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Preface

This volume contains a selection of papers presented at the Kiel Declarative
Programming Days 2013, held in Kiel (Germany) during September 11–13, 2013. The
Kiel Declarative Programming Days 2013 unified the following events:

– 20th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2013)

– 22nd International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2013)

– 27th Workshop on Logic Programming (WLP 2013)

All these events are centered around declarative programming, an advanced par-
adigm for the modeling and solving of complex problems. These specification and
implementation methods attracted increasing attention over the last decades, e.g., in
the domains of databases and natural language processing, for modeling and pro-
cessing combinatorial problems, and for high-level programming of complex, in
particular, knowledge-based systems.

The INAP conferences provide a communicative forum for intensive discussion of
applications of important technologies around logic programming, constraint problem
solving, and closely related computing paradigms. It comprehensively covers the
impact of programmable logic solvers in the Internet society, its underlying tech-
nologies, and leading-edge applications in industry, commerce, government, and
societal services. Previous INAP editions have been held in Japan, Germany, Portugal,
and Austria.

The international workshops on functional and logic programming (WFLP) aim at
bringing together researchers interested in functional programming, logic program-
ming, as well as the integration of these paradigms. Previous WFLP editions have
been held in Germany, France, Spain, Italy, Estonia, Brazil, Denmark, and Japan.

The workshops on (constraint) logic programming (WLP) serve as the scientific
forum of the annual meeting of the Society of Logic Programming (GLP e.V.) and
bring together researchers interested in logic programming, constraint programming,
and related areas like databases, artificial intelligence, and operations research. Pre-
vious WLP editions have been held in Germany, Austria, Switzerland, and Egypt.

In 2013 these events were jointly organized under the umbrella of the Kiel
Declarative Programming Days in order to promote the cross-fertilizing exchange of
ideas and experiences among researchers and students from the different communities
interested in the foundations, applications, and combinations of high-level, declarative
programming languages and related areas. The technical program of the event
included presentations of refereed technical papers and system descriptions. In addi-
tion to the selected papers, the scientific program included an invited lecture by
Tom Schrijvers (University of Ghent, Belgium).



After the event, the Program Committees invited authors to submit revised versions
of their presented papers. Each submission was reviewed by at least three Program
Committee members. The meetings of the Program Committees were conducted
electronically during July 2013 and February 2014 with the help of the conference
management system EasyChair. After careful discussions, the Program Committees
decided to accept 15 papers for inclusion in these proceedings.

We would like to thank all authors who submitted papers to this event. We are
grateful to the members of the Program Committees and all the additional reviewers
for their careful and efficient work in the review process. Finally, we express our
gratitude to all members of the local Organizing Committee for their help in orga-
nizing a successful event.

April 2014 Michael Hanus
Ricardo Rocha

VI Preface
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Construction of Explanation Graphs
from Extended Dependency Graphs

for Answer Set Programs

Ella Albrecht, Patrick Krümpelmann(B), and Gabriele Kern-Isberner

Technische Universität Dortmund, Dortmund, Germany
patrick.kruempelmann@cs.tu-dortmund.de

Abstract. Extended dependency graphs are an isomorphic represen-
tation form for Answer Set Programs, while explanation graphs give an
explanation for the truth value of a literal contained in an answer set. We
present a method and an algorithm to construct explanation graphs from
a validly colored extended dependency graph. This method exploits the
graph structure of the extended dependency graph to gradually build up
explanation graphs. Moreover, we show interesting properties and rela-
tions of the graph structures, such as loops, and we consider both answer
set and well-founded semantics. We also present two different approaches
for the determination of assumptions in an extended dependency graph,
an optimal but exponential and a sub-optimal but linear one.

1 Introduction

Graphs are an excellent tool for the illustration and understanding of non-
monotonic reasoning formalisms, and for the determination and explanation of
models. For answer set programs two graph based representations have recently
been proposed: Extended dependency graphs (EDG) [2] and explanation graphs
(EG) [1]. EDGs are an isomorphic representation of extended logic programs
and use a coloring of the nodes to determine answer sets. Explanation graphs,
on the other hand, provide an explanation for the appearance of a single literal
in an answer set. In [1] it was conjectured that there is a strong relation between
a validly colored extended dependency graph and an explanation graph. In this
work we present a method to construct explanation graphs from a successfully
colored extended dependency graph and prove its correctness. The way of pro-
ceeding exploits the structure of the EDG and the fact that explanation graphs
can be built up gradually from smaller sub-explanation graphs.

In [1] assumptions are introduced, which describe literals whose truth value
has to be guessed during the determination process of answer sets, but there is
actually no appropriate method given to find proper assumptions. We present
two systematic approaches which extract assumptions from an EDG. This is the
most difficult part of the construction of EGs, since intra-cyclic as well as inter-
cyclic dependencies between nodes have to be considered. The first approach
makes use of basic properties of assumptions and the graph to reduce the size

M. Hanus and R. Rocha (Eds.): KDPD 2013, LNAI 8439, pp. 1–16, 2014.
DOI: 10.1007/978-3-319-08909-6 1, c© Springer International Publishing Switzerland 2014



2 E. Albrecht et al.

of assumptions in linear runtime. The second approach exploits cycle structures
and their interdependencies to determine the minimal assumptions, which comes
with the cost of exponential runtime.

In Sect. 2 we give an introduction to answer set programming and in Sect. 3
we present extended dependency graphs and explanation graphs. Section 4 deals
with the construction process of the EGs from a validly colored EDG. The fifth
section deals with the different approaches of finding proper assumptions in an
EDG.

2 Answer Set Programming

We consider extended logic programs under the answer set semantics [3]. An
extended logic program P is a set of rules r of the form r : h ← a1, ..., an, not b1, ...,
not bn. where h, a1, ...am, b1, ..., bn are literals. A literal may be of the form x or
¬x where x is a propositional symbol called atom and ¬ is the classical negation.
head(r) = {h} denotes the head, pos(r) = {a1, ..., am} denotes the positive, and
neg(r) = {b1, ..., bn} the negative body literals of a rule. The Herbrand base H(P )
of a logic program P is the set of all grounded literals of P . A literal is grounded,
if it does not contain a variable. In this work, we assume that the logic programs
are grounded, i.e., every literal appearing in the program is grounded.

Let M ⊆ H(P ) be a consistent set of literals, i.e., M does not contain
any complementary literals. The Gelfond-Lifschitz reduct of a program P is
the program PM = {h ← a1, ..., an. | h ← a1, ..., an, not b1, ..., not bm. ∈ P,
{b1, ..., bn} ∩ M = ∅} that is obtained by removing all rules where a literal
bi ∈ M appears as a negative body literal, and removing all negative body lit-
erals from the remaining rules. M is closed under PM if head(r) ∈ M whenever
pos(r) ⊆ M for every rule r ∈ PM . M is an answer set for P if M is closed
under PM and M is minimal w.r.t. set inclusion.

Answer set semantics may yield multiple models resp. answer sets. Another
semantics for logic programs is the well-founded semantics [6]. Its basic idea is
that there exist literals which have to be true with certainty and literals which
have to be false with certainty. Under the answer set semantics such information
gets lost if no answer set exists.

For a logic program P and a logic program P+ that we get if we remove all
rules with negative body literals, the sequence (Ki, Ui)i≥0 is defined as K0 =
lfp(TP+,∅)U0 = lfp(TP,K0)Ki = lfp(TP,Ui−1)Ui = lfp(TP,Ki

) where TP,V (S) =
{a | ∃r ∈ P : head(r) = a, pos(r) ⊆ S, neg(r) ∩ V = ∅}. The well-founded
model is WFP = 〈W+,W−⊗ where W+ = Kj is the well founded set and W− =
H(P ) \ Uj is the unfounded set, with j being the first index with 〈Kj , Uj⊗ =
〈Kj+1, Uj+1⊗. Literals that are neither contained in W+ nor in W− are called
undefined.

3 Graphs for Answer Set Programs

We introduce two types of graphs, the first graph type is the extended
dependency graph [2].
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Definition 1 (Extended dependency graph). The extended dependency
graph (EDG) to a logic program P with its Herbrand base H(P ) is a directed
graph EDG(P ) = (V,E) with node set V ⊆ H(P ) and edge set E ⊆ V × V ×
{+,−}, according to the following rules:

V1 There is a node ak
i for every rule rk ∈ P where head(rk) = ai.

V2 There is a node a0
i to every atom ai ∈ H(P ) which does not appear as the

head of a rule.
E1 There is an edge (clj , a

k
i ,+) for every node clj ∈ V iff there is a rule rk ∈ P

where cj ∈ pos(rk) and head(rk) = ai.
E2 There is an edge (clj , a

k
i ,−) for every node clj ∈ V iff there is a rule rk ∈ P

where cj ∈ neg(rk) and head(rk) = ai.

To every logic program a unique EDG can be constructed, this means a logical
program is isomorphic to its representation as an EDG in the sense that the
structure of the program is reflected one-to-one by the structure of the EDG.
Properties of a logic program can be obtained from properties of the correspond-
ing EDG and vice versa. Colorings of the graph that comply with the semantics
of the edges are called valid colorings and correspond to answer sets of a logic
program. A green colored node represents a successfully deduced head of a rule,
and a red colored node represents a head of a rule that can not be deduced.
A literal is contained in the answer set if there exists a node that represents the
literal which is colored green. A literal is not contained in the answer set if all
nodes corresponding to the literal are colored red.

Definition 2 (Valid coloring of an EDG). Let a program P be given. A
coloring ν : V → {green, red} of the graph EDG(P ) = (V,E) is valid, if the
following conditions holds:

1. ∀i, k where k ≥ 1, ν(ak
i ) = green if ak

i has no incoming edge.
2. ∀i, k, ν(ak

i ) = green if the following two conditions are met:
(a) ∀j,m where (am

j , ak
i ,+) ∈ E, ∃ah

j ∈ V such that ν(ah
j ) = green

(b) ∀j,m where (am
j , ak

i ,−) ∈ E, ν(am
j ) = red

3. ∀i, k ν(ak
i ) = red, if at least one of the two following conditions is met:

(a) ∃j,m where (am
j , ak

i ,+) ∈ E and ∀ah
j ∈ V , ν(ah

j ) = red
(b) ∃j,m where (am

j , ak
i ,−) ∈ E and ν(am

j ) = green
4. For every positive cycle C where ν(ak

i ) = green for all ak
i ∈ C the following

condition holds: There is an i and l ↔= k, such that ν(al
i) = green.

A main feature of EDGs is their representation of cycles and handles for those.
A cycle consists of several literals that are dependent in a cyclic way, e.g., given
the two rules r1 : a ← b. and r2 : b ← a., both literals a and b are interdependent
in a cyclic way. Generally, cycles can be connected in two different ways to the
rest of the program:

– OR-handle: Let the rule r1 : a ← β. be part of a cycle where β may be of
the form b or not b. If there exists another rule r2 : a ← δ where δ may be of
the form d or not d, then δ is an OR-handle for the cycle to which r1 belongs.
The OR-handle is called active if δ is true.
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P1 := {a ← not b.

b ← not a.

c ← {not a}.
c ← e.

d ← c.

e ← not d.

f ← [e], not f.}
(a) Logic program P1

a1 b2

c3 c4

d5 e6 f7−

− +

−

+

−

−

+

+

(b) Successfully colored EDG to program P1

Fig. 1. A logic program, the corresponding EDG, and a valid coloring

– AND-handle: If a rule r is part of a cycle and has an additional condition γ,
that means the rule is of the form r : a ← β, γ where γ may be of the form
c or not c, then γ is an AND-handle. The AND-handle is called active if γ is
false.

An extended dependency graph extends a normal dependency graph in so far
that it distinguishes between AND- and OR-handles.

Example 1. Figure 1 shows a logic program (a) and the corresponding EDG
(b). The EDG has a valid coloring which represents the answer set {b, c, d}. The
AND-handle is marked in the program with [ ] and is dotted in the EDG. The
OR-handle is marked in the program with { } and is dashed in the EDG.

The second graph type is the explanation graph (EG). In contrast to the EDGs,
which visualize the structure of a whole logic program, EGs provide an expla-
nation for why a single literal appears or does not appear in an answer set and
is always constructed with regard to an answer set and a set of assumptions.
Assumptions are literals for which no explanation is needed since their value is
assumed. All literals that are qualified for being used as assumptions are called
tentative assumptions and are formally defined as follows:

Definition 3 (Tentative Assumptions). Let P be a logic program, M an
answer set of P and WF = 〈WF+,WF−⊗ the well-founded model of P . Then
the set of tentative assumptions of P w.r.t. M is

T AP (M) = {a | a ∈ NANT (P ) and a /∈ M and a /∈ WF+ ∪ WF−}

where NANT (P ) is the set of all literals appearing in P as a negative body
literal: NANT (P ) = {a | ∃r ∈ P : a ∈ neg(r)}.
Given a logic program P and a subset U ⊆ T AP (M) of tentative assumptions,
one can obtain the negative reduct NR(P,U) of a program P w.r.t. U by remov-
ing all rules where head(r) ∈ U .

Definition 4 (Assumption). An assumption of a program P regarding an
answer set M is a set U ⊆ T Ap(M) where the well-founded model of the negative
reduct corresponds to the answer set M , i. e. WFNR(P,U) = 〈M,H(P ) \ M⊗.
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This means that setting all literals of the assumption U to false leads to all
literals being defined in the well-founded model.

Explanation graphs are based on local consistent explanations (LCE). These
are sets of literals which directly influence the truth value of a literal a. For a
literal a that is contained in the answer set and a rule where a is the head and all
conditions of the rule are fulfilled, i.e., all body literals are true, the LCE consists
of all body literals of the rule. Since there may exist several fulfilled rules with a
as their head, a can also have various LCEs. For a literal a that is not contained
in the answer set, an LCE is a minimal set of literals that together falsify all rules
that define a. For this purpose the LCE has to contain one falsified condition
from each rule.

Definition 5 (Local Consistent Explanation). Let a program P be given,
let a be a literal, let M be an answer set of P , let U be an assumption and let
S ⊆ H(P ) ∪ {not a | a ∈ H(P )} ∪ {assume,�,⊥} be a set of (default-negated)
literals and justifying symbols.

1. S is an LCE for a+ w.r.t. (M,U), if a ∈ M and
– S = {assume} or
– S ∩ H(P ) ⊆ M , {c | not c ∈ S} ⊆ (H(P ) \ M) ∪ U and there exists a rule

r ∈ P where head(r) = a and S = body(r). For the case that body(r) = ∅
one writes S = {�} instead of S = ∅.

2. S is an LCE for a− w.r.t. (M,U), if a ∈ (H(P ) \ M) ∪ U and
– S = {assume} or
– S ∩H(P ) ⊆ (H(P )\M)∪U , {c | not c ∈ S} ⊆ M and S is a minimal set

of literals, such that for every r ∈ P the following holds: if head(r) = a
then pos(r) ∩ S ↔= ∅ or neg(r) ∩ {c | not c ∈ S} ↔= ∅. For the case S being
the empty set one writes S = {⊥}.

In an EDG an edge (ak
i , a

l
j , s) with s ∈ {+,−} means that the truth value of

literal aj depends on the truth value of literal ai. In an explanation graph the
edges are defined the other way round, so that an edge (ai, aj , s) with s ∈ {+,−}
means that aj explains or supports the truth value of ai. A node in an explanation
graph is either annotated with + or −, depending on whether the literal is
contained in the answer set or not. We define two sets of annotated literals
Hp = {a+ | a ∈ H(P )} and Hn = {a− | a ∈ H(P )}. Furthermore we define
literal(a+) = a and literal(a−) = a. The support of a node ai in an EG is the
set of all direct successors of ai in the EG and is formally defined as follows:

Definition 6 (Support). Let G = (V,E) be a graph with node set V ⊆ Hp ∪
Hn ∪ {assume,�,⊥} and edge set E ⊆ V × V × {+,−}. Then the support of a
node a ∈ V w.r.t. G is defined as:

– support(a,G) = {literal(c) | (a, c,+) ∈ E}∪
{not literal(c) | (a, c,−) ∈ E},

– support(a,G) = {�} if (a,�,+) ∈ E,
– support(a,G) = {⊥} if (a,⊥,−) ∈ E or
– support(a,G) = {assume} if (a, assume, s) ∈ E where s ∈ {+,−}.
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b+ a− assume
− −

(a) EG for b

f−
e− d+ c+ a− assume

+ − + − −

(b) EG for f

Fig. 2. Explanation graphs for literals b and f in program P1 w.r.t. answer set M =
{b, d, c} and assumption U = {a}

Definition 7 (Explanation graph). An explanation graph for a literal a ∈
Hp ∪ Hn in a program P w.r.t. an answer set M and an assumption U ∈
Assumptions(P,M) is a directed graph G = (V,E) with node set V ⊆ Hp ∪
Hn ∪ {assume,�,⊥} and edge set E ⊆ V × V × {+,−}, such that the following
holds:

1. The only sinks in the graph are assume, � and ⊥, where � is used to explain
facts of the program P , ⊥ is used to explain literals which do not appear
as a head of any rule and assume is used to explain literals for which no
explanations are needed since their value is assumed to be false.

2. If (c, l, s) ∈ E where l ∈ {assume,�,⊥} and s ∈ {+,−}, then (c, l, s) is the
only outgoing edge for every c ∈ V .

3. Every node c ∈ V is reachable from a.
4. For every node c ∈ V \ {assume,�,⊥} the support support(c,G) is an LCE

for c regarding M and U .
5. There exists no c+ ∈ V , such that (c+, assume, s) ∈ E where s ∈ {+,−}.
6. There exists no c− ∈ V , such that (c−, assume,+) ∈ E.
7. (c−, assume,−) ∈ E iff c ∈ U .

Example 2. Figure 2 shows the explanation graphs for literals b and f from the
program in Fig. 1a w.r.t. the answer set M = {b, d, c} and assumption= {a}.

4 Construction of Explanation Graphs

In this section we introduce an approach for the construction of explanation
graphs by extracting the required information from a validly colored extended
dependency graph. Suppose we are given an extended dependency graph G =
(V,E) with a valid coloring ν : V → {green, red}. In the first step, we clean up
the EDG by removing irrelevant edges and nodes. Irrelevant edges and nodes
are those edges and nodes that do not have influence on the appearance or non-
appearance of a literal in the answer set. This means they do not provide an
explanation for a literal and hence are not needed for any explanation graph.

Definition 8 (Irrelevant edge, irrelevant node). An edge (ak
i , a

l
j , s) is irrel-

evant if

– ν(ak
i ) = green, ν(al

j) = green and s = −,
– ν(ak

i ) = green, ν(al
j) = red and s = +,
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– ν(ak
i ) = red, ν(al

j) = green and s = + or
– ν(ak

i ) = red, ν(al
j) = red and s = −.

A node ak
i is irrelevant if ν(ak

i ) = red and there exists l > 0 where ν(al
i) = green.

If an irrelevant node is removed, all its incoming and outgoing edges are also
removed. After removing irrelevant edges and nodes we get an EDG G∞ =
(V ∞, E∞) with V ∞ ⊆ V and E∞ ⊆ E. In the second step, nodes are gradually
marked in the EDG. The marking process starts at nodes which have no incom-
ing edges, because the explanation graphs for these nodes do not depend on other
nodes. Every time a node is marked, the explanation graphs for the marked node
are built. For this purpose five types of transformations are defined. The two
first transformations describe the construction of explanation graphs for simple
nodes, i.e., nodes which have no incoming edges in the EDG. The third and
fourth transformations describe the construction of nodes which are dependent
on other nodes, i.e., have incoming edges, distinguished by the color of the nodes.
The last transformation is used for the construction of EGs for literals that are
used as assumptions.

Transformation 1 (Transformation of fact nodes). The EG for a node ak
i

which has no incoming edges and satisfies ν(ak
i ) = green consists of a node a+

i ,
a node � and an edge (a+

i ,�,+) (Fig. 3a), because such a node corresponds to
a fact of the logic program.

Transformation 2 (Transformation of unfounded nodes). The EG to a
node ak

i which has no incoming edges and satisfies ν(ak
i ) = red consists of a

node a−
i , a node ⊥ and an edge (a−

i ,⊥,−) (Fig. 3b).

After marking nodes without incoming edges, we can mark nodes in positive
cycles (cycles that contain only positive edges) that do not have an active handle,
since the corresponding literals do not have a supportive justification and are
unfounded in the well-founded model. Since there exists no active handle for
the cycle, there is no other explanation for the nodes of the cycle than the one
consisting of the cycle itself (with reversed edges). Now we continue marking
nodes using the following rules until no more nodes can be marked:

A green node ak
i can be marked if

– for all al
j where (al

j , a
k
i ,+) ∈ E∞, there exists n ≥ 1 with an

j ∈ V ∞, such that
an
j is marked, and

– for all nodes al
j where (al

j , a
k
i ,−) ∈ E∞, al

j is marked.

That means that a green node can be marked, if all its predecessor nodes are
marked. For literals which are represented by multiple green nodes, it is sufficient
if one of these nodes is marked.

A red node ak
i can be marked if

– ∃(al
j , a

k
i ,−) ∈ E∞ where al

j is marked, or
– ∃(al

j , a
k
i ,+) ∈ E∞ where for all n ≥ 0, an

j ∈ V ∞ is marked.
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That means that a red node can be marked, if at least one of its predecessor
nodes is marked. In case that a predecessor literal is represented by multiple red
nodes, all these nodes have to be marked.

Lemma 1. The well-founded set W+ corresponds to the set of all marked green
nodes and the unfounded set W− corresponds to the set of all marked red nodes.

Proof sketch. It has to be shown that Ki always contains marked green nodes
and Xi = H(P ) \ Ui always contains marked red nodes where Ki and Ui are
the sets that are generated during the calculation of the well-founded model (see
Page 2). For this purpose the fixpoint operator TP,V for the generation of Ki

and Xi has to be adjusted to Xi instead of Ui, especially in the adjustment of
the operator for Xi positive cycles have to be considered. Then it can be seen,
that the resulting operators exactly describe the process of marking green resp.
red nodes.

From Lemma 1 we get the following proposition:

Proposition 1. All unmarked nodes are undefined in the well-founded model.

Green nodes represent literals that are contained in the answer set. So the local
consistent explanation for such a node consists of all direct predecessor nodes
(resp. the literals they represent).

Transformation 3 (Transformation of dependent green nodes).
Let ie(ak

i ) be the set of incoming edges of node ak
i . An EG to a node ak

i where
ν(ak

i ) = green and ie(ak
i ) ↔= ∅ consists of a node a+

i and edges EEG = {(a+
i ,

EG(aj), s) | (al
j , a

k
i , s) ∈ E∞}, where EG(aj) is an explanation graph for aj

(Fig. 3d).

Red nodes represent literals that are not contained in the answer set. In most
cases red nodes have only active edges. The only exception is if a predeces-
sor literal aj of a red node ak

i is represented by multiple red nodes, formally
|{al

j | (al
j , a

k
i ,−) ∈ E∞}| ≥ 2. To get the LCEs for literals represented by a red

node, all nodes representing this literal have to be considered. Each node rep-
resents a rule where the incoming edges represent the conditions of the rule.
An LCE has to contain exactly one violated condition from each rule. Since we
have removed all irrelevant edges, every edge represents a violated condition.
That means that an LCE contains exactly one incoming edge for every node
representing the literal.

Definition 9 (Local consistent explanation in an EDG). Let pd(ak
i ) =

{aj | (al
j , a

k
i , s) ∈ E∞, s ∈ {+,−}} be the set of the predecessor literals of node ak

i

and a1
i to an

i the nodes representing a literal ai. We set L(ai) = {{b1, ..., bn} | b1 ∈
pd(a1

i ), ..., bn ∈ pd(an
i )}. L(ai) is an LCE for ai if L(ai) is minimal w.r.t. set

inclusion.

Transformation 4 (Transformation of dependent red nodes). The expla-
nation graph for a node ak

i where ν(ak
i ) = red w.r.t. an LCE L(ai) consists of a

node a−
i and edges

EEG = {(a−
i , EG(aj), s | aj ∈ L, (al

j , a
k
i , s) ∈ E∞ for any l, k} (Fig. 3e).
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a+
i

→

+

(a)

a−
i

⊥

−

(b)

a−
i

assume

−

(c)

a+
i

EG(aj1) EG(aj2) ... EG(ajn)

s1 s2

sn

(d)

a−
i

EG(aj1) EG(aj2) ... EG(ajn)

s1 s2

sn

(e)

Fig. 3. Templates for constructing an explanation graph for ai

As mentioned before, every time a node is marked explanation graphs are con-
structed. It should be remarked that not all explanation graphs for a literal can
be created when a node is reached for the first time and marked. This follows
from the fact that there can exist multiple nodes for one literal and that a red
node can be already marked if one of its predecessors is marked.

Example 3. In the graph from Fig. 4b for the logic program P2 (Fig. 4a) we
can see that although both nodes are marked, we cannot construct all explanation
graphs to the literal a and also e, since e depends on a. The explanation graph for
the LCE {c, d} of a is missing, because c depends on a cycle where an assumption
has to be determined. So, if the node a1 is reached again by the other edge
(c3, a1,+) during the marking process, the set of its explanation graphs has to be
updated and the information must be propagated to all successor nodes.

P2 := {a ← b, c.

a ← d.

c ← not f.

e ← not a.

f ← not c.}
(a) Logic program P3

a1

b0 c3

e4

a2

d0

f5

−
−

+

+ +

−−

(b) Successfully colored
EDG for program P2

Fig. 4. A logic program and the corresponding EDG
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The next step is to determine assumptions. Different approaches for choosing
assumptions are proposed in Sect. 4. After choosing the assumption U , the incom-
ing edges of all nodes representing a literal from U are removed, because no other
explanations for these literals are allowed. So we get an extended dependency
graph G∞∞ = (V ∞, E∞∞) where E∞∞ ⊆ E∞. The nodes of these literals are marked
and the explanation graphs can be constructed.

Transformation 5 (Transformation of assumption nodes). The explana-
tion graph to an assumption node ak

i consists of a node a−
i , a node “assume”

and an edge (a−
i , assume,−) (Fig. 3c).

Then we proceed as before, marking nodes in G∞∞ and simultaneously construct-
ing the explanation graphs.

5 Choosing Assumptions

In most cases it is desirable to choose as few literals as possible as assumption.
Assumptions where no literal can be removed without the set being no assump-
tion anymore, are called minimal assumptions. Finding them in an EDG can
be very complex, since all dependencies between the unmarked cycles have to
be considered. For this purpose two different approaches are presented in this
section. The first approach does not consider dependencies between cycles, so
that assumptions can be computed in O(|V | + |E|). The disadvantage of this
approach is that the determined assumptions are not minimal in most cases.
The second approach determines all minimal assumptions of an EDG, but has
an exponential complexity.

For the determination of assumptions we first have to determine all tenta-
tive assumptions. From the definition of tentative assumptions we know that a
tentative assumption has to meet three conditions: (a) it must not be contained
in the answer set, (b) it has to appear as negative body literal in a rule and (c)
it has to be undefined by the well-founded model. Transferred to a node in an
EDG G∞ where all irrelevant edges and nodes were removed and all nodes are
marked as far as possible, the first condition is fulfilled exactly by red nodes, the
second condition is fulfilled exactly by nodes which have outgoing negative edges
in the original graph G and the third condition is exactly fulfilled by unmarked
nodes:

T A(G∞) = {ai | ak
i ∈ V ∞, ν(ak

i ) = red, ak
i not marked, (ak

i , a
l
j ,−) ∈ E}.

The set of tentative assumptions is always an assumption as shown in [1].
Since the set of tentative assumptions is often large, we are looking for an app-
roach to reduce the set. The aim is that after defining the assumption, all other
nodes can be marked.

Lemma 2. In a graph without any cycles all nodes can be marked without mak-
ing assumptions.
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Proof sketch. Since there exist no cycles, the nodes can be ordered into different
levels on the graph. Every level contains all nodes from the lower level and
nodes whose predecessors are contained in a lower level. Then it can be shown
via induction that all nodes can be marked.

When we choose an assumption, the truth value of the literal is fixed to false.
Since no further explanations than the one that the literal is an assumption are
allowed, all incoming edges of the assumption nodes are removed. We treat cycles
here as sets of nodes. Minimal cycles (where minimality is understood w.r.t. set
inclusion) will play a crucial role. Choosing one assumption node in each minimal
cycle breaks up the minimal cycles. Since all bigger cycles contain a minimal
cycle they are also broken up, so there exist no more unmarked cycles. Since
it is better to choose as few literals as possible as assumption, we only choose
those possible assumptions that are minimal with regard to set inclusion. Then
a possible assumption consists of one tentative assumption from each minimal
cycle.

Approach 1. Let C1, C2, ..., Cn be all minimal unmarked cycles in G∞.

Assumptions(G∞) ={{a1, a2, ..., an} | a1 ∈ C1, a2 ∈ C2, ..., an ∈ Cn,

{a1, a2, ...an} is minimal w.r.t. set inclusion}.

Of course there still may exist cycles which are marked. But since we know
that they can be marked, we can simply replace a marked cycle Cm = (Vm, Em)
by a dummy node cm with incoming edges ie(cm) =

⋃
v∈Vm

ie(v) and outgoing
edges oe(cm) =

⋃
v∈Vm

oe(v). One very simple possibility to determine minimal
assumptions is to try all combinations of tentative assumptions. Such a combi-
nation is an assumption, if the whole graph can be marked after choosing the
assumption. A minimal assumption is then the combination that is successful
and minimal with regard to set inclusion. But with an increasing number of ten-
tative assumptions this approach will not be very efficient. For this reason, we
will introduce an approach that tries to reduce the number of combinations that
have to be checked. Its basis is not to check all tentative assumptions and com-
binations, but only those literals that are important to determine the value of a
so called critical node. It is obvious that this approach is only more efficient, if
the number of such literals is smaller than the number of tentative assumptions.
For the sake of simplicity, the approach is limited to graphs where each literal in
a cycle is represented only by one node, i.e., there exist no OR-handles. When
OR-handles have to be considered a similar approach can be used, just a more
complex case differentiation has to be carried out.

Since marked nodes are irrelevant for the determination of assumptions, we
remove all marked nodes and their outgoing and incoming edges from the graph
and obtain a sub-graph Gunmarked. In the next step, we are looking for strongly
connected components of Gunmarked. A strongly connected component is a max-
imal sub-graph where each node is reachable from each other node. This means
that every node has an influence on every other node in the same strongly con-
nected component, so that a strongly connected component behaves like a big
cycle. For this reason we call the strongly connected components linked cycles.
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If a linked cycle consists of several smaller cycles, there exist nodes belonging
to multiple cycles. Such a node is critical, if its value depends on more than one
cycle. Since we have removed all irrelevant edges and have no OR-handles, a red
node has only active AND-handles. This means that the truth value of just one
predecessor node is sufficient to determine the truth value of the red node. So a
red node does not depend on more than one cycle, which means that only green
nodes can be critical.

Definition 10 (Critical Node). Let LC = (VLC , ELC) be a linked cycle. A
node ak

i is critical, if ν(ak
i ) = green and it has at least two incoming edges

(al
j , a

k
i , s) ∈ ELC where s ∈ {+,−}. The set of all critical nodes of a linked cycle

LC will be denoted as CN (LC).

If a linked cycle has no critical nodes, a node can be deduced from any other
node. Then a minimal assumptions consists of a single literal which is a tentative
assumption and is represented by a node of the linked cycle. The set of all
minimal assumptions of the linked cycle LC(VLC , ELC) in G∞ is: μAssumptions
(LC) = {{ai} | ak

i ∈ VLC , ai ∈ T A(G∞)}.
The value of every critical node depends on the value of its predecessor nodes.

We will call these nodes pre-conditions.

Definition 11 (Pre-condition). Let LC = (VLC , ELC) be a linked cycle. The
pre-conditions for a green critical node ak

i are:

pre(ak
i ) = {al

j | (al
j , a

k
i , s) ∈ ELC , s ∈ {+,−}}

Preconditions(LC) =
⋃

ak
i ∈CN (LC) pre(ak

i ) is the set of all pre-conditions in the
linked cycle.

Lemma 3. Nodes that are not critical can be deduced from at least one critical
node.

Proof sketch. It can be shown by induction that the truth value of a node an on
a path c, a1, a2, ..., an−1, an from a critical node c can be deduced, if a1, ...an are
not critical.

So if we can deduce all critical nodes with an assumption, we also can deduce
all other literals of the linked cycle with the assumption. lfp(Succ({cn})) cal-
culates the nodes that can be deduced from a critical node cn ∈ CN (LC) where
Succ(S) = {al

j | (ak
i , a

l
j , s) ∈ ELC , s ∈ {+,−}, ak

i ∈ S}. Then the set of all nodes
that can be deduced from a set of nodes S can be calculated with lfp(T (S))
where

T (S) = {ak
i | pre(ak

i ) ⊆ S} ∪ {ak
i | ak

i ∈ Succ(al
j), a

l
j ∈ S ∩ CN (LC)}.

Now combinations c of pre-conditions have to be tested for success. A com-
bination c is successful, if all critical nodes can be deduced from them, i.e.,
CN (LC) ⊆ lfp(T (c)). What we know is that
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1. Each combination c has to contain at least one complete pre-condition set
pre(cn), cn ∈ CN (LC). Otherwise the fix-point operator could not deduce
any critical node.

2. Since we are looking for minimal assumption sets, we do not have to check
combinations c1 where we already have found a smaller successful combination
c2, i.e., c2 ⊆ c1 and CN (LC) ⊆ lfp(T (c2)).

The way of proceeding is to first test single pre-condition sets pre(cn) ⊂ c, cn ∈
CN (LC) for success (exploits fact 1). If a set is successful, we add it to the
set of successful combinations C, otherwise it is put to NC. Then we test sets
n ∪ {ak

i }, where n ∈ NC and ak
i ∈ Preconditions(LC). This means we test

different combinations of adding one more pre-condition to all sets that have
not been successful in the step before (exploits fact 2). Again we add successful
combinations to C and set NC to the combinations that were not successful. This
is repeated till NC = ∅ or the set to be tested consists of all pre-conditions. Then
C contains all combinations of pre-conditions that suffice to deduce all critical
nodes and therefore to deduce also all other nodes in the linked cycle, since they
are not critical. For the purpose of determining assumptions, we determine all
nodes from which a pre-condition p can be deduced. These nodes lie on paths
from critical nodes to the pre-condition.

Definition 12 (Pre-condition paths). The pre-condition path for a pre-
condition p from a linked cycle LC = (VLC , ELC) can be obtained by path(p) =
lfp(Tpath({p})) where

Tpath(S) = {ak
i | (ak

i , a
l
j , s) ∈ ELC , s ∈ {+,−}, ak

i /∈ CN (LC), al
j ∈ S}.

A pre-condition path contains the nodes from which a pre-condition can be
deduced. For deducing all nodes of a linked cycle we have to deduce all pre-
conditions of a successful combination c = {p1, ..., pn}. This means that we need
exactly one node from the path of each pre-condition. Since we want to determine
assumptions, the nodes have also to fulfill the other conditions of an assumption.

Definition 13 (Path assumptions). The set of path assumptions for a path
p in a validly colored EDG G = (V,E) is defined by

PA(p) = {ai | ak
i ∈ p ∧ ak

i ∈ T A(G∞)}.

Let C be the set of all successful pre-condition combinations c = {p1, ..., pn}.
Then the set

Assumptions(LC) =
⋃

c∈C

{{a1, ..., an} | a1 ∈ PA(p1), ..., an ∈ PA(pn)}

is the set of possible minimal assumptions.

Proposition 2. Minimal assumptions μAssumptions(LC) of a linked cycle LC
are those sets of Assumptions(LC) that are minimal with regard to set inclusion.
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Proof sketch. It has to be shown that each set S ∈ μAssumptions(LC) is a
minimal assumption for the linked cycle LC, i.e., S is an assumption and there
exists no set S∞ ⊂ S, such that S∞ is an assumption for LC. To show that S is
an assumption, it has to be checked, if S meets the conditions of an assumption.
To show that S is minimal, one looks at the successful combinations from which
S and S∞ are created and distinguish between different cases. For every case it
can be shown by contradiction that S∞ can not be in μAssumptions(LC).

Algorithm 1. Determination of assumptions using Approach 2
Require: Marked graph G∞ = (V ∞, E∞), set of linked cycles independentLCs
Ensure: All minimal assumptions of G
1: procedure findAssumptions(G,independentLCs)
2: var graph G∞∞ = (V ∞∞, E∞∞) = G
3: varset of linked cycles iLCs
4: for all v ∈ V do � Remove marked nodes
5: if v.marked = true then G∞∞.removeNode(v) end if
6: end for
7: if V ∞∞ = ∅ then � There are no more unmarked nodes
8: var sets of assumptions μAssumptions[independentLCs]
9: for all LC ∈ independentLCs do

10: μAssumptions[LC] = calculateMinimalAssumptionsLC(LC)
11: end for
12: return calculateMinimalAssumptionsGraph(μAssumptions)
13: else
14: iLCs = calculateIndependentLinkedCycles(G∞∞)
15: independentLCs.add(iLCs)
16: � Replace independent linked cycles by a dummy node
17: for all LC = (VLC , ELC) ∈ iLCs do
18: for v ∈ VLC do G∞.removeNode(v) end for
19: G∞∞.addNode(vdummy,LC)
20: for all e = (vs, ve, s) ∈ ELC do
21: G∞∞.addEdge(vdummy,LC ,ve,s)
22: G∞∞.removeEdge(e)
23: end for
24: end for
25: markNodes(G∞∞)
26: return findAssumptions(G∞∞,independentLCs)
27: end if
28: end procedure

Approach 2. To calculate the minimal assumptions of a graph G Algorithm1 is
used by calling findAssumptions(G∞, ∅), where G∞ is the graph obtained from
G after removing irrelevant edges and nodes and after marking the nodes like
described in Sect. 4. findAssumptions is a recursive function, which adds fur-
ther independent linked cycles to the set of all independent linked cycles of G at
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each recursion. A linked cycle is independent if the truth value of its nodes does
not depend on the truth value of the nodes in the rest of the graph. Since they
are independent of the rest of the graph, they have to contain an assumption. To
determine independent linked cycles, first all marked nodes and their incident
edges are removed, so we get a graph G∞∞ = (V ∞∞, E∞∞) (lines 4–6). If there still
exist unmarked nodes in G∞∞, G∞∞ contains independent linked cycles. Indepen-
dent linked cycles are those linked cycles, which have no incoming edges in G∞∞.
A linked cycle LC = (VLC , ELC) has no incoming edges if for all ak

i ∈ VLC there
is no al

j ∈ V ∞∞ \ VLC and s ∈ {+,−} such that (al
j , a

k
i , s) ∈ E∞∞. So all linked

cycles without incoming edges are determined (line 15) and added to the set of
all independent linked cycles (line 15). Then each independent linked cycle is
replaced by a dummy node (lines 17–24).

In the next step, the graph is marked using the marking rules from Sect. 4
(line 25). Since we have replaced linked cycles without incoming edges by dummy
nodes, these nodes have no incoming edges and are marked. With the marking
process we can determine which linked cycles are dependent of the independent
linked cycles, that we already have determined. The procedure is repeated until
all independent linked cycles of the graph are found. This is the case, if there
exist no unmarked nodes in the graph (line 7).

Then for each linked cycle the minimal assumptions are calculated. The func-
tion calculateMinimalAssumptionsLC (line 13) contains following steps:
the critical nodes of the linked cycle LC and their pre-conditions are specified
and the pre-condition paths are calculated, then successful combinations of pre-
conditions are looked for. The path assumptions are determined and used to
calculate the minimal assumptions of the linked cycle.

After determining the minimal assumptions of all independent linked cycles,
the minimal assumptions of the graph are calculated with the function calcu-
lateMinimalAssumptionsGraph (line 12) which exploits Proposition 3.

Proposition 3. We can obtain the minimal assumptions of the EDG by taking
one minimal assumption of each independent linked cycle:

μAssumptions(G∞) = {{a1 ∪ · · · ∪ an} |a1 ∈ μAssumptions(LC1), . . .
an ∈ μAssumptions(LCn)}

Proof sketch. For every assumption a ∈ μAssumptions(G∞) two things have to
be shown: (a) a is an assumption for the EDG and (b) a is minimal. (a) can be
directly shown by the stopping condition of the algorithm. For the proof of (b)
a literal is removed from a and it can be shown that then not all nodes in the
EDG can be marked, because of the definition of the minimal assumption in an
EDG and the definition of independent linked cycles.

6 Conclusion

We presented an approach to construct explanation graphs from validly colored
Extended Dependency Graphs. We exploited that the logic program is already
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present in graph form. In EDGs the nodes may differ in number of incoming
edges and coloring, so different types of transformations were defined to transfer
a node from the EDG to an EG. For the determination of assumptions it was
necessary to determine the well-founded model. A strong relationship between
well-founded models and the marking process of an EDG was observed, which
means that an unmarked node represents a literal which is undefined in the well-
founded model. We presented two different approaches for the determination of
assumptions. While the first approach determines non-minimal assumptions in
O(|V | + |E|), the determination of minimal assumptions has an exponential
complexity.
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Abstract. Exchanging and integrating data that uses different vocab-
ularies are two prominent problems in the database literature. These
problems have been, so far, solved separately, and never been addressed
together in a unified setting. In this paper, we propose a class of map-
pings - called DSE, for data sharing and exchange - that represents this
unified setting. We introduce a DSE setting with particular interpreta-
tion of related data where ordinary data exchange or data integration
cannot be applied. We define the class of DSE solutions in a DSE set-
ting, that allow to store a part of explicit data and a set of inference rules
used to generate the complete set of exchanged data. We identify among
those a particular DSE solution with good properties; namely, one that
contains a minimal amount of explicit data. Finally, we define the set of
certain answers to conjunctive queries.

Keywords: Data exchange · Data coordination · Knowledge exchange

1 Introduction

Different problems of accessing and integrating data residing in independent
sources have received wide attention in the literature, and different systems
were introduced to solve these problems, e.g. distributed databases, federated
databases, data exchange settings, and (peer-to-peer) data coordination settings.

Data exchange [7] defines the problem of moving data residing in indepen-
dent applications and accessing it through a new target schema. This process
of exchange only allows to move data from a source into a target that uses
the same set of vocabularies, and thus, transformation occurs to the structure
of the data, and not to the data itself. All data integration and coordination
systems [2,14,15], on the other hand, use different query re-writing methods to
allow access to data residing in independent sources, that possibly use different
vocabularies, without having to exchange it and while maintaining autonomy.

We show in what follow that a collaborative process – including coordina-
tion tools for managing different vocabularies of different sources and exchange
tools – would yield interoperability capabilities that are beyond the ones that
can be offered today by any of the two tasks separately.
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Recall that a data exchange (DE) setting [7] S consists of a source schema
S, a target schema T, and a set Σst of database dependencies – the so-called
source-to-target dependencies – that describes structural changes made to data
as we move it from source to target. This exchange solution supports exchanging
information between two applications that refer to the same object using the
same instance value. However, there exist cases where objects in the source are
named and referred to differently in the target. A motivating example of such
an exchange scenario is exchanging data about students applying for program
transfers from one university to a different one. Indeed, different universities can
offer different courses and a course in one university can possess one or more
equivalent courses in the second. Given what we mentioned so far about a DE
setting, we can easily deduce that DE does not support such type of exchange.

Unlike data exchange, data coordination (DC) settings [1] solved the problem
of integrating information of different sources that possess different yet related
domains of constants by using the mapping table construct [9] in their query
rewriting mechanisms. A mapping table specifies for each source value the set of
related (or corresponding) target values. DC settings have been studied mainly in
peer-to-peer networks, where sources – called peers – possess equal capabilities
and responsibilities in terms of propagating changes and retrieving related infor-
mation. A DC setting S consists of two schemas S1 and S2, and a set of mapping
tables {M}. We give in the following example a data coordination instance that
integrates data from two different universities with different domains of con-
stants, and we show that query re-writing techniques still miss to return results
that are inferred by certain semantics of mapping tables.

Example 1. Let S be a DC setting. Suppose that S1 in S is a schema for the
University of Ottawa (UOO) and S2 in S is the schema of the University of
Carleton (UOC).

Suppose S1 has the relations: Student(Sname, Sage), Course(Cid,Cname,
Pname), andEnroll(Sname,Cid,Cgrade).Also, letS2 consistof therelationsym-
bols St(Sname, Sage, Saddress), Cr(Cid,Cname, Pname) and Take(Sname,
Cid, Cgrade).

Relation Student (St) stores students name and age (and address) informa-
tion. Relation Course (Cr) stores courses ids and names information, in addition
to the program name which provides each course. Finally, relation Enroll (Take)
stores the set of courses that each student completed.

Further, assume that S1 and S2 are connected by a mapping table M that
consists of the following pairs {(CSI1390, ECOR1606), (CSI1390, COMP1005),
(CS, CS), (ENG, ENG)}.

Let I be an instance of S1 and J = {St (Alex, 18, Ottawa), Cr (ECOR1606,
Problem Solving and Computers, ENG), Cr (COMP1005, Introduction to Com-
puter Science I, CS), Take (Alex, ECOR1606, 80)} be an instance of S2.

According to [2], posing a query q to I that computes the list of students
considered to have finished CS courses in UOO, will re-write q to a query q≥ to
retrieve a similar list from UOC following the semantics of M. A query q≥ can
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be the following: q≥: Select Sname From Cr, Take Where Cr.Cid = Take.Cid
And Cr.Pname = ≥CS≥. In this case, the answer of posing q≥ to J is ∅. �

Assume that UOO accredits a ‘CS’ course to a student doing program transfer
from UOC only if this student finishes an equivalent ‘CS’ course, according to M,
in UOC. In Example 1, Alex is not considered as finished a ‘CS’ course at UOC.
Therefore, if Alex does a transfer to the CS program in UOO, he will not be
credited the CSI1390 course. However, if the semantics of the mapping table M
in this example specify that course CSI1390 in UOO is equivalent to the ENG
course ECOR1606 in UOC, and course CSI1390 in UOO is equivalent to the
CS course COMP1005 in UOC, then it can be deduced that courses ECOR1606
and COMP1005 are considered equivalent with respect to UOO according to M.
Therefore, given the fact that Take (Alex, ECOR1606, 80) ∈ J in Example 1
along with the equivalence semantics in M, Alex is considered to have finished
the equivalent CS course COMP1005 in UOC and he should be credited the
‘CS’ course CSI1390 with a grade 80 if he did a transfer to UOO.

To solve such a problem, we introduce a new class of settings, called data
sharing and exchange (DSE) settings, where exchange occurs between a source
and a target that use different sets of vocabularies. Despite the importance of
the topic, the fundamentals of this process have not been laid out to date. In
this paper, we embark on the theoretical foundations of such problem, that
is, exchanging data between two independent applications with different sets of
domains of constants. DSE settings extend DE settings with a mapping table M,
introduced in [9], to allow collaboration at the instance level. In addition, the
set of source-to-target dependencies Σst in DSE refers to such mapping table
so that coordination of distinct vocabularies between applications takes place
together with the exchange.

From what we have mentioned so far about DSE, one would think that all
DSE instances can be reduced to a usual DE instance where the source schema is
extended with a mapping table M. However, we argue in this paper that there
exist DSE settings with particular interpretation of related data in mapping
tables where DSE is different than a DE setting (as we show later in Example 2).
One such particular interpretation of related data that we consider in this paper
is: a source element is mapped to a target element only if both are considered
to be equivalent (i.e. denote the same object). In this DSE scenario, DSE and
DE are different because source and target data can be incomplete with respect
to the “implicit” information provided by the semantics of mapping tables. To
formalize this idea we use techniques developed by Arenas et al. in [5], where
authors introduced a knowledge exchange framework for exchanging knowledge
bases. It turns out that this framework suits our requirements, and in particular,
allows us to define the exchange of both explicit and implicit data from source
to target. Our main contributions in this work are the following:

(1) Universal DSE Solutions. We formally define the semantics of a DSE
setting and introduce the class of universal DSE solutions, that can be seen as a
natural generalization of the class of universal data exchange solutions [7] to the
DSE scenario, and thus, as “good” solutions. A universal DSE solution consists
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of a subset of explicit data that is necessary to infer the remaining implicit
information using a given set Σt of rules in the target.

(2) Minimal Universal DSE Solutions. We define the class of minimal uni-
versal DSE solutions which are considered as “best” solutions. A minimal uni-
versal DSE solution contains the minimal amount of explicit data required to
compute the complete set of explicit and implicit data using a set of target rules
Σt. We show that there exists an algorithm to generate a canonical minimal uni-
versal DSE solution, with a well-behaved set Σt of target rules, in Logspace.

(3) Query Answering. We formally define the set of DSE certain answers
for conjunctive queries. We also show how to compute those efficiently using
canonical minimal universal DSE solutions.

2 Preliminaries

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having
a fixed arity ni > 0. Let D be a countably infinite domain. An instance I of
R assigns to each relation symbol Ri of R a finite ni-ary relation RI

i ⊆ Dni .
Sometimes we write Ri(t̄) ∈ I instead of t̄ ∈ RI

i , and call Ri(t̄) a fact of I. The
domain dom(I) of instance I is the set of all elements that occur in any of the
relations RI

i . We often define instances by simply listing the facts that belong
to them. Further, every time that we have two disjoint schemas R and S, an
instance I of R and an instance J of S, we define (I, J) as the instance K of
schema R ∪ S such that RK = RI , for each R ∈ R, and SK = SJ , for each
S ∈ S.

Data Exchange Settings. As is customary in the data exchange literature
[7,8], we consider instances with two types of values: constants and nulls.1 More
precisely, let Const and Var be infinite and disjoint sets of constants and nulls,
respectively, and assume that D = Const ∪ Var. If we refer to a schema S as
a source schema, then we assume that for an instance I of S, it holds that
dom(I) ⊆ Const; that is, source instances are assumed to be “complete”, as they
do not contain missing data in the form of nulls. On the other hand, if we refer
to a schema T as a target schema, then for every instance J of T, it holds that
dom(J) ⊆ Const∪Var; that is, target instances are allowed to contain null values.

A data exchange (DE) setting is a tuple S = (S,T, Σst), where S is a source
schema, T is a target schema, S and T do not have predicate symbols in common,
and Σst consists of a set of source-to-target tuple-generating dependencies (st-
tgds) that establish the relationship between source and target schemas. An
st-tgd is a FO-sentence of the form:

∀x̄∀ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), (1)

1 We usually denote constants by lowercase letters a, b, c, . . . , and nulls by symbols
⊥, ⊥′, ⊥1, . . .
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where φ(x̄, ȳ) is a conjunction of relational atoms over S and ψ(x̄, z̄) is a con-
junction of relational atoms over T.2 A source (resp. target) instance K for S is
an instance of S (resp. T). We usually denote source instances by I, I ≥, I1, . . . ,
and target instances by J, J ≥, J1, . . . .

An instance J of T is a solution for an instance I under S = (S,T, Σst), if
the instance (I, J) of S ∪ T satisfies every st-tgd in Σst. If S is clear from the
context, we say that J is a solution for I.

The data exchange literature has identified a class of preferred solutions,
called the universal solutions, that in a precise way represents all other solutions.
In order to define these solutions, we need to introduce the notion of homomor-
phism between instances. Let K1 and K2 be instances of the same schema R.
A homomorphism h from K1 to K2 is a function h : dom(K1) → dom(K2) such
that: (1) h(c) = c for every c ∈ Const ∩ dom(K1), and (2) for every R ∈ R and
tuple ā = (a1, . . . , ak) ∈ RK1 , it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Let
S be a DE setting, I a source instance and J a solution for I under S. Then
J is a universal solution for I under S, if for every solution J ≥ for I under S,
there exists a homomorphism from J to J ≥.

For the class of data exchange settings that we referred to in this paper, every
source instance has a universal solution [7]. Further, given a DE setting S, there
is a procedure (based on the chase [6]) that computes a universal solution for
each source instance I under S. In the case when S is fixed such procedure works
in Logspace. Assuming S to be fixed is a usual and reasonable assumption in
data exchange [7], as mappings are often much smaller than instances. We stick
to this assumption for the rest of the paper.

Mapping Tables. Coordination can be incorporated at the data level, through
the use of mapping tables [9]. These mechanisms were introduced in data coor-
dination settings [2] to establish the correspondence of related information in
different domains. In its simplest form, mapping tables are just binary tables con-
taining pairs of corresponding identifiers from two different sources. Formally,
given two domains D1 and D2, not necessarily disjoint, a mapping table over
(D1,D2) is nothing else than a subset of D1 ×D2. Intuitively, the fact that a pair
(d1, d2) belongs to the mapping table implies that value d1 ∈ D1 corresponds
to value d2 ∈ D2. Notice that the exact meaning of “correspondence” between
values is unspecified and depends on the application.

In this paper we deal with a very particular interpretation of the notion of
correspondence in mapping tables. We assume that the fact that a pair (a, b) is
in a mapping table implies that a and b are equivalent objects. We are aware
of the fact that generally mapping tables do not interpret related data in this
way. However, we argue that this particular case is, at the same time, practically
relevant (e.g. in peer-to-peer settings [9]) and theoretically interesting (as we will
see along the paper).

This particular interpretation of mapping tables implies that they may contain
implicit information that is not explicitly listed in their extension. For instance,
2 We usually omit universal quantification in front of st-tgds and express them simply

as φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).
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assume that M is a mapping table that consists of the pairs {(a, c), (b, c), (b, d)}.
Since a and c are equivalent, and the same is true about b and c, we can infer
that a and b are equivalent. Also, we can infer using the same reasoning that c
and d are equivalent. Such implicit information is, of course, valuable, and cannot
be discarded at the moment of using the mapping table as a coordination tool.
In particular, we will use this view of mapping tables as being incomplete with
respect to its implicit data when defining the semantics of DSE settings.

3 Data Sharing and Exchange Settings

We formally define in this section DSE settings that extend DE settings to allow
collaboration via mapping tables.

Definition 1 (DSE setting). A data sharing and exchange (DSE) setting is a
tuple S = (S,T,M, Σst), where: (1) S and T are a source and a target schema,
respectively; (2) M is a binary relation symbol that appears neither in S nor in
T, and that is called a source-to-target mapping (we call the first attribute of M
the source attribute and the second one the target attribute); and (3) Σst consists
of a set of mapping st-tgds, which are FO sentences of the form

∀x̄∀ȳ∀z̄ (φ(x̄, ȳ) ∧ μ(x̄, z̄) → ∃w̄ ψ(z̄, w̄)), (2)

where (i) φ(x̄, ȳ) and ψ(z̄, w̄) are conjunctions of relational atoms over S and T,
resp., (ii) μ(x̄, z̄) is a conjunction of atomic formulas that only use the relation
symbol M, (iii) x̄ is the tuple of variables that appear in μ(x̄, z̄) in the positions
of source attributes of M, and (iv) z̄ is the tuple of variables that appear in
μ(x̄, z̄) in the positions of target attributes of M.

We provide some terminology and notations before explaining the intuition
behind the different components of a DSE setting. As before, instances of S (resp.
T) are called source (resp. target) instances, and we denote source instances
by I, I ≥, I1, . . . and target instances by J, J ≥, J1, . . . . Instances of M are called
source-to-target mapping tables (st-mapping tables). By slightly abusing nota-
tion, we denote st-mapping tables also by M.

Let S = (S,T,M, Σst) be a DSE setting. We distinguish between the set of
source constants, denoted by ConstS, and the set of target constants, denoted by
ConstT, since applications that collaborate on data usually have different data
domains. As in the case of usual data exchange, we also assume the existence of a
countably infinite set Var of labelled nulls (that is disjoint from both ConstS and
ConstT). Also, in a DSE the domain of a source instance I is contained in ConstS,
while the domain of a target instance J belongs to ConstT ∪ Var. On the other
hand, the domain of the st-mapping table M is a subset of ConstS × ConstT.
Thus, coordination between the source and the target at the data level occurs
when M identifies which source and target constants denote the same object.
The intuition behind usual st-tgds is that they specify how source data has to
be transformed to conform to the target schema (that is, coordination at the
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schema level). However, since in the DSE scenario we are interested in transfer-
ring data based on the source instance as well as on the correspondence between
source and target constants given by the st-mapping table that interprets M,
the mapping st-tgds extend usual st-tgds with a conjunction μ that filters the
target data that is related via M with the corresponding source data.

More formally, given a source instance I and an st-mapping table M, the
mapping st-tgd φ(x̄, ȳ) ∧ μ(x̄, z̄) → ∃w̄ψ(z̄, w̄) enforces the following: whenever
I |= φ(ā, b̄), for a tuple (ā, b̄) of constants in ConstS∩dom(I), and the tuple c̄ of
constants in ConstT is related to ā via μ (that is, M |= μ(ā, c̄)), then it must be
the case that J |= ψ(c̄, d̄), for some tuple d̄ of elements in dom(J) ∩ (ConstT ∪
Var), where J is the materialized target instance. In usual DE terms, we should
say that J is a solution for I and M under S, i.e. (((I ∪ {M}), J) � Σst).
However, as we see in the next section, solutions have to be defined differently
in DSE. Therefore, to avoid confusions, we say J is a pre-solution for I and M
under S.

Example 2. Let S = (S,T,M, Σst) be a DSE setting. In reference to Example 1,
assume that S in S is the schema of UOC and T in S is the schema of UOO.

Suppose that M in S consists of the following pairs {(ECOR1606, CSI1390),
(COMP1005, CSI1390), (COMP1005, CSI1790), (CS,CS), (ENG,ENG),
(Alex,Alex), (18,18)}. Finally, let Σst consist of the following st-mapping depen-
dencies:

(a) St(x, y, z) ∧ Take(x,w, u) ∧ Cr(w, v, ‘CS’) ∧ M(x, x≥) ∧ M(y, y≥)
→ Student(x≥, y≥).

(b)St(x, y, z)∧Take(x,w, u)∧Cr(w, v, ‘CS’)∧M(x, x≥)∧M(w,w≥)∧M(u, u≥)
→ Enroll(x≥, w≥, u≥).

It is clear that this DSE instance is exchanging information of UOC students
that have taken ‘CS’ courses with the list of courses they have finished. Also,
M specifies that the Introduction to Computers course with Cid = CSI1390
in UOO has a French version course Introduction aux Ordinateurs with Cid =
CSI1790 provided at UOO. Let I = {St(Alex, 18, Ottawa), Cr(ECOR1606,
Problem Solving and Computers, ENG), Cr(COMP1005, Introduction to Com-
puter Science I, CS), Take (Alex, ECOR1606, 80)} be an instance of S. Then,
J = ∅ is a pre-solution for I and M under S. �

We can see in Example 2 that in the pre-solution J , Alex is not considered
as have finished a ‘CS’ course. However, if the st-mapping table M follows
the semantics we adopt in this paper, then Alex should be considered to have
completed the ‘CS’ course Introduction to Computer Science I. Therefore, we
can easily deduce that in a DSE setting S, we cannot identify solutions with
pre-solutions. One reason is that a source instance I in S can be incomplete with
respect to the semantics of M as the case in Example 2 above. A second reason
is that data mappings in an st-mapping table M in S can also be incomplete
with respect to the semantics of M as we shall show in Sect. 4. Data mappings in
an st-mapping table M are usually specified by domain specialists. However, M
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should record not only the associations suggested by the domain specialists, but
also the ones inferred by its semantics. Therefore, to capture the real semantics
of the DSE problem, we came up with a more sophisticated notion of a solution
that we introduce in the following section.

4 DSE and Knowledge Exchange

From now on we use the equivalence relation ∼ as a ∼ b to intuitively denote
that a and b, where {a, b} ⊆ ConstS (or {a, b} ⊆ ConstT) are inferred by the
semantics of an st-mapping table M as equivalent objects. Let us revisit Exam-
ple 2. There are two ways in which the data in S is incomplete: First of all,
since M(ECOR1606, CSI1390) holds in S, then UOC course ECOR1606 is
equivalent to the UOO course CSI1390. Also, since M(COMP1005, CSI1390)
holds, then UOC course COMP1005 is equivalent to the UOO course CSI1390.
Therefore, we can deduce that ECOR1606 ∼ COMP1005 with respect to the
target UOO. This means, according to semantics of ∼, the source instance I
is incomplete, since I should include the tuple Take(Alex, COMP1005, 80) in
order to be complete with respect to M.

Second, since M(COMP1005, CSI1390) holds in S, then the UOC course
COMP1005 is equivalent to the UOO course CSI1390 according to the seman-
tics of M. Also, since M(COMP1005, CSI1790) holds in S, then course COMP
1005 is equivalent to the UOO course CSI1790. Therefore, we can deduce that
CSI1390 ∼ CSI1790, according to the semantics of M. This implies that
M is incomplete, since the fact that {(ECOR1606, CSI1390), (COMP1005,
CSI1390), (COMP1005, CSI1790)} ⊆ M entails from the semantics of ∼ the
fact that (ECOR1606, CSI1790) ∈ M. Therefore, we say I and M are incom-
plete in the sense that they do not contain all the data that is implied by the
semantics of M. Further, it is not hard to see that the completion process we
just sketched can become recursive in more complex DSE instances.

Given the above reasoning, again one would think to solve the DSE problem
by reducing it to a DE setting S with a set of dependencies defined over a
combined schema (S ∪ {M}), which complete the source instance I and the st-
mapping table M under S with the additional data entailed by the semantics
of M. However, usually the real reason behind defining dependencies over a
databases schema is to ensure that data stored in the extension of this schema
or new coming tuples follow the structure of it [16]. Also, such constraints are
not treated as additional implicit data that represents specific semantics in st-
mapping tables, and whose purpose is to entail new facts in addition to the stored
ones. Therefore, to apply the intuition explained in Example 2 and to generate
“good” solutions in a DSE setting, it is assumed to be fundamental that both
explicit data stored in I and implicit data entailed by the semantics of M are
exchanged to the target. Contrarily, we show in what follow that semantics of
a DSE setting vary from those of DE setting since there exist solutions which
consist of a portion of the fully exchanged set of data and yet are still good
solutions that proved in Sect. 7 to be efficient for conjunctive query answering.
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From what we explained so far, we conclude that the real semantics of a
DSE setting is based on the explicit data contained in I and M, in addition to
the implicit data obtained by following a completion process for the source, the
target, and M.

We define below a set of FO sentences, of type full tgds3, over a schema
S ∪ M (T ∪ M) extended with a fresh binary relation symbol Equal that
appears neither in S nor in T and that captures the semantics of ∼ in a recursive
scenario, which formally defines this completion process:

Definition 2 (Source and Target Completion). Let S = (S, T,M, Σst) be
a DSE setting. The source completion of S, denoted by Σc

s, is the conjunction
of the following FO sentences over the schema S ∪ {M,Equal}:

1. For each S ∈ S∪{M} of arity n and 1 ≤ i ≤ n: ∀x1 · · · ∀xn(S(x1, . . . , xi, . . . , xn) →
Equal(xi, xi)).

2. ∀x∀y(Equal(y, x) → Equal(x, y)).
3. ∀x∀y∀z(Equal(x, z) ∧ Equal(z, y) → Equal(x, y)).
4. ∀x∀y∀z(M(x, z) ∧ M(y, z) → Equal(x, y)).
5. ∀x∀y∀z∀w(M(x, z) ∧ Equal(x, y) ∧ Equal(z, w) → M(y, w)).
6. For each S ∈ S of arity n: ∀x1, y1 · · · ∀xn, yn(S(x1, . . . , xn)∧

∧n
i=1 Equal(xi, yi) →

S(y1, . . . , yn)).

The target completion of S, denoted Σc
t , is defined analogously by simply replac-

ing the role of S by T in Σc
s, and then adding the rule 7. ∀x∀y∀z(M(z, x) ∧

M(z, y) → Equal(x, y)) that defines the completion of M over the target.
Notice that the first 3 rules of Σc

s make sure that Equal is an equivalence
relation on the domain of the source instance. The fourth rule detects which
source elements have to be declared equal by the implicit knowledge contained
in the st-mapping table. The last two rules allow to complete the interpretation
of M and the symbols of S, by adding elements declared to be equal in Equal.
The intuition for Σc

t is analogous.
Summing up, data in a DSE scenario always consists of two modules: (1)

The explicit data stored in the source instance I and the st-mapping table M,
and (2) the implicit data formalized in Σc

s and Σc
t . This naturally calls for

a definition in terms of knowledge exchange [5], as defined next. A knowledge
base (KB) over schema R is a pair (K,Σ), where K is an instance of R (the
explicit data) and Σ is a set of logical sentences over R (the implicit data). The
knowledge base representation has been used to represent various types of data
including ontologies in the semantic web, which are expressed using different
types of formalisms including Description Logic (DL) [12].

The set of models of (K,Σ) [5], denoted by Mod(K,Σ), is defined as the set
of instances of R that contain the explicit data in K and satisfy the implicit
data in Σ; that is, Mod(K,Σ) corresponds to the set {K ≥ | K ≥ is an instance of
R, K ⊆ K ≥ and K ≥ |= Σ}. In DSE, we consider source KBs of the form ((I ∪
{M}), Σc

s), which intuitively correspond to completions of the source instance

3 Full tgds are tgds that do not use existential quantication.
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I with respect to the implicit data in M, and, analogously, target KBs of the
form ((J ∪ {M}), Σc

t ).
A good bulk of work has recently tackled the problem of exchange of KBs

that are defined using different DL languages [4]. we formalize the notion of
(universal) DSE solution to extend the KB (universal) solution introduced in [5].
The main difference is that in DSE solutions we need to coordinate the source
and target information provided by M, as opposed to KB solutions that require
no data coordination at all. This is done by establishing precise relationships
in a (universal) DSE solution between the interpretation of M in S and T,
respectively. KB exchange in DL showed that target KB (universal) solutions [5]
present several limitations since these can miss some semantics of the source
KB [4]. Universal DSE solutions, on the other hand, do not have those limitations
and they reflect the semantics in the source and the st-mapping table accurately.

From now on, KR′ denotes the restriction of instance K to a subset R≥ of
its schema R. Let S = (S,T,M, Σst) be a DSE setting, I a source instance, M
an st-mapping table, J a target instance. Recall that Σc

s , Σ
c
t are the source and

target completions of S, respectively. Then:

1. J is a DSE solution for I and M under S, if for every K ∈ Mod((J∪{M}), Σc
t )

there is K ≥ ∈ Mod((I ∪ {M}), Σc
s) such that the following hold: (a) K ≥

M ⊆
KM, and (b) KT is a pre-solution for K ≥

S and K ≥
M under S.

2. In addition, J is a universal DSE solution for I and M under S, if J is a
DSE solution, and for every K ≥ ∈ Mod((I ∪ {M}, Σc

s) there is K ∈ Mod((J ∪
{M}, Σc

t ) such that (a) KM ⊆ K ≥
M, and (b) KT is a pre-solution for K ≥

S and
K ≥

M under S.

In Example 2, J = {Student(Alex, 18), Enroll (Alex, CSI1390, 80), Enroll
(Alex, CSI1790, 80)} is a universal DSE solution for I and M under S. We
define below a simple procedure CompUnivDSESolS that, given a DSE setting
S = (S,T,M, Σst) and a source instance I and an st-mapping table M, it
generates a universal DSE solution J for I and M under S.
CompUnivDSESolS:
Input: A source instance I, an st-mapping table M, and a set Σst of st-tgds.
Output: A Canonical Universal DSE solution J for I and M under S.

1. Apply the source completion process, Σc
s , to I and M, and generate Î and

M̂ respectively.
2. Apply a procedure (based on the chase [6]) to the instance (Î ∪ {M̂}), and

generate a canonical universal pre-solution J for Î and M̂.

The procedure CompUnivDSESolS works as follows: step 1 applies the source
completion process Σc

s , given in Definition 2, to I and M, and returns as outcome
the source instance Î and the st-mapping table M̂ that are complete with respect
to the implicit data in M. Next, step 2 generates a canonical universal pre-
solution J for Î and M̂ such that ((Î ∪ M̂), J) � Σst.

We can combine the fact that universal solutions in fixed data exchange
settings S = (S,T, Σst) can be computed in Logspace [3] with some deep
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results in the computation of symmetrical binary relations [10], to show that
universal DSE solutions can be computed in Logspace:

Proposition 1. Let S = (S,T,M, Σst) be a fixed DSE setting. Then computing
a universal DSE solution J for a source instance I and an st-mapping table M
is in Logspace.

Proof. To prove that the CompUnivDSESolS procedure computes a universal
DSE solution for I and M under S in Logspace, we rely on the following facts:

(1) In Σc
s (in step 1 to step 4), we compute the transitive closures of the sym-

metrical binary table Equal. Computing the transitive closure of symmetrical
binary relations is solvable in Logspace [10]; (2) steps 5 and 6 of Σc

s compute
the complete instances Î and the st-mapping table M̂ using Equal. This step
can be computed by applying the naive chase procedure to I and M using rules
5 and 6 of Σc

s . Following the result in [7] that a naive chase procedure runs in
Logspace, we can deduce that generating Î and M̂ using steps 5 and 6 of Σc

s is
in Logspace; (3) step 2 of CompUnivDSESolS procedure can be reduced to the
problem of computing a universal solution for (Î∪{M̂}) in a fixed DE setting S.
Consequently, similar to steps 5 and 6 in Σc

s , this process works in Logspace in
a fixed DSE setting; (4) finally, since Logspaceis closed under composition [11],
we conclude that CompUnivDSESolS is in Logspace.

5 Minimal Universal DSE Solutions

In the context of ordinary data exchange, “best”solutions – called cores – are
universal solutions with minimal size. In knowledge exchange, on the other hand,
“best” solutions are cores that materialize a minimal amount of explicit data.
Intuitively, a minimal universal DSE (MUDSE) solution is a core universal DSE
solution J that contains a minimal amount of explicit data in J with respect to
Σc

t , and such that no universal DSE solution with strictly less constants is also
a universal DSE solution with respect to Σc

t .
We define this formally: Let S be a DSE setting, I be a source instance, M

an st-mapping table, and J a universal DSE solution for I and M under S.
Then J is a MUDSE solution for I and M under S, if: (1) There is no proper
subset J ≥ of J such that J ≥ is a universal DSE solution for I and M under S,
and; (2) There is no universal DSE solution J ≥ such that dom(J ≥) ∩ ConstT is
properly contained in dom(J) ∩ ConstT .

So, in Example 2, J = {Student(Alex, 18), Enroll (Alex, CSI1390, 80)} is
a MUDSE solution for I and M under S. Note that the DSE solution J ≥ =
{Student(Alex, 18), Enroll (Alex, CSI1390, 80), Enroll (Alex, CSI1790, 80)}
is a core universal DSE solution, however it is not the most compact one. Condi-
tion (2) in the definition of MUDSE solutions is not part of the original definition
of minimal solutions in knowledge exchange [5]. However, this condition is nec-
essary as we see below.

Assume that the universal DSE solution in Example 2 includes the fol-
lowing two facts {Teach(Anna,CSI1390), T each(Anna,CSI1790)}, where T
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is extended with the relation Teach(Tid, Cid) which specifies the teachers and
the list of courses they teach. Then, the DSE solution J = {Student(Alex, 18),
Enroll (Alex, CSI1390, 80), T each(Anna,CSI1790)} does not satisfy condition
(2) and provides us with redundant information with respect to I and M, since
we can conclude that CSI1390 and CSI1790 are equivalent courses. A MUDSE
solution however would be J = {Student(Alex, 18), Enroll(Alex, CSI1390, 80),
T each(Anna,CSI1390)}.

We define below a procedure CompMUDSEsolS, that given a DSE setting S, a
source instance I, and an st-mapping table M, it computes a MUDSE solution
J∅ for I and M under S in Logspace. This procedure works as follows:
CompMUDSEsolS:
Input: A source instance I, an st-mapping table M, and a set Σst of st-tgds.
Output: A Minimal Universal DSE solution J∅ for I and M under S.

1. Apply the source completion process, Σc
s , to I and M, and generate Î and

M̂ respectively.
2. Define an equivalence relation ∼ on dom(M̂) ∩ ConstT as follows: c1 ∼ c2 iff

there exists a source constant a such that M̂(a, c1) and M̂(a, c2) hold.
3. Compute equivalence classes {C1, . . . , Cm} for ∼ over dom(M̂)∩ConstT such

that c1 and c2 exist in Ci only if c1 ∼ c2.
4. Choose a set of witnesses {w1, . . . , wm} where wi ∈ Ci, for each 1 ≤ i ≤ m.
5. Compute from M̂ the instance M1 := replace(M̂, w1, . . . , wm) by replacing

each target constant c ∈ Ci ∩ dom(M̂) (1 ≤ i ≤ m) with wi ∈ Ci.
6. Apply a procedure (based on the chase [6]) to the instance (Î ∪ {M1}), and

generate a canonical universal pre-solution J for Î and M1.
7. Apply a procedure (based on the core [8]) to the target instance J and generate

the target instance J∅ that is the core of J .

We prove the correctness of CompMUDSEsolS in the following Theorem.

Theorem 1. Let S be a DSE setting, I a source instance, and M an st-mapping
table. Suppose that J∅ is an arbitrary result for CompMUDSEsolS(I,M). Then,
J∅ is a minimal universal DSE solution for I and M under S.

In data exchange, the smallest universal solutions are known as cores and
can be computed in Logspace [8]. With the help of such result we can prove
that MUDSE solutions can be computed in Logspace too. Also, in this context
MUDSE solutions are unique up to isomorphism:

Theorem 2. Let S be a fixed DSE setting. There is a Logspace procedure
that computes, for a source instance I and an st-mapping table M, a MUDSE
solution J for I and M under S. Also, for any two MUDSE solutions J1 and
J2 for I and M under S, it is the case that J1 and J2 are isomorphic.

Proof. The proof of the first part of this theorem is very similar to the proof of
Proposition 1, with the difference that steps 2, 3, and 4 in CompMUDSEsolS seem
to be non-deterministic since they involve choosing a set of witnesses {w1, . . . ,
wm} for {C1, . . . , Cm}. Clearly, different sets of witnesses may yield different
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target instances. However, each possible choice of witnesses leads to a minimal
universal DSE solution. In addition, according to [7,8], generating cores can be
computed in Logspace by applying the naive chase and the simple Greedy
algorithm [8]. Finally, since Logspace is closed under composition [11], we can
deduce that the procedure CompMUDSEsolS is computed in Logspace.

6 Query Answering

In data exchange, one is typically interested in the certain answers of a query
Q, that is, the answers of Q that hold in each possible solution [7]. For the case
of DSE we need to adapt this definition to solutions that are knowledge bases.
Formally, let S be a DSE setting, I a source instance, M an st-mapping table,
and Q a FO conjunctive query over T. The set of certain answers of Q over I
and M and under S, denoted certainS((I ∪ {M}), Q), corresponds to the set of
tuples that belong to the evaluation of Q over KT, for each DSE solution J for
I and M and K ∈ Mod((J ∪ {M}), Σc

t ).

Example 3. We refer to the DSE setting given in Example 2. Let Q(x, y, z) =
Enroll(x, y, z). Then, certainS((I ∪ {M}), Q) = {Enroll(Alex, CSI1390, 80),
Enroll(Alex, CSI1790, 80)}. �

In DE, certain answers of unions of CQs can be evaluated in Logspace
by directly posing them over a universal solution [7], and then discarding tuples
with null values. The same complexity bound holds in DSE by applying a slightly
different algorithm. In fact, certain answers cannot be simply obtained by posing
Q on a universal DSE solution J , since J might be incomplete with respect to
the implicit data in Σc

t .
One possible solution would be to apply the target completion program Σc

t

to a universal DSE solution J (denoted as Σc
t (J)) as a first step, then apply

Q to Σc
t (J). A second method is to compute certain answers of Q using a

MUDSE solution. A MUDSE solution J in DSE possesses an interesting prop-
erty, that is, applying Q to J returns a set of certain answers U that mini-
mally represents the set of certain answers U ≥ returned when Q is applied to
Σc

t (J). We can compute certainS((I ∪{M}), Q) directly using J , by first apply-
ing rules in Σc

t , excluding rule 6, to generate the binary table Equal. Then
complete the evaluation of Q on J , Q(x1, . . . , xn), and return Q̂(y1, . . . , yn) =
Q(x1, . . . , xn) ∧

∧n
i=1 Equal(xi, yi).

Adopting the second method to compute certain answers using MUDSE solu-
tions and EQUAL proved in Sect. 7 to exhibit a much better performance in run
times than the first method. These results make MUDSE solutions distinguished
for their compactness and for their performance in query answering. We also
obtain the following result:

Proposition 2. Let S = (S,T,M, Σst) be a fixed DSE setting, I a source
instance, M an st-mapping table, J a MUDSE solution, and Q a fixed CQ over
T. Then, certainS((I ∪{M}), Q) = Q̂(J) where Q̂(y1, . . . , yn) = Q(x1, . . . , xn)∧∧n

i=1 Equal(xi, yi)
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In addition, we prove in the following proposition that we can still compute
the set of certain answers of a conjunctive query Q in Logspace.

Proposition 3. Let S = (S,T,M, Σst) be a fixed DSE setting and Q a fixed
union of CQs. There is a Logspace procedure that computes certainS((I ∪
{M}), Q), given a source instance I and an st-mapping table M.

Proof. Let Q be a fixed union of conjunctive queries. The fact that computing
the set of certain answers of Q, certainS((I ∪{M}), Q) is in Logspace, is based
on the following facts: (1) following Proposition 1, generating a universal DSE
solution is in Logspace; and (2) following Theorem 2, generating a MUDSE
solution is in Logspace; and finally (3) it is known from [11] that the data
complexity of any FO formula is in Logspace, and thus checking if a fixed
conjunctive query is satisfied in a database instance is in Logspace.

7 Experiments

We implement the knowledge exchange semantics we introduced in this paper in
a DSE prototype system. This system effectively generates universal DSE and
MUDSE solutions that can be used to compute certain answers for CQs using
the two methods introduced in Sect. 6. We used the DSE scenario of Example 2
extended with the st-tgd: Cr(x, y, z)∧M(x, x≥)∧M(y, y≥)∧M(z, z≥) → Course
(x≥, y≥, z≥). Due to the lack of a benchmark that enforces recursion of the ∼
equivalence relation in the st-mapping table M and due to size restrictions, we
synthesized the data in our experiments.

We show in our experiments that as the percentage of recursion increases in
an st-mapping table, the run time to generate a universal DSE solution exceeds
the time to generate a MUDSE solution. We also show that computing certain
answers using a MUDSE solution is more effective than using a universal DSE
solution. The experiments were conducted on a Lenovo workstation with a Dual-
Core Intel(R) 1.80 GHz processor running Windows 7, and equipped with 4GB
of memory and a 297 GB hard disk. We used Python (v2.7) to write the code
and PostgreSQL (v9.2) database system.

DSE and MUDSE Solutions Computing Times. We used in this experi-
ment a source instance I of 4,500 tuples, and 500 of those were courses informa-
tion. The DSE system leveraged the work done in the state of the art ++Spicy
system [13] to generate MUDSE solutions. We mapped courses data in the source
to common target courses in M, with different ∼ equivalence percentages (to
enforce a recursive ∼ relation). The remaining set of source data was mapped to
itself in M. Figure 1 shows that as the percentage of recursion in ∼ equivalence
relation over M increases, the run times to generate universal DSE and MUDSE
solutions increase. The reason is, as the ∼ percentage increases, the number of
source values (and target values) inferred to be ∼ increases, and thus the size of
Equal created in Σc

s and Σc
t increases. Also, since target instances are usually

larger than M, the run time of completing the former to generate DSE solutions
exceeds the time of completing the later when generating MUDSE solutions.
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Fig. 1. MUDSE and Universal DSE
solutions generation times

Fig. 2. Queries run times against a
core of a universal DSE solution and
a MUDSE solution

Table 1. List of queries

Q1 Fetch all the students names and the name of courses they have taken
Q2 Fetch the list of pairs of students ids and names that took the same course
Q3 Fetch all the students names and the grades they have received
Q4 Fetch the list of pairs of courses names that belong to the same program
Q5 Fetch for each student id the pair of courses that he has finished with the same

grade
Q6 Fetch all the courses ids and their names
Q7 Fetch all the students ids and their names
Q8 Fetch the list of pairs of students ids that possess the same address

Conjunctive Queries Computing Times. We have selected a set of 8 queries
to compare the performance of computing certain answers using a universal
DSE solution (following the first method in Sect. 6) versus a MUDSE solution
(following the second method in Sect. 6). We list the queries in Table 1.

We applied the list of input queries to a DSE instance where the ∼ percentage
is 40% and a course in the source is mapped to a maximum of two courses in
the target. We chose a universal DSE solution, with a property of being a core
of itself, that had around 18,000 records, and a MUDSE solution that contained
around 4,900 records. Figure 2 shows that computing the sets of certain answers
for the input conjunctive queries using a MUDSE solution take less run times
than when computing these using a DSE solution. In addition, the deterioration
in performance of query execution against the DSE solution appeared more in
queries Q2 and Q5 than the remaining queries, is because both queries apply
join operations to the Enroll table that involves a lot of elements which are
inferred to be equivalent by M.

8 Concluding Remarks

We introduced a DSE setting which exchanges data between two applications
that have distinct schemas and distinct yet related sets of vocabularies. To cap-
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ture the semantics of this setting, we defined DSE as a knowledge exchange
system with a set of source and target rules that infer the implicit data should
be in the target. We formally defined DSE solutions and identified the minimal
among those. Also, we studied certain answers for CQs. Finally, we presented a
prototype DSE system that generates universal DSE solutions and minimal ones,
and it computes certain answers of CQs. In future work, we will investigate a
more general DSE setting were mapped elements are not necessarily equal.
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Abstract. We present a functional programming language for specify-
ing constraints over tree-shaped data. The language allows for Haskell-
like algebraic data types and pattern matching. Our constraint compiler
CO4 translates these programs into satisfiability problems in proposi-
tional logic. We present an application from the area of automated analy-
sis of termination of rewrite systems, and also relate CO4 to Curry.

1 Motivation

The paper presents a high-level declarative language CO4 for describing con-
straint systems. The language includes user-defined algebraic data types and
recursive functions defined by pattern matching, as well as higher-order and
polymorphic types. This language comes with a compiler that transforms a high-
level constraint system into a satisfiability problem in propositional logic. This
is motivated by the following.

Constraint solvers for propositional logic (SAT solvers) like Minisat [ES03]
are based on the Davis-Putnam-Logemann-Loveland (DPLL) [DLL62] algorithm
and extended with conflict-driven clause learning (CDCL) [SS96] and preprocess-
ing. They are able to find satisfying assignments for conjunctive normal forms
with 106 and more clauses in a lot of cases quickly. SAT solvers are used in
industrial-grade verification of hardware and software.

With the availability of powerful SAT solvers, propositional encoding is a
promising method to solve constraint systems that originate in different domains.
In particular, this approach had been used for automatically analyzing (non-
)termination of rewriting [KK04,ZSHM10,CGSKT12] successfully, as can be
seen from the results of International Termination Competitions (most of the
participants use propositional encodings).

So far, these encodings are written manually: the programmer has to con-
struct explicitly a formula in propositional logic that encodes the desired prop-
erties. Such a construction is similar to programming in assembly language: the
advantage is that it allows for clever optimizations, but the drawbacks are that
the process is inflexible and error-prone.
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This is especially so if the data domain for the constraint system is remote
from the “sequence of bits” domain that naturally fits propositional logic. In
typical applications, data is not a flat but hierarchical (e.g., using lists and
trees), and one wants to write constraints on such data in a direct way.

Therefore, we introduce a constraint language CO4 that comes with a com-
piler to propositional logic. Syntactically, CO4 is a subset of Haskell [Jon03],
including data declarations, case expressions, higher order functions, polymor-
phism (but no type classes). The advantages of re-using a high level declarative
language for expressing constraint systems are: the programmer can rely on
established syntax and semantics, does not have to learn a new language, can
re-use his experience and intuition, and can re-use actual code. For instance,
the (Haskell) function that describes the application of a rewrite rule at some
position in some string or term can be directly used in a constraint system that
describes a rewrite sequence with a certain property.

A constraint programming language needs some way of parameterizing the
constraint system to data that is not available when writing the program. For
instance, a constraint program for finding looping derivations for a rewrite sys-
tem R, will not contain a fixed system R, but will get R as run-time input.

A formal specification of compilation is given in Sect. 2, and a concrete real-
ization of compilation of first-order programs using algebraic data types and
pattern matching is given in Sect. 3. In these sections, we assume that data
types are finite (e.g., composed from Bool, Maybe, Either), and programs are
total. We then extend this in Sect. 4 to handle infinite (that is, recursive) data
types (e.g., lists, trees), and partial functions. Note that a propositional encod-
ing can only represent a finite subset of values of any type, e.g., lists of Booleans
with at most 5 elements, so partial functions come into play naturally.

We then treat in Sect. 5 briefly some ideas that serve to improve writing and
executing CO4 programs. These are higher-order functions and polymorphism,
as well as hash-consing, memoization, and built-in binary numbers.

Next, we give an application of CO4 in the termination analysis of rewrite sys-
tems: In Sect. 6 we describe a constraint system for looping derivations in string
rewriting. We compare this to a hand-written propositional encoding [ZSHM10],
and evaluate performance. The subject of Sect. 7 is the comparison of CO4 to
Curry [Han13], using the standard N -Queens-Problem as a test case.

Our constraint language and compiler had been announced in short work-
shop contributions at HaL 8 (Leipzig, 21 June 13), and Haskell and Rewriting
Techniques (Eindhoven, 26 June 13). The current paper is extended and revised
from our contribution to Workshop on Functional and Logic Programming (Kiel,
11 September 13). Because of space restrictions, we still leave out some techni-
calities in Sects. 2 and 3, and instead refer to the full version [BW13].

2 Semantics of Propositional Encodings

In this section, we introduce CO4 syntax and semantics, and give the specifica-
tion for compilation of CO4 expressions, in the form of an invariant (it should
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hold for all sub-expressions). When applied to the full input program, the specifi-
cation implies that the compiler works as expected: a solution for the constraint
system can be found via the external SAT solver. We defer discussion of our
implementation of this specification to Sect. 3, and give here a more formal, but
still high-level view of the CO4 language and compiler.

Evaluations on Concrete Data. We denote by P the set of expressions in the
input language. It is a first-order functional language with algebraic data types,
pattern matching, and global and local function definitions (using let) that may
be recursive. The concrete syntax is a subset of Haskell. We give examples—
which may appear unrealistically simple but at this point we cannot use higher-
order or polymorphic features. These will be discussed in Sect. 5.

E.g., f p u is an expression of P, containing three variables f, p and u.
We allow only simple patterns (a constructor followed by variables), and we
require that pattern matches are complete (there is exactly one pattern for each
constructor of the respective type). Nested patterns can be translated to this
form.

Evaluation of expressions is defined in the standard way: The domain of
concrete values C is the set of data terms. For instance, Just False ← C.
A concrete environment is a mapping from program variables to C. A concrete
evaluation function concrete-value : EC × P ⊆ C computes the value of a con-
crete expression p ← P in a concrete environment eC. Evaluation of function and
constructor arguments is strict.

Evaluations on Abstract Data. The CO4 compiler transforms an input program
that operates on concrete values, to an abstract program that operates on abstract
values. An abstract value contains propositional logic formulas that may contain
free propositional variables. An abstract value represents a set of concrete values.
Each assignment of the propositional values produces a concrete value.

We formalize this in the following way: the domain of abstract values is called
A. The set of assignments (mappings from propositional variables to truth values
B = {0, 1}) is called ν, and there is a function decode : A × ν ⊆ C.

We now specify abstract evaluation. (The implementation is given in Sect. 3.)
We use abstract environments EA that map program variables to abstract values,
and an abstract evaluation function abstract-value : EA × P ⊆ A.

Allocators. As explained in the introduction, the constraint program receives
known and unknown arguments. The compiled program operates on abstract
values.

The abstract value that represents a (finite) set of concrete values of an
unknown argument is obtained from an allocator. For a property q : C ⊆ B

of concrete values, a q-allocator constructs an object a ← A that represents all
concrete objects that satisfy q:

∈c ← C : q(c) ∩∅ ∃β ← ν : c = decode(a, β).

We use allocators to specify that c uses constructors that belong to a specific
type. Later (with recursive types, see Sect. 4) we also specify a size bound for c.
An example is an allocator for lists of Booleans of length ≤ 4.
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As a special case, an allocator for a singleton set is used for encoding a known
concrete value. This constant allocator is given by a function encode : C ⊆ A

with the property that ∈c ← C, β ← ν : decode(encode(c), β) = c.

Correctness of Constraint Compilation. The semantical relation between an
expression p (a concrete program) and its compiled version compile(p) (an
abstract program) is given by the following relation between concrete and
abstract evaluation:

Definition 1. We say that p ← P is compiled correctly if

∈e ← EA ∈β ← ν : decode(abstract-value(e, compile(p)), β)
=concrete-value(decode(e, β), p)

(1)

Here we used decode(e, β) as notation for lifting the decoding function to envi-
ronments, defined element-wise by

∈e ← EA ∈v ← dom(e) ∈β ← ν : decode(e, β)(v) = decode(e(v), β).

Application of the Correctness Property. We are now in a position to show how
the stages of CO4 compilation and execution fit together.

The top-level parametric constraint is given by a declaration constraint k
u = b (cf. Fig. 1) where b (the body, a concrete program) is of type Bool. It will
be processed in the following stages:

1. compilation produces an abstract program compile(b),
2. abstract computation takes a concrete parameter value p ← C and a q-allocator

a ← A, and computes the abstract value

V = abstract-value({k ⊗⊆ encode(p), u ⊗⊆ a}, compile(b))

Fig. 1. Exemplary constraint-system in CO4
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3. solving calls the back-end SAT solver to determine β ← ν with decode(V, β) =
True. If this was successful,

4. decoding produces a concrete value s = decode(a, β),
5. and optionally, testing checks concrete-value({k ⊗⊆ p, u ⊗⊆ s}, b) = True.

The last step is just for reassurance against implementation errors, since the
invariant implies that the test returns True. This highlights another advantage of
re-using Haskell for constraint programming: one can easily check the correctness
of a solution candidate.

3 Implementation of a Propositional Encoding

In this section, we give a realization for abstract values, and show how compi-
lation creates programs that operate correctly on those values, as specified in
Definition 1.

Encoding and Decoding of Abstract Values. The central idea is to represent an
abstract value as a tree, where each node contains an encoding for a symbol (a
constructor) at the corresponding position, and the list of concrete children of
the node is a prefix of the list of abstract children (the length of the prefix is the
arity of the constructor).

The encoding of constructors is by a sequence of formulas that represent the
number of the constructor in binary notation.

We denote by F the set of propositional logic formulas. At this point, we do
not prescribe a concrete representation. For efficiency reasons, we will allow some
form of sharing. Our implementation1 assigns names to subformulas by doing
the Tseitin transform [Tse83] on-the-fly, creating a fresh propositional literal for
each subformula.

Definition 2. The set of abstract values A is the smallest set with A = F≥ ×A
≥.

An element a ← A thus has shape (
−⊆
f ,−⊆a ) where

−⊆
f is a sequence of formulas,

called the flags of a, and −⊆a is a sequence of abstract values, called the arguments
of a.

We introduce notation

– flags : A ⊆ F≥ gives the flags of an abstract value
– flagsi : A ⊆ F gives the i-th flag of an abstract value
– arguments : A ⊆ A

≥ gives the arguments of an abstract value,
– argumenti : A ⊆ A gives the i-th argument of an abstract value

The sequence of flags of an abstract value encodes the number of its constructor.
We use the following variant of a binary encoding: For each data type T with c
constructors, we use as flags a set of sequences Sc → {0, 1}≥ with |Sc| = c and
such that each long enough w ← {0, 1}≥ does have exactly one prefix in Sc:

S1 = {δ}; for n > 1: Sn = 0 · S∅n/2∞ ∀ 1 · S∈n/2∃
1 https://github.com/apunktbau/satchmo-core

https://github.com/apunktbau/satchmo-core
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Note that ∈c : Sc ≥ F c, i.e. each sequence of flags represents a sequence of
constant propositional formulas.

Example 1. S2 = {0, 1}, S3 = {00, 01, 1}, S5 = {000, 001, 01, 10, 11}.

The lexicographic order of Sc induces a bijection numericc : Sc ⊆ {1, . . . , c} to
map sequence of flags to constructor indices.

The encoding function (from concrete to abstract values) is defined by

encodeT (C(v1, . . .)) = (numeric−
c (i), [encodeT1(v1), . . .])

where C is the i-th constructor of type T , and Tj is the type of the j-th argument
of C. Note that here, numeric−

c (i) denotes a sequence of constant flags (formulas)
that represents the corresponding binary string.

For decoding, we need to take care of extra flags and arguments that may
have been created by the function merge (Definition 4) that is used in the compi-
lation of case expressions. Therefore, we extend the mapping numericc to longer
strings by numericc(u · v) := numericc(u) for each u ← Sc, v ← {0, 1}≥. This is
possible by the unique-prefix condition. For example, numeric5(10) = 4 and thus
numeric5(101) = 4.

Example 2. Given the type declaration data Bool = False | True the concrete
value True can be represented by the abstract value a1 = encodeBool(True) =
([x], []) and assignment {x ⊗⊆ 1}, since True is the second of two constructors,
and numeric2(1) = 2. The same concrete value True can also be represented by
the abstract value a2 = ([x, y], [a1]) and assignment {x ⊗⊆ 1, y ⊗⊆ 0}, since
numeric2(10) = 2. This shows that extra flags and extra arguments are ignored
in decoding.

We give a formal definition: for a type T with c constructors, decodeT ((f, a), β)
is the concrete value v = Ci(v1, . . .) where i = numericc(fβ), and Ci is the i-
th constructor of T , and vj = decodeTj

(aj , β) where Tj is the type of the j-th
argument of Ci.

As stated, this is a partial function, since any of f, a may be too short. For this
section, we assume that abstract values always have enough flags and arguments
for decoding, and we defer a discussion of partial decodings to Sect. 4.

Allocators for Abstract Values. Since we consider (in this section) finite types
only, we restrict to complete allocators: for a type T , a complete allocator is an
abstract value a ← A that can represent each element of T : for each e ← T , there
is some β such that decodeT (a, β) = e.

Example 3.

Type Complete allocator

data Bool = False | True a1 = ([x1], [])
data Ordering = LT | EQ | GT a2 = ([x1, x2], [])
data EBO = Left Bool | Right Ordering a3 = ([x1], [([x2, x3], [])])
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where xi are (Boolean) variables. We compute decodeEBO(a3, β) for β = {x1 =
0, x2 = 1, x3 = 0}): Since numeric2(0) = 1, the top constructor is Left. It
has one argument, obtained as decodeBool(([x2, x3], []), β). For this we compute
numeric2(10) = 2, denoting the second constructor (True) of Bool. Thus,
decodeEBO(a3, β) = Left True.

Compilation of Programs. In the following we illustrate the actual transformation
of the input program (that operates on concrete values) to an abstract program
(operating on abstract values).

Generally, compilation keeps structure and names of the program intact. For
instance, if the original program defines functions f and g, and the implemen-
tation of g calls f , then the transformed program also defines functions f and
g, and the implementation of g calls f .

Compilation of variables, bindings, and function calls is straightforward, and
we omit details.

We deal now with pattern matches. They appear naturally in the input pro-
gram, since we operate on algebraic data types. The basic plan is that compilation
removes pattern matches. This is motivated as follows. Concrete evaluation of
a pattern match (in the input program) consists of choosing a branch accord-
ing to a concrete value (of the discriminant expression). Abstract evaluation
cannot access this concrete value (since it will only be available after the SAT
solver determines an assignment). This means that we cannot abstractly evalu-
ate pattern matches. Therefore, they are transformed into a linear program by
compilation.

We restrict to pattern matches where patterns are simple (a constructor
followed by variables) and complete (one branch for each constructor of the type).

Definition 3 (Compilation, pattern match). Consider a pattern match
expression e of shape case d of {. . . }, for a discriminant expression d of type
T with c constructors.

We have compile(e) = let x = compile(d) in mergec(flags(x), b1, . . .) where
x is a fresh variable, and bi represents the compilation of the i-th branch.

Each such branch is of shape C v1 . . . vn ⊆ ei, where C is the i-th constructor
of the type T .

Then bi is obtained as let {v1 = argument1(x); . . . } in compile(ei).

Example 4. The following listing shows the abstract counterpart of function
constraint from example 1:

c on s t r a i n t :: A −> A −> A

c on s t r a i n t p u =
l e t 128 = f p u
in

l e t 133 = encodeBool(Fa l se )
134 = argument1( 128)

in
merge(flags( 128), ( 133 , 134))
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The abstract value of the pattern match’s discriminant f p u is bound to vari-
able 128. The result of evaluating all compiled branches are bound to fresh
variables 133 and 134. Finally, the resulting value is computed by mergeing
133 and 134.

The auxiliary function merge combines the abstract values from branches of
pattern matches, according to the flags of the discriminant.

Definition 4 (Combining function). merge : F ≥×A
c ⊆ A combines abstract

values so that merge(
−⊆
f , a1, . . . , ac) is an abstract value (−⊆g , z1, . . . , zn), where

– number of arguments: n = max(| arguments(a1)|, . . . , | arguments(ac)|)
– number of flags: |−⊆g | = max(| flags(a1)|, . . . , | flags(ac)|)
– combining the flags:

for 1 ≤ i ≤ |−⊆g |, gi ↔
∧

1≤j≤c

(numericc(
−⊆
f ) = j ⊆ flagsi(aj)) (2)

– combining the arguments recursively:

for each 1 ≤ i ≤ n, zi = merge(
−⊆
f , argumenti(a1), . . . , argumenti(ac)).

Example 5. Consider the expression case e of False -> u; True -> v, where e,u,v
are of type Bool, represented by abstract values ([fe], []), ([fu], []), ([fv], []). The
case expression is compiled into an abstract value ([fr], []) where

fr = merge2([fe], ([fu], []), ([fv], []))
= (numeric2(fe) = 1 ⊆ fu) ∪ (numeric2(fe) = 2 ⊆ fv)

= (fe ⊆ fu) ∪ (fe ⊆ fv)

We refer to [BW13] for the full specification of compilation, and proofs of cor-
rectness.

We mention already here one way of optimization: if all flags of the discrim-
inant are constant (i.e., known during abstract evaluation, before running the
SAT solver) then abstract evaluation will evaluate only the branch specified by
the flags, instead of evaluating all, and merging the results. Typically, flags will
be constant while evaluating expressions that only depend on the input parame-
ter, and not on the unknown.

4 Partial Encoding of Infinite Types

We discuss the compilation and abstract evaluation for constraints over infinite
types, like lists and trees. Consider declarations

data N = Z | S N
double :: N -> N
double x = case x of {Z -> Z ; S x’ -> S (S (double x’))}
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Assume we have an abstract value a to represent x. It consists of a flag (to
distinguish between Z and S), and of one child (the argument for S), which is
another abstract value. At some depth, recursion must stop, since the abstract
value is finite (it can only contain a finite number of flags). Therefore, there is
a child with no arguments, and it must have its flag set to [False] (it must
represent Z).

There is another option: if we leave the flag open (it can take on values
False or True), then we have an abstract value with (possibly) a constructor
argument missing. When evaluating the concrete program, the result of accessing
a non-existing component gives a bottom value. This corresponds to the Haskell
semantics where each data type contains bottom, and values like S (S ⊥) are
valid. To represent these values, we extend our previous definition to:

Definition 5. The set of abstract values A⊥ is the smallest set with A⊥ =
F≥ ×A

≥
⊥ × F, i.e. an abstract value is a triple of flags and arguments (cf. defi-

nition 2) extended by an additional definedness constraint.
We write def : A⊥ ⊆ F to give the definedness constraint of an abstract

value, and keep flags and argument notation of Definition 2.

The decoding function is modified accordingly: decodeT (a, β) for a type T
with c constructors is ⊥ if def(a)β = False, or numericc(flags(a)β) is unde-
fined (because of “missing” flags), or | arguments(a)| is less than the number of
arguments of the decoded constructor.

The correctness invariant for compilation (Eq. 1) is still the same, but we
now interpret it in the domain C⊥, so the equality says that if one side is ⊥,
then both must be. Consequently, for the application of the invariant, we now
require that the abstract value of the top-level constraint under the assignment
is defined and True. Abstract evaluation is extended to A⊥ by the following:

– explicit bottoms: a source expression undefined results in an abstract value
([], [], 0) (flags and arguments are empty, definedness is False)

– constructors are lazy : the abstract value created by a constructor application
has its definedness flag set to True

– pattern matches are strict : the definedness flag of the abstract value con-
structed for a pattern match is the conjunction of the definedness of the
discriminant with the definedness of the results of the branches, combined by
merge.

5 Extensions for Expressiveness and Efficiency

We briefly present some enhancements of the basic CO4 language. To increase
expressiveness, we introduce higher order functions and polymorphism. To
improve efficiency, we use hash-consing and memoization, as well as built-in
binary numbers.

More Haskell Features in CO4. For formulating the constraints, expressiveness
in the language is welcome. Since we base our design on Haskell, it is natural
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to include some of its features that go beyond first-order programs: higher order
functions and polymorphic types.

Our program semantics is first-order: we cannot (easily) include functions as
result values or in environments, since we have no corresponding abstract values
for functions. Therefore, we instantiate all higher-order functions in a standard
preprocessing step, starting from the main program.

Polymorphic types do not change the compilation process. The important
information is the same as with monomorphic typing: the total number of con-
structors of a type, and the number (the encoding) of one constructor.

In all, we can use in CO4 a large part of the Haskell Prelude functions. CO4
just compiles their “natural” definition, e.g.,

and xs = foldl (&&) True xs ; a ++ b = foldr (:) b a

Memoization. We describe another optimization: in the abstract program, we
use memoization for all subprograms. That is, during execution of the abstract
program, we keep a map from (function name, argument tuple) to result. Note
that arguments and result are abstract values. This allows to write “natural”
specifications and still get a reasonable implementation.

For instance, the lexicographic path order >lpo (cf. [BN98]) defines an order
over terms according to some precedence over symbols. Its textbook definition is
recursive, and leads to an exponential time algorithm, if implemented literally.
For evaluating s >lpo t the algorithm still does only compare subterms of s and
t, and in total, there are |s| · |t| pairs of subterms, and this is also the cost of the
textbook algorithm with a memoizing implementation.

For memoization we frequently need table lookups. For fast lookups we need
fast equality tests (for abstract values). We get these by hash-consing : abstract
constructor calls are memoized as well, so that abstract nodes are globally
unique, and structural equality is equivalent to pointer equality.

Memoization is awkward in Haskell, since it transforms pure functions into
state-changing operations. This is not a problem for CO4 since this change of
types only applies to the abstract program, and thus is invisible on the source
level.

Built-in Data Types and Operations. Consider the following natural definition:

not a = case a of {False -> True ; True -> False}

The abstract value for a contains one flag each (and no arguments). CO4 will
compile not in such a way that a fresh propositional variable is allocated for the
result, and then emit two CNF clauses by Definition 4. This fresh result variable
is actually not necessary since we can invert the polarity of the input literal
directly. To achieve this, Booleans and (some of) their operations are handled
specially by CO4.
Similarly, we can model binary numbers as lists of bits:

data [] a = [] | a : [a] ; data Nat = Nat [Bool]
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An abstract value for a k-bit number then is a tree of depth k. At each level,
we need one flag for the list constructor (Nil or Cons), and one flag for the list
element (False or True). Instead of this, we provide built-in data types Natk that
represent a k-bit number as one abstract node with k flags, and no arguments.
These types come with standard arithmetical and relational operations.

We remark that a binary propositional encoding for numbers is related to
the “sets-of-intervals” representation that a finite domain (FD) constraint solver
would typically use. A partially assigned binary number, e.g., [⊥, 0, 1, ⊥, ⊥], also
represents a union of intervals, here, [4..7] ∀ [20..23]. Assigning variables can be
thought of as splitting intervals. See Sect. 7 an application of CO4 to a typical
FD problem.

6 Case Study: Loops in String Rewriting

We use CO4 for compiling constraint systems that describe looping derivations
in rewriting. We make essential use of CO4’s ability to encode (programs over)
unknown objects of algebraic data types, in particular, of lists of unknown
lengths, and with unknown elements.

The application is motivated by automated analysis of programs. A loop is
an infinite computation, which may be unwanted behaviour, indicating an error
in the program’s design. In general, it is undecidable whether a rewriting system
admits a loop. Loops can be found by enumerating finite derivations.

Our approach is to write the predicate “the derivation d conforms to a rewrite
system R and d is looping” as a Haskell function, and solve the resulting con-
straint system, after putting bounds on the sizes of the terms that are involved.

Previous work uses several heuristics for enumerations resp. hand-written
propositional encodings for finding loops in string rewriting systems [ZSHM10].

We compare this to a propositional encoding via CO4. We give here the type
declarations and some code examples. Full source code is available2.

In the following, we show the data declarations we use, and give code
examples.

– We represent symbols as binary numbers of flexible width, since we do not
know (at compile-time) the size of the alphabet: type Symbol = [ Bool ].

– We have words: type Word = [Symbol] , rules: type Rule = (Word, Word),
and rewrite systems type SRS = [Rule].

– A rewrite step (p++l++s) ⊆R (p++r++s), where rule (l, r) is applied with left
context p and right context s, is represented by Step p (l,r) s where

data Step = Step Word Rule Word

– a derivation is a list of steps: type Derivation = [Step], where each step
uses a rule from the rewrite system, and consecutive steps fit each other:

conformant :: SRS -> Derivation -> Bool
2 https://github.com/apunktbau/co4/blob/master/CO4/Example/Loop/

Standalone.hs

https://github.com/apunktbau/co4/blob/master/CO4/Example/Loop/Standalone.hs
https://github.com/apunktbau/co4/blob/master/CO4/Example/Loop/Standalone.hs
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Table 1. Finding looping derivations in rewrite systems.

s

Gebhardt/03 Gebhardt/08 Zantema 04/z042 Zantema 06/loop1

CO4 TTT2 CO4 TTT2 CO4 TTT2 CO4 TTT2

#vars 132232 23759 132168 23696 248990 32180 132024 21880
#clauses 448543 39541 448351 39445 854949 50150 447935 35842
Solving 97 s 8 s 6 s 20 s 5 s 1 s 4 s 1 s

– a derivation is looping if the output of the last step is a subword of the input
of the first step

constraint :: SRS -> Looping_Derivation -> Bool

constraint srs (Looping_Derivation pre d suf) =

conformant srs d && eqWord (pre ++ start d ++ suf) (result d)

This is the top-level constraint. The rewrite system srs is given at run-time.
The derivation is unknown. An allocator represents a set of derivations with
given maximal length (number of steps) and width (length of words).

Overall, the complete CO4 code consists of roughly 100 lines of code. The code
snippets above indicate that the constraint system literally follows the textbook
definitions. E.g., note the list-append (++) operators in constraint.

In contrast, Tyrolean Termination Tool 2 (TTT2, version 1.13)3 contains a
hand-written propositional encoding for (roughly) the same constraint4 consist-
ing of roughly 300 lines of (non-boilerplate) code. The TTT2 implementation
explicitly allocates propositional variables (this is implicit in CO4), and explic-
itly manipulates indices (again, this is implicit in our ++).

Table 1 compares the performance of our implementation to that of TTT2
on some string rewriting systems of the Termination Problems Data Base5 col-
lection. We restrict the search space in both tools to derivations of length 16
and words of length 16. All test were run on a Intel Xeon CPU with 3 GHz
and 12 GB RAM. CO4’s test results can be replicated by running cabal test
--test-options="loop-srs".

We note that CO4 generates larger formulas, for which, in general, MiniSat-
2.2.0 needs more time to solve. There are rare cases where CO4’s formula is
solved faster.

7 A Comparison to Curry

We compare the CO4 language and implementation to that of the functional logic
programming language Curry [Han13], and its PAKCS-1.11.1 implementation
(using the SICSTUS-4.2.3 Prolog system).

3 http://colo6-c703.uibk.ac.at/ttt2/
4 ttt2/src/processors/src/nontermination/loopSat.ml
5 http://termination-portal.org/wiki/TPDB

http://colo6-c703.uibk.ac.at/ttt2/
http://termination-portal.org/wiki/TPDB
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Fig. 2. Two approaches to solve the n queens problem

A common theme is that both languages are based on Haskell (syntax and typ-
ing), and extend this by some form of non-determinism, so the implementation
has to realize some form of search.

In Curry, nondeterminism is created lazily (while searching for a solution).
In CO4, nondeterminism is represented by additional Boolean decision variables
that are created beforehand (in compilation).

The connection from CO4 to Curry is easy: a CO4 constraint program
with top-level constraint main :: Known − > Unknown − > Bool is equivalent to
a Curry program (query) main k u =:= True where u free (Fig. 2).

In the other direction, it is not possible to translate a Curry program to a
CO4 program since it may contain locally free variables, a concept that is not
supported in CO4. All free variables are globally defined by the allocator of the
unknown parameter of the top-level constraint. For doing the comparison, we
restrict to CO4 programs.

Example 6. We give an example where the CO4 strategy seems superior: the n
queens problem.

We compare our approach to a Curry formulation (taken from the PAKCS
online examples collection) that uses the CLPFD library for finite-domain



46 A. Bau and J. Waldmann

Table 2. Time for finding one solution of the n queens problem

n 8 12 16 20 24 32 64 128

CO4 0.08 s 0.16 s 0.31 s 0.57 s 0.73 1.59 s 10.8 s 53.1 s
Curry/PAKCS 0.02 s 0.13 s 0.43 s 8.54 s > 10m > 10 m > 10 m > 10 m

constraint programming. Our CO4 formulation uses built-in 8-bit binary num-
bers (Sect. 5) but otherwise is a direct translation. Note that with 8 bit numbers
we can handle board sizes up to 27: we add co-ordinates when checking for
diagonal attacks.

Table 2 shows the run-times on several instances of the n queens problem.
CO4’s runtime is the runtime of the abstract program in addition to the runtime
of the SAT-solver. The run-times for PAKCS were measured using the :set
+time flag after compiling the Curry program in the PAKCS evaluator. Tests
were done on a Intel Core 2 Duo CPU with 2.20 GHz and 4 GB RAM.

The PAKCS software also includes an implementation of the n queens prob-
lem that does not use the CLPFD library. As this implementation already needs
6 seconds to solve a n = 8 instance, we omit it in the previous comparison.

8 Discussion

In this paper we described the CO4 constraint language and compiler that allows
to write constraints on tree-shaped data in a natural way, and to solve them via
propositional encoding.

We presented the basic ideas for encoding data and translating programs,
and gave an outline of a correctness proof for our implementation.

We gave an example where CO4 is used to solve an application problem from
the area of termination analysis. This example shows that SAT compilation has
advantages w.r.t. manual encodings.

We also gave an experimental comparison between CO4 and Curry, showing
that propositional encoding is an interesting option for solving finite domain
(FD) constraint problems. Curry provides lazy nondeterminism (creating choice
points on-the-fly). CO4 does not provide this, since choice points are allocated
before abstract evaluation.

Work on CO4 is ongoing. Our immediate goals are, on the one hand, to
reduce the size of the formulas that are built during abstract evaluation, and on
the other hand, to extend the source language with more Haskell features.
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[ES03] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[Han13] Hanus, M.: Functional logic programming: from theory to curry. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol.
7797, pp. 123–168. Springer, Heidelberg (2013)

[Jon03] Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised
Report. Cambridge University Press, Cambridge (2003)

[KK04] Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order con-
straints with application to expert systems in software verification. In:
Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol.
3029, pp. 827–837. Springer, Heidelberg (2004)

[SS96] Marques Silva, J.P., Sakallah, K.A.: Grasp - a new search algorithm for
satisfiability. In: ICCAD, pp. 220–227 (1996)

[Tse83] Tseitin, G.S.: On the complexity of derivation in propositional calculus.
In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Symbolic
Computation, pp. 466–483. Springer, Heidelberg (1983)

[ZSHM10] Zankl, H., Sternagel, C., Hofbauer, D., Middeldorp, A.: Finding and cer-
tifying loops. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J.,
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Abstract. While many functions on the real numbers are not exactly
computable, the theory of exact real arithmetic investigates the compu-
tation of such functions with respect to any given precision. In this paper,
we present an approach to implementing exact real arithmetic based on
Type-2 Theory of Effectivity in the functional logic language Curry. It is
demonstrated how the specific features of Curry can be used to obtain a
high-level realisation that is close to the underlying theoretical concepts.
The new Curry data type Real and its corresponding functions can easily
be used in other function definitions.

1 Introduction

The set R of real numbers is not countable, and many functions and relations
on R are not exactly computable [14]. In computer systems, the real numbers
are usually approximated by a subset of the rational numbers. While for this
representation highly efficient floating point arithmetic is available, in general
the computed results may deviate from the correct values, and in unfavourable
situations, e.g. rounding errors may accumulate to significantly corrupted results.

The subject of computable analysis deals with computing functions and rela-
tions on R. Within exact real arithmetic, one can provide an arbitrary precision
ν > 0 such that the maximal deviation of the computed result from the correct
result is guaranteed to be less than ν. While there are packages available provid-
ing exact real arithmetic in different programming languages, mostly in C and
C++, but also others (see e.g. [2,4,8,9]), in this paper we present an approach
to realise exact real arithmetic in the functional logic language Curry [1,5]. The
main objective of this approach that has been implemented in [6] is to demon-
strate how the specific features of Curry can conveniently be used to develop
a high-level implementation that is rather close to the underlying theoretical
concepts and notations as given by the Type-2 Theory of Effectivity (TTE) [14].

After briefly recalling the background of TTE as far as needed here (Sect. 2),
we start with an abstract view of the new Curry data type Real (Sect. 3), describe
some auxiliary types and functions (Sect. 4), and present the implementation
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of Real on the basis of quickly converging Cauchy sequences of rational num-
bers (Sect. 5). Various derived functions are introduced in Sect. 6, and functions
for obtaining unique results and for deciding properties are given in Sect. 7. In
Sect. 8, we conclude and point out further work.

2 Background and Related Work

For functions on N (or on finite words), there are well-established concepts of
effectively computable functions, e.g. Turing machines. While there are different
concepts, basically, they are all equivalent. On the other hand, for functions
on R (or on infinite words), there are also different approaches to computable
analysis, but these approaches are not all equivalent. There are differences in
content and in technical details [14]. In this paper, we will focus on exact real
arithmetic based on Type-2 Theory of Effectivity (TTE) [14].

In traditional (Type-1) Computability Theory, functions f : β≥ ← β≥, pos-
sibly being partial, over finite words are considered, and a computable function
is given by a Turing machine. Computability on other sets S, e.g. on rational
numbers, arrays, or trees, can be defined by using words as names for elements
of S and by interpreting words computed by a Turing machine as elements of S.

This notion of computability can not be applied to functions on real numbers
since real numbers can not be represented by finite words. For instance,

⊆
2 has

only an infinite decimal representation. Type-2 Theory of Effectivity extends
Type-1 computability to infinite words by taking (possibly partial) functions f :
βω ← βω over infinite words into account. A computable function is then given
by a Type-2 machine [14] transforming infinite sequences to infinite sequences.

Such a Type-2 Machine is a Turing machine M with k one-way, read-only
input tapes, finitely many, two-way work tapes, and a single one-way, write-only
output tape. The function fM computed by M is specified by the following two
cases, where y1, . . . , yk ∈ β≥ ∩ βω are the words on the k input tapes [14]:

Case 1:
fM (y1, . . . , yk) = y0 ∈ β≥

iff M halts on input y1, . . . , yk with y0 on the output tape
Case 2:

fM (y1, . . . , yk) = y0 ∈ βω

iff M computes forever on input y1, . . . , yk and writes y0 on the output tape.

In TTE, for Yi ∈ {β≥, βω} with i ∈ {0, . . . , k}, a partial function

f : Y1 × . . . × Yk ← Y0

over finite and infinite words is computable iff there is a Type-2 machine M
such that f = fM . Note that fM (y1, . . . , yk) is undefined if M computes forever,
but writes only finitely many symbols on the output tape. Thus, whenever the
result of fM (y1, . . . , yk) is an infinite word, M must keep printing out the next
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symbol after a finite amount of time, and since the output tape is write-only,
this symbol can not be erased afterwards.

Of course, infinite computations can not be finished in reality, but finite
computations on finite initial parts of inputs producing finite initial parts of
outputs can be realised up to any arbitrary precision. Increasing the precision
of a computation then means to extend the initial part of the input that is used
for the computation, i.e., to take more symbols from the input into account.

While the decimal representation is often used for real numbers, this repre-
sentation can not be used for exact real arithmetic within TTE. To illustrate
this, we show that addition on R can not be computed by a Type-2 machine M
when using the decimal representation. Suppose we want to add the two given
inputs y1 = 0.6666666666 . . . and y2 = 0.3333333333 . . . . After reading finitely
many input symbols, M must write either “0.” or “1.” on the output tape. How-
ever, this may be wrong, e.g., if the next input symbols on the input tapes are
8 and 3, or 6 and 2. Thus, there is no Type-2 machine computing addition on
R and using decimal representation.

Instead of decimals, we can use Cauchy sequences for representing real num-
bers, and using this representation, addition on R can easily be defined by a
Type-2 machine. Every real number x ∈ R is given by the limit value of some
quickly converging Cauchy sequence r0, r1, r2, . . . of rational numbers [12]. Such
a Cauchy sequence can be seen as a function

f : N ← Q with lim
k∅∞

f(k) = x

where the condition quickly converging ensures that

|f(k) − x| ∅ 2−k (1)

for all k ∈ N; note that the condition of quickly converging is essential here,
and just using Cauchy sequences would not be sufficient [14]. If r0, r1, r2, . . . and
r∈
0, r

∈
1, r

∈
2, . . . are Cauchy sequence representing x and x∈, respectively, then

r1 + r∈
1, r2 + r∈

2, r3 + r∈
3, . . . (2)

represents x+x∈. Note that the first component from the original sequences has
been dropped in (2). Similarly, other operations on R can be achieved by com-
ponentwise operations on the respective Cauchy sequences where the number of
leading elements to be dropped, called the look-ahead, depends on the operation
and on its arguments [14]. While the look-ahead for addition of real numbers
represented by quickly converging Cauchy sequences is always 1, independently
of the arguments to be added, the look-ahead for multiplication also depends on
its arguments. Given the two Cauchy sequences above,

rm × r∈
m, rm+1 × r∈

m+1, rm+2 × r∈
m+2, . . .

is a Cauchy sequence representing the product x×x∈ where the look-ahead m is
determined as follows (cf. [14, Theorem 4.3.2]): It is the smallest natural number
m such that

|r0| + 2 ∅ 2m−1 and |r∈
0| + 2 ∅ 2m−1 (3)
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which, by multiplying both sides by 2 and taking the multiplicative inverse, holds
iff (1

2

)m

∅ 1
2 × (max{|r0|, |r∈

0|} + 2)
. (4)

For instance, the sequence 11, 10.5, 10, 25, 10.125, . . . (i.e., ri = 10 + 2−i) is a
representation of x = 10. The look-ahead m for the multiplication of r0, r1, r2, . . .
with itself is thus determined by 11 + 2 ∅ 2m−1, i.e. m = 5. Hence, the first
element of the sequence representing the result of the multiplication is r5 × r5 =
100 + 20 × 2−5 + 2−10. Note that for this element, |r5 × r5 − 100| ∅ 20 holds as
required by (1).

When comparing two real numbers, one has to take into account that the rela-
tions =,∅, < between two real numbers are not exactly computable; similarly,
many other relations and functions on the real numbers are not computable [12].
Therefore, in TTE the crucial notion of a multi-function is used. For instance,
the equality on real numbers corresponds to a multi-function

eq : R × R ⇒ {true, false}

that may yield true, false or both or no result at all [12,14].
In this paper, we will present a high-level implementation of exact real arith-

metic based on TTE and using quickly converging Cauchy sequences of rational
numbers as representation of real numbers. For realising exact real arithmetic,
many other representations can be used. For example, each x ∈ R can be rep-
resented by a sequence of nested intervals (l, u) containing x with l, u being
rational numbers (e.g. [3]), by continued fractions (e.g. [13]), or by a signed digit
representation employing negative digits as used in e.g. [10]; for a comprehensive
discussion of different representations and the relationships among them see [14].
Our choice of using Cauchy sequences of rational numbers for a high-level imple-
mentation is motivated by the observation that this approach is quite intuitive
and close to the underlying concepts. For instance, it uses rational numbers at
the core of the representation, functions on real numbers can often be defined via
componentwise application of the corresponding function on rational numbers
(as illustrated in the addition and multiplication examples given above), and
for many real-valued functions there are well-established definitions via limits of
sequences of function applications on rational numbers.

Functional programming languages are a natural choice for a high-level imple-
mentation of exact real arithmetic, and there are various approaches using
Haskell (e.g. [7,10]). Besides infinite sequences, also the concept of a multi-
function is essential in the TTE framework; any function depending on the com-
putation of a real value might be a multi-function. Therefore, when using Curry
instead of Haskell, also the multi-functions of TTE can be modelled naturally,
namely by Curry’s non-determinism which is not available in Haskell. Simulat-
ing multi-functions in Haskell would require significant additional effort, and the
resulting solution would be not as close to the abstract specification in the TTE
framework as is the case for our Curry approach.
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3 An Abstract View on the Data Type Real

We start with introducing a new data type Real. As the rational numbers are
a proper subset of the real numbers, there is a function embedding rational
numbers into reals

r e a l q : : Rat −> Real

where Rat is the type for rational numbers. For illustrating basic computation
functions on real numbers, we will consider for instance

add : : Real −> Real −> Real
neg : : Real −> Real
mul : : Real −> Real −> Real
dvd : : Real −> Real −> Real
power : : Int −> Real −>Real
exp : : Real −> Real

realising addition, additive inverse, multiplication, division, power, and the expo-
nential function. Further prominent examples of functions on real numbers that
we have implemented are the transcendental functions like logarithm and the
trigonometric functions.

The concept of a multi-function can be modelled nicely by Curry’s notion of
a non-deterministic function. The crucial requirement is that for any arbitrary
prescribed precision that can be given as an additional parameter, the correct
result is among the returned results. In order to add a precision parameter when
modelling e.g. TTE’s multi-function eq : R × R ⇒ {true, false}, we introduce a
new data type Fuzzybool taking a rational number as precision parameter into
account:

data Fuzzybool = Fuzzy (Rat −> Bool )

The equality relation on real numbers is then modelled by

eq : : Real −> Real −> Fuzzybool

where for eq x y = Fuzzy f the function f is a non-deterministic function mapping
rational numbers to Booleans. Evaluating eq x y with respect to precision r is
done by the non-deterministic function:

defuzzy : : Rat −> Fuzzybool −> Bool
defuzzy r ( Fuzzy f ) = f r

It will always be guaranteed that for any r, the correct result is among the results
returned by defuzzy r (eq x y); thus, if defuzzy r (eq x y) returns a unique result,
then this result is the unique correct result. Furthermore, if x and y are Cauchy
sequences representing different real numbers x̃ and ỹ, then there is a precision
r ∈ Q with 0 < r < |x̃ − ỹ| such that defuzzy r (eq x y) returns the unique result
false. If x and y represent the same real number, then defuzzy r (eq x y) may
return both true and false for any precision r > 0. Note that this does not mean
that two reals can be both equal and unequal at the same time; it is just not



On a High-Level Approach to Implementing Exact Real Arithmetic 53

possible to refine defuzzy to a deterministic function since at least in the TTE
framework, equality on R is undecidable, not just when using Cauchy sequences,
but for any representation [14, Theorem 4.1.16]. Similarly, the functions

l e : : Real −> Real −> Fuzzybool
l eq : : Real −> Real −> Fuzzybool
i s P o s i t i v e : : Real −> Fuzzybool
i sZe r o : : Real −> Fuzzybool

realise the predicates less, less or equal, is a positive number, and is zero on R

that are also not exactly computable.
Before developing a concrete Curry representation of Real and defining func-

tions and predicates on Real, we first sketch some auxiliary types and functions.

4 Auxiliary Types and Functions

Module Structure. In our implementation of Real, we will reuse function
names for different types, especially for arithmetic operations. For instance, there
will be functions add, mul, le, leq, etc. on rational and real numbers. In order to
handle this overloading of names, we use the following imports in the implemen-
tation and also in this paper since we want to present the actual Curry source
code (which can be found at www.fernuni-hagen.de/wbs/data/realcurry.tar.gz):

import q u a l i f i e d r a t i o n a l s as q
import i n t e r v a l s as i
import fuzzyboo l
import q u a l i f i e d u t i l s as u

Integers are as in Curry. The module utils provides some utility functions; those
that are used in this paper will be explained when they are referenced. The
other three auxiliary modules for rational numbers, fuzzybool, and intervals
are presented in the following.

Rational Numbers. We introduce rational numbers as quotients of integers
such that the denominator is positive:

data Rat = Rat Int Int

ratn : : Int −> Rat
ratn n = Rat n 1

r a t f : : Int −> Int −> Rat
r a t f n d | d > 0 = Rat n d

| d < 0 = Rat (−n) (−d)

Addition, subtraction, multiplication, division, and additive and multiplicative
inverse are given by the functions add, sub, mul, dvd, neg, and inv defined as
expected, e.g.:

www.fernuni-hagen.de/wbs/data/realcurry.tar.gz


54 C. Beierle and U. Lelitko

mul : : Rat −> Rat −> Rat
mul (Rat n1 d1 ) (Rat n2 d2 ) = Rat ( n1∗n2 ) ( d1∗d2 )

inv : : Rat −> Rat
inv (Rat n d) | n /= 0 = r a t f d n

Comparing rational numbers is achieved by the functions:

eq : : Rat −> Rat −> Bool
l e : : Rat −> Rat −> Bool
l eq : : Rat −> Rat −> Bool

For computing the look-ahead (cf. Sect. 2), we will use the auxiliary function

minexp : : Rat −> Rat −> Int
minexp x b | l e q ( ratn 1) x = 0

| otherwi se = (minexp (dvd x b) b) + 1

The function call minexp x b returns the smallest natural number n such that
x ∃ bn holds. For instance, minexp (Rat 1 1000) (Rat 1 2) = 10 since 1/1000 �∃
(1/2)9 and 1/1000 ∃ (1/2)10.

Fuzzybool. The data type Fuzzybool and the function defuzzy have already been
given in Sect. 3; additionally, we will need logical operators:

andf : : Fuzzybool −> Fuzzybool −> Fuzzybool
andf a b = Fuzzy (\ r −> ( de fuzzy r a ) && ( defuzzy r b) )

o r f : : Fuzzybool −> Fuzzybool −> Fuzzybool
o r f a b = Fuzzy (\ r −> ( de fuzzy r a ) | | ( de fuzzy r b) )

not f : : Fuzzybool −> Fuzzybool
not f a = Fuzzy (\ r −> not ( defuzzy r a ) )

Thus, these operators on Fuzzybool are defined to correspond to the usual defi-
nitions. While defuzzy r b might return true, false, or both Boolean values, the
correct value is always among the returned results; note that for any precision
r, this property is preserved by the logical operations on Fuzzybool, e.g., if b is a
conjunction like andf b1 b2.

Intervals. Intervals of rational numbers are used for checking the required pre-
cision when computing and comparing real numbers and thus provide a basis for
realising not exactly computable functions. An interval is valid only if its lower
bound is less or equal to its upper bound.

data I n t e r v a l = In t e r v a l q . Rat q . Rat

i sVa l i d : : I n t e r v a l −> Bool
i sVa l i d ( I n t e r v a l a b) = q . l eq a b
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The computation of relations on real numbers will be reduced to three non-
deterministic functions on intervals. The function isZero yields true if 0 is in the
interval, and it yields false if the interval contains a number that is not equal
to 0. The function isPositive yields true if the given interval contains a positive
number, and it yields false if the interval contains a number that is not positive:

i sZ e r o : : I n t e r v a l −> Bool
i sZe r o ( I n t e r v a l a b) | q . l e q a (q . ratn 0) && q . l eq (q . ratn 0)

b = True
i sZe ro ( I n t e r v a l a b) | q . l e a (q . ratn 0) | | q . l e ( q . ratn 0)

b = False

i s P o s i t i v e : : I n t e r v a l −> Bool
i s P o s i t i v e ( I n t e r v a l b) | q . l e ( q . ratn 0) b = True
i s P o s i t i v e ( I n t e r v a l a ) | q . l eq a (q . ratn 0) = False

i sNega t i v e : : I n t e r v a l −> Bool
i sNega t i v e ( I n t e r v a l a ) | q . l e a (q . ratn 0) = True
i sNega t i v e ( I n t e r v a l b) | q . l eq (q . ratn 0) b = False

5 Representing Real Numbers in Curry

The approach of representing real numbers as Cauchy sequences can immediately
be realised in Curry by defining

data Real : : Cauchy ( Int −> q . Rat )

and the embedding of Rat into Real is then given by:

r e a l q : : q . Rat −> Real
r e a l q a = (Cauchy (\ −> a ) )

For addition, we employ componentwise operation, observing that the look-ahead
is 1 (cf. Sect. 2); subtraction and additive inverse are also easily defined:

add : : Real −> Real −> Real
add a b = Cauchy (\k −> l e t m=k+1 in q . add ( get a m) ( get b m) )

sub : : Real −> Real −> Real
sub a b = add a ( neg b)

neg : : Real −> Real
neg a = Cauchy (\k −> q . neg ( get a k ) )

get : : Real −> Int −> q . Rat
get (Cauchy x ) k = x k

Using the auxiliary function minexp (Sect. 4), the computation of the look-ahead
m for multiplication in Curry mirrors exactly the condition given by (4):
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mul : : Real −> Real −> Real
mul a b = l e t x = q .max (q . abs ( get a 0) ) ( q . abs ( get b 0) )

in l e t m = lahmul x
in Cauchy (\k −> q . mul ( get a (k+m) ) ( get b (k+m) ) )

lahmul : : q . Rat −> Int
lahmul arg = q . minexp (q . dvd (q . ratn 1) ( q . mul ( q . ratn 2)

( q . add arg (q . ratn 2) ) ) ) ( q . r a t f 1 2)

When computing the multiplicative inverse of a real number, we can use
the function for the multiplicative inverse on rational numbers, but there is
a particular subtlety to be taken into account. In the function definition for
rational numbers, we can easily check that x �= 0 for an argument x, and leave
the function application undefined for x = 0; cf. the definition of q.inv in Sect. 4.
However, for a real value x ∈ R, the relation x �= 0 is not exactly computable.
Before applying q.inv to the elements of a Cauchy sequence representing x, we
therefore have to determine an appropriate look-ahead m:

inv : : Real −> Real
inv arg =

l e t n = snd ( un t i l
(\x −> q . l e q ( f s t x ) (q . abs ( get arg ( snd x ) ) ) )
(\x −> ( q . dvd ( f s t x ) ( q . ratn 2) , ( snd x )+1) )
( ( q . ratn 3) ,0 )

)
in l e t m=2∗n

in Cauchy (\k−> q . inv ( get arg (k+m) ) )

A call until f1 f2 z of the function until provided by Curry repeatedly applies f2

to z (maybe zero times) until f1 applied to the obtained result yields true. Thus,
if inv is applied to r0, r2, r2, . . ., then n determined in inv is the smallest natural
number n such that 3×2−n ∅ |rn|, and the look-ahead for inv is m = 2n (cf. [14,
Theorem 4.3.2]). Note that inv is a partial function: If for x ∈ R represented by
r0, r2, r2, . . . the relationship x �= 0 holds, then the condition in the call of until

in inv will eventually be true, causing the call of until as well as the call of inv to
terminate and to yield the correct result. If x = 0 holds, then the call of inv will
not terminate since equality on reals is undecidable [14].

Using inv, it is now easy to define division on Real since a/b = ab−1 holds:

dvd : : Real −> Real −> Real
dvd a b = mul a ( inv b)

The basic relations on R discussed in Sect. 3 are implemented by reducing
them to the question of checking whether a number is 0 or positive:

eq : : Real −> Real −> Fuzzybool
eq x y = i sZe ro ( sub y x )

l e : : Real −> Real −> Fuzzybool
l e x y = i s P o s i t i v e ( sub y x )
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l eq : : Real −> Real −> Fuzzybool
l eq x y = ( not f . i s P o s i t i v e ) ( sub x y )

The two functions isZero and isPositive are in turn reduced to the corre-
sponding functions on intervals. To do so, the resulting object of type Fuzzybool

contains a function that for any precision uses an interval realising this precision
with respect to the given x of type Real.

i s P o s i t i v e : : Real −> Fuzzybool
i s P o s i t i v e x = Fuzzy (\ r −> i . i s P o s i t i v e ( t o I n t e r v a l r x ) )

i sZe r o : : Real −> Fuzzybool
i sZ e r o x = Fuzzy (\ r −> i . i sZ e r o ( t o I n t e r v a l r x ) )

i sNega t i v e : : Real −> Fuzzybool
i sNega t i v e x = Fuzzy (\ r −> i . i sNega t i v e ( t o I n t e r v a l r x ) )

Given numbers r of type Rat and x of type Real, the auxiliary function
toInterval determines an interval containing the real number in R represented
by x and approximating that number with precision r.

t o I n t e r v a l : : q . Rat −> Real −> I n t e r v a l
t o I n t e r v a l r x = l e t r2 = q . mul ( q . r a t f 1 2) r

in l e t y = approx r2 x
in I n t e r v a l ( q . sub y r2 ) ( q . add y r2 )

approx : : q . Rat −> Real −> q . Rat
approx r x = get x ( prec r )

prec : : q . Rat −> Int
prec r | q . l e ( q . ratn 0) r = q . minexp r (q . r a t f 1 2)

The approximation given by approx determines the smallest natural number n
such that (1/2)n ∅ r holds in order to determine the position in the Cauchy
sequence to be used for obtaining the bounds of the interval.

6 Derived Functions

In the previous sections, we presented the complete Curry code for a core set
of types and functions providing an implementation of exact real arithmetic
where the data type Real provides a representation for the real numbers in the
sense that any given precision can be obtained. On the basis of this core set of
functions, in [6] a series of further functions are defined and realised in Curry,
e.g. a general root function or the trigonometric functions. Here, we will give
some examples of how derived functions on Real can be defined in Curry.

Consider the sign function on R

sign(x) =

⎧
⎪⎨

⎪⎩

1 if x > 0
0 if x = 0
−1 if x < 0
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which is not exactly computable. Thus, sign corresponds to a multi-function that
is realised by a non-deterministic function in Curry. Since we want to determine
sign with a given precision, the Curry function sgn gets this precision value as
an additional parameter:

sgn : : q . Rat −> Real −> Int
sgn r x | defuzzy r ( i s P o s i t i v e x ) == True = 1
sgn r x | defuzzy r ( i sZe r o x ) == True = 0
sgn r x | defuzzy r ( i sNega t i v e x ) == True = −1

As an example for constructing an irrational number, we use the well-known
Newton’s method for computing

⊆
2. The sequence x0, x1, x2, . . .

xk+1 =
1
2

(

xk +
2
xk

)

(5)

with x0 > 0 has the limit limk∅∞ xk =
⊆

2. Analysing the sequence e0, e1, e2, . . .

with ek = |xk −
⊆

2| yields ek+1 = |12
e2
k

xk
| (e.g. [11, p. 5]). When choosing the

start value x0 = 2, induction on k shows that ek ∅ 2−k so that x0, x1, x2, . . .
is a quickly converging Cauchy sequence. Using Real, this method of computing⊆

2 can be implemented in Curry in an iterative manner by the function

sqrt2Newton : : Real
sqrt2Newton = Cauchy (\k −> sqrt2Newtonsub (q . ratn 2) k )

sqrt2Newtonsub : : q . Rat −> Int −> q . Rat
sqrt2Newtonsub x k =

i f k==0 then x
e l s e sqrt2Newtonsub (q . mul ( q . r a t f 1 2) ( q . add x

(q . dvd (q . ratn 2) x ) ) ) (k−1)

Note that the typical use of sqrt2Newton is not the enumeration of x0, x1, x2, . . .,
but rather to compute

⊆
2 with a given precision, say 2−k. For this, we can use

sqrt2Newton to compute xk efficiently from x0 by k applications of the recur-
rence equation (5). However, with increasing k, the precision given by xk is
much higher than the precision 2−k as required by (1) [11]. In order to reduce
the unnecessarily high precision and thus unnecessarily large integers in the
underlying representation of rationals, we can alternatively use (5) to generate
a quickly converging Cauchy sequence x∈

0, x∈
1, x∈

2, . . . where for x∈
k we apply the

recurrence equation (5) only so many times that we can ensure that x∈
k satisfies

the condition given in (1). For instance, since the Banach fixed-point theorem
tells us that |xk −

⊆
2| ∅ |xk −xk−1|, it suffices to ensure | 12 (x∈

k + 2
x′
k
)−x∈

k| ∅ 2−k,
yielding:

sq r t2 : : Real
sq r t2 = Cauchy (\k −> i f k == 0 then (q . ratn 2) e l s e

sqrt2sub (q . ratn 2) ( q . power k (q . r a t f 1 2) ) )

sqrt2sub : : q . Rat −> q . Rat −> q . Rat
sqrt2sub x r =
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l e t x2 = q . mul ( q . r a t f 1 2) ( q . add x (q . dvd (q . ratn 2) x ) )
in i f q . l e q ( q . abs (q . sub x x2 ) ) r then x2

e l s e sqrt2sub x2 r

For an element x of type Real, let x̃ ∈ R denote its intended real value,
i.e. the limit of the underlying Cauchy sequence. Then for any precision r, x

correctly represents x̃ in the sense that the interval determined by toInterval x r

contains x̃. We will demonstrate this behaviour of our Curry implementation
using sqrt2. For printing a result, we use the function

dec : : Real −> Int −> St r ing

that takes an element x of type Real and a natural number k. It returns the
value of x as a string containing k decimal places, such that the returned decimal
representation is correct with precision 10−k, but without any rounding being
applied. For instance, taking sqrt2 and k = 20 or k = 100 we get:

r ea l> dec sq r t2 20
Result : ”1.41421356237309504880”
More s o l u t i o n s ? [Y( es ) /n( o ) /a ( l l ) ]
No more s o l u t i o n s .

r ea l> dec sq r t2 100
Result : ”1.414213562373095048801688724209698078569671875376948

0731766797379907324784621070388503875343276415727”
More s o l u t i o n s ? [Y( es ) /n( o ) /a ( l l ) ]
No more s o l u t i o n s .

