
Construction of Explanation Graphs
from Extended Dependency Graphs

for Answer Set Programs

Ella Albrecht, Patrick Krümpelmann(B), and Gabriele Kern-Isberner

Technische Universität Dortmund, Dortmund, Germany
patrick.kruempelmann@cs.tu-dortmund.de

Abstract. Extended dependency graphs are an isomorphic represen-
tation form for Answer Set Programs, while explanation graphs give an
explanation for the truth value of a literal contained in an answer set. We
present a method and an algorithm to construct explanation graphs from
a validly colored extended dependency graph. This method exploits the
graph structure of the extended dependency graph to gradually build up
explanation graphs. Moreover, we show interesting properties and rela-
tions of the graph structures, such as loops, and we consider both answer
set and well-founded semantics. We also present two different approaches
for the determination of assumptions in an extended dependency graph,
an optimal but exponential and a sub-optimal but linear one.

1 Introduction

Graphs are an excellent tool for the illustration and understanding of non-
monotonic reasoning formalisms, and for the determination and explanation of
models. For answer set programs two graph based representations have recently
been proposed: Extended dependency graphs (EDG) [2] and explanation graphs
(EG) [1]. EDGs are an isomorphic representation of extended logic programs
and use a coloring of the nodes to determine answer sets. Explanation graphs,
on the other hand, provide an explanation for the appearance of a single literal
in an answer set. In [1] it was conjectured that there is a strong relation between
a validly colored extended dependency graph and an explanation graph. In this
work we present a method to construct explanation graphs from a successfully
colored extended dependency graph and prove its correctness. The way of pro-
ceeding exploits the structure of the EDG and the fact that explanation graphs
can be built up gradually from smaller sub-explanation graphs.

In [1] assumptions are introduced, which describe literals whose truth value
has to be guessed during the determination process of answer sets, but there is
actually no appropriate method given to find proper assumptions. We present
two systematic approaches which extract assumptions from an EDG. This is the
most difficult part of the construction of EGs, since intra-cyclic as well as inter-
cyclic dependencies between nodes have to be considered. The first approach
makes use of basic properties of assumptions and the graph to reduce the size

M. Hanus and R. Rocha (Eds.): KDPD 2013, LNAI 8439, pp. 1–16, 2014.
DOI: 10.1007/978-3-319-08909-6 1, c© Springer International Publishing Switzerland 2014

2 E. Albrecht et al.

of assumptions in linear runtime. The second approach exploits cycle structures
and their interdependencies to determine the minimal assumptions, which comes
with the cost of exponential runtime.

In Sect. 2 we give an introduction to answer set programming and in Sect. 3
we present extended dependency graphs and explanation graphs. Section 4 deals
with the construction process of the EGs from a validly colored EDG. The fifth
section deals with the different approaches of finding proper assumptions in an
EDG.

2 Answer Set Programming

We consider extended logic programs under the answer set semantics [3]. An
extended logic program P is a set of rules r of the form r : h ← a1, ..., an, not b1, ...,
not bn. where h, a1, ...am, b1, ..., bn are literals. A literal may be of the form x or
¬x where x is a propositional symbol called atom and ¬ is the classical negation.
head(r) = {h} denotes the head, pos(r) = {a1, ..., am} denotes the positive, and
neg(r) = {b1, ..., bn} the negative body literals of a rule. The Herbrand base H(P)
of a logic program P is the set of all grounded literals of P . A literal is grounded,
if it does not contain a variable. In this work, we assume that the logic programs
are grounded, i.e., every literal appearing in the program is grounded.

Let M ⊆ H(P) be a consistent set of literals, i.e., M does not contain
any complementary literals. The Gelfond-Lifschitz reduct of a program P is
the program PM = {h ← a1, ..., an. | h ← a1, ..., an, not b1, ..., not bm. ∈ P,
{b1, ..., bn} ∩ M = ∅} that is obtained by removing all rules where a literal
bi ∈ M appears as a negative body literal, and removing all negative body lit-
erals from the remaining rules. M is closed under PM if head(r) ∈ M whenever
pos(r) ⊆ M for every rule r ∈ PM . M is an answer set for P if M is closed
under PM and M is minimal w.r.t. set inclusion.

Answer set semantics may yield multiple models resp. answer sets. Another
semantics for logic programs is the well-founded semantics [6]. Its basic idea is
that there exist literals which have to be true with certainty and literals which
have to be false with certainty. Under the answer set semantics such information
gets lost if no answer set exists.

For a logic program P and a logic program P+ that we get if we remove all
rules with negative body literals, the sequence (Ki, Ui)i≥0 is defined as K0 =
lfp(TP+,∅)U0 = lfp(TP,K0)Ki = lfp(TP,Ui−1)Ui = lfp(TP,Ki

) where TP,V (S) =
{a | ∃r ∈ P : head(r) = a, pos(r) ⊆ S, neg(r) ∩ V = ∅}. The well-founded
model is WFP = 〈W+,W−〉 where W+ = Kj is the well founded set and W− =
H(P) \ Uj is the unfounded set, with j being the first index with 〈Kj , Uj〉 =
〈Kj+1, Uj+1〉. Literals that are neither contained in W+ nor in W− are called
undefined.

