking to verify resilience properties
of SASs, with the goal of verifying whether the self-adaptive system is able to main-
tain trustworthy service delivery in spite of changes in its environment [CdL12]. In
architecture-based domains, Pelliccione et al. applied model checking at the software
architecture level to verify properties of the system, its components, and the interac-
tions among components [PIM09, PTBP08]. Filieri et al. have developed a runtime
probabilistic model checking technique to detect harmful reconfigurations. To deal with
unplanned adaptations, Inverardi et al. proposed a theoretical assume-guarantee frame-
work to define under which conditions to perform adaptation by still preserving the
desired invariants [IPT09]. Zhang and Cheng developed AMOEBA [ZGC09], a modu-
lar model checker to separately verify SAS functional properties in terms of LTL and
the adaptive logic in terms of A-LTL (adapt-LTL). AMOEBA-RT [GCZ08] verifies run-
time properties of SAS properties. Model checking has also been applied in the domain
of agent-based systems, for instance to assure adaptability to unforeseen conditions, be-
havioral properties, and performance [Gor01]. Finally, Murata used Petri Nets to enable
the analysis of properties, such as the reachability of a certain state or deadlock-freeness
[Mur89]. Some of these analysis methods have been extended to enhanced versions of
Petri Nets, such as Colored Petri Nets [Jen03] and applied to check properties such as
performance [Wel02] or safety [CHC96].

Rule-Based Analysis and Verification. Several approaches based on formal methods,
especially graph-based formalisms, have been proposed to leverage rule-based analysis
and verification of software properties. In particular, Becker and Giese
proposed a graph-transformation based approach to model SASs at a high-level of
abstraction. Their approach considers different level of abstractions according to the
three-layer SAS reference architecture proposed by Kramer and Magee [KM07]. In
their approach, Becker and Giese check the correctness of the modeled SAS using sim-
ulation and invariant-checking techniques. Invariant checking is mainly used to verify
that a given set of graph transformations will never reach a forbidden state. This verifi-
cation process exposes a linear complexity on the number of rules and properties to be
checked [BBG+06]. In another approach, Giese et al. used triple graph grammars as a
formal semantics for specifying models, their relation, and transformations. These mod-
els can be used as a basis for analyzing the fulfillment of desired properties [GHL10].
In the self-healing domain, Bucchiarone et al. proposed an approach to model and ver-
ify self-repairing system architectures [BPVR09]. In their approach, dynamic software
architectures are formalized as typed hyper-graph grammars. This formalization en-
ables verification of correctness and completeness of self-repairing systems. This ap-
proach was extended later by Ehrig et al. [EER+10] to model self-healing systems
using algebraic graph transformations and graph grammars enriched with graph con-
straints. This extension enables formal modeling of consistency and operational prop-
erties. In the quality-driven component-based software engineering domain, Tamura et
al. [TCCD12, Tam12] formalized models for component-based structures and reconfig-
uration rules using typed and attributed graph transformation systems to preserve QoS
contracts. Based on this formalization, they provide a means for formal analysis and
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verification of self-adaptation properties, both at design time and runtime by integrat-
ing the Attributed Graph Grammar (AGG) system in their framework.

Synthesis. Another interesting avenue of research is to use synthesis techniques for as-
suring SASs. The goal of these techniques is to generate the “correct” assembly code for
the (pre-selected and pre-acquired) components that constitute the specified system, in
such a way that it is possible to guarantee that the system exhibits the specified interac-
tions only. Inverardi et al. [IST11] proposed a synthesis-based approach for networking.
This approach considers application-layer connectors by referring to two conceptually
distinct notions of connector: coordinator and mediator. The former is used when the
networked systems to be connected are already able to communicate but they need to
be specifically coordinated to reach their goal(s). The latter goes a step further by rep-
resenting a solution for both achieving correct coordination and enabling communica-
tion between highly heterogeneous networked systems. This work has been extended to
also handle non-functional properties [DMIS13]. La Manna et al. [PGGB13] proposed
an approach for reasoning about safeness of dynamic updates based on specification
changes.

Semantic Web. A key challenge for establishing runtime assurance of SASs is the
preservation of the relevance of runtime monitoring infrastructures with respect to as-
surance criteria and the system’s execution environment. Specifically, monitoring strate-
gies and infrastructures must adapt themselves dynamically. Models at runtime are also
required to support self-adaptation of context management infrastructures (i.e., the third
level of dynamics in SASs that was presented in Sect. 3.1). To manage context dynam-
ically, the explicit mapping between assurance concerns and relevant context must be
complemented with an explicit mapping between relevant context and infrastructure
elements of the monitoring infrastructure. In this way, whenever changes in assurance
criteria or relevant context occur, the dynamic adaptation of a representation of the
monitoring strategy will trigger the adaptation of context sensors, context providers,
and context monitors accordingly. Ramirez and Cheng [RCM10] used a goal-based ap-
proach to adapt the monitoring infrastructure to support the changing execution context
for an SAS. Resource description framework (RDF) graphs, from semantic web, are
good candidates to be used as effective M@RT in the assessment of SASs. Models at
runtime in the form of RDF graphs can be exploited to represent relevant context, moni-
toring strategies, system requirements including assurance criteria, as well as to support
changes in context management strategies at runtime. Ontologies and semantic-web
based rules, defined according to the application domain, provide the means required
to infer changes in the monitoring infrastructure according to changes in requirements,
assurance criteria or context [VMT11a, Vil13].

5.2 Classifying Assurance Methods According to Non-Functional Criteria

In this subsection, we classify surveyed runtime assurance approaches according to the
non-functional requirements they address as assurance criteria.



120 B.H.C. Cheng et al.

Safety. For systems that are self-adaptive or even self-organizing, the application of
traditional safety assurance approaches is currently infeasible. This obstacle is mostly
due to the fact that these approaches rely heavily on a complete understanding of the
system and its environment, which is difficult to attain for adaptive systems and as of
yet impossible for open systems. Open systems, in contrast to self-adaptive systems
that are generally closed systems, do not use measured outputs to determine control in-
puts required to adjust their behavior [HDPT04]. Therefore, open systems necessarily
require a complete and accurate model of the system and its environment from which
the control input must be derived. These models are generally impractical given that
they must be robust to changes in the system and its environment and use no feedback
mechanism to adjust themselves. A general solution is to shift parts of the safety assur-
ance measures into runtime when all required information about the current state of the
application can be obtained. Rushby [Rus07] developed a strategy where development-
time analysis techniques for certification are used at runtime, but the actual certification
is performed as needed just-in-time. Based on this work, he later coined the notion
of runtime certification [Rus08], using runtime verification techniques to partially per-
form certification at runtime. Following the same core idea of shifting portions of the
assurance measures into runtime, Schneider et al. [ST13] introduced the concept of
conditional safety certificates (ConSerts). ConSerts are predefined modular safety cer-
tificates that have a runtime representation to enable dynamic evaluations in the context
of open adaptive systems. Some initial ideas concerning the extension of ConSerts re-
garding other certifiable non-functional properties such as security have also been pub-
lished [SBT11]. Priesterjahn and Tichy [PT09] proposed a different approach based on
the application of hazard analysis techniques during runtime. This approach is closely
related to their previous work where they introduced a development-time hazard anal-
ysis approach for analyzing all configurations that a self-adaptive system can reach
during runtime [GT06]. A corresponding extension also considers the time between the
detection of a failure and its reconfiguration [PSWTH11].

Performance. Regression models and queuing network models (QNM) are M@RT
commonly used to reason about performance-based assurance properties relating to re-
sponse time, throughput, or utilization. For example, Hellerstein et al. [HDPT04] and
Lu et al. [LAL+03] described dynamic regression models in the context of autonomic
computing and self-optimization. Menascé and Bennani [MB03] used QNM as predic-
tive models for avoiding bottleneck saturation and for online capacity sizing. Ghanbari
et al. [GSLI11] used dynamically tuned layered queuing models, which are software
specific versions of QNMs, for online performance problem determination and mitiga-
tion in cloud computing. More recently, Barna et al. [BLG11] reported performance
load and stress testing methods on online tuned runtime performance models.

Reliability and Availability. Run-time assurance methods for reliability and avail-
ability properties use discrete time Markov chains that are synchronized with the system
and its usage profile. For example, service-based systems built using the QoSMOS (QoS
Management and Optimization of Service-based systems) framework [CGK+11] trans-
late high-level QoS requirements specified by their administrators into probabilistic



Using Models at Runtime to Address Assurance 121

temporal logic formulae that are then formally and automatically analyzed to
identify and enforce optimal system configurations. The QoSMOS self-adaptation mech-
anism can handle reliability and performance-related QoS requirements. QoSMOS
[FGT11, MG10] uses the KAMI approach [EGMT09] to keep the model, including its
parameters, and the system consistent; it uses probabilistic model checking at runtime
to evaluate whether the system satisfies the current reliability requirements.

Security. Security considerations revolve around self-protection goals of an SAS, in-
cluding confidentiality, integrity, authenticity, and authorization [BCdL11, KHW+01].
Run-time assurance of these goals is important in SASs since adaptation may produce
emergent behavior that violates one or more other critical system properties. In particu-
lar, security assurance must be achieved without compromising system goals unrelated
to security [RZN05, HMPB00]. For example, security considerations, such as confi-
dentiality may conflict with availability goals. While the former, confidentiality, aims
to protect the information in the system from unauthorized access, the latter, availabil-
ity, is intended to ensure access to the system and the information a user is authorized
to access. One way of counteracting an intrusion is by limiting access to the parts of the
system that are affected by an attack. This approach clearly can have negative impact
on availability. It is therefore important that, within an SAS, any remedial interventions
invoked to preserve security goals also preserve the system properties not related to
security. Achieving this balance requires decisions to be made at runtime based on ev-
idence regarding the satisfaction of security goals obtained from analyzing the system
and its environment, including user behavior.

Run-time security of an SAS involves not only protecting the target system, but it
also means that the adaptation process and the policies governing the adaptation are
protected from malicious attacks (e.g., preventing attackers from hijacking its adapta-
tion mechanisms and policies) [Ais03, BJY11, OMH+11]. Adaptation methods, data,
policies and certificates must be properly protected to ensure confidentiality, authen-
ticity, and trusted communication of the entire adaptation process and its drivers. The
components of every MAPE-MART loop depicted in Figure 2 must also be protected
accordingly.

While an SAS is expected to make its adaptation decisions autonomously, a key
question is how and how much to empower users with privacy and data security control
(e.g., when user context is involved in adaptation decisions). The Surprise [MTVM12]
approach (i) allows users to configure access permissions to their sensitive personal
information to third parties, selectively and with different levels of granularity; (ii)
supports changes in these configurations at runtime to add or remove third parties or
permissions, and (iii) realizes partial encryption to share non-sensitive data with third
parties who have not been explicitly authorized access, while protecting user identity.
The Surprise approach is an exemplar of the application of M@RT to the preservation
of privacy and security policies in user-driven SASs.

Security assurance, like other assurance goals at runtime, relies on the definition
of high-level policies that must be preserved during adaptation. To achieve this secu-
rity assurance, the Self-Adaptive Authorization Framework (SAAF) uses a feedback
loop that continuously monitors the decisions made by the system’s authorization pro-



122 B.H.C. Cheng et al.

cess [BCdL11] . The knowledge gained is used to adjust the authorization policy at
runtime, making it more restrictive to constrain user behavior or loosening it to endorse
users. Dynamic conflict resolution is particularly important in the context of security
assurance but many existing approaches, e.g. [HMPB00], resolve conflicts using prior-
ity levels assigned at design time. Instead, the ATNAC (Adaptive Trust Negotiation and
Access Control) framework [RZN05] allows access control policies to be dynamically
adjusted depending on a set of trust-associated attributes observed at runtime. Formal
methods have also been used successfully in this context. For example, the Willow
Architecture [KHW+01], a dynamic reconfiguration framework for critical distributed
systems, enables systems to continue working with reduced functionality while under a
security attack. The use of formal methods enables autonomous handling of conflicts at
runtime during reconfiguration.

Usability. In applications with adaptive user interfaces, it is often impossible to test
each adaptation state with real users. Therefore, automated usability evaluation of such
user interfaces often relies on models of the user or user interactions to evaluate states of
user interfaces automatically [IH01]. Quade et al. [QBL+11] introduced an approach
that evaluates the usability of the current state of a user interface using M@RT. The
evaluation is based on a simulation of user interactions based on the model of the user
interface and a model of the user. Having these techniques available at runtime enables
a more detailed modeling of the user as the model can be checked against data from the
actual user interaction.

6 Compelling Applications for Models at Runtime

This section introduces application exemplars for which M@RT play a major role in the
assurance of functional and non-functional assurance criteria. The goal of this section
is to provide a catalogue of “killer applications” useful to motivate case studies on the
assurance of SASs where M@RTare used as a foundation.

Kaleidoscope. Kaleidoscope 9is a multi-channel multimedia video streaming and
video on demand system. Imagine an Olympics game or a football match where mil-
lions of users are simultaneously streaming, watching and querying videos about the
event. The Kaleidoscope application aims to provide/share best quality video for its
users. As such, Kaleidoscope must act as a proxy server that is used to store and for-
ward multimedia content to user devices. A device can be a notebook, a smartphone,
or a personal digital assistant (PDA). Kaleidoscope must detect both the video source
and the user target device. Kaleidoscope must adapt at runtime from one configuration
variant to another in order to provide the best quality video to users concurrently and
reliably. The broadcast is fetched from a video source via TV cable (e.g., TV broadcast)
or either wired or wireless (e.g., Webcast) Internet connection.

Latency and capacity (i.e., bandwidth) are important assurance criteria in Kaleido-
scope since high-quality video streaming is a major functional requirement. To guar-
antee functional requirements under the desired quality conditions, Kaleidoscope must

9 http://www.savinetwork.ca

http://www.savinetwork.ca
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adapt itself by reconfiguring its network and software architecture to minimize latency
and maximize capacity. In this scenario, M@RT are useful for a variety of purposes.
For example, predictive models can be used to anticipate latency and required capacity
in the near future to perform preventive adaptations and thus avoid the violation of the
desired qualities. Another example is the use of runtime formal models such as those ex-
ploited in rule-based analysis and verification to guarantee the reliable re-configuration
of the system.

Autonomous Vehicle Service. Google driverless cars are now licensed in California,
Florida and Nevada.10 Google engineers and scientists achieved this amazing feat in a
short five years after DARPA formulated the Great and Urban Challenges on autonomic
cars.11

It is speculated that driverless cars could come from and go to parking lots, or deliver
packages. In a carpooling scenario, autonomous vehicles booked by users could serve
the user at a specific time and destination. Best routes will be planned intelligently based
on current context information such as traffic conditions and weather. Ordering, book-
ing, and payment will be performed via smartphone applications. Elderly people will
become mobile again, as they will be have greater access to services using an autonomic
vehicle.

Increasingly, cars are being equipped with intelligent driver assistance for anticipat-
ing potential hazards early and avoiding collisions. Intelligent, yet safe autonomous
driving software systems require effective methods to ensure their required qualities.
Even though the functions of these vehicles are perceived as “intelligent”, they typi-
cally rely on standard algorithms from sensor fusion, context management, and control
theory. In particular, these systems require special attention to context management in-
frastructures to guarantee the reliability of sensors and monitors. Autonomous vehicle
software use models at several levels, especially for understanding relevant context sit-
uations: models are required to represent entities that affect the behavior of the car,
to specify quality of sensors, and to model context uncertainty. Given the dynamic na-
ture of context information, these models must be available and manageable at runtime.
Another category of important models are those that specify typical vehicle behavior
used to understand unusual behavioral patterns.

Models for autonomous vehicle software are typically developed implicitly and coded
manually into the running system. In order to rigorously address the assured behavior
of these systems, these models need to be managed explicitly and rigorously throughout
the software life cycle, including at runtime.

Autonomous Agricultural Operations. Precision agriculture12 is an approach to re-
alize a comprehensive farming management concept. One of the main issues addressed

10 http://www.forbes.com/sites/ptc/2013/11/06/
why-google-and-others-see-a-future-with-driverless-cars/
print/

11 http://www.tartanracing.org/challenge.html
12 https://www.ispag.org

http://www.forbes.com/sites/ptc/2013/11/06/why-google-and-others-see-a-future-with-driverless-cars/print/
http://www.forbes.com/sites/ptc/2013/11/06/why-google-and-others-see-a-future-with-driverless-cars/print/
http://www.forbes.com/sites/ptc/2013/11/06/why-google-and-others-see-a-future-with-driverless-cars/print/
http://www.tartanracing.org/challenge.html
https://www.ispag.org
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by precision agriculture is the optimization of the productivity and efficiency when op-
erating on the field, by tailoring soil and crop management to match the conditions at
each location. This level of customization can be achieved through the use of differ-
ent information sources such as GPS, satellite imagery, and IT systems. More recently,
efforts have been underway to further improve productivity and efficiency by increas-
ing the amount of automation on the field to the point of autonomous operation. Ex-
amples are harvesting fleets comprising several harvesters but only one is operated by
a human, autonomous tractors that pick up the crop from the harvesters, and tractor
implement automation (TIA) where tractors are controlled by implements to execute
implement-specific tasks. These application scenarios have in common that different
vehicles or machines are combined on the field in order to fulfill (partially) autonomous
tasks. The assurance and certification of important properties, such as safety and secu-
rity are clearly critical in this context. Furthermore, traditional assurance techniques are
not applicable without significant modifications. A first step to this problem is to shift
parts of the assurance measures into runtime. This strategy can be achieved by means of
suitable M@RT and corresponding management facilities integrated into these systems.

Ambient Assisted Living. The number and capabilities of devices available at home
are growing steadily. Ambient Assisted Living (AAL) is intended to use these technolo-
gies to assist users with disabilities in their daily tasks, such as monitoring health con-
ditions and detecting emergency situations.13 Software applications in this domain are
not only critical, but also highly dynamic. On the one hand, human lives can be com-
promised. On the other hand, every home is different and can contain different devices
that could be leveraged by AAL services. New generations of devices are produced on
a regular basis requiring AAL services to evolve continuously to keep up to date with
new technical developments. Moreover, similar devices produced by different vendors
may differ considerably in their capabilities and interfaces. Nevertheless AAL systems
must be able to use these devices as soon as they become available at the user’s home
in an effective and safe manner.

In addition to variations in devices, users of AAL systems are subject to consider-
able variation. An AAL service must deal with an arbitrary number of people living
at the same home, their disabilities and capabilities, and their current environmental
conditions. Therefore, the system is required to adapt itself according to current users
and their environment. Moreover, these systems must be sufficiently flexible to support
future extensions, such as the integration of new sensors or actuators for new applica-
tions. Most importantly, these adaptations must be performed seamlessly and reliably
to guarantee user safety.

To deal with these complex dynamics, AAL software requires M@RT to reason about
users and their context in order to correctly and safely deliver services. Moreover, it is
important to maintain a causal connection between these models and both the target sys-
tems and adaptation mechanisms. Given the potential risks to human lives, assurance is
a major concern that must be guaranteed to prevent hazardous operation before, during,
and after adaptation [ZC06a, VMT+11b]. M@RT can be essential in the management

13 http://www.aal-europe.eu

http://www.aal-europe.eu
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of AAL software for capturing the environment, monitoring the user interaction, and
reasoning about possible adaptive behavior and their impact.

The Guardian Angels Project. In the context of AAL, the “Guardian Angels for
a Smarter Planet” project14 is a good example to illustrate the potential benefits from
using M@RT to address SAS assurance. The following details are based on information
from the Publications Office of the European Union15:

The overarching objective of the Guardian Angels Flagship Initiative is to provide in-
formation and communication technologies to assist people in all stages of life. Guardian
Angels are envisioned as personal assistants. They are intelligent (thinking), autonomous
systems (or even systems-of-systems) featuring sensing, computation, and communi-
cation, and delivering features and characteristics that go well beyond human capabil-
ities. It is intended that these systems will provide assistance from infancy through old
age. A key feature of these Guardian Angels will be their zero power requirements as
they will scavenge for energy. Example services include individual health support tools,
local monitoring of ambient conditions for dangers, and emotional applications. Scien-
tific challenges for supporting their research challenges include energy-efficient com-
puting and communication; low-power sensing, bio-inspired energy scavenging, and
zero-power human-machine interfaces.

These devices, by their very nature, will need to be adaptive in terms of functional
and non-functional properties. In addition, they will be used in critical situations that
require high levels of dependability and hence the highest levels of safety assurance.16

The development of M@RT can support runtime decision making and certification for
this important and innovative application area.

7 Conclusions

This chapter presented a research agenda for assurance at runtime with M@RT as a
foundation. It grew out of stimulating discussions among the participants of the 2011
Schloss Dagstuhl Seminar on Models@run.time. In particular, we report on the findings
of the breakout group Assurance@run.time as well as online discussions among the
authors over the past two years while writing this chapter.

In an instrumented, interconnected and intelligent world, self-adaptive software sys-
tems proliferate. A key goal is to provide assurance at runtime when such systems adapt
at runtime due to changes in their execution environment or their requirements. Tradi-
tionally software engineering, as opposed to control engineering, has concentrated on
design-time assurance. Thus, a key challenge for the software engineering community
is to develop runtime assurance techniques for self-adaptive systems that provide high
performance, high confidence, and reconfigurable operation in the presence of uncer-
tainties. One of the most promising avenues of research in this area is to use M@RT

14 http://www.ga-project.eu
15 Publications Office of the European Union: FET Flagship Pilots, Community Research

and Development Information Service (CORDIS), http://cordis.europa.eu/fp7/ict/programme/
fet/flagship/6pilots en.html, 2012.

16 http://www.ga-project.eu/science/software
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as a foundation for developing runtime assurance techniques. Of all the subfields of as-
surance, V&V has probably made the most progress in transitioning design time mod-
els and techniques to runtime. While not all design-time assurance tasks can be transi-
tioned to runtime, a significant opportunity exists to conduct assurance tasks at runtime,
thereby making the overall SAS more resilient, reliable, responsive, secure, and cost-
effective. One of the most formidable challenges for researchers in the field of runtime
software assurance is to investigate techniques that guarantee certifiable trust for highly-
adaptive systems.

This research agenda on runtime assurance techniques provides excellent starting
points for research communities dealing with SASs, including Models@runtime,
Run-time V&V, Requirements engineering@runtime, SEAMS, SASO (International
Conference on Self-Adaptive and Self-Organizing Systems), and ICAC (International
Conference on Autonomic Computing). Given the increasing use of SAS for
high-assurance application domains, such as intelligent vehicles, power grid manage-
ment, telecommunication infrastructure, financial systems, healthcare management
systems, etc., it is paramount that these communities and related communities work
together to address the assurance of SASs. M@RT is a key enabling technology to
accelerate progress in this area.
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Abstract. This chapter presents the design and initial simulation re-
sults for a prototype moving-target defense (MTD) system, whose goal
is to significantly increase the difficulty of attacks on enterprise net-
works. Most networks are static, which gives attacker’s a great advan-
tage. Services are run on well-known ports at fixed, easily identifiable
IP addresses. The goal of an MTD system is to eliminate the static na-
ture of networks by continuously adapting their configuration over time
in ways that seems random or chaotic to attackers, thus negating their
advantage. The novelty of our approach lies in the use of runtime models
that explicitly capture a network’s operational and security goals, the
functionality required to achieve those goals, and the configuration of
the system. The MTD system reasons over these models to determine
how to make changes to the system that are invisible to users but appear
chaotic to an attacker. Our system uses these runtime models to ana-
lyze both known and unknown vulnerabilities to ensure that adaptations
occur often enough and in the right ways to protect the system against
external attacks.

Keywords: Runtime models, moving target defense, adaptive systems,
network security.

1 Introduction

In cyber space, attackers have time to study our networks to determine potential
vulnerabilities and choose the time of attack to gain the maximum benefit. Ad-
ditionally, once an attacker acquires a privilege, that privilege can be maintained
for a long time without being detected [4]. The static nature of current networks
makes it easy to attack and breach a system and to maintain illegal access priv-
ileges for extended periods of time. To combat this advantage, a promising new
approach to network security has been suggested called the moving target de-
fense (MTD) [20]. While there are many facets of MTD, for computer networks,
one can broadly interpret MTD as the fact that the network constantly changes
its configuration to reduce/shift the attack surface area available for exploita-
tion by attackers. An MTD system will make attacking a system more difficult
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because the attacker will spend more time scanning the network for potential
vulnerabilities and will not be able to maintain illegally acquired privileges for
long. While promising, little research has been done to show that MTDs can
work effectively in realistic networked systems.

Current approaches to network defense rely on reacting to attacker’s efforts
to penetrate the system. Similarly, current adaptive systems react to a variety
of stimuli (e.g., system failure or new tasks) to trigger their adaptations. Thus,
to be effective, MTD research must push beyond the existing state-of-the-art in
both network security and adaptive systems in order to allow the system to adapt
proactively without negatively affecting system functionality. Our vision is that
an MTD system should be able to reason about its current configuration and
make changes that are invisible to a valid user but appear chaotic to an attacker.
In order to reason about its current configuration, runtime models that reflect
the current configuration are needed that capture the modifiable aspects of the
system and their relationship to the overall goals of the system. The modifiable
aspects of the system are parts of the configuration that may be changed such
as IP addresses, ports, firewall settings, host assignments, protocols, routing,
virtual machines used, and software application type, versions, etc.

The research challenges in MTD systems are significant. First, we must find
a way to model both the requirements, design, and current configuration (im-
plementation) of the system in such a way as to allow automated reasoning.
Second, we must provide a mechanism that supports automated reconfiguration
of the system to include reassigning host addresses and returning the services to
known good configurations. Third, we provide a mechanism that allows services
to find the services they depend on in the midst of wide-spread system recon-
figuration. Fourth, we must provide an adaptation mechanism (algorithm) that
can adapt multiple aspects of the network’s configuration in a way the mitigates
the effect of attacks against critical network resources. And finally, we must inte-
grate intrusion detection and risk assessment methodologies so that the system
adaptation can respond to attack and risk indicators in a way that continues
to appear random and chaotic to the attacker. This paper seeks to describe our
initial approach at modeling the network requirements and design and demon-
strate that an MTD based approach has potential for significantly increasing the
difficulty of attacks on enterprise networks.

2 Moving Target Defense System

The high-level architecture of a simple MTD system that adapts randomly is
shown in Figure 1 within the dashed box. Here, an Adaptation Engine orders
(what appears to be) random adaptations to the network configuration at ran-
dom intervals. These adaptations are carried out by a Configuration Manager
that controls the configuration of the Physical Network. The key to these ap-
parently random adaptations is that they are based on a Logical Mission Model,
which is a runtime model that captures the Physical Network’s current configura-
tion as well as the functional requirements of the network. Since purely random



Model-driven, Moving-Target Defense for Enterprise Network Security 139

real time 
events

Logical Security 
Model

security state

Logical Mission 
Model

. vulnerabilities .

. adaptations .

current statenew state

configuration

Analysis Engine

Adaption 
Engine

Configuration 
Manager

. reflection .Physical Network

Simple MTD

Fig. 1. Moving Target Defense System

adaptations would quickly yield the system inoperable, the adaptations must
be made with an understanding of the requirements of the system in light of
the current configuration. Specifically, the Logical Mission Model includes two
runtime models: an organization model and a goal model. The organizational
model captures the current configuration including the required functionalities
in the system and the physical hardware capabilities. The goal model captures
the system level requirements and the importance of the various requirements.
We use the Organizational Model for Adaptive Complex Systems (OMACS) de-
veloped previously [10] for the organizational model and a new goal model, the
Value-based Goal Model (VGM) [11], which is designed to capture requirements
of long-lived, service-based systems.

While a simple MTD system holds promise, our ultimate vision for MTD
systems uses apparently random changes in conjunction with intelligent con-
trol, where adaptations can occur randomly or based on risk indicators such as
vulnerability scanning results and alerts from intrusion detection systems. The
intelligent MTD system architecture extends the simple MTD architecture in
Figure 1 by adding an Analysis Engine that takes real-time events from the
Physical Network and the current configuration from the Configuration Man-
ager to determine possible vulnerabilities and on-going attacks. The Adaptation
Engine is extended to look at the network’s current state along with its security
state, as captured in the Logical Security Model. The Logical Security Model also
consists of two runtime models: a goal model and a model of system vulnerabil-
ities. The goal model uses the VGM like the Logical Mission Model; however,
instead of capturing required functionalities, the Logical Security Model’s VGM
is used to capture the security goals of the system. The system vulnerability
model is captured in the form of a novel Conservative Attack Graph (CAG),
which captures both known and unknown system vulnerabilities and how an
attacker might move through the system to gain specific privileges. If there are
security issues that need to be addressed, the Adaption Engine uses these two
models to determine an appropriate set of adaptations and sends them to the
Configuration Manager (along with “random” adaptations) to implement.
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2.1 Nomenclature

The terminology differences between enterprise networks, network security, and
the abstract models we use in our research can be confusing. Therefore, for the
remainder of the paper, we try to consistently use the following terms. We use
the term role to refer to network services (e.g., web server, e-mail server, db
servers) and the term resource to refer to the physical components of the system
(e.g., computer hosts, firewalls, servers). The term resources is also equated to
agents when referring to the OMACS model discussed in Section 4.2.

2.2 Resource Mapping System

One problem with a “moving” system is ensuring that system resources can lo-
cate each other after adaptations occur. Thus, to make these changes invisible
to the system itself, a Resource Mapping System (RMS) is required, which also
serves as a hardened system core that the attacker must penetrate to exploit
the system. Current networks are so complex that even their system adminis-
trators have no clear understanding of the service dependencies [6,3,15]. In such
complex systems, attacks can follow many patterns making their identification
and prevention difficult. This is evidenced by research that shows an exponential
increase in the number of attack paths in even moderate-sized networks [21,17].
The RMS interacts with the Configuration Manager, which pushes the current
configuration to the RMS components. All communication between system roles
must go through the RMS so that communications can be maintained even as
the location of the roles change.

As shown in Figure 2, each role is assigned to a single virtual machine (VM),
which has a dedicated RMS component that handles all communication with
other roles. Each dedicated RMS component only knows the locations of the roles
it needs to communicate with as defined by the role’s communication require-
ments in the Role model (See Section 5). All communications between mission
critical roles are controlled by RMS even as their locations change dynamically.
In some sense the RMS functions like an end-host firewall with highly restric-
tive policies for critical roles; critical roles can be isolated on VMs with only
the minimal ports open. Compared with traditional firewalls, the RMS provides
flexibility for non-critical roles, while increasing protection for critical roles.

In modern virtual environments, isolating individual services on separate VMs
provides the ability to tailor the VM’s operating system to specific services and
thus limit potential vulnerabilities. We believe that tailoring a VM’s security en-
vironment while controlling communications via the RMS will provide a highly
tailored security environment that will make successful attacks more difficult.
However, due to its knowledge of the entire system configuration, the Configu-
ration Manager is the key vulnerability of our design. We currently assume the
Configuration Manager runs on a trusted host and significant resources are used
to ensure its safety.
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2.3 Adaptation Engine

The assignment of roles to resources allows the system to adapt autonomously
while ensuring all mission goals are still supported. In traditional adaptive sys-
tem, the adaptation algorithm would attempt to provide optimal or near optimal
configurations [4]. However, since the goal of MTDs is to produce non-predictable
configurations, we must consider alternative approaches. Instead of seeking op-
timal configurations (in terms of system performance), which tends to produce
the same configuration over and over, we must develop algorithms that find near
optimal configurations that are significantly different in some aspect.

Since the Adaptation Engine is the main decision making apparatus for the
MTD, it must be able to control the various modifiable aspects of the system such
as the assignment of roles to resources, IP addresses and ports, firewall settings,
applications (types, versions, etc.), VM types, and protocols between roles. The
assignment of roles to resources is similar to our existing reassignment algorithms
[10] and is based on ensuring the resources have the appropriate capabilities
to play the role. Since we use unique VMs for each role, we can assign any
available IP address on the network to a new VM. If the role’s communication is
supported by the RMS, the port number can also be randomly selected. Firewall
settings can be updated based on the knowledge of which VMs actually need to
communicate. Specific application types (e.g., Apache, Oracle, Hiawatha, etc.),
versions, or VM types can also be specified by the Adaptation Engine. Finally, we
can consider adapting the protocols for various critical roles that communicate
via the VM. Such protocol changes could be minor while still allowing the RMS
to easily detect compromised VMs or physical resources. A further discussion
of how the models are used in the adaptation process is given in 4.5 after the
models are presented.
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2.4 Analysis Engine

The Analysis Engine is based on Dr. Ou’s existing work on MulVAL [22,21] and
SnIPS [23,28]. The purpose of the Analysis Engine is to infer the most critical
vulnerabilities and most likely attack activities so the Adaptation Engine can
make intelligent adaptation choices. The Analysis Engine outputs a CAG that
is derived from the Role model (see Section 5) dependencies and incorporates
real-time evidence to infer the network’s security state.

Traditional enterprise security risk assessment uses vulnerability scans and
firewall configurations to identify potential attack paths into the system. This
has a number of disadvantages, such as the inability to mitigate risk due to un-
known threats (e.g., zero-day vulnerabilities). Intrusion detection system (IDS)
and Security Information and Event Management System (SIEM) are typically
deployed for the purpose of situational awareness and forensics. The analysis
engine in our envisioned system will take input from these traditional sources
but map them to the unique conservative attack graph (CAG) model due to the
dynamic nature of the adaptation. The unique advantage moving-target brings
to security analysis is that the usable attack surface is greatly reduced due to
shifting, and the false-positive challenge in intrusion detection can be mitigated
by proactively adapting the system even with less than certain attack indicators.

The CAG model is also used in our simulation study of the effectiveness of
the system against both known and unknown attacks. In our model we assume
each host could contain exploitable vulnerabilities and for this reason there is no
distinction between known and unknown vulnerabilities in our simulation. When
a CAG is used in deployed systems, however, such distinctions will matter and
we intend to build models to capture the impact of both known and unknown
vulnerabilities in the moving-target system as part of our future work.

3 Example System

To demonstrate that MTD systems can be effective for network security defense,
we simulated an MTD system using a simple military mission planning system
that allows authorized users to access a mission planner. We provide an overview
of that system here and use it to illustrate our proposed runtime models in Sec-
tion 4. The mission planning system, shown in Figure 3, supports users located
both inside and outside the local network. The system allows users to access
three different databases in order to construct a specific mission. The databases
that the planner accesses are an asset database that includes the types and num-
bers of assets available to carry out planning, a target database that includes the
intelligence on targets of interest, and a geographical database that includes maps
and geographical information about the areas required for planning appropriate
ingress, target attack, and egress routes.

In this system, the likely targets of interest are not the Authorizer or Planner
systems, but the data behind them. Specifically, the TargetDB and AssetDB
have the most potentially important data, thus, they would likely be the targets
of an attack. In our simulation, we assume the TargetDB is the main focus.
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4 Runtime Models

The key to our MTD approach lies in novel runtime models based on human
organizations that explicitly capture a system’s goals, the functionality required
to achieve those goals, and the logical and physical configuration of the system.
These runtime models allow the system to reason about its current state and
make changes that are invisible to the user but appear chaotic and significantly
increase the difficulty for an attacker. Key runtime models include:

– a Value-based Goal model (VGM) that captures the system’s mission and
security requirements

– an OMACS model that captures the physical resources in the system, their
capabilities, the software functions available carry out system goals, and the
current assignment of functions to physical resources

– a Conservative Attack Graph (CAG) that captures both known and unknown
vulnerabilities based on the current system configuration

4.1 Value Based Goal Model (VGM)

It has recently been recognized by the adaptive systems community that the
key to highly efficient and effective adaptive systems is explicitly modeling the
requirements or objectives of the system [5,25], a position we have espoused for
several years [9,10,12]. Specifically, we capture the system objectives as goals,
which allows the system to adapt while still ensuring it can support its overall
goals. As there are trade offs during adaptation, understanding which goals are
the most important is critical to ensuring the system adapts appropriately. Thus
we capture the system’s mission and security goals in a novel Value-based Goal
model (VGM), which allows us to determine the effect of attacks and adaptations
on system functionality and security [18].

Formally, a VGM is a tree whose nodes are value-based goals rooted at goal
g0, as shown in Figure 4 where g0 is the Mission Goal. Typically, g0 represents
the overall operational goal of the network or the overall goal of system security.
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Goals are typically defined as some desired state of the world, and this is true of
value-based goals as well. However, value-based goals are not achievement goals
whose state must be attained by the system, but instead are maintenance goals
whose state must be preserved by the system [8]. Thus instead of achieving goals,
the objective of a value-based system is to maintain the maximal value of a set
of goals expressed in a unique decomposition and value aggregation approach.

The key to determining the overall value of a VGM tree is to know which goals
are currently maintained. Thus, we define a set called the maintained set that
captures the current set of goals maintained by the system. The maintained set
is computed by first determining the leaf goals in the maintained set and then
computing the parent goals that are in the maintained set. The value of a VGM
is based on the current set of goals in the maintained set. Thus, the current value
of the VGM as well as future values of the VGM with different maintained sets
can be computed. The current value of any goal that is not maintained is zero.

The root goal, g0, of a value-based goal model represents the overall value
of the system. Goal g0 is always a value goal, which is decomposed into a set of
sub-goals, each of which are assigned a maximum value. The current value of
the g0 is simply the sum of the values of its children, which can range from 0 to
their maximum values. The root value goal is decomposed into one or more of
the following types of goals: Composition, AND, OR, or Leaf.

If a goal is a Composition goal, all of its sub-goals contribute a percentage to its
value. Thus, each sub-goal of a Composition goal has an associated contribution
value and the contributions of all sub-goals of a Composition goal must equal 1.0.
The current value of a Composition goal is the sum of the sub-goal contributions
that are currently maintained.

An AND goal denotes the case when all sub-goals must be maintained in order
for the parent goal to be maintained and contribute its maximum value. In some
cases, the current values of an AND goal’s sub-goals may be maintained, but not
at the maximum value. Thus, we define the current value of an AND goal to be
the minimum value of all its sub-goals (if one is not maintained its value is 0).
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The maximum values of each sub-goal of an AND goal is the maximum value of
the AND goal since the failure to maintain any one of the sub-goals reduces the
value of the parent to zero.

An OR goal is similar to an AND goal as its value is based on a Boolean
operator, in this case logical OR. Thus, if any sub-goal of an OR goal is main-
tained, then the OR goal itself is maintained. However, unlike the AND goal,
each sub-goal has an individual contribution value associated with it, stated in
terms of a percentage (0 to 100) of the OR goal’s maximum value. The notion
of an OR goal is that there may be multiple ways to maintain a specific goal,
although some may be better than others.

Leaf goals have no sub-goals and contribute to the overall value of the goal tree
based on their parent’s type. Actually, only Leaf goals are actively maintained
by the system. As the system maintains (or fails to maintain) Leaf goals, the
overall value is aggregated based on parent goal types until a final value for the
system is computed. Using the description above, it should be noted that the
value of a system is not simply the value of all its Leaf goals and thus care should
be taken when using the values of Leaf goals independently of their parent goals.
In many cases, the value of a Leaf goal (that are sub-goals of AND/OR goals
directly or indirectly) can only be computed in light of a specific configuration.

In an MTD, a VGM captures the relative importance of the system goals
in case trade-offs must be made. As shown in Figure 4, our example system’s
objectives are decomposed into two main goals: allowing external users access
to the system (Authorizer) and allowing users to plan missions (Plan Mission).
The Plan Mission goal is decomposed into a set of subgoals, where each subgoal
is weighted to express its contribution to its parent goal. Thus, based on the
system’s VGM, if there are not enough resources to achieve all goals, the Plan
Mission goal is more important than the Authorize Access goal and thus the
system should try to support the Plan Mission goal.

4.2 Organization Model for Adaptive Complex Systems (OMACS)

The Organization Model for Adaptive Computational Systems (OMACS) [10]
is a model that defines the knowledge required to allow a team of agents to
reorganize in response to agent failure or changing team goals. While adapt-
ing to failure and changing goals can be a benefit in a network-based system,
our objective in using OMACS as the basis for our MTD system is to use this
knowledge to ensure the adaptations carried out in a defensive effort do not
inhibit the system’s ability to achieve its goals. As shown in Figure 5, the key
entities in OMACS include a set of goals, roles, agents, and capabilities. For our
MTD system, the goals represent the functional requirements of the system, roles
represent services (such as the applications, web servers and database servers),
agents represent physical resources such as computer hosts, and capabilities rep-
resent agent attributes such as memory, bandwidth, and installed software. This
information is used to compute the assignments (configurations) that tell agents
the roles they are assigned to play in order to achieve system goals.
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Organizations are generally formed with some specific objective or goal in
mind. In OMACS, the overall goal of an organization is represented by a set of
goals that the organization is trying to achieve. The relationship between the
various goals is not handled directly by OMACS but is entrusted to the VGM.
More specifically, OMACS goals are the leaf goals in a VGM model. Goals are
achieved by agents playing specific roles within the organization.

Every OMACS organization has a set of agents, which in a computer network
are the physical computer hosts available for use. Agents possess capabilities
that are required to play roles for the network.

In general, OMACS roles denote a set of responsibilities or the expected behav-
iors. In our approach, we use roles to describe services such as the applications,
web servers and database servers required to support (and thus maintain) vari-
ous system goals as shown in Figure 6. Each role has two types of characteristics
that are critical to effective system adaptation: requirements and attributes. The
specific requirements and attributes of each role are used by the Adaptation En-
gine to select the appropriate agent to carry out those roles. Each role has a set
of required capabilities such as processing power, memory amount, bandwidth,
and installed software. In a minor extension to OMACS, MTD roles also con-
tain a set of attributes that give the RMS and the assigned physical resource
(and its VM) precise directions on how to setup and run that role. To support
the assignment process, OMACS defines the achieves function, which takes as
input a goal and a role, and returns a value that reflects how well the given role
achieves the given goal type.

Roles are defined in a Role model as shown in Figure 6. The Role model
not only captures the requirements and attributes of each role, but also defines
the communications that must be allowed between roles, which is critical to the
definition of the CAG and the operation of the RMS system. In our example
system, each mission leaf goal from Figure 4 is supported by a role, namely the
Planner, AssetDB, TargetDB, GeoDB, and Authorizer roles. The relationship
between goals and roles is formally captured in the achieves relation. When the
system is running, these roles are assigned to physical resources such hosts or
VMs while their communications are supported by the RMS.

Before a role is assigned to an agent (i.e., before a service is deployed on a
host), the agent must meet the requirements for that role. Capabilities are essen-
tial in determining the roles that each agent is capable of playing. Capabilities
are used to represent a wide variety of abilities. In a computer network, capa-
bilities are used to model the hardware and software capabilities of a network
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resource such as processing power, memory amount, bandwidth, and installed
software. If an agent has all the required capabilities to play a role, the role
capability function (rcf) is used to compute how well the agent can play that
role, thus allowing designers to indicate the importance of specific capabilities
to each role.

To determine the best overall set of assignments (configurations) for a specific
set of goals, OMACS defines an organization assignment function (oaf). The oaf
determines the effectiveness of a given set of assignments and assigns it a value.
In normal systems, the optimal oaf value is selected when a reorganization (in
our case an adaptation) is required. However, in an MTD system, we must use
non-optimal configurations since our goal is to produce a constantly changing
attack surface. A complete definition of OMACS can be found in [10].

4.3 Physical Resource Model

The capabilities of OMACS agents are taken from the Physical Resource model,
which captures the configuration of available resources (e.g., computers, firewalls,
servers, etc.) that support the operational system. Each resource in the physical
resource model has a particular set of capabilities that can be used to play roles
in the operational system. A role’s physical capability requirements and the
assigned role attributes are compared with resource capabilities to determine
if the role can be assigned to that resource. In addition, role communication
requirements are used to modify firewall (RMS) configuration as needed. With
the advent of virtual machines (VMs), virtual resources can be created when
and where (logically) required. The use of VMs supports the movement of roles
between physical resources. In addition, the use of VMs allows a single role to
be executed on a single VM and thus makes the security configuration of the
VMs simpler and more secure.

As a side benefit, the ability to adapt by changing the mapping of goals to
roles to physical resources also allows the MTD to respond effectively to changes
and failures in the physical configuration of the network. If a role is running
on a resource that fails, the MTD must identify that a goal is no longer being
supported and assign that role to a new resource.
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4.4 Conservative Attack Graphs

An integral effect of MTDs is that an attacker must continually regain the knowl-
edge and privileges obtained through prior attacks. This effect invalidates the
typical monotonicity assumption found in most attack-graph work where an
attacker cannot lose a privilege after gaining it. In an MTD, it becomes impor-
tant to model losing privileges due to constant changes in the system configu-
ration. The frequency and type of adaptations affect how far an attacker can
move forward in a system. Modeling such dynamism requires a state-machine
model, rather than the commonly used dependency attack graph. Previous state-
enumeration attack graphs were not scalable to large attack graphs. However,
we do not need to apply a fine-grained attack-graph models to analyze the ef-
fect of MTDs since MTDs do not attempt to counter known vulnerabilities,
but use dynamism to counter assumed vulnerabilities at every node. Thus, we
use a conservative attack graph (CAG), which assumes the existence of unknown
vulnerabilities without enumerating all possible vulnerabilities. This assumption
actually makes the model smaller and lends itself to stochastic analysis through
a state-machine model.

Figure 7 shows the CAG for our example. The topology of the CAG is partially
derived from the dependencies specified in the Role model. As shown in Figure 6,
the Authorizer role initiates interactions (depicted by the arrows between roles)
with the Planner role, which initiates interactions with the TargetDB, GeoDB,
and AssetDB roles. Because the RMS system limits communication between
system roles, we can assume that the only paths between roles are those allowed
by the RMS. Thus, the only legitimate access paths in the system are (1) from the
Internet to the Authorizer, (2) from the Authorizer to the Planner, and (3) from
the Planner to the three database servers (TargetDB, GeoDB, and AssetDB).
Thus, our CAG captures these logical access paths.

The RMS components on the VMs implement the network communication
policy derived from the Role model to adhere to the logical paths. If an RMS
component is compromised, the attacker would potentially be able to bypass
this control and try to access roles not exposed to the VM. However, in such
situations the compromised RMS would not know the location of those roles and
thus the attacker would have to correctly guess the IP and address (among other
aspects), which is a low-probability event. Thus, if an RMS is compromised, the
only realistic attack path is along the paths of the CAG.

4.5 Model-Driven Adaptation

This section shows how the Adaptation Engine uses the models to make adap-
tations to the system configuration. All adaptations are initiated by a triggering
mechanism. In an MTD system, the trigger could be a timer (for random adap-
tations), a goal modification (addition, deletion, or changing of various goal
values), or a change in the current state of the system (either software/hardware
failure or identification of a potential intrusion). The end goal of an adaptation
is to produce a configuration that ensures that system goals are achieved at the



Model-driven, Moving-Target Defense for Enterprise Network Security 149

Internet 
Access

Planner 
Compromised

Authorizer 
Compromised

- ID IP and Port
- ID Vulnerabilities
- Exploit Vulnerabilities - ID Vulnerabilities

- Exploit
   Vulnerabilities

- ID Vulnerabilities
- Exploit
   Vulnerabilities

- ID Vulnerabilities
- Exploit
   Vulnerabilities

GeoDB 
Compromised

TargetDB 
Compromised

AssetDB 
Compromised

- ID Vulnerabilities
- Exploit
  Vulnerabilities

t - time

probability of 
success

Fig. 7. Conservative Attack Graph

highest possible value. Here we assume all goals are achievable by the available
roles and agents; however, if they are not, the least valuable goals can be dropped
until a valid configuration is obtained.

For the initial configuration, a role (a service) is selected that achieves each
goal and is assigned to an agent (a host) that provides the capabilities required
to carry out that role. This configuration is given to the Configuration Manager,
who makes the physical assignments and provides the appropriate knowledge to
the RMS components.

If a failure occurs, goals that are no longer being achieved due to the failure are
reassigned to new role-agent pairs. If a potential intrusion is detected, the goals
and roles of the agents that are involved in the potential intrusion (source or
destination) are reassigned to new role-agent pairs. When goals are added, new
assignments must be made while when goals are deleted, old assignments may
be removed. When a random adaptation is triggered, the Adaptation Engine
selects a specific goal-role-agent assignment in the system to modify along with
a specific modifiable aspect and a new assignment for the goal is generated. In
all cases, the changes determined by the Adaptation Engine are passed on to
the Configuration Manager who makes the appropriate changes in the physical
system.

The key to random adaptation is ensuring that adaptations are as unpre-
dictable as possible within a reasonable cost. Ideally, the probability of adapting
a particular aspect and agent would be represented as a uniform probability dis-
tribution across the entire domain of the configuration space, thus maximizing
the entropy of the system [27]. However, a system with maximum entropy would
likely degrade system performance to the point where the system performance
would be unusable. Therefore, we plan to investigate approaches that allow for
a trade off between system entropy and performance/cost.



150 S.A. DeLoach et al.

Internet Planner 

0.4

0.4

0.4

0.6
Authorizer

0.6

GeoDB 

TargetDB 

AssetDB 

Fig. 8. Simplified Conservative Attack Graph for Simulation

5 Simulation Results

To determine if our approach has merit, we developed three high-level simula-
tions to reflect the MTD approach discussed above. The first simulation, which
we call the RMS-only Simulation, was developed to evaluate the effectiveness
of our MTD approach using an existing network simulator called NeSSi2 [26].
NeSSi2 is an open-source, discrete-event based network security simulator with
extensive support for constructing complex application-level scenarios based on
a simulated TCP/IP protocol stack [26]. In this simulation, we assumed the user
had full knowledge of the logical system configuration and only attacked through
the RMS system. In the second and third simulations (which we term broad at-
tack simulations), while the attacker still has full knowledge of the logical system
configuration, the attacker also attempts attacks between nodes not directly con-
nected via the RMS system. For these broad attack simulations, we developed a
unique event-driven simulator. In the first two simulations, we assumed only a
basic MTD system that adapted randomly at a specified time interval. However,
in the last simulation, we upgraded the MTD to an intelligent MTD system that
could detect when attacks were attempted outside the RMS system.

The overview of the simulated network is shown in Figure 8. The edges in the
graph (with the exception of the Internet to Authorizer edge) show the valid
paths supported by the RMS. We assume the attacker is located at the Internet
node and wishes to attack the TargetDB. In the first simulation, we assume the
attacker can only attack along the valid RMS paths. However, in the second
and third simulations, we assume that attacker attempts to attack through valid
RMS paths as well as directly between hosts (e.g., Authorizer to TargetDB).

To simplify our simulations, we made several assumptions.

1. Adaptations are applied at a specified time interval and are random in nature
(which is extended in the third simulation to include intelligent adaptation).

2. Adaptations are limited to VM refreshing, which also includes changing the
VM’s IP address.



Model-driven, Moving-Target Defense for Enterprise Network Security 151

3. All VMs assigned to play a given role have the same configuration except
for its ID and IP address.

4. Once a node is compromised, the attacker can immediately use the RMS to
attack the next node in the attack path.

5. The attacker knows the basic system architecture as defined by the Logical
Mission Model and thus the attack is restricted to the VMs playing those
five roles.

6. The attacker knows immediately when a resource it has compromised has
been refreshed.

While these assumptions make the simulation easier, they are also tilted to-
ward the attacker since we do not use advanced variability techniques (software
versions, operating systems, etc.), which would make compromises more diffi-
cult, and we assume the attacker knows the system design and can immediately
compromise the RMS.

5.1 RMS-only Attack Simulation

The three main components of the RMS-only testbed include the Defense com-
ponent, the Attack component and the Ground Truth component as shown in
Figure 9. The Defense component contains the Configuration Manager, three
physical resources (hosts) and five active VMs, which can be assigned to play
host to any of the five roles: Authorizer Planner, TargetDB, AssetDB, or GeoDB.
At a preset time interval, Δt, the Configuration Manager selects an adaption by
randomly picking an existing role and refreshing its VM which includes modi-
fying its address. Then, the Configuration Manager notifies the affected hosts
of the changes and updates the Ground Truth component with new current
configuration.

The Attack component simulates the attacker and uses the CAG shown in
Figure 8 to allow it to know exactly where to attack to achieve its goal, the
TargetDB. Since the only available attack path is to penetrate from the Internet
to the Authorizer, from the Authorizer to the Planner, and then from Planner to
the TargetDB. The edge values in the CAG denote the attacker’s probability of
attack success between nodes assuming both nodes remain static. As shown, the
attacker has a 40% chance of compromising the TargetDB if (1) it has already
compromised the Planner and (2) the Configuration Manager does not adapt
either the Planner or the TargetDB during the time step. In a real system, these
probabilities would be based on the current probability of unknown and known
vulnerabilities of the roles and would likely increase over time. The success of
attacks is determined randomly based on the probabilities in the CAG as well
as whether or not the nodes in the attack have been refreshed during the attack.

The Ground Truth component maintains the current CAG. The Ground Truth
component receives adaptation information from Configuration Manager and
updates the CAG as required. It also supplies the current CAG to the Attack
component when requested. The Attack component, Defense component, and
Ground Truth component are implemented as NeSSi2 components along with
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the three host resources: hostA, hostB, and hostC. These six components are
loaded onto the corresponding nodes as shown in Figure 9. The hosts do not
actually perform their assigned role responsibilities, but merely exist to give the
attacker something to attack. The results of our initial experiments are presented
in the next section.

RMS-only Attack Simulation Results. We conducted two different experi-
ments (denoted 1a and 1b) to see how the frequency of system adaptation would
impact attack success. Within each experiment, we included a control scenario
where no adaptation occurred. Attacks were launched from the Internet towards
the TargetDB. Each attack consisted of single step attacks from the Internet
to the Authorizer, the Authorizer to the Planner, and from the Planner to the
TargetDB. Once the TargetDB was compromised, the attack was counted as a
successful. If a single step attack failed, the attacker remained at the current
VM and retried the attack until successful or until the MTD system refreshed
the VM. In each experiment, we performed 1000 single step attacks with a fixed
Δt between each single step attack of 100 time intervals. We ran the 1000 single
step attacks against an MTD system using 5 different time intervals (20, 50,
100, 200 and ∞) between each adaptation. Note that an ∞ adaptation interval
corresponds to a completely static system.

In the experiment 1a, we assumed that in order to stop a single step attack
from succeeding, the MTD must refresh either the node under attack or the
node from which the attack was launched during the attack (100 time intervals).
Therefore, if there was an single step attack occurring from the Planner to the
TargetDB, it could be stopped if either the Planner, or TargetDB roles were
refreshed by the MTD system during the attack. However, the attacker would
remain on the network unless the actual VM it was residing on was refreshed.
Figure 10 shows the ability of the MTD to deter a successful attack from the
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Fig. 10. Attack Success Against TargetDB (assuming only refresh of current node or
attacked node inhibits attack)

Internet through the Authorizer and the Planner to the TargetDB. When the
configuration is static, the number of successful attacks (of each round of 1000
single step attacks) is 183. Essentially, since no refreshing was going on, this
is maximum number of successful attacks given the probabilities of single step
attack success. Once the MTD system is activated, the number of successful
attacks decrease. With an adaptation interval of 200, the number of successful
attacks is reduced to 123, while an interval of 100 reduces it to 57, and an interval
of 20 eliminates all successful attacks against the TargetDB. Figure 10 clearly
shows that as the adaptation interval is reduced, the effect of the MTD defense
is clearly visible.

In the experiment 1b, we assumed that in order to stop an attack from suc-
ceeding, the MTD could refresh any node on the path to the node being attacked
during the attack (100 time intervals). Thus in this version, if there was an single
step attack occurring from the Planner to the TargetDB, it could be stopped
if either the Authorizer, Planner, or TargetDB roles were refreshed during the
attack. Figure 11 shows the ability of the MTD to deter a completed attack from
the Internet through the Authorizer and the Planner to the TargetDB. When
the configuration is static, the number of completed attacks (out of 1000) is 168,
while an adaptation interval of 200 reduces that number to 107, 100 reduces it
to 41, and an adaptation interval of 20 again eliminates all successful attacks
against the TargetDB. Again, Figure 11 clearly shows that as the adaptation
interval is reduced, the effect of the MTD defense is obvious.

5.2 Broad Attack Simulation System

In the broad attack simulation, the attacker is again attempting to compromise
the TargetDB. Since the attacker knows the details of the system configuration,
it can use the RMS to its advantage; however, the attacker also attacks outside
the RMS to stress the MTD defenses. For these simulations, we assume a sophis-
ticated attacker who automatically attacks each available node in the network
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from its current location using the RMS or by attempting to guess the address
and port of an available node. Therefore, the attacker is not limited to the RMS
routes and thus the attack routes form a completely bidirectionally connected
graph (except for the Internet node, which only has arrows to nodes into the
network) as shown in Figure 12. However, since the RMS will not respond to
standard network requests for mapping information, this eliminates the ability
for the attacker to automatically map the address space.

The probabilities associated with each attack depend on the node from which
the attack originates and the node being attacked. All attacks along the RMS
maintain their probabilities as shown in Figure 12. However, the dashed lines,
which denote attacks outside the RMS, have a much lower probability due to
the fact that the attacker must guess the appropriate port for the attack to
even have a chance to succeed. Therefore, each dashed line has an attack success
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probability of p/65, 536 where p is the probability of successfully attacking that
node through the RMS. Thus, all attacks against the TargetDB from any node
but the Planner would have a 0.4/65, 536 probability of success. While this might
seem like a very low probability, we believe that it is actually the upper bound
for such an attack. Since the VMs addresses are being modified over time, the
attacker will also have to guess the VM address. However, since it is hard to
determine the specific range over which the addresses be assigned, we assume
the attacker can guess that in some way (once again giving the benefit to the
attacker as opposed to the MTD system).

The simulation starts with the attacker at the Internet node. From the Internet
node, the attacker attempts to attack each node in the network. The success of
each attack is determined based on the probability of success of the attack and
whether either the node being attacked and the node from which the attack
originated was refreshed during the attack. If any of the attacks were successful,
the newly compromised nodes are used to mount new attacks. Again, we assume
we try to attack all uncompromised nodes from each newly compromised node.
This process continues until the TargetDB becomes compromised, or the attacker
has no compromised nodes in the network (other than the Internet).

Broad Attack Simulation Results. We conducted 1000 runs (as opposed to
single step attacks used in the RMS only experiments) of the broad attack sim-
ulation against various frequencies of MTD adaptation to determine its impact
against attack success. Since the broad attack simulation allowed the attacker to
keep attempting to attack network nodes as long as the attacker had access to a
compromised network node, each run consisted of a sequence of attacks starting
with the initial attack from the Internet to the Authorizer node and continuing
until either (1) the attacker did not have access to a compromised node in the
network or (2) the attacker successfully compromised the TargetDB. As with the
previous experiments, we included a static control scenario where no adaptation
occurred. In each experiment, we again assumed a fixed Δt between each attack
of 100 time intervals. For each experiment, we ran the 1000 runs using 5 different
adaptation intervals (20, 50, 100, 200 and ∞).

Figure 13 shows the ability of the MTD to deter an attack from the Internet
through the network to the TargetDB. When the configuration is static, the
number of completed attacks (out of 1000) is 588, which is close the expected
60% rate given that the probability of compromising the Authorizer node from
the Internet is 0.6. This is due to the fact that if the attacker compromised
the Authorizer node on the first attack, with a static network, the attacker
will remain on the Authorizer node attacking various network nodes until the
TargetDB is eventually compromised. We also noted that no attacks outside the
RMS actually succeeded, which was expected given the extremely low probability
of success. When we introduced our random adaptations, we found that an
adaptation interval of 200 reduced the number of successful attacks against the
TargetDB to 421, an adaptation interval of 100 reduced that number to 57, an
adaptation interval of 50 allowed only 24 successful attacks, and an adaptation
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interval of 20 totally eliminated the ability of the attacker to compromise the
TargetDB. Once again, Figure 13 clearly shows that as the adaptation interval
is reduced, the effect of the MTD defense is clearly visible.

5.3 Intelligent MTD Simulation System

To help determine the effect of an intelligent MTD system, we again used our
broad attack simulation where the attacker attempts to compromise the Tar-
getDB. In fact, the experimental setup was the same as for the broad attack
simulation presented above with one exception. To simulate an intelligent MTD
system, we assumed that whenever the attacker attempted an attack outside
the RMS, that such an attack could trigger an alert based on some probability
of detection, pd. Since the RMS is set up to allow only communication from
known nodes on exactly one port, we believe the implementation of such de-
tectors would be both practical and efficient. When detected, alerts would be
sent directly to the Adaptation Engine, which would request that Configuration
Manager immediately refresh the VM from which the detected attack originated.
In addition, random adaptations continued to occur at the same predetermined
intervals Δt as used in the previous experiments.

Intelligent MTD Simulation Results. The result of the intelligent MTD
simulation is shown in Figure 14; note that the graph is logarithmic to show
proper detail. Since the attacker indiscriminately attacks all nodes in the net-
work without necessarily attempting to go through the RMS system, thus raising
many alerts, the success rate of the attacker is reduced significantly. At a 100%
probability of detection, the attacker is always immediately detected and re-
moved from the system, thus the attack success rate is 0%. However, even with
lower pd values, the reduction in attack success is significant. Even in the static
case, with a pd of 50%, the number of successful attacks is reduced from 616
(61.2%) to 32 (3.2%). We believe this shows the power of using an RMS with an
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intelligent MTD system. The RMS minimizes the attack surface to such a degree
that attacks outside the RMS are easily detected and significantly decrease the
attackers likelihood of success.

When compared with the attack success rate of the simple MTD system
(which is represented by the line in Figure 14 with pd = 0%), we see that the
intelligent MTD system performs significantly better since the simple MTD sys-
tem. We do see a slight anomaly in the data since at an adaptation interval of
20, when the pd is both 15% and 25%, we see 1 successful attack while there
are 0 successful attacks with a pd of 0%. Although the probability of success is
extremely low, the attacker can succeed. We believe that with more runs (than
1000) the data would have normalized. Overall, while not conclusive, this exper-
iment clearly shows the need for further investigation into the costs and benefits
of intelligent MTD systems.

5.4 Discussion

The design of our MTD is based on knowing the current situation, which is
captured in a set of runtime models. These runtime models allow the system to
reason over the current state of the system and produce adaptations to confuse
and rebuff potential attackers. The system design shows how a set of runtime
models can be combined to model and reason over multiple aspects of a complex
problem. Specifically, this system includes models for the system configuration,
the system objectives (operational and security), and entities external to the
system (the attackers).

The simulation presented here is our first, and one of the first anywhere, sim-
ulation of an MTD architecture for enterprise network security. As such, the
simulation implemented only a simple MTD system and did not use the full
power of its runtime models. However, the results demonstrate the potential
effectiveness of MTDs for enterprise computer networks. Therefore, we plan to
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continue to simulate more complex systems (in terms of nodes and intercon-
nections), increase the sophisticated of the attackers, and integrate in the full
power of an intelligent MTD system based on runtime models. In addition, we
are currently building a real world MTD test bed using existing visualization
technologies.

This system also demonstrates the applicability of the OMACS model to
new and novel applications. The OMACS model was originally envisioned as
a metamodel to capture multiagent systems. However, it quickly became clear
that by looking at existing research on human organizations, the model could
be made much more general. Since its inception, OMACS has been applied to
multiagent systems, cooperative robotics, human-robot teams, sensor networks,
and power distribution systems. In fact, the claim could be made that OMACS
can be applied to any domain in which distributed agents (natural or artificial)
need to coordinate their actions to achieve shared objectives and adapt to the
current state of the environment or their problem solution.

6 Related Work

6.1 State of Practice

Network configuration currently tends to be static and routine assumptions are
made about the location of services in terms of fixed URL’s or IP addresses.
Such static configuration is largely due to the use of legacy system components.
The benefit of static configurations appear to be ease of management and pro-
gramming. However, it has been observed that the static network configurations
(i.e, service dependencies) have actually made it harder to manage systems,
especially when changes must be made [3,15,6]. The state of the practice in
computer network defense relies upon firewalls in both network and application
layers, intrusion detection and prevention systems, and anti-malware products
that provide defense in depth. Unfortunately, once a method is found to circum-
vent these mechanisms, the attacker can keep attained privileges until discovered.
In addition, the attacker can generally use the same methods to circumvent other
similar defenses. Here, the lack of dynamism is an important contributor to the
ease with which an attacker can launch a successful cyber attack.

6.2 Moving Target Defenses

Most of the prior work on MTDs in a network context has been related to low-
level techniques such as IP address shifting and network routing and topology
control. In the late 90s, BBN developed approaches to active network defense
[16,2] that gave the illusion that the addresses and port numbers used by the
network’s computers changed dynamically. While these techniques significantly
increased the attacker’s effort by making it almost impossible to map the network
[16], they required all trusted computers be shielded by special processes and
displayed had several application interoperability issues [19]. More recently, a



Model-driven, Moving-Target Defense for Enterprise Network Security 159

network address space randomization scheme to thwart hit list worms [1], which
configured DHCP servers to expire the leases of hosts at various intervals to
support address randomization. In [7], an approach to dynamically changing
network packet routes so that observable traffic patterns change was proposed
to make network mapping more difficult and to make packet sniffing less effective.
In each of these cases, only the network addresses were changed or made to look
like they changed and only served to confuse attackers without the ability to
automatically remove them from the system once they compromised a resource.

In a different approach to MTD, Roeder and Schneider [24] propose to use
proactive obfuscation to create application replicas with identical functional-
ity but dissimilar vulnerabilities that react differently to identical attacks. The
authors showed that with sufficient entropy in the executables, the approach ef-
fectively thwarted known attacks without greatly increasing costs. We anticipate
that proactive obfuscation could be employed in our MTD approach to increase
the difficulty of initial compromise as well as the ease with which attackers could
reacquire resources after being removed from the system.

7 Conclusions

In this paper we presented a preliminary design of an MTD system that uses run-
time models of a network’s requirements, design, and implementation to allow it
to adapt its configuration to increase the difficulty of attacks on the network. We
conducted several simulation-based experiments to study the effects of randomly
adapting the system in reducing attacker’s success likelihood. Our results showed
a reduction in attack success as the rate of adaptation increased. In addition,
we conducted simulations that showed the effect of adding intelligence to the
decision of when and where to adapt in the form of detectors that could detect
when an attack occurred outside the normal RMS system. Our results showed
that even with less than perfect detectors, significant improvements in network
security can be made. These results clearly demonstrate the potential for both
simple and intelligent MTD systems and are preliminary steps toward developing
a comprehensive evaluation and analysis framework for MTD systems.
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Abstract. The way in which software systems are produced is radi-
cally changing, by increasingly promoting the (re-)use of existent soft-
ware artifacts. A flourishing of model-based engineering techniques has
been defined for building, managing, verifying, validating and controlling
software systems. Most approaches build on the assumption that suitable
models of software artifacts exist. However, when moving from theory to
practice, a question raises up: where do models come from?

The thesis of this paper is that there is the need of explore techniques
to automatically extract models from existent software. This paper pro-
poses a general overview of the exploring problem and shows two different
techniques, tailored to specific domains, to automatically build models
(of different nature) from software artifacts.

1 Introduction

In recent years a growing emphasis on the use of models emerged in the Soft-
ware Engineering (SE) community. Traditionally, in the software development
process, models represent abstractions of the system under implementation and
are developed independently from the system, that is, from requirements spec-
ification etc. This has led to the standard dichotomy between verification and
validation of a system, being verification related to the correspondence between
models and implemented system, whereas validation between user expectations
and the implemented system. In the literature it is often given for granted that
such models exist or that they can be easily defined. However, this assumption
is far from being realistic, and one key issue is to consider how to obtain such
models.

Indeed, the system development paradigmwe are facing in the future promotes
more and more the (re-)use of existent software artifacts, whose availability is
growing at a fast pace. Available software ranges from white-box software for
which source code and internal perspective is available, to black-box software for
which all we know is, e.g., a description (often informal) of the functionalities or
their published known interfaces. In any case, to foster a correct reuse with re-
spect to a given goal, we should know the actual functional and non-functional
runtime behavior of the software being reused. This calls for the production,
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the management and the maintenance of models all along the software life time
in order to assist the system realization, its validation and evolution out of ab-
stractions of existent software [21,23,11,6]. Unfortunately, in general, the runtime
behavior is only and can only be partially known also in terms of aggregated arti-
facts, like specifications of both interface and behavior (see [4,21] and references
therein). In this setting, techniques must be employed to explore the available
software, extract observations, and produce models that, according to a given
goal, abstract the actual runtime behavior with the best possible accuracy. Dif-
ferent elicitation techniques can then be applied to achieve a combination of
models that abstract the software under exploration from different perspectives
and with different costs.

In this paper we are interested in models that are automatically extracted
from existent software. They represent by definition different observations of the
system that are consistent with the effective behavior of the system itself. This
approach is comforted by an increasingly number of research contributions that
concern the elicitation of observational models from software artifacts. These
approaches range from machine learning ones to static and dynamic analysis to
running traces observations.

The common characteristics of the models resulting from the application of
diverse techniques is that they always contain the result of the corresponding
observations but in general represent an approximation of a portion of the system
itself. Such observations are defined according to a goal G. Starting from a
set of observations, the problem is to define synthesis algorithms that are able
to produce a “correct” approximation of the system that is cost-effective with
respect to the goal G.

The paper is organized as follows. Section 2 provides the context of the paper
by presenting a software development process of the near future, called Eagle.
Section 3 briefly surveys those explore techniques that are closer to the Eagle
view. Section 4 presents a general overview of the exploring problem. In order to
show how this general overview could be applied, Sections 5 and 6 present two
instantiations of it. Specifically, Section 5 presents an exploration technique to
automatically produce behavior protocols of running Web-Services (WSs), and
Section 6 presents an explore technique to automatically produce a model of a
running Linux system. The paper concludes with final remarks in Section 7.

2 Software Development Process of the Near Future

As firstly stated in [21] and then mentioned in [23,11,6], the software develop-
ment process life cycle needs to be rethought by breaking the traditional division
among development phases, e.g., [4] and SMSCom1. This is achieved by mov-
ing some development activities from design-time to deployment- and run-time,
hence asking for new and more efficient techniques to support run-time activities.

1 ERC Advanced Investigator Grant N. 227977 [2008-2013],
http://deepse.dei.polimi.it/smscom/index.html

http://deepse.dei.polimi.it/smscom/index.html
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Recent approaches recognize the need to produce, manage and maintain soft-
ware models all along the software life time in order to assist the realization and
validation of system adaptations while the system is in execution [21,11]. Ea-
gle [4] builds on the model-based software production paradigm and focuses on
the inherent incompleteness of information about requirements, execution con-
text, and existing software. This evidence promotes the use of an experimental
approach, as opposed to a creationistic one, to the production of dependable
software. In fact, software development has been so far biased towards a cre-
ationist view: a producer is the owner of the artifact, and with the right tools
she can supply any piece of information (interfaces, behaviors, contracts, etc.).
The Digital Space promotes a different experimental view: the knowledge of a
software artifact is limited to what can be observed of it. In other words software
developers will less and less know the precise behaviour of a third party soft-
ware service, nevertheless they will use it to build their own application. This
very same problem recognized in the software engineering domain [16] is faced
in many other computer science domain, e.g., exploratory search [41] and search
computing [12].

In order to face this problem and provide a producer with a supporting frame-
work to realize software applications, we propose a process that implements a
radically new perspective (first results might be found in [5]). Figure 1 shows a
graphical overview of this process. It builds around elicit and integrate phases,
and both of these phases embed validation activities devoted to ensure that the
produced artefacts satisfy the goal. To support dynamic evolution, these two
phases are eternally iterated by maintaining continuously the experimental view
mentioned above. In this way the produced software is continuously tuned and
adapted towards customer needs by learning from real customer usage data [33].

Elicit: given a software service S, elicitation techniques must be defined to pro-
duce models as much complete as possible with respect to an opportunistic
goal G. This means that we admit models that may exhibit a high degree of
incompleteness, provided that they are accurate enough to satisfy user needs
and preferences (as modelled by G). The goal G can be specified in different
ways depending, e.g., on the technical requirements on the software-to-be and
assumptions on its environment. In any case, for the elicit and integrate phases
to be automated, a goal G specification is a machine-readable model achieved
by the producer through an operationalization of the needs and preferences of
the user [37]. Validation of the elicited models is embedded in the elicitation
process. That is, validation of the model against the run-time behaviour of its
corresponding explored software is achieved through experimental verification
of what the model expresses against what the explored software actually does
at run-time. As discussed above, this process is carried on in a goal-oriented
way. Thus it is not relevant to come out with a model completely conforming to
the software run-time behaviour, rather it is sufficient to have a confidence that
the model reflects the only software run-time behaviour needed for achieving the
specified goal.
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Fig. 1. Elicit and Integration activities of Eagle

Integrate: it assists the producer in creating the appropriate integration means
to compose the observed software together in order to produce an application
that satisfies G. Referring to Figure 1, M1,M2, . . . ,Mn, obtained through the
elicit phase, represent models of the services to be integrated; each of these mod-
els exhibits its own degree of uncertainty uM1 , uM2 , , uMn , respectively. Multiple
models may exist for each service (e.g., behavioural, stochastic or Bayesian), each
representing a specific view of the service. Model transformation techniques can
ensure coherence and consistency among the different views, hence providing an
adequate and systematic support to model interoperability [19]. These models
are the input of model synthesis techniques together with the goal G. Suitably
instantiating architectural patterns and styles [35] and integration patterns [42],
the output is an Integration Architecture (IA) that interrelates the elicited mod-
els together with additional integrator models as synthesized by Eagle. Inte-
grator models, besides guaranteeing correctness of the interaction logic, e.g.,
deadlock freeness and performance system requirements, can compensate the
lack of knowledge of the composed software by also adding extra logic through
connectors, mediators and adapters [36,22,29,24], hence enhancing dependabil-
ity. IA plays a crucial role in influencing the overall uncertainty degree of the
final integrated system S, as different IAs may result in different uncertainty de-
grees for S, namely uS . Once obtained an integration architecture, code synthesis
techniques provided by Eagle generate integration code that guarantees, dur-
ing the system lifetime, the specified goal under a controlled uncertainty degree.
Analogously to what is done for the explore phase, also here the validation of
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the integrated system against G is done through experimental verification. That
is, the IA the integrated system relies on is automatically synthesized correct-
by-construction with respect to the specified goal.

3 Explore Techniques

The activity of constructing models from observations is a long-standing practice
in computer science. System identification has been introduced as long ago as
1956 by Zadeh to identify the activity of building models of dynamic systems
from observed data [26]. Several methodologies have been developed in different
areas and, in the literature, there are too many techniques to be surveyed in one
paper only.

In order to identify and discuss those techniques that are closer to the Eagle
view, which has been presented in Section 2, we can consider both the kind of
models to be elicited by means of exploration of the considered software and the
type of explore techniques we are interested on. That is, Eagle primarily focuses
on behavioural models of the software meaning that they describe the run-time
behaviour of a software entity in terms of both its functional and non-functional
characteristics. For instance, automata-based models describing the interaction
protocol that a software component performs with its environment fall in this
class of models, as well as probabilistic automata if one is interested on rea-
soning about, e.g., the reliability of a piece of software. Contrarily, “structural”
models such as UML Class Diagrams can clearly ease the explore phase but, for
the software integration and actual code synthesis to be fully automated, if con-
sidered in isolation, they are not of particular interest as output of the explore
phase itself. Being more interested on the elicitation of (run-time) behavioural
models and aiming at accounting also for the integration of third-party software
entities, for which very often the code and their internal characteristics are not
accessible from outside, Eagle mainly focuses on either black-box or grey-box
explore techniques. This means that the considered techniques take as input a
description of the software whose level of abstraction is far from the one of the
actual implementation code. For instance, interface descriptions such as WSDL
for web-services or execution traces obtained via logging activities are suitable
examples of input for the explore techniques considered by Eagle.

Before providing an overview of the considered techniques, we discuss the core
concepts underlying the explore phase as follows.

– Model - it represents an abstraction of the system which should be inferred
by the explore phase. In general, a model can be of different nature, such
as the system’s (i) Software Architecture model, (ii) control flow, (iii) data
flow, or (iv) type structure. In [34] a model is defined as “a set of statements
about a system under study”. Bézivin and Gerbé in [10] define a model as
“a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system”. According
to Mellor et al. [31] a model “is a coherent set of formal elements describ-
ing something (e.g., a system, bank, phone, or train) built for some purpose
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that is amenable to a particular form of analysis” such as communication
of ideas between people and machines, test cases generation, transformation
into an implementation, etc. The MDA guide [32] defines a model of a sys-
tem as “a description or specification of that system and its environment
for some certain purposes. A model is often presented as a combination of
drawings and text. The text may be in a modeling language or in a natural
language”. These formulations do not conflict but rather complement one
another and represent the various aspects of the fundamental philosophical
category of software. Despite these general views of the model concept, as
explained above, Eagle focuses on behavioural models (both functional and
non-functional) of the observed software.

– Observation - it represents the information that is grasped from the sys-
tem in order to build a model of it. In general, observations can be built
by directly observing the system S, such as its source code or its bytecode
as usually done by, e.g., reverse engineering approaches, or by observing
the semantics of S, i.e., its executions, such as log files or performed tests
as usually done by, e.g., machine learning approaches. Moreover, observa-
tions depend on the techniques that are used to grasp information about the
observed system, e.g., white-box, grey-box, or black-box techniques. As dis-
cussed above, Eagle focuses on black-box/grey-box explore techniques and,
hence, the exploited notion of observation is the one related to observing the
semantics of the software.

– Uncertainty - a key challenge for explore techniques is the ability to assess
their goodness in terms of the degree of uncertainty of the elicited models. In-
formally, the notion of uncertainty is related to a measure of the gap between
what is expressed by an elicited model and what the corresponding observed
software actually does at run-time. A useful basis for empirically compar-
ing candidate techniques has been provided in a competition to spur the
development of inference techniques for FSMs of software systems [38]. The
work in [27] presents an empirical comparative study between techniques
that infer simple automata and techniques that infer automata extended
with information about data-flow. We believe that the problem of provid-
ing methods and metrics to express the uncertainty of a model with respect
to the system and the goal is of primary importance. The work in [18] can
be considered as a first attempt in this direction. This work is applied in
a white-box component setting. As inferred system model, a three-valued
interface LTS is generated. It explicitly labels states as unknown to reflect
the fact that the given sequence of method invocations leads to a compo-
nent state that the analysis could not mark as safe or unsafe. As far as
the use of partial behavioural models is concerned, it should be noted that
the degree of uncertainty in behavioral models may heavily affect the ca-
pability of non-functional analysis techniques. Indeed non-functional (e.g.,
performance, reliability) models take most of their structure and parameters
from software behavior representation. However, this problem is not new,
and it has been mitigated by the wide experience in using (in this domain)
stochastic models suited for representing uncertainty.
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In the following, we provide an overview of some examples of explore techniques,
which are closer to the Eagle view in the sense discussed above. That is, they
are black-box/grey-box techniques able to elicit behavioural models of the soft-
ware. The reader interested on white-box techniques can refer to [40,39,2] and
references therein.

Bertolino et al. [8]: StrawBerry is an approach to produce a behavior pro-
tocol of a WS starting from its WSDL. The automaton that is produced by
StrawBerry models the interaction protocol that a client has to follow in order
to correctly interact with the WS. This automaton explicitly models also the
information that has to be passed to the WS operations. StrawBerry makes
use of two phases, namely synthesis and testing. The synthesis stage is driven
by data type analysis, through which a preliminary dependencies automaton is
inferred. Once synthesized, this dependencies automaton is validated through
testing against the WS to verify conformance, and finally transformed into an
automaton defining the behavior protocol. StrawBerry is a black-box and extra-
procedural technique. It is black-box since it takes into account only the WSDL
of the WS. It is extra-procedural since it focuses on synthesizing a model of
the behavior that is assumed when interacting with the WS from outside, as
opposed to intra-procedural methods that synthesize a model of the implemen-
tation logic of the single WS operations. The uncertainty of the models elicited by
StrawBerry relies on testing and therefore it is subject to possible inaccuracies
especially depending on the semantics of data (method invocation parameters).
StrawBerry is detailed in Section 5.

Di Ruscio et al. [15]: Evoss is an approach to automatically produce a model
of a running Linux system. The construction of a model is automatically per-
formed by means of proper model injectors which are able to observe the system
configuration to be upgraded, and the packages involved in the considered up-
grade plan, and to create the corresponding models. Information that are used
to build the model are obtained by querying the running Linux system via bash
command line tools that gather information like the installed packages, running
services, etc. The elicited model is accurate enough, meaning that the uncer-
tainty is related to the identified level of abstraction only. Evoss is detailed in
Section 6.

Hungar et al. [20]: LearnLib is a framework to automatically construct a finite
automaton through automata learning and experimentation. Active automata
learning tries to automatically construct a finite automaton that matches the
behavior of a given target automaton on the basis of active interrogation of tar-
get systems and observation of the produced behavior. Active automata learning
originally has been conceived for language acceptors in the form of deterministic
finite automata (DFAs) (cf. Angluin’s L∗ algorithm [3]). The uncertainty of the
elicited automaton relies on the goodness of the L∗ algorithm, which performs
active automata learning. Thus, since automata learning converges by exactly
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inferring the target automaton for the considered system, the degree of uncer-
tainty is due to the possible incompleteness of the set of data instances used to
query the running system.

Krogmann et al. [25]: The work presents a comprehensive approach for build-
ing parametrized behaviour models of existing black-box components for per-
formance prediction. Those parameters represent three performance-influencing
factor, i.e., usage, assembly, and deployment context; this makes the models
sensitive to changing load situations, connected components, and the underlying
hardware. The approach makes use of static and dynamic analysis and search-
based approaches, namely genetic programming. These techniques take as input
monitoring data, runtime bytecode counts, and static bytecode analysis. The
inferred model is accurate although it represents an approximation of the se-
mantics of the considered system. The uncertainty degree can be measured in
terms of a “prediction error”. It is given by the deviation between monitored
values (e.g., data/bytecode counts) and values predicted by the mathematical
expression found by the genetic search, the prediction techniques is based on.

Ghezzi et al. [17]: SPY is an approach to infer a formal specification of stateful
black-box components that behave as data abstractions (Java classes that behave
as data containers) by observing their run-time behavior. SPY proceeds in two
main stages: first, SPY infers a partial model of the considered Java class; second,
through graph transformation, this partial model is generalized to deal with data
values beyond the ones specified by the given instance pools. The inferred model
is partial since it models the intentional behavior of the class with respect to
only a set of instance pools provided as input, which are used to get values for
method parameters, and an upper bound on the number of states of the model.
The accuracy of the generalized model, that is the output of the SPY approach,
depends on two assumptions. First assumption: the value of method parameters
does not impact the implementation logic of the methods of a class; usually,
this is the case for classes implementing abstract data types but it is not the
case for other kind of classes. Second assumption: the behavior observed during
the partial model inference process enjoys the so called “continuity property”
(i.e., a class instance has a kind of “uniform” behavior). This property allows
the generalization of the partial model. Thus the elicited model is accurate with
respect to a fixed bound on the number of states of the model to be inferred. This
means that the uncertainty of the model depends on the inherent incompleteness
of it, which is due to this fixed bound. However, for Java classes that enjoy the
so-called continuity property, it is possible to find a bound on the number of
states that allows the inference technique to produce a complete model.

Lorenzoli et al. [28]: GK-Tail is a technique to automatically generate behav-
ioral models from (object-oriented) system execution traces. GK-Tail assumes
that execution traces are obtained by monitoring the system through message
logging frameworks. For each system method, an Extended Finite State Machine
(EFSM) is generated. It models the interaction between the components forming
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the system in terms of sequences of method invocations and data constraints on
these invocations. The correctness of these data constraints depends on the com-
pleteness of the set of monitored traces with respect to all the possible system
executions that might be infinite. Furthermore, since the set of monitored traces
represents only positive samples of the system execution, this approach cannot
guarantee the complete correctness of the inferred data constraints. GK-Tail
is an intra-procedural approach since it synthesizes an intra-system interaction
model. As far as uncertainty is concerned, the more the set of given execution
traces is complete and the more the inferred model is accurate.

Berg et al. [7]: This work presents an approach for inferring state machines with
an infinite state space. By observing the output that the system produces when
stimulated with selected inputs, they extend existing algorithms for regular in-
ference (which infer finite state machines) to deal with infinite-state systems.
More precisely, with the aim of fully supporting the generation of models with
data parameters, they consider a general theory for inference of infinite-state
machines with input and output symbols from potentially infinite domains. To
this purpose, the behavior protocol of the system is first observed by considering
a small domain of data for the input parameters. Then, by exploiting classical
regular inference algorithms, a finite-state Mealy machine is generated to model
the behavior of the system on the small domain. Finally, the generated Mealy
machine is folded into a smaller symbolic model. This approach makes the prob-
lem of dealing with an infinite state space tractable, but may suffer a higher
degree of model approximation. As far as uncertainty is concerned, analogously
to the work described in [20], the more the set of data instances used to query
the running system is complete and the more the inferred model is accurate.

Meinke [30]: This work describes a learning-based black-box testing approach
in which the problem of testing functional correctness is reduced to a constraint
solving problem. Functional correctness is modeled by pre- and post-conditions
that are first-order predicate formulas. A successful black-box test is an execu-
tion of the program on a set of input values satisfying the pre-condition, which
terminates by retrieving a set of output values violating the post-condition.
Black-box functional testing is the search for successful tests with respect to the
program pre- and post-conditions. As coverage criterion the authors formulate
a convergence criterion on function approximation. The testing process is an
iterative process: at a generic testing step, if a successful test has to be still
found, the approach described in [30] exploits the input and output assignments
obtained by the previous test cases in order to build an approximation of the
system under testing and try to infer a valid input assignments that can lead
the system to produce an output either violating the post-condition or useful to
further refine the system approximated model. The uncertainty of the inferred
model depends on the type of the approximation functions chosen in order to
deal with the different data types.
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Dallmeier et al. [14]: This work presents an approach that, through a combi-
nation of systematic test case generation (by means of the TAUTOKO tool)
and typestate mining, infers models of program behavior in the form of finite
state automata describing transitions between object states. The generation of
test cases permits to cover previously unobserved behavior, and systematically
extends the execution space, and enriches the inferred behavior model. In this
sense, it can be said this approach goes in an opposite direction with respect
to the StrawBerry approach [8]. In fact, the latter first produces a exhaustive
behavior model containing both legal and illegal interactions, and then refines it
(through testing) in order to cut the illegal interactions. By explicitly account-
ing for exceptional behavior, the models generated by the approach in [14] may
tend to be more close to completeness. As far as uncertainty is concerned, the
inferred models can be almost as good as manually (by the class developer)
specified models.

Summary on behavior model elicitation techniques – Table 3 summarizes the
key characteristics of the considered techniques in terms of the core concepts
discussed above for the explore phase. This summary represents the basis for
scratching, in the next section, a preliminary foundational treatment of the ex-
ploring problem.

The first column of the table contains a reference to the considered technique.
The second column describes the domain in which the technique is used. The
column named Input (Observations) describes the input elements that are re-
quired to use the technique. For instance, in the case of StrawBerry, the input is
the WSDL description but also a running service that can be freely invoked. The
column Output (Model) represents a description of the model that is produced
by the technique. The column Observed subject describes what is observed of
the system, i.e., the system itself (S) or its semantics, for instance in terms of
its behaviour. The column named Type describes whether the technique is black
box, grey box, or white box. Finally, the Techniques used column describes the
techniques that are used to observe the system and to construct the model.

Table 1. Explore techniques overview

Domain Input (Ob-
servations)

Output
(Model)

Obser.
sub-
ject

Type Techniques
used

Bertolino
et al. [8]

SOAP-
based WSs

WSDL +
running WS

Behaviour pro-
tocol automaton
enriched with
method invoca-
tion parameters

Sem. of
S

Black
box

Syntactic
analysis,
testing, and
synthesis

Di Ruscio
et al. [15]

Linux dis-
tributions

Packages and
running sys-
tem

Model of the sys-
tem configuration
(mainly struc-
tural aspects)

S Grey
box

Text-to-
Model
transforma-
tion
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Hungar et
al. [20]

“Testable”
software
systems

Alphabet
of actions
+ running
system

Finite state au-
tomaton

Sem. of
S

Black
box

Active au-
tomata
learning and
experimen-
tation

Krog-
mann et al.
[25] [8]

Monitorable
software
components

Data from
monitoring +
component
bytecode

Parametrized
behaviour models
for performance
prediction

Sem. of
S

Grey
box

Static and
dynamic
analysis +
genetic pro-
gramming

Ghezzi et
al. [17]

Java classes
implement-
ing abstract
data types

Public in-
terface of
the consid-
ered class
+ instance
pool for
the method
parameters

A finite state
automaton deal-
ing with data
beyond the ones
contained in the
given instance
pool

Sem. of
S

Black
box

Dynamic
analysis +
graph trans-
formation

Lorenzoli
et al. [28]

Monitorable
java classes

Execution
traces

A set of Extended
Finite State Ma-
chines, one for
each method in
the public inter-
face of the class

Sem. of
S

Grey
Box

Static anal-
ysis of
execution
traces (ob-
tained via
run-time
behaviour
monitoring)

Berg et al.
[7]

“Testable”
software
systems

Alphabet
of actions
+ running
system

An infinite state
automaton

Sem. of
S

Black
box

An ex-
tension
of active
automata
learning for
infinite state
automata

Meinke [30] “Testable”
software
systems

A functional
model of the
system in
terms of a
first-order
logic for-
mula of pre-
and post-
conditions
+ running
system

a set of successful
tests

Sem. of
S

Black
box

Black-box
testing +
constraints
solving +
functional
approxima-
tion
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Dallmeier
et al. [14]

Java classes sample ex-
ecutions +
regression
test suites +
executable
Java classes

Typestate specifi-
cations, i.e., finite
state automata
describing tran-
sitions between
object states

Sem. of
S

Black
box

Test case
generation
+ dynamic
specification
mining

4 Elicit Phase: Eliciting Models from Software Artifacts

In this section we continue the work done at the beginning of Section 3 with the
aim at identifying basic elements and functions that regulate the explore phase of
the Eagle process. As shown in Figure 2, given a system S, elicitation techniques
must be defined to produce models according to a goal G and under some cost
restrictions. Thus, elicitation composed of two phases, namely observation and
construction.

Fig. 2. Elicit phase

Observation, driven by G, produces a set of observations of the system. More
specifically, the set of observations is defined with the aim at extracting the
aspects of the system that are relevant according to the goal G. G is a formula
expressed in some formalism whose validity can be proven on the abstractions
of the system. This abstraction can be constructed starting from the set of
observations. Different goals require different kind of observations. Observations
are included in the system by construction. Observations are an abstraction of S
or of the semantics of S in terms both of output data and quantitative aspects,
e.g., response time once executed with a provided input in the execution context.

Construction, driven by G, takes as input the set of observations and pro-
duces a system model. This model contains the observed behaviors and typically
enriches them with an inference step.

In the ideal case, the objective of the explore phase is to produce models
that are correct and complete with respect to the goal G, i.e., G holds on the
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elicited model iff it holds on S. This ideal situation is shown in Figure 3.(a),
where the complete inclusion of the model(s) ellipse wants to informally represent
that the “knowledge” of the system, as abstracted by the elicited model, is
correct and complete with respect to validating G. Unfortunately, in the real
case, the correctness and completeness of the models cannot be always achieved.
For instance, it may be the case that achieving a correct and complete model
implies performing (possibly) infinite observations.

Fig. 3. Software artifact, observations, and model

The real situation is shown in Figure 3.(b) in which models are neither correct
nor complete. This is because the set of observations is always finite and typically
the construction phase has to infer something in order to produce the model.
For instance, let us assume that we aim at constructing a behavior model of
the system. Then, let us assume also that the observations are system traces,
e.g., observed by monitoring the system. What one aims at is to get complete
models up to a certain length of the observation (i.e., number of events observed).
However, the behavior model has to be produced to represent the functioning of
the system even while running more than the observed length. This requires an
inference phase, e.g., performed by means of a synthesis step [36], that may add
uncertainty. Obviously, the more you observe the more accurate you can be and
the more “costly” will be.

Then, according to the Eagle process presented in Section 2, elicitation has
associated a cost and is subject to uncertainty. Informally, the elicitation tech-
nique, elicitationi can be seen as a function that takes as input a system S, a
goal G, a cost c that we are willing to pay, and produces a model with associated
a degree of uncertainty, Mi,u:
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elicitationi(S,G, c) = Mi,u

As described before, the elicitationi function makes use of the observationk

and constructionj functions. The observation technique observationk takes as
input the system S, the goal G, and the cost we are willing to pay for the
observation phase, c1, and produces a set of observationsOk under an uncertainty
uk,1:

observationk(S,G, c1) = (Ok, uk,1)

The construction technique constructionj takes as input the observations pro-
duced under an uncertainty degree (Ok, uk,1), the goal G, and the cost we are
willing to pay for the construction phase, c2, and produces a model with associ-
ated a degree of uncertainty, Mi,u.

constructionj((Ok, uk,1), G, c2) = Mi,u

Therefore:

elicitationi(S,G, c) = constructionj(observationk(S,G, c1), G, c2) = Mi,u

with the cost c = c1 + c2.
The uncertainty of a system is typically measured with a system metric. The

metrics adopted to reason on uncertainty are different depending on the sources
of uncertainty they refer to [5]. As discussed in [5], this calls for a tradeoff be-
tween different metrics, each associated to a specific functional or non-functional
aspect: a designer might decide to decrease the uncertainty in one direction
whereas increase the uncertainty in other directions.

Furthermore, an important aspect concerns the relationship between the goal
and the cost that we are willing to pay, which to some extent can allow us to
“control” the resulting uncertainty of the model. In this sense our notion of
explore phase can be seen as a sort of selected exploration that can make feasi-
ble the elicitation of models with an acceptable uncertainty degree whenever a
“goal-independent” exploration would fail, meaning that the elicitation problem
would be intractable. For instance, let us consider the Amazon E-commerce WS
(AEWS) as software system to be explored and let us exploit StrawBerry (see
Section 5) as explore technique without considering a specified goal. All we know
is a WSDL descrition of AEWS2 that we can use to elicit its behaviour protocol
automaton via StrawBerry. The AEWS WSDL description is made of 85 XML
Schema type definitions and 23 WSDL operation definitions3.

In a previous case study described in [8], by using StrawBerry, we have been
able to elicit the behavior protocol automaton of the AEWS. Figure 4 shows an

2 http://webservices.amazon.com/AWSECommerceService/

AWSECommerceService.wsdl
3 We are referring to the 2009 AEWS version.

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
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Fig. 4. An excerpt of the AEWS behaviour protocol as elicited by a “goal-independent”
explore phase

Fig. 5. AEWS behaviour protocol as elicited by a goal-oriented explore phase

excerpt of it concerning all the “item search” and “cart management” operations
(for the sake of readability, data parameters in the operation labels are omitted).
Indeed, the entire automaton elicited by StrawBerry is made of 24 states and
288 transitions. To elicit it, StrawBerry produced 106 test cases and executed
them in 10−2 secs. for each, which means few hours of testing. Note that this
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is perfectly acceptable for off-line analysis but not usable for dynamic analysis
and, hence, for the kind of revolutionary process envisioned by Eagle.

Repeating the experiment by considering a goal specification expressing the
fact that the Eagle user (e.g., the developer of the system to be integrated)
wishes to “develop a client for cart management only”, StrawBerry elicits the
automaton shown in Figure 5. It is made of 6 state and 21 transitions only. The
elicitation of it required the generation and execution of 105 test cases, which
means few seconds of testing.

5 StrawBerry: An Explore Technique to Produce
Behaviour Protocols from Webservices

By taking as input a syntactical description of the WS signature, expressed
by means of the WSDL notation [1], StrawBerry [8] derives in an automated
way a partial ordering relation among the invocations of the different WSDL
operations. This partial ordering relation is represented as an automaton that we
call Behavior Protocol automaton. It models the interaction protocol that a client
has to follow in order to correctly interact with the WS. This automaton also
explicitly models the information that has to be passed to the WS operations.

StrawBerry is a black-box and extra-procedural method. It is black-box since
it takes into account only the WSDL of the WS. It is extra-procedural since it fo-
cuses on synthesizing a model of the behavior that is assumed when interacting
with the WS from outside, as opposed to intra-procedural methods that syn-
thesize a model of the implementation logic of the single WS operations [28,40].
Figure 6 graphically represents StrawBerry as a process that is split in five main
activities that realize its observation and construction phases.

Observation: the observation phase is in turn organized in two sub-phases.

– The first sub-phase exploits the information that is available on the webser-
vice, i.e., its WSDL, and performs a syntactic interface analysis (i.e., data
type analysis).
By referring to Figure 6, the Dependencies Elicitation activity elicits data
dependencies between the I/O parameters of the operations defined in the
WSDL. A dependency is recorded whenever the type of the output of an
operation matches with the type of the input of another operation. The
match is syntactic. The elicited set of I/O dependencies may be optimized
under some heuristics [8].
The elicited set of I/O dependencies (see the Input/Output Dependencies
artifact shown in Figure 6) is used for constructing a data-flow model (see
the Saturated Dependencies Automaton Synthesis activity and the Saturated
Dependencies Automaton artifact shown in Figure 6) where each node stores
data dependencies that concern the output parameters of a specific opera-
tion and directed arcs are used to model syntactic matches between output
parameters of an operation and input parameters of another operation. This
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Fig. 6. Overview of the StrawBerry method

model is completed by applying a saturation rule. This rule adds new de-
pendencies that model the possibility for a client to invoke a WS operation
by directly providing its input parameters.

– The second sub-phase refines this dependencies automaton by observing the
execution of the webservice. More specifically, the dependencies automaton is
validated through testing against the WS to verify conformance (see Depen-
dencies Automaton Refinement Through Testing activity shown in Figure 6).

The testing phase takes as input the SOAP messages produced by the Test-
cases generation activity. The latter, driven by coverage criteria, automat-
ically derives a suite of test cases (i.e., SOAP envelop messages) for the
operations to be tested, according to the WSDL of the WS. In StrawBerry

tests are generated from the WSDL and aim at validating whether the syn-
thesized automaton is a correct abstraction of the service implementation.
Testing is used to refine the syntactic dependencies by discovering those that
are semantically wrong. By construction, the inferred set of dependencies is
syntactically correct. However, it might not be correct semantically since it
may contain false positives (e.g., a string parameter used as a generic at-
tribute is matched with another string parameter that is a unique key). The
testing activity is organized into three steps. StrawBerry runs positive tests
in the first step and negative tests in the second step. Positive test cases
reproduce the elicited data dependencies and are used to reject fake depen-
dencies: if a positive test invocation returns an error answer, StrawBerry
concludes that the tested dependency does not exist. Negative test cases are
instead used to confirm uncertain dependencies: StrawBerry provides in in-
put to the sink operation a random test case of the expected type. If this test
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invocation returns an error answer, then StrawBerry concludes that the WS
was indeed expecting as input the output produced by the source operation,
and it confirms the hypothesized dependency as certain. If uncertain depen-
dencies remain after the two steps, StrawBerry resolves the uncertainty by
assuming that the hypothesized dependencies do not exist. Intuitively, this
is the safest choice, given that at the previous step the invoked operation
accepted a random input.

Construction: the construction phase consists in a synthesis stage which aims
at transforming the validated dependency automaton (a data-flow model) into
an automaton defining the behavior protocol (a control-flow model), see the Be-
havior Protocol Synthesis activity in Figure 6. This automaton explicitly models
also the data that has to be passed to the WS operations. More precisely, the
states of the behavior protocol automaton are WS execution states and the tran-
sitions, labeled with operation names plus I/O data, model possible operation
invocations from the client of the WS.

Uncertainty in StrawBerry meanly consists in the lack of behavioral infor-
mation in the produced behavior protocol automaton. This lack of information
can be attributed to the fact that web service interfaces are not concerned with
describing behavioral aspects and thus provide incomplete information to any
analysis approach merely focusing on interfaces. Uncertainty in StrawBerry can
be introduced both in the observation and in the construction phase.

During the observation phase the dependency automaton is constructed by
only considering syntactic correspondences and then refined by means of testing.
This procedure is not exhaustive and then cannot ensure neither correctness nor
completeness. As stated in Section 4, the more you observe (i.e., more invest to
the testing phase) the more accurate you can be (i.e., reduce the uncertainty)
and the more “costly” will be.

During the construction phase the dependency automaton is transformed into
a behavior protocol. The synthesis phase takes as input the observations that
have been tested always for a finite length. Whereas, the behavior protocol au-
tomaton has to be produced to represent the functioning of the webservice even
while running more than the observed length. This calls for an inference step
that unavoidably introduces uncertainty. This uncertainty can be reduced by per-
forming tests that validate longer sequences of operation invocations. As usual,
this increases the cost of the elicitation phase.

6 EVOSS Injection: An Explore Technique to Produce a
Model from a Running Linux System

As another example of elicitation technique, let us consider the case of Free and
Open Source Software (FOSS) systems and, in particular, the case of widely
used FOSS distributions, like Debian, Ubuntu, Fedora, and Suse. These systems
are based on the central notion of software package. Packages are assembled
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to build a specific software system. The recommended way of evolving such
systems is to use package manager tools to perform system modifications by
adding, removing, or replacing packages. However, the ability to analyze and
predict component behavior during their upgrades, e.g., installation and removal,
in FOSS systems is intrinsically difficult and requires techniques, algorithms,
and methods which are both expressive and computationally feasible in order
to be used in practice. Currently, package managers are only aware of some
static aspects of packages that can influence upgrades, and at the same time
they completely ignore relevant dynamic aspects, such as potential failures of
configuration scripts that are executed during upgrade deployment. Thus, it is
not surprising that an apparently innocuous package upgrade can end up with
a broken system state [13].

6.1 Overview of Evoss

Real System

Packages to be 
installed/upgraded

Injector

Package 
Models

Package 
Models

Package 
Models

Failure
Detector

incoherentUpgraded
Real System
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Failure
Report

in

Upgrade

System
Configuration  

Model
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incoherent

Upgrade
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Incoherencies
Report

incoherent

System
Configuration  
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Fig. 7. Overview of the Evoss approach

The Evoss (EVolution of free and Open Source Software) approach4 [15]
enhances the prediction of upgrades in FOSS distributions. In order to make
upgrade prediction more accurate, Evoss considers both static and dynamic
aspects of upgrades. Static aspects have been modeled by enhancing the expres-
siveness of the representations with respect to the state of the art of package
managers, enabling the detection of a larger number of undesirable configura-
tions, such as the breakage of fine-grained dependencies among packages, cur-
rently neglected by package managers. The main dynamic aspects considered are
those related to the behavior of package configuration scripts which are executed
during upgrade deployment.

4 Evoss, http://evoss.di.univaq.it, has been proposed within the FP7/2007–2013
European project Mancoosi, http://www.mancoosi.org, grant agreement n. 214898.

http://evoss.di.univaq.it
http://www.mancoosi.org
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An overview of the Evoss approach is shown in Figure 7. It is a model-driven
engineering (MDE) approach [9], which relies on a model-based representation
of the current system configuration and of all packages that are meant to be
upgraded. This enables Evoss to simulate upgrades as model transformations
before upgrade deployment. To this end, we encode fine-grained configuration
dependencies and abstract over maintainer scripts. This way the models capture
all the information needed to anticipate the inconsistent configurations that
current tools cannot detect, as they only rely on package metadata.

According to Figure 7, the simulation of a system upgrade is performed by the
Upgrade Simulator which takes a set of models as input: a System Configuration
Model and Package Models corresponding to the packages which have to be
installed/removed/replaced. The System Configuration Model describes the state
of a given system in terms of installed packages, running services, configuration
files, etc. In other words, it represents a snapshot of the considered system and
maintains in a uniform and explicit way the information that is important for
simulation purposes. The Package Model provides information about all packages
involved in the upgrade, including maintainer script behavior. The output of
Upgrade Simulator is a new System Configuration Model if no errors occur during
the simulation, otherwise an Incoherences Report is produced. The new System
Configuration Model is queried and analyzed by the Failure Detector component.
When Failure Detector discovers inconsistencies and they are collected in the
Failure Report. The real upgrade is performed on the system only if the new
system configuration model is coherent.

6.2 The Evoss Injection

The Evoss injection aims at building the system configuration and package
models. By adhering to the terminology proposed in Section 4 we need proper
observation and construction functions able to create the models required for
the simulation. Such functions are presented in the next sections. In Evoss the
elicitation phase is performed by means of proper model injectors which are able
to observe the system configuration to be upgraded, and the packages involved
in the considered upgrade plan, and to create the corresponding models as de-
scribed in the following.

Observation: concerning the system configuration, the observation is performed
by executing specific shell commands able to query the system and gather the
required information. For instance, to retrieve all the packages that are installed
in a Debian-based system, the following shell command can be executed:

dpkg --get-selections

and an output like the following is obtained:
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acl install

acpi install

acpi-support install

acpid install

...
zip install

zlib1g install

Other specific shell commands and ad-hoc scripts can be executed in order to
retrieve data which are not directly available in the system, like implicit depen-
dencies among packages that occur, for instance, because of their configuration
files, which are not considered in the package metadata.

Fig. 8. Sample configuration model
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Concerning, the packages involved in a given upgrade plan, their models are
obtained by means of another observation function that still is based on specific
shell commands. For instance, the following command:

dpkg -s swi-prolog

retrieves all the metadata of the swi-prolog package. Additional tools are re-
quired to retrieve also the configuration scripts of the package that are required
for simulation purposes.

Fig. 9. Model of a simple package named swiprolog-5.7.59

Construction: once the system and the packages involved in the upgrade plan
have been observed, the corresponding models can be created. In Evoss the cre-
ation of models has been implemented by using the Eclipse Modeling Framework
(EMF)5. An example of a system configuration model, automatically obtained
from a running system, is shown in Figure 8. The model has been created by
considering the observations which have been obtained as previously discussed.

5 Eclipse Modeling Framework: http://www.eclipse.org/emf

http://www.eclipse.org/emf
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Figure 9 shows a fragment of a simple package named swiprolog-5.7.59. The
model represents the files contained in the package, the dependencies with other
packages and the maintainer scripts which are executed during the upgrade. In
Evoss, maintainer scripts are expressed by means of a DSL [15] that mainly
provides macros representing recurring script fragments. According to model in
Figure 9, the post-installation script of the package swiprolog-5.7.59 consists
of four DSL statements. The statement that can affect the system configuration
during the package installation is the if statement. Its then block contains the
addAlternative statement that, once executed, creates a new alternative called
prolog, which points to the executable /usr/bin/swipl.

Uncertainty in Evoss is represented by the lack of information related to both
system configurations and packages. In particular, models represent abstractions
of the system to be upgraded and of the packages involved in the given upgrade
plan. The cost to be paid for obtaining such models is proportional to the amount
of information to be represented, thus to the time required to gather such infor-
mation. Further details about the performance of the Evoss approach might be
found on [15].

7 Concluding Remarks

Techniques for building, managing, verifying, validating and controlling modern
software systems typically build on the assumption that suitable models of soft-
ware artifacts exist. Unfortunately, in the practice this assumption turns out to
be unfounded. It emerges the need of having explore techniques to automatically
extract models from existent software. This paper proposes a general overview
of the exploring problem. This overview has been conceived by studying existing
techniques that concern the elicitation of observational models from software
artifacts. Moreover, the paper describes two different techniques to automati-
cally construct models by observing software artifacts. The first technique, called
StrawBerry, makes use of testing to elicit the information that are needed to
automatically synthesize an automaton describing the behavior of a web-service.
The second technique queries a running Linux system and automatically con-
structs a model representing aspects of the system that enable the simulation of
system upgrades.

On the future work side, we aim at defining a general theory that regulates the
exploring problem and explains relations among software artifacts, observations,
goal, and produced models.
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Abstract. Following the “convention over configuration” paradigm,
model-driven software development (MDSD) generates code to imple-
ment the “default” behaviour that has been specified by a template
separate from the input model. On the one hand, developers can pro-
duce end-products without a full understanding of the templates; on the
other hand, the tacit knowledge in the templates is subtle to diagnose
when a runtime software failure occurs. Therefore, there is a gap between
templates and runtime adapted models. Generalising from the concrete
problematic examples in MDSD processes to a model-based problem di-
agnosis, the chapter presents a procedure to separate the automated fixes
from those runtime gaps that require human judgments.

Keywords: Model-Driven Software Development, Problem Frames.

1 Introduction

Decades after Alan Turing introduced the computing machine that uses a tape
of infinitely long ‘0’ and ‘1’ binary numbers to store data and programs [22],
abstraction levels of programs have become closer to human understanding of
the physical world [13]. High-level programming languages can be automatically
translated and optimised into Turing machines by compilers, freeing program-
mers from having to think in terms of machine instructions [2]. Naturally, one
would like to model the physical world, and generate the code for implementing
the machine from the model, in the same automated way as compiling source
program into binary code. This vision motivates model-driven software develop-
ment methods (MDSD) [10], using an input model much more abstract than the
binary code of Turing machines.

For example, our graphical modeling tool to support the Problem Frames
approach (PF) [12] was created using MDSD method, starting from a concise
domain-specific language for representing or modeling problem diagrams. Given
that diagrammatic notations of the PF have been unambiguously defined by
researchers, and graphical editing is one of the exemplars of mature MDSD tools,
one would assume that developing the PF modeling tool is a straightforward
application of MDSD methods.

N. Bencomo et al. (Eds.): Models@run.time, LNCS 8378, pp. 188–207, 2014.
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However, this assumption needs to be checked, both from a requirements en-
gineering (RE) perspective and from a practical, problem solving perspective.
From a RE perspective, we need to analyse the requirements of “developing a
graphical modeling tool support for Problem Frames approach”, as an exercise
of both MDSD and Problem Frames. This exercise serves two purposes. First, it
tells us whether MDSD directly meets the requirement of “supporting a graphi-
cal modeling language”; second, it tells us how such MDSD requirements can be
analysed by the PF approach. In doing so, we hope to discover a useful pattern
in the problem solving practice that relates the MDSD solutions to the require-
ments. We also hope to improve our understanding about any generic concerns in
the MDSD methodology. From a practical perspective, we would like to explore
problems that cannot be solved by the current practices of MDSD.

If such problems exist, the practitioners need a new methodology for diag-
nosing them. In this chapter, we will show that runtime diagnosis of the gap
between models in two minds (of a developer and of a user) must be reconciled.
We will also demonstrate the feasibility through a new runtime model diagnosis
framework summarised at the end of the chapter.

Background and Terminology of MDSD

To demonstrate the problems, a chain of automated tool support from the Eclipse
Modeling project1 and the terminology used in this chapter will be discussed.
Many techniques have been proposed for MDSD. The general idea is to have one
metametamodel (e.g., OMG MOF) whose instance is a metamodel or a mod-
eling language. An instance of the metamodel is a program in a domain spe-
cific or generic language. For an Eclipse modeling project, the metametamodel
is called ecore, a sublanguage to define metamodels in the XML interchange
(XMI) format. Ecore itself is an instance of the ecore metamodel, which we call
self-defining. In general, an instance of ecore is called EMF model, named after
the de facto standard in the Eclipse modeling community. All these languages
are supported by a chain of EMF tools2.

Using an analogy to language engineering, EMF corresponds to the abstract
syntax of the language without specifying its concrete syntax. The XMI is only
one concrete syntax to represent EMF, and one may choose another concrete
syntax such as a textual DSL language or a graphical language. Transforma-
tions can be written to convert text to model (T2M), model to model (M2M),
and model to text (M2T), following a suite of OMG modeling standards. Since
the Ecore modeling language is a generic implementation of the OMG MOF,
diagrammatic languages such as UML can also be fully supported.

As an example, the xtext framework3 is provided to perform the T2M pars-
ing, converting the abstract syntax of a DSL program into its corresponding
EMF model. As the by-product of such a transformation, a syntax-highlighting

1 www.eclipse.org/modeling
2 www.eclipse.org/modeling/emf
3 http://www.eclipse.org/Xtext/

www.eclipse.org/modeling
www.eclipse.org/modeling/emf
http://www.eclipse.org/Xtext/
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text editor can be generated for editing the DSL program instances. Similarly,
GMF editors can also be generated for editing the EMFmodels graphically4. These
feature-rich graphical editors can be generated from the EMF metamodel, the
graph definition models that define the graphical notations, and the mappings
between the elements on the Ecore to the presentations.

In a nutshell, generating a graphical editor in MDSD is now feasible by provid-
ing the language design in an abstract way using the extended BNF rules, plus
the mapping decisions to show the modeling elements in appropriate graphical
notations.

Example: Describing PF Modeling as a PF Model

Before analysing the general problem, we first describe the requirements and
the stakeholders involved in a specific example. In this example, our primary
requirement is that “a PF graphical modeling tool must allow users to create and
edit problem diagrams as defined by the PF researchers”. For the PF modeling
tool to be developed, this requirement also involves stakeholders such as users
who use the PF modeling tool and researchers who define the PF language.

To solve this problem without using the MDSD approach, a Model-View-
Controller (MVC) design pattern or a Workpiece frame [12] can be used.

A Workpiece frame is a general class of problems identified by a requirement
of users to edit a piece of work through a tool. Any editing problem fits this
frame: the PF Graphical Modeling Tool (see Figure 1) is no exception.

Fig. 1. A Work Piece frame and its instantiation for the PF editing problem

4 www.eclipse.org/modeling/gmf

www.eclipse.org/modeling/gmf


From Model-Driven Software Development Processes 191

Basic PF notations A requirement is represented by a dashed ellipse shape, la-
belled by the name of the requirement and its abbreviation; and a solution to
the problem is represented by a rectangle, marked with double strips on the left.
When marked with a single strip on the left, the domain is “designed” by other
problem solving steps. A physical domain can also be represented by a rectangle
with names and abbreviation labels without the strips. The behaviour type of a
domain node can be classified by a letter mark at the lower-right corner of the
rectangle. For example, a lexical domain marked with “X” indicates a passive
behaviour that does not cause change itself, a biddable domain marked with “B”
indicates an active behaviour that can change by itself non-deterministically, a
causal domain marked with “C” indicates an active behaviour that is determin-
stic. Domains can share an interface between each other. The shared interface is
represented by an undirected solid link, marked with a letter abbreviating a set
of shared phenomena such as events and states. A requirement can constrain a
domain’s behaviour, indicated by a dashed arrow to the constrained domains; a
requirement can also refer to a domain, shown as a dashed link between them.

In fact, a textual or graphical editing tool may already meet this requirement.
Most PF diagrams documented in the literature so far were drawn using either a
text editing tool such as LaTeX, or a diagramming tool such as Dia5. This raises
many interesting questions: “What can MDSD add to the available solutions for
the PF modeling tool requirement” and “Who can benefit from MDSD”?

Naturally such an investigation brings us to a new type of role – “Developer”.
In fact, a developer opts for the MDSD method mainly because it promises two
more quality requirements: “productivity” and “maintainability”. It must take
little effort for a developer to create a PF modeling tool from scratch, and it
must take little effort for a developer to adjust the tool when the researcher
makes some refinement to the PF language.

Even with these productivity and maintainability requirements in mind, there
is still one alternative solution to these requirements without resorting to the
MDSD technology: to customise existing functionalities in graphical editing tool
such as Visio, e.g., by creating a new stencil or template for PF notations. In
fact, this is what the graphical drawing tool Dia already offered. So, why do we
still bother with MDSD?

Let us revisit the initial requirement of the “Users” and the “Researchers”.
There is one additional requirement “modeling conformance” that a customised
general diagramming tool cannot easily meet. “How can one be sure that the
modeling elements are uniquely named? How can one check whether there is
a single machine node and a single requirement node in a problem diagram?
How can one make sure all the nodes are linked and all the links are con-
nected to certain nodes? How can one make sure the dashed arrows are always
from requirement nodes to the domain nodes?” In short, the key advantage
of providing PF Modeling Tool through MDSD is the additional capability to
satisfy these “domain-specific” modeling requirements. Syntax checking aside,
syntax highlighting, syntax-driven editing, auto completion, pattern matching,

5 http://projects.gnome.org/dia/

http://projects.gnome.org/dia/


192 Y. Yu et al.

transformations, and various form of inconsistency checks such as type checks
and uniqueness checks, are amongst the various benefits a MDSD derived PF
Modeling tool brings about, in addition to the graphical editing features such
as drag-and-drop, zooming, panning, layouting, and printing. Instead of asking
“why bother with MDSD”, one would ask “why bother with implementing all
these nice features yourself” instead.

Note that we had a similar experience in creating other requirements modeling
tool using the MDSD approach (e.g., OpenOME for i*). In the following section,
we discuss several examples of problems found during the development time of
our research prototype.

2 Problems and Concerns in the MDSD Process

Given the analysis so far, we established how a MDSD process benefits the
developers in creating and maintaining a PF modeling tool for the PF researchers
and users alike.

Now we now look at the darker corners of the MDSD approach, explaining
some issues experienced when applying it. A possibly shocking concern we doc-
umented here resembles the experience in several non-trivial instances. It is our
belief that this may be a general concern for MDSD development.

The poor experience came from the attempt to stretch the tool to support
analysing the requirements problems in two complementary modeling languages,
namely PF and i* [24]. While the PF approach focuses on understanding the
entailment relationship W,S � R between the requirements R, solutions S and
the world context domains W , the goal-oriented modeling approach focuses on
understanding the relationships between the stakeholders (i.e., the “Who”) and
their intentional requirements (i.e., the “why”). Since their diagramming tools
have been both developed using MDSD, we would consider a generalisation of
the graphical modeling tool support.

The first attempt was to use the grammar “mixin” feature in xtext. By
inheriting concrete syntax from both grammars of PF and i*, we obtained such
a modeling language that can navigate between them: (1) a requirement node in
PF could be expanded into a detailed i* diagram where the requirement is one
of the goals; (2) an intention node in i* diagrams (goal, task, resource, softgoal)
could be expanded into a PF diagram where the requirement corresponding
to the expanded goal. After applying the xtext MDSD generation, we then
obtained a text-based parser that can transform the concrete syntax into an
abstract syntax expressed by the combined EMF model. As a result, the new
EMF model was compliant to both the metamodel in PF and the metamodel in
i*, making it much easier to perform new kinds of analysis such as programmatic
scoping of the contexts for alternatively refined subgoals [5].

However, several subtle problems arose when the two Java code bases
generated from the EMF models were used together, complicating the MDSD
experience.

Figure 2 summarises the alphabet concern in the “convention over configu-
ration” MDSD paradigm. By “convention”, the template code is generated by



From Model-Driven Software Development Processes 193

Fig. 2. The additional alphabet (or tacit knowledge) concern in the “convention over
configuration” MDSD paradigm. Developers of the templates may not know the re-
quirements of individual programmers, and the individual programmers may not fully
understand the rationale behind the default behaviours in the generated template code.

instantiating the templates behind the scenes with the input model; by “configu-
ration” users can further modify the generated code according to their individual
requirements. The additional alphabet concern applies because neither does the
designer of the templates understand the individual users’ requirements, nor do
the users fully understand the rationale behind the “default” behaviours.

When the two misunderstand each other, a glitch is inevitable. In the following
subsections, we document four example problems that are caused by this kind
of misunderstanding as the “additional alphabet” or “tacit knowledge” concern
of MDSD.

The “Detached” Requirement Phenomena. The first problem was related
to an unwanted behaviour in the graphical editing. As described earlier, a re-
quirement node in PF is an ellipse shape, which should connect to other domain
nodes through links by the design of language. However, while moving such a
node to an angle not aligned horizontally or vertically with the node on the
other side of the link, the end of the link would not be connected to the re-
quirement node, appearing as if they were detached. A search on the developers
forum revealed that this problem was to do with the org.eclipse.draw2d.

ChopboxAnchor class used by default in the generated code, rather than the
proper org.eclipse.draw2d.EllipseAnchor. The ChopboxAnchor in effect cal-
culates the connection anchors based on a rectangle shaped outline, whilst the
EllipseAnchor class uses the ellipse shape instead. After replacing ChopboxAn-
chor with EllipseAnchor in the generated code, however, we found that the prob-
lem were not solved. By tracing the execution in a debugger, we found that the
real problem was rooted deeply in the path resolution mechanism at the time of
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dynamic class loading. In fact, our customised uk.ac.open.problem.diagram.

edit.parts. NodeEditPart class generated from the MDSD tool was never in-
voked. Instead, the GMF runtime system loaded a org.eclipse.gef.

NodeEditPart class in the runtime class library of GEF framework. When such
an “import” statement in the customised class was removed, the GMF editor
loaded our class instead, which solved the problem. However, when we did the
same for the LinkEditPart class, the IDE automatically inserted the unwanted
“import” statement back into the code. Ultimately, we had to explicitly coerce
the class by casting the expression to the NodeEditPart class, prefixed with our
exact package name.

Figure 3 illustrates the “detached” requirement problem in details. First of all,
(a) is observed to behave like a Chopbox with respect to the connections to the
requirement node, this is highlighted as a “runtime abnormal behaviour”. The
method implementing this behaviour is all in the generated code. The arrows
point backward along the chain of causality. First, the ChopboxAnchor was
used in the generated method body, which implements a default behaviour.
Furthermore, the parent class of the generated code is one of the predefined
classes in the GMF runtime class library. Without changing that inheritance,
the default behaviour cannot be overridden. Second, (b) is observed to behave
normally, such that the connection to the requirement nodes are not clipped
by the rectangle. The fixing changes required are (1) a customization of the
method default implementation to switch the anchor class to ellipse shape if the
node type is a requirement; (2) the generated import statements are removed
manually, such that the ShapeEditPart class in the domain-specific package is to
be used, overriding the default behaviour of the predefined GMF runtime class
library.

We were wondering why a generated class name such as NodeEditPart clashes
with the runtime library, only to realise that the MDSD tool itself had been
developed using the MDSD approach. Their choice of using “Node” to name a
class of nodes and using “Link” to name a class of links happened to be the same
as ours. In other words, the clash was due to our shared “common sense”.

On second thought, this incident could have revealed an interesting type of
pitfall in MDSD, which we called “model feature interaction” [21]. The design
details abstracted away in the language specification could indeed be interacting
with the generated code because they refer to the same name in different names-
paces. The runtime class loader is not smart enough to distinguish them, and
a sophisticated mechanism is needed to prevent this from happening again. For
example, a developer may want to avoid using the names “Node/Link” when
modeling the graphical language. If this is the case, the alphabet of the names-
pace must be restricted, leading to the following discussions.

In general, when abstracting away design details, the advantages gained must
be revisited. First one needs to maintain the traceability between the abstract de-
scription and the concrete implementations, and second, one must be aware that
the designer of the MDSD tools could have introduced some alphabets that may
lead to unwanted behaviours when they are composed with the generated code.
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Fig. 3. Contrasting the observable problems and the code implementations respectively
for the abnormal and correct behaviours

The developer’s interpretations of the additional alphabet may not be the same as
the original designer’s. This might have a serious implication to security problems,
adding further difficulty in maintaining and checking the traceability [27].

The Manual Refactoring Phenomena. The second major problem we en-
countered could be a headache to other developers too. As we discussed earlier,
it was fine when MDSD tool were applied separately to PF and i* languages.
Each application generates a separate EMF metamodel in Ecore (Ecore is a
self-defining metamodel). The PF ecore model was newly “generated” from the
concrete syntax in xtext, while the i* ecore model was imported from the exist-
ing release of OpenOME maintained at the University of Toronto. The generated
classes for i* plugins were thereby prefixed by “edu.toronto.cs”. The xtext tool
could not know this, as a result of its code generation, no package prefix was
added to the generated classes.

However, the combined metamodel needs to reference the i* classes in hun-
dreds of places. For example, every time a problem node is accessed, it could
refer to an i* model element specified in the none-prefixed classes. A subtle but
annoying behaviour was caused by this because the generated classes without
prefixes were the skeleton code that should work if no customisation had been
applied. However, developers at the University of Toronto have made substan-
tial improvements to almost every aspect in the graph editing tool. It is thereby
necessary to switch to use the Toronto classes and keep their prefix. Instead of
manually renaming all these places where the class names were referenced, we
used automated refactoring for the name of generated plugin projects to rein-
troduce the missing prefix. After such refactorings, we still had to remove the
refactored plugin projects such that at runtime the class loader would not get
confused by the class paths to throw the ClassNotFound exceptions.
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Automated refactoring on Eclipse project names using LTK could have been
applied here [28], however, to accommodate every change in the PF language,
one must specify which classes need to be renamed to which, and remember to
manually change the references to the class names in the plugin specification
too. Not a trivial task, without further customising the automated refactoring
tool.

The Dependency Injection Phenomena. Instead of Aspect-Oriented Pro-
gramming (AOP) [14], the designer of MDSD tool xtext uses the Dependency
Injection pattern implemented by the Google Guice framework to inject function-
alities at runtime. Similar to aspectJ, the new functionalities could be injected
into the base system by specifying an adaptor class that uses the reflection mech-
anism of Java. Unlike aspectJ, the behaviour of the weaved system is somewhat
controlled by the base system, in order to make the potential joinpoints explicit.

Ideally such technical details should be hidden from the developers who use
MDSD because in principle one would not bother to know how it works if it
works. However, one must be aware that the Guice framework assumes that
the classes are singletons. If they share the same namespace, e.g., prefixed by
the same package names while being located in different plugin projects scope,
the dependency injection may still result in runtime conflicts.

As watchful observers for research problems, we were “lucky” enough to ex-
perience such a problem when developing the PF/i* integration tool. When we
prefix our DSL language “Problem” and our adapted DSL language “Istar” with
the same prefix “uk.ac.open”, the generated code complained that the IDLink
resolution class was not found even though it was present in the packages of
the plugin component. After changing the prefix of one of these language into
e.g., “uk.ac.open.problem”, this conflict was resolved. A side effect was that we
obtained a package named “uk.ac.open.problem.problem”, in accordance with
the particular naming convention adopted by the developer of the MDSD tool
(i.e., xtext).

The Template-User Synchronisation Phenomena. When model and code
co-evolve, they change concurrently. Since in MDSD, model and generated code
are related by transformations, it is required to propagate changes from one end
to the other.

To illustrate the problem, we use a constructed example here. Suppose an
EMF user initially specifies a simple model that consists of one Entity class
with a single name attribute. Using the code generation feature of EMF, she will
obtain a default implementation which consists of 8 compilation units in Java
(Fig. 4).

Fig. 5 lists parts of the generated code. The Entity Java interface has getter
and setter methods for the name attribute. They are commented with @generated

annotations which indicate that the methods are part of the default implemen-
tation. Similarly, such @generated annotations are added to every generated
element in the code, e.g., shown in the skeleton of EntityImpl Java class.
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⇒

Fig. 4. Default code generated from the EMF meta-model

The annotation @generated defines a single-trip traceability contract from
the model to the annotated code element. A change in the model or a change in
the modelling framework can be propagated to the generated code; however, a
change in the generated code will not cause a change to the reflected model and
will thus be discarded upon next code generation.

As the default implementation is not always desired, the code generation shall
keep user specified changes as long as they are not inside the range of generated
traceability, the set of methods marked by @generated that keeps the changes of
generated templates. This can be achieved by adapting the @generated annota-
tion into @generated NOT, a non-binding traceability that reflects programmers’
intention that it will not be changed when the implementation code is regener-
ated. Note that such non-binding traceability indicated by @generated NOT is
still different from those without any annotation at all: Without such an anno-
tation, EMF will generate new implementation of a method body following the
templates.

This workaround does not work when a user parametrises the toString()

method to append an additional type to the returned result. To guard the
method from being overwritten by future code generations, the annotation
@generated NOT is used. She also applies a Rename Method refactoring, chang-
ing the getName method into getID. The modified parts are shown in Fig. 6.
Propagating these changes back to the model, the name attribute will be renamed
into iD automatically, following the naming convention that attribute identifiers
start with a lower case character.