The decimal representation obtained by dec for the multiplication of sqrt2 with
itself and for k = 100 yields

r ea l> dec (mul sq r t2 sq r t2 ) 100
Result : ”1.999999999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999999”
More s o l u t i o n s ? [Y( es ) /n( o ) /a ( l l ) ]
Result : ”2.000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000”
More s o l u t i o n s ? [Y( es ) /n( o ) /a ( l l ) ]
No more s o l u t i o n s .

which are finite prefixes of the exactly two different infinite decimal representa-
tions of the real value 2, illustrating that also dec is a multi-function.

Similarly as for addition or multiplication, computing the nth power xn of a
real number x and an integer n can be done by componentwise computations on
the representing Cauchy sequence. For negative exponents, the equality x−n =
(1/x)n is used, and for n > 1, the required look-ahead is (n − 1)-times the look-
ahead for multiplication of x with itself:
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power : : Int −> Real −> Real
power n arg | n==0 = rea l q ( q . ratn 1)

| n==1 = arg
| n<0 = power (−n) ( inv arg )
| n>1 = l e t lah = (n−1)∗ lahmul ( q . abs ( get arg 0) )

in Cauchy (\k−> q . power n ( get arg ( lah+k) ) )

In many cases, real numbers or functions on real numbers are defined using
a power series. For instance, for the exponential function we have

ex =
∞∑

k=0

1
k!

xk. (6)

In general, a function given by a power series

∞∑

k=0

akxk (7)

is well-defined for any |x| < RK where RK = (lim sup
n∅∞

n
√

|an|)−1 is the radius of

convergence of (7). The computation of (7) for x ∈ R can be approximated by a
finite sum aoy

0 + . . . aNyN with y ∈ Q. The error of this approximation depends
on the coefficients ak, on the number of summands N , and on |x−y|. In order to
eliminate the dependence on the ak, we will require |ak| ∅ 1 for all k ∃ 0. This
restriction is satisfied for many power series expressions defining functions like
exp, sin, cos, etc., and since it implies RK ∃ 1, for any r ∈ Q with 0 < r < 1,
(7) converges for all x ∈ R with |x| ∅ r. If a is a sequence (ak)k∃0 of rational
numbers with |ak| ∅ 1 and r is a rational number with 0 < r < 1, then a call
powerser a r x of the auxiliary function

powerser : : ( Int −> q . Rat ) −> q . Rat −> Real −> Real

computes (7) for x̃ if x represents x̃ ∈ R and |x̃| ∅ r. The argument r is used in
the estimation of the error of the approximation and in the determination of the
number of summands needed in order to meet condition (1) (cf. [14, Chap. 4.3],
[7]); a smaller r means fewer summands, but also a smaller function domain.
Thus, by choosing r = 1/2, the function

exp1 : : Real −> Real
exp1 = powerser (\k −> q . r a t f 1 (u . f a c t k ) ) ( q . r a t f 1 2)

can be used for computing the exponential function (6) for any values |x| ∅ 1/2.
A straightforward method to extend the computation of ex to values |x| > 1/2
which is also used in e.g. [7] is to exploit the property

ex =
(
e

x
m

)m

(8)

and to choose m to be an integer such that |x/m| ∅ 1/2, allowing us to use exp1

for the inner and power for the outer exponentiation in (8):
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Fig. 1. Execution times (given in sec) for computing k decimals of
√

2 and (
√

2)2 with
dec sqrt2 k and dec (power 2 sqrt2) k

exp arg = l e t m=2∗( e s t imate ( abs arg ) )+1
in power m ( exp1 (mul ( r e a l q (q . r a t f 1 m) ) arg ) )

e s t imate : : Real −> Int
e s t imate arg = q . f l o o r ( q . add ( get arg 2) ( q . r a t f 1 2) )

abs : : Real −> Real
abs arg = Cauchy (\k −> q . abs ( get arg k ) )

For a rational number x, the auxiliary function floor returns the largest integer
less or equal to x.

Although in our Curry implementation we neglected any efficiency issues, in
Figs. 1 and 2 we present runtimes for evaluating various function calls. Figure 1
suggests that sqrt2 can be used for computing up to several thousands decimals
of

⊆
2 and (

⊆
2)2 in several seconds, while computing real numbers using exp is

more expensive (Fig. 2). When using sqrt2Newton instead of sqrt2, the respective
computation times are much higher. However, as shown in [14, Chapter 7], it
is not reasonable to use Cauchy representations for complexity investigations;
instead, other representations, e.g. signed digits, should be used.

7 Decision Functions and Obtaining Unique Results

Sometimes, one might be interested in computing a function or relation on real
numbers not just with a given precision, but one would like to get a unique
result. In order to try to achieve this, one could start with some precision value
and sharpen it until the given function yields a unique result. The function decide

realises this approach.
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dec ide : : ( q . Rat −> a −> b) −> a −> b
dec ide f x = l e t f k t r | not ( nu l l r e s ) =

i f u . eq s e t [ head r e s ] r e s
then head r e s
e l s e f k t ( q . mul ( q . r a t f 1 2 ) r )

where r e s = u . r e s u l t s 2 f r x
in f k t ( q . ratn 1)

A call results2 f r x of the utility function results2 collects all results of the in
general non-deterministic computation f r x and returns them in a list, and the
utility function eqset yields true if the two lists given as arguments contain the
same set of elements.

Of course, there is a pitfall in using decide. While it is guaranteed that the
result returned by decide f x is the correct and unique value of f x, the compu-
tation of decide f x may not terminate.

Analogously, one might not be satisfied with obtaining a Boolean value just
with a given precision, but one wants to have a certification that the given
precision is sufficient to guarantee that no other result is possible. The function
sure can ensure this:

sure : : q . Rat −> Fuzzybool −> Bool
sure p b = u . eq s e t (u . r e s u l t s 2 defuzzy p b) [ True ]

If sure p b yields true, then the corresponding property is guaranteed to hold.
If sure p b yields false, it may be the case that the property does not hold, but
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it may also be the case that the property holds, but the given precision p is not
sufficient to determine this. Likewise, the function possible tries to determine
whether it is possible that a property holds with respect to a given precision,
and the function impossible refutes a property regarding a given precision:

po s s i b l e : : q . Rat −> Fuzzybool −> Bool
impos s ib l e : : q . Rat −> Fuzzybool −> Bool

Using decide, we can easily define a function for proving or refuting a property
where no precision has to be given:

proo f : : Fuzzybool −> Bool
proo f = dec ide defuzzy

Again, due to the underlying characteristics of exact real arithmetic, the execu-
tion of proof b may not terminate. However, if proof b terminates, its result is
guaranteed to be both unique and correct.

8 Conclusions and Further Work

Using the specific features of Curry, we presented the core types and functions
needed for a high-level implementation of exact real arithmetic based on TTE
[14] in Curry. In this approach, the non-deterministic functions of Curry are
crucial for realising the concept of multi-functions required in real arithmetic as
developed in TTE as even a standard test like x ∅ y is not exactly computable
if x and y are real numbers.

While the use of Curry’s non-determinism is essential for our approach, the
representation of real numbers does not allow the instantiation of unknown vari-
ables of type Real, although this would be an interesting feature.

The new Curry type Real can easily be used in other function definitions.
By taking the presented abstract view of Real, the programmer is freed from
the possible burden of having to deal with the details of the underlying Real

implementation. If a particular computation involves a not exactly computable
function, Curry might yield more than one result, but in any case, the correct
result will be among the obtained results. For a not exactly computable function,
a precision argument can be given so that the correct result can be computed
up to any given precision. Since the objective of the approach presented here
was to achieve a high-level, declarative solution being as close as possible to
the respective theoretical concepts, we did not consider efficiency here; in future
work, we plan to address this issue.

Acknowledgements. We would like to thank the anonymous reviewers of this article
for their detailed and helpful comments.
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Abstract. Traditional proof calculi are mainly studied for formalis-
ing the notion of valid inference, i.e., they axiomatise the valid sen-
tences of a logic. In contrast, the notion of invalid inference received less
attention. Logical calculi which axiomatise invalid sentences are com-
monly referred to as complementary calculi or rejection systems. Such
calculi provide a proof-theoretic account for deriving non-theorems from
other non-theorems and are applied, in particular, for specifying proof
systems for nonmonotonic logics. In this paper, we present a sound
and complete sequent-type rejection system which axiomatises concept
non-subsumption for the description logic ALC. Description logics are
well-known knowledge-representation languages formalising ontological
reasoning and provide the logical underpinning for semantic-web rea-
soning. We also discuss the relation of our calculus to a well-known
tableau procedure for ALC. Although usually tableau calculi are syntac-
tic variants of standard sequent-type systems, for ALC it turns out that
tableaux are rather syntactic counterparts of complementary sequent-
type systems. As a consequence, counter models for witnessing concept
non-subsumption can easily be obtained from a rejection proof. Finally,
by the well-known relationship between ALC and multi-modal logic K,
we also obtain a complementary sequent-type system for the latter logic,
generalising a similar calculus for standard K as introduced by Goranko.

1 Introduction and Overview

Research on proof theory is usually guided by the semantic concept of validity,
finding appropriate (i.e., sound and complete) proof calculi for various types
of logics. This is reasonable insofar as logical methods have been devised since
their very beginning for characterising the valid sentences by virtue of their form
rather than their semantic denotations. However, the complementary notion of
validity, that is, invalidity, has rarely been studied by syntactic means. From a
proof-theoretic point of view, the invalidity of sentences is largely established by
the exhaustive search for counter models.

Proof systems which axiomatise the invalid sentences of a logic are commonly
coined under the terms complementary calculi or rejection systems. Such calculi
formalise proofs for invalidity, i.e., with the existence of a sound and complete
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rejection system of a logic under consideration, one is able to check for the
invalidity of a sentence by syntactic deduction. Another way to characterise
this notion is that a proof in such a complementary calculus witnesses the non-
existence of a proof in a corresponding (sound and complete) assertional proof
system.

To the best of our knowledge, a first systematic theory of rejection was estab-
lished by Jan ffiLukasiewicz in his work on describing Aristotelian syllogistic in
terms of modern logic [1]. Indeed, already Aristotle, the forefather of modern
logic, recognised that showing the invalidity of a syllogistic form is not only possi-
ble by providing a counterexample, but also by employing some form of axiomatic
reasoning. This notion was put into formal, axiomatic terms by ffiLukasiewicz.

Up to now, rejection systems have been studied for different families of logics
including classical logic [2,3], intuitionistic logic [4,5], modal logics [6,7], and
many-valued logics [8] (for an overview, cf., e.g., Wybraniec-Skardowska [9] and
Caferra and Peltier [10]). Many of them are analytic sequent-type systems, which
proved fruitful in axiomatising invalidity without explicitly referring to validity.
In contrast, the fundamental rule of rejection in the system of ffiLukasiewicz,
stating that

if ν ← β is asserted and β is rejected, then ν is rejected,

makes reference to an accepting proof system too.
Besides a general proof-theoretic interest in such calculi, they received also

attention in research on proof theory for nonmonotonic logics. In particular,
Bonatti and Olivetti [11] employed complementary sequent-type systems when
devising proof systems for default logic [12], autoepistemic logic [13], and propo-
sitional circumscription [14]. Furthermore, in logics in which the validity of a
formula ν is tantamount to checking unsatisfiability of the negation of ν, a com-
plementary calculus provides a proof-theoretic account of satisfiability checking
as well.

In this paper, we deal with the issue of complementary calculi in the context
of description logics. More specifically, we consider the description logic ALC and
present a sound and complete sequent-type rejection system for axiomatising
concept non-subsumption for this logic. Note that, informally speaking, ALC is
the least expressive of the so-called expressive description logics (for more details
on the vast topic of description logics, we refer the reader to an overview article
by Baader et al. [15]).

Concerning previous work on sequent-type calculi for description logics, we
mention an axiomatisation of concept subsumption for different description log-
ics, including ALC, by Rademaker [16] and an earlier calculus for ALC by
Borgida et al. [17].

As pointed out above, in our approach, we study an axiomatisation of concept
non-subsumption for ALC. We view this as a starting point for further investiga-
tions into complementary calculi for description logics as the more general case
of dealing with reasoning from knowledge bases, which are usually the principal
structures of description logics where reasoning operates on, would be a natural
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next step. In fact, our calculus is devised to axiomatise the invalidity of single
general concept inclusions (GCIs) without reference to any knowledge base.

We also discuss the relation of our calculus to a well-known tableau procedure
for ALC [18]. In general, as well known, sequent-type systems and tableau cal-
culi are closely related—indeed, traditionally, tableau calculi are merely syntactic
variants of standard sequent-type systems. However, popular tableau algorithms
for description logics are formalised in order to axiomatise satisfiability rather
than validity (cf. Baader and Sattler [18] for an overview). Hence, tableaux cor-
respond in the case of description logics to complementary sequent systems. As a
consequence, counter models for witnessing concept non-subsumption can easily
be obtained from a rejection proof. We describe the relation of our calculus to
the tableau algorithm for ALC as described by Baader and Sattler [18] in detail,
and show how to construct a counter model from a proof in the complementary
sequent system.

Finally, as also well-known, ALC can be translated into the multi-modal logic
Km, which extends standard modal logic K by providing a countably infinite
supply of modal operators of form [δ], where δ is a modality. In view of this
correspondence, we obtain from our complementary calculus for ALC also a
complementary sequent-type calculus for Km. This calculus generalises a similar
one for modal logic K as introduced by Goranko [6]. In fact, Goranko’s calculus
served as a starting point for the development of our calculus for ALC. We briefly
discuss the complementary calculus for Km, thereby showing the relation of our
calculus for ALC to Goranko’s one for K.

2 Notation and Basic Concepts

With respect to terminology and notation, we mainly follow Baader et al. [15].
Syntactically, ALC is formulated over countably infinite sets NC , NR, and

NO of concept names, role names, and individual names, respectively. The syn-
tactic artefacts of ALC are concepts, which are inductively defined using the
concept constructors ⊆ (“concept intersection”), ∈ (“concept union”), ¬ (“con-
cept negation”), ∩ (“value restriction”), ∅ (“existential restriction”), as well as
the concepts ∃ and ⊥ as usual. For the sake of brevity, we agree upon omitting
parentheses whenever possible and assign ¬, ∩, and ∅ the highest rank, and ⊆ and
∈ the least binding priority. We use C,D, . . . as metavariables for concepts and
p, q, r, . . . as metavariables for role names. When we consider concrete examples,
we assume different metavariables to stand for distinct syntactic objects.

By an interpretation we understand an ordered pair I = ⊗γI , ·I→, where γI

is a non-empty set called domain and ·I is a function assigning each concept
name C ∀ NC a set CI ≥ γI , each role name r ∀ NR a set rI ≥ γI × γI ,
and each individual name a ∀ NO an element aI ∀ γI . The function ·I is
furthermore required to obey the semantics of the concept constructors in the
usual way. For a concept C and an interpretation I, CI is the extension of C
under I. A concept C is satisfiable if there exists an interpretation I such that
CI ↔= ∪, and unsatisfiable otherwise.
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A general concept inclusion (GCI) is an expression of form C � D, where C
and D are arbitrary concepts. An interpretation I satisfies a GCI iff CI ≥ DI ,
and falsifies it otherwise. In the former case, I is a model of C � D, while in
the latter case, I is a counter model of C � D. The GCI C � D is valid if every
interpretation satisfies it. In this case, we say that D subsumes C.

Example 1. Let hasChild be a role name, and Doctor and Professor concept
names. Then,

∅hasChild.(Doctor ⊆ Professor) � ∅hasChild.Doctor ⊆ ∅hasChild.Professor

is a valid GCI, while

∅hasChild.Doctor ⊆ ∅hasChild.Professor � ∅hasChild.(Doctor ⊆ Professor)

is not valid. ⊆∈

When considering proof systems, it is convenient and necessary to focus on
interpretations of a special form when deciding semantic properties of language
constructs. A tree-shaped interpretation is an interpretation I such that the set

δ(I) := {(v, w) | (v, w) ∀
⋃

r≥NR

rI}

of ordered tuples forms a tree. If the tree is finite, then I is a finite tree-shaped
interpretation. The root of a tree-shaped interpretation I is defined to be the
root of δ(I) and the length of I is the length of the longest path in δ(I). The
following property of ALC is well-known [18].

Proposition 2. A concept C is satisfiable iff there exists a finite tree-shaped
interpretation T such that v0 ∀ CT , where v0 is the root of T .

When we say that a tree-shaped interpretation I satisfies a concept, then
we mean that the root of I is in the extension of the concept. Let T and T ∅

be tree-shaped interpretations with roots v and v∅, respectively. Then, T ∅ is an
r-subtree of T (symbolically, T ∅ �r T ) if (v, v∅) ∀ rT and δ(T ∅) is a subtree of
δ(T ) in the usual sense. T ∅ is a subtree of T if there exists an r ∀ NR such that
T ∅ is an r-subtree of T .

Let T1, . . . , Tn be tree-shaped interpretations such that for i ↔= j it holds
that δ(Ti) ⊥ δ(Tj) = ∪ (1 ⊂ i, j ⊂ n). Then, T = ⊗v0; r1, T1; . . . ; rn, Tn→ expresses
the fact that T is a tree-shaped interpretation with root v0 and, for every i =
1, . . . , n, the interpretation Ti is an ri-subtree of T . Furthermore, T1, . . . , Tn are
the only subtrees of T .

Example 3. Reconsider the invalid GCI

∅hasChild.Doctor ⊆ ∅hasChild.Professor � ∅hasChild.(Doctor ⊆ Professor)

from Example 1. Since this GCI is invalid, the concept

C = ∅hasChild.Doctor ⊆ ∅hasChild.Professor ⊆ ¬∅hasChild.(Doctor ⊆ Professor)
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is satisfiable. A tree-shaped interpretation satisfying C is given by the inter-
pretation T = ⊗{v0, v1, v2}, ·T →, with DoctorT = {v1}, ProfessorT = {v2}, and
hasChildT = {(v0, v1), (v0, v2)}. ⊆∈

3 A Rejection Calculus for ALC
We now proceed defining our rejection calculus, which we denote by SCc

ALC .
The calculus will be devised to refute GCIs of form C � D, where C and D are
arbitrary concepts. Thereby, we define new syntactic artefacts, viz. anti-sequents.

Definition 4. An anti-sequent is an ordered pair of form Γ ∧ γ, where Γ and
γ are finite multi-sets of concepts. Γ is the antecedent and γ is the succedent
of Γ ∧ γ. An anti-sequent Γ ∧ γ is propositional if neither a concept of form
∩r.C nor a concept of form ∅r.C occurs as subconcept in any D ∀ Γ ∪ γ.

As usual, given a concept C or a set Σ of concepts, “Γ,C ∧ γ” denotes
“Γ ∪ {C} ∧ γ”, and “Γ,Σ ∧ γ” denotes “Γ ∪ Σ ∧ γ”. Moreover, “∧ γ” stands
for “∪ ∧ γ” and “Γ ∧” means “Γ ∧ ∪”.

A proof in SCc
ALC is defined as usual in sequential systems. Furthermore,

we will use terms which are common in sequent-type systems, like end-sequent,
etc., without defining them explicitly (we refer the reader to Takeuti [19] for
respective formal definitions of such concepts).

Definition 5. An interpretation I refutes an anti-sequent Γ ∧ γ if I is a
counter model of the GCI

�
γ≥Γ γ �

⊔
δ≥Δ δ, where the empty concept intersec-

tion is defined to be ∃ and the empty concept union is defined to be ⊥. If there
is an interpretation which refutes Γ ∧ γ, then we say that Γ ∧ γ is refutable.
Furthermore, ι(Γ ∧ γ) stands for

�
γ≥Γ γ ⊆ ¬(

⊔
δ≥Δ δ).

In the following, we denote finite multi-sets of concepts by capital Greek
letters Γ,γ, . . ., while capital Latin letters C,D, . . . denote concepts.

It is easy to see that the problem of deciding whether an anti-sequent is
refutable can be reduced to the problem of deciding whether a concept is satis-
fiable.

Theorem 6. The anti-sequent s = Γ ∧ γ is refutable iff ι(s) is satisfiable.

An immediate consequence of this observation and Proposition 2 is that an
anti-sequent is refutable iff it is refuted by some finite tree-shaped interpretation.
Note also that a concept C is satisfiable iff the anti-sequent C ∧ is refutable.
Furthermore, a concept D does not subsume a concept C iff the anti-sequent
C ∧ D is refutable.

Now we turn to the postulates of SCc
ALC . Roughly speaking, the axioms and

rules of SCc
ALC are generalisations of a sequential rejection system for modal

logic K due to Goranko [6], by exploiting the well-known property that ALC
is a syntactic variant of the multi-modal version of K [20] and by incorporat-
ing multiple modalities into Goranko’s system. We discuss the relationship to
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Goranko’s system, in terms of a multi-modal generalisation of his system, in
Sect. 5. Besides that, the rules for the propositional connectives ⊆, ∈, and ¬ cor-
respond directly to those of the rejection system for propositional logic [2,3,6].
Note that these rules exhibit non-determinism as opposed to exhaustive search
in standard proof systems.

Let us fix some notation. For a set Σ of concepts and a role name r, we define
¬Σ := {¬C | C ∀ Σ}, ∩r.Σ := {∩r.C | C ∀ Σ}, and ∅r.Σ := {∅r.C | C ∀ Σ}.
For any role name r, Γ r and γr stand for multi-sets of concepts where every
concept is either of form ∩r.C or ∅r.C. Moreover, for such multi-sets, we define
Γ̂ r := {C | ∩r.C ∀ Γ} and Γ̃ r := {C | ∅r.C ∀ Γ}.

Definition 7. The axioms of SCc
ALC are anti-sequents of form

Γ0 ∧ γ0 and (1)
∩r1.Γ1, . . . ,∩rn.Γn ∧ ∅r1.γ1, . . . ,∅rn.γn, (2)

where Γ0 and γ0 are disjoint multi-sets of concept names, Γ1, . . . , Γn and γ1, . . . ,
γn are multi-sets of concepts, and r1, . . . , rn are role names. Furthermore, the
rules of SCc

ALC are depicted in Fig. 1, where r1, . . . , rn are assumed to be distinct
role names.

Note that each axiom of form (1) is a propositional anti-sequent and, accord-
ingly, we refer to an axiom of such a form as a propositional axiom.

Intuitively, in order to derive an anti-sequent s, our calculus tries to build
a model which satisfies ι(s). Speaking in terms of modal logic, the mix rules
guarantee that the resulting model contains “enough” worlds to satisfy ι(s). For
example, a world which satisfies ι(s) for the anti-sequent s = ∅r.C ∧ ∅r.(C ⊆ D)
has to be connected to another world which is contained in the extension of C,
but not in the extension of C ⊆ D. This is exactly what is achieved by the rules
(Mix,∩) and (Mix,∅).

Example 8. A proof of ∅r.C ⊆ ∅r.D ∧ ∅r.(C ⊆ D) in SCc
ALC is given by the

following tree (with C and D being distinct concept names):

D ← C (→, r)1
D ← C → D

C ← D (→, r)2
C ← C → D ← ⊥r.(C → D)

(Mix, ⊥)
⊥r.C ← ⊥r.(C → D)

(Mix, ⊥)
⊥r.C,⊥r.D ← ⊥r.(C → D)

(→, l)
⊥r.C → ⊥r.D ← ⊥r.(C → D) ⊆∈

We informally describe how a counter model can be obtained from a rejection
proof. For simplicity, we consider the case where each rule application of (Mix,∩)
and (Mix,∅) has k = l = 1. A tree-shaped counter model can be obtained
from a proof by reading the proof from bottom to top and assigning each anti-
sequent a node of the tree. Thereby, one starts by assigning the end-sequent
of the proof the root node of the model, say v0. In the proceeding steps, in
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LOGICAL RULES OF SCc
ALC

Γ, C, D ← Δ
(→, l)

Γ, C → D ← Δ

Γ ← C, Δ
(→, r)1

Γ ← C → D, Δ

Γ ← D, Δ
(→, r)2

Γ ← C → D, Δ

Γ ← C, D, Δ
(≡, r)

Γ ← C ≡ D, Δ

Γ, C ← Δ
(≡, l)1

Γ, C ≡ D ← Δ

Γ, D ← Δ
(≡, l)2

Γ, C ≡ D ← Δ

Γ ← C, Δ
(¬, l)

Γ, ¬C ← Δ

Γ, C ← Δ
(¬, r)

Γ ← ¬C, Δ

Γ ← Δ (∞)
Γ, ∞ ← Δ

Γ ← Δ (⊆)
Γ ← ⊆, Δ

Γ0 ← Δ0 Γ r1 , . . . , Γ rn ← Δr1 , . . . , Δrn

(MIX),
Γ0, Γ

r1 , . . . , Γ rn ← Δ0, Δ
r1 , . . . , Δrn

where

Γ̂ rk ← Δ̃rk , Ck · · · Γ̂ rl ← Δ̃rl , Cl Γ r1 , . . . , Γ rn ← Δr1 , . . . , Δrn

(MIX, ∈),
Γ r1 , . . . , Γ rn ← Δr1 , . . . , Δrn , ∈rk.Ck, . . . , ∈rl.Cl

Γ̂ rk , Ck ← Δ̃rk · · · Γ̂ rl , Cl ← Δ̃rl Γ r1 , . . . , Γ rn ← Δr1 , . . . , Δrn

(MIX, ⊥),
Γ r1 , . . . , Γ rn , ⊥rk.Ck, . . . , ⊥rl.Cl ← Δr1 , . . . , Δrn

STRUCTURAL RULES OF SCc
ALC

Γ, C ← Δ
(w−1, l)

Γ ← Δ

Γ ← Δ, C
(w−1, r)

Γ ← Δ

Γ, C ← Δ
(c−1, l)

Γ, C, C ← Δ

Γ ← C, Δ
(c−1, r)

Γ ← C, C, Δ

Γ0 ← Δ0 is a propositional axiom.

Fig. 1. Rules of SCc
ALC .

case of an application of a rule (Mix,∩) or (Mix,∅), a new child is created,
where the parent of the new node is the node assigned to the conclusion of
the rule application. The left premiss is then assigned the new node, while the
right premiss is assigned the node of the conclusion of the rule application. The
resulting arc is labelled with the role name r1, as represented in the exposition
of the rules (Mix,∩) and (Mix,∅) (cf. Fig. 1), indicating that the arc represents
a tuple in the interpretation of r1. In case of a rule application different from
(Mix,∩) and (Mix,∅), the node assigned to the conclusion is also assigned to
the premiss(es). In order to complete the specification of the counter model, it
remains to define the extensions of the atomic concepts. If Γ0 ∧ γ0 is an axiom
in our proof and v∅ its assigned node, then we simply ensure that (i) v∅ is in
the extension of each C ∀ Γ0 and (ii) v∅ does not occur in the extension of any
D ∀ γ0.

Example 9. A counter model for ∅r.C ⊆ ∅r.D � ∅r.(C ⊆ D) is given by the
interpretation I = ⊗γI , ·I→, defined by γI = {v0, v1, v2}, CI = {v2}, DI = {v1},
and rI = {(v0, v1), (v0, v2)}. The reader may easily verify that this counter
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model can be read off the proof given in Example 8 by the informal method just
described. ⊆∈

The next statements justify the soundness of particular rules and axioms. The
knowledge about tree-shaped interpretations, i.e., the shape of models satisfying
a concept, provide a semantic justification of the mix rules.

Lemma 10. Let T be a tree-shaped interpretation with root v0 which refutes an
anti-sequent of form

Γ r1 , . . . , Γ rn ∧ γr1 , . . . , γrn . (3)

Then, the anti-sequent (3) is refuted by every tree-shaped interpretation T ∅ such
that

1. for every role name r ∀ NR, we have rT = rT ′
, and

2. for every concept name C, either CT ′
= CT ∪ {v0}, CT ′

= CT \ {v0}, or
CT ′

= CT holds.

Lemma 11. Let Γ1, . . . , Γn,γ1, . . . , γn be non-empty multi-sets of concepts and
C a concept. Then,

1. every axiom of form

∩r1.Γ1, . . . ,∩rn.Γn ∧ ∅r1.γ1, . . . ,∅rn.γn (4)

is refuted by some tree-shaped interpretation, and
2. for every i = 1, . . . , n, if Γi ∧ C is refuted by some tree-shaped interpretation

T0 and
∩r1.Γ1, . . . ,∩rn.Γn ∧ ∩r1.γ1, . . . ,∩rn.γn (5)

is refuted by some tree-shaped interpretation T such that there exist disjoint
subtrees T1, . . . , Tn, where Tj �rj

T (j = 1, . . . , n), then the tree-shaped inter-
pretation T ∅ = ⊗v∅; r1, T1; . . . ; rn, Tn; ri, T0→ refutes the anti-sequent

∩r1.Γ1, . . . ,∩rn.Γn ∧ ∩r1.γ1, . . . ,∩rn.γn,∩ri.C,

where v∅ does not occur in the domain of any Tj (j = 1, . . . , n).

Proof. For Item 1, observe that T0 = ⊗{v0}, ·T →, where rT0 = ∪, for every r ∀ NR,
is a tree-shaped interpretation, where v0 is arbitrary. By the definition of the
semantics of ALC, we have that for every concept of form ∩r.C, (∩r.C)T0 = {v0}
holds, while for every concept of form ∅r.C we clearly have (∅r.C)T0 = ∪. Hence,
every axiom of the form (4) is refuted by T0 as required.

For Item 2, assume, without loss of generality, that the roles ri in an anti-
sequent of form (5) are pairwise distinct (i = 1, . . . , n). To ease notation, for a
given a set of concepts Γ , let us write (Γ )∞ for

�
γ≥Γ γ. Let

s = ∩r1.Γ1, . . . ,∩rn.Γn ∧ ∩r1.γ1, . . . ,∩rn.γn

be refuted by T and Γi ∧ C be refuted by the tree-shaped interpretation T0

with root v0. The tree T with root v∅ satisfies the concept ι(s), i.e., for every
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i = 1, . . . , n, we have v∅ ∀ DT
1 and v∅ ∀ DT

2 for D1 ∀ ∩ri.Γi and D2 ∀ ∅ri.¬γi.
Hence, we have, for every non-empty γi (i = 1, . . . , n), that there is some subtree
T ∅∅ with root v∅∅ such that (v∅, v∅∅) ∀ rT

i and v∅∅ ↔∀ DT , for every D ∀ γi. By
construction of T ∅, this is also the case for T ∅, hence it suffices to show that v∅ ↔∀
(∩ri.C)T ′

and v∅ ∀ DT ′
, for every D ∀ ∩ri.Γi. Now let i ∀ {1, . . . , n} and consider

the tree T ∅. Clearly, v∅ ∀ (¬∩ri.C)T ′
, i.e., v∅ ∀ (∅ri.¬C)T ′

, since (v∅, v0) ∀ rT
i

and Γi ∧ C is refuted by T0. Furthermore, since (i) v0 ∀ DT0 , for every D ∀ Γi,
(ii) v∅ ∀ DT for every D ∀ ∩ri.Γi, and (iii) (v∅, v0) ∀ rT ′

i , we immediately obtain
by the semantics of ALC that v∅ ∀ DT ′

, for every D ∀ ∩ri.Γi. Since we chose the
ri to be distinct, (∩rj .Γj)T

∞ = (∩rj .Γj)T ′
∞ and (∅rj .¬γj)T

∞ = (∅rj .¬γj)T ′
∞ , for all

j ↔= i. Hence, the anti-sequent

∩r1.Γ1, . . . ,∩rn.Γn ∧ ∩r1.γ1, . . . ,∩rn.γn,∩ri.C

is refuted as desired. ⊆∈

Theorem 12. SCc
ALC is sound, i.e., only the refutable anti-sequents are provable.

Proof (Sketch). The proof proceeds by induction on proof length. This amounts
to showing the refutability of the axioms and the soundness of each rule sepa-
rately.

For the induction base, the refutability of a propositional axiom is obvious,
while the refutability of an axiom of form ∩r1.Γ1, . . . ,∩rn.Γn ∧ ∅r1.γ1, . . . ,∅rn.
γn is exactly the statement of Item 1 of Lemma 11.

For the inductive step, we have to distinguish several cases depending on
the last applied rule. It is a straightforward argument to show the soundness of
the rules dealing with the propositional connectives ⊆, ∈, and ¬. Hence, we just
consider the mix rules briefly. For the rule (Mix), let Γ0 ∧ γ0 be a propositional
axiom of SCc

ALC and Γ r1 , . . . , Γ rn ∧ γr1 , . . . , γrn be refuted by a tree-shaped
interpretation T with root v0. By Lemma 10, we define an interpretation T ∅

such that CT ′
= CT ∪ {v0}, for every C ∀ Γ0, and CT ′

= CT \ {v0}, for every
C ∀ γ0. Since Γ0 ⊥ γ0 = ∪, the interpretation T ∅ is well-defined and refutes the
anti-sequent Γ0, Γ

r1 , . . . , Γ rn ∧ γ0,γ
r1 , . . . , γrn . For multi-sets Γ , γ, and Π, it

is easy to see that an anti-sequent of form Γ ∧ ¬Π,γ is refutable iff Γ,Π ∧ γ is.
Considering this fact and that value restriction is dual to existential restriction
(i.e., (∩r.C)I = (¬∅r.¬C)I , for every interpretation I), the soundness of the
rules (Mix,∩) and (Mix,∅) can easily be shown by repeated application of Item
2 of Lemma 11. ⊆∈

Following Goranko [6], the completeness argument for SCc
ALC is divided into

two steps: first, one proves completeness of the propositional fragment of our
calculus. This proceeds similar to the completeness proof of the rejection system
for classical propositional logic as given by Bonatti [2] and is thus omitted for
space reasons. The second step consists of showing completeness by induction
on the length of the refuting tree-shaped interpretation.

In what follows, the logical complexity, ||C||, of a concept C is defined to
be the number of connectives occurring in C. The logical complexity ||Γ || of
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a multi-set Γ of concepts is the sum of the logical complexities of the concept
occurring in Γ . For an anti-sequent Γ ∧ γ, we define the logical complexity
||Γ ∧ γ|| to be ||Γ || + ||γ||.

Lemma 13. Every refutable propositional anti-sequent is provable in SCc
ALC.

The next lemma states that refutable propositional anti-sequents possess a
proof in which all concept names appear in a single axiom.

Lemma 14. Let s be a refutable propositional anti-sequent which is refuted by
an interpretation I such that C1, . . . , Cn are exactly those distinct concept names
among s whose extensions are non-empty under I and D1, . . . , Dm are exactly
those whose extensions are empty under I, respectively. Then, there exists a
proof of s in SCc

ALC which has as its only axiom C1, . . . , Cn ∧ D1, . . . , Dm.

In what follows, an atom of an anti-sequent Γ ∧ γ is either a concept name
from Γ ∪γ or some concept of form Qr.C (Q ∀ {∩,∅}) which occurs in a concept
from Γ ∪ γ and which is not in the scope of some Q ∀ {∩,∅}.

Theorem 15. SCc
ALC is complete, i.e., every refutable anti-sequent is provable.

Proof. Let Γ ∧ γ be an arbitrary refutable anti-sequent and T a tree-shaped
interpretation of length �(T ) with domain γT which refutes Γ ∧ γ. Since Γ ∧
γ is refuted by T , there must be some c ∀ γT such that (i) c ∀ CT , for
all C ∀ Γ , and (ii) c ↔∀ DT , for all D ∀ γ. In the following, we say that
a concept C is falsified by T if c ↔∀ CT and satisfied by T otherwise. Now let
C1, . . . , Ck,∩r1.D1, . . . ,∩rl.Dl,∅s1.F1, . . . ,∅sλ.Fλ be the atoms of Γ∪γ which are
satisfied by T , and E1, . . . , Ek′ ,∩p1.G1, . . . ,∩pμ.Gμ, ∅q1.H1, . . . ,∅qm.Hm those
which are falsified by T , where C1, . . . , Ck, E1, . . . , Ek′ are atomic concepts and
r1, . . . , rl, s1, . . . , sλ, p1, . . . , pμ, q1, . . . , qm are not necessarily distinct role names.
We define the following sets:

Γ0 = {C1, . . . , Ck}, γ0 = {E1, . . . , Ek′},

Σ∈ = {∩r1.D1, . . . ,∩rl.Dl}, Λ∃ = {∅s1.F1, . . . ,∅sλ.Fλ},

Π∈ = {∩p1.G1, . . . ,∩pμ.Gμ}, Φ∃ = {∅q1.H1, . . . ,∅qm.Hm}.

It suffices to infer

Γ0, Σ
∈, Λ∃ ∧ γ0,Π

∈, Φ∃ (6)

since Lemma 13 and Lemma 14 allow us to infer Γ ∧ γ from (6). This is
accomplished by replacing all atoms of (6) by new distinct concept names which
then becomes a propositional axiom. Then, we can infer a propositional anti-
sequent Γ ∅ ∧ γ∅ by Lemma 13 and Lemma 14 which is obtained from Γ ∧ γ by
exactly the same replacement as mentioned before. Hence, there exists a proof of
Γ ∅ ∧ γ∅—substituting the new concept names back we obtain a proof of Γ ∧ γ.
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Obviously, we have that Γ0 ⊥ γ0 = ∪, hence, Γ0 ∧ γ0 is a propositional
axiom. Furthermore, the anti-sequent

Σ∈ ∧ Φ∃ (7)

constitutes an axiom of SCc
ALC . We now proceed by induction on �(T ). For the

base case, if �(T ) = 0, (6) must be of form Γ0, Σ
∈ ∧ γ0, Φ

∃, by the semantics of
ALC. This anti-sequent is inferred by the following rule application:

Γ0 ∧ γ0 Σ∈ ∧ Φ∃
(Mix)

Γ0, Σ
∈ ∧ γ0, Φ

∃

This completes the base case. Now assume that every anti-sequent which is
refuted by some tree T with length �(T ) ⊂ n is provable in SCc

ALC . Furthermore,
for every role name r, define Θ(r) = {C | ∩r.C ∀ Σ∈} and Ξ(r) = {C | ∅r.C ∀
Φ∃}. If (6) is refuted by some tree T with length �(T ) = n + 1, then the anti-
sequents

Θ(pi) ∧ Gi, Ξ(pi), for i = 1, . . . , μ, and (8)
Θ(sj), Fj ∧ Ξ(sj), for j = 1, . . . , λ, (9)

are refuted by immediate subtrees of T with length �(T ) = n and are therefore,
by induction hypothesis, provable in SCc

ALC . We first consider (8) and start for
i = 1 applying (Mix,∩) to Axiom (7):

Θ(p1) ∧ G1, Ξ(p1) Σ∈ ∧ Φ∃
(Mix,∩)

Σ∈ ∧ ∩p1.G1, Φ
∃

Now, for every i = 2, . . . , μ, we proceed constructing a proof of the anti-sequent
Σ∈ ∧ ∩p1.G1, . . . ,∩pi.Gi, Φ

∃ from Σ∈ ∧ ∩p1.G1, . . . ,∩pi−1.Gi−1, Φ
∃ in the fol-

lowing way:

Θ(pi) ∧ Gi, Ξ(pi) Σ∈ ∧ ∩p1.G1, . . . ,∩pi−1.Gi−1, Φ
∃

(Mix,∩)
Σ∈ ∧ ∩p1.G1, . . . ,∩pi.Gi, Φ

∃

For i = μ, we obtain a proof of the anti-sequent Σ∈ ∧ Π∈, Φ∃. Building upon
this anti-sequent, we proceed in a similar manner by performing the following
inference:

Θ(s1), F1 ∧ Ξ(s1) Σ∈ ∧ Π∈, Φ∃
(Mix,∅)

Σ∈,∅s1.F1 ∧ Π∈, Φ∃

Again, for every i = 2, . . . , λ, we proceed constructing a proof of the anti-sequent
Σ∈,∅s1.F1, . . . ,∅si.Fi ∧ Π∈, Φ∃ from Σ∈,∅s1.F1, . . . ,∅si−1.Fi−1 ∧ Π∈, Φ∃ as
follows:

Θ(si), Fi ∧ Ξ(si) Σ∈,∅s1.F1, . . . ,∅si−1.Fi−1 ∧ Π∈, Φ∃
(Mix,∅)

Σ∈,∅s1.F1, . . . ,∅si.Fi ∧ Π∈, Φ∃
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For i = λ, we obtain a proof of the anti-sequent Σ∈, Λ∃ ∧ Π∈, Φ∃. Finally, we
apply the rule (Mix) in order to obtain a proof of the desired anti-sequent:

Γ0 ∧ γ0 Σ∈, Λ∃ ∧ Π∈, Φ∃
(Mix)

Γ0, Σ
∈, Λ∃ ∧ γ0,Π

∈, Φ∃

Hence, (6) is inferred and the induction step is completed. Since every refutable
anti-sequent is refuted by some tree-shaped interpretation, every refutable anti-
sequent is provable and SCc

ALC is complete as claimed. ⊆∈

4 Comparing SCc
ALCwith an ALC Tableau Algorithm

The most common reasoning procedures which have been studied for description
logics are tableau algorithms. They are well known for ALC and its extensions
and have been implemented in state-of-the-art reasoners (like, e.g., in the FaCT
system [21]). Tableau algorithms rely on the construction of a canonical model
which witnesses the satisfiability of a concept or a knowledge base. We now
briefly discuss the relationship of our calculus and the tableau procedure for
concept satisfiability as discussed by Baader and Sattler [18].

The basic structure the algorithm works on is the so-called completion graph.
A completion graph is an ordered triple ⊗V,E,L→, where V is a set of nodes,
E ≥ V × V is a set of edges, and L is a labelling function which assigns a set
of concepts to each node and a role name to each edge. Given a concept C in
negation normal form (i.e., where negation occurs in C only in front of concept
names), the initial completion graph of C is a completion graph ⊗V,E,L→ where
V = {v0}, E = ∪, and L(v0) = {C}. A completion graph G = ⊗V,E,L→ contains
a clash if {D,¬D} ≥ L(v) for some node v and some concept D. G is complete
if no rules are applicable any more. The algorithm operates at each instant on a
set G of completion graphs. The completion rules specify the rules which may be
applied to infer a new set of completion graphs G∅ from some set of completion
graphs G. Given a concept C, the algorithm starts with the set G0 = {G0},
where G0 is the initial completion graph of C, and successively computes a
new set Gi+1 of completion graphs from the set Gi. Thereby, every completion
graph which has a clash is immediately dropped. The algorithm halts if for some
j ≥ 0, Gj contains a complete completion graph or Gj = ∪. In the former
case, the algorithm answers that the concept C is satisfiable, in the latter case
it answers that C is unsatisfiable. It is well-known that a model of the concept
under consideration can be extracted from a complete completion graph and that
(in the case of concept satisfiability) a complete completion graph represents a
tree [18].

Example 16. Consider the anti-sequent from Example 8. This anti-sequent is
refutable iff the concept Ĉ = ∅r.C ⊆ ∅r.D ⊆ ∩r.(¬C ∈ ¬D) is satisfiable. The
following graph represents a complete completion graph for Ĉ:
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v0 L(v0)

v1{C,¬C ∈ ¬D,¬D}

r

v2 {D,¬C ∈ ¬D,¬C}

r

Here, L(v0) = {Ĉ,∅r.C,∅r.D,∩r.(¬C⊆¬D)}. Note that this graph can easily
be turned into an interpretation satisfying Ĉ. ⊆∈

We now describe how to obtain a complete completion graph from a proof
of SCc

ALC such that the root of the completion graph is labelled with the end-
sequent of the proof (for the sake of readability, we consider without loss of
generality the case where k = l = 1 in the rules (Mix,∩) and (Mix,∅)). Let
nnf (C) denote the negation normal form of a concept C. For a set of concepts
Γ , define nnf (Γ ) = {nnf (C) | C ∀ Γ} and, for an anti-sequent s = Γ ∧ γ, define
nnf (s) = nnf (Γ ∪ ¬γ). Furthermore, let τ [G] denote the root of a completion
graph G. We define a mapping ξ which maps any proof of SCc

ALC to some
complete completion graph. Let χ be a proof of SCc

ALC and sχ be the end-
sequent of χ. The mapping ξ is inductively defined as follows:

– If sχ is a propositional axiom, then ξ(χ) = ⊗V,E,L→, where V = {v0}, E = ∪,
and L(v0) = nnf (sχ).

– If sχ results from an application of some binary rule ρ, and ξ(χ1) = G1 =
⊗V1, E1,L1→ and ξ(χ2) = G2 = ⊗V2, E2,L2→, where χ1 is the proof of the left
premiss, χ2 is the proof of the right premiss, and G1 and G2 are disjoint, then
we distinguish several cases:
• If ρ =(Mix,∩), then sχ is of form Γ r1 , . . . , Γ rn ∧ γr1 , . . . , γrn ,∩r.C. Then,

ξ(χ) = G = ⊗V,E,L→, where τ [G] = v∅ (v∅ ↔∀ V1 ∪ V2), V = V1 ∪ V2 ∪ {v∅},
E = E1 ∪ E2 ∪ {e}, for e = (v∅, τ [G1]), and the labelling function preserves
the labels from G1 and G2 but additionally satisfies L(e) = r and L(v∅) =
nnf (sχ).

• If ρ =(Mix,∅), then sχ is of form Γ r1 , . . . , Γ rn ,∅r.C ∧ γr1 , . . . , γrn , V =
V1 ∪ V2 ∪ {v∅}, E = E1 ∪ E2 ∪ {e}, for e = (v∅, τ [G1]), and the labelling
function preserves the labels from G1 and G2 but additionally satisfies
L(e) = r and L(v∅) = nnf (sχ).

• If ρ =(Mix), then sχ is of form Γ0, Γ
r1 , . . . , Γ rn ∧ γ0,γ

r1 , . . . , γrn . Then,
ξ(χ) = G = ⊗V,E,L→, where τ [G] = τ [G2], V = V1 ∪ V2, E = E1 ∪ E2, and
L(τ [G]) = nnf (sχ).

– If sχ results from an application of a unary rule, and ξ(χ1) = G1 = ⊗V1, E1,L1→,
where χ1 is proof of the upper sequent, then ξ(χ) = G = ⊗V,E,L→, where
V = V1, E = E1, and the labelling function preserves the labels from G1 but
additionally satisfies L(τ [G]) = L1(τ [G]) ∪ nnf (sχ).

Theorem 17. Let χ be a proof in SCc
ALC and sχ the end-sequent of χ. Then,

there exists a complete completion graph G = ⊗V,E,L→ such that ξ(χ) = G and
nnf (sχ) ≥ L(τ [G]).
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[C ←]v0

[D ← C]v3
(≡, l)2

[C ≡ D ← C]v3 [← ⊥p.C]v1
(MIX, ⊥)

[⊥p.(C ≡ D) ← ⊥p.C]v1 α
(MIX, ∈)

[∈r.⊥p.(C ≡ D) ← ∈r.⊥p.C, ∈r.D]v0
(MIX)

[∈r.⊥p.(C ≡ D), C ← ∈r.⊥p.C, ∈r.D]v0
(≡, r)

[∈r.⊥p.(C ≡ D), C ← ∈r.⊥p.C ≡ ∈r.D]v0
(→, l)

[∈r.⊥p.(C ≡ D) → C ← ∈r.⊥p.C ≡ ∈r.D]v0

where α is the following proof:

[← D]v2

[C ←]v4
(≡, l)1

[C ≡ D ←]v4 [←]v2
(MIX, ⊥)

[⊥p.(C ≡ D) ←]v2
(MIX)

[⊥p.(C ≡ D) ← D]v2 [∈r.⊥p(C ≡ D) ←]v0
(MIX, ∈)

[∈r.⊥p.(C ≡ D) ← ∈r.D]v0

v0 L(v0)

v1{∅p.(C ∈ D), ∩p.¬C}

v3{C ∈ D,¬C,D}

p

r

v2 {¬D, ∅p.(C ∈ D)}

v4 {C ∈ D,C}

p

r

where L(v0) = {∈r.⊥p.(C ≡ D) → C, ⊥r.∈p.¬C → ⊥r.¬D} ∪
{∈r.⊥p.(C ≡ D), C, ⊥r.∈p.¬C, ⊥r.¬D}.

Fig. 2. A proof in SCc
ALC and a corresponding completion graph.

Example 18. In Fig. 2, we compare a proof of SCc
ALC with its corresponding

complete completion graph G = ⊗V,E,L→. For better readability, we labelled
each anti-sequent in the proof with subscripts of form [s]v which means that
nnf (s) ≥ L(v). Note that the completion graph represents a model of the concept
ι(sχ), where sχ is the end-sequent of the depicted proof. In fact, a model is given
by I = ⊗γI , ·I→, where γI = {vi | 0 ⊂ i ⊂ 4}, DI = {v3}, CI = {v0, v4},
rI = {(v0, v1), (v0, v2)}, and pI = {(v1, v3), (v2, v4)}. ⊆∈
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5 A Multi-Modal Rejection Calculus

As mentioned above, the development of our calculus for ALC is based on a
rejection calculus for modal logic K, as introduced by Goranko [6], by taking
into account that ALC can be translated into a multi-modal version of K. In this
section, we lay down the relation of our calculus to Goranko’s system, thereby
generalising his calculus to the multi-modal case.

We start with describing the multi-modal logic Km. In general, the signa-
ture of multi-modal logics usually provide a countably infinite supply of differ-
ent modalities which we identify by lower case Greek letters δ, β, . . . as well as
a countably infinite supply of propositional variables p, q, . . .. Formulae in the
language of a multi-modal logic are then built up using the propositional con-
nectives ⇔, ∨, ¬, ∃, and ⊥, together with unary operators of form [δ], where δ
is a modality. The latter kind of operators are referred to as modal operators,
and we define ⊗δ→ := ¬[δ]¬, for every modality δ.

Following Goranko and Otto [22], let τ be the set of all modalities. A Kripke
interpretation is a triple M = ⊗W, {Rα}α≥τ , V →, where W is a non-empty set
of worlds, Rα ≥ W × W defines an accessibility relation for each δ ∀ τ , and V
maps any propositional variable to a subset of W , i.e., V defines which proposi-
tional variables are true at which worlds. The pair ⊗W, {Rα}α≥τ → defines the
Kripke frame on which M is based. Given any Kripke interpretation M =
⊗W, {Rα}α≥τ , V →, we define the truth of a formula ν at a world w ∀ W , denoted
by M, w |= ν, inductively in the usual manner. Furthermore, the notions of valid-
ity in a frame and validity in a class of frames is defined as usual (cf. Goranko
and Otto [22] for a detailed account). Km is the multi- modal logic consisting of
all formulae which are valid in all Kripke frames.

A concept of ALC can be translated into a formula of Km by viewing concepts
of form ∩r.C as modal formulae of form [δ]C ∅, where C ∅ is the corresponding
translation of the concept C. Each role name corresponds to one and only one
modality. Furthermore, the propositional connectives of ALC can easily seen to
be translated into the usual connectives of classical propositional logic. From a
semantic point of view, interpretations of ALC correspond to Kripke interpre-
tations if we identify the domain of the interpretation with the corresponding
set of worlds of the Kripke interpretation. Furthermore, the interpretation of
each role name corresponds to some accessibility relation. The extension of an
ALC concept contains then exactly those worlds of the corresponding Kripke
interpretation where the translation of the concept is satisfied.

Let C be a concept, I an interpretation, and let the translations be given
by the formula ν and the Kripke interpretation M, respectively. It holds that
M, w |= ν iff w ∀ CI . For a full treatment of the translation, we refer to
Schild [20] and Baader et al. [15].

A rejection system for Km can now be defined as follows. Let a multi-modal
anti-sequent Γ ∧ γ be defined as in the case of ALC, but with Γ and γ being
finite multi-sets of multi-modal formulae. Γ ∧ γ is refutable if there exists a
Kripke interpretation M = ⊗W, {Rα}α≥τ , V → and some w ∀ W such that M, w |=
ν, for every ν ∀ Γ , but M, w ↔|= β, for every β ∀ γ. Axioms of this system are
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LOGICAL RULES

Γ, ϕ, ψ ← Δ
(∧, l)

Γ, ϕ ∧ ψ ← Δ

Γ ← ϕ, Δ
(∧, r)1

Γ ← ϕ ∧ ψ, Δ

Γ ← ψ, Δ
(∧, r)2

Γ ← ϕ ∧ ψ, Δ

Γ ← ϕ, ψ, Δ
(∨, r)

Γ ← ϕ ∨ ψ, Δ

Γ, ϕ ← Δ
(∨, l)1

Γ, ϕ ∨ ψ ← Δ

Γ, ψ ← Δ
(∨, l)2

Γ, ϕ ∨ ψ ← Δ

Γ ← ϕ, Δ
(¬, l)

Γ, ¬ϕ ← Δ

Γ, ϕ ← Δ
(¬, r)

Γ ← ¬ϕ, Δ

Γ ← Δ (∞)
Γ, ∞ ← Δ

Γ ← Δ (⊆)
Γ ← ⊆, Δ

Γ0 ← Δ0 [α1]Γ1, . . . , [αn]Γn ← [α1]Δ1, . . . , [αn]Δn
(MIX)

Γ0, [α1]Γ1, . . . , [αn]Γn ← Δ0, [α1]Δ1, . . . , [αn]Δn

where Γ0, Δ0 are disjoint sets of propositional variables.

Γk ← ϕk · · · Γl ← ϕl [α1]Γ1, . . . , [αn]Γn ← [α1]Δ1, . . . , [αn]Δn
(MIX

2)
[α1]Γ1, . . . , [αn]Γn ← [α1]Δ1, . . . , [αn]Δn, [αk]ϕk, . . . , [αl]ϕl

where 1 ≤ k ≤ l ≤ n.

STRUCTURAL RULES

Γ, ϕ ← Δ
(w−1, l)

Γ ← Δ

Γ ← Δ, ϕ
(w−1, r)

Γ ← Δ

Γ, ϕ ← Δ
(c−1, l)

Γ, ϕ, ϕ ← Δ

Γ ← ϕ, Δ
(c−1, r)

Γ ← ϕ, ϕ, Δ

Fig. 3. Rules of a multi-modal variant of SCc
ALC .

given by anti-sequents of form Γ0 ∧ γ0, with Γ0 and γ0 being disjoint sets of
propositional variables, and anti-sequents of form [δ1]Γ1, . . . , [δn]Γn ∧. The rules
of the resulting calculus are depicted in Fig. 3 (for any multi-set Γ and modality
δ, we have [δ]Γ := {[δ]ν | ν ∀ Γ}; δ1, . . . , δn are pairwise different modalities).

Note that, e.g., (Mix2) corresponds to our rule (Mix,∩),

Γ ∧ ν �Γ ∧ �γ
MIX 2

K,
�Γ ∧ �γ,�ν

where �Σ := {�ν | ν ∀ Σ} for any multi-set Σ. We did not explicitly include
here a corresponding rule for ⊗δ→ since this can be derived using (Mix2).

The following result can be shown:

Theorem 19. A multi-modal anti-sequent is refutable iff it is provable.

6 Conclusion

We presented a sequent-type calculus for deciding concept non-subsumption in
ALC. Sequent calculi are important means for proof-theoretic investigations. We
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pointed out that our calculus is in some sense equivalent to a well-known tableau
procedure which is interesting from a conceptual point of view: as pointed out by
Goranko [6], the reason why complementary calculi have been rarely studied may
be found in the fact that often theories are recursively axiomatisable while being
undecidable. Hence, for such logics, reasonable complementary calculi cannot be
devised as the set of invalid propositions is not recursively enumerable there.

However, most of the description logics studied so far are decidable, hence
they permit an axiomatisation of the satisfiable concepts. Indeed, the well-known
tableau procedures for different description logics focus on checking satisfiabil-
ity, while unsatisfiability is established by exhaustive search. For such logics,
the sequent-style counterparts to tableau procedures are complementary calculi,
since checking satisfiability can be reduced to checking invalidity. We note in
passing that the tableau procedure for ALC has also been simulated by hyper-
resolution by Fermüller et al. [23].

As for future work, a natural extension of our calculus is to take ALC TBox
reasoning into account. However, this seems not to be straightforward in view of
existing tableau algorithms for it. We conjecture that a feasible approach would
need to employ a more complicated notion of anti-sequent, which is related to the
problem of non-termination of the respective tableau algorithm without blocking
rules.
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Abstract. Orders occur naturally in many areas of computer science
and mathematics. In several cases it is very simple do describe an order
mathematically, but it may be cumbersome to implement in some pro-
gramming language. On the other hand many order relations are defined
in terms of an existential quantification. We provide a simple abstraction
of such definitions using the well-known concept of monoid actions and
furthermore show that in fact every order relation can be obtained from
a specific monoid action.

1 Introduction

In beginners’ courses on mathematics (for computer scientists) several ordering
relations are usually given as examples. Consider for instance the natural order
on the natural numbers ←N defined in terms of

x ←N y :⊆∈ ∩ z ∅ N : x + z = y

for all x, y ∅ N. It is a basic and straightforward task to verify the three laws
(reflexivity, transitivity and anti-symmetry)1 of an order relation for ←N. A short
time after this definition we might find ourselves confronted with the concept of
lists and prefix lists. Now suppose that “++” denotes the list concatenation and
consider the definition of a prefix list: for any set M and any two lists x, y ∅ M∗

we define
x � y :⊆∈ ∩ z ∅ M∗ : x ++ z = y

and call � the “is-prefix-of”-relation. Observe how the definition itself is basically
the one of ←N – we merely exchanged N and + by M∗ and ++ respectively. We
know that (N,+, 0) and (M∗,++, ε) are monoids and this facts seems to be
encoded in the definition of the orders somehow. Let us have a look at a final
example, namely the order on Z, which is defined for all x, y ∅ Z by:

x ←Z y :⊆∈ ∩ z ∅ N : x + z = y.

1 A reflexive and transitive relation is called preorder.

M. Hanus and R. Rocha (Eds.): KDPD 2013, LNAI 8439, pp. 83–98, 2014.
DOI: 10.1007/978-3-319-08909-6 6, c≥ Springer International Publishing Switzerland 2014
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Again we notice the resemblance to the previous definitions, but in this case the
addition is a “skew” one, since its type is + : Z × N ∃ Z.

We observe that all of these orders are structurally defined as

x � y :⊆∈ ∩ z ∅ M : x ⊗ z = y,

for all x, y ∅ A, where A is a set, (M, →, e) is a monoid and ⊗ : A × M ∃ A is
a function that is associative in the sense that (a ⊗ m) ⊗ m∅ = a ⊗ (m → m∅) for
all a ∅ A,m,m∅ ∅ M .

From these observations we can derive a simple concept for defining order
relations and study order properties in terms of this concept. While the basic
“ingredients” (as monoid actions) are well-known and have been much studied,
to the best of our knowledge our approach to orders has not.

In the following we will use “functions”2 called “swap”, “curry” and “fps”.
For sets A,B,C and a function f : A × B ∃ C we have that

swap(f) : B × A ∃ C, (b, a) ∀∃ f(a, b) ,

curry(f) : A ∃ CB , a ∀∃
(

b ∀∃ f(a, b)
)

,

fps : AA ∃ 2A, g ∀∃ {a ∅ A | g(a) = a} .

Note that “curry” is essentially the homonymous function from functional (logic)
programming and “swap” is the uncurried version of flip. However, the function
“fps” (mnemonic: Fixed Point Set) is not to be confused with the least fixpoint
operator fix :: (a ∃ a) ∃ a which is also well established in from functional
(logic) programming: for instance, we have fps(idA) = A, while fix id diverges.
We use f(a,−) = (x ∀∃ f(a, x)) and f(−, b) = (x ∀∃ f(x, b)) to denote partial
applications and f−1 for the preimage of f .

The paper is structured as follows.

– We present the abstraction behind the orders we have just discussed.
– A characterisation of orders in terms of monoid actions is given.
– It is shown how to obtain an action that creates a given order.
– We provide an implementation of functions that can be used to obtain orders

in the functional logic language Curry.

2 Monoid Actions

The concept of a structure (e.g. group, algebra) acting on some set (or other
structure) is well-known in mathematics, particularly in algebraic contexts.

Let us begin with a simple abstraction of the observation concerning the
function type of the addition in the last example of the introduction3. Recall
2 All of these can be considered functional classes in the sense of set theory.
3 Actually we should have written + : N × Z ← Z for congruence with the following

definition. The reason we did not is that for the three examples the monoid is better
placed in the second component, whereas from a mathematical point of view it is
more convenient to place it in the first one.
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that a monoid is an algebraic structure (M, ·, e) where · is a binary, associative
operation and e is a neutral element with respect to ·.

Definition 1 (Monoid action). Let (M, ·, e) be a monoid and A a non-empty
set. A mapping ϕ : M × A ∃ A is called monoid action of M on A, if and
only if the following conditions hold:

(1) ϕ(e,−) = idA, (preservation of unity)
(2) ≥x, y ∅ M : ≥ a ∅ A : ϕ(x, ϕ(y, a)) = ϕ(x · y, a) (associativity).

Thus a monoid action gives us an outer operation on A (cf. inner operations).
If ϕ : M × A ∃ A is a monoid action, we will abbreviate ϕ(m,a) =: m ·ϕ a for
all m ∅ M and a ∅ A.

Considering a monoid action in its curried version curry(ϕ) : M ∃ AA

gives us that curry(ϕ) is a monoid homomorphism. Conversely every monoid
homomorphism f : M ∃ AA can be converted into a monoid action by defining
ϕf : M × A ∃ A, (m,a) ∀∃ f(m)(a). In fact these two operations are mutually
inverse. These properties are known so well that they constitute typical exercises
for students.

We proceed to provide some examples of monoid actions.

Example (Monoid actions)

1. Let (M, ·, e) be a monoid. Then · is a monoid action of M on M .
2. The mapping + : N × Z ∃ Z is a monoid action of (N,+, 0) on Z.
3. Let (Q,Σ, δ) be a transition system. Then swap(δ∗) : Σ∗×Q ∃ Q is a monoid

action of (Σ∗, swap(++), ε) on Q.
4. Let A be a set and ϕ : AA ×A ∃ A, (f, x) ∀∃ f(x). Then ϕ is a monoid action

of (AA, ↔, idA) on A.

These properties are easily checked: the first one is trivially true, the second one
can be shown in a large variety of simple ways, the third one relies on the fact
that δ∗ is the homomorphic continuation of δ on Σ∗ and the fourth one merely
rephrases elementary properties of function composition and application. �

It is little surprising that monoid actions have certain permanence proper-
ties e.g. direct products of monoid actions form monoid actions. Categorically
speaking these properties state that the category of monoid acts is closed under
certain operations. We will not deal with these properties since they are well
known and not required in the remainder of this article. Instead we use the con-
cept of monoid actions to define the (ordering) relations we have seen in the
introduction.

Definition 2 (Action preorder). Let (M, ·, e) be a monoid, A a set and ϕ :
M × A ∃ A a monoid act. We then define for all a, b ∅ A :

a �ϕ b :⊆∈ ∩m ∅ M : m ·ϕ a = b.

The relation �ϕ is called action preorder.
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Note that the definition captures the essence of all orders we have presented
in the beginning of the paper. To justify the anticipatory name of the relation
we need to show a simple lemma. The proof is very simple and we include it
only for the purpose of demonstration.

Lemma 1 (Action preorder). Let (M, ·, e) be a monoid, A a set and ϕ :
M × A ∃ A a monoid action. Then the following hold:

(1) The action preorder �ϕ is in fact a preorder on A.
(2) For all m ∅ M the mapping ϕ(m,−) is expanding, i.e. ≥ a ∅ A : a �ϕ m ·ϕ a.

Proof (1) Let x ∅ A. By the preservation of units we get x = e ·ϕ x, thus x �ϕ x.
Now let a, b, c ∅ A such that a �ϕ b and b �ϕ c. Then there are m,n ∅ M such
that m ·ϕ a = b and n ·ϕ b = c. The associativity of the action gives us

c = n ·ϕ b = n ·ϕ (m ·ϕ a) = (n · m) ·ϕ a.

Since n · m ∅ M we get a �ϕ c.
(2) Left as an exercise to the reader. �

Let us make two observations concerning this lemma. First – showing the
reflexivity and transitivity of actual relations (like ←N or �) will always result in
essentially the very proof of this lemma. Second – the two properties “preserva-
tion of units” and “associativity” of monoid acts supply the sufficient conditions
for “reflexivity” and “transitivity” respectively.

So far we have seen some examples of action preorders (that incidentally were
orders as well). In such a setting two questions suggest themselves:

1. When is an action preorder an order?
2. Is every order an action preorder?

Ideally the answer to the first question should be some kind of characterisation
and the answer to the second should be a Boolean value followed by a construc-
tion in the positive case.

Before we turn to the use of these definitions and properties for implemen-
tation we would like to provide answers to both questions. The applications will
follow in Sect. 4.

Finally, let us note that the relation defined by the action preorder is very
well known in group theory in the context of group actions. In this context the
relation above is always an equivalence relation (again this is well-known and
often used as an exercise) and is commonly used to investigate action properties
(cf. the orbit-stabiliser-theorem [1].). To the best of our knowledge little effort
has been invested in the study of this relation in the presence of monoid actions.

3 Action Preorders

First of all let us deal with the question when an action preorder is an order.
When we start to prove the antisymmetry of an ordering relation like ←N we take
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a, b ∅ N s.t. a ←N b and b ←N a. Then we find that there are c, d ∅ N satisfying
c + a = b and d + b = a. Thus we get

a = d + b = d + (c + a) = (d + c) + a.

So far we have used the associativity of +, but from the equation above we
need to find that a = b. In case of the naturals we would probably proceed as
follows: since a = (d + c) + a, we find that 0 = d + c and then d = 0 = c. We
used injectivity of adding a number in the first step and some kind of “non-
invertibility property” in the second one. Clearly, requiring these properties in
an abstracted fashion immediately results in the proof of antisymmetry. Since
we used a single proof layout for this abstraction it is not surprising that these
two properties turn out to be sufficient, but not necessary conditions for the
antisymmetry of the action preorder. Fortunately they can be abstracted into a
single property that is applicable in the general case.

Proposition 1 (Characterisation of antisymmetry I). Let (M, ·, e) be a
monoid, A a set and ϕ : M × A ∃ A a monoid action. Then the following
statements are equivalent:

(1) The action preorder �ϕ is antisymmetric (i.e. an order).
(2) ≥x, y ∅ M : ≥ a ∅ A : (x · y) ·ϕ a = a ∈ y ·ϕ a = a.

Proof (1) =∈ (2): We invite the reader to verify this on his or her own.

(2) =∈ (1): Assume that (2) holds. Let a, b ∅ A such that a �ϕ b and b �ϕ a.
Then there are x, y ∅ M such that x ·ϕ b = a and y ·ϕ a = b, hence

a = x ·ϕ b = x ·ϕ (y ·ϕ a) = (x · y) ·ϕ a.

By (2) this yields y ·ϕ a = a, but on the other hand b = y ·ϕ a, so a = b. �

Note how the proof of (2) =∈ (1) resembles our exemplary proof from the
beginning of this section. As we have mentioned before, curry(ϕ) is a monoid
homomorphism and thus its image S := curry(ϕ)(M) is a submonoid of AA.
Observe that if there is a function f ∅ S such that f is invertible in S and
f ∪= idA, there are x, y ∅ M such that f = curry(ϕ)(y) and curry(ϕ)(x)↔f = idA.
We then find that there is an a ∅ A such that y·ϕa = f(a) ∪= a, but (x·y)·ϕa = a,
so the above proposition states that �ϕ is not antisymmetric. In other words:
if S has non-trivial invertible elements, the corresponding preorder is not an
order. In particular, if M is a group, so is S and if M additionally contains more
than one element and curry(ϕ) is not the trivial homomorphism (i.e. m ∀∃ idA)
then S is a non-trivial group and thus �ϕ is not an order, because it contains
non-trivial invertible elements.

The property that is equivalent to the antisymmetry can be viewed as a kind
of fixpoint property: for all x, y ∅ M and a ∅ A we have that if a is a fixpoint of
b ∀∃ (x · y) ·ϕ b it is also a fixpoint of b ∀∃ y ·ϕ b (which also implies that it is a
fixpoint of b ∀∃ x ·ϕ b). This fact can be expressed as follows.
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Proposition 2 (Characterisation of antisymmetry II). Let (M, ·, e) be a
monoid, A a set and ϕ : M × A ∃ A a monoid action. Then the following
statements are equivalent:

(1) The action preorder �ϕ is antisymmetric (i.e. an order).
(2) fps ↔ curry(ϕ) : (M, ·, e) ∃ (2A,∩, A) is a monoid homomorphism.

Proof Let ψ := fps ↔ curry(ϕ). First of all we find that

(fps ↔ curry(ϕ))(e) = fps(curry(ϕ)(e)) = fps(idA) = A .

Now let x, y ∅ M . Then we can reason as follows:

≥ a ∅ A : (x · y) ·ϕ a = a ∈ y ·ϕ a = a

⊆∈ { note above this proposition }
≥ a ∅ A : (x · y) ·ϕ a = a ∈ y ·ϕ a = a ⊥ x ·ϕ a = a

⊆∈ { fixpoint rephrasing }
≥ a ∅ A :

a ∅ fps(curry(ϕ)(x · y)) ∈ a ∅ fps(curry(ϕ)(x)) ∩ fps(curry(ϕ)(y))
⊆∈ { definition of ⊂ }

fps(curry(ϕ)(x · y)) ⊂ fps(curry(ϕ)(x)) ∩ fps(curry(ϕ)(y))
⊆∈ { (→) }

fps(curry(ϕ)(x · y)) = fps(curry(ϕ)(x)) ∩ fps(curry(ϕ)(y))
⊆∈ { definition of composition and application }

ψ(x · y) = ψ(x) ∩ ψ(y).

The equivalence denoted by (→) is simple, since for any functions f, g : A ∃ A we
have that if x ∅ fps(f) ∩ fps(g) then f(g(x)) = f(x) = x and thus x ∅ fps(f ↔ g).
Now we get

�ϕ is antisymmetric
⊆∈ { by Lemma 1 }

≥m,n ∅ M : ≥ a ∅ A : (m · n) ·ϕ a = a ∈ n ·ϕ a = a

⊆∈ { equivalence above }
≥m,n ∅ M : ψ(m · n) = ψ(m) ∩ ψ(n)

⊆∈ { see above }
ψ is a monoid homomorphism.

�

Let us now show how to create a fitting monoid and a monoid action for a
given preorder. The idea is quite simple – we want to define a transition system,
such that its transition function is the action. To do that, we observe that orders
and preorders are quite often drawn as their Hasse diagrams. These diagrams
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Fig. 1. A Hasse diagram, added directions, added reflexivity, added transitivity
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Fig. 2. An order transformed to a transition system

are designed specifically to omit reflexivity and transitivity since they can be
restored in a trivial fashion as demonstrated in Fig. 1. The last image bears a
striking resemblance with a transition system except that there is no alphabet
that can be used to act upon the states. Still, we can introduce an alphabet as
indicated in Fig. 2.

The sketched idea behind this alphabet can be formalised as follows. Let A
be a non-empty set and � ⊂ A × A a preorder, set S := A, Σ := A and

δ : S × Σ ∃ S, (s, σ) ∀∃
⎧

σ : s � σ

s : otherwise .

Obviously δ is well-defined. Let A := (S,Σ, δ). Then A is a transition system.
Let x, y ∅ A and consider x a state and y a letter. This consideration yields the
equivalence:

δ(x, y) = y ⊆∈ x � y.

When we rewrite δ as an infix operation (i.e. x δ y instead of δ(x, y)), the above
equivalence is very similar to the following well-known property of sets:

A ∧ B = B ⊆∈ A ⊂ B.

In any lattice (L,�,�) (which generalises the powerset of a set) we have

a � b = b ⊆∈ a � b

by definition and in every idempotent, commutative semigroup (S,+) we have

a + b = b ⊆∈ a ← b.
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Now let M := Σ∗ and

ϕδ : Σ∗ × S ∃ S, (w, s) ∀∃

⎪
⎨⎩

⎨

s : w = ε

δ(s, w) : w ∅ Σ

ϕδ (tail(w), δ(s, head(w))) : otherwise .

Note that ϕδ = swap(δ∗). As mentioned in Example 2 the mapping ϕδ is a
monoid action, which yields that �ϕδ

as defined in Definition 2 is a preorder on
S = A. It turns out that this preorder is the same relation as the original one.

Theorem 1 (Generation of preorders). We have �ϕδ
=�, where ϕδ is the

action and � is the preorder introduced above.

Proof First of all we have:

�ϕ=� ⊆∈ ≥ a, b ∅ A : a � b ⇔
(

∩w ∅ A∗ : ϕ(w, a) = b

)

.

by definition of the equality of relations. We now prove the second statement.
“∈”: Let a, b ∅ A such that a � b and w := b. Then w ∅ Σ ⊂ Σ∗ and we have:

ϕ(w, a) = δ(a,w) = δ(a, b) = b.

“⊆”: To simplify the proof we observe that the following holds:

≥ a, b ∅ A :
(

∩w ∅ A∗ : ϕ(w, a) = b

)

∈ a � b (*)

⊆∈ ≥ a, b ∅ A : ≥w ∅ A∗ : ϕ(w, a) = b ∈ a � b

⊆∈ ≥w ∅ A∗ : ≥ a, b ∅ A : ϕ(w, a) = b ∈ a � b.

The equivalence marked with (→) holds since the conclusion is independent of w
(if x is not free in Q, then ≥x : (P (x) ∈ Q) is equivalent to (∩x : P (x)) ∈ Q
by De Morgan’s law and distributivity). The latter statement will be proved by
induction on the word length.

Ind. beginning: Let w ∅ A∗ such that |w| = 0. Then we have that w = ε. Now
let a, b ∅ A such that ϕ(w, a) = b. This gives us b = ϕ(w, a) = ϕ(ε, a) = a and
the reflexivity of � yields a � b.

Ind. hypothesis: Let n ∅ N and assume that the following holds:

≥w ∅ A∗ : |w| = n ∈
(

≥ a, b ∅ A : ϕ(w, a) = b ∈ a � b

)

.

Ind. step: Let v ∅ A∗ such that |v| = n + 1. Then there are x ∅ A and w ∅ A∗

such that v = xw and |w| = n. Let a, b ∅ A such that ϕ(v, a) = b. Then we have:

b = ϕ(v, a) = ϕ(xw, a) = ϕ(w, δ(a, x)) =

⎧
ϕ(w, x) : a � x

ϕ(w, a) : otherwise .
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If a � x, then by the induction hypothesis we have x � b, which, by the transi-
tivity of �, results in a � b. If on the other hand a ∪� x, then b = ϕ(w, a) and
by the induction hypothesis we immediately obtain a � b, since |w| = n. This
concludes the induction and the proof as well. �

We now rephrase the result of this section for the purpose of legibility.

Corollary 1 (Preorders are monoidally generated). Let A be a non-empty
set and �⊂ A × A a preorder. Then there is a monoid M and a monoid action
ϕ : M × A ∃ A such that �=�ϕ.

For any non-empty set A the set A∗ is infinite (and countable iff A is count-
able). This monoid is somewhat large, since it is the free monoid generated by
the set A. However we can use the well-known quotient construction (cf. [8]) to
obtain an action in which different monoid elements act differently4 (i.e. curry(ϕ)
is injective; such an action is called faithful). To form a quotient one defines for
all m,n ∅ M :

m ∨ n :⊆∈ curry(ϕ)(m) = curry(ϕ)(n).

Clearly, ∨ is an equivalence relation, moreover it is a monoid congruence and
thus M/∞ is a monoid as well. The new action

ϕquotient : M/∞ × A ∃ A, ([m]∞, a) ∀∃ ϕ(m,a)

is then faithful. The quotient monoid is usually far smaller than the free monoid.
Additionally, in many cases the quotient monoid can be described in a less generic
(and more comprehensible) way than as the quotient modulo a congruence.

Let us revisit the antisymmetry of the action preorder once more in the
context of transition systems. Consider the transition system in Fig. 3. The pre-
order induced by this action is not an order, because we have δ(1, q) = r and
δ(1, r) = q, which gives us q �δ r and r �δ q respectively, but q ∪= r. What is
the key ingredient to break antisymmetry in this example? It is the existence of
a non-trivial cycle. With our previous results we can then prove the following
lemma.

q r

0

1

0

1

Fig. 3. An action that doesn’t induce an order

4 The cited source deals with finite state sets only, but the technique easily carries
over to infinite sets as well.
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Proposition 3 (Characterisation of antisymmetry III). Let A = (S,Σ, δ)
be a transition system. Then the following statements are equivalent:

(1) �swap(δ∗) is antisymmetric.
(2) A contains no non-trivial cycles, i.e. if a word does not change a state, so

does every prefix of this word.

This can be proved with Proposition 1, since the second condition is easily trans-
lated into the second statement of the cited proposition.

There is an interesting analogue of this proposition in graph theory. Consider
a graph G = (V,E), where V is a set and E ⊂ V × V . The reachability relation
�G of G is given by

x �G y : ⊆∈ there is a path from x to y

for all x, y ∅ V . It is easy to see that �G is reflexive and transitive5. Also, it
is well-known that if G contains no non-trivial cycles (i.e. loops are allowed),
then �G is an order relation. One can also show that the antisymmetry of �G

results in no non-trivial cycles. These facts demonstrate that antisymmetry and
cycle-freeness are closely related and can be considered in the very same light.

4 Implementation in Curry

In this section we use monoid actions to implement orders in the functional
logical programming language Curry (cf. [7]). We provide a simple prototypi-
cal implementation of monoid actions and resulting preorders and discuss its
shortcomings as well. To run our code we use the KiCS2 compiler (see [6]).

The components of a monoidally generated order (a monoid and a monoid
action) can be expressed more generally for simplicity. We can use that to imple-
ment a very simple version of the general preorder.6

type MonoidAction μ α = μ ← α ← α

type OrderS α = α ← α ← Success

preOrder :: MonoidAction μ α ← OrderS α
preOrder (→) x y = z → x =..= y

where z free

Let us consider an example. To that end we define the naturals as Peano
numbers.

5 In fact �G is the reflexive-transitive closure of E, cf. [9].
6 Clearly this is a greatly simplified approach, since not every function f ::μ ← α ← α

is a monoid action. A user has to verify that μ is a monoid and f is a monoid action
to ensure that preOrder f is in fact a preorder. Alternatively, a proof assistant (e.g.
Coq [4]) can be used to guarantee that preOrder is applicable only once the necessary
conditions have been proved.
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data N = O | S N

(⊥) :: N ← N ← N

O ⊥ y = y
S x ⊥ y = S (x ⊥ y)

This addition yields a notion of comparison7:

(≡⊕) :: OrderS N

(≡⊕) = preOrder (⊥)

Loading these definitions in KiCS2 we get

kics2> S (S O) ≡⊕ O

No more values
kics2> S (S O) ≡⊕ S (S O)
Success
No more values
kics2> x ≡⊕ S O where x free
{x = (S O)} Success
{x = O} Success
No more values

Note that the very concept of an action preorder uses both concepts integrated
in Curry – a functional component “⊗” and a logical one “z where z free”.

While this implementation is very close to its mathematical basis, the reader
may have noticed that our order type does not have a relational look-and-feel,
since orders are more likely to have the type α ∃ α ∃ Bool . Such a relational
version can be obtained by using negation as failure which can be expressed
elegantly in Curry using set functions [3]. Since our implementation is intended to
be prototypical and the above type is rather natural in light of logic programming
we omit the presentation of such a version.

Let us illustrate these “logical orders” with an example function. In total orders8

each two elements are comparable, which allows the notion of a maximum.

maximumBy :: OrderS α ← α ← α ← α
maximumBy (�) x y | x � y = y
maximumBy (�) x y | y � x = x

The rules we gave are overlapping – in case of equality both rules are applica-
ble, resulting in multiple results. Fortunately, when ← is an order all results are
equal, since the constraints x ← y and y ← x imply that x = y .

Clearly, the previous example of an order generated by a monoid action was
trivial, since the action was the monoid operation itself. Let us consider a non-
trivial example next – the “has-suffix-order” � on A∗ for some given set A. The
order is defined by

xs � ys :⊆∈ ∩ zs ∅ A∗ : xs = zs ++ ys .

7 It is simple (but lengthy) to define the integers based on the naturals and to extend
the definitions of ⊥ and ≡⊕ to allow the implementation of ∞Z.

8 An order ∞⊆ A × A is called total iff for all x, y ∈ A it is true that x ∞ y or y ∞ x.
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Note that the definition does not hint at a possible monoid action that gen-
erates this order, because such an action needs to apply a function to the first
element of the comparison and not the second one. Still we can calculate the
following:

xs � ys ⊆∈ ∩ zs ∅ A∗ : xs = zs ++ ys

⊆∈ ∩ zs ∅ A∗ : zs ++ ys = xs

⊆∈ ys �(++) xs ,

which can be rephrased as (�) = flip (preOrder (++)). How is this relation more
interesting? We were able to define this order as a flipped version of another
order. Clearly this is interesting in its own right, but Corollary 1 states that
there is a monoid and a monoid action yielding precisely the order we need. Let
us define an auxiliary function.9

dropN :: N ← [α ] ← [α ]
dropN O x@( : ) = x
dropN [ ] = [ ]
dropN (S x ) ( : ys) = dropN x ys

We observe that the following holds for all xs, ys :: [α ]:

xs � ys ⊆∈ ∩n :: N : dropN n xs = ys .

This does look like an action preorder. But is dropN an action? It is indeed.

Lemma 2 (Properties of dropN). Let A be a non-empty set and

δ : N×A∗ ∃ A∗, (n, l) ∀∃

⎪
⎨⎩

⎨

l : n = 0
: l = [ ]

δ(n∅, l∅) : ∩n∅ ∅ N : n = 1 + n∅ ⊥ ∩x ∅ A : l = x : l∅.

Then δ is (well-defined and) a monoid action of N on A∗ and �=�δ is an order.

Using properties of natural numbers the proof is basically a straightforward
induction. We omit it for two reasons – avoiding unnecessary clutter and the
fact that δ from the above lemma is only a version of dropN that operates on
finite and deterministic arguments, while dropN can be used on infinite or non-
deterministic arguments as well.

We can implement the order � in terms of dropN.

(�) :: OrderS [α ]
(�) = preOrder dropN

For comparison we also define the version discussed above.

(�2) :: OrderS [α ]
(�2) = flip (preOrder (++))

9 The pattern matching in the first rule makes the rules non-overlapping.
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The difference between these implementation is that (�2) searches in an
upward fashion, while (�) does the same in an downward direction. This is to
say that for (�2) we perform the unification z ++ y =..= x with a free variable z .
This creates a list structure omitting unnecessary components, which essentially
searches for a possible number of cons cells that can be ignored in x to obtain y .
Using (�) does precisely that explicitly, because we search for a natural number
of elements to explicitly drop from x to obtain y .

Typically functionally similar parts of programs are abstracted as far as possi-
ble to be applicable in different situations. In functional languages such abstrac-
tions usually include higher-order functions that take necessary operations as
additional arguments. Our implementation of preOrder is such a higher order
function, that allows us to define every order in terms of a specific action.

A drawback of the general abstraction is its possible complexity or even
indecidability. Concerning the complexity consider the comparison of one = S O

to some value (S x ) :: N. Using �∈ this operation is quadratic in the size of
S x . Clearly an implementation of the same order “by hand” requires precisely
two comparisons – first match the outer S and then compare O to x , which
is automatically true. As for the indecidability we consider integer lists. Now
consider the list ones = 1 : ones. We can then define x = 0 : 1 : ones and
y = 1 : 0 : ones. When equipped with the lexicographical order ←lex, which we
implement by hand, we can easily determine that x ←lex y . Now suppose we have
found a monoid action ϕ that generates the order ←lex. Then there is a value z
such that ϕ z x = y (mathematically!), but this equality is not decidable.

In general the above implementation is applicable to orders on finite terms
without any occurrences of ⊥ (the latter is due to the semantics of =..=, see [7]).

The presented implementation is not exclusive to Curry (in particular because
KiCS2 translates Curry to Haskell) and it is possible to translate it into a Haskell
program by using a non-determinism monad (cf. [5]) after the replacement of
logical variables by overlapping rules (e.g. [2]). It should be possible to translate
the latter implementation to any language with higher-order functions.

5 An Alternative Abstraction

The reader may have noticed that until now we have presented orders on count-
able sets only. But what about, say, the order on R? The usual definition states
that for x, y ∅ R we have

x ←R y :⊆∈ y − x ∅ R∃0 ⊆∈ ∩ z ∅ R∃0 : z + x = y.

Structurally the latter definition looks exactly like the order on Z. While it seems
odd that we use R∃0 in the definition, we recall that the order on R requires
the existence of a so-called positive cone that is named R>0 in this example and
R∃0 = R>0 ∧ {0}. A positive cone of a group (G,+, 0) is a P ⊂ G that satisfies

P + P ⊂ P ⊥ 0 /∅ P ⊥ G = −P ∧ {0} ∧ P ,
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where P + P and −P are understood element-wise. Then P0 := P ∧ {0} is a
submonoid of G and +|P0×G is a monoid action. This construction covers the
action that creates the order on Z as well as the action that induces the order
on R.

Observe that the notion of a positive cone requires an inversion operation
of the group operation. In case of monoids the operation of the monoid usually
cannot be inverted. Replacing the monoid with a group transforms the monoid
action into a group action (without any additional requirements). Then the
action preorder becomes an equivalence relation and non-trivial orders are never
equivalences. In fact the concept of cycle-freeness requires the monoids in our
examples to be “anti-groups”, which is to say that the image of the monoid
under the curried action does not contain non-trivial invertible elements. What
is more is that every order that is defined in terms of a positive cone is total,
which is easily shown using the above definition. Since not every order is total,
we cannot expect to find a “positive-cone representation” for every order.

As we have mentioned above the use of a positive cone to define an order is a
special case of a monoid act. The latter requires less structure and is thus easily
defined. The former automatically comes with more properties and is generally
more natural in the context of ordering groups or fields.

6 Related Work and Discussion

Monoid actions and corresponding preorders appear in different contexts natu-
rally e.g. transition systems [8] and algebra [1]. The examples from the introduc-
tion constitute well-known orders that are defined as action preorders, while the
“has-suffix”-order is slightly less common. Orders are also ubiquitous in com-
puter science and mathematics, but they are mostly treated in as tools, rather
than objects of research.

From our results we know that every order can be defined in terms of a
monoid action and we have given an exemplary implementation in Curry. In our
implementation we merely checked whether there is a variable, that acts on the
first argument in a way that results in the second one. Clearly, we could also ask
for this variable as well and obtain the following function.

cofactor :: MonoidAct μ α ← α ← α ← μ
cofactor (→) a b | z → a =..= b = z

where z free

The above function bears a striking similarity with the following definition
of an “inverse function”.

inverse :: (a ← b) ← b ← a
inverse f y | f x =..= y = x

where x free

In fact we can redefine cofactor in terms of inverse, namely:

cofactor (→) a b = inverse (→a) b
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When translated back into mathematical notation the above states that
cofactor yields some z ∅ ϕ(−, a)−1 ({b}), where ϕ is ⊗ uncurried. Searching
for preimage values (at least implicitly) is a common task in logic programming
that appears naturally in a variety of definitions, e.g.:

predecessor :: N ← N

predecessor n | S m =..= n = m
where m free

predecessorAsPreimage = inverse S

Both cofactor and inverse are not necessarily functions in the mathemati-
cal sense, but potentially non-deterministic functions that may return more or
less than one value for a single input. Such functions constitute an important
component of typical functional logic programs and are well supported by Curry.

As we stated earlier, the action preorder is a well-known relation and we have
used very little of existing knowledge. If ϕ : M × A ∃ A is a monoid action, we
can consider the orbit of some element a ∅ A that is defined as

orbitM (a) ..= {m ·ϕ a |m ∅ M} = {b ∅ A | ∩m ∅ M : m ·ϕ a = b}
= {b ∅ A | a �ϕ b}.

The latter set is simply the majorant of a (sometimes denoted {a}≤ or (a)).
This simple connection allows to study the notion of majorants in the context of
monoid actions (and vice versa) thus combining two well-known and well-studied
concepts. An additional similarity occurs when comparing our application of the
free monoid with the construction of a free group of a set [1]. We omit the details
here due to lack of space and immediate applicability.

In Curry every type is already ordered lexicographically w.r.t. the construc-
tors (see definition of compare in [7]). Clearly this gives a total order on every
type, but the actual comparison results depend on the order of constructors,
which requires careful choice of this order. Defining integers as

data Z = Pos N | Neg N

leads to positive numbers being smaller than negative ones. Actions provide a
simple way to define (additional) orders in terms of functions that do not depend
on the order of the constructors. In the above example a library that defines the
data type Z is likely to define an addition on integers add :: Z ∃ Z ∃ Z and an
embedding toInteger :: N ∃ Z. With these two functions one can easily define

act :: N ← Z ← Z

act n z = add (toInteger n) z

which yields the usual order on Z as preOrder act . An additional gain in using
actions is that one can define orders in a more declarative way – instead of
thinking about bit representations or constructors one simply states what is
necessary for one number to be smaller than another.

The prototypical stencil of the above implementation can be varied in differ-
ent ways. One variation concerns the adjustment of the type to the relational
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version α ∃ α ∃ Bool that we have mentioned before. Often an order on a
set A is naturally exp ressed in terms of another order (B,←B) and an injective
function f : A ∃ B such that for all a, a∅ ∅ A we have

a ←A a∅ :⊆∈ f(a) ←B f(a∅).

Additionally if M is a monoid and ϕ : M × B ∃ B is a monoid action that
generates ←B we can incorporate f into the existential quantification:

a ←A a∅ ⊆∈ ∩ z ∅ M : z ·ϕ f(a) = f(a∅).

While the codomain of f has at least the cardinality of A (because of the
injectivity of f), the comparison of values in B may be less complex.

On a more theoretical note it is interesting to study properties of orders in
terms of properties of actions and vice versa. For instance one can show that a
faithful action of a monoid that has no invertible elements except for its unit
always yields an infinite order, which is not obvious at first glance. We suspect
that there are a lot more connections between these seemingly different concepts.

Hats off to: Fabian Reck for the detailed explanation of Curry, Rudolf Bergham-
mer for encouraging this work and additional examples, Insa Stucke for general
discussions and the reviewers for their highly informative and helpful feedback.
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Abstract. hex-programs extend ASP by external sources. In this paper,
we present domain-specific existential quantifiers on top of hex-programs,
i.e., ASP programs with external access which may introduce new values
that also show up in the answer sets. Pure logical existential quantifica-
tion corresponds to a specific instance of our approach. Programs with
existential quantifiers may have infinite groundings in general, but for
specific reasoning tasks a finite subset of the grounding can suffice. We
introduce a generalized grounding algorithm for such problems, which
exploits domain-specific termination criteria in order to generate a finite
grounding for bounded model generation. As an application we consider
query answering over existential rules. In contrast to other approaches,
several extensions can be naturally integrated into our approach. We
further show how terms with function symbols can be handled by hex-
programs, which in fact can be seen as a specific form of existential
quantification.

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which
due to expressive and efficient systems like smodels, DLV and clasp, has been
gaining popularity for many applications [3]. Current trends in computing, such
as context awareness or distributed systems, raised the need for access to external
sources in a program, which, e.g., on the Web ranges from light-weight data
access (e.g., XML, RDF, or data bases) to knowledge-intensive formalisms (e.g.,
description logics).

To cater for this need, hex-programs [7] extend ASP with so-called exter-
nal atoms, through which the user can couple any external data source with a
logic program. Roughly, such atoms pass information from the program, given
by predicate extensions, into an external source which returns output values
of an (abstract) function that it computes. This convenient extension has been
exploited for many different applications, including querying data and ontolo-
gies on the Web, multi-context reasoning, or e-government, to mention a few;
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however, it can also be used to realize built-in functions. The extension is highly
expressive as also recursive data access is possible.

A particular feature of external atoms is value invention, i.e., that they intro-
duce new values that do not occur in the program. Such values may also occur
in an answer set of a hex-program, e.g., if we have a rule like

lookup(X,Y ) ← p(X),&do hash[X](Y )

where intuitively, the external atom &do hash[X](Y ) generates a hash key Y
for the input X and records it in the fact lookup(X,Y ). Here, the variable Y
can be seen under existential quantification, i.e., as ⊆Y , where the quantifier
is externally evaluated, by taking domain-specific information into account; in
the example above, this would be a procedure to calculate the hashkey. Such
domain-specific quantification occurs frequently in applications, be it e.g. for
built-in functions (just think of arithmetic), the successor of a current situation in
situation calculus, retrieving the social security number of a person etc. To handle
such quantifiers in ordinary ASP is cumbersome; they amount to interpreted
functions and require proper encoding and/or special solvers.

hex-programs however provide a uniform approach to represent such domain-
specific existentials. The external treatment allows to deal elegantly with
datatypes (e.g., the social security number, or an IBAN of bank account, or
strings and numbers like reals), to respect parameters, and to realize partial or
domain-restricted quantification of the form ⊆Y.ν(X) ∈ p(X,Y ) where ν(X) is
a formula that specifies the domain of elements X for which an existential value
needs to exist; clearly, also range-restricted quantification ⊆Y.β(Y ) ∈ p(X,Y )
that limits the value of Y to elements that satisfy β can be conveniently realized.

In general, such value invention on an infinite domain (e.g., for strings) leads
to infinite models, which cannot be finitely generated. Under suitable restric-
tions on a program δ, this can be excluded, in particular if a finite portion of
the grounding of δ is equivalent to its full, infinite grounding. This is exploited
by various notions of safety of hex-programs that generalize safety of logic pro-
grams.

In particular, liberal domain-expansion safety (de-safety) [6] is a recent notion
based on term-bounding functions, which makes it modular and flexible; various
well-known notions of safety are subsumed by it. For example, consider the
program

δ = { s(a); t(Y ) ← s(X),&concat [X, a](Y ); s(X) ← t(X), d(X) }, (1)

where &concat [X, a](Y ) is true iff Y is the string concatenation of X and a.
Program δ is safe (in the usual sense) but &concat [X, a](Y ) could hold for
infinitely many Y , if one disregards the semantics of concat ; however, if this is
done by a term bounding function in abstract form, then the program is found
to be liberally de-safe and thus a finite part of δ’s grounding is sufficient to
evaluate it.

Building on a grounding algorithm for liberally de-safe programs [5], we can
effectively evaluate hex-programs with domain-specific existentials that fall in
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this class. Moreover, we in fact generalize this algorithm with domain specific
termination, such that for non-safe programs, a finitely bounded grounding is
generated. Roughly speaking, such a bounded grounding amounts to domain-
restricted quantification ⊆Y.ν(X) ∈ p(X,Y ) where the domain condition ν(X) is
dynamically evaluated during the grounding, and information about the ground-
ing process may be also considered. Thus, domain-specific termination leads to
a partial (bounded) grounding of the program, δ ≥, yielding bounded models of
the program δ; the idea is that the grounding is faithful in the sense that
every answer set of δ ≥ can be extended to a (possibly infinite) answer set of δ,
and considering bounded models is sufficient for an application. This may be
fruitfully exploited for applications like query answering over existential rules,
reasoning about actions, or to evaluate classes of logic programs with function
symbols like FDNC programs [8]. Furthermore, even if bounded models are not
faithful (i.e., may not be extendable to models of the full grounding), they might
be convenient e.g. to provide strings, arithmetic, recursive data structures like
lists, trees etc., or action sequences of bounded length resp. depth. The point is
that the bound does not have to be “coded” in the program (like maxint in DLV
to bound the integer range), but can be provided via termination criteria in the
grounding, which gives greater flexibility. Considering domain specific termina-
tion criteria and potentially even non de-safe programs is beyond the previous
work [5,6]. The resulting algorithm properly generalizes the previous work [5]
and applies to a wider range of applications.

Organization. After necessary preliminaries we proceed as follows.

• We introduce domain-specific existential quantification in hex-programs and
consider its realization (Sect. 3). To this end, we introduce a generalized
grounding algorithm with hooks for termination criteria, which enables
bounded grounding. Notably, its output for de-safe programs (using trivial
criteria) is equivalent to the original program, i.e., it has the same answer
sets.

We illustrate some advantages of our approach, which cannot easily be
integrated into direct implementations of existential quantifiers.

• As an example, we consider the realization of null values (which are custom-
ary in databases) as a domain-specific existential quantifier, leading to hex∅-
programs (Sect. 4); they include existential rules of form ∩X∩Z⊆Y.β(Z,Y) ←
ν(X,Y,Z) (also known as tuple-generating dependencies), where β(Z,Y) is
an atom1 and ν(X,Y,Z) is a conjunction of atoms. Our framework can be
thus exploited for bounded grounding, and in combination with a hex-solver
for bounded model generation of such programs.

• As an immediate application, we consider query answering over existential
rules (Sect. 5), which reduces for prominent settings to query answering over
a universal model. Under de-safety, a finite such model can be generated
using our framework; this allows to cover a range of acyclic existential rules,
including the very general notion of model-faithful acyclicity [14]. For non-de

1 In general, ψ(Z,Y) might be a conjunction of atoms but this may be normalized.
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safe programs, a bounded universal model may be generated under suitable
conditions; we illustrate this for Shy-programs - a class of programs with
existential rules for which query answering is decidable, cf. [17].2

• Furthermore, we show how terms with function symbols can be processed
using an encoding as a hex-program (Sect. 6). To this end, we use dedi-
cated external atoms to construct and decompose functional terms; bounded
grounding enables us here to elegantly restrict the term depth, which is use-
ful for applications such as reasoning with actions in situation calculus under
bounded horizon, or reasoning from FDNC programs.

We conclude with a discussion and an outlook on future work in Sect. 7.
Our prototype system is available at http://www.kr.tuwien.ac.at/research/systems/

dlvhex. For proofs of our formal results, while available, we refer to an extended
version due to space reasons.

2 Preliminaries

hex-Program Syntax. hex-programs generalize (disjunctive) logic programs
under the answer set semantics [13] with external source access; for details and
background see [7]. They are built over mutually disjoint sets P, X , C, and V of
ordinary predicates, external predicates, constants, and variables, respectively.
Every p ∅ P has an arity ar(p) ∃ 0, and every external predicate &g ∅ X has an
input arity ar i(&g) ∃ 0 of input parameters and an output arity aro(&g) ∃ 0
of output arguments.

An external atom is of the form &g[X](Y), where &g ∅ X , X = X1, . . . , Xω

(γ = ari(&g)) are input parameters with Xi ∅ P ∪ C ∪ V for all 1 ⊗ i ⊗ γ,
and Y = Y1, . . . , Ym (m = aro(&g)) are output terms with Yi ∅ C ∪ V for all
1 ⊗ i ⊗ m; we use lower case x = x1, . . . , xω resp. y = y1, . . . , ym if X resp. Y is
variable-free. We assume the input parameters of &g are typed by type(&g, i) ∅
{const, pred} for 1 ⊗ i ⊗ ar i(&g), and that Xi ∅ P if type(&g, i) = pred and
Xi ∅ C ∪ V otherwise.

A hex-program consists of rules

a1 → · · · → ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (2)

where each ai is an (ordinary) atom p(X1, . . . , Xω) with Xi ∅ C ∪ V for all
1 ⊗ i ⊗ γ, each bj is either an ordinary atom or an external atom, and k+n > 0.

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal ; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For
a program δ (rule r), let A(δ) (A(r)) be the set of all ordinary atoms and EA(δ)
(EA(r)) be the set of all external atoms occurring in δ (in r).

hex-Program Semantics. Following [11], a (signed) ground literal is a pos-
itive or a negative formula Ta resp. Fa, where a is a ground ordinary atom.
2 For space reasons we refer to [17] for the definition of Shy-programs.

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex
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For a ground literal σ =Ta or σ =Fa, let σ denote its opposite, i.e., Ta=Fa
and Fa =Ta. An assignment A is a consistent set of literals Ta or Fa, where
Ta expresses that a is true and Fa that a is false. We also identify a com-
plete assignment A with its true atoms, i.e., T(A) = {a | Ta ∅ A}. The
semantics of a ground external atom &g[x](y) wrt. a complete assignment A
is given by a 1+k+l-ary Boolean-valued oracle function, f&g(A,x,y). Parame-
ter xi with type(&g, i) = pred is monotonic (antimonotonic), if f&g(A,x,y) ⊗
f&g(A≥,x,y) (f&g(A≥,x,y) ⊗ f&g(A,x,y)) whenever A≥ increases A only by
literals Ta, where a has predicate xi; otherwise, xi is called nonmonotonic.

Non-ground programs are handled by grounding as usual. The set of con-
stants appearing in a program δ is denoted CΓ . The grounding grndC(r) of a
rule r wrt. C ∀ C is the set of all rules {σ(r) | σ : V ≥↔ C}, where σ is a grounding
substitution, and σ(r) results if each variable X in r is replaced by σ(X). The
grounding of a program δ wrt. C is defined as grndC(δ) =

⋃
r∞Γ grndC(r).

Satisfaction of rules and programs [13] is extended to hex-rules r and pro-
grams δ in the obvious way. The FLP-reduct is defined as fgrndC(δ)A = {r ∅
grndC(δ) | A |= B(r)}. An answer set of a program δ is a model of fgrndC(δ)A

that is subset-minimal in its positive part [9]. We denote by AS(δ) the set of
all answer sets of δ.

Take as an example the program δ = {str(N) ← str(L),&head [L](N); str(N)
← str(L),&tail [L](N)}, where &head [L](N) (&tail [L](N)) is true iff string N is
string L without the last (first) character. For str(x), δ computes all substrings
of string x.

Safety. In general, C has constants that do not occur in δ and can even be
infinite (e.g., the set of all strings). Safety criteria guarantee that a finite portion
δ ≥ ∀ grndC(δ) (also called finite grounding of δ; usually by restricting to a
finite C ∀ C) has the same answer sets as δ. Ordinary safety requires that every
variable in a rule r occurs either in an ordinary atom in B+(r), or in the output
list Y of an external atom &g[X](Y) in B+(r) where all variables in X are safe.
However, this notion is not sufficient.

Example 1. Let δ = {s(a); t(Y ) ← s(X),&concat [X, a](Y ); s(X) ← t(X),
d(X)}, where &concat [X, a](Y ) is true iff Y is the string concatenation of X
and a. Then δ is safe but &concat [X, a](Y ) can introduce infinitely many val-
ues.

The general notion of (liberal) domain-expansion safety (de-safety) subsumes
a range of other well-known notions and can be easily extended in a modular
fashion [6]. It is based on term bounding functions (TBFs), which intuitively
declare terms in rules as bounded, if there are only finitely many substitutions
for this term in a canonical grounding CG(δ) of δ.3 The latter is infinite in
general but finite for de-safe programs.

More specifically we consider attributes and ranges. For an ordinary pred-
icate p ∅P, let p�i be the i-th attribute of p for all 1 ⊗ i ⊗ ar(p). For an
3 CG(Π) is the least fixed point G⊕

Π (←) of a monotone operator GΠ(Π ′) =
⋃

r∈Π{rθ |
rθ → grndC(r), ⊥A ≡ A(Π ′),A ∞|= ⊆,A |= B+(rθ)} on programs Π ′ [6].
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external predicate &g ∅ X with input list X in rule r, let &g[X]r�T i with
T ∅ {i,o} be the i-th input resp. output attribute of &g[X] in r for all 1 ⊗
i ⊗ arT (&g). For a ground program δ, an attribute range is, intuitively, the
set of ground terms which occur in the position of the attribute. Formally, for
an attribute p�i we have range(p�i,δ) = {ti | p(t1, . . . , tar(p)) ∅ A(δ)}; for
&g[X]r�T i it is range(&g[X]r�T i,δ) = {xT

i | &g[xi](xo) ∅ EA(δ)}, where
xs = xs

1, . . . , x
s
ars(&g). Now term bounding functions are introduced as follows:

Definition 1. (Term Bounding Function (TBF)). A TBF b(δ, r, S,B)
maps a program δ, a rule r ∅ δ, a set S of already safe attributes, and a set
B of already bounded terms in r to an enlarged set b(δ, r, S,B) ∪ B of bounded
terms, s.t. every t ∅ b(δ, r, S,B) has finitely many substitutions in CG(δ) if (i)
the attributes S have a finite range in CG(δ) and (ii) each term in terms(r)∩B
has finitely many substitutions in CG(δ).

Liberal domain-expansion safety of programs is then parameterized with a
term bounding function, such that concrete syntactic and/or semantic proper-
ties can be plugged in; concrete term bounding functions are described in [6].
The concept is defined in terms of domain-expansion safe attributes S∈(δ),
which are stepwise identified as Sn(δ) in mutual recursion with bounded terms
Bn(r,δ, b) of rules r in δ.

Definition 2. ((Liberal) Domain-expansion Safety). Given a TBF b, the
set of bounded terms Bn(r,δ, b) in step n ∃ 1 in a rule r ∅ δ is Bn(r,δ, b) =⋃

j∃0 Bn,j(r,δ, b) where Bn,0(r,δ, b) = ⊥ and for j ∃ 0, Bn,j+1(r,δ, b) =
b(δ, r, Sn−1(δ), Bn,j).

The set of domain-expansion safe attributes S∈(δ) =
⋃

i∃0 Si(δ) of a pro-
gram δ is iteratively constructed with S0(δ) = ⊥ and for n ∃ 0:

– p�i∅ Sn+1(δ) if for each r ∅ δ and atom p(t1, . . . , tar(p)) ∅ H(r), it holds
that ti ∅ Bn+1(r,δ, b), i.e., ti is bounded;

– &g[X]r�ii∅ Sn+1(δ) if each Xi is a bounded variable, or Xi is a predicate
input parameter p and p�1, . . . , p�ar(p) ∅ Sn(δ);

– &g[X]r�oi∅ Sn+1(δ) if and only if r contains an external atom &g[X](Y)
such that Yi is bounded, or &g[X]r�i1, . . . ,&g[X]r�iar i(&g) ∅ Sn(δ).

A program δ is (liberally) de-safe, if it is safe and all its attributes are de-safe.

Example 2. The program δ from Example 1 is liberally de-safe using the TBF
bsynsem from [6] (see Appendix A) as the generation of infinitely many values is
prevented by d(X) in the last rule.

Every de-safe hex-program has a finite grounding that preserves all answer
sets [6].
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3 hex-Programs with Existential Quantification

In this section, we consider hex-programs with domain-specific existential quan-
tifiers. This term refers to the introduction of new values in rule bodies which
are propagated to the head such that they may appear in the answer sets of
a program. Logical existential quantification is a special case of our approach
(used in Sect. 4 to illustrate a specific instance), where just the existence but not
the structure of values is of interest. Instead, in our work also the structure of
introduced values may be relevant and can be controlled by external atoms.

Instantiating, i.e., applying, our approach builds on an extension of the
grounding algorithm for hex-programs in [5] by additional hooks. They sup-
port the insertion of application-specific termination criteria, and thus can be
exploited for computing a finite subset of the grounding in case of non-de-safe
hex-programs. The latter may be sufficient to consider a certain reasoning task,
e.g., for bounded model building. For instance, we discuss queries over (positive)
programs with (logical) existential quantifiers in Sect. 5, which can be answered
by computing a finite part of a canonical model.

hex-Program Grounding. For introducing our bounded grounding algorithm
BGroundHEX, we make use of so-called input auxiliary rules. We say that an
external atom &g[Y](X) joins an atom b, if some variable from Y occurs in b,
where in case b is an external atom the occurrence is in the output list of b.

Definition 3. (Input Auxiliary Rule). Let δ be a hex-program. Then for
each external atom &g[Y](X) occurring in rule r ∅ δ, a rule r

&g[Y](X)
inp is com-

posed as follows:

– The head is H(r&g[Y](X)
inp ) = {ginp(Y)}, where ginp is a fresh predicate; and

– The body B(r&g[Y](X)
inp ) contains all b ∅ B+(r) \ {&g[Y](X)} which join

&g[Y](X).

Intuitively, input auxiliary rules are used to derive all ground input tuples y,
under which the external atom needs to be evaluated.

Our grounding approach is based on a grounder for ordinary ASP pro-
grams. Compared to the naive grounding grndC(δ), we allow the ASP grounder
GroundASP to eliminate rules if their body is always false, and ordinary body lit-
erals from the grounding that are always true, as long as this does not change the
answer sets. More formally, a rule r≥ is an o-strengthening (ordinary-
strengthening) of a rule r, if H(r≥) = H(r), B(r≥) ∀ B(r) and B(r) \ B(r≥)
contains only ordinary literals, i.e., no external atom replacements.

Definition 4. An algorithm GroundASP that takes as input a program δ and
outputs a ground program δ ≥ is a faithful ASP grounder for a safe program δ,
if:

– AS(δ ≥) = AS(grndCΠ
(δ));

– δ ≥ consists of o-strengthenings of rules in grndCΠ
(δ);
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– if r ∅ grndCΠ
(δ) has no o-strengthening in δ ≥, then every answer set of

grndCΠ
(δ) falsifies some ordinary literal in B(r); and

– if r ∅ grndCΠ
(δ) has some o-strengthening r≥ ∅ δ ≥, then every answer set of

grndCΠ
(δ) satisfies B(r) \ B(r≥).

Intuitively, the bounded grounding Algorithm BGroundHEX can be explained
as follows. Program δ is the non-ground input program. Program δp is the
non-ground ordinary ASP prototype program, which is an iteratively updated
variant of δ enriched with additional rules. In each step, the preliminary ground
program δpg is produced by grounding δp using a standard ASP grounding
algorithm. Program δpg is intended to converge against a fixpoint, i.e., a final
ground hex-program δg. For this purpose, the loop at (b) and the abortion
check at (f) introduce two hooks (Repeat and Evaluate) which allow for realizing
application-specific termination criteria. They need to be substituted by concrete
program fragments depending on the reasoning task; for now we assume that the
loop at (f) runs exactly once and the check at (f) is always true (which is sound
and complete for model computation of de-safe programs, cf. Proposition 1).

The algorithm first introduces input auxiliary rules r
&g[Y](X)
inp for every exter-

nal atom &g[Y](X) in a rule r in δ in Part (a). Then, all external atoms
&g[Y](X) in all rules r in δp are replaced by ordinary replacement atoms
er,&g[Y](X). This allows the algorithm to use an ordinary ASP grounder
GroundASP in the main loop at (b). After the grounding step, it is checked
whether the grounding constants. For this, the algorithm checks, for all exter-
nal atoms (d) and all relevant input interpretations (e), potential output tuples
at (f), if they contain any new value that was not yet respected in the grounding.
(Note that, Ym,Ya,Yn denote the sets of monotonic, antimonotonic, and non-
monotonic predicate input parameters in Y, respectively.) It adds the relevant
constants in form of guessing rules at (g) to δp (this may also be expressed
by unstratified negation). Then the main loop starts over again. Eventually, the
algorithm is intended to find a program respecting all relevant constants. Then
at (h), auxiliary input rules are removed and replacement atoms are translated
to external atoms.

Let us illustrate the grounding algorithm with the following example.

Example 3. Let δ be the following program:

f : d(a). d(b). d(c). r1 : s(Y ) ← d(X),&diff [d, n](Y ), d(Y ).
r2 : n(Y ) ← d(X),&diff [d, s](Y ), d(Y ).
r3 : c(Z) ← &count [s](Z).

Here, &diff [s1, s2](x) is true for all elements x, which are in the extension of
s1 but not in that of s2, and &count [s](i) is true for the integer i corresponding
to the number of elements in the extension of s. The program first partitions
the domain (extension of d) into two sets (extensions of s and n) and then
computes the size of s. Program δp at the beginning of the first iteration is
as follows, where e1(Y ), e2(Y ) and e3(Z) are shorthands for er1,&diff [d,n](Y ),
er2,&diff [d,s](Y ), and er3,&count[s](Z), respectively.
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Algorithm. BGroundHEX
Input: A hex-program Γ
Output: A ground hex-program Γg

(a) Γp = Γ ≤ {r
&g[Y](X)
inp | &g[Y](X) in r ∞ Γ}

Replace all external atoms &g[Y](X) in all rules r in Γp by er,&g[Y](X)

i ⊥ 0
(b) while Repeat() do

i ⊥ i + 1 // Remember already processed input tuples at iteration i
(c) Set NewInputTuples ⊥ ∅ and PIT i ⊥ ∅

repeat
Γpg ⊥ GroundASP(Γp) // partial grounding

(d) for &g[Y](X) in a rule r ∞ Γ do // evaluate all external atoms
(e) // do this under all relevant assignments

Ama = {Tp(c) | a(c) ∞ A(Γpg), p ∞ Ym} ≤ {Fp(c) | a(c) ∞ A(Γpg), p ∞ Ya}
for Anm ⊆ {Tp(c),Fp(c) | p(c) ∞ A(Γpg), p ∞ Yn} s.t. �a : Ta,Fa ∞ Anm do

A = (Ama ≤ Anm ≤ {Ta | a ⊥∞ Γpg}) \ {Fa | a ⊥∞ Γpg}
(f) for y ∞ {c | r

&g[Y](X)
inp (c) ∞ A(Γpg) s.t. Evaluate(r

&g[Y](X)
inp (c)) = true do

(g) // add ground guessing rules and remember y-evaluation
Γp ⊥ Γp ≤ {er,&g[y](x) ∨ ner,&g[y](x) ⊥ | f&g(A,y,x) = 1}
NewInputTuples ⊥ NewInputTuples ≤ {r

&g[Y](X)
inp (y)}

PIT i ⊥ PIT i ≤ NewInputTuples

until Γpg did not change

(h) Remove input auxiliary rules and external atom guessing rules from Γpg

Replace all e&g[y](x) in Γpg by &g[y](x)

return Γpg

f : d(a). d(b). d(c). r1 : s(Y ) ← d(X), e1(Y ), d(Y ).
r2 : n(Y ) ← d(X), e2(Y ), d(Y ).
r3 : c(Z) ← e3(Z).

Program δpg contains no instances of r1, r2 and r3 because the optimizer
recognizes that e1(Y ), e2(Y ) and e3(Z) occur in no rule head and no ground
instance can be true in any answer set. Then the algorithm moves to the checking
phase. It evaluates the external atoms in r1 and r2 under A = {d(a), d(b), d(c)}
(note that &diff [s1, s2](x) is monotonic in s1 and antimonotonic in s2) and adds
the rules {ei(Z) → nei(Z) ← | Z ∅ {a, b, c}, i ∅ {1, 2}} to δp. Then it evaluates
&count [s](Z) under all A ∀ {s(a), s(b), s(c)} because it is nonmonotonic in s,
and adds the rules {e3(Z)→ne3(Z) ← | Z ∅ {0, 1, 2, 3}}. It terminates after the
second iteration. �

The main difference to the algorithm from [5] is the addition of the two
hooks at (c) (Repeat) and at (f) (Evaluate), that need to be defined for a con-
crete instance of the algorithm (which we do in the following). We assume that
the hooks are substituted by code fragments with access to all local variables.
Moreover, the set PIT i contains the input atoms for which the corresponding
external atoms have been evaluated in iteration i. Evaluate decides for a given
input atom r

&g[Y](X)
inp (c) if the corresponding external atom shall be evaluated

under c. This allows for abortion of the grounding even if it is incomplete, which
can be exploited for reasoning tasks over programs with infinite groundings where
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a finite subset of the grounding is sufficient. The second hook Repeat allows for
repeating the core algorithm multiple times such that Evaluate can distinguish
between input tuples processed in different iterations.

Naturally, soundness and completeness of the algorithm cannot be shown in
general, but depends on concrete instances for the hooks at (c) and (f) which
in turn may vary for different reasoning tasks. Instantiating the hooks does not
follow a general pattern but is strongly application dependent. However, we give
some concrete examples in the remaining part of the paper.

Domain-specific Existential Quantification in hex-Programs. We can
realize domain-specific existential quantification naturally in hex-programs by
appropriate external atoms that introduce new values to the program. The real-
ization exploits value invention as supported by hex-programs, i.e., external
atoms which return constants that do not show up in the input program. Real-
izing existentials by external atoms also allows to use constants different from
Skolem terms, i.e., datatypes with a specific semantics. The values introduced
may depend on input parameters passed to the external atom.

Example 4. Consider the following rule:

iban(B, I) ← country(B,C), bank(B ,N ),&iban[C,B,N ](I).

Suppose bank(b, n) models financial institutions b with their associated
national number n, and country(b, c) holds for an institution b and its home
country c. Then one can use &iban[C,B,N ](I) to generate an IBAN (Inter-
national Bank Account Number) I from the country C, the bank name B and
account number N .

Here, the structure of the introduced value is relevant, but an algorithm
which computes it can be hidden from the user. The introduction of new values
may also be subject to additional conditions which cannot easily be expressed
in the program.

Example 5. Consider the following rule:

lifetime(M,L) ← machine(M,C),&lifetime[M,C](L).

It expresses that each purchased machine m with cost c (machine(m, c)) higher
than a given limit has assigned an expected lifetime l (lifetime(m, l)) used for
fiscal purposes, whereas purchases below that limit are fully tax deductible in the
year of acquirement. Then testing for exceedance of the limit might involve real
numbers and cannot easily be done in the logic program. However, the external
atom can easily be extended in such a way that a value is only introduced if this
side constraint holds.

Counting quantifiers may be realized in this way, i.e., expressing that there
exist exactly k or at least k elements, which is used e.g. in description logics.
While a direct implementation of existentials requires changes in the reasoner,
a simulation using external atoms is easily extendable.
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4 hex∃-Programs

We now realize the logical existential quantifier as a specific instance of our
approach, which can also be written in the usual syntax; a rewriting then simu-
lates it by using external atoms which return dedicated null values to represent
a representative for the unnamed values introduced by existential quantifiers.
We start by introducing a language for hex-programs with logical existential
quantifiers, called hex∅-programs.

A hex∅-programs is a finite set of rules of form

∩X⊆Y : p(X≥,Y) ← conj[X], (3)

where X and Y are disjoint sets of variables, X≥ ∀ X, p(X≥,Y) is an atom, and
conj[X] is a conjunction of default literals or default external literals containing
all and only the variables X; without confusion, we also omit ∩X.

Intuitively speaking, whenever conj[X] holds for some vector of constants X,
then there should exist a vector Y of (unnamed) individuals such that p(X≥,Y)
holds. Existential quantifiers are simulated by using new null values which rep-
resent the introduced unnamed individuals. Formally, we assume that N ∀ C is
a set of dedicated null values, denoted by Γi with i ∅ N, which do not appear in
the program.

We transform hex∅-programs to hex-programs as follows. For a hex∅

-program δ, let T∅(δ) be the hex-program with each rule r of form (3) replaced
by

p(X≥,Y) ← conj[X],&exists |X′|,|Y|[r](, )X≥Y,

where f&existsn,m(A, r,x,y) = 1 iff y = Γ1, . . . , Γm is a vector of fresh and unique
null values for r,x, and f&existsn,m(A, r,x,y) = 0 otherwise.

Each existential quantifier is replaced by an external atom &exists |X′|,|Y|[r,
X≥](Y) of appropriate input and output arity which exploits value invention for
simulating the logical existential quantifier similar to the chase algorithm.

We call a hex∅-program δ liberally de-safe iff T∅(δ) is liberally de-safe.
Various notions of cyclicity have been introduced, e.g., in [14]; here we use the
one from [6].

Example 6. The following set of rules is a hex∅-program δ:

employee(john). employee(joe).
r1 : ⊆Y : office(X,Y ) ← employee(X). r2 : room(Y ) ← office(X,Y )

Then T∅(δ) is the following de-safe program:

employee(john). employee(joe).
r≥
1 : office(X,Y ) ← employee(X),&exists1,1[r1,X](Y ).

r2 : room(Y ) ← office(X,Y )

Intuitively, each employee X has some unnamed office Y of X, which is a room.
The unique answer set of T∅(δ) is {employee(john), employee(joe), office(john,
Γ1), office(joe, Γ2), room(Γ1), room(Γ2)}.
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For grounding de-safe programs, we simply let Repeat test for i < 1 and Eval-
uate return true. Explicit model computation is in general infeasible for non-de-
safe programs. However, the resulting algorithm GroundDESafeHEX always ter-
minates for de-safe programs. For non-de-safe programs, we can support bounded
model generation by other hook instantiations. This is exploited e.g. for query
answering over cyclic programs (described next). One can show that the algo-
rithm computes all models of the program.

Proposition 1. For de-safe programs δ, AS(GroundDESafeHEX(δ)) ⊂pos

AS(δ), where ⊂pos denotes equivalence of the answer sets on positive atoms.

5 Query Answering over Positive hex∃-Programs

The basic idea for query answering over programs with possibly infinite mod-
els is to compute a ground program with a single answer set that can be used
for answering the query. Positive programs with existential variables are essen-
tially grounded by simulating the parsimonious chase procedure from [17], which
uses null values for each existential quantification. However, for termination of
BGroundHEX we need to provide specific instances of the hooks in the grounding
algorithm.

We start by restricting the discussion to a fragment of hex∅-programs, called
Datalog∅-programs [17]. A Datalog∅-program is a hex∅-program where every
rule body conj[X] consists of positive ordinary atoms. Thus compared to hex∅-
programs, default negation and external atoms are excluded.

As an example, the following set of rules is a Datalog∅-program:

person(john). person(joe).
r1 : ⊆Y : father(X,Y ) ← person(X). r2 : person(Y ) ← father(X,Y ). (4)

Next, we recall homomorphisms as used for defining Datalog∅-semantics and
query answering over Datalog∅-programs. A homomorphism is a mapping h : N ∪
V ↔ C ∪ V. For a homomorphism h, let h|S be its restriction to S ∀ N ∪ V,
i.e., h|S(X) = h(X) if X ∅ S and is undefined otherwise. For any atom a, let
h(a) be the atom where each variable and null value V in a is replaced by h(V );
this is likewise extended to h(S) for sets S of atoms and/or vectors of terms.
A homomorphism h is a substitution, if h(N) = N for all N ∅ N . An atom a
is homomorphic (substitutive) to atom b, if some homomorphism (substitution)
h exists such that h(a) = b. An isomorphism between two atoms a and b is a
bijective homomorphism h s.t. h(a) = b and h−1(b) = a.

A set M of atoms is a model of a Datalog∅-program δ, denoted M |= δ,
if h(B(r))∀ M for some substitution h and r ∅ δ of form (3) implies that
h|X(H(r)) is substitutive to some atom in M ; the set of all models of δ is
denoted by mods(δ).

Next, we can introduce queries over Datalog∅-programs. A conjunctive query
(CQ) q is an expression of form ⊆Y : ← conj[X ∪ Y], where Y and X (the
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free variables) are disjoint sets of variables and conj[X ∪ Y] is a conjunction of
ordinary atoms containing all and only the variables X ∪ Y.

The answer of a CQ q with free variables X wrt. a model M is defined as
follows:

ans(q,M) = {h|X | h is a substitution and h(conj[X ∪ Y]) ∀ M}.

Intuitively, this is the set of assignments to the free variables such that the
query holds wrt. the model. The answer of a CQ q wrt. a program δ is then
defined as the set ans(q,δ) =

⋂
M∞mods(Γ) ans(q,M).

Query answering can be carried out over some universal model U of the pro-
gram that is embeddable into each of its models by applying a suitable homo-
morphism. Formally, a model U of a program δ is called universal if, for each
M ∅ mods(δ), there is a homomorphism h s.t. h(U) ∀ M . Thus, a universal
model may be obtained using null values for unnamed individuals introduced by
existential quantifiers. Moreover, it can be used to answer any query according
to the following proposition [10]:

Proposition 2. ([10]). Let U be a universal model of Datalog∅-program δ.
Then, for any CQ q, it holds that h ∅ ans(q,δ) iff h ∅ ans(q, U) and h : V ↔
C \ N .

Intuitively, the set of all answers to q wrt. U which map all variables to
non-null constants is exactly the set of answers to q wrt. δ.

Example 7. Let δ be the program consisting of rules (4). The CQ ⊆Y :←
person(X), father(X,Y ) asks for all persons who have a father. The model U =
{person(john), person(joe), father(john, Γ1), father(joe, Γ2), person(Γ1), person
(Γ2), . . .} is a universal model of δ. Hence, ans(q,δ) contains answers h1(X)=
john and h2(X)= joe.

Thus, computing a universal model is a key issue for query answering. A com-
mon approach for this step is the chase procedure. Intuitively, it starts from
an empty interpretation and iteratively adds the head atoms of all rules with
satisfied bodies, where existentially quantified variables are substituted by fresh
nulls. However, in general this procedure does not terminate. Thus, a restricted
parsimonious chase procedure was introduced in [17], which derives less atoms,
and which is guaranteed to terminate for the class of Shy-programs. The latter
is a syntactic fragment of so-called parsimonious programs that can be easily
recognized but still significantly extends Datalog programs and linear Datalog∅-
programs. Moreover, the interpretation computed by the parsimonious chase
procedure is, although not a model of the program in general, still sound and
complete for query answering; and a bounded model in our view.

For query answering over Datalog∅-programs we reuse the translation in
Sect. 4.
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Example 8. Consider the Datalog∅-program δ and its hex translation T∅(δ):

Π :
person(john). person(joe).

⊥Y : father(X, Y ) ∈ person(X).
person(Y ) ∈ father(X, Y ).

T∃(Π) :
person(john). person(joe).
father(X, Y ) ∈ person(X),

&exists1,1[r1, X](Y ).
person(Y ) ∈ father(X, Y ).

Intuitively, each person X has some unnamed father Y of X which is also a
person.

Note that T∅(δ) is not de-safe in general. However, with the hooks in Algo-
rithmBGroundHEX one can still guarantee termination. Let GroundDatalog∅(δ, k)
= BGroundHEX(T∅(δ)) where Repeat tests for i < k + 1 where k is the number
of existentially quantified variables in the query, and Evaluate(PIT i, x) = true
iff atom x is not homomorphic to any a ∅ PIT i. The produced program has a
single answer set, which essentially coincides with the result of pChase [17] that
can be used for query answering. The basic idea of pChase is to start with an
empty assignment, and iteratively “repair” it by adding the head atoms of the
rules which have a satisfied body. Thus, query answering over Shy-programs is
reduced to grounding and solving of a hex-program.

Proposition 3. For a Shy-program δ, GroundDatalog∅(δ, k) has a unique
answer set which is sound and complete for answering CQs with up to k exis-
tential variables.

The main difference to pChase in [17] is essentially due to the homomorphism
check. Actually, pChase instantiates existential variables in rules with satisfied
body to new null values only if the resulting head atom is not homomorphic to an
already derived atom. In contrast, our algorithm performs the homomorphism
check for the input to &existsn,m atoms. Thus, homomorphisms are detected
when constants are cyclically sent to the external atom. Consequently, our app-
roach may need one iteration more than pChase, but allows for a more elegant
integration into our algorithm.

Example 9. For the program and query from Example 8, the algorithm computes
a program with answer set{person(john), person(joe), father(john, Γ1), father
(joe, Γ2), person(Γ1), person(Γ2)}. In contrast, pChase would stop already ear-
lier with the interpretation {person(john), person(joe), father(john, Γ1), father
(joe, Γ2)} because person(Γ1), person(Γ2) are homomorphic to person(john),
person(joe).

More formally, one can show that GroundDatalog∅(δ, k) yields, for a Shy-
program δ, a program with a single answer set that is equivalent to pChase(δ,
k + 1) in [17]. Lemma 4.9 in [17] implies that the resulting answer set can be
used for answering queries with k different existentially quantified variables,
which proves Proposition 3.
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While pChase intermingles grounding and computing a universal model, our
algorithm cleanly separates the two stages; modularized program evaluation by
the solver will however also effect such intermingling. We nevertheless expect
the more clean separation to be advantageous for extending Shy-programs to
programs that involve existential quantifiers and other external atoms, which we
leave for future work.

6 hex-Programs with Function Symbols

In this section we show how to process terms with function symbols by a rewriting
to de-safe hex-programs. We will briefly discuss advantages of our approach
compared to a direct implementation of function symbols.

We consider hex-programs, where the arguments Xi for 1 ⊗ i ⊗ γ of ordinary
atoms p(X1, . . . , Xω), and the constant input arguments in X and the output Y
of an external atom &g[X](Y) are from a set of terms T , that is the least set
T ∪ V ∪C such that f ∅ C (constant symbols are also used as function symbols)
and t1, . . . , tn ∅ T imply f(t1, . . . , tn) ∅ T .

Following [4], we introduce for every k ∃ 0 two external predicates &compk

and &decompk with ar i(&compk) = 1 + k, aro(&compk) = 1, ar i(&decompk) =
1, and aro(&decompk) = 1 + k. We define

f&compk
(A, f,X1, . . . , Xk, T ) = f&decompk

(A, T, f,X1, . . . , Xk) = 1,

iff T = f(X1, . . . , Xk).
Composition and decomposition of function terms can be simulated using

these external predicates. Function terms are replaced by new variables and
appropriate additional external atoms with predicate &compk or &decompk in
rule bodies to compute their values. More formally, we introduce the following
rewriting.

For any hex-program δ with function symbols, let Tf (δ) be the hex-
program where each occurrence of a term t = f(t1, . . . , tn) in a rule r such that
B(r) ∧= ⊥ is recursively replaced by a new variable V , and if V occurs afterwards
in H(r) or the input list of an external atom in B(r), we add &compn[f, t1, . . . , tn]
(V ) to B(r); otherwise (i.e., V occurs afterwards in some ordinary body atom or
the output list of an external atom), we add &decompn[V ](f, t1, . . . , tn) to B(r).

Intuitively, &compn is used to construct a nested term from a function symbol
and arguments, which might be nested terms themselves, and &decompn is used
to extract the function symbol and the arguments from a nested term. The
translation can be optimized wrt. evaluation efficiency, but we disregard this
here for space reasons.

Example 10. Consider the hex-program δ with function symbols and its trans-
lation:

δ : q(z). q(y).
p(f(f(X))) ← q(X).

r(X) ← p(X).
r(X) ← r(f(X)).

Tf (δ) : q(z). q(y).
p(V ) ← q(X),&comp1[f,X](U),

&comp1[f, U ](V ).
r(X) ← p(X).
r(X) ← r(V ),&decomp1[V ](f,X).
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Intuitively, Tf (δ) builds f(f(X)) for any X on which q holds using two atoms
over &comp1, and it extracts terms X from derived r(f(X)) facts using a
&decomp1-atom.

Note that &decompn supports a well-ordering on term depth such that its
output has always a strictly smaller depth than its inputs. This is an important
property for proving finite groundability of a program by exploiting the TBFs
introduced in [6].

Example 11. The program δ = {q(f(f(a))); q(X) ← q(f(X))} is translated
to Tf (δ) = {q(f(f(a))); q(X) ← q(V ),&decomp1[V ](f,X)}. Since &decomp1

supports a well-ordering, the cycle is benign [6], i.e., it cannot introduce infinitely
many values because the nesting depth of terms is strictly decreasing with each
iteration.

The realization of function symbols via external atoms (which can in fact
also be seen as domain-specific existential quantifiers) has the advantage that
their processing can be controlled. For instance, the introduction of new nested
terms may be restricted by additional conditions which can be integrated in the
semantics of the external predicates &compk and &decompk. A concrete exam-
ple is data type checking, i.e., testing whether the arguments of a function term
are from a certain domain. In particular, values might also be rejected, e.g.,
bounded generation up to a maximal term depth is possible. Another example
is to compute some of the term arguments automatically from others, e.g., con-
structing the functional term num(7, vii) from 7, where the second argument is
the Roman representation of the first one.

Another advantage is that the use of external atoms for functional term
processing allows for exploiting de-safety of hex-programs to guarantee finiteness
of the grounding. An expressive framework for handling domain-expansion safe
programs [6] can be reused without the need to enforce safety criteria specific
for function terms.

7 Discussion and Conclusion

We presented model computation and query answering over hex-programs with
domain-specific existential quantifiers, based on external atoms and a new ground-
ing algorithm. In contrast to usual handling of existential quantifiers, ours espe-
cially allows for an easy integration of extensions such as additional constraints
(even of non-logical nature) or data types. This is useful e.g. for model building
applications where particular data is needed for existential values, and gives one
the possibility to implement domain-restricted quantifiers and introduce null val-
ues, as in databases. The new grounding algorithm allows for controlled bounded
grounding; this can be exploited for bounded model generation, which might be
sufficient (or convenient) for applications. Natural candidates are configuration
or, at an abstract level, generating finite models of general first-order formulas as
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in [12], where an incremental computation of finite models is provided by a trans-
lation into incremental ASP. There, grounding and solving is interleaved by con-
tinuously increasing the bound on the number of elements in the domain. (Note
that, although not designed for interleaved evaluation, our approach is flexible
enough to also mimic exactly this technique with suitable external atoms.) The
work in [1] aims at grounding first-order sentences with complex terms such as
functions and aggregates for model expansion tasks. Similar to ours, it is based
on bottom-up computation, but we do not restrict to finite structures and allow
for potentially infinite domains. As a show case, we considered purely logical exis-
tentials (null values), for which our grounding algorithm amounts to a simulation
of the one in [17] for Datalog∅-programs. However, while [17] combine grounding
and model building, our approach clearly separates the two steps; this may ease
possible extensions.

We then realized function symbol processing as in [4], by using external atoms
to manipulate nested terms. In contrast to other approaches, no extension of
the reasoner is needed for this. Furthermore, using external atoms has the advan-
tage that nested terms can be subject to (even non-logical) constraints given by
the semantics of the external atoms, and that finiteness of the grounding follows
from de-safety of hex-programs.

In model-building over hex∅-programs, we can combine existentials with
function symbols, as hex∅-programs can have external atoms in rule bodies.
To allow this for query answering over Datalog∅-programs remains to be consid-
ered. More generally, also combining existentials with arbitrary external atoms
and the use of default-negation in presence of existentials is an interesting issue
for future research. This leads to nonmonotonic existential rules, which most
recently are considered in [18] and in [15], equipping the Datalog±formalism,
which is tailored to ontological knowledge representation and tractable query
answering, with well-founded negation. Another line for future research is to
allow disjunctive rules and existential quantification as in Datalog∅,∨ [2], lead-
ing to a generalization of the class of Shy-programs. Continuing on the work on
guardedness conditions as in open answer set programming [16], Datalog∅, and
Datalog± should prove useful to find important techniques for constructing more
expressive variants of hex-programs with domain-specific existential quantifiers.
The separation of grounding and solving in our approach should be an advantage
for such enhancements.

A Appendix: Term Bounding Function bsynsem

The TBF bsynsem [6] builds on the positive attribute dependency graph GA(δ),
whose nodes are the attributes of δ and whose edges model the information
flow between them. E.g., if for rule r we have p(X)∅ H(r) and q(Y)∅ B+(r)
such that Xi =Yj for some Xi ∅X and Yj ∅Y, then we have a flow from q�j
to p�i. A cycle K in GA(δ) is benign wrt. a set of safe attributes S, if there
exists a well-ordering ⊗C of C, such that for every &g[X]r�oj ∧∅ S in the cycle,
f&g(A, x1, . . . , xm, t1, . . . tn) = 0 whenever
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– some xi for 1⊗ i⊗ m is a predicate parameter, &g[X]r�ii ∧∅ S is in K, and we
have (s1, . . . , sar(xi))∅ ext(A, xi), and tj ∧⊗C sk for some 1 ⊗ k ⊗ ar(xi); or

– for some 1 ⊗ i ⊗ m, type(&g, i) = const, &g[X]r�ii ∧∅ S is in K, and tj ∧⊗C xi.

A cycle in GA(δ) is called malign wrt. S if it is not benign. Then bsynsem is as
follows.

Definition 5 (Syntactic and Semantic Term Bounding Function).
We define the TBF bsynsem(δ, r, S,B) such that t ∅ bsynsem(δ, r, S,B) iff

(i) t is a constant in r; or
(ii) there is an ordinary atom q(s1, . . . , sar(q)) ∅ B+(r) such that t = sj, for

some 1 ⊗ j ⊗ ar(q) and q�j ∅ S; or
(iii) for some external atom &g[X](Y) ∅ B+(r), we have that t = Yi for some

Yi ∅ Y, and for each Xi ∅ X, Xi ∅ B, if τ(&g, i) = const, and Xi�1, . . . ,
Xi�ar(Xi) ∅ S if τ(&g, i) = pred; or

(iv) t is captured by some attribute α in B+(r) that is not reachable from malign
cycles in GA(δ) wrt. S, i.e., if α = p�i then t =ti for some p(t1, . . . , tω)∅
B+(r), and if α = &g[X]r�T i then t = XT

i for some &g[Xi](Xo) ∅ B+(r)
where the input and output vectors are XT =XT

1 , . . . , XT
ar (&g); or

(v) t = Yi for some &g[X](Y)∅ B+(r), where {yi | x ∅ (P ∪ C)ar i(&g),y ∅
Caro(&g), f&g(A,x,y) = 1} is finite for all assignments A.

(vi) t ∅X for some &g[X](Y)∅ B+(r), where U ∅ B for every U ∅Y and {x |
x∅ (P∪C)ar i(&g), f&g(A,x,y) = 1} is finite for every A and y ∅ Caro(&g).
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Abstract. Answer set programming languages have been extended to
support linear constraints and objective functions. However, the variables
allowed in the constraints and functions are restricted to integer and
Boolean domains, respectively. In this paper, we generalize the domain
of linear constraints to real numbers and that of objective functions to
integers. Since these extensions are based on a translation from logic
programs to mixed integer programs, we compare the translation-based
answer set programming approach with the native mixed integer pro-
gramming approach using a number of benchmark problems.

1 Introduction

Answer set programming (ASP) [16], also known as logic programming under
stable model semantics [8], is a declarative programming paradigm where a given
problem is solved by devising a logic program whose answer sets capture the
solutions of the problem and then by computing the answer sets using answer
set solvers. The paradigm has been exploited in a rich variety of applications [2].

Linear constraints have been introduced to ASP [1,7,13,14] in order to com-
bine the high-level modeling capabilities of ASP languages with the efficient
constraint solving techniques developed in the area of constraint programming.
In particular, a language ASP(LC) is devised in [13] which allows linear con-
straints to be used within the original ASP language structures. The answer
set computation for ASP(LC) programs is based on mixed integer programming
(MIP) where an ASP(LC) program is first translated into a MIP program and
then the solutions of the MIP program are computed using a MIP solver. Finally,
answer sets can be recovered from the solutions found (if any).

In this paper, we extend and evaluate the ASP(LC) language in the fol-
lowing aspects. First, we generalize the domain of variables allowed in linear
constraints from integers to reals. Real variables are ubiquitous in applications,
e.g., timing variables in scheduling problems. However, the MIP-based answer set
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computation confines the variables in linear constraints to the integer domain.
We overcome this limitation by developing a translation of ASP(LC) programs
to MIP programs so that constraints over real variables are enabled in the lan-
guage. Second, we introduce MIP objective functions, i.e., linear functions of
integer variables, to the ASP(LC) language. The original ASP(LC) language
allows objective functions of Boolean variables only, but integer variables are
more convenient than Booleans in many applications [13]. To model optimiza-
tion problems in these areas, we enable MIP objective functions in ASP by
giving semantics for ASP programs with these functions. Third, we compare
ASP(LC) to MIP. This is interesting as ASP(LC) provides a richer language
than MIP where ASP language structures are extended with linear constraints
but the implementation technique is based on translating an ASP(LC) program
to a MIP program to solve. We choose some representative problems, study the
ASP(LC) and MIP encodings of the problems, and evaluate their computational
performance by experiments.

The rest of the paper is organized as follows. Some basic definitions related
with linear constraints and ASP(LC) are recalled in Sect. 2. Then we extend
ASP(LC) language with real variables in Sect. 3, introduce MIP objective func-
tions in Sect. 4, and compare ASP(LC) and native MIP formulations of some
benchmark problems in Sect. 5. The experiments are reported in Sect. 6 followed
by a discussion on related works in Sect. 7. The paper is concluded by Sect. 8.

2 Preliminaries

In this section, we review the basic concepts of linear constraints, mixed integer
programming, and the ASP(LC) language. We study linear constraints of the
form

n∑

i=1

uixi ← k (1)

where the ui’s and k are real numbers and the xi’s are variables ranging over
real numbers (including integers). We distinguish the variables to be real and
integer variables when necessary. The operator ← is in {<,⊆,∈, >}1. Constraints
involving “<” and “>” are called strict constraints. A valuation ν from variables
to numbers is a solution of (or satisfies) a constraint C of the form (1), denoted
ν |= C, iff

∑n
i=1 uiν(xi) ← k holds. A valuation ν is a solution of a set of

constraints Π = {C1, ..., Cm}, denoted ν |= Π, iff ν |= Ci for each Ci ∩ Π.
A set of linear constraints is satisfiable iff it has a solution.

A mixed integer program (or a MIP program), takes the form

optimize
∑n

i=1 uixi (2)
subject to C1, ..., Cm. (3)

1 The operator “=” can be represented by “←” and “→”.
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where the keyword optimize is minimize or maximize, the ui’s are numbers, the
xi’s are variables, and the Ci’s are linear constraints. The operators in the con-
straints are in {⊆,=,∈}. The function

∑n
i=1 uixi is called an objective function.

The constraints C1, ..., Cm may be written as a set {C1, ..., Cm}. A valuation ν
is a solution of a MIP program iff ν |= {C1, ..., Cm}. A solution is optimal iff
it minimizes (or maximizes) the value of the objective function. The objective
function could be empty (missing from a MIP program), in which case the func-
tion is trivially optimized by any solution. The keywords optimize and subject
to may be omitted if the objective function is empty. The goal of MIPs is to
find the optimal solutions of a MIP program.

An ASP(LC) program is a set of rules of the form

a ∅ b1, . . . , bn, not c1, . . . , not cm, t1, . . . , tl (4)

where each a, bi, and ci is a propositional atom and each ti, called a theory atom,
is a linear constraint of the form (1). Propositional atoms and theory atoms may
be uniformly called atoms. Atoms and atoms preceded by “not” are also referred
to as positive and negative literals, respectively. Given a program P , the set of
propositional and theory atoms appearing in P are denoted by A(P ) and T (P ),
respectively. For a rule r of the form (4), the head and the body of r are defined by
H(r) = {a} and B(r) = {b1, . . . , bn,not c1, . . . ,not cm, t1, . . . , tl}. Furthermore,
the positive, negative, and theory parts of the body are defined as B+(r) =
{b1, . . . , bn}, B−(r) = {c1, . . . , cm}, and Bt(r) = {t1, . . . , tl}, respectively. The
body and the head of a rule could be empty: a rule without body is a fact whose
head is true unconditionally and a rule without head is an integrity constraint
enforcing the body to be false.

A set of atoms M satisfies an atom a, denoted M |= a, iff a ∩ M , and it
satisfies a negative literal “not a”, denoted M |= not a, iff a ∃∩ M . The set M
satisfies a set of literals L = {l1, . . . , ln}, denoted M |= L, iff M |= li for each
li ∩ L. An interpretation of an ASP(LC) program P is a pair 〈M,T ⊗, where
M → A(P ) and T → T (P ), such that T ∀ T̄ is satisfiable in linear arithmetics
where T̄ = {¬t | t ∩ T (P ) and t ∃∩ T} and ¬t denotes the constraint obtained
by changing the operator of t to the complementary one. Two interpretations
I1 = 〈M1, T1⊗ and I2 = 〈M2, T2⊗ are equal, denoted I1 = I2, iff M1 = M2 and
T1 = T2. An interpretation I = 〈M,T ⊗ satisfies a literal l iff M ∀ T |= l. An
interpretation I satisfies a rule r, denoted I |= r, iff I |= H(r) or I � B(r). An
integrity constraint is satisfied by I iff I � B(r). An interpretation I is a model
of a program P , denoted I |= P , iff I |= r for each r ∩ P .

Similar to and as an extension of the semantics of normal logic programs
[8,16], answer sets of ASP(LC) programs are defined using the concept of reduct
as follows.

Definition 1 (Liu et al. [13]). Let P be an ASP(LC) program and 〈M,T ⊗ an
interpretation of P . The reduct of P with respect to 〈M,T ⊗, denoted P ≥M,T ∅,
is defined as P ≥M,T ∅ = {H(r) ∅ B+(r) | r ∩ P,H(r) ∃= ≥,B−(r) ↔ M =
≥, and Bt(r) → T}.
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Definition 2 (Liu et al.[13]). Let P be an ASP(LC) program. An interpreta-
tion 〈M,T ⊗ is an answer set of P iff 〈M,T ⊗ |= P and M is the subset minimal
model of P ≥M,T ∅. The set of answer sets of P is denoted by AS(P ).

Example 1. Let P be an ASP(LC) program consisting of the rules

a ∅ x − y ⊆ 2. b ∅ x − y ∈ 5. ∅ x − y ∈ 0.

The interpretation I1 = 〈{a}, {x − y ⊆ 2}⊗ is an answer set of P since {(x− y ⊆
2),¬(x − y ∈ 5),¬(x − y ∈ 0)} is satisfiable in linear arithmetics, I1 |= P ,
and {a} is the minimal model of P I1 = {a ∅ .}. The interpretation I2 =
〈{b}, {x − y ∈ 5}⊗ is not an answer set since {(x−y ∈ 5),¬(x−y ⊆ 2),¬(x−y ∈
0)} is unsatisfiable. Finally, I3 = 〈≥, {x − y ∈ 0}⊗ is not an answer set, since
I3 � P . �

Syntactically, theory atoms are allowed as heads of rules in the implementa-
tion of [13]. We use such rules in this paper for more intuitive reading. As regards
their semantics, a rule with a theory atom as the head is equivalent to an integrity
constraint, i.e., a rule t ∅ a1, . . . , am,not b1, . . . ,not bn, t1, . . . , tl where t is a
theory atom is treated as the rule ∅ a1, . . . , am,not b1, . . . ,not bn, t1, . . . , tl,¬t
in answer set computation.

Note that, according to (1), the body of a rule (4) does not contain theory
atoms with the operator “=”, which will always be replaced by atoms with “∈”
and “⊆”. Such a design relieves us from dealing with the operator “∃=”. Similarly,
a rule with an equality in the head (e.g. (36)), is a shorthand for a pair of rules
with the operators “⊆” and “∈” in their heads respectively.

Answer set computation for ASP(LC) programs is based on a translation
to MIP programs [13]. We will refer to the translation as MIP-translation and
denote the translation of a program P by τ(P ). Due to space limitations, we
skip a thorough review of τ(P ) and focus on the fragment most relevant for this
paper, i.e., the rules of the form

a ∅ t (5)

where a is an propositional atom or not present at all and t is a theory atom.
Recall that a rule without head is an integrity constraint.

In the translation, special linear constraints called indicator constraints are
used. An indicator constraint is of the form d = v ∪ C where d is a binary
variable (integer variable with the domain {0, 1}), v is either 0 or 1, and C is
a linear constraint. An indicator constraint is strict if C is strict and non-strict
otherwise. An indicator constraint can be written as a constraint of the form (1)
using the so-called big-M formulation.

For a program P consisting of simple rules (5) only, τ(P ) is formed as follows:

1. For each theory atom t, we include a pair of indicator constraints

d = 1 ∪ t d = 0 ∪ ¬t (6)
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where d is a new binary variable introduced for t. The idea is to use the
variable d to represent the constraint t in the sense that, for any solution ν
of the constraints in (6), ν(d) = 1 iff ν |= t. Thus d can be viewed as a kind
of a name for t.

2. Assuming that a ∅ t1, . . . , a ∅ tk are all the rules in P that have a as head,
we include

a − d1 ∈ 0, . . . , a − dk ∈ 0, (7)
d1 + . . . + dk − a ∈ 0 (8)

where d1, . . . , dk are the binary variables corresponding to t1, . . . , tk in (6).
The constraints in (7) and (8) enforce that the joint head a holds iff some of
the bodies t1, . . . , tk holds which is compatible with Clark’s completion [3]. If
k = 1, i.e., the atom a has a unique defining rule, the constraints of (7) and
(8) reduce to a − d1 = 0 which makes d1 synonymous with a. Moreover, if
the rule (5) is an integrity constraint, then d1 = 0 is sufficient, as intuitively
implied by k = 1 and a = 0.

In the implementation of τ(P ), more variables and constraints are used to cover
the rules of the general form (4). We refer the reader to [13] for details.

The solutions of the MIP-translation of a program capture its answer sets
as follows. Let P be an ASP(LC) program and ν a mapping from variables to
numbers. We define the ν-induced interpretation of P , denoted Iν

P , by setting
Iν
P = 〈M,T ⊗ where

M = {a | a ∩ A(P ), ν(a) = 1} and (9)
T = {t | t ∩ T (P ), ν |= t}. (10)

Theorem 1 (Liu et al. [13]). Let P be an ASP(LC) program.

1. If ν is a solution of τ(P ), then Iν
P ∩ AS(P ).

2. If I ∩ AS(P ), then there is a solution ν of τ(P ) such that I = Iν
P .

Example 2. For the program P from Example 1, the translation τ(P ) consists
of:

d1 = 1 ∪ x − y ⊆ 2, d1 = 0 ∪ x − y > 2, a − d1 = 0,
d2 = 1 ∪ x − y ∈ 5, d2 = 0 ∪ x − y < 5, b − d2 = 0,
d3 = 1 ∪ x − y ∈ 0, d3 = 0 ∪ x − y < 0, d3 = 0.

For any solution ν of τ(P ), we have ν(a) = 1, ν(b) = 0, and ν(x) − ν(y) ⊆ 2
which capture the unique answer set 〈{a}, {x − y ⊆ 2}⊗ of P . �

3 Extension with Real Variables

In this section, we first illustrate the reasons why the strict constraints involved
in the MIP-translation prevent real variables from ASP(LC) programs. Then,
we develop a translation from strict constraints to non-strict ones. Finally, we
apply the translation to remove strict constraints from the MIP-translation so
that the use of real variables is enabled in ASP(LC) programs.
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3.1 Problems Caused by Real Variables

Real variables are widely used in knowledge representation and reasoning. How-
ever, the computation of answer sets based on the MIP-translation becomes
problematic in their presence. The reason is that typical MIP systems do not
fully support strict constraints involving real variables, e.g., by treating strict
constraints as non-strict ones. Consequently, the correspondence between solu-
tions and answer sets may be lost.

Example 3. Consider the condition that Tom gets a bonus if he works at least
8.25 h and the fact that he works for that long. By formalizing these constraints
we obtain an ASP(LC) program P consisting of the following rules:

bonus(tom) ∅ h(tom) ∈ 8.25. (11)
∅ h(tom) < 8.25. (12)

In the above, the ground term h(tom) is treated as a real variable recording
the working hours of Tom and bonus(tom)2 is a ground (propositional) atom
meaning that Tom will be paid a bonus. The MIP-translation τ(P ) of P has the
following constraints:

d1 = 1 ∪ h(tom) ∈ 8.25 (13)
d1 = 0 ∪ h(tom) < 8.25 (14)
bonus(tom) − d1 = 0 (15)
d2 = 1 ∪ h(tom) < 8.25 (16)
d2 = 0 ∪ h(tom) ∈ 8.25 (17)
d2 = 0 (18)

Given τ(P ) as input, cplex provides a solution ν where ν(bonus(tom)) =
ν(d1) = ν(d2) = 0 and ν(h(tom) = 8.25). However Iν

P = 〈≥, {h(tom) = 8.25}⊗ is
not an answer set of P since it does not satisfy the rule (11). This discrepancy
is due to the fact that ν actually does not satisfy the strict constraint (14), but
cplex treats it as the non-strict one d1 = 0 ∪ h(tom) ⊆ 8.25 and so that gives
ν as a solution unexpectedly. �

The current implementation of the MIP-translation [13] addresses only integer-
valued constraints where the coefficients and variables range over integers. Given
this restriction, strict constraints of the form

∑n
i=1 uixi < k (resp. > k) can be

implemented as non-strict ones
∑n

i=1 uixi ⊆ k − 1 (resp. ∈ k + 1).
It might be tempting to convert the domain of a problem from reals to

integers by multiplying each term in a constraint with a (constant) coefficient.
For instance, by multiplying the constraints with 100 and replacing the variable
2 We use different fonts for function and predicate symbols, such as “h” and “bonus”

in this example, for clarity.
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h(tom) by another variable h∞(tom) holding a hundredfold value, the program
P in Example 3 turn to:

bonus(tom) ∅ h∞(tom) ∈ 825. (19)
∅ h∞(tom) < 825. (20)

Thereafter constraints (13) and (14) could be rewritten as non-strict con-
straints:

d1 = 1 ∪ h∞(tom) ∈ 825. (21)
d1 = 0 ∪ h∞(tom) ⊆ 824. (22)

This approach, however, does not work in general. First, the translated program
cannot cover the domain of the original problem due to the continuity of real
numbers. For example, the rules (21) and (22) do not give any information about
the working hours 8.245 which is covered by (13) and (14). Second, determining
the required coefficients is infeasible in general since the real numbers occurring
in constraints can be specified up to arbitrary precision which could vary from
problem instance to another.

Because cplex treats strict constraints as non-strict ones, the MIP-translation
becomes inapplicable for answer set computation in the presence of real-valued
variables. To enable such computations, a revised translation which consists of
non-strict constraints only is needed. Such a translation is devised in sections to
come.

3.2 Non-strict Translation of Strict Constraints

We focus on strict constraints of the form y > 0. This goes without loss of gener-
ality because any constraint

∑n
i=1 uixi > k can be rewritten as a conjunction of

a non-strict constraint
∑n

i=1 uixi −y = k and a strict one y > 0 where y is fresh.
Also, a constraint of the form

∑n
i=1 uixi < k is equivalent to −

∑n
i=1 uixi > −k.

Lemma 1. Let Γ be a set of non-strict constraints, S = {x1 > 0, . . . , xn > 0},
and δ a new variable. Then, the set Γ ∀ S is satisfiable iff for any bound b > 0,
the set Γ ∀ Sδ ∀ {0 < δ ⊆ b} where Sδ = {x1 ∈ δ, . . . , xn ∈ δ} is satisfiable.

Proof. We prove the direction “⇒” since the other direction is obvious. Since
Γ ∀ S is satisfiable, there is a valuation ν such that ν |= Γ and ν(xi) > 0 for
each 1 ⊆ i ⊆ n. Let b > 0 be any number and m = min{ν(x1), . . . , ν(xn)}. Then
ν(xi) ∈ m holds for any 1 ⊆ i ⊆ n and m > 0. Two cases arise to analyze:

1. m ⊆ b. Then Γ ∀ Sδ ∀ {0 < δ ⊆ b} has a solution ν∞ which extends ν by the
assignment ν∞(δ) = m.

2. m > b. We define ν∞ as an extension of ν such that ν∞(δ) = b. Thus b > 0
implies ν∞ |= 0 < δ ⊆ b. Moreover, for any 1 ⊆ i ⊆ n, ν∞(xi) = ν(xi) ∈ ν∞(δ) =
b since m > b. Therefore ν∞ |= xi ∈ δ for any 1 ⊆ i ⊆ n.

It follows that ν∞ |= Γ ∀ Sδ ∀ {0 < δ ⊆ b}. �
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The result of Lemma 1 can be lifted to the case of indicator constraints since
indicator constraints are essentially linear constraints.

Lemma 2. Let Γ be a set of non-strict constraints,

S = {di = vi ∪ xi > 0 | 1 ⊆ i ⊆ n} (23)

a set of strict indicator constraints, and δ a new variable. Then, Γ ∀ S is satis-
fiable iff for any bound b > 0, Γ ∀ Sδ ∀ {0 < δ ⊆ b} is satisfiable where

Sδ = {di = vi ∪ xi ∈ δ | 1 ⊆ i ⊆ n}. (24)

Lemma 2 shows that a set of strict indicator constraints can be transformed
to a set of non-strict ones by introducing a new bounded variable 0 < δ ⊆ b.
Below, we relax the last remaining strict constraint δ > 0 to δ ∈ 0 using a MIP
objective function.

Definition 3. Let Π = Γ ∀ S be a set of constraints where Γ is a set of non-
strict ones and S is the set of strict indicator constraints (23), δ a new variable,
and b > 0 a bound. The non-strict translation of Π with respect to δ and b,
denoted Πb

δ , is:

maximize δ
subject to Γ ∀ Sδ ∀ {0 ⊆ δ ⊆ b} (25)

where Sδ is defined by (24).

Given Lemma 2 and Definition 3, the satisfiability of a set of constraints can
be captured by its non-strict translation as formalized by the following theorem.

Theorem 2. Let Π, S, and Πb
δ be defined as in Definition 3. Then, Π is sat-

isfiable iff Πb
δ has a solution ν such that ν(δ) > 0.

Theorem 2 enables the use of current MIP systems for checking the satisfia-
bility of a set of strict constraints, i.e., by computing an optimal solution for the
non-strict translation of the set and by checking if the objective function has a
positive value.

3.3 Non-strict Translation of Programs

Next, we develop the non-strict translation of ASP(LC) programs using Defini-
tion 3.

Definition 4. Let P be an ASP(LC) program, δ a new variable, and b > 0 a
bound. The non-strict translation of P with respect to δ and b, is τ(P )b

δ where
τ(P ) is the MIP-translation of P .

We show that the solutions of τ(P )b
δ and τ(P ) are in a tight correspondence.

Lemma 3. Let P be an ASP(LC) program that may involve real variables, δ a
new variable, and b > 0 a bound.
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1. For any solution ν |= τ(P ), there is a solution ν∞ |= τ(P )b
δ such that ν(a) =

ν∞(a) for each a ∩ A(P ), ν |= t iff ν∞ |= t for each t ∩ T (P ), and ν∞(δ) > 0.
2. For any solution ν |= τ(P )b

δ where ν(δ) > 0, there is a solution ν∞ of τ(P )
such that ν(a) = ν∞(a) for each a ∩ A(P ) and ν |= t iff ν∞ |= t for each
t ∩ T (P ).

Proof. We prove Item 1 and omit the proof of Item 2 which is similar. Let ν be
a solution of τ(P ). Given ν, we extend τ(P ) to τ ∞(P ) by adding for each atom
a ∩ A(P ), a constraint a = ν(a), and for each theory atom t ∩ T (P ) and the
variable d introduced for t in (6), d = ν(d). It is clear that ν∞ = ν is a solution
of τ ∞(P ). Let τ ∞∞(P ) be the analogous extension of τ(P )b

δ. Applying Theorem 2
to τ ∞(P ), there is a solution ν∞∞ of τ ∞∞(P ) such that ν∞∞(δ) > 0 and for each a,
ν∞∞(a) = ν∞(a) = ν(a), and for each d, ν∞∞(d) = ν∞(d) = ν(d). The valuation ν∞∞ is
also a solution of τ(P )b

δ, as τ(P )b
δ ⊥ τ ∞∞(P ). Note that for any t ∩ T (P ) and the

respective atom d, ν(d) = 1 iff ν |= t, and ν∞∞(d) = 1 iff ν∞∞ |= t. Then ν |= t iff
ν∞∞ |= t due to ν(d) = ν∞∞(d). �

Now, we relate the solutions of τ(P )b
δ and the answer sets of P . As a conse-

quence of Lemma 3 and the generalization of Theorem 1 for real variables, we
obtain:

Theorem 3. Let P be an ASP(LC) program that may involve real variables, δ
a new variable, and b > 0 a bound.

1. If ν is a solution of τ(P )b
δ such that ν(δ) > 0, then Iν

P ∩ AS(P ).
2. If I ∩ AS(P ), then there is a solution ν of τ(P )b

δ such that I = Iν
P and

ν(δ) > 0.

Example 4. Let us revisit Example 3. By setting b = 1 as the bound, we obtain
the non-strict translation τ(P )1δ as follows:

maximize δ
subject to 0 ⊆ δ ⊆ 1

d1 = 1 ∪ h(tom) ∈ 8.25, d1 = 0 ∪ h(tom) + δ ⊆ 8.25,
d2 = 1 ∪ h(tom) + δ ⊆ 8.25, d2 = 0 ∪ h(tom) ∈ 8.25,
bonus(tom) − d1 = 0, d2 = 0.

For any optimal solution ν of τ(P )1δ , we have ν(bonus(tom)) = ν(d) = ν(δ) = 1
and ν(h(tom)) ∈ 8.25 that corresponds to the intended answer set 〈{bonus(tom)},
{h(tom) ∈ 8.25}⊗. We note that cplex provides exactly this solution for
τ(P )1δ . �

It can be verified that the non-strict translation τ(P )b
δ reduces to the MIP-

translation if the variables in P and the new variable δ are integers and the
bound b is set to 1.
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4 Extension with Objective Functions

In this section, we define optimal answer sets for ASP(LC) programs enhanced
by objective functions of the form (2) and illustrate the resulting concept by
examples.

Definition 5. Let P be an ASP(LC) program with an objective function f and
〈M,T ⊗ ∩ AS(P ). The answer set 〈M,T ⊗ is optimal iff there is a solution of
T ∀ T̄ that gives the optimal value to f among the set of valuations

{ν | ν |= T ∀ T̄ for some 〈M,T ⊗ ∩ AS(P )}.

Example 5. Let P be an ASP(LC) program

minimize x. a ∅ x ∈ 5. b ∅ x ∈ 7. ∅ x < 5.

The answer sets of P are I1 = 〈{a}, {x ∈ 5}⊗ and I2 = 〈{a, b}, {x ∈ 5, x ∈ 7}⊗.
Let T1 = {x ∈ 5} and T2 = {x ∈ 5, x ∈ 7}. The solutions of T1 ∀ T̄1 =
{x ∈ 5, x < 7} admit a smaller value of the objective function f(x) = x, i.e., 5
than any solution of T2 ∀ T̄2 = {x ∈ 5, x ∈ 7}. Therefore the answer set I1 is
optimal. �

According to Definition 5, each optimal answer set identifies an optimal objec-
tive value. In other words, if the objective function is unbounded with respect
to an answer set, then the answer set is not optimal. This is illustrated by our
next example.

Example 6. Let P be an ASP(LC) program

minimize x. a ∅ x ⊆ 4. b ∅ x > 4.

The program P has two answer sets I1 = 〈{a}, {x ⊆ 4}⊗ and I2 = 〈{b}, {x > 4}⊗.
Let T1 = {x ⊆ 4} and T2 = {x > 4}. We have T1 ∀ T̄1 = T1 and T2 ∀ T̄2 = T2.
Although T1∀ T̄1 admits smaller values of x than T2∀ T̄2, I1 is not optimal, since
x may become infinitely small subject to T1 ∀ T̄1. Therefore, P has no optimal
answer set. �

For a program that does not involve real variables, we can establish an app-
roach to computing the optimal answer sets as stated in the theorem below. This
result essentially follows from Definition 5 and Theorem 1.

Theorem 4. Let P be an ASP(LC) program involving integer variables only
and f the objective function of P . Then 〈M,T ⊗ is an optimal answer set of P
iff there is a solution ν |= τ(P ) such that Iν

P = 〈M,T ⊗ and ν gives the optimal
value to f .

However, when real variables are involved, the non-strict translation from
ASP to MIP programs cannot be employed to compute the optimal answer sets,
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since the variable δ introduced in the translation may affect the optimal objective
function value.

The ASP languages implemented in [6,18] support objective functions of the
form

#optimize [a1 = wa1 , ..., am = wam
,not b1 = wb1 , ...,not bn = wbn ] (26)

where the keyword optimize is minimize or maximize, ai and “not bi” are lit-
erals, and wai

and wbi are integer weights associated with the respective literals.
The difference between the functions (2) and (26) is that xi’s in the former are
integer variables whereas ai’s and bi’s in the latter are Boolean variables, i.e.,
propositional atoms from the ASP viewpoint. Integer variables are more conve-
nient than Booleans for modeling some optimization problems as demonstrated
by the following example.

Example 7. Let x be an integer variable taking a value from 1 to n and we want
to minimize x. Using an objective function, this can be concisely encoded by:

minimize x. x ∈ 1. x ⊆ n.

Following [16,19], to encode the same using the function (26), we need:

#minimize [x(1) = 1, . . . , x(n) = n]. (27)
x(i) ∅ not x(1), . . . ,not x(i − 1),not x(i + 1), . . . not x(n). 1 ⊆ i ⊆ n (28)

where the Boolean variable x(i) represents that x takes value i and the rules in
(28) encode that x takes exactly one value from 1 to n. The size of the ASP(LC)
encoding is constant, while that of the original ASP encoding is quadratic3 in
the size of the domain of x, i.e., the objective function of length n plus n rules
of length n. �

In fact, a restriction to Boolean variables affects the performance of ASP
systems when dealing with problems that involve large numerical domains [13].

5 A Comparison of ASP(LC) with MIP

Using the ASP(LC) paradigm, one solves a problem rather indirectly, i.e., by
first modeling it as an ASP program, then by translating the program into a
MIP program, and finally by solving the problem instance using a MIP solver.
A question is how this approach compares with the native MIP approach where
a problem is modeled and solved using just a mixed integer program. In this
section, we study the modeling capabilities of ASP(LC) and MIP languages.

3 Linear and logarithmic encodings can be achieved using cardinality constraints [6,18]
and bit vectors [15], respectively. But both are more complex than the given ASP(LC)
encoding.
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We focus on two widely used primitives in modeling: reachability and disjunc-
tivity. For the former, we study a Hamiltonian Routing Problem (HRP) and for
the latter, a Job Shop Problem (JSP). The main observation is that ASP(LC)
can provide more intuitive and compact encodings in debt to its capability to
model non-trivial logical relations. But, the compactness does not always offer
computational efficiency as perceived in the sequel.

In the HRP, we have a network and a set of critical vertices. The goal is to
route a package along a Hamiltonian cycle in the network so that the package
reaches each critical vertex within a given vertex-specific time limit. The network
is represented by a set of vertices V = {1, . . . , n} and a set of weighted edges
E consisting of elements (i, j, d) where 1 ⊆ i, j ⊆ n and d is a real number
representing that the delay of the edge from i to j is d. The set of critical
vertices CV consists of pairs (i, t) where 1 < i ⊆ n and t is a real number
representing that the time limit of vertex i is t.

The ASP(LC) encoding of HRP in Fig. 1 is obtained by extending the encod-
ing of Hamiltonian cycle problem [16] with timing constraints4. The rules (29)–
(35) specify a Hamiltonian cycle. To model the timing constraints, we use a real
variable t(X) to denote the time when a vertex X is reached. Rules (36) and (37)
determine the respective times of reaching vertices. The rule (38) ensures each
critical vertex to be reached in time. The MIP program of HRP in Fig. 2 is from
[17] with extensions of timing constraints5. The binary variable xij represents
whether an edge (i, j, d) is on the Hamiltonian cycle (xij = 1) or not (xij = 0)
and the integer variable pi denotes the position of the vertex i on the cycle.
The real variable ri denotes the time of reaching vertex i. The constraints (39)
and (40) say that each node has exactly one incoming and outgoing edge on a
Hamiltonian cycle; (41) and (42) guarantee that each node has a unique position
in the cycle; (43) and (44) ensure all the nodes in V form a single cycle (avoid
separate cycles), where the condition ∃ ⊂d : (i, j, d) ∩ E captures a pair of nodes
(i, j) that are not connected by an edge with any delay d. The above constraints
encode a Hamiltonian cycle. The remaining ones (45)–(47) specify the timing
property, which are the counterparts of (36)–(38), respectively.

In comparison, reachability is modeled by the recursive rules (33) and (34)
in the ASP(LC) program. Since MIP language cannot express such recursion
directly, the reachability condition is captured otherwise—by constraining the
positions of the nodes in (41)–(44). Note that the node positions are actually
irrelevant for the existence of a cycle. In fact, modeling Hamiltonian cycles in
non-complete graphs is challenging in MIP and the above encoding is the most
compact one to the best of our knowledge.

In the JSP, we have a set of tasks T = {1, ..., n} to be executed by a machine.
Each task is associated with an earliest starting time and a processing duration.
The goal is to schedule the tasks so that each task starts at its earliest starting
4 More compact encoding can be obtained using choice rules, but for our purposes the

current one is sufficient.
5 Disequalities and implications can be represented using the operators “←” and “→”

[17].
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hc(X,Y ) ⊥ e(X,Y,D), nhc(X,Y ).

nhc(X,Y ) ⊥ e(X,Y,D1), e(X,Z,D2), hc(X,Z), Y ≡= Z.

nhc(X,Y ) ⊥ e(X,Y,D1), e(Z, Y,D2), hc(Z, Y ), X ≡= Z.

initial(1).

reach(X) ⊥ reach(Y ), hc(Y,X), initial(Y ), e(Y,X,D).

reach(X) ⊥ hc(Y,X), initial(Y ), e(Y,X,D).

⊥ v(X), reach(X).

t(1) = 0.

t(X) − t(Y ) = D ⊥ hc(Y,X), e(Y,X,D), X ≡= 1.

t(X) ← T ⊥ critical(X,T ).

Fig. 1. An ASP(LC) encoding of HRP

∑
(i,j,d)∈E xij = 1 i ∞ V

∑
(j,i,d)∈E xji = 1 i ∞ V

1 ← pi ← n i ∞ V

pi ≡= pj i ∞ V, j ∞ V, i ≡= j

pj ≡= pi + 1 i ∞ V, j ∞ V, i ≡= j, ≡ ⊆d : (i, j, d) ∞ E

(pi = n) ∈ (pj → 2) i ∞ V, j ∞ V, i ≡= j, ≡ ⊆d : (i, j, d) ∞ E

r1 = 0

xij = 1 ∈ rj − ri = d (i, j, d) ∞ E

ri ← t (i, t) ∞ CV

Fig. 2. A MIP encoding of HRP

time or later, the processing of the tasks do not overlap, and all tasks are finished
by a given deadline. Using ASP(LC) we model the problem in Fig. 3 where the
predicate task(I, E,D) denotes that a task I has an earliest starting time E and
a duration D and the real variables s(I) and e(I) denote the starting and ending
times of task I, respectively. The rule (48) says that a task starts at its earliest
starting time or later. The rule (49) ensures that each task is processed long
enough. The rule (50) encodes the mutual exclusion of the tasks, i.e., for any
two tasks, one must be finished before the starting of the other. The rule (51)
enforces each task being finished by the deadline. Figure 4 adopts a recent MIP
encoding of JSP [10] in cplex language, where the variables si and ei represent
the starting and ending times of task i, respectively; est i and di are the earliest
starting time and processing duration of task i; the binary variable xij denotes
that task i ends before task j starts. The constraints (52), (53), and (57) are
the counterparts of (48), (49), and (51) respectively. The constraints (54)–(56)
exclude overlapping tasks.
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s(I) → E ⊥ task(I, E,D).

e(I) − s(I) → D ⊥ task(I, E,D).

⊥ task(I, E1, D1), task(J,E2, D2), I ≡= J, s(I) − s(J) ← 0, s(J) − e(I) ← 0.

e(I) ← deadline ⊥ task(I, E,D).

Fig. 3. An ASP(LC) encoding of JSP

si → est i i ∞ T

ei − si → di i ∞ T

xij = 1 ∈ ei − sj < 0 i ∞ T, j ∞ T, i ≡= j

xij = 0 ∈ ei − sj → 0 i ∞ T, j ∞ T, i ≡= j

xij + xji = 1 i ∞ T, j ∞ T, i ≡= j

ei ← deadline i ∞ T

Fig. 4. A MIP encoding of JSP

In the ASP(LC) program of JSP, the mutual exclusion of s(I) − s(J) ⊆ 0
and s(J) − e(I) ⊆ 0 is expressed by one rule (50). In contrast, MIP language
lacks direct encoding of relations between constraints and therefore, to encode
the exclusion of ei < sj and ej < si, one has to first represent them by new
variables xij and xji in (54) and (55) respectively and then encode the relations
of the variables in (56). Note that, for computation, the ASP(LC) and the native
MIP encodings are essentially the same, since the translation of the rule (50)
includes two indicator constraints to represent the constraints s(I) − s(J) ⊆ 0
and s(J)− e(I) ⊆ 0, respectively, and other additional constraints to encode the
rule in the style of [13].

The presented encodings for HRP and JSP illustrate how ASP(LC) pro-
grams can provide a higher level of abstraction for modeling in contrast with
MIP. The effect is clear for problem domains which involve recursively defined
concepts and for which ASP-style rules subject to minimal model semantics
provide a natural representation. Encoding such features in MIP require addi-
tional variables making the resulting representation more complex and difficult
to maintain. A formulation with less variables is typically simpler and easier to
understand which also favors easier maintainability and elaboration tolerance in
face of additional constrains to be incorporated into the model. Furthermore, in
contrast with traditional ASP, the possibility of using integer and/or real vari-
ables brings about another dimension of compaction if the problem domain of
interest involves quantities having infinitely many or continuous values.

6 Experiments

We implemented the non-strict translation of ASP(LC) programs and the MIP
objective functions by modifying the mingo system [13]. The new system is
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called mingor. We tested mingor with a number of benchmarks6: the HRP and
JSP detailed in Sect. 5, the Newspaper, Routing Max, and Routing Min problems
from [13], and the Disjunctive Scheduling problem from [4]. These problems were
selected as they involve either reachability or disjunctivity. The original instances
are revised to include real numbers. The objective functions of the optimization
versions of HRP and JSP are to minimize the time of reaching some critical
node and the ending time of some task, respectively. The optimization problems
involve integers only. The experiments were run on a Linux cluster having 112
AMD Opteron and 120 Intel Xeon nodes with Linux 6.1. In each run, the memory
is limited to 4 GB and the cutoff time is set to 600 s.

In Table 1, we evaluate mingor with different values of the parameter b, the
bound used in the non-strict translation. The goal is to find a default setting
for b. Table 1 suggests that b = 10−6 is the best, considering the number of
solved instances and the running time. We tested 100 random instances for each
problem except Disjunctive Scheduling where we used the 10 instances given in
[4]. Each instance was run 5 times and the average number of solved instances
and the running time are reported. We also include the average sizes of the
ground programs in kilobytes to give an idea on the space complexity of the
instances. It is also worth pointing out that none of the problems reported in
Table 1 is solvable by existing ASP systems since they involve real variables and
thus comparisons of mingor with other ASP systems are infeasible.

Tables 2 and 3 provide comparisons of the translation-based ASP approach
with native MIP approach, where both mingor and cplex are run with default
settings. For the HRP problem in Table 2, we tested 50 randomly generated
graphs of 30 nodes for each density (the ratio of the number of edges to the
number of edges in the complete graph). The results show that the instances
with medium densities are unsolvable to cplex before the cutoff but mingor

can solve them in reasonable time. We also note that cplex performs better
for the graphs of high densities. This is because the MIP program encodes the
positions of nonadjacent nodes. For the JSP problem in Table 3, we tested 50
random instances for each number of tasks and mingor is slower than cplex by
roughly a order of magnitude but, in spite of this, scaling is similar.

In summary, some observations are in order. On one hand, the ASP(LC)
language enables compact encodings in debt to its capability of expressing non-
trivial logical relations. Thus some redundant information, such as the order of
nodes in a cycle in HRP, can be left out in favor of computational performance.
On the other hand, the translation of ASP(LC) programs into MIP is fully
general and thus some unnecessary extra variables could be introduced, e.g., in
the case of JSP, the structure of the translation is more complex than the native
MIP encoding. As a consequence, the translation-based approach is likely to be
slower due to the extra time spent on propagation.
6 A prototype implementation of the mingor system and benchmarks can be found

under http://research.ics.aalto.fi/software/asp/mingoR.

http://research.ics.aalto.fi/software/asp/mingoR.
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Table 1. The effect of the bound b > 0

Benchmark b = 10−9 b = 10−6 b = 10−3 b = 1 b = 103 Size

Solved Time Solved Time Solved Time Solved Time Solved Time

Disj. Scheduling 10 0.60 10 0.78 10 0.99 10 0.89 10 12.60 206
Ham. Routing 100 30.79 100 24.52 100 23.16 100 41.63 0 NA 155
Job Shop 100 9.76 100 9.56 100 25.98 100 14.61 10 66.08 387
Newspaper 100 22.64 100 21.61 93 77.90 100 40.76 0 NA 846
Routing Max. 100 0.11 100 0.14 100 0.25 100 0.55 100 0.69 7
Routing Min. 76 109.58 77 102.98 80 127.12 46 95.07 20 79.07 368

7 Related Work

Dutertre and de Moura [5] translate strict linear constraints into non-strict ones
using a new variable δ in analogy to Lemma 1. However, the variable remains
unbounded from above in their proposal. In contrast to this, an explicit upper
bound is introduced by our translation. The bound facilitates computation: if
the translated set of constraints has no solution ν with ν(δ) > 0 under a partic-
ular bound b, this result is conclusive and no further computations are needed.
Unbounded variables are problematic for typical MIP systems and thus having
an upper bound for δ is important.

Given the extension of ASP(LC) programs with objective functions, MIP
programs can be seen as a special case of ASP(LC) programs, i.e., for any MIP
program P with an objective function (2) and constraints in (3), there is an
ASP(LC) program P ∞ whose objective function is (2) and whose rules simply
list the constraints in (3) as theory atoms (facts in ASP terminology). Note that
in this setting the non-strict translation of P ∞ is identical to P , since P ∞ involves
non-strict constraints only.

In theory, all similar paradigms proposed in [1,7,14] cover real-valued con-
straints. Moreover, a recent ASP system clingcon [7] is implemented where
constraints over integers are allowed in logic programs. But, to the best of our

Table 2. Hamiltonian Routing Problem

Density Decision Optimization

mingor cplex mingor cplex

10 0.03 0.01 0.07 0.01

20 0.05 0.01 0.12 0.01

30 0.92 NA 50.81 NA

40 41.62 NA NA NA

50 13.94 NA NA NA

60 64.91 NA NA NA

70 35.78 NA NA NA

80 8.02 95.40 NA NA

90 181.33 24.74 NA NA

100 146.18 13.88 NA NA

Table 3. Job Shop Problem

Tasks Decision Optimization

mingor cplex mingor cplex

10 0.42 0.14 0.35 0.08

20 4.04 0.18 1.56 0.14

30 6.78 0.40 4.69 0.49

40 13.74 0.72 12.18 1.62

50 27.37 1.36 16.15 1.16

60 45.44 1.72 30.82 2.01

70 51.56 1.57 47.85 1.80

80 88.72 2.34 68.99 2.83

90 114.32 2.97 79.28 6.43

100 192.09 4.19 112.09 8.05
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knowledge, there has not been any system that supports real-valued constraints
nor integer-based objective functions. With the non-strict translation of ASP
programs into mixed integer programs, we have implemented these primitives in
the context of ASP.

Remark. Real numbers are implemented as floating point numbers in cplex,
which uses numerically stable methods to perform its linear algebra so that
round-off errors usually do not cause problems [11]. Note that—since computers
are finite precision machines—the imprecision of floating point computations
referred to as numerical difficulties is common to any computer systems and/or
languages [9]. We do not address this issue in the paper and rather rely on the
solutions implemented in CPLEX.

8 Conclusion and Future Work

In this paper, we generalize a translation from ASP(LC) programs to MIP pro-
grams so that linear constraints over real variables are enabled in answer set
programming. Moreover, we introduce integer objective functions to ASP(LC)
language. These results extend the applicability of answer set programming. We
also compare the ASP approach with the native MIP approach and the results
show that ASP extensions in question facilitate modeling and offer computa-
tional advantage at least for some problems. Our results suggest that MIP and
ASP paradigms can benefit mutually: on one hand, efficient MIP formulations
can be obtained by translating a compact ASP(LC) program; on the other hand,
the ASP language can be extended with MIP constraints and objective func-
tions to deal with problems that are not directly solvable using standard ASP
languages.

The future work will be focused on system development. The possible direc-
tions include reducing the number of extra variables introduced by translations;
stopping the solving phase early (as soon as δ is positive); and combining ASP
and MIP solver technology to obtain a native solver for ASP(LC). Moreover,
a comparative study of ASP(LC) encodings and mingor with other constraint
logic programming encodings and systems [12] can also provide insights into
improving mingor.
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Abstract. Coverage driven test generation (CDTG) is an essential part
of functional verification where the objective is to generate input stimuli
that maximize the functional coverage of a design. CDTG techniques
analyze coverage results and adapt the stimulus generation process to
improve the coverage. One of the important components of CDTG based
tools is the constraint solver. The efficiency of the verification process
depends on the performance of the solver. The speed of the solver can
be increased if inconsistent values can be removed from the domain of
input variables. In this paper, we propose a new efficient consistency
algorithm called GACCC-op (generalized arc consistency on conjunction
of constraints-optimized) which can be used along with the constraint
solver of CDTG tools. The experimental results show that the proposed
technique helps to reduce the time required for solution generation of
CSPs by 19 %.

1 Introduction

As semiconductor technology improves, electronic designs are becoming more
complex. In order to ensure the functional correctness of a design, finding and
fixing design errors is important. Functional verification is the task of verifying
whether the hardware design confirms the required specification. This is a com-
plex task which consumes the majority of the time and effort in most of the
electronic system design projects. Many studies show that up to 70 % of design
development time and resources are spent on functional verification [11]. There
are several methods to tackle the functional verification problem and one among
them is Constraint Random Test (CRT) generation.

Coverage is a measure used to determine the completeness of the input stim-
ulus, generated by using CRT. Each measurable action is called a coverage task.
However, as the complexity of design increases, achieving a required coverage
goal even with CRT can still be very challenging. Limitations of the constrained
random approach led to the development of coverage based test generation tech-
niques.

In coverage based test generation techniques, coverage tools are used side by
side with a stimulus generator (constraint solver) in order to assess the progress
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of the verification plan during the verification cycle. Coverage analysis allows for
the modification of the directives (constraints) for the stimulus generators and
to target areas of the design that are not covered well. This process of adapting
the directives of stimulus generator, according to the feedback based on coverage
reports, is called Coverage Driven Test Generation (Fig. 1). Though CDTG is
essential for the completion of the verification cycle, it is a time consuming and
an exhaustive process.

Fig. 1. Coverage driven test generation technique

Let us look at one example involving verification of the floating-point unit
present in microprocessors. Stimulus generation for floating-point unit verifica-
tion involves targeting corner cases, which can often be solved only through
complex constraint solving. Hence the main task of the constraint solver is to
generate a set of input stimulus that comprises a representative sample of the
entire space, taking into account the many corner cases. A floating point unit
with two input operands and 20 major FP instruction types (e.g. ±zero, ±min-
denorm) yields 400 (202) cases that must be covered. With four floating point
instructions (addition, subtraction, division and multiplication) there are about
1600 cases to be covered. The probability that a CDTG tool will generate a
sequence that covers a particular combination is very low (1:217) [12]. Hence a
CDTG tool will take many hours to generate the input stimuli required to attain
the needed coverage.

The most important component in CDTG is the constraint solver. The effi-
ciency of a CDTG is heavily dependent on the constraint solver. The stimulus
generation methods of CDTGs are similar to a constraint satisfaction problem
(CSP). But the CSPs arising from stimulus generation are different from typical
CSPs [9]. One striking difference is the existence of variables with huge domains.
Another difference is the requirement to produce multiple different solutions, dis-
tributed uniformly, for the same CSP. Hence available general purpose constraint
solvers cannot be used along with CDTG tools to improve the stimuli generation
time.

Certain values, in the domain of input variables of the CSP used for stim-
ulus generation, cannot be part of the solution. The inconsistent values can be
found out by consistency search and can be removed from the domain of input
variables. If the reduced domain is given to the constraint solver of CDTG, then
the solutions for CSP can be generated in less time and with reduced memory
consumption. In this paper, we propose a consistency search algorithm which
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can be used along with CDTG tools, to reduce the domain of input variables.
The remainder of this paper is organized as follows. We will explain some of the
related work in Sect. 2. Section 3 describes the proposed consistency algorithm.
Finally, we present our experimental results in Sect. 4, and give some concluding
remarks and future work in Sect. 5.

2 Related Work

Existing research in CDTG have been focused on improving the input stimuli
generated by CDTG tools. All high-end hardware manufacturers use CDTG to
produce input stimulus. Some manufacturers of less complex designs rely on elec-
tronic design automation (EDA) tool vendors (e.g. Cadence, Mentor Graphics
and Synopsys) for their stimulus generation needs. Those EDA tools, in turn, are
based on internally developed constraint solvers [13]. Others such as Intel [15],
adapt external off-the-shelf solvers to the stimulus generation problem. Some
manufacturers such as IBM rely on proprietary constraint solvers developed in-
house to solve this problem [12].

One approach for solving CSP is based on removing inconsistent values from
the domain of variables till the solution is obtained. These methods are called
consistency techniques. The most widely used consistency technique is called arc
consistency (AC). In AC, for each constraint (Ci) in the CSP, for each variable
(vi) in the constraint Ci, for each domain value of the variable vi, the algorithm
will try to find a list of variable values which satisfies the constraint.

The arc consistency algorithms are divided into two categories: coarse-grained
algorithms and fine-grained algorithms. Coarse grained algorithms are algo-
rithms in which the removal of a value from the domain of a variable will be
propagated to other variables in the problem. The first consistency algorithms
AC-1 [14] and AC-3 [14] belong to this category. These two consistency algo-
rithms are succeeded by AC2000 [8], AC2001-OP [4], AC3-OP [3] and AC3d
[10].

Fine grained consistency algorithms are algorithms in which removal of a
value from the domain of a variable X will be propagated to only other variables
which are related to the variable X. Since only the variables that are affected
by the change in domain value are revisited, this algorithm is faster than coarse
grained algorithms. Algorithms AC-4 [16], AC4-OP [2], AC-5 [17] and AC-6 [5]
belong to this category. AC-7 [6] is an algorithm developed based on AC-6. It uses
the knowledge about the constraint properties to reduce the cost of consistency
check.

All the above algorithms are developed for binary constraints. GAC-scheme
[7] is a consistency algorithm developed for n-arity (n variables are there in the
constraint) constraints. It is the extension of AC-7 for n-arity constraints.

Conjunctive Consistency [7] enforces GAC-scheme on conjunctions of con-
straints. We chose GAC scheme on conjunction of constraints for our purpose
because:
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1. We need to eliminate as much invalid domain values as possible. This can be
done by conjunction of constraints.

2. During constraint propagation, the algorithm has to keep track of variables
and domains which are affected by the removal of an inconsistent value. This
requires complex data structure. GAC scheme do not require any specific data
structure.

3. The constraints used in CDTG can have more than two variables and GAC-
scheme can handle constraint of n-arity.

4. The constraints used in CDTG are not of a fixed type and GAC-scheme can
be used with any type of constraints.

3 Consistency Algorithm

3.1 Preliminaries

Tuple: A tuple τ on an ordered set of variables is an ordered list which contains
values for all the variables. X(τ) represents the set of variables in the tuple τ .

Constraint: A constraint Ci on an ordered set of variables gives the list of
allowed tuples for the set of variables. X(Ci) represents the set of variables in
the constraint Ci.

Constraint Network: A constraint network is defined as a tuple N = ←X,D,C⊆
where:

X is a set of n variables, X = {x1,. . ., xn}, n > 0
D is a finite set of domains for the n variables = {D(x1),. . ., D(xn)}, n > 0
C is a set of constraints between variables = {C1,. . .,Ck}, k > 0

Valid Tuple: The value of variable x in a tuple τ is denoted by τ [x]. A tuple τ
on Ci is valid iff ∈x ∩X(Ci), τ [x] ∩D(x) and τ satisfies the constraint Ci.

Support: If a ∩D(xi) and τ be a valid tuple on Cj , then τ is called a support
for (xi, a) on Cj .

Arc Consistency: A value a ∩D(xj) is consistent with Ci iff xj ∩X(Ci) and
∅τ such that τ is a support for (xj , a) on Ci. Ci is arc consistent iff ∈xj ∩X(Ci),
D(xj) ∃= 0 and ∈a ∩D(xj), a is consistent with Ci.

Generalized Arc Consistency of a Network: A CSP is generalized arc
consistent iff ∈Ci ∩C is arc consistent.

Conjunctive Consistency: If Sj is conjunction of a subset of constraints in
C, then Sj is conjunctively consistent iff ∈a ∩D(xk), xk ∩X(Sj) and there exists
a tuple τ such that a = τ [xk] and τ is a support ∈xk.
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Conjunctive Consistency of a Network: Let P = <X, D, S> be a constraint
network. P is conjunctive consistent network iff ∈Sj ∩S is conjunctive consistent.

3.2 GACCC

In GACCC [7], first a variable in a conjunction of constraint is selected and
the selected variable will be assigned a value from its domain. The algorithm
will generate tuples in lexicographical order (the selected variable value will
not change) and check whether the tuple satisfies the constraint. The tuples
are generated until all the tuples are generated or a tuple which satisfies the
constraint is generated. If there is no tuple which satisfies the constraint for
the selected variable value, then that variable value is inconsistent and removed
from the variable domain. The process is repeated for all the domain values of
the selected variable, then for all the variables in the constraint and for all the
constraints in the constraint network.

To illustrate the idea discussed above, let us consider the following CSP: set
of variables X = {m,n, o, p, q}, domain of the variables D(m) = {1, 2},D(n) =
{2, 3},D(o) = {1, 2},D(p) = {1, 3},D(q) = {2, 3} and the constraints C1 :
m + n + o + p = 7 and C2 : m + o + q = 9. The consistency search (for
conjunction of constraints) for m = 1 has to go through 16 tuples (because each
of the remaining variables (n, o, p, q) has two variables in the domain) to find
out that value is not consistent.

3.3 Intuitive Idea of GACCC-op

In consistency check, if any one constraint is not satisfied, then the tuple gen-
erated is inconsistent with the conjunction set. We can reduce the number of
tuples generated during consistency search by using this property. Initially for a
given variable, we consider the constraint with lowest number of variables and
contain the specified variable. We generate tuples for the above constraint and
search for consistency. If the tuple generated for the smallest constraint is not
consistent then all the tuples generated for the conjunction of constraints are
also not consistent. If the tuple generated for the smallest constraint is consis-
tent, then only we need to generate the tuples for the conjunction of constraints
(tuple generated for conjunction of constraints should contain the tuple which
is consistent with the smallest constraint). Since the number of variables in the
smallest constraint is less when compared to tuple for conjunction of constraints,
consistency can be checked in less number of iterations.

In the above CSP, C2 is the smallest constraint in the set, which has 3
variables and the variable m. Consistency check is first performed on this con-
straint. In 4 (because each of the remaining variables (o, q) has two variables in
the domain) iterations we can find that m = 1 is inconsistent with the constraint
C2. Hence m = 1 is inconsistent for the conjunction of constraints. The tuples
for a variable in conjunction of constraints is generated only if the smallest con-
straint containing the variable is satisfied by the tuple. Consider another set of
constraints C3 : m+n+o+p = 8 and C4 : m+o+q = 6. By GACCC we have to
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generate 8 tuples to find a consistent tuple. By using the new algorithm we need
only 5 (4 iterations for C3 and 1 for conjunction of C3 and C4) iterations to
find the tuple which satisfies the constraints. So by using the proposed algorithm
consistency check can be completed in less number of iteration when compared
to GACCC.

So the difference between GACCC and GACCC-op are as follows:

1. In GACCC the support list is made by using some existing variable order
scheme. In GACCC-op we propose a new variable ordering scheme in which
the consistency search starts with the variable, which is present in the con-
straint with the lowest arity and has the largest number of domain values.

2. In GACCC during consistency search of a domain value of a variable, the tuples
generated will contain all the variable in the conjunction set. In GACCC-op the
consistency search for a variable x will begin with tuples which contain only
variables from the smallest constraint (Cs) (Cs should contain the variable x).
If there is a tuple which satisfies the constraint Cs, only then GACCC-op gen-
erates tuples with the entire variable in the conjunction set.

3.4 GACCC-op

Let us start the discussion of the proposed GACCC-op algorithm with the main
program (Algorithm 1). First the data structures (lastSc, supportlist, deletionlist
and Sclast) must be created and initialized. Sclast, supportlist, deletionlist and
lastSc are initialized in such a way that:

1. Sclast contains the last tuple returned by the function SeekValidSupport-
Set as a support for variable value.

2. supportlist contains all tuples that are support for variable value.
3. deletionlist contains all variable values that are inconsistent.
4. lastSc is the last tuple returned by the function SeekValidSupport as a

support for variable value.

Then for each set of constraints, for each variable present in the constraints, all
the domain values of the variable are put in supportlist. The domain values of
the variables in a conjunction set are added to supportlist using the following
heuristics:

1. Find the lowest arity constraint (Cl) in the conjunction set.
2. Find a variable (xl) where the variable and Cl is not added to the list, the

variable is in Cl and has the highest number of domain values.
3. Add all the domain values of the selected variable (xl), variable and the

constraint to the list.
4. Repeat step 2 until all the variables in the constraint Cl are considered.
5. If there is any variable or constraint set to be added to the list from the

conjunction set, then find the next highest arity constraint and repeat steps
2–4.
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Algorithm 1. GACCC-op Algorithm
1: for each constraint set (S) do
2: for each variable in set (y) do
3: for each domain value of variable (b) do
4: Add to support stream(S,y,b)
5: end for
6: end for
7: end for
8: while support stream ←= nil do
9: σ = SeekInferableSupport(S,y,b)

10: if σ = nil then
11: c = smallest constraint containing variable y
12: while found soln → checked all tuples do
13: σ⊥ = lastSc(C,y,b)
14: if σ⊥ = nil then
15: LOOP2: σ⊥ = SeekValidSupport (C,y,b,σ⊥)
16: if σ⊥ = nil then
17: DeletionStream (y,b)
18: else
19: if variables in all the constraints are same then
20: Add to Sclast(S,y,b)
21: else
22: Add to lastSc(C,y,b)
23: go to LOOP1
24: end if
25: end if
26: else
27: if Sclast(S,y,b) ←= nil then
28: σ ⊥ ⊥ = Sclast(S,y,b)
29: go to LOOP1
30: else
31: σ ⊥ ⊥ = nil
32: end if
33: end if
34: LOOP1: λ* = SeekValidSupportSet(S,y,b,σ ⊥ ⊥)
35: if λ*←= nil then
36: Add to Sclast(S,y,b)
37: else
38: go to LOOP2
39: end if
40: end while
41: end if
42: end while

This supportlist is used to find the support (support is a tuple which satisfies
the constraint) for each variable value in the constraint set. For each value in
supportlist the algorithm will try to find a valid support by using the function
SeekInferableSupport. Function SeekInferableSupport checks whether an
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already checked tuple is a support for (y,b). If there is no valid support to be
inferred then we will search for a valid support.

For every value ‘b’, for a variable ‘y’ in X(C), lastSc(C,y,b) is the last
tuple returned by SeekValidSupport as a support for (y,b) if SeekValid-
Support(C,y,b) has already been called or empty otherwise. The above two
functions help to avoid checking several times whether the same tuple is a sup-
port for the constraint or not. If the search is new we look for support from the
first valid tuple.

If no valid tuple is found then the variable value is not consistent with the con-
straint. Hence it is not consistent with constraint set. This variable value will be
deleted from the domain of the variable by the function DeletionStream(y,b).

Algorithm 2. SeekInferableSupport
1: SeekInferableSupport (in S:constraint; in y:variable; in b:value):tuple
2: while support stream ←= nil do
3: if Sclast(var(S,y),τ [y]) = b then
4: zigma = Sclast(S,y,b)
5: else
6: zigma = nil
7: end if
8: return zigma
9: end while

If a tuple is returned by lastSc(C,y,b), we will check for Sclast(S,y,b). Sclast
(S,y,b) is the last tuple returned by SeekValidSupportSet as a support for
(S,y,b) if SeekValidSupportSet has already been called or empty otherwise.
If a tuple is returned we start the search for support for conjunction constraint
set from that tuple, else we will start search from the first valid tuple for the
conjunction set, with variables in constraint C has the values of the tuple from
lastSc(C,y,b). If the SeekValidSupportSet returns empty then we will call
function SeekValidSupport and repeat the process until a valid tuple for the
for conjunction constraint set is found or the lastSc(C,y,b) returns empty. If
the lastSc(C,y,b) returns empty then the variable value is deleted the function
DeletionStream(y,b). The above processes will be repeated until both the dele-
tionlist and supportlist are empty.

The function SeekInferableSupport (Algorithm 2) ensures that the algo-
rithm will never look for a support for a value when a tuple supporting this value
has already been checked. The idea is to exploit the property: “If (y,b) belongs
to a tuple supporting another value, then this tuple also supports (y,b)”.

After the functionSeekInferableSupport fails to find any previously checked
tuple as a support for (y,b) on the constraint C, the function SeekValidSupport
(Algorithm 3) is called to find a new support for (y,b). But the function has to avoid
checking tuples which are already checked. This is taken care by using the func-
tion SeekCandidateTuple. The function NextTuple will generate new tuples
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Algorithm 3. SeekValidSupport
1: SeekValidSupport (in C:constraint; in y:variable; in b:value; in τ :tuple):tuple
2: if τ ←= nil then
3: zigma = NextTuple(C,y,b,τ)
4: else
5: zigma = FirstTuple(C,y,b)
6: end if
7: zigma1 = SeekCandidateTuple(C,y,b,τ)
8: solution found = false
9: while (zigma1 ←= nil) and (not solution found) do

10: if zigma1 satisfies constraint C then
11: solution found = true
12: else
13: zigma1= NextTuple(C,y,b,zigma1)
14: zigma1 = SeekCandidateTuple(C,y,b,zigma1)
15: end if
16: return zigma1
17: end while

in a lexicographical order which can be a valid support for the constraint variable
value.

Function SeekCandidateTuple(C,y,b,τ) (Algorithm 4) returns the smallest
candidate greater than or equal to τ . For each index from 1 to |X(C)| SeekCan-
didateTuple verifies whether τ is greater than lastSc (λ). If τ is smaller than λ,
the search moves forward to the smallest valid tuple following τ , else to the valid
tuple following λ. When the search moves to the next valid tuple greater than
τ or λ, some values before the index may have changed. In those cases we again
repeats the previous process to make sure that we are not repeating a previously
checked tuple.

The function SeekValidSupportSet (Algorithm 5) is called to find a new
support for (y,b) on the conjunction of constraints. But the function has to avoid
checking tuples which are already checked. This is taken care by using the func-
tion SeekCandidateSet. This function is similar to the function SeekCandi-
dateTuple. The function SeekCandidateSet returns the smallest tuple which
is a support of the conjunction of constraints.

If there is no support for a variable value, then that variable value is deleted
from the variable domain by the function DeletionStream (Algorithm 6). The
function also checks whether any tuple in Sclast contains the variable value.
If there is such a tuple, then all the variable values in the tuple are added to
supportlist to find new support.

3.5 Heuristic for Generating Conjunction Set

The CSPs associated with the verification scenarios have large number of con-
straints, large domain for each input variables and many of the constraints
have the same variables. The pruning capability by consistency search can be
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Algorithm 4. SeekCandidateTuple
1: SeekCandidateTuple (in C:constraint; in y:variable; in b:value; in τ :tuple):tuple
2: k = 1
3: while (τ ←= nil) and (k≡X(C)) do
4: if lastc(var(C,k),τ [k]) ←= nil then
5: λ = lastSc(var(C,k),τ [k])
6: split = 1
7: while τ [split] = λ[split] do
8: split = split+1
9: end while

10: if τ [split] < λ[split] then
11: if split < k then
12: (τ ,k’)= NextTuple(C,y,b,λ)
13: k = k’+1
14: else
15: (τ ,k’)= NextTuple(C,y,b,λ)
16: k = min(k’-1, k)
17: end if
18: end if
19: end if
20: k = k+1
21: end while
22: return τ

Algorithm 5. SeekValidSupportSet
1: SeekCandidateTuple (in S:constraint set; in y:variable; in b:value; in τ :tuple):tuple
2: if τ ←= nil then
3: zigma = NextTuple(S,y,b,τ ,θ)
4: else
5: zigma = FirstTuple(S,y,b)
6: end if
7: zigma1 = SeekCandidateSet(S,y,b,τ ,θ)
8: solution found = false
9: while (zigma1 ←= nil) and (not solution found) do

10: if zigma1 satisfies constraint set S then
11: solution found = true
12: else
13: zigma1= NextTuple(S,y,b,zigma1,θ)
14: zigma1 = SeekCandidateSet(D,y,b,zigma1,θ)
15: end if
16: return zigma1
17: end while

Algorithm 6. DeletionStream
1: SeekCandidateTuple (in y:variable; in b:value)
2: if Sclast(var(C,y),τ [y])= b then
3: Add to supportlist (S,(var(C,x)),a) where x ←= y and τ [x]=a
4: delete λ from Sclast
5: end if
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increased, by combining/conjuncting a large number of constraints together. If
a large number of constraints are conjuncted, the variables in the tuple increases
and the number of tuples that has to be generated also increases. So there should
be a limit to the number of constraints conjuncted together. Similarly the number
of variables in the tuple has to be regulated to prevent the tuple from becoming
very large. For conjunction of constraints to be effective in reducing the domain
values, the constraints in the conjunction set should have a certain number of
variables in common. The number of constraints (k), number of variable in the
conjunction set (j ) and the number of variable common to all the constraints in
the conjunction set (i) depends on the CSP and the machine capacity. So there
should be a heuristic based on the parameters i, j and k to determine which
constraints can be combined together to make the conjunction set.

The heuristic for grouping constraints into conjunctive sets is as follows:

1. Initially there will be ‘n’ conjunctive sets (S), each containing a single con-
straint (where n is the total number of constraints in the CSP).

2. If there exists two conjunctive sets S1, S2 such that variables in S1 is equal to
variables in S2, then remove S1 and S2 and add a new set which is conjunction
of all the constraints in S1 and S2.

3. If there exist two conjunctive sets S1, S2 such that (a) S1, S2 share at least
i variables (b) the number of variables in S1 ∪ S2 is less than j (c) the total
number of constraints in S1 and S2 is less than k then remove S1 and S2 and
add a new set which is conjunction of all the constraints in S1 and S2.

4. Repeat 2 and 3 until no more such pairs exist.

The Table 1 shows how constraints can be conjuncted using the above heuris-
tic. During step 3 the constraints S5 and S3 are conjuncted to form constraint
S6. The constraint S4 cannot be conjuncted with S6 because the total number
of constraints in the conjunction set should be less than 4 (since k = 4).

3.6 Correctness of the Algorithm

To show the correctness of the algorithm it is necessary to prove that every
inconsistent value is removed (completeness) and that no consistent value is
removed by the algorithm (soundness) when the algorithm terminates. Moreover,
we need to prove that the algorithm terminates.

Lemma 1. Algorithm will terminate.

Table 1. Conjunction of constraints

Constraints in CSP After step1 After step2 After step3 (i = 1, j = 5, k = 4)

C1 : a ∗ b > 20 S1 : a ∗ b > 20 S5 : S1
∧

S2 : S6 : S5
∧

S3 :
C2 : a > b S2 : a > b a ∗ b > 20

∧
a > b a ∗ b > 20

∧
a > b

∧
a+ c = 25

C3 : a+ c = 25 S3 : a+ c = 25 S3 : a+ c = 25
C4 : c+ d = 19 S4 : c+ d = 19 S4 : c+ d = 19 S4 : c+ d = 19
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Proof. The algorithm consists of a for loop and two while loops. The generation
of elements for the list called support stream(S,y,b) uses a for loop. The number of
domain values, variable and constraints are finite. Hence the elements generated
for the list is finite and the for loop will terminate. The pruning process for
the domain values uses a while loop. During each cycle, one element is removed
from the list. The elements are added to this list only when a value is removed
from some domain. Thus, it is possible to add only a finite number of elements
to the list (some elements can be added repeatedly). Hence the while loop will
terminate. The algorithm uses a while loop to find support for a variable value
in a constraint. The algorithm generates tuples in lexicographic order starting
for the smallest one. Since the number of possible tuples for a constraint is finite,
the while loop will terminate when it finds a valid support tuple or when all the
tuples are generated.

Lemma 2. SeekCandidateTuple will not miss any valid tuple during the gener-
ation of next tuple.

Proof. Consider that there is a candidate tuple σ≥ between σ and the tuple
returned by the function NextTuple. This implies that σ≥[1...k] = σ[1...k] else σ≥

will the tuple returned by NextTuple. Hence σ≥ should be smaller than λ (lines
10–11). If σ≥ is smaller than λ then that tuple is already generated and checked
for consistency. So σ≥ cannot be a tuple between σ and the tuple returned by
the function NextTuple.

Another possibility is that there can be a candidate tuple σ≥ between σ and
λ. Then σ≥[1...k] should be equal to λ[1...k] (lines 7–11). This is not possible
candidate since λ is not a valid support tuple.

Lemma 3. The algorithm does not remove any consistent value from the domain
of variables.

Proof. A value is removed from the domain of a variable only if the value is not
arc consistent i.e. there is no valid support tuple for the variable value. Thus,
the algorithm does not remove any consistent value from the variables’ domains
so the algorithm is sound.

Lemma 4. When the algorithm terminates, then the domain of variables con-
tain only arc consistent values (or some domain is empty).

Proof. Every value in the domain has to pass the consistency test and incon-
sistent values will be deleted. When an inconsistent value is deleted and if the
deleted value is part of a valid support tuple, then all variable values in that
tuple are checked for consistency again. Hence when the algorithm terminates
only consistent values remain in the domain.

3.7 Complexity of the Algorithm

Lemma 5. The worst case time complexity of the algorithm is O(en2dn).
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Proof. The worst-case time complexity of GACCC-op depends on the arity of
the constraints involved in the constraint network. The greater the number of
variables involved in a constraint, the higher the cost to propagate it. Let us
first limit our analysis to the cost of enforcing GAC on a single conjunction
constraint, Si of arity n (n = |X(Si)|) and d = size of the domain of the variable.
For each variable xi∩ X(Si), for each value a∩ D(xi), we look for supports in
the search space where xi = a, which can contain up to dn−1 tuples. If the cost
to check whether a tuple satisfies the constraint is in O(n), then the cost for
checking consistency of a value is in O(ndn−1). Since we have to find support
for nd values, the cost of enforcing GAC on Si is in O(n2dn). If we enforce GAC
on the whole constraint network, values can be pruned by other constraints,
and each time a value is pruned from the domain of a variable involved in Si,
we have to call SeekValidSupportSet on Si. So, Si can be revised up to nd
times. Fortunately, additional calls to SeekValidSupportSet do not increase
its complexity since, last(Si, y, b) ensures that the search for support for (xi, a)
on Si will never check twice the same tuple. Therefore, in a network involving
e number of constraints with arity bounded by n, the total time complexity of
GACCC-op is in O(en2dn).

Lemma 6. The worst case space complexity of the algorithm is O(en2d).

Proof. Consistency search generates at most one valid support tuple for each
variable value. Then there are at most nd tuples in memory for a constraint.
One tuple will contain n elements. Then the set of all tuples which are a valid
support for a constraint can be represented in O(n2d). Therefore, in a network
involving e constraints with arity bounded by n, the total space complexity of
GACCC-op is in O(en2d).

4 Experimental Results

We implemented the proposed algorithm in C++. The tool will take SystemVer-
ilog constraints and the domain of the input variables as input and generates the
reduced domain as output. For our purpose we considered a subset of SystemVer-
ilog constraints which can be given as input to the tool. Our tool can handle
unary constraint, binary constraints and some high order constraints. The high
order constraints considered includes arithmetic, logical, mutex and implication
constraints. The proposed consistency search algorithm is used along with exist-
ing CDTG as shown in Fig. 2. As shown earlier in Fig. 1, the different verification
scenarios are converted to constraints. We used SystemVerilog to model the sce-
narios as constraints. The domain of the input variables are also specified as
constraints. These constraints and the domain of the variables are given to the
consistency check tool (based on GACCC-op). The reduced domain obtained
from the tool and the SystemVerilog constraints are then given to the constraint
solver of CDTG tool. The output of the solver is the input stimulus required for
verification of the DUV.
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Fig. 2. CDTG with consistency

We report on experiments we performed with different CSP models. The
first is a model for the 3-SAT problems [1] with different number of variables.
The SAT problems with a set of clauses are converted into CSPs containing the
same set of variables. In our case, we set i = 2, k = 2 and j = 5 (i, j and k are
the values from the heuristic for generating conjunction set) and generated the
conjunction set. Hence the model contained some conjunction set which has 2
variables shared between member constraints. The results are shown in Table 2.
For each problem the experiment is repeated for 20 instances. We implemented
the GAC-scheme on conjunction of constraints and the proposed algorithm using
the C++ language. The result shows that the proposed algorithm attains con-
sistency faster than the existing algorithm. In order to show the effect of consis-
tency check on constraint solvers associated with CDTG, we took three different
CSP benchmark problems, Langford Series, Magic Sequence and Golomb Ruler.
The three CSPs are modeled using SystemVerilog (modeling language used by
CDTGs). The SystemVerilog constraints are then used for consistency search.
The reduced input variable domain are generated by the consistency search.
This reduced domain is then used by the CDTG tool VCS to generate the CSP
solutions. From Table 3, we can see that the time to solve the three CSPs are
reduced after giving the reduced domain. In the cases of Magic Sequence the
time is significantly reduced, because, after the domain reduction the number
of domain values in most of the variables is reduced to one. Since the domain
of input variables are reduced, the search space which has to be covered by the
solver is reduced. This helps the solver to generate the solutions for CSP in less
time and with reduced memory consumption.

Table 2. Time for consistency search for 3-SAT problem instances

No: of No: of No: of tuples No: of tuples %Improvement
variables constraints with GACCC with GACCC-op in time

10 14 98 76 12.34
12 14 96 70 10.66
14 14 103 82 11.46
18 30 168 120 19.86
20 30 170 131 17.96
20 40 256 216 17.43
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Table 3. Results for benchmark CSP problems using VCS

Improvement after
domain reduction

Benchmark No: of No: of Time Memory
problem variables domain values (%) (%)

Langford Series 6 3 10.0 23.5
8 4 21.4 27.7

14 7 25.0 40.8

Golomb Ruler 3 4 8.3 23.2
4 7 7.1 28.2
5 12 9.5 39.1
6 18 13.8 73.1

Magic Sequence 4 4 30.0 50.0
5 5 40.0 71.6
7 7 55.0 73.3
8 8 62.5 81.5

5 Conclusions

Existing CDTG tools take large amount of time and memory to generate the
required test cases. In this paper, we presented a consistency check algorithm
which helps CDTG tools to reduce the memory consumption and time required
to generate the test cases. The results showed that the proposed algorithm helps
in getting solution faster and with reduced memory consumption. For illustra-
tion purposes, we provided the analysis of the Magic Sequence, Langford Series,
Golomb Ruler and 3-SAT problem. The requirements of constraint solvers asso-
ciated with CDTG open the doors to many interesting and novel directions of
research. Some worth mentioning are, generating all possible solutions and uni-
formity in randomization. In future we would like to propose a methodology
based on consistency search which will be able to attain 100 % coverage at a
faster rate with fewer iterations.
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7. Bessière, C., Régin, J.-C.: Local consistency on conjunctions of constraints. In: Pro-
ceedings of the ECAI’98 Workshop on Non-binary Constraints, pp. 53–59 (1998)

8. Bessire, C.: Refining the basic constraint propagation algorithm. In: Proceedings
IJCAI01, pp. 309–315 (2001)

9. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation
and solution techniques for random test program generation. IBM Syst. J. 41(3),
386–402 (2002)

10. van Dongen, M.R.C.: AC − 3d an efficient arc-consistency algorithm with a low
space-complexity. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
755–760. Springer, Heidelberg (2002)

11. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using
bayesian networks. In: Proceedings of the Design Automation Conference, pp. 286–
291, June 2003

12. Fournier, L., Arbetman, Y., Levinger, M.: Functional verification methodology for
microprocessors using the genesys test-program generator. application to the x86
microprocessors family. In: Design, Automation and Test in Europe Conference
and Exhibition, pp. 434–441 (1999)

13. Iyer, M.: Race a word-level atpg-based constraints solver system for smart random
simulation. In: International Test Conference, pp. 299–308 (2003)

14. Mackworth, A.: Consistency in networks of relations. In: Artificial Intelligence, pp.
99–118 (1977)

15. Moss, A.: Constraint patterns and search procedures for CP-based random test
generation. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 86–103. Springer,
Heidelberg (2008)

16. Roger, M., Thomas, H.: Arc and path consistency revisited. In: Artificial Intelli-
gence, pp. 225–233 (1986)

17. Van Hentenryck, P., Deville, Y., Teng, C.: A generic arc consistency algorithm and
its specializations. Technical report, Providence, RI, USA (1991)



A Datalog Engine for GPUs

Carlos Alberto Mart́ınez-Angeles1, Inês Dutra2, Vı́tor Santos Costa2,
and Jorge Buenabad-Chávez1(B)
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Abstract. We present the design and evaluation of a Datalog engine
for execution in Graphics Processing Units (GPUs). The engine eval-
uates recursive and non-recursive Datalog queries using a bottom-up
approach based on typical relational operators. It includes a memory
management scheme that automatically swaps data between memory in
the host platform (a multicore) and memory in the GPU in order to
reduce the number of memory transfers. To evaluate the performance of
the engine, four Datalog queries were run on the engine and on a single
CPU in the multicore host. One query runs up to 200 times faster on the
(GPU) engine than on the CPU.

Keywords: Logic programming · Datalog · Parallel computing · GPUs ·
Relational databases

1 Introduction

The traditional view of Datalog as a query language for deductive databases
is changing as a result of the new applications where Datalog has been in
use recently [18], including declarative networking [19], program analysis [9],
information extraction [23] and security [20] — datalog recursive queries are
at the core of these applications. This renewed interest in Datalog has in turn
prompted new designs of Datalog targeting computing architectures such as
GPUs, Field-programmable Gate Arrays (FPGAs) [18] and cloud computing
based on Google’s Mapreduce programming model [7]. This paper presents a
Datalog engine for GPUs.

GPUs can substantially improve application performance and are thus now
being used for general purpose computing in addition to game applications.
GPUs are single-instruction-multiple-data (SIMD) [2] machines, particularly
suitable for compute-intensive, highly parallel applications. They fit scientific
applications that model physical phenomena over time and space, wherein the
“compute-intensive” aspect corresponds to the modelling over time, while the
“highly parallel” aspect corresponds to the modelling at different points in space.

M. Hanus and R. Rocha (Eds.): KDPD 2013, LNAI 8439, pp. 152–168, 2014.
DOI: 10.1007/978-3-319-08909-6 10, c© Springer International Publishing Switzerland 2014
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Data-intensive, highly parallel applications such as database relational oper-
ations can also benefit from the SIMD model, substantially in many cases [11,
16,17]. However, the communication-to-computation ratio must be relatively low
for applications to show good performance, i.e.: the cost of moving data from
host memory to GPU memory and vice versa must be low relative to the cost
of the computation performed by the GPU on that data.

The Datalog engine presented here was designed considering various optimi-
sations aimed to reduce the communication-to-computation ratio. Data is pre-
processed in the host (a multicore) in order that: (i) data transfers between the
host and the GPU take less time, and (ii) data can be processed more efficiently
by the GPU. Also, a memory management scheme swaps data between host
memory and GPU memory seeking to reduce the number of transfers.

Datalog queries, recursive and non-recursive, are evaluated using typical rela-
tional operators, select, join and project, which are also optimised in various ways
in order to capitalise better on the GPU architecture.

Sections 2 and 3 present background material to the GPU architecture and
the Datalog language. Section 4 presents the design and implementation of our
Datalog Engine as a whole, and Sect. 5 of its relational operators. Section 6
presents an experimental evaluation of our Datalog engine. Section 7 presents
related work. We conclude in Sect. 8.

2 GPU Architecture and Programming

GPUs are SIMD machines: they consist of many processing elements (PEs) that
run the same program but on distinct data items. This same program, referred
to as the kernel, can be quite complex including control statements such as if
and for statements. However, a kernel is run in bulk-synchronous parallelism [28]
by the GPU hardware, i.e.: each instruction within a kernel is executed across
all PEs running the kernel. Thus, if a kernel compares strings, PEs that compare
longer strings will take longer and the other PEs will wait for them.

Scheduling GPU work is usually as follows. A thread in the host platform
(e.g., a multicore) first copies the data to be processed from host memory to
GPU memory, and then invokes GPU threads to run the kernel to process the
data. Each GPU thread has a unique id which is used by each thread to identify
what part of the data set it will process. When all GPU threads finish their
work, the GPU signals the host thread which will copy the results back from
GPU memory to host memory and schedule new work.

GPU memory is organised hierarchically as shown in Fig. 1. Each (GPU)
thread has its own per-thread local memory. Threads are grouped into blocks,
each block having a memory shared by all threads in the block. Finally, thread
blocks are grouped into a single grid to execute a kernel — different grids can
be used to run different kernels. All grids share the global memory.

The global memory is the GPU “main memory”. All data transfers between
the host (CPU) and the GPU are made through reading and writing global
memory. It is the slowest memory. A common technique to reducing the number
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Fig. 1. GPU memory organization.

of global memory reads is coalesced memory access, which takes place when
consecutive threads read consecutive memory locations allowing the hardware
to coalesce the reads into a single one.

Nvidia GPUs are mostly programmed using the CUDA toolkit, a set of
developing tools and a compiler that allow programmers to develop GPU appli-
cations using a version of the C language extended with keywords to specify
GPU code. CUDA also includes various libraries with algorithms for GPUs
such as the Thrust library [5] which resembles the C++ Standard Template
Library (STL) [21]. We use the functions in this library to perform sorting, pre-
fix sums [15] and duplicate elimination as their implementation is very efficient.

CUDA provides the following reserved words, each with three components
x,y and z, to identify each thread and each block running a kernel: threadIdx
is the index of a thread in its block; blockIdx is the index of a block in its
grid; blockDim is the size of a block in number of threads; and gridDim is the
size of a grid in number of blocks. With these identifiers, new identifiers can be
derived with simple arithmetic operations. For example, the global identifier of
a thread in a three-dimensional block would be:

unsigned int GID = threadIdx.x + threadIdx.y * blockDim.x +

threadIdx.z * blockDim.x * blockDim.z;

x,y and z are initialised by CUDA according to the shape with which a kernel
is invoked, either as a 1D Vector (y=z=0), a 2D Matrix (z=0), or a 3D Volume.

3 Datalog

As is well known, Datalog is a language based on first order logic that has been
used as a data model for relational databases [26,27]. A Datalog program consists
of facts about a subject of interest and rules to deduce new facts. Facts can be
seen as rows in a relational database table, while rules can be used to specify
complex queries. Datalog recursive rules facilitate specifying (querying for) the
transitive closure of relations, which is a key concept to many applications [18].
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3.1 Datalog Programs

A Datalog program consists of a finite number of facts and rules. Facts and rules
are specified using atomic formulas, which consist of predicate symbols with
arguments [26], e.g.:

FACTS father relational table

-----------------------

father(harry, john). harry john

father(john, david). john david

... ...

RULE

grandfather(Z, X) :- father(Y, X), father(Z, Y).

Traditionally, names beginning with lower case letters are used for predicate
names and constants, while names beginning with upper case letters are used
for variables; numbers are considered constants. Facts consist of a single atomic
formula, and their arguments are constants; facts that have the same name must
also have the same arity. Rules consist of two or more atomic formulas with
the first one from left to right, the rule head, separated from the other atomic
formulas by the implication symbol ’:-’; the other atomic formulas are subgoals
separated by ’,’, which means a logical AND. We will refer to all the subgoals
of a rule as the body of the rule. Rules, in order to be general, are specified with
variables as arguments, but can also have constants.

3.2 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-
up approach. The top-down approach (used by Prolog) starts with the goal which
is reduced to subgoals, or simpler problems, until a trivial problem is reached.
It is tuple-oriented: each tuple is processed through the goal and subgoals using
all relevant facts. It is not suitable for GPU bulk-synchronous parallelism (BSP)
because the processing time of distinct tuples may vary significantly.

The bottom-up approach first applies the rules to the given facts, thereby
deriving new facts, and repeating this process with the new facts until no more
facts are derived. The query is considered only at the end, to select the facts
matching the query. Based on relational operations (as described shortly), this
approach is suitable for GPU BSP because such operations are set-oriented and
relatively simple overall; hence show similar processing time for distinct tuples.
Also, rules can be evaluated in any order. This approach can be improved using
the magic sets transformation [8] or the subsumptive tabling transformation [25].
Basically, with these transformations the set of facts that can be inferred contains
only facts that would be inferred during a top-down evaluation.
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Fig. 2. Evaluation of a Datalog rule based on relational algebra operations.

3.3 Evaluation Based on Relational Algebra Operators

Evaluation of Datalog rules can be implemented using the typical relational
algebra operators select, join and projection, as outlined in Fig. 2. Selections are
made when constants appear in a rule body. Then a join is made between two
or more subgoals in the rule body using the variables as reference. The result of
a join becomes a temporary subgoal that must be joined to the other subgoals
in the body. Finally, a projection is made over the variables in the rule head.

For recursive rules, fixed-point evaluation is used. The basic idea is to iterate
through the rules in order to derive new facts, and using these new facts to derive
even more new facts until no new facts are derived.

4 Our Datalog Engine for GPUs

This section presents the design of our Datalog engine for GPUs.

4.1 Architecture

Figure 3 shows the main components of our Datalog engine. There is a single
host thread that runs in the host platform (a multi-core in our evaluation). The
host thread schedules GPU work as outlined in Sect. 2, and also preprocesses the
data to send to the GPU for efficiency, as described in Sect. 4.2.

The data sent to the GPU is organized into arrays that are stored in global
memory. The results of rule evaluations are also stored in global memory.

Our Datalog (GPU) engine is organised into various GPU kernels. When eval-
uating rules, for each pair of subgoals in a rule, selection and selfjoin kernels are
applied first in order to eliminate irrelevant tuples as soon as possible, followed
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Fig. 3. GPU Datalog engine organisation.

by join and projection kernels. At the end of each rule evaluation, duplicate
elimination kernels are applied. Figure 3 (on the right) shows these steps.

A memory management module helps identifying most recently used data by
the GPU in order to keep it in global memory and to discard other data instead.

4.2 Host Thread Tasks

Parsing. To capitalise on the GPU capacity to process numbers and to have short
and constant processing time for each tuple (the variable size of strings entails
varying processing time), we identify and use facts and rules with/as numbers,
keeping their corresponding strings in a hashed dictionary. Each unique string
is assigned a unique id, equal strings are assigned the same id. The GPU thus
works with numbers only; the dictionary is used at the very end when the final
results are to be displayed.

Preprocessing. A key factor for good performance is preprocessing data before
sending it to the GPU. As mentioned before, Datalog rules are evaluated through
a series of relational algebra operations: selections, joins and projections. For the
evaluation of each rule, the specification of what operations to perform, including
constants, variables, facts and other rules involved, is carried out in the host (as
opposed to be carried out in the GPU by each kernel thread), and sent to the
GPU for all GPU threads to use. Examples:
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– Selection is specified with two values, column number to search and the
constant value to search; the two values are sent as an array which can include
more than one selection (more than one pair of values), as in the following
example, where columns 0, 2, and 5 will be searched for the constants a, b
and c, respectively:

fact1(’a’,X,’b’,Y,Z,’c’). -> [0, ’a’, 2, ’b’, 5, ’c’]

– Join is specified with two values, column number in the first relation to join
and column number in the second relation to join; the two values are sent as
an array which can include more than one join, as in the following example
where the following columns are joined in pairs: column 1 in fact1 (X) with
column 1 in fact2, column 2 in fact1 (Y) with column 4 in fact2, and column
3 in fact1 (Z) with column 0 in fact2.

fact1(A,X,Y,Z), fact2(Z,X,B,C,Y). -> [1, 1, 2, 4, 3, 0]

Other operations are specified similarly with arrays of numbers. These arrays
are stored in GPU shared memory (as opposed to global memory) because they
are small and the shared memory is faster.

4.3 Memory Management

Data transfers between GPU memory and host memory are costly in all CUDA
applications [1]. We designed a memory management scheme that tries to min-
imize the number of such transfers. Its purpose is to maintain facts and rule
results in GPU memory for as long as possible so that, if they are used more
than once, they may often be reused from GPU memory. To do so, we keep track
of GPU memory available and GPU memory used, and maintain a list with infor-
mation about each fact and rule result that is resident in GPU memory. When
data (facts or rule results) is requested to be loaded into GPU memory, it is first
looked up in that list. If found, its entry in the list is moved to the beginning
of the list; otherwise, memory is allocated for the data and a list entry is cre-
ated at the beginning of the list for it. In either case, its address in memory is
returned. If allocating memory for the data requires deallocating other facts and
rule results, those at the end of the list are deallocated first until enough memory
is obtained — rule results are written to CPU memory before deallocating them.
By so doing, most recently used fact and rule results are kept in GPU memory.

5 GPU Relational Algebra Operators

This section presents the design decisions we made for the relational algebra
operations we use in our Datalog engine: select, join and project operations for
GPUs. The GPU kernels that implement these operations access (read/write)
tables from GPU global memory.
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5.1 Selection

Selection has two main issues when designed for running in GPUs. The first issue
is that the size of the result is not known beforehand, and increasing the size
of the results buffer is not convenient performance-wise because it may involve
reallocating its contents. The other issue is that, for efficiency, each GPU thread
must know onto which global memory location it will write its result without
communicating with other GPU threads.

To avoid those issues, our selection uses three different kernel executions. The
first kernel marks all the rows that satisfy the selection predicate with a value
one. The second kernel performs a prefix sum on the marks to determine the
size of the results buffer and the location where each GPU thread must write
the results. The last kernel writes the results.

5.2 Projection

Projection requires little computation, as it simply involves taking all the ele-
ments of each required column and storing them in a new memory location.
While it may seem pointless to use the GPU to move memory, the higher mem-
ory bandwidth of the GPU, compared to that of the host CPUs, and the fact
that the results remain in GPU memory for further processing, make projection
a suitable operation for GPU processing.

5.3 Join

Our Datalog engine uses these types of join: Single join, Multijoin and Selfjoin. A
single join is used when only two columns are to be joined, e.g.: table1(X,Y ) νβ
table2(Y,Z). A multijoin is used when more than two columns are to be joined:
table1(X,Y ) νβ table2(X,Y ). A selfjoin is used when two columns have the same
variable in the same predicate: table1(X,X).

Single join. We use a modified version of the Indexed Nested Loop Join described
in [16], which is as follows:

Make an array for each of the two columns to be joined

Sort one of them

Create a CSS-Tree for the sorted column

Search the tree to determine the join positions

Do a first join~to determine the size of the result

Do a second join~to write the result

The CSS-Tree [22] (Cache Sensitive Search Tree) is very adequate for GPUs
because it can be quickly constructed in parallel and because tree traversal is
performed via address arithmetic instead of the traditional memory pointers.

While the tree allows us to know the location of an element, it does not tell
us how many times each element is going to be joined with other elements nor in
which memory location must each thread write the result, so we must perform
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a “preliminary” join. This join counts the number of times each element has
to be joined and returns an array that, as in the select operation, allows us to
determine the size of the result and write locations when a prefix sum is applied
to it. With the size and write locations known, a second join writes the results.

Multijoin. To perform a join over more than two columns, e.g., table1(X,Y ) νβ
table2(X,Y ), first we take a pair of columns, say (X,X), to create and search
on the CSS-Tree as described in the single join algorithm. Then, as we are doing
the first join, we also check if the values of the remaining columns are equal (in
our example we check if Y = Y ) and discard the rows that do not comply.

Selfjoin. The selfjoin operation is similar to the selection operation. The main
difference is that, instead of checking for a constant value on the corresponding
row, it checks if the values of the columns involved by the self join match.

5.4 Optimisations

Our relational algebra operations make use of the following optimisations in
order to improve performance. The purpose of these optimisations is to reduce
memory use and in principle processing time — the cost of the optimisations
themselves is not yet evaluated.

Duplicate Elimination. Duplicate elimination uses the unique function of the
Thrust library. It takes an array and a function to compare two elements in the
array, and returns the same array with the unique elements at the beginning.
We apply duplicate elimination to the result of each rule: when a rule is finished,
its result is sorted and the unique function is applied.

Optimising Projections. Running a projection at the end of each join, as
described below, allows us to discard unnecessary columns earlier in the compu-
tation of a rule. For example, consider the following rule:

rule1(Y, W) :- fact1(X, Y), fact2(Y, Z), fact3(Z,W).

The evaluation of the first join, fact1 νβY fact2, generates a temporary table
with columns (X,Y, Y, Z), not all of which are necessary. One of the two Y
columns can be discarded; and column X can also be discarded because it is not
used again in the body nor in the head of the rule.

Fusing Operations. Fusing operations consists of applying two or more oper-
ations to a data set in a single read of the data set, as opposed to applying only
one operation, which involves as many reads of the data set as the number of
operations to be applied. We fuse the following operations.

– All selections required by constant arguments in a subgoal of a rule are per-
formed at the same time.

– All selfjoins are also performed at the same time.
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– Join and projection are always performed together at the same time.

To illustrate these fusings consider the following rule:

rule1(X,Z):- fact1(X,’const1’,Y,’const2’),fact2(Y,’const3’,Y,Z,Z).

This rule will be evaluated as follows. fact1 is processed first: the selections
required by const1 and const2 are performed at the same time — fact1 does not
require selfjoins. fact2 is processed second: (a) the selection required by const3
is performed, and then (b) the selfjoins between Y s and Zs are performed at
the same time. Finally, a join is performed between the third column of fact1
and the first column of fact2 and, at the same time, a projection is made (as
required by the arguments in the rule head) to leave only the first column of
fact1 and the fourth column of fact2.

6 Experimental Evaluation

This section describes our platform, applications and experiments to evaluate
the performance of our Datalog engine. We are at this stage interested in the
performance benefit of using GPUs for evaluating Datalog queries, compared
to using a CPU only. Hence we present results that show the performance of
4 Datalog queries running on our engine compared to the performance of the
same queries running on a single CPU in the host platform. (We plan to compare
our Datalog engine to similar GPU work discussed in Sect. 7, Related Work, in
another paper).

On a single CPU in the host platform, the 4 queries were run with the Prolog
systems YAP [10] and XSB [24], and the Datalog system from the MITRE Cor-
poration [3]. As the 4 queries showed the best performance with YAP, our results
show the performance of the queries with YAP and with our Datalog engine only.
YAP is a high-performance Prolog compiler developed at LIACC/Universidade
do Porto and at COPPE Sistemas/UFRJ. Its Prolog engine is based on the
WAM (Warren Abstract Machine) [10], extended with some optimizations to
improve performance. The queries were run on this platform:

Hardware. Host platform: Intel Core 2 Quad CPU Q9400 2.66GHz (4 cores
in total), Kingston RAM DDR2 6GB 800 MHz. GPU platform: Fermi GeForce
GTX 580 - 512 cores - 1536 MB GDDR5 memory.

Software. Ubuntu 12.04.1 LTS 64bits. CUDA 5.0 Production Release, gcc 4.5,
g++ 4.5. YAP 6.3.3 Development Version, Datalog 2.4, XSB 3.4.0.

For each query, in each subsection below, we describe first the query, and then
discuss the results. Our results show the evaluation of each query once all data
has been preprocessed and in CPU memory, i.e.: I/O, parsing and preprocessing
costs are not included in the evaluation.
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6.1 Join over Four Big Tables

Four tables, all with the same number of rows filled with random numbers, are
joined together to test all the different operations of our Datalog engine. The
rule and query used are:

join(X,Z) :- table1(X), table2(X,4,Y), table3(Y,Z,Z), table4(Y,Z).

join(X,Z)?

Figure 4 shows the performance of the join with YAP and our engine, in
both normal and logarithmic scales to better appreciate details. Our engine is
clearly faster, roughly 200 times. Both YAP and our engine take proportionally
more time as the size of tables grows. Our engine took just above two seconds to
process tables with five million rows each, while YAP took about two minutes
to process tables with one million rows each. Joins were the most costly oper-
ations with multijoin alone taking more than 70 % of the total time; duplicate
elimination and sorting were also time consuming but within acceptable values;
prefix sums and selections were the fastest operations.
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Fig. 4. Performance of join over four big tables (NB: log. scale on the right).

6.2 Transitive Closure of a Graph

The transitive closure of a graph (TCG) is a recursive query. We use a table with
two columns filled with random numbers that represent the edges of a graph [13].
The idea is to find all the nodes that can be reached if we start from a particular
node. This query is very demanding because recursive queries involve various
iterations over the relational operations that solve the query. The rules and the
query are:

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Y)?
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Fig. 5. Performance of transitive closure of a graph (NB: log. scale on the right).

Figure 5 shows the performance of TCG with YAP and our engine. Similar
observations can be made as for the previous experiment. Our engine is 40x
times faster than YAP for TCG. Our engine took less than a second to process
a table of 10 million rows while YAP took 3.5 s to process 1 million rows.

For the first few iterations, duplicate elimination was the most costly oper-
ation of each iteration, and the join second but closely. As the number of rows
to process in each iteration decreased, the join became by far the most costly
operation.

6.3 Same-Generation Program

This is a well-known program in the Datalog literature, and there are various
versions. We use the version described in [6]. Because of the initial tables and
the way the rules are written, it generates lots of new tuples in each iteration.
The three required tables are created with the following equations:

up = {(a, bi)|iδ[1, n]} ∪ {(bi, cj)|i, jδ[1, n]}. (1)
flat = {(ci, dj)|i, jδ[1, n]}. (2)

down = {(di, ej)|i, jδ[1, n]} ∪ {(ei, f)|iδ[1, n]}. (3)

Where a and f are two known numbers and b, c, d and e are series of n random
numbers. The rules and query are as follows:

sg(X,Y) :- flat(X,Y).

sg(X,Y) :- up(X,X1), sg(X1,Y1), down(Y1,Y).

sg(a,Y)?

The results show (Fig. 6) very little gain in performance, with our engine
taking an average of 827 ms and YAP 1600 ms for n = 75. Furthermore, our
engine cannot process this application for n > 90 due to lack of memory.

The analysis of each operation revealed that duplicate elimination takes more
than 80 % of the total time and is also the cause of the memory problem. The
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Fig. 6. Same-generation program.

reason of this behaviour is that the join creates far too many new tuples, but most
of these tuples are duplicates (as an example, for n = 75 the first join creates
some 30 million rows and, after duplicate elimination, less than 10 thousand
rows remain).

6.4 Tumour Detection

Correctly determining whether or not a tumour is malignant requires analysing
and comparing a great amount of information from medical studies. Considering
each characteristic of a tumour as a fact, the rules and query below can be used
to determine, for each patient, if his/her tumour is malignant or not:

is_malignant(A):-

same_study(A,B), ’HO_BreastCA’(B,hxDCorLC),

’MassPAO’(B,present), ’ArchDistortion’(A,notPresent),

’Calc_Round’(A,notPresent), ’Sp_AsymmetricDensity’(A,notPresent),

’SkinRetraction’(B,notPresent), ’Calc_Popcorn’(A,notPresent),

’FH_DCNOS’(B,none).

same_study(Id,OldId) :-

’IDnum’(Id,X), ’MammoStudyDate’(Id,D0),

’IDnum’(OldId,X), ’MammoStudyDate’(OldId,D0),

OldId \= Id.

is_malignant(A)?

The query asks for those studies which detect a malignant tumour. Some
tumour characteristics are taken from the most recent study, while others must
be taken from past studies. This restriction requires defining an additional rule
(same study) to determine if two studies belong to the same person and if they
have different dates. The last subgoal of same study (OldId \= Id) prevents a
study from referencing to itself, thus avoiding incorrect results. We evaluated
this program with 65800 studies, i.e., each table is composed of 65800 rows.



A Datalog Engine for GPUs 165

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

65800 X2 X3

T
im

e(
m

se
c)

Problem size(number of studies)

GPUDatalog
YAP no tabling

YAP tabling

Fig. 7. Performance of tumour detection.

Figure 7 shows the performance of tumour detection with YAP and our
engine. We used different sizes of input data through duplicating and triplicat-
ing each table, i.e.: each table had 65800 rows for the first test, and 131600 and
197400 rows for the second and third tests. We could thus increase processing
time while obtaining the same results thanks to duplicate elimination.

Our engine performs best for the first and second tests, but is surpassed in
the third test by YAP with tabling [25]. A detailed analysis showed that the mul-
tijoin required by same study consumed almost 90 % of the total execution time,
and mostly in duplicate elimination, as follows. In the third test, same study
generated 4095036 rows, which were reduced to 50556 after duplicate elimina-
tion. For is malignant the results were similar: 4881384 rows were generated
but only 550 remained after duplicate elimination.

YAP with no tabling in the third test is so affected by duplicates that it
simply terminates after throwing an error — shown in the figure as zero execution
time. In contrast, YAP with tabling avoids performing duplicate work and thus
performs rather well.

7 Related Work

He et al. [17] have designed, implemented and evaluated GDB, an in-memory
relational query coprocessing system for execution on both CPUs and GPUs.
GDB consists of various primitive operations (scan, sort, prefix sum, etc.) and
relational algebra operators built upon those primitives.

We modified the Indexed Nested Loop Join (INLJ) of GDB for our single join
and multijoin, so that more than two columns can be joined, and a projection
performed, at the same time. Their selection operation and ours are similar
too; ours takes advantage of GPU shared memory and uses the Prefix Sum of
the Thrust Library. Our projection is fused into the join and does not perform
duplicate elimination, while they do not use fusion at all.
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Diamos et al. [11,12,29–31] have also developed relational operators for GPUs
for the Red Fox [4] platform, an extended Datalog developed by LogicBlox [14]
for multiple-GPU systems [31]. Their operators partition and process data in
blocks using algorithmic skeletons. Their join algorithm is 1.69 times faster than
that of GDB [11]. Their selection performs two prefix sums and the result is
written and then moved to eliminate gaps; our selection performs only one prefix
sum and writes the result once. They discuss kernel fusion and fission in [30]. We
applied fusion (e.g., simultaneous selections, selection then join, etc.) at source
code; they implemented it automatically through the compiler. Kernel fission,
the parallel execution of kernels and memory transfers, is not yet adopted in our
work. We plan to compare our relational operators to those of GDB and Red
Fox, and extend them to run on multiple-GPU systems too.

8 Conclusions

Our Datalog engine for GPUs evaluates queries based on the relational operators
select, join and projection. Our evaluation using 4 queries shows a dramatic
performance improvement for two queries, up to 200 times for one of them. The
other two queries did not perform that well, but we are working on the following
extensions to our engine in order to improve its performance further.

– Evaluation based on tabling [25] or magic sets [8] methods.
– Managing tables larger than the total amount of GPU memory.
– Mixed processing of rules both on the GPU and on the host multicore.
– Improved join operations to eliminate duplicates before writing final results.
– Extended syntax to accept built-in predicates and negation [6].
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Abstract. In this study, we started to investigate how the Partitioned
Global Address Space (PGAS) programming language X10 would suit the
implementation of a Constraint-Based Local Search solver. We wanted to
code in this language because we expect to gain from its ease of use and
independence from specific parallel architectures. We present our imple-
mentation strategy, and quest for different sources of parallelism. We dis-
cuss the algorithms, their implementations and present a performance
evaluation on a representative set of benchmarks.

1 Introduction

Constraint Programming has been successfully used to model and solve many
real-life problems in diverse areas such as planning, resource allocation, schedul-
ing and product line modeling [18,19]. Classically, constraint satisfaction prob-
lems (CSPs) may be solved exhaustively by complete methods which are capable
of finding all solutions, and therefore to determine whether any solutions exist.
However efficient these solvers may be, a significant class of problems remains
out of reach because of exponential growth of the search space, which must
be exhaustively explored. Another approach to solving CSPs entails giving up
completeness and resorting to (meta-) heuristics which will guide the process of
searching for solutions to the problem. Solvers in this class make choices which
limit the search space which actually gets visited, enough so to make problems
tractable. For instance a complete solver for the magic squares benchmark will
fail for problems larger than 15 × 15 whereas a local search method will eas-
ily solve a 100 × 100 problem instance, within similar memory and CPU time
bounds. On the other hand, a local search procedure may not be able to find a
solution, even when one exists.

However, it is unquestionable that the more computational resources are
available, the more complex the problems that may be solved. We would therefore
like to be able to tap into the forms of augmented computational power which
are actually available, as conveniently as feasible. This requires taming various
forms of explicitly parallel architectures.
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Present-day parallel computational resources include increasingly multi-core
processors, General Purpose Graphic Processing Units (GPGPUs), computer
clusters and grid computing platforms. Each of these forms requires a different
programming model and the use of specific software tools, the combination of
which makes software development even more difficult.

The foremost software platforms used for parallel programming include POSIX
Threads [2] and OpenMP [17] for shared-memory multiprocessors and multicore
CPUs, MPI [23] for distributed-memory clusters or CUDA [16] and OpenCL [12]
for massively parallel architectures such as GPGPUs. This diversity is a chal-
lenge from the programming language design standpoint, and a few proposals have
emerged that try to simultaneously address the multiplicity of parallel computa-
tional architectures.

Several modern language designs are built around the Partitioned Global
Address Space (PGAS) memory model, as is the case with X10 [21], Unified
Parallel C [7] or Chapel [10]. Many of these languages propose abstractions which
capture the several forms in which multiprocessors can be organized. Other, less
radical, approaches consist in supplying a library of inter-process communication
which relies on and uses a PGAS model [14].

In our quest to find a scalable and architecture-independent implementation
platform for our exploration of high-performance parallel constraint-based local
search methods, we decided to experiment with one of the most promising new-
generation languages, X10 [21].

The remainder of this article is organized as follows: Section 2 discusses the
PGAS Model and briefly introduces the X10 programming language. Section 3
introduces native X10 implementations exploiting different sources of parallelism
of the Adaptive Search algorithm. Section 4 presents an evaluation of these imple-
mentations. A short conclusion ends the paper.

2 X10 and the Partitioned Global Address Space (PGAS)
Model

The current arrangement of tools to exploit parallelism in machines are strongly
linked to the platform used. Two broad programming models stand out in this
matter: distributed and shared memory models. For large distributed mem-
ory systems, like clusters and grid computing, the Message Passing Interface
(MPI) [23] is a de-facto programming standard. The key idea in MPI is to
decompose the computation over a collection of processes, each with its pri-
vate memory space. These processes can communicate with each other through
message passing, generally over a communication network.

With the recent growth of many-core architectures, the shared memory app-
roach has grown in popularity. This model decomposes the computation in mul-
tiple threads of execution which share a common address space, communicating
with each other by reading and writing shared variables. Actually, this is the
model used by traditional programming tools like Fortran or C through libraries
like pthreads [2] or OpenMP [17].



Towards Parallel Constraint-Based Local Search with the X10 Language 171

Fig. 1. PGAS model

The PGAS model tries to combine the advantages of these two approaches:
it extends shared memory to a distributed memory setting. The execution model
allows having multiple processes (like MPI), multiple threads in a process (like
OpenMP), or a combination thereof (see Fig. 1). Ideally, the user would be
allowed to decide how tasks get mapped to physical resources. X10 [21], Unified
Parallel C [25] and Chapel [10] are examples of PGAS-enabled languages, but
there are also PGAS-based IPC libraries such as GPI [14], for use in traditional
programming languages. For the experiments described herein, we used the X10
language.

X10 [21] is a general-purpose language developed by IBM, which provides a
PGAS variation: Asynchronous PGAS (APGAS). APGAS extends the PGAS
model making it flexible, even in non-HPC platforms [20]. With this model X10
supports different levels of concurrency with simple language constructs.

There are two main abstractions in X10: places and activities. A place is the
abstraction of a virtual shared-memory process, it has a coherent portion of the
address space together with threads (activities) that operate on that memory.
The X10 construct for creating a place in X10 is at, and is commonly used
to create a place for each processing unit in the platform. An activity is the
mechanism to abstract the single threads that perform computation within a
place. Multiple activities may be simultaneously active in one place.

X10 implements the major components of the PGAS model, by the use of
places and activities. However, the language includes other interesting tools with
the goal of improving the abstraction level of the language. Synchronization is
supported thanks to various operations such as finish, atomic and clock. The
finish operation is used to wait for the termination of a set of activities, it
behaves like a traditional barrier. The constructs atomic ensures exclusive access
to a critical portion of code. Finally, the construct clock is the standard way
to ensure the synchronization between activities or places. X10 supports the
distributed array construct, which makes it possible to divide an array into sub-
arrays which are mapped to available places. Doing this ensures a local access
from each place to the related assigned sub-array. A detailed discussion of X10,
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including a tutorial, language specification and examples can be consulted at
http://x10-lang.org/.

3 Native X10 Implementations of Adaptive Search

In order to take advantage of parallelism it is necessary to identify the opportuni-
ties which exist within the Adaptive Search algorithm. In [5], the authors survey
the state-of-the-art of the main parallel meta-heuristic strategies and discuss
general design and implementation principles. They classify the decomposition
of activities for parallel work in two main groups: functional parallelism and data
parallelism.1

On the one hand, in functional parallelism different tasks run on multiple
compute instances across the same or different data-sets. On the other hand, data
parallelism refers to the methods in which the problem domain or the associated
search space is decomposed. A particular solution methodology is used to address
the problem on each of the resulting components of the search space. This article
reports on our experiments concerning both kinds of parallelism applied to the
Adaptive Search method.

3.1 Sequential Implementation

Our first experiment with AS in X10 was to develop a sequential implementation
corresponding to a specialized version of the Adaptive Search for permutation
problems [15].2

Figure 2 shows the class diagram of the basic X10 project. The classASPermut-
Solver contains the Adaptive Search permutation specialized method implemen-
tation. This class inherits the basic functionality from a general implementation of
the Adaptive Search solver (in class AdaptiveSearchSolver), which in turn inherits
a very simple Local Search method implementation from the class LocalSearch-
Solver. This class is then specialized for different parallel approaches, which we
experimented with. As we will see below, we experimented with two versions of
Functional Parallelism (FP1 and FP2) and a Data Parallelism version (called Inde-
pendent Multi-Walk, i.e. IMW).

Moreover, a simple CSP model is described in the class CSPModel, and
specialized implementations of each CSP benchmark problem are contained in
the classes PartitModel, MagicSquareModel, AllIntervallModel and CostasModel,
which have all data structures and methods to implement the error function of
each problem.

Listing 1.1 shows a simplified skeleton code of our X10 sequential imple-
mentation, based on Algorithm 1. The core of the Adaptive Search algorithm
1 Their relation is similar to that of AND- and OR-parallelism in the Logic Program-

ming community.
2 In a permutation problem, all N variables have the same initial domain of size N

and are subject to an implicit all-different constraint. The associated algorithm is
reported in the appendix.

http://x10-lang.org/
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Fig. 2. X10 Class diagram basic project

is implemented in the method solve. The solve method receives a CSPModel
instance as parameter. On line 8, the CSP variables of the model are initial-
ized with a random permutation. On the next line the total cost of the current
configuration is computed. The while instruction on line 10 corresponds to the
main loop of the algorithm. The selectVarHighCost function (Line 12) selects
the variable with the maximal error and saves the result in the maxI variable.
The selectVarMinConflict function (Line 13) selects the best neighbor move from
the highest cost variable maxI, and saves the result in the minJ variable. Finally,
if no local minimum is detected, the algorithm swaps the variables maxI and
minJ (permutation problem) and computes the total cost of the resulting new
configuration (Line 16). The solver function ends if the totalCost variable equals
0 or when the maximum number of iterations is reached.

Listing 1.1. Simplified AS X10 Sequential Implementation

1 class ASPermutSolver {
2 var totalCost: Int;
3 var maxI: Int;
4 var minJ: Int;
5
6 public def solve (csp: CSPModel): Int {
7 <local variables>
8 csp.initialize();
9 totalCost = csp.costOfSolution();

10 while (totalCost != 0) {
11 <restart code>
12 maxI = selectVarHighCost (csp);
13 minJ = selectVarMinConflict (csp);
14 <local min tabu list, reset code>
15 csp.swapVariables (maxI, minJ);
16 totalCost = csp.costOfSolution ();
17 }
18 return totalCost;
19 }
20 }
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Algorithm 1. Adaptive Search Base Algorithm

Input: problem given in CSP format:

– set of variables V = {X1, X2 · · · } with their domains
– set of constraints Cj with error functions
– function to project constraint errors on vars (positive) cost function to minimize
– T : Tabu tenure (number of iterations a variable is frozen on local minima)
– RL: number of frozen variables triggering a reset
– MI: maximal number of iterations before restart
– MR: maximal number of restarts

Output: a solution if the CSP is satisfied or a quasi-solution of minimal cost otherwise.

1: Restart ← 0
2: repeat
3: Restart ← Restart + 1
4: Iteration ← 0
5: Compute a random assignment A of variables in V
6: Opt Sol ← A
7: Opt Cost ← cost(A)
8: repeat
9: Iteration ← Iteration + 1

10: Compute errors constraints in C and project on relevant variables
11: Select variable X with highest error: MaxV
12: α not marked Tabu
13: Select the move with best cost from X: MinConflictV
14: if no improvement move exists then
15: mark X as Tabu for T iterations
16: if number of variables marked Tabu ≥ RL then
17: randomly reset some variables in V
18: α and unmark those Tabu
19: end if
20: else
21: swap(MaxV ,MinConflictV ),
22: α modifying the configuration A
23: if cost(A) < Opt Cost then
24: Opt Sol ← A
25: Opt Cost ← costs(A)
26: end if
27: end if
28: until Opt Cost = 0 (solution found) or Iteration ≥ MI
29: until Opt Cost = 0 (solution found) or Restart ≥ MR
30: output(Opt Sol, Opt Cost)

3.2 Functional Parallel Implementation

Functional parallelism is our first attempt to parallelize the Adaptive Search
algorithm. The key aim for this implementation is to decompose the problem
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into different tasks, each task working in parallel on the same data. To achieve
this objective it is necessary to change the inner loop of the sequential Adaptive
Search algorithm.

In this experiment, we decided to change the structure of the selectVarHigh-
Cost function, because therein lies the most costly activities performed in the
inner loop. The most important task performed by this function is to go through
the variable array of the CSP model to compute the cost of each variable (in
order to select the variable with the highest cost). A X10 skeleton implementa-
tion of selectVarHighCost function is presented in Listing 1.2.

Listing 1.2. Function selVarHighCost in X10

1 public def selectVarHighCost( csp : CSPModel ) : Int {
2 <local variables>
3 // main loop: go through each variable in the CSP
4 for (i = 0; i < size; i++) {
5 <count marked variables>
6 cost = csp.costOnVariable (i);
7 <select the highest cost>
8 }
9 return maxI; // (index of the highest cost)

10 }
Since this function must process the entire variable vector at each iteration,

it is natural to try to parallelize the task. For problems with many variables
(e.g. the magic square problem involves N2 variables) the gain could be very
interesting. We developed a first approach (called FP1), in which n single activ-
ities are created at each iteration. Each activity processes a portion of the vari-
ables array and performs the required computations. The X10 construct async
was chosen to create individual activities sharing the global array. Listing 1.3
shows the X10 skeleton code for the first approach of the functional parallelism
in the function selectVarHighCost.

Listing 1.3. First approach to functional parallelism

1 public def selectVarHighCost (csp : CSPModel) : Int {
2 // Initialization of Global variables
3 var partition : Int = csp.size/THNUM;
4 finish for(th in 1..THNUM){
5 async{
6 for (i = ((th−1)∗partition); i < th∗partition; i++){
7 <calculate individual cost of each variable>
8 <save variable with higher cost>
9 }

10 }
11 }
12 <terminate function: merge solutions>
13 return maxI; //(Index of the higher cost)
14 }
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In this implementation the constant THNUM on line 4 represents the number
of concurrent activities that are deployed by the program. On the same line,
the keyword finish ensures the termination of all spawned activities. Finally, the
construct async on line 5 spawns independent individual tasks to cross over a
portion of the variable array (sentence for on line 6). With this strategy we face
up with a well known problem of functional parallelism: the overhead due to the
management of fine-grained activities. As expected results are not good enough
(see Sect. 4 for detailed results).

In order to limit the overhead due to activity creation, we implemented a
second approach (called FP2). Here the n working activities are created at the
very beginning of the solving process, just before the main loop of the algorithm.
These activities are thus available for all subsequent iterations. However, it is
necessary to develop a synchronization mechanism to assign tasks to the working

Listing 1.4. Second approach to functional parallelism

1 public class ASSolverFP1 extends ASPermutSolver{
2 val computeInst : Array[ComputePlace];
3 var startBarrier : ActivityBarrier;
4 var doneBarrier : ActivityBarrier;
5
6 public def solve(csp : CSPModel):Int{
7 for(var th : Int = 1; th <= THNUM ; th++)
8 computeInst(th) = new ComputePlace(th , csp);
9

10 for(id in computeInst)
11 async computeInst(id).run();
12
13 while(total cost!=0){
14 <restart code>
15 for(id in computeInst)
16 computeInst(id).activityToDo = SELECVARHIGHCOST;
17
18 startBarrier.wait(); // send start signal
19 // activities working...
20 doneBarrier.wait(); // work ready
21 maxI=terminateSelVarHighCost();
22 <local min tabu list, reset code>
23 }
24 // Finish activities
25 for(id in computeInst)
26 computeInst(id).activityToDo = FINISH;
27
28 startBarrier.wait();
29 doneBarrier.wait();
30 return totalCost;
31 }
32 }
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activities and to wait for their termination. For this purpose we created two new
classes: ComputePlace and ActivityBarrier. ComputePlace is a compute instance,
which contains the functionality of the working activities. ActivityBarrier is a
very simple barrier developed with X10 monitors (X10 concurrent package).

Listing 1.4 shows the X10 implementation3 of the second approach.
This code begins with the definition of three global variables on lines 2–4: com-

puteInst, startBarrier and doneBarrier ; computeInst is an array ofComputePlace
objects, one for each working activity desired. startBarrier and doneBarrier are
ActivityBarrier instances created to signalize the starting and ending of the task in
the compute place. On lines 7–11, before the main loop THNUM working activities
are created and started over an independent X10 activity. When the algorithm
needs to execute the selectVarHighCost functionality, the main activity assigns
this task putting a specific value into the variable activityToDo in the correspond-
ing instance of the ComputePlace class (lines 15 and 16), then the function wait()
is executed over the barrier startBarrier to notify all working activities to start
(line 18). Finally, the function wait() is executed over the barrier doneBarrier to
wait the termination of the working activities (line 20). Then on line 21 the main
activity can process the data with the function terminateSelVarHighCost. When
the main loop ends, all the working activities are notified to end and the solve
function returns (lines 25–30). Unfortunately, as we will see below, the improve-
ment of this second approach is not important enough (and, in addition, it has its
own overhead due to synchronization mechanisms).

3.3 Data Parallel Implementation

A straightforward implementation of data parallelism in the Adaptive Search
algorithm is the multiple independent Independent Multi-Walks (IMW) app-
roach. The idea is to use isolated sequential Adaptive Search solver instances
dividing the search space of the problem through different random starting
points. This strategy is also known as Multi Search (MPSS, Multiple initial
Points, Same search Strategies) [5] and has proven to be very efficient [6,13].

The key of this implementation is to have several independent and isolated
instances of the Adaptive Search Solver applied to the same problem model.
The problem is distributed to the available processing resources in the computer
platform. Each solver runs independently (starting with a random assignment
of values). When one instance finds a solution it is necessary to stop all other
running instances. This is achieved using a termination detection communication
strategy. This simple parallel version has no inter-process communication, mak-
ing it Embarrassingly or Pleasantly Parallel. The skeleton code of the algorithm
is shown in the Listing 1.5.
3 Remark: in X10 the array notation is table(index) instead of table[index] as in C.
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Listing 1.5. Adaptive Search data parallel X10 implementation

1 public class ASSolverIMW{
2 val solDist : DistArray[ASPermutSolver];
3 val cspDist : DistArray[CSPModel];
4 def this( ){
5 solDist=DistArray.make[ASPermutSolver](Dist.makeUnique());
6 cspDist=DistArray.make[CSPModel](Dist.makeUnique());
7 }
8 public def solve(){
9 val random = new Random();

10 finish for(p in Place.places()){
11 val seed = random.nextLong();
12 at(p) async {
13 cspDist(here.id) = new CSPModel(seed);
14 solDist(here.id) = new ASPermutSolver(seed);
15 cost = solDist(here.id).solve(cspDist(here.id));
16 if (cost==0){
17 for (k in Place.places())
18 if (here.id != k.id)
19 at(k) async{
20 solDist(here.id).kill = true;
21 }
22 }
23 }
24 }
25 return cost;
26 }
27 }

For this implementation the ASSolverIMW class was created. The algo-
rithm has two global distributed arrays: solDist and cspDist (lines 2 and 3). As
explained in Sect. 2, the DistArray class creates an array which is spread across
multiple X10 places. In this case, an instance of ASPermutSolver and CSPModel
are stored at each available place in the program. On lines 5 and 6 function make
creates and initializes the distributed vector in the region created by the func-
tion Dist.makeUnique(). The makeUnique function creates a distribution over a
region that maps every point in the region to a distinct place, and also maps some
point in the region to every place. On line 10 a finish operation is executed over a
for loop that goes through all the places in the program (Place.places()). Then,
an activity is created in each place with the sentence at(p) async on line 12. Into
the async block, a new instance of the solver (new ASPermutSolver(seed)) and
the problem (new CSPModel(seed)) are created (lines 13 and 14) and a random
seed is passed. On line 15, the solving process is executed and the returned cost
is assigned to the cost variable. If this cost is equal to 0, the solver in a place has
reached a valid solution, it is then necessary to send a termination signal to the
remaining places (lines 16–22). For this, every place (i.e. every solver), checks
the value of a kill variable at each iteration. When it becomes equal to true
the main loop of the solver is broken and the activity is finished. To set a kill
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remote variable from any X10 place it was necessary to create a new activity into
each remaining place (sentence at(k) async on line 19) and into the async block
to change the value of the kill variable. On line 18, the sentence if (here.id !=
k.id) filters all places which are not the winning one (here). Finally, the function
returns the solution of the fastest place on line 25.

4 Performance Analysis

We now present and discuss the experimental results of our X10 implementations
of the Adaptive Search algorithm. The testing environment used was a non-
uniform memory access (NUMA) computer, with 2 Intel Xeon W5580 CPUs
each one with 4 hyper-threaded cores running at 3.2 GHz as well as a system
based on 4 16-core AMD Opteron 6272 CPUs running at 2.1 GHz.

We used a set of benchmarks composed of four classical problems in con-
straint programming: the magic square problem (MSP), the number partition-
ing problem (NPP) and the all-interval problem (AIP), all three taken from
the CSPLib [8]; also we include the Costas Arrays Problem (CAP) introduced
in [11], which is a very challenging real problem. The problems were all tested
on significantly large instances which are generally out of reach of the tradi-
tional complete solvers like Gecode [22]. The interested reader may find more
information on these benchmarks in [15].

It is worth noting, at the software level, that the X10 runtime system can be
deployed in two different backends: a Java or a C++ backend; they differ in the
native language used to implement the X10 program (Java or C++), also they
present different trade-offs on different machines. Currently, the C++ backend
seems relatively more mature and faster for scientific computation, and therefore
became our choice for this experimentation.

Regarding the stochastic nature of the Adaptive Search behavior, several
executions of the same problem were done and the times averaged. We ran 100
samples for each experimental case in the benchmark.

In this presentation, all tables report raw times in seconds (average of 100
runs) and relative speed-ups. These tables respect the same format: the first
column identifies the problem instance, the second column is the execution time
of the problem in the sequential implementation, the next group of columns
contains the corresponding speed-up obtained with a varying number of cores
(places), and the last column presents the execution time of the problem with
the highest number of places.

4.1 Sequential Performance

Even if our first goal in using X10 is parallelism, it is interesting to compare the
sequential X10 implementation with a reference implementation: our low-level
and highly optimized C version initially used in [3,4] and continuously improved
since then. With the latest versions, the X10 implementation appears to be 2 to
3 times slower than the C version, a consequence of the more complex runtime
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and the lack of optimization in the compiler. We feel that this is not a prohibitive
price to pay, if one takes into account the possibilities promised by X10 for future
experimentation.

A possible explanation of the difference between the performances of both
implementations is probably the richness of the X10 language (OOP, architecture
abstractions, communication abstractions, etc.). Also, maybe it is necessary to
improve our X10 language skills good enough to get the best performance of this
tool.

4.2 Functional Parallel Performance

Table 1 shows the results of the first version of the functional parallelism X10
implementation. Only two benchmarks (2 instances of MSP and CAP) are pre-
sented. Indeed, we did not investigate this approach any further since the results
are clearly not good. Each problem instance was executed with a variable number
of activities (THNUM = 2, 4 and 8). It is worth noting, that the environmental
X10 variable X10 NTHREADS was passed to the program with an appropriate
value to each execution. This variable controls the number of initial working
threads per place in the X10 runtime system.

As seen in Table 1, for all the treated cases the obtained speed-up is less
than 1 (i.e. a slowdown factor), showing a deterioration of the execution time
due to this parallel implementation. So, it is possible to conclude that no gain
time is obtainable in this approach. To analyze this behavior it is important
to return to the description of the Listing 1.3. As already noted, the parallel
function selVarHighCost in this implementation are located into the main loop
of the algorithm, so THNUM activities are created, scheduled and synchronized
at each iteration in the program execution, being a very important source of
overhead. The results we obtained suggest that this overhead is larger than the
improvement obtained by the implementation of this parallel strategy.

Turning to the second approach, Table 2 shows the results obtained with this
strategy. Equally, the number of activities spawn, in this case at the beginning,
was varied from 2 to 8.

Even if the results are slightly better, there is no noticeable speed-up. This
is due to a new form of overhead tied to the synchronization mechanism which

Table 1. Functional parallelism – first approach (timings and speed-ups)

Problem instance Time (s) Speed-up with k places Time (s)
seq. 8 places

2 4 8

MSP-100 11.98 0.86 0.95 0.77 15.49
MSP-120 24.17 1.04 0.97 0.98 24.65
CAP-17 1.56 0.43 0.28 0.24 6.53
CAP-18 12.84 0.51 0.45 0.22 57.16
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Table 2. Functional parallelism – second approach (timings and speed-ups)

Problem instance Time (s) Speed-up with k places Time (s)
seq. 8 places

2 4 8

MSP-100 11.98 1.15 0.80 0.86 13.87
MSP-120 24.17 1.23 0.94 0.63 38.34
CAP-17 1.56 0.56 0.30 0.25 6.35
CAP-18 12.84 0.74 0.39 0.27 46.84

is used in the inner loop of the algorithm, to assign tasks and wait for their
termination (see Listing 1.4).

The performance model in X10 [9] specifies that the current implementation
of async tasks in X10 has a considerable amount of overhead. Large number of
fine grained async tasks are likely to decrease the performance of the application.
Actually an implementation of Adaptive Search on GPU using CUDA language,
reported by [1] shows that some performance improvement can be achieved, but
activities have to be fine-tuned at a low level.

4.3 Data Parallel Performance

Table 3 and Fig. 3 document the speedups we obtained when resorting to data
parallelism. Observe that, for this particular set of runs, we used a different
hardware platform, with more cores than for the other runs.

The performance of data parallel version is clearly above the performance of
the functional parallel version. The resulting average runtime and the speed-ups
obtained in the entire experimental test performed seems to lie within the pre-
dictable bounds proposed by [24]. The Costas Arrays Problem displays remark-
able performance with this strategy, e.g. the CAP reaches a speed-up of 20.5
with 32 places. It can be seen that the speed-up increases almost linearly with
the number of used places. However, for other problems (e.g. MSP), the curve
clearly tends to flatten out when the number of places increases.

Table 3. Data parallelism (timings and speed-ups)

Problem instance Time (s) Speed-up with k places Time (s)
seq. 32 places

8 16 24 32

AIP-300 56.7 4.7 7.1 9.9 10.0 5.6
NPP-2300 6.6 6.1 9.8 10.5 12.0 0.5
MSP-200 365 8.3 12.2 13.6 14.6 24.9
CAP-20 731 5.6 12.0 16.1 20.5 35.7
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Fig. 3. Speed-ups for the most difficult instance of each problem

5 Conclusion and Future Work

We presented different parallel X10 implementations of an effective Local Search
algorithm, Adaptive Search in order to exploit various sources of parallelism. We
first experimented two functional parallelism versions, i.e. trying to divide the
inner loop of the algorithm into various concurrent tasks. This turned out not
to yield any speed-up at all, most likely because of the bookkeeping overhead
(creation, scheduling and synchronization) that is incompatible with such a fine-
grained level of parallelism.

We then proceeded with a data parallel implementation, in which the search
space is decomposed into possible different random initial configurations of the
problem and getting isolated solver instances to work on each point concurrently.
We got a good level of performance for the X10 data-parallel implementation
with monotonously increasing speed-ups in all the problems we studied, although
they taper off after some point.

The main result we draw from this experiment, is that X10 has proved a
suitable platform to exploit parallelism in different ways for constraint-based
local search solvers. These entail experimenting with different forms of paral-
lelism, ranging from single shared memory inter-process communication to a
distributed memory programming model. Moreover, the use of the X10 implicit
communication mechanisms allowed us to abstract away from the complexity of
the parallel architecture with a very simple and consistent device: the distributed
arrays and the termination detection system in our data parallel implementation.

Considering that straightforward forms of parallelism seem to get lower gains
as we increase the number of cores, we want to look for ways of improving on this
situation. Future work will focus on the implementation of a cooperative Local
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Search parallel solver based on data parallelism. The key idea being to take
advantage of the many communications tools available in the APGAS model,
to exchange information between different solver instances in order to obtain a
more efficient and, most importantly, scalable solver implementation. We also
plan to test the behavior of a cooperative implementation under different HPC
architectures, such as the many-core Xeon Phi, GPGPU accelerators and grid
computing platforms.
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Abstract. A debate game provides an abstract model of debates between
two players based on the formal argumentation framework. This paper
presents a method of realizing debate games in logic programming. Two
players have their knowledge bases represented by extended logic pro-
grams, and build claims using arguments associated with those programs.
A player updates its knowledge base with arguments posed by the oppo-
nent player, and tries to refute claims by the opponent. During a debate
game, a player may claim false or incorrect arguments as a tactic to win
the game. The result of this paper provides a new formulation of debate
games in a non-abstract argumentation framework associated with logic
programming. Moreover, it provides a novel application of logic program-
ming to modelling social debates which involve argumentative reasoning,
belief update and dishonest reasoning.

1 Introduction

Logic programming and argumentation are two different frameworks for knowl-
edge representation and reasoning in artificial intelligence (AI). In his seminal
paper, Dung [4] points out a close connection between the two frameworks and
shows that a logic program can be considered as a schema for generating argu-
ments. Since then, several attempts have been made for integrating the two
frameworks ([1,8,13,21]; see [9] for an overview). A line of research of formal
argumentation is concerned with the dialectical process of two or more players
who are involved in a discussion [3,11,12,14]. Along this line, Sakama [19] intro-
duces a debate game between two players based on the formal argumentation
framework. In a debate game, a player makes the initial claim, then the oppo-
nent player tries to refute it by building a counter-claim. A debate continues until
one cannot refute the other, and the player who makes the last claim wins the
game. A debate game has unique features such that (i) each player has its own
argumentation framework as its background knowledge, (ii) during a debate each
player updates its argumentation framework by new arguments provided by the
opponent player, and (iii) a player may claim inaccurate or even false arguments
as a tactic to win a debate. The study [19] formulates debate games using the
abstract argumentation theory of [4].

The abstract argumentation theory has an advantage that it is not bound
to any particular representation for arguments on the one hand, but on the
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other hand it does not specify how arguments are generated from the underlying
knowledge base and what conclusions are yielded by those arguments. In [2] the
authors argue that “Argumentation, as it happens in the world around us, is
almost never completely abstract.. . . Instead, the arguments one encounters in
daily life consist of reasons that support particular claims. These reasons can
formally be modelled in the form of rules, that are instances of underlying argu-
mentation schemes [15].” In this respect, debate games based on the abstract
argumentation theory need yet another formulation based on non-abstract argu-
mentation frameworks.

With this motivation, this paper uses logic programming as an underlying
representation language and formulates debate games in a non-abstract argu-
mentation framework. In this framework, each player has a knowledge base rep-
resented by an extended logic program, and builds claims using arguments which
can contain information brought by the opponent as well as information in the
player’s program. During a game, a player may use dishonest claims to refute
the opponent, while a player must be self-consistent in its claims. The proposed
framework provides an abstraction of real-life debates and realizes a formal dia-
logue system in logic programming. The rest of this paper is organized as follows.
Section 2 reviews a framework of argument-based logic programming. Section 3
introduces debate games in logic programming and investigates formal proper-
ties. Section 4 discusses related issues and Sect. 5 concludes the paper.

2 Arguments in Logic Programming

In this paper we consider the class of extended logic programs [10]. An objective
literal is a ground atom B or its explicit negation ¬B. We define ¬¬B = B.
A default literal is of the form not L where L is an objective literal and not is
negation as failure (NAF). An extended logic program (or simply a program) P
is a finite set of rules of the form:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

where each Li (0 ⊆ i ⊆ n) is an objective literal. The literal L0 is the head of
the rule and the conjunction L1, . . . , Lm, not Lm+1, . . . , not Ln is the body of the
rule. A rule r is believed-true in P if r ∈ P . A rule containing default literals is
called a default rule. A rule L ← with the empty body is also called a fact and
is identified with a literal L.

Let Lit be the set of all objective literals in the language of a program.
A set S (∩ Lit) is consistent if L ∈ S implies ¬L ∅∈ S for any L ∈ Lit. The
semantics of a program is given by its answer sets [10]. First, let P be a program
containing no default literal and S ∩ Lit. Then, S is an answer set of P if S is
a consistent minimal set satisfying the condition that for each rule of the form
L0 ← L1, . . . , Lm in P , {L1, . . . , Lm} ∃ S implies L0 ∈ S. Second, given any
program P (possibly containing default literals) and S ∩ Lit, a reduct of P with
respect to S (written PS) is defined as follows: a rule L0 ← L1, . . . , Lm is in PS iff
there is a rule of the form L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln in P such that
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{Lm+1, . . . , Ln}∩S = ⊗. Then, S is an answer set of P if S is an answer set of PS .
A program may have none, one or multiple answer sets in general. A program is
consistent if it has an answer set; otherwise, it is inconsistent.

Definition 2.1. ([13,21]) An argument associated with a program P is a finite
sequence1 A = [r1; · · · ; rn] of rules ri ∈ P such that for every 1 ⊆ i ⊆ n, for
every objective literal Lj in the body of ri there is a rule rk (k > i) such that
the head of rk is Lj .

The head of a rule in an argument A is called a conclusion of A, and a default
literal not L in the body of a rule in A is called an assumption of A. We write
assum(A) for the set of assumptions and concl(A) for the set of conclusions of
an argument A. By Definition 2.1, every objective literal in the body of a rule
ri is justified by the consequence of a rule that appears later in the sequence.
For instance, [ p ← q, not r ; q ← ] is an argument but [ p ← q ; q ← p ] is not.
A subargument of A is a subsequence of A which is an argument. An argument
A with a conclusion L is a minimal argument for L if there is no subargument
of A with the conclusion L. An argument is minimal if it is minimal for some
literal L. The minimality condition presents that an argument does not include
rules which do not contribute to concluding some particular literal L.
Remark: In this paper, we slightly abuse the notation and use the same capital
letter A to denote the set of rules included in an argument A. Thus, P →A means
the set of rules included either in a program P or in an argument A.

Example 2.1. Let P be the program:

p ← q,

¬p ← not q,

q ←,

r ← s.

Then, the following facts hold.

– The minimal argument for p is A1 = [ p ← q ; q ← ], concl(A1) = {p, q}, and
assum(A1) = ⊗.

– The minimal argument for ¬p is A2 = [¬p ← not q ], concl(A2) = {¬p} and
assum(A2) = {not q}.

– The minimal argument for q is A3 = [ q ← ], concl(A3) = {q} and assum(A3) =
⊗.

– r and s have no minimal arguments.

Proposition 2.1. Let P be a consistent program containing no default literal.
Then, for any argument A associated with P , concl(A) ∃ S holds for the answer
set S of P .
1 Rules are separated by semicolons in a sequence A of rules, while they are separated
by commas in a set P of rules.
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Proof. Let P ≥ be the program which is obtained by replacing every negative
literal ¬L in P with a new atom L≥ that is uniquely associated with ¬L. As P
is consistent, P ≥ has the least model S≥ iff P has the answer set S where ¬L
in S is replaced by the atom L≥ in S≥. Let A≥ be an argument associated with
P ≥. Viewing A≥ as the set of rules included in it, it holds that A≥ ∃ P ≥ which
implies concl(A≥) ∃ S≥ by the monotonicity of deduction. By replacing L≥ with
¬L, A ∃ P implies concl(A) ∃ S. ∀≥

Definition 2.2. ([13,21]) Let A1 and A2 be two arguments.

– A1 undercuts A2 if there is an objective literal L such that L is a conclusion
of A1 and not L is an assumption of A2.

– A1 rebuts A2 if there is an objective literal L such that L is a conclusion of
A1 and ¬L is a conclusion of A2.

– A1 attacks A2 if A1 undercuts or rebuts A2.
– A1 defeats A2 if A1 undercuts A2, or A1 rebuts A2 and A2 does not undercut

A1.

An argument A is coherent if it does not attack itself; otherwise, A is incoherent.
A set S of arguments is conflict-free if no argument in S attacks an argument
in S. Given a program P , we denote the set of minimal and coherent arguments
associated with P by Args(P ).

If an argument A1 undercuts another argument A2, then A1 denies an assump-
tion of A2. This means that the assumption conflicts with the evidence to the con-
trary, and A1 defeats A2 in this case. If A1 rebuts A2, on the other hand, two
arguments support contradictory conclusions. In this case, the attack relation is
symmetric and A1 defeats A2 under the condition that A2 does not undercut A1.
The coherency condition presents self-consistency of an argument. By definition,
if A ∈ Args(P ) then the set A of rules is consistent, that is, A has an answer set.

Example 2.2. In the program P of Example 2.1, the following facts hold.

– Args(P ) = {A1, A2, A3}.
– A1 and A3 undercut (and also defeat) A2.
– A1 rebuts A2 and A2 rebuts A1.
– {A1, A3} is conflict-free, but {A1, A2} and {A2, A3} are not.
– The argument A4 = [¬p ← not q ; q ← ] is incoherent.

Proposition 2.2. Let P be a consistent program. For any argument A ∈ Args
(P ), let A+ be the set of rules obtained from A by removing every default literal
in A. Then, concl(A) = concl(A+).

Proof. Since A is coherent, not L ∈ assum(A) implies L ∅∈ concl(A). Then,
concl(A) = concl(A+). ∀≥

Proposition 2.3. Let P be a consistent program. For any argument A ∈ Args
(P ), if A is not defeated by any argument associated with P , then concl(A) ∃ S
for any answer set S of P .
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Proof. Let A+ be the set of rules obtained from A by removing every default lit-
eral in A. When A is not defeated by any argument associated with P , A+ ∃ AS

for any answer set S of P , where AS is the reduct of A wrt S.2 By Propo-
sition 2.1, for any argument AS associated with PS , concl(AS) ∃ S for any
answer set S of PS . Since A+ ∃ AS implies concl(A+) ∃ concl(AS), it holds
that concl(A+) ∃ S. As concl(A) = concl(A+) by Proposition 2.2, the result
holds. ∀≥

In Example 2.1, A1 and A3 are defeated by no argument, then concl(A1) and
concl(A3) are subsets of the answer set {p, q} of P .

3 Debate Games in Logic Programming

3.1 Debate Games

A debate game involves two players. Each player has its knowledge base defined
as follows.

Definition 3.1 (player). A player has a knowledge base K = (P,O) where P
is a consistent program representing the player’s belief and O is a set of rules
brought by another player. In particular, the initial knowledge base of a player
is K = (P, ⊗).

In this paper, we identify a player with its knowledge base. We represent two
players by K1 and K2. For a player K1 (resp. K2), the player K2 (resp. K1) is
called the opponent.

Definition 3.2 (update). Let K = (P,O) be a player and A an argument.
Then, the update of K with A is defined as3

u(K,A) = (P, O → A) .

The function u is iteratively applied to a player. We represent the result of the
i-th update of K by Ki = (P,Oi) (i ↔ 0), that is, Ki = (P,Oi) = u(Ki−1, Ai)
(i ↔ 1) for arguments A1, . . . , Ai and K0 = (P,O0) = (P, ⊗).

During a debate, a player incrementally obtains new information from the
opponent player. The situation is realized by a series of updates. By definition,
update adds rules A to O while it does not change P . The reason of separating P
and O is to distinguish belief originated in a player’s program from information
brought by the opponent player. A player having a knowledge base after the
i-th update is represented by Ki, but we often omit the superscript i when it is
unimportant in the context.
2 Here, A is viewed as a set of rules.
3 Note that the sequence A is treated as a set here.
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Definition 3.3 (claim). Let K1 = (P1, O1) and K2 = (P2, O2) be two players.

1. The initial claim is a pair of the form: (in(A), ) where A ∈ Args(P1). It is
read that “the player K1 claims the argument A.”

2. A counter-claim is a pair of the form: (out(B), in(A)) where A ∈ Args(Pk →
Ok) and B ∈ Args(Pl →Ol) (k, l = 1, 2; k ∅= l). It is read that “the argument
B by the player Kl does not hold because the player Kk claims the argument
A”.

The initial claim or counter-claims are simply called claims. A claim (in(A), )
or (out(B), in(A)) by a player is refuted by the claim (out(A), in(C)) with some
argument C by the opponent player.

Definition 3.4 (debate game). Let K0
1 = (P1, O

0
1) and K0

2 = (P2, O
0
2) be

two players. Then, an admissible debate Δ is a sequence of claims: [(in(X0), ),
(out(X0), in(Y1)), (out(Y1), in(X1)), . . ., (out(Xi), in(Yi+1)), (out(Yi+1), in
(Xi+1)), . . .] such that

(a) (in(X0), ) is the initial claim by K0
1 where X0 ∈ Args(P1).

(b) (out(X0), in(Y1)) is a claim by K1
2 where K1

2 = u(K0
2 ,X0) = (P2, O

1
2) and

Y1 ∈ Args(P2 → O1
2).

(c) (out(Yi+1), in(Xi+1)) is a claim by Ki+1
1 where Ki+1

1 = u(Ki
1, Yi+1) =

(P1, O
i+1
1 ) and Xi+1 ∈ Args(P1 → Oi+1

1 ) (i ↔ 0).
(d) (out(Xi), in(Yi+1)) is a claim by Ki+1

2 where Ki+1
2 = u(Ki

2,Xi) = (P2, O
i+1
2 )

and Yi+1 ∈ Args(P2 → Oi+1
2 ) (i ↔ 0).

(e) for each (out(U), in(V )), V defeats U .
(f) for each out(Z) in a claim by Ki

1 (resp. Ki
2), there is in(Z) in a claim by

Kj
2 such that j ⊆ i (resp. Kj

1 such that j < i).
(g) both

⋃
i∅0{Xi | Xi ∃ P1} and

⋃
j∅1{Yj | Yj ∃ P2} are conflict-free.

Let Γn (n ↔ 0) be any claim. A debate game Δ (for an argument X0) is
an admissible debate between two players [Γ0, Γ1, . . .] where the initial claim is
Γ0 = (in(X0), ). A debate game Δ for an argument X0 terminates with Γn

if Δ = [Γ0, Γ1, . . . , Γn] is an admissible debate and there is no claim Γn+1 such
that [Γ0, Γ1, . . . , Γn, Γn+1] is an admissible debate. In this case, the player who
makes the last claim Γn wins the game.

Bydefinition, (a) theplayerK0
1 starts adebatewith the claimΓ0 = (in(X0), ).

(b) The player K0
2 then updates its knowledge base with X0, and responds to the

player K0
1 with a counter-claim Γ1 = (out(X0), in(Y1)) based on the updated

knowledge base K1
2 . In response to Γ1, the player K1

1 updates its knowledge base
and builds a counter-claim Γ2 = (out(Y1), in(X1)). A debate continues by iterat-
ing updates and claims ((c),(d)). (e) In each claim an argument V of in(V ) defeats
an argumentU ofout(U). (f)Aplayer can refute not only the last claimof the oppo-
nent player, but any previous claim of the opponent. (g) During a debate game,
arguments which come from a player’s own program must be conflict-free, that is,
each player must be self-consistent in its claims. Note that a player
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Ki
l (l = 1, 2; i ↔ 1) can construct arguments using rules included in arguments

Oi
l posed by the opponent player as well as rules in its own program Pl. This means

that conclusions of arguments claimed by a player may change nonmonotonically
during a game. If a player Ki

l claims (out(A), in(B)) which is refuted by a counter-
claim (out(B), in(C)) by the opponent, then the player Kj

l (i < j) can use rules in
the argument C for building a claim. Once the player Kj

l uses rules in C, it may be
the case that Kj

l withdraws some conclusions of the argument B previously made
by Ki

l . Thus, two different claims by the same player may conflict during a game.
The condition (g) states that such a conflict is not allowed among arguments which
consist of rules from a player’s original program P .

Example 3.1. Suppose a dispute between a prosecutor and a defense. First, the
prosecutor and the defense have knowledge bases K0

1 = (P1, ⊗) and K0
2 = (P2, ⊗),

respectively, where

P1 : guilty ← suspect, motive,

evidence ← witness, not ¬ credible,

suspect ←, motive ←, witness ← .

P2 : ¬guilty ← suspect, not evidence,

¬ credible ← witness, dark,

suspect ←, dark ← .

A debate game proceeds as follows.

– First, the prosecutor K0
1 makes the initial claim Γ0 = (in(X0), ) with

X0 = [ guilty ← suspect, motive; suspect ←; motive ← ]
(“The suspect is guilty because he has a motive for the crime.”)

where X0 ∈ Args(P1).

– The defense updates K0
2 to K1

2 = u(K0
2 ,X0) = (P2, O

1
2) where O1

2 = X0, and
makes the counter-claim Γ1 = (out(X0), in(Y1)) with

Y1 = [¬guilty ← suspect, not evidence; suspect ← ]
(“The suspect is not guilty as there is no evidence.”)

where Y1 ∈ Args(P2 → O1
2) and Y1 rebuts X0.

– The prosecutor updates K0
1 to K1

1 = u(K0
1 , Y1) = (P1, O

1
1) where O1

1 = Y1,
and makes the counter-claim Γ2 = (out(Y1), in(X1)) with

X1 = [ evidence ← witness, not ¬ credible; witness ← ]
(“There is an eyewitness who saw the suspect on the night of the crime.”)

where X1 ∈ Args(P1 → O1
1) and X1 undercuts Y1.
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Γ0 K0
1

Γ1 K1
2 Γ5 K3

2

Γ2 K1
1 Γ4 K2

1

Γ3 K2
2

Γ6 K3
1

Fig. 1. Debate game

– The defense updates K1
2 to K2

2 = u(K1
2 ,X1) = (P2, O

2
2) where O2

2 = X0 →X1,
and makes the counter-claim Γ3 = (out(X1), in(Y2)) with

Y2 = [¬ credible ← witness, dark; witness ←; dark ← ]
(“The testimony is incredible because it was dark at night.”)

where Y2 ∈ Args(P2 → O2
2) and Y2 undercuts X1.

– The prosecutor updates K1
1 to K2

1 = u(K1
1 , Y2) = (P1, O

2
1) where O2

1 = Y1→Y2,
but cannot refute the claim by K2

2 . As a result, the defense is a winner of the
game Δ = [Γ0, Γ1, Γ2, Γ3 ].

Suppose another game in which the defense makes the initial claim Γ ≥
1 =

(in(Y1), ). In this case, a debate proceeds as Δ≥ = [Γ ≥
1, Γ2, Γ3], and the defense

also wins the game Δ≥. On the other hand, a sequence [(in(X1), ), (out(X1),
in(Y2)), (out(Y2), in(X0)), (out(X0), in(Y1))] is not a debate game because the
argument X0 does not defeat the argument Y2 (i.e., (out(Y2), in(X0)) does not
satisfy the condition of Definition 3.4(e)). Thus, a player may have options for
submitting arguments, but the player needs to select the most effective ones to
win a debate.

A debate game is represented as a directed tree in which the root node
represents the initial claim, each node represents a claim, and there is a directed
edge between two nodes Γi and Γj if the former refutes the latter. Figure 1
represents a debate game Δ = [Γ0, Γ1, . . . , Γ6] in which the player K0

1 makes the
initial claim Γ0, the player K1

2 makes a counter-claim Γ1, the player K1
1 refutes

Γ1 by Γ2, and the player K2
2 refutes Γ2 by Γ3. At this stage, K2

1 cannot refute
Γ3 but refutes Γ1 by Γ4. The player K3

2 cannot refute Γ4 but refutes Γ0 by Γ5.
Then, K3

1 refutes Γ5 by Γ6. The player K4
2 cannot refute Γ6 and other claims

by the opponent. As a result, the player K3
1 wins the game. In what follows,

we simply say “a debate game” instead of “a debate game for an argument X0”
when the argument X0 in the initial claim is clear or unimportant in the context.
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Proposition 3.1. Let Γ be a claim of either (in(U), ) or (out(V ), in(U)) in
a debate game. Then, U has a single answer set S such that concl(U) = S and
concl(V ) ∅∃ S.

Proof. Since U is minimal and coherent, U has a single answer set S such that
concl(U) = S. As U defeats V , there is a rule r ∈ V such that the head of r is
not included in S. ∀≥

Proposition 3.2. A debate game Δ terminates if Γi ∅= Γi+2k (k = 1, 2, . . .) for
any Γi (i ↔ 1) in Δ.

Proof. In case of Γi ∅= Γi+2k, each player cannot repeat the same claim in a
debate game. Since the number of minimal and coherent arguments associated
with a propositional program is finite, the result holds. ∀≥

A debate may not terminate when arguments go round in circles.

Example 3.2. Suppose a debate game between two players such that

Γ0: (in([p ← not q]), )
Γ1: (out([p ← not q]), in([q ← not p]))
Γ2: (out([q ← not p]), in([p ← not q]))
Γk+1 = Γk−1 (k ↔ 2).

Such a debate does not terminate and there is no winner of the game.4

3.2 Dishonest Player

In debate games, each player constructs claims using rules included in its pro-
gram or rules brought by the opponent. To defeat a claim by the opponent, a
player may claim an argument which the player does not believe its conclusion.

Example 3.3. Suppose that the prosecutor in Example 3.1 has the program

P ≥
1 = P1 → {¬ dark ← light, not broken, light ←, broken ←}.

In response to the last claim Γ3 = (out(X1), in(Y2)) by the defense K2
2 , suppose

that the prosecutor K2
1 = (P ≥

1, O
2
1) makes the counter-claim (out(Y2), in(X2))

with
X2 = [¬ dark ← light, not broken; light ← ].

(“It was not dark because the witness saw the suspect under the light of the
victim’s apartment”). Then, X2 defeats Y2.

In Example 3.3, the prosecutor K2
1 claims the argument X2 but he/she does

not believe its conclusion concl(X2). In fact, ¬ dark is included in no answer
set of the program P ≥

1 → Q for any Q ∃ O2
1. Generally, a player may behave

dishonestly by concealing believed facts to justify another fact which the player
wants to conclude. We classify different types of claims which may appear in a
debate game.
4 A well-known example of this type is: “which came first, the chicken or the egg?”
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Definition 3.5 (credible, misleading, incredible, incorrect, false claims).
Let Γ be a claim of either (in(U), ) or (out(V ), in(U)) by a player Ki

l =
(Pl, O

i
l) (l = 1, 2; i ↔ 0). Also, let US be an argument which consists of rules in

the reduct of U with respect to a set S.

– Γ is credible if concl(U) ∃ S for every answer set S of Pl →Q for some Q ∃ Oi
l

such that Pl → Q is consistent and concl(U) = concl(US).
– Γ is misleading if concl(U) ∃ S for every answer set S of Pl → Q for some

Q ∃ Oi
l such that Pl → Q is consistent but concl(U) ∅= concl(US).

– Γ is incredible if concl(U) ∃ S for some (but not every) answer set S of Pl→Q
for any Q ∃ Oi

l such that Pl → Q is consistent.
– Γ is incorrect if concl(U) ∅∃ S for any answer set S of Pl → Q for any Q ∃ Oi

l

such that Pl → Q is consistent, and concl(U) → S is consistent for some answer
set S of Pl → Q for some Q ∃ Oi

l such that Pl → Q is consistent.
– Γ is false if concl(U)→S is inconsistent for any answer set S of Pl →Q for any

Q ∃ Oi
l such that Pl → Q is consistent.

A claim is called dishonest if it is not credible. A player Kl is honest in a debate
game Δ if every claim made by Ki

l (i ↔ 0) in Δ is credible. Otherwise, Kl is
dishonest.

During a game, a player Ki
l constructs an argument U using some rules Q ∃

Oi
l . Then, U has the answer set which coincides with concl(U) (Proposition 3.1),

but this does not always imply that concl(U) is a subset of an answer set of P i
l .

A honest player makes a claim in which rules are properly used in its argument
and the player believes the conclusions of his/her own claim. By contrast, a
dishonest player may make a claim in which rules are misused in its argument
or the player does not believe conclusions of his/her own claim.

Proposition 3.3. Every claim in a debate game is classified as one of the five
types of claims of Definition 3.5.

Example 3.4.

– Given K1 = ({ p ← not q }, ⊗), the claim Γ1 = (in([ p ← not q ]), ) is credible.
– Given K2 = ({ p ← not q, p ← q, q ←}, ⊗), the claim Γ2 = (in([ p ←

not q ]), ) is misleading.
– Given K3 = ({ p ← not q, q ← not p }, ⊗), the claim Γ3 = (in([ p ←

not q ]), ) is incredible.
– Given K4 = ({ p ← not q, q ←}, ⊗), the claim Γ4 = (in([ p ← not q ]), ) is

incorrect.
– Given K5 = ({ p ← not ¬p, ¬p ←}, ⊗), the claim Γ5 = (in([ p ← not ¬p ]), )

is false.

In Example 3.4, Γ1 is credible because concl([p ← not q]) = {p} coincides with
the answer set of the program {p ← not q} in K1. By contrast, Γ2 is misleading
because for U = [p ← not q] it becomes US = ⊗ by the answer set S = {p, q} of
the program in K2, so that concl(U) ∅= concl(US). That is, a misleading claim
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does not use rules in a proper manner to reach conclusions.5 Γ3 is incredible
because p is included in some but not in every answer set of the program in K3.
Γ4 is incorrect because p is included in no answer set of the program in K4. Γ5

is false because ¬p is included in every answer set of the program in K5, which
is inconsistent with concl([p ← not ¬p]) = {p}.

The existence of dishonest claims is due to the nonmonotonic nature of a
program. A player K = (P,O) is monotonic if P contains no default literal. In
this case, the following result holds.

Proposition 3.4. Let Δ be a debate game between two monotonic players.
Then, every claim in Δ is credible.

Proof. Let Γ be a claim of either (in(U), ) or (out(V ), in(U)) by a player
K = (P,O). By U ∈ Args(P →O), U ∃ P →Q for some Q ∃ O such that P →Q is
consistent. Since U is an argument associated with P →Q, concl(U) ∃ S holds for
the answer set S of P →Q by Proposition 2.1. By US = U , concl(U) = concl(US).
Hence, Γ is credible. ∀≥

In other words, dishonest behavior requires intelligence of performing non-
monotonic (commonsense) reasoning.

Generally, it is unknown which player wins a debate game. In real life, a
player who is more knowledgeable than another player is likely to win a debate.
The situation is formulated as follows.

Proposition 3.5. Let Δ be a debate game between two players K0
1 = (P1, ⊗)

and K0
2 = (P2, ⊗).

1. Suppose that K1 is honest and P2 ∩ P1. If Δ terminates, Ki
1 (i ↔ 1) wins

the game.
2. Suppose that K2 is honest, P1 ∩ P2 and the claim (out(X0), in(Y1)) by K1

2

refutes the initial claim (in(X0), ) by K0
1 . If Δ terminates, Ki

2 (i ↔ 1) wins
the game.

Proof. (1) Suppose that K1 is honest and P2 ∩ P1. Let Γm be a honest claim
of either (in(X0), ) or (out(Yi), in(Xi)) by Ki

1 = (P1, O
i
1) (i ↔ 0) in Δ. Then,

concl(Xi) ∃ S for every answer set S of P1. Suppose that Ki+1
2 makes a counter-

claim Γm+1 = (out(Xi), in(Yi+1)), and Ki+1
1 cannot refute Γm+1 by any honest

claim. In this case, P1 has no rule to defeat Yi+1. By P2 ∩ P1, it holds that
Yi+1 ∩ P1. Since Yi+1 defeats Xi, either (i) Yi+1 undercuts Xi or (ii) Yi+1

rebuts Xi but Xi does not undercut Yi+1. In either case, concl(Xi) ∅∃ S for any
answer set S of P1. This contradicts the fact that concl(Xi) ∃ S. Hence, Ki+1

1

can refute Γm+1 by a honest claim in Δ. As such, every claim by Ki
2 is honestly

refuted by Ki
1. Then, if Δ terminates, Ki

1 wins the game.
(2) Suppose that K2 is honest and P1 ∩ P2. By the assumption, the honest

claim (out(X0), in(Y1)) by K1
2 refutes the initial claim (in(X0), ) by K0

1 . In
5 An example of K2 is found in the famous speech by John F. Kennedy in September
12, 1962. “We choose to go to the moon in this decade and do the other things, not
because they are easy, but because they are hard.” Put p = gotoMoon and q = hard.



196 C. Sakama

this case, concl(Y1) ∃ S for every answer set S of P2. Then, we can show that
Ki

2 (i ↔ 1) wins the game whenever Δ terminates in a way similar to (1). ∀≥

Proposition 3.5 presents that if a player K1 has information more than K2,
then K1 has no reason to play dishonestly to win a game. By contrast, if K2 has
information more than K1, then K2 may have reason to play dishonestly to win
a game.

Example 3.5. Consider two players K0
1 = (P1, ⊗) and K0

2 = (P2, ⊗) where P1 =
{ p ← not q } and P2 = { p ← not q, q ← not r, r ←}. Then, P1 ∩ P2. If K0

1

claims Γ0 = (in([ p ← not q ]), ), then K1
2 has no honest counter-claim against

Γ0. The only possibility to win the game for the player K1
2 is making an incorrect

claim Γ1 = (out([ p ← not q]), in([ q ← not r])) against Γ0.

In Example 3.5, the player K2 agrees with the initial claim Γ0 made by the
opponent K1. Given Γ0, the player K2 has two options: (i) accept the claim
Γ0 and stop the debate, or (ii) make an incorrect counter-claim Γ1 and con-
tinue the debate. In case of (i), K2 just loses the game. In case of (ii), K2

can test how knowledgeable the opponent K1 is. If K1
1 makes a counter-claim

Γ2 = (out([ q ← not r]), in([ r ←])) against Γ1, then K2 realizes that K1 is at
least as knowledgeable as K2. Else if there is no counter-claim by K1

1 , then K2

realizes that K1 is less knowledgeable than K2 and K2 wins the game. As such, a
dishonest claim is used for testing whether the opponent player is knowledgeable
enough to refute the claim successfully. A similar situation happens in real life
when one agrees with the other’s argument while just challenges the argument
to see justification.

A player has an incentive to build a dishonest claim if the player cannot build
a honest counter-claim in response to the claim by the opponent. Then, our next
question is how a player effectively uses dishonest claims as a tactic to win a
debate. We first show that among different types of dishonest claims, misleading
claims are useless for the purpose of winning a debate.

Proposition 3.6. Let Δ be a debate game between two players K0
1 = (P1, ⊗)

and K0
2 = (P2, ⊗).

1. If the initial claim Γ0 = (in(X0), ) by K0
1 is misleading, there is a credible

claim Γ ≥
0 = (in(X), ) by K0

1 such that concl(X) = concl(X0).
2. If a claim Γk = (out(V ), in(U)) by a player Ki

l (l = 1, 2; i ↔ 1) is misleading,
there is a credible claim Γ ≥

k = (out(V ), in(W )) by Ki
l such that concl(W ) =

concl(U).

Proof. (1) Since concl(X0) ∃ S for every answer set S of P1, there is a set
X ∃ P1 of rules such that concl(X0) = concl(X) = concl(XS). By selecting
a minimal set X of rules satisfying the conditions of Definition 2.1, the result
holds. (2) Since concl(U) ∃ S for every answer set S of Pl → Q for some Q ∃ Oi

l

such that Pl → Q is consistent, there is a set W ∃ Pl → Q of rules such that
concl(U) = concl(W ) = concl(WS). By selecting a minimal set W of rules
satisfying the conditions of Definition 2.1, the result holds. ∀≥
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Fig. 2. Degree of truthfulness

Thus, dishonest claims which are effectively used for the purpose of winning a
debate game are either incredible, incorrect or false claims. Once a player makes
a dishonest claim in a game, however, it will restrict what the player can claim
later in the game.

Example 3.6. Consider two players K0
1 = (P1, ⊗) and K0

2 = (P2, ⊗) where P1 =
{ p ← not q, r ← s, s ← not t } and P2 = { q ← not r, not t, t ←}. Suppose
the following debate between K1 and K2:

Γ0: (in([p ← not q]), )
Γ1: (out([p ← not q]), in([q ← not r, not t]))
Γ2: (out([q ← not r, not t]), in([r ← s; s ← not t])).

Note that the claim Γ1 by K1
2 is incorrect. The player K2

2 cannot refute Γ2

because the counter-claim Γ3 = (out([r ← s; s ← not t]), in([t ←])) against Γ2

conflicts with the claim Γ1 by K1
2 (i.e., “t ←” attacks “q ← not r, not t”). Thus,

Γ3 violates the condition of Definition 3.4(g).

To keep conflict-freeness of a player’s claims in a game, dishonest claims
would restrict the use of believed-true rules in later claims and may result in
a net loss of freedom in playing the game. With this reason, it seems reason-
able to select a dishonest claim only if there is no choice among honest claims.
Comparing different types of dishonest claims, it is considered that incredible
claims are preferred to incorrect claims, and incorrect claims are preferred to
false claims. If a claim Γ = (out(V ), in(U)) is incredible, the player does not
skeptically believe the conclusion of U but credulously believes the conclusion
of U . If Γ is incorrect, the player does not credulously believe the conclusion of
U but the conclusion is consistent with the player’s belief. If Γ is false, on the
other hand, the conclusion of U is inconsistent with the player’s belief. Thus, the
degree of truthfulness (against the belief state of a player) decreases from incred-
ible claims to incorrect claims, and from incorrect claims to false claims (Fig. 2).
Generally, a dishonest claim deviates from the reality as believed by a player,
and a claim which increases such deviation is undesirable for a player because it
increases a chance of making the player’s claims conflict. A player wants to keep
claims close to its own belief as much as possible, so the best-practice strategy
for a debate game is to firstly use credible claims, secondly use incredible ones,
thirdly use incorrect ones, and finally use false ones to refute the opponent.

4 Discussion

A formal argumentation framework has been used for modelling dialogue games
or discussion games ([3,11,12,14]; and references therein). However, most of
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the studies use abstract argumentation and pay much attention on identifying
acceptable arguments based on the topological nature of dialectical graphs asso-
ciated with dialogues. On the other hand, the content of dialogue is important in
human communication. Participants in debates are interested in why one’s argu-
ment is defeated by the opponent, whether arguments made by the opponent
are logically consistent, which arguments made by the opponent are unaccept-
able, and so on. In debate games proposed in this paper, each player can see the
inside of the arguments in claims made by the opponent. As a result, a player
can judge whether a counter-claim made by the opponent is grounded on evi-
dences, and whether claims made by the opponent are consistent throughout a
debate. Moreover, a player can obtain new information from arguments posed
by the opponent.

In AI agents are usually assumed to be honest and little attention has been
paid for representing and reasoning with dishonesty. In real-life debates, however,
it is a common practice for one to misstate their beliefs or opinions [20]. In formal
argumentation, [16] characterizes dishonest agents in a game-theoretic argumen-
tation mechanism design and [19] introduces dishonest arguments in a debate
game. These studies use the abstract argumentation framework and do not show
how to construct dishonest arguments from the underlying knowledge base. In
this paper, we show how to build dishonest arguments from a knowledge base
represented by a logic program. Using arguments associated with logic programs,
we argue that at least four different types of dishonest claims exist. In building
dishonest claims, default literals play an important role—concealing known rules
or facts could produce conclusions which are not believed by a player. Proposi-
tion 3.4 shows an interesting observation that players cannot behave dishonestly
without default assumption. Dishonest reasoning in logic programs is studied by
[17] in which the notion of logic programs with disinformation is introduced and
its computation by abductive logic programming is provided. An application of
dishonest reasoning to multiagent negotiation is provided by [18] in which agents
represented by abductive logic programs misstate their bargaining positions to
gain one’s advantage over the other. The current study shows yet another appli-
cation of dishonest reasoning in argumentation-based logic programming.

Prakken and Sartor [13] introduce dialogue trees in order to provide a proof
theory of argumentation-based extended logic programs. A dialogue tree consists
of nodes representing arguments by the proponent and the opponent, and edges
representing attack relations between arguments. Given the initial argument of
the proponent at the root node of a dialogue tree, the opponent attacks the argu-
ment by a counterargument if any (called a move). Two players move in turn
and one player wins a dialogue if the other player run out of moves in a tree.
Comparing dialogue trees with debate games, a dialogue tree is constructed by
arguments associated with a single extended logic program. In debate games, on
the other hand, two players have different knowledge bases and build arguments
associated with them. Dialogue trees are introduced to provide a proof theory
of argumentation-based logic programs, and they do not intend to provide a
formal theory of dialogues between two players. As a result, dialogue trees do
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not have mechanisms of update and dishonest reasoning. Fan and Toni [6] pro-
pose a formal model for argumentation-based dialogues between agents. They
use assumption-based argumentation (ABA) [5] in which arguments are built
from rules and supported by assumptions. In ABA attacks against arguments
are directed at the assumptions supporting the arguments and are provided
by arguments for the contrary of assumptions. In their dialogue model, agents
can utter claims to be debated, rules, assumptions, and contraries. A dialogue
between the proponent and the opponent constructs a dialectical tree which rep-
resents moves by agents during a dialogue and outcomes. In their framework, two
agents share a common ABA framework and have common background knowl-
edge. With this setting, an agent cannot behave dishonestly as one cannot keep
some information from the other.

5 Conclusion

The contributions of this paper are mainly twofold. First, we developed debate
games using a non-abstract argumentation framework associated with logic pro-
gramming. We applied argumentation-based extended logic programs to formal
modelling of dialogue games. Second, we showed an application of dishonest rea-
soning in argumentation-based logic programming. Debate games introduced in
this paper realize dishonest reasoning by players using nonmonotonic nature of
logic programs. To the best of our knowledge, there is no formal dialogical sys-
tem which can deal with argumentative reasoning, belief update and dishonest
reasoning in a uniform and concrete manner. The current study contributes to
a step toward integrating logic programming and formal argumentation.

The proposed framework will be extended in several ways. In real-life debates,
players may use assumptions in their arguments. Assumptions are also used for
constructing arguments in an assumption-based argumentation framework [5].
Arguments considered in this paper use assumptions in the form of default lit-
erals. To realize debate games in which players can also use objective literals as
assumptions, we can consider a non-abstract assumption-based argumentation
framework associated with abductive logic programs. In this framework, an argu-
ment associated with an abductive logic program can contain abducibles as well
as rules in a program. A player can claim an argument containing abducibles
whose truthfulness are unknown. This is another type of dishonest claims called
bullshit [7]. To realize debate games, we are now implementing a prototype sys-
tem of debate games based on the abstract argumentation framework [17]. We
plan to extend the system to handle non-abstract arguments associated with
extended logic programs.

Acknowledgement. We thank Martin Caminada for useful discussion on the subject
of this paper.



200 C. Sakama

References

1. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-
theoretic approach to default reasoning. Artif. Intell. 93(1–2), 63–101 (1997)

2. Caminada, M., Wu, Y.: On the limitation of abstract argumentation. In: Pro-
ceedings of the 23rd Benelux Conference on Artificial Intelligence (BNAIC), Gent,
Belgium (2011)

3. Caminada, M.: Grounded semantics as persuasion dialogue. In: Proceedings of the
4th International Conference on Computational Models of Argument (COMMA),
Frontiers in Artificial Intelligence and Applications, vol. 245, pp. 478–485. IOS
Press (2012)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

5. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rah-
wan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218.
Springer, New York (2009)

6. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proceedings
of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp.
198–203 (2011)

7. Frankfurt, H.G.: On Bullshit. Princeton University Press, Princeton (2005)
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Comenius University in Bratislava, 842 48 Bratislava, Slovakia
simko@fmph.uniba.sk

http://dai.fmph.uniba.sk/~simko

Abstract. We consider the problem of extending the answer set seman-
tics for logic programs with preferences on rules. Many interesting
semantics have been proposed. In this paper we develop a descriptive
semantics that ignores preferences between non-conflicting rules. It is
based on the Gelfond-Lifschitz reduction extended by the condition: a
rule cannot be removed because of a less preferred conflicting rule. It
turns out that the semantics continues to be in the hierarchy of the
approaches by Delgrande et al., Wang et al., and Brewka and Eiter,
and guarantees existence of a preferred answer set for the class of call-
consistent head-consistent extended logic programs. The semantics can
be also characterized by a transformation from logic programs with pref-
erences to logic programs without preferences such that the preferred
answer sets of an original program correspond to the answer sets of the
transformed program. We have also developed a prototypical solver for
preferred answer sets using the meta-interpretation technique.

Keywords: Knowledge representation · Logic programming · Preferred
answer sets

1 Introduction

A knowledge base of a logic program possibly contains conflicting rules – rules
that state mutually exclusive things. Having such rules, we often want to specify
which of the rules to apply if both the rules can be applied.

Many interesting extensions of the answer set semantics for logic programs
with preferences on rules have been proposed, e.g., [2,4,10,13,17,18]. Among
the ones that stay in the NP complexity class ([2,4,17]), there is none that
guarantees existence of a preferred answer set for the subclass of stratified [1,3]
normal logic programs. This is the result of the fact, that the semantics do not
ignore preferences between non-conflicting rules. Therefore the semantics are not
usable in situations where we need to automatically induce preferences between
rules. Such situations can be found, e.g., in [8,19]. An example is a system that
allows a user to write his/her own rules, in order to override the rules defined by
developers. Since the user’s rules are know at run time, all the user’s rules must be
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preferred. It is then important that the preferences between the non-conflicting
rules do not cause side effects, e.g., non existence of a preferred answer set.

In this paper we propose a semantics, staying in the NP complexity class,
with a very simple and elegant definition that ignores preferences between non-
conflicting rules. The semantics guarantees existence of a preferred answer set for
the class of call-consistent [9,11] head-consistent [14] extended logic programs,
which is a superclass of stratified normal logic programs. The semantics is defined
using a modified version of the Gelfond-Lifschitz reduction. An additional prin-
ciple is incorporated: a rule cannot be removed because of a less preferred con-
flicting rule. It turns out that the semantics continues to be in the hierarchy of
the semantics [2,4,17] discovered in [12]. It preserves the preferred answer sets
of these semantics and admits additional ones, which were rejected because of
preferences between non-conflicting rules. We also present a simple and natural
transformation from logic programs with preferences to logic programs without
preferences such that the answer sets of the transformed program (modulo new
special-purpose literals) are exactly the preferred answer sets of an original one.

The rest of the paper is organized as follows. Section 2 recapitulates pre-
liminaries from logic programming and answer set semantics. Section 3 infor-
mally describes the approach. Section 4 develops an alternative definition of the
answer set semantics that is extended to a preferred answer set semantics in
Sect. 5. Section 6 presents a transformation from logic programs with prefer-
ences to logic programs without preferences. Section 7 analyses the properties
of the semantics. In Sect. 8 we show the connection between the semantics and
existing approaches. Section 9 summarizes the paper.

All the proofs not presented here can be found in a technical report [15].

2 Preliminaries

Let At be a set of all atoms. A literal is an atom or an expression ¬a, where a is
an atom. A rule is an expression of the form l0 ← l1, . . . , lm,not lm+1, . . . ,not ln,
where 0 ⊆ m ⊆ n, and each li (0 ⊆ i ⊆ n) is a literal. Given a rule r of the above
form we use head(r) = l0 to denote the head of r, body(r) = {l1 . . . ,not ln}
the body of r. Moreover, body+(r) = {l1, . . . , lm} denotes the positive body of
r, and body−(r) = {lm+1, . . . , ln} the negative body of r. For a set of rules R,
head(R) = {head(r) : r ∈ R}. A logic program is a finite set of rules.

A set of literals S is consistent iff a ∈ S and ¬a ∈ S holds for no atom
a. A set of literals S satisfies: (i) the body of a rule r iff body+(r) ∩ S, and
body−(r) ∅ S = ∃, (ii) a rule r iff head(r) ∈ S whenever S satisfies body(r), (iii)
a logic program P iff S satisfies each rule of P .

A logic program P is head-consistent [14] iff head(P ) is consistent. A logic
program without not is called positive.

For a positive logic program P , an answer set is defined as the least consistent
set of literals satisfying P , and we denote it by M(P ).

The Gelfond-Lifschitz reduct of a program P w.r.t. a set of literals S, denoted
PS , is the set {head(r) ← body+(r) : r ∈ P and body−(r) ∅ S = ∃}.



204 A. Šimko

Definition 1 (Answer set [7]). A consistent set of literals S is an answer set
of a logic program P iff S is an answer set of PS.

We will use AS(P ) to denote the set of all the answer sets of a logic
program P .

For a set of literals S, we also denote ΓP (S) = {r ∈ P : body+(r) ∩
S and body−(r) ∅ S �= ∃}.

We will say that a set of literals S defeats a rule r iff body−(r) ∅ S �= ∃. A
set of rules R defeats a rule r iff head(R) defeats r.

A dependency graph of a program P is an directed labelled graph where (i)
the literals are the vertices, (ii) there is an edge labelled +, called positive, from a
vertex a to a vertex b iff there is a rule r ∈ P with head(r) = a and b ∈ body+(r),
(iii) there is an edge labelled −, called negative, from a vertex a to a vertex b iff
there is a rule r ∈ P with head(r) = a and b ∈ body−(r).

A program P is called call-consistent [9,11] iff its dependency graph contains
no cycle with an odd number of negative edges.

Definition 2. A logic program with preferences is a pair (P,<) where: (i) P
is a logic program, and (ii) < is a transitive and asymmetric relation on P . If
p < r for p, r ∈ P we say that r is preferred over p.

3 Informal Presentation

The logic programming way of handling conflicting rules is adding guards to rules
in the form of default negated literals. They allow us to make a rule inapplicable
when a conflicting rule is applied.

Consider the well known penguin-fly program P :

r1: flies ← bird,not ¬flies
r2: ¬flies ← penguin,not flies
r3: bird ←
r4: penguin ←

The rules r1 and r2 have contrary heads, and contain guards not ¬flies
and not flies. The rule r1 is made inapplicable whenever r2 is applied, and vice
versa. We call this mutual exclusivity a conflict. Due to this conflict, the program
has the two answer sets A1 = {bird, penguin, flies} and A2 = {bird, penguin,
¬flies}.

Each answer set S can be associated with a unique set of rules that generate
it: ΓP (S) = {r ∈ P : body+(r) ∩ S and body−(r) ∅ S = ∃}. Here we call it a
generating set. The generating set of A1 is R1 = ΓP (A1) = {r1, r3, r4} and the
generating set of A2 is R2 = ΓP (A2) = {r2, r3, r4}.

Our intuition behind preference handling is that a rule cannot be made inap-
plicable due to a less preferred conflicting rule. If we say that the rule r1 is
preferred over r2, we expect that r2 cannot defeat r1, and consequently A1 is
the only preferred answer set.
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We can review generating set R2 and check whether it is in line with the
mentioned intuitive principle. We have that r2 is the only rule from R2 that
defeats r1. However r2 is less preferred and conflicting. We also have that the
positive body of r1 can be supported by a fact r3. This means that r1’s body is
satisfied w.r.t. R2 and r1 should also be a generating rule, i.e., r1 ∈ R2. Since
this is a contradiction, R2 is not a preferred generating set and A2 = head(R2)
is not a preferred answer set. A1 is the unique preferred answer set.

The following sections formalize this kind of reasoning. In the next section
we make precise the alternative definitions of generating sets and answer sets,
upon which the definitions of preferred answer sets and preferred generating sets
are built.

4 Alternative Definition of Answer Sets

When working with preferences on rules, we need to work on the level of rules
rather than on the level of literals. We need to check which rules are used to
generate an answer set, compare the rules w.r.t. preference relation, make a rule
inapplicable, etc. Therefore in order to keep the definition of preferred answer
sets as simple as possible, we reformulate answer set semantics in the terms of
sets of rules rather than sets of literals. Instead of guessing a set of literals and
testing whether it is an answer set, we guess a set of rules, and test whether it
is a generating set (of an answer set).

The first step in the standard definition of answer sets, is to define an answer
set of a positive program as a minimal set of literals that satisfies the program.
We alternatively define when a set of rules positively satisfies the program.

Definition 3 (Positive satisfaction). Let P be a set of rules. A set of rules
R ∩ P positively satisfies P iff for each rule r ∈ P we have that: If body+(r) ∩
head(R), then r ∈ R. We will use Q(P ) to denote the least (w.r.t. ∩) set of
rules that positively satisfies P .

Informally, Q(P ) is the set of the rules that are applied during the bottom-up
evaluation of a program P .

Example 1. Consider the following program P

r1: a ← b r3: a ←
r2: b ← r4: d ← c

{a, b} and {a, b, d} satisfy the program. Alternatively {r1, r2, r3} and
{r1, r2, r3, r4} positively satisfy the program. We also have that M(P ) = {a, b}.
Alternatively Q(P ) = {r1, r2, r3}. Note that head(Q(P )) = M(P ).

The second step of the standard definition of answer sets is the Gelfond-
Lifschitz reduction. We define an alternative version taking a guess of rules on
its input.
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Definition 4 (Reduct). Let P be a logic program, and R ∩ P be a set of rules.
The reduct PR is obtained from P by removing each rule r with head(R) ∅
body−(r) �= ∃.

An answer set is defined as a stable set w.r.t. the operator M(PS). A gen-
erating set is alternatively a stable set w.r.t. the operator Q(PR).

Definition 5 (Generating set). Let P be a logic program. A set of rules R ∩
P is a generating set of P iff R = Q(PR).

The next propositions justify the name “generating set”. It turns out that an
answer set S of a program P is represented by a unique generating set, namely
the set ΓP (S).

Proposition 1. Let P be a logic program. Let R1 and R2 be generating sets
such that head(R1) = head(R2). Then R1 = R2.

Proposition 2. Let P be a logic program. Let R be a generating set, and S be
a consistent set of literals such that S = head(R).

Then ΓP (S) = R.

Theorem 1. Let P be a logic program. A consistent set of literals S is an answer
set of P iff ΓP (S) is a generating set and head(ΓP (S)) = S.

From that we have an alternative definition of answer sets.

Theorem 2 (An alternative characterization of answer sets). Let P be
a logic program, and S be a consistent set of literals.

S is an answer set of P iff there is a generating set R such that head(R) = S.

The following example illustrates the alternative definition of answer sets
alongside the original one.

Example 2. Consider the following program P :

r1: a ← not b
r2: c ← d,not b
r3: b ← not a

We will show that S = {a} is an answer set.

Gelfond-Lifschitz Alternative definition
definition

guess S = {a} R = {r1}
reduct PS = {a ∗, c ∗ d} PR = {r1, r2}

r3 is removed as body−(r3) ∩ head(R) �= ∅
“min model” M(PS) = {a} Q(PR) = {r1}

r2 is not included as d ∈ body+(r2) cannot be
derived

test M(PS) = S Q(PR) = R

conclusion S is an answer set R is a generating set and head(R) = S is an answer
set
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5 Preferred Answer Sets

In this section, we define preferred answer sets by formalizing the intuitions from
Sect. 3.

In order to develop a definition of preferred answer sets we need to make
clear what exactly a conflict is.

Definition 6 (Conflict). Let r1, r2 be rules. We say that r1 and r2 are con-
flicting iff: (i) head(r1) ∈ body−(r2), and (ii) head(r2) ∈ body−(r1).

In this paper we only consider direct conflicts. This in no way means we
consider indirect conflicts unimportant. However there are good reasons why we
consider only direct conflicts in this paper:

– We believe it is always a good practice to proceed from simple cases to complex
ones.

– There are different ways in which a semantics can handle direct conflicts.
Indirect conflicts only add additional variability to this. Restriction to direct
conflicts allows us to better communicate the core idea behind the approach
to other researchers while avoiding the different subjective views on indirect
preference handling.

– Restriction to direct conflicts is essential in order to obtain the result presented
by Theorem 13.

We obtain the definition of preferred answer sets by requiring in Definition 4
that less preferred conflicting rules cannot cause a rule to be removed.

Definition 7 (Override). Let P = (P,<) be a logic program with preferences.
Let r1 and r2 be rules. We say that r1 overrides r2 iff (i) r1 and r2 are conflicting,
and (ii) r2 < r1.

Definition 8 (Reduct). Let P = (P,<) be a logic program with preferences,
and R ∩ P be a set of rules. The reduct PR is obtained from P by removing
each rule r ∈ P such that there is a rule q ∈ R such that:

– head(q) ∈ body−(r), and
– r does not override q.

Note that Definitions 4 and 8 differ only in the second condition. After remov-
ing it, the obtained definition is equivalent with Definition 4. Moreover, when a
preference relation is empty, the reduct coincides with the reduct for logic pro-
grams without preferences as defined in Definition 4, which in turn corresponds
to Gelfond-Lifschitz reduct.

Proposition 3. Let P = (P,<) be a logic program with preferences. Let R ∩ P
be a set of rules. If <= ∃, then PR = PR.

Definition 9 (Preferred generating set). Let P = (P,<) be a logic program
with preferences. A set of rules R ∩ P is a preferred generating set iff R =
Q(PR).
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Proposition 4. Let P = (P,<) be a logic program with preferences, and R ∩ P
be a set of rules. If R is a preferred generating set, then R is a generating set.

Definition 10 (Preferred answer set). Let P = (P,<) be a logic program
with preferences. A consistent set of literals S is a preferred answer set of P iff
there is a preferred generating set R such that head(R) = S.

We will use PAS(P) to denote the set of all the preferred answer sets of a
logic program with preferences P.

From Proposition 4 we have that analogous versions of Proposition 1 and
Theorem 1 hold also for preferred answer sets.

Notice that the definition of preferred answer sets is almost identical to the
definition of answer sets. The only difference is the additional simple condition in
the definition of reduct. Consider we would adapt the original definition of reduct
rather than the alternative one. It would be as follows: Given a set of literals S
we remove from a program P each rule r such that there exists a rule q where
... Since the guess S is a set of literals, it is not straightforward where to get q
from, i.e., we would have to introduce additional conditions that q must meet.
We would then have to justify those conditions. On the other hand, the use of
the alternative definition of reduct has completely freed us from this job as no
such conditions are needed. Exactly this elegance was the main motivation for
the alternative definition of answer sets.

6 Transformation to Logic Programs Without Preferences

A logic program with preferences under the preferred answer set semantics as
defined in Definition 10 can be transformed to a logic program without prefer-
ences such that the preferred answer sets of the original program are exactly the
standard answer sets of the transformed program (modulo new special-purpose
literals).

The basic idea of the transformation is to remove a default negated literal
from the body of a rule if it is the head of a less preferred conflicting rule.

Example 3. Consider the program in the first column.

r1: a ← not b a ←
r2: b ← not a ⊗→ b ← not a

r2 < r1

We have that r1 and r2 are conflicting, and r1 is preferred. Hence r2 cannot
defeat the rule r1. Therefore we remove not b from r1’s body.

However, the situation is complicated if at least two rules have the same
head. In general, we have to distinguish which rule can defeat a rule and which
cannot. In order to do so, for each rule r we introduce a special-purpose literal
nr that denotes that r is applicable, and replace default negated literal not x by
a collection of not nr such that head(r) = x.
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Example 4. Consider the program in the first column. First (the second column)
we split a rule into two rules: (i) the first deriving nr whenever r is applicable,
and (ii) the second deriving head(r) of the original rule. We also use nt literals
in the negative bodies. Next (the third column) we remove not nq from the
negative body of r if q is a less preferred conflicting rule.

r1: a ← not b nr1 ← not nr2 ,not nr3 nr1 ← not nr3

r2: b ← not a a ← nr1 a ← nr1

r3: b ← c ⊗→ nr2 ← not nr1 ⊗→ nr2 ← not nr1

r2 < r1 b ← nr2 b ← nr2

nr3 ← c nr3 ← c
b ← nr3 b ← nr3

The next definition formalizes the transformation.

Definition 11 (Transformation). Let P = (P,<) be a logic program with
preferences, and r ∈ P be a rule. The names of r≥s potential blockers are

BP(r) = {nq : q ∈ P, head(q) ∈ body−(r), and r does not override q}.

The transformation tP(r) of a rule r is the set of the rules

head(r) ← nr (1)
nr ← body+(r),not BP(r). (2)

The transformation t(P) of a program P is given by
⋃

r∅P tP(r).

It can be easily seen from the definition that the transformation can be com-
puted in polynomial time, and the size of the transformed program is polynomial
in the size of an original one.

The transformation captures semantics of preferred answer sets.

Theorem 3. Let P = (P,<) be a logic program with preferences. Let S be a
consistent set of literals (of the program P). Let T be a consistent set of literals
(of the program t(P)). Let NP(S) = {nr : r ∈ ΓP (S)} and N(P) = {nr : r ∈ P}.

If S is a preferred answer set of P, then S ∀NP(S) is an answer set of t(P).
If T is an answer set of t(P), then T \ N(P) is a preferred answer set of P.

Next we show that the transformation does not introduce cycles with odd
number of negative edges.

Proposition 5. Let P = (P,<) be a logic program with preferences. If P is
call-consistent, then t(P) is call-consistent.

Proof. In the following we use the notation: t(l) = l if l is a literal from P , and
t(nr) = head(r) for r ∈ P .

Assume there is an odd cycle in the t(P)’s dependency graph: there is a
sequence l1, s1, . . . , sn−1, ln = l1 such that (li, li+1, si) is a labelled edge for each
i < n, and for some i < n we have si = −. Assume a literal li and an edge
(li, li+1, s).
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If li is a literal from P , then the edge came from a rule of the form (1). Hence
li+1 = nr for some r ∈ P , s = +, and head(r) = li.

If li = nr for some r ∈ P , then: (i) If s = + then the edge came from a rule of
the form (2). Hence li+1 is a literal from P , li+1 ∈ body+(r), and (t(li), t(li+1),+)
is an edge in P ’s dependency graph. (ii) If s = − then the edge came from a
rule of the form (2). Hence li+1 = np for some p ∈ P , head(p) ∈ body−(r), and
(t(li), t(li+1),−) is an edge in P ’s dependency graph.

Now, we create a new sequence by iterating over the sequence l1, . . . , ln: (i) If
i < n and li is a literal of the program P skip li and si. From the above analysis
we have t(li+1) = li, and si = +, hence the literal will be added in the next step,
and no negative edge is lost, (ii) If i < n and li = nr for some r ∈ P , add t(li), si

to the end of the resulting sequence. (iii) If i = n add t(li) to the end of the
resulting sequence. From the above analysis we have that the sequence forms a
cycle in P ’s dependency graph, and the number of negative edges is preserved.≥↔

If P is not call-consistent, then t(P) can be call-consistent for some < and
not call-consistent for other <.

Example 5. Consider the program P = (P,<):

r1: a ← not b,not c
r2: b ← not a,not c
r3: c ← not b

If r3 < r2 < r1, then t(P):

nr1 ← not nr3 nr2 ← not nr1 nr3 ← not nr2

a ← nr1 b ← nr2 c ← nr3

is not call-consistent.
If r1 < r2 < r3, then t(P):

nr1 ← not nr2 ,not nr3 nr2 ← not nr3 nr3 ←
a ← nr1 b ← nr2 c ← nr3

is call-consistent.

7 Properties of Preferred Answer Sets

In this section we show that the semantics enjoys several nice properties. First
of all, the semantics is selective, i.e., each preferred answer set is an answer set.

Theorem 4. PAS(P) ∩ AS(P ) for each logic program with preferences P =
(P,<).

Proof. The theorem follows directly from Proposition 4. ≥↔

Second, for the two simple classes of programs: (i) programs with an empty
preference relation, and (ii) stratified programs, the semantics is equivalent to
the answer set semantics.



A Descriptive Handling of Directly Conflicting Rules 211

Theorem 5. PAS((P, ∃)) = AS(P ) for each logic program P .

Theorem 6. PAS(P) = AS(P ) for each logic program with preferences P =
(P,<) where P is stratified.

Proof. If P is stratified, then there are no conflicting rules. Hence PR = PR. ≥↔

Next we show that our semantics satisfies both principles for preferential
reasoning proposed in [2] by Brewka and Eiter.

Principle I tries to capture the meaning of preferences. If two answer sets are
generated by the same rules except for two rules, the one generated by a less
preferred rule is not preferred.

Principle I ([2]). Let P = (P,<) be a logic program with preferences, A1, A2

be two answer sets of P . Let ΓP (A1) = R ∀ {d1} and ΓP (A2) = R ∀ {d2} for
R ∪ P . Let d2 < d1. Then A2 �∈ PAS(P).

Theorem 7 (Principle I is satisfied). Preferred answer sets as defined in
Definition 10 satisfy Principle I.

Proof. Assume that A2 is a preferred answer set. Hence ΓP (A2) is a preferred
generating set, i.e., ΓP (A2) = Q(PΓP (A2)). We have that d2 is the only rule
r ∈ ΓP (A2) with head(r) ∈ body−(d1). We also have that d1, and d2 are con-
flicting, and d2 < d1. Hence d1 ∈ PΓP (A2), and consequently d1 ∈ ΓP (A2). A
contradiction. Therefore ΓP (A2) is not a preferred generating set. ≥↔

Principle II says that the preferences specified on a rule with the violated
positive body are irrelevant.

Principle II ([2]). Let P = (P,<) be a logic program with preferences, S ∈
PAS(P) and r be a rule such that body+(r) �∩ S. Let P ≥ = (P ≥, <≥) be a logic
program with preferences, where P ≥ = P ∀ {r} and <≥ ∅(P × P ) =<. Then
S ∈ PAS(P ≥).

Theorem 8 (Principle II is satisfied). Preferred answer sets as defined in
Definition 10 satisfy Principle II.

Proof. Let S be a preferred answer set of P, i.e., there is a set of rules R ∩ P
such that R = Q(PR) and head(R) = S. We show that R = Q(P ≥R).

First we show that R positively satisfies P ≥R. Assume p ∈ P ≥R such that
body+(p) ∩ head(R). Hence p ∈ P ≥ and p �= r. Hence p ∈ P and p ∈ PR. As R
positively satisfies PR we have that p ∈ R.

Second, we show that no proper subset of R positively satisfies P ≥R. Assume
that V ∪ R positively satisfies P ≥R. Since PR ∩ P ≥R, we have that V positively
satisfies PR. A contradiction with R = Q(PR). Hence such V does not exist.

Therefore Q(P ≥R) = R. ≥↔
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On the other hand, the semantics violates the following Principle III1. It
requires that a program has a preferred answer set whenever a standard answer
set exists. It follows the view that the addition of preferences should not cause
a consistent program to be inconsistent.

Principle III. Let P = (P,<) be a logic program with preferences. If AS(P ) �=
∃, then PAS(P) �= ∃.

Theorem 9. (Principle III is violated). Preferred answer sets as defined
in Definition 10 violate Principle III.

Proof. Consider the following program P = (P,<):

r1: a ← not b r3: inc ← a,not inc
r2: b ← not a r2 < r1

P has the unique answer set {b}. However it is not a preferred one. ≥↔

The semantics does not guarantee existence of a preferred answer set when a
standard answer set exists for the class of all programs (which is believed to rise
computational complexity). The reason is the strict character of preferences. In
the view of the transformation, we can understand preferences as a handy way
of encoding exceptions between rules – a rule does not define an exception to a
preferred conflicting rule. An underlying logic program without preferences can
be understood as a program schema that is transformed to the intended program
using the preferences. Using this view, answer sets of the underlying program
are of no interest.

On the other hand, the semantics guarantees existence of a preferred answer
set for a subclass of programs.

Theorem 10. Let P = (P,<) be a logic program with preferences such that P
is call-consistent and head-consistent. Then PAS(P) �= ∃.

Proof. Since P is head-consistent, we can assume explicitly negated literals to
be new literals and view t(P) as a normal logic program. From Proposition 5 we
have that t(P ) is call-consistent. Then from Theorem 5.8 from [5] we get that
AS(t(P)) �= ∃. Finally we get PAS(P) �= ∃ using Theorem 3. ≥↔

Theorem 11. Deciding whether PAS(P) �= ∃ for a logic program with prefer-
ences P is NP -complete.

Proof. Membership: t(P) can be computed in polynomial time. Using Theorem 3
the decision problem whether PAS(P) �= ∃ can be reduced to the decision
whether AS(t(P)) �= ∃, which is in NP . Hardness: Deciding whether AS(P ) �= ∃
for a logic program P is NP -complete. Using Theorem 5 we can reduce it to
decision whether PAS((P, ∃)) �= ∃. ≥↔
1 It is an idea from Proposition 6.1 from [2]. Brewka and Eiter did not consider it as
a principle. On the other hand [13] did.
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8 Comparison with Existing Approaches

In this section we investigate the connection of preferred answer sets as defined
in Definition 10 to existing approaches. We focus our attention to the selective
approaches that stay in the NP complexity class.

In [12] Schaub and Wang have shown that the approaches PASDST [4],
PASWZL [17] and PASBE [2] form a hierarchy. We will use PASDST (P),
PASWZL(P) and PASBE(P) to denote the set of all the preferred answer sets
of a program according to the respective semantics.

Theorem 12 ([12]). Let P = (P,<) be a logic program with preferences. Then
PASDST (P) ∩ PASWZL(P) ∩ PASBE(P) ∩ AS(P ).

We show that our semantics continues to be in this hierarchy. We start by
an alternative definition of our semantics.

Definition 12. Let P = (P,<) be a logic program with preferences. An answer
set X of P is called <-satisfying iff for each r ∈ P \ ΓP (X) we have that:

– body+(r) �∩ X, or
– body−(r) ∅ {head(t) : t ∈ ΓP (X) and r does not override t} �= ∃.

Lemma 1. Let P = (P,<) be a logic program with preferences. A consistent set
of literals X is a preferred answer set iff X is a <-satisfying answer set of P .

Proof. (⇒) There is a set of rules R = Q(PR) such that X = head(R).
Let r ∈ P \ ΓP (X). Since R is a generating set, we have R = ΓP (X). Hence

r �∈ R = Q(PR). From that body+(r) �∩ X = head(R) or r �∈ PR. If r �∈ PR,
then there must be a rule t ∈ R such that head(t) ∈ body−(r) and r does not
override t.

(⊥) Let R = ΓP (X) and consider PR. Since R = ΓP (X), we have R ∩ PR

and R ∩ Q(PR).
Assume that Q(PR) �∩ R, i.e., there is a rule r ∈ Q(PR) such that r �∈ R.
Since r ∈ Q(PR), we have that body+(r) ∩ head(Q(PR)), i.e., every literal

in body+(r) is supported by a rule in Q(PR).
As r �∈ R, we have that body+(r) �∩ X = head(R) or body−(r)∅head(R) �= ∃.
Assume there is t ∈ R such that head(t) ∈ body−(r) and r does not override

t. Then r �∈ PR. A contradiction. Hence no such t exists. Since r ∈ P \ ΓP (X),
and X is <-satisfying, we get body+(r) �∩ X.

We have shown that body+(r) �∩ X = head(R). Then there is a literal in
body+(r) that is not supported by a rule from R. Hence there is a literal in
body+(r) that is supported solely by a rule from Q(PR) \ R. Hence each rule
in Q(PR) \ R positively depends on a literal that can be derived only by a
rule from Q(PR) \ R. Then from minimality of Q(PR) we get that r �∈ Q(PR).
A contradiction. Therefore Q(PR) ∩ R.

Finally Q(PR) = R, and X = head(R) is a preferred answer set of P.
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Definition 13 (Alternative definition of PASBE [12]). Let P = (P,<) be
a logic program with preferences. An answer set X of P is a BE preferred answer
set of P iff there is an enumeration ⊂ri∧ of ΓP (X) such that for each i, j:

– if ri < rj, then j < i, and
– if ri < r and r ∈ P \ ΓP (X), then

• body+(r) �∩ X or
• body−(r) ∅ {head(rj) : j < i} �= ∃ or
• head(r) ∈ X.

The difference between our semantics and PASBE can be seen directly from
Definitions 12 and 13. One of the main differences is that Definition 12 com-
pletely drops the condition for enumeration of the rules, i.e., preferences are not
interpreted as an order, in which the rules are applied. As the result, the second
condition requiring how a preferred rule is defeated changes. A preferred rule
can be defeated only by a rule that is not less preferred and conflicting. Hence
the second difference: an explicit definition of conflict is used, and preferences
between non-conflicting rules are ignored. The condition head(r) ∈ X is also
completely dropped.

Very similar differences hold for PASDST and PASWZL (Definitions of
PASDST and PASWZL, similar to Definition 13, can be found in [12]).

Theorem 13. Let P be a logic program with preferences. Then PASBE(P) ∩
PAS(P).

Proof. Let P be a logic program with preferences and X ∈ PASBE(P). Then
there is an enumeration ⊂ri∧ of ΓP (X) satisfying the conditions from Defini-
tion 13.

Assume there is r ∈ P \ ΓP (X) such (i) body+(r) ∩ X, and (ii) for each rule
t ∈ ΓP (X) such that head(t) ∈ body−(r) it holds that r overrides t.

Since body+(r) ∩ X and r �∈ ΓP (X), we have that body−(r) ∅ X �= ∃. There
is a rule ri ∈ ΓP (X) with head(ri) ∈ body−(r). Then ri and r are conflicting,
i.e., head(r) ∈ body−(ri). Since ri ∈ ΓP (X) we have that head(r) �∈ X. We also
have that ri < r.

We have shown that ri ∈ ΓP (X), r ∈ P \ ΓP (X), ri < r, body+(r) ∩ X and
head(r) �∈ X.

Since X ∈ PASBE(P) we have that there is a rule rk ∈ ΓP (X) with
head(rk) ∈ body−(r) for k < i. From the conditions above, we have that rk

and r are conflicting and rk < r. By the same argument as before, there is a
rule rl ∈ ΓP (X) with head(rl) ∈ body−(r) and rl < r for some l < k, and so
on, until we reach the beginning of the enumeration and no such rule can be
found. A contradiction. Hence (i) body+(r) �∩ X, or (ii) body−(r) ∅ {head(t) :
t ∈ Randrdoes not overridet} �= ∃.

Therefore X is <-satisfying, and X ∈ PAS(P).

Theorem 14. It does not hold PAS (P) ∩ PASBE(P) for each logic program
with preferences P.
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Proof. Consider the program P from Example 5.5 from [2]

r1: c ← not b
r2: b ← not a r2 < r1

The program is stratified. PASBE(P) = ∃. On the other hand PAS(P) = {{b}}.

Theorem 15. Let P = (P,<) be a logic program with preferences.
Then PASDST (P) ∩ PASWZL(P) ∩ PASBE(P) ∩ PAS(P) ∩ AS(P ).

Proof. It follows directly from Theorems 4, 12 and 13. ≥↔

Theorems 14 and 15 can be interpreted as follows. Our semantics continues to
be in the hierarchy of approaches PASDST , PASWZL and PASBE . It preserves
the preferred answer sets of these semantics and admits additional ones, which
were rejected because of preferences between non-conflicting rules.

Theorem 6 is another distinguishing feature of our semantics. None of the
approaches PASDST , PASWZL and PASBE satisfies it. We consider Theorem 6
to be important as a stratified program contains no conflicting rules and its
meaning is given by a unique answer set. Theorem 6 also allows us to resolve
the problematic program shown in the proof of Theorem 14.

9 Conclusion and Future Work

In this paper we have developed a descriptive semantics for logic programs with
preferences on rules. The main idea is to add an additional condition to the
Gelfond-Lifschitz reduction: a rule cannot be removed because of a conflicting
less preferred rule. As a result, the approach uses an explicit definition of con-
flicting rules and ignores preferences between non-conflicting rules. This feature,
not present in other approaches, is important for scenarios where preferences
between rules are automatically induced from preferences between modules, as
we do not want such preferences to cause any side effects.

The semantics continues to be in the hierarchy of approaches [2,4,17]. It
preserves the preferred answer sets of these semantics and admits additional ones,
which were rejected because of preferences between non-conflicting rules. The
semantics satisfies both principles for preferential reasoning proposed in [2]. In
contrast to [2,4,17], it guarantees existence of a preferred answer set for the class
of call-consistent head-consistent extended logic programs. The semantics can be
also characterized by a transformation from logic programs with preferences to
logic programs without preferences such that the preferred answer sets of an
original program correspond to the answer sets of the transformed program.
The transformation is based on a simple idea: we remove a default negated
literal from a rule’s body if it is derived by a conflicting less preferred rule. We
have also developed a prototypical solver for preferred answer sets using meta-
interpretation technique from [6]. A description of the solver can be found in the
technical report [15] and an implementation can be downloaded from [16].
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In this paper we have only considered the most common type of conflict – the
heads of two conflicting rules are in each others negative bodies. An important
extension, which we are dealing with in the ongoing research, are indirect con-
flicts – literals in negative bodies are not derived directly by conflicting rules, but
via other rules. Preliminary results in this direction can be found in a technical
report [15].
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Abstract. The Paisley library and embedded domain-specific language
provides light-weight nondeterministic pattern matching on the Java
platform. It fully respects the imperative semantics and data abstrac-
tion of the object-oriented paradigm, while leveraging the declarative
styles of pattern-based querying and searching of complex object mod-
els. Previous papers on Paisley have focused on the functional paradigm
and data flow issues. Here, we illustrate its use under the logic paradigm.
We discuss the expressiveness and evaluate the performance of Paisley
in terms of the well-known combinatorial search problem “send more
money” and its generalizations.

1 Introduction

We describe one link in a chain of efforts to bring the object-oriented program-
ming paradigm closer to the more declarative functional and logic paradigms.
Historically, there have been many attempts to reconstruct or reinvent objects
on top of a logic platform, for instance the early [1,2], with later implementa-
tions sharing the same basic design considerations; however, our basic approach
is exactly opposite. Our starting point is a full commitment to mainstream,
statically typed object-orientation, undoubtedly the dominant paradigm of our
times, with unparalleled tool and library support for real-world programming.
We develop “prosthetic” tools and programming techniques that amend well-
known weaknesses in the expressiveness of plain object-orientation, without sac-
rificing broadness of scope or forcing programmers to leave their comfort zone.
See the homepage at [3].

The present paper presents first results on the use of our Paisley library and
language, designed for object-oriented pattern matching, as a toolkit for logic
programming on an object-oriented platform.

1.1 Outline

The remainder of this paper is structured as follows: Sect. 2 summarizes the
design of Paisley and its practical consequences under the various paradigms,
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as far as needed for understanding the following case studies. Technical details,
further examples and comparison to related work can be found in [4,5].1 Section 3
demonstrates logic programming in the Paisley style by means of cryptarithmetic
puzzles and their most famous instance, “send more money”. Section 4 presents
comparative performance measurements. Section 5 summarizes the experiences
gained so far, and gives some outlook into future work.

2 Paisley

2.1 Design Considerations

The Paisley library and programming style [4,5] provide sorely missed pattern
matching capabilities to the Java platform. For both theoretical and practi-
cal reasons, it does so in the form of a light-weight embedded domain-specific
language (DSL). The following paragraphs discuss the conceptual implications
of the approach concerning style and software engineering. The philosophically
unconcerned reader is welcome to skip ahead for more technical matters.

The qualifier “embedded” means that absolutely no extension of the language
or associated tools such as compilers or virtual machines is required. Extending
an evolving language such as Java, although academically attractive, is fraught
with great practical problems, mostly of maintenance and support: History shows
that language extensions either get adopted into the main branch of development
quickly, or die as academic prototypes. Instead, an embedded language shares
the syntax, type system and first-class citizens of its host language, that is in
the Java case, objects. Ideally, it is also “reified”, meaning that elements expose
their DSL-level properties at host-level expressive public interfaces, and can be
constructed, queried and manipulated freely and compositionally by the user.

The qualifier “light-weight” means that there is no technical distinction
between “source” and “executable” forms of the DSL. No global pre-processing
or compilation procedure is required, and no central interpreter engine exists.
The capabilities of the DSL are distributed modularly over the implementation
of DSL elements in the host language.

The two qualifiers together have wide-ranging implications for programming:
They ensure that the embedded language is open and can easily be extended and
customized by the user. They also guarantee tight integration and “impedance
match” of interfaces, with fast and precise transfer of control and without data
marshaling, between domain-specific and host-level computations. The price for
this freedom is that a compositional structure precludes some global optimiza-
tions and refactorings of the DSL implementation.

For illustration purposes, consider parser combinators in a functional lan-
guage as a prime example of reified light-weight embedded DSLs. Subparsers
are ordinary (monadic) functions and can be defined and used directly as such,

1 Online documentation and demonstration package with Paisley library binaries and
multiple examples, including source code quoted here, available from [3] at http://
bandm.eu/metatools/paisley/.

http://bandm.eu/metatools/paisley/
http://bandm.eu/metatools/paisley/
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including definitions of whole multi-level context-free grammars as recursive
functional programs. On the downside, global syntax analysis such as performed
routinely by monolithic parser generators is poorly supported in a combinatorial
setting.

By contrast, consider regular expression notations for string matching as a
prime example of DSLs that are neither reified, embedded nor light-weight. Typ-
ical implementations involve compilation to nondeterministic finite automata
(NFA), and hide their implementation behind terse global interfaces. User con-
trol over control features, most importantly nondeterminism, is indirect and awk-
ward (in the form of a plethora of analogous combinators with subtly different
amounts of greediness). On the upside, the NFA implementation is well-known
to improve global performance greatly in appropriate cases. The XPath language
for XML document navigation is another prominent example of the same kind.

Non-reified DSLs are typically used in a monolithic fashion: whole DSL pro-
grams are passed textually at the platform interface, and the computational
means for programming the DSL are conceptually and technically separate from
the means for implementing it. Conversely, reified DSLs lend themselves to com-
positional programming: In the simplest case a DSL program is a statically
nested constructor expression, that is the abstract syntax analog of a literal
non-reified DSL program. But the real power comes from more complex uses,
where the structure of the program under construction is either abstracted into
host-level functions, or dynamized by host-level control flow. (Contrast the con-
struction code depicted in Figs. 2, 3, 4, 5, 6, and 7 with the resulting DSL pro-
grams depicted in Fig. 10.)

Besides language embedding strategies, there are two important features to
consider, which we have done in detail in [4,5]: Firstly, whether the static type
system of the host language (if any) is reflected in patterns. A positive answer
rules out dynamic host languages like Python or Ruby, but brings the obvious
great clarity and safety benefits. Secondly, whether nondeterminism is supported
as a first-class aspect orthogonal to data projection. Pure paradigms are divided
about this issue: it is a characteristic feature of logic programming, but not
present in relevant functional or object-oriented languages.

2.2 Patterns, Object-Orientedly

Several theoretically well-founded paradigms for pattern matching exist: regular
expressions, inverse algebraic semantics (in functional programming), term uni-
fication (in logic programming). However, for a tool to be practically useful in
an object-oriented environment, it is of crucial importance not to impose any of
the axioms of such theories, since they are typically not warranted for realistic
object data models, and pretending otherwise causes impedance mismatch and
is a source of much trouble and subtle bugs.

What, then, is object-oriented pattern matching proper? Starting from the
rough approximation that (mainstream) object-orientation is imperative pro-
gramming with data abstraction (encapsulation), patterns are a declarative spe-
cialist notation for data queries: They are applicable to object data models
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solely in terms of their public interface, which may not safely be assumed to
have sound mathematical properties, such as statelessness, invertibility, com-
pleteness or extensionality. Object-oriented pattern matching organizes actual
(getter) method calls, not meta-level semantic case distinctions.

Four generic aspects of querying can be discerned: data are subjected to
tests for acceptability; matching may proceed to other accessible data by pro-
jections; information may flow back to the user in the form of side-effect vari-
able bindings; control flow of matching links different patterns according to the
outcome of tests with logical combinators. The absence of compositional pro-
gramming constructs for these aspects in Java leads to awkward idioms, dis-
cussed in detail in [5].

In Paisley, a pattern that can process data of some object type A is an object
of type Pattern←A⊆. A match is attempted by invoking method boolean match(A
target), with the return value indicating success (determined by the test aspect
of the pattern). Nondeterminism is generally allowed, in the sense that a pattern
may match the same target data in more than one way. These multiple solutions
can be explored by repeatedly invoking method boolean matchAgain() until it
fails. See Fig. 9 for a typical loop-based usage example.

Extracted information (determined by the projection and binding aspects of
the pattern) is not available from the pattern root object, nor reflected in its type.
Instead, references to the variables occurring in the pattern must be retained
by the user. Variables are objects of type Variable←A⊆ extendsPattern←A⊆. They
match any target data deterministically and store a reference by side-effect to
represent the binding, which can then be extracted with method A getValue().
Again, see Fig. 9 for the extraction of binding values in the loop body. Variables
are imperative, in the sense that they have no discernible unbound state, and
may be reused (sequentially) at no cost.

Elementary patterns performing particular test and projection duties are
predefined in the Paisley library and may be extended freely by the user. They
are combined by two universal control flow combinators for conjunction (all) and
disjunction (some). These are fully aware of nondeterminism (analogous to the
Prolog operators , and ;), and also guarantee strict sequentiality of side-effects
and have very efficient implementations for deterministic operands (analogous to
the C-family operators && and | |). As an immediate consequence, subpatterns
may observe bindings of variables effected in earlier branches of a conjunction.

2.3 Patterns, Functionally

The core concept of functional pattern matching, namely that initial algebra
semantics can be imposed on data and inverted for querying, is valid only for
degenerate cases of object-oriented programming. Real-world interface contracts
are more subtle; while effective query strategies can be devised for particular
problems, automatic “optimizations” such as transparent pattern restructuring
for compilation of pattern-based definitions [6,7] are generally out of the ques-
tion. Nevertheless, several functional principles can be used to good effect in the
design of a powerfully abstract pattern object library:
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Pattern building blocks effecting projections often correspond directly to a
getter method of the object data model. Getters of class C with result type D
can be conceived as functions from C to D; patterns of type Pattern←A⊆ can
be conceived as functions from A to some complex solution/effect type. Hence
each getter induces a contravariant lifting from Pattern←D⊆ to Pattern←C⊆ by mere
function composition (the Hom-functor for the categorically-minded).

Functions between pattern types, both patterns as ad-hoc functions of a
distinguished variable, and encapsulated pattern factories, are a very powerful
abstraction, and a prerequisite for higher-order pattern operations. In Paisley
they are represented by the interface Motif←A, B⊆ with a method Pattern←B⊆
apply(Pattern←A⊆).

2.4 Patterns, Logically

The main contribution of the logic paradigm to the design of Paisley is ubiquitous
and transparent nondeterminism. It integrates with the operational semantics of
patterns by having a fixed and precise resolution strategy, namely backtracking
with strictly ordered choices. The other key idea of patterns in logic program-
ming, namely unification, does not carry over soundly to the object-oriented
paradigm, because of the lack of a stable global notion of equality for objects.

Nondeterminism can be introduced ad-hoc using explicit disjunctive combi-
nators. But a natural kind of more abstract and useful sources of nondetermin-
ism is the imprecise lifting of parameterized getter functions, abstracting from
their qualifying parameters. For instance, the method A get (int index) of the
Java collection interface List←A⊆ gives rise not only to a deterministic lifting from
(Pattern←A⊆, int) to Pattern←List←A⊆⊆, but also to a nondeterministic variant from
Pattern←A⊆ to Pattern←List←A⊆⊆ that tries each element of the target list in order.
It is implemented in Paisley as the factory method CollectionPatterns.anyElement.

Nondeterminism, once introduced, is operationalized by the logical pattern
combinators. A highly portable backtracking implementation is realized by elim-
inating the choice stack from the call stack (to which the programmer has limited
access on the Java platform), and storing choice points on the heap, directly in
the objects that instantiate pattern conjunction and disjunction. This has the
notable effect that dynamic backtracking state is reified alongside static pat-
tern structure, and can be deferred indefinitely, canceled abruptly, cloned and
reused, committed to persistent storage etc., without interfering with normal
control flow. The price for this flexibility is that the call stack needs to be recon-
structed for backtracking (by iterated recursive descent), and that some caveats
regarding pattern sharing and reentrance apply.

In the functional-logic spirit, matches of a pattern p as nondeterministic
function of a distinguished variable x applied to target data t can be exhaustively
explored (encapsulated search) by writing x.eagerBindings(p, t) or x.lazyBindings
(p, t), with immediate or on-demand backtracking, respectively.

Combinatorial search problems can be encoded in the Paisley style as fol-
lows: Nondeterministic generator patterns for the involved variables are com-
bined conjunctively (spanning the Cartesian product of solution candidates) and
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combined with constraints. Constraints are represented as patterns that take no
target data, may observe previously bound variables (by earlier branches of a
conjunction) and succeed at most once. They are implemented in Paisley by the
class Constraint extendsPattern←Object⊆ with the method boolean test().

There is a strong trade-off between the effort to determine that a constraint
is safe to test because all concerned variables have been bound, and the asso-
ciated gain due to early pruning of the search tree. The following case study
discusses a prominent combinatorial search problem, its generic object-oriented
implementation in the Paisley style, and various strategies spread along the axis
of the trade-off, from brute force to complex scheduling. It demonstrates how
well Paisley handles logic-intensive and massively nondeterministic problems.
We expect the positive results to scale to fairly substantial problems in an object-
oriented scenario, where nondeterminism is usually much milder and limited to
local searching queries.

3 Case Study

The arithmetical puzzle “send more money” [8] is a well-known combinatorial
problem that has been used ubiquitously to exemplify notations and implemen-
tations of logic programming. It specifies an assignment of decimal digits to
variables {D,E,M,N,O,R, S, Y }, such that SEND + MORE = MONEY in
usual decimal notation. This equation, together with the implicit assumptions
that the assignment is injective (the variable values are all different) and the
numbers are normal (leading digits are nonzero), has a unique solution, namely
{D = 7, E = 5,M = 1, N = 6, O = 0, R = 8, S = 9, Y = 2}.

Figure 1 shows a straightforward implementation in the (functional-)logical
paradigm.2 This implementation is typical in the sense that it distinguished
several subproblems, indicated by the flush right comments, which shall reappear
in our object-oriented model. However, it is has more heavyweight platform
requirements than our implementation: In particular, a finite domain constraint
solver and corresponding driver for the CLPFD frontend must be available, thus
restricting the range of compatible Curry implementations. By contrast, our
approach makes do with any standard Java platform and elementary Paisley
logics.

The particular “send more money” problem easily suggests a number of gen-
eralizations, and has indeed not been the first of its kind. As a fairly broad class
of similar problems, we consider the cryptarithmetic puzzles with arbitrary num-
ber of digits in each term, arbitrary number of terms in the sum, and arbitrary
choice of base.

The following sections present different solution strategies with increasing
performance and implementation complexity. The meta-level discussion is com-
plemented with corresponding fragments of the actual application code, written
in Java 7 using the Paisley libraries and style. Only basic knowledge of the Java
2 Available from the Curry homepage at http://www.informatik.uni-kiel.de/∼curry/
examples/CLP/smm.curry.

http://www.informatik.uni-kiel.de/~curry/examples/CLP/smm.curry
http://www.informatik.uni-kiel.de/~curry/examples/CLP/smm.curry


224 B. Trancón y Widemann and M. Lepper

import CLPFD

smm l =

l =:= [ s,e,n,d,m,o,r, y] & −− variables
domain l 0 9 & −− domain
s ># 0 & m ># 0 & −− no leading zeroes
allDifferent l & −− all different

1000 ←# s +# 100 ←# e +# 10 ←# n +# d

+# 1000 ←# m +# 100 ←# o +# 10 ←# r +# e

=# 10000 ←# m +# 1000 ←# o +# 100 ←# n +# 10 ←# e +# y & −− sum
labeling [] l

where s,e,n,d,m,o,r,y free

Fig. 1. “Send more money” in Curry with finite domain constraints

syntax and collection framework is necessary to fully appreciate the code frag-
ments; no particularly advanced or obscure coding techniques are employed.
As a truly embedded language, Paisley can be interspersed finely with host code,
and consequently hard to spot. For the reader’s convenience, all Paisley-specific
types and operations are underlined. Note that the purpose of most of the Java
code is to construct an embedded Paisley program for combinatorial search; for
some possible results see Fig. 10 below.

3.1 Basic Model

The basic model of cryptarithmetic puzzles is depicted in Fig. 2. It is parame-
terized at construction time with the chosen base, and terms encoded as strings.
For instance, the original puzzle can be specified concisely as:

new CryptArith(10, "SEND", "MORE", "MONEY")

Also at construction time, Paisley objects for computations independent of
a particular solution strategy are allocated internally: A variable is assigned
to each character occurring in the terms; computed by a method vars(String...)
not shown. A local non-zero constraint is assigned to each character occurring
in leading position; computed by method noLeadingZeroes(String...). A global
constraint expressing the sum equation in terms of the created variables is formed
from the terms; computed by method sum(String...).

The constraint sum created by the latter adds the values of all terms but the
last, and compares the sum to the value of the last term. For term evaluation it
resorts to the auxiliary method number that computes a number from its b-adic
representation by the currently bound values of the sequence of digit variables.
Hence the constraints sum, as well as the constraints noLeadingZeroes depend
on all or one variable, respectively, and must be tested only after the concerned
variables have been bound successfully.
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public class CryptArith {
private final int base;

private final Map→Character, Variable→Integer⊥ ⊥ vars;

private final Map→Variable→Integer⊥ , Constraint⊥ noLeadingZeroes;

private final Constraint sum;

public CryptArith(int base, String. . . args) {
if (base < 2 || args.length < 1)

throw new IllegalArgumentException( );

this.base = base;

this.vars = vars(args);

this.noLeadingZeroes = noLeadingZeroes(args);

this.sum = sum(args);

}
private Constraint sum(String. . . args) {
final int n = args.length;

final List→List→Variable→Integer⊥ ⊥ ⊥ rows = new ArrayList→⊥ (n);
for (String s : args) {
// add characterwise list of variables to rows

}
return new Constraint( ) {
public boolean test( ) {
int s = 0;

for (List→Variable→Integer⊥ ⊥ r : rows.subList(0, n − 1) )

s += number(r);

return s == number(rows.get(n − 1) ) ;

}
};

}
private Map→Variable→Integer⊥ , Constraint⊥ noLeadingZeroes(String. . . args) {
final Map→Variable→Integer⊥ , Constraint⊥ result = new HashMap→⊥ ( ) ;
for (String s : args) {
final Variable→Integer⊥ v = vars.get(s.charAt(0) ) ;

result.put(v, Constraints.neq(v, 0) ) ;

}
return result ;

}
private int number(List→? extends Variable→Integer⊥ ⊥ vs) {
int n = 0;

for (Variable→Integer⊥ v : vs)

n = n ← base + v.getValue( );

return n;

}
// . . . see Figs. 3–5, 7–9

}

Fig. 2. Basic model of cryptarithmetic puzzles
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Any solution strategy for the cryptarithmetic puzzles consists of nondeter-
ministic matches of all variables against valid digit values (ranging from zero,
inclusive, to the given base, exclusive), and constraints equivalent to injective-
ness (pairwise difference of all variables), absence of leading zeroes and the sum
equation. Strategies differ in, and draw their varying efficiency from, the early
use of constraints to prune the search tree.

3.2 Brute-Force Generate and Test

The programmatically simplest, least efficient strategy is to defer all constraints
until after all variables have been bound. This is of course the infamous generate
and test pattern for combinatorial search. The implementation is depicted in
Fig. 3. It uses a generic auxiliary method generate to produce a generator pattern
by mapping a nondeterministic Motif pattern function over the collection of
variables, and another generic auxiliary method allDifferent to constrain them.
The latter traverses a triangle matrix of all variables in order to produce pairwise
inequality constraints.

This strategy refers to auxiliary methods, shared by the other strategies,
depicted in Fig. 4. The method domain() produces the nondeterministic motif

public Pattern→Iterable→? extends Integer⊥ ⊥ strategy1( ) {
return Pattern.all (generate(domain( ), vars.values( ) ), // generate

allDifferent(vars.values( ) ), // and test,
Pattern.all (noLeadingZeroes.values( ) ), // test,
sum); // test.

}
private →A, B⊥ Pattern→B⊥ generate(Motif→A, B⊥ m,

Collection→Variable→A⊥ ⊥ vars) {
final List→Pattern→B⊥ ⊥ ps = new ArrayList→⊥ ( );
for (Variable→A⊥ v : vars)

ps.add(m.apply(v) ); // search space: single variable,
return Pattern.all (ps); // and Cartesian product

}
private →A⊥ Constraint allDifferent(Collection→Variable→A⊥ ⊥ vars) {
final List→Variable→A⊥ ⊥ done = new ArrayList→⊥ (vars.size( ) );
final List→Constraint⊥ neqs = new ArrayList→⊥ ( );
for (Variable→A⊥ v : vars) {
for (Variable→A⊥ u : done)

neqs.add(neq(u, v) );

done.add(v);

}
return Constraint.all (neqs);

}

Fig. 3. Strategy 1: näıve generate and test



Some Experiments on Light-Weight Object-Functional-Logic Programming 227

private Motif→Integer, Iterable→? extends Integer⊥ ⊥ domain( ) {
return CollectionPatterns.anyElement( );

}
private →A⊥ Constraint neq(final Variable→A⊥ v, final Variable→A⊥ w) {
return new Constraint( ) {
public boolean test( ) {
return !v.getValue( ).equals(w.getValue( ) );

}
};

}

Fig. 4. All strategies: generic utilities

used to generate candidate values for variables from a given enumeration, by sim-
ply instantiating a generic motif for nondeterministic element selection from the
Paisley collection framework. We envisage the “abuse” of the pattern matching
target to represent the search space as a general style pattern for logic program-
ming in Paisley. The method neq(Variable, Variable) produces a single inequality
constraint between the current values of two variables.

3.3 Early Checking of Simple Constraints

The preceding brute-force strategy 1 has the disadvantage of actually generating
all possible variable assignments, that is bn combinations for n variables over
base b. But most of the constraints that prune the search tree (in fact all of
them except the sum equation proper) concern at most two variables. Hence it
is easy to predict the earliest point in the search plan where they can be checked.

This observation gives rise to an improved strategy 2 depicted in Fig. 5. It
works by splicing together the first three phases of strategy 1, each of which has
a loop over the variables, into a single loop. Only the global constraint of the
sum equation, which concerns all variables and must necessarily come last, is
left behind. This straightforward refactoring reduces the number of generated
assignments greatly, to less than n! ·

(
b
n

)
.

3.4 Exploiting Partial Sums

It is known that early pruning of the search tree can be improved further by
approximations to the sum using modular arithmetics. Each partial sum of the
k least significant digits must be satisfied up to carry, which can be expressed as a
congruence modulo bk. While these partial sum relations are implied by the exact
sum equation (a congruence modulo infinity), and hence logically redundant,
they have the practically advantageous property of concerning fewer variables.
Hence they can be checked earlier in the search plan. Figure 6 depicts the partial
sum congruences for “send more money” with k = 1, . . . , 5, each together with
the set of variables concerned for that k at the earliest.
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public Pattern→Iterable→? extends Integer⊥ ⊥ strategy2( ) {
return Pattern.all (generateAndTestEarly(domain( ), vars.values( ) ), sum); // . . . test.

}
private →A, B⊥ Pattern→B⊥ generateAndTestEarly(Motif→A, B⊥ m,

Collection→Variable→A⊥ ⊥ vars) {
final List→Variable→A⊥ ⊥ done = new ArrayList→⊥ (vars.size( ) );
final List→Pattern→? super B⊥ ⊥ pats = new ArrayList→⊥ ( );
for (Variable→A⊥ v : vars) {
pats.add(m.apply(v) ); // generate
if (noLeadingZeroes.containsKey(v) )

pats.add(noLeadingZeroes.get(v) ); // and test,
for (Variable→A⊥ u : done)

pats.add(neq(u, v) ); // test, . . .
done.add(v);

}
return Pattern.all (pats);

}

Fig. 5. Strategy 2: generate with early checks

D + E ≡ Y mod 10 {D,E, Y }
ND + RE ≡ EY mod 100 {N,R}

END + ORE ≡ NEY mod 1 000 {O}
SEND +MORE ≡ ONEY mod 10 000 {M,S}
SEND +MORE ≡ MONEY mod ∞ {}

Fig. 6. Partial sum modular congruences for “send more money”

The strategic information discussed above is reified in the model extension
depicted in Fig. 8 below. The inner class PartialSum encapsulates both the set of
concerned variables and the associated congruence as a constraint. It refers to an
extended version of the auxiliary method sum (compare Fig. 2), parameterized
with the number of digits under consideration. The sequence of partial sums
is precomputed at model construction time. The full strategy 3 can then be
generated by a loop over this sequence, issuing generators for newly introduced
variables, inequality and nonzero checks, and partial sum congruences in turn,
as depicted in Fig. 7.

3.5 Dynamic Constraint Scheduling

If precise constraint scheduling, as in the preceding strategy, is deemed unfea-
sible, one can still resort to dynamic scheduling techniques. Constraints can be
implemented such that their evaluation is suspended if some concerned variable
is not yet bound, and resumed when that condition changes. Then, a trivial strat-
egy simply places the generators last. However, tracking the state of variables has
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public Pattern→Iterable→? extends Integer⊥ ⊥ strategy3( ) {
return generatePartialSums(domain( ) );

}
→B⊥ Pattern→B⊥ generatePartialSums(Motif→Integer, B⊥ m) {
final List→Variable→Integer⊥ ⊥ done = new ArrayList→⊥ ( );
final List→Pattern→? super B⊥ ⊥ pats = new ArrayList→⊥ ( );
for (PartialSum s : partialSums) {
for (Variable→Integer⊥ v : s.getDependencies( ) )

if (!done.contains(v) ) {
pats.add(m.apply(v) ); // generate
if (noLeadingZeroes.containsKey(v) )

pats.add(noLeadingZeroes.get(v) ); // and test,
for (Variable→Integer⊥ u : done)

pats.add(neq(v, u) ); // test,
done.add(v);

}
pats.add(s.getConstraint( ) ); // test.

}
return Pattern.all (pats);

}

Fig. 7. Strategy 3: generate with partial sums (operation)

a significant run-time overhead, especially in Paisley where all components are as
light-weight as possible, and nondeterminism is expected to incur no appreciable
cost if not actually used.

We have added a prototype implementation of suspendable constraints to
our case study, implemented using the well-known observer pattern of object-
oriented programming. Strategies 2’ and 3’ are the analogs of 2 and 3, respec-
tively, but with suspendable constraints preceding the generators they depend
on.

4 Evaluation

All experiments have been performed on a single MacBook Air containing an
Intel Core i5-3317U CPU with 4 cores at 1.7 GHz and 8 GiB of RAM running
the OpenJDK 7-21 Java environment on Ubuntu 12.10. Reported times are wall-
clock time intervals, measured with System.nanoTime() to the highest available
precision. All experiments have been repeated 10 times, without restarting the
Java machine or interfering with automatic memory management.

Table 1 summarizes the findings for all strategies, obtained by exhaustive
search in a loop, as depicted in Fig. 9. Measurements are fairly consistent, with
little random variation. Memory management appears to have negligible impact,
as expected for a combinatorial computation with tiny data footprint.
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private final List→PartialSum⊥ partialSums = new ArrayList→⊥ ( ) ;
public CryptArith(int base, String. . . args) {
// . . .
this.partialSums = partialSums(args); // analogous to noLeadingZeroes

}
class PartialSum {
private final int length;

private final Set→Variable→Integer⊥ ⊥ dependencies ; // cf. Fig. 6 right
private final String[ ] args;

PartialSum(int length,
Set→? extends Variable→Integer⊥ ⊥ dependencies,

String. . . args) {
// initialize fields

}
public Set→Variable→Integer⊥ ⊥ getDependencies( ) {
return dependencies ;

}
public Constraint getConstraint( ) {
return sum(length, args);

}
}
private Constraint sum(int length, String. . . args) {
final int n = args.length;

final List→List→Variable→Integer⊥ ⊥ ⊥ rows = new ArrayList→⊥ (n);
for (String s : args) {
// add characterwise list of last length variables to rows

}
final int m = power(base, length);

return new Constraint( ) {
public boolean test( ) {
int s = 0;

for (List→Variable→Integer⊥ ⊥ r : rows.subList(0, n − 1) )

s += number(r);

return s % m == number(rows.get(n − 1) ) % m ; // congruence
}

};
}

Fig. 8. Strategy 3: generate with partial sums (model extension)
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public void run(final Pattern→Iterable→? extends Integer⊥ ⊥ p) { // p produced by a strategy
if (p.match(digits( ) ) ) do { // confer Fig. 1 (domain)
for (Map.Entry→Character, Variable→Integer⊥ ⊥ e : vars.entrySet( ) )

System.out.println(e.getKey( ) + ” = ” + e.getValue( ).getValue( ) );

System.out.println( );

} while (p.matchAgain( ) );

}
private Collection→Integer⊥ digits( ) {
final List→Integer⊥ result = new ArrayList→Integer⊥ (base);
for (int i = 0; i < base; i++)

result.add(i);

return result;

}

Fig. 9. Running a strategy

Table 1. Experimental evaluation: send more money, N = 10

Strategy Time (ms)
Min Median Max

1 5 396.93 5 470.24 5 775.04
2 737.56 770.25 809.48
3 2.34 2.37 3.60
2’ 761.37 771.93 797.53
3’ 850.30 863.21 881.72

D < b,E < b, S < b,R < b,N < b,O < b,M < b, Y < b,
D ⊆= E,D ⊆= S,E ⊆= S,D ⊆= R,E ⊆= R,S ⊆= R,D ⊆= N,E ⊆= N,S ⊆= N,R ⊆= N,
D ⊆= O,E ⊆= O,S ⊆= O,R ⊆= O,N ⊆= O,D ⊆= M,E ⊆= M,S ⊆= M,R ⊆= M,N ⊆= M,
O ⊆= M,D ⊆= Y,E ⊆= Y, S ⊆= Y,R ⊆= Y,N ⊆= Y,O ⊆= Y,M ⊆= Y,
M ⊆= 0, S ⊆= 0,
SEND +MORE ≡ MONEY mod ∞
D < b,E < b,D ⊆= E,S < b, S ⊆= 0, D ⊆= S,E ⊆= S,R < b,D ⊆= R,E ⊆= R,S ⊆= R,
N < b,D ⊆= N,E ⊆= N,S ⊆= N,R ⊆= N,O < b,D ⊆= O,E ⊆= O,S ⊆= O,R ⊆= O,N ⊆= O,
M < b,M ⊆= 0, D ⊆= M,E ⊆= M,S ⊆= M,R ⊆= M,N ⊆= M,O ⊆= M,
Y < b,D ⊆= Y,E ⊆= Y, S ⊆= Y,R ⊆= Y,N ⊆= Y,O ⊆= Y,M ⊆= Y,
SEND +MORE ≡ MONEY mod ∞
Y < b,D < b,D ⊆= Y,E < b,E ⊆= Y,E ⊆= D,D + E ≡ Y mod 10, R < b,R ⊆= Y,
R ⊆= D,R ⊆= E,N < b,N ⊆= Y,N ⊆= D,N ⊆= E,N ⊆= R,ND +RE ≡ EY mod 100,
O < b,O ⊆= Y,O ⊆= D,O ⊆= E,O ⊆= R,O ⊆= N,END +ORE ≡ NEY mod 1 000,
S < b, S ⊆= 0, S ⊆= Y, S ⊆= D,S ⊆= E,S ⊆= R,S ⊆= N,S ⊆= O,
M < b,M ⊆= 0,M ⊆= Y,M ⊆= D,M ⊆= E,M ⊆= R,M ⊆= N,M ⊆= O,M ⊆= S,
SEND +MORE ≡ ONEY mod 10 000, SEND +MORE ≡ MONEY mod ∞

Fig. 10. Unfolded search plans generated by strategies 1, 2, 3, respectively
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5 Conclusion

Figure 10 gives a synopsis of the inner structure of patterns produced by the
strategies 1–3 for the “send more money” example. In each case elementary
generator and constraint patterns are composed associatively into a global con-
junction. For the more advanced strategies, more powerful constraints appear
earlier in the sequence. The patterns can be used immediately as depicted in
Fig. 9, or used in every other conceivable way as ordinary Java objects. As such,
our implementation of the problem domain on top of Paisley acts technically
as a domain-specific compiler to a threaded code back-end, given by the Paisley
operations.

The Paisley approach leads to a style that has some of the best of both
worlds: The object-oriented paradigm has excellent support for data abstraction
and encapsulation. Object-oriented models of the problem domain have expres-
sive interfaces close to the programmer’s intentions and intuitions, and high
documentation value.

On the other hand, the declarative style of the logic paradigm allows for
abstraction from the complex control flow of searching by composition of simple
nondeterministic fragments. Note that all explicit control flow in the given code
samples is exclusively for the construction of a particular instance of the generic
puzzle model. The actual control flow of searching is hidden entirely in the
invocations of pattern combinators, most notably Pattern.all, consequently reified
in a complex Pattern object that both represents and implements the search, and
finally effected using Pattern.match and Pattern.matchAgain, as depicted in Fig. 9.

The influence of the functional paradigm is evidently the weakest in the
examples discussed here: They make a single use of the Motif class. But there
is considerable, unfulfilled potential: Virtually all of the loops in the example
code express comprehensions, and could be rephrased in terms of the higher-
order functions map, reduce and friends. These are conspicuously absent from
the traditional Java collection framework; but there is hope that the rise of
anonymous functions in Java 8 [9] will improve the situation. The Paisley app-
roach is expected to profit greatly from equally high expressiveness in all three
paradigms. Alternatively, Paisley could be ported to Scala, in order to reap the
benefits of decent functional programming immediately.

The relative performance of more intelligent strategies within the Paisley
framework is encouraging: A measured speedup of over three orders of magnitude
by means of a moderately complex model extension that captures only well-
understood heuristics about the problem domain is certainly worth the effort.

The absolute performance of Paisley implementations is of course no match
for low-level optimized solver code. For instance, the C program obtainable
from [10] takes approximately 0.17 ms to solve “send more money” on our test
machine (compiled with gcc -O), about an order of magnitude less than our
best effort with strategy 3. On the other hand, we have tested a simple, portable
implementation in the functional-logic programming language Curry.3 It differs
3 Kindly contributed by F. Reck, co-developer of the KiCS2 compiler [11].
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from the implementation depicted in Fig. 1 mainly by being self-contained pure
Curry and not referring to any constraints requiring additional solver modules.
Hence it follows a similar strategy as our strategy 2. Evaluation takes about 7.49 s
on the same test machine (compiled with KiCS2 0.2.4 +optimize), an order of
magnitude more than its most direct Paisley competitor, and even more than our
brute-force strategy 1. Note that this result is not representative of the language
at large; more sophisticated Curry implementations of cryptarithmetic puzzles
such as the one described in [12] can be fairly competitive. The same holds to
some degree for finite domain implementations as depicted in Fig. 1, depending
on the strength of the available backend solver.

Considering the costs of portable backtracking and object-oriented data
abstraction, Paisley appears to be well on the way. The only disappointment
so far is the performance of the dynamically scheduled constraints in strategies
2’ and 3’, although the current implementation is merely a proof-of-concept pro-
totype. Here the scheduling overhead clearly dominates the actual computation.
More research into efficient implementations is needed.
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Abstract. In prior work, we have developed a method for the auto-
matic reconstruction of buggy Prolog programs from correct programs
to model learners’ incorrect reasoning in a tutoring context. The method
combines an innovative variant of algorithmic debugging with program
transformations. Algorithmic debugging is used to indicate a learner’s
error and its type; this informs a program transformation that “repairs”
the expert program into a buggy variant that is closer at replicating
a learner’s behaviour. In this paper, we improve our method by using
heuristic search. To search the space of program transformations, we
estimate the distance between programs. Instead of only returning the
first irreducible disagreement between program and Oracle, the algo-
rithmic debugger now traverses the entire program. In the process, all
irreducible agreements and disagreements are counted to compute the
distance metrics, which also includes the cost of transformations. Over-
all, the heuristic approach offers a significant improvement to our existing
blind method.

1 Introduction

Typically, programs have bugs. We are interested in runtime bugs where the
program terminates with output that the programmer judges incorrect. In these
cases, Shapiro’s algorithmic debugging technique can be used to pinpoint
the location of the error. A dialogue between the debugger and the program-
mer unfolds until the meta-interpretation of the program reaches a statement
that captures the cause of disagreement between the program’s actual behaviour
and the programmer’s intent of how the program should behave. Once the bug
has been located, it is the programmer’s task to repair the program, and then,
to start another test-debugging-repair cycle. Let us make the following assump-
tion: there exists an Oracle that relieves the programmer from answering any of
the questions during the debugging cycle; the Oracle “knows” the programmer’s
intent for each and every piece of code. With the mechanisation of the Oracle
to locate the program’s bugs, we now seek to automate the programmer’s task
to repair the bug, and thus, to fully automate the test-debug-repair cycle.

In the tutoring context, Oracles can be mechanised: for a given domain of
instruction, there is always a reference model that defines expert problem solv-
ing behaviour. Moreover, a learner’s problem solving behaviour is judged with
regard to this model; a learner commits a mistake whenever the learner deviates
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from the expert problem solving path. Algorithmic debugging can be used to
identify the location of learners’ erroneous behaviour. For this, we have to turn
Shapiro’s method on its head: we take the expert program to take the role of
the buggy program, and the learner to take the role of the programmer, that
is, the Oracle. As in the traditional method, any disagreement between the two
parties indicates the location of the bug. Moreover, we can relieve the learner
from answering Oracle questions. Answers to all questions can be reconstructed
from the learner’s answer to a given problem, using the expert model [11].

With the ability to locate a learner’s error, we now seek to “repair” the
expert program (assumed buggy) in such a way that it reproduces the learner’s
erroneous (assumed expert) behaviour. The resulting program acts as symbolic
artifact of a deep diagnosis of a learner’s problem solving process; it can be
used to inform effective remediation, helping learners to realize and correct their
mistakes. Ideally, repair operators shall mirror typical learner errors. This is
feasible indeed. There is a small set of error types, and many of them can be
formally described in a domain-independent manner.

With the identification of an error’s location, and a small, effective set of
mutation operators for program repair, we strive to fully automate the test-
debug-repair cycle in the tutoring context. Our approach is applicable for a
wider context, given the specification of an ideal program and a theory of error.

Main contributions. To address an important issue in intelligent tutoring, the
deep diagnosis of learner input, we cast the problem of automatically deriving
one (erroneous) program from another (expert) program as a heuristic search
problem. We define a metric that quantifies the distance of two given programs
with regard to an input/output pair. We define a number of domain-independent
code perturbation operators whose execution transforms a given program into its
mutated variant. Most mutation operators encode typical actions that learners
perform when encountering an impasse during problem solving. We show the
effectiveness of our approach for the most frequent learner bugs in the domain
of multi-column subtraction. Erroneous procedures are automatically derived to
reproduce these errors. This work extends and generalises our previous work in
this area [11,12] with regard to the heuristic search approach, which is novel.

Overview. Section 2 gives a very brief review on student errors in tutoring. It
presents multi-column subtraction as domain of instruction and gives an encod-
ing of the expert model in Prolog. For each of the top-eight learner errors in
this domain, we demonstrate how the expert model needs to be perturbated to
reproduce them. We show that most perturbations are based on a small but
effective set of mutation operators. Also, we briefly review our existing method
of error diagnosis in the tutoring context. In Sect. 3, we improve and generalise
our method. The problem of deriving one program from another is cast in terms
of a heuristic search problem. We introduce a distance metrics between programs
that is based on algorithmic debugging, and use a best-first search algorithm to
illustrate and evaluate the effectiveness of our approach. Section 4 discusses our
approach and relates it to existing work. Section 5 concludes with future work.
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2 Background

2.1 Human Error in Tutoring

When learning something new, one is bound to make mistakes. Effective teaching
depends on deep cognitive analyses to diagnose learners’ problem solving paths,
and subsequently to repair the incorrect parts. Good teachers are thus capable to
reconstruct students’ erroneous procedures and use this information to inform
their remediation. In the area of elementary school mathematics, our chosen
tutoring domain, the seminal works of Brown and Burton [2,3], O’Shea and
Young [10], and VanLehn [9], among others, extensively studied the subtraction
errors of large populations of pupils. Their research included a computational
account of errors by manually constructing cognitive models that reproduced
learners’ most frequent errors. The main insight of this research is that student
errors are seldom random. There are two main causes. The first cause is that stu-
dent errors may result from correctly executing an erroneous procedure; for some
reasons, the erroneous rather than the expert procedure has been acquired. The
second cause is based on VanLehn’s theory of impasses and repairs. Following
VanLehn, learners “know” the correct procedure, but face difficulties executing
it. They “treat the impasse as a problem, solve it, and continue executing the
procedure” [9, p. 42]. The repair strategies to address an impasse are known
to be common across student populations and domains. Typical repairs include
executing only the steps known to the learner and to skip all other steps, or to
adapt the situation to prevent the impasse from happening.

2.2 Expert Model for Multi-column Subtraction

Figure 1 depicts the entire cognitive model for multi-column subtraction using
the decomposition method. The Prolog code represents a subtraction problem
as a list of column terms (M, S, R) consisting of a minuend M, a subtrahend S,
and a result cell R. The main predicate subtract/2 determines the number of
columns and passes its arguments to mc subtract/3.1 This predicate processes
columns from right to left until all columns have been processed and the recur-
sion terminates. The predicate process column/3 receives a partial sum, and
processes its right-most column (extracted by last/2). There are two cases.
Either the column’s subtrahend is larger than its minuend, when a borrowing
operation is required, or the subtrahend is not larger than the minuend, in which
case we can subtract the former from the latter (calling take difference/4). In
the first case, we add ten to the minuend (add ten to minuend/3) by borrowing
from the left (calling decrement/3). The decrement operation also consists of
two clauses, with the second clause being the easier case. Here, the minuend
of the column left to the current column is not zero, so we simply reduce the
minuend by one. If the minuend is zero, we need to borrow again, and hence
decrement/3 is called recursively. When we return from recursion, we first add
ten to the minuend, and then reduce it by one.
1 The argument CurrentColumn is passed onto most other predicates; it is only used

to help automating the Oracle.
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01 : subtract(PartialSum, Sum) ←
02 : length(PartialSum, LSum),
03 : mc subtract(LSum, PartialSum, Sum).

04 : mc subtract( , [ ], [ ]).
05 : mc subtract(CurrentColumn, Sum, NewSum) ←
06 : process column(CurrentColumn, Sum, Sum1 ),
07 : shift left(CurrentColumn, Sum1 , Sum2 , ProcessedColumn),
08 : CurrentColumn1 is CurrentColumn − 1,
09 : mc subtract(CurrentColumn1 , Sum2 , SumFinal),
10 : append(SumFinal , [ProcessedColumn], NewSum).

11 : process column(CurrentColumn, Sum, NewSum) ←
12 : last(Sum, LastColumn), allbutlast(Sum,RestSum),
13 : minuend(LastColumn, M ), subtrahend(LastColumn, S),
14 : S > M , !,
15 : add ten to minuend(CurrentColumn, M , M10 ),
16 : CurrentColumn1 is CurrentColumn − 1,
17 : decrement(CurrentColumn1 , RestSum, NewRestSum),
18 : take difference(CurrentColumn, M10 , S , R),
19 : append(NewRestSum, [(M10 , S , R)],NewSum).

20 : process column(CurrentColumn, Sum, NewSum) ←
21 : last(Sum, LastColumn), allbutlast(Sum,RestSum),
22 : minuend(LastColumn, M ), subtrahend(LastColumn, S),
23 : % S =< M,
24 : take difference(CurrentColumn, M , S , R),
25 : append(RestSum, [(M , S , R)], NewSum).

26 : shift left( CurrentColumn, SumList , RestSumList , Item ) ←
27 : allbutlast(SumList , RestSumList), last(SumList , Item).

28 : decrement(CurrentColumn, Sum, NewSum ) ←
29 : irreducible,
30 : last( Sum, (M , S , R) ), allbutlast( Sum, RestSum),
31 : M == 0, !,
32 : CurrentColumn1 is CurrentColumn − 1,
33 : decrement(CurrentColumn1 , RestSum, NewRestSum ),
34 : NM is M + 10,
35 : NM1 is NM − 1,
36 : append( NewRestSum, [(NM1 , S , R)], NewSum),

37 : decrement(CurrentColumn, Sum, NewSum) ←
38 : irreducible,
39 : last( Sum, (M , S , R) ), allbutlast( Sum, RestSum),
40 : % \+ (M == 0),
41 : M1 is M − 1,
42 : append( RestSum, [(M1 , S , R)], NewSum ).

43 : add ten to minuend( CC , M , M10 ) ← irreducible, M10 is M + 10.
44 : take difference( CC , M , S , R) ← irreducible, R is M − S .

45 : minuend( (M , S , R), M ).
46 : subtrahend( ( M , S , R), S).

47 : allbutlast([ ], [ ]).
48 : allbutlast([ H ], [ ]).
49 : allbutlast([H1 |[H2 |T ]], [H1 |T1 ]) ← allbutlast([H2 |T ],T1 ).

50 : irreducible.

Fig. 1. The decomposition method for subtraction in prolog
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9
3 10 11
4 0 1

- 1 9 9

= 2 0 2
(a) correct solution

4 0 1
- 1 9 9

= 3 9 8
(b) smaller-from-larger

3 10 11
4 0 1

- 1 9 9

= 2 1 2
(c) stops-borrow-at-zero

2
3 10 11
4 0 1

- 1 9 9

= 1 1 2
(d) borrow-across-zero

9 11
4 0 1

- 1 9 9

= 3 0 2
(e) borrow-from-zero

10 11
4 0 1

- 1 9 9

= 3 1 2
(f) borrow-no-decrement

11
4 0 1

- 1 9 9

= 3 9 2
(g) stops-borrow-at-
zero diff-0-N=N

2
3 11 11
4 1 1

- 1 9 9

= 1 2 2
(h) always-borrow-left

3 11
4 0 1

- 1 9 9

= 2 9 2
(i) borrow-across-zero
diff-0-N=N

Fig. 2. A correct solution, and the top-eight bugs sets, see [9, p. 195].

2.3 Buggy Sets in Multi-column Subtraction

Figure 2(a) depicts the correct solution to the subtraction problem 401 − 199,
the Fig. 2(b)–(i) show how the top-eight bug sets from the DEBUGGY study
[9, p. 195, p. 235] manifest themselves in the same task. All erroneous answers
are rooted in learners’ difficulty to borrow: the errors in Fig. 2(b) and (f) result
from the learners’ more general impasse “does not know how to borrow”, and
the errors in Fig. 2(c)–(e) results from the learners’ more specific impasse “does
not know how to borrow from zero”. All other errors, but Fig. 2(h), are varia-
tions of the previous error types. Figure 2(h) is better explained by the incorrect
acquisition of knowledge rather than within the impasse-repair theory.

We now describe how the expert procedure given in Fig. 1 needs to be
“repaired” to reproduce each of the top-eight bugs.

smaller-from-larger: the student does not borrow, but in each column subtracts
the smaller digit from the larger one [9, p. 228]. The impasse “learner does not
know how to borrow” is overcome by not letting borrowing to happen. The expert
model is perturbated at the level of process column/3. In its first clause, we
delete the calls to add ten to minuend/3 (line 15) and decrement/3 (line 17).
As a consequence, we replace all remaining occurrences of M10 and NewRestSum
with M and RestSum, respectively. Moreover, we swap the arguments for M and
S when taking differences (line 18).

borrow-no-decrement: when borrowing, the student adds ten correctly, but
does not change any column to the left [9, p. 223]. The learner addresses the
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impasse “does not know how to borrow” with a partial skipping of steps. In the
first clause of process column/3, the subgoal decrement/3 (line 17) is deleted;
the remaining occurrence of NewRestSum is then replaced by RestSum (line 19).

stops-borrow-at-zero: instead of borrowing across a zero, the student adds ten
to the column he is doing, but does not change any column to the left [9, p. 229].
The impasse “learner does not know how to borrow from zero” is overcome by
not performing complete borrowing when the minuend in question is zero. The
recursive call to decrement/3 (line 33) and the goals producing NM1 and NM (lines
34, 35) are removed, and the remaining occurrence of NM1 replaced by M (line
36).

borrow-across-zero: when borrowing across a 0, the student skips over the 0
to borrow from the next column. If this causes him to have to borrow twice,
he decrements the same number both times [9, p. 114, p. 221]. Same impasse,
different repair. The clauses that produce NM1 and NM (lines 34, 35) are removed;
the remaining occurrence of NM1 in append/3 replaced by M (line 36).

borrow-from-zero: instead of borrowing across a zero, the student changes the
zero to nine, but does not continue borrowing from the column to the left [9,
p. 223]. Same impasse, yet another repair: the assignments NM and NM1 stay in
place, but the recursive call to decrement/3 (line 33) is deleted; the occurrence
of NewRestSum is replaced by RestSum (line 36).

stops-borrow-at-zero diff0-N=N: when the student encounters a column of
the form 0−N , he does not borrow, but instead writes N as the answer, possibly
combined with stops-borrow-at-zero. For diff-0-N=N, we shadow the existing
clause for taking differences with take difference(M, S, R):- M == 0, R =
S. To ensure that no borrowing operation is performed in case the minuend is
zero, the first clause of process column/3 is modified. The constraint S>M (line
14) is complemented with \+ (M == 0); line 23 is changed to (S =< M) ; (M
== 0).

always-borrow-left: the student borrows from the left-most digit instead of bor-
rowing from the digit immediately to the left [9, p. 225]. This error is best explained
by the incorrect acquisition of knowledge rather than within the impasse-repair
theory. To reproduce it, we shadow the existing clauses for decrement/3 with
decrement([(M,S,R)|OtherC], [(M1,S,R)|OtherC]) :- !, M1 is M - 1.

borrow-across-zero diff-0-N=N: see above. With both errors already been
dealt with, we combine the respective perturbations to reproduce this error.

Summary. All error types except always-borrow-left require the deletion of
one or more subgoals, with a tidying-up phase for their input and output argu-
ments. For smaller-than-larger, the swapping of arguments was necessary. For
always-borrow-left, we shadowed the existing clauses for decrement/3 with
a new clause. While the top five errors can be reproduced by syntactic means,
the last three errors seem to require elements whose construction will be hard to
mechanise.
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1: function ReconstructErroneousProcedure(Program, Problem, Solution)
2: (Disagr, Cause) ← AlgorithmicDebugging(Program, Problem, Solution)
3: if Disagr = nil then
4: return Program
5: else
6: NewProgram ← Perturbation(Program, Disagr, Cause)
7: ReconstructErroneousProcedure(NewProgram, Problem, Solution)
8: end if
9: end function

10: function Perturbation(Program, Clause, Cause)
11: return chooseOneOf(Cause)
12: DeleteCallToClause(Program, Clause)
13: DeleteSubgoalsOfClause(Program, Clause)
14: SwapClauseArguments(Program, Clause)
15: ShadowClause(Program, Clause)
16: end function

Fig. 3. Pseudo-code: compute variant of Program to reproduce a learner’s Solution.

2.4 Existing Method

In [12], we have presented a method that interleaves algorithmic debugging
with program transformations for the automatic reconstruction of learners’ erro-
neous procedure, see Fig. 3. The function ReconstructErroneousProcedure/3
is recursively called until a program is obtained that reproduces learner behav-
iour, in which case there are no further disagreements. Note that multiple per-
turbations may be required to reproduce single bugs, and that multiple bugs are
tackled by iterative applications of algorithmic debugging and code perturbation.

The irreducible disagreement resulting from the algorithmic debugging phase
locates the code pieces where perturbations must take place; its cause determines
the kind of perturbation. The function Perturbation/3 can invoke various kinds
of transformations: the deletion of a call to the clause in question, or the deletion
of one of its subgoals, or the shadowing of the clause in question by a more spe-
cialized instance, or the swapping of the clause’ arguments. These perturbations
reflect the repair strategies learners use when encountering an impasse.

Our algorithm for clause call deletion, e.g., traverses a given program until it
identifies a clause whose body contains a call to the clause Clause in question;
once identified, it removes Clause from the body and replaces all occurrences of
its output argument by its input argument in the adjacent subgoals as well as
in the clause’s head, if present. Then, the modified program is returned.

There are many choice points as an action can materialise in many different
ways. Our original method uses Prolog’s built-in depth-first mechanism to blindly
search the space of program transformations. Our new method uses a heuristics
to make informed decisions during search.
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3 Heuristic Search over Program Transformations

The problem of automatically reconstructing a Prolog program to model a
learner’s incorrect reasoning can be cast as a heuristic search problem. The
initial state holds a Prolog program that solves arbitrary multi-column subtrac-
tion tasks in an expert manner. The goal state holds the program’s perturbated
variant whose execution reproduces the learner’s erroneous behaviour. For each
state s, a successor state s≥ can be obtained by the application of a single pertur-
bation operator opi. We seek a sequence of perturbation actions op1, op2, ...opn
to define a path between start and goal state, with minimal costs.

3.1 Heuristic Function

Best-first search depends on a heuristic function to evaluate a node’s distance
to the goal node. For this, we extend our variant of algorithmic debugging. A
heuristic score could be obtained, e.g., by counting the number of agreements
until the first irreducible disagreement is found; however, when errors occur early
in the problem solving process, this simple scoring performs poorly. Modifying
the algorithmic debugger to always traverse the entire program and count all
irreducible agreements and disagreements during traversal yields a better score.

Figure 4 depicts the algorithmic debugger in pseudo-code; it extends a simple
meta-interpreter. Before start, both counters are initialised, and the references
set for Goal, Problem, Solution to hold the top-level goal, the task to be solved
and the learner’s Solution to the task, respectively. There are four main cases.
The meta-interpreter encounters either (i) a conjunction of goals, (ii) a goal
that is a system predicate, (iii) a goal that does not need to be inspected, or
(iv) a goal that needs to be inspected. For (i), algorithmic debugging is called
recursively on each of the goals of the conjunctions; for (ii), the goal is called;
and for (iii), we obtain the goal’s body and ask the meta-interpreter to inspect
it. The interesting aspect is case (iv) for goals marked relevant. Here, the goal
is evaluated by both the expert program (using call/1) and the Oracle. The
Oracle retrieves the learner’s solution for the given Problem and reconstructs
from it the learner’s answer to the goal under discussion. Now, there are two
cases. If system and learner agree on the goal’s result, then the goal’s weight is
determined and added to the number of agreements; if they disagree, the goal
must be inspected further to identify the exact location of the disagreement.
If the goal is a leaf node, the irreducible disagreement has been identified and
the disagreement counter is incremented by one; otherwise, the goal’s body is
retrieved and subjected to algorithmic debugging. The heuristic score is obtained
by subtracting the number of agreements from the number of disagreements.

3.2 Best-First Search: Guiding Program Transformations with A∗

Typically, a search method maintains two lists of states: an open list of all states
still to be investigated for the goal property, and a closed list for all states that
were already checked for the goal property but where the check failed. Among
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1: NumberAgreements ← 0, NumberDisagreements ← 0
2: Problem ← current task to be solved, Solution ← learner input to task
3: Goal ← top-clause of routine, with input Problem and output Solution
4: procedure algorithmicDebugging(Goal)
5: if Goal is conjunction of goals (Goal1, Goal2) then
6: ← algorithmicDebugging(Goal1)
7: ← algorithmicDebugging(Goal2)
8: end if
9: if Goal is system predicate then

10: ← call(Goal)
11: end if
12: if Goal is not on the list of goals to be discussed with learners then
13: Body ← getClauseSubgoals(Goal)
14: ← algorithmicDebugging(Body)
15: end if
16: if Goal is on the list of goals to be discussed with learners then
17: SystemResult ← call(Goal)
18: OracleResult ← oracle(Goal)
19: if results agree on Goal then
20: Weight ← computeWeight(Goal) Γ compute # of skills in proof tree
21: NumberAgreements ← NumberAgreements + Weight
22: else
23: if Goal is leaf node (or marked as irreducible) then
24: NumberDisagreements ← NumberDisagreements + 1
25: else
26: Body ← getClauseSubgoals(Goal)
27: ← algorithmicDebugging(Body)
28: end if
29: end if
30: end if
31: end procedure
32: Score ← NumberDisagreements − NumberAgreements

Fig. 4. Pseudo-code: top-down traversal, keeping track of (dis-)agreements.

all the open states, greedy best-first search always selects the most promising
candidate, i.e., the candidate that is most likely the closest to a given goal state.
Our approach also takes into account the cost of program transformations. With
the heuristic function defined as f(n) = g(n) + h(n), we thus implement the
A∅-algorithm. The cost function g(n) returns the cost of producing state n. The
function h(n) estimates the distance between the program in state n and the
goal state; it is described as Score in Fig. 4.

Representation. Each state in the search tree is represented by the term
(Algorithm, IrreducibleDisagreement, Path), encoding a reified version of
a Prolog program, the first irreducible agreement between program and learner
behavior, and the path of prior perturbation actions to reach the current state.
Each state n is also associated with a numerical value f(n) that quantifies its
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production cost as well as the Algorithm’s distance to the algorithm of the goal
state. A successor state of a given state results from applying a perturbation
action. The action obtains a Prolog program, performs some sort of mutation,
and returns a modified program. – We discuss our approach by example.

Initialisation. The start node holds the expert program (see Fig. 1) that pro-
duces the correct solution. Sought is a mutated variant of the expert program to
produce the learner’s erroneous solution, here the error smaller-from-larger:

Best-first search starts with initialising a heap data structure. For this, the
start node’s distance to the goal node is estimated, using the algorithm given in
Fig. 4. There is no single agreement between expert program solving behaviour
and learner behaviour, i.e., no single subtraction cell has been filled out the same
way. There are six disagreements, yielding a heuristic score of 6 − 0 = 6.

To inform the generation of the node’s children, the first of the six irreducible
disagreements – add ten to minuend(3, 1, 1) – (1 instead of 11) is attached
to the node’s second component. The third component is initialised with the
empty path [] (cost 0). The node and its estimate is then added to the empty
heap.

Checking for Goal State. A state is a goal state when its associated program
passes algorithmic debugging with zero disagreements. In this case, best-first
search terminates with the goal state, returning the node’s algorithm and its
path, i.e., a list of actions that were applied to reach the goal state. Here, the
initial node, with a non-zero number of disagreements is not the goal node.

Generation of Successor Nodes. If a given state is not the goal state, the state’s
successors are computed. Given the state’s algorithm and the first irreducible dis-
agreement that indicates the location of the “error”, Prolog is asked to findall
applicable perturbation actions, see Fig. 3. For the initial state, we obtain:

n1 DeleteCallToClause/2: deletion of the call to add ten to minuend/3 in the
first program clause process column/3 (line 15).

n2 ShadowClause/2: addition of the irreducible disagreement (learner’s view)
add ten to minuend(3, 1, 1) :- irreducible. to the program.

n3 DeleteSubgoalsOfClause/2: deletion of subgoals from the definition of
the predicate add ten to minuend/3. As the goal irreducible/0 cannot be
deleted as it is needed by the Oracle, the only permissible action is to delete
the subgoal M10 is M + 10, and to replace M10 by M in the clause’ header.

To add a successor node to the heap, the existing path is extended with the
respective action taken. Also, for each node’s algorithm, its first irreducible dis-
agreement with the learner must be identified, and the distance to the goal node
must be determined. For all successor nodes, we get the irreducible disagreement
decrement(2,[(4,1,S1), (0,9,S2)],[(3,1,S1), (9,9,S2)]).
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Fig. 5. Best-first search over program transformations: first expansion.

Now, consider the nodes’ (dis-) agreement scores. Each of the nodes has five
disagreements, one less than in the parent node; the second and third child now
also feature one agreement. In node n2, there is an agreement with the new
clause add ten to minuend/3 added; in node n3, there is an agreement with the
perturbated clause add ten to minuend/3.

Action Cost. Some program transformations are better than others. Consider
the ShadowClause action, yielding mutations that are specific to a given input/
output pair. The resulting program will, thus, reproduce the learner’s error only
for the given subtraction task, not for other input. The action’s lack of generality
is acknowledged by giving it a high cost, namely 5. Hence, the action will only
be used when more general and less costly actions are not applicable.

The action DeleteSubgoalsOfClause can delete more than a single subgoal
from the predicate indicated by the disagreement. This adds a notion of focus
to the perturbation and mirrors the fact that learners often address an impasse
with skipping one or more steps of the skill in question. Its cost is defined by
the number of subgoals deleted; a penalty is added, however, when the resulting
body is left with the single subgoal irreducible. The mutations performed by
DeleteCallToClause and SwapClauseArguments have a cost of 1.

Score and Continued Search. Figure 5 depicts the scores obtained. Best-first
search selects the child with the lowest valuation, n1. Its irreducible disagree-
ment on the decrement/3 operation in column 2 can be addressed by eight
different repairs: the deletion of the call to decrement/3 in the first clause
of process column/3 (line 17), the addition of the disagreement clause (the
learner’s view) to the program, and the removal of one or more subgoals in
any of the two clause definitions for decrement/3 (6 possible repairs). It shows
that the deletion of line 17 yields the algorithm with the lowest overall esti-
mate; the algorithm’s irreducible disagreement at take difference(3,1,9,8)
(8 vs. −8) lets best-first search determine the final perturbation action, which is
SwapClauseArguments/2 to swap the arguments of take difference/4 in the
first clause of process column/3.

3.3 Evaluation

We have tested our new approach against the eight most frequent bugs of Van-
Lehn’s study (Fig. 2). For this, we have implemented the following three search
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Table 1. Evaluation: blind-search vs. cost-based search vs. A∗

Error Blind Cost-based A∗

smaller-from-larger 33.882K-N 2.385K-Y 659K-Y
borrow-no-decrement 425K-N 425K-Y 425K-Y
stops-borrow-at-zero 406K-N 640K-N 407K-Y
borrow-across-zero 444K-N 1.126K-Y 446K-Y
borrow-from-zero 457K-N 510K-Y 457K-Y
stops-borrow-at-zero. diff0-N=N 5.054K-N 108.832K-C 2.786K-C
always-borrow-left 111K-N 2.831K-C 111K-C
borrow-across-zero. diff0-N=N 5.053K-N 203.125K-C 1.874K-C

methods: blind (depth-first) search where each node n is associated with the
value f(n) = 1, cost-based search where each node is associated with its con-
struction cost f(n) = g(n), and A∅-search where each node is associated with its
construction cost and its estimated distance to the goal node: f(n) = g(n)+h(n).

Table 1 compares the three search methods using the two metrics performance
and quality of solution. Performance is measured in terms of inferences required
to obtain the first goal node (as computed by SWI-Prolog’s time/1 predicate).
The quality of solution is measured using the perturbations described in Sect. 2.3
as gold standard. Inference numbers are either annotated with “Y” (the gold
standard has been reproduced automatically), “C” (the reproduction is close to
the gold standard), and “N” (no reproduction).

All three search methods have access to the same arsenal of actions, which
includes the action ShadowClause. This perturbation acts as a fallback mecha-
nism and ensures that all search terminates with a program mutation whose exe-
cution reproduces the learner’s erroneous answer to a given subtraction task. If
a ShadowClause action has been applied, the resulting mutation is task-specific;
it usually fails to reproduce a learner’s consistent erroneous behaviour across
other tasks. The explanatory power of the resulting mutation is rather limited.

In blind search, all perturbation actions have equal cost. Therefore, blind
search often yields programs that result from applying ShadowClause perturba-
tions. As Table 1 shows, blind search often terminates with less inferences than
the other two methods, but at the cost of low-quality solutions. None of the
typical errors were reproduced faithfully.

Cost-based search and A∅-search offer a vast improvement to blind-search.
Here, ShadowClause transformations are only chosen when no other transforma-
tions are available. While cost-based search reproduces four of the top-five errors,
A∅ manages to get all five reproductions right. For stops-borrow-at-zero, cost-
based search constructs a buggy variant of the expert program by deleting only a
single subgoal in the first definition of decrement/3 (line 35); A∅-search performs
three deletions in this clause, effectively rendering it into a null operation. While
both variants reproduce the learner error, their dynamics is different: the first
program forces process column/3 to enter its second clause for processing the
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middle column, while A∅ forces process column/3 into its first clause. Clearly,
A∅ returns a more faithful reproduction of the given error.

In terms of inferences, A∅ has equal or better performance than the other
two methods, while returning equal or better solutions. The benefit of A∅ is
dramatic for smaller-from-larger, where blind search delivers a low-quality
path of length 5, and cost-based search and A∅ a high-quality path of length 3.

For the last three errors, we can only obtain solutions that are close to our
gold standard. This is due to the current lack of inductive capabilities in the test
framework. The perturbations to reproduce the error stops-borrow-at-zero,
diff0-N=N follow, by and large, the perturbations performed for stops
-borrow-at-zero. The presence of the error diff0-N=N, however, implies that no
decrement operation is necessary for the given task 401 − 199. Rather than just
making decrement/3 a null operation (as in stops-borrow-at-zero), the pertur-
bations for stops-borrow-at-zero, diff0-N=N delete the call to decrement/3 in
process column/3 altogether. In addition, two task-specific clauses are added for
thediff0-N=N case. Similar remarks apply toborrow across zero diff0 N eq N.
We find the performance gain in both of the cases significant.

4 Related Work

4.1 Program Testing

Our research has an interesting link to program testing and the design and
reliability of test data [4]. The theory of program testing rests on the competent
programmer hypothesis, which states that programmers “create programs that
are close to being correct” [4]. In other words, if a program is buggy, then it differs
from the correct program only by a combination of simple errors. Moreover,
programmers have a rough idea of the kind of error that are likely to occur, and
they have the ability to examine their programs in detail. Program testing is also
thought to be aided by the coupling effect: test cases that detect simple types of
faults are sensitive enough to detect more complex types of faults. The analogy
to VanLehn’s theory of impasses and repairs is striking. When learners encounter
an impasse in executing a correct procedure, they address the impasse by a local
repair, which often can be explained in terms of simple errors. Also, teachers
have a rough idea of the kind of errors learners are likely to make (and learners
might be aware of their repairs, too). Good teachers are able to reconstruct the
erroneous procedure a learner is executing, and learners are able to correct their
mistakes either themselves or under teacher supervision.

In program testing, the technique of mutation testing aims at identifying
deficiencies in test suites, and to increase the programmer’s confidence in the
tests’ fault detection power. A mutated variant p≥ of a program p is created
only to evaluate the test suite designed for p on p≥. If the behaviour between
p and p≥ on test t is different, then the mutant p≥ is said to be dead, and the
test suite “good enough” wrt. the mutation. If they are equal, then p and p≥

are equivalent, or the test set is not good enough. In this case, the programs’
equivalence must be examined by the programmer; if they are not equivalent,
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the test suite must be extended to cover the critical test. This relates to our
approach. When a given program is unable to reproduce a learner’s solution, we
create a set of perturbated variants, or mutants. If one of them reproduces the
learner’s solution, it passes the test, and we are done. Otherwise, we choose the
best mutant, given the heuristic function f , and continue with the perturbations.
The originality of our approach is due to our systematic search for mutations and
the use of f to measure the distance between mutants wrt. a given input/output.

In [6], Kilperäinen & Mannila describe a general method for producing com-
plete sets of test data for simple Prolog programs. Their method is based on
the competent programmer hypothesis, and works by mutating list processing
programs with a small class of suitable modifications. In [8], the authors give
a wide range of mutation operators for Prolog. At the clause level, they have
operators for the removal of subgoals, for changing the order of subgoals, and
for the insertion, removal, or permutation of cuts. At the operator level, they
propose mutations that change one arithmetic or relational operator by another
one. Moreover, they propose mutations that act on Prolog variables or constants,
e.g., the changing of one variable into another variable, an anonymous variable,
or a constant, or the changing of one constant into another one. All mutations are
syntactic, and aim at capturing typical programmer errors. So far, our approach
makes use of a subset of the aforementioned mutation operators. It is surprising
that the top-five bugs, accounting for nearly 50 % of all learner errors, can be
explained by learners skipping steps, i.e., mostly in terms of clause deletions.

4.2 Intelligent Tutoring Systems

In the intelligent tutoring community, most system designers follow a rule-based
approach to implement interactive exercises that help students learn. The ACT*
architecture is both theoretical embedding and practical implementation basis
for ITSs such as the LISP Tutor or the PAT algebra tutor, see the overview
[1]. In the ACT* approach, a set of production rules models the skills to be
acquired by the learner. To capture erroneous learner behaviour, expert rules are
complemented by buggy rules. The rule engine’s step-wise interpretation of the
rule system allows the tracing of learner actions in terms of the model. Learner
actions are on-path when reproducible by the execution of expert rules, or off-
path when explainable in terms of buggy production rules, or when no sequence
of rules can be found. Positive and remedial feedback, which is attached to rules,
can be generated to support learners’ problem solving.

Tutors built upon production rule systems have two major drawbacks: they
have high authoring costs, and they need to keep learners close to the correct
solution path to tame the combinatorial explosion of the (forward reasoning) rule
engine. We focus on the first aspect. While rule-based systems offer an adequate
formalism to represent the logic of a given domain using a set of rules, it seems
to be much harder to encode a domain’s control aspect. The hierarchical aspect
of the domain algorithm can only be modeled in terms of goal structures that
reside in the rule system’s working memory and which must be explicitly main-
tained and manipulated using the rules’ pre- and postconditions. The ACT*-like



248 C. Zinn

encoding of control creates rules that depend on each other, and hence, makes
the authoring and managing of large rule bases a costly undertaking.

In our approach, logic and control are encoded using Prolog, where goal struc-
tures are automatically taken care of. Moreover, our tracing of learner actions
does not require an a priori encoding of buggy rules; buggy program variants
are generated on the fly, using a clever variant of algorithmic debugging, which
compares expert with learner behaviour, and program transformation techniques
that are based on well-defined perturbation operators. In rule-based systems,
there is no representation that encodes the difference between an expert and a
buggy rule, and hence, little support for modeling learners’ repair strategies.

The Icarus cognitive architecture [7] addresses some of the drawbacks of rule-
based systems. Inspired by Prolog, it allows rules (skills) to explicitly mention
sub-skills (i.e., other rules) without making indirect references to them through
the working memory. Nevertheless, Icarus retains the overall flavour of a pro-
duction system by following a recognize-act-cycle. A more radical approach to
separate logic (domain-specific rules) from control (strategic guidance) is pro-
posed by Heeren et al. [5]. They separate: (i) information about the domain (e.g.,
the subtraction matrix and its place-value system), (ii) rules for manipulating
expressions in this domain (e.g., performing a complete borrow-payback opera-
tion, or taking the difference in a column), (iii) a strategy for solving the exercise
(e.g., performing subtraction from right to the left), and (iv) buggy knowledge
for modeling both incorrect expression manipulations and incorrect strategies. In
their approach, a strategy language is defined that has rules as smallest building
blocks, and which controls their combination using rule sequencing, rule choice,
and a recursion mechanism. Using the language, a strategy can be defined as a
context-free grammar. With the tracing of learner actions reduced to a parsing
problem, Heeren et al. define a strategy recognizer that is able to compute sev-
eral types of feedback to support learners when incrementally solving interactive
exercises. In this approach, the strategy recognizer should be capable of coping
with learner errors that result from strategic (skipping the step) repairs.

5 Conclusion and Future Work

In this paper, we propose a method to automatically transform an initial Prolog
program into another program capable of producing a given input/output behav-
iour. The method depends on a heuristic function that estimates the distance
between programs. An experimental evaluation demonstrated the benefits of
using heuristic search when compared to the blind (depth-first) search we have
used in [12]. It shows that the test-debug-repair cycle can be mechanised in
the tutoring context. Here, there is always a reference model to encode ideal
behaviour; moreover, many learner errors can be captured and reproduced by a
combination of simple, syntactically-driven program transformation actions.

In the near future, we would like to include more mutation operators (see [8]),
investigate their interaction with our existing ones, fine-tune the cost function,
and study whether erroneous procedures can be obtained that better reflect learn-
ers’ incorrect reasoning. Ideally, the new operators can be used to “un-employ”
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the costly ShadowClause operator, whose primary purpose is to serve as a fall-
back action when all other actions fail. Moreover, we are currently working on a
web-based interface for multi-column subtraction tasks that we want to give to
learners, and where we plan an evaluation in terms of pedagogical benefits.

In the long term, we would like to take on another domain of instruction to
underline the generality of our approach. The domain of learning programming
in Prolog is particularly interesting. In the subtraction domain discussed in this
paper, we are systematically modifying an expert program into a buggy program
to model a learner’s erroneous behaviour. In the “learning Prolog domain”, we
can re-use our program distance measure in a more traditional sense. When
learners do specify an executable Prolog program, we compare its behaviour
with the prescribed expert program, identify their (dis-)agreement score, and
then repair the learner’s program, step by step, to become the expert program.
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