3 Graphs for Answer Set Programs

We introduce two types of graphs, the first graph type is the extended
dependency graph [2].

Construction of EG from EDG for Answer Set Programs 3

Definition 1 (Extended dependency graph). The extended dependency
graph (EDG) to a logic program P with its Herbrand base H(P) is a directed
graph EDG(P) = (V,E) with node set V ⊆ H(P) and edge set E ⊆ V × V ×
{+,−}, according to the following rules:

V1 There is a node ak
i for every rule rk ∈ P where head(rk) = ai.

V2 There is a node a0
i to every atom ai ∈ H(P) which does not appear as the

head of a rule.
E1 There is an edge (clj , a

k
i ,+) for every node clj ∈ V iff there is a rule rk ∈ P

where cj ∈ pos(rk) and head(rk) = ai.
E2 There is an edge (clj , a

k
i ,−) for every node clj ∈ V iff there is a rule rk ∈ P

where cj ∈ neg(rk) and head(rk) = ai.

To every logic program a unique EDG can be constructed, this means a logical
program is isomorphic to its representation as an EDG in the sense that the
structure of the program is reflected one-to-one by the structure of the EDG.
Properties of a logic program can be obtained from properties of the correspond-
ing EDG and vice versa. Colorings of the graph that comply with the semantics
of the edges are called valid colorings and correspond to answer sets of a logic
program. A green colored node represents a successfully deduced head of a rule,
and a red colored node represents a head of a rule that can not be deduced.
A literal is contained in the answer set if there exists a node that represents the
literal which is colored green. A literal is not contained in the answer set if all
nodes corresponding to the literal are colored red.

Definition 2 (Valid coloring of an EDG). Let a program P be given. A
coloring ν : V → {green, red} of the graph EDG(P) = (V,E) is valid, if the
following conditions holds:

1. ∀i, k where k ≥ 1, ν(ak
i) = green if ak

i has no incoming edge.
2. ∀i, k, ν(ak

i) = green if the following two conditions are met:
(a) ∀j,m where (am

j , ak
i ,+) ∈ E, ∃ah

j ∈ V such that ν(ah
j) = green

(b) ∀j,m where (am
j , ak

i ,−) ∈ E, ν(am
j) = red

3. ∀i, k ν(ak
i) = red, if at least one of the two following conditions is met:

(a) ∃j,m where (am
j , ak

i ,+) ∈ E and ∀ah
j ∈ V , ν(ah

j) = red
(b) ∃j,m where (am

j , ak
i ,−) ∈ E and ν(am

j) = green
4. For every positive cycle C where ν(ak

i) = green for all ak
i ∈ C the following

condition holds: There is an i and l = k, such that ν(al
i) = green.

A main feature of EDGs is their representation of cycles and handles for those.
A cycle consists of several literals that are dependent in a cyclic way, e.g., given
the two rules r1 : a ← b. and r2 : b ← a., both literals a and b are interdependent
in a cyclic way. Generally, cycles can be connected in two different ways to the
rest of the program:

– OR-handle: Let the rule r1 : a ← β. be part of a cycle where β may be of
the form b or not b. If there exists another rule r2 : a ← δ where δ may be of
the form d or not d, then δ is an OR-handle for the cycle to which r1 belongs.
The OR-handle is called active if δ is true.

4 E. Albrecht et al.

P1 := {a ← not b.

b ← not a.

c ← {not a}.
c ← e.

d ← c.

e ← not d.

f ← [e], not f.}
(a) Logic program P1

a1 b2

c3 c4

d5 e6 f7−

− +

−

+

−

−

+

+

(b) Successfully colored EDG to program P1

Fig. 1. A logic program, the corresponding EDG, and a valid coloring

– AND-handle: If a rule r is part of a cycle and has an additional condition γ,
that means the rule is of the form r : a ← β, γ where γ may be of the form
c or not c, then γ is an AND-handle. The AND-handle is called active if γ is
false.

An extended dependency graph extends a normal dependency graph in so far
that it distinguishes between AND- and OR-handles.

Example 1. Figure 1 shows a logic program (a) and the corresponding EDG
(b). The EDG has a valid coloring which represents the answer set {b, c, d}. The
AND-handle is marked in the program with [] and is dotted in the EDG. The
OR-handle is marked in the program with { } and is dashed in the EDG.

The second graph type is the explanation graph (EG). In contrast to the EDGs,
which visualize the structure of a whole logic program, EGs provide an expla-
nation for why a single literal appears or does not appear in an answer set and
is always constructed with regard to an answer set and a set of assumptions.
Assumptions are literals for which no explanation is needed since their value is
assumed. All literals that are qualified for being used as assumptions are called
tentative assumptions and are formally defined as follows:

Definition 3 (Tentative Assumptions). Let P be a logic program, M an
answer set of P and WF = 〈WF+,WF−〉 the well-founded model of P . Then
the set of tentative assumptions of P w.r.t. M is

T AP (M) = {a | a ∈ NANT (P) and a /∈ M and a /∈ WF+ ∪ WF−}

where NANT (P) is the set of all literals appearing in P as a negative body
literal: NANT (P) = {a | ∃r ∈ P : a ∈ neg(r)}.
Given a logic program P and a subset U ⊆ T AP (M) of tentative assumptions,
one can obtain the negative reduct NR(P,U) of a program P w.r.t. U by remov-
ing all rules where head(r) ∈ U .

Definition 4 (Assumption). An assumption of a program P regarding an
answer set M is a set U ⊆ T Ap(M) where the well-founded model of the negative
reduct corresponds to the answer set M , i. e. WFNR(P,U) = 〈M,H(P) \ M〉.

Construction of EG from EDG for Answer Set Programs 5

This means that setting all literals of the assumption U to false leads to all
literals being defined in the well-founded model.

Explanation graphs are based on local consistent explanations (LCE). These
are sets of literals which directly influence the truth value of a literal a. For a
literal a that is contained in the answer set and a rule where a is the head and all
conditions of the rule are fulfilled, i.e., all body literals are true, the LCE consists
of all body literals of the rule. Since there may exist several fulfilled rules with a
as their head, a can also have various LCEs. For a literal a that is not contained
in the answer set, an LCE is a minimal set of literals that together falsify all rules
that define a. For this purpose the LCE has to contain one falsified condition
from each rule.

Definition 5 (Local Consistent Explanation). Let a program P be given,
let a be a literal, let M be an answer set of P , let U be an assumption and let
S ⊆ H(P) ∪ {not a | a ∈ H(P)} ∪ {assume,�,⊥} be a set of (default-negated)
literals and justifying symbols.

1. S is an LCE for a+ w.r.t. (M,U), if a ∈ M and
– S = {assume} or
– S ∩ H(P) ⊆ M , {c | not c ∈ S} ⊆ (H(P) \ M) ∪ U and there exists a rule

r ∈ P where head(r) = a and S = body(r). For the case that body(r) = ∅
one writes S = {�} instead of S = ∅.

2. S is an LCE for a− w.r.t. (M,U), if a ∈ (H(P) \ M) ∪ U and
– S = {assume} or
– S ∩H(P) ⊆ (H(P)\M)∪U , {c | not c ∈ S} ⊆ M and S is a minimal set

of literals, such that for every r ∈ P the following holds: if head(r) = a
then pos(r) ∩ S = ∅ or neg(r) ∩ {c | not c ∈ S} = ∅. For the case S being
the empty set one writes S = {⊥}.

In an EDG an edge (ak
i , a

l
j , s) with s ∈ {+,−} means that the truth value of

literal aj depends on the truth value of literal ai. In an explanation graph the
edges are defined the other way round, so that an edge (ai, aj , s) with s ∈ {+,−}
means that aj explains or supports the truth value of ai. A node in an explanation
graph is either annotated with + or −, depending on whether the literal is
contained in the answer set or not. We define two sets of annotated literals
Hp = {a+ | a ∈ H(P)} and Hn = {a− | a ∈ H(P)}. Furthermore we define
literal(a+) = a and literal(a−) = a. The support of a node ai in an EG is the
set of all direct successors of ai in the EG and is formally defined as follows:

Definition 6 (Support). Let G = (V,E) be a graph with node set V ⊆ Hp ∪
Hn ∪ {assume,�,⊥} and edge set E ⊆ V × V × {+,−}. Then the support of a
node a ∈ V w.r.t. G is defined as:

– support(a,G) = {literal(c) | (a, c,+) ∈ E}∪
{not literal(c) | (a, c,−) ∈ E},

– support(a,G) = {�} if (a,�,+) ∈ E,
– support(a,G) = {⊥} if (a,⊥,−) ∈ E or
– support(a,G) = {assume} if (a, assume, s) ∈ E where s ∈ {+,−}.

6 E. Albrecht et al.

b+ a− assume
− −

(a) EG for b

f−
e− d+ c+ a− assume

+ − + − −

(b) EG for f

Fig. 2. Explanation graphs for literals b and f in program P1 w.r.t. answer set M =
{b, d, c} and assumption U = {a}

Definition 7 (Explanation graph). An explanation graph for a literal a ∈
Hp ∪ Hn in a program P w.r.t. an answer set M and an assumption U ∈
Assumptions(P,M) is a directed graph G = (V,E) with node set V ⊆ Hp ∪
Hn ∪ {assume,�,⊥} and edge set E ⊆ V × V × {+,−}, such that the following
holds:

1. The only sinks in the graph are assume, � and ⊥, where � is used to explain
facts of the program P , ⊥ is used to explain literals which do not appear
as a head of any rule and assume is used to explain literals for which no
explanations are needed since their value is assumed to be false.

2. If (c, l, s) ∈ E where l ∈ {assume,�,⊥} and s ∈ {+,−}, then (c, l, s) is the
only outgoing edge for every c ∈ V .

3. Every node c ∈ V is reachable from a.
4. For every node c ∈ V \ {assume,�,⊥} the support support(c,G) is an LCE

for c regarding M and U .
5. There exists no c+ ∈ V , such that (c+, assume, s) ∈ E where s ∈ {+,−}.
6. There exists no c− ∈ V , such that (c−, assume,+) ∈ E.
7. (c−, assume,−) ∈ E iff c ∈ U .

Example 2. Figure 2 shows the explanation graphs for literals b and f from the
program in Fig. 1a w.r.t. the answer set M = {b, d, c} and assumption= {a}.

4 Construction of Explanation Graphs

In this section we introduce an approach for the construction of explanation
graphs by extracting the required information from a validly colored extended
dependency graph. Suppose we are given an extended dependency graph G =
(V,E) with a valid coloring ν : V → {green, red}. In the first step, we clean up
the EDG by removing irrelevant edges and nodes. Irrelevant edges and nodes
are those edges and nodes that do not have influence on the appearance or non-
appearance of a literal in the answer set. This means they do not provide an
explanation for a literal and hence are not needed for any explanation graph.

Definition 8 (Irrelevant edge, irrelevant node). An edge (ak
i , a

l
j , s) is irrel-

evant if

– ν(ak
i) = green, ν(al

j) = green and s = −,
– ν(ak

i) = green, ν(al
j) = red and s = +,

Construction of EG from EDG for Answer Set Programs 7

– ν(ak
i) = red, ν(al

j) = green and s = + or
– ν(ak

i) = red, ν(al
j) = red and s = −.

A node ak
i is irrelevant if ν(ak

i) = red and there exists l > 0 where ν(al
i) = green.

If an irrelevant node is removed, all its incoming and outgoing edges are also
removed. After removing irrelevant edges and nodes we get an EDG G′ =
(V ′, E′) with V ′ ⊆ V and E′ ⊆ E. In the second step, nodes are gradually
marked in the EDG. The marking process starts at nodes which have no incom-
ing edges, because the explanation graphs for these nodes do not depend on other
nodes. Every time a node is marked, the explanation graphs for the marked node
are built. For this purpose five types of transformations are defined. The two
first transformations describe the construction of explanation graphs for simple
nodes, i.e., nodes which have no incoming edges in the EDG. The third and
fourth transformations describe the construction of nodes which are dependent
on other nodes, i.e., have incoming edges, distinguished by the color of the nodes.
The last transformation is used for the construction of EGs for literals that are
used as assumptions.

Transformation 1 (Transformation of fact nodes). The EG for a node ak
i

which has no incoming edges and satisfies ν(ak
i) = green consists of a node a+

i ,
a node � and an edge (a+

i ,�,+) (Fig. 3a), because such a node corresponds to
a fact of the logic program.

Transformation 2 (Transformation of unfounded nodes). The EG to a
node ak

i which has no incoming edges and satisfies ν(ak
i) = red consists of a

node a−
i , a node ⊥ and an edge (a−

i ,⊥,−) (Fig. 3b).

After marking nodes without incoming edges, we can mark nodes in positive
cycles (cycles that contain only positive edges) that do not have an active handle,
since the corresponding literals do not have a supportive justification and are
unfounded in the well-founded model. Since there exists no active handle for
the cycle, there is no other explanation for the nodes of the cycle than the one
consisting of the cycle itself (with reversed edges). Now we continue marking
nodes using the following rules until no more nodes can be marked:

A green node ak
i can be marked if

– for all al
j where (al

j , a
k
i ,+) ∈ E′, there exists n ≥ 1 with an

j ∈ V ′, such that
an
j is marked, and

– for all nodes al
j where (al

j , a
k
i ,−) ∈ E′, al

j is marked.

That means that a green node can be marked, if all its predecessor nodes are
marked. For literals which are represented by multiple green nodes, it is sufficient
if one of these nodes is marked.

A red node ak
i can be marked if

– ∃(al
j , a

k
i ,−) ∈ E′ where al

j is marked, or
– ∃(al

j , a
k
i ,+) ∈ E′ where for all n ≥ 0, an

j ∈ V ′ is marked.

8 E. Albrecht et al.

That means that a red node can be marked, if at least one of its predecessor
nodes is marked. In case that a predecessor literal is represented by multiple red
nodes, all these nodes have to be marked.

Lemma 1. The well-founded set W+ corresponds to the set of all marked green
nodes and the unfounded set W− corresponds to the set of all marked red nodes.

Proof sketch. It has to be shown that Ki always contains marked green nodes
and Xi = H(P) \ Ui always contains marked red nodes where Ki and Ui are
the sets that are generated during the calculation of the well-founded model (see
Page 2). For this purpose the fixpoint operator TP,V for the generation of Ki

and Xi has to be adjusted to Xi instead of Ui, especially in the adjustment of
the operator for Xi positive cycles have to be considered. Then it can be seen,
that the resulting operators exactly describe the process of marking green resp.
red nodes.

From Lemma 1 we get the following proposition:

Proposition 1. All unmarked nodes are undefined in the well-founded model.

Green nodes represent literals that are contained in the answer set. So the local
consistent explanation for such a node consists of all direct predecessor nodes
(resp. the literals they represent).

Transformation 3 (Transformation of dependent green nodes).
Let ie(ak

i) be the set of incoming edges of node ak
i . An EG to a node ak

i where
ν(ak

i) = green and ie(ak
i) = ∅ consists of a node a+

i and edges EEG = {(a+
i ,

EG(aj), s) | (al
j , a

k
i , s) ∈ E′}, where EG(aj) is an explanation graph for aj

(Fig. 3d).

Red nodes represent literals that are not contained in the answer set. In most
cases red nodes have only active edges. The only exception is if a predeces-
sor literal aj of a red node ak

i is represented by multiple red nodes, formally
|{al

j | (al
j , a

k
i ,−) ∈ E′}| ≥ 2. To get the LCEs for literals represented by a red

node, all nodes representing this literal have to be considered. Each node rep-
resents a rule where the incoming edges represent the conditions of the rule.
An LCE has to contain exactly one violated condition from each rule. Since we
have removed all irrelevant edges, every edge represents a violated condition.
That means that an LCE contains exactly one incoming edge for every node
representing the literal.

Definition 9 (Local consistent explanation in an EDG). Let pd(ak
i) =

{aj | (al
j , a

k
i , s) ∈ E′, s ∈ {+,−}} be the set of the predecessor literals of node ak

i

and a1
i to an

i the nodes representing a literal ai. We set L(ai) = {{b1, ..., bn} | b1 ∈
pd(a1

i), ..., bn ∈ pd(an
i)}. L(ai) is an LCE for ai if L(ai) is minimal w.r.t. set

inclusion.

Transformation 4 (Transformation of dependent red nodes). The expla-
nation graph for a node ak

i where ν(ak
i) = red w.r.t. an LCE L(ai) consists of a

node a−
i and edges

EEG = {(a−
i , EG(aj), s | aj ∈ L, (al

j , a
k
i , s) ∈ E′ for any l, k} (Fig. 3e).

Construction of EG from EDG for Answer Set Programs 9

a+
i

�

+

(a)

a−
i

⊥

−

(b)

a−
i

assume

−

(c)

a+
i

EG(aj1) EG(aj2) ... EG(ajn)

s1 s2

sn

(d)

a−
i

EG(aj1) EG(aj2) ... EG(ajn)

s1 s2

sn

(e)

Fig. 3. Templates for constructing an explanation graph for ai

As mentioned before, every time a node is marked explanation graphs are con-
structed. It should be remarked that not all explanation graphs for a literal can
be created when a node is reached for the first time and marked. This follows
from the fact that there can exist multiple nodes for one literal and that a red
node can be already marked if one of its predecessors is marked.

Example 3. In the graph from Fig. 4b for the logic program P2 (Fig. 4a) we
can see that although both nodes are marked, we cannot construct all explanation
graphs to the literal a and also e, since e depends on a. The explanation graph for
the LCE {c, d} of a is missing, because c depends on a cycle where an assumption
has to be determined. So, if the node a1 is reached again by the other edge
(c3, a1,+) during the marking process, the set of its explanation graphs has to be
updated and the information must be propagated to all successor nodes.

P2 := {a ← b, c.

a ← d.

c ← not f.

e ← not a.

f ← not c.}
(a) Logic program P3

a1

b0 c3

e4

a2

d0

f5

−
−

+

+ +

−−

(b) Successfully colored
EDG for program P2

Fig. 4. A logic program and the corresponding EDG

10 E. Albrecht et al.

The next step is to determine assumptions. Different approaches for choosing
assumptions are proposed in Sect. 4. After choosing the assumption U , the incom-
ing edges of all nodes representing a literal from U are removed, because no other
explanations for these literals are allowed. So we get an extended dependency
graph G′′ = (V ′, E′′) where E′′ ⊆ E′. The nodes of these literals are marked
and the explanation graphs can be constructed.

Transformation 5 (Transformation of assumption nodes). The explana-
tion graph to an assumption node ak

i consists of a node a−
i , a node “assume”

and an edge (a−
i , assume,−) (Fig. 3c).

Then we proceed as before, marking nodes in G′′ and simultaneously construct-
ing the explanation graphs.

5 Choosing Assumptions

In most cases it is desirable to choose as few literals as possible as assumption.
Assumptions where no literal can be removed without the set being no assump-
tion anymore, are called minimal assumptions. Finding them in an EDG can
be very complex, since all dependencies between the unmarked cycles have to
be considered. For this purpose two different approaches are presented in this
section. The first approach does not consider dependencies between cycles, so
that assumptions can be computed in O(|V | + |E|). The disadvantage of this
approach is that the determined assumptions are not minimal in most cases.
The second approach determines all minimal assumptions of an EDG, but has
an exponential complexity.

For the determination of assumptions we first have to determine all tenta-
tive assumptions. From the definition of tentative assumptions we know that a
tentative assumption has to meet three conditions: (a) it must not be contained
in the answer set, (b) it has to appear as negative body literal in a rule and (c)
it has to be undefined by the well-founded model. Transferred to a node in an
EDG G′ where all irrelevant edges and nodes were removed and all nodes are
marked as far as possible, the first condition is fulfilled exactly by red nodes, the
second condition is fulfilled exactly by nodes which have outgoing negative edges
in the original graph G and the third condition is exactly fulfilled by unmarked
nodes:

T A(G′) = {ai | ak
i ∈ V ′, ν(ak

i) = red, ak
i not marked, (ak

i , a
l
j ,−) ∈ E}.

The set of tentative assumptions is always an assumption as shown in [1].
Since the set of tentative assumptions is often large, we are looking for an app-
roach to reduce the set. The aim is that after defining the assumption, all other
nodes can be marked.

Lemma 2. In a graph without any cycles all nodes can be marked without mak-
ing assumptions.

Construction of EG from EDG for Answer Set Programs 11

Proof sketch. Since there exist no cycles, the nodes can be ordered into different
levels on the graph. Every level contains all nodes from the lower level and
nodes whose predecessors are contained in a lower level. Then it can be shown
via induction that all nodes can be marked.

When we choose an assumption, the truth value of the literal is fixed to false.
Since no further explanations than the one that the literal is an assumption are
allowed, all incoming edges of the assumption nodes are removed. We treat cycles
here as sets of nodes. Minimal cycles (where minimality is understood w.r.t. set
inclusion) will play a crucial role. Choosing one assumption node in each minimal
cycle breaks up the minimal cycles. Since all bigger cycles contain a minimal
cycle they are also broken up, so there exist no more unmarked cycles. Since
it is better to choose as few literals as possible as assumption, we only choose
those possible assumptions that are minimal with regard to set inclusion. Then
a possible assumption consists of one tentative assumption from each minimal
cycle.

Approach 1. Let C1, C2, ..., Cn be all minimal unmarked cycles in G′.

Assumptions(G′) ={{a1, a2, ..., an} | a1 ∈ C1, a2 ∈ C2, ..., an ∈ Cn,

{a1, a2, ...an} is minimal w.r.t. set inclusion}.

Of course there still may exist cycles which are marked. But since we know
that they can be marked, we can simply replace a marked cycle Cm = (Vm, Em)
by a dummy node cm with incoming edges ie(cm) =

⋃
v∈Vm

ie(v) and outgoing
edges oe(cm) =

⋃
v∈Vm

oe(v). One very simple possibility to determine minimal
assumptions is to try all combinations of tentative assumptions. Such a combi-
nation is an assumption, if the whole graph can be marked after choosing the
assumption. A minimal assumption is then the combination that is successful
and minimal with regard to set inclusion. But with an increasing number of ten-
tative assumptions this approach will not be very efficient. For this reason, we
will introduce an approach that tries to reduce the number of combinations that
have to be checked. Its basis is not to check all tentative assumptions and com-
binations, but only those literals that are important to determine the value of a
so called critical node. It is obvious that this approach is only more efficient, if
the number of such literals is smaller than the number of tentative assumptions.
For the sake of simplicity, the approach is limited to graphs where each literal in
a cycle is represented only by one node, i.e., there exist no OR-handles. When
OR-handles have to be considered a similar approach can be used, just a more
complex case differentiation has to be carried out.

Since marked nodes are irrelevant for the determination of assumptions, we
remove all marked nodes and their outgoing and incoming edges from the graph
and obtain a sub-graph Gunmarked. In the next step, we are looking for strongly
connected components of Gunmarked. A strongly connected component is a max-
imal sub-graph where each node is reachable from each other node. This means
that every node has an influence on every other node in the same strongly con-
nected component, so that a strongly connected component behaves like a big
cycle. For this reason we call the strongly connected components linked cycles.

12 E. Albrecht et al.

If a linked cycle consists of several smaller cycles, there exist nodes belonging
to multiple cycles. Such a node is critical, if its value depends on more than one
cycle. Since we have removed all irrelevant edges and have no OR-handles, a red
node has only active AND-handles. This means that the truth value of just one
predecessor node is sufficient to determine the truth value of the red node. So a
red node does not depend on more than one cycle, which means that only green
nodes can be critical.

Definition 10 (Critical Node). Let LC = (VLC , ELC) be a linked cycle. A
node ak

i is critical, if ν(ak
i) = green and it has at least two incoming edges

(al
j , a

k
i , s) ∈ ELC where s ∈ {+,−}. The set of all critical nodes of a linked cycle

LC will be denoted as CN (LC).

If a linked cycle has no critical nodes, a node can be deduced from any other
node. Then a minimal assumptions consists of a single literal which is a tentative
assumption and is represented by a node of the linked cycle. The set of all
minimal assumptions of the linked cycle LC(VLC , ELC) in G′ is: μAssumptions
(LC) = {{ai} | ak

i ∈ VLC , ai ∈ T A(G′)}.
The value of every critical node depends on the value of its predecessor nodes.

We will call these nodes pre-conditions.

Definition 11 (Pre-condition). Let LC = (VLC , ELC) be a linked cycle. The
pre-conditions for a green critical node ak

i are:

pre(ak
i) = {al

j | (al
j , a

k
i , s) ∈ ELC , s ∈ {+,−}}

Preconditions(LC) =
⋃

ak
i ∈CN (LC) pre(ak

i) is the set of all pre-conditions in the
linked cycle.

Lemma 3. Nodes that are not critical can be deduced from at least one critical
node.

Proof sketch. It can be shown by induction that the truth value of a node an on
a path c, a1, a2, ..., an−1, an from a critical node c can be deduced, if a1, ...an are
not critical.

So if we can deduce all critical nodes with an assumption, we also can deduce
all other literals of the linked cycle with the assumption. lfp(Succ({cn})) cal-
culates the nodes that can be deduced from a critical node cn ∈ CN (LC) where
Succ(S) = {al

j | (ak
i , a

l
j , s) ∈ ELC , s ∈ {+,−}, ak

i ∈ S}. Then the set of all nodes
that can be deduced from a set of nodes S can be calculated with lfp(T (S))
where

T (S) = {ak
i | pre(ak

i) ⊆ S} ∪ {ak
i | ak

i ∈ Succ(al
j), a

l
j ∈ S ∩ CN (LC)}.

Now combinations c of pre-conditions have to be tested for success. A com-
bination c is successful, if all critical nodes can be deduced from them, i.e.,
CN (LC) ⊆ lfp(T (c)). What we know is that

Construction of EG from EDG for Answer Set Programs 13

1. Each combination c has to contain at least one complete pre-condition set
pre(cn), cn ∈ CN (LC). Otherwise the fix-point operator could not deduce
any critical node.

2. Since we are looking for minimal assumption sets, we do not have to check
combinations c1 where we already have found a smaller successful combination
c2, i.e., c2 ⊆ c1 and CN (LC) ⊆ lfp(T (c2)).

The way of proceeding is to first test single pre-condition sets pre(cn) ⊂ c, cn ∈
CN (LC) for success (exploits fact 1). If a set is successful, we add it to the
set of successful combinations C, otherwise it is put to NC. Then we test sets
n ∪ {ak

i }, where n ∈ NC and ak
i ∈ Preconditions(LC). This means we test

different combinations of adding one more pre-condition to all sets that have
not been successful in the step before (exploits fact 2). Again we add successful
combinations to C and set NC to the combinations that were not successful. This
is repeated till NC = ∅ or the set to be tested consists of all pre-conditions. Then
C contains all combinations of pre-conditions that suffice to deduce all critical
nodes and therefore to deduce also all other nodes in the linked cycle, since they
are not critical. For the purpose of determining assumptions, we determine all
nodes from which a pre-condition p can be deduced. These nodes lie on paths
from critical nodes to the pre-condition.

Definition 12 (Pre-condition paths). The pre-condition path for a pre-
condition p from a linked cycle LC = (VLC , ELC) can be obtained by path(p) =
lfp(Tpath({p})) where

Tpath(S) = {ak
i | (ak

i , a
l
j , s) ∈ ELC , s ∈ {+,−}, ak

i /∈ CN (LC), al
j ∈ S}.

A pre-condition path contains the nodes from which a pre-condition can be
deduced. For deducing all nodes of a linked cycle we have to deduce all pre-
conditions of a successful combination c = {p1, ..., pn}. This means that we need
exactly one node from the path of each pre-condition. Since we want to determine
assumptions, the nodes have also to fulfill the other conditions of an assumption.

Definition 13 (Path assumptions). The set of path assumptions for a path
p in a validly colored EDG G = (V,E) is defined by

PA(p) = {ai | ak
i ∈ p ∧ ak

i ∈ T A(G′)}.

Let C be the set of all successful pre-condition combinations c = {p1, ..., pn}.
Then the set

Assumptions(LC) =
⋃

c∈C

{{a1, ..., an} | a1 ∈ PA(p1), ..., an ∈ PA(pn)}

is the set of possible minimal assumptions.

Proposition 2. Minimal assumptions μAssumptions(LC) of a linked cycle LC
are those sets of Assumptions(LC) that are minimal with regard to set inclusion.

14 E. Albrecht et al.

Proof sketch. It has to be shown that each set S ∈ μAssumptions(LC) is a
minimal assumption for the linked cycle LC, i.e., S is an assumption and there
exists no set S′ ⊂ S, such that S′ is an assumption for LC. To show that S is
an assumption, it has to be checked, if S meets the conditions of an assumption.
To show that S is minimal, one looks at the successful combinations from which
S and S′ are created and distinguish between different cases. For every case it
can be shown by contradiction that S′ can not be in μAssumptions(LC).

Algorithm 1. Determination of assumptions using Approach 2
Require: Marked graph G′ = (V ′, E′), set of linked cycles independentLCs
Ensure: All minimal assumptions of G
1: procedure findAssumptions(G,independentLCs)
2: var graph G′′ = (V ′′, E′′) = G
3: varset of linked cycles iLCs
4: for all v ∈ V do � Remove marked nodes
5: if v.marked = true then G′′.removeNode(v) end if
6: end for
7: if V ′′ = ∅ then � There are no more unmarked nodes
8: var sets of assumptions μAssumptions[independentLCs]
9: for all LC ∈ independentLCs do

10: μAssumptions[LC] = calculateMinimalAssumptionsLC(LC)
11: end for
12: return calculateMinimalAssumptionsGraph(μAssumptions)
13: else
14: iLCs = calculateIndependentLinkedCycles(G′′)
15: independentLCs.add(iLCs)
16: � Replace independent linked cycles by a dummy node
17: for all LC = (VLC , ELC) ∈ iLCs do
18: for v ∈ VLC do G′.removeNode(v) end for
19: G′′.addNode(vdummy,LC)
20: for all e = (vs, ve, s) ∈ ELC do
21: G′′.addEdge(vdummy,LC ,ve,s)
22: G′′.removeEdge(e)
23: end for
24: end for
25: markNodes(G′′)
26: return findAssumptions(G′′,independentLCs)
27: end if
28: end procedure

Approach 2. To calculate the minimal assumptions of a graph G Algorithm1 is
used by calling findAssumptions(G′, ∅), where G′ is the graph obtained from
G after removing irrelevant edges and nodes and after marking the nodes like
described in Sect. 4. findAssumptions is a recursive function, which adds fur-
ther independent linked cycles to the set of all independent linked cycles of G at

Construction of EG from EDG for Answer Set Programs 15

each recursion. A linked cycle is independent if the truth value of its nodes does
not depend on the truth value of the nodes in the rest of the graph. Since they
are independent of the rest of the graph, they have to contain an assumption. To
determine independent linked cycles, first all marked nodes and their incident
edges are removed, so we get a graph G′′ = (V ′′, E′′) (lines 4–6). If there still
exist unmarked nodes in G′′, G′′ contains independent linked cycles. Indepen-
dent linked cycles are those linked cycles, which have no incoming edges in G′′.
A linked cycle LC = (VLC , ELC) has no incoming edges if for all ak

i ∈ VLC there
is no al

j ∈ V ′′ \ VLC and s ∈ {+,−} such that (al
j , a

k
i , s) ∈ E′′. So all linked

cycles without incoming edges are determined (line 15) and added to the set of
all independent linked cycles (line 15). Then each independent linked cycle is
replaced by a dummy node (lines 17–24).

In the next step, the graph is marked using the marking rules from Sect. 4
(line 25). Since we have replaced linked cycles without incoming edges by dummy
nodes, these nodes have no incoming edges and are marked. With the marking
process we can determine which linked cycles are dependent of the independent
linked cycles, that we already have determined. The procedure is repeated until
all independent linked cycles of the graph are found. This is the case, if there
exist no unmarked nodes in the graph (line 7).

Then for each linked cycle the minimal assumptions are calculated. The func-
tion calculateMinimalAssumptionsLC (line 13) contains following steps:
the critical nodes of the linked cycle LC and their pre-conditions are specified
and the pre-condition paths are calculated, then successful combinations of pre-
conditions are looked for. The path assumptions are determined and used to
calculate the minimal assumptions of the linked cycle.

After determining the minimal assumptions of all independent linked cycles,
the minimal assumptions of the graph are calculated with the function calcu-
lateMinimalAssumptionsGraph (line 12) which exploits Proposition 3.

Proposition 3. We can obtain the minimal assumptions of the EDG by taking
one minimal assumption of each independent linked cycle:

μAssumptions(G′) = {{a1 ∪ · · · ∪ an} |a1 ∈ μAssumptions(LC1), . . .
an ∈ μAssumptions(LCn)}

Proof sketch. For every assumption a ∈ μAssumptions(G′) two things have to
be shown: (a) a is an assumption for the EDG and (b) a is minimal. (a) can be
directly shown by the stopping condition of the algorithm. For the proof of (b)
a literal is removed from a and it can be shown that then not all nodes in the
EDG can be marked, because of the definition of the minimal assumption in an
EDG and the definition of independent linked cycles.

6 Conclusion

We presented an approach to construct explanation graphs from validly colored
Extended Dependency Graphs. We exploited that the logic program is already

16 E. Albrecht et al.

present in graph form. In EDGs the nodes may differ in number of incoming
edges and coloring, so different types of transformations were defined to transfer
a node from the EDG to an EG. For the determination of assumptions it was
necessary to determine the well-founded model. A strong relationship between
well-founded models and the marking process of an EDG was observed, which
means that an unmarked node represents a literal which is undefined in the well-
founded model. We presented two different approaches for the determination of
assumptions. While the first approach determines non-minimal assumptions in
O(|V | + |E|), the determination of minimal assumptions has an exponential
complexity.

Acknowledgement. This work has been supported by the German Research
Foundation DFG, Collaborative Research Center SFB876, Project A5. (http://sfb876.
tu-dortmund.de)

References

1. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer
set semantics. Theor. Pract. Logic Program. 9(1), 1–56 (2009)

2. Constantini, S., Provetti, A.: Graph representations of consistency and truth-
dependencies in logic programs with answer set semantics. In: The 2nd International
IJCAI Workshop on Graph Structures for Knowledge Representation and Reasoning
(GKR 2011), vol. 1 (2011)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive data-
bases. New Gener. Comput. 9(3–4), 365–385 (1991)

4. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

5. Brignoli, G., Costantini, S., Provetti, A.: Characterizing and computing stable mod-
els of logic programs: the non-stratified case. In: Proceedings of the Conference on
Information Technology, Bhubaneswar, India. AAAI Press (1999)

6. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

7. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci. 170, 209–244 (1996)

http://sfb876.tu-dortmund.de
http://sfb876.tu-dortmund.de

	Construction of Explanation Graphs from Extended Dependency Graphs for Answer Set Programs
	1 Introduction
	2 Answer Set Programming
	3 Graphs for Answer Set Programs
	4 Construction of Explanation Graphs
	5 Choosing Assumptions
	6 Conclusion
	References

