
Chapter 7
Monotone Operators Approached via Convex
Analysis

7.1 Historical Overview and Motivation

The monotone operators started being intensively investigated during the 1960’s
by authors like Browder, Brézis or Minty, and it did not take much time until
their connections with convex analysis were noticed by Rockafellar, Gossez and
others. The fact that the (convex) subdifferential of a proper, convex and lower
semicontinuous function is a maximally monotone operator was one of the reasons
for connecting these at a first sight maybe unrelated research fields. One of the
most important challenges of the next decades was to identify a function that could
be associated to a monotone operator in order to help investigating it by means
of convex analysis, in addition to the previously used methods belonging to fixed
point theory and equilibrium problems. Such functions were proposed by Coodey,
Simons or Krauss, but the real breakthrough was brought by Fitzpatrick’s function,
introduced in [86], neglected for more than a decade and independently rediscovered
in the early 2000’s by Martínez-Legaz and Théra, and Burachik and Svaiter,
respectively. Shortly afterwards, the Fitzpatrick family of representative functions
was introduced, offering new tools for approaching the monotone operators via
convex analysis. Since then, the number of papers where different aspects of
monotone operators were investigated, especially by means of convex analysis, has
increased in a spectacular manner, due to authors like Bauschke, Borwein, Boţ,
Marques Alves, Martínez-Legaz, Penot, Simons, Svaiter, Voisei, Yao, Zălinescu and
some of the already mentioned ones, besides the new results many older statements
being rediscovered or improved in this way.

Perhaps the most famous problem regarding monotone operators concerns the
maximality of the sum of two maximally monotone operators. Different hypotheses
that guarantee the mentioned outcome were successfully proposed for the case the
space on which the mentioned monotone operators are defined on is reflexive, but
it is still unknown whether they work or not if the space is a general Banach one.
Other interesting problems involving monotone operators regard their surjectivity
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properties, the properties of their domains and ranges, the relations between
different classes of them, their extensions etc. The investigations on monotone
operators have led to advances back in convex analysis, too, let us mention here
only the notions of Fenchel totally unstable functions (cf. [21, 190]) or sets that are
closed regarding others (cf. [42, 45]). Moreover, the algorithms for finding zeros
of (combinations of) monotone operators were successfully employed for solving
convex optimization problems, too.

The sum of the ranges of two monotone operators defined on Banach spaces is
usually larger than the range of their sum. Under some additional conditions these
sets are almost equal, i.e. their interiors and closures coincide. Brézis and Haraux
brought the first contributions in this directions in [60] and since then determining
when the sum of the ranges of two monotone operators is almost equal in the
sense mentioned above to the range of their sum is known as the Brézis-Haraux
approximation problem, being treated in works like [9, 70, 72, 73, 171, 176, 190].
There is a rich literature on the applications of the Brézis-Haraux approximation,
let us mention here only the ones for variational inequality problems, Hammerstein
equations and Neumann problem (cf. [60]), complementarity problems (cf. [70]),
generalized equations of maximally monotone type (cf. [171]) and Bregman and
projection algorithms. Our contributions to this topic, summarized in Sect. 7.3 and
originally published in [35, 40, 42, 44], concern Brézis-Haraux type approximation
statements for the sum of a monotone operator with the composition with a linear
mapping of another one, where the involved spaces are general Banach ones. When
particularizing the involved operators to subdifferentials of proper, convex and
lower semicontinuous functions, some statements from [70, 176] are corrected and
extended, respectively.

Problems arising from fields like inverse problems, Fenchel-Rockafellar and
Singer-Toland duality schemes, Clarke-Ekeland least action principle (cf. [5]),
variational inequalities (cf. [19]), Schrödinger equations and others (cf. [4]) can be
modelled to lead to the surjectivity or the identification of zeros of a combination
of monotone operators. These, together with the known surjectivity properties of
a monotone operator, let us mention just the classical ones due to Minty and
Rockafellar (see, for instance, [190]), respectively, motivated the investigations
regarding the ranges of combinations of monotone operators whose outcomes were
published in recent works such as [162, 163, 177, 190, 222]. In Sect. 7.4 we present,
following our paper [30], weak closedness type conditions involving representative
functions that equivalently characterize or guarantee the surjectivity of a sum of a
maximally monotone operator with a translation of another one. Particularizing then
these results for the zeros of the mentioned sum and for the case when the involved
monotone operators are subdifferentials, we improved several recent statements
from the literature.

Similarities and connections between monotone operators and bifunctions were
noticed in the seminal paper [12], followed by works like [116, 135, 160], where
the latter were investigated mostly by means of equilibrium problems and different
maximality or boundedness results for them were provided. On the other hand, we
proposed in [33] a way to deal with the maximal monotonicity of the bifunctions
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by means of representative functions and this path was followed in very recent
papers like [2, 136]. In Sect. 7.5 we attach to a bifunction two functions which are
then used for approaching the maximal monotonicity of the bifunction by means
of convex analysis. We succeeded to extend in this way to general Banach spaces
some results known in the literature only for reflexive ones. Moreover, we provided
positive answers to some recently posed conjectures from [135, 136].

7.2 Preliminaries on Monotone Operators

Before proceeding with our investigations on monotone operators, we present some
notions and preliminary results used later in the exposition, following [19,21,65,86,
104, 161, 172, 173, 190, 221] and some of the references therein.

7.2.1 Monotone Operators

Within this chapter, unless otherwise mentioned, the involved spaces will be
considered to be Banach spaces, equipped with norms usually denoted by k � k,
while the norm on its dual space is denoted by k � k�. Let X and Y be nontrivial real
Banach spaces. We present first the definition of a monotone operator, followed by
ones of different properties the latter can have.

Definition 7.1. A multifunction T W X � X� is called a monotone operator
provided that for any x; y 2 X one has hy� � x�; y � xi � 0 whenever x� 2 T .x/
and y� 2 T .y/.

Having a monotone operator T W X � X�, its domain is the set D.T / D
fx 2 X W T .x/ ¤ ;g, its range is R.T / D [fT .x/ W x 2 Xg, while its graph
is G.T / D f.x; x�/ W x 2 X; x� 2 T .x/g. One can also consider the monotone
operator �T W X � X� whose graph isG.�T / D f.x; x�/ 2 X�X� W .x;�x�/ 2
G.T /g.

Definition 7.2. The monotone operator T W X � X� is called maximal when its
graph is not properly included in the graph of any other monotone operator T 0 W
X � X�.

The next class of monotone operators was introduced in [104] and afterwards it
was shown that it coincides in the maximality case with some other ones considered
in various circumstances in the literature.

Definition 7.3. A monotone operator T W X � X� is called of type .D/ provided
that each element of its monotone closure operator T W X�� � X�,

G.T / D ˚
.x��; x�/ 2 X�� �X� W hx�� � y; x� � y�i � 0 8.y; y�/ 2 G.T /�
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is the limit in the weak�� strong topology of X�� � X� of a bounded net
f.xi ; x�

i /ig � G.T /.

Remark 7.1. The monotone closure is not the only closure of a monotone operator
considered in the literature. Another one can be found, for instance, in [62].

Remark 7.2. In reflexive Banach spaces every maximally monotone operator is of
type .D/ and coincides with its closure operator. On the other hand, not every
monotone operator of type .D/ is maximal, as the example presented in [104,
Remarques 2, p.376] shows. Note also that according to [173], clR.T / D clR.T /
for any monotone operator T W X � X�.

Another class of monotone operators we consider within this work is the
following one, originally introduced in [60], but mentioned in the literature under
different names like star-monotone operators (see [171]), 3�-monotone operators
(cf. [70, 176, 217]) and .BH/-operators (in [72, 73]).

Definition 7.4. A monotone operator T W X � X� is said to be rectangular
if for all x� 2 R.T / and x 2 D.T / there is some ˇ.x�; x/ 2 R such that
inf.y;y�/2G.T /hx� � y�; x � yi � ˇ.x�; x/.

Example 7.1. The subdifferential of a proper, convex and lower semicontinuous
function defined on X is a classical example for all these classes of monotone
operators. In [104, Théoréme 3.1] it was proven that it is a monotone operator of
type .D/, according to [217] (see also [190]) it is rectangular, while its maximal
monotonicity was proven for the first time in [179]. However, one can find in the
literature (see, for instance, [9, 10, 104, 190]) also examples of monotone operators
belonging to the mentioned classes that are not subdifferentials. Moreover, in [10,
Example 5.4] one can find a maximally monotone operator that is not rectangular,
while in [10, Example 3.3] a rectangular monotone operator that is not maximal is
mentioned.

Remark 7.3. One of the most important maximally monotone operators is the
duality map

J W X � X�;

J .x/ D @
�1
2

k � k2
�
.x/ D

n
x� 2 X� W kxk2 D kx�k2� D hx�; xi

o
; x 2 X;

that can be used, for instance, as noted below, for formulating a maximality
criterium for a monotone operator.

The following statements from [19] and [176], respectively, will be used later in
our investigations.

Lemma 7.1. When X is a reflexive Banach space, a monotone operator T W X �
X� is maximal if and only if the mapping T .x C �/ C J .�/ is surjective for all
x 2 X .
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Lemma 7.2. Given the monotone operator of type .D/ T W X � X� and the
nonempty subset E � X� such that for any x� 2 E there is some x 2 X fulfilling
inf.y;y�/2G.T /hx� � y�; x � yi > �1, one has E � cl.R.T // and int.E/ � R.T /.

7.2.2 Representative Functions

In order to deal with monotone operators by means of convex analysis, different
functions were attached to them in the literature. The one that has facilitated the
most important progresses in this direction is the one introduced by Fitzpatrick in
[86].

Definition 7.5. The Fitzpatrick function attached to the monotone operator T W
X � X� is

'T W X �X� ! R; 'T .x; x
�/ D sup

˚hy�; xi C hx�; yi � hy�; yi W y� 2 Ty�
:

The Fitzpatrick function attached to any monotone operator is convex and weak-
weak� lower semicontinuous. Moreover, using it one can show that a monotone
operator T W X � X� is rectangular if and only if D.T / � R.T / � dom'T .
Note also that in [9] one can find interesting connections between rectangular
monotone operators and almost convex sets (that are called there nearly convex).
The function  T WD co.c C ıG.T //, where the closure is considered in the strong
topology, is very well connected to the Fitzpatrick function. On X � X� we have
 �>
T D 'T and, when X is a reflexive Banach space, one also has '�>

T D  T .
If T W X � X� is maximally monotone, then 'T � c and G.T / D f.x; x�/ 2
X � X� W 'T .x; x�/ D hx�; xig. These properties of the Fitzpatrick function
motivate attaching to monotone operators other functions, as follows.

Definition 7.6. Given the monotone operator T W X � X�, a convex and strong-
strong lower semicontinuous function hT W X � X� ! R fulfilling hT � c and
G.T / � f.x; x�/ 2 X � X� W hT .x; x�/ D c.x; x�/g is said to be a representative
function of T . The set FT of all the representative functions of the monotone
operator T is said to be the Fitzpatrick family of T .

Note that if G.T / ¤ ; (in particular if T is maximally monotone), then every
representative function of T is proper. It follows immediately that 'T ;  T 2 FT .
If f W X ! R is a proper, convex and lower semicontinuous function, then the
function .x; x�/ 7! f .x/ C f �.x�/ is a representative function of the maximally
monotone operator @f W X � X� and we call it the Fenchel representative function
(cf. [30]). If f is moreover sublinear, the only representative function associated to
@f is the Fenchel one, which coincides in this case with the Fitzpatrick function of
@f . Some properties of maximally monotone operators and representative functions
attached to them that we need further follow (cf. [65]).
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Lemma 7.3. Let T W X � X� be a maximally monotone operator and hT 2 FT .
Then

(i) 'T .x; x�/ � hT .x; x
�/ �  T .x; x

�/ for all .x; x�/ 2 X �X�;
(ii) The restriction of h�>

T to X �X� is also a representative function of T ;
(iii)

˚
.x; x�/ 2 X � X� W hT .x; x�/ D c.x; x�/

� D ˚
.x; x�/ 2 X � X� W

h�>
T .x; x�/ D c.x; x�/

� D G.T /.

Given the monotone operator T W X � X� with G.T / ¤ ; and hT 2 FT ,
denote by OhT W X � X� ! R the function defined as OhT .x; x�/ D hT .x;�x�/,
x 2 X , x� 2 X�. Note that OfT is proper, convex and strong-strong lower
semicontinuous, too and OhT .x; x�/ � �hx�; xi and Oh�

T .x
�; x/ D h�

T .x
�;�x/ for

all x 2 X and all x� 2 X�.
Let us now give two maximality criteria for monotone operators involving convex

functions, the first one, following [65, Theorem 3.1] and [172, Proposition 2.1],
in reflexive spaces, the other one originally given in [161, Theorem 3.1] with the
hypothesis 0 2 sqri

�
PrX .dom h/

�
and generalized by translation arguments as

given below in [33].

Lemma 7.4. Let X be reflexive. If h W X � X� ! R is a proper, convex and
lower semicontinuous function with h � c, then the monotone operator f.x; x�/ 2
X �X� W h.x; x�/ D c.x; x�/g is maximal if and only if h�> � c.

Lemma 7.5. Let h W X � X� ! R be a proper and convex function with h � c

and h�> � c on X � X�. If sqri PrX.dom h/ ¤ ;, then the operator f.x; x�/ 2
X �X� W h�.x�; x/ D c.x; x�/g is maximally monotone.

7.3 Brézis-Haraux Type Approximations

We give in this section some results concerning the so-called Brézis-Haraux type
approximation of the range of the sum of a monotone operator with a monotone
operator composed with a linear continuous mapping, following our papers [35, 40,
42, 44]. These results are then particularized by taking for the monotone operators
the subdifferentials of some proper, convex and lower semicontinuous functions.

7.3.1 Brézis-Haraux Type Approximations for Sums
of Rectangular Monotone Operators

Consider two monotone operators S W X � X� and T W Y � Y � and a linear
continuous mapping A W X ! Y . It is known that S C A� ı T ı A is a monotone
operator and under certain conditions it is maximally monotone (see [42, 44, 171,
172], for instance). The construction S C A� ı T ı A encompasses at least two
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important special cases. Taking S to be the zero operator defined as S.x/ D f0g for
all x 2 X , the results we give provide their counterparts for the composition of a
monotone operator with a linear continuous mapping, while when X D Y and A is
the identity mapping of X one obtains corresponding results regarding the sum of
two monotone operators. We show first that S C A� ı T ı A is rectangular when S
and T are rectangular monotone operators.

Theorem 7.1. If the monotone operators S and T are rectangular, then S C A� ı
T ı A is rectangular, too.

Proof. If D.S C A� ı T ı A/ D ;, the conclusion arises trivially. Otherwise take
w� 2 R.S C A� ı T ı A/, i.e. there are some w 2 X and x�; z� 2 X� such that
x� 2 S.w/, z� 2 A� ı T ı A.w/ and w� D x� C z�. Let x 2 D.S C A� ı T ı A/.
We have

inf
.y;y�/2G.SCA�ıT ıA/hw

� �y�; x�yi D inf
.y;u�/2G.S/;

.y;v�/2G.A�ıT ıA/;
u�Cv�Dy�

hx� C z� � .u� C v�/; x�yi

� inf
.y;u�/2G.S/hx

� � u�; x � yi C inf
.y;v�/2G.A�ıT ıA/hz

� � v�; x � yi: (7.3.1)

As z� 2 A� ı T ıA.w/, there is some r� 2 T ıA.w/ such that z� D A�r�. Clearly,
r� 2 R.T /. Denote u D Ax 2 D.T /. When v� 2 A� ı T ı A.y/ there is some
s� 2 T ı A.y/ such that v� D A�s�. We have

inf
.y;v�/2G.A�ıT ıA/hz

� � v�; x � yi D inf
.y;s�/2G.T ıA/hA

�r� � A�s�; x � yi

D inf
.y;s�/2G.T ıA/hr

� � s�; A.x � y/i � inf
.v;s�/2G.T /hr

� � s�; u � vi � ˇ.r�; u/ 2 R;

since T is rectangular. As S is also rectangular, (7.3.1) yields that S C A� ı T ı A
is rectangular, too. ut
Remark 7.4. TakingX D Y andA to be the identity mapping ofX , one rediscovers
as a special case of Theorem 7.1 the result given in [9, Lemma 11], i.e. that the sum
of two rectangular monotone operators is rectangular, too.

The next statement provides a Brézis-Haraux type approximation of the range of
S C A� ı T ı A through the ranges of the monotone operators S and T .

Theorem 7.2. If the monotone operators S and T are rectangular and S C A� ı
T ı A is of type .D/, one has

(i) clR.S C A� ı T ı A/ D cl.R.S/C A�.R.T /// D clR.S C A� ı T ı A/;
(ii) intR.S C A� ı T ı A/ � int.R.S/C A�.R.T /// � intR.S C A� ı T ı A/.
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Proof. As the monotone operator S C A� ı T ı A is of type .D/ its domain is
nonempty, thus D.S/ \ D.A� ı T ı A/ ¤ ;. By Theorem 7.1 we obtain that it is
rectangular, too.

Take x� 2 R.S C A� ı T ı A/. Then there exist x 2 D.S C A� ı T ı A/
and y�; z� 2 X� such that x� D y� C z�, y� 2 S.x/ and z� 2 A� ı T ı A.x/.
Obviously z� 2 A�.R.T //, thus x� D y� C z� 2 R.S/CA�.R.T //. Consequently
R.SCA� ıT ıA/ � R.S/CA�.R.T // and the same inclusion exists also between
the closures, respectively the interiors, of these sets.

Let now x� 2 R.S/CA�.R.T //, thus there are some x�
1 2 R.S/, x�

2 2 R.A� ı
T ı A/ and z� 2 R.T / such that x� D x�

1 C x�
2 and x�

2 D A�z�. Taking an
x 2 D.S C A� ı T ı A/ there holds

inf
.y;y�/2G.SCA�ıT ıA/hx

� �y�; x�yi D inf
.y;u�/2G.S/;

.y;v�/2G.A�ıT ıA/;
u�Cv�Dy�

hx�
1 Cx�

2 � .u� Cv�/; x�yi

� inf
.y;u�/2G.S/hx

�
1 � u�; x � yi C inf

.y;v�/2G.A�ıT ıA/hx
�
2 � v�; x � yi > �1;

as both S and A� ı T ı A are rectangular. Applying Lemma 7.2 for E D R.S/C
A�.R.T // and SCA�ıT ıA, we obtain thatR.S/CA�.R.T // � clR.SCA�ıT ı
A/ and int.R.S/ C A�.R.T /// � R.S C A� ı T ı A/. Taking into consideration
what we have already proven above, .i/ and .ii/ follow. ut
Remark 7.5. TakingX D Y andA to be the identity mapping ofX , one rediscovers
as a special case of Theorem 7.2 the result given in [70, Theorem 3.1] and [176,
Theorem 1].

When X is moreover reflexive the inequalities in Theorem 7.2.ii/ turn into
equalities and we get a more accurate Brézis-Haraux approximation of the range
of S C A� ı T ı A.

Theorem 7.3. If the Banach spaceX is moreover reflexive, the monotone operators
S and T are rectangular and S C A� ı T ı A is maximally monotone, one has

(i) cl.R.S/C A�.R.T /// D clR.S C A� ı T ı A/;
(ii) intR.S C A� ı T ı A/ D int.R.S/C A�.R.T ///.

Proof. As X is reflexive, the maximally monotone operator S C A� ı T ı A is of
type .D/, too, and S CA� ı T ıA D S C A� ı T ı A. The conclusion follows via
Theorem 7.2. ut
Remark 7.6. TakingX D Y andA to be the identity mapping ofX , one rediscovers
as a special case of Theorem 7.3 the result given in [70, Corollary 3.1] and [176,
Corollary 1].
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7.3.2 Brézis-Haraux Type Approximations for Sums
of Subdifferentials

Now we turn our attention to the most famous example for many classes of
monotone operators, namely the subdifferential of a proper, convex and lower semi-
continuous function. Let the proper, convex and lower semicontinuous functions f W
X ! R and g W Y ! R, and the linear continuous mapping A W X ! Y fulfilling
the feasibility condition A.dom f /\ domg ¤ ;. Like in Sects. 2.2.3, 2.3.3, and the
other places where we dealt with unconstrained optimization problems, let us note
that valuable special cases of the results presented in the following can be obtained
by taking X D Y and A to be the identity mapping of X and, respectively, when f
is the zero function. Before giving a Brézis-Haraux type statement involving ranges
of subdifferentials, we introduce the following regularity condition inspired from
.RCU

4 /

.RCMBH/
ˇ
ˇ epi f � C .A� � idR/.epig�/ is closed in the topology !.X�; X/ � R:

Theorem 7.4. If .RCMBH/ is valid, then one has

(i) cl.R.@f /C A�.R.@g/// D clR.@f C A� ı @g ı A/ D clR.@.f C g ı A//;
(ii) intR.@.f Cg ıA// D intR.@f CA� ı@g ıA/ � int.R.@f /CA�.R.@g/// �

int D.@.f ��A�g�// D intD.@.f C g ı A/�/.
Proof. As f , g and f C g ı A are proper, convex and lower semicontinuous, by
Example 7.1 we know that @.f C g ıA/ is a monotone operator of type .D/, while
@f and @g are rectangular.

By Corollary 2.14 we know that .RCMBH/ implies @f C A� ı @g ı A D @.f C
g ı A/, therefore @f C A� ı @g ı A is maximally monotone operator of type .D/,
too.

Applying Theorem 7.2 for S D @f and T D @g we get

cl.R.@f /C A�.R.@g/// D clR.@f C A� ı @g ı A/ D clR.@.f C g ı A//;

i.e. .i/, and

intR.@f CA� ı @g ıA/ � int.R.@f /CA�.R.@f /// � intR.@f C A� ı @g ı A/;

which becomes

intR.@.f C g ı A// � int.R.@f /C A�.R.@g/// � intR.@.f C g ı A//:
(7.3.2)

From Sect. 2.2.3 one can deduce that under .RCMBH/ it holds .f C g ı A/� D
f ��A�g�, by [104, Théoréme 3.1] we get R.@.f C g ı A// D D.@.f C g ı
A/�/ D D.@.f ��A�g�//. Combining this with (7.3.2) one gets .ii/. ut
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Remark 7.7. Similar results to the ones in Theorem 7.4 have been obtained for the
case when X D Y and A is the identity mapping of X in [176, Corollary 2] and
[70, Corollary 3.2], under the hypothesis that

S
t>0 t.dom f � domg/ is a closed

linear subspace of X . However, some of the results obtained there are not true in
general Banach spaces. In [176] it is claimed that the mentioned hypotheses yield
int.R.@f /C R.@g// D intD.@.f ��g�//, while according to [70] they imply that
int.R.@f / C R.@g// D intD.@.f C g/�/. However, as the situation depicted in
Example 7.2, which is due to Fitzpatrick and was brought into our attention by [173,
Example 2.21], shows, these conclusions can be false when working in nonreflexive
Banach spaces.

Example 7.2. Take X D c0, the space of the real sequences converging to 0, which
is a nonreflexive Banach space with the usual norm kxk D supn�1 jxnj for x D
.xn/n�1 2 c0, and let f; g W c0 ! R, with f taking everywhere the value 0 and
g.x/ D kxkCkx�e1k, for all x 2 c0, where e1 D .1; 0; 0; : : :/ 2 c0. Both functions
f and g are proper, convex and continuous and the regularity condition required in
[70, 176] is fulfilled. Moreover for any x 2 c0 one has @g.x/ D @k � k.x/ C @k �
�e1k.x/. The dual space of c0 is `1, which consists of all the sequences y D .yn/n�1
such that kyk� D PC1

nD1 jynj < C1. Denote by F the set of sequences in `1 having
finitely many nonzero entries and by B� the closed unit ball in `1.

It is known that k � k�.y/ D 0 if kyk� � 1 and k � k�.y/ D C1 otherwise,
which leads to @k � k.x/ D B� if x D 0, @k � k.e1/ D fe1g, @k � k.�e1/ D f�e1g
and @k � k.x/ D fy 2 `1 W kyk� � 1, hy; xi D kxkg � F , otherwise, where we
note that e1 2 `1, too. Moreover, we have @k � �e1k.x/ D @k � k.x � e1/ for any
x 2 c0. Further one gets @g.0/ D �e1 CB� and @g.e1/ D e1 CB�. Otherwise, i.e.
if x 2 c0nf0; e1g, @g.x/ � F . Therefore

R.@g/ � .�e1 C B�/ [ .e1 C B�/ [ F: (7.3.3)

Since intR.@g/ includes intB� ˙ e1, assuming it convex yields 0 D 1=2.e1 � e1/ 2
intR.@g/. Hence there exists a neighborhood of 0, say U , completely included in
R.@g/. Take some � > 0 sufficiently small such that

�.�/ D
�
0;
�

22
;
�

23
;
�

24
; : : :

�
2 U:

Thus �.�/ 2 R.@g/. One can check that k�.�/˙ e1k� D 1C �
2
> 1, so, taking into

consideration (7.3.3), �.�/ must be in F . It is clear that this does not happen, thus
we reached a contradiction. Therefore intR.@g/ is not convex, unlike intR.@g/,
whose convexity follows via [189, Theorem 20].

On the other hand, the relations claimed in [70, 176] to be valid and mentioned
in Remark 7.7 become both now intR.@g/ D intD.@g�/, which is equivalent, via
[104, Théoréme 3.1], to intR.@g/ D intR.@g/. But, as we have seen above, this
does not happen for f and g as selected above, thus the allegations concerning the
interior of the sum of the ranges of two subdifferentials in [70, 176] are false.
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In the light of Remark 7.7 and Example 7.2, let us give below the consequence
of Theorem 7.4 for the case X D Y and A is the identity mapping of X which
corrects and generalizes, by asking the fulfillment of a weaker regularity condition,
[176, Corollary 2] and [70, Corollary 3.2].

Corollary 7.1. Let f and g be two proper, convex and lower semicontinuous
functions on the Banach space X with extended real values such that dom f \
domg ¤ ;. Assuming that

epi f � C epig�is closed in the product topology !.X�; X/ � R;

one has

(i) cl.R.@f /CR.@g// D clR.@f C @g/ D clR.@.f C g//;
(ii) intR.@f C @g/ D intR.@.f C g// � int.R.@f / C R.@g// �

intD.@.f ��g�// D intD.@..f C g/�//.

Remark 7.8. Considering moreover that the Banach space X is reflexive, Theo-
rem 7.3 yields that the inclusions in Corollary 7.1.ii/ turn into equalities.

7.3.3 Applications of the Brézis-Haraux Type Approximations

Besides the fields of applications of the Brézis-Haraux type approximations men-
tioned before (see, for instance, [60, 171]), we present below two concrete ways to
apply the results we provided within this section.

7.3.3.1 Existence of a Solution to an Optimization Problem

Let the proper, convex and lower semicontinuous functions f W X ! R and g W
Y ! R and the linear continuous mapping A W X ! Y such that A.dom f / \
domg ¤ ;.

Theorem 7.5. Assume that .RCMBH/ is satisfied and moreover that 0 2
int.R .@f /CA�.R.@g///. Then there exists a neighborhood V of 0 in X� such that
for all x� 2 V there exists an Nx 2 dom f \ A�1.domg/ for which

f . Nx/C g.A Nx/ � hx�; Nxi D min
x2X

	
f .x/C g.Ax/ � hx�; xi
:

Proof. By Theorem 7.4 we have int.R.@f /CA�.R.@g/// � intD.@.f ��A�g�//,
thus 0 2 intD.@.f ��A�g�//, i.e. there is a neighborhood V of 0 in X� such that
V � D.@.f ��A�g�// D D.@..f C g ı A/�//.

Let x� 2 V . The properties of the subdifferential yield that there is an Nx 2
dom f \A�1.domg/ such that .f C g ıA/�.x�/C .f C g ıA/��. Nx/ D hx�; Nxi.
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As f C g ı A is a proper, convex and lower semicontinuous function we have
.f C g ı A/�� D f C g ı A, hence the equality stated above becomes

f . Nx/Cg.A Nx/�hx�; Nxi D �.f CgıA/�.x�/ D � max
x2X fhx�; xi�f .x/�g.Ax/g;

yielding thus the conclusion. ut
Remark 7.9. Under the hypotheses of Theorem 7.5, .RCMBH/ is equivalent to

inf
x2X

	
f .x/Cg.Ax/� hx�; xi
 D max

y�2Y �

˚ �f �.x� �A�y�/�g�.y�/
� 8x� 2 X�:

Thus one may notice that the conclusion of the mentioned statement can be refined
in the sense that the outcome is something that may be called locally stable total
Fenchel duality, i.e. the situation where both the primal and the dual problem have
optimal solutions and their values coincide for small enough linear perturbations of
the objective function of the primal problem. Let us notice moreover that as 0 2 V ,
for x� D 0 we obtain also the Fenchel total duality statement, too.

7.3.3.2 Existence of a Solution to a Complementarity Problem

Consider now X to be a reflexive Banach space, let C � X be a closed convex cone
and S W X � X� a maximally monotone operator. In the following we will show
that Theorem 7.3 can guarantee under certain hypotheses the existence of a solution
to the complementarity problem (cf. [70])

.CP/

8
<

:

x 2 C; x� 2 C �;
hx�; xi D 0;

x� 2 S.x/:

But before we can prove the mentioned statement we have to mention a recent
result of ours, originally given in [42, 44]. Recall that the sum of two maximally
monotone operators is always a monotone operator that in general fails to be
maximal and the problem of finding hypotheses that guarantee its maximality has
been firstly solved in [180].

Lemma 7.6. Given two maximally monotone operators S; T W X � X�, if the
condition

.RCMM/
f.x� C y�; x; y; r/ W '�

S .x
�; x/C '�

T .y
�; y/ � rg is closed

regarding the subspace X� ��X � R;

is fulfilled then S C T is a maximally monotone operator, too.
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Proof. Fix first some z 2 X and z� 2 X�. We prove that there is always an Nx 2 X
such that z� 2 .SCT /. NxCz/CJ . Nx/. Consider the functions f , g W X�X� ! R,
defined by

f .x; x�/ D inf
y�2X�

	
'S.x C z; x� C z� � y�/C 'T .x C z; y�/


 � hx� C z�; zi

and

g.x; x�/ D 1

2
kxk2 C 1

2
kx�k2� � hz�; xi; .x; x�/ 2 X �X�:

Let us calculate the conjugates of f and g. For any .w�;w/ 2 X� �X we have

f �.w�;w/ D sup
x2X;
x�2X�

n
hw�; xi C hx�;wi � inf

y�2X�

	
'S.x C z; x� C z� � y�/

C'T .x C z; y�/

Chx� C z�; zi

o
D sup

x2X;
x�;y�2X�

fhw�; xi C hx�;wi C hx� C z�; zi

�'S.x C z; x� C z� � y�/ � 'T .x C z; y�/g D sup
u2X;

u�;y�2X�

fhw�; u � zi C hu� C y�

�z�;wi C hu� C y�; zi � 'S.u; u�/ � 'T .u; y�/g D sup
u2X;

u�;y�2X�

fhw�; ui C hu� C y�;

w C zi � 'S.u; u�/ � 'T .u; y�/g � hw�; zi � hz�;wi:
Considering the function F W X � X � X� � X� ! R, F.a; b; a�; b�/ D

'S.a; a
�/C'T .b; b�/ and the linear mappingsA W X�X��X� ! X�X�X��X�,

A.a; a�; b�/ D .a; a; a�; b�/ and M W X� � X ! X� � X � X;M.a�; a/ D
.a�; a; a/, we have that

f �.w�;w/ D .F ı A/�.M.w�;w C z// � hw�; zi � hz�;wi 8.w�;w/ 2 X� �X:

Because F � W X� �X� �X �X ! R, F �.a�; b�; a; b/ D '�
S .a

�; a/C '�
T .b

�; b/
and A� W X� �X� �X �X ! X� �X �X , A�.a�; b�; a; b/ D .a� C b�; a; b/,
one has

A� � idR.epi.F �// D f.a� C b�; a; b; r/ W '�
S .a

�; a/C '�
T .b

�; b/ � rg:

Knowing that ImM � R D X� � �X � R, the regularity condition .RCMM/ is
equivalent to saying thatA��idR.epi.F �// is closed regarding the subspace ImM�
R. So, by Theorem 2.10, we have that for any .w�;w/ 2 X� �X it holds

.F ı A/�.M.w�;w C z//

D min
˚
F �.a�; b�; a; b/ W .a� C b�; a; b/ D .w�;w C z;w C z/

�
:
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Back to f �, one gets immediately that for any .w�;w/ 2 X� �X

f �.w�;w/ D min
a�Cb�Dw�

	
'�
S .a

�;w C z/C '�
T .b

�;w C z/

 � hw�; zi � hz�;wi:

Regarding g�, the conjugate of g, for any .w�;w/ 2 X� �X one has

g�.w�;w/ D sup
x2X;
x�2X�

n
hw�; xi C hx�;wi � 1

2
kxk2 � 1

2
kx�k2� C hz�; xi

o

D sup
x2X

n
hw� C z�; xi � 1

2
kxk2

o
C sup

x�2X�

n
hx�;wi � 1

2
kx�k2�

o

D 1

2
kw� C z�k2� C 1

2
kwk2:

For any .x; x�/ 2 X �X� and y� 2 X�, by Lemma 7.3 one gets

'S.x C z; x� C z� � y�/C 'T .x C z; y�/ � hx� C z�; zi C g.x; x�/ �
hx� C z� � y�; x C zi C hy�; x C zi � hx� C z�; ziC

1

2
kxk2 C 1

2
kx�k2� � hz�; xi D 1

2
kxk2 C 1

2
kx�k2� C hx�; xi � 0:

Taking in the left-hand side the infimum subject to all y� 2 X�, we get
f .x; x�/Cg.x; x�/ � 0. Thus inf.x;x�/2X�X� Œf .x; x�/Cg.x; x�/� � 0. Because of
the convexity of f and g and since the latter is continuous Fenchel’s duality theorem
(cf. [48, Theorem 3.3.7]) guarantees the existence of a pair . Nx�; Nx/ 2 X� �X such
that

inf
.x;x�/2X�X�

Œf .x; x�/C g.x; x�/� D max
.x�;x/2X��X

f�f �.x�; x/ � g�.�x�;�x/g

D �f �. Nx�; Nx/ � g�.� Nx�;� Nx/:

Using the result from above, one gets f �. Nx�; Nx/C g�.� Nx�;� Nx/ � 0. So there are
some Na� and Nb� in X� such that Na� C Nb� D Nx� and

'�
S . Na�; NxCz/C'�

T .
Nb�; NxCz/�h Nx�; zi�hz�; NxiC 1

2
k� Nx� Cz�k2� C 1

2
k� Nxk2 � 0:

Taking into account that Na� C Nb� D Nx�, we get

0 � �
'�
S . Na�; Nx C z/ � hNa�; Nx C zi� C �

'�
T .

Nb�; Nx C z/ � h Nb�; Nx C zi�

C
�
h Nx� � z�; Nxi C 1

2
k Nx� � z�k2� C 1

2
k Nxk2

�
� 0;
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where the last inequality comes from Lemma 7.3. Thus the inequalities above must
hold as equalities, hence

'�
S . Na�; Nx C z/ D hNa�; Nx C zi; '�

T .
Nb�; Nx C z/ D h Nb�; Nx C zi;

and

h Na� C Nb� � z�; Nxi C 1

2
k Na� C Nb� � z�k2� C 1

2
k Nxk2 D 0:

These three equalities are equivalent, due to Lemma 7.3, to Na� 2 S. Nx C z/, Nb� 2
T . Nx C z/ and, respectively,

z� � Na� � Nb� 2 @1
2

k � k2. Nx/ D J . Nx/:

Summing these three relations up, one gets

z� � Na� � Nb� C Na� C Nb� 2 .S C T /. Nx C z/C J . Nx/:

As z and z� have been arbitrarily chosen, the conclusion follows via Lemma 7.1. ut
Remark 7.10. The regularity condition .RCMM/ we gave in Lemma 7.6 is the
weakest in the literature that guarantees the maximal monotonicity of the sum of
two maximally monotone operators. For a review on more restrictive regularity
conditions that deliver the same outcome the reader is referred to [44]. Note more-
over that in [21, Theorem 25.4] one can find another weak regularity condition for
this, that is formulated via arbitrary representative functions attached to the involved
maximally monotone operators, while in [42, Theorem 1] and [21, Theorem 25.1]
(see also [38]) weak hypotheses that guarantee the maximal monotonicity of the
sum of a maximally monotone operator with another one that is composed with a
linear continuous mapping are provided.

Now we are ready to formulate the announced assertion regarding the existence
of a solution to .CP/.

Theorem 7.6. Suppose that the monotone operator S is maximal and rectangular,
the regularity condition

.RCMC /
f.x� C y�; x; y; r/ W .x�; x; r/ 2 epi.'�

S /; y 2 C; y� 2 �C �g is closed
regarding the subspace X� ��X � R;

is satisfied and 0 2 int.R.S/�C �/. Then the complementarity problem .CP/ admits
a solution.
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Proof. Recall first that ı�
C D ı�C� and NC .x/ D fy� 2 �C � W hy�; xi D 0g for all

x 2 C . Moreover, R.NC / D �C � since R.NC / � �C � D NC .0/.
The Fitzpatrick function attached to NC is, when .x; x�/ 2 X �X�,

'NC .x; x
�/ D sup

.y;y�/2G.NC /
fhy�; xi C hx�; yi � hy�; yig

D sup
y2C;y�2�C�;

hy�;yiD0

fhy�; xi C hx�; yig D
�
0; if x 2 C; x� 2 �C �;
C1; otherwise;

while its conjugate at .z�; z/ 2 X� �X is

'�
NC
.z�; z/ D sup

x2C;
x�2�C�

fhz�; xi C hx�; zig D
�
0; if z 2 C; z� 2 �C �;
C1; otherwise:

As .RCMC / is actually .RCMM/ for S and NC , the maximality of the monotone
operator S CNC is secured via Lemma 7.6, so by Theorem 7.3 one gets

int.R.S/ � C �/ D int.R.S/CR.NC // D intR.S CNC /:

Then we get 0 2 intR.S CNC /, thus 0 2 R.S CNC /, i.e. there exists an x 2 C
such that 0 2 .SCNC /.x/. Thus we found an x� 2 S.x/ such that �x� 2 �NC .x/,
which, since NC .x/ � C �, yields that .x; x�/ is a solution to .CP/. ut

7.4 Surjectivity Results Involving the Sum of Two Maximally
Monotone Operators

In this section we approach by means of convex analysis different surjectivity
problems involving maximally monotone operators defined on a reflexive Banach
space, following our paper [30]. First we deliver characterizations via closedness
type regularity conditions involving representative functions of the surjectivity of
the sum of a maximally monotone operator with a translation of another one.
Besides particularizing them for some valuable special cases, we derive from these
equivalences regularity conditions for guaranteeing the surjectivity of the sum of
two maximally monotone operators and different particular instances of it that are
weaker than their previous counterparts from the literature.



7.4 Surjectivity Results Involving the Sum of Two Maximally Monotone. . . 239

7.4.1 Surjectivity Results for the Sum of Two Maximally
Monotone Operators

Let X be a reflexive Banach space and S and T be two maximally monotone
operators defined on X . Before giving the first main statement of this subsection,
the following observation is necessary.

Remark 7.11. Let p 2 X and p� 2 X�. Then p� 2 R.S.pC �/CT .�// if and only
if .p; p�/ 2 G.S/ �G.�T /.
Theorem 7.7. Let p 2 X and p� 2 X�. The following statements are equivalent

(i) p� 2 R.S.p C �/C T .�//;
(ii) for all hS 2 FS and all hT 2 FT one has dom hS \ .dom OhT C .p; p�// ¤ ;

and the function h�
S�

� Oh�
T Ch.p�; p/; .�; �/i� is lower semicontinuous at .p�; p/

and exact at .p�; p/;
(iii) there exist hS 2 FS and hT 2 FT fulfilling dom hS \.dom OhT C.p; p�// ¤ ;

such that the function h�
S�

� Oh�
T C h.p�; p/; .�; �/i� is lower semicontinuous at

.p�; p/ and exact at .p�; p/.

Proof. Note first that the assertion “.ii/ ) .iii/” is immediate and one also has

� OhT .� � p; � � p�/
�� D Oh�

T C hp�; �i C h�; pi: (7.4.4)

“.iii/ ) .i/” Proposition 2.1 yields the equivalence of .iii/ to

�
hS C OhT .� � p; � � p�/

��
.p�; p/ D min

u�2X�;u2X
	
h�
S .p

� � u�; p � u/

C Oh�
T .u

�; u/C hp�; ui C hu�; pi
 :(7.4.5)

Denoting by .Nu�; Nu/ 2 X� �X the point where this minimum is attained, we obtain,
via Lemma 7.3,

�
hS C OhT .� � p; � � p�/

��
.p�; p/ D h�

S .p
� � Nu�; p � Nu/C Oh�

T .Nu�; Nu/C hp�; Nui
ChNu�; pi �hp��Nu�; p�Nui�hNu�; NuiChp�; NuiChNu�; piDhp�; pi: (7.4.6)

But Lemma 7.3 also yields for every x 2 X and x� 2 X�

.hS C OhT .� � p; � � p�//.x; x�/ � hx�; xi C h�.x� � p�/; x � pi
D hx�; pi C hp�; xi � hp�; pi;
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thus hp�; pi � hx�; pi C hp�; xi � .hS C OhT .� �p; � �p�//.x; x�/. Consequently,

�
hS C OhT .� � p; � � p�/

��
.p�; p/ � hp�; pi: (7.4.7)

Together with (7.4.6) this yields

�
hS C OhT .� � p; � � p�/

��
.p�; p/ D hp�; pi;

and consequently the inequalities invoked to obtain (7.4.6) must be fulfilled as
equalities. Therefore

h�
S .p

� � Nu�; p � Nu/ D hp� � Nu�; p � Nui and Oh�
T .Nu�; Nu/ D h�Nu�; Nui: (7.4.8)

Having these, Lemma 7.3 yields then p� � Nu� 2 S.p� Nu/ and Nu� 2 T .�Nu/, followed
by p� 2 S.p � Nu/C T .�Nu/, i.e. p� 2 R.S.p C �/C T .�//.

“.i/ ) .ii/” Whenever hS 2 FS , hT 2 FT , .i/ yields, via Remark 7.11,
.p; p�/ 2 dom hS � dom OhT , i.e. dom hS \ .dom OhT C .p�; p// ¤ ;.

For every hS 2 FS , hT 2 FT , u 2 X and u� 2 X� we have h�
S .p

� � u�; p �
u/ C Oh�

T .u
�; u/ C h.p�; p/; .u; u�/i � hp� � u�; p � ui � hu�; ui C hp�; ui C

hu�; pi D hp�; pi, consequently, h�
S�

� Oh�
T C h.p�; p/; .�; �/i� .p�; p/ � hp�; pi

and, since the function in the right-hand side is strong-strong continuous its value

at .p�; p/ must be also smaller than h�
S�

� Oh�
T C h.p�; p/; .�; �/i�.p�; p/. But from

[21, Theorem 7.6] we know, via (7.4.4), that one has h�
S�

� Oh�
T C h.p�; p/; .�; �/i� D

.hS C OhT .�.p�; p/ C .�; �///� and since (7.4.7) always holds, it follows that

h�
S�

� Oh�
T C h.p�; p/; .�; �/i� .p�; p/ � hp�; pi. Consequently,

h�
S�

� Oh�
T C h.p�; p/; .�; �/i�.p�; p/� h�

S�
� Oh�
T C h.p�; p/; .�; �/i�.p�; p/D hp�; pi:

(7.4.9)

Since p� 2 R.S.p C �/ C T .�//, there exist .Nu�; Nu/ 2 X� � X fulfilling (7.4.8).
Then h�

S .p
� � Nu�; p� Nu/C Oh�

T .Nu�; Nu/Ch.p�; p/; .Nu; Nu�/i D hp�; pi, i.e. h�
S�

� Oh�
T C

h.p�; p/, .�; �/i�.p�; p/ D h�
S .p

� � Nu�; p � Nu/C Oh�
T .Nu�; Nu/C h.p�; p/; .Nu; Nu�/i D

hp�; pi, therefore the exactness of the infimal convolution in .ii/ is proven, while
its lower semicontinuity follows via (7.4.9). ut

From Theorem 7.7 we obtain immediately the following surjectivity result.

Corollary 7.2. For p 2 X , one has R.S.p C �/C T .�// D X� if and only if

8p� 2 X�8hS 2 FS8hT 2 FT one has dom hS \ .dom OhT C .p; p�// ¤ ; and
h�

S�
� Oh�

T C h.p�; p/; .�; �/i� is lower semicontinuous at.p�; p/and exact at.p�; p/;
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and this is further equivalent to

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS\ .dom OhT C .p; p�//¤ ;such that
h�
S�

�Oh�
T Ch.p�; p/; .�; �/i� is lower semicontinuous at .p�; p/ and exact at .p�; p/:

Inspired by Corollary 7.2 we are able to introduce a sufficient condition that
guarantees the surjectivity of S.p C �/C T .�/ for a given p 2 X .

Theorem 7.8. Let p 2 X . Then R.S.p C �/C T .�// D X� if

.RCMS /

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS \ .dom OhT C .p; p�// ¤ ;
such that h�

S�
�Oh�
T Ch.p�; p/; .�; �/i� is lower semicontinuous

on X� � fpg and exact at .p�; p/:

Next we characterize the surjectivity of the monotone operator S C T via a
condition involving representative functions. The first statement follows directly
from Theorem 7.7, while the second one is a direct consequence.

Theorem 7.9. Let p� 2 X�. The following statements are equivalent

(i) p� 2 R.S C T /;
(ii) for all hS 2 FS and hT 2 FT one has dom hS \ .dom OhT C .0; p�// ¤ ; and

the function h�
S�

� Oh�
T C hp�; �i� is lower semicontinuous at .p�; 0/ and exact

at .p�; 0/;
(iii) there exist hS 2 FS and hT 2 FT with dom hS \ .dom OhT C .0; p�// ¤ ;

such that the function h�
S�

� Oh�
T C hp�; �i� is lower semicontinuous at .p�; 0/

and exact at .p�; 0/.

Corollary 7.3. One has R.S C T / D X� if and only if

8p� 2 X�8hS 2 FS8hT 2 FT one has dom hS \ .dom OhT C .0; p�// ¤ ; and
h�
S�

� Oh�
T C hp�; �i� is lower semicontinuous at .p�; 0/ and exact at .p�; 0/;

and this is further equivalent to

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS \ .dom OhT C .0; p�// ¤ ; such that
h�

S�
� Oh�

T C hp�; �i� is lower semicontinuous at .p�; 0/ and exact at .p�; 0/:

Inspired by Corollary 7.3 we are able to introduce a sufficient condition that
guarantees the surjectivity of S C T .

Theorem 7.10. One has R.S C T / D X� if

.RCMJ /

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS \ .dom OhT C .0; p�// ¤ ;
such that h�

S�
� Oh�
T C hp�; �i� is lower semicontinuous on X� � f0g

and exact at .p�; 0/:
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Remark 7.12. In the literature there were given other regularity conditions guaran-
teeing the surjectivity of S C T , namely, for fixed hS 2 FS and hT 2 FT ,

– (cf. [163, Corollary 2.7]) dom hT D X �X�;
– (cf. [190, Theorem 30.2]) dom hS � dom OhT D X �X�;
– (cf. [222, Corollary 4]) f0g �X� � sqri.dom hS � dom OhT /.
It is obvious that the first one implies the second, whose fulfillment yields the
validity of the third condition. This one yields that for any x�; p� 2 X� one has

�
hS C OhT .�; ��p�/

��
.x�; 0/ D min

u�2X�;u2X
	
h�
S .x

� �u�;�u/C Oh�
T .u

�; u/Chp�; ui
;

which is equivalent, when dom hS \ .dom OhT C .0; p�// ¤ ; (condition automati-
cally fulfilled when any of the three regularity conditions given above is satisfied),
to the fact that whenever p� 2 X� the function h�

S�
� Oh�
T C hp�; �i� is lower

semicontinuous at .x�; 0/ and exact at .x�; 0/ for all x� 2 X�. It is obvious that
this implies .RCMJ / and below we present a situation where .RCMJ / holds, unlike
the conditions cited from the literature for the surjectivity of S C T .

Example 7.3. Let X D R and consider the maximally monotone operators S; T W
R � R defined by

S.x/ D
8
<

:

f0g; if x > 0;
.�1; 0�; if x D 0;

;; otherwise;
and T .x/ D

�
R; if x D 0;

;; otherwise;
x 2 R:

They are actually subdifferentials of proper, convex and lower-semicontinuous
functions, which are also sublinear, namely S D NŒ0;C1/ and T D Nf0g. Obviously,
R.S C T / D R and the Fitzpatrick families of both S and T contain only
the corresponding Fitzpatrick function, i.e. 'S D ıŒ0;C1/�.�1;0� D '�>

S and
'T D ıf0g�R D '�>

T .
Then dom'S � dom O'T D RC �R, where RC D Œ0;C1/, and it is obvious that

f0g � R is not included in sqri.dom'S � dom O'T / D .0;C1/ � R. Consequently,
the three conditions mentioned in Remark 7.12 fail in this situation. On the other
hand, for p�; x; x� 2 R one has

'�
S�

� O'�
T C hp�; �i�.x�; x/ D

�
0; if x � 0;

C1; if x < 0;

and this function is lower semicontinuous on R � RC and exact at all .x�; x/ 2
R � RC. Consequently, .RCMJ / is valid in this case.

Remark 7.13. When one of hS and hT is continuous, the condition .RCMJ / is
automatically fulfilled. It is known (see for instance [190]) that the domain of the
Fitzpatrick function attached to the duality map J , which is a maximally monotone
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operator, is the whole product space X � X�. By [221, Theorem 2.2.20] it follows
that 'J is continuous, thus by Corollary 7.2 we obtain that S.p C �/ C J .�/ is
surjective, whenever p 2 X . In this way we rediscover a known property of the
maximally monotone operators, already mentioned in Lemma 7.1, used for instance
for verifying the maximal monotonicity of the sum of two monotone operators under
certain hypotheses, as done for instance in [42, 44]. Moreover, via Corollary 7.3
one gets that S C J is surjective, rediscovering Rockafellar’s classical surjectivity
theorem for maximally monotone operators (see for instance [190, Theorem 29.5]).

Remark 7.14. One can notice via (7.4.4) that (7.4.5) can be rewritten when p� D 0

and p D 0 as

inf
x2X;x�2X�

	
hS.x; x

�/C OhT .x; x�/

 D max

u�2X�;u2X
˚ � h�

S .�u�;�u/ � Oh�
T .u

�; u/
�
;

(7.4.10)

i.e. there is strong duality for the convex optimization problem formulated above in
the left-hand side of (7.4.10) and its Fenchel dual problem. When .Nu; Nu�/ 2 X �X�
is an optimal solution to the dual problem, i.e. the point where the maximum in the
right-hand side of (7.4.10) is attained, one obtains Nu� 2 S.Nu/ and �Nu� 2 T .Nu/.
Employing now Lemma 7.3, we obtain hS.Nu; Nu�/ D h�

S .�Nu�;�Nu/ D hNu�; Nui and
OhT .Nu; Nu�/ D Oh�

T .Nu�; Nu/ D �hNu�; Nui, therefore

hS.Nu; Nu�/C OhT .Nu; Nu�/ D h�
S .�Nu�;�Nu/C Oh�

T .Nu�; Nu/ D 0:

Thus, the infimum in the left-hand side of (7.4.10) is attained, i.e. the primal
optimization problem given there has an optimal solution, too, so total duality holds
for the primal-dual pair of optimization problems in discussion. Therefore we can
note for this special kind of optimization problems the coincidence of the strong and
total Fenchel duality.

Remark 7.15. Given p 2 X and p� 2 X�, the function h�
S�

� Oh�
T C h.p�; p/; .�; �/i�

can be replaced in Theorem 7.7.ii/–.iii/ with
�
h�
S � h.p�; p/; .�; �/i�� Oh�

T without
altering the statement. The other conditions considered afterwards within this
section can be correspondingly rewritten, too.

Remark 7.16. The results given within this subsection can be extended for the sum
of a maximally monotone operator with another one composed with a linear map-
ping, as considered in Sect. 7.3. However, because even in the case treated here the
results are quite complicated we chose to work in the present framework. Another
possible direction of generalization of the results provided in this subsection is for
the situation when the involved Banach spaces are not necessarily reflexive, possibly
by exploiting ideas and techniques from [161, 162]. Last but not least, it should be
possible to obtain Lemma 7.6 as a consequence of Theorem 7.10 and taking into
consideration Remark 7.13.
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7.4.2 Special Cases

7.4.2.1 Zeros of Sums of Monotone Operators

An important consequence of Theorem 7.9 is the following statement, where we
provide equivalent characterizations by means of representative functions of the
situation when 0 lies in the range of S C T .

Corollary 7.4. One has 0 2 R.S C T / if and only if

8hS 2 FS8hT 2 FT one has dom hS \ dom OhT ¤ ; and the function
h�
S� Oh�

T is lower semicontinuous at .0; 0/ and exact at .0; 0/;

and this is further equivalent to

9hS 2 FS9hT 2 FT with dom hS \ dom OhT ¤ ; such that the function
h�
S� Oh�

T is lower semicontinuous at .0; 0/ and exact at .0; 0/:

From Corollary 7.4 one can deduce a sufficient condition which ensures that 0 2
R.S C T /.

Corollary 7.5. One has 0 2 R.S C T / if

.RCMZ/
9hS 2 FS9hT 2 FT with dom hS \ dom OhT ¤ ; such that
h�
S� Oh�

T is lower semicontinuous on X� � f0g and exact at .0; 0/:

Remark 7.17. The problem of guaranteeing that 0 2 R.S C T / and furthermore
of finding a solution of this equation has received a large interest in the literature
because of both theoretical and practical reasons. In [19, Theorem 4.5] the condition
.0; 0/ 2 core.coG.S/�coG.�T // is shown to imply 0 2 R.SCT /, while in [222,
Lemma 1] the same result is achieved under the assumption .0; 0/ 2 sqri.dom hS �
dom OhT /. Following similar arguments to the ones in Remark 7.12 one can show that
both these conditions yield the validity of .RCMZ/. Checking the situation from
Example 7.3, we see that the second condition fails, while .RCMZ/ is fulfilled.
As core.coG.S/ � coG.�T // D int.RC � .�RC/ � f0g � R/ D .0;C1/ � R

does not contain .0; 0/, it is straightforward that .RCMZ/ is indeed weaker than both
conditions mentioned above.

7.4.2.2 Surjectivity Results Involving Normal Cones

Let U � X be a nonempty closed convex set. Its normal cone NU is a maximally
monotone operator whose only representative function (cf. [8, Corollary 5.9]) is the
Fenchel one, namely hNU .x; x

�/ D ıU .x/C �U .x
�/, .x; x�/ 2 X �X�.
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From Theorem 7.7 and its consequences we obtain by taking T D NU the
following results.

Corollary 7.6. Let p 2 X . Then R.S.p C �/CNU .�// D X� if and only if

8p� 2 X�8hS 2 FS one has domhS \ .U � dom ��U C .p; p�// ¤ ; and the
function .y�; y/ 7! inf

x2�U;x�
2X�

	
.h�

S � h.p�; p/; .�; �/i/.y� � x�; y � x/C �U .x
�/




is lower semicontinuous at .p�; p/ and the infimum within
is attained when .y�; y/ D .p�; p/;

and this is further equivalent to

8p� 2 X�9hS 2 FS with domhS \ .U � dom ��U C .p; p�// ¤ ; the
function .y�; y/ 7! inf

x2�U;x�
2X�

	
.h�

S � h.p�; p/; .�; �/i/.y� � x�; y � x/C �U .x
�/




is lower semicontinuous at .p�; p/ and the infimum within is attained
when .y�; y/ D .p�; p/:

Corollary 7.7. Let p 2 X . Then R.S.p C �/CNU .�// D X� if

8p� 2 X�9hS 2 FS with domhS \ .U � dom ��U C .p; p�// ¤ ; the
function .y�; y/ 7! inf

x2�U;x�
2X�

	
.h�

S � h.p�; p/; .�; �/i/.y� � x�; y � x/C �U .x
�/




is lower semicontinuous on X� � fpg and the infimum within
is attained when .y�; y/ D .p�; p/:

Corollary 7.8. One has 0 2 R.S CNU / if

.RCMN /

9hS 2 FS with dom hS \ .U � dom ��U / ¤ ; such that the function
.y�; y/ 7! inf

x2UŒ.h
�
S .�; y C x/��U /.y�/� is lower semicontinuous

on X� � f0g and the infimum within is attained when .y�; y/ D .0; 0/:

Remark 7.18. In [19, Corollary 5.7] it is stated that the regularity condition 0 2
core co.D.S/ � U/ yields 0 2 R.S C NU /. Similarly to the considerations from
Remarks 7.12 and 7.17 one can notice that this condition is indeed stronger than
.RCMN /.

Not without importance is the question how can one equivalently characterize the
surjectivity of a maximally monotone operator via its representative functions. To
proceed to answering it, take U D X . Then T D NX , i.e. T .x/ D f0g for all x 2 X ,
and the Fenchel representative function of NX is .x; x�/ 7! ıX.x/ C �X.x

�/ D
ıf0g.x�/. Then S C T D S and the surjectivity of S can be characterized, via
Corollary 7.6, as follows.

Corollary 7.9. One has R.S/ D X� if and only if

8p� 2 X�8hS 2 FS the function y� 7! ��
h�
S .y

�; �/��
.p�/ is lower

semicontinuous at p� and 9x 2 X such that p� 2 .@h�
S .p

�; �//.x/;
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and this is further equivalent to

8p� 2 X�9hS 2 FS the function y� 7! ��
h�
S .y

�; �/��
.p�/ is lower

semicontinuous at p� and 9x 2 X such that p� 2 .@h�
S .p

�; �//.x/:

Proof. Corollary 7.6 asserts the equivalence of the surjectivity of the maximally
monotone operator S to the lower semicontinuity at .p�; 0/ of the function

.y�; y/ 7! inf
x2X;x�2X�

	
.h�
S � hp�; �i/.y� � x�; y C x/C �X.x

�/



concurring with the attainment of the infimum within when .y�; y/ D .p�; 0/,
for every p� 2 X�. Taking a closer look at this function, we note that it can be
simplified to .y�; y/ 7! infx2X

	
h�
S .y

�; y C x/ � hp�; y C xi
, which can be
further reduced to y� 7! ��

h�
S .y

�; �/��
.p�/.

For p� 2 X�, the attainment of the infimum from above when .y�; y/ D .p�; 0/
means actually the existence of an x 2 X such that h�

S .p
�; x/ � hp�; xi D

��
h�
S .p

�; �/��
.p�/, which is nothing but p� 2 .@h�

S .p
�; �//.x/. ut

Remark 7.19. In [163, Corollary 2.2] it is shown that S is surjective if dom.'S/ D
X � X�. This result can be obtained as a consequence of Corollary 7.9 knowing
that the characterizations provided there for R.S/ D X� are fulfilled when 'S is
continuous.

Remark 7.20. Since determining when 0 2 R.S/ is important even beyond
optimization, using Corollary 7.9 one can provide the following regularity condition
for guaranteeing this

9hS 2 FS the function y� 7! ��
h�
S .y

�; �/��
.0/ is lower

semicontinuous and 9x 2 X such that p� 2 .@h�
S .0; �//.x/:

7.4.2.3 Surjectivity Results Involving Subdifferentials

Let now the proper, convex and lower semicontinuous functions f; g W X ! R.
Take first T D @g and consider for it the Fenchel representative function. Then
Corollary 7.2 yields the following statement.

Corollary 7.10. Let p 2 X . Then R.S.p C �/C @g.�// D X� if and only if

8p� 2 X�8hS 2 FS one has dom hS \ .domg � .� domg�/C .p; p�// ¤ ;
and the function h�

S�
�
g.��/C g�.�/C h.p�; p/; .�; �/i� is

lower semicontinuous at .p�; p/ and exact at .p�; p/;
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and this is further equivalent to

8p� 2 X�9hS 2 FS with dom hS \ .domg � .� domg�/C .p; p�// ¤ ;
such that the function h�

S�
�
g.��/C g�.�/C h.p�; p/; .�; �/i� is

lower semicontinuous at .p�; p/ and exact at .p�; p/:

Remark 7.21. In [163, Proposition 2.9] it was proven that when g and g� are real
valued the monotone operator S.pC �/C @g.�/ is surjective whenever p 2 X . This
statement can be rediscovered as a consequence of Corollary 7.10, too. Using [221,
Proposition 2.1.6] one obtains that g and g� are continuous under the mentioned
hypotheses. Then the Fenchel representative function of @g is continuous and this
yields the fulfillment of the regularity condition from Corollary 7.10. Consequently,
S.p C �/C @g.�/ is surjective whenever p 2 X .

The other statements involving two maximally monotone operators given above
can be particularized for this special case, too. However, we give here only a
consequence of Corollary 7.5.

Corollary 7.11. One has 0 2 R.S C @g/ if

9hS 2 FS with dom hS \ .domg � .� domg�// ¤ ; such that the function
h�
S�

�
g.��/C g�.�/� is lower semicontinuous on X� � f0g and exact at .0; 0/:

Take now also S D @f , to which we associate the Fenchel representative
function, too. Let the function Og W X ! R, Og.x/ D g.�x/. Corollary 7.2 yields the
following result.

Corollary 7.12. Let p 2 X . If dom f \ .p C domg/ ¤ ;, then R.@f .p C �/ C
@g.�// D X� if and only if

8p� 2 X� one has dom f � \ .p� � domg�/ ¤ ;; the function f�. Og C p�/
is lower semicontinuous at p and exact at p and the function
f ��.g� C p/ is lower semicontinuous at p� and exact at p�:

Moreover, from Corollary 7.11 one can deduce the following statement.

Corollary 7.13. One has 0 2 R.@f C @g/ if dom f \ domg ¤ ;, dom f � \
.� dom g�/ ¤ ; and

f� Og is lower semicontinuous at 0 and exact at 0 and the
function f ��g� is lower semicontinuous and exact at 0:
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7.5 Dealing with the Maximal Monotonicity of Bifunctions
via Representative Functions

The study of the maximal monotonicity of bifunctions began with the seminal paper
[12], followed by works like [116, 135, 160], and in all of them the investigations
were based on the theory of equilibrium problems. However, motivated by the
recent results on maximally monotone operators, obtained almost exclusively by
means of representative functions, we involved the latter in the new approach of the
maximal monotonicity of bifunctions proposed in [33]. In this way we succeeded
in extending some statements from the literature and, moreover, in proving some
recent conjectures. This section is dedicated to presenting these results, but before
stating them some preliminaries on monotone bifunctions are necessary.

7.5.1 Monotone Bifunctions

We begin with some preliminaries on bifunctions, following [116,135]. Take further
X to be a normed space. Let the nonempty set C � X . A function F W C �C ! R

is called bifunction. The bifunction F is called monotone if F.x; y/C F.y; x/ � 0

for all x; y 2 C . To the bifunction F one can attach the diagonal subdifferential
operators AF W X � X� and FA W X � X� defined by

AF .x/ D
� fx� 2 X� W F.x; y/ � F.x; x/ � hx�; y � xi 8y 2 C g; if x 2 C;

;; otherwise;

and, respectively,

FA.x/ D
� fx� 2 X� W F.x; x/ � F.y; x/ � hx�; y � xi 8y 2 C g; if x 2 C;

;; otherwise:

When F.x; x/ D 0 for all x 2 C and F (respectively �F ) is monotone, then AF

(FA) is a monotone operator. When F is monotone and F.x; x/ D 0 for all x 2 C

one has G
�
AF

� � G
�
FA

�
.

The monotone bifunction F fulfilling F.x; x/ D 0 for all x 2 C is said
to be maximally monotone if AF is maximally monotone and, respectively, BO-
maximally monotone (where BO stands for Blum-Oettli, as this type of monotone
bifunction was introduced in [12]) when for every .x; x�/ 2 C �X� it holds

F.y; x/C hx�; y � xi � 0 8y 2 C ) F.x; y/ � hx�; y � xi 8y 2 C:
When F is monotone and F.x; x/ D 0 for all x 2 C , itsBO-maximal monotonicity
is equivalent to FA D AF . Any maximally monotone bifunction is BO-maximally
monotone, but the opposite implication is not always valid, as the situation in [116,
Example 2.2] shows.
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In order not to overcomplicate the presentation, when x 2 C we denote by a
slight abuse of notation by F.x; �/ C ıC the function defined on X with extended
real values which is equal to F.x; �/ on C and takes the value C1 otherwise.
Analogously, when y 2 C we denote by �F.�; y/ C ıC the function defined
on X with extended real values which is equal to �F.�; y/ on C and takes the
value C1 otherwise. Hence, when F.x; x/ D 0 for all x 2 C , one can write
AF .x/ D @.F.x; �/ C ıC /.x/ and FA.x/ D @.�F.�; x/ C ıC /.x/ for all x 2 X .
Note that AF and FA are not subdifferentials of functions, being at each point the
subdifferential of another function.

We close this preliminary subsection by presenting a statement which holds in a
more general framework than originally considered in [12, Lemma 3], followed by
a consequence needed later in our investigations.

Lemma 7.7. Let F and G be two bifunctions defined on the nonempty and convex
set C � X , satisfying F.x; x/ D G.x; x/ D 0 for all x 2 C , such that F
is monotone, F.x; �/ and G.x; �/ are convex for all x 2 C and F.�; y/ is upper
hemicontinuous for all y 2 C . Then the following statements are equivalent

(i) Nx 2 C and F.y; Nx/ � G. Nx; y/ for all y 2 C ;
(ii) Nx 2 C and 0 � F. Nx; y/CG. Nx; y/ for all y 2 C .

Remark 7.22. The monotonicity of F is required only for proving the implication
“.ii/ ) .i/” in Lemma 7.7, which actually holds even if the convexity and
topological hypotheses are removed.

Lemma 7.8. Let F be a bifunction defined on the nonempty and convex set C � X ,
satisfying F.x; x/ D 0 for all x 2 C . If F.x; �/ is convex for all x 2 C and F.�; y/
is upper hemicontinuous for all y 2 C , then G

�
FA

� � G
�
AF

�
.

Proof. Let .x; x�/ 2 G�
FA

�
. Then x 2 C and F.y; x/ � hx�; x�yi for all y 2 C .

By Lemma 7.7.i/ ) .ii/ one gets 0 � F.x; y/C hx�; x � yi for all y 2 C , thus
.x; x�/ 2 G�

AF
�
. ut

Remark 7.23. If in addition to the assumptions of Lemma 7.8 F is taken moreover
monotone, one also gets that F is BO-maximally monotone.

7.5.2 Maximal Monotone Bifunctions

Let F W C � C ! R be a bifunction, where C � X is nonempty. In order to deal
with its maximal monotonicity, we attach to F the functions hF ; gF W X�X� ! R,
defined at .x; x�/ 2 X �X� by

hF .x; x
�/ D sup

y2C
˚hx�; yi � F.x; y/� C ıC .x/ D .F.x; �/C ıC /

�.x�/C ıC .x/
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and

gF .x; x
�/ D sup

y2C
˚hx�; yi C F.y; x/

� C ıC .x/ D .�F.�; x/C ıC /
�.x�/C ıC .x/:

Regarding their conjugates, for .x�; x/ 2 X� �X one has

h�
F .x

�; x/ D sup
y2C

˚hx�; yi C .F.y; �/C ıC /
��.x/

�

and

g�
F .x

�; x/ D sup
y2C

˚hx�; yi C .�F.�; y/C ıC /
��.x/

�
:

Other properties of these functions are given in the following statements, whose
proofs are trivial hence skipped.

Proposition 7.1. (a) For all .x; x�/ 2 X �X�, it holds gF .x; x�/ � h�
F .x

�; x/.
(b) If F.x; x/ D 0 for all x 2 C , then hF � c and gF � c.
(c) If F is monotone, then hF .x; x�/ � gF .x; x

�/ and cohF .x; x�/ � h�
F .x

�; x/
for all .x; x�/ 2 X �X�.

Remark 7.24. If F.x; x/ D 0 for all x 2 C , one has that hF .x; x�/ D c.x; x�/ if
and only if .x; x�/ 2 G

�
AF

�
and, respectively, gF .x; x�/ D c.x; x�/ if and only

if .x; x�/ 2 G
�
FA

�
. However, gF and hF are in general neither convex nor lower

semicontinuous, therefore they are not always representative functions for AF in
case this is monotone. Note also that in [2] a function that slightly extends gF is
called the Fitzpatrick transform of the monotone bifunction F .

In the next statements we provide sufficient conditions for the maximal mono-
tonicity of AF . We begin with an assertion where F is not even asked to be
monotone.

Theorem 7.11. Let C be convex and closed and F be fulfilling F.x; x/ D 0 for all
x 2 C . If sqriC ¤ ;, F.x; �/ is convex and lower semicontinuous for all x 2 C

and F.�; y/ concave and upper semicontinuous for all y 2 C , then AF is maximally
monotone and AF D FA.

Proof. The convexity and topological assumptions on C and F.x; �/, for x 2 C ,
yield that the function F.x; �/ C ıC is proper, convex and lower semicontinuous
whenever x 2 C . Then .F.x; �/CıC /��.z/ D F.x; z/CıC .z/ whenever x 2 C and
z 2 X , consequently, via Proposition 7.1, h�>

F D gF � c on X �X�. Analogously,
the convexity and topological assumptions on C and �F.�; y/, y 2 C , imply hF D
g�>

F � c onX�X�. Obviously, hF and gF are in this case convex functions, whose
properness follows immediately, too.

One gets PrX.dom hF / � PrX.domgF / � C . Taking an x 2 C , since
F.x; �/ C ıC is proper, convex and lower semicontinuous, its conjugate is proper
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(cf. [221, Theorem 2.3.3]), so there exists an x� 2 X� such that .F.x; �/ C
ıC /

�.x�/ < C1. Consequently, hF .x; x�/ < C1, i.e. C � PrX.dom hF /.
Therefore PrX.dom hF / D PrX.domgF / D C . We are now ready to apply
Lemma 7.5 for hF and gF , obtaining that the operators (identified through their
graphs)

f.x; x�/2X �X� W h�
F .x

�; x/ D c.x; x�/g
D f.x; x�/2X �X� W gF .x; x�/ D c.x; x�/g;

which is actually G
�
FA

�
, and

f.x; x�/2X �X� W g�
F .x

�; x/ D c.x; x�/g
D f.x; x�/2X �X� W hF .x; x�/ D c.x; x�/g;

that is G
�
AF

�
, are maximally monotone.

Using Lemma 7.8, it follows G
�
FA

� � G
�
AF

�
, consequently, AF D FA, since

both are maximally monotone operators. ut
Remark 7.25. If X is reflexive, the hypothesis sqriC ¤ ; is no longer needed in
Theorem 7.11, since one can use in its proof in this case Lemma 7.4 instead of
Lemma 7.5.

If C D X the condition sqriC ¤ ; is automatically satisfied and Theorem 7.11
yields the following statement, noting that the lower/upper semicontinuity of a real
valued convex/concave function on the entire space is equivalent to its continuity
(cf. [221, Proposition 2.1.6]).

Corollary 7.14. Let F.x; x/ D 0 for all x 2 X , F.x; �/ be convex and continuous
for all x 2 X and F.�; y/ concave and continuous for all y 2 X . Then AF is
maximally monotone and AF D FA.

Remark 7.26. In Theorem 7.12 we prove one of the conjectures formulated at the
end of [135], actually slightly weakening its hypotheses since instead of taking F
continuous we ask it to be continuous in each of its variables. If X is reflexive,
Theorem 7.12 slightly improves [135, Theorem 3.6(i)], by bringing the mentioned
weakening of its hypotheses.

Taking F to be monotone, here are some hypotheses that guarantee its maximal-
ity even in the absence of convexity assumptions in its first variable.

Theorem 7.12. Let C be convex and closed and F be monotone and fulfilling
F.x; x/ D 0 for all x 2 C . If sqriC ¤ ;, F.x; �/ is convex and lower
semicontinuous for all x 2 C and F.�; y/ upper hemicontinuous for all y 2 C ,
then F is maximally monotone.

Proof. The convexity and topological assumptions on C and F.x; �/, for x 2 C ,
yield that the function F.x; �/ C ıC is proper, convex and lower semicontinuous
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whenever x 2 C . Then .F.x; �/ C ıC /
��.z/ D F.x; z/ C ıC .z/ whenever x 2 C

and z 2 X , hence h�
F .x

�; x/ D gF .x; x
�/ for all .x; x�/ 2 X �X�. Consequently,

via Proposition 7.1 and taking into consideration the properties of the conjugate
function, one has

hF .x; x
�/ � cohF .x; x

�/ � h�
F .x

�; x/ � c.x; x�/ 8.x; x�/ 2 X �X�:
(7.5.11)

Assuming that hF were improper leads to a contradiction with (7.5.11), conse-
quently hF , cohF and h�

F are all proper. Like in the proof of Theorem 7.11 one
can show that PrX.dom hF / D C . Then

PrX.dom hF / � PrX.dom cohF / � coPrX.dom hF / (7.5.12)

and, since C is convex and closed, we get PrX
�

dom
�
cohF

�� D C .
In the following we show that

G
�
AF

� D ˚
.x; x�/ 2 X �X� W cohF .x; x

�/ D c.x; x�/
�

D ˚
.x; x�/ 2 X �X� W h�

F .x
�; x/ D c.x; x�/

�
: (7.5.13)

If .x; x�/ 2 G�
AF

�
, (7.5.11) yields h�

F .x
�; x/ D c.x; x�/.

Let now .x; x�/ 2 X � X� for which h�
F .x

�; x/ D c.x; x�/. Then .x; x�/ 2
G

�
FA

�
, so Lemma 7.8 yields .x; x�/ 2 G

�
AF

�
. This implies that cohF .x; x�/ D

c.x; x�/ holds if and only if .x; x�/ 2 G
�
AF

�
. Applying Lemma 7.5 for cohF , it

follows that AF is maximally monotone, i.e. F is maximally monotone, too. ut
Remark 7.27. In Theorem 7.12 we provide a positive answer to the conjecture
formulated at the end of [136]. When the space X is reflexive, the regularity
condition sqriC ¤ ; is no longer necessary in the hypotheses of Theorem 7.12
and this statement rediscovers [116, Proposition 3.1], by means of representative
functions, employing tools of convex analysis and without renorming the space X .

Corollary 7.15. Let X be reflexive, C be convex and closed and F be monotone
and fulfilling F.x; x/ D 0 for all x 2 C . If F.x; �/ is convex and lower
semicontinuous for all x 2 C and F.�; y/ upper hemicontinuous for all y 2 C ,
then F is maximally monotone.

Proof. Things work in the lines of the proof of Theorem 7.12, noticing that (7.5.11)
and (7.5.13) are fulfilled. Then we apply Lemma 7.4. ut

When C D X we obtain from Theorem 7.12 the following statement.

Corollary 7.16. Let F be monotone and fulfilling F.x; x/ D 0 for all x 2 X . If
F.x; �/ is convex and continuous for all x 2 X and F.�; y/ upper hemicontinuous
for all y 2 X , then F is maximally monotone.
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Remark 7.28. In [135, Theorem 3.6(ii)] the same conclusion as in Corollary 7.16 is
obtained when X is reflexive for a monotone bifunction F that fulfills F.x; x/ D 0

for all x 2 X , by assuming F.x; �/ only convex for all x 2 X and F.�; y/
continuous for all y 2 X . However, we doubt that this result holds without
any topological assumption on the functions F.x; �/, x 2 X , since in its proof
is used [135, Theorem 3.4(ii)], whose hypotheses should contain also the lower
semicontinuity of F.x; �/ for all x 2 X . A similar comment can be made also
for [135, Theorem 3.6(iii)] and for the conjectures extending the two mentioned
statements to nonreflexive spaces given at the end of [135].

Whenever a monotone bifunction F fulfills F.x; x/ D 0 for all x 2 C is BO-
maximally monotone, one has AF D FA, so Lemma 7.7 is not longer needed in
the proof of Theorem 7.12. Hence we rediscover, in the reflexive case, and extend,
when X is a general Banach space, [160, Proposition 3.2], as follows.

Corollary 7.17. Let C be convex and closed with sqriC ¤ ; and F be BO-
maximally monotone. If F.x; �/ is convex and lower semicontinuous for all x 2 C ,
then F is maximally monotone.

Corollary 7.18. Let X be reflexive, C convex and closed and F be BO-maximally
monotone. If F.x; �/ is convex and lower semicontinuous for all x 2 C , then F is
maximally monotone.

When C D X one can formulate another maximality criterium for a monotone
bifunction, extending [116, Proposition 3.5] to general Banach spaces.

Theorem 7.13. Let F be monotone and fulfilling F.x; x/ D 0 for all x 2 X .
If D

�
AF

� D X and F.�; y/ is upper hemicontinuous for all y 2 X , then F is
maximally monotone.

Proof. As D
�
AF

� D X , for all x 2 X one has @F.x; �/.x/ ¤ ;, which yields
coF.x; �/ .x/ D F.x; x/ D 0. On the other hand, for all x 2 X it holds X D
domF.x; �/ � dom coF.x; �/, which implies dom coF.x; �/ D X and via [221,
Proposition 2.2.5], as coF.x; �/.x/ D 0, also the properness of coF.x; �/. Then, for
any .x; x�/ 2 X �X�, one has

h�
F .x

�; x/ D sup
y2X

˚hx�; yi C .F.y; �//��.x/
� D sup

y2X
˚hx�; yi C coF.y; �/.x/� �

hx�; xi C coF.x; �/.x/ D hx�; xi;

consequently, hF � cohF � h�>
F � c on X � X�. As D

�
AF

� D X ,
PrX.dom hF / D X , using (7.5.12) it follows PrX.dom cohF / D X . Applying
Lemma 7.5 for cohF , the operator having the graph

˚
.x; x�/ 2 X � X� W

h�
F .x

�; x/ D c.x; x�/
�

turns out to be maximally monotone. This graph includes
G

�
AF

�
. To show that the opposite inclusion holds, too, let .x; x�/ 2 X � X�

for which h�
F .x

�; x/ D c.x; x�/. Then h�
F .x

�; x/ � c.x; x�/, so for all y 2 X

it holds coF.y; �/.x/ � hx�; x � yi. This means nothing but .x; x�/ 2 G
�
HA

�
,
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where the bifunction H W X � X ! R is defined by H.x; y/ WD coF.x; �/.y/.
It follows immediately that H.z; z/ D 0 for all z 2 X . As H.z; �/ D coF.z; �/
is convex for all z 2 X and for all y 2 X one can verify that H.�; y/ is upper
hemicontinuous, Lemma 7.8 yields .x; x�/ 2 G

�
AH

�
. This means that for all

y 2 X one has coF.x; �/.y/ � hx�; y � xi, followed by F.x; y/ � hx�; y � xi.
Thus .x; x�/ 2 G

�
AF

�
, therefore (7.5.13) holds. Consequently, F is maximally

monotone. ut
Remark 7.29. One can see in the proofs of Theorems 7.11–7.13 that not only cohF
(which coincides with hF under the hypotheses of the first of them), but also the
restriction toX�X� of h�>

F are representative functions of the maximally monotone
operator AF .

In Theorems 7.11–7.13 we have shown with the help of the theory of repre-
sentative functions that under some hypotheses AF is maximally monotone. Now
let us show that the representative functions of it identified there are actually
representative to AF whenever it is maximally monotone.

Theorem 7.14. Let F be maximally monotone. Then cohF and the restriction to
X �X� of h�>

F are representative functions of AF .

Proof. The maximal monotonicity of F implies via Lemma 7.3 that

G
�
AF

� D ˚
.x; x�/ 2 X �X� W  AF .x; x�/ D c.x; x�/

�

D ˚
.x; x�/ 2 X �X� W 'AF .x; x�/ D c.x; x�/

�
:

On the other hand, the way hF is constructed implies .cCıAF /.x; x
�/ � hF .x; x

�/
for all .x; x�/ 2 X �X�, which yields

h�
F .x

�; x/ � .c C ıAF /
�.x�; x/ D  �

AF
.x�; x/ D 'AF .x; x

�/ 8.x; x�/ 2 X �X�:

Since the monotonicity of F implies, via Proposition 7.2, hF .x; x�/ �
cohF .x; x�/ � h�

F .x
�; x/ for all .x; x�/ 2 X � X�, it follows immediately

that for all .x; x�/ 2 X �X� it holds

 AF .x; x
�/ � cohF .x; x

�/ � h�
F .x

�; x/ � 'AF .x; x
�/ � c.x; x�/:

Consequently,

G
�
AF

� D ˚
.x; x�/ 2 X �X� W cohF .x; x

�/ D c.x; x�/
�

D ˚
.x; x�/ 2 X �X� W h�

F .x
�; x/ D c.x; x�/

�
;

which implies that cohF and h�>
F restricted to X � X� are representative functions

of AF . ut
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Remark 7.30. One can easily see that, when F is maximally monotone with
F.x; x/ D 0 for all x 2 C , then cogF and the restriction to X � X� of g�>

F

are representative functions of AF , too.

Remark 7.31. In the lines of the proof of Theorem 7.14, one can show that if T W
X � X� is a maximally monotone operator and h W X � X� ! R is a function
fulfilling h.x; x�/ � h�.x�; x/ for all .x; x�/ 2 X � X� and h.x; x�/ � c.x; x�/
whenever .x; x�/ 2 G.T /, then cohF and the restriction to X � X� of h�>

F are
representative functions of T .

7.5.3 The Sum of Two Monotone Bifunctions

One of the most dealt with questions regarding maximally monotone operators is
what guarantees that the sum of two of them remains maximally monotone. This
issue was extended for maximally monotone bifunctions in [116], by means of
equilibrium problems. We provide another answer in this matter, preceded by a
preliminary result.

Proposition 7.2. Let F and G be monotone bifunctions defined on a nonempty set
C � X . Then AF .x/CAG.x/ � AFCG.x/ for all x 2 X and F CG is monotone.

Proof. Let x 2 X , y� 2 AF .x/ and z� 2 AG.x/. Then x 2 C and for all y 2 C one
has F.x; y/ � hy�; y�xi andG.x; y/ � hz�; y�xi. Adding these inequalities, one
gets F.x; y/CG.x; y/ � hy� C z�; y � xi for all y 2 C , i.e. y� C z� 2 AFCG.x/.

Analogously, writing what the monotonicity of F and G means and adding the
obtained inequalities one gets that F CG is monotone. ut

For the following statement we need to introduce the bivariate infimal convo-
lution of two functions defined on a cartesian product of sets. Let A and B be
two nonempty sets. When f; g W A � B ! R are proper, their bivariate infimal
convolution is the function f�2g W A � B ! R, f�2g.a; b/ D infff .a; c/ C
g.a; b � c/ W c 2 Bg.

Theorem 7.15. Let X be reflexive and F and G two maximally monotone bifunc-
tions defined on a nonempty set C � X with fF and fG their corresponding
representative functions. If 0 2 sqri

�
D

�
AF

� � D.AG/
�

(or, equivalently, 0 2
sqri

�
PrX.dom fF / � PrX.dom fG/

�
), then F C G is maximally monotone, AF C

AG D AFCG and fF�2fG is a representative function of AFCG .

Proof. By [172, Corollary 3.6] we obtain that the hypotheses yield the maximal
monotonicity of AF C AG , to which fF�2fG is a representative function. Then
Proposition 7.2 implies that AF .x/ C AG.x/ D AFCG.x/ for all x 2 X .
Consequently, F C G is maximally monotone and fF�2fG is a representative
function of AFCG , too. ut



256 7 Monotone Operators Approached via Convex Analysis

Remark 7.32. Note that under the hypotheses of Theorem 7.15 also the function
.fF�2fG/

�> is a representative function of AFCG . If one takes fF WD cohF and
fG WD cohG , then it holds

.fF�2fG/
�.x�; x/ D sup

y2C
˚hx�; yi C .F.y; �/C ıC /

��.x/C .G.y; �/C ıC /
��.x/

�

and this is less than h�
FCG.x�; x/ for all .x; x�/ 2 X � X�. Thus the just

identified representative function of AFCG is smaller than the ones obtained for
it via Theorem 7.14.

Remark 7.33. If both F and G satisfy the hypotheses of one of Theorems 7.11–
7.12, Corollary 7.15 or, when C D X , Theorem 7.15, then F CG fulfills them, too,
and this has as consequence its maximal monotonicity.

Now let us present a situation, different from the one displayed in Theorem 7.15,
when the inclusion proven in Proposition 7.2 turns out to be actually an equality.
Note that the space X needs not be reflexive for this statement.

Proposition 7.3. Let F and G be monotone bifunctions defined on the convex and
closed set C fulfilling F.x; x/ D G.x; x/ D 0 for all x 2 C , such that for all
x 2 C the functions F.x; �/ and G.x; �/ are convex and lower semicontinuous.
If 0 2 sqri.C � C/, then AF C AG D AFCG .

Proof. Let x 2 C . One has dom.F.x; �/C ıC / D dom.G.x; �/C ıC / D dom..F C
G/.x; �/ C ıC / D C . By definition, AF .x/ D @.F.x; �/ C ıC /.x/. Note also that
.F.x; �/C ıC /C .G.x; �/C ıC / D .F CG/.x; �/C ıC . By [221, Theorem 2.8.7],
the hypotheses imply

@.F.x; �/C ıC /.x/C @.G.x; �/C ıC /.x/ D @.F.x; �/CG.x; �/C ıC /.x/:

Consequently,AF .x/CAG.x/ D AFCG.x/ and since x 2 C was arbitrarily chosen,
the conclusion follows. ut
Remark 7.34. Note that the hypotheses of Proposition 7.3 ensure that cohFCG
.x; x�/ � h�

FCG.x�, x/ � c.x; x�/ for all .x; x�/ 2 X � X�. Unfortunately, this
is not enough in order to guarantee the maximality of F C G, which would follow
for instance provided the BO-maximal monotonicity of this bifunction. However,
checking also Remark 7.33, this additional assumption would make, at least in the
reflexive case, the condition 0 2 sqri.C � C/ redundant. Therefore, it remains as
an open question what should one add to the hypotheses of Proposition 7.3 in order
to obtain the maximality of F C G under no stronger hypotheses than the ones in
Remark 7.33.
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