Code regeneration results in the changes in Fig. 7: the setter methods and
the implementations of both getter/setter methods are modified according to
the default implementation of the new model. These are expected. However, two
unexpected changes are not desirable. First, a compilation error results from
the change in the default implementation, where the attribute name used in the
user controlled code no longer exists. Second, the default implementation of the
toString()method is generated with the original signature, which will of course
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1 package example ;

2 import org . e c l i p s e . emf . ecor e . EObject ;

3 /∗∗ @mode l ∗/

4 public inter face Entity extends EObject {
5 /∗∗ @mode l ∗/ public Str ing getName ( ) ;

6 /∗∗ @g e n e r a t e d ∗/ void setName ( S tr ing value ) ;

7 }

1 package example . impl ;

2 import example . Entity ;

3 . . .

4 /∗∗ @g e n e r a t e d ∗/

5 public c lass EntityImpl extends EObjectImpl implements Entity {
6 . . .

7 /∗∗ @g e n e r a t e d ∗/

8 protected Str ing name = NAME EDEFAULT;

9 . . .

10 /∗∗ @g e n e r a t e d ∗/

11 public St r ing getName ( ) { return name ; }
12 /∗∗ @g e n e r a t e d ∗/

13 public void setName ( S tr ing newName) { . . . }
14 . . .

15 /∗∗ @g e n e r a t e d ∗/

16 @Override

17 public St r ing toS t r ing ( ) {
18 i f ( eIsProxy ( ) ) return super . t oS t r ing ( ) ;

19 St r i ngBu f f e r r e s u l t = new St r ingBu f f e r ( super . t oS t r i ng ( ) ) ;

20 r e s u l t . append ( ” (name : ” ) ;

21 r e s u l t . append (name) ;

22 r e s u l t . append ( ’ ) ’ ) ;

23 return r e s u l t . t oS t r i ng ( ) ;

24 }
25 } // E n t i t y I m p l

Fig. 5. Parts of the generated code in Fig. 4

become dead code since the user has already modified all call sites of toString()
to reflect the insertion of the new type. Similarly, the user specified toString()

method can also become dead code, if it is no longer invoked by the new default
implementation.

Compilation errors are relatively easy to spot by the programmer with the
aid of the Eclipse IDE, but the dead code problems are more subtle because
the IDE will not complain. Therefore, it will be more difficult for developers to
notice the consequences.

In [25], we have developed a two-layered synchronisation framework, blinkit,
to address this problem.

Figure 8 presents an overview of the framework when it is applied to the case
study of EMF/GMF, where EMF is the synchronisation framework for vertical
traceability and blinkit framework is the horizontal synchronisation counterpart.
Examples in [25] indicate that when the complementary changes to templates
and user-modified code are conflicting or redundant, our tool can avoid some
dead code redundancies and raise some warnings as compilation errors.

So far we have enumerated, using the concrete example, several common
MDSD phenomena at the development time. They are all related to the “alpha-
bet mismatch” problem that reveals a gap between the understanding of a model
developer and a model user. Since the model developer and user are guessing
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1 /∗∗ @mode l ∗/

2 public inter face Entity extends EObject {
3 /∗∗ @mode l ∗/ public St r ing getName

�
ID ( ) ;

4 /∗∗ @g e n e r a t e d ∗/ public void setName ( ) ;

5 }
6 . . .

7 /∗∗ @g e n e r a t e d ∗/

8 public c lass EntityImpl extends EObjectImpl implements Entity {
9 /∗∗ @g e n e r a t e d ∗/

10 public St r ing getName
�
ID( ) { return name ; }

11 . . .

12 /∗∗ @g e n e r a t e d
��
NOT∗/

13 @Override

14 public St r ing toS t r ing (
����
String

���
type) {

15 i f ( eIsProxy ( ) ) return super . t oS t r ing ( ) ;

16 St r i ngBu f f e r r e s u l t = new St r ingBu f f e r ( super . t oS t r i ng ( ) ) ;

17 r e s u l t . append ( ” (name : ” ) ;

18 r e s u l t . append (name) ;

19 r e s u l t . append ( ’ ) ’ ) ;

20
������������
result.append(type);

21 return r e s u l t . t oS t r i ng ( ) ;

22 }
23 } // E n t i t y I m p l

⇓

Fig. 6. User modifications to the generated code: insertions are
��������
underlined and the

deletions are stroked out; the changes are reflected

each other’s model in mind, ultimately only runtime reconcilation could resolve
their differences.

3 Generalised Problem and Related Work

With the advent of self-adaptive systems, according to Baresi and Ghezzi [6],
the boundary between development time and runtime is disappearing. What is
typically regarded as development time activities in a MDSD process may now
be regarded as runtime activities.

Using the examples presented so far, we identify three gaps in the current
research on the runtime problem diagnosis.

Monitoring mismatching requirements. If one would be able to know require-
ments that are implemented by the default template code, as well as specific
requirements customised by individual users, then it can be promising to add
runtime monitors to places where the mismatches between the two sets of re-
quirements happen at runtime. More generally, developers and users are often
inconsistent in terms of their understanding of requirements. Related to this,
Requirements Awareness [18] is a key issue. Without runtime awareness of the
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⇒ ⇒

1 /∗∗ @mode l ∗/

2 public inter face Entity extends EObject {
3 /∗∗ @mode l ∗/ public St r ing getID ( ) ;

4 /∗∗ @g e n e r a t e d ∗/ public void s e tName
��
ID( ) ;

5 }
6 . . .

7 /∗∗ @g e n e r a t e d ∗/

8 public c lass EntityImpl extends EObjectImpl implements Entity {
9 /∗∗ @g e n e r a t e d ∗/

10 public St r ing getID ( ) { return name
�
iD ; }

11 . . .

12
���������
/**@generated*/

13
����
public

����
String

�������
toString()

�
{

14 if
��������
(eIsProxy())

����
return

�����������
super.toString();

15
�������
StringBuffer

����
result

�
=
���
new

�������������������
StringBuffer(super.toString());

16
���������
result.append(”

���
(iD:

��
”);

17
�����������
result.append(iD);

18
����������
result.append(’)’);

19
���
return

�����������
result.toString();

20
�
}

21 /∗∗ @g e n e r a t e d NOT ∗/

22 public St r ing toS t r ing ( St r ing type ) {
23 i f ( eIsProxy ( ) ) return super . t oS t r ing ( ) ;

24 St r i ngBu f f e r r e s u l t = new St r ingBu f f e r ( super . t oS t r i ng ( ) ) ;

25 r e s u l t . append ( ” (name : ” ) ;

26 r e s u l t . append (name) ;

27 r e s u l t . append ( ’ ) ’ ) ;

28 r e s u l t . append ( type ) ;

29 return r e s u l t . t oS t r i ng ( ) ;

30 }
31 } // E n t i t y I m p l

Fig. 7. Regenerated code from the model: insertions are
���������
underlined and the deletions

are stroked out, the compilation error is doubly underlined

requirements of individuals, it is harder for developers and users to agree on the
current status of the system with respect to the requirements satisfaction.

In general, the MDSD process would require an additional step to regenerate
the solution from the modified model. However, without explicit modeling of the
generated code and the template code, it is not possible to automate every change
through code generation. Due to the lazy binding of problems and solutions,
at runtime such mismatches become even more severe. Current requirements
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Fig. 8. An overview of the horizontal and vertical traceability links in the bidirectional
invariant traceability framework: blinkit. V1 and V2 are two revisions of model, tem-
plate or user codes extracted from the CVS repository of a software development project
using EMF code generation.

conflict detection techniques require both models to have similar structures (e.g.,
mergeable) [15]. If the two models do not have similar structures, the question
is how to model them so that they are still verifiable. Another research question
is of course to have an explicit encoding of requirements in the templates to
prepare for such verifications.

Recently, Akiki et al. [3] proposed the use of interpreted runtime models
instead of static models or generative runtime models. Although it is limited in
the GUI domain, the proposed solution seems to be promising to bring adaptivity
to the runtime systems. A prototype and architecture to support adaptive UI
has been developed and demonstrated [4] for adaptive UI of enterprise software
applications through service-oriented adaptations.

Runtime traceability. Unlike the use of traceability at development time, runtime
traceability of MDSD systems has to listen to the chain of events at the runtime.
One example of such mechanisms is the event handler in Java runtime virtual
machines. By cascading the listeners to the events, the call traces at the point
of failure can give the user a clue about the fault location. However, such a
mechanism require developers to be cooperative: explicit exceptions must be
thrown or caught in the try-catch blocks. Otherwise, it could be too late to tell
where the exception were generated in the first place.

Several machine learning approaches have been proposed to address this is-
sue, for example, by studying the historical events in stack traces [11]. However,
runtime traceability requires responsive reactions on the mismatching template
and user code which is still not well understood. Earlier work on monitoring
and diagnosing software requirements may be helpful to make use of the goal
models as a priori knowledge to diagnose problems in the event traces [23].
The challenges we are facing here is that the MDSD processes use more compli-
cated models than goal refinements.



202 Y. Yu et al.

Model interactions problems. As we described earlier, MDSD is a complicated
process which may involve more than one metamodel. The “Tao” is to have
a megamodel to unify the different metamodel code generation processes [9].
However, different metamodels may be created by different people and thereby
inherently embed interaction bombs between the tacit knowledge. They are not
necessarily compatible to each other, yet may not be notified by the developers
and users at the runtime. A mechanism to protect the different MDSD generated
code from feature interaction problems [20] will be very useful. One possible
direction of research is to investigate the use of AOP technique to detect and
resolve undesired interactions between models at runtime. For instance, dynamic
aspect weaving techniques provide a mechanism to inject code to resolve runtime
conflicts between models.

Recently, Bencome et al. [7] proposed a framework to support on-the-fly inter-
operability at runtime by generating emergent middleware that can synthesise
multiple runtime behaviour models in labelled transition systems. In order to
avoid feature interactions at runtime, uncertainty handling is still regarded as
one of the future work. Tun et al [19] addressed the runtime feature interaction
problem by encoding the composition frames using the Event Calculus and re-
solving the conflicts through a composition controller. However, identifying the
composition requirement remains a challenge.

4 Problems Diagnosis at Runtime

This section generalises these runtime concerns into a runtime diagnosis proce-
dure which may become a key component of a self-adaptive problem analysis
framework.

On basis of our earlier work on runtime adaptive model interpretation middle-
ware [3, 4], runtime requirements failure diagnoses [19, 23], and invariant trace-
ability [25], we propose a new framework in Figure 9 to consider tacit knowledge
for runtime problem diagnosis (PD@runtime). Various sources of information are
brought to the attention at the runtime, these include the template development
hidden from the users, and the assumptions about the environment hidden from
the developers.

The information monitored at runtime includes a context model about the
environment [5] and a self-awareness model about the working of the system. A
mismatch between the system implementation and the environment expectation
is regarded as a system failure or error. To determine what to be included in the
system model, at least two kinds of models owned by different stakeholders need
to be considered. Generalising from the MDSD process, the template system
model captures the knowledge of a developer, whilst the user system model
captures the knowledge or at least the perception of a user. Both template and
user system models need to be monitored to tell whether any change could
lead to a mismatch between the requirements in the way they are understood
by the stakeholder. Given that both models are complex, it is usually hard
to let either the developer or the user to construct them alone. Instead, the
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PD@runtime framework uses a procedure to filter out the changes that can be
handled by the underlying automated fixing mechanisms (such as compilers and
bidirectional model-transformations [25], such that only information relevant to
the requirements mismatch will be passed on to the human stakeholders. Overall,
the requirements awareness problem can be defined as the combination of the
awareness of system failure and the awareness of the requirements mismatch
among stakeholders.

4.1 Meaningful Changes Detection and Propagation

While the template and user models co-evolve, a systematic approach is required
to propagate the changes from one end to the other. Earlier we have developed
the meaningful change detection tools for identifying changes that are mean-
ingful to different stakeholders [29], as well as the bidirectional transformation
framework to propagate the meaningful changes between the template code and
the user modifications [25]. The meaningful change detection tool can detect any
mismatch between two normalised structures, which covers typically all models
that can be described by a computer language. Although the tool is powerful,
it requires guidance [26] to learn what kind of information is regarded as mean-
ingful from large datasets. Presumably what is meaningful for one stakeholder
may not be meaningful to another. Therefore, we have started a new research
agenda to refine the viewpoints of different stakeholders into concrete rules in
order to judge the relevance to the other stakeholders.

Once the relevant and meaningful information is defined, the tool generates
predefined runtime monitors which can already collect information in such a way
that when the abnormal execution traces are obtained, one can trace backwards
to track the location of faults. If the faults involve any wrong trust assumption
about the environmental contexts, an appropriate adaptation alternative will be
switched to at runtime [16, 17].

4.2 Feedback Loops

Debugging programs written in a high-level programming language typically
requires traceability between the location where error is spotted and the cor-
responding location in the source code. Because compiler translations add a
layer of indirection, if the optimisation option such as -O has been turned on,
diagnosing runtime errors become much harder. Programmers would typically
trust that the optimising transformations do not change the execution behaviour,
while debugging the machine code with as few optimizations as possible, e.g.,
facilitated by the option -g. Since MDSD is motivated by the success of com-
pilers, and the models are at a higher level of abstraction than the high-level
programming languages, trust needs to be established by a solid understanding
of what to diagnose and where to fix problems. However, the template code that
addresses most users’ requirements may not be exactly what the individual user
wanted. Therefore, whenever such diagnoses trace back into the template code,
the problem gets even more difficult.
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Since boundary between development-time and runtime is disappearing, the
distinction between adaptation and evolution in such systems is also getting
blurred. Depending on whether requirements change at runtime, one may sep-
arate evolution from adaptation. Yet, the blurring boundary in practice makes
it necessary to address MDSD concerns at runtime too. Runtime self-adaptive
systems require some form of feedback loops, e.g., using the PID controller [8],
to be able to react to quality requirements changes accordingly. It is our hope
that the tacit knowledge concern of MDSD can be addressed such that one can
also apply the feedback loop mechanisms to the runtime MDSD problems.

Data: E: environment context model, SD, SU : developer’s and user’s
system models, μ(Δ): meaningful change, �: mismatching
judgment, T : system execution traces, C: program code

Result: Traces
while true do

(ΔE,ΔS,ΔT,ΔC) = (E′ − E, S′ − S, T ′ − T,C′ − C);
μ(ΔE,ΔS,ΔT,ΔC) = (μΔE, μΔS, μΔT, μΔC);
if μΔT � μΔC then

program fixed = Abnormal trace fault location and fixing;
if ! program fixed ∧μΔS � ΔE then

failure fixed = System failure detected and fixing;
if ! failure fixed ∧μΔSD � ΔSU then

bidirection transformation = Reconcile requirements
mismatch;
if ! bidirection transformation then

inform developer and user about the problem;
(S′

D, S′
U ) = update(S′

D, S′
D);

end
else if bidirectional transformed then

(S′
D, S′

U ) = bidirectional transformed(S′
D, S′

D);
end

end
else if failure fixed then

(E′, S′) = failuref ixed(E
′, S′);

end

end
else if program fixed then

(T ′, C′) = programf ixed(T
′, C′);

end

end
(E, S, T, C) = (E′, S′, T ′, C′);

end
Algorithm 1. An illustration of the PD@runtime procedure



From Model-Driven Software Development Processes 205

Fig. 9. PD@runtime: tracing the causal chain of events backwards for runtime problem
diagnosis for MDSD processes

The following pseudo code describes and summarises the framework into a
problem diagnosis at runtime procedure. As one can see, a large part of the
procedure can be automated (self-repairing), while some steps still require human
on top of the feedback loop to control the overall diagnosis direction.

5 Conclusion

Following the MDSD process blindly at runtime will create more problems in
the development than it solves. In summary to the three reported problems, we
propose an additional alphabet or tacit knowledge concern to the MDSD process.
The concern can be expressed as follows: “When the MDSD process generates
code with additional alphabet introduced (in the form of plugin names, package
names, class names, or method names), one must ensure these names are not
conflicting with the names (unwittingly) introduced by the developer of the
modeling language”. To avoid such problems at runtime, it is required to have
additional tools to check any violation of the concern.

A more general problem of requirements awareness is derived from the prob-
lems we identified from the MDSD process. To tackle it, we show a systematic
procedure that uses meaningful changes detection to differentiate the changes in
environment contexts (execution traces) and in program implementations (of de-
veloper and of user), or in more abstract terms, the mismatches between models
of different stakeholders. The procedures is controlled by a feedback loop where
automatic fixes are employed with compiler and bidirectional transformations.
However, when the automatic fixes are not available, human must be informed
to handle the more difficult cases.
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Abstract. Today’s fast and competitive markets require businesses to
react faster to changes in its environment, and sometimes even before
the changes actually happen. Changes can occur on almost every level,
e.g. change in demand of customers, change of law, or change of the
corporate strategy. Not adapting to these changes can result in finan-
cial and legal consequences for any business organisation. IT-controlled
business processes are essential parts of modern organisations which mo-
tivates why business processes are required to efficiently adapt to these
changes in a quick and flexible way. This requirement suggests a more
dynamic handling of business processes and their models, moving from
design-time business process models to run-time business process mod-
els. One general approach to address this problem is provided by the
community of models@run.time, in which models reflect the system’s
current state at any point in time and allow immediate reasoning and
adaptation mechanisms. This paper examines the potential role of busi-
ness process models at run-time by: (1) discussing the state-of the art of
both, business process modelling and models@run.time, (2) reflecting on
the nature of business processes at run-time, and (3) most importantly,
highlighting key research challenges that need addressing to make this
step.

Keywords: run-time models, business process models, business process
management, adaptive systems, business process optimisation.

1 Motivation

Business processes and business process models play a central role in modern
businesses. In the early years of computer-aided management of business pro-
cesses it was assumed that business processes do not change frequently during
their execution. While this might be true for static processes, e.g. at the strate-
gic level, less rigid processes, mostly found on the operational level, can be the
subject of frequent changes. Processes of the latter type might need to adapt to
dynamic changes [44] in environment (e.g., lack of available resources) or in flow
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of work (e.g. introduction of a new activity). In fact, today’s businesses have to
act in a highly competitive environment which comes with strict requirements
with regards to fast adaptations and optimisation. If changes in the environment
happen a business has to act accordingly and potentially also adapt their core
business processes to stay competitive or even outmatch their competitors. One
example is a hospital, in which, based on the qualifications of the current staff
and demand of the patients, the treatment process has to be adapted in case
of a sudden virus outbreak. Another example is the dynamic field of security,
almost daily new threats arise and an organisation has to be prepared in order
to protect its confidential assets.

As business processes are ultimately driving today’s modern organisations
they are likely to change and adapt at increasing speed. A late action can result
in a Service Level Agreement (SLA) violation, leading to financial and legal
consequences. To prevent this from happening businesses have to deal with the
following two general challenges1:

– Need to adapt to changing demands: A business organisation and its
processes have to be flexible and continuously adapt to changing demands
exposed to by internal or external sources. Adaptations need to be accurate
and reliable in order to actually improve the current situation.

– Need to shorten the business process life cycle: The process of de-
signing, configuring, deploying, and analysing a business process [54] should
become further simplified, i.e. more automated.

Hence, a more dynamic handling of business processes is desirable, moving
from design-time business process models to run-time business process mod-
els. One approach to address this problem is provided by the community of
models@run.time, in which models reflect the system’s current status at any
point in time and allow immediate reasoning and adaption mechanisms. This
paper is a first attempt to raise the abstraction level of models@run.time to the
domain of business processes. This will, for one, contribute to research in mod-
els@run.time by providing a valid use-case as well as further requirements for
models@run.time of a high abstraction level and, secondly, help to address the
general challenges of business adaptation and automation.

The remainder of this paper is structured as follows: In Section 2 background
information of the business process management domain necessary for the un-
derstanding of this paper is summarised. In Section 3 the state of the art with
regards to the topic of business process models at run-time and the general
challenges identified earlier is reviewed: business process modelling standards,
business process adaptation, and models at run-time. Section 4 presents the
three main research challenges that arise from raising the abstraction level of
run-time models to the domain of business processes. These challenges are then
individually discussed in the following three sections, each challenge comprising
related work and first findings. We conclude with a summary and outlook in
Section 8.
1 These two relevant challenges have been extracted from a set of challenges for modern
businesses identified by Simchi-Levi et al. in [52].
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2 Background: Business Process Management

Processes accompany every human venture, from simply booking a holiday to
manufacturing a car. In a similar way a business organisation is driven by its
so-called ”business processes”: In order to achieve an organisation’s objectives,
tasks are usually carried out in certain ways, i.e. workflows are defined to express
activities, the associated roles to perform them, and their order of execution. In
[17] business processes are defined as ”...a series or network of value-added ac-
tivities, performed by their relevant roles or collaborators, to purposefully achieve
the common business goal.” Prominent examples of business processes are Order-
to-Cash, Accounts Receivable, or Procure-to-Pay. Because of their central role in
a business organisation they are considered to be ”...the most valuable corporate
asset” [1].

In order to deal with increasing complexity and respond to the arising im-
portance of business processes, Information Technology (IT) was harnessed to
manage business processes. This development lead to the rise of Business Pro-
cess Management (BPM), as an IT-related discipline. In fact, BPM is a cross-
discipline subject of ”theory in practice” adopting a variety of paradigms and
methodologies from computer science, management theory, philosophy, math-
ematics, and linguistic, just to name a few [17]. Perhaps because of its cross-
disciplinary nature, even after a history of three decades, there are many
duplicate, and contradictory publications trying to clarify definition and scope
of basic BPM terminology [17], e.g. business process vs. workflow, BPM vs.
Workflow Management (WfM) vs. Business Process Reengineering (BPR).

However, Business Process Management (BPM) is considered to be the next
step after the workflow wave of the nineties [54]. Therefore, it is appropriate
to use workflow terminology to define BPM. A Workflow Management System
(WfMS) is defined as: ”A system that defines, creates and manages the execution
of workflows through the use of software, running on one or more workflow en-
gines, which is able to interpret the process definition, interact with workflow par-
ticipants and, where required, invoke the use of IT tools and applications.” [19].
Based on that BPM is defined as follows: ”Supporting business processes using
methods, techniques, and software to design, enact, control, and analyze opera-
tional processes involving humans, organizations, applications, documents, and
other sources of information.” [54]. Software systems that support the manage-
ment of operational business processes are called Business Process Management
Systems or Business Process Management Suites (BPMS’s) [18]. Although many
other definitions of BPM exist, they are in most cases wrapped around Workflow
Management(WfM).

In BPM a process type is a particular type of process with a defined business
goal, e.g. Order-to-Cash. A process type is represented by a particular process
schema which is captured in a business process model specifying business process
aspects like activities, ordering, resources. A process type may be represented by
more than one process schema expressing different versions or evolution steps of
this type. Furthermore, a process instance is defined as a particular occurrence
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of the business process, i.e. a particular sequence of executed activities in order
to process a work item.

Part of the complete BPM definition is the BPM lifecycle. Here that of promi-
nent BPM researcher van der Aalst et al. is adopted. It originates from the
standard development life cycle and consists of 4 stages (see Figure 1) [54]:

1. Process Design - In this stage, business processes are modelled for the
BPMS.

2. System Configuration - This stage configures the BPMS and the under-
lying system infrastructure (e.g., synchronisation of roles).

3. Process Enactment - The modelled business processes are deployed and
executed in a BPMS.

4. Diagnosis - With analysis and monitoring tools, the BPM analyst can iden-
tify bottlenecks and improve the business processes.

Fig. 1. BPM life cycle: Workflow Management vs. Business Process Management [54]

The viewpoint of Aalst et al. is that WfM covers only process design, sys-
tem configuration, and process enactment, but BPM also includes the diagnosis
phase to complete the BPM lifecycle [54]. This viewpoint makes WfM a logical
subset of BPM. According to [17] ”...many BPMS are still very much workflow
management systems (WfMS) and have not yet matured in the support of the
BPM diagnosis.” However, recently the diagnosis phase started to gain more
attention which is reflected in the high number of publications in the sub-topics
of Business Process Analysis (BPA) and Business Activity Monitoring (BAM).

A more industry-based viewpoint on BPM and WfM is provided by
Gartner [14]: ”Business process management (BPM) is a process-oriented man-
agement discipline. It is not a technology. Workflow is a flow management tech-
nology found in business process management suites (BPMSs) and other product
categories.” Here BPM is a management discipline which is supported by WfM
as a technology.

To put BPM terminology into one coherent picture, understanding the nested
relationship of BPM theory (e.g., Pi Calculus [24] and Petri Nets [36]), BPM
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standards (e.g., Business Process Model and Notation (BPMN) [31] or Busi-
ness Process Execution Language (BPEL) [28]), and BPM systems (e.g. SAP
Netweaver BPM [64] or Intalio BPMS Designer [15]) is of essence: BPM stan-
dards are based on established BPM theory and eventually adopted into software,
i.e. BPMSs [18].

3 State of the Art

To address the topic of business process models at run-time and its associated
general challenges (see Section 1), in the following sections state of the art is
surveyed for the topics: (1) business process modelling standards, (2) business
process adaptation, and (3) general models at run-time.

3.1 Business Process Modelling Standards

The previously mentioned challenges are part of a set of general challenges that
are meant to be addressed by BPM standards. At the moment there are more
than 10 formal groups creating BPM standards [66], many of them dedicated to
definitions for business process modelling [13]. In order to get an overview about
the state of the art for business process modelling standards it makes sense to
categorise them into groups with similar functions and characteristics [18]. Many
of the standards address at least one of the phases of the BPM life cycle. For
this reason Ko et al. suggest a separation of features found in existing standards
into four different types of standards [18]:

1. Graphical Standards allow users to express information flow, decision
points, and roles for business processes in a diagrammatic way. Standards of
this type correspond to the design phase of the BPM life cycle and are usually
the easiest to understand, i.e. most human-readable. Prominent examples of
graphical standards are Business Process Model and Notation (BPMN) [31],
Event-driven Process Chains (EPC) [48], and activity diagrams of Unified
Modelling Language (UML) [33].

2. Execution Standards are code-like and enable business processes to be
deployed in a BPMS. Standards of this type correspond to the enactment
phase of the BPM lifecycle. The most prominent example is Business Process
Execution Language (BPEL) (sometimes also called Web Service Business
Execution Language (WS-BPEL)) [28].

3. Interchange Standards are used to translate graphical standards to execu-
tion standards and exchange business process models between BPMS’s [23].
One of the reasons these standards became necessary was the fragmented
BPM landscape. Two prominent examples of interchange standards exist:
Business Process Definition Metamodel (BPDM) [32] and XML Process
Definition Language (XPDL) [65].

4. Diagnosis Standards provide monitoring capabilities. These standards are
to support audit trails, real-time business process information, trend analy-
sis, bottleneck identification, etc. Examples are initiatives of Object Manage-
ment Group: Business Process Runtime Interface (BPRI) [30] and Business
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Process Query Language (BPQL) [29]. Though, both of the projects failed
to produce a standard (yet).

Most of the existing standards dealing with modelling languages can be assigned
to one of these types. Of course, this a simplified view and there exist some ex-
ceptions which can be assigned to more than just one, e.g. Yet Another Workflow
Language (YAWL) [57] can be regarded as graphical and execution standard, or
BPEL which can have a graphical representation, too.

Many standards already exist (perhaps too many) which address specific
phases of the BPM life cycle. However, important is the relation to the sys-
tem with regards to their time of validity. In practice, two types of business
process models with regards to their time of validity could be identified (see
Figure 2):

– A-priori model - Business process models at design-time: In this case busi-
ness processes are documented before execution to define the execution of
workflows in an organisation. This is either done informally via a document
listing and describing the steps and their execution order or they are mod-
elled via design-time languages. The most prominent business process model
languages were developed to build design-time models, and focus on aspects
like interoperability, or being a basis for reliable communication between
different stakeholders [8]. Basically, every language that addresses the enact-
ment phase or one of the preceding is considered a-priori model, e.g. BPMN
or BPEL.

– A-posteriori model - In practice business process models are often ex-
tracted after execution to reflect the real execution of a process as part of
the diagnosis phase of the BPM life cycle. This static a-posteriori analysis
of business processes based on event logs is called process mining [59] or in
the case of a performance analysis during run-time Business Activity Mon-
itoring (BAM). A-posteriori models in the sense of process mining usually
conform to languages of BPM theory, e.g. Petri-Nets [56]. In the case of
recent BAM solutions, special modelling languages that address run-time
challenges of the diagnosis phase, e.g. need for notification when detecting
alarming behaviour, are common. One example for such a modelling lan-
guage is presented by Friedenstab et al. [10]: it proposes an extension for

A-priori 
Business Process Model

System in Use

Deployment/
Implementation

Model 
Extraction

A-posteriori 
Business Process Model

Timeline

Fig. 2. Common Kinds of Business Process Models
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BPMN to express process performance metrics. Both approaches, model ex-
traction via BAM or via process mining, are considered run-time analyses
in [59].

At the moment there is a shift towards a process diagnosis at run-time no-
ticeable which is reflected in an increasing number of publications detailing ap-
proaches about how to make modelling of BAM more automated or even part
of the business process modelling, e.g. [10,34,63,26,21]. In some cases even sim-
ple business process adaptation due to the monitoring results can be modelled.
However, all of these approaches have limitations, one of which is that they are
very much restricted to the purpose of traditional BAM: monitoring of Process
Performance Indicators (PPIs) and Key Performance Indicators (KPIs) which
are duration or frequency measures or aggregations of them.

3.2 Business Process Adaptation

Business processes need to be able to adapt to dynamic changes [44] in envi-
ronment, e.g. because of a lack of available resources, or in flow of work, e.g.
introduction of a new step. For instance, in domains like health care, Customer
Relationship Management (CRM), or customised product manufacturing are
process adaptations necessary or desirable to address changing demands.

In recent literature two different types of adaptation to dynamic changes
could be identified: (1) build-time flexibility, i.e. the ability to pre-model flexible
execution behaviour, and (2) run-time flexibility, i.e. in which an adaptation at
run-time in the sense of exception handling or process evolution is carried out.
In both cases the challenge is to balance flexibility and control [46].

Build-time flexibility is about leaving parts of the business process unspeci-
fied at design-time, i.e. the flexibility is modelled into the business process, and
the missing information is added at run-time according to pre-specified con-
straints or rules. Different approaches to achieve this type of flexibility are by
applying either general declarative processes [60,35], advanced modelling [53] or
late-binding [46]. Pioneers of the more prominent latter approach are Sadiq et al.
who introduced so called ”pockets of flexibility” for workflow specifications [46].
The introduced workflow specification consists of [45]:

– core process consisting of pre-defined activities,
– pockets of flexibility within the process which in turn consist of

• set of process elements, which can be a single activity or a sub-process,

• set of constraints for concretising the pocket with a valid composition of
process elements.

The definition is recursive and thus supports a hierarchical definition of flexibility
pockets.

The other type of handling dynamic change: run-time flexibility, is about
permanently or temporarily adapting the business process model at run-time.
Permanent adaptation in the sense of process evolution is carried out by process
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schema changes on the process type level and supported by adaptive process lan-
guages [40]. Temporary adaptations in the sense of ad-hoc changes is carried out
on the process instance level and supported by exception- or case-handling [58].

For both types of flexibility, run-time and build-time, 18 change patterns2

have been identified in [62] to facilitate formal validation for different adaptation
approaches. The identified change patterns comprise a set of common process
changes that could be applied to a business process. Though, all changes should
be generally supported not all of them leave the business process after application
in a valid state, e.g. removal of an activity can lead to a run-time error due to
missing data. Hence, a number of changes is usually applied simultaneously,
which emphasises the important challenge of change validation in the area of
process adaptation, which is discussed in further detail in Section 6.2.

So far research in the area of process adaptation mostly focuses on the chal-
lenges of how adaptations can be carried out (modification policies) and which
adaptations can be carried out (validation), but not so much on the challenge of
what adaptation should be carried out (optimisation). The common constraint-
based reasoning approaches with distinct adaptation solutions are limited with
regards to the optimisation potential of business processes. A first practical ap-
proach which addresses automated process optimisation can be found in [49]
where a business process optimisation loop including simulation as a mean for
performance parameter computation and process adaptation is proposed. In this
solution a simulation engine is included into the monitoring process with the help
of which optimal solutions for a process change are determined. The business
process is automatically adapted according to the suggestion. Although an eval-
uation has been carried out it seems that this work is still in a proof of concept
stage as important definitions, e.g. for modification policies which are further
discussed in Section 6.2, are missing.

3.3 Generalising Models at Run-Time

In Model-Driven Engineering (MDE), models are abstractions or reduced repre-
sentations of a system. The combination of principles from MDE and reflective
systems build the foundations of models@run.time. Here, models reflect the sys-
tem’s current status at any point in time as opposed to differentiate between
a-priori and a-posteriori models. More specifically, a model at runtime (M@RT)
”... is a causal connected self-representation of the associated system that em-
phasises the structure, behaviour, or goals of the system from a problem space
perspective” [2]. Run-time models are used in different domains and serve differ-
ent purposes, i.e. are problem oriented. Depending on the model’s purpose is its
properties. Still, similarities can be found that are more or less existent in most
of the run-time models.

One approach of classifying model elements of M@RT is presented in [4] in
which an analysis of model dynamics and executability has been carried out.

2 14 for run-time flexibility and 4 for build-time flexibility.
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Therein the following classification of elements of executable run-time models
has been identified:

– Definition part: the static part of the model which is defined at design-time
– Situation part: describing the dynamic state of a system during execution
– Execution part: specifying the transitions from one state to another

Because of the classification’s focus on executable models it does not fully apply
to general run-time models [20], i.e. not every run-time model is an executable
model: E.g. run-time models with the purpose of monitoring do not necessarily
have to have a definition part; some are built completely at run-time (e.g. by
data mining algorithms). The inapplicability for general run-time models of this
element classification motivated Lehmann et al. [20] to focus on classifying run-
time model elements based on the causal connections of the model. The causal
connections in a M@RT are either of a descriptive or prescriptive nature [51]:

– A model is descriptive if all statements made in the model are true for
the System Under Study (SUS), i.e. every relevant change of the system is
captured in the descriptive part of a run-time model.

– A specific SUS is considered valid relative to a prescriptive model if no
statement in the model is false for the SUS, i.e. the space of possible system
states is defined by the prescriptive part of a run-time model.

In general, the specification ratios of descriptive and prescriptive parts in a run-
time model differ dependent on its purpose. That is, a M@RT that focuses,
for instance, on monitoring has a strong focus on descriptive parts (e.g. [47])
and a M@RT that focuses on executability has a dominating prescriptive role
(e.g. [27]). In addition to the prescriptive and descriptive parts of the model,
Lehmann at. al identified that valid model modifications for both, descriptive and
prescriptive, and the actual information flow of the causal connection are part
of a general run-time model, too. The resulting classification to define elements
of meta-models for general run-time models is the following [20]:

– prescriptive part - how the model should be
– descriptive part - state of the SUS at run-time
– valid modifications of descriptive part during run-time
– valid modifications of prescriptive part during run-time
– causal connections - modelling the information flow between the model and

its SUS

The classification of elements for run-time models by Lehmann et al. [20] is
shown in an example in Figure 3. Assuming there is only a finite number of
states the system can be in then the prescriptive part would reflect all these
states and the descriptive part would consist of the single state the system is in
at the moment. The valid modifications of the descriptive part would determine
the transition from one state to another, it represents the execution logic of the
system. Additionally, through the notion of modifications of the prescriptive part
the run-time model would be available from within the run-time model itself,
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i.e. be self-representative. Models that have the properties of self-representation
and causal connection are called reflective [7]. However, per definition a run-
time model does not necessarily has to have the property of self-representation,
e.g. monitoring models are causally connected to the system sufficient for their
purpose without having the ability to change the system. Plus, as pointed out
earlier, the ratio of prescriptive and descriptive parts are dependent on the pur-
pose of the model: For instance, prescriptive parts of a monitoring M@RT can
be descriptive in a M@RT for dynamic adaptation.

However, there is one general issue that makes this classification only partly
suitable for a general M@RT: The classification captures the self-representation
property only partly because valid modifications for the descriptive parts should
be able to change at run-time as well in order to support full self-representation.
Assuming we are adding a state to the prescriptive part of the model, we would
also have to define transitions describing how to reach this state (see Figure 3),
i.e. add valid modifications of the descriptive part. We argue that the logical
adaptation of the classification to overcome this issue is to declare the valid
modifications of the descriptive part to be a part of the prescriptive part of
the model. A good example of this fact are business processes models: They are
generally prescriptive but also already define a workflow, i.e. the state transitions
of the system.

3.4 Summary

As identified in Section 3.1 common business process model languages focus
mostly on design-time aspects like interoperability, or being a basis for reliable
communication between different stakeholders. For this reason important run-
time aspects, like dimensions of change, are either only insufficiently supported
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or not regarded at all. A simple example is that simple state of a process instance
cannot be expressed with languages like BPMN.

If the concepts of M@RT are applied to the domain of business process mod-
els the result is business process models at run-time (BPM@RT). The current
classification into a-priori and a-posteriori business process models does not sup-
port the purpose of BPM@RT because this type of model is neither provided
before nor extracted after the system was in use. A BPM@RT is in fact a model
causally connected while the system is in use and therefore represents a new
type of model. Technically, a performance model derived from BAM is for in-
stance already a BPM@RT, i.e. it is a process performance representation of a
System Under Study (SUS) based on business processes and therefore to some
extent emphases the goals and behaviour of the processes from the problem
space perspective of performance analysis. However, there are more perspec-
tives on business processes than performance analysis, e.g. path prediction and
optimisation.

Also, a number of adaptation approaches presented in Section 3.2 can be con-
sidered as causally connected business process models at run-time, e.g. [40,46],
as they capture the current state and/or allow for run-time adaptations. How-
ever, automated optimisation of business processes is by neither of the reviewed
approaches supported and stays a current challenge that needs to be addressed.
Only one very initial optimisation approach [49] could be identified in which
several adaptation concerns have not yet been addressed.

We generally agree with the notion of business process models being handled
at run-time to sufficiently address the need for adapting to changing demands
and for shorter BPM life cycles. But the current state of the industry in which
business process models are mostly regarded as either a-priori or a-posteriori
models is too static and does not fully meet the requirements of systems in
which business processes are highly volatile with possible changes over time. In
some cases, however, business process models at run-time already exist, but do
neither fully leverage model driven concepts nor support important problems
like business process optimisation.

4 Research Challenges

Through the application of principles of the models@run.time discipline we cer-
tainly expect the view on business process management to become more struc-
tured and thus promotes a much needed separation of concerns. The assumption
is that if the abstraction level of models@run.time can be raised to the domain of
business processes, this can make business process management more automated
and business processes more flexible and easier to adapt. Future research in this
area will provide valuable contributions to areas of BPM and M@RT alike.

In an attempt to generalise future research challenges we identified topics that
have to be further addressed and are subject of the remainder of this paper.
The topics are conceptually depicted in Figure 4 and further described in the
following list:
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1. Run-Time Characteristics of BPM@RT: First of all, BPM@RT has to
deal with additional concerns as opposed to common business process mod-
els, such as capturing the current status information of the SUS’s processes
or the current performance of the process/system, depending on the problem
space of the run-time model. Most business process models are a-posteriori
models that only capture prescriptive information and this is why they need
to be extended by certain run-time characteristics. One major challenge will
therefore be to identify these run-time characteristics and elaborate a com-
plete specification of a BPM@RT. A special emphasis has to be put on the
dimensions of change the BPM@RT has to be able to express. The classifica-
tions of elements for general characteristics of run-time models reviewed in
Section 3.3 is a good starting point to determine necessary parts for business
process models at run-time. A review of related work and initial findings for
this challenge are discussed in Section 5.

2. Causal Connections between BPM@RT and the Associated Sys-
tem: A second step towards BPM@RT is the identification of existing causal
connections between the business process model and the SUS. Causal con-
nections are either applied in the form of Model Updates, i.e. if the SUS
changed the model has to be updated accordingly, or in the form of System
Modification, i.e. the SUS has to be modified according to the associated
model (see Figure 4). Due to the abstract nature of business process mod-
els this problem is particularly challenging as stronger requirements for the
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causal connections between system and model are necessary, e.g. policies of
how a BPMS can be updated during run-time. With regards to this challenge
related work is reviewed in Section 6 and put into relation to the findings
for the run-time characteristic challenge.

3. Reasoning: Models@run.time has been defined as a ”... causally connected
self-representation of the associated system ... from a problem space perspec-
tive.” [2]. The problem space of business processes is diverse and dependent
on what problem is to be regarded. Examples of this are: (1) Determining
the current performance of a business process, (2) Predicting the future be-
haviour or performance of a current business process based on its current
state and its historical behaviour and performance, and (3) Optimisation
and adaption of a running business process according to given objectives and
constraints. With respect to the actual problem in consideration appropriate
reasoning methodologies have to be analysed and developed for BPM@RT.
As opposed to common BPM reasoning methodologies like process mining
and BAM, the reasoning will not be based on state change events but on the
current state and historical states. As this is a change of paradigm which
has, to the authors’ best knowledge, not been addressed yet, this challenge
can only be briefly discussed in Section 7.

After intensive literature review the authors claim that applying principles and
theory of models@run.time to BPM has not yet been carried out to this extent.
The expectation is to unify the BPM approaches towards the models@run.time
paradigm, i.e. having a model express the current state and its history which
is the basis of reasoning algorithms that can in turn change the model and
eventually the system. Further research following this approach can initiate a
shift from separate tools for modelling, execution, and diagnosis towards one
framework comprising all of them. Already now the shift towards combining
phases of the BPM life cycle are addressed by some approaches in industry (e.g.,
the existence of interchange standards to transform design models into execution
models = design + enactment) and research (BAM solutions that can influence
the business process execution = enactment + diagnosis).

Three different challenges towards BPM@RT have been identified: (1) Iden-
tifying characteristics for BPM@RT, (2) Identifying requirements for the causal
connections between system and models, and (3) Reasoning upon BPM@RT. In
the next three sections these challenges are individually discussed in further de-
tail. That includes review of related work if available, first findings, and proposed
next steps.

5 Research Challenge: Run-Time Characteristics of
BPM@RT

A language for BPM@RT has to support specific run-time characteristics in
order to deal with the requirements of a run-time model. The classifications of
elements for general characteristics of run-time models, reviewed in Section 3.3, is
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a good entry point to define requirements for such a language. As pointed out in
that section, the ratio of prescriptive and descriptive parts are dependent on the
purpose of the model, e.g. monitoring M@RT vs. execution M@RT. But not only
the ratio of these parts can be different also the run-time aspect, prescriptive or
descriptive, can vary for the same model element types depending on the purpose.
That is, an element type, e.g. an activity, can be of a prescriptive nature in one
BPM@RT, e.g. execution standards like BPEL, but of a descriptive nature in
another BPM@RT, e.g. a run-time model extracted via process mining. Though,
in both cases it is important that changes on the activity level can be captured.
Hence, a special emphasis has to be put on the dimensions of change a BPM@RT
has to be able to express. This is discussed in the remainder of this section,
surveying related literature that deals with process flexibility.

5.1 State of the Art: Process Flexibility

An extensive taxonomy for dimensions of process flexibility is presented in [50]:

1. Flexibility by design is the ability to model alternative execution paths within
the process definition at design-time. Dependent on the circumstances, the
most appropriate execution path for a process instance can be chosen at run-
time. This dimension is supported by almost any business process modelling
language to some extent.

2. Flexibility by deviation is the ability for a process instance to deviate at
run-time from the prescribed execution path of the business process model.
The deviation does not allow for changes in the process definition, i.e. the
business process model.

3. Flexibility by underspecification is the ability to execute an only partially
defined business process at run-time. The full specification of the model is
made at run-time and can be unique for each process instance.

4. Flexibility by momentary change is the ability to modify the execution of one
or more selected process instances. This change is performed at the process
instance level and does not affect any future instances.

5. Flexibility by permanent change is the ability to modify business process
model at run-time such that the process definition is permanently modified.
All currently executing process instances need to be transfered to the new
process definition.

Whereas the first three dimensions leave the prescriptive part of the business
process model unchanged, the last two encompass modifications in the prescrip-
tive part of the business process model (either momentarily or permanently) at
run-time. We can find that most of the flexibility dimensions of this taxonomy
correspond to adaptation approaches presented in Section 3.2: Item 2 from the
list above corresponds to exception handling approaches, item 3 corresponds
to late-binding/pockets of flexibility, item 4 corresponds to case-handling, and
item 5 corresponds to adaptive processes.

Another similar differentiation can be found in [46], in which dimensions of
change for workflows are defined. Note, that the terminology in the following
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approach is a little contradictory to the terminology used in the first approach.
Some terms like ”flexibility” and ”change” have now a slightly different meaning.
The classification of change dimensions for workflows is [46]:

1. Flexibility is the ability of the workflow process to execute on the basis of
an incomplete specified model, where the full specification of the model is
made at runtime. This dimension of change is the equivalent of flexibility by
underspecification of the previous taxonomy.

2. Adaptability is the ability of the workflow processes to react to exceptional
circumstances. These exceptional circumstances generally effect one or a few
instances. This dimension of change is comparable to flexibility of momentary
change or flexibility of deviation of the previous taxonomy dependent on if
the process definition is momentarily adapted or not.

3. Dynamism is the ability of the workflow process to change when the business
process evolves. This evolution may be slight as for process improvements, or
drastic as for process innovation or process reengineering. Compared to the
previous taxonomy this dimension is equivalent to flexibility of permanent
change.

5.2 Identifying Run-Time Characteristics for BPM@RT

Both approaches capture dimensions of change that are either defined at design-
time or at run-time. Of importance for the dimensions of change with regards
to BPM@RT is, however, the associated abstraction level of the change, i.e.
the granularity of a change. There are two abstraction levels of change that
can be identified in both: (1) The change of the execution path of a process
instance, in the remainder called Variability, and (2) the change of a complete
business process definition, in the remainder called Dynamism. Due to the focus
of both approaches on process change, one abstraction level of change has not
been regarded, yet: the fine-granular state change in a process instance, in the
remainder called Reflectivity. We argue that a language for BPM@RT needs to
be able to support these three dimensions of change (see Figure 5) in order
support any business process related purpose from business process monitoring
to dynamic process optimisation of business processes.

The first conclusion to be drawn after identifying these three different dimen-
sions of change is that some business process models already have the properties
of adaptive models at run-time: Business process models that are executable and
monitor the state of the system, e.g. certain workflow models like ADEPT [40],
are adaptive models at run-time for process instances. That means in particu-
lar, that the prescriptive part specifies the possible states and transitions of one
process instance, the descriptive part describes the current state in the process
instance, and the valid modifications of the prescriptive parts are the shifts of
execution paths for the process instance dependent on the circumstances. This
is shown in Figure 6.

This is a good example to show how important the abstraction level of change
is, i.e. in terms of dynamic adaptation: on what level do we capture change
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of the system and on what level do we want to deploy change to the system.
With regards to general BPM@RT, the requirements are to be able to capture
and propagate change on the levels of reflectivity, flexibility, and dynamism. In
addition to the desired change dimension of a BPM@RT the model also has
to support standard business process modelling capabilities which is why the
requirement of expressibility is essential, as well. A language to model BPM@RT
has to support the requirements listed in Table 1.

Note, that some types of change cannot be assigned to one single level of
change, e.g. the specification of language X might already allow to model a
”Resource Change” but the specification of language Y does not support that
notion. In that case, ”Resource Change” is part of the variability dimension for
X but part of the dynamism dimension for Y.
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Table 1. Requirements for business process models at run-time

Requirement Description

Expressibility The expressive power of a process modelling language is governed by
its ability to express specific process requirements reflecting the pur-
pose of process modelling and execution. A process model is required
to contain structure, data, execution, temporal, and transactional in-
formation of the business process [22][43].

Reflectivity Reflectivity is the ability of the business process model to represent
change in the system on the process instance level, i.e. the model
should be able to reflect every fine-granular state the system can be
in, e.g. state of the activity. This dimension is almost exclusively only
triggered by the SUS and hence belongs to the descriptive part in
most BPM@RTs.

Variability Variability is the ability of a business process model to handle change
on the business process level, i.e. it has the capabilities to model
adaptations for process instances according to the desired behaviour,
e.g. via a decision element, or according to exceptional but tolerated
behaviour e.g. via exception handling. Depending on the purpose,
changes of the variability level belong either to the descriptive or to
the prescriptive part of the BPM@RT or to both.

Dynamism Dynamism describes the ability of a business process model to be
adapted at run-time according to changed circumstances. This busi-
ness process evolution entails special challenges for the transition
of process instances that have been initiated with the old business
process generation but have not yet terminated. A Strategy has to
be defined how these instances are migrated into the new process
schema [50], which is discussed in Section 6.2. This dimension is al-
most exclusively used to change the currently executing business pro-
cess model which in turn modifies the system in use and hence belongs
to the prescriptive part of the BPM@RT.

As a next step towards BPM@RT we propose to check existing business pro-
cess modelling languages like BPMN, BPEL, EPC, ADEPT, and YAWL against
these requirements. Whereas most of them support the variability requirement
to some extent, the other two dimensions of change, dynamism and reflectivity,
are expected to be less supported. In case none of the existing solutions prove
expressive enough an extension of the closest match or a new BPM@RT has
to be specified. A formal validation of the resulting modelling language can be
carried out based on general business process patterns [55] and business process
change patterns [62].

6 Research Challenge: Causal Connections

In Section 3.3 we have distinguished between two different kinds of causal con-
nections: (1) model update which alters the descriptive part of a model, and
(2) system modification which has to be performed if the prescriptive part of
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the model has been updated. In this section we take both causal connections
under examination with regards to business process models and survey existing
methodologies, respectively.

6.1 Model Update

The focus of this section lies on descriptive parts of a BPM@RT, i.e. the propa-
gation of system changes to the model. This action is called model update. The
basic task of a model update is to make sure that the current state from a prob-
lem space perspective of the SUS is reflected in the corresponding BPM@RT
at any point in time. The assumption is that every single change in the SUS is
represented as an event en which triggers a transition of an old BPM@RTn−1

into an updated BPM@RTn. This means a BPM@RT is built incrementally as
conceptually shown in Op1.

(Op1) en +BPM@RTn−1
ModelUpdate→ BPM@RTn

However, the common approach of extracting a-posteriori business process
model information is called process mining and operates in a different way: The
input is a complete event set e1, e2, ..., en from which the business process model
BPModeln is determined as shown in Op2.

(Op2) (e1, e2, ..., en)
ProcessMining→ BPModeln

The traditional and static process mining approach of Op2 stands in contrast
to the process model update approach and is not appropriately supporting the
run-time characteristic of M@RT. This is why the process model update opera-
tion Op1 has to be addressed by investigating suitable, incrementally operating
algorithms for dynamic process mining.

In general a dynamic descriptive M@RT in the business process domain, e.g.
process performance model, is causally connected with the BPMS through an
event stream. Events indicating a change in the system are processed, aggregated
and eventually trigger an update of the descriptive BPM@RT. This approach
is called Business Activity Monitoring (BAM) (see Section 3.1) and is achieved
through the application of Complex Event Processing (CEP) technologies. Ex-
isting BAM solutions mostly focus on monitoring key performance indicators on
the business process level, e.g. [16,39,10]. As identified in the previous section,
this is, however, only one abstraction level on which dynamic model updates can
be triggered. With respect to the classification of abstraction levels of change,
three different update types exist which are depicted in Figure 7 and described
in the following list:

– Dynamic Process Mining is the discipline of updating model informa-
tion on the business process level at run-time, i.e. detecting changes in the
variability dimension. Many BAM solutions operate on that dimension of
change, i.e. extract the performance of a business process model at run-
time. It corresponds to the traditional a-posteriori process mining discipline
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which is concerned with the extraction of knowledge about a business process
based on its event logs [56]. Process mining approaches provide insight into
a number of different perspectives: control-flow (called process discovered),
performance, data, and organisation. Whereas BAM approaches address the
performance perspective at run-time, development of solutions for dynami-
cally mining knowledge about the other perspectives at run-time is, to the
authors’ best knowledge, still an open research challenge.

– Process Instance Monitoring is the discipline of updating model infor-
mation on the process instance level at run-time, i.e. detecting changes in
the reflectivity dimension. This represents capturing fine-granular atomic
changes on the execution level, e.g. that an activity has been completed, and
based on that updating the model to the current state of the instance. Some
workflow and business process languages and their corresponding WfMS’s
and BPMS’s already support the capturing and representation of that di-
mension of change at run-time, e.g. [40].

– Dynamic Concept Drift Mining is the discipline of updating model in-
formation on the process evolution level at run-time, i.e. detecting changes
in the dynamism dimension. If the process gradually or suddenly evolves
into another schema this has to be updated in the model. This corresponds
to the traditional a-posteriori concept drift mining in processes [3], which to
authors’ best knowledge has not yet been approached in a dynamic way at
run-time.

All three of these update types are event-based and should operate based on
dynamic algorithms in the fashion of Op1 as opposed to their static a-posteriori
counter parts, i.e. concept drift mining and process mining. The common basis
for model updates at run-time in the domain of BPM is through processing the
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event stream which is a standard interface of modern BPMS, e.g. SAP Netweaver
BPM [64]. However, this stream contains change events of the lowest possible
dimension: the fine-granular state changes of the system. As there are no other
generalised hooks available for changes of both other dimensions, dynamism and
variability, have to be detected based on these low-level events.

6.2 System Modification

Since business process designers are not capable of anticipating all possible cases,
exceptions, and events beforehand, the run-time system may not have sufficient
knowledge to handle these situations and an adapted business process model
might have to be redeployed. State of the art for business process adaptation with
regards to existing approaches (build-time flexibility vs. run-time flexibility) has
already been presented in Section 3.2. System modification is the action that has
to be performed if the prescriptive part of the deployed business process model
has been adapted at run-time.

Generally, business process models are abstract workflows where the abstrac-
tion level correlates to the type of causal connections between business process
model and SUS, i.e. the higher the abstraction level of the business process
model the more manual effort is potentially needed to execute an adaptation. In
terms of the application of a system modification this means that with a high
abstraction level it becomes more difficult to perform a system modification on
the basis of the prescriptive part of the BPM@RT in an automated way. Com-
mon practice is that a graphical standard (e.g. BPMN) is used to design the
business process model [change], then an interchange standard (e.g. BPDM) is
utilised to transform that into an execution standard (e.g. BPEL) which is then
executed and monitored. The actual modification of the system based on model
adaptations is in the prominent BPMS not supported. Even though, there have
been approaches to deal with adaptations for business processes as presented
in Section 3.2, e.g. by build-time flexibility [25,60,35,53,46] or run-time flexibil-
ity [40,58], the actual system modification in an automated way remains to be
generally very difficult to execute due to the high abstraction level of business
processes.

One challenge that needs addressing to enable automation of system modifi-
cation is the validation of the change that is to be applied to the system. In [40]
a conceptual and operational framework is proposed that can reason about the
correctness of a requested change to handle dynamic structural adaptations of
workflows. At the core of this framework is a conceptual graphical workflow
model (ADEPT) based upon which a complete and minimal set of change oper-
ations (ADEPTflex) is defined, e.g. dynamic insertions/deletion of activities, or
changing activity sequence. These operations allow for modifying the structure
while preserving correctness and consistency of the system. With the help of
formal constraints for state, flow of data, and flow of control, changes can be
rejected if they can potentially lead to an invalid state of the system. This solu-
tion provides only a minimal set of changes with strict constraints to ensure that
no invalid state can be reached. A more coarse-grained view on these changes
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can help to reduce or relax these constraints, i.e. grouping changes instead of
regarding every change as an atomic modification action. For instance, assum-
ing two previously sequential activities are to become parallel, the constraints
for this coarse-grained modification would be less strong than the constraints
of the sub-modifications, deletion and parallel insertion, regarded individually.
Weber et al. [62] identified 18 change patterns based on 157 real-life business
processes from the domains of health care and automotive. 14 of these are adap-
tation patterns of different granularity, e.g. insert process fragment, delete pro-
cess fragment, swap process fragments, parallelise activities, and embed process
fragment in loop. The identified changes only consider the control-flow perspec-
tive and would have to be extended by patterns for the other perspectives, e.g.
reallocation of resources.

However, if more complex changes, e.g. to split or parallelise activities, are
requested modification policies have to be in place to ensure that the run-time
system continues to operate in the expected manner. Modification policies specify
how the transition from one business process to another is carried out [44]. These
policies are important with respect to the still active process instances of the
outdated business process and describe how to deal with them. Example policies
are Flush, which allows all current instances to complete according to the old
process model, Abort, which aborts all active process instances, and Migrate,
which maps the state of active process instances to the new model. The last
option is only applicable if additional migration constraints can be met, i.e. the
migration into a valid instance is possible. Modification policies are discussed in
more detail by Sadiq [44] and Schonenberg et al. [50].

In conclusion, due to the usually high abstraction level of business processes
both causal connections, model update and system modification, pose difficult
challenges. In the case of model updates for BPM@RT especially the dynamic
update algorithms for the higher levels of change, dynamism and variability,
are highlighted challenges for the future. In the case of system modification,
determining patterns of change for different perspectives of business process
models, e.g. resource and organisation perspective, will be a challenging task in
the future.

7 Research Challenge: Reasoning on Run-Time Business
Process Models

Reasoning is the action of drawing conclusions from available facts or state-
ments. We understand reasoning as a discipline not only based on logic but also
achieved by, for instance, statistical reasoning techniques, e.g. computation of
key performance indicators. With regards to the actual problem in consideration
appropriate reasoning methodologies can strongly vary in terms of input, applied
techniques, and resulting output. In the remainder we summarise existing work
in the domains of BPM and models@run.time with regards to these aspects and
relate it to the concept presented in Section 4.
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7.1 Input Information for Reasoning on BPM@RT

As opposed to traditional BPM reasoning methodologies like process mining and
BAM, the reasoning in the proposed setup (see Figure 4) will not be based on
state change events but on run-time business process models which capture the
current state and historical states of the system. In the following listing both
information types are described in further detail:

– Current state information comprises the descriptive parts of the BPM@RT
representing the state of the BPMS on all three identified dimensions of
change: reflectivity (i.e., the current state of an active process instance),
variability (i.e., the current state of the business process, comprising all states
of the active process instances), and dynamism (i.e., the current state of
the process evolution, representing the current business process schema in
use). Usually, at most two of the change dimensions are captured in current
BPM@RT as they serve a specific purpose, e.g. BAM solutions capturing
performance information on the reflectivity and/or variability level [16,38].
However, we propose to separate the concerns of capturing and reasoning:
capturing the general state of the SUS on all three dimensions and apply the
purpose-oriented reasoning based on this information.

– Historic state information comprises all past states the SUS has been in
and their associated time spans. State changes happen with different fre-
quency, ranging from a high frequency on the reflectivity dimension to a
rather low frequency at the dynamism dimension. However, for elaborate
reasoning techniques, e.g. simulation, it is a requirement to take the past
states into consideration to achieve meaningful results. Hence, a general-
purpose BPM@RT captures not only the current state on all three levels it
also has a record of all the past states on these levels.

With these two types simple reasoning can already be applied, e.g. perfor-
mance analysis, trend analysis, or path prediction. In terms of more elabo-
rate reasoning additional adaption information, i.e. constraints, rules, and vari-
ants [9], which is usually defined at design time are necessary. These aspects
would then belong to the prescriptive part of the BPM@RT and are dependent
on which level of change the reasoning is considering. In our proposed setup this
adaptation information is associated with the highest level of change abstraction:
dynamism, i.e. changing the deployed business process models at run-time.

Note, that in literature for some analysis techniques (e.g., business process
simulation [42,61]) an additional input data type is required: design informa-
tion, which contains business process design information, e.g. control- and data-
flow [42]. This type of information is in our point of view already captured in
the current state information as all three change dimensions are to be captured,
including the current business process schema (as a state).

7.2 Analysis Types for Reasoning on BPM@RT

In the following we discuss three analysis types that we consider important in
terms of reasoning on BPM@RT: decision support, adaptation, and optimisation.
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Decision Support. are analyses supporting the business analyst in making de-
cisions about the business process through providing him with additional com-
puted information of diverse nature, e.g. performance of the business process
or involved resources. This information enables the analyst to obtain more in-
sight into the process execution and its environment and react if an adaptation
or exceptional interference becomes necessary, reallocation of resources. Exam-
ples of these analyses are what-if analysis [12], performance monitoring [16],
performance prediction [38], path prediction [6], sensitivity analysis [11], and
bottleneck detection [41]. Traditionally, in the BPM domain two basic types of
analysis techniques are utilised to extract additional information from low-level
data, i.e. event logs:

– Analytical techniques are based on mathematical methods and models to
directly obtain information from the given data, e.g. FMC-QE [37]. Generally
speaking, the biggest advantage is that instant results can be computed,
which is why analytical techniques are preferably used in high-level analyses
like optimisation were thousands of different cases have to be analysed as
fast as possible. Disadvantages are that they typically are only simplified
approximations (e.g., conditional loop behaviour hard to be represented by
a formula [37]), impose additional constraints and are difficult to use [5].

– Simulation ”... attempts to mimic real-life or hypothetical behaviour” [61]. It
is considered to be versatile, impose only a few constraints, and produce re-
sults that similarly interpreted as the ones of the simulated system [61]. This
is why simulation is one of the most established techniques in the domain
of BPM supported by many tools. Most of these tools, however, focus on
analysing rather abstract steady-state situations which are simplified models
and less suitable run-time decision support [42]. To achieve more accurate
results a transient analysis, where the current state is the starting point for
an analysis is preferred [42]. This notion is fully supported by the BPM@RT
approach. The biggest disadvantage of simulations is that they are time con-
suming and not very scalable: size of the business process, time to simulate,
and average instance occurrence similarly have a linear influence on the exe-
cution time of the simulation. Additionally, as heuristic approach simulations
even have to be executed several times to gain a certain confidence about
the results.

Adaptation Reasoning. The challenge of reasoning is the connection between
the descriptive and the prescriptive part of a M@RT and triggers possible sys-
tem adaptations caused by an environment change. According to Fleurey et al.
adaptation reasoning requires the following types of input [9]:

– Context which abstractly captures all the descriptive information, includ-
ing current state and historical states. Traditional approaches however, only
consider the current state to be important for an ad-hoc adaptation. Com-
puted high-level information in the sense of the previously discussed decision
support, e.g. performance information, can be part of the context and help
determining the adaptation.
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– Variants describe the flexibility of the run-time model or system, i.e. what
adaptations are possible. Variants are of a prescriptive nature and belong to
the adaptation information, introduced earlier. In the domain of BPM vari-
ants are, for instance, inserting a new activity, and reallocation of resources.

– Constraints specify restrictions on the variants and hence reduce the prob-
lem space. Constraints are extending the prescriptive part of a BPM@RT
and also belong to the adaptation information. Examples for adaptation con-
straints can be state dependent, e.g. an activity can only be duplicated if it
is not active at the moment, or state independent, e.g. an activity can only
be allocated to a resource which can fulfill that role.

– Rules define how model and system should adapt to the change in the en-
vironment. These rules are in practice relations between the current state
and the possible variants [9]. They extend the prescriptive part and be-
long to the adaptation information. One example is ∀r ∈ Resources: If
utilisation(r) > 0.8 Then multiplicity(r) ← multiplicity(r) + 1.

The reasoning framework processes makes a decision based on the current con-
text, variants, constraints, and rules at run-time. The output of the reasoning
framework is an adaptation that matches the rules based on variants as well as
context and satisfies the dependency constraints.

Optimisation. The reasoning based on rules and logic as proposed by [9] and
introduced in the previous paragraph requires very good knowledge about the
business process and about its possible adaptations. A more flexible approach
is optimisation, an analysis which is driven by a fitness function. With the help
of this function variants within the constraints can be rated and the one with
the highest rating is considered to be the optimum. An optimisation is about
finding the best solution for a given environment, i.e. technically it is not a sub-
set of adaptation, but can be utilised to replace the adaptation reasoning via
rules/logic. Alternatively, an optimisation function could be part of the rules
but then all variants would have to be analysed. This is not suitable for a large
number of variants. Well known optimisation techniques can be found in the
areas of artificial intelligence, e.g. evolutionary/genetic algorithms, and mathe-
matics, e.g. numerical algorithms. Note, that if an heuristic approach is utilised,
a continuous swapping between localoptima is possible. This is a very undesired
effect.

In BPM only one initial approach for optimisation is known by the authors
which was discussed in Section 3.2. Here the future performance of every business
process variant, which was computed via using simulation, represents the fitness
function for the optimisation [49].

In conclusion, traditional reasoning in BPM is mostly based on the analysis of
state transition events, especially in the very prominent area of decision sup-
port. With introducing the concepts of models@run.time a shift towards reason-
ing on current and historic states is motivated and has to be further investigated.
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Adaptation reasoning is already well researched, its major limitation being the
lack of applicability of current solutions in the industry, i.e. a challenge is how
an adaptation can be modelled in an easier way. Additionally, in this section
we did not distinguish between online or offline reasoning, i.e. static reasoning
solutions have to be transformed if they are to be used at run-time.

8 Conclusion

Adapting to changing demands and shortening the business process lifecycle are
prominent challenges in the domain of business process management. This pa-
per motivates that a more dynamic handling of business processes is desirable,
moving from design-time business process models to run-time business process
models. We argue that a promising approach to address these challenges is pro-
vided by the community of models@run.time, in which causally connected mod-
els reflect the system’s current state at any point in time and allow immediate
reasoning and adaption mechanisms. This paper is a first attempt to raise the
abstraction level of models@run.time to the domain of business processes, i.e.
leveraging principles and concepts of the M@RT discipline to address the chal-
lenges of business adaptation and automation. With that it aims to unify BPM
solutions towards a general models@run.time paradigm, i.e. having a model ex-
press the current state and its history which is the basis of reasoning algorithms
that can in turn change the model and eventually the system. In order to gen-
eralise future research challenges three topics were highlighted that need further
addressing:

1. Run-time characteristics of BPM@RT
2. Causal connections between BPM@RT and the associated system
3. Reasoning on BPM@RT

Each of these topics have been discussed in more detail individually, including
review of related work, first findings, and proposed next steps. A number of
resulting and more specific research challenges that need to be addressed have
been identified and discussed: dimensions of change for BPM@RT, model update
methodologies, modification types, modification policies, and business process
optimisation. In the case of dimensions of change for BPM@RT, a first step has
been taken by specifying the three different levels of business processes in which
change can happen: dynamism, variability, and reflectivity.

Concluding, raising the abstraction level to the domain of BPM will provide
contributions to the area of models@run.time generally, and for other M@RT at
a similarly high abstraction level in particular. Furthermore, work in the area
of BPM@RT will provide a valid use-case for M@RT and help to address the
general challenges of business adaptation and automation.
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34. del-Ŕıo-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining Process Performance
Indicators: An Ontological Approach. In: Meersman, R., Dillon, T., Herrero, P.
(eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg
(2010)

35. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

36. Petri, C.A.: Kommunikation mit Automaten. PhD thesis. Rheinisch-Westfälisches
Institut f. Instrumentelle Mathematik (1962)

37. Porzucek, T., Kluth, S., Fritzsche, M., Redlich, D.: Combination of a Dis-
crete Event Simulation and an Analytical Performance Analysis through Model-
Transformations. In: IEEE ECBS 2010, pp. 183–192 (2010)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://bpmfocus.pbworks.com/f/BPM+Standards+At+The+OMG+-+July+07.pdf
http://www.omg.org/spec/BPMN/2.0/PDF.formal/2011-01-03
http://www.omg.org/spec/BPDM/1.0./formal/2008-11-03
http://www.omg.org/spec/UML/2.0/Superstructure/PDF.formal/05-07-04


Research Challenges for Business Process Models at Run-Time 235

38. Redlich, D., Gilani, W.: Event-Driven Process-Centric Performance Prediction via
Simulation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011,
Part I. LNBIP, vol. 99, pp. 473–478. Springer, Heidelberg (2012)

39. Redlich, D., Platz, S., Molka, T., Gilani, W., Winkler, U.: MDE in Practice:
Process-centric Performance Prediction via Simulation in Real-time. In: Störrle,
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Abstract. Modern software systems that play critical roles in society
are often required to change at runtime so that they can continuously
provide essential services in the dynamic environments they operate in.
Updating open, distributed software systems at runtime is very chal-
lenging. Using runtime models as an interface for updating software at
runtime can help developers manage the complexity of updating software
while it is executing. In this chapter we describe an approach to updating
Java software at runtime through the use of runtime models consisting of
UML class and sequence diagrams. Changes to models are transformed
to changes on Java source code, which is then propagated to the runtime
system using the JavAdaptor technology. In particular, the presented
approach permits in-the-small software changes, i.e., changes at the code
statement level, as opposed to in-the-large changes, i.e., changes at the
component level. We present a case study that demonstrates the ma-
jor aspects of the approach and its use. We also give the results of a
preliminary evaluation of the approach.

1 Motivation

The ability to perform updates on running systems is a requirement for many
modern software systems that play critical roles in society. Emerging cyberphys-
ical systems such as smart grids, next-generation air-traffic control systems, and
intelligent transportation systems must be updated while running if they are to
continue to perform effectively in dynamically changing environments. Shutting
down these systems to make a change is often not an option because loss or
interruption of provided services could have a detrimental effect on the parts of
society that rely on the services. Updating software at runtime is challenging
and models that provide effective abstractions of runtime phenomenon can be
used to manage the complexity [1].

Research on Models@RunTime (M@RT) is concerned with how abstractions
of software implementations can be used at runtime to manage the complexity
of making changes to software at runtime [1]. Current M@RT work tends to
focus on how models can be used to support runtime adaptation in autonomous
systems (i.e., in self-* systems) [17,11]. While M@RT research is dominated by
work in the self-adaptation area, runtime models can be used to support other
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forms of runtime system evolution. In particular, runtime models can be inter-
faces used by change agents for effecting changes on a software system while it
is executing [7]. A change agent can be human or a software mechanism. For ex-
ample, a developer can modify a runtime model consisting of sequence diagrams
to describe changes in how objects will interact, or modify a class diagram de-
scribing the structure of runtime objects to describe changes in object attributes
and references.

Runtime models can potentially be used to present the aspects of a running
system that can be changed using abstractions that are understandable by a
developer and that can be conveniently processed by a software change mech-
anism [7]. In many model-based self-adaptation approaches (e.g., see [4,8]) the
models present the running system as a configuration of runtime components,
and adaptation is often restricted to changes that can be effected by reconfigur-
ing the component structure. We consider these approaches to be course-grained
because changes are restricted to adding and removing components and links
between components. More fine-grained evolution of a running system is lim-
ited by a lack of support in mainstream program development technologies (e.g.,
C/C++, C#, Java technologies) for dynamic update actions that involve dy-
namic object schema changes. For example, substitution of an object of a class
by a corresponding object of the modified class during execution is typically
treated as type mismatch and thus is not allowed in mainstream technologies.

In this contribution we describe a M@RT approach that supports runtime
updates of Java programs by developers. In the approach, runtime models con-
sisting of class and sequence diagrams describe the aspects of the runtime struc-
ture and behavior that can be modified by a developer at runtime. Changes in
the runtime models are formally related to changes in the running system, and
thus changes to the models can be propagated to changes in the running system.
This use of runtime models requires more fine-grained descriptions of changes
than those typically used to support self-reconfiguration of running systems. In
the proposed approach, JavAdaptor [15], a tool that provides support for per-
forming dynamic update of Java programs at runtime, provides the required
fine-grained code changing facilities. Changes to the models are transformed to
changes in the Java source code which are then effected on the running system
using JavAdaptor.

We illustrate the approach using a railway simulation software system that
undergoes two changes: one is the introduction of a realization of the strategy
design pattern that is intended to make the original design more flexible, and
the second change exploits the new flexible design to introduce a new type of
train that is handled differently in the system.

In Sect. 2 we give an overview of how runtime updates are performed using
the approach. A more detailed account of the model change operators and their
mappings to code level change operators is given in Sect. 3 and 4 respectively.
A demonstration case study is provided in Sect. 5, and results from an initial
evaluation of the approach are described in Sect. 6. Related work is presented
in Sect. 7, and we conclude with a discussion on further work in Sect. 8.
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2 Overview of the Approach

In the JavAdaptor [15] approach to updating programs at runtime, the Java
source code is the interface for changing the running program. The fine grained
adaptation (FiGA) approach extends the JavAdaptor approach by providing sup-
port for the use of models as the primary means for modifying the runtime
behavior of the program. The FiGA approach provides models that capture dif-
ferent aspects of a running program. Developers are restricted to performing only
those changes that are possible using the abstractions provided by the models.
In the current version of the approach, class and sequence diagrams provide the
interface through which developers express changes on the running program. A
developer uses the class diagrams to express changes on class structures (e.g.,
addition or removal of attributes or associations). Sequence diagrams are used
to express changes in how objects interact. In future work we will extend this
approach to include models that capture other aspects of a running program
that can be changed by a developer (e.g., use of state diagrams to describe how
objects react to input events and activity diagrams to provide a finer-grained
view on the semantics of the running system).

A developer using the FiGA approach makes changes to the running sys-
tem by performing a sequence of changes on the models. Each model change
is performed by the developer applying a change operator. Each application of
a change operator corresponds to a well-defined set of syntactic changes at the
source code level. It is important to note that the application of a change oper-
ator on the model can leave the model inconsistent (e.g., removing a class from
the class diagram does not automatically result in the removal of all its object
interactions from the sequence diagrams). In addition, syntactic code changes
that correspond to the application of a single model change operator may not
produce source code that is compilable or executable. Only after a developer
applies a consistent sequence of change operators to a model (i.e., a sequence
of changes that results in a new consistent model) can the runtime updating
mechanism be used to produce the new source code. The updating mechanism
performs source code level changes that correspond to the model change opera-
tors in the order they are applied on the model to produce a new compilable code
version. If compilation is successful, the result is fed into the JavAdaptor tool
that performs the changes on the running program. The modified source code
becomes the new baseline source code for the modified running program and is
used to generate the models used by developers to perform future changes. We
use a tool called Reverse R[2] to produce models from the source code.

The FiGA approach is illustrated in Fig. 1. In the figure, Model M0 is the
interface for the running program produced using the source code S0. A devel-
oper modifies M0 by applying a sequence of model operators γ1, γ2, . . . , γn to
produce a new model M1 that describes the changed program. The model op-
erators correspond to source code changes, that, when applied in the order in
which the model operators are applied, produces the modified compilable source
code S1. The source code S1 is then compiled and used to change the running
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Fig. 1. Overview of the FiGA Approach

program using JavAdaptor. In the remainder of this section we describe the
process for updating a running Java program using the FiGA approach:

Step 1: Generating Models from the Source Code. Models can be used to present
aspects of a software program that can be changed in a manner that shields a
developer from extraneous details in the source code, and thus helps developers
better focus their development effort. A tool (Reverse R[2]) is used to reverse
engineer the baseline source code to produce a model. This ensures that the
model is a faithful representation of the running program. The approach is thus
feasible when a design model is not available. In the FiGA approach, models
are generated even when an initial design model is available at the time the
running program is first started. This helps to overcome the well-known drift
problem that occurs during development when design models are not properly
synchronized with code changes. The use of models that are not consistent with
the running code would jeopardize the feasibility of the FiGA approach.

Currently, the reverse engineering tool generates class diagrams to capture
the structural aspects of the system, and sequence diagrams to capture the
runtime interactions between different modules of the program. The sequence
diagrams generated via reverse engineering contain not only method names and
parameters, but also descriptions of method bodies. Reverse Ris a Java tool
which is based on @Java1 a modified version of the Java language where the user
can annotate blocks of code. This annotation extension is exploited in Reverse R
by defining a set of @Java annotation that are specific to the needs of Reverse R.
Specifically, these annotations contain meta-data used for generating the dia-
grams. Reverse Rtakes as input a set of compiled classes and a configuration file
and produces as final output an IBM Rational Architect diagram file.

Step 2: Changing the Models. Rather than produce a new model in one mono-
lithic step, a developer using the FiGA approach will apply model change op-
erators that perform small model changes. Dividing a monolithic change into
1 http://cazzola.di.unimi.it/atjava.html

http://cazzola.di.unimi.it/atjava.html
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smaller steps is advantageous for debugging and dependency analysis purposes,
and it also provides a convenient way to automatically link model changes to
source code changes. A change operator γi invoked by a developer on a current
model corresponds to a well-defined change at the source code level, as we will
see in Sect. 4. Currently, the structural changes are specified by modifying the
class diagram. For example, FiGA provides change operators for adding a new
class, adding new data members to a class, and so on. Changes to sequence di-
agrams correspond to changes in how parts of a program interact, for example,
changing a method call in an object so that it calls another method defined in
another object (e.g., this can be done in conjunction with a structural change
in which a method is moved from one class to another). Complex changes could
be defined as combinations of change operators on both sequence and class di-
agrams. For example, describing an extrude method refactoring, which involves
creating a new method using part of an existing method, can be described as a
combination of change operators on the class diagram and change operators on
the sequence diagram. The change operators are described in Sect. 3.

Step 3: Relating Model Changes to Source Code Changes. Each model change
operator (that is, each γi operation applied by the developer) is designed to
correspond to a well-defined change at the source code level, represented by δi
in Fig. 1. We use a mapping function σ to map each model change, γi, to a
source code change, δi. The application of the σ mapping to the sequence of
model changes (Γ ) results in a corresponding sequence of code changes (Δ).
That is, given

δi = σ(γi)

and

Γ = γ1 � γ2 � · · ·� γn (1)
Δ = δ1 � δ2 � · · ·� δn (2)

where � is the change sequencing operator, we have

δ1 � δ2 � · · ·� δn = σ(γ1)� σ(γ2)� · · ·� σ(γn) ≡ σ (Γ ) = Δ.

The σ mapping is described in Sect. 4.

Step 4: Effecting the Changes on the Running Program. As mentioned in the
previous steps, the model change is done in small steps where each change γi is
mapped through σ to the corresponding code change δi. The FiGA tool internally
records the order of model changes (Γ ) and once the developer indicates that
the model changes are ready to be deployed the tool triggers a series of source
code changes corresponding to Δ. The modified source code is then compiled by
javac and the modified .class files are input to JavAdaptor, which propagates
the changes to the runtime program. Fig. 2 illustrates this workflow.



242 W. Cazzola et al.

σ(Γ) apply compile select propagate

source code

Δ

modified source code compiled classes changed classes

javac JavAdaptor

�

Fig. 2. The FiGA Process

Step 5: Reiterating the Process. The above process is repeated if a change to the
updated software is required, that is, Reverse Ris used to generate a new set of
models from the modified source code, and these models become the interface
used by developers to make changes to the running system.

3 Operators for Model Adaptation

In this section we describe the basic model change operators supported by our
approach. These operators embody well-defined semantics for specific forms of
UML diagram changes, and thus they provide the means to map model changes
to code changes. It is important to note that when a user changes a UML diagram
using a diagram editor the corresponding applications of basic change operators
are inferred by the IDE. Moreover, the IDE provides the users with more complex
operators built up from the basic change operators, for example, operators for
cascading removal of elements.

Given a set of UML diagrams, M0, representing the running system, we apply
a sequence of operations Γ and produce a new set of UML diagrams M1, i.e.,

Γ = {γ1, γ2, γ3, . . . , γn} such that M0 � Γ = M1.

Since models M0 and M1 must be consistent, Γ must be a sequence of oper-
ations which transforms a consistent set of diagrams to another consistent set
of diagrams when applied in the given order. However this condition may not
hold for all the intermediate steps M i

0 obtained by applying γi on M i−1
0 . Each

γi is an elementary step that changes only one aspect of a model, so there is no
guarantee that the result will be consistent at each (intermediate) step. Only Γ
is required to preserve the consistency of the model.

In the remainder of this section we describe the syntax and effect of the γi
operators. For the sake of brevity we describe only the core set of operators. As
mentioned in Sect. 2, we use only class and sequence diagrams in the approach,
so only operators for these diagrams are described here.
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Table 1. Class diagram change operators

Operator Specifies into Description

⊕cd

⊕class

⊕interface

⊕field

⊕constructor

⊕method

These operators add elements of a particular type to a class
diagram.
The arguments of an ⊕ operator is determined by the type
of element to be added and can include element name, vis-
ibility level, abstract? static?, type, return type, containing
class

�cd

�class

�interface

�field

�constructor

�method

These operators remove elements of a particular type from
a class diagram.
Cascading removal is not supported. Each operator re-
moves only the given element. The application layer can
provide cascading operations for the user.

� — This operator adds a generalization relationship.
It does not add inherited methods.

� — This operator removes a generalization relationship.
It does not remove inherited methods.

Class Diagram Change Operators. Operators for class diagrams work on
class diagram entities: classes, interfaces, fields, constructors and methods. The
approach currently provides basic operators for adding and removing (1) classi-
fiers (interfaces, classes) and their properties, and (2) generalization relationships
between classes. Table 1 lists the core class diagram change operators.

The set of add operators, ⊕cd, contains operators for adding elements of a
particular type to a class diagram. For example, ⊕class adds a class to a class
diagram, while ⊕field adds an attribute to a given class. Similarly, the set of re-
move operators, �cd, contains operators for removing classes (�class), interfaces
(�interface), fields (�field), constructors (�constructor), and methods (�method). The
operator � adds a generalization relation between two containers, while the op-
erator � removes an existing generalization relationship between containers.

Sequence Diagram Change Operators. The sequence diagram elements
that can be changed in our approach are lifelines and messages. Given that
the approach is Java-specific, the sequence diagrams supported by the approach
consist only of synchronous and create messages2.

As with class diagrams, we have a set of adding operators ⊕sd for sequence
diagram elements (⊕lifeline and ⊕message) and a corresponding set of removal
operators �sd (�lifeline and �message). Table 2 lists the core sequence diagram
change operators.

2 The start() message that activates a thread could be considered as an exception
but we deal with it as with a call to a constructor.
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Table 2. Sequence diagram change operators

Operator Specifies into Description

⊕sd

⊕lifeline

⊕message

Add element.
Lifelines can refer to class or to single objects. Messages
can be creation or synchronous. Other parameters can be:
element name, message position, lifeline type.

�sd

�lifeline

�message

Remove element.
It does not act as a cascade operator. Each element must
be removed explicitly. The application layer can provide
cascading operations for the user.

More complex operators can be built up from basic class and sequence di-
agram change operators. For example, a replace operator can be obtained by
removing the old element using basic remove operators and by adding the new
one using a basic add operator. Some minor aspects, such as the initialization
of static fields, are currently not handled and will be added in a future version
of the work.

Precedence Among Operators. We impose constraints on the order in
which the different kinds of change operators can be applied to ensure that
model changes produce consistent models. While the constraints do not guar-
antee that the changes produce programs that satisfy the programmer’s goals,
they do ensure that the class and sequence diagrams are internally consistent
and consistent with each other. Model change operators are ordered as follows
to ensure consistency:

1. Add new classifiers (⊕interface and ⊕class): All new interfaces and classes
are added first because they are the containers to which subsequent new
classifier parts are added (e.g., methods, attributes), and sequence diagrams
may need to reference these new classifiers (e.g., via new lifelines).

2. Add elements to new classifiers (⊕field, ⊕constructor, ⊕method): Elements
are added to the containers produced in the previous step, and to already
existing classifiers.

3. Remove generalizations that are targeted for change (�): If a gen-
eralization relationship is to be changed, the old generalization is removed
before adding the new one. This helps to avoid situations where a user wants
to change a generalization between a subclass Sub and a superclass Super to
one between Sub and another superclass Sup2, and first adds the new gener-
alization, but then forgets to remove the original generalization between Sub
and Super. That is, this ordering helps avoid changes that result in multiple
inheritance structures not supported by Java.

4. Add new generalizations (�): New generalizations are added after target
generalizations are removed.

5. Change sequence diagrams (⊕sd, �sd): When all the above changes are
made to class diagrams, changes can proceed on the sequence diagrams.
These changes are ordered as follows:
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(a) Add new lifelines (⊕lifeline) to sequence diagrams first.
(b) Add new messages (⊕message) to sequence diagrams. The create messages

have a higher precedence than the synchronous messages. Note that mes-
sages have a progressive numeration that is unique for each sequence
diagram. This facilitates easier addition of new messages.

(c) Remove messages (�message) from the sequence diagrams; similarly to
⊕message but synchronous messages are deleted before the creational ones.

(d) Remove lifelines (�lifeline) from sequence diagrams.
6. Remove elements from class diagrams (�cd): all class diagram removal

operators are applied last. Each operator first checks that the element to be
removed is not referenced elsewhere in the class or sequence diagrams.

Note that removal operations are all made at the end of the process and that
operators for sequence diagrams are carried out after all additions are made to
class diagrams. By doing this, we guarantee that methods exist before messages
are added and that messages are removed before removing methods, that is, ⊕cd

operations are performed first and �cd operations performed last.

4 Mapping between Code and Model

The operators defined in the previous section correspond to well-defined changes
at the source code level. In this section we describe the morphism σ that maps
each model level change, γi, to a corresponding source code level change, δi.

Mappings for Class Diagram Operators. Class diagrams are used to de-
scribe the static class structure of programs in a straightforward manner (each
program class corresponds to a single class in the diagram), hence σ provides a
one to one mapping between the class diagram changes described in the previous
section and changes to (source) code structures. These mappings are straight-
forward, and thus we only use an example here to illustrate the mappings.

Class diagram mappings example. Figure 3 shows changes made to a class dia-
gram of a program. Initially, the program has only a single class: ClassA. The
user then decides to modify the program by adding a new class, called NewClassB

with a field and a method. This results in a sequence of three basic changes to
the model: (1) add an empty class, (2) add the field, and (3) add the method.
Finally, the user reorganizes the class hierarchy by making NewClassB a subclass
of ClassA. These changes are realized at the code level by the following sequence
of operations:

1. ⊕class(NewClassB, public): add new public class with name NewClassB (see
Fig. 3(b))

2. ⊕field(field1, private, Object, NewClassB): add a private field inside class
NewClassB (see Fig. 3(c))

3. ⊕method(method1, public, void, NewClassB): add a public method, with return
type void, inside class NewClassB (see Fig. 3(d))
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(a) Original system

(b) Effect of operator ⊕Class (c) Effect of operator ⊕Field

(d) Effect of operator ⊕Method (e) Effect of operator �

Fig. 3. Class diagram example: evolution of the models

4. �(NewClassB, ClassA): make NewClassB a subclass of ClassA (see Fig. 3(e))

The effect on the code is illustrated in Fig. 4. In the first step, the operator
⊕class creates an empty class at the model level, and thus σ(⊕class) will produce
an empty class declaration, with name NewClassB and public visibility. In the
second step, ⊕field adds a new field to the diagram, and thus σ(⊕field) adds a
line inside the newly created class declaration with the field declaration. Since
in Java the field position in a class declaration is irrelevant, the new fields are
always introduced at the top of the class body as in Fig. 4(b). In the third step,
the mapping σ(⊕method) has the effect of adding a method signature with an
empty body to NewClassB (see Fig. 4(c)). The position of method declarations
inside a class is also irrelevant, so they are added at the bottom of all existing
code in order to preserve readability. Finally, the operator � is used to create the
inheritance relationship between ClassA and ClassNewB. The corresponding code
change σ(�) adds the extends clause to the class declaration (see Fig. 4(d)).
If the second parameter given is an interface then σ(�) adds the implements

clause.
The mapping for the �cd operator works in a similar way. σ(�cd) simply

removes the portion of code where the corresponding entity is declared. The
remove operator is not a cascading operator, and thus to perform correct removal
it is necessary to explicitly remove all the element contained in the one that
is being removed before its effective removal. For example, to remove a class
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public class NewClassB {

}

(a) Created the empty NewClassB.

public class NewClassB {
private Object field1;

}

(b) Added the new field.

public class NewClassB {
private Object field1;
public void method1(){}

}

(c) Added the new method.

public class NewClassB extends ClassA {
private Object field1;
public void method1(){}

}

(d) Changed the inheritance hierarchy.

Fig. 4. Class Diagram example: changes impact on sources

the user should remove all its methods and fields before applying the operator
for removing the class itself. Likewise σ(�) removes either the extends or the
implements clause.

Mappings for Sequence Diagram Operators. Mapping sequence diagram
changes to code changes is more complex. This is because sequence diagrams
describe dynamic aspects of a program that are sometimes not directly reflected
in source code. Moreover a sequence diagram does not represent a complete de-
scription of behavior; it typically represents a set of behavioral scenarios and
thus is an incomplete view of behavior. For this reason, not all changes to a
sequence diagram will produce a corresponding change at the code level. For
example, adding a lifeline to a sequence diagram may not produce a resulting
change in the code if the class of the object already exists in the original pro-
gram. Figure 5(b) illustrates the effect of an application of the ⊕lifeline operator
on the model in Fig. 5(a). Adding a lifeline means that another object (not nec-
essarily a new object) is part of the message exchange sequence. Only the objects
which interact with the new lifeline need a reference to the object, but the kind
of reference (instance of an association or a more dynamic dependency) cannot
be deduced simply by looking only at the add new lifeline change. The kind of
reference must be deduced by examining previous changes to the class diagrams
(e.g., to add a field that contains a reference to the object represented by the
lifeline) or from the introduction of a create message (a call to the constructor
to create an object represented by the new lifeline). In these cases, adding the
lifeline has no effect on the code.

Adding a message to a sequence diagram is another matter. Generally speak-
ing, a message is a method call that needs to be added inside the method body.
⊕message has two different mappings depending on the kind of the added mes-
sage: create or synchronous. In the case of a creation (⊕message(create, ...)), the
message represents a constructor call. At the code level, σ(⊕message(create, ...))
adds a call to the constructor of the class of the created lifeline (object) into the
method body executed in the source lifeline. Figure 5(c) illustrates the situation
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at the model level. As shown in Fig. 6, we can get the desired behavior in two
ways: either by adding a field to the class or declaring a local variable, and then
instantiate the field or variable with a reference to the new object in the method
m0(). The choice between the two depends on what operations preceded this
change: in the former case, due to the imposed order (see Sect. 3) a new field
with that name was already added in the class diagram. As a rule, we store the
new object into a field if there is a field of a compatible type and with the same
name as the new object, otherwise a new local variables is declared (and named
after the corresponding lifeline name), and the new object assigned to it. Note
that, in this case, a call to the constructor could be added anywhere inside the
body of method m0(), except within loops and conditionals, as long as it respects
the ordering of other message exchanges shown in the sequence diagram. Since
the sequence diagram shows no other exchanges in m0() the create message can
be placed anywhere in the body of m0(). The decision to add the call as the first
instruction was made simply for convenience.

A special case occurs when objects are stored in the variables representing the
passed parameters. If we have a method void method(String parameter1){..}

the user could decide to reuse the variable parameter1 to store a new object.
Given a message label containing parameters name (parameter1 = new String())
we treat the parameters like any other already declared local variable, trusting
the developer to name the parameters appropriately.

As an example of how the addition of a synchronous message is added, con-
sider the situation described in Fig. 5(d) where a new method call to the method
m1() is added to the sequence diagram in Fig. 5(c). The method m1() must exist
in class ClassB, and since ClassA will use objectB it is up to the user to guar-
antee its existence. In this example, the code to add is objectB.m1() and from
the sequence diagram we can determine that it must be added in the body of
m0() in any position, after new ClassB(). If a finer positioning mechanism is de-
sired, it is possible to look at the method body that is included in the sequence
diagram by our reverse engineering tool as a UML comment and specify after
which statement the new code is to be inserted.

In a more general case, the new message will be inserted between two mes-
sages, so it is necessary to look at only the portion between the two method calls.
Our planned work on extending the approach to include activity diagrams will
make this step unnecessary, because a fine grain addition could be done directly
on the complete descriptions of method bodies provided by activity diagrams.

Changes effected by �lifeline do not affect the code. The removal of a lifeline
from a sequence diagram means that the object represented by the lifeline ceases
to participate in the interaction described by the sequence diagram. This does
not mean that the object should be removed from the system.

The �message causes the deletion of a single line of code: the one which con-
tains the method or constructor call described by the exchanged message from
the method body referred from the source object lifeline. Note that the call is
uniquely determined by its position inside the sequence diagram.
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Main a:ClassA

1:m0()

2:m0()

(a) base

Main a:ClassA

b:ClassB

1:m0()

2:m0()

(b) adding a lifeline

Main a:ClassA

b:ClassB

1:m0()

2:m0()

1.1:newClassB()

(c) create an element

Main a:ClassA

b:ClassB

1:m0()

2:m0()

1.1:newClassB()

1.2:m1()

1.3:m1()

(d) adding a call

Fig. 5. An example of sequence diagrama manipulation

public class ClassA {
private ClassB objectB;
public void m0() {

objectB = new ClassB();
stmt1;
stmt2;
...

stmtn;
}

}

(a) initializing a field.

public class ClassA {

public void m0() {
ClassB objectB = new ClassB();
stmt1;
stmt2;
...

stmtn;
}

}

(b) initializing a local variable.

Fig. 6. Example of code affection ambiguity due to a new creation message

5 Case Study

The case study we use to illustrate the approach is a Train Management System
(TMS) that is responsible for tracking trains driven by humans and for control-
ling the traffic signals that determine whether a train should stop or proceed.
Stopping such a system to make an update is often not desirable because this
would mean that all train activity on the system would have to be halted since
it cannot be monitored and controlled.

To demonstrate the FiGA approach, we implemented the TMS and integrated
it with a Railway Simulator (RS) representing a real world situation in which
the TMS is used. The railway system monitored by the TMS is a network of
routes connecting stations (each route has a start and end station). Each route
uni-directional and is divided into uniquely identified segments. Each segment
has a sensor for detecting a train leaving the segment, and a traffic light that
indicates whether a train is allowed to move to the next segment or not. The RS
initializes and moves trains through the system. Each train entering the system
must submit journey that is validated and stored in the TMS. The RS tells the
TMS when trains move by simulating the triggering of sensors, and the TMS in
turn tells the RS when to toggle the traffic lights in the segments. In the initial
version of the system all trains are passenger trains.

Requested evolution. In the case study scenario, the company that manages
the railway system decides to expand its system to support monitoring of freight
trains that require special treatment, for example, trains that carry hazardous
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«Java Class»
Message

�cMessage(String)
∎ authorizeJourney(): void
∎ changeSegmentState(): void
� checkIfRunAway(String, String): boolean
� correctPlatform(String, String): String
� letTrainLeaveStation(String): String
� updateTrainPosition(String, String, int): String[]
∎ interpretMessage(): void
� updateSystemTime(int): void
� run(): void

(a) original class diagram.

«Java Class»
Message

�cMessage(String)
◇

cMessage(String)
�sgetMessage(String): Message
∎ interpretMessage(): void
� run(): void

«Java Class»
SensorMessage

◇
cSensorMessage(String)
�ccheckIfRunAway(String, String): boolean
� run(): void
� updateSystemTime(int): void
� updatetrainPosition(String, String, int): String[]

«Java Class»
EnteringStationMessage

◇
cEnteringStationMessage(String)
� run(): void
� correctPlatform(String, String): String
� letTrainLeaveStation(String): String

«Java Class»
JourneyMessage

◇
cJourneyMessage(String)
� run(): void

(b) class diagram with strategy pattern.

Fig. 7. TMS class diagram, before/after the strategy pattern reorganization

materials (referred to as hazardous train). When transporting hazardous ma-
terials, special security rules must be enforced and the TMS must be updated
accordingly. The TMS must be able to distinguish these trains from other trains,
and must enforce traffic light control policies that are specific to hazardous trains
(e.g., a policy can require that no other trains must be on the same route as a
hazardous train). The system manager responsible for managing this update de-
cides that the update will be performed as two updates. The first update aims to
improve the TMS architecture to make it easier to add a new type of train that
requires special light control policies. Specifically, this first adaptation involves
implementing an instance of the strategy pattern in the TMS software to make it
easier to add new traffic light rules (strategies). The second update is concerned
with introducing hazardous trains and their associated rules to the more flexible
TMS produced by the first update.

We will provide details here for only the first update; the incorporation of
the strategy pattern instance in the initial TMS. The second update does not
provide any interesting new insights.

Figure 7(a) shows the class diagram for the initial version of the TMS and
Fig. 7(b) shows the modified class diagram. This update changes only the Message

class, which represents the evaluator for the messages the TMS receives from
the RS. In the initial versionMessage implements the Runnable interface. When a
message is received the computation is threaded to evaluate it. In the first version
only two kind of messages can be received: the journey authorization request
and the notification of the train position from the segments sensors. Message

has methods to handle these messages and uses (an if statement) to determine
which method to execute on receiving a message. In the new version,Message is
an abstract class, subclassed as many times as the supported kinds of messages.
Each subclass implements a method to evaluate the corresponding message and
the selection is accomplished using polymorphism. Message is also a factory that
creates a subclass instance representing the received message.

The main changes between the two class diagrams are the following: (1) new
subclasses that extend Message, (2) methods belonging to Message are moved
to the new subclasses, (3) constructors are made private and (4) new Message
object can be created only through a static method in Message. The following is
an excerpt of the operations that have to be applied to go from the class diagram
in Fig. 7(a) to the one in Fig. 7(b).
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– ⊕class(EnteringStationMessage, public)
– ⊕class(SensorMessage, public)
– ⊕class(JourneyMessage, public)
– �(EnteringStationMessage, Message)
– �(SensorMessage, Message)
– �(JourneyMessage, Message)
– ⊕method(public, static, Message, {String}, Message)
– ⊕constructor(protected, {String[]}, EnteringStationMessage)
– ⊕constructor(protected, {String[]}, SensorMessage)
– ⊕constructor(protected, {String[]}, JourneyMessage)
– ⊕method(run, public, void, {}, EnteringStationMessage)
– ⊕method(correctPlatform, public, String, {String,String}, EnteringStationMessage)
– ⊕method(letTrainLeaveStation, public, String, {String}, EnteringStationMessage)
– ⊕method(run, public, void, {}, SensorMessage)
– ⊕method(checkIfRunaway, public, boolean, {String, String}, SensorMessage)
– ⊕method(updateSystemTime, public, void, {int}, SensorMessage)
– ⊕method(updateTrainPosition, public, String[], {String,String,int}, SensorMessage)
– ⊕method(run, public, void, {}, JourneyMessage)
– . . . 3

– �method(authorizeJourney, Message)
– �method(changeSegmentState, Message)
– �method(checkIfRunaway, Message)
– �method(correctPlatform, Message)
– �method(letTrainLeaveStation, Message)
– �method(updateTrainPosition, Message)
– �method(interpretMessage, Message)
– �method(updateSystemTime, Message)

The major changes on the sequence diagram involve message identification
and evaluation (Fig. 8). In the initial sequence diagram, the RailwayIn class,
which is the class that receives the messages, directly creates a Message ob-
ject. In the modified sequence diagram a static method (getMessage(String))
is to be used instead. This method will call the correct constructor to deal
with the subclass instances. Therefore the object that is now being passed to
Thread is not a Message object anymore, but an instance of one of its child
classes (see Fig. 8(b)). The entire sequence diagram must change: Methods
that were in the Message class now are in the child JourneyMessage class; and
validateJourney(), addTrain(t), sendMessage(output) must now be called from
the journeyMessage:JourneyMessage lifeline and their old invocation must be
deleted.

The following is an excerpt of the operations that have to be applied to go
from the sequence diagram in Fig. 8(a) to the one in Fig. 8(b).

1. ⊕lifeline(journeyMessage:JourneyMessage)
2. ⊕message(synchronous, 5, RailwayIn, Message, Message m2 = getMessage(m), 33)
3. ⊕message(create, 5.1, Message, JourneyMessage, inside(5), new JourneyMessage(m), 208)

3 Following the precedence rules given in Sect. 3 the operations on sequence diagrams
are interleaved with those on class diagrams. For sake of comprehension we will
present the operations on sequence diagrams later.
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RailwayIn

Message

Thread

SystemState

3.1:interpretMessage()

3.2:interpretMessage()

3.3:authorizeJourney()

1:run()

2:run()

1.1:newMessage(m)

1.2:newThread(mm)

1.3:start()

1.4:start()

3:run()

3.3.1:boolean validateJourney()

(a) original sequence diagram

RailwayIn Message

JourneyMessage

Thread

SystemState

1:run()

2:run()

1.1:Message m2 = getMessage(m)

1.2:Message m2 = getMessage(m)()

1.1.1:newJourneyMessage(m)

1.3:newThread(m2)

1.4:start()

1.5:start()

3:run()

3.1:boolean b = validateJourney()

(b) after the strategy pattern

Fig. 8. The sequence diagram describing the run method of RailwayIn

4. ⊕message(create, 6, RailwayIn, Thread, after(5), new Thread(m2), 34)
5. ⊕message(synchronous, 7, RailwayIn, Thread, after(6), start(), 35)
6. ⊕message(synchronous, 8, Thread, JourneyMessage, after(7), run(), 23)
7. ⊕message(synchronous, 8.1, JourneyMessage, SystemState, inside(8),

boolean b = validateJourney(), 27)
8. ⊕message(synchronous, 8.2, JourneyMessage, SystemState, after(8.1), addTrain(t), 33)
9. ⊕message(synchronous, 8.3, JourneyMessage, RailwayOut, after(8.2),

sendMessage(output), 49)
10. �message(synchronous, 3.1.3.3, 144)
11. �message(synchronous, 3.1.3.2, 140)
12. �message(synchronous, 3.1.3.1, 137)
13. �message(synchronous, 3.1.3, 130)
14. �message(synchronous, 3.1.1, 114)
15. �message(synchronous, 2, 32)
16. �message(synchronous, 1, 31)
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The ⊕message operator takes many arguments, if we consider the seventh opera-
tion in the previous list as an example, its argument reads as follows: "inserts a
new synchronous message marked with ID 8.1 exchanged from JourneyMessage

to SystemState, this call is inside message 8 and is performed by the code
«boolean b = validateJourney()» that has to be inserted at line 27". The mes-
sage IDs are provided, in sequential order, by the IBM’s Rational Software Archi-
tect when the changes are given, and they refer to the graphical representation
of the UML diagram (see Fig. 8). The line number indicating where to insert
the call, is given here as an absolute number, but it is actually computed based
on the portion of code shown to the user and a point&click mechanism is used
to show where the code should be inserted.

Wenowpresenthowchanges to the sequencediagramaffect the class RailwayIn.
Figure 9 shows how the changes step by step. First, we add the new method call to
the original code (Fig. 9(b)). This is a call to a static method and its return value is
stored in a local variable (operation 2). Such an addition is done at line 33, but note
that numbering is just a convention we use in the explanation: all the positioning
inside the code is relative to the piece of code shown in the annotation and recal-
culated every time. Recall that the operations are not written by the user but they
are the result of the changes done to the diagrams, and the line of code are adjusted
accordingly. After this, the effect of operations 4 and 5 is to add the code to create
(Fig. 9(c) at line 34) and then start the thread (Fig. 9(d) at line 35). At last, the
operations 15 and 16 remove the obsolete code: the old thread creation/activation
(Fig. 9(e) at line 32) and the message creation (Fig. 9(f) at line 31).

6 Discussion

In the FiGA approach, developers update a running system by modifying gener-
ated UML class and sequence diagrams. Empirical results [5] provide some ev-
idence that the use UML during software maintenance and evolution enhances
a developers ability to correctly implement changes when developers are not
familiar with the system. Using UML models as the primary means to update
running code can help by presenting runtime information in modeling languages
that developers are more familiar with, while shielding developers from extrane-
ous source code details.

The FiGA approach further reduce the time to effect changes, by automating
the propagation of the changes to the running code. In a context where an
application needs to be updated as quickly as possible,the FiGA approach allows
a developer to focus on planning tyne changes via the models with the awareness
that the changes on the sources will be automatically performed in a consistent
manner.

To support automatic propagation of model changes to the source code, the
abstraction gap between code and models has to be bridged [2,19] This issue is
addressed in FiGA by generating UML diagrams from source code that includes
specific meta-data (Java annotations) that is maintained by the system during
evolution. This tight link between the models and the code supports their co-
evolution.
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30 for (String m: msg.split("!")) {
31 Message mm = new Message(m);
32 new Thread(mm).start();
33

34

35

36 }

(a) original code.

30 for (String m: msg.split("!")) {
31 Message mm = new Message(m);
32 new Thread(mm).start();
33 Message m2 = Message.getMessage(m);
34

35

36 }

(b) adding a call to getMessage.

30 for (String m: msg.split("!")) {
31 Message mm = new Message(m);
32 new Thread(mm).start();
33 Message m2 = Message.getMessage(m);
34 Thread t2 = new Thread(m2);
35

36 }

(c) creating a new thread.

30 for (String m: msg.split("!")) {
31 Message mm = new Message(m);
32 new Thread(mm).start();
33 Message m2 = Message.getMessage(m);
34 Thread t2 = new Thread(m2);
35 t2.start();
36 }

(d) activating the new thread.

30 for (String m: msg.split("!")) {
31 Message mm = new Message(m);
32 new Thread(mm).start();
33 Message m2 = Message.getMessage(m);
34 Thread t2 = new Thread(m2);
35 t2.start();
36 }

(e) removing the other thread.

30 for (String m: msg.split("!")) {
31 Message mm = new Message(m);
32

33 Message m2 = Message.getMessage(m);
34 Thread t2 = new Thread(m2);
35 t2.start();
36 }

(f) removing the Message creation.

Fig. 9. Changes in RailwayIn

To make the FiGA approach usable, we provide an IDE that acts an in-
termediate layer between the developer and the runtime updating system. The
IDE aims to provide a convenient interface for describing model changes and
for automatically propagating those changes to the runtime updating system.
The IDE presents a developer with a set of diagrams and all the operations he
can performs on the diagrams (see Sect. 3). The IDE also takes care of convert-
ing a developer’s changes to a model to function calls that mirror the operator
definitions.

Another factor which reduces the complexity of the update is the use of
JavAdaptor [15] as a reloading mechanism during system execution. Many pub-
lished approaches (e.g., see [22]) focus on the definition of states in which the
application can safely migrate from its original form to its evolved one. This
is not a concern in FiGA because it relies on JavAdaptor to replace each class
while keeping its state intact; no data is lost and each object in the new version
immediately starts running with its old state. JavAdaptor also determines when
to freeze the class for the reloading operation. The new version of JavAdaptor
(more advanced than the one described in [15]) is also able to safely handle the
reloading operation in a multi-threaded environment. Constraints on when to
update the application are thus looser in FiGA.

Constraints on what to replace are also loosened in FiGA. In many cases,
software needs to evolve because the context in which it operates changes, thus
leading to different requirements for the application. Software evolution is thus
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as predictable as the context in which it runs in, and thus one can anticipate
that there will be some unforeseen evolution. From the programmer’s point of
view this means that any part of the software might need to be changed. FiGA
supports this type of unforeseen evolution through the generation of detailed
diagrams for any part of the software. Furthermore some changes might affect
only a small portion of the software. In [3] a case study is presented in which the
requested change involved adding a time constraint for an online order. While
the impact of the change on the models was relatively small, at the code level
it involved adding if statements in many places and providing an orderExpired

mechanism that could be implemented as a Java exception. FiGA allows one to
apply fine-grained code changes (at the source code line level) and change only
the affected classes in the running system. In other approaches, this would re-
quired larger-grained changes involving replacing a whole module or component
(e.g., see [13,16]).

FiGA is code-centric. As the evolution process needs to end with the produc-
tion of running code, our research effort focused on meeting the need for fast
deployment of runtime changes described in terms of models.Having said that,
the current version of the approach does have limitations. The UML diagrams
do not provide all necessary information to deal with every kind of fine-grained
update. For example, the addition and the removal of conditional jump struc-
tures are currently not supported. Given that the current version was developed
more as a proof of concept, one can expect that there will be limitations. We are
currently working on addressing these limitations by considering how other types
of UML diagrams, for example, activity diagrams, can be included in FiGA.

7 Related Work

Architecture-based software adaptation approaches focus on supporting auto-
mated coarse-grained reconfiguration of software structure at runtime (for exam-
ple, see [6,8,9,12,13,21]. In these approaches, the running system is structured to
facilitate the use of component-based runtime models that are causally connected
to the running system. Each component is a coarse-grained abstraction that
represents a logically encapsulated part of the running system. Runtime modi-
fications are restricted to adding and removing components and links between
components. The approach described in this chapter provides support for finer-
grained modifications at the Java program class level. Unlike the architecture-
based approaches, our fine-grained approach does not constrain the structure of
Java programs that can undergo runtime modifications. On the other hand, our
approach currently supports manual changes, that is, humans manually modify
the runtime models rather than the system itself. We will investigate how the
approach can be extended to support self-adaptation.

Research on dynamic software updates (e.g., see [10,14,20,18]) aims to pro-
duce mechanisms that allow developers to change a running system without
stopping and restarting the running system. Code level changes are submitted
to these mechanisms, which are then effected on running systems. JavAdap-
tor [15] is one such mechanisms that supports a finer granularity of changes.
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Unlike other work on dynamic software updates, FiGA, which is built on top of
JavAdaptor, focuses on using models to raise the level of abstraction at which
changes are presented to the running system. We are not aware of any dynamic
update mechanism that uses models as an interface for making changes to a
running system.

Our approach requires mechanisms that generate models that faithfully ab-
stract over the aspects of a running system that are subject to change. In our
approach we specifically require mechanisms that generate class and sequence di-
agrams from the current source Java program. Tools such as IBM’s Software Ar-
chitect4, VisualParadigm5 and ArgoUML6 can be used to generate class and se-
quence diagrams from Java code. Integrating these complex tools into a runtime
update environment can be challenging. In our work we chose to use Reverse R
because we had full access to its implementation and could thus more easily
integrate it with our software updating mechanism, and since it is based on Java
annotations it can be smoothly integrated in the running system.

8 Conclusion

In this paper, we presented a model based approach to fine-grained updat-
ing of running software. UML diagrams of the running application are the
model@runtime. These models are used by developers to describe desired changes
on the running system in terms of model changes that are transformed to source
ode changes. In this way is possible to co-evolve the model and the source code.
The source code changes are then applied to the running application through
the JavAdaptor framework [15], without the need to stop the running system.

The approach does not make any assumptions about the changes that might
occur nor about which part of the program the changes affect. The only restric-
tion is on the kinds of models currently supported (class and sequence diagrams),
and therefore on the kind of changes that can be described. The current version
of FiGA was developed to demonstrate the feasibility of the approach, and thus
the types of models is restricted. However in the future plans we will develop
support for a wider range of UML diagrams.
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Abstract. No system escapes from the need of evolving either to fix
bugs, to be reconfigured or to add new features. To evolve becomes par-
ticularly problematic when the system to evolve cannot be stopped.

Traditionally the evolution of a continuously running system is tackled
on by calculating all the possible evolutions in advance and coding them
in the artifact itself. This approach gives origin to the code pollution
phenomenon where the code is polluted by code that could never be
applied. The approach has the following defects: i) code bloating, ii) it
is impossible to predict any possible change and iii) the code becomes
hard to read and maintain.

Computational reflection by definition allows an artifact to introspect
and to intercede on its own structure and behavior endowing, therefore, a
reflective artifact with (potentially) the ability of self-evolving. Further-
more, to deal with the evolution as a nonfunctional concern can limit the
code pollution phenomenon.

To bring the design information (model and/or architecture) at run-
time provides the artifact with a basic knowledge about itself to reflect
on when a change is necessary and on how to deploy it. The availability
of such a knowledge at run-time enables the designer of postponing the
planning and the coding of the evolution to when and only when really
necessary. Reflection permits to separate the evolution from the artifact
and the design information allows a (semi-)automatic planning of how
the artifact should evolve when necessary.

In this contribution, we overview the role that reflection and design
information have in the development of self-evolving artifacts. Moreover,
we summarize the lesson learned as a high-level reflective architecture
to support dynamic self-evolution in various contexts and we show how
some of the existing frameworks adhere to such an architecture and how
the kind of evolution affects their structure.

Keywords: Reflection, Software Evolution, Design Information.

1 Introduction

All software systems are subject to evolution, they evolve over time as new re-
quirements emerge, or bug fixing is necessary. Lehman et al. [51] pointed out that
up to 80% of the system lifetime is spent on maintenance and evolution activities.
A program that is useful in a real-world environment necessarily must change or
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it will become progressively less useful in that environment [49]. Continuously
running systems do not escape this law.

The common sense will let us consider that a well-planned evolution should
pass through the evolution of system design information and then through the
propagation of such changes to the implementation. This approach should be
the most natural and intuitive to use (because it adopts the same mechanisms
adopted during the development phase) and it should produce the best results
(because each evolutionary step is planned and documented before its deploy-
ment) and the general quality of the code will not decline (as stated by the 7th
law of software evolution [50]). Recently, this feeling has also been supported by
empirical experiments [33].

Unfortunately, this approach requires more time than to directly modify the
code itself and, in principle, needs to be planned off-line. Despite its benefits,
it is in contrast with the urgency often required by the change (e.g., to fix a
bug in a critical system or to enhance an application with rough competitors)
and badly fits with the unstoppable characteristic of the continuously running
systems since design information is not accessible from the artifact during its
execution and its code is loosely coupled to its design hindering any automatic
form of evolution based on it.

Moreover, to plan the evolution on the design information could be hard
or inapplicable at all when involves critical, non-stopping and/or a distributed
systems. In this case, to stop the application implies an unacceptable denial
of service or the coordination of several sites potentially spread all around the
world and not necessarily accessible. Normally, the evolution of critical, dis-
tributed and/or continuously running systems is emulated by directly enriching
the original design information (and consequently code) with aspects concern-
ing possible evolutions selected by conditional expressions. This approach has
several drawbacks:

– all possible evolutions are not always predictable a priori ;
– system design information and code are polluted by details related to the

evolutionary design;
– code and model pollution hinders maintenance and reduces possibility of

reuse.

Clearly, this cannot be the ultimate solution to the problem of promptly evolving
a system without interruptions in the service provision. Rather, the promptness
of action could be granted if the system itself should be able to plan and realize
its own evolution.

Software evolution is an aspect orthogonal to (current) system behavior that
crosscuts both artifact code and design; hence it should be subject to be devel-
oped as a separate concern (separation of concerns [40]). Separating evolution
from the rest of a system is worthwhile, because evolution is made independent
of the evolving system and the abovementioned problems are avoided. Design
information will not be polluted by non pertinent details and will exclusively
represent current system functionality without patches. This leads to a simpler
and cleaner implementation that can be more easily maintained and analyzed
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without discriminating between what is and what could be the artifact structure
and behavior. Evolution is clearly modeled separately from the artifact and can
be defined or extended on demand rendering useless to predict all the possible
evolutions in advance.

Reflection [52] is one of the mechanisms that easily permits to separate cross-
cutting concerns and to get self-aware artifacts. Reflective systems have the
capability to reason about and act on their own behavior and structure so that
they could be able to decide how to evolve and apply the necessary steps and
face their own evolution.

In the rest of the contribution we will explore how reflection can cope with
design information to develop a self evolvable system that can operate without
human interference. In Sect. 2 we give an overview of the reflective architecture
of a self-evolving system; in Sect. 3 we will explore the role of design information
in the generic reflective architecture and the impact that different kinds of design
information have on the approach to self-evolution; whereas in Sect. 4 we explore
how to model a system that can autonomously evolve itself. Finally in Sect. 5
we will have some discussions on the topic and draw our conclusions.

2 Evolution and Reflection

2.1 Computational Reflection

Computational reflection (or reflection for short) is defined as the activity per-
formed by an agent when doing computations about itself [52]. This activity
involves two aspects: introspection and intercession. Bobrow et al. [9] define
these two terms as follows:

Introspection is the ability of a program to observe and therefore rea-
son about its own state. Intercession is the ability for a program to modify
its own execution state, or alter its own interpretation or meaning.

Reflection applies quite naturally to the object-oriented paradigm [34,52]. Just as
objects in the conventional object-oriented paradigm are representations of real
world entities, objects can themselves be represented by other objects, usually
referred to as meta-objects. Computation done by meta-objects is for the purpose
of observing and modifying the objects they represent, called referents. Meta-
computation is often performed by meta-objects by trapping the normal compu-
tation of their referents. In other words, an action of the referent is trapped by
the meta-object, which performs a computation either replacing or encapsulat-
ing the referent’s action. Of course, meta-objects themselves can be manipulated
by meta-meta-objects, and so on. Thus, a reflective system can be structured in
multiple levels, constituting a reflective tower. Base-level objects (termed base-
objects) perform computations on the entities of the application domain. Objects
in the other levels (termed meta-levels) perform computations on the objects re-
siding in the lower levels. The interface between adjacent levels in the reflective
tower is usually termed as meta-object protocol [45].
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Reification is an essential capability of all reflective models. Each level of
the reflective tower maintains a set of data structures representing (reifying)
lower level computation. Such data structures comprising a reification must be
causally connected to the aspect(s) of the system being reified. All changes to
the reification are reflected in the system (shift-down action), and vice versa
(shift-up action). More details can be read on [14].

2.2 Evolution as a Crosscutting Concern

Any kind of software evolution consists of a modification to a software artifact to
correct, adapt or extend its functionality. The evolution normally affects all the
aspects of the software artifact (that is, model and code) but specially impacts on
its implementation. Independently of the reason, the act of evolving a software
artifact can be traced back to a bunch of pieces of code of varying size (few
code lines or whole classes) that should be intertwined with and potentially
scattered around the code of the software artifact. The extent of the evolution
determines the need of applying it to all the development phases from the design
to the documentation. In any case, when applying such modifications to existing
software, the change rarely is localized and confined in a single point or area but
involves several components; so it is fairly evident that the code that should be
added and the code that should be replaced/removed is tangled to and scattered
around the remaining code.

From the point of view of the artifact development, the code necessary to
evolve the software artifact or better the software evolvability is nonfunctional
to satisfy the original requirements of the artifact. The software evolvability
regards features or extensions that are not included at the design time (because
it implements an unpredicted feature or it solves a problem not known at design-
time) or patches to bugs that are not discovered earlier. If you consider the time
as a dimension, the software evolvability is a concern that exists over a limited
period of time (not necessarily from the beginning nor to the end) that will
be absorbed by other concerns when applied. For example, let us consider a
bank system artifact —with logging and many other concerns— and after a long
uptime the system administrator decides to add an extra monitor to the available
hardware in order to show the logging in real-time to the clerks and the bank
responsible besides the normal logging activity. This kind of new requirement
is difficult to anticipate or at least it could be economically disadvantageous
to consider it at design-time and thence the code to support it will only be
introduced when necessary. The evolution concern is just a special facet of the
logging concern and it will lose its identity in favor of it once deployed.

On the other hand, the evolution of a continuously running system is tra-
ditionally tackled on by predicting all the possible evolutions and hardwiring
them in the artifact itself. This approach gives origin to the code pollution phe-
nomenon where the code of the artifact is polluted by code that could never be
applied. Moreover, the approach shows the following defects: i) code bloating, ii)
it is impossible to predict any possible change and iii) the code becomes hard to
read and maintain. In this case, in spite of its defects, the evolution concern will
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live together with all the other concerns for the whole artifact execution. The
software artifact evolves without changing its structure; simply the “pollution”
will be no more taking an active role in the artifact execution, i.e., when the
need for a specific evolution predicted by the extra code in the software artifact
raises the corresponding code will become reachable.

Since the beginning, we are used to think about reflection as the perfect mech-
anism to separate nonfunctional and crosscutting concerns —i.e., concerns that
do not contribute to the artifact main functionality and whose implementation
is tangled with such an implementation— from the rest of the artifact [40]. This
is particularly true when we are speaking about separating a clearly defined
feature whose implementation can be easily identified as in the case of logging
and authentication but the truthfulness of such a statement is arguable when
these characteristics are not present at design-time or are difficult to grasp as
when the feature implementation is scattered in distributed components whose
code could be inaccessible or when it should be part of a continuously running
system. Let us consider the bank system example again, the logging and all
the other “standard” concerns can be easily detected and separately modularize
with a clear interface but, above all, it is easy to reflectively reassemble them
together to form the original artifact. This is mainly due to the presence of a
clear interface that can be used to couple different concerns. On the contrary, the
proposed extension to the logging system lacks of these characteristics (cf. with
the example in [18]); it is just a bunch of lines of code without a usable interface
that should integrate or substitute code in another concern. Mostly all the re-
flective approaches (but also the aspect-oriented approaches) have a granularity
at method level [14] whereas the evolutionary concerns need a finer granular-
ity in order to be applied. It should be fairly evident that the capability to
evolve and any particular evolution —especially in the case of the evolution of
continuously running systems— are clearly nonfunctional and crosscutting con-
cerns [16, 54, 56]. The code necessary to evolve an artifact cannot contribute to
implement its basic functionality until the urgency for the evolution comes up.
Moreover the evolution of a continuously running system hardly can be prepared
in advance but need to be decided according to the (sudden and unexpected)
risen necessity and the decision must be immediate due to the urgency often re-
quired by the evolution, e.g., to reconfigure a urban traffic control system to face
a traffic jam [17, 67]. Due to the previous considerations it is still more natural
to think about the evolution as something to add when necessary and to be kept
separate from the core of the artifact.

2.3 Reflecting on the Design Information

Normally, the evolutionary process is supported by human operators (program-
mers, designers or system administrators) but to grant a timely and responsive
assistance, especially to non stopping systems, it is necessary to imbue the soft-
ware artifact with the ability of autonomously tackling the situation, i.e., the
software artifact must be able to work out how to evolve from its current state.
The evolutionary process starts from analysis of the situation and of the artifact
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state to determine how to face the issue and then uses the analysis result to
decide how to proceed. To this respect, the artifact needs to introspect into its
state and structure and to know how to decide the correct strategy to tackle the
risen issue; this means to select one among several prearranged strategies and to
evolve it to fit the problem or (more difficult) to define a new strategy to fix it.

Reflection helps to introspect and to apply the strategy but it is grounded on
the artifact code and provides a limited view on the artifact behavior. But —as
previously stated—, a correct evolutionary strategy can be decided only if the
whole artifact architecture and behavior is known and taken in consideration:
evolution impact is not limited to the part of the artifact responsible of the is-
sue rather it affects several other non necessarily correlated parts [7] and often
unimaginable from looking at the code, e.g., you cannot close a road for main-
tenance without considering the traffic flow through such a road and without
changing the direction of the incident roads to avoid further disruptions.

Design information —when consistent with the implementation— provides
an accurate snapshot of the artifact structure and behavior. The artifact de-
sign information abstracts from the code —that is, a very local and concrete
view— giving a global view of the whole system —that is, the abstraction im-
mediately shows which part of the artifact is in charge of which feature without
looking at the code details. To complete the previous short example about the
road maintenance and to assimilate the previous statement look at [17] where
the deployment diagram for the urban traffic control system immediately shows
which roads are interested by the closing of another road without browsing the
code and without asking each road object for its neighbors. As stated in [18],
design information summarizes the overall knowledge about the artifact in a
handy form that is suited to plan the evolution.

Design information as a knowledge base for planning the evolution is not a
panacea for automating the evolutionary process but it can be considered as a
step towards a self-evolving software system. Reflection traditionally works at
code level so it is necessary to extend the reflection to deal with the design infor-
mation as application domain, similarly to [22] (software architecture) and [16]
(UML models) and to causally connect the design information to the code to
avoid the design/implementation gap [19, 68]. In this way, reflective introspec-
tion and intercession apply to the artifact design information that can be used
by the artifact to autonomously plan how to evolve and the causal connection
relationship will deploy the evolution when necessary; the shift-down operation
will take care of coordinating the changes and to avoid inconsistencies.

2.4 Self-evolving Architecture

Summarizing the previous considerations and according to several other works on
the topic (such as [1,8,27,46]), the adoption of a reflective architecture based on
design-information enables a software artifact with the ability of autonomously
evolving (self-evolving for short). Reflection permits to postpone the planning
and coding of the evolution from design to run-time since the changes can be
reflectively (either via code injection, callbacks or controlled executions) applied
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during the execution rather than simply activated if predicted during the de-
velopment. Moreover to grant the entity supervising the evolution with a global
knowledge of the artifact behavior and structure, the reflection should shift its
application domain from code to design information (to plan the evolution) and
back (to deploy the planned evolution on the artifact).

Several reflective frameworks [8, 16, 22, 25, 31, 36, 46] supporting self-evolution
and models@runtime have been developed over the last 15 years. They differ
on the realization and in what they can do as we will show in the next section
but they share a reflective nature, the use of design information (meta-models,
software architectures, UML diagrams and so on) to plan the evolution and a
control loop (monitor-plan-execute) that follows the vision given in [44] and [30].
Notwithstanding the similarity in their approaches they lack of a common termi-
nology. In the rest of the paper, we will try to abstract their reflective architecture
and to draft such a common terminology.

A reflective architecture for self-evolution will be logically structured in two
levels: the artifact prone to evolve will run in the base-level whereas the artifact
in the meta-level will take care of the evolution of the base-level artifact. The
reification will be bound to the design information of the base-level rather than
to its code. An evolutionary engine in the meta-level will use such a reification
to plan how to evolve the base-level artifact. Such a reflective architecture is
completed by a pool of reflectors. These components take care of realizing the
reflective behavior of the whole framework realizing the shift-up and -down op-
erations and keeping the causal connection between the artifact in the base-level
and its representative (the reification). These components have also to deal with
the particular application domain binding the code to the design information.
Due to the well-known gap between design and implementation [19, 68] to work
out an evolutionary plan from the artifact design information and apply it to
the artifact code will be challenging; [17] shows an attempt about how to put in
correspondence design information and code, i.e., how to implement the causal
connection in this reflective architecture.

The evolutionary engine is in charge of evolving the base-level artifact when
a settled event occurs. The engine works on the artifact’s reification to preserve
the base-level consistency in case of badly engineered or untimely evolution. The
reflectors reify the base-level design information into the reification and deal
with the issue of providing a corresponding run-time representative for them.
Moreover, the engine has two kinds of cooperating components: planners and
actuators. The multiplicity of components of the evolutionary engine depends
on the granularity of the evolutionary actions: each aspect of the system could
be handled by a different component. As the names suggest, the planners are in
charge of planning the evolution whereas the actuators put the planned evolution
into practice.

Planners plan the evolution on the reification supported by an evolutionary
knowledge base when a settled event occurs. The evolutionary knowledge base
contains strategies, i.e., predetermined solutions to situations that could happen;
the knowledge base can be fixed, augmentable with the strategies derived by the



266 W. Cazzola

Reflection

Evolutionary Engine

Application

Planners Actuators

Reflectors
events

design
information

Evolutionary
Knowledge Base

Fig. 1. Architecture for a Self-Evolving Artifact

planners and/or dynamically enrichable by a human operator. The events could
be related to the state and the structure of the base-level artifact (e.g., when an
urban traffic control system detects a traffic jam) or completely unrelated (e.g.,
time-based events: at every hour, at noon, . . . ). In both cases the evolutionary
engine has to monitor the base-level artifact and to trigger the planners when
it detects a settled event. Actuators cooperate with planners to render effective
the planned evolution: they apply the strategy decided by the planners to the
reification validating the consistency of the result before asking the reflectors for
reflecting the changes back to the base-level.

Fig. 1 depicts the described reflective architecture. In [15] the generic archi-
tecture is described through a pattern family capturing its behavior. Changing
the perspective, the described reflective architecture is a generic architecture for
providing a software artifact with the ability of autonomously evolving. It de-
scribes the main components of the framework and how they interact to achieve
the artifact evolution. To some extent it depicts a pattern which should match
mostly every approach to self-evolution. This pattern describes in-the-large how
to achieve the evolution, which components are involved and in which role but
does not detail how the single components (especially planners and actuators)
are implemented or how their strategies are extracted from the design informa-
tion such details will change from approach to approach as we will show in the
next. Moreover, the use of reflection permits to move the artifact prone to be
evolved out of the monitor-plan-execute control loop in favor of using a represen-
tative (the reification, i.e., the design information) to guarantee a safe planning
and deployment of the evolution.

In spite of the fact that the described architecture is just a logical architectural
pattern describing the architecture and the basic behavior that an artifact able
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to autonomously evolve should have, we want to stress that the evolutionary
engine can be realized in a monolithic way as well as in a decentralized way:
each planner, actuator and reflector can run on a different host machine and
can coordinate the evolution of a monolithic/distributed software artifact (that
is, the architecture is intrinsically distributed). Of course a decentralized man-
agement of the evolution will need an higher and tighter coordination among
the components in the reflective framework. Speaking about decentralized man-
agement of the evolution, the real challenge is represented by the possibility of
automatically scale up a centralized self-evolving artifact to seamlessly work in a
distributed environment. In particular the planned evolution could affect several
distributed components (the change affects components potentially running on
different host machines) and therefore the change could be realized by several
different actuators/reflectors to reduce the time necessary to update the artifact;
this points out the possibility of enabling the framework with the capacity of
parallelizing the evolutionary plan, job not easy to face especially without the
help of a human operator.

3 Reflecting on the Existing

The architecture for self-evolution described in Sect. 2.3 has a reflective nature,
implements the monitor-plan-execute control-loop [44] and exploits models at
run-time to provide the artifact (running in the base-level) with the capability
of autonomously planning and actuating its own evolution. Such an architecture
directly descends from the architectures of several frameworks available in the
literature and intend to provide a common terminology. In general, such an
architecture describes which components should be present and which role they
would play but it does not describe how they realize such a role that depends
on the adopted approach and which kind of evolution could be achieved. The
granularity of the change permits also to classify the existing approaches with
respect to the extent of the evolution.

According to [11], the granularity of the change is the dimension of the evolu-
tion that affects more the self-evolution approaches. To tackle on such a variabil-
ity it is necessary to have a similar variability also in the used design information.
For example, (self-)configuring [66] takes place at component level, the system
architecture changes (added/removed components or rearranged connections) to
face the requested reconfiguration. To plan its own reconfiguration, the artifact
must reason and act in-the-large1 i.e., on how the components interact rather
than on how they work.

In the next, we will explore how such a variability is tackled by the approaches
in the literature case by case and we will classify them according to the results
of the analysis. In particular, we focus our efforts on the following two cases of
self-evolution (the former has been described in [66]):

1 After [29] we use the term in-the-large in contrast to in-the-small to put in evidence
the necessary granularity and abstraction level.
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Fig. 2. Architecture of some self-configuring approaches

– a self-configuring artifact can add, remove and substitute its components and
change how they interact but cannot change how the single (or group of)
component(s) behaves (to some extent we can call it evolution in-the-large);
and

– a self-adjusting artifact can modify the behavior of each of its components
by changing their code (to some extent we can call it evolution in-the-small).

3.1 Self-configuring: Reflecting on the Architecture

Several definitions for software architecture are available2 but the one that better
fits our needs is:

Software Architectures deal with the design and implementation of
the high-level structure of the software. It is the result of assembling a
certain number of architectural elements in some well-chosen forms to
satisfy the major functionality and performance requirements such as
scalability and availability. Software architecture deals with abstraction,
with decomposition and composition, with style and aesthetics [48].

Software architectures provide a global view of how artifact components fit
together neglecting to detail what every component does, that is, they describe
the artifact in-the-large rather than in-the-small [29]. The software architecture
higher abstraction explicits a link to components and connectors as a whole
rather than to their implementation; this helps to plan the artifact reconfig-
uration [53, 55] but hinders a deeper evolution involving changes to the code.
Software architectures were designed to support component-programming (i.e.,
programming-in-the-large) so an explicit link between code and architecture is
missing and code changes driven by the architecture could result impossible.
2 Give a look at http://www.sei.cmu.edu/architecture/start/glossary/index.cfm to

get a grasp.
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In the years a plethora of approaches that support self-configuring through
design information manipulation have been explored, e.g., architectural reflec-
tion [22, 23, 64], Rainbow [35,36], and MUSIC [65].

Architectural Reflection [22, 23] exploits the artifact software architecture as
the application domain for reflective activities; all the reflective concepts have
been moved from the code to the architectural domain. The software architecture
is reified, decomposed into topology and strategy and manipulated, respectively,
by two meta-level components, called topologist and strategist. The software ar-
chitecture reification renders the artifact architecture explicit and observable and
the system controllable through its architecture. The topologist and the strate-
gist plan and force the artifact reconfiguration through the manipulation of the
(reified) software architecture; a specific actuator is used to reflect the change
on the system. Mapping the terminology used by this architecture (depicted in
Fig. 2(a)) on the one used in Sect. 2.4: the topologist and the strategist are two
kind of planners, each of them cooperates with their own actuator; both plan-
ning and validating the evolution on the artifact software architecture as design
information.

The Rainbow framework [35, 36] adopts an architecture-based approach as
well. It provides reusable infrastructure together with mechanisms for specializ-
ing that infrastructure to the needs of specific systems. The Rainbow framework
includes an artifact architectural model in its run-time system. In particular, de-
velopers of self-configuring capabilities use a system software architectural model
to monitor and reason about the system (to some extent a reflective system
whose application domain is the artifact software architecture). The Rainbow
control loop for self-reconfiguration passes through the following steps (look at
Fig. 2(b)): i) a model manager handles and provides access to the artifact archi-
tectural model; ii) a constraint evaluator checks the model periodically and ask
for evolution when a constraint violation occurs; then iii) an adaptation engine
determines the course of action and carries out the necessary evolution; finally
iv) an adaptation executor triggers the effectors to reflect the changes on the
artifact. In this case, the model manager together with the adaptation executor
and the effectors play the role of reflectors whereas the adaptation engine and
the constraint evaluator play the role of the evolutionary engine.

The MUSIC framework [65] defines an evolution middleware that exploits a
quality-of-service (QoS) aware model for planning the evolution. All the possi-
ble changes are at component-level and are related to the configuration of how
these components compose, called component realizations. A component realiza-
tion implements the ports the components use to collaborate and can be used in
a specific roles if the ports match. The model is represented by plans and each
plan reflect a component realization. Planning refers to the process of selecting
the components that configure the artifact to provide the best possible utility to
the end-user. The evolution process is mainly in charge of three components: the
adaptation controller, the adaptation reasoner and the configuration executor that
respectively play the role of actuator, planner and reflector in our architecture.
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In this particular approach the design information is scattered inside the plans
together with the evolutionary strategies.

Several other self-configuring approaches (such as TranSAT [3, 4], RSA [39],
PRISMA [24,25], ArchStudio [59], K-Components Architecture [31,32] and Del-
larocas et al. [28]) reflectively exploit software architecture to plan and realize
the artifact reconfiguration but since to report their analysis will not add much
more to the discussion and due to space limitation we are not describing them
all in detail.

3.2 Self-adjusting: Reflecting on the Model

Configuration works at component level by adding, removing or substituting
components and/or rearranging their connections; all information provided by
the artifact software architecture that can be used to plan the artifact self-
configuration. In general evolution also includes bugs fixing and extending/chang-
ing already implemented code; this kind of evolution is hard to be planned on
the artifact software architecture since it provides a coarse grain view (at com-
ponent level) of the artifact behavior and the details necessary to deal with this
kind of evolution are removed by the abstraction process. In general any kind of
design information gives an abstract view on the software artifact it represents,
at least, a view more abstract than the code itself; this characteristic hinders the
use of design information to plan this kind of evolution. In this case, the design
information should represent the artifact in-the-small with a finer granularity
and with a strong connection to the code as the UML models [10], but not only,
do.

Self-Adjusting implies to adjust how the components work not just how they
interact with other components (problem that can be faced through the manip-
ulation of configuration files) that means to alter their implementation. To plan
an evolution that goes so deepen in the artifact code poses some new challenges:

– how to modify the code during its execution (several tools, —as JavAdap-
tor [61, 62], Javeleon [38] and jRebel [41]– and some JVM extensions —as
Java hotspot and the Wurthinger et al.’s work [69]— help with this issue);

– how to associate the design information to the running code (normally mod-
els and code are statically coupled and the generation of the new code is
model-driven);

– how to face the natural gap between code and design information especially
in case of evolution [19, 68].

These additional challenges have rendered less appealing to perform dynamic
self-adjusting and, therefore, few attempts can be found in the literature; most of
them exploit the model driven engineering [43] methodology where models have
a proactive role and are used to generate the artifact itself, e.g., WEAVR [26]
and the Adaptive Object Model Architecture [70]; in the next we will neglect to
analyze these approaches since they have a different perspective: the artifact is
generated from the design information rather than simply used as a source of
information to drive the change of the existing code.
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Fig. 3. Architecture of some self-adjusting approaches

RAMSES (Reflective and Adaptive Middleware for Software Evolution of Sys-
tems) [16] is a reflective framework that provides an artifact with the capability
of dynamically self-adjusting. The framework has two logic levels (as sketched in
Fig. 3(a)): the artifact prone to be adjusted runs in the base-level whereas in the
meta-level a couple of meta-objects (the evolutionary and consistency checker
meta-objects) take care of planning and validating the artifact evolution. The
work of both such meta-objects is supported by dedicated engines that applies
validation and evolutionary rules (ruby scripts) to the artifact reification when
triggered by the meta-objects. The base-level models are reified in the meta-level
as XMI [58] schema and the changes are reflected back on the artifact through
techniques of code instrumentation [61–63]. In this case, the evolutionary and
validation rules are respectively the knowledge base used by the planners, i.e.,
the evolutionary meta-objects and by the actuators, i.e., the consistency checker
meta-objects, the whole meta-level corresponds to the evolutionary engine. Sim-
ilar concepts are used in the FiGA architecture [20, 21].

Chisel [42] is an open framework for self-adjusting of services using reflection in
a policy-driven, context-aware manner. The system is based on decomposing the
particular aspects of a service object that do not provide its core functionality
into multiple possible behaviors. As the execution environment, user context
and artifact context change, the service object will be adjusted to use a different
behaviors, driven by a human-readable declarative adaptation policy script. The
Chisel framework has a meta-level adaptation manager (depicted in Fig. 3(b))
that coordinates the whole adjusting process by monitoring the artifact execution
environment, by planning the adjustment via a set of adaptation policies and by
extracting (reifying) the meta-types from the running artifact and reflecting the
adjustment. In the Chisel framework the meta-level adaptation manager plays
the role of evolutionary engine (including planners, actuators and reflectors), the
adaptation policies are the evolutionary strategies and the meta-types plays the
role of design information.

Genie [5, 6] is a reflective framework to support self-adjusting of a software
artifact through its design information. Even if it adopts software architecture
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to represent the artifact in the meta-level it also enables a quite limited self-
adjusting through the self-generation of models describing the artifact state
transitions that can be used to change the artifact behavior. Genie framework
monitors the artifact context, reifies the artifact software architecture, a specific
component plans the adjustment strategy as a delta from the current design
and the design that should be and finally passes the generated reconfiguration
script to a specific component (named configurator) that changes the artifact.
The script generator plays the role of planner whereas the configurator is the
actuator/reflector of the architecture presented in Sect. 2.4.

4 A Model for a Self-evolving Artifact Should Be
Self-evolving

An artifact able to evolve itself or at least the capability of evolving cannot
be modeled with traditional design techniques, such as Petri nets, UML, and
so on. To use the traditional design techniques has the evident drawback of i)
polluting the artifact design information with details related to something not
relevant at the moment and ii) propagating such a pollution to the code as well
leading to a sort of domino effect that ends in code bloating. Unfortunately, these
issues do not only render difficult to model the self-evolving artifact by using the
traditional approaches but if done it also nullifies many of the benefits we got
from designing the artifact: to distinguish among what is or is not part of the
artifact complicates (sometimes it renders impossible) the model analysis and
validation of some properties (e.g., quality of services and efficiency) especially
over time, i.e., when some of the extra code will become effective.

Moreover, traditionally approaches to modeling do not consider the evolu-
tion as well; the artifact model is not affected by the artifact evolution and it
tends to rapidly become obsolete and therefore useless for planning the suc-
cessive evolutions of the artifact —this problem is known in literature as the
design/implementation gap [19, 68].

It should be fairly evident that the design information used to plan the evo-
lution (see Sect. 2.3 and Sect. 2.4) should not be polluted by the details related
to the evolution itself since they are

– redundant — evolution is planned by the evolutionary engine exploiting such
a model in its reasoning process;

– difficult to (automatically) separate from the relevant part of the model to
have a clean view of the current situation; and

– difficult to be kept coherent with the artifact evolution (extra and complicate
work for the planner)

From these considerations, the artifact design information should simply model
the current version of the base-level artifact and it should be updated after
the evolution or it should be generated out of the artifact code as in [37, 57]
providing a very detailed view on the artifact code —in order to fill the de-
sign/implementation gap. In both cases some of the advantages and flexibility
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provided by the approach are compromised: in the former case you have to
(probably manually) update the model after the evolution; in the latter case the
model could be too detailed and hinders any kind of evolution in-the-large as
self-configuration. Therefore, design information suitable for the approach that
allows to avoid such issues should be self-evolvable similarly to the artifact with
the strategies to evolve the model separated from the model itself and dynami-
cally enrichable.

A few attempts to model the self-evolvable capability separately of the rest
of the artifact have been done: reconfigurable nets [2], nets-within-nets [12] and
reflective Petri nets [13]. From the point of view of this work, even if all these
approaches support the evolution of the artifact model only the reflective Petri
nets provide a clear separation between the base-level model and the evolutionary
strategies to keep clearly separated what the artifact is and what it could become.

A reflective Petri net (whose idea is shown in Fig. 4) is a high-level Petri
net extension that permits to model a self-evolving artifact. The artifact current
model defines the base-level model (a classic place/transition Petri net) whereas
the evolutionary strategies applicable to the artifact define the meta-level model
(each strategy is modeled by a Petri net). The base-level model is reified as a
marking in the meta-level and a set of primitive operations (such as add a place
or remove a transition) can be used to evolve the reification. The semantics of
the reflective Petri nets will take care of keeping the base-level model and its
reification consistent over time.

Reflective Petri nets respect the described criteria: i) they can model the
base-level artifact separately from its evolution ii) the evolution can be applied
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similarly to the artifact and to its model iii) the model is always consistent
with the modeled artifact. Using this approach to model the artifact provides
the planners with design information that remains consistent after the evolution
ready to be used for the next planning phase and a common set of strategies can
be used by the reflectors to update both the model and the artifact.

5 Discussion, Related Works and Conclusions

Nowadays, with the increasing diffusion of the Internet, more and more artifacts
need to continuously run and to provide their services without interruptions, e.g.,
air and urban traffic control systems, nuclear plant control systems, electronic
shops and so on. To stop such a kind of systems could be mission critical but it
also represents a disservice to the customers and a potential loss of money. Of
course continuously running artifacts cannot be bug free or equipped with all
the desired features over the long period, so they need to evolve exactly as the
other artifacts do but with the constraint that they have to evolve during their
execution, without disservices and possibly promptly and autonomously.

Such considerations drive forth to the need of self-evolving artifacts, that is,
artifacts that can reason about themselves and, in case, can decide how to change
their own behavior and structure and can deploy such a decision.

In the last few years a plethora of frameworks supporting self-evolution have
been developed — [5,8,16,22,25,28,31,35,42,46] just to cite a few of them. Even
if apparently all these frameworks differ, they share reflective nature, the use of
design information (meta-models, software architectures, Petri nets, UML dia-
grams and so on) to plan the evolution and a control loop (monitor-plan-execute)
that follows the vision given in [44] and [30]. The contribution of this chapter
is to sort out this plethora of proposals and to give a common terminology for
the different actors playing similar roles present in all the available frameworks;
such a terminology can be logically summarized by Fig. 1.

A second consideration we have pointed out regards the granularity used for
the artifact reification (that is, the kind of used design information); the gran-
ularity directly affects the kind of self-evolution that can be carried out. For
example, software architecture well fits the self-configuration but are hard to
use for self-adjusting due to their level of abstraction (software architectures
describe the artifact in-the-large, self-adjusting can be considered a kind of evo-
lution in-the-small since it affects the artifact code and not its configuration).
Andersson et al. [1] do not consider this issue focusing their analysis on the
software architectures but they agree on the poor expressiveness of the soft-
ware architectures when used to describe the artifact in-the-small and suggest
to fill the gap in the causal relationship implementation to support any kind
of evolution (Sect. 5.1 of [1]). Instead we suggest to consider more appropriate
representation models case by case. Nierstrasz et al. [57] support our idea of
getting dynamic self-adjusting through a fine granularity model of the artifact
by proposing to reify the artifact code into the corresponding abstract syntax
tree (AST).
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To finish we also gave some remarks about the characteristics the design in-
formation should have to be used as a knowledge base for planning the evolution
without side-effects and complications. In short, they should be modeled keeping
in consideration they could evolve but avoiding to be polluted by this knowledge.
For example, reflective Petri nets [13] are structured to permit a clear separation
of the current model from the strategies to evolve it and can be easily part of
the evolutionary process. Perrouin et al. [60] do similar considerations even if
they suggest to enable the (self-)evolution of the single component of the MAPE
loop instead of imbuing the artifact model with this capability.

In the future we would like to widen our analysis including different flavors
of (self-)evolutions, such as self-healing and self-optimizations, and different ap-
proaches to code adjusting as aspect-oriented and generative programming in-
stead of reflection and finally to classify the existing architectures with respect
to the model of adopted reflection.
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Open adaptive systems are the basis for a promising new generation of embed-
ded systems with huge economic potential. In many application domains,  
however, the systems are safety-critical and an appropriate safety assurance  
approach is still missing.  

In recent years, models at runtime have emerged as a promising way to  
systematically engineer adaptive systems. This approach seems to provide the 
indispensable leverage for applying safety assurance techniques in adaptive sys-
tems. Therefore, this survey analyzes the state-of-the-art of models at runtime 
from a safety engineering point of view in order to assess the potential of this 
approach and to identify open gaps that have to be closed in future research to 
yield a safety assurance approach for open adaptive systems. 

1 Introduction 

The development of safety-critical embedded systems has to follow strict rules and a 
rigorous safety assurance case is required before a product can be introduced to the 
market. Developers therefore avoid using flexible and progressive concepts like dy-
namic adaptation in safety-critical contexts. Many safety standards such as IEC 
61508[47] even prohibit the use of techniques like dynamic reconfiguration or self-
healing. 

Over the last decade, however, new applications have emerged, which are today 
often subsumed under the popular term cyber-physical systems. In some sense, cyber-
physical systems are Open Adaptive Systems (OAS), i.e. systems of systems that 
dynamically connect to each other (openness) and adapt to a changing context at run-
time (adaptive). Industry sees huge economic potential in such systems -particularly 
because their openness and adaptivity enables new kinds of promising applications in 
different application domains. Many application domains of cyber-physical systems, 
however, are safety-critical. This includes, for example, car2car scenarios, 
plug’n’play operating rooms, or collaborative autonomous mobile machines.  

This means that two different worlds, which have intentionally been kept separate, 
have to grow together in the near future. Using the full potential of OAS without  
endangering a product’s safety is therefore one of the primary challenges today.  
Regarding the state-of-the-art, however, there are only a few approaches that explicit-
ly address the safety assurance of OAS. Whereas the adaptive systems community 
mostly considers safety as one of many quality properties, the safety engineering 
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community is still mainly concerned with design time variability, and only a few 
groups focus on the safety of Open Adaptive Systems. Therefore, safety could easily 
become a bottleneck preventing the successful transition of a promising idea into 
business success. 

From a safety point of view, there are, in fact, a few approaches that could be ex-
tended to assure safety in OAS. For example, some groups are pursuing the idea of 
safety bags [47], which detect and handle failures at runtime. By this means, even 
failures that potentially result from system adaptations would be covered so that the 
system adaptation as such would not be the subject of safety assurance anymore. In 
practice, however, the effectiveness of such approaches is still very limited. A further 
alternative would be to assure safety completely at design time by predicting all poss-
ible system adaptations and covering the complete adaptation space already during 
safety assurance at development time. Such approaches could easily run into a state 
space explosion problem and for open systems in particular, the structure cannot be 
completely predicted at development time.  

Therefore, this article focuses on alternative approaches enabling safety assurance 
at runtime. To this end, we particularly regard Models@Runtime, which have 
emerged as a possible means for the systematic development and runtime manage-
ment of adaptive systems. It is our perception that Models@Runtime as a new para-
digm could be an appropriate catalyst for accelerating progress in the safety assurance 
of OAS. In particular, they seem to provide an efficient basis for the safety assurance 
of Open Adaptive Systems: Models@Runtime provide a kind of formal basis for  
reasoning about the current system state at runtime, for reasoning about necessary 
adaptations, and for analyzing or predicting the consequences of possible system 
adaptations. This makes dynamic adaptation tractable, traceable and in some sense 
predictable. Therefore, having explicit Models@Runtime may provide the indispens-
able leverage needed for applying safety assurance techniques at runtime, hence 
bridging the gap between traditional adaptive systems and safety engineering re-
search. At the same time, however, a Models@Runtime framework imposes addition-
al complexity that potentially detriments the assurance of safety. As a consequence, it 
will be important to find the right balance between capabilities and complexity of the 
Models@Runtime framework on the one hand and the corresponding complexity and 
feasibility of the safety assurance on the other hand. Moreover, in order to be ac-
cepted, any safety assurance concept must still fit into the safety engineers’ and certi-
fication bodies’ views of the world.  

Using conventional safety assurance approaches as a reference, however, would 
immediately lead to the result that dynamic adaptation must not be applied at all. In 
order to identify the current position and missing steps on the way to safety assurance 
in OAS, it is nonetheless necessary to know the target we want to reach. Therefore, 
we have to look ahead in order to get an idea of what such a safety assurance frame-
work based on Models@Runtime could look like. To this end, we use an established, 
conventional safety engineering lifecycle as starting point which is introduced in 
Chapter 2. By applying the idea of Models@Runtime to the models and activities of 
the safety lifecycle we create a projection of a possible future safety assurance 
framework in Chapter 3. In a subsequent step, we analyze the state-of-the-art with 
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respect to adequate starting points and building blocks for our envisioned future safe-
ty assurance framework. The state-of-the-art analysis will thereby be twofold. On the 
one hand, in Chapter 4, the state-of-the-art of the safety engineering community will 
be investigated with respect to promising approaches and concepts that might be em-
ployed in the context of the envisioned framework and runtime assurance measures. 
On the other hand, in Chapter 5, the same will be done for the adaptive systems com-
munity. In addition, for the adaptive systems community there will also a brief over-
view on current Models@Runtime approaches that might serve as a technological 
basis or starting point for the envisioned safety assurance approach. In Chapter 6.1 the 
state-of-the-art is then being categorized based on the different conceptual classes of 
safety assurance approaches that have been identified in the context of the envisioned 
framework. Based thereon, open gaps are pointed out and possible future research 
directions are devised in Chapter 6.2. 

2 Safety Engineering for Traditional Embedded Systems 

2.1 Safety Engineering in a Nut-Shell 

The precise definition of a safety engineering lifecycle, and particularly of the terms 
used, depends on the concrete application domain. The principal idea, however, is 
similar across all safety-related application domains. For the sake of simplicity, we 
therefore use the terms as defined in the ISO 26262[55], which is the relevant safety 
standard for automotive systems. It is at the same time one of the most recent safety 
standards. 

The overall goal of safety engineering is to ensure ‘freedom from unacceptable 
risk’[55]. The term risk is defined as the ‘combination of the probability of occur-
rence of harm and the severity of that harm’[55]. Usually, however, it is not possible 
to directly assess the harm that is potentially caused by a system. Instead, safety man-
agers identify the hazards of a system, i.e., ‘potential sources of harm’[55]. In many 
domains, this vague definition is further refined. In the automotive domain, for exam-
ple, ‘hazards shall be defined in the terms of conditions and events that can be  
observed at the vehicle level’[55]. Usually, harm is only caused when a hazard, a 
specific environmental situation, and a specific operation mode of the system coin-
cide. This coincidence is called ‘hazardous event’.  

The identification of these hazardous events and the assessment of the associated 
risks is the first step in any safety engineering lifecycle, namely the ’hazard analysis 
and risk assessment (HRA)’ as shown in Figure 1. This step is performed during the 
very early phases of the development process, at the latest when the system require-
ments are available. 

As a result of this step, safety goals are defined as top-level safety requirements, 
which have to be incrementally refined during the safety engineering lifecycle. Usual-
ly, any safety requirement consists of a functional part and an associated integrity 
level. The functional part defines what the system must (not) do, whereas the integrity 
level defines the rigor demanded for the implementation of this requirement.  
The integrity level depends on the risk associated with the hazardous event, which is 
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The safety concept plays a very important role in safety engineering. It defines 
which countermeasures have to be applied and how the measures in combination shall 
ensure the safety goals. Following the definition of Avižienis et al. [21], there are 
three principal classes of countermeasures, as shown in the middle of Figure 1.  
Any measure available can be assigned to one of these classes. First of all, fault 
avoidance measures shall mitigate the creation of faults from the very beginning. This 
includes measures such as strict development processes or coding rules. Usually, 
however, it is not possible to avoid all kinds of faults using such measures. Therefore, 
it is additionally necessary to apply fault removal measures. This particularly includes 
validation and verification activities, which try to reveal and remove faults during the 
development phase. Since we cannot assume that these measures are sufficient to 
yield a fault-free system, it is also necessary to apply fault tolerance measures. Fault 
tolerance measures detect and handle errors at runtime in order to prevent system 
failures. 

Finally the safety manager has to define a safety case, which forms the basis for 
certification. A safety case can be defined as an ‘argument why an item is safe sup-
ported by evidence compiled from work products of all safety activities during the 
whole lifecycle.’[55]. Evidence might be anything supporting an argument in the 
safety case. Evidences of particular importance are the results of validation and verifi-
cation activities as well as safety analysis results. Since a safety case compiles all 
evidences that are relevant for proving the system’s safety, it is an efficient basis for 
safety certification. 

2.2 Modular Certification 

In most domains, safety managers follow a comparable approach to assure the  
functional safety of systems. Usually, however, the resulting safety certificate is valid 
for a specific system configuration only. Even a single change requires the system to 
be recertified. For example, in the avionics domain, even small system changes  
cause recertification costs approaching or even exceeding the original costs [73]. 
Considering that in the avionics domain 60%-70% of the overall development costs 
are caused by verification and certification activities, this leads to tremendous costs 
for recertification. 

Consequently, in the last decade, safety research has focused on approaches called 
modular or incremental certification, as described in more detail in Chapter 4. As 
illustrated in Figure 2, the idea of modular certification is that the individual subsys-
tems are modularly certified and provide a modular safety certificate. When the  
system is integrated, the certification effort shall be reduced to a composition of the 
subsystem certificates. In fact, most of the current approaches do not consider mod-
ular certificates, but modular safety cases, which have to be composed into a safety 
case for the overall system. The overall system certification is then a traditional, ma-
nual process based on the composed safety case. 
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• Raise awareness within the research communities for the specific chal-
lenges of safety assurance in OAS  

• Provide orientation for researchers by interconnecting different kinds of 
research into a bigger picture 

• Provide clear interfaces for future research 
In order to create the conceptual safety assurance framework, we incrementally 

project elements (i.e., typical safety models) of the safety engineering lifecycle to 
runtime. To do so, we start with SafetyCertificates@Runtime and extend the approach 
backward step by step along the safety engineering lifecycle. Shifting an element into 
runtime always implies that corresponding runtime mechanisms need to be estab-
lished that operate on the element. These are required to automate the tasks that used 
to be conducted by safety experts. It is obvious that the earlier the shifted element is 
in the lifecycle, the more engineering activities need to be automated, the more intel-
ligence is required at runtime – and the more difficult it will be for the approach to be 
realized and accepted. 

In accordance with the above, we first describe the ideas of SafetyCertifi-
cates@Runtime (section 3.1), then SafetyCases@Runtime (section 3.2), followed by 
validation and verification of Models@Runtime (section 3.3), and finally Hazard 
Analysis and Risk Assessment@Runtime (section 3.4). These different options are 
evaluated in section 3.5 before section 3.6 shows a possible safety assurance frame-
work integrating the different approaches. The framework will finally be the basis for 
assessing the state-of-the-art and assigning existing work and research directions to 
the different classes of the framework according to their respective suitability. 

3.1 SafetyCertificates@Runtime 

Following the idea described above, making safety certificates available at runtime is 
the first option. SafetyCertificates@Runtime contain all information that is necessary 
to identify which safety requirements are fulfilled with which integrity by the asso-
ciated system. Just like conventional safety certificates, SafetyCertificates@Runtime 
do not contain any white-box information on how the system was realized to yield the 
certification. A clear advantage of such an approach is that the runtime models and 
their evaluation can be quite simple and efficient as, for instance, shown by the Con-
Sert approach [70] [71] [76]. This would also imply that an overly complex Mod-
els@Runtime framework would not be required, thus alleviating the safety assurance 
of the framework itself. 

Classification Criteria: SafetyCertificates@Runtime are modular certificates that 
can be interpreted, composed, and adapted at runtime. They are dynamically adapted 
to represent the safety state of the system at runtime. The certificates of subsystems 
can be composed at runtime in order to yield an overall safety approval for a given 
composition. 

Using SafetyCertificates@Runtime, it is particularly possible to compose systems 
at runtime. As illustrated in Figure 3, the individual subsystems provide a runtime 
representation of the modular certificates (SafetyCertificate@Runtime). In order to 
assess the safety of the resulting system of systems, the single certificates have to be 
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In more complex versions, more intelligence might be integrated that is able to derive 
new lines of argumentation. 

With regard to the evidences, it is necessary to attach constraints to the evidences 
used in the safety case. At runtime it is then necessary to evaluate whether or not 
these constraints are still fulfilled. If not, there are basically two combinable options. 
First, it is possible to find an alternative argumentation based on the remaining valid 
evidences – including argumentations that potentially require a reduction of the safety 
guarantees that can be provided in the given context. A second option would be the 
revalidation of evidences. This requires the capability to re-perform safety analyses as 
well as validation and verification activities at runtime. For SafetyCases@Runtime, 
let us assume that this revalidation is limited to repeating the checks defined at design 
time in order to provide the evidence. This presumes that the system adaptation does 
not lead to a change of requirements or a change of the system’s interface. 

If the respective pass-criteria are met, the newly created evidence can replace the 
invalidated original evidence and be integrated into a new argumentation. Otherwise, 
the evidence remains invalid and the system must either find an alternative line of 
argumentation or invalidate the affected safety goals.  

3.3 V&V-Models@Runtime 

SafetyCases@Runtime already provide a very flexible means for safety assurance at 
runtime. Some system adaptations, however, might require a new set of verification 
and validation checks to provide the evidence required for the argument. Moreover, it 
might be desirable to be able to remove the faults identified during runtime V&V 
instead of being limited to only checking the pass-criteria. 

For the former aspect, it is necessary to additionally enable the system to define ve-
rification and validation suites autonomously. Realizing the latter aspect even requires 
systems that are able to localize the causing faults, and to isolate or even remove 
them. Considering how difficult this step easily becomes for developers at design 
time, it is obviously a very challenging task to shift these activities to runtime. 

Classification Criteria: V&V-Models@Runtime presume that all models that are 
necessary to perform validation and verification activities (e.g., test cases, pass/fail-
criteria etc.) can be interpreted and adapted at runtime in order to create new evi-
dences after system adaptations. 

3.4 Hazard Analysis and Risk Assessment@Runtime (HRA@Runtime) 

In the previous alternatives, we assume that the requirements and the resulting safety 
goals are not adapted. As a consequence, it has only been necessary to adapt the ar-
gumentation that the safety goals are still met in spite of system adaptations based on 
the safety case and the evidences created at runtime. Some adaptation approaches, 
however, also consider a change of requirements at runtime. If we apply the safety 
lifecycle to the idea of Models@Runtime, this means that we require a hazard and 
risk analysis at runtime, i.e. that the system must adapt and extend the hazard and risk 



290 M. Trapp and D. Schneider 

 

analysis and potentially have to adapt and extend the set of safety goals. By doing so, 
the complete existing argumentation for a changed safety goal might be invalidated. 
For new safety goals, an argumentation is completely missing. On the one hand, this 
type of runtime assurance certainly provides the highest possible flexibility. On the 
other hand, however, it requires very intelligent mechanisms for defining a safety 
argumentation and generating the necessary evidence autonomously at runtime. 

Classification Criteria: HRA@Runtime implies that a hazard and risk analysis 
model can be interpreted and adapted at runtime. This includes the identification of 
new hazards and the reassessment of existing hazards after adaptations at the re-
quirement level. 

3.5 Evaluation of the Different Approaches 

Regarding the approaches described above, they obviously build upon each other. 
This means that a HRA@Runtime requires V&V-Models@Runtime, which in turn 
require SafetyCases@Runtime and so on. So it is necessary to decide to which extent 
we want to shift the safety lifecycle to runtime. This results in a trade-off decision. 
From a safety point of view, it is certainly preferable to leave as much responsibility 
as possible with a human expert. Consequently, it would be reasonable to have only 
SafetyCertificates@Runtime. From an adaptation point of view, however, it is prefer-
able to have as much flexibility as possible in order to tap the full potential of dynam-
ic adaptation. In consequence, this would require shifting elements of the complete 
safety lifecycle to runtime. 

In order to further illustrate this trade-off, Figure 6 shows the relations of the dif-
ferent approaches to their acceptance on the one hand and to their flexibility on the 
other hand. Acceptance in this case refers to the probability of acceptance by safety 
authorities and legislation. Since there is no practical experience available, this is a 
qualitative estimation. First, we assume that acceptance is inversely proportional to 
the responsibility and intelligence given to the system. Second, the acceptance of an 
approach is usually inversely proportional to its complexity. Or vice versa: The simp-
ler an approach can be realized, the more probable is its acceptance. For obvious rea-
sons, it is very probable that the required intelligence as well as the resulting com-
plexity will grow with the number of safety assurance steps that are shifted to run-
time. Consequently, in our opinion, SafetyCertificates@Runtime have the best 
chances of being accepted, whereas the acceptance of an HRA@Runtime (i.e., shift-
ing all safety assurance activities to runtime) is quite improbable. As a further aspect, 
acceptance will be higher if the Safety-Models@Runtime are reconfigured at runtime 
to predefined variants only, whereas acceptance will rapidly decrease if the safety 
models themselves are adapted more flexibly at runtime. 

Flexibility, on the other hand, represents the degree of which different types of 
adaptations are supported. More precisely, in this case we refer to the type of adapta-
tion used to adapt the system itself and not to the type of adaptation used to adapt the 
safety models, since different adaptation approaches might be used for the system 
itself on the one hand and the safety models on the other hand. In order to classify the 
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safety assurance framework from the very beginning. First, this obviously reduces 
complexity. Second, this enables us to use different assurance approaches for different 
modules. In this context, we use the term module very flexibly to express a modula-
rized entity that can range from a complete system in a system of systems to a single 
software component. Since the required types of adaptation usually differ widely 
across the different modules, it reasonable to limit more complex assurance approach-
es to those modules that actually have to adapt very flexibly. 

Following the idea of modular certification, it seems to be reasonable to use Safe-
tyCertificates@Runtime as the basic building blocks to enable the modularization and 
runtime integration of different subsystems. In this case, SafetyCertificates@Runtime 
are the common denominator enabling the combination of a wide range of different 
assurance approaches used for the single modules.  

Assume, for example, that we have a module that adapts to ‘known unknowns’ on-
ly, as shown in the upper left corner of Figure 7. Then it might be sufficient to per-
form the major safety assurance activities at development time and limit the runtime 
models to SafetyCertificates@Runtime only. If we have a module that has too large a 
configuration space or that also adapts to ‘unknown unknowns’, it might be necessary 
to have SafetyCases@Runtime as well, as shown in the upper right corner of Figure 
3-5. As described above, SafetyCases@Runtime are an extension of SafetyCertifi-
cates@Runtime, so a runtime certificate is still available at the module’s interface, 
facilitating the safe integration of the components. In some cases, a module might 
adapt so flexibly that we will need V&V-Models@Runtime or even an 
HRA@Runtime. However, realizing this is very complex, so it seems reasonable to 
keep the complexity of such modules very small. To this end, it is helpful that the 
modularization of the framework can be applied recursively to achieve hierarchical 
decomposition, as illustrated in the lower left corner of Figure 7. This decomposition 
additionally illustrates an alternative way of composing SafetyCertificates@Runtime. 
If we assume systems of systems for example, each providing a SafetyCertifi-
cate@Runtime, the single systems are usually sufficiently independent from each 
other that composition at the certificate level is likely to be sufficient. If we assume 
the runtime integration of different software modules running on the same platform, 
there are usually tight interdependencies. Merely the fact that they share the same 
resources, for example, creates a safety-relevant dependency. For this reason, it is 
likely that additional evidences will be required for proving that the integration of the 
single modules is safe as well. Therefore, it might also be reasonable to have Safety-
Cases@Runtime at the integration level. 

The acceptance of sophisticated assurance approaches, in particular, is very low. 
An alternative way to ensure the safety of highly adaptive systems is given by differ-
ent traditional approaches, particularly in the field of fault tolerance. So-called safety 
bags (cf. e.g., [47]), for example, are a typical concept for monitoring a function to 
detect anomalies and trigger counter-reactions. Assuming that it would be possible to 
define a safety bag that can detect and handle any safety-related failure of an adaptive 
module, it would not be necessary to provide further assurance of that module. 
Though such approaches are based on traditional mechanisms rather than Mod-
els@Runtime, they would nonetheless fit into our conceptual framework as shown in 
the lower right corner of Figure 7. 
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Summarizing, this conceptual framework has been created based on a prognostic 
evolution of state-of-the-practice safety engineering lifecycles using the idea of Mod-
els@Runtime as a catalyst, which it uses to build a conceptual bridge between the 
world of safety engineering on the one hand and Models@Runtime on the other hand. 
Being based on safety engineering principles makes acceptance of the approach more 
likely. Yet it provides sufficient flexibility to integrate various different solution ap-
proaches based on Models@Runtime. Therefore, in the subsequent chapters we will 
analyze the state-of-the-art with respect to the suitability of the different approaches 
to fit into specific parts of the framework. We will further identify ‘white spots’ and 
interfaces for future research. 

4 State-of-the-Art from the Safety Engineering Community’s 
Point of View 

As already discussed above, Open Adaptive Systems have long been beyond the 
scope of the safety engineering research community. However, the work that has been 
done in the direction of modular certification might well prove to be a sound founda-
tion for tackling the safety-related challenges posed by Open Adaptive Systems. 
Moreover, there are some first approaches advocating the introduction of runtime 
measures. The state-of-the-art presented in this chapter consequently focuses on ap-
proaches from the safety engineering community that either belong to the aspiring 
research field of modular certification, or that advocate certain runtime measures for 
the context of OAS. 

In general, modular certification can be characterized as a means for the modulari-
zation of safety cases. The safety case is modularized such that components devel-
oped by different suppliers, and components that are likely to be replaced or reused, 
specify a self-contained modular safety case. These modular safety cases, specified by 
the module developer, are connected on the system level by the integrator to build the 
system safety case. In order to be able to assemble the system safety case, each mod-
ule must provide an interface specification containing the module’s guaranteed beha-
vior and the behavior demanded of other interacting modules. Demands are necessary 
since the behavior of the module at hand depends on the behavior of the other  
modules it is interacting with. Therefore, the module at hand is only able to give guar-
antees under the premise of a certain behavior of the interacting modules. These pre-
mises are called demands and, together with the afore-mentioned guarantees, shape 
demand/guarantee contracts.  

The idea to use contracts as a metaphor for describing the interaction of compo-
nents with mutual obligations and benefits can also be found in approaches that do not 
specifically focus on safety, such as those presented in Section 5.1.1. These approach-
es do, however, focus on specifying the nominal behavior and/or specific quality cha-
racteristics of components and do not consider a component’s failure behavior (how 
does the component fail, what failures of other components can the component tole-
rate), which is essential for safety-related modularization. 
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4.1 Foundational Work on Modular Certification 

To enable modularization of safety cases, it is crucial to formalize the relevant infor-
mation in an appropriate way. As a first step, it is necessary to enable modular safety 
analyses. A corresponding starting point is given by techniques from the class of fail-
ure logic modeling (FLM) [48], where the failure logic is modeled separately for each 
component and the failure logic model defines how deviations at the input of a com-
ponent propagate to deviations at the outputs of the component. Architecture models, 
which are (should be) available anyway, define how the components are connected. 
Based on the architecture, it is therefore possible to also connect the failure logic 
models of the component, and the failure propagation throughout the overall system 
can be analyzed automatically. Prominent solutions in this regard are the ‘Hierarchi-
cally Performed Hazard Origin and Propagation Studies’ – HiP-HOPS [49] and the 
‘Failure Propagation and Transformation Notation’ – FPTN [50]. Another approach 
that is based on safety contracts has been proposed by Hawkins and McDermid[51]. 
Moreover, component fault trees [52] provide an extension for the well-known tech-
nique of fault trees that supports the modular, component-based definition of fault 
trees [53]. Fault trees and CFTs generally also enable probabilistic analyses by anno-
tating faults with respective probabilities of occurrence. Since it is often not possible 
to determine concrete probabilities for a given event, Foerster and Schneider intro-
duced an approach that uses intervals of probabilities to efficiently deal with such 
uncertainties during development [54]. 

4.2 Modular Certification as Represented by Current Standards  

Some concepts related to modular certification have already been adopted by current 
standards and thus found their way into the state of the practice. This is particularly 
true for the fields of automotive systems and avionic systems because the trend to-
wards modularized architectures has been particularly strong in these fields. The fol-
lowing paragraphs provide a brief overview of the corresponding standards and the 
modularization concepts they advocate.  

4.2.1 ISO 26262 
The international standard ISO 26262 for the functional safety of street vehicles con-
tains the so-called concept of Safety Element out of Context (SEooC) [55]. A SEooC 
is defined as a component for which there is no single predestinated application in a 
specific system. Therefore, the SEooC developer does not know the concrete role the 
product has to play in the safety concept. Subsystems, hardware components, and 
software components may be developed as SEooCs. Typical software SEooCs are 
reusable, application-independent components such as operating systems, libraries, or 
middleware in general. 

For SEooC development, the standard suggests specifying assumed safety re-
quirements and developing the system according to these requirements. When the 
SEooC is to be used in a specific system, the system developer has to specify the  
demanded requirements, which can subsequently be checked against the assumed 
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requirements. If there is a match between the demanded and the guaranteed (assumed) 
requirements, system and component are compatible. The standard does not provide 
any suggestions or methods on how to identify safety requirements such as to increase 
the chance that assumed and real requirements match. Neither does the standard pro-
vide information on how to perform the verification of the assumed requirements 
during integration of the SEooC. The standard specifies a relatively coarse-grained 
process for embedding a SEooC development into the standard’s safety lifecycle. In 
general, SEooC integration is expected to be done at development time and thus there 
is no explicit support for open systems where components are to be integrated dynam-
ically. Moreover, there is no explicit support with respect to the management of va-
riabilities, be it at development time or at runtime. 

4.2.2 DO-297 
The DO-297 [56] standard regulates the modular certification of components in an 
Integrated Modular Avionic (IMA) system. The terminology of the standard talks of 
incremental acceptance instead of modular certification. Acceptance is defined as the 
confirmation of a certification body that a module of an IMA system (a general-
purpose execution platform or an application) fulfills its specification. This accep-
tance can be achieved for an IMA system and is one building block of the final  
certification, with the latter always being in the context of a specific airplane or en-
gine. The wording incremental has been chosen because the process of the DO-297 
allows step-wise acceptance of single modules of a system and because it allows in-
crementally extending a system with new applications, without having to re-certify all 
the modules in the system. 

4.3 State-of-the-Art for Modular Certification Approaches 

This section briefly describes a selection of prospective modular certification ap-
proaches. All these approaches are briefly described and their applicability in the 
context of Open Adaptive Systems is considered. 

4.3.1 Concepts for Modular Certification by Rushby  
Rushby provides some theoretical considerations on the use of modular certification 
for software components in IMA architectures. The goal is to enable the certification 
of software components in order to allow them to perform their functions in a given 
(aircraft) context based solely on assumptions about other related software compo-
nents. Three key elements were identified as the potential backbone of a correspond-
ing approach [60]: 

1. Partitioning creates an environment that enforces the interfaces between compo-
nents; thus, the only failure modes that need be considered are those in which 
software components perform their function incorrectly, or deliver incorrect be-
havior at their interfaces.  
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2. Assume-guarantee reasoning is a technique that allows one component to be 
verified in the presence of assumptions about another, and vice versa.  

3. Separation of properties into normal and abnormal properties. Abnormal proper-
ties capture behavior in the presence of failures.  
 

To ensure that the assumptions are closed and the system is safe, three classes of 
properties that must be established using assume-guarantee reasoning were identified: 

 
1. Safe function ensures that each component performs its function safely under all 

conditions consistent with its fault hypothesis; 
2. True guarantees ensure that each component delivers its appropriate guarantees; 
3. Controlled failure is used to prevent a ‘domino effect’ where the failure of one 

component causes others to fail, too. 
 

It is important to note that the publication presents conceptual foundations but does 
not provide concrete solutions. Still, the presented concepts are clearly relevant and 
likely to be of avail for future work in the context of the envisioned framework. 

4.3.2 Modular Goal Structuring Notation 
The Goal Structuring Notation (GSN) [61] is a graphical notation for modeling a safe-
ty argument, which is the core part of every safety case. A safety case has been de-
fined in the context of the GSN as follows: 

‘A safety case communicates a clear, comprehensive and defensible argument that 
a system is acceptably safe to operate in a particular context.’ 

Therefore, a safety case serves the purpose of specifying a comprehensive argu-
ment to prove the safety of a system. To this end, the GSN allows modeling tree-like 
arguments beginning with safety goals, and iteratively connecting them through 
chains of logical argumentation and sub-goals, with the evidences created during 
system development. Evidences can be performed tests or analysis reports from an 
FMEA or an FTA that are used for underpinning the fulfillment of the goals. 

In order to deal with modular systems and modular certification, there is an exten-
sion to GSN that allows modularizing safety cases [62]. The interface of a safety case 
module is defined by a set of public items that are available for use in other safety 
case modules and a set of items that the safety case module at hand demands from 
other modules. Those items can be goals, evidences, and context. 

A strategy for the construction of a modular safety case architecture is given in 
[63]. These guidelines are based upon the guidelines for general modular system de-
sign and comprise the following requirements: 

• Modules must be as independent as possible. 
• Modules must exhibit high cohesion and low coupling. 
• Modular safety cases and safety case architectures must be constructed 

top-down. 
• Modules must have well-defined interfaces. 
• All modular dependencies must be captured. 
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In summary, modular GSN is a graphical notation that allows modeling modular 
safety arguments. As described above, there are also product-related guidelines for the 
specification of modular safety arguments. Openness and adaptivity are not explicitly 
addressed, whereas the modularization concepts would at least provide a starting 
point for corresponding augmentations. Apart from that, it has been shown that the 
GSN can be utilized in conjunction with a software product line approach [64]. Con-
sidering SafetyCases@Runtime, a GSN-like notation might be a possible starting 
point. Usually, however, the single elements of a GSN-based safety case are described 
in natural language. Using GSN at runtime will require an appropriate means for for-
malizing the notation in order to enable runtime evaluation and adaptation.  

4.3.3 The Generic Safety Case in DECOS 
The DECOS (Dependable Embedded Components and Systems) project [65] was a 
European Integrated Project in the FP6 Embedded Systems area which ran from 2004 
to 2007. The main objective of the project was to make a significant contribution to 
the safety of dependable embedded systems by facilitating the systematic design and 
deployment of integrated systems [66]. In order to reach this objective, a generic safe-
ty case approach for incremental certification was developed, which improves the 
efficiency of the certification process and thus shall facilitate significant cost savings 
during the development of safety-critical systems.  

According to [66] and [67], modularity is achieved by separating the certification 
of core services and architectural services from applications (enabling generic appli-
cation safety cases (for the class of applications) and individual (specific) safety cases 
by supporting independent safety arguments for different distributed application sub-
systems). 

1. Separating certification of architectural services from certification of applica-
tions: The clear interfaces between the platform and the applications provided 
via the platform interface are a prerequisite for the separation of the certifica-
tion of architectural services from the certification of applications. 

2. Separating certification of different distributed application subsystems: The 
integrated architecture allows the independent certification of different appli-
cation subsystems, instead of considering the system as an indivisible whole in 
the certification process. The safety argument for each subsystem is provided 
to the integrator by the suppliers along with the compiled application code of 
the jobs in the corresponding subsystem. In order to construct the safety argu-
ment for the overall system, the system integrator combines the safety argu-
ments of the independently developed subsystems and acquires additional  
evidence, such as the results of a formal verification of the architectural ser-
vices. The decomposition of the overall system into encapsulated subsystems 
with different criticality levels reduces the overall certification efforts and al-
lows focusing on the most critical parts. Furthermore, the separate certification 
of subsystems is beneficial if functionality is reused in different systems.  
In this case, the safety argument for the functionality needs to be constructed 
only once. 
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Like the approaches above, DECOS supports the modularization of development 
time safety artifacts. Openness and adaptivity are not explicitly supported and all 
certification activities are to be conducted at development time. However, the incre-
mental approach adopted by DECOS seems to be well suited to handling variability at 
development time, maybe in conjunction with an adequate software product line ap-
proach as it has already been explored for the GSN. 

4.3.4 Vertical Safety Interfaces 
The goal of the VerSaI (Vertical Safety Interfaces) method is to assist the integrator of 
an integrated architecture in checking whether the application software components 
are able to run safely on the execution platforms of the system, and if so, provide 
assistance in generating appropriate evidence [72]. 

Before safety compatibility between the application and the platform can be 
checked with the VerSaI approach, demands and guarantees have to be specified. 
Demands are typically used to express all the properties a platform needs to have for 
an application to be executed safely, whereas guarantees represent the safety-related 
properties the platform possesses. A compatibility check is successful if a sound  
argument for the fulfillment of the demands with the available guarantees can be es-
tablished. To enable tool-supported integration, the VerSaI approach offers a semi-
formal language for modeling these demands and guarantees. The language consists 
of a number of elements, each representing a certain type of demand or guarantee 
exchanged by an application and a platform. This implies the noteworthy fact that 
there is a finite number of language elements and, therefore, also a finite number of 
dependencies that can be expressed with the language. First evaluations have shown 
that this is suitable, because the typical service relationships between an application 
and a platform are finite and regular, too, which is also the reason why platforms have 
been standardized in the first place. 

The final step of the method is to check whether each demand can be met with the 
guarantees identified as relevant in the previous step. In contrast to conventional inter-
faces, it is usually not possible to simply match demands and guarantees, respectively. 
In fact, it is necessary to generate an additional fragment in the safety case providing 
the arguments and evidences that the demands of the platform are met by the guaran-
tees given by the platform. To this end, this step is supported by a so-called strategy 
repository. The repository contains expert strategies that are selected and presented to 
the integrator and describe what guarantees are needed to fulfill the current type of 
demand and how to generate a piece of evidence containing a sound argument. 

Like the other modular certification approaches, Versa focuses on development 
time integration. However, it provides some interesting aspects that could be of relev-
ance for SafetyModels@Runtime. First, it already provides a formalization of the 
interface language, thus facilitating automated checks of interface consistency. 
Second, it introduces first ideas of how missing fragments of a safety case could be 
generated automatically. Though this is currently not possible without human interac-
tion, some ideas could be a starting point for extending/modifying safety case argu-
mentations at runtime. However, VerSaI is limited to the vertical interface between 
application and platform software. This has the advantage that the typical safety  



300 M. Trapp and D. Schneider 

 

requirements concerning this vertical interface are quite limited - thus simplifying the 
formalization of the interface language. For OAS, this approach would have to be 
extended to horizontal interfaces as well. However, those interfaces are usually appli-
cation dependent so that the formalization approach used in VerSaI cannot be easily 
extended to support horizontal interfaces as well. 

4.4 Runtime Certification 

First ideas with respect to runtime certification have been introduced by Rushby[68], 
[69]. In contrast to most of the other approaches presented in this section (which are 
already quite mature and have partly even been proven in use), Rushby`s work re-
mains on a rather conceptual level. However, considering its motivation and the solu-
tion concepts presented, it is very important in the context of safety assurance of 
OAS. 

In the first publication, Rushby presents the general idea that certain elements of a 
conventional certification case could be transferred to runtime. The focus is on those 
elements that apply formal analyses (e.g., automated verification) to representations 
of a software component and its local safety or other critical requirements. Formal 
analyses are usually employed at development time to formally verify that a compo-
nent follows a certain prescribed behavior. At runtime it would be possible to employ 
monitors to control the component’s behavior during execution and to trigger ade-
quate measures when deviations occur. Such monitors might be synthesized from the 
model that specifies the component’s behavior using very similar—and equally trust-
worthy—techniques as those used in formal verification. 

In the second publication, Rushby outlines a framework in which the basis for  
certification is changed from compliance with standards to the construction of explicit 
goals, evidences, and arguments (generally called an ‘assurance case’). He then de-
scribes how runtime verification can be used within this framework, thereby allowing 
certification to be partly performed at runtime. The core of this approach is again  
the usage of runtime monitors, which have been defined outside the context of an 
assurance case in order to dynamically monitor assumptions, anomalies, and safety, 
respectively.  

Overall, the presented work is still very conceptual but nevertheless provides a 
good starting point for future work in the context of the envisioned framework. One 
of the main ideas advocated by Rushby, namely to shift parts of the safety assurance 
measures into runtime to cater to the specific challenges within OAS, has also been 
adopted by us in the framework presented here.  

4.5 Discussion 

From the state-of-the-art in safety engineering approaches that support modularization 
it becomes apparent that openness and adaptivity have been largely out of scope and 
thus are not explicitly supported by most approaches. Moreover, even though the 
umbrella term ‘modular certification’ seems to suggest otherwise, all of the consi-
dered approaches and standards rather focus on the modularization of pre-certification 
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safety artifacts, particularly safety cases. The only exceptions are the approaches on 
runtime certification, which build on pre-certification of the system. Since most ap-
proaches have been designed to support engineers during their development time 
activities, they lack an adequate degree of formalization, which would be required for 
automated runtime evaluations. All of these approaches nevertheless provide sound 
conceptual starting points for new safety engineering approaches for Open Adaptive 
Systems. As for supporting adaptivity, some of the presented modular certification 
approaches (such as the GSN) have at least been used in conjunction with software 
product lines. Others, such as the approach introduced by Rushby, DECOS and Ver-
SaI, seem to be well-suited in this regard as well.  

As the considered approaches are more or less established in the safety engineering 
community, using them as a starting point for Models@Runtime certainly increases 
the probability of acceptance. Since the approaches are mainly based on safety cases, 
they would provide a good starting point for research in the direction of SafetyCertifi-
cates@Runtime or for SafetyCases@Runtime. 

Apart from the modular certification approaches discussed above, the runtime cer-
tification approach presented by Rushby builds on dynamic monitoring (and repair) of 
the systems’/components’ behavior. This approach could fit into the category of 
V&V-Models@Runtime. Based on the conceptual descriptions, however, it seems 
that mainly predefined verifications can be executed at runtime. So depending on the 
concrete realization of these concepts, they will rather support the re-validation of 
evidences as part of SafetyCases@Runtime. 

5 State-of-the-Art from the Adaptive Systems Community’s 
Point of View 

Some of the first significant research efforts for adaptive systems emerged from the 
middleware community, where adaptive middleware platforms have been designed to 
meet the new demands of flexible, distributed heterogeneous systems. Examples in 
this regard are the solutions proposed by Blair et al. [4], Kon et al. [5], Capra et al. 
[6], and Truyen[7]. These solutions were mainly designed to enable adaptability (i.e., 
reconfiguration of the middleware or platform to fit a given setting) or even self-
adaptation (i.e., an adaptive middleware or platform that dynamically adapts itself to 
provide optimized service functionality and quality in any situation). A related field of 
research, where the topic of self-adaptivity also gained momentum quite early, is the 
field of adaptive quality of service (QoS) assurance. Corresponding research has 
mostly focused on communication systems and end-to-end consideration of QoS. The 
results have been platforms, middleware, and frameworks enabling adaptive QoS. 

It was soon recognized that quality assurance for adaptive systems is an important 
topic with significant scientific challenges. Initial corresponding research efforts have 
mostly focused on the issues of validation and verification (V&V) of adaptive sys-
tems. First results were based on development time V&V, but recently we have seen 
that V&V measures are being increasingly shifted into runtime. The upcoming topic 
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of Models@Runtime seems to be a catalyst in this regard. Thus, even more capable 
Models@Runtime-based approaches for runtime V&V can be expected in the future.  

In recent years, one main research focus of the community has been to investigate 
sound engineering methodologies for adaptive systems. Such methodologies ideally 
span all typical phases of software development (from requirements engineering to 
the validation of the final product) and explicitly consider important non-functional 
properties. This methodological research focus has been pushed by community re-
search roadmaps [1]and has been advocated strongly by conferences in the area of 
adaptive systems, e.g., the SEAMS symposium [8] and the SASO conference [9]. In 
the context of engineering frameworks, the different fields of adaptive systems re-
search are growing together ever more. The current Models@Runtime research land-
scape underlines this trend, since researchers from the fields of adaptive middleware, 
V&V, and engineering methodologies are working together to develop seamless ap-
proaches combining all these important aspects under the umbrella of the Mod-
els@Runtime topic[2][3]. Relatedly, Baresi and Ghezzi argue that the clear separation 
between development-time and run-time is blurring and is probably doing so even 
further in future [74]. 

From the perspective of the envisioned safety assurance framework, there are con-
sequently two categories of approaches that will be considered in more detail in the 
following: 

1. Approaches concentrating on V&V in the context of adaptive systems. V&V 
is here not necessarily aimed at safety assurance. Nevertheless, the approaches 
can be valuable input for future approaches in the context of the envisioned 
framework. A short overview of the state-of-the-art will be provided and the 
assurance scope of the different approaches will be considered. Note that com-
pleteness cannot be a goal for this article, thus we rather tried to identify a rep-
resentative set of approaches covering the most important different classes. 

2. Frameworks and approaches for adaptive systems that enable the utilization of 
Models@Runtime for different relevant concerns. Such approaches provide a 
possible technological basis and therefore define the frame the envisioned 
safety assurance framework would have to be integrated into. The approaches 
will be briefly presented and analyzed with respect to their runtime assurance 
capabilities and their usage of Models@Runtime. Again, completeness was 
not the goal. For this part of the state of the art we also compiled a possibly 
representative set of approaches to indicate the current status quo of Mod-
els@Runtime approaches in relation of assurances – and safety in particular. 

5.1 Approaches Using Validation and Verification as a Means for Assurances 

The approaches considered in this section focus on ensuring certain properties 
through the application of adequate V&V techniques. Some approaches rely on de-
velopment time measures alone, whereas others utilize runtime measures or a combi-
nation of both. For both cases, this section will provide an overview of the respective 
state-of-the-art. Prior to that, however, there will be a paragraph on contract-based 
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design, since this is an enabling technology for efficient V&V. Moreover, safety con-
tracts and assume-guarantee reasoning are likely to be enabling technologies for im-
portant parts of the envisioned framework. 

5.1.1 Design by Contract 
About twenty years ago, Meyer introduced a set of basic principles of Design by Con-
tract in the context of his Eiffel language [23]. Since then, a wide range of related 
approaches have been developed for the specification and utilization of different kinds 
of functional and non-functional contracts. Beugnard et al. provide a recent overview 
of the general use of Design by Contract concepts in the domains of embedded sys-
tems, component architectures, and service oriented architectures [24]. The work in 
the respective domains is classified according to a scheme introduced in an earlier 
publication by the authors [25]. Essentially, the types of contracts are classified into 
four levels:  

1. Syntactic (or basic): The goal is to make the system work. It is generally speci-
fied with Interface Definition Languages (IDLs), as well as typed object-based or 
object-oriented languages. It ensures the components can be assembled. 

2. Behavioral: The goal is to specify each operation. It is generally specified with a 
couple of assertions: a precondition and a post-condition. It ensures the opera-
tions offered and required are not only syntactically compatible but also semanti-
cally. 

3. Synchronization: The goal is to specify the coordination of operations. It can be 
specified with an automaton labeled with operations. It ensures the operations are 
used in the proper order. 

4. Quality of Service: The goal is to quantify a few features associated with opera-
tions. Performance, availability, and quality of result can be specified and nego-
tiated at that level. 

An interesting and widely recognized approach for contract-based design (even 
though not specifically addressing adaptive systems) is the Rich Component Model 
(RCM). The RCM is the backbone of the embedded systems design approach devel-
oped in the SPEEDS project (Speculative and Exploratory Design in Systems Engi-
neering) [26]. One primary goal of the RCM is to optimize the reuse of embedded 
applications. Safety-relevant applications are explicitly included. The main ideas 
forming the foundation of the approach are described in [28]. 

The language typically used to describe such contracts is hybrid automata as shown 
in [27], [28] and [29]. There are formal definitions for the semantics of the hierarchic-
al and horizontal composition of the contracts, which allows checking the fulfillment 
of system-level requirements after the system has been integrated, using a model 
checker for example. The formality of the approach increases the achievable degree of 
automation while equally increasing the upfront effort for modeling the system. The 
RCM is therefore a modeling paradigm that allows specifying the contract interface of 
a modular safety argument. 

In relation to assurances and adaptable systems, Inverardi et al. recently presented 
a theoretical assume-guarantee framework for adaptable systems [30] that can be used 
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as a basis for establishing runtime contracts and thus also for V&V in adaptive  
systems. The major aim of this framework is to define efficient conditions to be 
proved at runtime to guarantee the correctness of the adaptation of a composed  
adaptive system. 

Conditional Safety Certificates (ConSerts) are a means for facilitating safety certi-
fication in the context of OAS [70] [71] [76]. This is one of the approaches explicitly 
addressing Open Adaptive Systems. There are three main differences between Con-
Serts and standard certificates that are owed to the nature of open systems: A ConSert 
is not static but conditional; it usually comprises a number of variants; and it must be 
available in an executable (and composable) form at runtime. Conditions within a 
ConSert manifest in relations between potentially guaranteed safety requirements 
(denoted as guarantees for the remainder of this article) and the corresponding de-
manded safety requirements (i.e., demands). The demands always represent safety 
requirements relating to the environment of a component, which consequently cannot 
be verified yet at design time. A ConSert therefore certifies that the guarantees will 
hold with acceptable probability under the precondition that the specified safety de-
mands are fulfilled by the environment. Variants come into play because ConSerts 
usually comprise not only one but a series of different potential guarantees. Eventual-
ly, the ConSerts must be available at runtime in an executable representation and the 
systems need to possess mechanisms for composing and analyzing these runtime 
models. Using these means makes it possible to establish and maintain safety con-
tracts at runtime that span all levels of a composition hierarchy through pairs of Con-
Sert-based guarantees and demands.  

In the same way as standard certificates, ConSerts shall be issued by safety experts, 
independent organizations, or authorized bodies after a stringent manual check of the 
system. To this end, it is mandatory to prove all claims regarding the fulfillment of 
safety requirements by means of suitable evidence. The guarantees that can be pro-
vided by a system usually depend on the fulfillment of demands. On the one hand, 
these demands might directly relate to the required functionalities of other systems. In 
other cases, some evidences must be acquired at the integration level, since safety is 
not completely composable. To this end, ConSerts support the concept of so-called 
runtime evidences. The resulting variability (of the fulfillment of demands) ultimately 
leads to variants and conditions within the safety case, which are the basis for the 
definition of ConSerts. 

In terms of the conceptual assurance framework, ConSerts belong to the class of 
SafetyCertificates@Runtime. But they also support single elements of SafetyCas-
es@Runtime through the instrument of runtime evidences. 

5.1.2 Approaches Utilizing Development Time V&V for Assurances 
In [31], Zhang and Cheng introduce a method for constructing and verifying adapta-
tion models using Petri nets. In [32], linear temporal logic is extended with an ‘adapt’ 
operator for specifying requirements that a given system must match before, during, 
and after adaptation. An approach for ensuring the correctness of component-based 
adaptation was presented in [33], where theorem proving techniques are used to show 
that a program is always in a correct state in terms of invariants. [34]introduces a 
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formal model of reconfiguration and an associated set of high-level system dependa-
bility properties that can be verified. Giese and Tichy introduced a development-time 
hazard analysis approach for analyzing all configurations a self-adaptive system can 
reach during runtime [35]. In [75], Becker et al. present a further development time 
verification technique for the invariant verification of structural properties. This tech-
nique has been designed to be appropriate for large multi-agent systems that are sub-
ject to structural adaptations at runtime. 
Mohammad and Alagar recently introduced a formal approach for the specification 
and verification of trustworthy component-based systems [36] that advocates formal 
specifications and dedicated safety properties as a basis for V&V. The properties can 
be defined as constraints (such as time or data constraints) at the component level and 
are to be understood as invariants over the component behavior. The behavior can be 
defined using timed automata. Eventually, the specifications enable automated analy-
sis and verification (through model checking) of the considered properties.  

All of the above approaches have in common that they try to analyze (with respect 
to safety or other specific properties) all possible variants that a given system might 
assume during runtime. Based on the analysis results, engineers can implement ade-
quate measures to improve or ensure the considered properties. 

5.1.3 Approaches Utilizing Runtime V&V for Assurances 
Runtime V&V measures are typically applied in a complementary way together with 
corresponding development-time activities. On the one hand, there are runtime verifi-
cation techniques that utilize runtime monitoring to record software execution traces 
that can then be analyzed [37]. On the other hand, there are approaches that employ 
quantitative model checking at runtime as an assurance technique for the context of 
adaptive systems (e.g., [38], [39], and [40]). In [43], Goldsby et al. present 
AMOEBA-RT, a run-time monitoring and verification technique that provides assur-
ance (based on dynamic model checking) that dynamically adaptive software satisfies 
its requirements. Calinscu and Grunske introduced the QoSMOS (QoS Management 
and Optimization of Service-based systems) framework for the development of adap-
tive service-based systems that are able to manage their QoS adaptively and predicta-
bly [44]. QoSMOS utilizes probabilistic model checking at runtime to evaluate if the 
system satisfies the given QoS requirements. In the traditional development-time 
versions of these kinds of approaches, the analysis of temporal-logic properties (in-
cluding probabilities, costs, and rewards) is commonly used to assess relevant non-
functional properties of a system. At runtime, such analyses can be performed on a 
model base that is continually updated as the underlying system evolves. In general, 
this introduction of runtime measures for the context of adaptive systems is particular-
ly promising since traditional development-time techniques do not scale sufficiently 
well. Moreover, at runtime, detected issues can be addressed directly with adequate 
adaptations (i.e., countermeasures). A short related survey (which is not limited  
to V&V) considering runtime assurance techniques for adaptive systems has recently 
been published by Calinescu[42]. A further approach that is particularly focused on  
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safety has been proposed by Priesterjahn et al. in [41]. The main idea of this approach 
is to ensure the safety of adaptive systems during runtime by checking whether recon-
figuration is allowed based on associated hazard probabilities and potential damage 
that would be imminent after the reconfiguration. To this end, adapted hazard and risk 
analysis techniques are applied during runtime.  

5.2 Frameworks for Adaptive Systems and Models@Runtime 

5.2.1 MADAM and MUSIC 
The MADAM (Mobility and Adaptation Enabling Middleware) European project and 
its follow-up MUSIC (Self-Adapting Applications for Mobile USers In Ubiquitous 
Computing Environments) aimed at providing techniques and tools for reducing the 
time and effort needed to develop self-adaptive mobile applications [10][11]. To this 
end, these projects propose an architecture-centric approach where dynamic adapta-
tion is realized in an application-independent adaptation middleware. Architectural 
models of the applications are made available at runtime and serve as a basis for rea-
soning about and controlling the adaptation. Meta-models for the specification of 
these models are provided by means of a dedicated component framework. 

In order to realize runtime adaptation, MADAM and MUSIC employ an applica-
tion-independent adaptation middleware that is implementing a typical adaptation 
control loop with the following responsibilities: 

1. Monitor both system and user context. The system context consists of system 
resources such as battery level, CPU utilization, memory usage, and network 
resources. The user context subsumes information on the environment and on 
the user’s (maybe correlated) needs.  

2. Analyze the context and the context changes that occur and plan reasonable 
changes of the system. To this end, utility functions are used to assess which 
implementation variant of a certain component type would fit the given adap-
tation goals best. On the system level, global utility functions are used (which 
can aggregate the component-level utility functions) to compute the overall 
utility of an application. This allows evaluating all the different configuration 
possibilities (i.e., it is a brute-force approach) and the most useful one in the 
given circumstances can be chosen at the end.  

3. Implement the changes – preferably without noticeably interrupting the opera-
tion of the system. 

Regarding assurances, MADAM and MUSIC explicitly address the management of 
functional and non-functional properties. However, the properties are only addressed 
in a generic way and managed via ‘best-effort’ without ‘hard’ guarantees.  

5.2.2 DiVA – Dynamic Variability in Complex, Adaptive Systems 
The European DiVA project can be considered as a predecessor of the 
MADAM/MUSIC series. In detail, the project had the following main research objec-
tives [45]: 
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• To provide both build-time and runtime management of the adaptive system 
(re)configuration of co-existing, co-dependent configurations that can span across 
several administrative boundaries in a distributed, heterogeneous environment. 

• To provide efficient management of the number of potential configurations that 
may grow exponentially with each new variability dimension. 

• To increase the quality and productivity of adaptive system development and help 
the designers to model, control, and validate adaptation policies as well as the tra-
jectory from one safe configuration to another. 

DiVA tackles these challenges by applying and combining techniques from the 
fields of software product lines (SPL), model-driven engineering (MDE), and aspect-
oriented modeling (AOM). Moreover, DiVA has a strong focus on utilizing such 
Models@Runtime, in accordance with the Models@Runtime paradigm. In [46], the 
DiVA contribution is summarized as follows:  

At design time, engineers can avoid manually designing all of the system’s possi-
ble configurations and transitions by explicitly defining an adaptive system as a Dy-
namic Software Product Line (DSPL). At runtime, the system analyzes the context 
and explicitly constructs a suitable configuration using AOM techniques. It also vali-
dates this configuration using traditional MDE techniques: invariant checking, simu-
lation, and so on. Finally, the system automatically generates a safe reconfiguration 
script to actually adapt the running business system. If the produced configuration is 
not consistent, the system simply discards the configuration and derives a new one. 
Since the running business system has not been adapted yet, it is not necessary to 
perform a rollback. This process is open to evolution—designers can make the DSPL 
evolve by seamlessly adding or removing variants, constraints, rules, and so on. 

Note that assurances were not the focus of DiVA and non-functional properties 
were only considered in a generic way. Still, the management of generic properties 
through models at runtime and runtime self-adaptation was foreseen.  

5.2.3 Robocop, Space4U and Trust4ALL 
The main goal of the ROBOCOP, Space4U, and Trust4ALL [12][13][14] series of 
European projects was to establish an adequate component-based architecture and 
middleware for OAS. According to [15], Robocop introduced a component-based 
framework for high-volume embedded devices with a focus on robust and reliable 
operation, upgrading, and component trading, while the focus of Space4U was on the 
validation, maturation, and extension of the Robocop architecture by introducing fault 
management, power management, and terminal management. Trust4All essentially 
extended the component-based middleware developed in the course of its two prede-
cessors with respect to a trust management framework. 

Correspondingly, according to the Trust4All innovation report [16], the project 
‘has defined, designed and developed a middleware software architecture specifically 
targeted at embedded systems that require a predefined level of trust, due to the nature 
of the services they provide. The project focuses on the trustworthiness-related as-
pects of the middleware software architecture in domains such as home medical care, 
security and automation, as well as on-the-move applications, for which dependability 
is particularly important’. A further important result of the project is the ISO/IEC 
23004 standard on middleware, where seven of the eight parts of the standard were 
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contributed by Trust4All (Architecture, Component Model, Resource and Quality 
Management, Component Download, Fault Management, System Integrity Manage-
ment, and Reference Software). 

In essence, the main scientific contribution of Trust4All, the trustworthiness  
management approach, is enabled through a trustworthiness model and a trust man-
agement framework model. The assurance scope of Trust4All can be classified as 
‘assurance of trust-related properties’, although the reputation- and recommendation-
based approach is not compatible with safety assurance in a traditional sense (i.e., 
certification would not be possible on that basis). Trust4All explicitly supports self-
adaptation for assurance purposes, utilizing a runtime configurable fault management 
mechanism [14].  

5.3 Discussion 

Adaptive systems and Models@Runtime frameworks and approaches contribute the 
technological basis and knowledge for representing and utilizing runtime models for 
different concerns. Regarding the assurance and management of non-functional prop-
erties, however, these approaches remain very generic and are not designed to provide 
‘hard’ guarantees. Accordingly, these approaches do not provide a sufficient metho-
dological backbone, which is indispensable for safety assurance and certification. 

Due to reasons of complexity, development time V&V as the sole measure for en-
suring important properties of an adaptive system is only really feasible for closed 
adaptive systems. In contrast to OAS, for closed adaptive systems it is generally poss-
ible (although potentially very complex, depending on the applied adaptation con-
cepts) to conduct sufficient safety analysis based on holistic system models already at 
development time. Therefore, one commonality of these approaches is that they focus 
on closed systems and on specific adaptation concepts that facilitate controlling the 
size of the adaptation space. 

The runtime V&V approaches provide specific concepts for dynamically obtaining 
and evaluating V&V-related information in an adaptive systems context. These tech-
niques would obviously be well suited for tackling challenges related to the runtime 
V&V parts of the envisioned framework. However, there is no conceptual integration 
with existing safety engineering approaches up to now. Nor is there support with re-
spect to variability within the certificates, the safety case, and correspondingly the 
dynamic V&V measures. In other words, there can only be one ‘static’ certificate that 
is to be validated and verified, which consequently limits the flexibility of the open 
adaptive system, as elaborated before in this article. Nevertheless, in conjunction with 
a sound and comprehensive safety engineering backbone, these approaches would be 
a good starting point for future research and could play a vital role in safety assurance 
for OAS.  

An approach that has an explicit focus on safety and is thus particularly relevant 
for this article has been proposed by Priesterjahn et al. in [41]. This approach is well 
suited to exemplify what has been stated above. The main idea of this approach is to 
ensure the safety of adaptive systems during runtime by checking whether reconfigu-
ration is allowed based on associated hazard probabilities and potential damage that 
would be imminent after the reconfiguration. To this end, a compositional hazard and 
risk analysis technique is applied during runtime. However, all the safety engineering 
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activities that are typically applied in addition to the safety analyses in order to get a 
system certified are omitted. Under the premise that safety-critical applications need 
to be certified, these steps would still be required. Assuming that corresponding safety 
engineering and certification were done at development time already, this would con-
strain the flexibility of the approach since a given system would need to be pre-
analyzed comprehensively with respect to the acceptability of the failure probabilities 
of its configurations. A further potential problem of the approach is that emergent 
safety properties within a system of systems, such as common cause failures, feature 
interactions, and emergent dysfunctions, are not addressed. 

The ConSerts approach directly addresses the idea of SafetyCertificates@Runtime. 
It is therefore one possible starting point for a safety assurance framework. Additional 
ConSerts support runtime evidences, which are a first step towards SafetyCas-
es@Runtime. The approach has been successfully applied in different industry  
applications, which underscore the principal applicability of the idea of SafetyCertifi-
cates@Runtime. 

6 Evaluation 

6.1 Status Quo 

Obviously, there are different kinds of approaches that address different aspects of 
safety assurance at runtime. The following tables summarize the main findings in the 
different communities. 

 

Approach 
Safety Engineering 

supported foundation status quo open issues 

Certificate 

@Runtime 

∅ [60] - no established approach 

- modular certification 

provides a sound basis 

- formalization 

- variability 

- runtime representation 

SafetyCase 

@Runtime 

([68], 

[69]) 

[60], [61], 

[62], [64], 

[65], [66], 

[67], [Ver-

SaI] 

- many design approaches 

supports modular safety 

cases 

- safety case models availa-

ble 

- assumes human interac-

tion (no formalization) 

- first ideas on runtime 

certification at conceptual 

level only 

- formalization 

- runtime representation 

- adaptation of argumen-

tations 

- realization of runtime 

evidences 

V&V 

@Runtime 
∅ ∅ 

not considered  

HRA 

@Runtime 
∅ ∅ 

not considered  
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For the safety engineering community, it is obvious that runtime assurance has not 
been in the focus of research. Actually, there is no approach that deals with modular 
certificate models. The reason for this could be that certificates as such do not play an 
important role at development time. In fact, they are not more than a piece of paper 
issued at the end of an assessment, which can be used as evidence in a super-ordinate 
safety case. This means that certificates are not direct working artifacts for safety 
engineers. The importance of certificate models mainly arises from the need to dy-
namically compose systems, which requires formal representation at the information 
level of the certificates (and an explicit specification of the variation points) that can 
be evaluated at runtime.  

Nonetheless, there is a series of approaches that provide valuable starting points 
and that could be extended to SafetyCases@Runtime. Most of these approaches need 
to be further formalized in order to be used at runtime. Many safety case notations are 
still based on informal textual information as they are intended to be used by a human 
safety expert. Based on such formalization, it would be possible to evaluate Safety-
Cases@Runtime and identify invalidated evidences, for example. In order to use the 
full potential of SafetyCases@Runtime, appropriate approaches are required to dy-
namically adapt the line of argumentation used in the safety case at runtime. Howev-
er, there are currently no approaches that consider doing that. 

There exist first ideas on how to use runtime verification to support certification at 
runtime [68], [69]. However, these approaches still remain at the superficial level of 
concepts and ideas. The dynamic adaptation of V&V models, such as test cases or 
pass/fail criteria, or even adaptation of the hazard analysis and risk assessment (HRA) 
is completely outside the scope of the safety engineering community. In other words, 
the V&V measures that are shifted into runtime are always completely predefined at 
development time already. 

 

Approach 
Models@Runtime 

supported foundation status quo open issues 
Develop-
ment-Time  
Assurance 
of Adaptive 
Systems 

[31], [32], 
[33], [34], 
[35], [36] 

 - promising results available 
- limited to few groups 

- maturing approaches 
towards applicability and 
acceptance 

- integration with concepts 
like SafetyCertifi-
cates@Runtime to support 
open systems as well 

Certificate 
@Runtime 

[ConSert] ∅ 

- a first approach is availa-
ble, utilizing variable cer-
tificates and Mod-
els@Runtime 

- could provide a good 
add-on to design time 
assurance approaches for 
supporting open systems 
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SafetyCase 
@Runtime 

 [37], [38], 
[39], [40], 
[41], [42], 
[43], [44] 

- some research has focused 
on runtime execution of 
predefined V&V steps 

- currently independent 
solutions that can hardly be 
combined 

- no complete coverage of 
safety assurance 

- integration of different 
approaches to support 
complete safety assurance 

- currently no direct sup-
port to SafetyCas-
es@Runtime 

V&V 
@Runtime ∅ ∅ 

- currently no approaches 
available 

 

HRA 
@Runtime ∅ ∅ 

- currently no approaches 
available 

 

 
Regarding the adaptive systems community, a lot of work has been done regarding 

the development time verification of adaptive systems and runtime execution of pre-
defined verification steps. Also from a safety point of view, a focus on development 
time verification is certainly preferable. Regarding the typical characteristics of OAS, 
however, such an approach appears not to be sufficient. Therefore, the idea of having 
runtime verification is a good extension. However, the different approaches seem to 
be quite independent from each other. Each of the single approaches covers only one 
aspect of runtime safety assurance, and it is mostly unclear how the different ap-
proaches could be combined into an integrated framework. Nonetheless, they provide 
a very good basis for providing evidences in the context of SafetyCases@Runtime. 
Some work is also available on SafetyCertificates@Runtime, which already considers 
aspects such as runtime evidences. Obviously, there seems to be a good basis and a lot 
of potential could be tapped by a more efficient combination and integration of the 
different approaches.  

6.2 A Possible Roadmap to Safety Assurance for OAS Using 
Models@Runtime 

Summarizing the status quo, there is already a lot of work available that directly or 
indirectly supports the safety assurance of OAS. However, most approaches seem to 
be quite independent from each other. None of the approaches alone is sufficient and 
complete to assure safety in OAS, but all of them provide individual puzzle pieces for 
a safety assurance approach. Since they have been developed in isolation, it is howev-
er not possible to simply combine them. Nonetheless, the efficient combination of 
existing approaches would already lead to significant progress.  

From our point of view, a first step towards an efficient safety assurance approach 
for OAS therefore seems to be to consider the big picture of safety assurance instead 
of regarding single elements in isolation. To this end, a safety assurance framework, 
comparable to the one used in this article would be required, but it certainly needs to 
be more mature. Such a framework would provide the big picture the single puzzle 
pieces have to fit into – thus simplifying classification and combination of the differ-
ent approaches. Moreover, it would define a principal understanding of what safety 
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assurance for OAS could look like. Such a commonly accepted foundation is a prere-
quisite to obtaining acceptance of the assurance approaches by certification bodies 
and safety assessors. 

Taking the framework defined in this article as a starting point, a possible roadmap 
to safety assurance is illustrated in Figure 8.   
From an industry point of view, the most urgent need for safety assurance is certainly 
for open systems in which the single systems only adapt to anticipated situations. 
Therefore, assurance of the single systems could be achieved using available assur-
ance approaches applied at development time. If these approaches are tightly inte-
grated into traditional safety engineering lifecycles, safety assurance could happen 
completely at development time. All remaining assumptions and variabilities that 
must be resolved at runtime could be modeled using SafetyCertificates@Runtime, 
which would also enable safe composition of systems of systems at runtime.  

Such an approach is also very likely to be accepted by safety assessors. Design 
time assurance of adaptive systems is in some sense already considered in safety stan-
dards. For example, ISO26262 explicitly defines how assurance has to deal with large 
configuration and parameter spaces. Alternatively, from a safety engineering point of 
view, adaptation is nothing but an indistinguishable part of the functionality extending 
the system’s state space, which must be completely covered by all safety assurance 
activities. The available development time assurance approaches tackle the resulting 
challenges. SafetyCertificates@Runtime are very similar to modular certification 
approaches. Definition and assurance of the certificates take place at development 
time, and only the composition of certificates is shifted to runtime. In order to be ac-
cepted, the verification of the composition mechanisms must become an additional 
element of the development time verification activities. This is of course also true in 
general for all runtime mechanisms that are introduced as part of the safety assurance 
framework. As described in the previous chapter, this scenario can also be extended 
with alternative approaches, such as extended safety bags. 

If we regard open systems that require more flexible adaptations including adapta-
tions to unanticipated situations, or if the dynamic composition happens at the level of 
software components instead of systems, it is additionally necessary to provide Safe-
tyCases@Runtime. To this end, approaches facilitating the modular specification of 
safety cases, as they exist in the safety engineering community, could be used as a 
starting point. As mentioned above, this requires formalization of the notations in the 
first step. For many application scenarios, however, the capability to dynamically 
adapt the line of argumentation could be optional. Instead, it might be sufficient to 
integrate different variants into the safety case at design time and to reduce runtime 
responsibility to the resolution of these variabilities. This would require further exten-
sion of existing safety case approaches. As an additional aspect, it is necessary to 
provide evidences at runtime. This step can be supported by different existing runtime 
V&V approaches as described above. Nonetheless, some extensions are required in 
order to transfer the existing approaches from the idea of a stand-alone solution to an 
integrated part of SafetyCases@Runtime. 
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This is particularly true since the acceptance of such an approach will require a suffi-
ciently long history of experience and empirical evidence. 

7 Summary and Conclusion 

In recent years, we have witnessed a strong trend towards open adaptive systems in 
research and industry. Meanwhile it is quite clear that new kinds of corresponding 
applications promise huge benefits for end-users and for businesses. The lack of suit-
able safety assurance approaches for OAS is increasingly turning out to be a limiting 
factor in this development. Models at runtime, however, could well prove to be a 
potent means for overcoming these problems.  

Although the approaches available were not developed with an integrated safety 
assurance framework in mind, a promising foundation already exists. The main appli-
cation scenario for the near future is characterized by open systems of systems with 
subsystems that only adapt to anticipated situations. Combining and advancing exist-
ing work on SafetyCeritificates@Runtime, development time assurance, and runtime 
V&V could already provide a sound basic solution for this scenario.  

Existing safety case models in the field of safety engineering provide a sound basis 
for further extending the idea to SafetyCases@Runtime in order to support more flex-
ible system adaptations. SafetyCases@Runtime appear to be sufficient to support the 
assurance of a wide range of application scenarios of OAS in safety-critical applica-
tions. The largest gap obviously exists if the adaptation includes the requirements. 
However, we expect that the application of Requirements@Runtime in safety-critical 
applications will only happen in the long run – leaving sufficient time to mature the 
safety assurance approaches in parallel. 

Summarizing the results, we can safely state that Models@Runtime seem to have 
great potential for being successfully used as a basis for safety assurance of OAS. 
Since they provide a means for creating a clear trace to established safety assurance 
approaches, the resulting assurance approaches are likely to be accepted by safety 
assessors. Regarding the current state-of-the-art, there is already a good basis provid-
ing first evidence that a safety assurance framework (comparable to the one used in 
this article) is technically feasible. 
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