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Preface

Convex analysis plays an increasingly important role in different areas of math-
ematics and its applications, especially in optimization. One of its main tools is
represented by the conjugate functions that, employed in the duality theory, gave
birth to the conjugate duality and, in a larger sense, to convex duality.

The importance of the duality approach in the optimization theory comes mainly
from the facts that it provides a lower bound for the objective values of a given
minimization problem and, on the other hand, it leads to necessary and sufficient
optimality conditions. These can be used for determining the optimal solutions
of the primal problem, for instance by employing them in generating different
algorithmic approaches for solving optimization problems.

The step from scalar to vector optimization problems can be made, from the
point of view of duality, in several ways, depending on the desired outcomes. In this
book, several duality approaches for vector optimization problems are investigated
and, to some extent, compared. Moreover, we deal with different solution concepts
for vector optimization problems, too.

One can generalize the framework even further, for instance by considering
set-valued multifunctions. Among the problems where they appear, an increasing
interest is attracted by the ones involving monotone operators, especially since
new methods for approaching them by means of convex analysis were developed.
Following this path, we provide in the book several results concerning different
properties of the monotone operators, too.

This book started as the habilitation thesis of the author [107], where he collected
the majority of his contributions to the fields of vector optimization and monotone
operators during the last decade, most of them obtained by means of duality
theory for convex optimization problems. Several results, remarks, comments and
explanations were added to the original thesis version in order to make the book
more complete and reader-friendly.

The book is structured into seven chapters. The first one is dedicated to an
introduction and to several necessary preliminaries meant to make this work as
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viii Preface

self-contained as possible. In the second chapter, we deal with scalar optimization
problems. After assigning conjugate dual problems to them, we characterize their
stable "-duality gap via inclusions involving epigraphs and subdifferentials, respec-
tively. These characterizations are further used to rediscover, in case " D 0 and when
the involved functions are endowed with convexity and topological properties, some
recent closedness type regularity conditions from the literature and the formulae
they guarantee.

Within the third chapter, different minimality concepts for sets are considered and
investigated. Moreover, the corresponding minimality sets are compared. Several
of these minimality concepts are presented in more general frameworks than
considered so far in the literature and it is shown that some of their properties remain
valid in the new setting, too, in some cases under additional weak hypotheses. These
minimality notions lead to solution concepts for vector optimization problems, the
so-called efficiency concepts.

A vector duality approach via a general scalarization for vector optimization
problems is introduced in the fourth chapter. Different scalarization functions
considered in the literature are then employed as special cases of the general scalar-
ization, leading to various vector dual problems for a general vector optimization
problem. The latter contains as special cases the classes of both constrained and
unconstrained vector optimization problems and vector duals and corresponding
duality statements are derived in each case.

Extending the classical Wolfe and Mond-Weir duality concepts for both scalar
and vector general nondifferentiable optimization problems is the aim of the fifth
chapter. Considered so far in the literature mainly for optimization problems
involving differentiable functions, both these duality concepts lead to dual problems
that contain the corresponding optimality conditions as constraints.

In the sixth chapter, new vector dual problems are assigned to the classical
linear vector optimization problem in finitely dimensional spaces with respect to
both efficient and weakly efficient solutions and then they are extended to infinitely
dimensional spaces, too. It is shown that these new vector duals encounter no trouble
in some special cases where some of their older counterparts from the literature
failed to achieve strong duality. Comparisons between the known vector duals and
the new ones are delivered, too. Moreover, we propose a new vector dual problem
to a semidefinite vector optimization problems, too.

The last chapter presents results involving monotone operators obtained mainly
by means of convex analysis, via conjugate functions and duality formulae. First we
deal with Brézis-Haraux type approximations for the range of a sum of monotone
operators, then we provide characterizations involving representative functions for
the surjectivity of a sum of monotone operators, from which closedness type regu-
larity conditions for various interesting special cases can be derived. We also show
how approaching the maximal monotonicity of the bifunctions via representative
functions leads to generalizing known results and to positively answering to some
recently posed conjectures.

I would like to express my thanks to Gert Wanka for his continuous support
and for giving me the opportunity first to study and then to do my research at
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Chemnitz University of Technology. I am very grateful to my mentor and friend
Radu Ioan Boţ for his guidance and many useful discussions during all the years
of working together and for his advices regarding this book. I would also like
to thank Ernö Robert Csetnek for his valuable comments concerning some of
the results presented here and for carefully reading a preliminary version of the
manuscript. Thanks are also due to the former and current members of the research
group Approximation Theory within the Faculty of Mathematics of the Chemnitz
University of Technology for discussions and remarks regarding different parts of
this book and for contributing to the friendly and inspiring working atmosphere we
all enjoyed and benefited from. I am grateful to my coauthors and to the anonymous
reviewers of the papers integrated within this book who contributed with comments
and remarks to their improvement, as well as to the fellow mathematicians for the
valuable feed-back provided at different conferences where I presented parts of this
manuscript. The financial support from DFG (German Research Foundation) via
projects WA 922/1-3 and WA 922/8-1 that made possible some of the research
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Chapter 1
Introduction and Preliminaries

1.1 Introduction

In this book we present some recent advances on duality for vector optimization
problems and on monotone operators obtained by means of conjugate duality and
other methods of the convex analysis. This is not intended to be a systematic
presentation of the state-of-the-art in these fields, but an extended collection of the
results obtained by the author in these research areas by making use of tools like
conjugate functions, duality and convexity. His more than a decade long interest in
vector optimization was materialized so far in the papers [31, 32, 34, 37, 51, 108–
110, 201]. Moreover, he is the coauthor of the book [48], where the state-of-the-art
on duality for vector optimization at the moment was presented. On the other
hand, his research results on monotone operators and related topics can be found
in [30, 33, 35, 40, 42, 44].

Some of the results on duality for vector optimization problems gathered in this
book have arisen from investigations begun while preparing [48] and, in a way, the
part dedicated to vector optimization of this work can be seen as a continuation
and development of the mentioned book into several research directions, presented
there only in a limited manner. Unless otherwise specified, the content of this
book, excepting most of the preliminaries, is represented by the contributions of the
author (together with his co-authors) to the research fields of vector optimization
and monotone operators. Besides this introductory part, the work contains six
other chapters, each of them evolving around a main theme and beginning with
a short overview on the available literature together with the motivations behind the
investigations that follow.

Chapter 2. This chapter is dedicated to scalar optimization problems, more
precisely to characterizing via epigraph and subdifferential inclusions the situation
of "-duality gap, i.e. when the difference between the optimal objective value of
a primal minimization problem and the one of its dual problem is less than ". We

© Springer International Publishing Switzerland 2015
S.-M. Grad, Vector Optimization and Monotone Operators via Convex Duality,
Vector Optimization, DOI 10.1007/978-3-319-08900-3__1
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2 1 Introduction and Preliminaries

deliver such characterizations in the most general framework, when the involved
functions are taken only proper. Endowing them with convexity and topological
properties, we obtain other useful equivalences, from which one can derive when
" D 0 closedness type regularity conditions, useful for strong duality or different
conjugate formulae. After presenting these investigations for general optimization
problems, we deal with both constrained and unconstrained optimization problems,
showing how the mentioned results can be specialized for them, too. This chapter is
based on the author’s contributions [13, 14, 28, 45], moreover ideas and techniques
from [46, 47, 49, 50] being also involved.

Chapter 3. In the beginning of the third chapter different proper minimality
concepts for sets regarding the partial ordering induced by a convex cone that is
not necessarily pointed are introduced and analyzed. Inclusion relations between
the proper minimality sets of a given set in various senses are provided, too.
Then the ordering cone is taken to be pointed and weak conditions that guarantee
characterizations via linear scalarization of some of the considered proper min-
imality notions are delivered. On the other hand, we consider properly minimal
elements of a set defined by means of a general scalarization function, too. Then the
concept of weak minimality is extended to the case where the ordering cone has a
nonempty quasi interior, showing that some properties, including the ones regarding
the linear scalarization, of the classical weakly minimal points with respect to
a cone with nonempty interior are inherited. Similar investigations are made for
relatively minimal elements, that are defined with respect to ordering cones that
have a nonempty quasi-relative interior. This chapter is based on the author’s articles
[109, 110], containing also several previously unpublished results.

Chapter 4. Given a general vector optimization problem, the properly minimal
elements in the sense of a general scalarization of its image set lead to corresponding
properly efficient solutions. Depending on the monotonicity properties of the
scalarization function we differentiate between two classes of such properly efficient
solutions. With respect to them several vector dual problems are attached to the
primal vector optimization problem. We investigate these vector dual problems and
we deliver weak and strong duality statements concerning them and the vector
primal problem, as well as the corresponding necessary and sufficient optimality
conditions. Several scalarization functions considered in the literature are employed
in our general scheme, leading to different vector duals to the original general
vector optimization problem. Afterwards we particularize the primal problem to be
first constrained, then unconstrained, and vector duals are derived from the general
scheme in each case. This chapter is based on the author’s pieces [31, 37], together
with some previously unpublished statements.

Chapter 5. This chapter presents detailed investigations on Wolfe and Mond-Weir
type duality for both scalar and vector convex nonsmooth optimization problems.
Both these duality concepts were considered in the literature mainly for constrained
optimization problems involving differentiable (generalized) convex functions. We
propose a duality approach via perturbations for a general scalar optimization
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problem which leads in the particular case of a primal constrained differentiable
optimization problem to the classical Wolfe and Mond-Weir duals of the latter,
respectively. By employing different perturbation functions, we deliver several
Wolfe and Mond-Weir type dual problems to both constrained and unconstrained
optimization problems. Moreover, we show that our duality approach is open
towards optimization problems involving generalized convex functions, too. The
approach is then extended to vector optimization problems by following two
directions. Some of the Wolfe and Mond-Weir type vector dual problems of classical
type to a general vector optimization problem turn out to rediscover in case of a
constrained differentiable primal their counterparts from the literature. On the other
hand, by making use of an idea of constructing vector dual problems considered
mainly in convex vector optimization, we propose other Wolfe and Mond-Weir type
vector dual problems. These alternative vector duals have larger image sets than
their classical counterparts and we investigate some connections between these two
classes of Wolfe and Mond-Weir type vector dual problems. Several examples are
provided in order to show that some of the obtained inclusions can be sometimes
strictly fulfilled and to prove that the Wolfe type duals attached to a constrained
optimization problem via different perturbation functions act quite differently than
their conjugate or Mond-Weir type counterparts. This chapter is based on the
author’s papers [29, 32, 108], employing moreover results and ideas from [39, 41].

Chapter 6. In the sixth chapter we deal with two important particular vector
optimization problems, namely linear and semidefinite ones. We begin by revisiting
the vector duality for the classical linear vector optimization problem in finitely
dimensional spaces. We propose a new vector dual to it, for which weak, strong
and converse duality are proven, comparing it moreover with its counterparts from
the literature. Then we extend our investigations to infinitely dimensional spaces,
showing that the vector dual we proposed can be generalized to that framework,
too, maintaining most of its properties. Other vector duals, like the ones of Wolfe
and Mond-Weir type from Chap. 5, are considered in this setting, too. Moreover, we
deal with the mentioned linear vector optimization problems with respect to weakly
efficient solutions, too. Last but not least, we propose a similar duality approach for
a vector optimization problem consisting in vector minimizing with respect to the
corresponding semidefinite cone a matrix function subject to semidefinite inequality
constraints. This chapter is based on the author’s works [34,51], including moreover
some previously unpublished material.

Chapter 7. Within the last chapter of this book there are presented some recent
results involving monotone operators that are obtained mainly by techniques and
tools belonging to convex analysis. After some preliminaries on monotone operators
and their approach by means of convex analysis, we deliver Brézis-Haraux type
approximations for the range of the sum of a monotone operator with another one
composed with a linear mapping. We note the differences between what happens in
general Banach spaces and how these results are modified when the involved spaces
are moreover reflexive. Among the special cases of our main result we provide
corrections and generalizations of earlier results from the literature. Afterwards
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we characterize via closedness type conditions involving representative functions
the surjectivity of the sum of two maximally monotone operators. From them
we derive regularity conditions for different results concerning ranges of sums of
both general and particular maximally monotone operators, that are shown to be
weaker than their counterparts from the literature. Last but not least, we introduce
a way of approaching the maximal monotonicity of bifunctions via representative
functions that allowed us to extend from reflexive to general Banach spaces different
recent results from the literature and, moreover, to provide affirmative answers to
some recently posed conjectures. This chapter is based on the author’s publications
[30, 33, 35, 38, 40, 42, 44].

1.2 Preliminaries

In order to make the book as self-contained as possible, some preliminary notions
and results are needed. Most of them belong to the folklore of convex analysis or
optimization and literature sources are indicated only for the not so widely known
ones. The presentation is based on books like [21, 48, 127, 128, 140, 178, 221] and
some of the references therein, unless otherwise specified.

1.2.1 Sets

Within this work we shall work with both finitely and infinitely dimensional real
topological vector spaces. For a positive integer k 2 N, by R

k we denote the k
dimensional real Euclidean space. All the vectors in R

k are column vectors, an
upper index “>” being used to transpose them into row vectors. By R

kC we denote
the nonnegative orthant in R

k , while R
k� is the corresponding nonpositive orthant.

Moreover, we denote e D .1; : : : ; 1/> 2 R
k . The space of all k � n real matrices

is denoted by R
k�n, while the subspace of k � k symmetric matrices is denoted by

S k . The set of the symmetric positive semidefinite k � k matrices is S kC and its

interior, the set of the symmetric positive definite k � k matrices is OS kC. The entries
of a matrix A 2 R

k�k will be denoted by Aij, i; j D 1; : : : ; k, while its trace by
TrA and its transpose by A>.

If X is a Hausdorff locally convex space, its topological dual space is denoted
by X�, while X��, the bidual space of X , is the dual of the latter. When X is a
normed space, we denote its norm by k � k, its dual norm, i.e. the norm of its dual
space, by k � k� and one can identify X with its image under its canonical injection
into a subspace of X��. The space X� can be endowed with different topologies,
for instance the weak� one, denoted by !.X�; X/, that will be considered for all the
dual spaces everywhere in this book except for Chap. 7, where also topologies that
do not necessarily rendedX as dual space toX� are considered. Note that in Chap. 7
whenever the topology of X� is not mentioned the strong one is understood. The
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natural topology on R is denoted by R. By hx�; xi D x�.x/ we denote the value
at x 2 X of the linear continuous functional x� 2 X�. Consider also the coupling
function c W X �X� ! R D R[f˙1g, c.x; x�/ D hx�; xi for .x; x�/ 2 X �X�.

A cone K � X is a nonempty subset of X which fulfills ˛K � K for all
˛ � 0 and it is said to be nontrivial if it does not coincide with either f0g or X .
A convex cone K � X induces on X the partial ordering “5K” defined by x 5K

y , y � x 2 K when x; y 2 X . Moreover, if x 5K y and x ¤ y we write
x �K y. When K D R

kC these cone inequality notations are simplified to “5” and
“�”, respectively, while if X D S k and K D S kC they become “�

k
” and “�k”,

respectively. ToX can be then attached a greatest element 1K with respect to “5K”
which does not belong to X and let be X� D X [ f1Kg. Then for any x 2 X one
has x �K 1K and we consider on X� the operations x C 1K D 1K C x D 1K

for all x 2 X and ˛ � 1K D 1K for all ˛ � 0. The dual cone of K is K� D
fx� 2 X� W hx�; xi � 0 8x 2 Kg. The dual cone of K� is the bidual cone of K,
being denoted byK��, and it coincides withK when the latter is convex and closed
and the topology considered on X� renders X as its dual space. By convention,
hx�;1Ki D C1 for all x� 2 K�. The linearity space of a convex cone K � X is
`.K/ D K \ .�K/. When `.K/ D f0g K is said to be pointed.

Given a subset U of X , by clU , intU , coreU , linU , affU , coU , coU , coneU ,
conecoU , bdU and dimU we denote its closure, interior, algebraic interior (core),
linear hull, affine hull, convex hull, closed convex hull, conical hull, convex conical
hull, boundary and dimension, respectively. Moreover, if U is convex, by

sqriU D ˚
x 2 U W cone.U � x/ is a closed linear subspace

�

we denote its strong quasi-relative interior,

qriU D ˚
x 2 U W cl cone.U � x/ is a linear subspace of X

�

is its quasi-relative interior, while the quasi interior of U is the set

qiU D ˚
x 2 U W cl cone.U � x/ D X

�
:

In case U � R
k , riU denotes the relative interior of U . The indicator function

of the set U is ıU W X ! R, defined as ıU .x/ D 0 if x 2 U and ıU .x/ D
C1 otherwise, while its support function �U W X� ! R is given by �U .x�/ D
supx2U hx�; xi. The polar set of U � X is U o D fx� 2 X� W �U .x�/ � 1g. Note
that when U � X is a closed convex cone it holds U o D �U �. When U � X and
x� 2 X�, the set FU .x�/ D fx 2 U W hx�; xi D �U .x

�/g is said to be the face of
U exposed by x�.

If X is partially ordered by the convex cone K � X , Y is a topological vector
space and V � Y , the vector indicator function of V is ıv

V W Y ! X�, which
fulfills ıv

V .y/ D 0 if y 2 V and ıv
V .y/ D 1K otherwise. We use also the projection

function PrX W X � Y ! X , defined by PrX.x; y/ D x for .x; y/ 2 X � Y , the
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identity function id W X ! X , id.x/ D x for x 2 X and, for n 2 N, the notation
�Xn D f.x; : : : ; x/ W x 2 Xg � Xn. The (orthogonal) projection onto U � X is
the operator PU W X ! U . The normal cone associated to the set U at x 2 U is

NU .x/ D ˚
x� 2 X� W hx�; y � xi � 0 8y 2 U �

and, for " � 0, the "-normal set associated to U at x 2 U is

N"
U .x/ D ˚

x� 2 X� W hx�; y � xi � �" 8y 2 U g:

If U � R
k is a convex set, its recession cone is 0CU D fx 2 R

k W U C x � U g.
A subset of Rk is said to be polyhedral if it can be expressed as the intersection of
some finite collection of closed half-spaces.

To a nonempty setU � X one can attach the Bouligand tangent cone at x 2 clU ,
that is

TU .x/ WD
n
y 2 X W 9.xl /l�1 2 U and .�l /l�1 > 0 such that

lim
l!C1 xl D x and lim

l!C1�l.xl � x/ D y
o
:

Note that TU .x/ is always a cone and TU .x/ � cl cone.U � x/. When U is
convex, it holds cone.U � x/ � TU .x/, which yields in this case that clTU .x/ D
cl cone.U � x/. If X is metrizable, then TU .x/ is closed and, thus, if U is convex
one has TU .x/ D cl cone.U � x/, which has as a consequence the convexity of
TU .x/, for all x 2 clU .

In vector optimization it is used also the quasi interior of the dual cone (also
called strong dual cone) of the convex cone K � X , K�0 D fx� 2 K� W hx�; xi >
0 8x 2 K n f0gg. As shown in [48, Proposition 2.1.1], in general it holds qiK� �
K�0, which turns into equality when K is also closed. Note that K�0 ¤ ; yields,
as shown in [140, Lemma 1.27], that the convex cone K is pointed. If U � X is
a convex set, one has (cf. [20]) intU � coreU � qiU � qriU and when one of
the sets in this chain of inclusions is nonempty, it coincides with all its mentioned
supersets (cf. [20,221]). For qiK ¤ ; we write x <K y if y � x 2 qiK, extending
the notation usually considered in the literature for the case intK ¤ ;, while when
qriK ¤ ; we write x <rK y if y�x 2 qriK. For all x 2 X it holds qrifxg D fxg. In
case U � R

k , we have that qiU D coreU D intU and qriU D sqriU D riU . In a
separable Banach space the quasi interior of any nonempty convex set not contained
in a hyperplane is nonempty (cf. [148]) and the quasi-relative interior of a nonempty
closed convex set is nonempty (cf. [20]), but this is no longer true in general if the
space is not separable. A situation where the interior of a set and all its generalized
interiors but the quasi interior and the quasi-relative interior are empty follows.

Example 1.1. Let the real Banach space `2 D `2.N/ of the real sequences .xn/n2N
that fulfill

P1
nD1 jxnj2 < C1 be equipped with the norm k � k W `2 ! R, kxk D

�P1
nD1 jxnj2

�1=2
, x D .xn/n2N 2 `2. The positive cone of `2 is `2C D f.xn/n2N 2



1.2 Preliminaries 7

`2 W xn � 0 8n 2 Ng. Then int `2C D core `2C D sqri `2C D ;, but qi `2C D qri `2C D
f.xn/n2N 2 `2 W xn > 0 8n 2 Ng.

In the following we present some properties of the quasi(-relative) interior of
a set needed later in our presentation. For more on this the reader is referred to
[20, 21, 23–25, 67, 68, 198].

Proposition 1.1. Let K � X be a convex cone.

(a) K is not dense if and only if 0 … qiK.
(b) If clK is pointed, then 0 … qriK.
(c) One has qriK CK D qriK and, consequently, also qiK CK D qiK.
(d) The set qriK [ f0g is a cone, hence so is qiK [ f0g, too.

Remark 1.1. Given a convex cone K � X , note that if clK is pointed then clK ¤
X , but the opposite assertion is not always true. Take, for instance, X D R

2 and
K D R � f0g, then clK D K is not pointed even if it does not coincide with the
whole space R

2.

Proposition 1.2. Let U and V be convex subsets of X . Then the following
statements hold

(a) qriU C qriV � qri.U C V /;
(b) qri.U � x/ D .qriU/ � x for all x 2 X ;
(c) � qriU C .1 � �/U � qriU for all � 2 .0; 1� hence qriU is a convex set;
(d) qri.qriU/ D qriU ;
(e) if qriU ¤ ; then cl qriU D clU and cl cone qriU D cl coneU ;
(f) if U � V then qiU � qiV
(g) if u 2 U , then u 2 qiU if and only if NU .u/ D f0g and u 2 qriU if and only if

NU .u/ is a linear subspace.

Proposition 1.3. Given the convex sets U; V � X , one has that qi.U C qiV / D
U C qiV � qi.U C V /.

Proof. By Proposition 1.2.f / one gets qi.U C qiV / � qi.U C V / and obviously
qi.U C qiV / � U C qiV . The only implication left to be prove is U C qiV �
qi.U C qiV /. When qiV D ; it is trivially fulfilled.

Let a 2 U C qiV . Then there exist u 2 U and v 2 qiV such that a D u C v. But
qiV �v � qiV �vC.U�u/ D UCqiV �a. From here follows that cone.qiV �v/ �
cone.U C qiV � a/ and moreover cl cone.qiV � v/ � cl cone.U C qiV � a/. But
in this case cl cone.qiV � v/ D cl cone.qriV � v/ (because qiV is nonempty)
and Proposition 1.2.e/ yields cl cone.qriV � v/ D cl cone.V � v/. As v 2 qiV ,
cl cone.V � v/ D X , so cl cone.U C qiV � a/ D X , too and, since a 2 U C qiV ,
it follows that a 2 qi.U C qiV /. ut

In the literature there exist some separation results for convex sets by mean
of quasi-relative interior (see, for instance, [21, 23–25, 76, 77, 89, 90]). We will
use in our investigations the following one, given in [25, Theorem 2.7] and
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[21, Theorem 20.6] where it is mentioned that it extends similar results from [76,77]
from normed to locally convex spaces.

Lemma 1.1. Let U be a nonempty convex subset of X and x 2 U . If x … qriU
then there exists an x� 2 X� n f0g such that hx�; yi � hx�; xi for all y 2 U .

Specializing Lemma 1.1 for the quasi interior one obtains not only an implication
like there, but actually an equivalence, that can be also seen as a direct consequence
of Proposition 1.2.g/.

Lemma 1.2. Let U be a nonempty convex subset ofX and x 2 U . Then x … qiU if
and only if there exists an x� 2 X� n f0g such that hx�; yi � hx�; xi for all y 2 U .

If K � X is a closed convex cone and we endow X� with the !.X�; X/
topology, one can immediately show via [48, Proposition 2.1.1] that qiK D fx 2
K W hx�; xi > 0 8x� 2 K� n f0gg. Let us denote the set in the right-hand side of
this equality by K0. Aware that in the literature this notation was also used for the
interior and polar cone of K, respectively, we opted for it due to the similarity with
K�0. Let us see now what relations can be identified between K0 and qriK in the
case of a convex cone K � X that is not necessarily closed (cf. [109]).

Proposition 1.4. Let K � X be a convex cone.

(a) It holds K0 � qriK.
(b) If K0 ¤ ;, then qriK � K0.

Proof. (a) If x 2 K0 n qriK, then hx�; xi > 0 for all x� 2 K� n f0g and, on
the other hand, Lemma 1.1 yields the existence of an Nx� 2 X� n f0g such that
h Nx�; x�i � h Nx�; yi for all y 2 K. Then Nx� 2 K� n f0g and h Nx�; x�i � 0. But
h Nx�; x�i > 0, and this contradiction yields that there exists no x as taken above.

(b) If x 2 qriK n K0 then there exists an Nx� 2 K� n f0g such that h Nx�; xi D 0.
Then h� Nx�; y � xi � 0 for all y 2 K, i.e. � Nx� 2 NK.x/. As x 2 qriK
yields that NK.x/ is a linear subspace of X�, it follows that Nx� 2 NK.x/, too,
i.e. h Nx�; y � xi � 0 for all y 2 K. This yields h Nx�; yi D 0 for all y 2 K,
consequently K0 D ;. ut

Remark 1.2. If the convex cone K is also closed one has qiK D K0, so K0 ¤ ;
means actually qiK ¤ ;, that yields qiK D qriK. Conditions that guarantee
that K0 ¤ ; were proposed in the literature to the best of our knowledge only
for this case, for instance in [140, Theorem 3.38]. Similarly, the inclusion in
Proposition 1.4.b/ was previously known only under the additional hypothesis
cl.K � K/ D X , which also yields qiK D qriK, as done for instance in [20,
Theorem 3.10] or [219, Lemma 2.5].

Another separation statement from the literature, this time in finitely dimensional
spaces, that we shall use within this work is [117, Lemma 2.2(i)].

Lemma 1.3. Let the closed convex cone K � R
k and the polyhedral set U � R

k

fulfilling U \K D f0g. Then there exists a � 2 R
k n f0g such that �>k < 0 � �>u

for all k 2 K n f0g and all u 2 U .
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In order to refine some results proven via duality by employing very general
regularity conditions we have introduced in [42] the notion of a set that is closed
regarding another one (see also [21, 45, 50]). However, for the investigations from
Chap. 2 a more general notion is required, that was originally defined in [13] (and,
for the case Z D X � R in [14]).

Definition 1.1. Given " � 0, a set U � X � R is said to be .0; "/-vertically closed
regarding the set Z � X � R if .clU/ \ Z � .U \ Z/ � .0; "/, while when
Z D X � R, U is called simply .0; "/-vertically closed. Moreover, a set U � X

that fulfills .clU/ \ W D U \ W , where W � X , is said to be closed regarding
the set W .

Remark 1.3. A set U � X �R is closed regarding X �R if and only if it is closed.
A closed set is closed regarding any subset of the space it lies in, but vice versa this
does not in general. For instance, the real interval Œ0; 1/ is closed regarding the set
f0g, but it is not closed in general.

Remark 1.4. The notion of an "-closed set was considered in the literature in
different instances that have nothing in common with our research, see for instance
[3,95], while in [184, Definition 3.2] one can find a definition for a vertically closed
set.

1.2.2 Functions

In what follows we present some preliminary notions and results involving functions
needed later in our presentation. We begin with some notions which extend the
classical monotonicity to functions defined on partially ordered spaces. Let K � X

be a convex cone.

Definition 1.2. Let the nonempty set U � X and f W X ! R a given function.

(i) If f .x/ � f .y/ for all x; y 2 U such that x 5K y the function f is called
K-increasing on U .

(ii) If f .x/ < f .y/ for all x; y 2 U such that x �K y the function f is called
strongly K-increasing on U .

(iii) If f is K-increasing on U , qiK ¤ ; and for all x; y 2 U fulfilling x <K y

follows f .x/ < f .y/ the function f is called strictly K-increasing on U .
(iv) If f is K-increasing on U , qriK ¤ ; and for all x; y 2 U fulfilling x <rK y

follows f .x/ < f .y/ the function f is called relatively strictly K-increasing
on U .

(v) When U D X we call these classes of functions simplyK-increasing, strongly
K-increasing, strictly K-increasing and relatively strictly K-increasing,
respectively.

Remark 1.5. In Definition 1.2.i i i/ and .iv/ we extend the notion of a strictly K-
increasing on U function given so far in the literature for the case intK ¤ ;
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(or coreK ¤ ;). Note also that in case X D R and K D RC, the RC-
increasing functions are actually the monotonically increasing ones, while the
strongly, strictly and relatively strictly RC-increasing functions are nothing but
strictly monotonically increasing functions.

Let us illustrate this definition with the following example (see [48, 110]).

Example 1.2. Let x� 2 X�. If x� 2 K�, then for all x1; x2 2 X such that x1 5K x2
we have that hx�; x2 � x1i � 0. Therefore hx�; x1i � hx�; x2i and this means that
the elements of K� are actually K-increasing functions.

If x� 2 K�0, then for all x1; x2 2 X such that x1 �K x2 it holds hx�; x2 � x1i >
0. This means by definition that the elements of K�0 are strongly K-increasing
functions.

If K � X is moreover closed, X� is endowed with the !.X�; X/ topology and
qiK ¤ ;, then qiK D fx 2 K W hx�; xi > 0 8x� 2 K� n f0gg and thus every
x� 2 K� n f0g is strictly K-increasing.

IfK0 ¤ ;, then Proposition 1.4 yields qriK D K0 and thus every x� 2 K� nf0g
is relatively strictly K-increasing.

Having a function f W X ! R we use the classical notations for its domain
dom f D fx 2 X W f .x/ < C1g, epigraph epi f D f.x; r/ 2 X � R W f .x/ �
rg, lower semicontinuous hull Nf W X ! R, convex hull co f W X ! R, lower
semicontinuous convex hull cof W X ! R and conjugate function f � W X� ! R,
f �.x�/ D supfhx�; xi � f .x/ W x 2 Xg. If U � X , the conjugate function of
f regarding U � X is f �

U W X ! R, f �
U D .f C ıU /

�. We call f proper if
f .x/ > �1 for all x 2 X and dom f ¤ ;. For f proper and " � 0, if f .x/ 2 R

the (convex) "-subdifferential of f at x is @"f .x/ D fx� 2 X� W f .y/ � f .x/ �
hx�; y�xi�" 8y 2 Xg, while if f .x/ D C1 we take by convention @"f .x/ D ;.
The "-subdifferential becomes in case " D 0 the classical (convex) subdifferential
denoted for f by @f . Note that for U � X we have for all x 2 U and all " � 0 that
@"ıU .x/ D N"

U .x/. Between a function and its conjugate regarding U there is the
Young-Fenchel inequality f �

U .x
�/ C f .x/ � hx�; xi for all x 2 U and x� 2 X�.

If U D X , this inequality is fulfilled as equality if and only if x� 2 @f .x/ and in
general one has f �.x�/Cf .x/ � hx�; xiC" if and only if x� 2 @"f .x/. Moreover,
a function is said to be upper hemicontinuous if it is upper semicontinuous on line
segments.

Considering for each ˛ 2 R the function f̨ W X ! R, . f̨ /.x/ D f̨ .x/ for
x 2 X , note that when ˛ D 0 we take 0f D ıdom f . Given a linear continuous
mapping A W X ! Y , we have its adjoint A� W Y � ! X� given by hA�y�; xi D
hy�; Axi for any .x; y�/ 2 X � Y �. Its image is ImA D fAx W x 2 Xg, while
the counter image of a set W � Y through A is A�1.W / WD fx 2 X W Ax 2 W g.
With L .X; Y / we denote the set of the linear continuous mappings A W X ! Y .
When f; g W X ! R are proper, their infimal convolution is f�g W X ! R,
f�g.a/ D infx2XŒf .x/ C g.a � x/�. It is said to be exact at y 2 X when the
infimum at a D y is attained, i.e. there exists an x 2 X such that f�g.y/ D
f .x/ C g.y � x/. If U;W � X , denote by f > W W � U ! R the transpose of
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the function f W U � W ! R, which is defined as f >.w; u/ D f .u;w/ for all
.w; u/ 2 W � U .

A vector function F W Y ! X� is said to be proper if its domain domF D fy 2
Y W F.y/ 2 Xg is nonempty. It is calledK-convex if F.txC .1� t /y/ 5K tF.x/C
.1 � t /F .y/ for all x; y 2 Y and all t 2 Œ0; 1�. The vector function F is said to be
K-epi-closed if K is closed and its K-epigraph epiK F D f.y; x/ 2 Y � X W x 2
F.y/ C Kg is closed, and it is called K-lower semicontinuous if for every y 2 Y ,
each neighborhood W of zero in X and for any b 2 X satisfying b 5K F.y/, there
exists a neighborhood U of y in Y such that F.U / � b C W C X [ f1Kg. For
x� 2 K� the function .x�F / W Y ! R is defined by .x�F /.y/ D hx�; F .y/i,
y 2 Y . If F is K-lower semicontinuous then .x�F / is lower semicontinuous
whenever x� 2 K� n f0g and if K is closed, then every K-lower semicontinuous
vector function is also K-epi-closed, but, not all K-epi-closed vector functions are
K-lower semicontinuous, as the situation depicted in [47, Example 1] shows.

Remark 1.6. If the function f W X ! R is K-increasing, then dom f � � K�.
However, the analogy with the results mentioned in Example 1.2 stops here, since
even in case X D R one can find strictly increasing functions with their conjugates
having as domain RC and not .0;C1/, which coincides with both RC n f0g and
intRC, for instance the exponential function.

For an attained infimum (supremum) instead of inf (sup) we write min (max),
while the optimal objective value of the optimization problem .P / is denoted by
v.P /.



Chapter 2
Duality for Scalar Optimization Problems

2.1 Historical Overview and Motivation

Assigning a dual problem to a given minimization problem provides, due to the
weak duality, a lower bound for the objective values of the latter. Moreover, if strong
duality can be proven, the optimal objective values of the two problems coincide and
they can be determined since usually the dual problem has a simpler structure than
the primal one and can be easier solved. Moreover, necessary and sufficient optimal-
ity conditions for the primal-dual pair of problems in discussion can be derived and
these can be employed for determining the optimal solutions of the primal problem
when the ones of the dual, guaranteed by the strong duality statement, were already
identified. The corresponding duality theory is very well developed in the convex
case and can be consulted in books like [21, 48, 127, 128, 178, 221]. Moreover, it
was shown in the literature (see, for instance, [39,41,52,53]) that the hypotheses on
the involved functions can be weakened to different generalizations of the convexity
without destroying the strong duality statements.

In order to guarantee the strong duality one usually needs besides the convexity
assumptions the fulfillment of a regularity condition or constraint qualification.
Different such conditions were considered in the literature, the most important
classes of them being the interiority type ones (see, for instance, [21, 221]) and the
closedness type ones (cf. [21,45,48]). Moreover, strong duality is closely related to
subdifferential formulae and the mentioned sufficient conditions can be employed
to ensure these, too. Besides the strong duality of interest are also the so-called
stable strong duality, i.e. the situation when strong duality holds for any linear
perturbation of the objective function of the primal problem, and its stronger version
total duality where, additional to the strong duality also an optimal solution of the
primal problem is known. Characterizations for these situations involving epigraph
and subdifferential inclusions, respectively, were provided for instance in [46, 47].

In some cases, however, it can be shown only that the distance between the opti-
mal objective values of the primal and dual problem is less than some nonnegative ",
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situation called in [13,14] "-duality gap. Starting from our investigations from these
papers, where we characterized via epigraph and subdifferential inclusions the "-
duality gap for composed and constrained optimization problems, respectively, we
provide in this chapter similar statements for general scalar optimization problems
where the involved functions are taken first only proper. Endowing them with
convexity and topological properties, we obtain other useful equivalences, from
which when " D 0 closedness type regularity conditions (cf. [56, 57, 63, 64])
are derived. These can be employed, for instance, for subdifferential formulae, as
done in [28, 45, 126] or, like in [27], for providing formulae for biconjugates of
combinations of functions.

After presenting these investigations for general optimization problems, we deal
with both constrained and unconstrained optimization problems, showing how the
mentioned results can be specialized for them, too, by means of the perturbation
theory (cf. [178, 221]). In this way some of our results from [13, 14, 28, 45–47, 50]
as well as different others from the literature can be obtained as special cases of the
general statements presented here.

2.2 Characterizations Involving Epigraphs

We begin our investigations with a general scalar optimization problem. In order
to investigate its duality properties, we embed it into a family of general perturbed
scalar optimization problems, to which corresponding conjugate dual problems (cf.,
for instance, [21, 48, 178, 221]) are assigned. Then we characterize via epigraph
inclusions the so-called stable "-duality gap regarding the primal problem and
its conjugate dual. Adding convexity and topological hypotheses to the function
involved, we show that this approach leads to some closedness type regularity con-
ditions recently considered in the literature for duality and other formulae involving
convex functions and their conjugates. Afterwards we particularize the primal
problem to be constrained and unconstrained, respectively, and the corresponding
duality statements are derived from the general case.

2.2.1 General Perturbed Scalar Optimization Problems

Consider two Hausdorff locally convex vector spaces X and Y . Most of the results
presented within this chapter hold actually in the more general framework of linear
spaces, but in order to avoid juggling with the spaces we use here the mentioned
setting. Let the proper function F W X ! R and the general optimization problem

.PG/ inf
x2X F.x/.
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Making use of a proper perturbation function ˚ W X � Y ! R, fulfilling
˚.x; 0/ D F.x/ for all x 2 X , a hypothesis that guarantees that 0 2 PrY dom˚ ,
the problem .PG/ can be rewritten as

.PG/ inf
x2X ˚.x; 0/.

We call Y the perturbation space and its elements perturbation variables. Note
that the way ˚ is defined guarantees that 0 2 PrY .dom˚/. To .PG/ we attach the
following conjugate dual problem

.DG/ sup
y�2Y �

f�˚�.0; y�/g,

and for this primal-dual pair of optimization problems weak duality always holds,
i.e. v.DG/ � v.PG/. In order to investigate the duality properties of these
optimization problems, for each x� 2 X� we consider the following problem

.PGx�/ inf
x2X

�
˚.x; 0/ � hx�; xi�,

obtained by linearly perturbing the objective function of .PG/. Thus .PG/ is
embedded in the family of optimization problems f.PGx�/ W x� 2 X�g, where
it coincides with .PG0/. To each problem in the mentioned family one can attach
the corresponding conjugate dual problem, namely, for x� 2 X�,

.DGx�/ sup
y�2Y �

f�˚�.x�; y�/g.

By construction, whenever x� 2 X� one has v.DGx�/ � v.PGx�/, i.e. for each of
these pairs of primal-dual optimization problems there is weak duality. However, of
interest are the situations where the optimal objective values of the primal and its
corresponding dual problem coincide or their difference lies within a given small
margin.

Definition 2.1. Let " � 0. We say that there is "-duality gap for the problems .PG/
and .DG/ if v.PG/ � v.DG/ � ". If v.PGx�/ � v.DGx�/ � " for all x� 2 X�, we
say that for .PG/ and .DG/ one has stable "-duality gap.

Definition 2.2. We say that there is strong duality for the problems .PG/ and .DG/
if v.PG/ D v.DG/ and the dual problem has an optimal solution. If v.PGx�/ D
v.DGx�/ and .DGx�/ has an optimal solution for all x� 2 X�, we say that for .PG/
and .DG/ one has stable strong duality.

Definition 2.3. Let " � 0. An element x 2 X is said to be an "-optimal solution to
.PG/ if 0 2 @"˚.�; 0/.x/.

Let " � 0. The first statement we give presents a characterization via epigraph
inclusions of a situation of stable "-duality gap for the problems .PG/ and .DG/.

Theorem 2.1. Let W � X�. Then it holds

epi.˚.�; 0//� \ .W � R/ � PrX��R epi˚� \ .W � R/ � .0; "/ (2.2.1)
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if and only if for each x� 2 W there exists a Ny� 2 Y � such that

.˚.�; 0//�.x�/ � ˚�.x�; Ny�/ � ": (2.2.2)

Proof. If x� 2 W such that .˚.�; 0//�.x�/ D C1 there is nothing to prove.
Let x� 2 W such that .˚.�; 0//�.x�/ 2 R. Noticing that, for y� 2 Y �, one
has .x�; y�; .˚.�; 0//� .x�// 2 epi˚� � .0; 0; "/ if and only if ˚�.x�; y�/ �
.˚.�; 0//�.x�/C ", the desired conclusion follows. ut
Remark 2.1. The inequality (2.2.2) can be rewritten as �.˚.�; 0//�.x�/ �
�˚�.x�; y�/ C ". While the quantity in the left-hand side of this inequality is
actually v.PGx�/, the one in the right-hand side is not necessarily v.DGx�/C ", as
the supremum in .DGx�/ is not shown to be attained at y�. Though, (2.2.2) implies
v.PGx�/ � v.DGx�/C ".

Remark 2.2. Using (2.2.2), the stable "-duality gap for the problems .PG/ and .DG/
can be equivalently characterized through the following epigraph inclusion

epi.˚.�; 0//� � epi inf
y�2Y �

˚�.�; y�/ � .0; "/: (2.2.3)

In case " D 0 both the epigraph inclusion and the inequality considered
in Theorem 2.1 turn into equalities and (2.2.2) collapses into an inequality that
describes actually the stable strong duality for .PG/ and .DG/.

Corollary 2.1. Let W � X�. Then it holds

epi.˚.�; 0//� \ .W � R/ D PrX��R epi˚� \ .W � R/ (2.2.4)

if and only if for each x� 2 W there exists a Ny� 2 Y � such that

.˚.�; 0//�.x�/ D ˚�.x�; Ny�/:

If W D X� one obtains a condition involving epigraphs that ensures that there
is stable "-duality gap for the problems .PG/ and .DG/.

Corollary 2.2. It holds

epi.˚.�; 0//� � PrX��R epi˚� � .0; "/

if and only if for each x� 2 X� there exists a Ny� 2 Y � such that

.˚.�; 0//�.x�/ � ˚�.x�; Ny�/ � ":

Using Theorem 2.1 one can formulate necessary and sufficient "-optimality
conditions for any primal-dual pair of optimization problems .PGx�/–.DGx�/when
x� 2 W � X�.
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Theorem 2.2. Let W � X� and x� 2 W .

(a) If Nx 2 X is an optimal solution to .PGx�/ and (2.2.1) is satisfied, then there
exists a Ny� 2 Y �, an "-optimal solution to .DGx�/, such that one has

˚. Nx; 0/C ˚�.x�; Ny�/ � hx�; Nxi C " (2.2.5)

or, equivalently,

.x�; Ny�/ 2 @"˚. Nx; 0/: (2.2.6)

(b) Assume that Nx 2 X and Ny� 2 Y � fulfill (2.2.5) or (2.2.6). Then Nx is an "-optimal
solution to .PGx�/, Ny� is an "-optimal solution to .DGx�/ and v.PGx�/ �
v.DGx�/C ".

Proof. (a) Theorem 2.1 yields, via Remark 2.1, that ˚. Nx; 0/ C ˚�.x�; Ny�/ �
hx�; NxiC". Because of the weak duality for .PGx�/ and .DGx�/, it follows also
that v.DGx�/ � �˚�.x�; Ny�/C ", i.e. Ny is an "-optimal solution to .DGx�/.

(b) Assuming (2.2.5) fulfilled, it follows ˚. Nx; 0/ � hx�; Nxi � " � ˚�.0; Ny�/,
that implies v.DGx�/ � v.PGx�/ � ˚. Nx; 0/ � hx�; Nxi � " � ˚�.0; Ny�/ �
v.DGx�/C " � v.DPx�/C ", from which the conclusion follows. ut

Remark 2.3. If " D 0, relations (2.2.5) and (2.2.6) become optimality conditions
for .PGx�/ and .DGx�/, while when W D X� Theorem 2.2 delivers what may be
called stable optimality conditions for .PG/ and .DG/.

Remark 2.4. Taking x� D 0 in Theorem 2.2 one obtains "-optimality conditions
for the primal-dual pair of optimization problems .PG/–.DG/ and, moreover, that
the satisfaction of the condition

epi.˚.�; 0//� � PrX��R epi˚� � .0; "/

guarantees that there is "-duality gap for these problems.

Enriching the function ˚ with convexity and topological properties, one can
deliver another characterization of (2.2.2) by means of the notion of the .0; "/-
vertical closedness of the conjugate of ˚ regarding a cartesian product of sets (cf.
Definition 1.1).

Theorem 2.3. Let W � X� and the function ˚ be also convex and lower
semicontinuous. Then the set PrX��R epi˚� is .0; "/-vertically closed regarding the
setW �R in the topology !.X�; X/�R if and only if for each x� 2 W there exists
a Ny� 2 Y � such that (2.2.2) holds.

Proof. According to [49, Theorem 2.3] (see also [21, Theorem 5.2]), for ˚ proper,
convex and lower semicontinuous it holds epi.˚.�; 0//� D cl PrX��R epi˚�. The
assertion follows via Theorem 2.1. ut

In case " D 0 the assertion in Theorem 2.3 rediscovers [21, Theorem 9.1].
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Corollary 2.3. Let W � X� and the function ˚ be also convex and lower
semicontinuous. Then the set PrX��R epi˚� is closed regarding the set W � R in
the topology !.X�; X/ � R if and only if for each x� 2 W there exists a Ny� 2 Y �
such that

.˚.�; 0//�.x�/ D ˚�.x�; Ny�/ D min
y�2Y �

˚�.x�; y�/:

If W D X� Theorem 2.3 delivers the following statement.

Corollary 2.4. Let function ˚ be also convex and lower semicontinuous. Then the
set PrX��R epi˚� is .0; "/-vertically closed in the topology !.X�; X/ � R if and
only if for each x� 2 X� there exists a Ny� 2 Y � such that (2.2.2) holds.

Taking in Corollary 2.3 moreover W D X�, one obtains a characterization of
the stable strong duality for .PG/ and .DG/, rediscovering thus [48, Theorem 3.2.2]
(see also [64]).

Corollary 2.5. Let the function ˚ be also convex and lower semicontinuous. Then
the set PrX��R epi˚� is closed in the topology !.X�; X/�R if and only if for each
x� 2 X� there exists a Ny� 2 Y � such that

.˚.�; 0//�.x�/ D ˚�.x�; Ny�/ D min
y�2Y �

˚�.x�; y�/:

An important consequence of Theorem 2.3, via Corollary 2.5, is the strong
duality statement for .PG/ and .DG/ that follows (see also [48, 63, 64, 174]).

Corollary 2.6. Assume that ˚ is convex and lower semicontinuous. If PrX��R

epi˚� is a closed set in the topology !.X�; X/ � R, then v.PG/ D v.DG/ and
the dual problem .DG/ has an optimal solution Ny� 2 Y �.

Remark 2.5. Several regularity conditions were proposed in the literature in order
to achieve strong duality for .PG/ and .DG/. We list in the following the most
important of those considered when the function ˚ is convex (cf. [21, 48, 221]),
namely the one involving continuity

.RCG
1 / 9x0 2 X such that .x0; 0/ 2 dom˚ and ˚.x0; �/ is continuous at 0;

a weak interiority type one,

.RCG
2 /
X and Y are Fréchet spaces; ˚ is lower semicontinuous and
0 2 sqri PrY .dom˚/;

a generalized interiority type one which works in finitely dimensional spaces,

.RCG
3 / dim lin PrY .dom˚/ < C1 and 0 2 ri PrY .dom˚/;
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and finally the closedness type regularity condition already mentioned in Corol-
lary 2.6,

.RCG
4 /
˚ is lower semicontinuous and PrX��R.epi˚�/ is closed
in the topology !.X�; X/ � R:

Note that all these regularity conditions ensure actually stable strong duality for
.PG/ and .DG/.

Necessary and sufficient optimality conditions for .PGx�/ and .DGx�/, where
x� 2 W � X� can be derived, too, from Theorem 2.2 via Corollary 2.5 (see also
[21, 48, 221]).

Corollary 2.7. Let W � X� and x� 2 W .

(a) Assume that ˚ is convex. Let Nx 2 X be an optimal solution to .PGx�/ and
assume that one of the regularity conditions .RCG

i /, i 2 f1; 2; 3; 4g, is fulfilled.
Then there exists a Ny� 2 Y �, an optimal solution to .DGx�/, such that one has

˚. Nx; 0/C ˚�.x�; Ny�/ D hx�; Nxi; (2.2.7)

or, equivalently,

.x�; Ny�/ 2 @˚. Nx; 0/: (2.2.8)

(b) Assume that Nx 2 X and Ny� 2 Y � fulfill (2.2.7) or (2.2.8). Then Nx is an optimal
solution to .PGx�/, Ny� is an optimal solution to .DGx�/ and v.PGx�/ D
v.DGx�/.

Remark 2.6. When W D X�, Corollary 2.7 delivers what may be called stable
optimality conditions for .PG/ and .DG/. Taking there x� D 0 one obtains neces-
sary and sufficient optimality conditions for .PG/ and .DG/ (see also [21,48,221]).
Because they will be used later in the book, we give them below for reader’s
convenience.

Corollary 2.8. (a) Assume that ˚ is convex. Let Nx 2 X be an optimal solution to
.PG/ and assume that one of the regularity conditions .RCG

i /, i 2 f1; 2; 3; 4g;
is fulfilled. Then there exists a Ny� 2 Y �, an optimal solution to .DG/, such that
one has

˚. Nx; 0/C ˚�.0; Ny�/ D 0 (2.2.9)

or, equivalently,

.0; Ny�/ 2 @˚. Nx; 0/: (2.2.10)

(b) Assume that Nx 2 X and Ny� 2 Y � fulfill (2.2.9) or (2.2.10). Then Nx is an optimal
solution to .PG/, Ny� is an optimal solution to .DG/ and v.PG/ D v.DG/.
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As byproducts of the duality investigations presented in this subsection we obtain
some "-Farkas statements and results involving .�; "/-saddle points, as follows. We
begin with the "-Farkas type results for .PGx�/ and .DGx�/, where x� 2 W � X�.
They extend some recent Farkas type statements from the literature that generalize
the classical Farkas Lemma.

Theorem 2.4. Let W � X�.

(a) Suppose that (2.2.1) holds. Given x� 2 W , if ˚.x; 0/ � hx�; xi � "=2 for all
x 2 X then there exists a Ny� 2 Y � such that ˚�.x�; Ny�/ � "=2.

(b) Given x� 2 W , if there exists a Ny� 2 Y � such that ˚�.x�; Ny�/ � �"=2, then
˚.x; 0/ � hx�; xi � "=2 for all x 2 X .

Proof. (a) Theorem 2.1 yields the existence of a Ny� 2 Y � such that
�.˚.�; 0//�.x�/ � " � ˚�.x�; Ny�/. Then "=2 � " � ˚�.x�; Ny�/ and the
conclusion follows.

(b) Using the weak duality for .PGx�/ and .DGx�/ it follows that ˚.x; 0/ �
hx�; xi � �˚�.x�; Ny�/ � "=2. ut

Using (2.2.3) as a regularity condition one can give other "-Farkas type results
for .PGx�/ and .DGx�/, where x� 2 W � X�, which can be proven analogously
to the ones in Theorem 2.4.

Theorem 2.5. Let W � X�.

(a) Suppose that (2.2.3) holds. Given x� 2 W , if ˚.x; 0/ � hx�; xi � "=2 for all
x 2 X then infy�2Y � ˚�.x�; y�/ � "=2.

(b) Given x� 2 W , if infy�2Y � ˚�.x�; y�/ � �"=2, then ˚.x; 0/ � hx�; xi � "=2

for all x 2 X .

If " D 0, the "-Farkas type results turn into equivalences, as follows.

Corollary 2.9. Let W � X� and suppose that (2.2.4) holds. Given x� 2 W , one
has ˚.x; 0/ � hx�; xi � 0 for all x 2 X if and only if there exists a Ny� 2 Y � such
that ˚�.x�; Ny�/ � 0.

Corollary 2.10. Let W � X� and suppose that (2.2.3) holds as an equality for
" D 0. Given x� 2 W , one has ˚.x; 0/ � hx�; xi � 0 for all x 2 X if and only if
infy�2Y � ˚�.x�; y�/ � 0.

In order to deal with statements involving .�; "/-saddle points, let us recall
now the definition of the Lagrangian function for the pair of primal-dual problems
.PGx�/–.DGx�/, where x� 2 X�.

Definition 2.4. Let x� 2 X�. The function L.PGx� / W X � Y � ! R defined by

L.PGx� /.x; y�/ D inf
y2Y

�
˚.x; y/ � hx�; xi � hy�; yi�

is called the Lagrangian function of the pair of primal-dual problems .PGx�/–
.DGx�/ relative to the perturbation function ˚ .
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Remark 2.7. One can easily see that for all x� 2 X� and all x 2 X it holds
L.PGx� /.x; y�/ D �hx�; xi � .˚.x; �//�.y�/ for all y� 2 Y �. Thus for all x 2 X

the function L.PGx� /.x; �/ is concave and upper semicontinuous. On the other hand,
assuming that˚ is convex, whenever y� 2 Y � the functionL.PGx� /.�; y�/ is convex,
too.

Remark 2.8. Given x� 2 X�, we can reformulate the primal-dual pair of problems
.PGx�/–.DGx�/ by means of the Lagrangian L.PGx� /, namely while .DGx�/ is
equivalent to supy�2Y � infx2X L.PGx� /, while if ˚.x; �/ is a convex and lower
semicontinuous function taking nowhere the value �1 for all x 2 X , .PGx�/

actually means infx2X supy�2Y � L.PGx� /. Note that even without the additional
hypotheses, v.PGx�/ is not less than infx2X supy�2Y � L.PGx� /.

In the following we generalize the classical notion of a saddle point.

Definition 2.5. Let �; " � 0 and x� 2 X�. We say that . Nx; Ny�/ 2 X � Y � is an
.�; "/-saddle point of the Lagrangian L.PGx� / if

L.PGx� /. Nx; y�/ � � � L.PGx� /. Nx; Ny�/ � L.PGx� /.x; Ny�/C " 8.x; y�/ 2 X � Y �:

Remark 2.9. The notion of an "-saddle point of a function with two variables was
already considered in the literature, see for instance [147, 199], while for .�; "/-
saddle points we refer to [13].

Slightly weakening the properness hypothesis imposed on ˚ and adding to
it convexity and topological assumptions, one obtains the following statement
connecting the .�; "/-saddle points of L.PGx� / with the ." C �/-duality gap for the
problems .PGx�/ and .DGx�/, and the existence of some ."C �/-optimal solutions
to them.

Theorem 2.6. Let �; " � 0 and x� 2 X�.

(a) If . Nx; Ny�/ 2 X � Y � is an .�; "/-saddle point of L.PGx� / and ˚. Nx; �/ is a convex
and lower semicontinuous function taking nowhere the value �1, then Nx is
an ." C �/-optimal solution to .PGx�/, Ny� is an ." C �/-optimal solution to
.DGx�/ and there is ." C �/-duality gap for the primal-dual pair of problems
.PGx�/ � .DGx�/.

(b) If 	 � 0, Nx 2 X is an "-optimal solution to .PGx�/, Ny� 2 Y � is an �-optimal
solution to .DGx�/ and v.PGx�/ � v.DGx�/C 	, then . Nx; Ny�/ 2 X � Y � is an
.�C "C 	; �C "C 	/-saddle point of L.PGx� /.

Proof. (a) From the definition of an .�; "/-saddle point it follows via Remark 2.8
that

˚. Nx; 0/ � hx�; Nxi � � D sup
y�2Y �

L.PGx� /. Nx; y�/ � � � L.PGx� /

. Nx; Ny�/ � inf
x2X L

.PGx� /.x; Ny�/C " D " � ˚�.x�; Ny�/: (2.2.11)
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Using the weak duality for the problems .PGx�/ and .DGx�/, (2.2.11) yields
v.DGx�/ � � � " � ˚�.x�; Ny�/ and ˚. Nx; 0/ � hx�; Nxi � � � " � v.PGx�/,
hence Nx is an ."C �/-optimal solution to .PGx�/ and Ny� is an ."C �/-optimal
solution to .DGx�/. Relation (2.2.11) implies also that ˚. Nx; 0/� hx�; Nxi � � �
" � ˚�.x�; Ny�/, consequently v.PGx�/ � v.DGx�/C �C ".

(b) Using again Remark 2.8, one obtains that˚. Nx; 0/�hx�; Nxi � supy�2Y � L.PGx� /

. Nx; y�/ � L.PGx� /. Nx; Ny�/ and �˚�.0; Ny�/ D infx2X L.PGx� /.x; Ny�/ �
L.PGx� /. Nx; Ny�/. But Nx is an "-optimal solution to .PGx�/ and Ny� is an �-optimal
solution to .DGx�/, consequently

v.DGx�/ � � � �˚�.0; Ny�/ � L.PGx� /. Nx; Ny�/ � ˚. Nx; 0/ � hx�; Nxi
� v.PGx�/C ":

Recalling that v.PGx�/ � v.DGx�/C 	, one obtains from here

v.PGx�/ � � � 	 � L.PGx� /. Nx; Ny�/ � v.DGx�/C "C 	;

followed by

˚. Nx; 0/� hx�; Nxi � "� �� 	 � L.PGx� /. Nx; Ny�/ � �˚�.x�; Ny�/C �C "C 	:

Employing again the formulae derived above via Remark 2.8 one obtains that
. Nx; Ny�/ 2 X � Y � is an .�C "C 	; �C "C 	/-saddle point of L.PGx� /. ut

If one takes in Theorem 2.6 � D " D 	 D 0, the two assertions become
equivalent, rediscovering [48, Theorem 3.3.2].

Corollary 2.11. Let x� 2 X� and assume that ˚ is a convex and lower
semicontinuous function taking nowhere the value �1. Then . Nx; Ny�/ 2 X � Y �
is a saddle point of L.PGx� / if and only if Nx is an optimal solution to .PGx�/, Ny� is
an optimal solution to .DGx�/ and v.PGx�/ D v.DGx�/.

The general scalar optimization problem .PG/ encompasses as special cases
many types of scalar optimization problems. In the next subsections we shall write
both constrained and unconstrained optimization problems as special cases of .PG/
and dual problems will be assigned to them by carefully choosing the employed
perturbation functions.

2.2.2 Constrained Scalar Optimization Problems

The first class of particular optimization problems for which we particularize the
investigations from Sect. 2.2.1 is the one of the constrained optimization problems.
Consider the nonempty set S � X and let the nonempty convex cone C � Y induce
a partial ordering on Y . Take the proper functions f W X ! R and h W X ! Y �,
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fulfilling the feasibility condition dom f \S \ h�1.�C/ ¤ ;. The primal problem
we treat further is

.PC/ inf
x2A

f .x/,

where the feasible set of the problem .PC/ is

A D fx 2 S W h.x/ 2 �C g:

There are different choices of the perturbation function ˚ for which .PC/ turns
out to be a special case of .PG/. In the following we consider two of them, which
will lead to two different dual problems to .PC/ that arise from .DG/.

It is known that the classical Lagrange dual problem to .PC/,

.DCL/ sup
z�2C�

inf
x2S

�
f .x/C .z�h/.x/

�
,

can be obtained as a special case of .DG/ by using the perturbation function

˚L W X � Y ! R; ˚L.x; z/ D
�
f .x/; if x 2 S; h.x/ 2 z � C;
C1; otherwise;

which is proper because f and h are proper and due to the feasibility condition, and
whose conjugate is

.˚L/� W X� � Y � ! R; .˚L/�.x�; z�/ D .f � .z�h/C ıS /
�.x�/C ıC�.�z�/:

Let " � 0. The first statement we give presents a characterization via epigraph
inclusions of a situation of stable "-duality gap for the problems .PC/ and .DCL/

that is a special case of Theorem 2.1.

Theorem 2.7. Let W � X�. Then it holds

epi.f C ıA /
� \ .W � R/ �

[

z�2C�

epi.f C .z�h//�S \ .W � R/ � .0; "/

if and only if for each x� 2 W there exists a Nz� 2 C � such that

.f C ıA /
�.x�/ � .f C .Nz�h//�S .x�/ � ":

Remark 2.10. Analogously one can particularize the other statements from
Sect. 2.2.1 to the present framework, too, rediscovering or improving different
statements from [14, 141, 142]. We mention here only that for the strong duality
statement for the problems .PC/ and .DCL/, which follows directly from
Corollary 2.6 or Remark 2.5, besides convexity assumptions which guarantee
the convexity of the perturbation function ˚L, ensured, for instance, by taking S
and f convex and h C -convex, one can employ the regularity conditions obtained
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by particularizing .RCG
i /, i 2 f1; 2; 3; 4g, namely (cf. [48])

.RCL
1 / 9x0 2 dom f \ S such that h.x0/ 2 � intC;

which is the classical Slater constraint qualification,

.RCL
2 /
X and Y are Fréchet spaces; S is closed; f is lower semicontinuous;
h is C � epi �closed and 0 2 sqri

�
h.dom f \ S \ dom h/C C

�
;

.RCL
3 /

dim lin .h.dom f \ S \ dom h/C C/ < C1 and
0 2 ri .h.dom f \ S \ dom h/C C/ ;

and

.RCL
4 /
S is closed; f is lower semicontinuous; h is C � epi �closed
and

S

z�2C�

epi.f C .z�h/C ıS /
� is closed in the topology !.X�; X/ � R:

Another perturbation function employed to assign a conjugate dual problem to
.PC/ as a special case of .DG/ is (cf. [21, 48])

˚FL W X �X � Y ! R; ˚FL.x; y; z/ D
�
f .x C y/; if x 2 S; h.x/ 2 z � C;
C1; otherwise:

It is proper as well because f and h are proper and due to the fulfillment of the
mentioned feasibility condition and has as conjugate the function .˚FL/� W X� �
X� � Y � ! R,

.˚FL/�.x�; y�; z�/ D f �.y�/C .�.z�h/C ıS /
�.x� � y�/C ı�C�.z�/:

The dual problem it attaches to .PC/ is the Fenchel-Lagrange dual problem

.DCFL/ sup
y�2X�;z�2C�

˚ � f �.y�/ � ..z�h/C ıS /
�.�y�/

�
.

The characterization via epigraph inclusions of a situation of stable "-duality gap
for the problems .PC/ and .DCFL/ that is a special case of Theorem 2.1 follows.

Theorem 2.8. Let W � X�. Then it holds

epi.f C ıA /
� \ .W � R/ �

�
epi f � C

[

z�2C�

epi.z�h/�S
	

\ .W � R/ � .0; "/

if and only if for each x� 2 W there exist Ny� 2 X� and Nz� 2 C � such that

.f C ıA /
�.x�/ � f �. Ny�/C .Nz�h/�S .x� � Ny�/ � ":
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Remark 2.11. Analogously one can particularize the other statements from
Sect. 2.2.1 to the present framework, too. We mention here only that for
strong duality for the problems .PC/ and .DCFL/, which follows directly from
Corollary 2.6 or Remark 2.5, besides convexity assumptions which guarantee the
convexity of the perturbation function ˚FL, ensured, for instance, by taking S and
f convex and h C -convex, one can employ the regularity conditions obtained by
particularizing .RCG

i /, i 2 f1; 2; 3; 4g, namely

.RCFL
1 / 9x0 2 dom f \ S such that f is continuous at x0 and h.x0/ 2 � intC;

.RCFL
2 /

X and Y are Fréchet spaces; S is closed; f is lower semicontinuous; h is
C � epi �closed and 0 2 sqri

�
dom f � C � epi�C .�h/ \ .S � Y /�;

.RCFL
3 /

dim lin .dom f � C � epi�C .�h/ \ .S �Z// < C1 and
0 2 ri .dom f � C � epi�C .�h/ \ .S �Z// ;

and

.RCFL
4 /

S is closed; f is lower semicontinuous; h is C � epi �closed and
epif � C S

z�2C�

epi..z�h/C ıS /
� is closed in the topology!.X�; X/ � R:

Other perturbation functions can be employed in order to assign conjugate dual
problems to .PC/ as special cases of .DG/, too. For instance, using the perturbation
function

˚EFL W X �X �X �Y ! R; ˚EFL.x; y; t; z/ D
(
f .x C y/; if x 2 S; h.x C t / 2 z � C;
C1; otherwise;

that is proper as well because f and h are proper and due to the fulfillment of
the mentioned feasibility condition and has as conjugate the function .˚EFL/� W
X� �X� �X� � Y � ! R,

.˚EFL/�.x�; y�; t�; z�/ D f �.y�/C .�z�h/�.t�/C�S.x
� �y� � t�/C ı�C�.z�/;

one can attach to .PC/ is the extended Fenchel-Lagrange dual problem (cf. [14,46])

.DCEFL/ sup
y�;t�2X�;

z�2C�

˚ � f �.y�/ � .z�h/�.t�/ � �S.�y� � t�/�.

The characterization via epigraph inclusions of a situation of stable "-duality gap
for the problems .PC/ and .DCEFL/ that is a special case of Theorem 2.1 follows.

Theorem 2.9. Let W � X�. Then it holds

epi.f CıA /� \ .W �R/�
�

epi f � Cepi �S C
[

z�2C�

epi.z�h/�
	

\.W �R/�.0; "/
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if and only if for each x� 2 W there exist Ny�; Nt� 2 X� and Nz� 2 C � such that

.f C ıA /
�.x�/ � f �. Ny�/C .Nz�h/�.t�/C �S.x

� � Ny� � Nt�/ � ":

However, due to the fact that ˚EFL and .DCEFL/ have quite many variables we
will not work further with them in this book, as one can notice that already˚FL leads
in some cases to pretty complicated formulae. The interested reader can though
derive by means of ˚EFL similar statements to the ones given further for the other
perturbation functions attached to .PC/, some of them being available in [14, 46].
Note also that another Fenchel-Lagrange type dual problem can be assigned to .PC/
via the perturbation function

˚LF W X �X � Y ! R; ˚LF.x; t; z/ D
�
f .x/; if x 2 S; h.x C t / 2 z � C;
C1; otherwise;

namely (cf. [14, 46])

.DCLF/ sup
t�2X�;z�2C�

˚ � f �
S .�t�/ � .z�h/�.t�/

�
,

but we will not mention it further either.

Remark 2.12. In order to give stable "-duality statements for .PC/ and the dual
problems we assigned to it within this subsection one can introduce the functions
(cf. [14, 141, 142]) h˘, hS̆ W X� ! R, defined by h˘ D infz�2C�.z�h/� and hS̆ D
infz�2C�.z�h/�S , respectively. Then, for instance, the stable "-duality gap for the
problems .PC/ and .DCFL/ is characterized through

epi.f C ıA /
� � epi.f ��hS̆ / � .0; "/:

Remark 2.13. Other interesting statements can be derived from the ones given in
this subsection by taking f .x/ D 0 for all x 2 X , when relations involving the
feasible set A and, on the other hand, the constraint function h and the constraint
set S can be characterized via epigraph inclusions, as done in [14, 46, 47].

2.2.3 Unconstrained Scalar Optimization Problems

Consider now the unconstrained optimization problem

.PU/ inf
x2XŒf .x/C g.Ax/�,

where A W X ! Y is a linear continuous mapping and f W X ! R and g W Y ! R

are proper functions fulfilling the feasibility condition dom f \ A�1.domg/ ¤ ;.
The perturbation function considered for assigning to .PU/ the classical Fenchel
dual problem
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.DU/ sup
y�2Y �

f�f �.A�y�/ � g�.�y�/g,

is (cf. [21, 221])

˚U W X � Y ! R; ˚U .x; y/ D f .x/C g.Ax C y/;

which is proper because f and g are proper and due to the fulfillment of the
mentioned feasibility condition and has as conjugate the function

.˚U /� W X� � Y � ! R; .˚U /�.x�; y�/ D f �.x� � A�y�/C g�.y�/:

Let " � 0. The first statement we give presents a characterization via epigraph
inclusions of a situation of stable "-duality gap for the problems .PU/ and .DU/ that
is a special case of Theorem 2.1. Before proceeding, let us introduce the notation
.A� � idR/.epig�/ D f.x�; r/ 2 X� � R W 9y� 2 Y � such that A�y� D x� and
.y�; r/ 2 epig�g.

Theorem 2.10. Let W � X�. Then it holds

epi.f C g ıA/� \ .W � R/ � �
epi f � C .A� � idR/.epig�/

�\ .W � R/� .0; "/

if and only if for each x� 2 W there exists a Ny� 2 Y � such that

.f C g ı A/�.x�/ � f �.A� Ny�/C g�. Nx� � Ny�/ � ":

Remark 2.14. Analogously one can particularize the other statements from
Sect. 2.2.1 to the present framework, too. We mention here only that for strong
duality for the problems .PU/ and .DU/, which follows directly from Corollary 2.6
or Remark 2.5, besides convexity assumptions which guarantee the convexity of the
perturbation function ˚U , ensured, for instance, by taking f and g convex, one can
employ the regularity conditions obtained by particularizing .RCG

i /, i 2 f1; 2; 3; 4g,
namely

.RCU
1 / 9x0 2 dom f \ A�1.domg/ such that g is continuous atAx0;

.RCU
2 /
X and Y are Fréchet spaces; f and g are lower semicontinuous
and 0 2 sqri.domg � A.dom f //;

.RCU
3 / dim lin.domg � A.dom f // < C1 and riA.dom f / \ ri domg ¤ ;;

and

.RCU
4 /
f and g are lower semicontinuous and epi f � C .A� � idR/.epig�/
is closed in the topology !.X�; X/ � R:
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Remark 2.15. Valuable special cases of the scalar optimization problem .PU/, met
in the literature in various circumstances, can be obtained, for instance, by taking
X D Y and A to be the identity mapping on X or f to be the zero function,
respectively. The vector duals assigned above to .PU/ and the corresponding
duality and optimality conditions statements can be directly particularized for these
problems, too.

A special case of Theorem 2.10 that will be used later in our presentation follows.

Proposition 2.1. Let the proper, convex and lower semicontinuous functions f; g W
X ! R satisfying dom f \ domg ¤ ; and x� 2 X�. Then f ��g� is !.X�; X/-
lower semicontinuous at x� and exact at x� if and only if

inf
x2X

�
f .x/C g.x/ � hx�; xi� D max

y�2X�

f�f �.y�/ � g�.y� � x�/g: (2.2.12)

Proof. Taking in Theorem 2.10 X D Y , A to be the identity mapping on X , W D
fx�g and " D 0, one obtains, via Corollary 2.1, that (2.2.12) is equivalent to epi.f C
g/� \ .fx�g � R/ D .epi f � C epig�/ \ .fx�g � R/, i.e. there exists an a� 2 X�
such that .f Cg/�.x�/ D f �.a�/Cg�.x� �a�/. Because .f Cg/� D cl.f ��g�/
in the present hypotheses, this means actually that cl.f ��g�/.x�/ D f ��g�.x�/
and the infimal convolution is exact at x�. ut

Moreover, one can see .PC/ as an unconstrained optimization problem, namely

.PC/ inf
x2XŒf .x/C ıA .x/�,

where the notations are consistent with the ones in Sect. 2.2.2. Then, taking A WD
idX , f WD f and g WD ıA , a Fenchel dual problem can be attached to .PC/, namely

.DCF / sup
y�2X�

f�f �.y�/ � �A .�y�/g.

This dual problem to .PC/ can be obtained directly from .DG/, too, by using the
perturbation function

˚F W X �X ! R; ˚F .x; y/ D
�
f .x C y/; if x 2 A ;

C1; otherwise;

proper because f and h are proper and due to the fulfillment of the mentioned
feasibility condition and having as conjugate the function

.˚F /� W X� �X� ! R; .˚F /�.x�; y�/ D �A .x
� � y�/C f �.y�/:

Remark 2.16. One can particularize the statements from Sect. 2.2.1 for this primal-
dual pair of problems, too. However, we present here only the regularity conditions
which, besides convexity assumptions which guarantee the convexity of the per-
turbation function ˚F , ensured, for instance, by taking S and f convex and h
C -convex, guarantee the strong duality. They are obtained by particularizing .RCG

i /,
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i 2 f1; 2; 3; 4g, being

.RCF
1 / 9x0 2 dom f \ A such that f is continuous at x0;

or, alternatively,

.RCF 0

1 / dom f \ int A ¤ ;;

.RCF
2 /
X is a Fréchet space; A is closed; f is lower semicontinuous
and 0 2 sqri.dom f � A /;

.RCF
3 / dim lin.dom f � A / < C1 and ri dom f \ ri A ¤ ;;

and

.RCF
4 /

A is closed; f is lower semicontinuous and epif � C epi �A

is closed in the topology !.X�; X/ � R:

Remark 2.17. In order to ensure the convexity of the set A it is sufficient to take
the set S convex and h to be a C -convex vector function. To guarantee that the set
A is closed it is enough to assume that S is a closed set and h a C -epi-closed vector
function.

One can extend the investigations on "-duality regarding unconstrained problems
towards problems consisting in the minimization of a sum of a function with a C -
increasing function composed with a vector function over the whole space X . Let
the nonempty convex cone C � Y induce a partial ordering on Y , the proper
function f W X ! R, the proper and C -increasing function g W Y ! R

and the proper vector function h W X ! Y � fulfilling the feasibility condition
domg \ .h.dom f /C C/ ¤ ;. To the unconstrained optimization problem

.PS/ inf
x2XŒf .x/C g.h.x//�,

one can attach via perturbation theory different dual problems that are special
cases of .DG/.

Taking the perturbation function

˚1 W X � Y ! R; ˚1.x; y/ D f .x/C g.h.x/C y/;

one assigns to .PS/ the following conjugate dual problem

.DS1/ sup
y�2C�

˚ � g�.y�/ � .f C .y�h//�.0/
�
,

while by means of

˚2 W X �X � Y ! R; ˚2.x; y; z/ D f .x C y/C g.h.x/C z/;
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one attaches to .PS/ another conjugate dual problem, namely

.DS2/ sup
y�2X�;
z�2C�

˚ � g�.z�/ � f �.y�/ � .z�h/�.�y�/
�
.

One can directly adapt the general statements regarding .PG/ and .DG/ for .PS/
and its duals by considering the perturbation functions ˚1 and ˚2 or, alternatively,
the assertions for .PU/ and .DU/ can be used, when one carefully constructs two
functions of two variables say, F andG, such that .F CG/�.�; 0/ D .f Cgıh/�, as
done in [21,45]. However, we will not pursue here this path, referring the interested
reader to [13] for statements similar to the ones given within this section that involve
.PS/ and its dual problems.

2.3 Characterizations Involving Subdifferentials

After the characterizations via epigraphs of "-duality gap statements presented in
Sect. 2.2, we provide in the following similar ones, but involving subdifferential
inclusions. Again, we begin our investigations with a general scalar optimization
problem embedded into a family of general perturbed scalar optimization problems
and then it is particularized to be constrained and unconstrained, respectively.
Adding convexity and topological hypotheses to the functions involved, character-
izations via closedness type regularity conditions of the zero duality gap and total
duality are obtained, too.

2.3.1 General Perturbed Scalar Optimization Problems

Consider again the framework of Sect. 2.2.1. Let " � 0. The first statement we give
presents a characterization via epigraph inclusions of a situation of stable "-duality
gap for the problems .PG/ and .DG/.

Theorem 2.11. Let x 2 X . Then

@˚.�; 0/.x/ D
\

�>0

PrX�@"C�˚.x; 0/ (2.3.13)

holds if and only if for each x� 2 @˚.�; 0/.x/ one has

.˚.�; 0//�.x�/ � inf
y�2Y �

˚�.x�; y�/ � ": (2.3.14)

Proof. Note first that one always has @˚.�; 0/.x/ 	 PrX�@"C�˚.x; 0/ whenever
� > 0. Assume that the reverse inclusion holds for any � > 0. Then x� 2
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@˚.�; 0/.x/ if and only if for each � > 0 there exists a y�
� 2 Y � such that

.x�; y�
� / 2 @"C�˚.x; 0/. This means that ˚.x; 0/C˚�.x�; y�

� / � hx�; xi C "C �,
that is equivalent to ˚�.x�; y�

� / � " � hx�; xi � ˚.x; 0/ C �, which yields
infy�2Y � ˚�.x�; y�/ � " � .˚.�; 0//�.x�/ C�. The latter inequality holds for any
� > 0, so letting � tend towards 0 we obtain (2.3.14). The other implication follows
by making the same steps backwards, using moreover that x� 2 @˚.�; 0/.x/ if and
only if .˚.�; 0//�.x�/ D hx�; xi � ˚.x; 0/. ut
Remark 2.18. The inequality (2.3.14) can be rewritten as v.PGx�/ � v.DGx�/C ",
i.e. in Theorem 2.11 we provide an equivalent characterization via subdifferential
inclusions of the "-duality gap for .PGx�/ and .DGx�/, when x� 2 @˚.�; 0/.x/, i.e.
x is an optimal solution to the problem .PGx�/.

Analogously to Theorem 2.11 one can prove the following statement.

Theorem 2.12. Let x 2 X and 	 > 0. Then the validity of (2.3.14) for all x� 2
@	˚.�; 0/.x/ yields

@	˚.�; 0/.x/ D
\

�>0

PrX�@"C�C	˚.x; 0/: (2.3.15)

Viceversa, (2.3.15) yields for any x� 2 @	˚.�; 0/.x/ that

.˚.�; 0//�.x�/ � inf
y�2Y �

˚�.x�; y�/ � " � 	: (2.3.16)

Remark 2.19. Let x 2 X . In case " D 0, Theorem 2.12 yields that

@	˚.�; 0/.x/ D
\

�>0

PrX�@�C	˚.x; 0/ (2.3.17)

holds for all 	 > 0 if and only if whenever 
 > 0 one has .˚.�; 0//�.x�/ �
infy�2Y � ˚�.x�; y�/ � 
 for all x� 2 @
˚.�; 0/.x/. The last inequality yields
.˚.�; 0//� .x�/ � infy�2Y � ˚�.x�; y�/ whenever x� 2 \
>0@
˚.�; 0/.x/ D
@˚.�; 0/.x/, and since the opposite inequality holds in general, we obtain that if
(2.3.17) is valid for all 	 > 0 one has .˚.�; 0//�.x�/ D infy�2Y � ˚�.x�; y�/ for all
x� 2 @˚.�; 0/.x/.

The last assertion in Remark 2.19 can be improved in order to become an
equivalence as follows.

Theorem 2.13. The formula (2.3.17) is valid for all x 2 X and all 	 > 0 if and
only if for all x� 2 X� one has .˚.�; 0//�.x�/ D infy�2Y � ˚�.x�; y�/.

Proof. Let x 2 X . If .x; 0/ … dom˚ , there is nothing to prove, so we consider the
case ˚.x; 0/ 2 R. Take now x� 2 X�. If .˚.�; 0//�.x�/ D C1 there is nothing to
prove, otherwise x� 2 @
˚.�; 0/.x/ for all 
 � ˚.x; 0/C .˚.�; 0//�.x�/� hx�; xi.

The validity of (2.3.17) for 	 D ˚.x; 0/C .˚.�; 0//�.x�/� hx�; xi yields like in
the proof of Theorem 2.11 that infy�2Y � ˚�.x�; y�/ � 	 � hx�; xi � ˚.x; 0/C �
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for all � > 0. Letting � tend towards 0 and replacing 	 with its value, it follows
infy�2Y � ˚�.x�; y�/ � .˚.�; 0//�.x�/, which proves the sufficiency.

To show the necessity, let 	 > 0 and x� 2 @	˚.�; 0/.x/. Then the hypothesis
yields ˚.x; 0/C infy�2Y � ˚�.x�; y�/ � hx�; xi C 	. If � > 0, there exists a y�

� 2
Y � such that ˚.x; 0/C˚�.x�; y�

� / � hx�; xi C 	C �, i.e. x� 2 PrX�@�C	˚.x; 0/.
As �, x and 	 were arbitrarily chosen, the conclusion follows. ut

Enriching the function ˚ with convexity and topological properties, one can
deliver another characterization of (2.3.17) (see also [28, Theorem 3.1], where the
proof is made via epigraph inclusions) as well as a consequence of Theorem 2.11.

Theorem 2.14. Let the function ˚ be also convex and lower semicontinuous. The
formula (2.3.17) is valid for all x 2 X and all 	 > 0 if and only if the function
infy�2Y � ˚�.�; y�/ is !.X�; X/-lower semicontinuous.

Proof. As shown in [174] (see also [49]), the hypotheses yield that the
function .˚.�; 0//� is actually the !.X�; X/-lower semicontinuous hull of
infy�2Y � ˚�.�; y�/. The conclusion is then a consequence of Theorem 2.13. ut
Corollary 2.12. If the function ˚ is also convex and lower semicontinuous and the
function infy�2Y � ˚�.�; y�/ is !.X�; X/-lower semicontinuous, then for all x 2 X
it holds

@˚.�; 0/.x/ D
\

�>0

PrX�@�˚.x; 0/:

One can prove the following characterization via subdifferential inclusions of
a situation of "-duality gap for .PG/ and .DG/ in the same way as done for
Theorem 2.11, too.

Theorem 2.15. Let x 2 X . Then

@"˚.�; 0/.x/ D
\

�>0

PrX�@"C�˚.x; 0/

holds if and only if for each x� 2 @"˚.�; 0/.x/ one has

˚.x; 0/ � hx�; xi � sup
y�2Y �

˚ � ˚�.x�; y�/
�C ": (2.3.18)

Remark 2.20. For an x� 2 @"˚.�; 0/.x/, the right-hand side of (2.3.18) is actually
v.DGx�/C ", while in the left-hand side we have something that can be larger than
or equal to .PGx�/. Thus, (2.3.18) yields the "-duality gap for .PGx�/ and .DGx�/

and in Theorem 2.15 we provide a sufficient condition based on subdifferential
inclusions that guarantees it.

Besides the "-duality gap statements for .PG/ and .DG/ provided above, we can
formulate other characterizations via subdifferential inclusions, as follows.
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Theorem 2.16. Let x 2 X . Then

@˚.�; 0/.x/ D PrX�@"˚.x; 0/ (2.3.19)

holds if and only if for each x� 2 @˚.�; 0/.x/ there exists a y� 2 Y � such that

.˚.�; 0//�.x�/ � ˚�.x�; y�/ � ": (2.3.20)

Proof. One always has @˚.�; 0/.x/ 	 PrX�@"˚.x; 0/. The reverse inclusion holds
if and only if for each x� 2 @˚.�; 0/.x/ there exists a y� 2 Y � such that .x�; y�/ 2
@"˚.x; 0/, i.e. ˚.x; 0/ C ˚�.x�; y�/ � hx�; xi C ". But x� 2 @˚.�; 0/.x/ if and
only if .˚.�; 0//�.x�/ D hx�; xi�˚.x; 0/ and the desired equivalence follows. ut
Theorem 2.17. One has

@	˚.�; 0/.x/ D PrX�@	˚.x; 0/ (2.3.21)

for all x 2 X and all 	 > 0 if and only if for all x� 2 X� it holds .˚.�; 0//�.x�/ D
miny�2Y � ˚�.x�; y�/.

Theorem 2.18. Let x 2 X . Then

@"˚.�; 0/.x/ D PrX�@"˚.x; 0/

holds if and only if for each x� 2 @"˚.�; 0/.x/ there exists a y� 2 Y � such that

˚.x; 0/ � hx�; xi � �˚�.x�; y�/C ":

Enriching the function ˚ with convexity and topological properties, one can
deliver another characterization of (2.3.21) that follows via Corollary 2.6 (see also
[28]), by means of a closedness type regularity condition this time.

Theorem 2.19. Let the function ˚ be also convex and lower semicontinuous. The
formula (2.3.21) is valid for all x 2 X and all 	 > 0 if and only if the set
PrX��R epi˚� is closed in the topology !.X�; X/ � R.

Using Theorem 2.16 and Corollary 2.6 one can show the following statement
(see also [28]).

Corollary 2.13. If the function ˚ is also convex and lower semicontinuous and the
set PrX��R epi˚� is closed in the topology !.X�; X/ � R, then for all x 2 X it
holds

@˚.�; 0/.x/ D PrX�@˚.x; 0/:

Remark 2.21. The difference between the closedness type regularity conditions
considered in Corollaries 2.12 and 2.13 can be clearer observed by comparing the
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way they can be equivalently written as formulae for the conjugate of ˚.�; 0/. The
first of them consists of an infimum, thus it characterizes the stable zero duality
gap for .PG/ and .DG/, while the other one means that the same infimum is also
attained, i.e. there is stable strong duality for .PG/ and .DG/, being thus obviously
stronger than its counterpart. An example to underline this fact can be found in [56].
The difference between these two conditions can be seen also when we equivalently
characterize them as formulae for the "-subdifferential of ˚.�; 0/ in Theorems 2.14
and 2.19, respectively.

The statements we provided within this subsection can be employed to deliver "-
optimality conditions for .PG/ and .DG/, too, as follows. First we give a statement
that is a consequence of Theorem 2.12.

Theorem 2.20. (a) Assuming that the regularity condition (2.2.3) is fulfilled and
that x 2 X is an "-optimal solution to .PG/, for each � > 0 there exists a
y�
� 2 Y � such that .0; y�

� / 2 @�C"˚.x; 0/, i.e. ˚.x; 0/ C ˚�.0; y�
� / � � C ".

Moreover, y�
� is an �C "-optimal solution to .DG/.

(b) If x 2 X and for each � > 0 there exists a y�
� 2 Y � such that .0; y�

� / 2
@�C"˚.x; 0/, then x 2 X is an "-optimal solution to .PG/ and each y�

� is an
�C "-optimal solution to .DG/.

Analogously one can employ Theorem 2.18 in order to achieve "-optimality
conditions for .PG/ and .DG/, as follows.

Theorem 2.21. (a) Assuming that the regularity condition (2.3.21) is fulfilled and
that x 2 X is an "-optimal solution to .PG/, there exists a y� 2 Y � such that
.0; y�/ 2 @"˚.x; 0/, i.e.˚.x; 0/C˚�.0; y�/ � ". Moreover, y� is an "-optimal
solution to .DG/.

(b) If x 2 X and y� 2 Y � fulfill .0; y�/ 2 @"˚.x; 0/, then x 2 X is an "-optimal
solution to .PG/ and y� an "-optimal solution to .DG/.

Remark 2.22. The other statements given in this subsection can be employed for
delivering "-optimality conditions for .PG/ and .DG/, too. Taking " D 0 in
Theorem 2.21 or in the corresponding statements following from Theorems 2.16,
2.17 or 2.19 one rediscovers the optimality condition given in Corollary 2.8.

Now let us see what happens when the primal problem is particularized to be first
constrained, then unconstrained.

2.3.2 Constrained Scalar Optimization Problems

Consider again the framework of Sect. 2.2.2 and we work with the constrained
primal optimization problem .PC/ and the perturbations we employed for it in order
to attach dual problems to it. Let " � 0. Using first the Lagrange perturbation
function ˚L, one obtains from Theorem 2.15 the following statement where a
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subdifferential inclusion characterizes a situation of "-duality gap for .PC/ and
.DCL/.

Theorem 2.22. Let x 2 X . Then

@".f C ıA /.x/ D
\

�>0

[

z�2C�

@"C�C.z�h/.x/.f C ıS C .z�h//.x/

if and only if for each x� 2 @".f C ıA /.x/ one has

f .x/ � hx�; xi � sup
z�2C�

˚ � .f C .Nz�h//�S .x�/
�C ":

Analogously one can particularize the other statements from Sect. 2.3.1 to
the present framework, too. For instance, Theorem 2.18 turns into the following
assertion.

Theorem 2.23. Let x 2 X . Then

@".f C ıA /.x/ D
[

z�2C�

@"C.z�h/.x/.f C ıS C .z�h//.x/

if and only if for each x� 2 @".f C ıA /.x/ there exists a z� 2 C � such that

f .x/ � hx�; xi � �.f C .Nz�h//�S .x�/C ":

Adding convexity and topological hypotheses to the functions and sets involved,
one obtains the following consequences of Theorems 2.14 and 2.19, respectively.

Theorem 2.24. Let S be a closed and convex set, f a convex and lower semicon-
tinuous function and h a C -convex and C -epi-closed vector function. The formula

@	.f C ıA /.x/ D
\

�>0

[

z�2C�

@	C�C.z�h/.x/.f C ıS C .z�h//.x/

is valid for all x 2 X and all 	 > 0 if and only if the function infz�2C�.f C .Nz�h//�S
is !.X�; X/-lower semicontinuous.

Theorem 2.25. Let S be a closed and convex set, f a convex and lower semicon-
tinuous function and h a C -convex and C -epi-closed vector function. The formula

@	.f C ıA /.x/ D
[

z�2C�

@	C.z�h/.x/.f C ıS C .z�h//.x/

is valid for all x 2 X and all 	 > 0 if and only if the set [z�2C� epi.f C.z�h/CıS /�
is closed in the topology !.X�; X/ � R.
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Another perturbation function employed to assign a conjugate dual problem to
.PC/ as a special case of .DG/ is˚FL. The statements from Sect. 2.3.1 particularized
above for ˚L become in this case the following ones.

Theorem 2.26. Let x 2 X . Then

@".f C ıA /.x/ D
\

�>0

[

z�2C�;"1;"2�0;
"1C"2D"C�C.z�h/.x/

�
@"1f .x/C @"2..z

�h/C ıS /.x/
�

if and only if for each x� 2 @".f C ıA /.x/ one has

f .x/ � hx�; xi � sup
z�2C�;
y�2X�

˚ � f �.y�/ � .Nz�h/�S .x� � y�/
�C ":

Theorem 2.27. Let x 2 X . Then

@".f C ıA /.x/ D
[

z�2C�;"1;"2�0;
"1C"2D"C�C.z�h/.x/

�
@"1f .x/C @"2..z

�h/C ıS /.x/
�

if and only if for each x� 2 @".f C ıA /.x/ there exist z� 2 C � and y� 2 X� such
that

f .x/ � hx�; xi � �f �.y�/ � .z�h/�S .x� � y�/C ":

Theorem 2.28. Let S be a closed and convex set, f a convex and lower semicon-
tinuous function and h a C -convex and C -epi-closed vector function. The formula

@	.f C ıA /.x/ D
\

�>0

[

z�2C�;"1;"2�0;
"1C"2D	C�C.z�h/.x/

�
@"1f .x/C @"2..z

�h/C ıS /.x/
�

is valid for all x 2 X and all 	 > 0 if and only if the function infz�2C� f�.Nz�h/�S
is !.X�; X/-lower semicontinuous.

Theorem 2.29. Let S be a closed and convex set, f a convex and lower semicon-
tinuous function and h a C -convex and C -epi-closed vector function. The formula

@	.f C ıA /.x/ D
[

z�2C�;"1;"2�0;
"1C"2D	C.z�h/.x/

�
@"1f .x/C @"2..z

�h/C ıS /.x/
�

is valid for all x 2 X and all 	 > 0 if and only if the set epi f � C [z�2C� epi.z�h/�S
is closed in the topology !.X�; X/ � R.
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Analogously one can particularize the other statements from Sect. 2.3.1 to the
present framework, too.

2.3.3 Unconstrained Scalar Optimization Problems

Consider now the framework of Sect. 2.2.3 and we work again with the uncon-
strained primal optimization problem .PU/ and the perturbation function ˚U

employed in order to attach dual problems to it. Let " � 0. From Theorem 2.15
one obtains the following statement where a subdifferential inclusion characterizes
a situation of "-duality gap for .PU/ and .DU/.

Theorem 2.30. Let x 2 X . Then

@".f C g ı A/.x/ D
\

�>0

[

"1;"2�0;
"1C"2D"C�

�
@"1f .x/C A�@"2g.Ax/

�

if and only if for each x� 2 @".f C g ı A/.x/ one has

f .x/C g.Ax/ � hx�; xi � sup
y�2X�

˚ � f �.A�y�/ � g�.x� � y�/
�C ":

Further, Theorem 2.18 turns into the following assertion.

Theorem 2.31. Let x 2 X . Then

@".f C g ı A/.x/ D
[

"1;"2�0;
"1C"2D"

�
@"1f .x/C A�@"2g.Ax/

�

if and only if for each x� 2 @".f C g ı A/.x/ there exists a y� 2 X� such that

f .x/C g.Ax/ � hx�; xi � �f �.A�y�/ � g�.x� � y�/C ":

Adding convexity and topological hypotheses to the functions and sets involved,
one obtains the following consequences of Theorems 2.14 and 2.19, respectively.

Theorem 2.32. Let the functions f and g be also convex and lower semicontinu-
ous. The formula

@	.f C g ı A/.x/ D
\

�>0

[

"1;"2�0;
"1C"2D	C�

�
@"1f .x/C A�@"2g.Ax/

�

is valid for all x 2 X and all 	 > 0 if and only if the function infy�2C�

�
f �.A�y�/C

g�.� � y�/
�

is !.X�; X/-lower semicontinuous.
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Theorem 2.33. Let the functions f and g be also convex and lower semicontinu-
ous. The formula

@	.f C g ı A/.x/ D
[

"1;"2�0;
"1C"2D	

�
@"1f .x/C A�@"2g.Ax/

�

is valid for all x 2 X and all 	 > 0 if and only if the set epi f � C.A� � idR/.epig�/
is closed in the topology !.X�; X/ � R.

Analogously one can particularize the other statements from Sect. 2.3.1 to the
present framework, too. We present here only what becomes Corollary 2.13 in this
framework, since this statement will be needed later in our presentation (see also
[21, 48]).

Corollary 2.14. If the functions f and g are also convex and lower semicontinuous
and the set epi f � C .A� � idR/.epig�/ is closed in the topology !.X�; X/ � R,
then for all x 2 X one has

@.f C g ı A/.x/ D @f .x/C A�@g.Ax/:

Moreover, one can see .PC/ as an unconstrained optimization problem like in
Sect. 2.2.3 and the corresponding counterparts of the statements given above can be
formulated for it by particularizing these assertions or by employing the perturbation
function ˚F .

Remark 2.23. From the statements provided in Sects. 2.3.2 and 2.3.3 one can derive
"-optimality conditions for .PC/ and .PU/ and their dual problems, as done in the
general case in Theorems 2.20 and 2.21.

Remark 2.24. Further characterizations of stable "-duality gap and strong duality
statements via epigraph and subdifferential inclusions in the vein of the ones
provided within this chapter for constrained optimization problems can be found
in [14], while in [13] similar assertions are delivered for unconstrained composed
optimization problems (see also [43]). Moreover, in [28] we have provided equiv-
alent characterizations of stable zero duality gap and stable strong duality via
epigraph inclusions for both constrained and unconstrained, as well for composed
optimization problems with the involved functions taken convex.



Chapter 3
Minimality Concepts for Sets

3.1 Historical Overview and Motivation

Solving a scalar optimization problem usually means to determine the points
where the objective function attains its minimum (respectively maximum) over
the feasible set, but one can also look for solutions satisfying stronger conditions,
like weak sharp minima or strong minima. A similar situation can be found in
vector optimization, too, where due to the increased complexity of the problems
the solution concepts are more diversified. The most known and widely used of
them is the (Pareto-)minimality, whose roots go back to the late nineteen century
when Edgeworth and Pareto, respectively, introduced the first notions of optimality
in multiobjective optimization. Its underlying concept can be understood as follows.
Given an initial allocation of goods among a set of individuals, a change to a
different allocation that makes at least one individual better off without making any
other individual worse off is called a Pareto-improvement. An allocation is defined
as Pareto optimal when no further Pareto-improvements can be made. This notion
was then extended for partial orders induced by convex cones, a point being called
(Pareto-)minimal to a set where it belongs if there is no other element of the set
which is less than it with respect to the mentioned partial ordering.

However, the minimal elements of a set can be difficult to determine in many
situations and sometimes only some of them are required, thus different other
minimality concepts were considered in the literature. Some of them are weaker than
the classical one, as it is the case for the weak minimality and its generalizations,
while most of them are more restrictive than it, like the ideal minimality, strong
minimality or proper minimality. One can go even further by considering notions
like "-minimality or approximate minimality, but they surpass the purposes of the
present work.

In the literature one can find several weak minimality notions, some of them
mentioned for instance in [6, 7], defined via different interiority notions for the
cone that partially orders the working space. However the classical weak minimality
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introduced via a cone with a nonempty interior is the most used one because of its
alternative characterization via the linear scalarization. There exist several proper
minimality notions, too, reviewed and compared, for instance, in [48, Section 2.4].
However, for most of them the corresponding properly minimal elements are quite
difficult to identify because of the complexity of their definitions. The only one for
which the properly minimal elements can be relatively easily determined is actually
the most restrictive of these notions, namely the proper minimality in the sense
of linear scalarization. The corresponding properly minimal elements are actually
optimal solutions to an attached scalar optimization problem. But since the linear
scalarization may fail to deliver valuable results regarding the vector optimization
problems investigated for various purposes (see, for instance, [22, 81]) and, on the
other hand, as an unfortunate choice of its scalarization parameters can lead to
unbounded scalar optimization problems (see, for instance [15,92]), other functions
with similar properties, i.e. strongly or strictly cone-monotone increasing, were
employed for the same purpose in works like [31, 37, 92, 93, 97, 98, 102, 103, 139,
140, 166], giving birth to new proper and weak minimality notions, which under
certain conditions coincide with the already mentioned ones. Motivated by them, we
propose in Sect. 3.3.1 a general scheme for defining properly minimal elements with
respect to different scalarization functions, that will be employed later in Chap. 4 for
duality investigations on vector optimization problems.

We begin our investigations in Sect. 3.2 by considering several minimality
notions for sets regarding the partial ordering induced by a convex cone that is not
necessarily pointed. We also compare them, showing that most of the inclusions
between different types of properly minimal sets given in [48, Section 2.4] for
pointed ordering cones remain valid in the more general framework, too. Then we
take the ordering cone to be also pointed and we deliver new weak conditions which
guarantee the coincidence of several types of properly minimal elements. We also
show that under mild hypotheses the scalarization properties of the classical weak
minimality, which is defined when the interior of the ordering cone of the space
we work in is nonempty, remain valid when we extend it by considering only the
quasi interior of the mentioned cone nonempty. Similar investigations are done for
relatively minimal elements, that are defined when only the quasi-relative interior
of the ordering cone is known to be nonempty.

3.2 General Ordering Cones

In this section we present various minimality concepts for sets that are considered
regarding the partial ordering induced by a convex cone that is not necessarily
pointed. Then we compare the different minimality sets corresponding to a given set.

Although some of the following definitions can be given in more general settings,
consider a Hausdorff locally convex space V partially ordered by the nontrivial
convex cone K � V . Beginning with Sect. 3.3 we will impose the fulfillment of the
condition qiK� ¤ ;, that yields K�0 ¤ ; and, consequently, that the cone K is
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pointed. But, for the moment, we work withK possibly not pointed. LetM � V be
a nonempty set and we begin by recalling the definition of the minimal elements of
this set that is due to Borwein [18].

Definition 3.1. An element Nv 2 M is said to be a minimal element ofM (regarding
the partial ordering induced byK), if from v 5K Nv, v 2 M , follows v =K Nv. The set
of all minimal elements ofM is denoted by Min.M;K/ and it is called the minimal
set of M (regarding the partial ordering induced by K).

Remark 3.1. From Definition 3.1 follows that if Nv 2 M is a minimal element of M
then any Qv 2 M such that Qv 5K Nv is also a minimal element of M . Note further that
Nv 2 Min.M;K/ means that for all v 2 M fulfilling v 5K Nv it is binding to have
Nv � v 2 `.K/, which, when K is pointed turns into Nv D v.

Remark 3.2. One has Nv 2 Min.M;K/ if and only if one of the following conditions
is fulfilled (cf. [48])

(i) There is no v 2 M such that Nv � v 2 K n `.K/;
(ii) .Nv �K/ \M � Nv CK;

(iii) .�K/ \ .M � Nv/ � K.

The maximal elements of the set M (regarding the partial ordering induced by
K) are defined analogously, being actually the elements of the set Max.M;K/ WD
Min.M;�K/ D � Min.�M;K/.

Let us investigate now the relations that exist between the minimal elements of
M and M CK.

Proposition 3.1. It holds Min.M C K;K/ \ M � Min.M;K/ � Min.M C
`.K/;K/ D Min.M C K;K/, and the inclusions turn into equalities when K is
pointed.

Proof. If Nv 2 Min.M CK;K/\M , and there exists a v 2 M such that v 5K Nv and
Nv � v … `.K/, noting that v 2 M CK one obtains a contradiction to the minimality
of Nv in M CK. Consequently, Min.M CK;K/ \M � Min.M;K/

By [48, Lemma 2.4.1] it is known that Min.M;K/ � Min.M CK;K/.
If Nv 2 Min.M C `.K/;K/, then Nv 2 M C `.K/ � M C K. Let v 2 M and

k 2 Kn`.K/ such that and vCk 5K Nv. Then v 5K Nv�k 5K Nv. As v; Nv 2 MC`.K/
and Nv 2 Min.M C `.K/;K/, it follows that Nv 5K v, which yields Nv 5K v C k, i.e.
Nv 2 Min.M CK;K/. Consequently, Min.M C `.K/;K/ � Min.M CK;K/.

Finally, for Nv 2 Min.M C K;K/, if Nv 2 M C `.K/, then, assuming that Nv …
Min.M C `.K/;K/ leads like above to a contradiction to the minimality of Nv in
M CK. Assuming that Nv … M C `.K/, there exist v 2 M and k 2 K n `.K/ such
that Nv D v C k. But v 2 M C K, too, and v � Nv D �k 2 K n `.K/, that yields,
via Remark 3.2(iii), that Nv … Min.M C K;K/. Consequently, Min.M C K;K/ �
Min.M C `.K/;K/. ut

The minimality notion introduced above can be refined by defining the so-
called properly minimal elements of a set with respect to the considered ordering
cone. Properly minimal elements turn out to be minimal elements with additional
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properties. In the literature one can find different types of properly minimal elements
and we shall deal in the following with some of them, namely the ones considered
for the case K pointed in [48, Section 2.4]. The only exception concerns the ones
in the sense of Geoffrion (cf. [48, Definition 2.4.6]), which are defined only when
K is the nonnegative orthant of an Euclidian space, hence pointed. We show how
the definitions of the properly minimal elements of a set (regarding the partial
ordering induced by K) can be extended for the current framework. Moreover,
the inclusion relations between the sets of different properly minimal elements
proven in [48, Subsection 2.4.3] can be generalized for the situation when K is not
necessarily pointed, too. The proofs of these results are adapted from the ones in
[48, Subsection 2.4.3], but we include them here for the convenience of the reader.
Note also that here we work only with properly minimal elements, for considering
properly maximal elements one needs only replace the cone K by �K.

The first notion of proper minimality we introduce and investigate extends for not
necessarily pointed ordering cones the one due to Hurwicz (cf. [113,130]). Note that
it can be considered even in the more general setting of topological vector spaces.

Definition 3.2. An element Nv 2 M is said to be a properly minimal element ofM in
the sense of Hurwicz (regarding the partial ordering induced byK) if cl.coneco..M
�Nv/[K//\.�K/ � K. The set of all properly minimal elements ofM in the sense
of Hurwicz is denoted by PMinHu.M;K/.

Remark 3.3. The proper minimality of Nv 2 M in the sense of Hurwicz can be
equivalently written as 0 2 Min

�
cl.coneco..M � Nv/ [K//;K�.

Remark 3.4. In Definition 3.2, in Remark 3.2(iii) and further in all the definitions
of properly minimal elements that will follow in this section except the ones in the
sense of linear scalarization one can replace in the right-hand side of the inclusions
the cone K with `.K/, respectively K 0 with `.K 0/ in Definition 3.6.

Remark 3.5. Since M � Nv � cl.coneco..M � Nv/[K//, Remark 3.2(iii) yields that
PMinHu.M;K/ � Min.M;K/.

Proposition 3.2. It holds PMinHu.M;K/ D PMinHu.M C `.K/;K/ D
PMinHu.M CK;K/.

Proof. Since coneco..M�Nv/[K/ D coneco..MC`.K/�Nv/[K/ D coneco..MC
K � Nv/ [K/, the conclusion follows immediately. ut

To overcome the drawback of Geoffrion’s classical definition of proper minimal-
ity that is limited to the ordering cone K D R

kC, Borwein proposed in [16] a more
general notion of proper minimality, extended for not necessarily pointed ordering
cones as follows.

Definition 3.3. An element Nv 2 M is said to be a properly minimal element ofM in
the sense of Borwein (regarding the partial ordering induced byK) if clTMCK.Nv/\
.�K/ � K. The set of all properly minimal elements of M in the sense of Borwein
is denoted by PMinBo.M;K/.
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Remark 3.6. The proper minimality Nv 2 M in the sense of Borwein can be
equivalently written as 0 2 Min

�
clTMCK.Nv/;K

�
. Moreover, if V is metrizable,

then the tangent cone is closed and in this situation one may omit the closure
operation within Definition 3.3.

Remark 3.7. If K D f0g, [48, Remark 2.4.6(b)] yields PMinBo.M;K/ �
Min.M;K/. The same conclusion can be obtained when K ¤ f0g, too, as
follows. Assuming that Nv 2 PMinBo.M;K/ n Min.M;K/, there exists a v 2 M

such that Nv � v 2 K n `.K/. For l � 1, taking vl D Nv C .1=l/.v � Nv/,
one gets vl D v C ..l � 1/=l/.Nv � v/ 2 M C K. As liml!C1 vl D Nv and
liml!C1 l.vl � Nv/ D v � Nv, it follows v � Nv 2 TMCK.Nv/. Then v � Nv 2
TMCK.Nv/\ .�K n `.K// � clTMCK.Nv/\ .�K/, but, since v � Nv 2 K n `.K/, this
contradicts the proper minimality of Nv.

Proposition 3.3. It holds PMinBo.M;K/ � PMinBo.M C `.K/;K/ D
PMinBo.M CK;K/.

Proof. It always holds M C K � M C K C `.K/ � .M C K/ C K, and the
convexity of K guarantees that M C K D M C K C `.K/ D .M C K/ C K.
Therefore, TMCK.Nv/ D TMC`.K/CK.Nv/ D TMCKCK.Nv/ for all Nv 2 M CK. Taking
into consideration thatM � MC`.K/ � MCK, it follows that PMinBo.M;K/ �
PMinBo.M C `.K/;K/ � PMinBo.M CK;K/.

Take Nv 2 PMinBo.M C K;K/. If Nv 2 M C `.K/, one immediately gets Nv 2
PMinBo .M C `.K/;K/. Otherwise, there exist v 2 M and k 2 K n `.K/ such that
Nv D v C k. Then, for all l � 1, one gets vl D v C ..l � 1/=l/.Nv � v/ 2 M C K,
hence, like in Remark 3.7, it follows v � Nv 2 clTMCK.Nv/\ .�K/, but, since v � Nv 2
�Kn`.K/, this contradicts the proper minimality of Nv, consequently Nv 2 MC`.K/,
therefore PMinBo.M CK;K/ � PMinBo.M C `.K/;K/. ut

Another proper minimality notion introduced in order to extend Geoffrion’s one
for general convex cones originates from Benson’s paper [11] and it can be extended
for not necessarily pointed ordering cones as follows.

Definition 3.4. An element Nv 2 M is said to be a properly minimal element ofM in
the sense of Benson (regarding the partial ordering induced by K) if cl cone.M C
K � Nv/ \ .�K/ � K. The set of all properly minimal elements of M in the sense
of Benson is denoted by PMinBe.M;K/.

Remark 3.8. Since M � Nv � cl cone.M C K � Nv/, Remark 3.2(iii) yields that
PMinHu .M;K/ � Min.M;K/.

Proposition 3.4. It holds PMinBe.M;K/ � PMinBe.M C `.K/;K/ D
PMinBe.M CK;K/.

Proof. The convexity ofK guarantees thatMCK D MCKC`.K/ D .MCK/C
K. Therefore, for all v 2 V it holds cone.MCK�v/ D cone.MCKC`.K/�v/ D
cone.MCKCK�v/ and, taking into consideration thatM � MC`.K/ � MCK,
it follows that PMinBe.M;K/ � PMinBe.M C `.K/;K/ � PMinBe.M CK;K/.
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Take Nv 2 PMinBe.M C K;K/. If Nv 2 M C `.K/, one immediately gets Nv 2
PMinBe .M C `.K/;K/. Otherwise, there exist v 2 M and k 2 K n `.K/ such
that Nv D v C k. Then v 2 M C K and v 5K Nv, hence, via Remarks 3.8 and
3.1, Nv � v 2 `.K/. But Nv � v D k … `.K/, therefore PMinBe.M C K;K/ �
PMinBe.M C `.K/;K/. ut
Remark 3.9. Because TMCK.v/ � cl cone.M C K � v/ whenever v 2 M C K,
it follows that PMinBe.M;K/ � PMinBo.M;K/, which turns into an equality
when M C K is convex. Note also that for Nv 2 M it holds cone.M C K � Nv/ �
coneco..M � Nv/ [K/, the two sets coinciding if M CK is convex. Thus we have
in general that PMinHu.M;K/ � PMinBe.M;K/, while when M CK is convex it
follows that PMinHu.M;K/ D PMinBe.M;K/ D PMinBo.M;K/.

In the following we consider another proper minimality concept due to Borwein,
originally given for not necessarily pointed ordering cones (cf. [17]), that is defined
in a quite similar manner to the one of Benson.

Definition 3.5. An element Nv 2 M is said to be a properly minimal element of M
in the global sense of Borwein (regarding the partial ordering induced by K) if
cl.cone.M � Nv// \ .�K/ � K. The set of all properly minimal elements of M in
the global sense of Borwein is denoted by PMinGB.M;K/.

Remark 3.10. Since M � Nv � cl cone.M � Nv/, Remark 3.2(iii) yields that
PMinGB.M; K/ � Min.M;K/.

Remark 3.11. It holds PMinBe.M;K/ D PMinGB.M CK;K/.

Proposition 3.5. It holds PMinGB.M CK;K/ � PMinGB.M C `.K/;K/.

Proof. When Nv 2 PMinGB.M C K;K/, assuming that Nv … M C `.K/ implies the
existence of a v 2 M and k 2 Kn`.K/ such that Nv D vCk. Then v 2 MC`.K/ and
v 5 Nv, hence via Remarks 3.10 and 3.1 one gets Nv�v 2 `.K/. But Nv�v D k … `.K/,
therefore Nv 2 M C `.K/.

Since cone.M C `.K/ � Nv/ � cone.M C K � Nv/, from cl cone.M C K �
Nv/ \ .�K/ � K one immediately gets cl cone.M C `.K/ � Nv/ \ .�K/ D f0g,
consequently, Nv 2 PMinGB.M C `.K/;K/. ut
Remark 3.12. Taking into account the corresponding definitions, one immediately
gets that PMinBe.M;K/ � PMinGB.M;K/. Consequently, via Remark 3.11,
one can complete Proposition 3.5 with the inclusion PMinGB.M C K;K/ �
PMinGB.M;K/. Of interest would be to determine whether between PMinGB.M;K/

and PMinGB.M C`.K/;K/ can be established any inclusion in general. On the
other hand, as noted in [48] for K pointed, no relation of inclusion between
PMinBo.M;K/ and PMinGB .M;K/ can be given in general. However, taking
into account Remark 3.9, when M C K is convex, then PMinBo.M;K/ �
PMinGB.M;K/.

A formally different proper minimality approach is the following one that extends
for not necessarily pointed ordering cones the notion introduced by Henig in [120]
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and Lampe in [153] by employing a nontrivial convex cone K 0 � V that contains
the given ordering cone K.

Definition 3.6. An element Nv 2 M is said to be a properly minimal element of M
in the sense of Henig and Lampe (regarding the partial ordering induced by K) if
there exists a nontrivial convex cone K 0 � V with K n `.K/ � qriK 0 n `.K 0/ such
that .M � Nv/ \ .�K 0/ � K 0. The set of all properly minimal elements of M in the
sense of Henig and Lampe is denoted by PMinHL.M;K/.

Example 3.1. When V D R
2 and K D R � f0g, then qriK D riK D K D �K D

`.K/. Therefore, in this situation, qriK n `.K/ ¤ qriK.

Remark 3.13. Since for Nv 2 M and K 0 as given in Definition 3.6 it holds .M �
Nv/ \ .�K/ � .M � Nv/ \ .�K 0/, Remark 3.2(iii) yields that PMinHL.M;K/ �
Min.M;K/.

Remark 3.14. Note that Nv 2 PMinHL.M;K/ implies Nv 2 Min.M;K 0/, while the
existence of K 0 as asked in Definition 3.6 for which Nv 2 Min.M;K 0/ yields Nv 2
PMinHL.M;K/.

Proposition 3.6. It holds PMinHL.M;K/ � PMinHL.M CK;K/ D PMinHL.M C
`.K/;K/.

Proof. The inclusion of PMinHL.M;K/ in each of the other two sets follows from
Proposition 3.1 and Remark 3.14.

When Nv 2 PMinHL.M C K;K/, assuming that Nv … M C `.K/ implies the
existence of a v 2 M and k 2 Kn`.K/ such that Nv D vCk. Then v 2 MC`.K/ and
v 5 Nv, hence via Remarks 3.13 and 3.1 one gets Nv�v 2 `.K/. But Nv�v D k … `.K/,
therefore Nv 2 M C `.K/.

Moreover, there exists a nontrivial convex cone K 0 � V such that K n `.K/ �
qriK 0 n`.K 0/ and .MCK� Nv/\.�K 0/ � `.K 0/. Thus .MC`.K/� Nv/\.�K 0/ �
`.K 0/, hence Nv 2 PMinHL.M C `.K/;K/.

Vice versa, take Nv 2 PMinHL.MC`.K/;K/. Then Nv 2 MC`.K/ � MCK and
there exists a nontrivial convex cone K 0 � V such that K n `.K/ � qriK 0 n `.K 0/
and .M C `.K/ � Nv/ \ .�K 0/ � `.K 0/.

Assuming that .M CK � Nv/\ .�K 0/ � `.K 0/ does not take place, there would
exist v 2 M , k 2 K and k0 2 K 0 n `.K 0/ such that v C k � Nv D �k0. Then v � Nv D
�.kCk0/ 2 �.KC.K 0 n`.K 0/// � �..K 0 n`.K 0//C.K 0 n`.K 0/// D �K 0 n`.K 0/,
but, on the other hand, v � Nv 2 `.K 0/ because .M C `.K/ � Nv/ \ .�K 0/ � `.K 0/,
therefore we reached a contradiction.

Consequently, Nv 2 PMinHL.M CK;K/ and the proof is complete. ut
The following statement reveals the relation between the proper minimality

notions in the sense of Benson and in the sense of Henig and Lampe.

Proposition 3.7. It holds PMinHL.M;K/ � PMinBe.M;K/.

Proof. If K D f0g the inclusion follows because of [48, Proposition 2.4.11]. Take
further that K ¤ f0g.



46 3 Minimality Concepts for Sets

Let Nv 2 PMinHL.M;K/. Then Nv 2 M and there exists a nontrivial convex cone
K 0 � V such that K n `.K/ � qriK 0 n `.K 0/ and .M CK � Nv/\ .�K 0/ � `.K 0/.

Assume now that Nv … PMinBe.M;K/, i.e. that there exists a k 2 K n `.K/ such
that �k 2 cl cone.M C K � Nv/. Then k 2 qriK 0 n `.K 0/ and consequently there
exist v 2 M , u 2 K and t > 0 such that k D t .v C u � Nv/ 2 � qriK 0 n `.K 0/. Then
v � Nv 2 �.qriK 0 n `.K 0// �K � � qriK 0 n `.K 0/ �K 0 D � qriK 0 n `.K 0/. This
yields that v � Nv … `.K 0/, contradicting the fact that .M � Nv/\ .�K 0/ � `.K 0/. ut

The last proper minimality notion we introduce extends for not necessarily
pointed ordering cones the classical one based on linear scalarization, that identifies
minimal elements of M as solutions of scalar optimization problems.

Definition 3.7. An element Nv 2 M is said to be a properly minimal element of
M in the sense of linear scalarization (regarding the partial ordering induced by
K) if there exists a v� 2 fx� 2 K� W hx�; xi > 0 8x 2 K n `.K/g such that
hv�; Nvi � hv�; vi for all v 2 M . The set of properly minimal elements of M in the
sense of linear scalarization is denoted by PMinLS.M;K/.

The properly minimal elements of M in the sense of linear scalarization are also
minimal, as the next result shows.

Remark 3.15. When Nv 2 PMinLS.M;K/, there exists a v� 2 fx� 2 K� W hx�; xi >
0 8x 2 K n `.K/g such that hv�; Nvi � hv�; vi for all v 2 M . Assuming that Nv …
Min.M;K/, there must exist a v 2 M such that v � Nv 2 �K n `.K/. Then hv�; Nv �
vi > 0, but this contradicts the previous inequality, consequently PMinLS.M;K/ �
Min.M;K/.

Proposition 3.8. It holds PMinLS.M;K/ � PMinLS.M CK;K/ D PMinLS.M C
`.K/; K/.

Proof. When Nv 2 PMinLS.M;K/, there exists a v� 2 fx� 2 K� W hx�; xi > 0

8x 2 K n `.K/g such that hv�; Nvi � hv�; vi for all v 2 M . If k 2 K one has
hv�; ki � 0, consequently hv�; Nvi � hv�; v C ki for all v 2 M and all k 2 K, hence
Nv 2 PMinLS.M CK;K/.

If Nv 2 PMinLS.M C `.K/;K/, there exists a v� 2 fx� 2 K� W hx�; xi > 0

8x 2 K n `.K/g such that hv�; Nvi � hv�; vi for all v 2 M C `.K/. If k 2 K n `.K/
one has hv�; ki > 0, consequently hv�; Nvi � hv�; vCqi for all v 2 M and all q 2 K,
hence Nv 2 PMinLS.M CK;K/.

When Nv 2 PMinLS.M C K;K/, there exists a v� 2 fx� 2 K� W hx�; xi > 0

8x 2 K n `.K/g such that hv�; Nvi � hv�; vi for all v 2 M C K. As Nv 2 M C K

there exist Nm 2 M and Nk 2 K such that Nv D Nm C Nk. Taking v D Nm 2 M C K in
the previous inequality one obtains hv�; Nki � 0, that cannot take place if Nk … `.K/.
Thus Nv 2 M C `.K/. Since v� 2 fx� 2 K� W hx�; xi > 0 8x 2 K n `.K/g
fulfills also hv�; Nvi � hv�; vi for all v 2 M C `.K/, it follows that Nv 2 PMinLS.M C
`.K/;K/, too. ut

When K is pointed, the proper minimality in the sense of linear scalarization is
the most restrictive among the considered proper minimality notions. Let us show
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that in the more general framework used here the properly minimal elements in the
sense of linear scalarization are properly minimal elements in the senses of Hurwicz
and Henig and Lampe, respectively, too.

Proposition 3.9. It holds PMinLS.M;K/ � PMinHu.M;K/.

Proof. If K D f0g there is nothing to prove. Assume that K ¤ f0g and take Nv 2
PMinLS.M;K/. Then Nv 2 M and there exists a v� 2 fx� 2 K� W hx�; xi > 0

8x 2 K n `.K/g such that hv�; vi � 0 for all v 2 M � Nv. This yields that for
all v 2 .M � Nv/ [ K it holds hv�; vi � 0 and, consequently, hv�; vi � 0 for all
v 2 cl.coneco.M � Nv/ [K/.

Assuming that there exists a k 2 Kn`.K/ such that �k 2 cl.coneco.M�Nv/[K/,
we get 0 < hv�; ki � 0, that is a contradiction, consequently Nv 2 PMinHu.M;K/.

ut
Proposition 3.10. It holds PMinLS.M;K/ � PMinHL.M;K/.

Proof. When Nv 2 PMinLS.M;K/ it holds Nv 2 M and there exists a v� 2 fx� 2
K� W hx�; xi > 0 8x 2 K n `.K/g such that hv�; vi � 0 for all v 2 M � Nv. Take
K 0 WD fv 2 V W hv�; vi > 0g [ f0g. Obviously, K 0 is a nontrivial pointed convex
cone and K n `.K/ � intK 0 D fv 2 V W hv�; vi > 0g D qriK 0.

Assuming that there exists a v 2 M such that v � Nv 2 �K 0 n `.K 0/ D �K 0 n f0g,
it follows that hv�; Nv � vi > 0. This contradicts the fact that hv�; Nvi � hv�; vi for all
v 2 M , consequently Nv 2 PMinHL.M;K/. ut

Summarizing the results proven above, we obtain the following general inclusion
scheme for the proper minimal sets introduced in this section.

Theorem 3.1. It holds

PMinLS.M;K/ � PMinHu.M;K/

PMinHL.M;K/
� PMinBe.M;K/

� PMinGB.M;K/

PMinBo.M;K/
� Min.M;K/: (3.2.1)

Moreover, if M CK is convex, then (3.2.1) turns into

PMinLS.M;K/ � PMinHL.M;K/ � PMinHu.M;K/ D PMinBe.M;K/

D PMinBo.M;K/ � PMinGB.M;K/ � Min.M;K/: (3.2.2)

Remark 3.16. In Definition 3.11 we define a proper minimality notion with respect
to general increasing scalarization functions, which contains as a special case
the one in the sense of linear scalarization. It is not known yet whether this
proper minimality notion can be brought into the inclusion schemes presented in
Theorem 3.1 (see also Remark 4.27).
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Remark 3.17. If K is pointed, because `.K/ D f0g the definitions and results
provided in this section collapse, taking also intK 0 instead of qriK 0 in Defini-
tion 3.6, into their correspondents from [48, Subsection 2.4.3]. Note also that other
results regarding inclusions that exist between the sets of different proper minimality
notions attached to a set regarding the partial ordering induced by a pointed convex
cone can be found in [113, 154].

3.3 Pointed Ordering Cones

Consider further that qiK� ¤ ;. Then K�0 ¤ ; and, consequently, the cone K is
pointed. The definition of a minimal element of a set becomes then the following
one.

Definition 3.8. An element Nv 2 M is said to be a minimal element ofM (regarding
the partial ordering induced by K) if there is no v 2 M satisfying v �K Nv. The set
of all minimal elements ofM is denoted by Min.M;K/ and it is called the minimal
set of M (regarding the partial ordering induced by K).

The corresponding maximality notion is defined analogously. The elements of the
set Max.M;K/ WD Min.M;�K/ D � Min.�M;K/ are called maximal elements
of M (regarding the partial ordering induced by K). Analogously, one can consider
corresponding maximality notions for all the other minimality concepts introduced
within this section. As seen in the previous section, the minimality notion introduced
above can be refined by defining the so-called properly minimal elements of a set
with respect to the ordering cone.

3.3.1 Properly Minimal Elements

As mentioned in Remark 3.17, the definitions of properly minimal elements
considered in Sect. 3.2 are simpler when K is pointed. For reader’s convenience
we formulate in the present framework the two of them with which we work within
this subsection.

Definition 3.9. An element Nv 2 M is said to be a properly minimal element of M
in the global sense of Borwein (regarding the partial ordering induced by K) if
cl.cone.M � Nv// \ .�K/ D f0g. The set of all properly minimal elements of M in
the global sense of Borwein is denoted by PMinGB.M;K/.

Definition 3.10. An element Nv 2 M is said to be a properly minimal element of
M in the sense of linear scalarization (regarding the partial ordering induced by
K) if there exists a v� 2 K�0 such that hv�; Nvi � hv�; vi for all v 2 M . The set of
properly minimal elements of M in the sense of linear scalarization (regarding the
partial ordering induced by K) is denoted by PMinLS.M;K/.
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Remark 3.18. Specializing Theorem 3.1 for the situation when the ordering cone
K is pointed one rediscovers [48, Proposition 2.4.16]. The question when do the
inclusions in (3.2.2) turn into equalities is not only of theoretical importance.
For instance, having all but the last of them fulfilled as equalities would ensure
characterizations through linear scalarization for all the other properly minimal
elements of M . Several results in this direction were already obtained in the
literature and were summarised in [48, Subsection 2.4.3 and Subsection 2.4.4].
Note also that results on characterizations by means of scalarizations of the properly
minimal elements in the sense of Henig and Lampe can be found in [100, 175].

In the following we present other weak conditions which guarantee the coinci-
dence of some of the minimality notions considered above. To this end, we begin
with a separation statement.

Theorem 3.2. Let S and T be closed convex cones in V fulfilling T � C S�0 D
qi.T � CS�/. Then S \T D f0g if and only if there exists a v� 2 V � n f0g such that
hv�; si < 0 � hv�; ti for all s 2 S n f0g and all t 2 T .

Proof. “(” If v� 2 V � n f0g fulfills hv�; si < 0 � hv�; ti for all s 2 S n f0g and
all t 2 T and we assume that there exists an x 2 S \ T n f0g, then it follows that
hv�; xi < 0 � hv�; xi, which cannot happen. The necessity is thus proven and one
can easily observe that it is valid in the most general setting, i.e. when S and T are
simple nonempty subsets of V .

“)” Assume that no v� 2 V � n f0g satisfies hv�; si < 0 � hv�; ti for all s 2
S n f0g and all t 2 T . Consequently, �S�0 \ T � D ;. Thus, by the hypothesis,
0 … qi.T �CS�/. As 0 2 T �CS�, Lemma 1.2 yields that there exists an x 2 V nf0g
satisfying h0; xi � ht� C s�; xi for all s� 2 S� and all t� 2 T �. Then �hs�; xi �
ht�; xi for all s� 2 S� and all t� 2 T �, consequently, x 2 S�� \ T �� D S \ T . As
x ¤ 0, the hypothesis S \T D f0g is contradicted, thus there exists a v� 2 V � nf0g
such that hv�; si < 0 � hv�; ti for all s 2 S n f0g and all t 2 T . ut
Remark 3.19. If A and B are convex subsets of V , recall that int.A C B/ D B C
intA when intA ¤ ;, and core.AC B/ D B C coreA when coreA ¤ ; (cf. [196,
Theorem 2.1 and Theorem 2.2], see also [195]). Consequently, the assertion proven
in Theorem 3.2 extends for cones whose duals have not necessarily a nonempty
interior the separation statement for cones given in [16, Proposition 2] and [140,
Theorem 3.22], that has as consequence, for instance, Lemma 1.3. A situation that
stresses the applicability of our statement, while the other one fails is given below.

Example 3.2. Let V D `2.N/, the real Hilbert space of the real sequences .xn/n2N
such that

P1
nD1 jxnj2 < C1, equipped with the usual norm jj � jj W `2 ! R,

jjxjj D �P1
nD1 jxnj2

�1=2
for all x D .xn/n2N 2 `2. Take T D `2C D f.xn/n2N 2

`2 W xn � 0 8n 2 Ng, the positive cone of `2, and S D �`2C. Then S \ T D f0g
and T � D �S� D `2C. It is known that int `2C D ;, so [16, Proposition 2] and [140,
Theorem 3.22] cannot be applied in this case, but qi `2C D f.xn/n2N 2 `2 W xn >
0 8n 2 Ng. We also have T � C S�0 D `2 D qi.T � C S�/. Theorem 3.2 yields then
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the existence of a v� 2 `2 n f0g such that hv�; si < 0 � hv�; ti for all s 2 �`2C n f0g
and all t 2 `2C.

Using Theorem 3.2, one can show that under weak hypotheses all the classes of
proper minimal elements introduced for M coincide. In order to give these results,
let us introduce for the pair of sets .S; T /, where S; T � V such that S and S C T

are convex the following property

.QC/ T C qiS D qi.S C T /.

Remark 3.20. As mentioned in Remark 3.19, given the convex sets A;B � V , the
pair .A;B/ has automatically the property .QC/ when intA or coreA is nonempty.
Moreover, in many situations where qiA ¤ ; unlike the interior or algebraic interior
of A, it holds B C qiA D qi.AC B/, this equality being always satisfied when B
contains a single element. Thus, the property .QC/ seems quite natural. Note that it
has been conjectured in [110] that when A;B � V are convex sets with qiA ¤ ;, it
holdsBCqiA D qi.ACB/, but in [223, Example 2] one can find a counterexample
showing that this property is not true in general.

Theorem 3.3. Let Nv 2 M such that the pair .K�; .cone.M � Nv//�/ has the property
.QC/ and letM be convex and K be closed. Then Nv 2 PMinGB.M;K/ if and only if
Nv 2 PMinLS.M;K/.

Proof. The sufficiency follows via (3.2.1), even without assuming M convex and
K closed, so we focus on the other implication. The convexity of M guarantees the
same property for cone.M � Nv/. As K is closed and the proper minimality in the
global sense of Borwein of Nv means actually that .cl cone.M � Nv// \ .�K/ D f0g,
due to .QC/ we can apply Theorem 3.2, obtaining the existence of a Nv� 2 V � n f0g
for which

hv�;�ki < 0 � hv�; vi 8k 2 K n f0g 8v 2 cl cone.M � Nv/: (3.3.3)

Then the first inequality in (3.3.3) yields v� 2 K�0, while from the second one can
deduce that for all m 2 M one gets 0 � hv�; m � Nvi. Consequently, there exists a
v� 2 K�0 for which hv�; Nvi � hv�; mi for all m 2 M , i.e. Nv 2 PMinLS.M;K/. ut
Remark 3.21. One has .cl cone.M � Nv//� D .cone.M � Nv//� D fv� 2 V � W
hv�; t .v � Nv/i � 0 8v 2 M 8t � 0g D fv� 2 V � W hv�; vi � hv�; Nvi 8v 2 M g.

Using Theorem 3.3 and the fact that under its hypotheses M C K is convex,
(3.2.2) yields the following consequence.

Corollary 3.1. Let Nv 2 M such that the pair .K�; .cone.M�Nv//�/ has the property
.QC/ and letM be convex and K be closed. Then Nv 2 PMinGB.M;K/ if and only if
it is properly minimal to M in any other sense mentioned above.

Remark 3.22. A result similar to the one displayed in Corollary 3.1 is available in
[48, Theorem 2.4.27], where under the hypotheses intK� ¤ ;,K closed andMCK
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convex it is shown that an element is properly minimal toM in the sense of Borwein
if and only if it is properly minimal toM in any other sense except for the global one
of Borwein. But that statement is not applicable, for instance, for the finance model
withm investors trading securities and having identical expectations on the security
payoffs which is modeled in [1] as a vector optimization problem whose objective
function maps from a portfolio vector space to an ordered payoff vector space that
is Lp.˝;˙;P /, with p � 1, where .˝;˙;P / is an underlying probability space.
Note that also in Theorem 3.3 we can weaken the assumption of convexity of M by
taking only the cone cone.M � Nv/ convex. This is enough to guarantee the proper
minimality of a properly minimal element of M in the global sense of Borwein in
all other senses, except for the one due to Borwein, which can be caught under the
additional hypothesis M CK convex (cf. [48, Proposition 2.4.16]).

Now let us give a condition that guarantees the proper minimality in the sense of
linear scalarization of a minimal element of M .

Theorem 3.4. Let Nv 2 Min.M;K/ such that cone.M � Nv/ is convex and closed and
the pair .K�; .cone.M � Nv//�/ has the property .QC/, and let K be closed. Then
Nv 2 PMinLS.M;K/.

Proof. One can write Nv 2 Min.M;K/ equivalently as .M � Nv/\ .�K/ D f0g. This
yields cone.M � Nv/ \ .�K/ D f0g. Applying Theorem 3.2, one gets the existence
of a Nv� 2 V � n f0g for which

hv�;�ki < 0 � hv�; vi 8k 2 K n f0g 8v 2 cone.M � Nv/:

Then v� 2 K�0 and for allm 2 M it holds 0 � hv�; m� Nvi, i.e. Nv 2 PMinLS.M;K/.
ut

A consequence of this statement follows. Note that different to Corollary 3.1,
here it is not necessary to guarantee the convexity of M CK in order to include the
properly minimal elements of M in the sense of Borwein.

Corollary 3.2. Let Nv 2 Min.M;K/ such that cone.M � Nv/ is convex and closed
and the pair .K�; .cone.M � Nv//�/ has the property .QC/, and let K be closed.
Then Nv is properly minimal to M in every mentioned sense.

Remark 3.23. The hypotheses of Theorem 3.4 and Corollary 3.2 are sufficient to
guarantee that all the inclusions in (3.2.1) turn into equalities even without assuming
the convexity of M C K, a condition than ensures (3.2.2). Note also that asking
cone.M � Nv/ to be closed together with the minimality of Nv in M guarantee that
Nv 2 PMinGB.M;K/.

Remark 3.24. Like in the proof of Theorem 6.1, one can show, by employing
Lemma 1.3, that if V D R

k ,K is closed andM is polyhedral, any minimal element
of M is also properly minimal to M in the sense of linear scalarization. Different
other separation statements may be employed for the same purpose, too. However,
some of them may not deliver valuable hypotheses under which a minimal element
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v 2 M of M is also properly minimal to M in the sense of linear scalarization.
For instance, [48, Corollary 2.1.6] asks in order to separate M � v from �K that
v … cl.M CK/, but when v 2 M , then v 2 M CK, too, so the mentioned condition
cannot be fulfilled.

Next, we prove by means of scalar Lagrange duality another statement that
guarantees the proper minimality in the sense of linear scalarization of a mini-
mal element of M , without assuming the property .QC/ fulfilled anymore. The
technique used to prove the following statement was inspired by the similar
investigations performed in [131] in the linear case.

Theorem 3.5. LetM be convex and Nv 2 Min.M;K/ for which one of the following
conditions

.RCS2/ V is a Fréchet space; M and K are closed, and Nv 2 sqri.M CK/;

.RCS3/ dim.M CK � Nv/ < C1 and Nv 2 ri.M CK/;

and, respectively,

.RCS4/
M and K are closed and there exists a � 2 K�0such thatS

�2K�C�

�
epi �M C .�; h�; Nvi/� is closed in the topology !.V �; V / � R;

is fulfilled. Then Nv 2 PMinLS.M;K/.

Proof. Let � 2 K�0 (the one that exists by .RCS4/ if this condition is satisfied).
Consider the scalar optimization problem

.SP/ inf
v2M;

v�Nv2�K
h�; v � Nvi.

The satisfaction of any of the considered regularity conditions yields via
Remark 2.10 that there is strong duality for .SP/ and its Lagrange dual problem

.LD/ sup

2K�

inf
v2M

�h�; v � Nvi C h
; v � Nvi�.

Consequently, there exists a N
 2 K� such that

inf
v2M;

v�Nv2�K
h�; v � Nvi D inf

v2Mh�C N
; v � Nvi:

Let N� WD �C N
 2 K�0.
As Nv 2 Min.M;K/, Nv is the only feasible point to the problem .SP/ and,

consequently, its optimal objective value is 0. Thus, 0 D infv2M h N�; v� Nvi, which can
be equivalently rewritten as h N�; Nvi � h N�; vi for all v 2 M , i.e. Nv 2 PMinLS.M;K/.

ut
A consequence of Theorem 3.5 follows.
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Corollary 3.3. Let M be convex and Nv 2 Min.M;K/ for which one of the
conditions .RCSi /, i 2 f2; 3; 4g is fulfilled. Then Nv is properly minimal to M in
every mentioned sense.

Remark 3.25. Taking a closer look at the proof of Theorem 3.5 one can notice
that the considered regularity conditions are employed for guaranteeing the strong
duality for .SP/ and .LD/. The classical Slater constraint qualification cannot be
considered in Theorem 3.5 (and consequently neither in Corollary 3.3) even if
intK ¤ ; since when Nv 2 Min.M;K/ it follows that Nv is the only feasible element
to the problem .SP/ and consequently there exists no v 2 M for which v�Nv 2 intK.

Moreover, the regularity condition .RCS2/ yields, by employing the definition
of the strong quasi-relative interior, that cone.M C K � Nv/ is closed. Using also
the minimality of Nv in M , that yields Nv 2 Min.M C K;K/, it follows that the
only element cone.M C K � Nv/ and �K have in common is 0, consequently Nv 2
PMinGB.M CK;K/. By [48, Proposition 2.4.9] follows then Nv 2 PMinGB.M;K/.

Last but not least, it may be not so obvious how .RCL
4 / turns into .RCS4/ for .SP/

in Theorem 3.5. The objective function of .SP/ is lower semicontinuous because it
is an affine function, while its constraint function is K-epi-closed since it is a linear
function and K is closed. Considering for each 
 2 K� the function '
 W V ! R

defined by '
.v/ D h�; v � Nvi C h
; v � Nvi C ıM .v/, one gets '
.v/ D h�C
; v �
Nvi C ıM .v/. Then

'
.v
�/ D sup

v2M
fhv�; vi � h�C 
; v � Nvig

D h�C 
; Nvi C sup
v2M

hv� � � � 
; vi D h�C 
; Nvi C �M .v
� � � � 
/:

One has .v�; r/ 2 epi'� if and only if �M .v� � � � 
/ � r � h� C 
; Nvi, which
happens when .v�; r/ 2 epi �M C .�C 
; h�C 
; Nvi/.

After investigating some of the classical minimality concepts, let us introduce
other proper minimality notions that can be characterized via scalarization, gen-
eralizing thus the proper minimality in the sense of linear scalarization. As the
situation depicted in Example 3.3 shows, even in simple cases wrong choices of the
linear scalarization function can lead to unconstrained scalar optimization problems
which give no insights on the vector optimization problems they were derived
from. Moreover, for various other purposes, from delivering optimality conditions
for nonsmooth optimization problems (like in [81]) to investigating error bounds
for convex inequality systems (cf. [22]), the linear scalarization did not bring any
valuable results and other scalarization functions had to be employed.

Example 3.3 (cf. [15]). Let V D R
2, K D R

2C, M D f.x21 � x2; x2/
> W .x1; x2/ 2

R
2g. For all � D .�1; �2/

> 2 intR2C D .R2C/�0 with �1 ¤ �2, one has inff�>v W
v 2 M g D �1, therefore no properly minimal element in the sense of linear
scalarization of the setM can be identified by using the corresponding scalarization
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functions. Only for N� D . N�1; N�2/> 2 intR2C with N�1 D N�2 one gets that N�> Nv � N�>v
for all v 2 M , whenever Nv 2 f0g � R.

Motivated by this, let us consider an arbitrary nonempty set of scalarization
functions defined on V and taking values in R denoted by M and using them we
introduce a more general proper minimality concept.

Definition 3.11. An element Nv 2 M is said to be an M -properly minimal element
of M if there exists an s 2 M such that s.Nv/ � s.v/ for all v 2 M . The set of all
M -properly minimal elements of M is denoted by PMinM .M;K/.

Remark 3.26. We will not deal with M -properly minimal elements of M as
introduced above. This very general definition will serve as basis for approaching
vector optimization problems via duality with respect to M -properly efficient
solutions with the scalarization functions equipped with valuable properties, like
convexity and K-monotonicity.

3.3.2 Weakly Minimal Elements

There are minimality notions weaker than the classical minimality, too, among
which we recall the following one. In order to consider it we take within this
subsection qiK ¤ ;.

Definition 3.12. An element Nv 2 M is said to be a weakly minimal element of M
(regarding the partial ordering induced byK) if .Nv � qiK/\M D ;. The set of all
weakly minimal elements of M is denoted by WMin.M;K/.

Remark 3.27. In the literature the weak minimality is usually considered for the
cases intK ¤ ; or coreK ¤ ;, when the nonempty set coincides with qiK. But
there are vector optimization problems, as mentioned for instance in [1, 80, 100]
where the image space is partially ordered by convex cones with empty interiors.
Motivated by them, weakly minimal elements defined by means of the quasi interior
were considered in works like [105, 106, 115, 198], being called quasi-weakly
minimal elements or qi-minimal elements. However, in [110] and here we opted to
name them simply weakly minimal elements because of two reasons. Firstly, in the
literature there were already considered several types of quasi-minimal elements that
do not coincide with the ones introduced in Definition 3.12 (see, for instance, [158]).
On the other hand, if the pair .K;M/ has the property .QC/ (which automatically
happens if intK ¤ ; or coreK ¤ ;) our results extend their counterparts known in
the literature for the classical weakly minimal elements, as we shall see later in this
chapter and also in Sect. 4.3. Note also that in the literature one can find generalized
weakly minimal elements defined by means of the (quasi-)relative interior of the
ordering cone (see, for instance, [6, 7, 115, 129, 219]) and we will deal with such
elements in Sect. 3.3.3.
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Analogously, Nv 2 M is a weakly maximal element of M (regarding the partial
ordering induced byK) if .NvCqiK/\M D ;. We denote by WMax.M;K/ the set
of all weakly maximal elements of the setM (regarding the partial ordering induced
by K). One can prove that WMin.M;�K/ D � WMin.�M;K/ D WMax.M;K/.

Remark 3.28. The relation .Nv � qiK/ \ M D ; in Definition 3.12 can be
equivalently rewritten as .M�Nv/\.� qiK/ D ;. Whenever the coneK is nontrivial
we notice that if we consider as ordering cone in V the cone OK D qiK [ f0g,
then Nv 2 WMin.M;K/ if and only if .Nv � OK/ \ M D fNvg, which actually means
Nv 2 Min.M; OK/.
Remark 3.29. If K is not dense in V , any minimal element of M is also weakly
minimal to M since .Nv � K/ \ M D fNvg implies via Proposition 1.1(a) that .Nv �
qiK/ \ M D ;. If K D V then WMin.M;K/ D ;, as it happens also in the
classical theory of weakly minimal elements where intK ¤ ;.

Proposition 3.11. It holds

WMin.M CK;K/ \M � WMin.M;K/ � WMin.M CK;K/:

Proof. If v 2 WMin.M C K;K/ \ M , .v � qiK/ \ .M C K/ D ;. As .v �
qiK/\M � .v � qiK/\ .M CK/ it follows .v � qiK/\M D ;, too, therefore
v 2 WMin.M;K/.

Consider now an element Nv 2 WMin.M;K/ assumed not to be a weakly minimal
element of the setM CK. Then there is an element v 2 .Nv � qiK/\ .M CK/ ¤ ;
and there is an u 2 M with Nv � v 2 qiK and v � u 2 K. Consequently, by
using Proposition 1.1(c) we obtain that Nv � u 2 qiK C K D qiK, or alternatively
u 2 .Nv � qiK/ \ M . Hence, Nv is not a weakly minimal element of the set M , and
the conclusion follows by contradiction. ut

Next we formulate some necessary and sufficient characterizations via linear
scalarizations of the weakly minimal elements of the set M with respect to K.

Theorem 3.6. If M C K is convex, the pair .K;M/ has the property .QC/ and
Nv 2 WMin.M;K/ then there exists a v� 2 K� n f0g such that hv�; Nvi � hv�; vi, for
all v 2 M .

Proof. As Nv 2 WMin.M;K/, using also the property .QC/, one gets Nv … M C
qiK D qi.M C K/. As Nv 2 M C K, we can apply Lemma 1.2, which guarantees
the existence of a v� 2 V � n f0g such that

hv�; v C ki � hv�; Nvi for all v 2 M and k 2 K: (3.3.4)

As K is a cone, (3.3.4) yields v� 2 K�. Taking k D 0, (3.3.4) implies hv�; Nvi �
hv�; vi for all v 2 M . ut



56 3 Minimality Concepts for Sets

Proposition 3.12. Let a function f W V ! R which is strictly K-increasing on
M . If there is an element Nv 2 M fulfilling f .Nv/ � f .v/ for all v 2 M , then
Nv 2 WMin.M;K/.

Proof. If Nv … WMin.M;K/, then there exists a v 2 .Nv � qiK/ \ M . This implies
f .v/ < f .Nv/, which contradicts the assumption. ut

If the cone K is moreover closed, Proposition 3.12 and Example 1.2 yield the
following statement.

Theorem 3.7. If K is closed and there exist v� 2 K� n f0g and Nv 2 M such that
for all v 2 M it holds hv�; Nvi � hv�; vi, then Nv 2 WMin.M;K/.

From Theorems 3.6 and 3.7 we obtain the following equivalent characterization
via linear scalarization of the weakly minimal elements of M with respect to K.

Theorem 3.8. If Nv 2 M ,M CK is convex, the pair .K;M/ has the property .QC/
and K is closed, then Nv 2 WMin.M;K/ if and only if there exists a v� 2 K� n f0g
satisfying hv�; Nvi � hv�; vi for all v 2 M .

Remark 3.30. In Theorem 3.8 we have extended the characterization via scalariza-
tion of the weakly minimal elements of a given set (regarding the partial ordering
induced by a convex cone) for the case when only the quasi interior of the ordering
cone is nonempty. In the literature such characterizations were previously known
to hold only if the interior or the algebraic interior of the cone were nonempty,
when the pair .K;M/ has automatically the property .QC/ when M is convex (cf.
[195, 196], see also Remark 3.19), see for instance [48, Corollary 2.4.26]. Other
attempts in order to extend these results were made by relaxing the convexity
hypotheses, see for instance [91, Theorem 5.3].

3.3.3 Relatively Weakly Minimal Elements

There are minimality notions even weaker than the weak minimality that we treated
in Sect. 3.3.2, like the following one, which requires only the nonemptiness of the
quasi-relative interior of the ordering cone. Therefore, we take within this subsection
qriK ¤ ;.

Definition 3.13. An element Nv 2 M is said to be a relatively minimal element ofM
(regarding the partial ordering induced by K) if .Nv � qriK/ \M D ;. The set of
all relatively minimal elements of M is denoted by RMin.M;K/.

Remark 3.31. As mentioned in Remark 3.27, one can find in the literature vector
optimization problems where the image space is partially ordered by convex cones
with empty interiors and in such situations generalizations of the classical weakly
minimal elements of the corresponding image sets can be employed. Generalized
weakly minimal elements defined by means of the quasi-relative interior of the
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ordering cone as we have done in Definition 3.13 can be found, for instance, in
works like [6, 7, 115, 129, 219], where they are called quasi relative minimal or
weakly minimal, respectively. However, as the quasi-relative interior collapses into
the relative interior in finitely dimensional spaces and in order to avoid not necessary
complications, we opted for the name given in Definition 3.13.

Analogously, Nv 2 M is a relatively maximal element of M (regarding the partial
ordering induced by K) if .Nv C qriK/ \ M D ;. We denote by RMax.M;K/
the set of all relatively maximal elements of the set M (regarding the partial
ordering induced byK). One can prove that RMin.M;�K/ D � RMin.�M;K/ D
RMax.M;K/.

Remark 3.32. The relation .Nv � qriK/ \ M D ; in Definition 3.13 can be
equivalently rewritten as .M � Nv/ \ .� qriK/ D ;. If K is nontrivial, considering
also the cone QK D qriK [ f0g one has Nv 2 RMin.M;K/ if and only if Nv 2
Min.M; QK/.

Employing Proposition 1.1(b), one can easily prove the following statement.

Proposition 3.13. If clK is pointed, then Min.M;K/ � RMin.M;K/, while when
K D V it holds RMin.M;K/ D ;.

We give now a statement similar to Proposition 3.11, but for the relatively
minimal elements of M and M CK.

Proposition 3.14. It holds RMin.M CK;K/\M � RMin.M;K/ � RMin.M C
K;K/.

Proof. If Nv 2 RMin.M C K;K/ \ M , then .Nv � qriK/ \ .M C K/ D ;. As
.Nv � qriK/ \M � .Nv � qriK/ \ .M CK/, it follows that .Nv � qriK/ \M D ;,
too, therefore Nv 2 RMin.M;K/.

If Nv 2 RMin.M;K/nRMin.M CK;K/, then there exist v 2 .Nv�qriK/\ .M C
K/ ¤ ; and u 2 M such that v�u 2 K. Then Nv�v 2 qriK, thus Proposition 1.1(c)
yields Nv � u 2 qriK C K D qriK, consequently u 2 .Nv � qriK/ \ M . Hence
Nv … RMin.M;K/ and the conclusion follows by contradiction. ut

Analogously to the property .QC/ considered in Sects. 3.3.1 and 3.3.2 for the
case qiK ¤ ;, in order to characterize via scalarization the relatively minimal
elements of M with respect to K we introduce for the pair of sets .S; T / where
S; T � V such that S and S C T are convex the following property

.QR/ T C qriS D qri.S C T /.

Remark 3.20 applies if qiK ¤ ;. Regarding the property .QR/, one can easily
find pairs of sets that have it and some that do not, as seen below. Note also that
Proposition 1.2(b) yields the fulfillment of .QR/ for any pair .S; fvg/, where v 2 V .

Example 3.4. If V D R
2, the pair consisting ofK D f0g�RC and T D .0; 1/�f0g

has the property .QR/, while the same K and C D Œ0; 1� � f0g do not. Note that
qiK D intK D ; in this case.
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Next we formulate some necessary and sufficient characterizations via linear
scalarization of the relatively minimal elements of M with respect to K.

Theorem 3.9. If M C K is convex, the pair .K;M/ has the property .QR/ and
Nv 2 RMin.M;K/, then there exists a v� 2 K� n f0g such that hv�; Nvi � hv�; vi for
all v 2 M .

Proof. As Nv 2 RMin.M;K/ one gets that Nv … v C qriK for all v 2 M . Thus,
Nv … M C qriK, consequently, via .QR/, Nv … qri.M C K/. As Nv 2 M C K,
Lemma 1.1 grants the existence of a v� 2 V � n f0g such that

hv�; Nvi � hv�; v C ki 8v 2 M 8k 2 K;

that, because K is a cone, yields that v� 2 K� n f0g and, moreover, for k D 0,
hv�; Nvi � hv�; vi for all u 2 M . ut

In case V D R
n the hypotheses of Theorem 3.9 can be simplified as follows.

Theorem 3.10. IfM;K � R
n withK a nontrivial convex cone andM CK convex

and Nv 2 RMin.M;K/, then there exists a v� 2 K� n f0g such that hv�; Nvi � hv�; vi,
for all v 2 M .

Proof. As Nv 2 RMin.M;K/, Proposition 3.14 yields Nv 2 RMin.M C K;K/, i.e.
.Nv � riK/ \ .M C K/ D ;. Then, ri.Nv � K/ \ ri.M C K/ D ; and the classical
separation theorem due to Rockafellar (cf. [178, Theorem 11.3]) yields the existence
of a v� 2 V � n f0g such that

hv�; Nv � pi � hv�; v C ki 8v 2 M 8k; p 2 K:

As K is a cone, this inequality implies v� 2 K� n f0g and, when p D k D 0, also
hv�; Nvi � hv�; vi for all v 2 M . ut
Theorem 3.11. Let a function f W V ! R that is relatively strictly K-increasing
on M . If there is an element Nv 2 M fulfilling f .Nv/ � f .v/ for all v 2 M , then
Nv 2 RMin.M;K/.

Proof. If Nv … RMin.M;K/, then there exists a v 2 .Nv � qriK/ \ M . This implies
f .v/ < f .Nv/, which contradicts the assumption. ut

Using Theorem 3.11 and Example 1.2 one can prove the next statement.

Theorem 3.12. If K0 ¤ ; and there exist v� 2 K� n f0g and Nv 2 M such that for
all v 2 M it holds hv�; Nvi � hv�; vi, then Nv 2 RMin.M;K/.

Combining Theorems 3.9 and 3.12 we obtain an equivalent characterization via
linear scalarization for the relatively minimal elements of M with respect to K.

Theorem 3.13. Let Nv 2 M , K0 ¤ ;, M C K be convex and assume that the pair
.K;M/ has the property .QR/. Then Nv 2 RMin.M;K/ if and only if there exists a
v� 2 K� n f0g satisfying hv�; Nvi � hv�; vi for all v 2 M .



3.3 Pointed Ordering Cones 59

Remark 3.33. If K is closed and qiK ¤ ;, the investigations from this subsection
collapse into the corresponding ones from Sect. 3.3.2.

Remark 3.34. One can define elements similar to the relatively minimal ones by
means of other generalized relative interiors of the ordering cone, like the strong
quasi-relative interior. But, as noted in Example 3.4, not even all the pairs consisting
in a convex cone and a convex subset of Rn have the property .QR/ (for the relative
interior in this case), therefore it should be imposed for the ordering cone in each
case and the corresponding results would be only special cases of the ones proven
in this subsection. However, it makes sense to consider relatively minimal type
elements defined by means of other generalized relative interiors of the ordering
cone for other purposes, as done for instance in [6, 7].



Chapter 4
Vector Duality via Scalarization for Vector
Optimization Problems

4.1 Historical Overview and Motivation

As seen in Chap. 3, one can consider different minimality notions for sets and
these can be employed in different situations in order to serve various purposes,
among which one can find the theory of vector optimization. Solving a vector
optimization problem amounts of determining its feasible elements where the value
of its objective function satisfies the desired minimality property within the image
set of the feasible set through the objective function, the so-called image set of the
vector optimization problem. These elements are usually called efficient solutions.

One can find in the literature different types of efficient solutions, called after
the minimality notions the values taken there by the objective functions satisfy in
the image sets of the vector optimization problems in discussion. The best known
and most used of these efficiency notions is the classical (Pareto-)efficiency, but
the corresponding efficiency set, i.e. set of efficient solutions, is sometimes not
so easy to determine. In order to avoid such a situation, various other types of
efficient solutions were proposed in the literature, following the existing minimality
concepts, or, in some cases, generating them, as several minimality notions were
actually derived from efficiency notions proposed for vector optimization problems.
Some of the efficiency notions are weaker than the classical one, as it is the case
for the weak efficiency and its generalizations or for the "-efficiency or approximate
efficiency, while most of them are more restrictive than it, like the ideal efficiency,
strong efficiency or proper efficiency.

In the literature one can find several weak efficiency notions, that are defined with
respect to a partial ordering induced by some (generalized) interior of the initial
ordering cone, and more proper efficiency ones, derived from the corresponding
proper minimality concepts, the most important of which were considered in
Chap. 3. With respect to the considered efficient solutions one can attach to the
investigated vector optimization problem one or more vector dual problems. In
the literature one can find several ways to do this, for instance by means of

© Springer International Publishing Switzerland 2015
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set-valued techniques, by using geometric properties or sometimes quite strange
constructions or, last but not least, via conjugate functions. Besides the large
number of papers dedicated to or touching the subject, one can find sections or
chapters dedicated vector duality in many respected books dedicated to vector
optimization such as [140, 155, 193], and the most complete overview on vector
duality methods and techniques at the moment is the monograph [48]. There one
can find quite complete investigations concerning vector duality of conjugate type
via scalarization, of Wolfe and Mond-Weir type and of set-valued type. For vector
duality investigations regarding constrained vector optimization problems we refer
also to [54, 55, 101, 138, 140, 170, 200], while in contributions like [26, 58, 59, 102]
duality statements for unconstrained optimization problems are given.

The arguably most usual way to approach a vector optimization problem is by
scalarizing it, i.e. by attaching to it a scalar optimization problem or a family
of such problems, whose solutions are hoped to deliver the desired efficient
solutions of the original vector optimization problem or at least valuable insights
regarding them. Among the scalarization methods the linear one is by far the
most known and widely used, but in different circumstances (as, for instance, in
the ones presented in [22, 81]) it may deliver no valuable results regarding the
vector optimization problems and, on the other hand, an unfortunate choice of its
scalarization parameters can lead to unbounded scalar optimization problems (see,
for instance [15,92]). That is why several other functions with similar properties, i.e.
strongly or strictly cone-monotone increasing, were employed for the same purpose
in works like [31, 37, 92, 93, 97, 98, 102, 139, 140, 166], giving birth to new proper
and weak minimality notions, from which corresponding proper and weak efficiency
notions were derived.

These facts motivated us to introduce in Sect. 3.3.1 a general scheme for defining
properly minimal elements with respect to different scalarization functions, that
will be used in this chapter for introducing different types of properly efficient
solutions with respect to which vector dual problems are assigned to the original
vector optimization problems.

We propose in Sect. 4.2 a scheme for defining properly efficient elements of a
general vector optimization problem via a very general set of scalarization functions
and with respect to them several vector dual problems are attached to the primal one,
by employing the idea of construction considered in [58, 59, 140], following our
research from [31,37,48]. Then we specialize in Sect. 4.3 the scalarization function
to be one of the scalarization functions considered in the literature and, depending on
its cone-monotonicity properties, the corresponding vector duals and vector duality
statements are particularized, too. Finally, in Sect. 4.4 we specialize the primal
problem to be constrained and unconstrained, respectively, and for each of them
we obtain from the general case new vector duals with respect to properly efficient
solutions in the sense of different scalarizations. The corresponding necessary and
sufficient optimality conditions are delivered in each case, too.
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4.2 Vector Duality via a General Scalarization for General
Vector Optimization Problems

After introducing in Chap. 3 several minimality notions for sets, we consider within
this section and the following ones the counterparts of some of them for vector
optimization problems, generically called efficient solutions. Then we assign vector
dual problems to these with respect to some types of properly efficient and weakly
efficient solutions.

Consider again a Hausdorff locally convex space V partially ordered by the
nontrivial pointed convex cone K � V . Let X and Y be two Hausdorff locally
convex vector spaces. The vector optimization problem we shall first work with is
the general vector-minimization problem

.PVG/ Min
x2X F.x/,

where F W X ! V � is a proper vector function. The solution concepts we consider
for .PVG/ follow from the ones introduced for sets in Chap. 3.

Definition 4.1. An element Nx 2 domF is said to be an efficient solution to the
vector optimization problem .PVG/ if F. Nx/ 2 Min.F.domF /;K/. The set of all
efficient solutions to .PVG/ is called the efficiency set of .PVG/, being denoted by
E .PVG/.

Definition 4.2. When qiK ¤ ;, an element Nx 2 domF is said to be a
weakly efficient solution to the vector optimization problem .PVG/ if F. Nx/ 2
WMin.F.dom F /;K/. The set of all weakly efficient solutions to .PVG/ is called
the weak efficiency set of .PVG/, being denoted by W E .PVG/.

In order to introduce also properly efficient solutions to .PVG/, consider a set of
scalarization functions

S �
n
s W V � ! R W F.domF /CK � dom s and s is proper, convex and

strongly K-increasing on F.domF /CK and s.1K/ D C1
o
:

Definition 4.3. An element Nx 2 X is said to be an S -properly efficient solution to
the vector optimization problem .PVG/ if F. Nx/ 2 PMinS .F.domF /;K/. The set
of all S -properly efficient solutions to .PVG/ is said to be the S -proper efficiency
set of .PVG/, being denoted by PE S .PVG/.

Remark 4.1. Every S -properly efficient solution to .PVG/ belongs to domF and
it is also an efficient solution to the same vector optimization problem. If qiK ¤ ;
and clK ¤ V , each efficient solution to .PVG/ is a weakly efficient one, too.

In order to deal with .PVG/ via duality, consider now the proper vector
perturbation function ˚ W X � Y ! V � which fulfills ˚.x; 0/ D F.x/ for
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all x 2 X . Like in the scalar case, Y is the perturbation space and its elements
the perturbation variables. Then 0 2 PrY .dom˚/. The primal vector optimization
problem introduced above can be reformulated as

.PVG/ Min
x2X ˚.x; 0/.

When s 2 S , the scalarized optimization problem attached to .PVG/ is

.PGs/ inf
x2X s ı ˚.x; 0/,

to which one can assign the following conjugate dual problems

.DGs
1/ sup

v�2K�;
y�2Y �

˚ � s�.v�/ � .v�˚/�.0; y�/
�
,

and, respectively,

.DGs
2/ sup

y�2Y �

˚ � .s ı ˚/�.0; y�/
�
.

Using them, we attach to .PVG/ the following dual vector problems with respect
to S -properly efficient solutions

.DVGS
1 / Max

.s;v�;y�;v/2B
GS
1

h
GS
1 .s; v�; y�; v/,

where

BGS
1 D

n
.s; v�; y�; v/ 2 S �K� � Y � � V W s.v/ � �s�.v�/ � .v�˚/�.0; y�/

o

and

h
GS
1 .s; v�; y�; v/ D v;

and, respectively,

.DVGS
2 / Max

.s;y�;v/2B
GS
2

h
GS
2 .s; y�; v/,

where

BGS
2 D

n
.s; y�; v/ 2 S � Y � � V W s.v/ � �.s ı ˚/�.0; y�/

o
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and

h
GS
2 .s; y�; v/ D v:

Remark 4.2. When s is also lower semicontinuous and˚ isK-convex andK-lower
semicontinuous, one can replace .s ı ˚/�.0; y�/ in the definition of BGS

2 with
infv�2K�f�s�.v�/ � .v�˚/�.�; �/g.0; y�/ (cf. [49, Theorem 3.1]). Similar observa-
tions can be formulated later for the other vector duals of this type that appear in our
presentation.

Without resorting to the vector perturbation function ˚ one can also attach to
.PVG/ another vector dual, inspired by a vector dual considered for constrained
vector problems in [54, 55] and [48, Subsection 4.3.2], namely

.DVGS
3 / Max

.s;v/2B
GS
3

h
GS
3 .s; v/,

where

BGS
3 D

n
.s; v/ 2 S � V W s.v/ � inf

x2X s.F.x//
o

and

h
GS
3 .s; v/ D v:

Remark 4.3. It is a simple verification to show that in general it holds .s ı ˚/� �
infv�2K� Œs�.v�/C .v�˚/�.�/�, thus whenever .s; v�; y�; v/ 2 BGS

1 we have s.v/ �
�.sı˚/�.0; y�/, which yields .s; y�; v/ 2 BGS

2 . Consequently, hGS
1 .BGS

1 /� h
GS
2

.BGS
2 /. Sufficient conditions for having equality in this inclusion can be found

in [48, Theorem 3.5.2]; we mention here only one, namely that, provided that ˚
is proper and K-convex, for each s 2 S there exists a point Nx 2 domF such
that s is continuous at F. Nx/. But the scalarization functions most used in the
literature (see [31, 37] or Sect. 4.3) are also continuous at least over the sets on
which they are strongly or strictly K-increasing and also the regularity condition
considered earlier for the strong duality statement regarding .DVGS

1 / and .PVG/
covers the hypotheses mentioned above. Since in this case the first two vector duals
introduced above have the same images of their feasible sets through their objective
vector functions, it is not necessary to particularize both of them when dealing with
concrete scalarization functions from the literature in Sect. 4.3. However, we treat
them in the general case since the scalarization functions need not be continuous.
In Example 4.1 one can find a possible scalarization function of this kind, while in
Example 4.2 we deliver another one, in a situation where .DVGS

1 / and .DVGS
2 / do

not coincide.
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Example 4.1. Let X D R, V D R
2, K D R

2C,

S D ˚
s W .R2/� ! R W s.x; y/ D x2 C y2 C ı

R
2
C

.x; y/
�

and F W R ! .R2/�, F.x/ D .x; 0/> if x 2 .0; 1/ and F.x/ D 1
R
2
C

otherwise. One can easily see that F.domF / D .0; 1/� f0g and dom s D R
2C, thus

the condition F.domF / C R
2C � dom s is satisfied. Moreover, the scalarization

function s is proper, convex and strongly R
2C-increasing on R

2C, but it is not
continuous on F.domF /.

Example 4.2. Let X D R, Y D R, V D R
2, K D f.0; 0/>g,

S D

8
<̂

:̂
s W .R2/� ! R; s.x; y/ D

8
<̂

:̂

x ln x � x C y2

2
; if x > 0; y � 0;

y2

2
; if x D 0; y � 0;

C1; otherwise

9
>=

>;

and

˚ W R2 ! .R2/�; ˚.x; y/ D
8
<

:



x

x

�
; if x D y D 0 or

�
x ¤ 0 and y ¤ 0

�
;

1f.0;0/>g; otherwise:

Then the scalarization function s is proper, convex and strongly K-increasing on its
domain and .˚.�; 0//.dom˚.�; 0//CK D f.0; 0/g � Œ0;C1/� .�1; 0� D dom s.
Regarding the conjugates that appear in the formulation of .DVGS

1 / and .DVGS
2 /,

we have

s�.v�
1 ; v

�
2 / D

(
ev�

1 C .v�

2 /
2

2
; if v�

1 2 R; v�
2 � 0;

ev�

1 ; if v�
1 2 R; v�

2 > 0;

�
.v�
1 ; v

�
2 /

>˚
��
.0; y�/ D

�
0; if v�

1 C v�
2 D y� D 0;

C1; otherwise;

and .s ı ˚/�.0; y�/ D 0 for all y� 2 R. It is straightforward to see that s.0; 0/ D
0 D �.s ı ˚/�.0; y�/ for all y� 2 R, thus .0; 0/ 2 hGS

2 .BGS
2 /. On the other hand,

s�.v�
1 ; v

�
2 / > 0 for all v�

1 ; v
�
2 2 R, thus �s�.v�

1 ; v
�
2 / � �

.v�
1 ; v

�
2 /

>˚
��
.0; y�/ < 0

whenever v�
1 ; v

�
2 ; y

� 2 R. As s.0; 0/ D 0, it is obvious that .0; 0/ … h
GS
1 .BGS

1 /.
Consequently, .DVGS

1 / and .DVGS
2 / do not coincide in this situation.

Remark 4.4. Note also that we have infx2X s.F.x// � �.s ı ˚/�.0; y�/ for all
.s; y�; v/ 2 BGS

2 , thus hGS
2 .BGS

2 / � h
GS
3 .BGS

3 /. To show that the opposite
inclusion does not always hold, we consider the situation presented in Example 4.3.
However, as it will be seen further in Theorem 4.14, for .DVGS

3 / strong duality
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holds whenever .PVG/ has an S -properly efficient element, so we will not insist
much on this vector dual.

Example 4.3. Let X D R
2, Y D R, V D R

2, K D R
2C,

U D
�
.x; y/> 2 R

2 W 0 � x � 2;
3 � y � 4; if x D 0;

1 � y � 4; if x 2 .0; 2�
�
;

F W R2 ! .R2/�; F .x; y/ D

8
<̂

:̂



y

y

�
; if .x; y/> 2 U; x � 0;

1
R
2
C

; otherwise;

˚ W R2 � R ! .R2/�; ˚.x; y; z/ D

8
<̂

:̂



y

y

�
; if .x; y/> 2 U; x � z � 0;

1
R
2
C

; otherwise;

and (see also Sect. 4.3)

S D
n
s W .R2/� ! R; s.x; y/ D ax C by W .a; b/ 2 intR2C; s.1R

2
C

/ D C1
o
:

Note first that F.x; y/ D .y; y/> if x D 0 and 3 � y � 4, while otherwise
F.x; y/ D 1

R
2
C

. Whenever s 2 S there exist .v�
1 ; v

�
2 /

> 2 intR2C such that

s ıF D .v�
1 ; v

�
2 /

>F . We have .v�
1 ; v

�
2 /

>F.x; y/ � 3.v�
1 C v�

2 / for all .x; y/> 2 R
2.

Consequently, .3; 3/> 2 h
GS
3 .BGS

3 /. Assuming that .3; 3/> 2 h
GS
2 .BGS

2 /, it
follows that there exist .v�

1 ; v�
2 /

> 2 intR2C and y� 2 R such that 3.v�
1 C

v�
2 / � �..v�

1 ; v
�
2 /

>˚/�.0; y�/, i.e. ..v�
1 ; v

�
2 /

> ˚/�.0; y�/ � �3.v�
1 C v�

2 /. For all
.v�
1 ; v

�
2 /

> 2 intR2C and all y� 2 R we have

�
.v�
1 ; v

�
2 /

>˚
��
.0; y�/ D sup

.x;y/>2U;
x�z�0;z2R

˚
y�z � y.v�

1 C v�
2 /
�

D sup
.x;y/>2U

n
�y.v�

1 C v�
2 /C sup

z�x
y�z

o
D �.v�

1 C v�
2 /C ı.�1;0�.y

�/> � 3.v�
1 C v�

2 /:

Therefore, our assumption is false, i.e. .3; 3/> … h
GS
2 .BGS

2 /. Consequently, the
dual problems .DVGS

2 / and .DVGS
3 / do not coincide in this situation.

For the dual vector-maximization problems introduced above we consider
efficient solutions, defined below for .DVGS

1 / and analogously for the others.

Definition 4.4. An element .Ns; Nv�; Ny�; Nv/ 2 BGS
1 is said to be an efficient solution

to the vector optimization problem .DVGS
1 / if .Ns; Nv�; Ny�; Nv/ 2 dom h

GS
1 and

h
GS
1 .Ns; Nv�; Ny�; Nv/ 2 Max.hGS

1 .dom h
GS
1 /;K/. The set of all efficient solutions to

.DVGS
1 / is called the efficiency set of .DVGS

1 /, being denoted by E .DVGS
1 /.
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Remark 4.5. Replacing the inequalities from the feasible sets of the vector duals to
.PVG/ by the corresponding equalities we obtain other vector duals to .PVG/which
have smaller feasible sets. All the investigations done within this section can be
considered for those vector duals, too. However, we will not consider further these
vector dual problems since one can easily show that .s; v�; y�; v/ 2 E .DVGS

1 /

yields s.v/ D �s�.v�/ � .v�˚/�.0; y�/, .s; y�; v/ 2 E .DVGS
2 / implies s.v/ D

�.s ı˚/�.0; y�/, while when .s; v/ 2 E .DVGS
3 /, one gets s.v/ D infx2X s.F.x//.

Of course, this observation can be extended for all the special instances of these
three vector duals considered later in this chapter.

Let us now show that for the just introduced vector dual problems to .PVG/ there
is weak duality.

Theorem 4.1. There are no x 2 X and .s; v/ 2 BGS
3 such that F.x/ �K

h
GS
3 .s; v/.

Proof. Assume to the contrary that there exist x 2 X and .s; v/ 2 BGS
3 fulfilling

F.x/ �K h
GS
3 .s; v/. Then x 2 domF and it follows s.F.x// < s.v/ since s 2

S . But from the way the feasible set of the vector dual is defined, we get s.v/ �
infz2X s.F.z// and combining these two inequalities we reach a contradiction. ut

The weak duality statements for the other two vector duals can be obtained as
consequences of Theorem 4.1, having in mind the inclusions from Remarks 4.3 and
4.4.

Theorem 4.2. There are no x 2 X and .s; v�; y�; v/ 2 BGS
1 such that F.x/ �K

h
GS
1 .s; v�; y�; v/.

Theorem 4.3. There are no x 2 X and .s; y�; v/ 2 BGS
2 such that F.x/ �K

h
GS
2 .s; y�; v/.

Next we turn our attention to strong duality for the vector duals introduced in this
paper. Due to the way it is constructed, for .DVGS

3 / strong duality follows at once,
without any additional assumption.

Theorem 4.4. If Nx 2 PE S .PVG/, there exists an Ns 2 S such that .Ns; F. Nx// 2
E .DVGS

3 / and F. Nx/ D h
GS
3 .Ns; F. Nx//.

Proof. As Nx 2 X is an S -properly efficient solution to .PVG/, F. Nx/ 2 V and
there exists a function Ns 2 S such that Ns.F. Nx// � Ns.F.x// for all x 2 X .
Thus Ns.F. Nx// � infx2X Ns.F.x//. Consequently, .Ns; F. Nx// 2 BGS

3 and F. Nx/ D
h
GS
3 .Ns; NF . Nx//. The efficiency of .Ns; F. Nx// to .DVGS

3 / follows immediately via
Theorem 4.1. ut

To obtain strong duality for the other two vector duals we assigned to .PVG/
we need some additional hypotheses. Thus, we take the function ˚ to be K-
convex and we impose the fulfillment of a suitable regularity condition. One can
introduce different regularity conditions inspired from .RCG

i /, i 2 f1; 2; 3; 4g (see
for instance [21, 45, 48]), but, in order to avoid unnecessary complications given
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the complexity of the considered problem, we consider here only a classical one
involving continuity, namely

.RCVS /
8s 2 S 9x0 2 X such that .x0; 0/ 2 dom˚;˚.x0; �/ is
continuous at 0 and s is continuous at ˚.x0; 0/;

that can be weakened if intK ¤ ;, as we will see later. This regularity condition
guarantees, as can be seen in the proof of the next statement, on the one hand that
there is strong duality for the scalarized problem attached to .PVG/ and, on the other
hand, that the conjugate functions of s and ˚ can be separated. The strong duality
statements for the mentioned two vector duals to .PVG/ follow.

Theorem 4.5. If˚ is aK-convex vector function, the regularity condition .RCVS /

is fulfilled and Nx 2 PE S .PVG/, there exist Ns 2 S , Nv� 2 K� and Ny� 2 Y �
such that .Ns; Nv�; Ny�; F . Nx// 2 E .DVGS

1 /, .Ns; Ny�; F . Nx// 2 E .DVGS
2 / and F. Nx/ D

h
GS
1 .Ns; Nv�; Ny�; F . Nx// D h

GS
2 .Ns; Ny�; F . Nx//.

Proof. As Nx 2 X is an S -properly efficient solution to .PVG/, F. Nx/ 2 V and there
exists a scalarization function Ns 2 S such that Ns.F. Nx// � Ns.F.x// for all x 2 X .
Thus Ns.F. Nx// D minx2X Ns.F.x//.

Remark 2.5 yields then the existence of a Ny� 2 Y � such that supy�2Y �f�.Ns ı
˚/�.0; y�/g is attained at Ny� and Ns.F. Nx// D �.Nsı˚/�.0; Ny�/. Thus .Ns; Ny�; F . Nx// 2
BGS
2 and F. Nx/ D h

GS
2 .Ns; Ny�; F . Nx//.

On the other hand, the hypotheses yield (see Remark 4.3) also the existence
of a Nv� 2 K� such that .Ns ı ˚/�.0; Ny�/ D Ns�.Nv�/ C .Nv�˚/�.0; Ny�/, thus
h
GS
1 .Ns; Nv�; Ny�; F . Nx// D F. Nx/, too, and .Ns; Nv�; Ny�; F . Nx// 2 BGS

1 . The efficiency of
.Ns; Nv�; Ny�; F . Nx// 2 BGS

1 to .DVGS
1 / follows immediately by Theorem 4.2, while

the efficiency of .Ns; Ny�; F . Nx// 2 BGS
2 to .DVGS

2 / is a consequence of Theorem 4.3.
ut

Moreover, one can formulate necessary and sufficient optimality conditions for
.PVG/ and its vector dual problems introduced above. We begin with .DVGS

3 /,
since the statement regarding it does not require the fulfillment of a regularity
condition.

Theorem 4.6. (a) If Nx 2 PE S .PVG/, there exists a pair .Ns; Nv/ 2 E .DVGS
3 / such

that

(i) F. Nx/ D Nv;
(ii) Ns.Nv/ D Ns.F. Nx// D min

x2X Ns.F.x//.
(b) Assume that Nx 2 X and .Ns; Nv/ 2 S � V fulfill the relations .i/–.ii/. Then

Nx 2 PE S .PVG/ and .Ns; Nv/ 2 E .DVGS
3 /.

Proof. (a) The existence of a pair .Ns; Nv/ 2 E .DVGS
3 / and .i/ follow directly from

Theorem 4.4. The first equality in .ii/ follows directly from .i/, while the second
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one is a direct consequence of the fact that Nx 2 X is an S -properly efficient
solution to .PVG/ and Ns is the corresponding scalarization function.

(b) The second equality in .ii/ yields the S -properly efficiency of Nx to .PVG/,
while the first one implies .Ns; Nv/ 2 BGS

3 . Having these, .i/ and Theorem 4.1
guarantee the efficiency of .Ns; Nv/ 2 BGS

3 to .DVGS
3 /. ut

Remark 4.6. The optimality conditions .i/–.ii/ in Theorem 4.6 can be equivalently
written as F. Nx/ D Nv and 0 2 @.Ns ı F /. Nx/.
Theorem 4.7. (a) When ˚ is a K-convex vector function, the regularity condition

.RCVS / is fulfilled and Nx 2 PE S .PVG/, there exists .Ns; Nv�; Ny�; Nv/ 2
E .DVGS

1 / such that

(i) F. Nx/ D Nv;
(ii) Ns.Nv/C Ns�.Nv�/ D hNv�; Nvi;

(iii) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nv/ 2 S � V � � Y � � V fulfill the relations
.i/–.iii/. Then Nx 2 PE S .PVG/ and .Ns; Nv�; Ny�; Nv/ 2 E .DVGS

1 /.

Proof. (a) The existence of an element .Ns; Nv�; Ny�; Nv/ 2 E .DVGS
1 / and .i/ are

guaranteed by Theorem 4.5. Employing Remark 4.5, one gets Ns.Nv/ D �Ns�.Nv�/�
.Nv�˚/�.0; Ny�/. But the Young-Fenchel inequality yields Ns.Nv/ C Ns�.Nv�/ �
hNv�; Nvi D .Nv�F /. Nx/ D .Nv�˚/. Nx; 0/ and .Nv�˚/. Nx; 0/ C .Nv�˚/�.0; Ny�/ � 0,
so .ii/ and .iii/ are fulfilled.

(b) From .ii/ it follows that Nv� 2 dom Ns� and by Remark 1.6 it follows Nv� 2 K�.
Summing up .ii/ and .iii/ one gets Ns.Nv/CNs�.Nv�/C.Nv�F /. Nx/C.Nv�˚/�.0; Ny�/ D
hNv�; Nvi, which, employing .i/, turns into �Ns.F. Nx// D Ns�.Nv�/C .Nv�˚/�.0; Ny�/,
which yields .Ns; Nv�; Ny�; Nv/ 2 BGS

1 . Using that .Nsı˚/� � Ns�.v�/C.v�˚/�.�/ for
all v� 2 K�, the previous equality yields Ns.F. Nx// � �.Nsı˚/�.0; Ny�/. But �.Nsı
˚/�.0; Ny�/ � .Ns ı ˚/.x; 0/ for all x 2 X , therefore Ns.F. Nx// � .Ns ı ˚/.x; 0/
for all x 2 X , i.e. Nx 2 PE S .PVG/. The efficiency of .Ns; Nv�; Ny�; Nv/ 2 BGS

1 to
.DVGS

1 / follows immediately by .i/ and Theorem 4.2. ut
Remark 4.7. The optimality conditions .i/–.iii/ in Theorem 4.7 can be equivalently
written as F. Nx/ D Nv, Nv� 2 @Ns.F. Nx// and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/.

Analogously, one can prove the corresponding optimality conditions statement
for .PVG/ and .DVGS

2 /.

Theorem 4.8. (a) When ˚ is a K-convex vector function, the regularity condition
.RCVS / is fulfilled and Nx 2 PE S .PVG/, there exists .Ns; Ny�; Nv/ 2 E .DVGS

2 /

such that

(i) F. Nx/ D Nv;
(ii) Ns.Nv/C .Ns ı ˚/�.0; Ny�/ D 0.
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(b) Assume that Nx 2 X and .Ns; Ny�; Nv/ 2 S � Y � � V fulfill the relations .i/–.ii/.
Then Nx 2 PE S .PVG/ and .Ns; Ny�; Nv/ 2 E .DVGS

2 /.

Remark 4.8. As mentioned in the proof of Theorem 4.5, the hypotheses of The-
orem 4.8.a/ yield the existence of a Nv� 2 K� such that .Ns ı ˚/�.0; Ny�/ D
Ns�.Nv�/C .Nv�˚/�.0; Ny�/, i.e. one obtains actually the optimality conditions .i/–.iii/
from Theorem 4.7. However, we choose to give Theorem 4.8 as done above because
the optimality conditions formulated there are not only necessary but also sufficient
and, on the other hand, the assertion .a/ can be provided under weaker hypotheses
that do not necessarily guarantee the existence of the mentioned Nv� 2 K�. Similar
observations can be made regarding the optimality conditions of the other vector
duals of this type considered within this chapter, too.

Remark 4.9. The optimality conditions .i/–.ii/ in Theorem 4.8 can be equivalently
written as F. Nx/ D Nv and .0; Ny�/ 2 @.Ns ı ˚/. Nx; 0/.

Often, when qiK ¤ ;, the scalarization functions considered in the literature are
not strongly K-increasing, but strictly K-increasing. Following ideas from [31, 37,
48], one can notice that such scalarization functions can be brought into the vector
duality framework we treat here by employing the nontrivial pointed convex cone
OK D qiK [ f0g, already mentioned in Remark 3.28. It can also be verified that

every function which is strictlyK-increasing on F.domF /CK is also strongly OK-
increasing on F.domF /CK. In the remaining part of the section let qiK ¤ ;. In
order to capture the mentioned strictly K-increasing scalarization functions within
the duality framework dealt with in this section, consider another set of scalarization
functions, namely

T �
n
s W V � ! R W F.domF /CK � dom s and s is proper, convex

and strictly K-increasing on F.domF /CK; s.1K/ D C1
o
:

Definition 4.5. If qiK ¤ ;, we say that an element Nx 2 X is a T -properly efficient
solution to .PVG/ if F. Nx/ 2 PMinT .F.domF /;K/. The set of all T -properly
efficient solutions to .PVG/ is said to be the T -proper efficiency set of .PVG/,
being denoted by PE T .PVG/.

Remark 4.10. The elements introduced in Definition 4.5 were considered so far in
the literature (see [31,37,48]) only when intK ¤ ;. But, as we have seen above (for
instance in Remark 3.19), the framework can be extended to the case qiK ¤ ;. One
may argue that it would be more adequate to call the T -properly efficient solutions
to .PVG/ actually T -weakly efficient solutions, since they are defined only in case
qiK ¤ ;, like the classical weakly efficient solutions, and for the vector duals
to .PVG/ introduced with respect to them we consider weakly efficient solutions.
However, we opted to stay consequent to the name used in Definition 3.11, from
which Definition 4.5 originates.
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With respect to the T -properly efficient solutions of the primal problem .PVG/
one can define three vector duals that are obtained analogously to .DVGS

i /, i D
f1; 2; 3g, namely

.DVGT
1 / WMax

.s;v�;y�;v/2B
GT
1

h
GT
1 .s; v�; y�; v/,

where

BGT
1 D

n
.s; v�; y�; v/ 2 T �K� � Y � � V W s.v/ � �s�.v�/ � .v�˚/�.0; y�/

o

and

h
GT
1 .s; v�; y�; v/ D v;

.DVGT
2 / WMax

.s;y�;v/2B
GT
2

h
GT
2 .s; y�; v/,

where

BGT
2 D

n
.s; y�; v/ 2 T � Y � � V W s.v/ � �.s ı ˚/�.0; y�/

o

and

h
GT
2 .s; y�; v/ D v;

and, respectively,

.DVGT
3 / WMax

.s;v/2B
GT
3

h
GT
3 .s; v/,

where

BGT
3 D

n
.s; v/ 2 T � V W s.v/ � inf

x2X s.F.x//
o

and

h
GT
3 .s; v/ D v:

An observation similar to Remark 4.5 can be given for the vector duals to .PVG/
with respect to T -properly efficient solutions of the primal problem .PVG/, too.
Moreover, analogously to Remarks 4.3 and 4.4, one can easily show that

h
GT
1 .BGT

1 / � h
GT
2 .BGT

2 / � h
GT
3 .BGT

3 /: (4.2.1)
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To these problems we consider weakly efficient solutions, directly defined only
for .DVGT

1 /, since for the other two vector duals they can be given analogously.

Definition 4.6. An element .Ns; Nv�; Ny�; Nv/ 2 BGT
1 is said to be a weakly efficient

solution to the vector optimization problem .DVGT
1 / if .Ns; Nv�; Ny�; Nv/ 2 dom h

GT
1

and hGT
1 .Ns; Nv�; Ny�; Nv/ 2 WMax.hGT

1 .dom h
GT
1 /;K/. The set of all weakly efficient

solutions to .DVGT
1 / is called the weak efficiency set of .DVGT

1 /, being denoted by
W E .DVGT

1 /.

The weak and strong duality as well as the optimality conditions statements
concerning .PVG/ and these vector duals can be obtained as direct consequences
of their counterparts for .PVG/ and its vector duals with respect to S -properly
efficient solutions, by employing the cone OK.

Theorem 4.9. There are no x 2 X and .s; v/ 2 BGT
3 such that F.x/ <K

h
GT
3 .s; v/.

Theorem 4.10. There are no x 2 X and .s; v�; y�; v/ 2 BGT
1 such that F.x/ <K

h
GT
1 .s; v�; y�; v/.

Theorem 4.11. There are no x 2 X and .s; y�; v/ 2 BGT
2 such that F.x/ <K

h
GT
2 .s; y�; v/.

Theorem 4.12. If Nx 2 PE T .PVG/, there exists an Ns 2 T such that .Ns; F. Nx// 2
W E .DVGT

3 / and F. Nx/ D h
GT
3 .Ns; F. Nx//.

Theorem 4.13. If ˚ is a K-convex vector function, the regularity condition
.RCVS / is fulfilled and Nx 2 PE T .PVG/, there exist Ns 2 T , Nv� 2 K� and
Ny� 2 Y � such that .Ns; Nv�; Ny�; F . Nx// 2 W E .DVGT

1 /, .Ns; Ny�; F . Nx// 2 W E .DVGT
2 /

and F. Nx/ D h
GT
1 .Ns; Nv�; Ny�; F . Nx// D h

GT
2 .Ns; Ny�; F . Nx//.

Theorem 4.14. (a) If Nx 2 PE T .PVG/, there exists .Ns; Nv/ 2 W E .DVGT
3 / such

that

(i) F. Nx/ D Nv;
(ii) Ns.Nv/ D Ns.F. Nx// D min

x2X Ns.F.x//.
(b) Assume that Nx 2 X and .Ns; Nv/ 2 T � V fulfill the relations .i/–.ii/. Then

Nx 2 PE T .PVG/ and .Ns; Nv/ 2 W E .DVGT
3 /.

Theorem 4.15. (a) If ˚ is a K-convex vector function, the regularity condi-
tion .RCVS / is fulfilled and Nx 2 PE T .PVG/, there exists .Ns; Nv�; Ny�; Nv/ 2
W E .DVGT

1 / such that

(i) F. Nx/ D Nv;
(ii) Ns.Nv/C Ns�.Nv�/ D hNv�; Nvi;

(iii) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.
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(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nv/ 2 T � V � � Y � � V fulfill the relations
.i/–.iii/. Then Nx 2 PE T .PVG/ and .Ns; Nv�; Ny�; Nv/ 2 W E .DVGT

1 /.

Theorem 4.16. (a) If ˚ is a K-convex vector function, the regularity condi-
tion .RCVS / is fulfilled and Nx 2 PE T .PVG/, there exists .Ns; Ny�; Nv/ 2
W E .DVGT

2 / such that

(i) F. Nx/ D Nv;
(ii) Ns.Nv/C .Ns ı ˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and .Ns; Ny�; Nv/ 2 T � Y � � V fulfill the relations .i/–.ii/.
Then Nx 2 PE T .PVG/ and .Ns; Ny�; Nv/ 2 W E .DVGT

2 /.

Remark 4.11. The optimality conditions provided in Theorems 4.14–4.16 can be
equivalently written in the same way as done in Remarks 4.6, 4.7 and 4.9,
respectively.

Remark 4.12. If intK ¤ ;, the regularity condition .RCVS / can be weakened in
the hypotheses of Theorems 4.13, 4.15 and 4.16 to

.RCVS
0 / 9x0 2 X such that .x0; 0/ 2 dom˚ and ˚.x0; �/ is continuous at 0;

because the continuity assumptions for s are no longer necessary under the
mentioned hypothesis, as it can be seen below. The optimization problem
infx2X Ns.F.x// is actually nothing else than

inf
x2X;y2Y;

˚.x;0/�y2�K
Ns.y/:

The Lagrange dual of the latter is

sup
v�2K�

inf
x2X;
y2Y

�Ns.y/C hv�; ˚.x; 0/ � yi�;

and it can be rewritten as supv�2K�

˚ � Ns�.v�/ � ..v�˚/.�; 0//�.0/�. The regularity
condition .RCVS

0 / yields the existence of an x0 2 domF such that ˚.x0; 0/ C
intK � dom Ns and also a y0 2 dom Ns such that ˚.x0; 0/ � y0 2 � intK. Using now
[48, Theorem 3.2.9], one obtains that for the primal-dual pair of scalar optimization
problems introduced above there is strong duality, thus there exists a Nv� 2 K� such
that Ns.F. Nx// D �Ns�.Nv�/ � ..Nv�˚/.�; 0//�.0/. Applying Remark 2.5, .RCVS

0 / also
yields the existence of a Ny� 2 Y � such that ..Nv�˚/.�; 0//�.0/ D .Nv�˚/�.0; Ny�/.
The same weaker regularity condition can be used when the considered scalarization
functions are continuous, too.
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4.3 Vector Duality via Different Scalarizations for General
Vector Optimization Problems

In this section we consider several concrete scalarization functions, obtaining vector
duals and corresponding duality statements by particularizing the set S or T ,
respectively. More exactly, we present the linear scalarization, the maximum(-
linear) scalarization, the set scalarization, the (semi)norm scalarization, the oriented
distance scalarization and the quadratic scalarization. Since all these scalarizations
are made with continuous functions, taking into consideration Remark 4.3 and
Theorem 4.4, we will not deal in this section with all the vector duals we considered
to .PVG/, working only with .DVGS

1 / and .DVGT
1 /, respectively.

Before proceeding, let us mention that different other scalarizations were con-
sidered in the literature, from which we recall some here. From the scalarizations
involving strongly K-increasing functions we mention the one using continuous
sublinear functions from [183] and the one containing penalty functions from [213].
Regarding the scalarizations involving strictly K-increasing functions, we have, for
instance, the one with continuous sublinear functions from [157] and the bottleneck
scalarization considered in [119]. Other scalarizations can be found for instance in
[165].

4.3.1 Linear Scalarization

The linear scalarization is the simplest and, consequently, most often used scalar-
ization method in the literature and it operates with strongly or strictlyK-increasing
linear continuous functions. From the huge amount of works where it appears we
mention here only [48, 140, 166]. We first deal with the case of the strongly K-
increasing linear functions. Take the set of scalarization functions

Sl D
n
sv� W V � ! R W v� 2 K�0; sv�.v/ D hv�; vi 8v 2 V �o:

Each sv� 2 Sl is a linear continuous stronglyK-increasing function with dom sv� D
V .

An element Nx 2 X is said to be an Sl -properly efficient solution to .PVG/ if
there exists a v� 2 K�0 such that hv�; F . Nx/i � hv�; F .x/i for all x 2 X . Note
that the Sl -properly efficient solutions to .PVG/ are actually the classical properly
efficient solutions to it in the sense of linear scalarization from the literature, that
can be introduced via Definition 3.10 and consequently we denote their set by
PE LS.PVG/. Noticing that for all k� 2 K� one has s�

v�.k
�/ D ıfv�g.k�/, the dual

vector problem .DVGS
1 / becomes
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.DVGSl

1 / Max
.v�;y�;v/2B

GSl
1

h
GSl
1 .v�; y�; v/,

where

B
GSl
1 D

n
.v�; y�; v/ 2 K�0 � Y � � V W hv�; vi � �.v�˚/�.0; y�/

o

and

h
GSl
1 .v�; y�; v/ D v:

Note that this is actually the vector dual to .PVG/ considered for instance in [48,
Section 4.3] and [101]. The weak and strong duality statements for .PVG/ and
.DVGSl

1 / follow from Theorems 4.2 and 4.5, with the observation that due to
the continuity of the scalarization function the regularity condition we consider is
.RCVS

0 /.

Theorem 4.17. (a) There are no x 2 X and .v�; y�; v/ 2 B
GSl
1 such that

F.x/ �K h
GSl
1 .v�; y�; v/.

(b) If ˚ is a K-convex vector function, the regularity condition .RCVS
0 / is fulfilled

and Nx 2 PE LS.PVG/, there exist Nv� 2 K�0 and Ny� 2 Y � such that

.Nv�; Ny�; F . Nx// 2 E .DVGSl

1 / and F. Nx/ D h
GSl
1 .Nv�; Ny�; F . Nx//.

Moreover, from Theorem 4.7 one can obtain the following necessary and
sufficient optimality conditions regarding .PVG/ and .DVGSl

1 /.

Theorem 4.18. (a) If ˚ is a K-convex vector function, the regularity condition
.RCVS

0 / is fulfilled and Nx 2 PE LS.PVG/, there exists .Nv�; Ny�; Nv/ 2 E .DVGSl

1 /

such that

(i) F. Nx/ D Nv;
(ii) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and .Nv�; Ny�; Nv/ 2 B
GSl
1 fulfill the relations .i/–.ii/. Then

Nx 2 PE LS.PVG/ and .Nv�; Ny�; Nv/ 2 E .DVGSl

1 /.

On the other hand, when qiK ¤ ; and K is closed and the pair .K; F.domF //

has the property .QC/, one can take as set of scalarization functions also

Tl D
n
sv� W V � ! R W v� 2 K� n f0g; sv�.v/ D hv�; vi 8v 2 V �o:

Each sv� 2 Tl is a linear continuous strictly K-increasing function with
dom sv� D V . An element Nx 2 X is said to be a Tl -properly efficient solution
to .PVG/ if there exists a v� 2 K� n f0g such that hv�; F . Nx/i � hv�; F .x/i for
all x 2 X , and we denote this by Nx 2 PE Tl .PVG/. Note that when F.X/ C K
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is convex, that happens for instance when F is a K-convex function, one has
PE Tl .PVG/ D W E .PVG/. The dual vector problem .DVGT

1 / becomes

.DVGTl
1 / WMax

.v�;y�;v/2B
GTl
1

h
GTl
1 .v�; y�; v/,

where

B
GTl
1 D

n
.v�; y�; v/ 2 .K� n f0g/ � Y � � V W hv�; vi � �.v�˚/�.0; y�/

o

and

h
GTl
1 .v�; y�; v/ D v:

Note that this is actually the vector dual to .PVG/ considered in [110] and, for the
case intK ¤ ;, for instance in [48, 140]. The weak and strong duality statements
for .PVG/ and .DVGTl

1 / follow from Theorems 4.10 and 4.13, again with the
observation that due to the continuity of the scalarization function the regularity
condition we consider is .RCVS

0 /.

Theorem 4.19. (a) There are no x 2 X and .v�; y�; v/ 2 B
GTl
1 such that

F.x/ <K h
GTl
1 .v�; y�; v/.

(b) If ˚ is a K-convex vector function, the regularity condition .RCVS
0 / is fulfilled

and Nx 2 W E .PVG/, there exist Nv� 2 K� n f0g and Ny� 2 Y � such that

.Nv�; Ny�; F . Nx// 2 W E .DVGTl
1 / and F. Nx/ D h

GTl
1 .Nv�; Ny�; F . Nx//.

The corresponding necessary and sufficient optimality conditions follow from
Theorem 4.15.

Theorem 4.20. (a) If ˚ is a K-convex vector function, the regularity condition
.RCVS

0 / is fulfilled and Nx 2 W E .PVG/, there exists .Nv�; Ny�; Nv/ 2 W E .DVGTl
1 /

such that

(i) F. Nx/ D Nv;
(ii) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and .Nv�; Ny�; Nv/ 2 B
GTl
1 fulfill the relations .i/–.ii/. Then

Nx 2 PE Tl .PVG/ and .Nv�; Ny�; Nv/ 2 W E .DVGTl
1 /.

Remark 4.13. The optimality conditions .i/–.ii/ in both Theorems 4.18 and 4.20
can be equivalently written as F. Nx/ D Nv and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/.
Remark 4.14. In case intK ¤ ; or coreK ¤ ; the duality statements with respect
to the Tl -properly efficient solutions to .PVG/ remain valid even if the cone K is
not necessarily closed.
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4.3.2 Maximum(-Linear) Scalarization

In case V is a finitely dimensional space one of the scalarizations one can meet
especially in the applications of vector optimization is the so-called Tchebyshev
(or, maximum) scalarization (cf. [88, 140, 144, 164, 197]). We deal here with a
more general scalarization function defined by combining a weighted maximum
scalarization function with a linear function, as used for instance in [165, 168]. Let
V D R

k andK D R
kC. In this case let the components of the multiobjective function

F be the proper functions Fi W X ! R, i D 1; : : : ; k, such that \k
iD1 domFi ¤ ;,

and F W X ! R
k [ f1

R
k
C

g is defined by

F.x/ D

8
<̂

:̂

.F1.x/; : : : ; Fk.x//
>; if x 2

kT

iD1
domFi ;

1
R
k
C

; otherwise:

Let also be � � 0. For w D .w1; : : : ;wk/> 2 intRkC and a D .a1; : : : ; ak/
> 2 R

k

we consider the scalarization function sw;a W .Rk/� ! R, defined by

sw;a.y/ D

8
<̂

:̂

max
jD1;:::;kfwj .yj � aj /g C �

kP

jD1
wj yj ; if y D .y1; : : : ; yk/

> 2 R
k;

C1; otherwise:

For all w 2 intRkC and a 2 R
k , sw;a is convex and strictly R

kC-increasing and
fulfills F

�\k
iD1 domFi

� C R
kC � R

k D dom s. We introduce the following set of
scalarization functions

Tml D
n
sw;a W Rk [ f1

R
k
C

g ! R W .w; a/ 2 intRkC � R
k
o
:

Then an element Nx 2 X is said to be a Tml-properly efficient solution to .PVG/ if
there exist w 2 intRkC and a 2 R

k such that maxfwj .Fj . Nx/�aj / W j D 1; : : : ; kgC
�
Pk

jD1 wj Fj . Nx/ � maxfwj .Fj .x/ � aj / W j D 1; : : : ; kg C �
Pk

jD1 wj Fj .x/ for
all x 2 X , and we denote this by Nx 2 PE Tml.PVG/.

Let be w D .w1; : : : ;wk/> 2 intRkC and a D .a1; : : : ; ak/
> 2 R

k fixed. Since
the conjugate function of sw;a 2 Tml is, for k� 2 R

k ,

s�
w;a.k

�/ D

8
<̂

:̂

.k� � �w/>a; if �w 5 k� and
kP

jD1
k�

j

wj
D k�C 1;

C1; otherwise;

the dual vector problem to .PVG/ with respect to Tml-properly efficient solutions is
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.DVGTml
1 / WMax

.w;a;v�;y�;v/2B
GTml
1

h
GTml
1 .w; a; v�; y�; v/,

where

B
GTml
1 D

�
.w; a; v�; y�; v/ 2 intRkC � R

k � R
kC � Y � � R

k W �w 5 v�;
kX

jD1

v�
j

wj
D k�C1;

max
jD1;:::;kfwj .vj � aj /g C �

kX

jD1
wj vj � �.v� � �w/>a � .v�˚/�.0; y�/

�

and

h
GTml
1 .w; a; v�; y�; v/ D v:

Remark 4.15. If w 2 intRkC and a 2 R
k , one can note that s�

w;a.0/ D C1,
consequently dom s�

w;a � R
kC n f0g.

The weak and strong duality statements for .PVG/ and .DVGTml
1 / follow from

Theorems 4.10 and 4.13, again with the observation that due to the continuity of the
scalarization function the regularity condition we consider is .RCVS

0 /.

Theorem 4.21. (a) There are no x 2 X and .w; a; v�; y�; v/ 2 B
GTml
1 such that

F.x/ <K h
GTml
1 .w; a; v�; y�; v/.

(b) If ˚ is a K-convex vector function, the regularity condition .RCVS
0 / is fulfilled

and Nx 2 PE Tml.PVG/, there exist Nv� 2 K� n f0g, Nw 2 intRkC, Na 2 R
k

and Ny� 2 Y � such that . Nw; Na; Nv�; Ny�; F . Nx// 2 W E .DVGTml
1 / and F. Nx/ D

h
GTml
1 . Nw; Na; Nv�; Ny�; F . Nx//.

The corresponding necessary and sufficient optimality conditions follow from
Theorem 4.15.

Theorem 4.22. (a) If ˚ is a K-convex vector function, the regularity condition
.RCVS

0 / is fulfilled and Nx 2 PE Tml.PVG/, there exists . Nw; Na; Nv�; Ny�; Nv/ 2 W E

.DVGTml
1 / such that

(i) F. Nx/ D Nv;
(ii) max

jD1;:::;kf Nwj .Nvj � Naj /g C � Nw> Nv C .Nv� � � Nw/> NaC ı
R
k
C

.Nv� � � Nw/ D Nv�> Nv;

(iii)
kP

jD1
Nv�

j

Nwj D k�C 1;

(iv) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and . Nw; Na; Nv�; Ny�; Nv/ 2 B
GTml
1 fulfill the relations .i/–.iv/.

Then Nx 2 PE Tml.PVG/ and . Nw; Na; Nv�; Ny�; Nv/ 2 W E .DVGTml
1 /.
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Remark 4.16. The optimality conditions .i/–.iv/ in Theorem 4.22 can be equiv-
alently written as F. Nx/ D Nv, Nv� 2 @s Nw; Na.F. Nx// and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/.
Considering the set L.w; a; y/ D ˚

l 2 f1; : : : ; kg \ N W wl .yl � al / D
max1�j�k wj .yj � aj /

�
for .w; a; y/ 2 intRkC � R

k � R
k , one can show that

@sw;a.y/ D
�
k� D .k�

1 ; : : : ; k
�
k /

> 2 R
k W k�

j D �wj 8j 2 f1; : : : ; kg n L.w; a; y/;
X

j2L.w;a;y/

k�
j

wj
D 1C k�

�
;

consequently the optimality condition Nv� 2 @s Nw; Na.F. Nx// can be equivalently written
as Nv� D .Nv�

1 ; : : : ; Nv�
k /

> with Nv�
j D �wj when j 2 f1; : : : ; kg n L. Nw; Na; F. Nx// andP

j2L. Nw; Na;F. Nx//.Nv�
j = Nwj / D 1C k�.

In case � D 0 the maximum-linear scalarization becomes the weighted Tcheby-
shev scalarization, that can also be seen as a special case (see also [203]) of the
set scalarization that will be presented in Sect. 4.3.3. In the more particular case
wj D 1 and aj D 0 for all j D 1; : : : ; k, the set of scalarization functions has only
one element, namely the extended maximum function

Tm D
(

sm W Rk [ f1
R
k
C

g ! R W sm.y/ D
(

max
jD1;:::;k yj ; if y 2 R

k;

C1; otherwise

)

;

with dom sm D R
k . Consequently an element Nx 2 X is said to be a Tm-properly

efficient solution to .PVG/ if maxjD1;:::;k Fj . Nx/ � maxjD1;:::;k Fj .x/ for all x 2 X ,
and we denote this by Nx 2 PE Tm.PVG/. The dual vector problem to .PVG/ with
respect Tm-properly efficient solutions is

.DVGTm
1 / WMax

.v�;y�;v/2B
GTm
1

h
GTm
1 .v�; y�; v/,

where

B
GTm
1 D

�
.v�; y�; v/ 2 R

kC�Y ��Rk W
kX

jD1
v�
j D 1; max

jD1;:::;kfvj g � �.v�˚/�.0; y�/
�

and

h
GTm
1 .v�; y�; v/ D v:

The weak and strong duality statements for .PVG/ and .DVGTm
1 / are particular

instances of Theorem 4.21, while the necessary and sufficient optimality conditions
can be derived via Theorem 4.22.
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4.3.3 Set Scalarization

As set scalarizations we understand the scalarization approaches for which the
scalarization functions are defined by means of some given sets. We consider here a
quite general scalarization function inspired by the one introduced in [99] under the
hypothesis intK ¤ ; and used in various formulations for dealing with different
problems in vector optimization in works like [37,90,92,93,114,129,143,152,182,
183,185,188,191,192,194,203,204,214]. In this subsection qiK is taken nonempty.

Consider a fixed nonempty convex set E � V which satisfies clE C qiK �
coreE. This condition is quite naturally fulfilled in different circumstances, for
instance in case E D K (when we replace the quasi interior of K with its
algebraic interior) treated later as it induces the scalarization with conical sets
or in mathematical economics where a variant of it is called the free disposal
assumption (see [79,92,93]). For each 
 2 qiK we define the scalarization function
s
 W V � ! R by

s
.v/ D inf
˚
t 2 R W v 2 t
 � clE

�
:

Notice that s
.1K/ D C1 and dom s
 D V . According to [99, 203], in case
intK ¤ ;, for each 
 2 intK the function s
 is convex, continuous and strictly
K-increasing. These properties remain valid in the framework we use, too.

Proposition 4.1. Whenever 
 2 qiK, the function s
 is strictly K-increasing.

Proof. Let p; q 2 V such that p <K q and Nr D s
.q/. Then p 2 q � qiK �
r
�clE�qiK � r
�coreE for all r > Nr . Let us show now that p 2 r
�coreE
for all r > Nr if and only if s
.p/ < Nr , that would yield the strict K-monotonicity of
the function s
.

If s
.p/ < Nr , let Nt D s
.p/. Then for all t 2 .Nt ; Nr/ one has p 2 t
�clE D Nr
�
. Nr� t /
�clE � Nr
�coreE since . Nr� t /
 2 qiK, consequently p 2 r
�coreE
whenever r > Nr .

Viceversa, for any r > Nr , p 2 r
 � coreE yields the existence of a w 2 coreE
such that p D r
 � w. Then for a convenient choice of r > Nr there exists an
˛ 2 .0; Nr/ such that w � .r C ˛ � Nr/
 2 E and let t D Nr � ˛ > 0. But p D
.r � Nr C ˛/
C t
 � w 2 t
 �E � t
 � clE, consequently s
.p/ � t < Nr . ut

The set of scalarization functions we consider in this case is then

Ts D
n
s
 W V � ! R W 
 2 qiK

o
:

Then an element Nx 2 X is said to be a Ts-properly efficient solution to .PVG/ if
there exists a 
 2 qiK such that s
.F. Nx// � s
.F.x// for all x 2 X , and we
denote this by Nx 2 PE Ts .PVG/. Since for 
 2 qiK the conjugate function of s
 is
(cf. [37, 48])
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s�

 W V � ! R; s�


.k
�/ D

�
�� clE.k

�/; if hk�; 
i D 1;

C1; otherwise;

the dual vector problem attached to .PVG/ via the set scalarization turns out to be

.DVGTs
1 / WMax

.
;v�;y�;v/2B
GTs
1

h
GTs
1 .
; v�; y�; v/,

where

B
GTs
1 D

n
.
; v�; y�; v/ 2 qiK �K� � Y � � V W hv�; 
i D 1;

inf
˚
t 2 R W v 2 t
 � clE

� � ��� clE.v�/ � .v�˚/�.0; y�/
o

and

h
GTs
1 .
; v�; y�; v/ D v:

Remark 4.17. If 
 2 qiK, one can note that s�

.0/ D C1, consequently dom s�


 �
K� n f0g.

The weak and strong duality statements for .PVG/ and .DVGTl
1 / follow from

Theorems 4.10 and 4.13.

Theorem 4.23. (a) There are no x 2 X and .
; v�; y�; v/ 2 B
GTs
1 such that

F.x/ <K h
GTs
1 .
; v�; y�; v/.

(b) If ˚ is a K-convex vector function, the regularity condition .RCVS
0 / is fulfilled

and Nx 2 PE Ts .PVG/, there exist N
 2 qiK, Nv� 2 K� n f0g and Ny� 2 Y � such

that . N
; Nv�; Ny�; F . Nx// 2 W E .DVGTs
1 / and F. Nx/ D h

GTs
1 . N
; Nv�; Ny�; F . Nx//.

The corresponding necessary and sufficient optimality conditions follow from
Theorem 4.15.

Theorem 4.24. (a) When˚ is aK-convex vector function, the regularity condition
.RCVS

0 / is fulfilled and Nx 2 PE Ts .PVG/, there exists . N
; Nv�; Ny�; Nv/ 2 W E

.DVGTs
1 / such that

(i) F. Nx/ D Nv;
(ii) inf

˚
t 2 R W Nv 2 t N
 � clE

�C �� clE.Nv�/ D hNv�; Nvi;
(iii) hNv�; N
i D 1;
(iv) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and . N
; Nv�; Ny�; Nv/ 2 B
GTs
1 fulfill the relations .i/–.iv/. Then

Nx 2 PE Ts .PVG/ and . N
; Nv�; Ny�; Nv/ 2 W E .DVGTs
1 /.

Remark 4.18. The optimality conditions .i/–.iv/ in Theorem 4.24 can be equiv-
alently written, taking into consideration the formula of @s N
 given in [81], as
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F. Nx/ D Nv, Nv� 2 fx� 2 K� W hx�; N
i D 1, s N
.F. Nx// D hx�; F . Nx/ig and
.0; Ny�/ 2 @.Nv�˚/. Nx; 0/.
Remark 4.19. In the literature there are some interesting special cases of the set
scalarization, from which we mention here the scalarization with conical sets,
mentioned in papers like [183, 191], closely related to the so-called Pascoletti-
Serafini scalarization (cf. [129]), the scalarization with sets generated by norms for
which we refer to [143, 194, 214], having as a subcase the situation when oblique
norms are employed (see [185, 194]), and, finally, the scalarization with polyhedral
sets in finitely dimensional spaces treated in [204]. As mentioned in [89], a function
very similar to the one we employed in the set scalarization is used in production
theory where it is called shortage function. Note also that in [203] a deeper analysis
of an approach for embedding other classical scalarization functions into the set
scalarization concept can be found and that the set scalarization with its special
instances was employed into vector duality in [31, 37, 48].

Let us present now two of the mentioned special cases of the set scalarization.
We begin with the so-called set scalarization with conical sets, where we assume
that coreK ¤ ; and E is taken to coincide with K. Since the latter is a convex
cone, the condition clE C coreK � coreK is automatically fulfilled, actually as
an equality. For all 	 2 coreK we define the scalarization function s	 W V � ! R by

s	.v/ D inf
˚
t 2 R W v 2 t	 � clK

�
:

From the definition it follows that s	.1K/ D C1 and dom s	 D V . The set of
scalarization functions is then

Tsc D
n
s	 W V � [ f1Kg ! R W 	 2 coreK

o
:

Then an element Nx 2 X is said to be a Tsc-properly efficient solution to .PVG/
if there exists a 	 2 coreK such that s	.F. Nx// � s	.F.x// for all x 2 X , and
we denote this by Nx 2 PE Tsc.PVG/. Since �� clK D ıK� , for all 	 2 coreK the
conjugate function of s	 at k� 2 V � is

s�
	 .k

�/ D
�
0; if k� 2 K�; hk�; 	i D 1;

C1; otherwise;

leading to the following dual vector problem to .PVG/

.DVGTsc
1 / WMax

.	;v�;y�;v/2B
GTsc
1

h
GTsc
1 .	; v�; y�; v/,

where
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B
GTsc
1 D

n
.	; v�; y�; v/ 2 coreK �K� � Y � � V W hv�; 	i D 1;

inf
˚
t 2 R W v 2 t	 � clK

� � �.v�˚/�.0; y�/
o

and

h
GTsc
1 .	; v�; y�; v/ D v:

The weak and strong duality statements for .PVG/ and .DVGTsc
1 / are particular

instances of Theorem 4.23, while the necessary and sufficient optimality conditions
can be derived via Theorem 4.24.

A second special case of the set scalarization we present here is the so-called
scalarization with sets generated by norms in finitely dimensional spaces. To this
end we have to introduce several notions and present some results, following [185,
194]. Let V D R

k and K � R
k a convex cone with nonempty interior.

Definition 4.7. A norm � W R
k ! R is called block norm if its unit ball B� is

polyhedral.

Definition 4.8. A norm � W Rk ! R is called absolute if whenever Ny 2 R
k one has

�.y/ D �. Ny/ for all y 2 ˚z D .z1; : : : ; zk/> 2 R
k W jzj j D j Nyj j 8j D 1; : : : ; k

�
.

Definition 4.9. A block norm � W Rk ! R is called oblique if it is absolute and
satisfies

�
y � R

kC
� \ R

kC \ bdB� D fyg for all y 2 R
kC \ bdB� .

Example 4.4. The Euclidean norm k � k2 in R
k is absolute, but not block, thus not

oblique.

According to [185,194], for a block norm � there are some r 2 N, ai 2 R
k n f0g

and �i 2 R, i D 1; : : : ; r , such that the unit ball generated by � is

B� D
n
y 2 R

k W a>
i y � �i ; i D 1; : : : ; r

o
:

In order to introduce the scalarization function considered in this case, one needs
also the sets

I� D
n
i 2 f1; : : : ; rg W

n
y 2 R

k W a>
i y D �i

o
\ B� \ intRkC ¤ ;

o

and

E� D
n
y 2 R

k W a>
i y � �i 8i 2 I�

o
:

If � is an absolute norm on R
k , l 2 intRkC and w 2 R

k , consider the scalarization
function

��;l;w W .Rk/� ! R; ��;l;w.y/ D inf
˚
t 2 R W y 2 tl CE� C w

�
;
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which fulfills ��;l;w.1K/ D C1 and dom ��;l;w D R
k . According to [185, 194], it

is convex and strictly K-increasing when bdE� � .K n f0g/ � intE� . Moreover,
when � is an absolute block norm, the function ��;l;w is strictly R

kC-increasing for
any l 2 intRkC and w 2 R

k , while when � is an oblique norm, ��;l;w is strongly
R
kC-increasing whenever l 2 intRkC and w 2 R

k .
Denote by O the set of the absolute norms � W Rk ! R for which bdE��intK �

intE� and consider the following set

Tsn D
n
��;l;w W .Rk/� ! R W � 2 O; l 2 intRkC;w 2 R

k;

��;l;w.y/ D inf
˚
t 2 R W y 2 t l CE� C w

� 8y 2 R
k
o
:

Then an element Nx 2 X is said to be a Tsn-properly efficient solution to .PVG/
if there are an absolute norm � 2 O , and some l 2 intRkC and w 2 R

k such that
��;l;w.F. Nx// � ��;l;w.F.x// for all x 2 X , and we denote this by Nx 2 PE Tsn .PVG/.

Remark 4.20. Restricting moreover the set Tsn to contain only functions ��;l;w
where � is an absolute block norm or an oblique norm, one can get other scalar-
izations which could be treated separately, too. Actually, in the latter situation one
would actually be able to consider corresponding S -properly efficient solutions to
the primal problem .PVG/, due to the R

kC-strong monotonicity of the scalarization
function (cf. [185,194]), thus it would not necessarily be a special case of the general
set scalarization.

For some .�; l;w/ 2 O � intRkC � R
k , the conjugate of the corresponding

scalarization function at k� 2 R
k is

��
�;l;w.k

�/ D sup
y2Rk

n
k�>

y � inf
˚
t 2 R W y 2 t l CE� C w

�o

D sup
y2Rk

n
k�>

y C sup
˚ � t 2 R W y 2 t l CE� C w

�o
:

Denoting w D y � t l � w, one gets

��
�;l;w.k

�/ D sup
t2R

�
� t C sup

w2E�

n
k�>

.w C t l C w/
o�

D sup
t2R

�
� t C tk�>

l C sup
w2E�

k�>w

�
C k�>w

D sup
t2R

n
t
�
k�>

l � 1
	o

C �E� .k
�/C k�>w

D
�
�E� .k

�/C k�>w; if k�>l D 1;

C1; otherwise.
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Remark 4.21. According to [127, Example V.3.4.4], �E� is the lower semicontinu-
ous hull of the function

d 7!

8
<̂

:̂

inf

(
P

i2I�
ti �i W P

i2I�
ti ai D d; ti � 0; i 2 I�

)

if d 2 conefai W i 2 I�g;
C1; otherwise:

But, since it would be quite complicated to work with this function, we choose to
use further its shorter form �E� .

Now one can assign to .PVG/ the following vector dual problem with respect to
Tsn-properly efficient solutions

.DVGTsn
1 / WMax

.w;�;l;v�;y�;v/2B
GTsn
1

h
GTsn
1 .w; �; l; v�; y�; v/,

where

B
GTsn
1 D

n
.w; �; l; v�; y�; v/ 2 R

k � O � intRkC �K� � Y � � R
k W v�>l D 1;

inf
˚
t 2 R W v 2 t l CE� C w

� � ��E� .v�/ � v�>w � .v�˚/�.0; y�/
o

and

h
GTsn
1 .w; �; l; v�; y�; v/ D v:

The weak and strong duality statements for .PVG/ and .DVGTsn
1 / are particular

instances of Theorem 4.23, while the necessary and sufficient optimality conditions
can be derived via Theorem 4.24.

4.3.4 (Semi-)Norm Scalarization

The (semi)norm scalarization has its roots in the fact that in some circumstances
some (semi)norms on V turn out to be strongly K-increasing functions, as noted
in different works from which we recall here only [140, 143, 146, 185, 213]. The
scalarization functions we investigate in the following are based on strongly K-
increasing gauges. This kind of scalarization functions has been used in [202] for
location problems and in [69] for goal programming, but also papers like [78, 139,
166,218] can be mentioned here since they contain different scalarizations involving
(semi)norms.

Assume that there exists a b 2 V such that ˚.dom˚/ � b C K. We consider
a convex set E � V such that 0 2 coreE and its gauge (Minkowski function)
�E W V ! R, defined by �E.x/ D infft � 0 W x 2 tEg, is strongly K-increasing
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on K. Since 0 2 intE, �E.v/ 2 R for all v 2 V . For every a 2 b � K define the
scalarization function sa W V � ! R by

sa.v/ D
�
�E.v � a/; if v 2 b CK;

C1; otherwise;

therefore dom sa D V . All these functions are convex, sublinear, strongly K-in-
creasing on b C K and, if it additionally holds 0 2 intE, also continuous on V .
Note also that F.domF / � b CK.

The family of scalarization functions we chose here is

Sg D ˚
sa W V � ! R W a 2 b �K�;

and an element Nx 2 X is said to be an Sg-properly efficient solution to .PVG/ if
there exists an a 2 b � K such that sa.F. Nx// � sa.F.x// for all x 2 X , situation
denoted by Nx 2 PE Sg .PVG/. Since for k� 2 V � one has

.�E/
�.k�/ D

�
0; if �E.k�/ � 1;

C1; otherwise;

and .ıbCK/�.k�/ D hk�; biC.ıK/�.k�/, it follows that for a 2 b�K and k� 2 V �
one has

.sa/
�.k�/ D min

w�2�K�;
�E.k

��w�/�1

�hk��w�; aiChw�; bi� D hk�; aiC min
w�2�K�;

�E.k
��w�/�1

hw�; b�ai:

Remark 4.22. When 0 2 intE, using [48, Theorem 3.5.3(a)] one can show that the
continuity of �E yields a simpler formula for the conjugate of sa, for a 2 b � K,
namely .sa/�.k�/ D hk�; ai C minw�2k��K� Œ�bCK.w�/ � hw�; ai�.

Then the dual vector problem to .PVG/ with respect to Sg-properly efficient
solutions is

.DVG
Sg

1 / Max
.a;v�;y�;w�;v/2B

GSg
1

h
GSg

1 .a; v�; y�;w�; v/,

where

B
GSg

1 D
n
.a; v�; y�;w�; v/ 2 .b �K/ �K� � Y � �K� � .b CK/ W
�E.v� C w�/ � 1; �E.v � a/ � hw�; b � ai � hv�; ai � .v�˚/�.0; y�/

o

and

h
GSg

1 .a; v�; y�;w�; v/ D v:
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The weak and strong duality statements for .PVG/ and .DVG
Sg

1 / follow from
Theorems 4.2 and 4.5, with the observation that when 0 2 intE because of the
continuity of the scalarization function one can consider the regularity condition
.RCVS

0 /.

Theorem 4.25. (a) There are no x 2 X and .a; v�; y�;w�; v/ 2 B
GSg

1 such that

F.x/ �K h
GSg

1 .a; v�; y�;w�; v/.
(b) If ˚ is a K-convex vector function, the regularity condition .RCVS / is fulfilled

and Nx 2 PE Sg .PVG/, there exist Na 2 b � K, Nv�; Nw� 2 K� and Ny� 2 Y �

such that . Na; Nv�; Ny�; Nw�; F . Nx// 2 E .DVG
Sg

1 / and F. Nx/ D h
GSg

1 . Na; Nv�; Ny�; Nw�;
F . Nx//.

Moreover, from Theorem 4.7 one can obtain the following necessary and
sufficient optimality conditions regarding .PVG/ and .DVG

Sg

1 /.

Theorem 4.26. (a) When˚ is aK-convex vector function, the regularity condition
.RCVS / is fulfilled and Nx 2 PE Sg .PVG/, there exists . Na; Nv�; Ny�; Nw�; Nv/ 2 E

.DVG
Sg

1 / such that

(i) F. Nx/ D Nv;
(ii) �E.Nv � Na/C h Nw�; b � Nai D hNv�; Nv � Nai;

(iii) �E.Nv� C Nw�/ � 1;
(iv) .Nv�F /. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and . Na; Nv�; Ny�; Nw�; Nv/ 2 B
GSg

1 fulfill the relations .i/–.iv/.

Then Nx 2 PE Sg .PVG/ and . Na; Nv�; Ny�; Nw�; Nv/ 2 E .DVG
Sg

1 /.

Remark 4.23. The optimality conditions .i/–.iv/ in Theorem 4.26 can be equiv-
alently written as F. Nx/ D Nv, Nv� 2 @s Na.F. Nx// and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/.
Noting that @�E D FEo (see, for instance, [127, 151]) and, when �E is continuous,
@s Na D @ıbCK C [z�2@�E.��Na/@hz�; � � Nai D NbCK C FEo.� � Na/, the optimality
condition Nv� 2 @s Na.F. Nx// can be equivalently written when 0 2 intE as Nv� 2
NbCK.F. Nx//C FEo.F. Nx/ � Na/.
Remark 4.24. Note that �E defines the so-called dual gauge to �E . The duality
approach described in this subsection can be considered in case V is a normed space
and �E is a norm with the unit ballE, too, when �E gives actually the corresponding
dual norm. If V is a Hilbert space, then the norm of V is strongly K-increasing on
K if and only if K � K� (cf. [140]). This is the case if, for instance, V D R

k and
K is the nonnegative orthant in R

k . Not only the Euclidean norm is strongly R
kC-

increasing on R
kC, but also the oblique norms are strongly R

kC-increasing on R
kC (cf.

[185, 194]). Other conditions which ensure that a norm is strongly K-increasing on
a given set have been investigated in [139, 140, 213].
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4.3.5 Oriented Distance Scalarization

Another scalarization function employed in the literature (see, for instance, [22, 80,
167, 216]) in order to deal with vector optimization problems is based on the so-
called oriented distance function, introduced by Hiriart-Urruty in [124, 125]. It has
not been yet considered for conjugate vector duality in the literature, because of the
difficulty to compute its conjugate. As the technique used in [74] to finally provide
a formula for the latter is specific to finitely dimensional spaces, let X D R

n and
V D R

k , the latter partially ordered by the nontrivial pointed closed convex cone
K � R

k with a nonempty interior. On R
k we work with the Euclidean norm k � k2

and its associated distance function.

Definition 4.10. Given a metric space .Z; d/ and a nonemptyset U   Z, the
function �U W Z ! R given by �U .z/ D dU .z/ � dZnU .z/, z 2 Z, is said to
be the oriented distance corresponding to the set U .

Different properties of the function �U can be found in [74, 124, 125, 167, 216],
for instance that it is Lipschitz continuous, and we recall here the ones needed for
our investigation. When U is a convex set, �U is a convex function, while when U
is a closed convex cone with a nonempty interior, ��U is strictly U -increasing.

We consider the scalarization function

sd W .Rk/� ! R; sd .y/ D
�
��K.y/; if y 2 R

k;

C1; otherwise,

which is proper, convex and strictly K-increasing, with dom sd D R
k . The set of

the scalarization functions is given in this case by

Td D
n
sd W .Rk/� ! R

o
:

Then an element Nx 2 X is said to be a Td -properly efficient solution to .PVG/ if
��K.F. Nx// � ��K.F.x// for all x 2 X , and we denote this by Nx 2 PE Td .PVG/.

One has s�
d D ���K , while the conjugate function of��K at k� 2 R

k is (cf. [74])

���K.k�/ D inf

(
lP

jD1
ıK�.x�

j / W 1 � l � nC 2; x�
j 2 R

k; j D 1; : : : ; l;

k� D
lP

jD1
x�
j ;

lP

jD1
kx�

j k2 D 1

)

:

When v 2 R
k , v� 2 K� and y� 2 Y �, the inequality sd .v/ � �s�

d .v
�/ �

.v�˚/�.0; y�/ that appears in the constraints of the vector dual to .PVG/ obtained
as a special case of .DVGT

1 / when working with the oriented distance scalarization
means ��K.v/ � sup

˚Pl
jD1 �ıK�.x�

j / W 1 � l � nC 2; x�
j 2 R

k; j D 1; : : : ; l;
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k� D Pl
jD1 x�

j ;
Pl

jD1 kx�
j k2 D 1

�� .v�˚/�.0; y�/. Note that the set that appears
in the right-hand side of this inequality contains only two elements, 0 and �1.
Consequently, when there exist l 2 Œ1; n C 2� \ N and x�

j 2 K�; j D 1; : : : ; l ,

such that v� D Pl
jD1 x�

j and
Pl

jD1 kx�
j k2 D 1, its supremum is 0 and it is actually

attained. The vector dual attached to .PVG/ with respect to Td -properly efficient
solutions is then

.DVGTd
1 / WMax

.v�;l;x�;y�;v/2B
GTd
1

h
GTd
1 .v�; l; x�; y�; v/,

where

B
GTd
1 D

�
.v�; l; x�; y�; v/ 2 K� � N � .K�/l � Y � � R

k W ��K.v/ � �.v�˚/�.0; y�/;

x� D .x�
1 ; : : : ; x

�
l /;

lX

jD1
kx�
j k2 D 1; 1 � l � nC 2; v� D

lX

jD1
x�
j

�

and

h
GTd
1 .v�; l; x�; y�; v/ D v:

The weak and strong duality statements for .PVG/ and .DVGTd
1 / follow from

Theorems 4.10 and 4.13, while the corresponding necessary and sufficient optimal-
ity conditions can be derived from Theorem 4.15.

Theorem 4.27. (a) There are no x 2 X and .v�; l; x�; y�; v/ 2 B
GTd
1 such that

F.x/ <K h
GTd
1 .v�; l; x�; y�; v/.

(b) If ˚ is a K-convex vector function, the regularity condition .RCVS
0 / is fulfilled

and Nx 2 PE Td .PVG/, there exist Nv� 2 K� n f0g, Nl 2 N, Nx� 2 .K�/l
and Ny� 2 Y � such that .Nv�; Nl ; Nx�; Ny�; F . Nx// 2 W E .DVGTd

1 / and F. Nx/ D
h
GTd
1 .Nv�; Nl ; Nx�; Ny�; F . Nx//.

Theorem 4.28. (a) When˚ is aK-convex vector function, the regularity condition
.RCVS

0 / is fulfilled and Nx 2 PE Td .PVG/, there exists .Nv�; Nl ; Nx�; Ny�; Nv/ 2 W E

.DVGTd
1 / such that

(i) F. Nx/ D Nv;
(ii) ��K.Nv/ D Nv�> Nv;

(iii) Nv� D
NlP

jD1
Nx�
j ;

(iv)
NlP

jD1
k Nx�

j k2 D 1;

(v) Nv�>F. Nx/C .Nv�˚/�.0; Ny�/ D 0.
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(b) Assume that Nx 2 X and .Nv�; Nl ; Nx�; Ny�; Nv/ 2 B
GTd
1 fulfill the relations .i/–.v/.

Then Nx 2 PE Td .PVG/ and .Nv�; Nl ; Nx�; Ny�; Nv/ 2 W E .DVGTd
1 /.

Remark 4.25. The optimality conditions .i/–.v/ in Theorem 4.28 can be equiva-
lently written as F. Nx/ D Nv, Nv� 2 @��K.Nv/ and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/, where (cf.
[74])

@��K.Nv/ D

8
ˆ̂<

ˆ̂
:

co
˚
x� 2 R

n W x� 2 �NK.Nv/; kx�k2 D 1
�
; if Nv 2 � bdK;

co
n

1
kp�Nvk2 .p � Nv/ W p 2 ˘�K.Nv/

o
; if Nv 2 � intK;

n
1

kNv�P�K.Nv/k2 .Nv � P�K.Nv//
o
; if Nv … �K;

and ˘�K.Nv/ D ˚
y 2 R

n W ky � Nvk2 D minz2� bdK kz � Nvk2
�
. Note that in [80]

one can find a simpler formula for @��K that moreover holds in Banach spaces, but
under the assumption intK D ;. But, on the other hand, at the moment it is known
that��K is strictlyK-increasing only when intK ¤ ;, therefore we cannot use the
mentioned subdifferential formula in this framework.

4.3.6 Quadratic Scalarization

The last scalarization we consider in our investigation is based on a quadratic
function and was considered for instance in [37, 87]. We work again in finitely
dimensional spaces, taking X D R

n and V D R
k , the latter partially ordered by

the nontrivial pointed closed convex cone K � R
k . Let Q 2 S kC and D � R

k a
relatively open set, i.e. D D riD. Denote by L the subspace parallel to affD. If
int.K� C L?/ ¤ ; and QD � K� C L?, where L? is the orthogonal subspace to
L, then the function

sq W .Rk/� ! R; sq.y/ D
�
y>Qy; if y 2 D;
C1; otherwise;

is stronglyK-increasing onD. Assume further that F.domF /CK � D D dom sq .
The set of scalarization functions will consist in this case of a single element, namely

Sq D
n
sq W .Rk/� ! R

o
:

An element Nx 2 X is said to be an Sq-properly efficient solution to .PVG/
if F. Nx/>QF. Nx/ � F.x/>QF.x/ for all x 2 X , and we denote this by Nx 2
PE Sq .PVG/.

In order to formulate the vector dual problem to .PVG/ that arises in this case
we need the conjugate function of sq . So far in the literature this conjugate was
computed only for D being a subspace, so we assume further this hypothesis, too.
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According to [128, p.331], the conjugate of the scalarization function is

s�
q W Rk ! R; s�

q .v
�/ D

�
1
4
v�>.PD ıQ ı PD/�v�; if v� 2 ImQCD?;

C1; otherwise;

ImQ is the image of Q seen as a symmetric positive semidefinite mapping on R
k

and Q� is the Moore-Penrose pseudo-inverse of Q.
Then the dual vector problem to .PVG/ with respect to Sq-properly efficient

solution is

.DVG
Sq

1 / Max
.v�;y�;v/2B

GSq
1

h
GSq

1 .v�; y�; v/,

where

B
GSq

1 D
n
.v�; y�; v/ 2 K� � Y � �D W v� 2 ImQCD?;

v>Qv � 1
4
v�>.PD ıQ ı PD/�v� � .v�˚/�.0; y�/

o

and

h
GSq

1 .v�; y�; v/ D v:

The weak and strong duality statements for .PVG/ and .DVG
Sq

1 / follow from
Theorems 4.2 and 4.5.

Theorem 4.29. (a) There are no x 2 X and .v�; y�; v/ 2 B
GSq

1 such that

F.x/ �K h
GSq

1 .v�; y�; v/.
(b) If ˚ is a K-convex vector function, the regularity condition .RCVS

0 / is fulfilled
and Nx 2 PE Sq .PVG/, there exist Nv� 2 K� and Ny� 2 Y � such that

.Nv�; Ny�; F . Nx// 2 E .DVG
Sq

1 / and F. Nx/ D h
GSq

1 .Nv�; Ny�; F . Nx//.
Moreover, from Theorem 4.7 one can obtain the following necessary and

sufficient optimality conditions regarding .PVG/ and .DVG
Sq

1 /.

Theorem 4.30. (a) If ˚ is a K-convex vector function, the regularity condi-
tion .RCVS

0 / is fulfilled and Nx 2 PE Sq .PVG/, there exists .Nv�; Ny�; Nv/ 2
E .DVG

Sq

1 / such that

(i) F. Nx/ D Nv;
(ii) Nv>Q NV C 1

4
Nv�>.PD ıQ ı PD/� Nv� D Nv�> Nv;

(iii) Nv�>F. Nx/C .Nv�˚/�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and .Nv�; Ny�; Nv/ 2 B
GSq

1 fulfill the relations .i/–.iii/. Then

Nx 2 PE Sq .PVG/ and .Nv�; Ny�; Nv/ 2 E .DVG
Sq

1 /.



4.4 Vector Duality via Scalarization for Particular Vector Optimization Problems 93

Remark 4.26. The optimality conditions .i/–.iii/ in Theorem 4.30 can be equiv-
alently written as F. Nx/ D Nv, Nv� 2 @sq.F. Nx// and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/. When
intD ¤ ; and consequentlyD is an open set, it holds @sq.y/ D frsq.y/g D f2Qyg
for any y 2 D and @sq.y/ D ; when y … D. However, when intD D ;, it is not so
easy to determine a simple formula for @sq.y/ when y 2 D.

Remark 4.27. We mentioned before that the scalarization functions considered in
the literature serve different purposes, as noted, for instance, in [22, 81]. We have
shown in this section how some of them can be employed for delivering vector
dual problems to the original primal vector optimization problem and, under certain
hypotheses, optimality conditions for it. One can also try to compare the resulting
vector dual problems to .PVG/. If s 2 T (when s 2 S the discussion is analogous),
the Young-Fenchel inequality yields s�.v�/ C s.v/ � hv�; vi for all v 2 V and all
v� 2 V �. Moreover, it is known that dom s� � K�. However, one cannot conclude
from here that .s; v�; y�; v/ 2 BGT

1 implies .v�; y�; v/ 2 B
GTl
1 because v� 2 K�

in the former, while the v� that is feasible to the vector dual problem to .PVG/
that is obtained by means of the linear scalarization should belong to K� n f0g
and we have already seen in Remark 1.6 that the domain of the conjugate of a
strictly K-increasing function is not necessarily a subset of K� n f0g. However,
we noticed in Remarks 4.15 and 4.17, respectively, that at least the domains of the
conjugates of the scalarization functions used in the maximum(-linear) scalarization
and set scalarization are actually included inK� n f0g and this guarantees that in the

framework of Sect. 4.3.2 it holds h
GTl
1

�
B
GTl
1

� � h
GTml
1

�
B
GTml
1

�
, while in the one of

Sect. 4.3.3 one has h
GTl
1

�
B
GTl
1

� � h
GTs
1

�
B
GTs
1

�
.

4.4 Vector Duality via Scalarization for Particular Vector
Optimization Problems

In this section we particularize the duality investigations from Sect. 4.2 first for
constrained vector optimization problems, then for unconstrained ones with the
objective functions consisting in the sum of a vector function with the postcom-
position of another with a linear continuous mapping.

4.4.1 Vector Duality via Scalarization for Constrained Vector
Optimization Problems

Consider the nonempty convex set S � X and the proper vector functions f W X !
V � and h W X ! Y � fulfilling dom f \ S \ h�1.C / ¤ ;. Let the primal vector
optimization problem with geometric and cone constraints
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.PVC/ Min
x2A

f .x/,

where

A D ˚
x 2 S W h.x/ 2 �C �:

Since .PVC/ is a special case of .PVG/ obtained by taking

F W X ! V �; F .x/ D
�
f .x/; if x 2 A ;

1K; otherwise;

we use the approach developed in Sect. 4.2 in order to deal with it via duality.
Adapting the definition from the general case, an element Nx 2 A is said to be

an S -properly efficient solution to the vector optimization problem .PVC/ if there
exists a function s 2 S such that s.f . Nx// � s.f .x// for all x 2 A . Here S is
a set of functions s W V � ! R that are proper, convex and strongly K-increasing
on f .dom f \ A / C K fulfilling f .dom f \ A / C K � dom s and s.1K/ D
C1. Analogously, when qiK ¤ ; and T is a set of functions s W V � ! R

that are proper, convex and strictly K-increasing on f .dom f \ A /CK fulfilling
f .dom f \A /CK � dom s and s.1K/ D C1, Nx 2 A is said to be a T -properly
efficient solution to the vector optimization problem .PVC/ if there exists a function
s 2 T such that s.f . Nx// � s.f .x// for all x 2 A .

For convenient choices of the vector perturbation function ˚ we obtain vector
duals to .PVC/ which are special cases of .DVGS

i / and .DVGT
i /, i 2 f1; 2g,

respectively. Moreover, one can assign to .PVC/ vector dual problems following
from .DVGS

3 / and .DVGT
3 /, too, where no perturbation functions are involved,

namely

.DVCS
3 / Max

.s;v/2B
CS
3

h
CS
3 .s; v/,

where

BCS
3 D

n
.s; v/ 2 S � V W s.v/ � inf

x2A
s.f .x//

o

and

h
CS
3 .s; v/ D v;

and, respectively,

.DVCT
3 / WMax

.s;v/2B
CT
3

h
CT
3 .s; v/,
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where

BCT
3 D

n
.s; v/ 2 T � V W s.v/ � inf

x2A
s.f .x//

o

and

h
CT
3 .s; v/ D v:

The weak duality statements regarding these vector dual problems follow as
special cases of the corresponding statements regarding .PVG/ and its vector duals
.DVGS

3 / and .DVGT
3 /, namely Theorems 4.1 and 4.9, respectively.

Theorem 4.31. (a) There are no x 2 A and .s; v/ 2 BCS
3 such that f .x/ �K

h
CS
3 .s; v/.

(b) Assume that qiK ¤ ;. There are no x 2 A and .s; v/ 2 BCT
3 such that

f .x/ <K h
CT
3 .s; v/.

The strong duality statements regarding the vector optimization problems .PVC/
and .DVCS

3 /, respectively .DVCT
3 /, follow automatically provided that the primal

problem has at least a corresponding properly efficient solution, like in the general
case, namely in Theorems 4.4 and 4.12, respectively. The same happens with the
assertions delivering necessary and sufficient optimality conditions for these primal-
dual pairs of problems, that are special cases of Theorems 4.6 and 4.14, respectively.

Theorem 4.32. (a) If Nx 2 PE S .PVC/, there exists an Ns 2 S such that
.Ns; f . Nx// 2 E .DVCS

3 / and f . Nx/ D h
CS
3 .Ns; f . Nx//.

(b) If Nx 2 PE S .PVC/, there exists .Ns; Nv/ 2 E .DVCS
3 / such that

(i) f . Nx/ D Nv;
(ii) Ns.Nv/ D Ns.f . Nx// D min

x2A
Ns.f .x//.

(c) Assume that Nx 2 A and .Ns; Nv/ 2 BCS
3 fulfill the relations .i/–.ii/ from .b/.

Then Nx 2 PE S .PVC/ and .Ns; Nv/ 2 E .DVCS
3 /.

Theorem 4.33. Assume that qiK ¤ ;.

(a) If Nx 2 PE T .PVC/, there exists an Ns 2 T such that .Ns; f . Nx// 2 W E .DVCT
3 /

and f . Nx/ D h
CT
3 .Ns; f . Nx//.

(b) If Nx 2 PE T .PVC/, there exists .Ns; Nv/ 2 W E .DVCT
3 / such that

(i) f . Nx/ D Nv;
(ii) Ns.Nv/ D Ns.f . Nx// D min

x2A
Ns.f .x//.

(c) Assume that Nx 2 A and .Ns; Nv/ 2 BCT
3 fulfill the relations .i/–.ii/ from .b/.

Then Nx 2 PE T .PVC/ and .Ns; Nv/ 2 W E .DVCT
3 /.
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Remark 4.28. The necessary and sufficient optimality conditions provided above
for .PVC/ and its vector duals can be rewritten by making use of subdifferentials
like in Remark 4.6.

Remark 4.29. One can find in the literature the special cases of .DVCLS
3 / and

.DVCLT
3 / obtained by means of linear scalarization in [48, 54, 55].

Now let us consider the Lagrange type vector perturbation function

˚L
v W X � Y ! V �; ˚L

v .x; z/ D
�
f .x/; if x 2 S; h.x/ 2 z � C;
1K; otherwise;

which is proper because f and h are proper and due to the fulfilment of the men-
tioned feasibility condition. For v� 2 K� and z� 2 Y � we have .v�˚L

v /
�.0; z�/ D

..v�f /� .z�h/C ıS /
�.0/C ı�C�.z�/, so the Lagrange type vector duals to .PVC/

that follow from .DVGS
1 / and .DVGT

1 /, respectively, are (note the change of sign
of z�)

.DVCLS
1 / Max

.s;v�;z�;v/2B
LS
1

h
LS
1 .s; v�; z�; v/,

where

BLS
1 D

n
.s; v�; z�; v/ 2 S �K� �C� � V W s.v/ � �s�.v�/� ..v�f /C .z�h/C ıS /

�.0/
o

and

h
LS
1 .s; v�; z�; v/ D v;

and, when qiK ¤ ;,

.DVCLT
1 / WMax

.s;v�;z�;v/2B
LT
1

h
LT
1 .s; v�; z�; v/,

where

BLT
1 D

n
.s; v�; z�; v/ 2 T �K� �C� � V W s.v/ � �s�.v�/� ..v�f /C .z�h/C ıS /

�.0/
o

and
h
LT
1 .s; v�; z�; v/ D v:

The other vector duals to .PVC/ obtained via the Lagrange type vector
perturbation are
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.DVCLS
2 / Max

.s;z�;v/2B
LS
2

h
LS
2 .s; z�; v/,

where

BLS
2 D

n
.s; z�; v/ 2 S � C � � V W s.v/ � �.s ı f C .z�h/C ıS /

�.0/
o

and

h
LS
2 .s; z�; v/ D v;

and, when qiK ¤ ;,

.DVCLT
2 / WMax

.s;z�;v/2B
LT
2

h
LT
2 .s; z�; v/,

where

BLT
2 D

n
.s; z�; v/ 2 T � C � � V W s.v/ � �.s ı f C .z�h/C ıS /

�.0/
o

and

h
LT
2 .s; z�; v/ D v:

The weak duality statements regarding these vector dual problems follow as
special cases of the corresponding statements regarding .PVG/ and its duals, namely
Theorems 4.2 and 4.3, respectively Theorems 4.10 and 4.11.

Theorem 4.34. (a) There are no x 2 A and .s; v�; z�; v/ 2 BLS
1 such that

f .x/ �K h
LS
1 .s; v�; z�; v/.

(b) There are no x 2 A and .s; z�; v/ 2 BLS
2 such that f .x/ �K h

LS
2 .s; z�; v/.

Theorem 4.35. Assume that qiK ¤ ;.

(a) There are no x 2 A and .s; v�; z�; v/ 2 BLT
1 such that f .x/ <K h

LT
1 .s; v�;

z�; v/.
(b) There are no x 2 A and .s; z�; v/ 2 BLT

2 such that f .x/ <K h
LT
2 .s; z�; v/.

The strong duality statements regarding the Lagrange type vector dual problems
we assigned above to .PVC/, as well as the corresponding necessary and sufficient
optimality conditions regarding the mentioned pairs of primal-dual vector opti-
mization problems require the fulfillment of some regularity conditions. The ones
considered in Sect. 4.2 become

.RCVLS /
8s 2 S 9x0 2 dom f \ S such that h.x0/ 2 � intC
and s is continuous at f .x0/;
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and, in case intK ¤ ;,

.RCVLS
0 / 9x0 2 dom f \ S such that h.x0/ 2 � intC;

which is actually the classical Slater constraint qualification extended to the vector
case.

Particularizing Theorem 4.5 for the situation considered here one obtains the
following strong duality statement.

Theorem 4.36. If f is aK-convex vector function, h is aC -convex vector function,
the regularity condition .RCVLS / is fulfilled and Nx 2 PE S .PVC/, there exist Ns 2
S , Nv� 2 K� and Nz� 2 Y � such that .Ns; Nv�; Nz�; f . Nx// 2 E .DVCLS

1 /, .Ns; Nz�; f . Nx// 2
E .DVCLS

2 / and f . Nx/ D h
LS
1 .Ns; Nv�; Nz�; f . Nx// D h

LS
2 .Ns; Nz�; f . Nx//.

Employing now Theorems 4.7 and 4.8, respectively, the following necessary and
sufficient optimality conditions statements involving .PVC/ and its vector duals
.DVCLS

1 / and .DVCLS
2 /, respectively, are obtained.

Theorem 4.37. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVLS / is fulfilled and Nx 2 PE S .PVC/,
there exists .Ns; Nv�; Nz�; Nv/ 2 E .DVCLS

1 / such that

(i) f . Nx/ D Nv;
(ii) Ns.Nv/C Ns�.Nv�/ D hNv�; Nvi;

(iii) .Nv�f /. Nx/C �
.Nv�f /C .Nz�h/

��
S
.0/ D 0;

(iv) .Nz�h/. Nx/ D 0.

(b) Assume that Nx 2 X and .Ns; Nv�; Nz�; Nv/ 2 BLS
1 fulfill the relations .i/–.iv/. Then

Nx 2 PE S .PVC/ and .Ns; Nv�; Nz�; Nv/ 2 E .DVCLS
1 /.

Theorem 4.38. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVLS / is fulfilled and Nx 2 PE S .PVC/,
there exists .Ns; Nz�; Nv/ 2 E .DVCLS

2 / such that

(i) f . Nx/ D Nv;
(ii) Ns.f . Nx//C .Ns ı f C .Nz�h//�S .0/ D 0;

(iii) .Nz�h/. Nx/ D 0.

(b) Assume that Nx 2 A and .Ns; Nz�; Nv/ 2 BLS
2 fulfill the relations .i/–.iii/. Then

Nx 2 PE S .PVC/ and .Ns; Nz�; Nv/ 2 E .DVCLS
2 /.

Now let us give the similar strong duality and necessary and sufficient optimality
conditions statements involving .PVC/ and its Lagrange type vector duals with
respect to T -properly efficient solutions.

Theorem 4.39. If qiK ¤ ;, f is a K-convex vector function, h is a C -convex
vector function, the regularity condition .RCVLS / is fulfilled and Nx 2 PE T .PVC/,
there exist Ns 2 T , Nv� 2 K� and Nz� 2 Y � such that .Ns; Nv�; Nz�; f . Nx// 2
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W E .DVCLT
1 /, .Ns; Nz�; f . Nx// 2 W E .DVCLT

2 / and f . Nx/ D h
LT
1 .Ns; Nv�; Nz�; f . Nx// D

h
LT
2 .Ns; Nz�; f . Nx//.

Theorem 4.40. (a) If qiK ¤ ;, f is a K-convex vector function, h is a C -
convex vector function, the regularity condition .RCVLS / is fulfilled and Nx 2
PE T .PVC/, there exists .Ns; Nv�; Nz�; Nv/ 2 W E .DVCLT

1 / such that conditions
.i/–.iv/ from Theorem 4.37 are fulfilled.

(b) Assume that Nx 2 X and .Ns; Nv�; Nz�; Nv/ 2 BLT
1 fulfill relations .i/–.iv/ from

Theorem 4.37. Then Nx 2 PE T .PVC/ and .Ns; Nv�; Nz�; Nv/ 2 W E .DVCLT
1 /.

Theorem 4.41. (a) If qiK ¤ ;, f is a K-convex vector function, h is a C -
convex vector function, the regularity condition .RCVLS / is fulfilled and Nx 2
PE T .PVC/, there exists .Ns; Nz�; Nv/ 2 W E .DVCLT

2 / such that conditions .i/–
.iii/ from Theorem 4.38 are fulfilled.

(b) Assume that Nx 2 X and .Ns; Nz�; Nv/ 2 BLT
2 fulfill relations .i/–.iii/ from

Theorem 4.38. Then Nx 2 PE T .PVC/ and .Ns; Nz�; Nv/ 2 W E .DVCLT
2 /.

Remark 4.30. The necessary and sufficient optimality conditions provided above
for .PVC/ and its Lagrange type vector duals can be rewritten by making use of
subdifferentials like in Remarks 4.7 and 4.9, respectively.

Remark 4.31. The inclusions provided in Remarks 4.3, 4.4 and (4.2.1) can be
particularized for .PVC/ and its vector duals considered above, too.

Furthermore, one can particularize the scalarization functions as done in
Sect. 4.3, obtaining different Lagrange type vector dual problems to .PVC/.

Remark 4.32. One can find in the literature some special cases of the vector duals to
.PVC/ presented above, usually obtained for particular scalarizations. For instance,
in [98] one can find .DVCLS

2 / and in [192] .DVCLT
2 /, but with the scalarization

functions assumed moreover continuous. In [102], in the same framework, a vector
dual similar to .DVCLS

2 / is considered, but with the inequality from the constraints
replaced by the corresponding equality. In [48,139,140] the vector duals obtained in
this framework from .DVCLS

1 / and .DVCLT
1 / by using the linear scalarization are

treated.

Another vector perturbation function one can consider in order to assign vector
dual problems to .PVC/ is the Fenchel-Lagrange type vector perturbation function
˚FL

v W X �X � Y ! V �,

˚FL
v .x; y; z/ D

�
f .x C y/; if x 2 S; h.x/ 2 z � C;
1K; otherwise;

which is proper since f and h are proper and due to the fulfilment of the
mentioned feasibility condition. For v� 2 K�, y� 2 X� and z� 2 Y � one
has .v�˚CFL

v /�.0; y�; z�/ D .v�f /�.y�/ C .�.z�h/ C ıS /
�.�y�/ C ı�C�.z�/,

consequently, the Fenchel-Lagrange type vector duals to .PVC/ obtained by making
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use of the vector perturbation function ˚FL
v that follow from .DVGS

1 / and .DVGT
1 /,

respectively, are

.DVCFLS
1 / Max

.s;v�;y�;z�;v/2B
FLS
1

h
FLS
1 .s; v�; y�; z�; v/,

where

BFLS
1 D

n
.s; v�; y�; z�; v/ 2 S �K� �X� � C � � V W
s.v/ � �s�.v�/ � .v�f /�.y�/ � ..z�h/C ıS /

�.�y�/
o

and

h
FLS
1 .s; v�; y�; z�; v/ D v;

and, when qiK ¤ ;,

.DVCFLT
1 / Max

.s;v�;y�;z�;v/2B
FLT
1

h
FLT
1 .s; v�; y�; z�; v/,

where

BFLT
1 D

n
.s; v�; y�; z�; v/ 2 T �K� �X� � C � � V W
s.v/ � �s�.v�/ � .v�f /�.y�/ � ..z�h/C ıS /

�.�y�/
o

and

h
FLT
1 .s; v�; y�; z�; v/ D v:

The other vector duals to .PVC/ obtained via the Fenchel-Lagrange type vector
perturbation are

.DVCFLS
2 / Max

.s;y�;z�;v/2B
FLS
2

h
FLS
2 .s; y�; z�; v/,

where

BFLS
2 D

n
.s; y�; z�; v/ 2 S�X��C ��V Ws.v/��.sıf /�.y�/�..z�h/CıS /�.�y�/

o

and

h
FLS
2 .s; y�; z�; v/ D v;
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and, respectively,

.DVCFLT
2 / WMax

.s;y�;z�;v/2B
FLT
2

h
FLT
2 .s; y�; z�; v/,

where

BFLT
2 D

n
.s; y�; z�; v/ 2 T �X� �C� � V W s.v/��.s ı f /�.y�/� ..z�h/C ıS /

�.�y�/
o

and

h
FLT
2 .s; y�; z�; v/ D v:

The weak duality statements regarding these vector dual problems follow as
special cases of the corresponding statements regarding .PVG/ and its duals, namely
Theorems 4.2 and 4.3, respectively Theorems 4.10 and 4.11.

Theorem 4.42. (a) There are no x 2 A and .s; v�; y�z�; v/ 2 BFLS
1 such that

f .x/ �K h
FLS
1 .s; v�; y�; z�; v/.

(b) There are no x 2 A and .s; y�; z�; v/ 2 BFLS
2 such that f .x/ �K h

FLS
2 .s; y�;

z�; v/.

Theorem 4.43. Assume that qiK ¤ ;.

(a) There are no x 2 A and .s; v�; y�; z�; v/ 2 BFLT
1 such that f .x/ <K

h
FLT
1 .s; v�; y�; z�; v/.

(b) There are no x 2 A and .s; y�; z�; v/ 2 BFLT
2 such that f .x/ <K h

FLT
2 .s; y�;

z�; v/.

The strong duality statements regarding the Fenchel-Lagrange type vector dual
problems to .PVC/ introduced above, as well as the corresponding necessary and
sufficient optimality conditions regarding the mentioned pairs of primal-dual vector
optimization problems require the fulfillment of some regularity conditions. The
ones considered in Sect. 4.2 become

.RCVFLS /
8s 2 S 9x0 2 dom f \ S such that f is continuous at x0;
h.x0/ 2 � intC and s is continuous at f .x0/;

and, in case intK ¤ ;,

.RCVFLS
0 / 9x0 2 dom f \ S such that f is continuous at x0 and h.x0/ 2 � intC:

Particularizing Theorem 4.5 for the situation considered here one obtains the
following strong duality statement.

Theorem 4.44. If f is aK-convex vector function, h is aC -convex vector function,
the regularity condition .RCVFLS / is fulfilled and Nx 2 PE S .PVC/, there exist Ns 2
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S , Nv� 2 K�, Ny� 2 X� and Nz� 2 Y � such that .Ns; Nv�; Ny�; Nz�; f . Nx// 2 E .DVCFLS
1 /,

.Ns; Ny�; Nz�; f . Nx// 2 E .DVCFLS
2 / and f . Nx/ D h

FLS
1 .Ns; Nv�; Ny�; Nz�; f . Nx// D

h
FLS
2 .Ns; Ny�; Nz�; f . Nx//.

Employing now Theorems 4.7 and 4.8, respectively, the following necessary and
sufficient optimality conditions statements involving .PVC/ and its vector duals
.DVCFLS

1 / and .DVCFLS
2 /, respectively, are obtained.

Theorem 4.45. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVFLS / is fulfilled and Nx 2 PE S .PVC/,
there exists .Ns; Nv�; Ny�; Nz�; Nv/ 2 E .DVCFLS

1 / such that

(i) f . Nx/ D Nv;
(ii) Ns.Nv/C Ns�.Nv�/ D hNv�; Nvi;

(iii) .Nv�f /. Nx/C .Nv�f /�. Ny�/ D h Ny�; Nxi;
(iv) .Nz�h/�S .� Ny�/ D �h Ny�; Nxi;
(v) .Nz�h/. Nx/ D 0.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nz�; Nv/ 2 BFLS
1 fulfill the relations .i/–.v/.

Then Nx 2 PE S .PVC/ and .Ns; Ny�; Nv�; Nz�; Nv/ 2 E .DVCFLS
1 /.

Theorem 4.46. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVFLS / is fulfilled and Nx 2 PE S .PVC/,
there exists .Ns; Ny�; Nz�; Nv/ 2 E .DVCFLS

2 / such that

(i) f . Nx/ D Nv;
(ii) Ns.f . Nx//C .Ns ı f /�. Ny�/ D h Ny�; Nxi;

(iii) .Nz�h/�S .� Ny�/ D �h Ny�; Nxi;
(iv) .Nz�h/. Nx/ D 0.

(b) Assume that Nx 2 X and .Ns; Ny�; Nz�; Nv/ 2 BFLS
2 fulfill the relations .i/–.iv/. Then

Nx 2 PE S .PVC/ and .Ns; Ny�; Nz�; Nv/ 2 E .DVCFLS
2 /.

Now let us give the similar strong duality and necessary and sufficient optimality
conditions statements involving .PVC/ and its Fenchel-Lagrange type vector duals
with respect to T -properly efficient solutions.

Theorem 4.47. If qiK ¤ ;, f is a K-convex vector function, h is a C -
convex vector function, the regularity condition .RCVFLS / is fulfilled and Nx 2
PE T .PVC/, there exist Ns 2 T , Nv� 2 K�, Ny� 2 X�, and Nz� 2 Y � such
that .Ns; Nv�; Ny�; Nz�; f . Nx// 2 W E .DVCFLT

1 /, .Ns; Ny�; Nz�; f . Nx// 2 W E.DVCFLT
2 / and

f . Nx/ D h
FLT
1 .Ns; Nv�; Ny�; Nz�; f . Nx// D h

FLT
2 .Ns; Ny�; Nz�; f . Nx//.

Theorem 4.48. (a) If qiK ¤ ;, f is a K-convex vector function, h is a C -
convex vector function, the regularity condition .RCVFLS / is fulfilled and
Nx 2 PE T .PVC/, there exists .Ns; Nv�; Ny�; Nz�; Nv/ 2 W E .DVCFLT

1 / such that
conditions .i/–.v/ from Theorem 4.45 are fulfilled.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nz�; Nv/ 2 BFLT
1 fulfill relations .i/–.v/ from

Theorem 4.45. Then Nx 2 PE T .PVC/ and .Ns; Nv�; Ny�; Nz�; Nv/ 2 W E .DVCFLT
1 /.
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Theorem 4.49. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVFLS / is fulfilled and Nx 2 PE T .PVC/,
there exists .Ns; Ny�; Nz�; Nv/ 2 W E .DVCFLT

2 / such that conditions .i/–.iv/ from
Theorem 4.46 are fulfilled.

(b) Assume that Nx 2 X and .Ns; Ny�; Nz�; Nv/ 2 BFLT
2 fulfill relations .i/–.iv/ from

Theorem 4.46. Then Nx 2 PE T .PVC/ and .Ns; Ny�; Nz�; Nv/ 2 W E .DVCFLT
2 /.

Remark 4.33. The necessary and sufficient optimality conditions provided above
for .PVC/ and its Fenchel-Lagrange type vector duals can be rewritten by making
use of subdifferentials like in Remarks 4.7 and 4.9, respectively.

Remark 4.34. The inclusions provided in Remarks 4.3, 4.4 and (4.2.1) can be
particularized for .PVC/ and its vector duals considered above, too.

Furthermore, one can particularize the scalarization functions as done in
Sect. 4.3, obtaining different Fenchel-Lagrange type vector dual problems to .PVC/.

Remark 4.35. Note that .DVCFLS
1 / and .DVCFLT

1 / are actually the vector duals we
introduced via the general scalarization in [37] in the finitely dimensional case and
then extended to infinite dimensions in [48, Section 4.4]. In both these works the
scalarization functions are then particularized, like in Sect. 4.3.

4.4.2 Vector Duality via Scalarization for Unconstrained
Vector Optimization Problems

In this subsection we deal with unconstrained vector optimization problems whose
objective functions consist of sums of functions. Let f W X ! V � and g W Y ! V �
be given proper vector functions and A W X ! Y a linear continuous mapping such
that the feasibility condition dom f \ A�1.domg/ ¤ ; is fulfilled.

The primal unconstrained vector optimization problem we work with is

.PVU/ Min
x2X Œf .x/C g.Ax/�.

Since .PVU/ is a special case of .PVG/ obtained by taking F D f C g ı A, we
use the approach developed in Sect. 4.2 in order to deal with it via duality.

Take S to be a set of functions s W V � ! R that are proper, convex and strongly
K-increasing on .f C g ı A/.dom f \ A�1.domg// C K that fulfill .f C g ı
A/.dom f \A�1.domg//CK � dom s and s.1K/ D C1. Adapting the definition
from the general case, an element Nx 2 X is said to be an S -properly efficient
solution to the vector optimization problem .PVU/ if there exists a function s 2 S
such that s..f C g ı A/. Nx// � s..f C g ı A/.x// for all x 2 X . Analogously,
when qiK ¤ ; and T is a set of functions s W V � ! R that are proper, convex
and strictly K-increasing on .f C g ı A/.dom f \ A�1.domg// C K fulfilling
.f C g ı A/.dom f \ A�1.domg//C K � dom s and s.1K/ D C1, Nx 2 X is
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said to be a T -properly efficient solution to the vector optimization problem .PVU/
if there exists a function s 2 T such that s..f C g ı A/. Nx// � s..f C g ı A/.x//
for all x 2 X .

First, let us assign to .PVU/ the vector dual problems following from .DVGS
3 /

and .DVGT
3 /, respectively, where no perturbation functions are involved, namely

.DVUS
3 / Max

.s;v/2B
US
3

h
US
3 .s; v/,

where

BUS
3 D

n
.s; v/ 2 S � V W s.v/ � inf

x2X s..f C g ı A/.x//
o

and

h
US
3 .s; v/ D v;

and, respectively,

.DVUT
3 / WMax

.s;v/2B
UT
3

h
UT
3 .s; v/,

where

BUT
3 D

n
.s; v/ 2 T � V W s.v/ � inf

x2X s..f C g ı A/.x//
o

and

h
UT
3 .s; v/ D v:

The weak duality statements regarding these vector dual problems follow as
special cases of the corresponding statements regarding .PVG/ and its vector duals
.DVGS

3 / and .DVGT
3 /, namely Theorems 4.1 and 4.9, respectively.

Theorem 4.50. (a) There are no x 2 X and .s; v/ 2 BUS
3 such that f .x/ �K

h
US
3 .s; v/.

(b) Assume that qiK ¤ ;. There are no x 2 X and .s; v/ 2 BUT
1 such that

f .x/ <K h
UT
1 .s; v/.

The strong duality statements regarding the vector optimization problems .PVC/
and .DVUS

3 /, respectively .DVUT
3 / follow automatically provided that the primal

problem has at least a corresponding properly efficient solution, like in the general
case, namely in Theorems 4.4 and 4.12, respectively. The same happens with the
assertions delivering necessary and sufficient optimality conditions for these primal-
dual pairs of problems, that are special cases of Theorems 4.6 and 4.14, respectively.
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Theorem 4.51. (a) If Nx 2 PE S .PVU/, there exists an Ns 2 S such that .Ns; .f C
g ı A/. Nx// 2 E .DVUS

3 / and .f C g ı A/. Nx/ D h
US
3 .Ns; .f C g ı A/. Nx//.

(b) If Nx 2 PE S .PVU/, there exists .Ns; Nv/ 2 E .DVUS
3 / such that

(i) .f C g ı A/. Nx/ D Nv;
(ii) Ns.Nv/ D Ns..f C g ı A/. Nx// D min

x2X Ns..f C g ı A/.x//.

(c) Assume that Nx 2 X and .Ns; Nv/ 2 BUS
3 fulfill the relations .i/–.ii/ from .b/.

Then Nx 2 PE S .PVU/ and .Ns; Nv/ 2 E .DVUS
3 /.

Theorem 4.52. Assume that qiK ¤ ;.

(a) If Nx 2 PE T .PVU/, there exists an Ns 2 T such that .Ns; .f C g ı A/. Nx// 2
W E .DVUT

3 / and .f C g ı A/. Nx/ D h
UT
3 .Ns; .f C g ı A/. Nx//.

(b) If Nx 2 PE T .PVU/, there exists .Ns; Nv/ 2 W E .DVUT
3 / such that

(i) .f C g ı A/. Nx/ D Nv;
(ii) Ns.Nv/ D Ns..f C g ı A/. Nx// D min

x2X Ns..f C g ı A/.x//.

(c) Assume that Nx 2 X and .Ns; Nv/ 2 BUT
3 fulfill the relations .i/–.ii/ from .b/.

Then Nx 2 PE T .PVU/ and .Ns; Nv/ 2 W E .DVUT
3 /.

Remark 4.36. The necessary and sufficient optimality conditions provided above
for .PVU/ and its vector duals can be rewritten by making use of subdifferentials
like in Remark 4.6.

Like in the general case, one can assign vector duals to the primal vector
optimization problem under consideration by making use of vector perturbation
functions, too. Consider thus the vector perturbation function usually employed in
the literature to approach .PVU/, namely

˚U
v W X � Y ! V �; ˚U

v .x; y/ D f .x/C g.Ax C y/;

which is proper because so are f and g and due to the fulfilment of the mentioned
feasibility condition.

For v� 2 K� and y� 2 Y � one has .v�˚U
v /

�.0; y�/ D .v�f /�.�A�y�/ C
.v�g/�.y�/. Now we are ready to formulate the vector duals to .PVU/ that are
special cases of .DVGS

1 / and .DVGT
1 /, namely

.DVUS
1 / Max

.s;v�;y�;v/2B
US
1

h
US
1 .s; v�; y�; v/,

where

BUS
1 D

n
.s; v�; y�; v/ 2 S �K� � Y � � V W
s.v/ � �s�.v�/ � .v�f /�.�A�y�/ � .v�g/�.y�/

o
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and

h
US
1 .s; v�; y�; v/ D v;

and, when qiK ¤ ;,

.DVUT
1 / WMax

.s;v�;y�;v/2B
UT
1

h
UT
1 .s; v�; y�; v/,

where

BUT
1 D

n
.s; v�; y�; v/ 2 T �K� � Y � � V W
s.v/ � �s�.v�/ � .v�f /�.�A�y�/ � .v�g/�.y�/

o

and

h
UT
1 .s; v�; y�; v/ D v:

The other vector duals to .PVU/ obtained via the considered vector perturbation
function are

.DVUS
2 / Max

.s;y�;v/2B
US
2

h
US
2 .s; y�; v/,

where

BUS
2 D

n
.s; y�; v/ 2 S � Y � � V W s.v/ � �.s ı ˚U

v /
�.0; y�/

o

and

h
US
2 .s; y�; v/ D v;

and, when qiK ¤ ;,

.DVUT
2 / WMax

.s;y�;v/2B
UT
2

h
UT
2 .s; y�; v/,

where

BUT
2 D

n
.s; y�; v/ 2 T � Y � � V W s.v/ � �.s ı ˚U

v /
�.0; y�/

o

and

h
UT
2 .s; y�; v/ D v:
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Remark 4.37. Regarding the definitions of BUS
2 and BUT

2 , unfortunately we were
not able to identify a formula for .s ı˚U

v /
�.0; y�/ that uses only the functions s, f

and g, similarly to the way the feasible sets of the vector duals of this type to .PVC/
are defined. This can be done only under additional hypotheses, for instance via [49,
Theorem 3.3] or when intK ¤ ;.

The weak duality statements regarding these vector dual problems follow as
special cases of the corresponding statements regarding .PVG/ and its duals, namely
Theorems 4.2 and 4.3, respectively Theorems 4.10 and 4.11.

Theorem 4.53. (a) There are no x 2 X and .s; v�; y�; v/ 2 BUS
1 such that .f C

g ı A/.x/ �K h
US
1 .s; v�; y�; v/.

(b) There are no x 2 X and .s; y�; v/ 2 BUS
2 such that .f C g ı A/.x/ �K

h
US
2 .s; y�; v/.

Theorem 4.54. Assume that qiK ¤ ;.

(a) There are no x 2 X and .s; v�; y�; v/ 2 BUT
1 such that .f C g ı A/.x/ <K

h
UT
1 .s; v�; y�; v/.

(b) There are no x 2 X and .s; y�; v/ 2 BUT
2 such that .f C g ı A/.x/ <K

h
UT
2 .s; y�; v/.

The strong duality statements regarding the vector dual problems we assigned via
perturbations to .PVU/, as well as the corresponding necessary and sufficient opti-
mality conditions regarding the mentioned pairs of primal-dual vector optimization
problems require the fulfillment of some regularity conditions. The ones considered
in Sect. 4.2 become

.RCVUS /
8s 2 S 9x0 2 dom f \ A�1.domg/ such that g is continuous
at Ax0 and s is continuous at f .x0/C g.Ax0/

and, in case intK ¤ ;,

.RCVUS
0 / 9x0 2 dom f \ A�1.domg/ such that g is continuous at Ax0:

Particularizing Theorem 4.5 for the situation considered here one obtains the
following strong duality statement.

Theorem 4.55. If f and g are K-convex vector functions, the regularity condition
.RCVUS / is fulfilled and Nx 2 PE S .PVU/, there exist Ns 2 S , Nv� 2 K� and
Ny� 2 Y � such that .Ns; Nv�; Ny�; .f C g ı A/. Nx// 2 E .DVUS

1 /, .Ns; Ny�; .f C g ı
A/. Nx// 2 E .DVUS

2 / and .f C g ı A/. Nx/ D h
US
1 .Ns; Nv�; Ny�; .f C g ı A/. Nx// D

h
US
2 .Ns; Ny�; .f C g ı A/. Nx//.

Employing now Theorems 4.7 and 4.8, respectively, the following necessary and
sufficient optimality conditions statements involving .PVU/ and its vector duals
.DVUS

1 / and .DVUS
2 /, respectively, are obtained.



108 4 Vector Duality via Scalarization for Vector Optimization Problems

Theorem 4.56. (a) If f and g are K-convex vector functions, the regularity con-
dition .RCVUS / is fulfilled and Nx 2 PE S .PVU/, there exists .Ns; Nv�; Ny�; Nv/ 2
E .DVUS

1 / such that

(i) .f C g ı A/. Nx/ D Nv;
(ii) Ns.Nv/C Ns�.Nv�/ D hNv�; Nvi;

(iii) .Nv�f /. Nx/C .Nv�f /�.�A� Ny�/ D �h Ny�; A Nxi;
(iv) .Nv�g/.A Nx/C .Nv�g/�. Ny�/ D h Ny�; A Nxi.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nv/ 2 BUS
1 fulfill the relations .i/–.iv/. Then

Nx 2 PE S .PVU/ and .Ns; Nv�; Ny�; Nv/ 2 E .DVUS
1 /.

Theorem 4.57. (a) If f and g are K-convex vector functions, the regularity
condition .RCVUS / is fulfilled and Nx 2 PE S .PVU/, there exists .Ns; Ny�; Nv/ 2
E .DVUS

2 / such that

(i) f . Nx/ D Nv;
(ii) .Nv�.f C g ı A//. Nx/C .Ns ı ˚U

v /
�.0; Ny�/ D 0.

(b) Assume that Nx 2 X and .Ns; Ny�; Nv/ 2 BUS
2 fulfill the relations .i/–.ii/. Then

Nx 2 PE S .PVU/ and .Ns; Ny�; Nv/ 2 E .DVUS
2 /.

Now let us give the similar strong duality and necessary and sufficient optimality
conditions statements involving .PVU/ and its vector duals with respect to T -
properly efficient solutions obtained via perturbations.

Theorem 4.58. If qiK ¤ ;, f and g areK-convex vector functions, the regularity
condition .RCVUS / is fulfilled and Nx 2 PE T .PVU/, there exist Ns 2 T , Nv� 2 K�
and Ny� 2 Y � such that .Ns; Nv�; Ny�; .f Cg ıA/. Nx// 2 W E .DVUT

1 /, .Ns; Ny�; .f Cg ı
A/. Nx// 2 W E .DVUT

2 / and .f C g ı A/. Nx/ D h
UT
1 .Ns; Nv�; Ny�; .f C g ı A/. Nx// D

h
UT
2 .Ns; Ny�; .f C g ı A/. Nx//.

Theorem 4.59. (a) If qiK ¤ ;, f and g are K-convex vector functions, the
regularity condition .RCVUS / is fulfilled and Nx 2 PE T .PVU/, there exists
.Ns; Nv�; Ny�; Nv/ 2 W E .DVUT

1 / such that conditions .i/–.iv/ from Theorem 4.56
are fulfilled.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nv/ 2 BUT
1 fulfill relations .i/–.iv/ from

Theorem 4.56. Then Nx 2 PE T .PVU/ and .Ns; Nv�; Ny�; Nv/ 2 W E .DVUT
1 /.

Theorem 4.60. (a) If qiK ¤ ;, f and g are K-convex vector functions, the
regularity condition .RCVUS / is fulfilled and Nx 2 PE T .PVU/, there exists
.Ns; Ny�; Nv/ 2 W E .DVUT

2 / such that conditions .i/–.ii/ from Theorem 4.57 are
fulfilled.

(b) Assume that Nx 2 X and .Ns; Ny�; Nv/ 2 BUT
2 fulfill relations .i/–.ii/ from

Theorem 4.57. Then Nx 2 PE T .PVU/ and .Ns; Ny�; Nv/ 2 W E .DVULT
2 /.

Remark 4.38. The necessary and sufficient optimality conditions provided above
for .PVU/ and its vector duals can be rewritten by making use of subdifferentials
like in Remarks 4.7 and 4.9, respectively.
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Remark 4.39. The inclusions provided in Remarks 4.3, 4.4 and (4.2.1) can be
particularized for .PVU/ and its vector duals considered above, too.

Furthermore, one can particularize the scalarization functions as done in
Sect. 4.3, obtaining different vector dual problems to .PVC/.

Remark 4.40. One can find in the literature some special cases of the vector duals
to .PVU/ presented above, usually obtained for particular scalarizations. In [48] the
vector duals obtained in this framework from .DVUS

1 / and .DVUT
1 / by using the

linear scalarization are treated, while in [58, 59] a vector dual similar .DVUS
1 / is

obtained via linear scalarization, but with the inequality in the constraints replaced
by an equality.

Remark 4.41. Valuable special cases of the vector optimization problem .PVU/,
met in the literature in various circumstances, can be obtained, for instance, by
taking X D Y and A to be the identity mapping on X or f to be a zero
vector function, respectively. The vector duals assigned above to .PVU/ and
the corresponding duality and optimality conditions statements can be directly
particularized for these problems, too.

Getting back to the constrained vector optimization problem considered in
Sect. 4.4.1 and using the notations considered there, one can see .PVC/ as an
unconstrained vector optimization problem, namely

.PVC/ Min
x2X

�
f .x/C ıv

A .x/
�
,

Then, taking A WD idX , f WD f and g WD ıv
A , the vector dual problems assigned to

.PVU/ with respect to S -properly efficient solutions via perturbations turn into

.DVCFS
1 / Max

.s;v�;y�;v/2B
FS
1

h
FS
1 .s; v�; y�; v/,

where

BFS
1 D

n
.s; v�; y�; v/ 2 S �K� �Y � �V W s.v/ � �s�.v�/� .v�f /�.y�/� �A .�y�/

o

and

h
FS
1 .s; v�; y�; v/ D v;

and, respectively,

.DVCFS
2 / Max

.s;y�;v/2B
FS
2

h
FS
2 .s; y�; v/,
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where

BFS
2 D

n
.s; y�; v/ 2 S � Y � � V W s.v/ � �.s ı f /�.y�/ � �A .�y�/

o

and

h
FS
2 .s; y�; v/ D v;

where the vector perturbation function˚U
v becomes actually the Fenchel type vector

perturbation function for .PVC/, namely

˚F
v W X �X ! V �; ˚F

v .x; y/ D
�
f .x C y/; if x 2 A ;

1K; otherwise;

which is proper because f and h are proper and due to the fulfilment of the
mentioned feasibility condition. This is the reason why the vector dual problems
assigned to .PVC/ via the vector perturbation function ˚F

v are said to be Fenchel
vector duals.

When qiK ¤ ;, vector dual problems can be assigned to .PVU/ with respect to
T -properly efficient solutions, too, via the vector perturbation function˚F

v , namely

.DVCFT
1 / WMax

.s;v�;y�;v/2B
FT
1

h
FT
1 .s; v�; y�; v/,

where

BFT
1 D

n
.s; v�; y�; v/ 2 T �K� � Y � �V W s.v/ � �s�.v�/� .v�f /�.y�/� �A .�y�/

o

and

h
FT
1 .s; v�; y�; v/ D v;

and, respectively,

.DVCFT
2 / WMax

.s;y�;v/2B
FT
2

h
FT
2 .s; y�; v/,

where

BFT
2 D

n
.s; y�; v/ 2 S � Y � � V W s.v/ � �.s ı f /�.y�/ � �A .�y�/

o

and

h
FT
2 .s; y�; v/ D v:
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The weak duality statements regarding these vector dual problems follow as
special cases of the corresponding statements regarding .PVU/ and its vector
duals or, alternatively from the ones regarding .PVG/ and its vector duals, namely
Theorems 4.2 and 4.3, respectively Theorems 4.10 and 4.11.

Theorem 4.61. (a) There are no x 2 A and .s; v�; y�; v/ 2 BFS
1 such that

f .x/ �K h
FS
1 .s; v�; y�; v/.

(b) There are no x 2 A and .s; y�; v/ 2 BFS
2 such that f .x/ �K h

FS
2 .s; y�; v/.

Theorem 4.62. Assume that qiK ¤ ;.

(a) There are no x 2 A and .s; v�; y�; v/ 2 BFT
1 such that f .x/ <K

h
FT
1 .s; v�; y�; v/.

(b) There are no x 2 A and .s; y�; v/ 2 BFT
2 such that f .x/ <K h

FT
2 .s; y�; v/.

The strong duality statements regarding the Fenchel vector dual problems we
assigned above to .PVC/, as well as the corresponding necessary and sufficient opti-
mality conditions regarding the mentioned pairs of primal-dual vector optimization
problems require the fulfillment of some regularity conditions. The ones considered
for .PVU/ become

.RCVFS /
8s 2 S 9x0 2 dom f \ A such that f is continuous
at x0 and s is continuous atf .x0/;

and, in case intK ¤ ;,

.RCVFS
0 / 9x0 2 dom f \ A such that f is continuous at A0:

Particularizing Theorem 4.55 for the situation considered here one obtains the
following strong duality statement.

Theorem 4.63. If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVFS / is fulfilled and Nx 2 PE S .PVC/,
there exist Ns 2 S , Nv� 2 K� and Ny� 2 Y � such that .Ns; Nv�; Ny�; f . Nx// 2
E .DVCFS

1 /, .Ns; Ny�; f . Nx// 2 E .DVCFS
2 / and f . Nx/ D h

FS
1 .Ns; Nv�; Ny�; f . Nx// D

h
FS
2 .Ns; Ny�; f . Nx//.

Employing now Theorems 4.56 and 4.57, respectively, the following necessary
and sufficient optimality conditions statements involving .PVC/ and its vector duals
.DVCFS

1 / and .DVCFS
2 /, respectively, are obtained.

Theorem 4.64. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVFS / is fulfilled and Nx 2 PE S .PVC/,
there exists .Ns; Nv�; Ny�; Nv/ 2 E .DVCFS

1 / such that

(i) f . Nx/ D Nv;
(ii) Ns.Nv/C Ns�.Nv�/ D hNv�; Nvi;
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(iii) .Nv�f /. Nx/C .Nv�f /. Ny�/ D h Ny�; Nxi;
(iv) min

x2A
h Ny�; xi D h Ny�; Nxi.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nv/ 2 BFS
1 fulfill the relations .i/–.iv/. Then

Nx 2 PE S .PVC/ and .Ns; Nv�; Ny�; Nv/ 2 E .DVCFS
1 /.

Theorem 4.65. (a) If f is a K-convex vector function, h is a C -convex vector
function, the regularity condition .RCVFS / is fulfilled and Nx 2 PE S .PVC/,
there exists .Ns; Ny�; Nv/ 2 E .DVCFS

2 / such that

(i) f . Nx/ D Nv;
(ii) Ns.f . Nx//C .Ns ı f /�. Ny�/ D h Ny�; Nxi;

(iii) min
x2A

h Ny�; xi D h Ny�; Nxi.

(b) Assume that Nx 2 A and .Ns; Ny�; Nv/ 2 BFS
2 fulfill the relations .i/–.iii/. Then

Nx 2 PE S .PVC/ and .Ns; Ny�; Nv/ 2 E .DVCFS
2 /.

The similar strong duality and necessary and sufficient optimality conditions
statements involving .PVC/ and its Fenchel type vector duals with respect to T -
properly efficient solutions follow analogously.

Theorem 4.66. If qiK ¤ ;, f is a K-convex vector function, h is a C -convex
vector function, the regularity condition .RCVFS / is fulfilled and Nx 2 PE T .PVC/,
there exist Ns 2 T , Nv� 2 K� and Ny� 2 Y � such that .Ns; Nv�; Ny�; f . Nx// 2
W E .DVCFT

1 /, .Ns; Ny�; f . Nx// 2 W E .DVCFT
2 / and f . Nx/ D h

FT
1 .Ns; Nv�; Ny�; f . Nx// D

h
FT
2 .Ns; Ny�; f . Nx//.

Theorem 4.67. (a) If qiK ¤ ;, f is a K-convex vector function, h is a C -
convex vector function, the regularity condition .RCVFS / is fulfilled and Nx 2
PE T .PVC/, there exists .Ns; Nv�; Ny�; Nv/ 2 W E .DVCFT

1 / such that conditions
.i/–.iv/ from Theorem 4.64 are fulfilled.

(b) Assume that Nx 2 X and .Ns; Nv�; Ny�; Nv/ 2 BFT
1 fulfill relations .i/–.iv/ from

Theorem 4.64. Then Nx 2 PE T .PVC/ and .Ns; Nv�; Ny�; Nv/ 2 W E .DVCFT
1 /.

Theorem 4.68. (a) If qiK ¤ ;, f is a K-convex vector function, h is a C -
convex vector function, the regularity condition .RCVFS / is fulfilled and Nx 2
PE T .PVC/, there exists .Ns; Ny�; Nv/ 2 W E .DVCFT

2 / such that conditions .i/–
.iii/ from Theorem 4.65 are fulfilled.

(b) Assume that Nx 2 X and .Ns; Ny�; Nv/ 2 BFT
2 fulfill relations .i/–.iii/ from

Theorem 4.65. Then Nx 2 PE T .PVC/ and .Ns; Ny�; Nv/ 2 W E .DVCFT
2 /.

Remark 4.42. The necessary and sufficient optimality conditions provided above
for .PVC/ and its Lagrange type vector duals can be rewritten by making use of
subdifferentials like in Remarks 4.7 and 4.9, respectively.

Remark 4.43. The inclusions provided in Remarks 4.3, 4.4 and (4.2.1) can be
particularized for .PVC/ and its Fenchel type vector duals, too.
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Remark 4.44. The image sets of the vector duals assigned to .PVC/ with respect
to S -properly efficient solutions and, respectively, the ones with respect to T -
properly efficient solutions can be compared, analogously to the investigations from
their counterparts from Sect. 5.5.2. Using the properties of the conjugate functions,
one obtains for i 2 f1; 2g

h
FLS
i .BFLS

i / � h
LS
i .BLS

i /

h
FS
i .BFS

i /
� h

CS
3 .BCS

3 /;

and, respectively,

h
FLT
i .BFLT

i / � h
LT
i .BLT

i /

h
FT
i .BFT

i /
� h

CT
3 .BCT

3 /:

Carefully analyzing the differences between the way a Lagrange or Fenchel vector
dual to .PVC/ is defined and its Fenchel-Lagrange counterpart, one can derive
sufficient conditions that guarantee their coincidence from the stable strong duality
results from Chap. 2 or [48, Section 3.5].



Chapter 5
General Wolfe and Mond-Weir Duality

5.1 Historical Overview and Motivation

After having a solid duality theory for linear optimization problems, the next
step was to extend it for more general problems. Following Dorn’s successful
generalization of duality for quadratic problems, the next step was to deal with
convex optimization problems. In [215], Wolfe proposed a dual problem for a
scalar convex optimization problem in which the involved functions were taken
differentiable, too. Then, Schechter extended in [186] Wolfe’s duality for convex
nondifferentiable functions, by replacing the gradients with (convex) subdifferen-
tials. Then it was noticed that this duality approach can be extended for some classes
of nonconvex optimization problems where the involved functions have certain
generalized convexity properties. On the other hand, Mond and Weir proposed
in [169] other dual problems to a constrained optimization problem where the
involved functions were taken pseudoconvex and quasiconvex, respectively. For
both these duals, in order to achieve strong duality a known optimal solution
of the primal problem is required, extending thus somehow faithfully the duality
approach for linear optimization problems. This is actually the main difference
between the mentioned duality approaches and the classical conjugate one. Unlike
Wolfe’s duality approach, the Mond-Weir one has proven to be useful also when
dealing with fractional problems, leading to the achievement of strong duality even
for problems with fractions as objective functions where other duals proposed in
the literature (by Bector or Schaible, for instance) failed. Afterwards, both Wolfe
and Mond-Weir duality approaches were employed, separately, parallelly or even
combined, for different classes of optimization problems, like the ones involving
second order convex or invex functions. Moreover, they were used for developing
symmetric duality for certain classes of problems and for constructing primal-dual
pairs of problems where strong duality occurs without assuming the satisfaction of
any constraint qualification. The rich literature on Wolfe and Mond-Weir duality
concepts has developed in the last decades especially in the differentiable case.

© Springer International Publishing Switzerland 2015
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The main direction followed in this research was the one of relaxing the convexity
assumptions on the functions involved, the connections of these duality concepts to
other duality types based on convex functions remaining somehow neglected. On the
other hand, in most of the papers dealing with these duality concepts only finitely
dimensional spaces were considered.

A natural step was to extend the Wolfe and Mond-Weir duality approaches
from scalar to vector optimization problems, too. The investigations begun by
Mond, Weir, Craven and Egudo in papers like [82, 83, 205–207, 209, 211, 212]
presented Wolfe and Mond-Weir type vector duals, respectively, to a constrained
vector optimization problem obtained by retaining the objective functions of the
primal problem into the objective functions of the vector duals. They quickly
continued in various directions that led to a large number of papers where the
Wolfe and Mond-Weir duality approaches were employed for constrained vector
optimization problems with the objective functions usually containing (generalized
convex) differentiable vector functions, vectors of fractions or other combinations of
differentiable functions. On the other hand, Chien proposed in [71] another approach
to construct a Mond-Weir type vector dual for a constrained vector minimization
problem, namely by employing an idea considered in [58, 59, 140] for Fenchel
and respectively Lagrange type vector duals, which consists in using the objective
function of the primal problem only in the constraints of the dual. This duality
approach also been employed for both Wolfe type and Mond-Weir type duality for
fractional vector optimization problems.

Motivated by the huge amount of works where the classical Wolfe and Mond-
Weir duality concepts are considered in various circumstances, we present in
Sect. 5.2 a more general approach by embedding them into a larger class of
dual problems obtained via perturbation theory, following our works [29, 48].
In this way these duality concepts can be applied to unconstrained optimization
problems, too, and on the other hand one can deliver other Wolfe and Mond-Weir
type duals for constrained optimization problems, too. Moreover, the functions
involved in our investigations are defined on Hausdorff locally convex vector
spaces and for achieving strong duality different weak regularity conditions are
proposed. In Sects. 5.3 and 5.4 we extend our investigations from the scalar case
also for vector optimization problems embedding the Wolfe and Mond-Weir duality
concepts in classes of dual vector optimization problems attached via perturbations
to a general vector optimization problem with respect to its properly efficient
solutions, by exploiting the two mentioned main directions from the literature,
respectively, following our recent papers [32, 108]. Like in the scalar case, our
work was performed in the very general setting of Hausdorff locally convex vector
spaces. Then the primal problem is specialized to be unconstrained, respectively
constrained, and vector duals of both Wolfe and Mond-Weir types for it are obtained
via different perturbation functions. Afterwards, we present in Sect. 5.5 some
comparisons involving the image sets of different vector dual problems attached
to the same primal problem.
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5.2 Wolfe and Mond-Weir Type Duality for Scalar
Optimization Problems

We begin our investigations with a general scalar optimization problem, to which
dual problems of both Wolfe and Mond-Weir types are assigned. Then we particu-
larize the primal problem to be constrained and unconstrained, respectively, and the
corresponding dual problems are derived.

5.2.1 General Scalar Optimization Problems

Consider two Hausdorff locally convex vector spaces X and Y , the proper function
F W X ! R and the general optimization problem

.PG/ inf
x2X F.x/,

Making use of a proper perturbation function ˚ W X � Y ! R, fulfilling
˚.x; 0/ D F.x/ for all x 2 X , a hypothesis that guarantees that 0 2 PrY dom˚ ,
the problem .PG/ means nothing but

.PG/ inf
x2X ˚.x; 0/.

To it one can attach besides the conjugate dual problem .DG/ introduced in
Sect. 1.2.2 also the Wolfe type dual problem

.DGW / sup
u2X;y2Y;y�2Y �;
.0;y�/2@˚.u;y/

˚ � ˚�.0; y�/
�
,

and the Mond-Weir type one

.DGM/ sup
u2X;y�2Y �;
.0;y�/2@˚.u;0/

˚.u; 0/.

As we shall see later, when one takes as primal an optimization problem
consisting in minimizing a function subject to both geometric and cone-inequality
constraints, an appropriate perturbation function is employed and all the functions
involved are Gâteaux differentiable and convex, the two dual problems introduced
above lead to the classical Wolfe and Mond-Weir duals to the mentioned problem,
respectively.

Next we show that weak duality holds for .PG/ and these two duals, too.
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Theorem 5.1. One has

�1 � v.DGM/ � v.DGW / � v.PG/ � C1:

Proof. Noting that .DGM/ can be obtained from .DGW / by taking y D 0 and
using the constraint involving the subdifferential, it follows that �1 � v.DGM/ �
v.DGW /. On the other hand, .DGW / is actually the problem .DG/with an additional
constraint. Consequently, v.DGW / � v.DG/ and, taking into account the weak
duality statement for .DG/ and .PG/, we are done. ut
Remark 5.1. As a byproduct of the proof of Theorem 5.1 one obtains the inequality
v.DGW / � v.DG/.

Remark 5.2. Situations where the last inequality in Theorem 5.1 is strict are widely
known in the literature, while for an example to have �1 < v.DGM/ it suffices
to have this dual problem feasible. Later, in Examples 5.2 and 5.3 we bring into
attention two situations where v.DGM/ < v.DGW / and v.DGW / < v.DG/,
respectively.

One of the directions in which both Wolfe and Mond-Weir duality concepts were
developed in the literature is towards introducing dual problems for which strong
duality holds without asking the fulfillment of any regularity condition. As it can be
noticed in the following observation, .DGM/ is such a dual problem, provided the
nonemptiness of its feasible set.

Remark 5.3. If the feasible set of .DGM/ is nonempty, containing for instance
the element .Nu; Ny�/, then .0; Ny�/ 2 @˚.Nu; 0/ yields via Corollary 2.8.b/ that Nu
is an optimal solution to .PG/, Ny� is an optimal solution to .DG/ and v.DG/ D
v.PG/ D ˚.Nu; 0/ � v.DGM/. Via Theorem 5.1 and Remark 5.1 we obtain
v.DGM/ D v.DGW / D v.DG/ D v.PG/ and moreover that .Nu; Ny�/ is an optimal
solution to .DGM/ and .Nu; 0; Ny�/ is one to .DGW /. Consequently, in this case we
have strong duality for all three dual problems we assigned to .PG/, namely .DGM/,
.DGW / and .DG/.

However, in order to guarantee strong duality for the two duals to .PG/
introduced above one needs not necessarily directly verify the nonemptiness of the
feasible set of .DGM/, since this can be guaranteed by classical weak hypotheses,
as the following statement shows. The regularity conditions used below are actually
the ones considered in Sect. 1.2.2 for ensuring strong duality for .PG/ and .DG/.

Theorem 5.2. Assume that ˚ is a convex function. Let Nx 2 X be an optimal
solution to .PG/ and assume that one of the regularity conditions .RCG

i /, i 2
f1; 2; 3; 4g, is fulfilled. Then v.PG/ D v.DGW / D v.DGM/ and there exists a
Ny� 2 Y � for which . Nx; Ny�/ is an optimal solution to .DGM/ and . Nx; 0; Ny�/ is one to
.DGW /.

Proof. Corollary 2.8.a/ guarantees that under the present hypotheses there exists
a Ny� 2 Y �, which is an optimal solution to .DG/, such that .0; Ny�/ 2 @˚. Nx; 0/.
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Thus the feasible set of .DGM/ is nonempty, containing at least the element . Nx; Ny�/.
The conclusion follows via Remark 5.3. ut
Remark 5.4. Other regularity conditions can be used in order to guarantee strong
duality for .DGM/ and .DGW /, too, as long as they ensure the stability of the
problem .PG/ with respect to the perturbation function ˚ .

Remark 5.5. One can note that there is strong duality for .PG/ and .DGM/ if and
only if there is strong duality for .PG/ and .DG/, while the strong duality for
.PG/ and .DG/ implies the same thing for .PG/ and .DGW /. However, the strong
duality for .PG/ and .DGW / implies in general only that for .PG/ and .DG/ there
is zero duality gap. Similar observations can be made for the special cases of these
problems that will be treated further within this section, too.

Let us see now how do the duals arising from .DGW / and .DGM/ look when the
primal problem takes several classical particular formulations and the perturbation
functions are carefully chosen. More precisely, the primal is taken first to mean
finding the infimum of a function subject to both geometric and cone-inequality
constraints, and afterwards to consist in the unconstrained minimization of a sum
of a function with the composition of another function with a linear continuous
mapping.

5.2.2 Constrained Scalar Optimization Problems

The first class of particular optimization problems for which we particularize the
investigations from Sect. 5.2.1 is the one of the constrained optimization problems.
Consider the nonempty set S � X and let the nonempty convex cone C � Y induce
a partial ordering on Y . Take the proper functions f W X ! R and h W X ! Y �,
fulfilling the feasibility condition dom f \S \ h�1.�C/ ¤ ;. The primal problem
we treat further is

.PC/ inf
x2A

f .x/,

where

A D fx 2 S W h.x/ 2 �C g:

Like in Sect. 2.2.2, we consider two perturbation functions which will
lead to two different types of dual problems to .PC/ that arise from .DGW /

and .DGM/, respectively. Concerning the Lagrange perturbation function ˚L,
one has .0; z�/ 2 @˚L.u; z/ if and only if u 2 S , h.u/ 2 z � C and
.f � .z�h/ C ıS /

�.0/ C ıC�.�z�/ C .f C ıS /.u/ C ı�C .h.u/ � z/ D hz�; zi.
Using the fact that ı��C D ıC� , the latter can be equivalently rewritten as
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�
.f � .z�h/ C ıS /

�.0/ C .f � .z�h/ C ıS /.u/
� C �

ı��C .�z�/ C ı�C .h.u/ �
z/ C hz�; h.u/ � zi� D 0. By the Young-Fenchel inequality it follows that this
equality is nothing but .f � .z�h/ C ıS /

�.0/ C .f � .z�h/ C ıS /.u/ D 0 and
ı��C .�z�/ C ı�C .h.u/ � z/ C hz�; h.u/ � zi D 0, i.e. 0 2 @.f � .z�h/ C ıS /.u/,
z� 2 �C � and ı�C .h.u/ � z/ � h�z�; h.u/ � zi D 0. Thus we obtain from .DGW /

the following dual problem to .PC/

.DCL
W / sup

u2S;z2Y;z�2�C�;
h.u/�z2�C;.z�h/.u/Dhz�;zi;

02@.f �.z�h/CıS /.u/

ff .u/ � hz�; zig,

which can be equivalently rewritten as

.DCL
W / sup

u2S;z�2C�;
02@.fC.z�h/CıS /.u/

ff .u/C .z�h/.u/g.

We call this the Wolfe dual of Lagrange type to .PC/. We shall see later that, in
the particular instance where the classical Wolfe duality was considered, this dual
turns into the well-known Wolfe dual problem to .PC/.

Analogously we get a dual problem to .PC/ arising from .DGM/, namely

.DCL
M / sup

u2S;z�2C�;
h.u/2�C;.z�h/.u/�0;
02@.fC.z�h/CıS /.u/

f .u/.

Note that in the constraints of this dual one can replace .z�h/.u/ � 0 by
.z�h/.u/ D 0 without altering anything. Because the classical Mond-Weir dual to
.PC/ can be obtained, in the corresponding framework, as a special case to .DCL

M /

by removing the constraint h.u/ 2 �C , we consider here also the Mond-Weir dual
problem of Lagrange type to .PC/

.DCL
MW/ sup

u2S;z�2C�;.z�h/.u/�0;
02@.fC.z�h/CıS /.u/

f .u/.

By construction it is clear that v.DCL
M / � v.DCL

MW/. On the other hand,
whenever .u; z�/ is feasible to .DCL

MW/ it is feasible to .DCL
W /, too, and moreover

.z�h/.u/ � 0. This yields f .u/ � f .u/ C .z�h/.u/ � v.DCL
W /. Considering the

supremum over all the pairs .u; z�/ feasible to .DCL
MW/ we obtain v.DCL

MW/ �
v.DCL

W /. Applying the weak duality statement Theorem 5.1, we get

v.DCL
M / � v.DCL

MW/ � v.DCL
W / � v.DCL/ � v.PC/: (5.2.1)

As can be seen in the following situations, the Wolfe dual has sometimes an
indeed larger optimal objective value than the Mond-Weir one, while the classical
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conjugate dual can have a strictly greater one than the other mentioned two duals.
Moreover, the first example we give below exhibits a situation where the first
inequality in (5.2.1) is strictly fulfilled.

Example 5.1. Let X D R, Y D R, C D RC, Y � D R [ f1RC
g, S D RC,

f W R ! R, f .x/ D x, and h W R ! R [ f1RC
g,

h.x/ D
8
<

:

�x; if x > 0;
2; if x D 0;

1RC
; if x < 0;

where we note that 1RC
can be actually identified with C1.

We have 0 2 @.f C .0h/ C ıS /.0/ D .�1; 1� and .0h/.0/ D 0, thus .0; 0/ is
feasible to .DCL

MW/. So v.DCL
MW/ � 0 and since v.PC/ D 0 one gets v.DCL

MW/ D 0.
Employing (5.2.1), we obtain that v.DCL

W / D 0, too.
On the other hand, h.0/ D 2 > 0, thus there is no z� 2 RC for which

.0; z�/ is feasible to .DCL
M /. Noting that h.u/ ¤ 0 for all u 2 R, from the

constraint .z�h/.u/ D 0 (see the discussion after introducing .DCL
M /) one obtains

that whenever .u; z�/ were feasible to .DCL
M / there should be z� D 0. Since for

every u > 0 we have @.f C .0h/ C ıS /.u/ D f1g, it follows that .DCL
M / has no

feasible points, consequently v.DCL
M / D �1.

Therefore, v.DCL
M / < v.DCL

MW/ D v.DCL
W / in this case. Employing also (5.2.1),

one can see that v.DGM/ can in general be smaller than v.DGW /.

Example 5.2. Let X D R, Y D R
2, C D R

2C, S D RC, f W R ! R,

f .x/ D
�
x; if x > 0;
C1; otherwise;

and h W R ! R
2, h.x/ D .x � 1;�x/>.

When, for u > 0 and z� D .z�
1 ; z

�
2 /

> = 0 it holds 0 2 @.f C .z�h/ C ıS /.u/,
one obtains z�

1 � z�
2 D �1. Thus .DCL

W / has feasible points and, for some u > 0 we
obtain v.PC/ D 0 � v.DCL

W / � supff .u/C .z�h/.u/ W z� D .z�
1 ; z

�
2 /

> 2 R
2C; z�

1 �
z�
2 D �1g D sup

˚
u C z�

1 .u � 1/ � z�
2u W z� D .z�

1 ; z
�
2 /

> 2 R
2C; z�

1 � z�
2 D �1� D

sup
˚
u.1Cz�

1�z�
2 /�z�

2 W z� D .z�
1 ; z

�
2 /

> 2 R
2C; z�

1�z�
2 D �1� D supz�

2 �0f�z�
2 g D 0.

Then obviously v.DCL
W / D 0.

On the other hand, .z�h/.u/ � 0 yields u.z�
1 � z�

2 /� z�
1 � 0, i.e. �u� z�

1 � 0. But
u > 0 and z�

1 � 0, thus we obtained a contradiction, consequently .DCL
MW/ has no

feasible points. Employing also (5.2.1), we obtain v.DCL
M / D v.DCL

MW/ D �1.
Therefore, v.DCL

M / D v.DCL
MW/ < v.DCL

W / in this case.

Example 5.3. LetX D R
2, Y D R, C D RC, S D R

2, f W R2 ! R, f .x; y/ D y,
and h W R2 ! R, h.x; y/ D ex � y.

For u D .u1; u2/> 2 R
2 and z� � 0 we have, taking into account the continuity

of f and h, @.f C .z�h/C ıS /.u/ D @f .u/C @.z�h/.u/, hence
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@.f C .z�h/C ıS /.u/ D
�


0

1

��
C
�


z�eu1

�z�
��

D
�


z�eu1

1 � z�
��

:

Then .0; 0/> 2 @.f C .z�h/ C ıS /.u/ if and only if concomitantly z� D 0 and
z� D 1, that is impossible. Consequently, via (5.2.1), v.DCL

M / D v.DCL
MW/ D

v.DCL
W / D �1.

On the other hand,

v.DCL/D sup
z��0

inf
.u1;u2/2R2

�
u2Cz�eu1 �z�u2

�D sup
z��0

n
inf

u12R
z�eu1C inf

u22R
u2.1�z�/

o
D0:

Therefore, v.DCL
M / D v.DCL

MW/ D v.DCL
W / < v.DCL/ in this case. Employing

also (5.2.1), one can see that v.DGW / can in general be smaller than v.DG/.

For strong duality, which follows directly from Theorem 5.2, besides convexity
assumptions which guarantee the convexity of the perturbation function ˚L we
use regularity conditions, too, obtained in Sect. 2.2.2 by particularizing .RCG

i /,
i 2 f1; 2; 3; 4g. Specializing Theorem 5.2 for the present context we obtain strong
duality statements for .PC/ and .DCL

W / and .DCL
M /, respectively, while the one

concerning .DCL
MW/ follows analogously or via (5.2.1).

Theorem 5.3. Assume that S is a convex set, f is a convex function and h is a C -
convex vector function. Let Nx 2 X be an optimal solution to .PC/ and assume that
one of the regularity conditions .RCL

i /, i 2 f1; 2; 3; 4g, is fulfilled. Then v.PC/ D
v.DCL

W/ D v.DCL
M/ D v.DCL

MW/ and there exists a Nz� 2 C � for which . Nx; Nz�/ is an
optimal solution to all three duals.

Remark 5.6. One can notice that in the situation considered in Example 5.3 the
convexity hypotheses of Theorem 5.3 and the Slater constraint qualification .RCL

1 /

are valid, but strong duality fails for the Wolfe and Mond-Weir type duals. This
happens because the infimal objective value of .PC/ is not attained, the primal
problem having no optimal solutions.

Remark 5.7. Assume that S is a convex set, f is a convex function and h is a
C -convex vector function. When one of the following conditions

(i) f and h are continuous at a point in dom f \ dom h \ S ;
(ii) dom f \ intS \ dom h ¤ ; and f or h is continuous at a point in dom f \

dom h;
(iii) X is a Fréchet space, S is closed, f is lower semicontinuous, h is star C -lower

semicontinuous and 0 2 sqri.dom f � S � dom h ��X3/;
(iv) dim lin.dom f � S � dom h��X3/ < C1 and 0 2 ri.dom f � S � dom h�

�X3/;

is satisfied, then (see [21, 48, 221])

@f .x/C @.z�h/.x/CNS.x/ D @.f C .z�h/C ıS /.x/ 8x 2 S 8z� 2 C �
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Consequently, when one of these situations occurs, the constraint involving the
subdifferential in .DCL

W /, .DCL
M / and .DCL

MW/ can be correspondingly modified.
Moreover, in order to split @.f C .z�h/ C ıS /.x/ into a sum of only two
subdifferentials, one can apply [48, Theorem 3.5.6].

Remark 5.8. If X D R
n, Y D R

m, C D R
mC, f W R

n ! R and h D
.h1; : : : ; hm/

> W Rn ! R
m, and the functions f and hj , j D 1; : : : ; m, are convex,

then these are also continuous, hence the condition (i) in Remark 5.7 is fulfilled and
the subdifferentials in the constraints of the duals we assigned above to .PC/ can be
split. Then .DCL

W / turns out to be the classical nondifferentiable Wolfe dual problem
mentioned in the literature (see for instance [145, 186]). Meanwhile, .DCL

MW/ is the
classical nondifferentiable Mond-Weir dual problem to .PC/.

Remark 5.9. If in addition to the hypotheses of Remark 5.8 the set S is open and the
functions f and hj , j D 1; : : : ; m, are moreover Gâteaux differentiable on it, the
subdifferentials in the constraints can be replaced by the corresponding gradients,
.DCL

W / turns out to be the classical Wolfe dual problem (see [215]), while .DCL
MW/

is nothing but the classical Mond-Weir dual problem from [169].

Another perturbation function employed to assign conjugate dual problems
to .PC/ is the Fenchel-Lagrange dual perturbation function ˚FL for which one
has .0; y�; z�/ 2 @˚FL.u; y; z/ if and only if u 2 S , h.u/ 2 z � C and
f �.y�/ C .�.z�h/ C ıS /

�.�y�/ C ı�C�.z�/ C f .u C y/ C ı�C .h.u/ � z/ C
ıS .u/ D hy�; yi C hz�; zi, which is nothing but u 2 S , h.u/ 2 z � C and�
f �.y�/C f .u C y/� hy�; u C yi/C �

.�.z�h/C ıS /
�.�y�/C .�.z�h/C ıS /.u/

�h�y�; ui� C �
��C .�z�/ C ı�C .h.u/ � z/ C hz�; h.u/ �zi� D 0, i.e. u 2 S ,

�z� 2 C �, h.u/ � z 2 �C , y� 2 @f .u C y/, �y� 2 @.�.z�h/ C ıS /.u/ and
.z�h/.u/ D hz�; zi. Thus we obtain from .DGW / the following dual problem to
.PC/

.DCFL
W / sup

u2S;y2X;z2Y;y�2X�;z�2�C�;
h.u/�z2�C;.z�h/.u/Dhz�;zi;

y�2@f .uCy/\.�@..z�h/CıS /.u//

ff .u C y/ � hy�; yi � hz�; zig,

which can be equivalently turned into

.DCFL
W / sup

u2S;y2X;y�2X�;z�2C�;
y�2@f .uCy/\.�@..z�h/CıS /.u//

fhy�; ui C .z�h/.u/ � f �.y�/g,

further referred to as the Wolfe dual of Fenchel-Lagrange type to .PC/. Analogously,
the dual problem to .PC/ arising from .DGM/ is

.DCFL
M / sup

u2S;z�2C�;
.z�h/.u/�0;h.u/2�C;

02@f .u/C@..z�h/CıS /.u/

f .u/.
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Note that in the constraints of this dual one can replace .z�h/.u/ � 0 by
.z�h/.u/ D 0 without altering anything. Removing, like in the Lagrange case, from
it the constraint h.u/ 2 �C , we obtain the Mond-Weir dual problem of Fenchel-
Lagrange type to .PC/

.DCFL
MW/ sup

u2S;z�2C�;.z�h/.u/�0;
02@f .u/C@..z�h/CıS /.u/

f .u/.

Applying Theorem 5.1 and Remark 5.1 and using similar arguments to the ones
used concerning .DCL

MW/, we obtain the following weak duality inequality

v.DCFL
M / � v.DCFL

MW/ � v.DCFL
W / � v.DCFL/ � v.PC/: (5.2.2)

As can be seen in the following situations, the Wolfe dual has sometimes an
indeed larger optimal objective value than the Mond-Weir one, while the classical
conjugate dual can have a strictly greater one than the other mentioned two duals.

Example 5.4. Consider again the situation from Example 5.1. One can analogously
show that v.DCFL

MW/ D v.DCFL
W / D 0, while .DCFL

M / has no feasible points,
consequently v.DCFL

M / D �1.
Therefore, v.DCFL

M / < v.DCFL
MW/ D v.DCFL

W / in this case.

Example 5.5. Consider again the situation from Example 5.2. One can verify that
for u > 0 and z� D .z�

1 ; z
�
2 /

> = 0 fulfilling z�
1 � z�

2 D �1 it holds 1 2 @f .u/
and �1 2 @..z�h/ C ıS /.u/, so .u; 0; 1y�; z�/ is feasible to .DCFL

W /. Moreover,
f .u/ D u � f �.1/, so one obtains like in Example 5.2 that v.DCFL

W / D 0, while
both .DCFL

M / and .DCFL
MW/ are unfeasible.

Therefore, v.DCFL
M / D v.DCFL

MW/ < v.DCFL
W / in this case.

Example 5.6. Consider again the situation from Example 5.3. One can analogously
show that v.DCFL

M / D v.DCFL
MW/ D v.DCFL

W / D �1, while v.DCFL/ D 0.
Therefore, v.DCFL

M / D v.DCFL
MW/ D v.DCFL

W / < v.DCFL/ in this case.

For strong duality, which follows directly from Theorem 5.2, besides convexity
assumptions which guarantee the convexity of the perturbation function ˚FL we
use regularity conditions, too, obtained in Sect. 2.2.2 by particularizing .RCG

i /,
i 2 f1; 2; 3; 4g. Specializing Theorem 5.2 for the present context we obtain strong
duality statements for .PC/ and .DCFL

W / and .DCFL
M /, respectively, while the one

concerning .DCFL
MW/ follows analogously or via (5.2.2).

Theorem 5.4. Assume that S is a convex set, f is a convex function and h is C -
convex vector function. Let Nx 2 X be an optimal solution to .PC/ and assume that
one of the regularity conditions .RCFL

i /, i 2 f1; 2; 3; 4g, is fulfilled. Then v.PC/ D
v.DCFL

W / D v.DCFL
M / D v.DCFL

MW/ and there exist Ny� 2 X� and Nz� 2 C � for which
. Nx; 0; Ny�; Nz�/ is an optimal solution to .DCFL

W / and . Nx; Nz�/ is an optimal solution to
.DCFL

M / and .DCFL
MW/.
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Remark 5.10. Results analogous to the one from Remark 5.7 can be given for the
Fenchel-Lagrange type duals, too. Assume that S is a convex set and h is aC -convex
vector function, the satisfaction of any of the following conditions (cf. [48, Theorem
3.5.6])

(i) h is continuous at a point in S \ dom h;
(ii) intS \ dom h ¤ ;;

(iii) X is a Fréchet space, S is closed, h is star C -lower semicontinuous and 0 2
sqri.S � dom h/;

(iv) dim lin.S � dom h/ < C1 and riS \ ri dom h ¤ ;;

ensures the fulfillment of the formula

@..z�h/C ıS /.u/ D @.z�h/.u/CNS.u/ 8u 2 X 8z� 2 C �;

in which case the constraint involving @..z�h/ C ıS /.u/ in .DCFL
W /, .DCFL

M / and
.DCFL

MW/ can be correspondingly modified.

5.2.3 Unconstrained Scalar Optimization Problems

Consider now the unconstrained optimization problem

.PU/ inf
x2X

�
f .x/C g.Ax/

�
,

where A W X ! Y is a linear continuous mapping and f W X ! R and g W Y ! R

are proper functions fulfilling the feasibility condition dom f \ A�1.domg/ ¤ ;.
The perturbation function considered for assigning the Wolfe type and Mond-Weir
type dual problems to .PU/ is the Fenchel type one ˚U already considered in
Sect. 2.2.3, for which one has

.0; y�/ 2 @˚.u; y/ , A�y� 2 �@f .u/ and y� 2 @g.Au C y/:

The duals we assign to .PU/ by using ˚U turn out to be

.DUW / sup
u2X;y2Y;y�2Y �;

y�2.A�/�1.�@f .u//\@g.AuCy/

f�f �.�A�y�/ � g�.y�/g,

which is a Wolfe type dual, and, respectively the Mond-Weir type dual,

.DUM/ sup
u2X;

02.A�/�1.�@f .u//�@g.Au/

ff .u/C g.Au/g.
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Remark 5.11. When the primal problem is taken to be more particular, as happens
for instance when f , respectively takes everywhere the value 0, or when X D Y

and A is the identity mapping of X , duals correspondingly obtained from .DUW /

and .DUM/ can be easily assigned to it.

Employing Theorem 5.1 and Remark 5.1, one obtains the weak duality state-
ments corresponding to the just introduced dual problems to .PU/, namely

v.DUM/ � v.DUW / � v.DU/ � v.PU/:

For strong duality, which follows directly from Theorem 5.2, besides convexity
assumptions which guarantee the convexity of the perturbation function ˚U , we use
the regularity conditions considered in Sect. 2.2.3.

Theorem 5.5. Assume that f and g are convex functions. Let Nx 2 X be an
optimal solution to .PU/ and assume that one of the regularity conditions .RCU

i /,
i 2 f1; 2; 3; 4g, is fulfilled. Then v.PU/ D v.DUW/ D v.DUM/ and there exists a
Ny� 2 Y � for which . Nx; Ny�/ is an optimal solution to .DGM/ and . Nx; 0; Ny�/ is one to
.DGW /.

As noted in Sect. 2.2.3, one can see .PC/ as an unconstrained optimization
problem, too. Using the notations considered in Sect. 5.2.2, the duals .DUW / and
.DUM/ turn into

.DCF
W / sup

u2S;y2X;y�2X�;
y�2@f .uCy/\.�NA .u//

fhy�; ui � f �.y�/g,

the Wolfe dual of Fenchel type to .PC/, and, respectively

.DCF
M / sup

u2S;
02@f .u/CNA .u/

f .u/.

From the weak duality statement involving .PU/ and its duals, or alternatively,
by employing Theorem 5.1 and Remark 5.1, one obtains weak duality assertions for
the just introduced duals to .PC/, namely

v.DCF
M / � v.DCF

W / � v.DCF / � v.PC/:

For strong duality, which follows directly from either Theorems 5.2 or 5.5,
besides convexity assumptions which guarantee the convexity of the corresponding
perturbation function one can use the regularity conditions introduced in Sect. 2.2.3.

Theorem 5.6. Assume that A is a convex set and f is a convex function. Let Nx 2 X
be an optimal solution to .PC/ and assume that one of the regularity conditions
.RCF

i /, i 2 f1; 2; 3; 4g, is fulfilled. Then v.PC/ D v.DCF
W/ D v.DCF

M/, Nx is an
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optimal solution to .DCF
M / and there exist . Ny; Ny�/ 2 X � X� for which . Nx; Ny; Ny�/

is an optimal solution to .DCF
W /.

Remark 5.12. In order to ensure the convexity of the set A it is sufficient to take
the set S convex and h to be a C -convex vector function. To guarantee that the set
A is closed it is enough to assume that S is a closed set and h a C -epi-closed vector
function.

Remark 5.13. As one can see in Sect. 5.2.4, the dual problems we assigned to .PC/
do not coincide in general. Sufficient conditions that ensure the equivalence of the
corresponding duals of Lagrange type and Fenchel-Lagrange type, respectively,
can be easily obtained via [48, Theorem 3.5.6], while for the equivalence of the
corresponding duals of Fenchel type and Fenchel-Lagrange type, respectively, one
can apply [48, Theorem 3.5.13].

5.2.4 Comparisons Between the Duals for Constrained Scalar
Optimization Problems

From [21, 48] it is known that the optimal objective values of the conjugate duals
attached to .PC/ we mentioned before fulfill the following inequality

v.DCFL/ � v.DCL/

v.DCF /
� v.PC/: (5.2.3)

A natural question is if similar inequalities exist also for the dual problems
introduced in Sect. 5.2.3. First we deal with the ones that are particular instances
of .DGM/, where the answer is positive, as the following statement shows.

Proposition 5.1. One has

v.DCFL
M / � v.DCL

M /

v.DCF
M /

� v.PC/:

Proof. If the feasible set of .DCFL
M / is empty, there is nothing to prove. Let .u; z�/

be feasible to .DCFL
M /. Then u 2 S , z� 2 C �, .z�h/.u/ � 0, h.u/ 2 �C and

0 2 @f .u/C @..z�h/C ıS /.u/. The last relation implies 0 2 @.f C .z�h/C ıS /.u/,
consequently .u; z�/ is feasible to .DCL

M /, too. As both .DCFL
M / and .DCL

M / have f
as objective function, it is clear that v.DCFL

M / � v.DCL
M /.

On the other hand, @..z�h/C ıS /.u/ � NA .u/ since u 2 A , thus u is feasible to
.DCF

M /. Since both .DCFL
M / and .DCF

M / have f as objective function, it is clear that
v.DCFL

M / � v.DCF
M /. ut

Analogously one can show that for the Mond-Weir dual problems to .PC/ there
is a similar inequality.
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Proposition 5.2. One has

v.DCFL
MW/ � v.DCL

MW/:

Remark 5.14. When the feasible set of .DCL
M / or .DCF

M / is empty, then so is the
feasible set of .DCFL

M /, too. In general, the fact that .DCFL
M / has no feasible points

does not imply the emptiness of any of the feasible sets of .DCL
M / and .DCF

M /, as it
can be seen in Examples 5.7 and 5.8.

Situations where the inequalities from Propositions 5.1 and 5.2 are strictly
fulfilled can be found below. In the view of Remark 5.3, it is clear that if this
is the case the dual .DCFL

MW/ is infeasible and .DCL
M / or .DCF

M /, respectively, is
feasible and there is strong duality for it. As a byproduct we obtain that, like in
the conjugate case, in general there cannot be established an inequality involving
the optimal objective values of the dual problems of Lagrange and Fenchel types to
.PC/. First we deal with a problem whose Lagrange dual derived as a special case
of .DGM/ has a larger optimal objective value than both its Fenchel and Fenchel-
Lagrange type duals obtained from .DGM/.

Example 5.7. Let X D R
2, Y D R, C D RC,

S D
�
.x1; x2/

> 2 R
2 W 0 � x1 � 2;

3 � x2 � 4; if x1 D 0;

1 � x2 � 4; if x1 2 .0; 2�
�
;

f W R2 ! R; f .x1; x2/ D
�
x2; if x1 � 0;

C1; otherwise;

and h W R2 ! R, h.x1; x2/ D 0.
Note first that because h.x1; x2/ D 0 2 RC for all .x1; x2/> 2 R

2, it follows that
the dual problem .DCL

M / is equivalent to .DCL
MW/ and, respectively, that .DCFL

M /

and .DCFL
MW/ are equivalent, too. One has A D S and since .z�h/.u/ D 0 for all

u 2 S , it follows that .DCF
M / is equivalent to .DCFL

M / and .DCFL
MW/, too. One has

.f C ıS /.u1; u2/ D
�

u2; if u1 D 0; u2 2 Œ3; 4�;
C1; otherwise:

For any z� 2 RC we get .0; 0/ 2 @.f C .z�h/ C ıS /.0; 3/, thus v.DCL
M / D

v.DCL
MW/ � 3. Since it can be seen that v.PC/ D 3, we get v.DCL

M / D
v.DCL

MW/ D 3.
On the other hand, taking without loss of generality z� D 1, to have, for some

u D .u1; u2/> 2 S , 0 2 @f .u/C @..z�h/C ıS /.u/ means actually that there exists
a y� 2 @f .u/ \ .�NS.u//. From y� 2 @f .u/ we obtain that y� D .y�

1 ; y
�
2 /

> 2
RC�f1g and u1 D 0. Consequently, y�

2 D 1. Let us see now for what y�
1 2 RC does

one obtain .�y�
1 ;�1/ 2 NS.0; u2/. We have .�y�

1 ;�1/ 2 NS.0; u2/ if and only if
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�S.�y�
1 ;�1/ D �u2. This yields u2 D 1, but .0; 1/ … S , consequently .DCFL

M / is
infeasible. Hence, one has v.DCF

M / D v.DCFL
M / D v.DCFL

MW/ D �1.
Therefore, v.DCF

M / D v.DCFL
M / D v.DCFL

MW/ < v.DCL
M / D v.DCL

MW/ in this
case.

The second example we present brings into attention an optimization problem
for which the Fenchel dual derived as a special case of .DGM/ has a larger optimal
objective value than both its Lagrange and Fenchel-Lagrange type duals obtained
from .DGM/.

Example 5.8. Let X D R
2, Y D R, C D RC,

S D
�
.x1; x2/

> 2 R
2 W 0 � x1 � 2;

3 � x2 � 4; if x1 D 0;

1 � x2 � 4; if x1 2 .0; 2�
�
;

f W R2 ! R, f .x1; x2/ D x2 and h W R2 ! R, h.x1; x2/ D x1.
Then A D f0g � Œ3; 4�. As the functions f and h are continuous, the condition

(ii) in Remark 5.7 is fulfilled, hence the subdifferentials from the dual constraints
can be split and it follows that for the optimization problem we are dealing with the
dual problems .DCFL

M / and .DCL
M / are equivalent. Moreover, .DCFL

MW/ and .DCL
MW/

are equivalent, too. Since .0; 1/> 2 @f .0; 3/ \ .�NA .0; 3//, v.DCF
M / � 3. But

v.PC/ D 3, consequently v.DCF
M / D 3.

On the other hand, for u 2 S , y� 2 R
2 and z� � 0, 0 2 @f .u/C@..z�h/CıS /.u/

if and only if one concomitantly has .0; 1/> 2 @f .u/\ .�@..z�h/CıS /.u//, z� D 0

and u 2 .0; 2� � f1g. But then h.u/ > 0, so .DCFL
M / is infeasible, thus v.DCFL

M / D
v.DCL

M / D �1. Moreover, v.DCL
MW/ D v.DCFL

MW/ D supfu2 W .u1; u2/> 2 .0; 2� �
f1gg D 1.

Therefore, v.DCFL
M / D v.DCL

M / < v.DCL
MW/ D v.DCFL

MW/ < v.DCF
M / in this

case.

Another observation that can be drawn after analyzing the two examples from
above is that for v.DCFL

MW/ and v.DCL
M / no generally valid order can be established.

Moreover, we have seen that in Example 5.8 v.DCFL
MW/ is strictly less than v.DCF

M /.
Though, this inequality is not valid in general, as the following situation shows.

Example 5.9. Consider again the situation from Example 5.1. As A D .0;C1/,
NA .u/ D f0g for all u 2 A and @f .u/ D f1g for all u 2 R, it follows that
@f .u/ \ .�NA .u// D ; for all u 2 S . Consequently, v.DCF

M / D �1.
On the other hand, taking z� D 0we get @..z�h/CıS /.u/ D NRC

.u/ for all u � 0

and it can be shown that NRC
.0/ D R�. Thus 1 2 @f .0/\@.�..z�h/C ıS /.0//. As

z�h.u/ D 0, the element .0; 0/ is feasible to .DCFL
MW/. This yields v.DCFL

MW/ � 0 D
v.PC/, thus v.DCFL

MW/ D 0.
Therefore, v.DCF

M / < v.DCFL
MW/ in this case.

Remark 5.15. Since the constraint h.u/ 2 �C does not explicitly appear in the
definition of the feasible set of the problem .DCF

M /, one may assume that this can be
considered per se the Mond-Weir dual problem of Fenchel type to .PC/. However,
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as seen in Example 5.9, a situation analogous to the one in (5.2.3) or Proposition 5.1
would not hold for the Mond-Weir duals, despite Proposition 5.2. That is why we
chose not to introduce a Mond-Weir dual problem of Fenchel type to .PC/. Note
also that, on the other hand, h.u/ 2 �C is “hidden” in the constraint containing
NA .u/, which cannot be fulfilled if h.u/ … �C .

However, a result similar to (5.2.3) or Proposition 5.1 does not hold for the Wolfe
type duals to .PC/. Even if the primal problem is convex, the optimal objective
values of .DCFL

W /, .DCL
W / and .DCF

W / cannot be ordered in general. Because of
(5.2.3), this fact was expected to happen for the Fenchel and Lagrange type duals,
but, surprisingly, the optimal objective value of the Wolfe dual of Fenchel-Lagrange
type is not always smaller than them. In the following we sustain this claim by
several examples. First we deal with the Wolfe duals of types Lagrange and Fenchel-
Lagrange, respectively.

Example 5.10. Consider again the situation from Example 5.7. Since v.DCL
M / D

v.DCL
MW/ D v.PC/ D 3, it follows via (5.2.1) that v.DCL

W / D 3, too.
On the other hand, as A D S and since .z�h/.u/ D 0 for all u 2 S , it follows that

.DCF
W / is equivalent to .DCFL

W / for the optimization problem in discussion. Because
of the investigations in Example 5.7 and (5.2.2), we know that 1 � v.DCF

W / D
v.DCFL

W / � 3, so these dual problems are feasible. Taking without loss of generality
z� D 1, we have y� 2 @f .uCy/\.�NS.u// for some u D .u1; u2/ 2 S and y 2 R

2.
From y� 2 @f .u C y/ we obtain that y� D .y�

1 ; y
�
2 /

> 2 RC � f1g. Consequently,
y�
2 D 1. Let us see now for what y�

1 2 RC does one obtain .�y�
1 ;�1/ 2 NS.u1; u2/.

We have .�y�
1 ;�1/ 2 NS.u1; u2/ if and only if �S.�y�

1 ;�1/ D �y�
1 u1 � u2. Since

this can take place only if y�
1 D 0, it follows that u1 2 .0; 2�, u2 D 1 and .0; 1/> is

the only possible value for y�. Consequently, v.DCF
W / D v.DCFL

W / D supfu2 W u1 2
.0; 2�; u2 D 1g D 1.

Therefore, v.DCF
W / D v.DCFL

W / < v.DCL
W / in this case.

Example 5.11. Let X D R, Y D R, C D RC, S D R,

f W R ! R; f .x/ D
�
x; if x > 0;
C1; otherwise;

and

h W R ! R; h.x/ D
� �x; if x � 0;

0; otherwise:

Note that A D RC, v.PC/ D 0 and for all z� � 0 one has f C .z�h/C ıS 
 f .
Thus, for all z� � 0,

@.f C .z�h/C ıS /.u/ D @f .u/ D
� f1g; if u > 0;

;; otherwise:

Consequently, .DCL
W / has no feasible points, therefore v.DCL

W / D �1.
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On the other hand, taking u D 0, y D 1, y� D 1 and z� D 1, we have
.z�h/C ıS 
 h, 1 2 @f .1/ and �1 2 @h.0/. Thus .0; 1; 1; 1/ is feasible to .DCFL

W /.
Moreover, �1 2 NA , so .0; 1; 1/ is feasible to .DCF

W /. Then v.DCFL
W / � 0 �

v.DCF
W /, but as v.PC/ D 0 it follows v.DCFL

W / D v.DCF
W / D 0.

Therefore, v.DCL
W / < v.DCF

W / D v.DCFL
W / in this case.

For both these problems we had v.DCF
W / D v.DCFL

W /. But each of these optimal
objective values can be larger than the other in a specific situation, as one can see in
the following two examples.

Example 5.12. Consider again the situation from Example 5.8. As the condition
(ii) in Remark 5.7 is fulfilled, it follows that for the optimization problem we are
dealing with the dual problems .DCFL

W / and .DCL
W / are equivalent. Since v.DCF

M / D
v.PC/ D 3, it follows via (5.2.1) that v.DCF

W / D 3.
On the other hand, for u 2 S , y; y� 2 R

2 and z� � 0, y� 2 @f .u C y/ \
.�@..z�h/C ıS /.u// if and only if y� D .0; 1/>, z� D 0 and u 2 .0; 2�� f1g. Then
v.DCL

W / D v.DCFL
W / D supfu2 W .u1; u2/> 2 .0; 2� � f1gg D 1.

Therefore, v.DCL
W / D v.DCFL

W / < v.DCF
W / in this case.

Example 5.13. Consider again the situation from Examples 5.1 and 5.9. We have
v.DCL

MW/ D v.DCFL
MW/ D v.PC/ D 0, thus, via (5.2.1), v.DCFL

W / D v.DCL
W / D 0,

too.
As A D .0;C1/, NA .u/ D f0g for all u 2 A and @f .u/ D f1g for all u 2 R, it

follows that @f .u Cy/\ .�NA .u// D ; for all u 2 S and all y 2 R. Consequently,
v.DCF

W / D �1.
Therefore, v.DCF

W / < v.DCFL
MW/ D v.DCFL

W / D v.DCL
MW/ D v.DCL

W / in this
case.

In the last two examples one can see as a byproduct that no order can be
established in general between v.DCFL

MW/ and v.DCF
W /. A natural question is

whether the same conclusion can be drawn for v.DCFL
MW/ and v.DCL

W /, too. The next
statement answers to it negatively and completes the investigations on the optimal
objective values of the duals we introduced to .PC/.

Proposition 5.3. One has

v.DCFL
MW/ � v.DCL

W /:

Proof. Let .u; z�/ be feasible to .DCFL
MW/. Then u 2 S , z� 2 C �, .z�h/.u/ � 0 and

0 2 @f .u/C @..z�h/C ıS /.u/. The last relation implies 0 2 @.f C .z�h/C ıS /.u/,
consequently .u; z�/ is feasible to .DCL

W /, too. Since in this case f .u/ � f .u/ C
.z�h/.u/, it follows that v.DCFL

MW/ � v.DCL
W /. ut

Remark 5.16. To show that the inequality provided in Proposition 5.3 can in general
be strictly fulfilled one can use for instance (5.2.2) and Example 5.10 or (5.2.1) and
Example 5.7, respectively.
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5.2.5 A Glimpse into Generalized Convexity

A characteristic of many results in the literature concerning Wolfe duality and
Mond-Weir duality in the differential case is the usage of different generalized
convexity hypotheses, like quasiconvexity, pseudoconvexity or invexity, for the
functions involved in order to achieve weak and strong duality. However, gener-
alized convexity hypotheses can be taken into account in the nondifferentiable case,
too, as it can be seen in the following. In this subsection we assume that X D R

n,
Y D R

m and C � R
m. We consider here only the notions of almost convexity (for

properties we refer to [9, 39, 53, 75] and the references therein) and near convexity
(see [39, 41, 52] and the references therein) for both sets and functions. Other
generalized convexity notions successfully used in conjugate duality, for instance
the convexlikeness or the even convexity can be employed here, too.

A set U � R
n is called almost convex if clU is convex and ri clU � U and,

respectively nearly convex if there is a constant ˛ 2�0; 1Œ such that for any x and y
belonging to U one has ˛x C .1 � ˛/y 2 U . An example of an almost convex but
not convex set is .Œ0; 1�� Œ0; 1�/n f.0; y/ W y 2 RnQg � R

2, while Q � R is nearly
convex but not convex.

A function f W Rn ! R is said to be almost convex if Nf is convex and ri epi Nf �
epi f and, respectively, nearly convex if epi f is a nearly convex set. Moreover,
a vector function g W R

n ! R
m is said to be C -almost convex if epiC g is an

almost convex set and, respectively, C -nearly convex if epiC g is a nearly convex
set. Each convex set or function is both almost convex and nearly convex, too, while
theC -convex vector functions are bothC -almost convex andC -nearly convex. Note
also that a nearly convex set with nonempty relative interior is almost convex and
a nearly convex function f W R

n ! R whose epigraph has a nonempty relative
interior is almost convex, too.

As the weak duality holds for all the primal-dual pairs of problems considered
in this section in the most general case, thus without any additional hypotheses, we
focus in the following on strong duality. First we give the corresponding statements
involving .PG/ and the duals we considered for it, where the just introduced
generalized convexity concepts play an important role.

Theorem 5.7. Assume that ˚ W R
n � R

m ! R is a proper and almost convex
function, with its domain fulfilling 0 2 PrRm.dom˚/. Let Nx 2 R

n be an optimal
solution to .PG/ and assume that the regularity condition

0 2 ri PrY .dom˚/

is fulfilled. Then v.PG/ D v.DGW / D v.DGM/ and there exists a Ny� 2 R
m for

which . Nx; Ny�/ is an optimal solution to .DGM/ and . Nx; 0; Ny�/ is one to .DGW /.

Proof. From [53, Corollary 3.1] it is known that under these hypotheses one has
v.PG/ D v.DG/ with the latter attained at some Ny� 2 R

m. Then the optimality
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condition (2.2.10) holds for Nx and Ny� and this means that . Nx; 0; Ny�/ is feasible to
.DGW / and . Nx; Ny�/ is feasible to .DGM/. The conclusion follows via Remark 5.3.

ut
Corollary 5.1. Assume that ˚ W R

n � R
m ! R is a proper and nearly convex

function, with its domain fulfilling 0 2 PrRm.dom˚/ and with the relative interior
of its epigraph nonempty. Let Nx 2 R

n be an optimal solution to .PG/ and assume
that the regularity condition

0 2 ri PrY .dom˚/

is fulfilled. Then v.PG/ D v.DGW / D v.DGM/ and there exists a Ny� 2 R
m for

which . Nx; Ny�/ is an optimal solution to .DGM/ and . Nx; 0; Ny�/ is one to .DGW /.

Note that the regularity condition used in Theorem 5.7 and Corollary 5.1 is
nothing but .RCG

3 / written in the framework considered in this section. Of course
this statement can be particularized for the duals considered in Sects. 5.2.2 and 5.2.3,
too, as follows. First we deal with constrained optimization problems.

Theorem 5.8. Assume that S is a nonempty and almost convex set, C � R
m is a

nonempty convex cone, f W Rn ! R is a proper and almost convex function and
h W Rn ! R

m is aC -almost convex vector function fulfilling the feasibility condition
dom f \S \h�1.�C/ ¤ ;. Let Nx 2 A be an optimal solution to .PC/ and assume
that the regularity condition

0 2 ri
�
h.dom f \ S/C C

�

is fulfilled. Then v.PC/ D v.DCL
W/ D v.DCL

M/ D v.DCL
MW/ and there exists a

Nz� 2 C � for which . Nx; Nz�/ is an optimal solution to all three duals.

Corollary 5.2. Assume that S is a nonempty and nearly convex set with a nonempty
relative interior, C � R

m is a nonempty convex cone, f W Rn ! R is a proper and
nearly convex function with ri epi f ¤ ; and h W Rn ! R

m is a C -nearly convex
vector function with ri epiC h ¤ ; fulfilling the feasibility condition dom f \ S \
h�1.�C/ ¤ ;. Let Nx 2 A be an optimal solution to .PC/ and assume that the
regularity condition

0 2 ri
�
h.dom f \ S/C C

�

is fulfilled. Then v.PC/ D v.DCL
W/ D v.DCL

M/ D v.DCL
MW/ and there exists a

Nz� 2 C � for which . Nx; Nz�/ is an optimal solution to all three duals.

Theorem 5.9. Assume that S is a nonempty and almost convex set, C � R
m is a

nonempty convex cone, f W Rn ! R is a proper and almost convex function and
h W Rn ! R

m is aC -almost convex vector function fulfilling the feasibility condition
dom f \S \h�1.�C/ ¤ ;. Let Nx 2 A be an optimal solution to .PC/ and assume
that the regularity condition
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0 2 ri
�

dom f � C � epi.�C/.�h/ \ .S � R
m/
�

is fulfilled. Then v.PC/ D v.DCFL
W / D v.DCFL

M / D v.DCFL
MW/ and there exist Ny� 2

R
n and Nz 2 C � for which . Nx; 0; Ny�; Nz�/ is an optimal solution to .DCFL

W / and . Nx; Nz�/
is an optimal solution to .DCFL

M / and .DCFL
MW/.

Corollary 5.3. Assume that S is a nonempty and nearly convex set with a nonempty
relative interior, C � R

m is a nonempty convex cone, f W Rn ! R is a proper and
nearly convex function with ri epi f ¤ ; and h W Rn ! R

m is a C -nearly convex
vector function with ri epiC h ¤ ; fulfilling the feasibility condition dom f \ S \
h�1.�C/ ¤ ;. Let Nx 2 A be an optimal solution to .PC/ and assume that the
regularity condition

0 2 ri
�

dom f � C � epi.�C/.�h/ \ .S � R
m/
�

is fulfilled. Then v.PC/ D v.DCFL
W / D v.DCFL

M / D v.DCFL
MW/ and there exist Ny� 2

R
n and Nz 2 C � for which . Nx; 0; Ny�; Nz�/ is an optimal solution to .DCFL

W / and . Nx; Nz�/
is an optimal solution to .DCFL

M / and .DCFL
MW/.

Theorem 5.10. Assume that f W Rn ! R is a proper and almost convex function
and A is a nonempty and almost convex set fulfilling the feasibility condition
dom f \ A ¤ ;. Let Nx 2 A be an optimal solution to .PC/ and assume that
the regularity condition

ri dom f \ ri A ¤ ;

is fulfilled. Then v.PC/ D v.DCF
W/ D v.DCF

M/ and there exist Ny; Ny� 2 R
n for which

Nx is an optimal solution to .DCF
M / and . Nx; Ny; Ny�/ is one to .DCF

W /.

Corollary 5.4. Assume that f W Rn ! R is a proper and nearly convex function
with ri epi f ¤ ; and A is a nonempty and nearly convex set with a nonempty
relative interior fulfilling the feasibility condition dom f \ A ¤ ;. Let Nx 2 A be
an optimal solution to .PC/ and assume that the regularity condition

ri dom f \ ri A ¤ ;

is fulfilled. Then v.PC/ D v.DCF
W/ D v.DCF

M/ and there exist Ny; Ny� 2 R
n for which

Nx is an optimal solution to .DCF
M / and . Nx; Ny; Ny�/ is one to .DCF

W /.

Remark 5.17. Other hypotheses requesting the (C -)near convexity of the involved
functions that guarantee the strong duality statements in Corollaries 5.2–5.4 can be
found in [52, Theorem 3.3].

Now let us deal with unconstrained optimization problems, as well.

Theorem 5.11. Assume that f W Rn ! R and g W Rm ! R are proper and almost
convex functions and A W R

n ! R
m is a linear mapping fulfilling the feasibility
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condition dom f \ A�1.domg/ ¤ ;. Let Nx 2 R
n be an optimal solution to .PU/

and assume that the regularity condition

A.ri dom f / \ ri domg ¤ ;

is fulfilled. Then v.PU/ D v.DUW/ D v.DUM/ and there exists a Ny� 2 R
m for

which . Nx; Ny�/ is an optimal solution to .DUM/ and . Nx; 0; Ny�/ is one to .DUW /.

Corollary 5.5. Assume that f W R
n ! R and g W R

m ! R are proper and
nearly convex functions with the relative interiors of their epigraphs nonempty, and
A W R

n ! R
m is a linear mapping fulfilling the feasibility condition dom f \

A�1.domg/ ¤ ;. Let Nx 2 R
n be an optimal solution to .PU/ and assume that the

regularity condition

A.ri dom f / \ ri domg ¤ ;

is fulfilled. Then v.PU/ D v.DUW/ D v.DUM/ and there exists a Ny� 2 R
m for

which . Nx; Ny�/ is an optimal solution to .DUM/ and . Nx; 0; Ny�/ is one to .DUW /.

5.3 General Wolfe and Mond-Weir Vector Duality
of Classical Type

As mentioned in Sect. 5.1, we present two ways of assigning vector dual problems of
Wolfe and Mond-Weir type to vector optimization problems. In this section we deal
with the so-called classical approach, where the objective vector function of the dual
vector optimization problems contains its counterpart from the primal vector opti-
mization problem. We begin our investigations with a general vector optimization
problem, to which vector duals of both Wolfe and Mond-Weir types are assigned.
Then we particularize the primal problem to be constrained and unconstrained,
respectively, and the corresponding vector dual problems are derived, following the
scalar case.

5.3.1 General Vector Optimization Problems

LetX , Y and V be Hausdorff locally convex vector spaces, with V partially ordered
by the nontrivial pointed convex cone K � V . Let F W X ! V � be a proper vector
function and consider the general vector-minimization problem

.PVG/ Min
x2X F.x/.
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As solution concepts for .PVG/ we consider the efficient solutions (cf. Defini-
tion 3.13) and the properly efficient solutions in the sense of linear scalarization
(cf. Sect. 4.3), respectively. Recall that an element Nx 2 X is said to be a properly
efficient solution to the vector optimization problem .PVG/ in the sense of linear
scalarization if there exists a v� 2 K�0 such that .v�F /. Nx/ � .v�F /.x/ for all
x 2 X . The set of all properly efficient solutions to .PVG/ in the sense of linear
scalarization is denoted by PE LS.PVG/.

Remark 5.18. Since within this chapter the properly efficient solutions in the sense
of linear scalarization are the only type of properly efficient solutions assigned to
.PVG/ we will call them here simply properly efficient. Every properly efficient
solution to .PVG/ belongs to domF and it is also an efficient solution to the same
vector optimization problem.

Consider now the proper vector perturbation function ˚ W X � Y ! V � which
fulfills ˚.x; 0/ D F.x/ for all x 2 X . Then 0 2 PrY .dom˚/. The primal vector
optimization problem introduced above can be reformulated as

.PVG/ Min
x2X ˚.x; 0/.

Inspired by the way conjugate dual problems are attached to a given primal
problem via perturbations in the scalar case and by the investigations from Sect. 5.2,
where we embedded the classical Wolfe and Mond-Weir duality concepts into
classes of scalar dual problems obtained via perturbation theory, and incorporating
also ideas from different papers on Wolfe and Mond-Weir vector duality like
[66, 82, 83, 205–207, 209, 211, 212], we attach to .PVG/ the following vector dual
problems with respect to properly efficient solutions

.DVGW / Max
.v�;y�;u;y;r/2BG

W

hGW .v
�; y�; u; y; r/,

where

BG
W D

n
.v�; y�; u; y; r/ 2 K�0�Y � �X�Y �.K nf0g/ W .0; y�/ 2 @.v�˚/.u; y/

o

and

hGW .v
�; y�; u; y; r/ D ˚.u; y/ � hy�; yi

hv�; ri r;

further referred to as the Wolfe type vector dual to .PVG/, and, respectively, the
Mond-Weir type vector dual to it

.DVGM/ Max
.v�;y�;u/2BG

M

hGM .v
�; y�; u/,
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where

BG
M D

n
.v�; y�; u/ 2 K�0 � Y � �X W .0; y�/ 2 @.v�˚/.u; 0/

o

and

hGM .v
�; y�; u/ D ˚.u; 0/:

Remark 5.19. If .v�; y�; u; y; r/ 2 BG
W , one can immediately notice that

hGW .v
�; y�; u; y; r/ D hGW .v

�; y�; u; y; ˛r/ for all ˛ > 0 and .v�; y�; u; y; s/ 2 BG
W

for all s 2 K n f0g.

Remark 5.20. Fixing r 2 K nf0g, we can construct, starting from .DVGW /, another
dual problem to .PVG/, namely

.DVGW r / Max
.v�;y�;u;y/2BG

W r

hGW r .v�; y�; u; y/,

where

BG
W r D

n
.v�; y�; u; y/ 2 K�0�Y � �X �Y W .0; y�/ 2 @.v�˚/.u; y/; hv�; ri D 1

o

and

hGW r .v�; y�; u; y/ D ˚.u; y/ � hy�; yir:

In this way one introduces a whole family of vector duals to .PVG/. Moreover, one
can consider other such families of vector dual problems to .PVG/ by taking in
.DVGW / hv�; ri equal to a given positive constant.

For these vector-maximization problems we consider efficient solutions, defined
below for .DVGW / and analogously for the others.

Definition 5.1. An element .Nv�; Ny�; Nu; Ny; Nr/ 2 BG
W is said to be an efficient solution

to the vector optimization problem .DVGW / if .Nv�; Ny�; Nu; Ny; Nr/ 2 dom hGW and
for all .v�; y�; u; y; r/ 2 BG

W from hGW .Nv�; Ny�; Nu; Ny; Nr/ 5K hGW .v
�; y�; u; y; r/

follows hGW .Nv�; Ny�; Nu; Ny; Nr/ D hGW .v
�; y�; u; y; r/. The set of all efficient solutions

to .DVGW / is called the efficiency set of .DVGW /, being denoted by E .DVGW /.

From the way the vector duals are defined above one can obtain the following
results involving the images of their feasible sets via their objective functions.

Proposition 5.4. It holds

hGM .B
G
M / �

[

r2Knf0g
hGW r .BG

W r / D hGW .B
G
W /:
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Proof. Take .v�; y�; u/ 2 BG
M . Then v� 2 K�0 and there exists an r 2 K n f0g

such that hv�; ri D 1. Thus .v�; y�; u; 0/ 2 BG
W r and hGW r .v�; y�; u; 0/ D

hGM .v
�; y�; u/ D ˚.u; 0/ D F.u/.

Let now r 2 K n f0g and .v�; y�; u; y/ 2 BG
W r . It is obvious that .v�; y�; u; y; r/

2 BG
W and hGW .v

�; y�; u; y; r/ D hGW r .v�; y�; u; y/ D ˚.u; y/ � hy�; yir .
Finally, if .v�; y�; u; y; r/ 2 BG

W , then taking s D .1=hv�; ri/r 2 K n f0g,
it follows hv�; si D 1 and, consequently, .v�; y�; u; y/ 2 BG

W s . Moreover,
hGW .v

�; y�; u; y; r/ D hGW s .v�; y�; u; y/ D ˚.u; y/ � hy�; yis. ut
Remark 5.21. Situations where the inclusion in Proposition 5.4 is strictly fulfilled
will be presented later, in Examples 5.14 and 5.15.

Remark 5.22. It is a simple verification to show that if .v�; y�; u; y; r/ 2 BG
W and

s 2 K n f0g such that hy�; yi ¤ 0 and hGW .v
�; y�; u; y; r/ � hGW .v

�; y�; u; y; s/ 2
K, then r D s (see also Remark 5.19). Moreover, if .v�; y�; u/ 2 BG

M , then
whenever ˛ > 0 one has .˛v�; ˛y�; u/ 2 BG

M , while .v�; y�; u; y; r/ 2 BG
W

yields .˛v�; ˛y�; u; y; r/ 2 BG
W for all ˛ > 0. Similarly, for r 2 K n f0g and

.v�; y�; u; y/ 2 BG
W r one has .˛v�; ˛y�; u; y/ 2 BG

W r for all ˛ > 0.

Remark 5.23. If .Nv�; Ny�; Nu; Ny; Nr/ 2 E .DVGW / and h Ny�; Nyi D 0, then
.Nv�; Ny�; Nu; Ny; Ns/ 2 E .DVGW / and .Nv�; Ny�; Nu; Ny/ 2 E .DVGW Ns / for all Ns 2 K n f0g.
However, it is still an open problem whether the latter assertions remain valid after
removing the hypothesis h Ny�; Nyi D 0.

Let us prove now that for the just introduced vector dual problems there is weak
duality.

Theorem 5.12. There are no x 2 X and .v�; y�; u; y; r/ 2 BG
W such that F.x/ �K

hGW .v
�; y�; u; y; r/.

Proof. Assume to the contrary that there exist x 2 X and .v�; y�; u; y; r/ 2 BG
W

fulfilling F.x/ �K h
G
W .v

�; y�; u; y; r/. Then x 2 domF and it follows


v�; ˚.u; y/ � hy�; yi

hv�; ri r � ˚.x; 0/
�
> 0:

On the other hand, from the feasibility of .v�; y�; u; y; r/ to .DVGW /, it follows
.v�˚/.x; 0/ � .v�˚/.u; y/ � hy�; 0 � yi, from which


v�; ˚.u; y/ � hy�; yi

hv�; ri r � ˚.x; 0/
�

� hy�; yi �

v�;

hy�; yi
hv�; ri r

�
D 0:

This leads to a contradiction to the strict inequality proven above. ut
By making use of Theorem 5.12 and Proposition 5.4, one can prove also the

following two weak duality statements involving the other vector duals to .PVG/
introduced above.

Theorem 5.13. There are no x 2 X and .v�; y�; u/ 2 BG
M such that F.x/ �K

hGM .v
�; y�; u/.
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Theorem 5.14. Let r 2 Knf0g. Then there are no x 2 X and .v�; y�; u; y/ 2 BG
W r

such that F.x/ �K h
G
W r .v�; y�; u; y/.

One of the directions in which both Wolfe and Mond-Weir duality concepts
were developed is towards introducing dual problems for which strong duality holds
without asking the fulfillment of a regularity condition (see [84, 208, 210]). Like in
the scalar case, .DVGM/ can be considered as such a vector dual problem to .PVG/.

Proposition 5.5. One always has BG
M D E .DVGM/ and hGM .B

G
M / D Max.hGM

.BG
M /; K/ � PMinLS.F.domF /;K/.

Proof. If BG
M D ; there is nothing to prove. Assume thus that there is some

.v�; y�; u/ 2 BG
M . Then .v�˚/�.0; y�/C .v�˚/.u; 0/ D 0, which implies

.v�˚/.u; 0/ D inf
x2X;y2Y

�
.v�˚/.x; y/ � hy�; yi� � inf

x2X.v
�˚/.x; 0/:

Hence u 2 PE LS .PVG/ and ˚.u; 0/ D F.u/ is a value taken by the objective
functions of both .PVG/ and .DVGM/. Assuming that .v�; y�; u/ … E .DVGM/, a
contradiction is immediately obtained by employing Theorem 5.13. Consequently,
BG
M D E .DVGM/ and using that u 2 PE LS.PVG/ we obtain also that hGM .B

G
M / D

Max.hGM .B
G
M /;K/ � PMinLS.F.domF /;K/. ut

Two immediate consequences of this assertion follow.

Corollary 5.6. If .Nv�; Ny�; Nu; 0; Nr/ 2 BG
W , then .Nv�; Ny�; Nu/ 2 E .DVGM/,

.Nv�; Ny�; Nu; 0; Nr/ 2 E .DVGW /, .Nv�; Ny�; Nu; 0/ 2 E .DVGW Nr /, Nu 2 PE LS.PVG/
and F.Nu/ D hGM .Nv�; Ny�; Nu/ D hGW .Nv�; Ny�; Nu; 0; Nr/ D hG

W Nr .Nv�; Ny�; Nu; 0/.
Proof. If .Nv�; Ny�; Nu; 0; Nr/ 2 BG

W , then it can be immediately verified that F.Nu/ D
hGW .Nv�; Ny�; Nu; 0; Nr/ and .Nv�; Ny�; Nu/ 2 BG

M . By Proposition 5.5 it follows that
.Nv�; Ny�; Nu/ 2 E .DVGM/ and, consequently, Nu 2 PE LS.PVG/. Knowing these, the
efficiency of .Nv�; Ny�; Nu; 0; Nr/ to .DVGW / follows by employing Theorem 5.12, while
.Nv�; Ny�; Nu; 0/ 2 E .DVGW Nr / follows via Theorem 5.14. ut
Corollary 5.7. Let Nr 2 K n f0g. If .Nv�; Ny�; Nu; 0/ 2 BG

W Nr , then .Nv�; Ny�; Nu/ 2
E .DVGM/, .Nv�; Ny�; Nu; 0; Nr/ 2 E .DVGW /, .Nv�; Ny�; Nu; 0/ 2 E .DVGW Nr /, Nu 2 PE LS

.PVG/ and F.Nu/ D hGM .Nv�; Ny�; Nu/ D hGW .Nv�; Ny�; Nu; 0; Nr/ D hG
W Nr .Nv�; Ny�; Nu; 0/.

Next we give some results involving the maximal sets of the vector duals
introduced above. Combining Propositions 5.4 and 5.5, we obtain the following
statement.

Proposition 5.6. It holds

hGM .B
G
M / D Max.hGM .B

G
M /;K/ � Max.hGW .B

G
W /;K/

�
[

r2Knf0g
Max.hGW r .BG

W r /;K/:
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Proof. From Propositions 5.4 and 5.5 it is known that hGM .B
G
M / D Max.hGM .B

G
M /;

K/ � PMinLS.F.domF /;K/\ hGW .BG
W /. On the other hand, Theorem 5.12 yields

that PMinLS.F.domF /;K/\hGW .BG
W / � Max.hGW .B

G
W /;K/ and the first inclusion

is proven.
To demonstrate the second one, let Nd 2 .hGW .B

G
W /;K/. This means that there

exists .Nv�; Ny�; Nu; Ny; Nr/ 2 E .DVGW / such that hGW .Nv�; Ny�; Nu; Ny; Nr/ D Nd . For Ns D
.1=hNv�; Nri/ Nr , we obtain that .Nv�; Ny�; Nu; Ny/ 2 BG

W Ns and hG
W Ns .Nv�; Ny�; Nu; Ny/ D Nd .

Assuming that .Nv�; Ny�; Nu; Ny/ were not efficient to .DVGW Ns / would bring, via
Proposition 5.4, a contradiction to the efficiency of .Nv�; Ny�; Nu; Ny; Nr/ to .DVGW /. ut

Now we turn our attention to strong duality for the vector duals introduced above,
for whose attainment one needs, besides convexity hypotheses, the fulfillment of
certain regularity conditions. Inspired by the ones considered in Sect. 2.2.1 in the
scalar case and following [48], we consider four types of regularity conditions,
namely a classical one involving continuity,

.RCVG
1 / 9x0 2 X such that .x0; 0/ 2 dom˚ and ˚.x0; �/ is continuous at 0;

a weak interiority type one,

.RCVG
2 /
X and Y are Fréchet spaces, ˚ is C -lower semicontinuous
and 0 2 sqri PrY .dom˚/;

a generalized interiority type one which works in finitely dimensional spaces,

.RCVG
3 / dim lin.PrY .dom˚// < C1 and 0 2 ri PrY .dom˚/;

and finally a closedness type one,

.RCVG
4 /
˚ is C -lower semicontinuous and for any v� 2 K�0 PrX��R.epi.v�˚/�/
is closed in the topology !.X�; X/ � R:

Theorem 5.15. Let Nr 2 K n f0g. Assume that ˚ is a K-convex function and
one of the regularity conditions .RCV G

i /, i 2 f1; 2; 3; 4g, is fulfilled. If Nx 2
PE LS.PVG/, then there exist Nv� 2 K�0 and Ny� 2 Y � such that .Nv�; Ny�; Nx; 0; Nr/ 2
E .DVGW /, .Nv�; Ny�; Nx; 0/ 2 E .DVGW Nr /, .Nv�; Ny�; Nx/ 2 E .DVGM/ and F. Nx/ D
hGW .Nv�; Ny�; Nx; 0; Nr/ D hG

W Nr .Nv�; Ny�; Nx; 0/ D hGM .Nv�; Ny�; Nx/.
Proof. Since Nx 2 PE LS.PVG/, there exists a Nv� 2 K�0 such that hNv�; F . Nx/i �
hNv�; F .x/i for all x 2 X . As Nr 2 K n f0g assuming that hNv�; Nri D 1 does not imply
losing the generality. From [48] (see also Corollary 2.6 and Remark 2.5) it is known
that each of the regularity conditions .RCV G

i /, i 2 f1; 2; 3; 4g, ensures the stability
of the scalar optimization problem

inf
x2X.Nv

�F /.x/;
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with respect to the perturbation function ˚ . Then, via Theorem 5.2 (see also
Remark 5.4), there is strong duality for it and its Wolfe type dual

sup
u2X;y2Y;y�2Y �;
.0;y�/2@.Nv�˚/.u;y/

˚ � .Nv�˚/�.0; y�/
�
;

i.e. there exists a Ny� 2 Y � such that

�.Nv�˚/�.0; Ny�/ D sup
y�2Y �

f�.Nv�˚/�.0; y�/g D inf
x2XhNv�; F .x/i D hNv�; F . Nx/i;

and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/. Then .Nv�; Ny�; Nx/ 2 BG
M and, moreover, .Nv�; Ny�; Nx; 0/ 2

BG
W Nr . The conclusion follows by using Proposition 5.5 and Corollary 5.7. ut

Remark 5.24. In case V D R and K D RC, identifying V � with R [ fC1g and
1RC

with C1, and taking the function F W X ! R proper we rediscover the
Wolfe and Mond-Weir type scalar duality schemes from the scalar case presented
in Sect. 5.2.1. More precisely the problem .PVG/ becomes then the general scalar
optimization problem .PG/, while the duals .DVGW / and .DVGW r /, r > 0, turn
out to coincide with .DGW /, the scalar Wolfe type dual to .PG/, and .DVGM/ is
nothing but the scalar Mond-Weir type dual .DGM/.

Remark 5.25. Other regularity conditions can be used in order to guarantee strong
duality for .DVGM/ and .DVGW /, too, as long as they guarantee the stability of
the scalar optimization problem infx2X.v�F /.x/ with respect to the perturbation
function ˚ for all v� 2 K�0.

Remark 5.26. Besides the properly efficient solutions in the sense of linear scalar-
ization, one can use for .PVG/ the solution concepts considered in Sect. 4.2, too.
In this case one can assign to .PVG/ vector duals of Wolfe and Mond-Weir types
with respect to these types of solutions, defined by making use of the corresponding
optimality conditions.

Remark 5.27. Another interesting vector duality approach for .PVG/ can be
developed starting from the observation that for a fixed v� 2 K�0 one can show that
an element Nx 2 X is efficient to .PVG/ if and only if it is an optimal solution of the
scalar optimization problem

.EP/ inf
F. Nx/�F.x/2K;

x2X
.v�F /.x/.

Having different scalar duals assigned to this scalar optimization problem, one can
use them to formulate vector optimization dual problems with respect to efficient
solutions to .PVG/. More precisely, the strong duality statements regarding .PVG/
and these new vector duals would ask the existence of an efficient solution to .PVG/,
besides convexity hypotheses and regularity conditions, in order to obtain efficient
solutions to the vector duals.
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Remark 5.28. It can also be interesting to study how can one give weak and
strong duality statements for the primal-dual pairs of vector optimization problems
considered in this section when the functions involved are differentiable on an
open set S and the subdifferentials are replaced by gradients in the duals by using
generalized convexity notions like quasiconvexity, pseudoconvexity, even invexity.

In the next subsections we consider like in Chap. 3 as special instances of .PVG/
the two main classes of vector optimization problems, namely we work with a
constrained and an unconstrained vector optimization problem, respectively. To
these problems we attach vector duals that are special cases of .DVGM/, .DVGW /

and .DVGW r /, r > 0, respectively, obtained for different choices of the vector
perturbation function ˚ .

5.3.2 Wolfe and Mond-Weir Vector Duals of Classical
Type for Constrained Vector Optimization Problems

Besides the framework defined in the beginning of the section, consider that the
space Y is partially ordered by the nonempty convex coneC � Y . Let the nonempty
set S � X and the proper vector functions f W X ! V � and h W X ! Y �
fulfilling the feasibility condition dom f \ S \ h�1.C / ¤ ;. Let the primal vector
optimization problem with geometric and cone constraints

.PVC/ Min
x2A

f .x/,

where

A D ˚
x 2 S W h.x/ 2 �C �:

Since .PVC/ is a special case of .PVG/ obtained by taking

F W X ! V �; F .x/ D
�
f .x/; if x 2 A ;

1K; otherwise;

we use the approach developed in Sect. 5.3.1 in order to deal with it via duality.
More precisely, for convenient choices of the vector perturbation function ˚ we
obtain vector duals to .PVC/ which are special cases of .DVGM/ and .DVGW /,
respectively. Following the investigations from Sect. 5.3.1, we work with properly
efficient solutions to .PVC/, while for the vector dual we assign to it in this
subsection we consider efficient solutions.

Consider first the Lagrange type vector perturbation function used in Sect. 4.4.1

˚L
v W X � Y ! V �; ˚L

v .x; z/ D
�
f .x/; if x 2 S; h.x/ 2 z � C;
1K; otherwise;
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which is proper due to the fulfilment of the mentioned feasibility condition. For
u 2 X , z 2 Y , v� 2 K�0 and z� 2 Y � we have .0; z�/ 2 @.v�˚L

v /.u; z/ if and
only if .v�˚L

v /
�.0; z�/C .v�˚L

v /.u; z/ D hz�; zi, i.e. ..v�f / � .z�h/C ıS /
�.0/C

ıC�.�z�/ C f .u/ C ıS .u/ C ı�C .h.u/ � z/ D hz�; zi. Using that ı��C D ıC� ,
this can be rewritten as

�
..v�f / � .z�h/C ıS /

�.0/C ..v�f / � .z�h/C ıS /.u/
�C�

ı��C .�z�/ C ı�C .h.u/ � z/ � h�z�; h.u/ � zi� D 0. Having the Young-Fenchel
inequality and the characterization of the subdifferential by its equality case, it
follows that .0; z�/ 2 @.v�˚L

v /.u; z/ if and only if 0 2 @..v�f / � .z�h/ C ıS /.u/,
z� 2 �C � and ı�C .h.u/� z/� h�z�; h.u/� zi D 0. Thus, from .DVGW / we obtain
the following vector dual to .PVC/

.DVCL
W / Max

.v�;z�;u;z;r/2BL
QW

hLQW .v
�; z�; u; z; r/,

where

BL
QW D

n
.v�; z�; u; z; r/ 2 K�0 � C � � S � Y � .K n f0g/ W h.u/ � z 2 �C;

.z�h/.u/ D hz�; zi; 0 2 @..v�f /C .z�h/C ıS /.u/
o

and

hLQW .v
�; z�; u; z; r/ D f .u/C hz�; zi

hv�; rir;

which can be equivalently rewritten as

.DVCL
W / Max

.v�;z�;u;r/2BL
W

hLW .v
�; z�; u; r/,

where

BL
W D

n
.v�; z�; u; r/ 2 K�0�C � �S � .K nf0g/ W 0 2 @..v�f /C .z�h/C ıS /.u/

o

and

hLW .v
�; z�; u; r/ D f .u/C hz�; h.u/i

hv�; ri r;

further referred to as the vector Wolfe dual of Lagrange type, while the vector dual
to .PVC/ that results from .DVGM/ is

.DVCL
M / Max

.v�;z�;u/2BL
M

hLM .v
�; z�; u/,
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where

BL
M D

n
.v�; z�; u/ 2 K�0 � C � � S W .z�h/.u/ � 0; h.u/ 2 �C;

0 2 @..v�f /C .z�h/C ıS /.u/
o

and

hLM .v
�; z�; u; r/ D f .u/:

Note that in the constraints of this dual one can replace .z�h/.u/ � 0 by
.z�h/.u/ D 0 without altering anything since h.u/ 2 �C and z� 2 C �. Removing
like in the scalar case from BL

M the constraint h.u/ 2 �C , we obtain another vector
dual to .PVC/, namely

.DVCL
MW/ Max

.v�;z�;u/2BL
MW

hLMW.v
�; z�; u/,

where

BL
MW D

n
.v�; z�; u/ 2 K�0�C ��S W .z�h/.u/ � 0; 0 2 @..v�f /C.z�h/CıS /.u/

o

and

hLMW.v
�; z�; u; r/ D f .u/;

further called the vector Mond-Weir dual of Lagrange type to .PVC/. We can
consider also the particularizations of the family of vector duals introduced in
Remark 5.20. For each r 2 K n f0g we have the vector dual

.DVCL
W r / Max

.v�;z�;u/2BL
W r

hLW r .v�; z�; u/,

where

BL
W r D

n
.v�; z�; u/ 2 K�0 �C � �X W hv�; ri D 1; 0 2 @..v�f /C .z�h/C ıS /.u/

o

and

hLW r .v�; z�; u/ D f .u/C hz�; h.u/ir:

Remark 5.29. Due to the way the vector duals we assigned above to .PVC/ are
constructed it is clear that hLM .B

L
M / � hLMW.B

L
MW/ and, via Proposition 5.4, it

holds hLM .B
L
M / � [r2Knf0ghLW r .BL

W r / D hLW .B
L
W /. The following examples show

that there are situations when these inclusion are strictly fulfilled. Moreover, in both
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of them we see that hLW .B
L
W / is strictly larger than hLMW.B

L
MW/, but it is not known

whether the latter is in general a subset of the former image set.

Example 5.14. Let X D R, Y D R, C D RC, Y � D R [ fC1g, V D R
2,

K D R
2C, S D RC, f W R ! R

2, f .x/ D .x; x/>, and h W R ! R [ fC1g,

h.x/ D
8
<

:

�x; if x > 0;
2; if x D 0;

C1; if x < 0:

For v� D .v�
1 ; v

�
2 /

> we have 0 2 @..v�f / C .0h/ C ıS /.0/ D .�1; v�
1 C v�

2 � and
.0h/.0/ D 0, thus .v�; 0; 0/ 2 BL

MW , therefore .0; 0/> 2 hLMW.B
L
MW/.

If u � 0 and z� > 0 it holds .z�h/.u/ < 0, while when u � 0 and z� D 0 one
gets 0 … @..v�f / C .0h/ C ıS /.u/ D fv�

1 C v�
2 g for all v� D .v�

1 ; v
�
2 /

> 2 intR2C.
Consequently, hLMW.B

L
MW/ D f.0; 0/>g.

However, when u > 0 and z� > 0 it follows that @..v�f / C .z�h/ C ıS /.u/ D
fv�
1 C v�

2 � z�g for all v� D .v�
1 ; v

�
2 /

> 2 intR2C, so @..v�f /C .z�h/C ıS /.u/ D f0g
if v�

1 C v�
2 D z�. Then, for v� D .v�

1 ; v
�
2 /

> 2 intR2C, u > 0 and r D .r1; r2/
> 2

R
2C n f0g, one has .v�; v�

1 C v�
2 ; u; r/ 2 BL

W and hLW .v
�; v�

1 C v�
2 ; u; r/ D .u; u/> ��

.v�
1 C v�

2 /u=.v
�
1 r1 C v�

2 r2/
�
.r1; r2/

> 2 hLW .B
L
W /. Taking v� D .1=2; 1=2/> and

r D .0; 1/>, it follows that .u;�u/> 2 hLW .BL
W / for all u > 0.

On the other hand it can be shown like in Example 5.1 that BL
M D ;.

Therefore, hLM .B
L
M /   hLMW.B

L
MW/   hLW .B

L
W / in this case. This shows that in

general one has hGM .B
G
M /   [r2Knf0ghGW r .BG

W r / D hGW .B
G
W /.

Example 5.15. Let X D R, Y D R
2, C D R

2C, V D R
2, K D R

2C, V � D .R2/� D
R
2 [ f1

R
2
C

g, S D RC, f W R ! .R2/�,

f .x/ D

8
<̂

:̂



1

1

�
x if x > 0;

1
R
2
C

; otherwise;

and h W R ! R
2, h.x/ D .x � 1;�x/>.

Like in Example 5.2, it can be shown that hLM .B
L
M / D hLMW.B

L
MW/ D ;,

while for r D .1; 1/>, one has
�
.1=2; 1=2/>; .2; 3/>; 1

� 2 BL
W r , consequently,

.�2;�2/> 2 hLW r .BL
W r / � hLW .B

L
W /.

Therefore, hLM .B
L
M / D hLMW.B

L
MW/   hLW .B

L
W / in this case.

Remark 5.30. Assume that S is a convex set, f is a K-convex vector function and
h is a C -convex vector function. Then it is a simple verification to see that the vector
perturbation function ˚L

v is K-convex. When one of the following conditions

(i) f and h are continuous at a point in dom f \ dom h \ S ;
(ii) dom f \ intS \ dom h ¤ ; and f or h is continuous at a point in dom f \

dom h;
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(iii) X is a Fréchet space, S is closed, f is K-lower semicontinuous, h is C -lower
semicontinuous and 0 2 sqri.dom f � S � dom h ��X3/;

(iv) dim lin.dom f �S�dom h��X3/ < C1 and ri dom f \riS\ri dom h ¤ ;;

is satisfied, then (see [21, 48, 221]) for all v� 2 K�0 and all z� 2 C �, it holds

@..v�f /C .z�h/C ıS /.x/ D @.v�f /.x/C @.z�h/.x/CNS.x/ 8x 2 X:

Consequently, when one of these situations occurs, the constraint involving the
subdifferential in .DVCL

W /, .DVCL
W r /, for any r 2 K n f0g, .DVCL

M / and,
respectively, .DVCL

MW/ can be correspondingly modified. Moreover, in order to split
@..v�f / C .z�h/ C ıS /.x/ into a sum of only two subdifferentials, one can apply
[48, Theorem 3.5.6].

Remark 5.31. If X D R
n, Y D R

m, C D R
mC, V D R

k , K D R
kC, S is convex,

f D .f1; : : : ; fk/
> W R

n ! R
k and h D .h1; : : : ; hm/

> W R
n ! R

m, and the
functions fi , i D 1; : : : ; k, and hj , j D 1; : : : ; m, are convex, then .DVCL

W e /, turns
out to be the nondifferentiable vector Wolfe dual problem mentioned in the literature
(see [84,134,210]), while .DVCL

MW/ is the nondifferentiable vector Mond-Weir dual
problem to .PVC/.

Remark 5.32. If, in addition to the hypotheses of Remark 5.31, the set S is open
and the functions fi , i D 1; : : : ; k, and hj , j D 1; : : : ; m, are moreover Gâteaux
differentiable on it, the subdifferentials in the constraints can be replaced by the
corresponding gradients, .DVCL

W r / turns out to be, after fixing r , the classical vector
Wolfe dual problem from the literature (see [212] and, for the case r D e, [83,
205, 206, 209]), while .DVCL

MW/ is the classical vector Mond-Weir dual problem to
.PVC/ considered in papers like [82, 83, 205, 207–209]).

Like in the previous section, the results involving .PVG/ and its vector duals
can be particularized for the problems introduced above, however we give here only
the weak and strong duality statements involving .PVC/ and its vector duals of
Lagrange type.

Theorem 5.16. There are no x 2 A and .v�; z�; u; r/ 2 BL
W such that f .x/ �K

hLW .v
�; z�; u; r/.

Theorem 5.17. There are no x 2 A and .v�; z�; u/ 2 BL
M such that f .x/ �K

hLM .v
�; z�; u/.

Theorem 5.18. Let r 2 K n f0g. Then there are no x 2 A and .v�; z�; u/ 2 BL
W r

such that f .x/ �K h
L
W r .v�; z�; u/.

Analogously, one can prove also the following weak duality statement involving
.PVC/ and .DVCL

MW/.

Theorem 5.19. There are no x 2 A and .v�; z�; u/ 2 BL
MW such that f .x/ �K

hLMW.v
�; z�; u/.



5.3 General Wolfe and Mond-Weir Vector Duality of Classical Type 147

For strong duality, which follows directly from Theorem 5.15, besides convexity
assumptions which guarantee the K-convexity of the vector perturbation function
˚L

v we use regularity conditions, too, obtained by particularizing .RCV G
i /, i 2

f1; 2; 3; 4g, namely (cf. [21, 48])

.RCVL
1 / 9x0 2 dom f \ S such that h.x0/ 2 � intC;

which is the classical Slater constraint qualification extended to the vector case,

.RCVL
2 /
X and Y are Fréchet spaces, S is closed, f is K-lower semicontinuous;
h is C -epi-closed and 0 2 sqri

�
h.dom f \ S \ dom h/C C

�
;

.RCVL
3 /

dim lin .h.dom f \ S \ dom h/C C/ < C1 and
0 2 ri .h.dom f \ S \ dom h/C C/ ;

and, respectively,

.RCVL
4 /

S is closed, f is K-lower semicontinuous, h is C -epi-closed and
for any v� 2 K�0 S

z�2C�

epi..v�f /C .z�h/C ıS /
� is closed

in the topology !.X�; X/ � R:

The strong duality assertions concerning .DVCL
W / and .DVCL

M /, respectively,
follow via Theorem 5.15, while their counterparts for .DVCL

MW/ and .DVCL
W Nr /,

where Nr 2 K n f0g, can be proven analogously.

Theorem 5.20. Let Nr 2 K n f0g. Assume that S is a convex set, f is a K-convex
vector function, h is a C -convex vector function and one of the regularity conditions
.RCV L

i /, i 2 f1; 2; 3; 4g, is fulfilled. If Nx 2 PE LS.PVC/, then there exist Nv� 2 K�0
and Nz� 2 C � such that .Nv�; Nz�; Nx; Nr/ 2 E .DVCL

W /, .Nv�; Nz�; Nx/ 2 E .DVCL
W Nr / \

E .DVCL
M / \ E .DVCL

MW/ and f . Nx/ D hLW .Nv�; Nz�; Nx; Nr/ D hL
W Nr .Nv�; Nz�; Nx/ D

hLM .Nv�; Nz�; Nx/ D hLMW.Nv�; Nz�; Nx/.
Like in the scalar case and Sect. 4.4.1, one can consider a Fenchel-Lagrange type

vector perturbation function in order to assign vector dual problems to .PVC/, too,
namely ˚FL

v W X �X � Y ! V �,

˚FL
v .x; y; z/ D

�
f .x C y/; if x 2 S; h.x/ 2 z � C;

1K; otherwise:

For v� 2 K�0, z� 2 Y �, y� 2 X�, z 2 Y and y 2 X , one has .0; y�; z�/ 2
@˚FL

v .u; y; z/ if and only if u 2 S , h.u/ 2 z � C and .v�f /�.y�/ C .�.z�h/ C
ıS /

�.�y�/Cı�C�.z�/Cf .uCy/Cı�C .h.u/�z/CıS .u/ D hz�; ziChy�; yi, which
is nothing but u 2 S , h.u/ 2 z�C and

�
.v�f /�.y�/C.v�f /.uCy/�hy�; uCyi/C�

.�.z�h/CıS /
�.�y�/C .�.z�h/CıS /.u/ �h�y�; ui�C �

ı��C .�z�/Cı�C .h.u/�
z/ � h�z�; h.u/ � zi� D 0. Consequently, .0; y�; z�/ 2 @˚FL

v .u; y; z/ if and only if
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u 2 S , z� 2 �C �, h.u/ � z 2 �C , y� 2 @f .u C y/ \ .�@.�.z�h/C ıS /.u// and
.z�h/.u/ D hz�; zi. Therefore, the vector duals to .PVC/ obtained, by making use of
the vector perturbation function ˚FL

v , from the vector duals introduced in Sect. 5.3.1
are

.DVCFL
W / Max

.v�;y�;z�;u;y;z;r/2BFL
QW

hFL
QW .v

�; y�; z�; u; y; z; r/,

where

BFL
QW D

n
.v�; y�; z�; u; y; z; r/ 2 K�0 �X� � C � � S �X � Y � .K n f0g/ W

h.u/ � z 2 �C; .z�h/.u/ D hz�; zi;
y� 2 @.v�f /.u C y/ \ .�@..z�h/C ıS //.u/

o

and

hFL
QW .v

�; y�; z�; u; y; z; r/ D f .u C y/ � hz�; zi C hy�; yi
hv�; ri r;

which can be equivalently rewritten as

.DVCFL
W / Max

.v�;y�;z�;u;y;r/2BFL
W

hFL
W .v

�; y�; z�; u; y; r/,

where

BFL
W D

n
.v�; y�; z�; u; y; r/ 2 K�0 �X� � C � � S �X � .K n f0g/ W

y� 2 @.v�f /.u C y/ \ .�@..z�h/C ıS //.u/
o

and

hFL
W .v

�; y�; z�; u; y; r/ D f .u C y/C .z�h/.u/ � hy�; yi
hv�; ri r;

further called the vector Wolfe dual of Fenchel-Lagrange type,

.DVCFL
M / Max

.v�;z�;u/2BFL
M

hFL
M .v

�; z�; u/,

where

BFL
M D

n
.v�; z�; u/ 2 K�0 � C � � S W .z�h/.u/ � 0; h.u/ 2 �C;

0 2 @.v�f /.u/C @..z�h/C ıS /.u/
o
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and

hFL
M .v

�; z�; u/ D f .u/;

and, for each r 2 K n f0g,

.DVCFL
W r / Max

.v�;y�;z�;u;y/2BFL
W r

hFL
W r .v�; y�; z�; u; y/,

where

BFL
W r D

n
.v�; y�; z�; u; y/ 2 K�0 �X� � C � � S �X W hv�; ri D 1;

y� 2 @.v�f /.u C y/ \ .�@..z�h/C ıS //.u/
o

and

hFL
W r .v�; y�; z�; u; y/ D f .u C y/C �

.z�h/.u/ � hy�; yi�r:

Note that in the constraints of .DVCFL
M / one can replace .z�h/.u/ � 0 with

.z�h/.u/ D 0 without altering anything. Removing the constraint h.u/ 2 �C from
BFL
M , one obtains from .DVCFL

M / the vector Mond-Weir dual of Fenchel-Lagrange
type to .PVC/

.DVCFL
MW/ Max

.v�;z�;u/2BFL
MW

hFL
MW.v

�; z�; u/,

where

BFL
MW D

n
.v�; z�; u/ 2 K�0 � C� � S W .z�h/.u/ � 0; 0 2 @.v�f /.u/C @..z�h/C ıS /.u/

o

and

hFL
MW.v

�; z�; u/ D f .u/:

Remark 5.33. Due to the way the vector duals we assigned to .DVC/ are con-
structed it is clear that hFL

M .B
FL
M / � hFL

MW.B
FL
MW/ and, via Proposition 5.4, it

holds hFL
M .B

FL
M / � [r2Knf0ghFL

W r .BFL
W r / D hFL

W .B
FL
W /. These inclusions are strict

in general, for instance in the situations presented in Example 5.14 we have
hFL
M .B

FL
M / D ;, hFL

MW.B
FL
MW/ D f.0; 0/>g and .u;�u/> 2 hFL

W .B
FL
W / for all u � 0,

respectively. Moreover, one can see that in the mentioned situation hFL
W .B

FL
W / is

strictly larger than hFL
MW.B

FL
MW/, but it is not known whether the latter is in general a

subset of the former image set.

Remark 5.34. Results analogous to the one from Remark 5.6 can be given for the
Fenchel-Lagrange type vector duals to .PVC/, too. Assuming that S is a convex
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set and h is a C -convex vector function, the satisfaction of any of the following
conditions (cf. [48, Theorem 3.5.6])

(i) h is continuous at a point in S \ dom h;
(ii) intS \ dom h ¤ ;;

(iii) X is a Fréchet space, S is closed, h is star C -lower semicontinuous and 0 2
sqri.S � dom h/;

(iv) dim lin.S � dom h/ < C1 and riS \ ri dom h ¤ ;;

ensures the fulfillment of the formula

@..z�h/C ıS /.u/ D @.z�h/.u/CNS.u/ 8u 2 X 8z� 2 C �;

in which case the constraint involving @..z�h/C ıS /.u/ in .DVCFL
W /, .DVCFL

W r /, for
r 2 K n f0g, .DVCFL

M / and .DVCFL
MW/ can be correspondingly modified.

The results involving .PVG/ and its vector duals can be particularized for the
Fenchel-Lagrange type vector duals, too, but here we give only the weak and strong
duality statements involving .PVC/ and these vector duals.

Theorem 5.21. There are no x 2 A and .v�; y�; z�; u; y; r/ 2 BFL
W such that

f .x/ �K h
FL
W .v

�; y�; z�; u; y; r/.

Theorem 5.22. There are no x 2 A and .v�; z�; u/ 2 BFL
M such that f .x/ �K

hFL
M .v

�; z�; u/.

Theorem 5.23. Let r 2 K n f0g. Then there are no x 2 A and .v�; y�; z�; u; y/
2 BFL

W r such that f .x/ �K h
FL
W r .v�; y�; z�; u; y/.

Analogously, one can prove also the following weak duality statement involving
.PVC/ and .DVCFL

MW/.

Theorem 5.24. There are no x 2 A and .v�; z�; u/ 2 BFL
MW such that f .x/ �K

hFL
MW.v

�; z�; u/.

For strong duality, which follows directly from Theorem 5.15, besides convexity
assumptions which guarantee the K-convexity of the vector perturbation function
˚FL

v we use regularity conditions, too, obtained by particularizing .RCV G
i /, i 2

f1; 2; 3; 4g, namely (cf. [21, 48])

.RCVFL
1 / 9x0 2 dom f \ S such that f is continuous at x0 and h.x0/ 2 � intC;

.RCVFL
2 /

X and Y are Fréchet spaces, S is closed, f is K-lower
semicontinuous, h is C -epi-closed and
0 2 sqri

�
dom f � C � epi�C .�h/ \ .S � Y /�;

.RCVFL
3 /

dim lin .dom f � C � epi�C .�h/ \ .S �Z// < C1 and
0 2 ri .dom f � C � epi�C .�h/ \ .S �Z// :
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and, respectively,

.RCVFL
4 /

S is closed, f is K-lower semicontinuous, h is C -epi-closed and
for any v� 2 K�0 epi.v�f /� C S

z�2C�

epi..z�h/C ıS /
� is

closed in the topology !.X�; X/ � R:
(5.3.1)

The strong duality assertions concerning .DVCFL
W / and .DVCFL

M /, respectively,
follow via Theorem 5.15, while their counterparts for .DVCFL

MW/ and .DVCFL
W Nr /,

where Nr 2 K n f0g, can be proven analogously.

Theorem 5.25. Let Nr 2 K n f0g. Assume that S is a convex set, f is a K-
convex vector function, h is a C -convex vector function and one of the regularity
conditions .RCV FL

i /, i 2 f1; 2; 3; 4g, is fulfilled. If Nx 2 PE LS.PVC/, then there
exist Nv� 2 K�0, Ny� 2 X� and Nz� 2 C � such that .Nv�; Ny�; Nz�; Nx; 0; Nr/ 2 E .DVCFL

W /,
.Nv�; Ny�; Nz�; Nx; 0/ 2 E .DVCFL

W Nr /, .Nv�; Nz�; Nx/ 2 E .DVCFL
M /\E .DVCFL

MW/ and f . Nx/ D
hFL
W .Nv�; Ny�; Nz�; Nx; 0; Nr/ D hFL

W Nr .Nv�; Ny�; Nz�; Nx; 0/ D hFL
M .Nv�; Nz�; Nx/ D hFL

MW.Nv�; Nz�; Nx/.
Remark 5.35. Like in the general case (see Remark 5.24), if V D R and K D RC,
taking the functions f W X ! R and h W X ! Y � proper we rediscover the
Wolfe and Mond-Weir duality schemes for constrained scalar optimization problems
from Sect. 5.2.2, respectively. More precisely the problem .PVC/ becomes then the
constrained scalar optimization problem .PC/ and the vector duals considered in
this section turn out to be to the corresponding dual problems considered there
to it.

5.3.3 Wolfe and Mond-Weir Vector Duals of Classical Type
for Unconstrained Vector Optimization Problems

Consider again the framework of Sect. 5.3.1. Let f W X ! V � and g W Y ! V �
be given proper vector functions and A W X ! Y a linear continuous mapping such
that the feasibility condition dom f \ A�1.domg/ ¤ ; is fulfilled.

The primal unconstrained vector optimization problem we deal with is

.PVU/ Min
x2X Œf .x/C g.Ax/�.

We work with properly efficient solutions to .PVU/, while for the vector dual we
assign to it in this section we consider efficient solutions. Since .PVU/ is a special
case of .PVG/ obtained by taking F D f C g ı A, we use the approach developed
in Sect. 5.3.1 in order to deal with it via duality. More precisely, for a convenient
choice of the vector perturbation function ˚ we obtain vector duals to .PVU/ which
are special cases of .DVGM/ and .DVGW /.
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In order to attach vector dual problems to .PVU/, consider like in Sect. 4.4.2 the
vector perturbation function

˚U
v W X � Y ! V �; ˚U

v .x; y/ D f .x/C g.Ax C y/:

For v� 2 K�0, u 2 X , y 2 Y and y� 2 Y � one has .0; y�/ 2 @.v�˚U
v /.u; y/ if

and only if .v�˚U
v /

�.0; y�/C .v�˚U
v /.u; y/ D hy�; yi. This is further equivalent to

.v�f /�.�A�y�/ C.v�g/�.y�/C f .u/C g.Au C y/ D hy�; yi. Using the Young-
Fenchel inequality, the last equality yields that .0; y�/ 2 @.v�˚U

v /.u; y/ if and only
if y� 2 @.v�g/.Au C y/ and �A�y� 2 @.v�f /.u/. Now we are ready to formulate
the vector duals to .PVU/ that are special cases of .DVGM/ and .DVGW /, namely

.DVUW / Max
.v�;y�;u;y;r/2BU

W

hUW .v
�; y�; u; y; r/,

where

BU
W D

n
.v�; y�; u; y; r/ 2 K�0 � Y � �X � Y � .K n f0g/ W

y� 2 .A�/�1.�@.v�f /.u// \ @.v�g/.Au C y/
o

and

hUW .v
�; y�; u; y; r/ D f .u/C g.Au C y/ � hy�; yi

hv�; ri r;

and, respectively,

.DVUM/ Max
.v�;u/2BU

M

hUM .v
�; u/,

where

BU
M D

n
.v�; u/ 2 K�0 �X W .A�/�1.�@.v�f /.u// \ @.v�g/.Au/ ¤ ;

o

and

hUW .v
�; u/ D f .u/C g.Au/:

One can also consider the particularizations of the family of vector duals
introduced in Remark 5.20. For each r 2 K n f0g we have the vector dual to
.PVU/

.DVUW r / Max
.v�;y�;u;y/2BU

W r

hUW r .v�; y�; u; y/,
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where

BU
W r D

n
.v�; y�; u; y/ 2 K�0 � Y � �X � Y W hv�; ri D 1;

y� 2 .A�/�1.�@.v�f /.u// \ @.v�g/.Au C y/
o

and

hUW .v
�; y�; u; y/ D f .u/C g.Au C y/ � hy�; yir:

Observations similar to Remarks 5.11 and 5.15 can be made in the vector case,
too. Note also that via Proposition 5.4, it holds hUM .B

U
M / � [r2Knf0ghUW r .BU

W r / D
hUW .B

U
W /.

Let us give now the weak and strong duality statements for these duals.

Theorem 5.26. There are no x 2 X and .v�; y�; u; y; r/ 2 BU
W such that f .x/C

g.Ax/ �K hU
W.v

�; y�; u; y; r/.

Theorem 5.27. There are no x 2 X and .v�; u/ 2 BU
M such that f .x/Cg.Ax/ �K

hU
M.v

�; u/.

Theorem 5.28. Let r 2 Knf0g. Then there are no x 2 X and .v�; y�; u; y/ 2 BU
W r

such that f .x/C g.Ax/ �K hU
Wr .v�; y�; u; y/.

For strong duality, which follows directly from Theorem 5.15, besides convexity
assumptions which guarantee the K-convexity of the vector perturbation function
˚U

v we use regularity conditions, too, obtained by particularizing .RCV G
i /, i 2

f1; 2; 3; 4g, namely (cf. [21, 48])

.RCVU
1 / 9x0 2 dom f \ A�1.domg/ such that g is continuous at Ax0;

.RCVU
2 /
X and Y are Fréchet spaces, f and g are K-lower semicontinuous
and 0 2 sqri.domg � A.dom f //;

.RCVU
3 / dim lin.domg � A.dom f // < C1 and riA.domf / \ ri domg ¤ ;;

and, respectively,

.RCVU
4 /
f and g are K-lower semicontinuous and for any v� 2 K�0 epi.v�f /�C
.A� � idR/.epi.v�g/�/ is closed in the topology !.X�; X/ � R:

(5.3.2)

Theorem 5.29. Let Nr 2 K n f0g. Assume that f and g are K-convex vector
functions and one of the regularity conditions .RCV U

i /, i 2 f1; 2; 3; 4g, is fulfilled.
If Nx 2 PE LS.PV U /, then there exist Nv� 2 K�0 and Ny� 2 Y � such that
.Nv�; Ny�; Nx; 0; Nr/ 2 E .DVUW /, .Nv�; Ny�; Nx; 0/ 2 E .DVUW Nr /, .Nv�; Nx/ 2 E .DVUM/

and f . Nx/C g.A Nx/ D hUW .Nv�; Ny�; Nx; 0; Nr/ D hU
W Nr .Nv�; Ny�; Nx; 0/ D hUM .Nv�; Nx/.
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Remark 5.36. In case V D R and K D RC, taking the functions f W X ! R

and g W Y ! R proper we rediscover the Wolfe and Mond-Weir duality schemes
for unconstrained scalar optimization problems from Sect. 5.2.3. More precisely the
problem .PVU/ becomes then the unconstrained scalar optimization problem .PU/,
the duals .DVUW / and .DVUW r /, r > 0, turn out to coincide with the scalar Wolfe
type dual to .PU/ denoted .DUW / and .DVUM/ is nothing but its Mond-Weir type
dual .DUM/.

One can see .PVC/ as an unconstrained vector optimization problem, namely

.PVC/ Min
x2X

�
f .x/C ıv

A .x/
�
,

where the notations are consistent with the ones in Sect. 5.3.2. Then, taking A WD
idX , f WD f and g WD ıv

A , .DVUW /, .DVUM/ and .DVUr
W / (where r 2 K n f0g)

turn into

.DVCF
W / Max

.v�;y�;u;y;r/2BF
W

hFW .v
�; y�; u; y; r/,

where

BF
W D

n
.v�; y�; u; y; r/ 2 K�0 � C � �X � Y � .K n f0g/ W

y� 2 @.v�f /.u C y/ \ .�NA .u//
o

and

hFW .v
�; y�; u; y; r/ D f .u C y/ � hy�; yi

hv�; ri r;

further referred to as the vector Wolfe dual of Fenchel type,

.DVCF
M / Max

.v�;u/2BF
M

hFM .v
�; u/,

where

BF
M D

n
.v�; u/ 2 K�0 �X W 0 2 @.v�f /.u/CNA .u/

o

and

hFM .v
�; u/ D f .u/;
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and, respectively,

.DVCF
W r / Max

.v�;y�;u;y/2BF
W r

hFW r .v�; y�; u; y/,

where

BF
W r D

n
.v�; y�; u; y/ 2 K�0 � C � �X � Y W hv�; ri D 1;

y� 2 @.v�f /.u C y/ \ .�NA .u//
o

and

hFW r .v�; y�; u; y/ D f .u C y/ � hy�; yir:

Note that Proposition 5.4 yields hFM .B
F
M / � [r2Knf0ghFW r .BF

W r / D hFW .B
F
W /.

Remark 5.37. These vector dual problems to .PVC/ can be obtained directly from
.DVGW /, .DVGM/ and .DVGr

W / (where r 2 K n f0g), respectively, too, by using
the vector perturbation function ˚F

v introduced in Sect. 4.4.2.

Let us give now the weak and strong duality statements for these duals.

Theorem 5.30. There are no x 2 A and .v�; y�; u; y; r/ 2 BF
W such that

f .x/ �K h
F
W .v

�; y�; u; y; r/.

Theorem 5.31. There are no x 2 A and .v�; u/ 2 BF
M such that f .x/ �K

hFM .v
�; u/.

Theorem 5.32. Let r 2 Knf0g. Then there are no x 2 A and .v�; y�; u; y/ 2 BF
W r

such that f .x/ �K h
F
W r .v�; y�; u; y/.

For strong duality, which follows directly from either Theorems 5.15 or 5.29,
besides convexity assumptions which guarantee the K-convexity of the corre-
sponding vector perturbation function (see also Remark 5.12) we use regularity
conditions, too, obtained by particularizing .RCV G

i / or .RCV U
i /, i 2 f1; 2; 3; 4g,

respectively, namely (cf. [21, 48])

.RCVF
1 / 9x0 2 dom f \ A such that f is continuous at x0;

.RCVF
2 /
X is a Fréchet space;A is closed,f is K-lower semicontinuous
and 0 2 sqri.dom f � A /;

.RCVF
3 / dim lin.dom f � A / < C1 and ri dom f \ ri A ¤ ;;

and

.RCVF
4 /

A is closed, f is K-lower semicontinuous and for any v� 2 K�0
epi.v�f /� C epi �A is closed in the topology !.X�; X/ � R:
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Theorem 5.33. Let Nr 2 K n f0g. Assume that A is a convex set, f is a K-convex
vector function and one of the regularity conditions .RCV F

i /, i 2 f1; 2; 3; 4g, is
fulfilled. If Nx 2 PE LS.PVC/, then Nx 2 A and there exist Nv� 2 K�0 and Ny� 2
Y � such that .Nv�; Ny�; Nx; 0; Nr/ 2 E .DVCW /, .Nv�; Ny�; Nx; 0/ 2 E .DVCW Nr /, .Nv�; Nx/ 2
E .DVCM/ and f . Nx/ D hFW .Nv�; Ny�; Nx; 0; Nr/ D hF

W Nr .Nv�; Ny�; Nx; 0/ D hFM .Nv�; Nx/.
Remark 5.38. Sufficient conditions that ensure the equivalence of the correspond-
ing duals of Lagrange type and Fenchel-Lagrange type, respectively, can be obtained
via [48, Theorem 3.5.6], while for the equivalence of the corresponding duals of
Fenchel type and Fenchel-Lagrange type, respectively, one can apply [48, Theorem
3.5.13].

5.4 Alternative General Wolfe and Mond-Weir Vector
Duality

As mentioned in Sect. 5.1, there are two ways of assigning vector dual problems of
Wolfe and Mond-Weir type to vector optimization problems. In this section we deal
with the so-called alternative approach, where the objective vector function of the
dual vector optimization problems consists of a vector v 2 V , while its counterpart
from the primal vector optimization problem appears only in the constraints. As we
shall see later, the image sets of the alternative vector duals are larger than their
counterparts of classical type and this can prove to be an advantage when trying to
solve them numerically.

We begin our investigations with a general vector optimization problem to which
alternative vector duals of both Wolfe and Mond-Weir types are assigned. Then we
particularize the primal problem to be constrained and unconstrained, respectively,
and the corresponding vector dual problems are derived, following the scheme from
the previous sections.

5.4.1 General Vector Optimization Problems

Like in Sect. 5.3, let X , Y and V be Hausdorff locally convex vector spaces, with V
partially ordered by the nontrivial pointed convex cone K � V . Let F W X ! V �
be a proper vector function and consider the general vector-minimization problem

.PVG/ Min
x2X F.x/.

The solution concepts we consider for this vector optimization problem are the
ones introduced in Sect. 5.3, too. Like in Sect. 5.3.1, we employ the proper vector
perturbation function˚ W X�Y ! V � which fulfills˚.x; 0/ D F.x/ for all x 2 X ,
thus also 0 2 PrY .dom˚/, in order to assign vector dual problems to .PVG/.
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Different to Sect. 5.3.1, we attach this time Wolfe and Mond-Weir type vector
dual problems to .PVG/ by employing an idea considered in [58, 59, 140] (see
also [71]) and making use of the corresponding scalar dual problems introduced
in Sect. 5.2.1.

The alternative Wolfe type vector dual to .PVG/ we consider now is

.DVGW / Max
.v�;y�;v;u;y/2BW

G

hWG .v
�; y�; v; u; y/

where

BW
G D

n
.v�; y�; v; u; y/ 2 K�0 � Y � � V �X � Y W .0; y�/ 2 @.v�˚/.u; y/;

hv�; vi � �.v�˚/�.0; y�/
o

and

hWG .v
�; y�; v; u; y/ D v;

while the alternative Mond-Weir type vector dual one is

.DVGM/ Max
.v�;y�;v;u/2BM

G

hMG .v
�; y�; v; u/

where

BM
G D

n
.v�; y�; v; u/ 2 K�0 � Y � � V �X W .0; y�/ 2 @.v�˚/.u; 0/;

hv�; vi � hv�; ˚.u; 0/i
o

and

hMG .v
�; y�; v; u/ D v:

For these dual vector optimization problems we consider efficient solutions,
defined analogously to the ones in Definition 5.1. Their image sets fulfill an
inclusion similar to the one given in Proposition 5.4.

Proposition 5.7. One has hMG .B
M
G / � hWG .B

W
G /.

Proof. Whenever .v�; y�; v; u/ 2 BM
G , it is easy to see that .v�; y�; v; u; 0/ 2 BW

G

and hMG .v
�; y�; v; u/ D hWG .v

�; y�; v; u; 0/. Therefore all the values taken by the
objective function of .DVGM/ over its feasible set can be found also in hWG .B

W
G /.

ut
Remark 5.39. The sets hMG .B

M
G / and hWG .B

W
G / do not coincide in general. Situ-

ations where the inclusion in Proposition 5.7 is strictly fulfilled can be found in
Examples 5.16 and 5.17.
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Remark 5.40. One can consider other vector dual problems to .PVG/ by replacing
in .DVGM/ and .DVGW / the inequalities involving hv�; vi by the corresponding
equalities. However, we will not consider further these vector dual problems
since one can easily show that .v�; y�; v; u; y/ 2 E .DVGW / yields hv�; vi D
�.v�˚/�.0; y�/, while .v�; y�; v; u/ 2 E .DVGM/ implies hv�; vi D hv�; ˚.u; 0/i.
Of course this observation can be extended for all the special instances of these
vector duals considered later in this chapter.

For the newly introduced dual problems one can easily show that the weak duality
holds.

Theorem 5.34. There are no x 2 X and .v�; y�; v; u; y/ 2 BW
G such that F.x/ �K

hWG .v
�; y�; v; u; y/.

Proof. Assume to the contrary that there are some x 2 X and .v�; y�; v; u; y/ 2
BW
G fulfilling F.x/ �K h

W
G .v

�; y�; v; u; y/. Then x 2 domF and it follows hv�; v�
˚.x; 0/i > 0. On the other hand, from the feasibility of .v�; y�; v; u; y/ to .DVGW /,
it follows hv�; vi � �.v�˚/�.0; y�/ and since �.v�˚/�.0; y�/ � .v�˚/ .x; 0/, one
gets hv�; v � ˚.x; 0/i � 0, which contradicts the strict inequality obtained above.

ut
Using Proposition 5.7 and Theorem 5.34, one can easily prove the following

weak duality statement, too.

Theorem 5.35. There are no x 2 X and .v�; y�; v; u/ 2 BM
G such that F.x/ �K

hMG .v
�; y�; v; u/.

Remark 5.41. If BM
G ¤ ;, i.e. there exists a feasible element .v�; y�; v; u/ 2

BM
G , one can notice that .v�; y�; ˚.u; 0/; u/ 2 BM

G and .˛v�; ˛y�; v; u/ 2 BM
G

whenever ˛ > 0, too, and it also follows immediately that .v�; y�; ˚.u; 0/; u; 0/ 2
BW
G . Moreover, employing Theorem 5.35 one obtains that .v�; y�; ˚.u; 0/; u/ 2

E .DVGM/, while Theorem 5.34 yields .v�; y�; ˚.u; 0/; u; 0/ 2 E .DVGW /. On
the other hand, if .v�; y�; v; u; y/ 2 BW

G , then .v�; y�; ˚.u; y/; u; y/ 2 BW
G and

.˛v�; ˛y�; v; u; y/ 2 BW
G for all ˛ > 0, too.

A statement analogous to Corollary 5.6 can be given for the alternative vector
duals to .PVG/, too.

Remark 5.42. If .v�; y�; v; u; 0/ 2 BW
G , then .v�; y�; ˚.u; 0/; u/ 2 E .DVGM/,

.v�; y�; ˚.u; 0/; u; 0/ 2 E .DVGW /, u 2 PE LS.PVG/ and F.Nu/ D hMG .v
�; y�; ˚

.u; 0/; u/ D hWG .v
�; y�; ˚.u; 0/; u; 0/.

For the strong duality statements concerning the vector optimization problem
.PVG/ and its two newly introduced vector dual problems we employ the ones
considered in Sect. 5.3.1, as follows.

Theorem 5.36. Assume that ˚ is a K-convex function and one of the regularity
conditions .RCV G

i /, i 2 f1; 2; 3; 4g, is fulfilled. If Nx 2 PE LS.PVG/, then there
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exist Nv� 2 K�0, Ny� 2 Y � and Nv 2 V such that .Nv�; Ny�; Nv; Nu; 0/ 2 E .DVGW /,
.Nv�; Ny�; Nv; Nu/ 2 E .DVGM/ and F. Nx/ D hWG .Nv�; Ny�; Nv; Nu; 0/ D hMG .Nv�; Ny�; Nv; Nu/.
Proof. Since Nx 2 PE LS.PVG/, there exists a Nv� 2 K�0 such that hNv�; F . Nx/i �
hNv�; F .x/i for all x 2 X . As each of the regularity conditions .RCV G

i /, i 2
f1; 2; 3; 4g, ensures (cf. Corollary 2.6 and Remark 2.5) the stability of the scalar
optimization problem

inf
x2X.Nv

�F /.x/;

with respect to the perturbation function ˚ . Then, via Theorem 5.2 (see also
Remark 5.4), there is strong duality for it and its Wolfe type dual

sup
u2X;y2Y;y�2Y �;
.0;y�/2@.Nv�˚/.u;y/

˚ � .Nv�˚/�.0; y�/
�
;

i.e. there exists a Ny� 2 Y � such that

�.Nv�˚/�.0; Ny�/ D sup
y�2Y �

f�.Nv�˚/�.0; y�/g D inf
x2XhNv�; F .x/i D hNv�; F . Nx/i;

and .0; Ny�/ 2 @.Nv�˚/. Nx; 0/. Taking Nv D F. Nx/, one sees that .Nv�; Ny�; Nv; Nx; 0/ 2 BW
G :

Moreover, .Nv�; Ny�; Nv; Nu; 0/ 2 E .DVGW / via Theorem 5.34. Indeed, if
.Nv�; Ny�; Nv; Nu; Ny/ were not an efficient solution to problem .DVGW / there would exist
an element .v�; y�; v; u; y/ 2 BW

G such that hWG .v
�; y�; v; u; y/ D v �K Nv D F. Nx/.

But this contradicts the weak duality statement.
In order to deal with problem .DVGM/ we consider the Mond-Weir type dual to

infx2X.Nv�˚/.x; 0/, namely

sup
u2X;y�2Y �;

.0;y�/2@.Nv�˚/.u;0/

hNv�; ˚.x; 0/i:

The conclusion follows analogously. ut
Remark 5.43. In case V D R and K D RC, identifying V � with R [ fC1g and
1RC

with C1, and taking the function F W X ! R proper we rediscover the
Wolfe and Mond-Weir type scalar duality schemes from the scalar case presented
in Sect. 5.2.1. More precisely the problem .PVG/ becomes then the general scalar
optimization problem .PG/, while the duals .DVGW / and .DVGM/ turn out to
coincide with the scalar Wolfe and Mond-Weir type duals to .PG/ introduced there,
namely .DGW / and .DGM/, respectively.

Remark 5.44. Similar observations to the ones formulated in Remarks 5.25–5.28
can be given within this section, too.
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In the next subsections we consider as special instances of .PVG/ the two main
classes of vector optimization problems, namely we work with a constrained and
an unconstrained vector optimization problem, respectively. To these problems we
attach vector duals that are special cases of .DVGM/ and .DVGW /, respectively,
obtained for different choices of the vector perturbation function ˚ .

5.4.2 Alternative Wolfe and Mond-Weir Type Vector Duals
for Constrained Vector Optimization Problems

Besides the standing framework we let the space Y be partially ordered by the
nonempty convex cone C � Y , like in Sect. 5.3.2 and the notations we use are
consistent with the ones considered there, namely S � X is a nonempty set and
f W X ! V � and h W X ! Y � are proper vector functions fulfilling the feasibility
condition dom f \S\h�1.C / ¤ ;. Using the same vector perturbation functions as
in the mentioned subsection, we attach to the primal constrained vector optimization
problem

.PVC/ Min
x2A

f .x/;

where

A D ˚
x 2 S W h.x/ 2 �C �;

vector dual problems obtained as special cases of .DVGW / and .DVGM/, respec-
tively. Making use of ˚L

v , one gets the alternative Wolfe vector dual of Lagrange
type

.DVCW
L / Max

.v�;z�;v;u;z/2B QW
L

h
QW
L .v

�; z�; v; u; z/

where

B
QW
L D

n
.v�; z�; v; u; z/ 2 K�0 � .�C �/ � V � S � Y W hv�; v � f .u/i

� �.z�h/.u/; 0 2 @..v�f / � .z�h/C ıS /.u/; ı�C .h.u/ � z/ � hz�; h.u/ � zi D 0
o

and

h
QW
L .v

�; z�; v; u; z/ D v;
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which can be equivalently rewritten as

.DVCW
L / Max

.v�;z�;v;u/2BW
L

hWL .v
�; z�; v; u/

where

BW
L D

n
.v�; z�; v; u/ 2 K�0 � C � � V � S W hv�; v � f .u/i � .z�h/.u/;

0 2 @..v�f /C .z�h/C ıS /.u/
o

and

hWL .v
�; z�; v; u/ D v;

and, respectively,

.DVCM
L / Max

.v�;z�;v;u/2BM
L

hML .v
�; z�; v; u/

where

BM
L D

n
.v�; z�; v; u/ 2 K�0 � C � � V � S W .z�h/.u/ � 0; h.u/ 2 �C;

hv�; vi � .v�f /.u/; 0 2 @..v�f /C .z�h/C ıS /.u/
o

and

hML .v
�; z�; v; u/ D v:

Note that in the constraints of .DVCM
L / one can replace .z�h/.u/ � 0 by

.z�h/.u/ D 0 without altering anything since h.u/ 2 �C and z� 2 C �. Like in
Sect. 5.3.2, removing from this vector dual the constraint h.u/ 2 �C , we obtain
a new vector dual to .PVC/, namely the alternative Mond-Weir vector dual of
Lagrange type to it

.DVCMW
L / Max

.v�;z�;v;u/2BMW
L

hMW
L .v�; z�; v; u/

where

BMW
L D

n
.v�; z�; v; u/ 2 K�0 � C � � V � S W .z�h/.u/ � 0;

hv�; vi � .v�f /.u/; 0 2 @..v�f /C .z�h/C ıS /.u/
o

and

hMW
L .v�; z�; v; u/ D v:
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Remark 5.45. Due to the way the vector duals we assigned above to .PVC/ are
constructed it is clear that hML .B

M
L / � hMW

L .BMW
L /. Moreover, since for all

.v�; z�; v; u/ 2 BMW
L the double inequality hv�; v � .v�f /.u/i � 0 � .z�h/.u/

yields hv�; v � .v�f / .u/i � .z�h/.u/ � 0, it follows that hMW
L .BMW

L / � hWL .B
W
L /.

Consequently, even without resorting to Proposition 5.7 one obtains hML .B
M
L / �

hWL .B
W
L /, too. Situations where these inclusion are strictly fulfilled can be found

below.

Example 5.16. Consider the situation from Example 5.14. One can easily show that
BM
L D ;. On the other hand, as 0 2 @..v�f / C .0h/ C ıS /.0/ D .�1; 1� for all

v� 2 intR2C, f .0/ D .0; 0/> and .0h/.0/ D 0, it follows that whenever v 2 R
2

fulfills v�>v � 0, one has .v�; 0; v; 0/ 2 BMW
L . Consequently, fv 2 R

2 W v�>v � 0,
v� 2 intR2Cg � hMW

L .BMW
L /.

Therefore, hML .B
M
L /   hMW

L .BMW
L / in this case. Taking into consideration

Remark 5.45, it follows that the inclusion given in Proposition 5.7 can in general
be strictly fulfilled.

Example 5.17. Consider the situation from Example 5.15. One can easily show that
hML .B

M
L / D hMW

L .BMW
L / D ;, while .�2;�2/> 2 hWL .BW

L /.
Therefore, hML .B

M
L / D hMW

L .BMW
L /   hWL .B

W
L / in this case.

Remark 5.46. A statement similar to the one given in Remark 5.30 can be given
for the vector duals of Lagrange type assigned to .PVC/ within this subsection, too,
one being able to split the subdifferential @..v�f /C .z�h/C ıS /.u/ under the same
hypotheses.

Remark 5.47. A vector dual similar to .DVCW
L /, but with respect to weakly efficient

solutions, was introduced in [71], under quasidifferentiability hypotheses for the
functions involved. Later, it was mentioned also in [212], where the functions were
taken differentiable.

Like in the previous section, the results involving .PVG/ and its vector duals
can be particularized for the problems introduced above, however we give here only
the weak and strong duality statements involving .PVC/ and its vector duals of
Lagrange type.

Theorem 5.37. There are no x 2 A and .v�; z�; v; u/ 2 BW
L such that f .x/ �K

hWL .v
�; z�; v; u/.

Theorem 5.38. There are no x 2 A and .v�; z�; v; u/ 2 BM
L such that f .x/ �K

hML .v
�; z�; v; u/.

Analogously, one can prove also the following weak duality statement involving
.PVC/ and .DVCMW

L /.

Theorem 5.39. There are no x 2 A and .v�; z�; v; u/ 2 BMW
L such that f .x/ �K

hMW
L .v�; z�; v; u/.
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In order to achieve strong duality for the vector duals of Lagrange type we just
assigned to .PVC/, we need, besides convexity assumptions which guarantee theK-
convexity of the vector perturbation function ˚L

v , the fulfillment of some sufficient
conditions. To this end, we employ the regularity conditions used in Sect. 5.3.2. The
strong duality assertions concerning .DVCW

L / and .DVCM
L /, respectively, follow via

Theorem 5.36, while their counterpart for .DVCMW
L / can be proven analogously.

Theorem 5.40. Assume that S is a convex set, f is a K-convex vector function,
h is a C -convex vector function and one of the regularity conditions .RCV L

i /, i 2
f1; 2; 3; 4g, is fulfilled. If Nx 2 PE LS.PVC/, then there exist Nv� 2 K�0 and Nz� 2 C �
such that .Nv�; Nz�; f . Nx/; Nx/ 2 E .DVCW

L / \ E .DVCM
L / \ E .DVCMW

L / and f . Nx/ D
hWL .Nv�; Nz�; f . Nx/; Nx/ D hML .Nv�; Nz�; f . Nx/; Nx/ D hMW

L .Nv�; Nz�; f . Nx/; Nx/.
Another vector perturbation function considered in Sect. 5.4.2 in order to assign

a vector dual problem to .PVC/ is the Fenchel-Lagrange type vector perturbation
function ˚FL

v . It particularizes .DVGW / to the following Wolfe vector dual of
Fenchel-Lagrange type to .PVC/

.DVCW
FL/ Max

.v�;y�;z�;v;u;y/2BW
FL

hWFL.v
�; y�; z�; v; u; y/

where

BW
FL D

n
.v�; y�; z�; v; u; y/ 2 K�0 �X� � C � � V � S �X W hv�; vi � hy�; ui

�.v�f /�.y�/C .z�h/.u/; y� 2 @.v�f /.u C y/ \ .�@..z�h/C ıS /.u//
o

and

hWFL.v
�; y�; z�; v; u; y/ D v;

and .DVGM/, respectively, into

.DVCM
FL/ Max

.v�;z�;v;u/2BM
FL

hMFL.v
�; z�; v; u/

where

BM
FL D

n
.v�; z�; v; u/ 2 K�0 � C � � V � S W .z�h/.u/ � 0; h.u/ 2 �C;

hv�; vi � .v�f /.u/; 0 2 @.v�f /.u/C @..z�h/C ıS /.u/
o

and

hMFL.v
�; z�; v; u/ D v:
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Note that in its constraints one can replace .z�h/.u/ � 0 by .z�h/.u/ D 0

without altering anything since h.u/ 2 �C and z� 2 C �. Like in the Lagrange case,
removing from .DVCM

FL/ the constraint h.u/ 2 �C , one obtains another vector dual
to .PVC/, namely its Mond-Weir vector dual of Fenchel-Lagrange type

.DVCMW
FL / Max

.v�;z�;v;u/2BMW
FL

hMW
FL .v

�; z�; v; u/

where

BMW
FL D

n
.v�; z�; v; u/ 2 K�0 � C � � V � S W .z�h/.u/ � 0;

hv�; vi � .v�f /.u/; 0 2 @.v�f /.u/C @..z�h/C ıS /.u/
o

and

hMW
FL .v

�; z�; v; u/ D v:

Remark 5.48. Due to the way the vector duals we assigned above to .PVC/
are constructed it is clear that hMFL.B

M
FL/ � hMW

FL .B
MW
FL /. Moreover, for all

.v�; z�; v; u/ 2 BMW
FL the double inequality hv�; v � .v�f /.u/i � 0 � .z�h/.u/

yields hv�; v � .v�f / .u/i � .z�h/.u/ � 0, while the constraint involving the
subdifferentials ensures the existence of a y� 2 @.v�f /.u/ \ .�@..z�h/C ıS /.u//.
Thus, hv�; vi�hy�; uiC.v�f /�.y�/�.z�h/.u/ D hv�; v�.v�f /.u/i�.z�h/.u/ � 0,
i.e. .v�; y�; z�; v; u; 0/ 2 BW

FL. As hWFL.v
�; y�; z�; v; u; 0/ D v D hMW

FL .v
�; z�; v; u/,

it follows that hMW
FL .B

MW
FL / � hWFL.B

W
FL/. Consequently, even without resorting to

Proposition 5.7 one obtains hMFL.B
M
FL/ � hWFL.B

W
FL/, too. Situations where these

inclusion are strictly fulfilled can be found below.

Example 5.18. Consider again the situation from Examples 5.14 and 5.16. One can
easily show that BM

FL D ;, while fv 2 R
2 W v�>v � 0, v� 2 intR2Cg � hMW

FL .B
MW
FL /.

Therefore, hMFL.B
M
FL/   hMW

FL .B
MW
FL / in this case.

Example 5.19. Consider the situation from Examples 5.15 and 5.17. One can easily
show that hMFL.B

M
FL/ D hMW

FL .B
MW
FL / D ;, while .�2;�2/> 2 hWFL.B

W
FL/.

Therefore, hMFL.B
M
FL/ D hMW

FL .B
MW
FL /   hWFL.B

W
FL/ in this case.

Remark 5.49. A statement similar to the one given in Remark 5.34 can be given for
the vector duals of Fenchel-Lagrange type assigned to .PVC/within this subsection,
too, one being able to split the subdifferential @..z�h/ C ıS /.u/ under the same
hypotheses.

Like in the previous section, the results involving .PVG/ and its vector duals
can be particularized for the problems introduced above, however we give here only
the weak and strong duality statements involving .PVC/ and its vector duals of
Lagrange type.
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Theorem 5.41. There are no x 2 A and .v�; y�; z�; v; u; y/ 2 BW
FL such that

f .x/ �K h
W
FL.v

�; y�; z�; v; u; y/.

Theorem 5.42. There are no x 2 A and .v�; z�; v; u/ 2 BM
FL such that f .x/ �K

hMFL.v
�; z�; v; u/.

Analogously, one can prove also the following weak duality statement involving
.PVC/ and .DVCMW

FL /.

Theorem 5.43. There are no x 2 A and .v�; z�; v; u/ 2 BMW
FL such that f .x/ �K

hMW
FL .v

�; z�; v; u/.

In order to achieve strong duality for the vector duals of Lagrange type we
just assigned to .PVC/, we need, besides convexity assumptions which guarantee
the K-convexity of the vector perturbation function ˚FL

v , the fulfillment of some
sufficient conditions. To this end, we employ the regularity conditions used in
Sect. 5.3.2. The strong duality assertions concerning .DVCW

FL/ and .DVCM
FL/, respec-

tively, follow via Theorem 5.36, while their counterpart for .DVCMW
FL / can be proven

analogously.

Theorem 5.44. Assume that S is a convex set, f is a K-convex vector function,
h is a C -convex vector function and one of the regularity conditions .RCV FL

i /,
i 2 f1; 2; 3; 4g, is fulfilled. If Nx 2 PE LS.PVC/, then there exist Nv� 2 K�0,
Ny� 2 X� and Nz� 2 C � such that .Nv�; Ny�; Nz�; f . Nx/; Nx; 0/ 2 E .DVCW

FL/,
.Nv�; Nz�; f . Nx/; Nx/ 2 E .DVCM

FL/\E .DVCMW
FL / and f . Nx/ D hWFL.Nv�; Nz�; f . Nx/; Nx; 0/ D

hMFL.Nv�; Nz�; f . Nx/; Nx/ D hMW
FL .Nv�; Nz�; f . Nx/; Nx/.

Remark 5.50. Like in the general case (see Remark 5.24), if V D R and K D RC,
taking the functions f W X ! R and h W X ! Y � proper we rediscover the
Wolfe and Mond-Weir duality schemes for constrained scalar optimization problems
from Sect. 5.2.2, respectively. More precisely the problem .PVC/ becomes then the
constrained scalar optimization problem .PC/ and the vector duals considered in
this section turn out to be to the corresponding dual problems considered there to it.

5.4.3 Alternative Wolfe and Mond-Weir Type Vector Duals
for Unconstrained Vector Optimization Problems

Consider again the framework of Sect. 5.3.3 and the notations used there, namely
f W X ! V � and g W Y ! V � are proper vector functions and A W X ! Y a linear
continuous mapping such that the feasibility condition dom f \ A�1.domg/ ¤ ;
is fulfilled. To the primal unconstrained vector optimization problem

.PVU/ Min
x2X Œf .x/C g.Ax/�,
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we assign vector dual problems obtained as special cases of .DVGW / and .DVGM/,
respectively, by making use of the the vector perturbation function ˚U

v , namely

.DVUW / Max
.v�;y�;v;u;y/2BW

U

hWU .v
�; y�; v; u; y/

where

BW
U D

n
.v�; y�; v; u; y/ 2 K�0 � Y � � V �X � Y W y� 2 .A�/�1.�@.v�f /.u//

\@.v�g/�.Au C y/ and hv�; vi � �.v�f /�.�A�y�/C .v�g/�.y�/
o

and

hWU .v
�; y�; v; u; y/ D v;

and, respectively,

.DVUM/ Max
.v�;v;u/2BM

U

hMU .v
�; v; u/

where

BM
U D

n
.v�; v; u/ 2 K�0 � V �X W 0 2 .A�/�1.�@.v�f /.u// � @.v�g/.Au/

and hv�; vi � hv�; f .u/C g.Au/i
o

and

hMU .v
�; v; u/ D v:

Observations similar to Remarks 5.11 and 5.15 can be made in the vector case,
too. Note also that via Proposition 5.7, it holds hMU .B

M
U / � hWU .B

W
U /. For the

primal vector problem .PVU/ and its Wolfe type and Mond-Weir type vector duals
.DVUW / and .DVUM/, respectively, the weak and strong duality statements follow
from the general case.

Theorem 5.45. There are no x 2 X and .v�; y�; v; u; y/ 2 BW
U such that f .x/C

g.Ax/ �K hW
U .v

�; y�; v; u; y/.

Theorem 5.46. There are no x 2 X and .v�; v; u/ 2 BM
U such that f .x/ C

g.Ax/ �K hM
U .v

�; v; u/.

In order to achieve strong duality, besides convexity assumptions which guar-
antee the K-convexity of the vector perturbation function ˚U

v , one needs the
fulfillment of some sufficient conditions. To this end, we employ the regularity
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conditions used in Sect. 5.3.3. The strong duality assertions concerning .DVUW /

and .DVUM/, respectively, follow then directly from Theorem 5.36.

Theorem 5.47. Assume that f and g are K-convex vector functions and
one of the regularity conditions .RCV U

i /, i 2 f1; 2; 3; 4g, is fulfilled. If
Nx 2 PE LS.PV U /, then there exist Nv� 2 K�0 and Ny� 2 Y � such that
.Nv�; Ny�; f . Nx/ C g.A Nx/; Nx; 0/ 2 E .DVUW /, .Nv�; f . Nx/ C g.A Nx/; Nx/ 2 E .DVUM/

and f . Nx/C g.A Nx/ D hWU .Nv�; Ny�; f . Nx/C g.A Nx/; Nx; 0/ D hMU .Nv�; f . Nx/C g.A Nx/;
Nx/.
Remark 5.51. In case V D R and K D RC, taking the functions f W X ! R

and g W Y ! R proper we rediscover the Wolfe and Mond-Weir duality schemes
for unconstrained scalar optimization problems from Sect. 5.2.3. More precisely the
problem .PVU/ becomes then the unconstrained scalar optimization problem .PU/,
the dual .DVUW / turns out to coincide with the scalar Wolfe type dual to .PU/
denoted .DUW / and .DVUM/ is nothing but its Mond-Weir type dual .DUM/.

As mentioned in Sect. 5.3.3, one can see .PVC/ as an unconstrained vector
optimization problem, namely

.PVC/ Min
x2X

�
f .x/C ıv

A .x/
�
,

where the notations are consistent with the ones in Sect. 5.4.2. The vector dual
problem assigned to .PVC/ in this case as special cases of .DVUW / and .DVUM/

are

.DV W
F / Max

.v�;y�;v;u;y/2BW
F

hWF .v
�; y�; v; u; y/

where

BW
F D

n
.v�; y�; v; u; y/ 2 K�0 � Y � � V �X �X W hv�; vi � hy�; ui

�.v�f /�.y�/; y� 2 @.v�f /.u C y/ \ .�NA .u//
o

and

hWF .v
�; y�; v; u; y/ D v;

and, respectively,

.DV M
F / Max

.v�;v;u/2BM
F

hMF .v
�; v; u/
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where

BM
F D

n
.v�; v; u/ 2 K�0 �V �X W hv�; vi � .v�f /.u/; 0 2 @.v�f /.u/CNA .u/

o

and

hMF .v
�; v; u/ D v:

Note that Proposition 5.7 yields hMF .B
M
F / � hWF .B

W
F /.

Remark 5.52. These vector dual problems to .PVC/ can be obtained directly from
.DVGW / and .DVGM/, respectively, too, by using the vector perturbation function
˚F

v considered in Remark 5.37.

Let us give now the weak and strong duality statements for these duals.

Theorem 5.48. There are no x 2 A and .v�; y�; v; u; y/ 2 BW
F such that

f .x/ �K h
W
F .v

�; y�; v; u; y/.

Theorem 5.49. There are no x 2 A and .v�; v; u/ 2 BM
F such that f .x/ �K

hMF .v
�; v; u/.

For strong duality, besides the usual convexity assumptions which guarantee
the K-convexity of the corresponding vector perturbation function, the fulfillment
of some sufficient conditions is required. To this end, we employ the ones used
in Sect. 5.3.3. The strong duality assertions concerning .DV W

F / and .DV M
F /,

respectively, follow then directly from Theorems 5.36 or 5.47.

Theorem 5.50. Assume that A is a convex set, f is a K-convex vector function
and one of the regularity conditions .RCV F

i /, i 2 f1; 2; 3; 4g, is fulfilled. If
Nx 2 PE LS.PVC/, then Nx 2 A and there exist Nv� 2 K�0 and Ny� 2 Y � such
that .Nv�; Ny�; f . Nx/; Nx; 0/ 2 E .DVCW /, .Nv�; f . Nx/; Nx/ 2 E .DVCM/ and f . Nx/ D
hWF .Nv�; Ny�; f . Nx/; Nx; 0/ D hMF .Nv�; f . Nx/; Nx/.
Remark 5.53. Sufficient conditions that ensure the equivalence of the correspond-
ing duals of Lagrange type and Fenchel-Lagrange type, respectively, to .PVC/ can
be obtained via [48, Theorem 3.5.6], while for the equivalence of the corresponding
duals of Fenchel type and Fenchel-Lagrange type, respectively, one can apply [48,
Theorem 3.5.13].

5.5 Comparisons Between the Vector Duals

After assigning several different vector dual problems to the same primal vector
optimization problem it is a legitimate task to try to compare their image sets.
The notations considered within this section are consistent with the ones used in
Sects. 5.3 and 5.4.
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5.5.1 Duals to General Vector Optimization Problems

First let us compare the image sets of the corresponding dual within the two classes
of vector dual problems we considered to the general vector optimization problem
.PVG/, namely the ones of classical type from Sect. 5.3 and the alternative ones
from Sect. 5.4.

Theorem 5.51. One has hGW .B
G
W / � hWG .B

W
G / and hGM .B

G
M / � hMG .B

M
G /.

Proof. Whenever .v�; y�; u; y; r/ 2 BG
W , one has .0; y�/ 2 @.v�˚/.u; y/, which

yields .v�˚/.u; y/C .v�˚/�.0; y�/ D hy�; yi, ˚.u; y/ 2 V and

hv�; hGW .v�; y�; u; y; r/ � ˚.u; y/i D

v�;�hy�; yi

hv�; ri r
�

D �hy�; yi;

thus hv�; hGW .v�; y�; u; y; r/i D hv�; ˚.u; y/i�hy�; yi D �.v�˚/�.0; y�/. Then, it
follows that .v�; y�; hGW .v�; y�; u; y; r/; u; y/ 2 BW

G and hWG .v
�; y�; hGW .v�; y�; u;

y; r/; u; y/ D hGW .v
�; y�; u; y; r/, therefore hGW .B

G
W / � hWG .B

W
G /.

The inclusion hGM .B
G
M / � hMG .B

M
G / can be proven analogously. ut

Remark 5.54. The inclusions proven in Theorem 5.51 are in general strict, as the
situation depicted in Example 5.20 shows.

Example 5.20. Let X D R
2, Y D R, C D RC, V D R

2, K D R
2C, V � D

R
2 [ f1

R
2
C

g,

S D
�
.x1; x2/

> 2 R
2 W 0 � x1 � 2;

3 � x2 � 4; if x1 D 0;

1 � x2 � 4; if x1 2 .0; 2�
�
;

f W R2 ! .R2/�; f .x1; x2/ D

8
<̂

:̂



1

1

�
x2; if x1 � 0;

1
R
2
C

; otherwise;

and h W R2 ! R, h.x1; x2/ D 0 for all .x1; x2/> 2 R
2. Thus, h.u/ 2 C whenever

u 2 R
2. Then, for v� D .1=2; 1=2/>, u D .0; 3/> and any z� 2 RC we get .0; 0/ 2

@..v�f /C.z�h/CıS /.0; 3/ and .z�h/.u/ D 0, thus .3; 3/> 2 hLM .BL
M /\hLW .BL

W /.
Moreover, since the values taken by f consist of vectors with equal entries, when
.a; b/> 2 hLM .BL

M / it is binding to have a D b, and, since h is everywhere equal to
0, one can conclude that whenever .a; b/> 2 hLW .BL

W / it must hold a D b, too.
On the other hand, taking v D .2; 3/>, it holds v�>.v � f .u// D �1=2 < 0 D

.z�h/.u/ whenever z� 2 RC, thus .v�; z�; v; u/ 2 BM
L \ BW

L for any z� 2 RC,
and consequently .2; 3/> 2 hML .B

M
L / \ hWL .B

W
L /. But, as noted above, .2; 3/> …

hLM .B
L
M / [ hLW .BL

W /.
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Therefore, hLM .B
L
M /   hML .B

M
L / and, respectively, hLW .B

L
W /   hWL .B

W
L /

in this case. This shows that in general one has hGM .B
G
M /   hMG .B

M
G / and,

respectively, hGW .B
G
W /   hWG .B

W
G /.

Of interest would be to compare the maximal sets of the vector duals we assigned
to .PVG/. Besides the results already given in Remarks 5.23, 5.42, Propositions 5.5
and 5.6, Corollaries 5.6 and 5.7, we were able to provide the following statement.

Theorem 5.52. One has

Max.hGM .B
G
M /;K/ � Max.hMG .B

M
G /;K/:

Proof. Combining Proposition 5.5 and Theorem 5.51, one gets Max.hGM .B
G
M /;

K/ D hGM .B
G
M / � hMG .B

M
G /. Thus, if there is some .v�; y�; u/ 2 BG

M ,
then .v�; y�; ˚.u; 0/; u/ 2 BM

G , while by Proposition 5.5 it follows that u 2
PE LS.PVG/. Assuming that .v�; y�; ˚.u; 0/; u/ … E .DVGM/, one would obtain
then a contradiction to Theorem 5.35, therefore .v�; y�; ˚.u; 0/; u/ 2 E .DVGM/.
The conclusion follows. ut

Whether the inclusion proven in Theorem 5.52 is in general strict or not it is
not known at the moment. As direct consequences of Theorem 5.52 one has the
following statement.

Corollary 5.8. If .v�; y�; v; u/ 2 BM
G , then .v�; y�; u; 0; r/ 2 BG

W \ E .DVGW /

for all r 2 K n f0g and, respectively, .v�; y�; ˚.u; 0/; u; 0/ 2 BW
G \ E .DVGW /.

Regarding the Wolfe vector dual problems we assigned to .PVG/, it is not known
whether a statement similar to Theorem 5.52 can be proven for them. However, for
some of the efficient solutions to the mentioned duals we have the following result
(recall also Corollary 5.6 and Remark 5.42).

Theorem 5.53. If .v�; y�; u; 0; r/ 2 BG
W , then .v�; y�; ˚.u; 0/; u; 0/ 2 E .DVGW /,

while .v�; y�; v; u; 0/ 2 BW
G yields .v�; y�; u; 0; r/ 2 E .DVGW / for all r 2 K nf0g.

Proof. Under any of the hypotheses ˚.u; 0/ belongs to the image set of both vector
duals .DVGW / and .DVGW /. The conclusions follow after employing the corre-
sponding weak duality statement, namely Theorems 5.34 and 5.12, respectively.

ut
Finally, let us notice an interesting connection between the infeasibility of the

two classes of vector dual problems we assigned to .PVG/.

Theorem 5.54. One has hGW .B
G
W / D ; if and only if hWG .B

W
G / D ; and,

respectively, hGM .B
G
M / D ; if and only if hMG .B

M
G / D ;.

Proof. The sufficiency in both equivalences is a direct consequence of Theo-
rem 5.51. To prove the necessity it is enough to note that the alternative vector
duals contain all the constraints of the vector duals of classical type and moreover
an inequality that controls the values taken by the vector v. Consequently, when the
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vector duals of classical type are infeasible, so are their alternative counterparts,
too. ut

In the next subsection we present different relations of inclusion between the
image sets of the vector duals assigned to the constrained vector optimization
problem .PVC/, extending the investigations performed in the scalar case in
Sect. 5.2.4.

5.5.2 Duals to Constrained Vector Optimization Problems

Besides the inclusion relations that can be obtained as particularizations of Proposi-
tions 5.4, 5.7, Theorems 5.51, 5.52 and the ones given in Remarks 5.29, 5.33, 5.45
and 5.48, there are other inclusions between the images of the feasible sets of the
vector duals to .PVC/ introduced in Sects. 5.3.2 and 5.4.2 through their objective
functions. In the following we prove some of them. First we deal with the vector
duals obtained from .DVGM/. The notations in this subsection are consistent with
the ones in Sects. 5.3.2 and 5.4.2.

Proposition 5.8. It holds

hFL
M .B

FL
M / � h

CF
M .BCF

M / and hFL
M .B

FL
M / � hLM .B

L
M /:

Proof. Let .v�; z�; u/ 2 BFL
M . This means that .v�; z�; u/ 2 K�0 � C � � S ,

.z�h/.u/ � 0, h.u/ 2 �C and 0 2 @.v�f /.u/ C @..z�h/ C ıS /.u/. But 0 2
@.v�f /.u/ C @..z�h/ C ıS /.u/ � @

�
.v�f /.u/ C .z�h/ C ıS

�
.u/, consequently

.v�; z�; u/ 2 BL
M . As hFL

M .v
�; z�; u/ D f .u/ D hLM .v

�; z�; u/, the conclusion
follows.

On the other hand, .v�; z�; u/ 2 BFL
M yields u 2 A . As @..z�h/ C ıS /.u/ �

NA .u/, one gets 0 2 @.v�f /.u/C NA .u/. Consequently, .v�; u/ 2 BF
M and, since

hFL
M .v

�; z�; u/ D f .u/ D hFM .v
�; u/, we are done. ut

One can similarly prove its counterpart regarding the alternative vector duals to
.PVC/.

Proposition 5.9. It holds

hMFL.B
M
FL/ � hML .B

M
L / and hMFL.B

M
FL/ � hMF .B

M
F /:

Proof. Let .v�; z�; v; u/ 2 BM
FL. Then 0 2 @.v�f /.u/C @..z�h/C ıS /.u/, hv�; vi �

.v�f /.u/, .z�h/.u/ � 0 and h.u/ 2 �C . As @.v�f /.u/ C @..z�h/ C ıS /.u/ �
@
�
.v�f / .u/ C .z�h/ C ıS

�
.u/, it follows immediately that .v�; z�; v; u/ 2 BM

L .
Since hMFL.v

�; z�; v; u/ D v D hML .v
�; z�; v; u/, the conclusion follows.
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On the other hand, .v�; z�; v; u/ 2 BM
FL yields u 2 A , so it holds @..z�h/ C

ıS /.u/ � NA .u/. Consequently, .v�; v; u/ 2 BM
F and, since hMFL.v

�; z�; v; u/ D v D
hMF .v

�; v; u/, we are done. ut
Analogously one can prove the following inclusion concerning the Mond-Weir

vector duals to .PVC/ of Lagrange and Fenchel-Lagrange type, respectively.

Proposition 5.10. It holds

hFL
MW.B

FL
MW/ � hLMW.B

L
MW/ and hMW

FL .B
MW
FL / � hMW

L .BMW
L /:

Moreover, one can provide an extension of Proposition 5.3 to the vector case,
which at the moment is known to hold only for the alternative vector duals to .PVC/.

Proposition 5.11. It holds

hMW
FL .B

MW
FL / � hWL .B

W
L /:

Proof. Let .v�; z�; v; u/ 2 BMW
FL . Then 0 2 @.v�f /.u/ C @..z�h/ C ıS /.u/,

hv�; v � .v�f /.u/i � 0 and .z�h/.u/ � 0. But @.v�f /.u/ C @..z�h/ C ıS /.u/ �
@
�
.v�f /.u/ C .z�h/ C ıS

�
.u/ and hv�; v � .v�f /.u/i � 0 � .z�h/.u/ yield

0 2 @�.v�f /.u/C .z�h/C ıS
�
.u/ and hv�; v � .v�f /.u/i � .z�h/.u/, respectively,

consequently .v�; z�; v; u/ 2 BW
L . As hMW

FL .v
�; z�; v; u/ D v D hWL .v

�; z�; v; u/, the
conclusion follows. ut

Situations where the inclusions in Propositions 5.8–5.11 are strictly fulfilled can
be found below.

Example 5.21. Consider again the situation from Example 5.20. Then .3; 3/> 2
hLM .B

L
M / \ hML .B

M
L /. Moreover, by Remarks 5.29 and 5.45, one gets .3; 3/> 2

hLMW.B
L
MW/ \ hMW

L .BMW
L /, too.

On the other hand, taking without loss of generality z� D 1, to have, for some
v� D .v�

1 ; v
�
2 /

> 2 intR2C and u D .u1; u2/> 2 S , that 0 2 @.v�f /.u/ C
@..z�h/ C ıS /.u/ means actually that there exists a y� 2 @.v�f /.u/ \ .�NS.u//.
From y� 2 @.v�f /.u/ we obtain that y� D .y�

1 ; y
�
2 /

> 2 RC � fv�
1 C v�

2 g and
u1 D 0. Consequently, y�

2 D v�
1 C v�

2 . Let us see now for what y�
1 2 RC does one

obtain .�y�
1 ;�v�

1 � v�
2 // 2 NS.0; u2/. We have .�y�

1 ;�v�
1 � v�

2 / 2 NS.0; u2/ if and
only if �S.�y�

1 ;�v�
1 � v�

2 / D �.v�
1 C v�

2 /u2. This yields u2 D 1, but .0; 1/ … S ,
consequently .DVCFL

M / and .DVCFL
MW/ are infeasible, and, via Theorem 5.54, so is

.DVCM
FL/. Analogously it follows that .DVCMW

FL / is infeasible, too. As A D S and
since .z�h/.u/ D 0 for all u 2 S , it follows that .DCVF

M / is equivalent to .DCVFL
M /

and .DCVM
F / to .DCVM

FL/, so these vector dual problems are infeasible, too.
Moreover, as A D S and since .z�h/.u/ D 0 for all u 2 S one imme-

diately notes that .DCVF
W / is equivalent to .DCVFL

W / and, respectively, .DCVW
F /

to .DCVW
FL/. Taking again without loss of generality z� D 1, for some v� D

.v�
1 ; v

�
2 /

> 2 intR2C and u D .u1; u2/> 2 S one finds a y� 2 @.v�f /.u C
y/ \ .�NS.u// for some y 2 R

2. From y� 2 @.v�f /.u C y/ we obtain that
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y� D .y�
1 ; y

�
2 /

> 2 RC � fv�
1 C v�

2 g. Consequently, y�
2 D v�

1 C v�
2 . Let us

see now for what y�
1 2 RC does one obtain .�y�

1 ;�v�
1 � v�

2 / 2 NS.u1; u2/.
We have .�y�

1 ;�v�
1 � v�

2 / 2 NS.u1; u2/ if and only if �S.�y�
1 ;�v�

1 � v�
2 / D

�y�
1 u1 � .v�

1 C v�
2 /u2. Since this can take place only if y�

1 D 0, it follows that
u1 2 .0; 2�, u2 D 1 and .0; v�

1 C v�
2 /

> is the only possible value for y�. Trying to
find an r D .r1; r2/

> 2 R
2C n f0g such that hFW .v

�; y�; u; y; r/ has equal entries
yields r1 D r2, but then hFW .v

�; y�; u; y; r/ D .u2; u2/> D .1; 1/>, consequently
.3; 3/> … hFW .BF

W / and .3; 3/> … hFL
W .B

FL
W /. On the other hand, assuming that there

exists a v 2 R
2 such that hWF .v

�; y�; v; u; y/ D .3; 3/> yields v D .3; 3/>, but in this
case .v�; y�; v; u; y/ … BW

F for any y 2 R
2. Thus, .3; 3/> … hWF .BW

F /[hWFL.B
W
FL/,

too.
Therefore, hFL

M .B
FL
M /   hLM .B

L
M /, h

M
FL.B

M
FL/   hML .B

M
L /, h

FL
MW.B

FL
MW/   hLMW

.BL
MW/, h

MW
FL .B

MW
FL /   hMW

L .BMW
L / and hMW

FL .B
MW
FL /   hWL .B

W
L / in this case.

Moreover, neither of hLM .B
L
M /, h

M
L .B

M
L /, h

L
MW.B

L
MW/, h

MW
L .BMW

L /, hLW .B
L
W / and

hWL .B
W
L / is in general a subset of either hFM .B

F
M /, h

M
F .B

M
F /, h

F
W .B

F
W /, h

W
F .B

W
F /,

hFL
W .B

FL
W / or hWFL.B

W
FL/.

The question if similar inclusions to the ones in Propositions 5.8 or 5.9 are
valid for the Wolfe vector duals to .PVC/ comes very natural, but, even if .PVC/
is a convex vector optimization problem, has a negative answer, like its scalar
counterpart. In Example 5.21 we have already seen that the image sets of the Wolfe
vector duals of Lagrange type .DVCL

W / and .DVCW
L / are in general not included

in the ones of their counterparts of Fenchel-Lagrange or Fenchel type. Now let us
show that the other possible inclusions do not hold in general.

Example 5.22. Let X D R, Y D R, C D RC, V D R
2, K D R

2C, V � D R
2 [

f1
R
2
C

g, S D R,

f W R ! .R2/�; f .x/ D

8
<̂

:̂



1

1

�
x; if x > 0;

1
R
2
C

; otherwise;

and

h W R ! R; h.x/ D
� �x; if x � 0;

0; otherwise:

Note that A D RC and for all v� D .v�
1 ; v

�
2 /

> 2 intR2C and z� � 0 one has

@..v�f /C .z�h/C ıS /.u/ D @.v�f /.u/ D
� fv�

1 C v�
2 g; if u > 0;

;; otherwise:

Consequently, BL
W D BW

L D ;.
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On the other hand it can be shown that
�
.1=2; 1=2/>; 1; 1; 0; 1; .1; 1/>

� 2 BFL
W ,

thus .0; 0/> 2 hFL
W .B

FL
W /, while ..1=2; 1=2/>; 1; 1; .0; 0/>; 0; 1/ 2 BW

FL, thus
.0; 0/> 2 hWFL.B

W
FL/, too. Indeed, for v� D .1=2; 1=2/>, t� D 1, y� D 1,

v D .0; 0/>, u D 0 and t D 1, the validity of the subdifferential constraint was
proven in Example 5.11, while the inequality constraint that appears in .DVCW

FL/

means hv�; vi � hy�; ui C .v�f /�.y�/ C .z�h/.u/ D h.1=2; 1=2/>; .0; 0/>i �
h1; 0i C ..1=2; 1=2/>f /�.1/ C .1h/ .0/ D 0, which is true. Moreover, NA .0/ D
.�1; 0�, so �1 2 NA , consequently,

�
.1=2; 1=2/>; 1; 0; 1; .1; 1/>

� 2 BF
W , while

..1=2; 1=2/>; 1; .0; 0/>; 0; 1/ 2 BW
F , thus .0; 0/> 2 hFW .BF

W / \ hWF .BW
F /.

Therefore, neither of hFW .B
F
W /, h

W
F .B

W
F /, h

FL
W .B

FL
W / and hWFL.B

W
FL/ is in general

a subset of either hLW .B
L
W / or hWL .B

W
L /.

Example 5.23. Let X D R
2, Y D R, C D RC, V D R

2, K D R
2C,

S D
�
.x1; x2/

> 2 R
2 W 0 � x1 � 2;

3 � x2 � 4; if x1 D 0;

1 � x2 � 4; if x1 2 .0; 2�
�
;

f W R
2 ! R

2, f .x1; x2/ D .x2; x2/
> and h W R

2 ! R, h.x1; x2/ D x1. Then
A D f0g � Œ3; 4�.

Since, for Nv� D .1=2; 1=2/> it holds .0; 1/> 2 @.Nv�f /.0; 3/ \ .�NA .0; 3//, it
follows that .3; 3/> 2 hFW .BF

W / and, via Theorem 5.51, .3; 3/> 2 hWF .BW
F /, too.

On the other hand, for v� 2 intR2C, u 2 S , y� 2 R
2 and z� � 0, 0 2 @.v�f /.u/C

@..z�h/C ıS /.u/ if and only if one concomitantly has .0; 1/> 2 @.v�f /.u/ \ .�@.
.z�h/ C ıS /.u//, z� D 0 and u 2 .0; 2� � f1g. But then h.u/ > 0, so .DCVFL

M / is
infeasible.

As f and h are continuous, the condition (ii) in Remark 5.30 is fulfilled and it
follows that for the vector optimization problem we are dealing with the vector dual
problems .DCVFL

W / and .DCVL
W / are equivalent. The same conclusion can be drawn

for the pairs of vector problems .DCVW
FL/ and .DCVW

L /, .DCVFL
MW/ and .DCVL

MW/,
and .DCVMW

FL / and .DCVMW
L /, respectively, too.

For some v� 2 intR2C, u 2 S , z� � 0 and r 2 R
2 n f0g, one has 0 2

@
�
.v�f / C .z�h/ C ıS

�
.u/ if and only if z� D 0 and u 2 .0; 2� � f1g. Then

hLW .v
�; z�; u; r/ D hLMW.v

�; z�; u/ D f .u/ D .u2; u2/> D .1; 1/>, consequently
hLW .B

L
W / D hFL

W .B
FL
W / D hLMW.B

L
MW/ D hFL

MW.B
FL
MW/ D f.1; 1/>g.

Moreover, assuming that .3; 3/> 2 hWL .B
W
L /, it follows that for some v� D

.v�
1 ; v

�
2 /

> 2 intR2C one has .v�
1 C v�

2 /.3 � 1/ � 0, which cannot happen and
analogously one can prove that .3; 3/> … hMW

L .BMW
L /. Actually, it holds

hWL .B
W
L / D hWFL.B

W
FL/ D hMW

L .BMW
L / D hMW

FL .B
MW
FL /

D
�


v1
v2

�
2 R

2 W v�
1 .v1 � 1/C v�

2 .v2 � 1/ � 0; v�
1 ; v

�
2 > 0

�
:



5.5 Comparisons Between the Vector Duals 175

Therefore, neither of hFW .B
F
W / and hWF .B

W
F / is in general a subset of either hFL

MW
.BFL

MW/; h
MW
FL .B

MW
FL /, h

L
MW.B

L
MW/, h

MW
L .BMW

L /, hFL
W .B

FL
W /, h

W
FL.B

W
FL/, h

L
W .BL

W / or
hWL .B

W
L /. Moreover one can note that, as a byproduct, we have identified another

situation where the image set of a vector dual of classical type is strictly included in
its alternative counterpart.

Example 5.24. Consider again the situation from Examples 5.14 and 5.16. We have
A D .0;C1/, NA .u/ D f0g for all u 2 A , @.v�f /.u/ D fv�

1 C v�
2 g for all

v� D .v�
1 ; v

�
2 /

> 2 intR2C and u 2 R, thus @.v�f /.u C y/ \ .�NA .u// D ; for all
u 2 S and all y 2 R. Consequently, .DVCF

W / and .DVCW
F / are infeasible. Moreover,

via Propositions 5.4 and 5.7, respectively, .DVCF
M / and .DVCM

F / are infeasible, too.
On the other hand, we have seen in Examples 5.14 and 5.16 that .0; 0/> 2

hFL
MW.B

FL
MW/ \ hMW

FL .B
MW
FL / and it can be easily shown that

�
.1=2; 1=2/>; 0;

1; 0; 1; .1; 1/>
� 2 BFL

W and
�
.1=2; 1=2/>; 0; 0; .0; 0/>; 0; 0

� 2 BW
FL, thus

.0; 0/> 2 hFL
W .B

FL
W / \ hWFL.B

W
FL/, too.

Therefore, neither of hFL
MW.B

FL
MW/, h

MW
FL .B

MW
FL /, h

FL
W .B

FL
W / and hWFL.B

W
FL/ is in

general a subset of either hFM .B
F
M /, h

M
F .B

M
F /, h

F
W .B

F
W / or hWF .B

W
F /.

Remark 5.55. Fixing r 2 K n f0g, one can show similar facts for the vector
dual .DVGW r / and its special cases. Note also that the situations presented in
Examples 5.23 and 5.24 prove that a counterpart of Proposition 5.11 with the
Fenchel type vector dual instead of the Lagrange one considered there is not valid
in general.

Remark 5.56. Investigations on vector duality similar to the ones performed in
Sects. 5.3 and 5.4 can be made with respect to weakly efficient solutions, too. The
differences consist in the fact that the vector duals are reformulated by taking the
variable v� to belong to K� n f0g instead of K�0, while for the Wolfe vector duals
of classical type one shall also take r 2 intK or r 2 qiK with K closed, and in the
fact that instead of efficient and properly efficient solutions we deal then only with
weakly efficient solutions.



Chapter 6
Vector Duality for Linear and Semidefinite
Vector Optimization Problems

6.1 Historical Overview and Motivation

While the scalar linear optimization problems were intensively studied, inclusive
via duality, and the things regarding them are settled down, the investigations on
their vector counterparts are far from being complete. The first papers on linear
vector duality were due to Gale, Kuhn and Tucker (cf. [96]), Kornbluth (cf. [150]),
Schönefeld (cf. [187]) and Rödder (cf. [181]), while Isermann was the one who
introduced in [132, 133] the classical vector dual problem to a primal linear vector
optimization problem in finitely dimensional spaces. Moreover, he compared his
results to the previously mentioned ones, pointing which of them could be recovered
as special cases of his approach. He has also proven in [131] that the proper efficient
solutions in the sense of linear scalarization of a linear vector optimization problem
in finitely dimensional spaces coincide with its efficient ones, result which was
shown, independently, also by Focke in [94] and Hartley in [118]. Another vector
dual problem to a linear vector optimization one is the so-called abstract vector dual
mentioned in [138] where its equivalence to Isermann’s one was proven. Moreover,
Jahn has noted in [138, 140] that both these vector duals have as major drawback
the fact that when the constraint consists of a homogenous linear inequality system
the vector strong duality fails. This issue solved by the Lagrange type vector
dual proposed by Jahn in [138] (see also the vector dual due to Kolumbán from
[149]) and also in [117], where a new vector dual for the classical linear vector
optimization problem was introduced by considering as the objective function a
set-valued mapping. Specializing the Fenchel-Lagrange type vector dual introduced
in [54, 55, 200] for a linear vector optimization problem delivers for the latter a
vector dual lacking the mentioned weak point, too. Let us also mention the so-called
geometric vector dual to a linear vector optimization problem due to Nakayama
(cf. [170] – not to be confused with the geometric duality due to Peterson, shown
in [36] to be a special case of the Fenchel-Lagrange duality) and the parametric
vector dual proposed by Luc in [156], that encompasses as special case another

© Springer International Publishing Switzerland 2015
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so-called geometric vector dual to the primal classical linear vector optimization
problem introduced in [121]. However, most of the mentioned vector duals to a
linear vector optimization problem were given only in finitely dimensional spaces,
with the image space of the primal problem partially ordered by the corresponding
nonnegative orthant.

Motivated by this situation, we assign in Sect. 6.2 a new vector dual with
respect to efficient solutions to the classical vector optimization problem defined
in finitely dimensional spaces, but with the image space of the primal problem
partially ordered by an arbitrary convex cone, following our paper [51]. This vector
dual represents an extension to the case when the image space of the primal
problem is partially ordered by an arbitrary convex cone of the Fenchel-Lagrange
type vector dual introduced in [54, 55, 200], originally considered only with the
mentioned image space partially ordered by the corresponding nonnegative orthant.
Our investigations show that the vector dual we propose, unlike the mentioned
Lagrange type one from [138], retains the form of the classical vector dual due
to Isermann, “curing” moreover its vulnerability, and, unlike its counterpart from
[117], is defined without resorting to set-valued optimization constructions and
do not involve the determination of the sets of efficient solutions of two vector
optimization problems. Moreover, we deal with some vector duals to the classical
linear vector optimization problem with respect to weakly efficient solutions, too.
As one can see in Sect. 6.3, the vector dual with respect to efficient solutions we
introduced can be extended to infinitely dimensional spaces (cf. [34]). In the latter
setting not all the nice properties of the finitely dimensional linear vector duality
are preserved, for instance in the strong and converse duality statements one needs
now the fulfillment of a regularity condition. Another vector dual we extend to this
framework is the mentioned one from [117] and we show that the inclusions of
the image sets of the vector duals we consider can be extended from finitely to
infinitely dimensional spaces, too. Similar investigations are done with respect to
weakly efficient solutions in the latter framework, too.

Matrix functions play an important role in optimization, too, especially in
connection to the cone of symmetric positive semidefinite matrices which induces
the Löwner partial ordering on the corresponding space of symmetric matrices.
Besides numerous papers on scalar optimization, one can find contributions to vec-
tor optimization where such functions are involved. For instance in [201] we dealt
with vector duality for convex vector optimization problems subject to semidefinite
constraints, while in [111,112] there were considered vector optimization problems
consisting in vector minimizing matrix functions with respect to the cone of the
symmetric positive semidefinite matrices under semidefinite constraints. Motivated
by them and also by the discussions with Y. Ledyaev and L.M. Graña Drummond,
respectively, at some conferences, regarding how can the results from Sect. 6.2 be
extended for semidefinite vector problems, we propose a vector duality approach
inspired by the one considered for the linear vector optimization problems for
dealing via vector duality with vector optimization problem similar to the ones from
[111, 112] mentioned above.
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6.2 Linear Vector Duality in Finitely Dimensional Spaces

In this section we will revisit the vector duality for the classical linear vector
optimization problem in finitely dimensional spaces, providing a new vector dual
problem to this problem.

6.2.1 The Classical Linear Vector Optimization Problem

Let the space R
k be partially ordered by a nontrivial pointed closed convex cone

K � R
k , L 2 R

k�n, A 2 R
m�n and b 2 R

m. Note that since K is a closed convex
cone in a finitely dimensional space, it holds K�0 D qiK� D intK�.

The classical linear vector optimization problem is

.PLF/ Min
x2A

Lx;

where

A D ˚
x 2 R

nC W Ax D b
�
:

Recall that an element Nx 2 A is said to be a properly efficient solution to .PLF/
in the sense of linear scalarization if L Nx 2 PMinLS.L.A /;K/, i.e. there exists a
� 2 intK� such that �>.L Nx/ � �>.Lx/ for all x 2 A , and the set of all the
properly efficient solutions to .PLF/ in the sense of linear scalarization is denoted
by PE LS.PLF/. An element Nx 2 A is said to be an efficient solution to .PLF/ if
L Nx 2 Min.L.A /;K/, i.e. there exists no x 2 A such that Lx �K L Nx, and the set of
all the efficient solutions to .PLF/ is denoted by E .PLF/. Of course each properly
efficient solution Nx to .PLF/ in the sense of linear scalarization is also efficient to it.
Let us show that for .PLF/ these two classes of solutions actually coincide.

Theorem 6.1. One has PE LS.PLF/ D E .PLF/.

Proof. Since PE LS.PLF/ � E .PLF/, we have to prove only the opposite inclu-
sion. Let Nx 2 A be an efficient solution to .PLF/. As A is a polyhedral set, [178,
Theorem 19.3] yields that L.A / is polyhedral, too. Consequently, also L.A /�L Nx
is a polyhedral set. The efficiency of Nx to .PLF/ yields .L.A /�L Nx/\.�K/ D f0g,
thus we are allowed to apply Lemma 1.3, which guarantees the existence of a
� 2 R

k n f0g for which

�>.�k/ < 0 � �>.Lx � L Nx/ 8k 2 K n f0g 8x 2 A : (6.2.1)

Since �>k > 0 for all k 2 K n f0g, it follows that � 2 intK�. From (6.2.1) we
obtain �>.L Nx/ � �>.Lx/ for all x 2 A , which, taking into account that � 2 intK�,
means actually that Nx 2 PE LS.PLF/ and the conclusion follows. ut
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Remark 6.1. In Theorem 6.1 we extend the classical result proven in [94, 131]
for the special case K D R

kC. The statement remains valid when the feasible
set of .PLF/ is replaced by a set eA for which L.eA / is polyhedral. Actually, the
assertion of Theorem 6.1 can be extended for an arbitrary polyhedral set M � R

k ,
any minimal point of which being properly minimal to it in the sense of linear
scalarization, too, as mentioned in Remark 3.24. The same conclusion can be
extracted from [118, Theorem 5.4], via [48, Proposition 2.1.1].

Remark 6.2. In the literature there were proposed several concepts of properly
efficient solutions to a vector optimization problem, that can be derived from the
proper minimality notions mentioned in Sect. 3.2. Taking into account (3.2.1) and
[48, Proposition 2.4.7], Theorem 6.1 yields that for .PLF/ the properly efficient
solutions in the sense of linear scalarization coincide also with the properly efficient
solutions to .PLF/ in the senses of Geoffrion, Hurwicz, Borwein, Benson, Henig
and Lampe and generalized Borwein, respectively. It is obvious then that it is enough
to deal only with the efficient solutions to .PLF/, since they coincide with most of
the types of properly efficient solutions considered in the literature.

6.2.2 Vector Duals to the Classical Linear Vector Optimization
Problem

The first relevant contributions to the study of vector duality for .PLF/were brought
by Isermann in [132, 133] for the case K D R

kC. The vector dual he assigned to it,
extended to the present framework to

.DLFI / Max
U2BI

F

hIF .U /;

where

BI
F D

n
U 2 R

k�m W .L � UA/.RnC/ \ .�K/ D f0g
o

and

hIF .U / D Ub;

turned out to work well only when b ¤ 0 (see [138]), otherwise its image set
containing only the element 0 when the dual is feasible. The same drawback was
noticed in [138, 140] also for the so-called dual abstract optimization problem
to .PLF/

.DLFJ / Max
.�;U /2BJ

F

hJF .�; U /;
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where

BJ
F D

n
.�; U / 2 intK� � R

k�m W .L � UA/>� 2 R
nC
o

and

hJF .�; U / D Ub:

This issue was solved first by particularizing the general vector Lagrange type
dual introduced in [138] (see also [149]), a vector dual to .PLF/ for which vector
duality statements can be given for every choice of b 2 R

m being obtained, namely

.DLFL/ Max
.�;z;v/2BL

F

hLF .�; z; v/;

where

BL
F D

n
.�; z; v/ 2 intK� � R

m � R
k W �>v � z>b � 0; L>� � A>z 2 R

nC
o

and

hLF .�; z; v/ D v:

But this vector dual has a different construction than the previous ones, so,
recently, in [117] another vector dual to .PLF/ was proposed, namely

.DLFH/ Max
U2BH

F

hHF .U /;

where

BH
F D

n
U 2 R

k�m W .L � UA/.RnC/ \ .�K/ D f0g
o

and

hHF .U / D Ub C Min
�
.L � UA/.RnC/;K

�
:

The objective function of this vector dual extends the ones of the classical
vector duals to .PLF/ mentioned above, but it contains itself a linear vector
optimization problem, too. Moreover, the vector duality assertions for this vector
dual problem were shown via quite complicated set-valued optimization techniques.
Other multiobjective dual problems with set-valued objective functions to a linear
vector optimization problem were proposed in [122, 123]. As one can notice, the
dual given in the first mentioned paper reduces to the one of Lagrange type as
given in [138], while the objective of the second one is expressed by means of
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the efficient set of a polyhedral set, as happens in .DLFH/. Several primal-dual
pairs of linear vector problems and some relations between them were treated in
[137, 156], too. For primal problems of type .PLF/ one can rediscover .DLFI /,
.DLFL/, two vector duals of Wolfe type, which, as shown in [137], reduce to
the Lagrange type one, and the mentioned parametric vector dual from [156]. In
[54, 200] a vector duality theory with dual vector-valued function objectives for
general convex primal vector optimization problems in finitely dimensional spaces
with the image space partially ordered by the corresponding nonnegative orthant and
with convex geometric and inequality constraints was introduced. The linear vector
optimization case is covered, also in the case of b D 0, but not explicitly handled
until it was revisited in [48].

Starting from the latter vector dual, we proposed in [51] a vector dual problem to
.PLF/ for the framework considered within this section, i.e. with the image space
of the primal problem partially ordered by an arbitrary nontrivial pointed closed
convex cone, namely

.DLF/ Max
.�;U;v/2BF

hF .�; U; v/;

where

BF D
n
.�; U; v/ 2 intK� � R

k�m � R
k W �>v D 0; .L � UA/>� 2 R

nC
o

and

hF .�; U; v/ D Ub C v:

Remark 6.3. As suggested in [48, Remark 5.2.5.], one can modify the constraint
�>v D 0 in .DLF/ into �>v � 0, obtaining another vector dual problem to .PLF/,
namely

.DLFD/ Max
.�;U;v/2BD

F

hDF .�; U; v/;

where

BD
F D

n
.�; U; v/ 2 intK� � R

k�m � R
k W �>v � 0; .L � UA/>� 2 R

nC
o

and

hDF .�; U; v/ D Ub C v;

afterwards considered also in [156] for the case K D R
kC.
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Remark 6.4. If .�; U; v/ 2 BF , one can easily note that v … .K [ .�K// n f0g,
while when .�; U; v/ 2 BD

F it follows that v … K n f0g.

We delivered a complete analysis of the inclusion relations between the image
sets of the vector dual problems to .PLF/ introduced above in the case K D R

kC
in [48, Section 5.5]. Let us show that the inclusion schemes given in [48, Remark
5.5.3] remain valid in the more general framework considered here, too.

We begin with a Farkas type result which allows us to formulate the feasible sets
of the vector dual problems to .PLF/ in a different manner, yielding moreover the
coincidence of the image sets of .DLFI / and .DLFJ /.

Proposition 6.1. Let U 2 R
k�m. Then .L� UA/.RnC/\ .�K/ D f0g if and only if

there exists a � 2 intK� such that .L � UA/>� 2 R
nC.

Proof. “)” The set .L�UA/.RnC/ is polyhedral and has with the nontrivial pointed
closed convex cone �K only the origin as a common element. Applying Lemma 1.3
we obtain a � 2 R

k n f0g for which

�>.�k/ < 0 � �>..L � UA/x/ 8x 2 R
nC 8k 2 K n f0g: (6.2.2)

Like in the proof of Theorem 6.1 we obtain that � 2 intK� and by (6.2.2) it follows
immediately that .L � UA/>� 2 R

nC.
“(” Assuming the existence of an x 2 R

nC for which .L� UA/x 2 .�K/ n f0g,
it follows �>..L � UA/x/ < 0, but �>..L � UA/x/ D ..L � UA/>�/>x � 0

since .L � UA/>� 2 R
nC and x 2 R

nC. The so-obtained contradiction yields .L �
UA/.RnC/ \ .�K/ D f0g. ut

A direct consequence of this statement is the following assertion, already proven
in case K D R

kC in [138].

Proposition 6.2. One has hIF .B
I
F / D hJF .B

J
F /.

Remark 6.5. In [117] it is mentioned that hJF .B
J
F / � hHF .B

H
F /, an example when

these sets do not coincide being also provided.

For the image sets of .DLF/ and .DLFH/ we have the following assertion.

Proposition 6.3. One has hHF .B
H
F / � hF .BF /.

Proof. Let d 2 hHF .B
H
F /. Thus, there exist NU 2 BH

F and an efficient solution
Nx 2 R

nC to the vector optimization problem

Min
x2Rn

C

.L � NUA/x; (6.2.3)

such that d D hHF .
NU/ D NUb C .L � NUA/ Nx.

The efficiency of Nx to the problem (6.2.3) yields, via Theorem 6.1, that Nx is a
properly efficient solution to this problem, too. Consequently, there exists a � 2
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intK� such that

�>..L � NUA/ Nx/ � �>..L � NUA/x/ 8x 2 R
nC: (6.2.4)

This yields �>..L � NUA/ Nx/ � 0. On the other hand, taking in (6.2.4) x WD x C
Nx 2 R

nC it follows immediately �>..L � NUA/x/ � 0 for all x 2 R
nC. Therefore

�>..L� NUA/ Nx/ � 0, consequently �>..L� NUA/ Nx/ D 0. Taking Nv D .L� NUA/ Nx,
it follows �> Nv D 0 and, since �>.L � NUA/ 2 R

nC, also .�; NU ; Nv/ 2 BF . As
d D hH. NU/ D NUb C .L � NUA/ Nx D NUb C Nv D h.�; NU ; Nv/ 2 h.BF /, we obtain
hHF .B

H
F / � hF .BF /. ut

Remark 6.6. The inclusion given in Proposition 6.3 is in general strict, as the
situation presented in Example 6.1 shows.

Example 6.1 (cf. [61], see also [48,117]). LetL D .1;�1/>, n D 1, k D 2,A D 0

and b D 0. The classical linear vector optimization primal problem is now

.PLF/ Min
x2RC



x

�x
�
:

It is not difficult to note that .DLFH/ actually coincides with .PLF/, therefore
hHF .B

H
F / D f.x;�x/ W x 2 RCg. On the other hand, .DLF/ turns into

.DLF/ Max
�1��2>0;

v2R

 
��2
�1

1

!

v;

It is clear that, for instance .�1=2; 1/> 2 hF .BF / n hHF .BH
F /. Therefore,

hHF .B
H
F /   hF .BF /.

Remark 6.7. By construction it is obvious that one has hF .BF / � hDF .B
D
F /.

For the image sets of .DLFD/ and .DLFL/ we have the following assertion.

Proposition 6.4. One has hDF .B
D
F / D hLF .B

L
F /.

Proof. “�” Let d 2 hDF .B
D
F /. Thus, there exist .�; U; v/ 2 BD

F such that d D
hDF .�; U; v/ D Ub C v. Take z WD U>�. Then �>d D �>.Ub C v/ D .�>.Ub C
v//> D b>.U>�/ C v>� � b>z, while L>� � A>z D L>� � A>.U>�/ D
.L � UA/>� 2 R

nC. Consequently, .�; z; d / 2 BL
F and, since d D hDF .�; U; v/ D

hLF .�; z; d / 2 hLF .BL
F /, it follows that hDF .B

D
F / � hLF .B

L
F /.

“	” Let now d 2 hLF .B
L
F /. Thus, there exist .�; z; d / 2 BL

F such that d D
hLF .�; z; d /. As � 2 intK�, there exists a Q� 2 K such that �> Q� D 1. Take U WD
Q�z> and v WD d � Ub. Then �>v D �>d � �>. Q�z>/b D �>d � z>b � 0 and
.L� UA/>� D L>��A>.z Q�>/� D L>��A>z 2 R

nC. Consequently, .�; U; v/ 2
BD
F and, since d D hLF .�; z; d / D Ub C v D hDF .�; U; v/ 2 hDF .B

D
F /, it follows

that hDF .B
D
F / 	 hLF .B

L
F /. ut
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Remark 6.8. The inclusion given in Remark 6.7 is in general strict, as the situation
presented in Example 6.2 shows, via Proposition 6.4.

Example 6.2 (cf. [51], see also [48]). Let n D 1, k D 2, m D 2, L D .0; 0/>,
A D .1; 1/>, b D .�1;�1/> and K D R

2C. Then, for v D .�1;�1/>, � D
.1; 1/> and z D .0; 0/> we have .�; z; v/ 2 BL since �>v D �2 � 0 D z>b and
L>� � A>z D .0; 0/> 2 R

2C. Consequently, hLF .�; z; v/ D .�1;�1/> 2 hLF .BL
F /.

On the other hand, assuming that .�1;�1/> 2 hF .BF /, there must exist
. N�; NU ; Nv/2 BF such that hF . N�; NU ; Nv/D NUb C Nv D .�1;�1/>. Then N�>. NUb C Nv/
D � N�1� N�2 <0, where N�D . N�1; N�2/> 2 intR2C. But N�>. NUbC Nv/D N�> NU.�1;�1/>
D �. NUA/> N� D .L� NUA/> N� � 0, which contradicts what we obtained above as a
consequence of the assumption we made, hence .�1;�1/> … hF .BF /.

Therefore, hF .BF /   hLF .B
L
F / D hDF .B

D
F /.

Taking into consideration what we have proven in this subsection, one can
conclude that the images of the feasible sets through their objective functions of
the vector duals to .PLF/ we dealt with satisfy the following inclusions chain

hIF .B
I
F / D hJF .B

J
F /   hHF .B

H
F /   hF .BF /   hDF .B

D
F / D hLF .B

L
F /; (6.2.5)

extending thus the scheme from [48, Remark 5.5.3] to the situation when the image
space of the considered vector problems is partially ordered by a nontrivial pointed
closed convex cone K � R

k .

6.2.3 Duality Results for the Classical Linear Vector
Optimization Problem and Its Vector Duals

Now let us deliver for the primal-dual pair of vector optimization problems .PLF/�
.DLF/ weak, strong and converse duality statements.

Theorem 6.2. There exist no x 2 A and .�; U; v/ 2 BF such that Lx �K Ub C v.

Proof. Assume the existence of x 2 A and .�; U; v/ 2 BF such that Lx �K UbCv.
Then 0 < �>.Ub C v � Lx/ D �>.U.Ax/ � Lx/ D �..L � UA/>�/>x � 0, since
.L � UA/>� 2 R

nC and x 2 R
nC. But this cannot happen, therefore the assumption

we made is false. ut
Like in the scalar linear case, for strong and converse vector duality no regularity

conditions have to be satisfied.

Theorem 6.3. If Nx 2 E .PLF/, there exists . N�; NU ; Nv/ 2 E .DLF/ such that L Nx D
NUb C Nv.

Proof. The efficiency of Nx to .PLF/ yields via Theorem 6.1 that Nx 2 PE LS.PLF/.
Thus there exists a N� 2 intK� such that N�>.L Nx/ � N�>.Lx/ for all x 2 A .
Consequently, one has strong duality for the scalar optimization problem
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inf
x2A

N�>.Lx/

and its dual

sup
�2Rm;

L> N�CA>�2Rn
C

n
� �>b

o
;

i.e. their optimal objective values coincide and the dual has an optimal solution, say
N�. Consequently, N�>.L Nx/C N�>b D 0 and L> N�C A> N� 2 R

nC.
As N� 2 intK�, there exists a Q� 2 K n f0g such that N�> Q� D 1. Let NU WD �Q� N�>

and Nv WD L Nx � NUb. It is obvious that NU 2 R
k�m and Nv 2 R

k . Moreover, N�> Nv D
N�>.L Nx � NUb/ D N�>.L Nx/ C N�>b D 0 and .L � NUA/> N� D L> N� C A> N� 2 R

nC.
Consequently, . N�; NU ; Nv/ 2 BF and NUb C Nv D NUb C L Nx � NUb D L Nx. Assuming
that . N�; NU ; Nv/ … E .DLF/, i.e. the existence of another feasible solution .�; U; v/ 2
BF satisfying NUb C Nv �K Ub C v, it follows L Nx �K Ub C v, which contradicts
Theorem 6.2. Consequently, . N�; NU ; Nv/ 2 E .DLF/ and L Nx D NUb C Nv. ut
Theorem 6.4. If . N�; NU ; Nv/ 2 E .DLF/, there exists an Nx 2 E .PLF/ such that L Nx D
NUb C Nv.

Proof. Let Nd WD NUb C Nv 2 Max.hF .BF /;K/. Assume that A D ;. Then b ¤ 0

and, by the Farkas Lemma there exists a Nz 2 R
m such that b>Nz > 0 andA>Nz 2 �R

nC.
As N� 2 intK�, there exists a Q� 2 K n f0g such that N�> Q� D 1. Let QU WD Q�Nz> C NU 2
R
k�m. We have .L � QUA/> N� D .L � NUA/> N� � A>Nz 2 R

nC, thus . N�; QU ; Nv/ 2 BF .
But h. N�; QU ; Nv/ D QUbC Nv D Q�Nz>bC NUbC Nv D Q�Nz>bC Nd �K

Nd , which contradicts
the efficiency of . N�; NU ; Nv/ to .DLF/. Consequently, A ¤ ;.

Suppose now that Nd … L.A /. Using Theorem 6.2, it follows easily that Nd …
L.A /CK, too. Since A D A�1.b/\R

nC, we have 0CA D 0C.A�1.b//\0C
R
nC.

As 0C.A�1.b// D A�1.0Cfbg/ D A�1.0/ and 0C
R
nC D R

nC, it follows 0CA D
A�1.0/ \ R

nC. Then 0CL.A / D L.0CA / D L.A�1.0/ \ R
nC/ D fLx W x 2

R
nC;Ax D 0g � .L � NUA/.RnC/ and, obviously, 0 2 0CL.A /.
Using Proposition 6.1, we obtain .L � NUA/.RnC/ \ .�K/ D f0g, thus, taking

into account the inclusions from above, we obtain 0CL.A /\ .�K/ D f0g � K D
0CK. This assertion and the fact that L.A / is polyhedral and K is closed convex
yield, via [178, Theorem 20.3], that L.A / C K is a closed convex set. Applying
[178, Corollary 11.4.2] we obtain a � 2 R

k n f0g and an ˛ 2 R such that

�> Nd < ˛ < �>.Lx C k/ 8x 2 A 8k 2 K: (6.2.6)

As K is a cone, � 2 K�. Taking k D 0 in (6.2.6) it follows

�> Nd < ˛ < �>.Lx/ 8x 2 A : (6.2.7)
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On the other hand, for all x 2 A one has 0 � N�>..L� NUA/x/ D N�>.Lx � NUb/ D
N�>.Lx � NUb/ � N�> Nv D N�>.Lx � Nd/, therefore

N�> Nd � N�>.Lx/ 8x 2 A : (6.2.8)

Now, taking ı WD ˛��> Nd > 0 it follows Nd>.s N�C.1�s/�/ D ˛�ıCs. N�> Nd�˛Cı/
for all s 2 R. Note that there exists an Ns 2 .0; 1/ such that Ns. N�> Nd � ˛ C ı/ < ı=2

and Ns. N�> Nd � ˛/ > �ı=2, and let � WD Ns N�C .1 � Ns/� . It is clear that � 2 intK�.
By (6.2.7) and (6.2.8) it follows s N�> Nd C .1 � s/˛ < .s N�C .1 � s/�/>.Lx/ for

all x 2 A and all s 2 .0; 1/, consequently

�> Nd D Ns N�> Nd C .1 � Ns/�> Nd D Ns N�> Nd C .1 � Ns/.˛ � ı/

<
ı

2
C Ns.˛ � ı/C .1 � Ns/.˛ � ı/ D ˛ � ı

2
< �>.Lx/ 8x 2 A :

(6.2.9)

Since there is strong duality for the scalar linear optimization problem

inf
x2A

�>.Lx/

and its Lagrange dual

sup
�2Rm;

L>�CA>�2Rn
C

n
� �>b

o
;

the latter has an optimal solution, say N�, and infx2A �
>.Lx/C N�>b D 0 and L>�C

A> N� 2 R
nC. As N� 2 intK�, there exists a Q� 2 K n f0g such that N�> Q� D 1. Let

U WD �Q� N�>. It follows that .L � UA/>� 2 R
nC and infx2A �

>.Lx/ D �>.Ub/.
Consider now the hyperplane H WD fUb C v W �>v D 0g, which is nothing but

the set fw 2 R
k W �>w D �>.Ub/g. Consequently, H � hF .BF /. On the other

hand, (6.2.9) yields �> Nd < �>.Ub/. Then there exists a Nk 2 K n f0g such that
�>. Nd C Nk/ D �>.Ub/, which has as consequence that Nd C Nk 2 H � hF .BF /.
Noting that Nd �K

Nd C Nk, we have just arrived to a contradiction to the maximality
of Nd to the set hF .BF /. Therefore our initial supposition is false, consequently
Nd 2 L.A /. Then there exists an Nx 2 A such that L Nx D Nd D NUb C Nv. Employing

Theorem 6.2, it follows Nx 2 E .PLF/. ut
Regarding necessary and optimality conditions for the primal-dual pair of vector

optimization problems .PLF/ � .DLF/ we make the following observation.

Remark 6.9. If Nx 2 A and . N�; NU ; Nv/ 2 BF are, like in Theorems 6.3 or 6.4, such
that L Nx D NUb C Nv, then the complementarity condition Nx>.L � NUA/> N� D 0 is
fulfilled.

Analogously to [117, Theorem 3.14], we summarize the duality results proven
above in a general duality statement for .PLF/ and .DLF/.
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Corollary 6.1. One has Min.L.A /;K/ D Max.hF .BF /;K/.

To complete the investigation on the primal-dual pair of vector optimization
problems .PLF/ � .DLF/ we give also the following assertions concerning the
infeasibility cases.

Theorem 6.5. If A ¤ ;, one has E .PLF/ D ; if and only if BF D ;.

Proof. “)” By [117, Lemma 2.1], the lack of efficient solutions to .PLF/ yields
0CL.A /\.�K/nf0g ¤ ;. Then .L�UA/.RnC/\.�K/nf0g ¤ ; for allU 2 R

k�m
and employing Proposition 6.1 we see that BF cannot contain in this situation any
element.

“(” Assuming that .PLF/ has efficient solutions, Theorem 6.3 yields that also
.DLF/ has an efficient solution. But this cannot happen since the dual has no feasible
elements, consequently .PLF/ has no efficient solutions. ut
Theorem 6.6. If BF ¤ ;, one has E .DLF/ D ; if and only if A D ;.

Proof. “)” Assume that A ¤ ;. If .PLF/ has no efficient solutions, Theorem 6.5
would yield BF D ;, but this is false, therefore .PLF/must have at least an efficient
solution. Employing Theorem 6.3 it follows that .DLF/ has an efficient solution, too,
contradicting the assumption we made. Therefore A D ;.

“(” Assuming that .DLF/ has an efficient solution, Theorem 6.4 yields that
.PLF/ has an efficient solution, too. But this cannot happen since this problem has
no feasible elements, consequently .DLF/ has no efficient solutions. ut

For the classical vector dual problems to .PLF/, .DLFI / and .DLFJ / weak
duality holds in general, but for strong and converse duality one needs to impose
additionally the condition b ¤ 0 to the hypotheses of the corresponding theorems
given for .DLF/ (see also [48, Section 4.5 and Section 5.5]). For .DLFH/ all
three duality statements hold under the hypotheses of the corresponding theorems
regarding .DLF/, as proven in [117]. Concerning .DLFL/, weak and strong duality
were shown (for instance in [48, 140]), but the converse duality statement does not
follow directly from a more general case because there a regularity condition is
needed, so we prove it below.

Theorem 6.7. If . N�; Nz; Nv/ 2 E .DLFL/, there exists an Nx 2 E .PLF/ such that
L Nx D Nv.

Proof. Analogously to the proof of Theorem 6.4 it can be easily shown that A ¤ ;.
Since N� 2 intK�, there exists a Q� 2 K n f0g such that N�> Q� D 1. Let U WD .Nz Q�>/>.
Then U> N� D Nz Q�> N� D Nz. Thus, .L � UA/> N� D L> N� � A>U> N� D L> N� � A>Nz 2
R
nC. Assuming the existence of an x 2 R

nC for which .L � UA/x 2 �K n f0g, it
follows N�>..L � UA/x/ < 0. But N�>..L � UA/x/ D x>..L � UA/> N�/ � 0, since
x 2 R

nC and .L�UA/> N� 2 R
nC. This contradiction yields .L�UA/.RnC/\.�K/ D

f0g. Like in the proof of Theorem 6.4, this result, together with the facts thatL.A / is
polyhedral andK is closed convex implies, via [178, Theorem 20.3], thatL.A /CK
is a closed convex set. The existence of an Nx 2 A that is a properly efficient,
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thus also efficient, solution to .PLF/ fulfilling L Nx D Nv follows in the lines of [48,
Theorem 4.3.4] (see also [48, Section 4.5.1]). ut

The results given within this subsection can be summarized in the following
chain of inclusions and equalities involving the sets of maximal elements of the
sets mentioned in (6.2.5), namely

Max.hIF .B
I
F /;K/ D Max.hJF .B

J
F /;K/   Min.L.A /;K/ D Max.hHF .B

H
F /;K/

D Max.hF .BF /;K/ D Max.hDF .B
D
F /;K/ D Max.hLF .B

L
F /;K/:

Note that the inclusion turns into equality whenever b ¤ 0. Thus the second scheme
from [48, Remark 5.5.3] remains valid when the image space of the considered
vector problems is partially ordered by a nontrivial pointed closed convex coneK �
R
k .
Finally, let us provide as a byproduct a generalization of the classical alternative

statement due to Gale (see, for instance, [159, p. 35]), that was used in the literature
in investigations closely related to the ones from this section, as done for instance
in [48, Proposition 5.5.7].

Proposition 6.5. Let K � R
k be a nontrivial closed convex pointed cone, S � R

n

a nontrivial convex cone, W 2 R
k�n and v 2 R

k , such that W.S/ \ .�K/ D f0g
and W.S/ is closed. Then the system

�
�>v < 0;
�>W 2 S�;

has a solution � 2 intK� if and only if there is no x 2 S such that Wx � v 2 �K.

Proof. “)” Assuming the existence of an x 2 S such thatWx�v 2 �K, it follows
0 > �>.Wx � v/ > 0, which is a contradiction. Thus, no such x 2 S exists.

“(” The setW.S/�v is convex and closed, too, and due to the hypothesis has no
common elements with �K. Moreover, 0C.W.S/ � v/ D 0C.W.S// D W.S/ and
W.S/\.�K/ D f0g. Applying [117, Lemma 2.2(ii)], one obtains the existence of a
� 2 R

k n f0g such that �>k < 0 < �>w for all k 2 �K n f0g and all w 2 W.S/� v.
Because of the left inequality it follows that � 2 intK�. Moreover, 0 2 W.S/, and
the second inequality yields then 0 < �>.0 � v/, therefore �>v < 0. On the other
hand, assuming that there is some x 2 S such that �>Wx < 0 yields, because S
is a cone, that there exists an ˛ > 0 such that �>.˛Wx � v/ < 0, contradicting
the second inequality from above. Consequently, �>Wx � 0 for all x 2 S , which
yields �>W 2 S�. ut
Remark 6.10. A situation where the hypotheses of Proposition 6.5 are fulfilled
happens for instance when S is a polyhedral cone, in which case W.S/ is closed.
Taking S D R

n and K D R
kC Proposition 6.5 turns into the celebrated Gale’s

alternative theorem.
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6.2.4 Duality with Respect to Weakly Efficient Solutions

In this subsection we deliver vector duality statements for the classical linear vector
optimization problem in finitely dimensional spaces and its vector dual problems
with respect to weakly efficient solutions. To the framework considered in the rest
of this section we add the hypothesis that intK ¤ ;. The classical linear vector
optimization problem is in this case

.PLFw/ WMin
x2A

Lx;

where

A D ˚
x 2 R

nC W Ax D b
�
:

Recall that an element Nx 2 A is said to be a weakly efficient solution to .PLFw/ if
L Nx 2 WMin.L.A /;K/, and the set of all the weakly efficient solutions to .PLFw/

is denoted by W E .PLFw/. Since the hypotheses of Theorem 3.8 are satisfied, an
Nx 2 A turns out to be a weakly efficient solution to .PLFw/ if and only if there
exists a � 2 K� n f0g such that �>.L Nx/ � �>.Lx/ for all x 2 A .

Remark 6.11. We have seen in Theorem 6.1 that the properly efficient solutions to
.PLF/ in the sense of linear scalarization coincide with its efficient ones. This rises
the question whether the weakly efficient solutions to .PLFw/ and its efficient ones
coincide as well. The situation presented in Example 6.3 shows that in general these
classes of solutions to a linear vector optimization problem do not coincide.

Example 6.3. Let the classical vector optimization problem .PLF/ (respectively
.PLFw/) for n D 1, m D k D 2, A D .0; 0/>, b D .0; 0/>, L D .0; 1/>
and K D R

2C. Then A D RC and L.A / D f0g � RC. Whenever Nx � 0 there
exists a N� D .1; 0/ 2 R

2C n f0g such that N�>L. Nx/ D 0 � N�>L.x/ D 0 for all
x 2 A . Consequently, A D W E .PLFw/. On the other hand, whenever Nx > 0,
one has L. Nx=2/ D .0; Nx=2/> �

R
2
C

.0; Nx/> D L. Nx/, thus Nx … E .PLF/. Obviously,

E .PLF/ ¤ W E .PLFw/ in this situation.

The vector dual problems we assign to .PLFw/ with respect to weakly efficient
solutions are similar to the ones considered in Sect. 6.2.2. While for the vector duals
with respect to efficient solutions which have as a variable � 2 intK� one only has
to change this constraint into � 2 K� n f0g, in order to formulate the counterparts
with respect to weakly efficient solutions of the others we need a Farkas type result
similar to the one delivered in Proposition 6.1. Note that its proof does not use the
fact that the cone K is closed.

Proposition 6.6. Let U 2 R
k�m. Then .L� UA/.RnC/\ .� intK/ D ; if and only

if there exists a � 2 K� n f0g such that .L � UA/>� 2 R
nC.
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Proof. “)” The set .L� UA/.RnC/ is polyhedral, thus convex, and has no common
elements with the interior of the nontrivial pointed convex cone � intK [ f0g.
Applying Eidelheit’s separation statement for these sets we obtain a � 2 R

k n f0g
for which

�>.�k/ < 0 � �>..L � UA/x/ 8x 2 R
nC 8k 2 intK: (6.2.10)

Assuming that � … K� yields the existence of a k 2 intK such that �>.�k/ � 0,
that contradicts (6.2.10). Consequently, � 2 K� n f0g and by (6.2.10) it follows
immediately that .L � UA/>� 2 R

nC.
“(” Assuming the existence of an x 2 R

nC for which .L � UA/x 2 � intK,
it follows �>..L � UA/x/ < 0, but �>..L � UA/x/ D ..L � UA/>�/>x � 0

since .L � UA/>� 2 R
nC and x 2 R

nC. The so-obtained contradiction yields .L �
UA/.RnC/ \ .� intK/ D f0g. ut

Therefore, the Isermann type vector dual to .PLFw/ is

.DLFIw/ WMax
U2BI

Fw

hIFw
.U /;

where

BI
Fw

D
n
U 2 R

k�m W .L � UA/.RnC/ \ .� intK/ D ;
o

and

hIFw
.U / D Ub;

while the dual abstract optimization problem to .PLFw/ with respect to weakly
efficient solutions is

.DLFJw/ WMax
.�;U /2BJ

Fw

hJFw
.�; U /;

where

BJ
Fw

D
n
.�; U / 2 .K� n f0g/ � R

k�m W .L � UA/>� 2 R
nC
o

and

hJFw
.�; U / D Ub:

Like their counterparts considered with respect to efficient solutions, these vector
dual problems are not the best choices to work with in case b D 0 as, when feasible,
their image sets coincide with the set f0g. However, the other vector duals we assign
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to .PLFw/ do not share the mentioned vulnerability. The vector Lagrange type dual
(cf. [138], see also [149]) is

.DLFLw/ WMax
.�;z;v/2BL

Fw

hLFw
.�; z; v/;

where

BL
Fw

D
n
.�; z; v/ 2 .K� n f0g/ � R

m � R
k W �>v � z>b � 0; L>� � A>z 2 R

nC
o

and

hLFw
.�; z; v/ D v;

while the counterpart with respect to weakly efficient solutions of .DLF/ turns out
to be

.DLFw/ WMax
.�;U;v/2BFw

hFw.�; U; v/;

where

BFw D
n
.�; U; v/ 2 .K� n f0g/ � R

k�m � R
k W �>v D 0; .L � UA/>� 2 R

nC
o

and

hFw.�; U; v/ D Ub C v:

One can consider the counterparts with respect to weakly efficient solutions of
.DLFD/, too, namely (see also [48, 156])

.DLFDw / WMax
.�;U;v/2BD

Fw

hDFw
.�; U; v/;

where

BD
Fw

D
n
.�; U; v/ 2 .K� n f0g/ � R

k�m � R
k W �>v � 0; .L � UA/>� 2 R

nC
o

and

hDFw
.�; U; v/ D Ub C v;

and .DLFH/

.DLFHw / WMax
U2BH

Fw

hHFw
.U /;
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where

BH
Fw

D
n
U 2 R

k�m W .L � UA/.RnC/ \ .� intK/ D ;
o

and

hHFw
.U / D Ub C WMin

�
.L � UA/.RnC/;K

�
:

Remark 6.12. If .�; U; v/ 2 BFw , one can easily note that v … intK [ .� intK/,
while when .�; U; v/ 2 BD

Fw
it follows that v … intK.

An inclusion chain similar to the ones given for their counterparts with respect to
efficient solutions in (6.2.5) holds for these vector duals to .PLFw/, too, extending
thus the one given in [48, Section 5.5] for only some of them in case K D R

kC.
Therefore, it holds

hIFw
.BI

Fw
/ D hJFw

.BJ
Fw
/   hHFw

.BH
Fw
/   hFw.BFw/   hDFw

.BD
Fw
/ D hLFw

.BL
Fw
/;

(6.2.11)

where the proofs and counterexamples can be directly adapted from the ones
provided or mentioned in Sect. 6.2.2.

For the primal-dual pair of vector optimization problems .PLFw/ � .DLFw/

weak, strong and converse duality statements can be proven analogously to their
counterparts provided in Sect. 6.2.3 for the primal-dual pair .PLF/ � .DLF/.

Theorem 6.8. There exist no x 2 A and .�; U; v/ 2 BFw such that Lx <K Ub C v.

Like in the scalar linear case and in Sect. 6.2.3, for strong and converse vector
duality no regularity conditions need to be satisfied.

Theorem 6.9. If Nx 2 W E .PLFw/, there exists . N�; NU ; Nv/ 2 W E .DLFw/ such that
L Nx D NUb C Nv.

Proof. As Nx 2 W E .PLFw/, there exists a N� 2 K�nf0g such that N�>.L Nx/ � N�>.Lx/
for all x 2 A . Then there is strong duality for the scalar optimization problem
infx2A

N�>.Lx/ and dual problem which has thus an optimal solution, say N� 2 R
m.

Consequently, N�>.L Nx/ C N�>b D 0 and L> N� C A> N� 2 R
nC. The rest of the proof

follows in the lines of the one of Theorem 6.3, with the necessary modifications,
namely here N� 2 K� n f0g, