
Propositional Encoding of Constraints
over Tree-Shaped Data

Alexander Bau and Johannes Waldmann(B)

HTWK Leipzig, Fakultät IMN, 04277 Leipzig, Germany
waldmann@imn.htwk-leipzig.de

Abstract. We present a functional programming language for specify-
ing constraints over tree-shaped data. The language allows for Haskell-
like algebraic data types and pattern matching. Our constraint compiler
CO4 translates these programs into satisfiability problems in proposi-
tional logic. We present an application from the area of automated analy-
sis of termination of rewrite systems, and also relate CO4 to Curry.

1 Motivation

The paper presents a high-level declarative language CO4 for describing con-
straint systems. The language includes user-defined algebraic data types and
recursive functions defined by pattern matching, as well as higher-order and
polymorphic types. This language comes with a compiler that transforms a high-
level constraint system into a satisfiability problem in propositional logic. This
is motivated by the following.

Constraint solvers for propositional logic (SAT solvers) like Minisat [ES03]
are based on the Davis-Putnam-Logemann-Loveland (DPLL) [DLL62] algorithm
and extended with conflict-driven clause learning (CDCL) [SS96] and preprocess-
ing. They are able to find satisfying assignments for conjunctive normal forms
with 106 and more clauses in a lot of cases quickly. SAT solvers are used in
industrial-grade verification of hardware and software.

With the availability of powerful SAT solvers, propositional encoding is a
promising method to solve constraint systems that originate in different domains.
In particular, this approach had been used for automatically analyzing (non-
)termination of rewriting [KK04,ZSHM10,CGSKT12] successfully, as can be
seen from the results of International Termination Competitions (most of the
participants use propositional encodings).

So far, these encodings are written manually: the programmer has to con-
struct explicitly a formula in propositional logic that encodes the desired prop-
erties. Such a construction is similar to programming in assembly language: the
advantage is that it allows for clever optimizations, but the drawbacks are that
the process is inflexible and error-prone.

This author is supported by an ESF grant.

M. Hanus and R. Rocha (Eds.): KDPD 2013, LNAI 8439, pp. 33–47, 2014.
DOI: 10.1007/978-3-319-08909-6 3, c© Springer International Publishing Switzerland 2014

34 A. Bau and J. Waldmann

This is especially so if the data domain for the constraint system is remote
from the “sequence of bits” domain that naturally fits propositional logic. In
typical applications, data is not a flat but hierarchical (e.g., using lists and
trees), and one wants to write constraints on such data in a direct way.

Therefore, we introduce a constraint language CO4 that comes with a com-
piler to propositional logic. Syntactically, CO4 is a subset of Haskell [Jon03],
including data declarations, case expressions, higher order functions, polymor-
phism (but no type classes). The advantages of re-using a high level declarative
language for expressing constraint systems are: the programmer can rely on
established syntax and semantics, does not have to learn a new language, can
re-use his experience and intuition, and can re-use actual code. For instance,
the (Haskell) function that describes the application of a rewrite rule at some
position in some string or term can be directly used in a constraint system that
describes a rewrite sequence with a certain property.

A constraint programming language needs some way of parameterizing the
constraint system to data that is not available when writing the program. For
instance, a constraint program for finding looping derivations for a rewrite sys-
tem R, will not contain a fixed system R, but will get R as run-time input.

A formal specification of compilation is given in Sect. 2, and a concrete real-
ization of compilation of first-order programs using algebraic data types and
pattern matching is given in Sect. 3. In these sections, we assume that data
types are finite (e.g., composed from Bool, Maybe, Either), and programs are
total. We then extend this in Sect. 4 to handle infinite (that is, recursive) data
types (e.g., lists, trees), and partial functions. Note that a propositional encod-
ing can only represent a finite subset of values of any type, e.g., lists of Booleans
with at most 5 elements, so partial functions come into play naturally.

We then treat in Sect. 5 briefly some ideas that serve to improve writing and
executing CO4 programs. These are higher-order functions and polymorphism,
as well as hash-consing, memoization, and built-in binary numbers.

Next, we give an application of CO4 in the termination analysis of rewrite sys-
tems: In Sect. 6 we describe a constraint system for looping derivations in string
rewriting. We compare this to a hand-written propositional encoding [ZSHM10],
and evaluate performance. The subject of Sect. 7 is the comparison of CO4 to
Curry [Han13], using the standard N -Queens-Problem as a test case.

Our constraint language and compiler had been announced in short work-
shop contributions at HaL 8 (Leipzig, 21 June 13), and Haskell and Rewriting
Techniques (Eindhoven, 26 June 13). The current paper is extended and revised
from our contribution to Workshop on Functional and Logic Programming (Kiel,
11 September 13). Because of space restrictions, we still leave out some techni-
calities in Sects. 2 and 3, and instead refer to the full version [BW13].

2 Semantics of Propositional Encodings

In this section, we introduce CO4 syntax and semantics, and give the specifica-
tion for compilation of CO4 expressions, in the form of an invariant (it should

Propositional Encoding of Constraints over Tree-Shaped Data 35

hold for all sub-expressions). When applied to the full input program, the specifi-
cation implies that the compiler works as expected: a solution for the constraint
system can be found via the external SAT solver. We defer discussion of our
implementation of this specification to Sect. 3, and give here a more formal, but
still high-level view of the CO4 language and compiler.

Evaluations on Concrete Data. We denote by P the set of expressions in the
input language. It is a first-order functional language with algebraic data types,
pattern matching, and global and local function definitions (using let) that may
be recursive. The concrete syntax is a subset of Haskell. We give examples—
which may appear unrealistically simple but at this point we cannot use higher-
order or polymorphic features. These will be discussed in Sect. 5.

E.g., f p u is an expression of P, containing three variables f, p and u.
We allow only simple patterns (a constructor followed by variables), and we
require that pattern matches are complete (there is exactly one pattern for each
constructor of the respective type). Nested patterns can be translated to this
form.

Evaluation of expressions is defined in the standard way: The domain of
concrete values C is the set of data terms. For instance, Just False ∈ C.
A concrete environment is a mapping from program variables to C. A concrete
evaluation function concrete-value : EC × P → C computes the value of a con-
crete expression p ∈ P in a concrete environment eC. Evaluation of function and
constructor arguments is strict.

Evaluations on Abstract Data. The CO4 compiler transforms an input program
that operates on concrete values, to an abstract program that operates on abstract
values. An abstract value contains propositional logic formulas that may contain
free propositional variables. An abstract value represents a set of concrete values.
Each assignment of the propositional values produces a concrete value.

We formalize this in the following way: the domain of abstract values is called
A. The set of assignments (mappings from propositional variables to truth values
B = {0, 1}) is called Σ, and there is a function decode : A × Σ → C.

We now specify abstract evaluation. (The implementation is given in Sect. 3.)
We use abstract environments EA that map program variables to abstract values,
and an abstract evaluation function abstract-value : EA × P → A.

Allocators. As explained in the introduction, the constraint program receives
known and unknown arguments. The compiled program operates on abstract
values.

The abstract value that represents a (finite) set of concrete values of an
unknown argument is obtained from an allocator. For a property q : C → B

of concrete values, a q-allocator constructs an object a ∈ A that represents all
concrete objects that satisfy q:

∀c ∈ C : q(c) ⇐⇒ ∃σ ∈ Σ : c = decode(a, σ).

We use allocators to specify that c uses constructors that belong to a specific
type. Later (with recursive types, see Sect. 4) we also specify a size bound for c.
An example is an allocator for lists of Booleans of length ≤ 4.

36 A. Bau and J. Waldmann

As a special case, an allocator for a singleton set is used for encoding a known
concrete value. This constant allocator is given by a function encode : C → A

with the property that ∀c ∈ C, σ ∈ Σ : decode(encode(c), σ) = c.

Correctness of Constraint Compilation. The semantical relation between an
expression p (a concrete program) and its compiled version compile(p) (an
abstract program) is given by the following relation between concrete and
abstract evaluation:

Definition 1. We say that p ∈ P is compiled correctly if

∀e ∈ EA ∀σ ∈ Σ : decode(abstract-value(e, compile(p)), σ)
=concrete-value(decode(e, σ), p)

(1)

Here we used decode(e, σ) as notation for lifting the decoding function to envi-
ronments, defined element-wise by

∀e ∈ EA ∀v ∈ dom(e) ∀σ ∈ Σ : decode(e, σ)(v) = decode(e(v), σ).

Application of the Correctness Property. We are now in a position to show how
the stages of CO4 compilation and execution fit together.

The top-level parametric constraint is given by a declaration constraint k
u = b (cf. Fig. 1) where b (the body, a concrete program) is of type Bool. It will
be processed in the following stages:

1. compilation produces an abstract program compile(b),
2. abstract computation takes a concrete parameter value p ∈ C and a q-allocator

a ∈ A, and computes the abstract value

V = abstract-value({k 	→ encode(p), u 	→ a}, compile(b))

Fig. 1. Exemplary constraint-system in CO4

Propositional Encoding of Constraints over Tree-Shaped Data 37

3. solving calls the back-end SAT solver to determine σ ∈ Σ with decode(V, σ) =
True. If this was successful,

4. decoding produces a concrete value s = decode(a, σ),
5. and optionally, testing checks concrete-value({k 	→ p, u 	→ s}, b) = True.

The last step is just for reassurance against implementation errors, since the
invariant implies that the test returns True. This highlights another advantage of
re-using Haskell for constraint programming: one can easily check the correctness
of a solution candidate.

3 Implementation of a Propositional Encoding

In this section, we give a realization for abstract values, and show how compi-
lation creates programs that operate correctly on those values, as specified in
Definition 1.

Encoding and Decoding of Abstract Values. The central idea is to represent an
abstract value as a tree, where each node contains an encoding for a symbol (a
constructor) at the corresponding position, and the list of concrete children of
the node is a prefix of the list of abstract children (the length of the prefix is the
arity of the constructor).

The encoding of constructors is by a sequence of formulas that represent the
number of the constructor in binary notation.

We denote by F the set of propositional logic formulas. At this point, we do
not prescribe a concrete representation. For efficiency reasons, we will allow some
form of sharing. Our implementation1 assigns names to subformulas by doing
the Tseitin transform [Tse83] on-the-fly, creating a fresh propositional literal for
each subformula.

Definition 2. The set of abstract values A is the smallest set with A = F∗ ×A
∗.

An element a ∈ A thus has shape (
−→
f ,−→a) where

−→
f is a sequence of formulas,

called the flags of a, and −→a is a sequence of abstract values, called the arguments
of a.

We introduce notation

– flags : A → F∗ gives the flags of an abstract value
– flagsi : A → F gives the i-th flag of an abstract value
– arguments : A → A

∗ gives the arguments of an abstract value,
– argumenti : A → A gives the i-th argument of an abstract value

The sequence of flags of an abstract value encodes the number of its constructor.
We use the following variant of a binary encoding: For each data type T with c
constructors, we use as flags a set of sequences Sc ⊆ {0, 1}∗ with |Sc| = c and
such that each long enough w ∈ {0, 1}∗ does have exactly one prefix in Sc:

S1 = {ε}; for n > 1: Sn = 0 · S�n/2� ∪ 1 · S�n/2�
1 https://github.com/apunktbau/satchmo-core

https://github.com/apunktbau/satchmo-core

38 A. Bau and J. Waldmann

Note that ∀c : Sc ⊂ F c, i.e. each sequence of flags represents a sequence of
constant propositional formulas.

Example 1. S2 = {0, 1}, S3 = {00, 01, 1}, S5 = {000, 001, 01, 10, 11}.

The lexicographic order of Sc induces a bijection numericc : Sc → {1, . . . , c} to
map sequence of flags to constructor indices.

The encoding function (from concrete to abstract values) is defined by

encodeT (C(v1, . . .)) = (numeric−
c (i), [encodeT1(v1), . . .])

where C is the i-th constructor of type T , and Tj is the type of the j-th argument
of C. Note that here, numeric−

c (i) denotes a sequence of constant flags (formulas)
that represents the corresponding binary string.

For decoding, we need to take care of extra flags and arguments that may
have been created by the function merge (Definition 4) that is used in the compi-
lation of case expressions. Therefore, we extend the mapping numericc to longer
strings by numericc(u · v) := numericc(u) for each u ∈ Sc, v ∈ {0, 1}∗. This is
possible by the unique-prefix condition. For example, numeric5(10) = 4 and thus
numeric5(101) = 4.

Example 2. Given the type declaration data Bool = False | True the concrete
value True can be represented by the abstract value a1 = encodeBool(True) =
([x], []) and assignment {x 	→ 1}, since True is the second of two constructors,
and numeric2(1) = 2. The same concrete value True can also be represented by
the abstract value a2 = ([x, y], [a1]) and assignment {x 	→ 1, y 	→ 0}, since
numeric2(10) = 2. This shows that extra flags and extra arguments are ignored
in decoding.

We give a formal definition: for a type T with c constructors, decodeT ((f, a), σ)
is the concrete value v = Ci(v1, . . .) where i = numericc(fσ), and Ci is the i-
th constructor of T , and vj = decodeTj

(aj , σ) where Tj is the type of the j-th
argument of Ci.

As stated, this is a partial function, since any of f, a may be too short. For this
section, we assume that abstract values always have enough flags and arguments
for decoding, and we defer a discussion of partial decodings to Sect. 4.

Allocators for Abstract Values. Since we consider (in this section) finite types
only, we restrict to complete allocators: for a type T , a complete allocator is an
abstract value a ∈ A that can represent each element of T : for each e ∈ T , there
is some σ such that decodeT (a, σ) = e.

Example 3.

Type Complete allocator

data Bool = False | True a1 = ([x1], [])
data Ordering = LT | EQ | GT a2 = ([x1, x2], [])
data EBO = Left Bool | Right Ordering a3 = ([x1], [([x2, x3], [])])

Propositional Encoding of Constraints over Tree-Shaped Data 39

where xi are (Boolean) variables. We compute decodeEBO(a3, σ) for σ = {x1 =
0, x2 = 1, x3 = 0}): Since numeric2(0) = 1, the top constructor is Left. It
has one argument, obtained as decodeBool(([x2, x3], []), σ). For this we compute
numeric2(10) = 2, denoting the second constructor (True) of Bool. Thus,
decodeEBO(a3, σ) = Left True.

Compilation of Programs. In the following we illustrate the actual transformation
of the input program (that operates on concrete values) to an abstract program
(operating on abstract values).

Generally, compilation keeps structure and names of the program intact. For
instance, if the original program defines functions f and g, and the implemen-
tation of g calls f , then the transformed program also defines functions f and
g, and the implementation of g calls f .

Compilation of variables, bindings, and function calls is straightforward, and
we omit details.

We deal now with pattern matches. They appear naturally in the input pro-
gram, since we operate on algebraic data types. The basic plan is that compilation
removes pattern matches. This is motivated as follows. Concrete evaluation of
a pattern match (in the input program) consists of choosing a branch accord-
ing to a concrete value (of the discriminant expression). Abstract evaluation
cannot access this concrete value (since it will only be available after the SAT
solver determines an assignment). This means that we cannot abstractly evalu-
ate pattern matches. Therefore, they are transformed into a linear program by
compilation.

We restrict to pattern matches where patterns are simple (a constructor
followed by variables) and complete (one branch for each constructor of the type).

Definition 3 (Compilation, pattern match). Consider a pattern match
expression e of shape case d of {. . . }, for a discriminant expression d of type
T with c constructors.

We have compile(e) = let x = compile(d) in mergec(flags(x), b1, . . .) where
x is a fresh variable, and bi represents the compilation of the i-th branch.

Each such branch is of shape C v1 . . . vn → ei, where C is the i-th constructor
of the type T .

Then bi is obtained as let {v1 = argument1(x); . . . } in compile(ei).

Example 4. The following listing shows the abstract counterpart of function
constraint from example 1:

c on s t r a i n t :: A −> A −> A

c on s t r a i n t p u =
l e t 128 = f p u
in

l e t 133 = encodeBool(Fa l se)
134 = argument1(128)

in
merge(flags(128), (133 , 134))

40 A. Bau and J. Waldmann

The abstract value of the pattern match’s discriminant f p u is bound to vari-
able 128. The result of evaluating all compiled branches are bound to fresh
variables 133 and 134. Finally, the resulting value is computed by mergeing
133 and 134.

The auxiliary function merge combines the abstract values from branches of
pattern matches, according to the flags of the discriminant.

Definition 4 (Combining function). merge : F ∗×A
c → A combines abstract

values so that merge(
−→
f , a1, . . . , ac) is an abstract value (−→g , z1, . . . , zn), where

– number of arguments: n = max(| arguments(a1)|, . . . , | arguments(ac)|)
– number of flags: |−→g | = max(| flags(a1)|, . . . , | flags(ac)|)
– combining the flags:

for 1 ≤ i ≤ |−→g |, gi ↔
∧

1≤j≤c

(numericc(
−→
f) = j → flagsi(aj)) (2)

– combining the arguments recursively:

for each 1 ≤ i ≤ n, zi = merge(
−→
f , argumenti(a1), . . . , argumenti(ac)).

Example 5. Consider the expression case e of False -> u; True -> v, where e,u,v
are of type Bool, represented by abstract values ([fe], []), ([fu], []), ([fv], []). The
case expression is compiled into an abstract value ([fr], []) where

fr = merge2([fe], ([fu], []), ([fv], []))
= (numeric2(fe) = 1 → fu) ∧ (numeric2(fe) = 2 → fv)

= (fe → fu) ∧ (fe → fv)

We refer to [BW13] for the full specification of compilation, and proofs of cor-
rectness.

We mention already here one way of optimization: if all flags of the discrim-
inant are constant (i.e., known during abstract evaluation, before running the
SAT solver) then abstract evaluation will evaluate only the branch specified by
the flags, instead of evaluating all, and merging the results. Typically, flags will
be constant while evaluating expressions that only depend on the input parame-
ter, and not on the unknown.

4 Partial Encoding of Infinite Types

We discuss the compilation and abstract evaluation for constraints over infinite
types, like lists and trees. Consider declarations

data N = Z | S N
double :: N -> N
double x = case x of {Z -> Z ; S x’ -> S (S (double x’))}

Propositional Encoding of Constraints over Tree-Shaped Data 41

Assume we have an abstract value a to represent x. It consists of a flag (to
distinguish between Z and S), and of one child (the argument for S), which is
another abstract value. At some depth, recursion must stop, since the abstract
value is finite (it can only contain a finite number of flags). Therefore, there is
a child with no arguments, and it must have its flag set to [False] (it must
represent Z).

There is another option: if we leave the flag open (it can take on values
False or True), then we have an abstract value with (possibly) a constructor
argument missing. When evaluating the concrete program, the result of accessing
a non-existing component gives a bottom value. This corresponds to the Haskell
semantics where each data type contains bottom, and values like S (S ⊥) are
valid. To represent these values, we extend our previous definition to:

Definition 5. The set of abstract values A⊥ is the smallest set with A⊥ =
F∗ ×A

∗
⊥ × F, i.e. an abstract value is a triple of flags and arguments (cf. defi-

nition 2) extended by an additional definedness constraint.
We write def : A⊥ → F to give the definedness constraint of an abstract

value, and keep flags and argument notation of Definition 2.

The decoding function is modified accordingly: decodeT (a, σ) for a type T
with c constructors is ⊥ if def(a)σ = False, or numericc(flags(a)σ) is unde-
fined (because of “missing” flags), or | arguments(a)| is less than the number of
arguments of the decoded constructor.

The correctness invariant for compilation (Eq. 1) is still the same, but we
now interpret it in the domain C⊥, so the equality says that if one side is ⊥,
then both must be. Consequently, for the application of the invariant, we now
require that the abstract value of the top-level constraint under the assignment
is defined and True. Abstract evaluation is extended to A⊥ by the following:

– explicit bottoms: a source expression undefined results in an abstract value
([], [], 0) (flags and arguments are empty, definedness is False)

– constructors are lazy : the abstract value created by a constructor application
has its definedness flag set to True

– pattern matches are strict : the definedness flag of the abstract value con-
structed for a pattern match is the conjunction of the definedness of the
discriminant with the definedness of the results of the branches, combined by
merge.

5 Extensions for Expressiveness and Efficiency

We briefly present some enhancements of the basic CO4 language. To increase
expressiveness, we introduce higher order functions and polymorphism. To
improve efficiency, we use hash-consing and memoization, as well as built-in
binary numbers.

More Haskell Features in CO4. For formulating the constraints, expressiveness
in the language is welcome. Since we base our design on Haskell, it is natural

42 A. Bau and J. Waldmann

to include some of its features that go beyond first-order programs: higher order
functions and polymorphic types.

Our program semantics is first-order: we cannot (easily) include functions as
result values or in environments, since we have no corresponding abstract values
for functions. Therefore, we instantiate all higher-order functions in a standard
preprocessing step, starting from the main program.

Polymorphic types do not change the compilation process. The important
information is the same as with monomorphic typing: the total number of con-
structors of a type, and the number (the encoding) of one constructor.

In all, we can use in CO4 a large part of the Haskell Prelude functions. CO4
just compiles their “natural” definition, e.g.,

and xs = foldl (&&) True xs ; a ++ b = foldr (:) b a

Memoization. We describe another optimization: in the abstract program, we
use memoization for all subprograms. That is, during execution of the abstract
program, we keep a map from (function name, argument tuple) to result. Note
that arguments and result are abstract values. This allows to write “natural”
specifications and still get a reasonable implementation.

For instance, the lexicographic path order >lpo (cf. [BN98]) defines an order
over terms according to some precedence over symbols. Its textbook definition is
recursive, and leads to an exponential time algorithm, if implemented literally.
For evaluating s >lpo t the algorithm still does only compare subterms of s and
t, and in total, there are |s| · |t| pairs of subterms, and this is also the cost of the
textbook algorithm with a memoizing implementation.

For memoization we frequently need table lookups. For fast lookups we need
fast equality tests (for abstract values). We get these by hash-consing : abstract
constructor calls are memoized as well, so that abstract nodes are globally
unique, and structural equality is equivalent to pointer equality.

Memoization is awkward in Haskell, since it transforms pure functions into
state-changing operations. This is not a problem for CO4 since this change of
types only applies to the abstract program, and thus is invisible on the source
level.

Built-in Data Types and Operations. Consider the following natural definition:

not a = case a of {False -> True ; True -> False}

The abstract value for a contains one flag each (and no arguments). CO4 will
compile not in such a way that a fresh propositional variable is allocated for the
result, and then emit two CNF clauses by Definition 4. This fresh result variable
is actually not necessary since we can invert the polarity of the input literal
directly. To achieve this, Booleans and (some of) their operations are handled
specially by CO4.
Similarly, we can model binary numbers as lists of bits:

data [] a = [] | a : [a] ; data Nat = Nat [Bool]

Propositional Encoding of Constraints over Tree-Shaped Data 43

An abstract value for a k-bit number then is a tree of depth k. At each level,
we need one flag for the list constructor (Nil or Cons), and one flag for the list
element (False or True). Instead of this, we provide built-in data types Natk that
represent a k-bit number as one abstract node with k flags, and no arguments.
These types come with standard arithmetical and relational operations.

We remark that a binary propositional encoding for numbers is related to
the “sets-of-intervals” representation that a finite domain (FD) constraint solver
would typically use. A partially assigned binary number, e.g., [∗, 0, 1, ∗, ∗], also
represents a union of intervals, here, [4..7] ∪ [20..23]. Assigning variables can be
thought of as splitting intervals. See Sect. 7 an application of CO4 to a typical
FD problem.

6 Case Study: Loops in String Rewriting

We use CO4 for compiling constraint systems that describe looping derivations
in rewriting. We make essential use of CO4’s ability to encode (programs over)
unknown objects of algebraic data types, in particular, of lists of unknown
lengths, and with unknown elements.

The application is motivated by automated analysis of programs. A loop is
an infinite computation, which may be unwanted behaviour, indicating an error
in the program’s design. In general, it is undecidable whether a rewriting system
admits a loop. Loops can be found by enumerating finite derivations.

Our approach is to write the predicate “the derivation d conforms to a rewrite
system R and d is looping” as a Haskell function, and solve the resulting con-
straint system, after putting bounds on the sizes of the terms that are involved.

Previous work uses several heuristics for enumerations resp. hand-written
propositional encodings for finding loops in string rewriting systems [ZSHM10].

We compare this to a propositional encoding via CO4. We give here the type
declarations and some code examples. Full source code is available2.

In the following, we show the data declarations we use, and give code
examples.

– We represent symbols as binary numbers of flexible width, since we do not
know (at compile-time) the size of the alphabet: type Symbol = [Bool].

– We have words: type Word = [Symbol] , rules: type Rule = (Word, Word),
and rewrite systems type SRS = [Rule].

– A rewrite step (p++l++s) →R (p++r++s), where rule (l, r) is applied with left
context p and right context s, is represented by Step p (l,r) s where

data Step = Step Word Rule Word

– a derivation is a list of steps: type Derivation = [Step], where each step
uses a rule from the rewrite system, and consecutive steps fit each other:

conformant :: SRS -> Derivation -> Bool
2 https://github.com/apunktbau/co4/blob/master/CO4/Example/Loop/

Standalone.hs

https://github.com/apunktbau/co4/blob/master/CO4/Example/Loop/Standalone.hs
https://github.com/apunktbau/co4/blob/master/CO4/Example/Loop/Standalone.hs

44 A. Bau and J. Waldmann

Table 1. Finding looping derivations in rewrite systems.

s

Gebhardt/03 Gebhardt/08 Zantema 04/z042 Zantema 06/loop1

CO4 TTT2 CO4 TTT2 CO4 TTT2 CO4 TTT2

#vars 132232 23759 132168 23696 248990 32180 132024 21880
#clauses 448543 39541 448351 39445 854949 50150 447935 35842
Solving 97 s 8 s 6 s 20 s 5 s 1 s 4 s 1 s

– a derivation is looping if the output of the last step is a subword of the input
of the first step

constraint :: SRS -> Looping_Derivation -> Bool

constraint srs (Looping_Derivation pre d suf) =

conformant srs d && eqWord (pre ++ start d ++ suf) (result d)

This is the top-level constraint. The rewrite system srs is given at run-time.
The derivation is unknown. An allocator represents a set of derivations with
given maximal length (number of steps) and width (length of words).

Overall, the complete CO4 code consists of roughly 100 lines of code. The code
snippets above indicate that the constraint system literally follows the textbook
definitions. E.g., note the list-append (++) operators in constraint.

In contrast, Tyrolean Termination Tool 2 (TTT2, version 1.13)3 contains a
hand-written propositional encoding for (roughly) the same constraint4 consist-
ing of roughly 300 lines of (non-boilerplate) code. The TTT2 implementation
explicitly allocates propositional variables (this is implicit in CO4), and explic-
itly manipulates indices (again, this is implicit in our ++).

Table 1 compares the performance of our implementation to that of TTT2
on some string rewriting systems of the Termination Problems Data Base5 col-
lection. We restrict the search space in both tools to derivations of length 16
and words of length 16. All test were run on a Intel Xeon CPU with 3 GHz
and 12 GB RAM. CO4’s test results can be replicated by running cabal test
--test-options="loop-srs".

We note that CO4 generates larger formulas, for which, in general, MiniSat-
2.2.0 needs more time to solve. There are rare cases where CO4’s formula is
solved faster.

7 A Comparison to Curry

We compare the CO4 language and implementation to that of the functional logic
programming language Curry [Han13], and its PAKCS-1.11.1 implementation
(using the SICSTUS-4.2.3 Prolog system).

3 http://colo6-c703.uibk.ac.at/ttt2/
4 ttt2/src/processors/src/nontermination/loopSat.ml
5 http://termination-portal.org/wiki/TPDB

http://colo6-c703.uibk.ac.at/ttt2/
http://termination-portal.org/wiki/TPDB

Propositional Encoding of Constraints over Tree-Shaped Data 45

Fig. 2. Two approaches to solve the n queens problem

A common theme is that both languages are based on Haskell (syntax and typ-
ing), and extend this by some form of non-determinism, so the implementation
has to realize some form of search.

In Curry, nondeterminism is created lazily (while searching for a solution).
In CO4, nondeterminism is represented by additional Boolean decision variables
that are created beforehand (in compilation).

The connection from CO4 to Curry is easy: a CO4 constraint program
with top-level constraint main :: Known − > Unknown − > Bool is equivalent to
a Curry program (query) main k u =:= True where u free (Fig. 2).

In the other direction, it is not possible to translate a Curry program to a
CO4 program since it may contain locally free variables, a concept that is not
supported in CO4. All free variables are globally defined by the allocator of the
unknown parameter of the top-level constraint. For doing the comparison, we
restrict to CO4 programs.

Example 6. We give an example where the CO4 strategy seems superior: the n
queens problem.

We compare our approach to a Curry formulation (taken from the PAKCS
online examples collection) that uses the CLPFD library for finite-domain

46 A. Bau and J. Waldmann

Table 2. Time for finding one solution of the n queens problem

n 8 12 16 20 24 32 64 128

CO4 0.08 s 0.16 s 0.31 s 0.57 s 0.73 1.59 s 10.8 s 53.1 s
Curry/PAKCS 0.02 s 0.13 s 0.43 s 8.54 s > 10 m > 10 m > 10 m > 10 m

constraint programming. Our CO4 formulation uses built-in 8-bit binary num-
bers (Sect. 5) but otherwise is a direct translation. Note that with 8 bit numbers
we can handle board sizes up to 27: we add co-ordinates when checking for
diagonal attacks.

Table 2 shows the run-times on several instances of the n queens problem.
CO4’s runtime is the runtime of the abstract program in addition to the runtime
of the SAT-solver. The run-times for PAKCS were measured using the :set
+time flag after compiling the Curry program in the PAKCS evaluator. Tests
were done on a Intel Core 2 Duo CPU with 2.20 GHz and 4 GB RAM.

The PAKCS software also includes an implementation of the n queens prob-
lem that does not use the CLPFD library. As this implementation already needs
6 seconds to solve a n = 8 instance, we omit it in the previous comparison.

8 Discussion

In this paper we described the CO4 constraint language and compiler that allows
to write constraints on tree-shaped data in a natural way, and to solve them via
propositional encoding.

We presented the basic ideas for encoding data and translating programs,
and gave an outline of a correctness proof for our implementation.

We gave an example where CO4 is used to solve an application problem from
the area of termination analysis. This example shows that SAT compilation has
advantages w.r.t. manual encodings.

We also gave an experimental comparison between CO4 and Curry, showing
that propositional encoding is an interesting option for solving finite domain
(FD) constraint problems. Curry provides lazy nondeterminism (creating choice
points on-the-fly). CO4 does not provide this, since choice points are allocated
before abstract evaluation.

Work on CO4 is ongoing. Our immediate goals are, on the one hand, to
reduce the size of the formulas that are built during abstract evaluation, and on
the other hand, to extend the source language with more Haskell features.

References

[BN98] Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge Uni-
versity Press, New York (1998)

[BW13] Bau, A., Waldmann, J.: Propositional encoding of constraints over tree-
shaped data. CoRR, abs/1305.4957 (2013)

Propositional Encoding of Constraints over Tree-Shaped Data 47

[CGSKT12] Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: Sat solving for
termination proofs with recursive path orders and dependency pairs. J.
Autom. Reasoning 49(1), 53–93 (2012)

[DLL62] Davis, M., Logemann, G., Loveland, D.W.: A machine program for
theorem-proving. Commun. ACM 5(7), 394–397 (1962)

[ES03] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[Han13] Hanus, M.: Functional logic programming: from theory to curry. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol.
7797, pp. 123–168. Springer, Heidelberg (2013)

[Jon03] Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised
Report. Cambridge University Press, Cambridge (2003)

[KK04] Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order con-
straints with application to expert systems in software verification. In:
Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol.
3029, pp. 827–837. Springer, Heidelberg (2004)

[SS96] Marques Silva, J.P., Sakallah, K.A.: Grasp - a new search algorithm for
satisfiability. In: ICCAD, pp. 220–227 (1996)

[Tse83] Tseitin, G.S.: On the complexity of derivation in propositional calculus.
In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Symbolic
Computation, pp. 466–483. Springer, Heidelberg (1983)

[ZSHM10] Zankl, H., Sternagel, C., Hofbauer, D., Middeldorp, A.: Finding and cer-
tifying loops. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J.,
Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 755–766. Springer,
Heidelberg (2010)

	Propositional Encoding of Constraints over Tree-Shaped Data
	1 Motivation
	2 Semantics of Propositional Encodings
	3 Implementation of a Propositional Encoding
	4 Partial Encoding of Infinite Types
	5 Extensions for Expressiveness and Efficiency
	6 Case Study: Loops in String Rewriting
	7 A Comparison to Curry
	8 Discussion
	References

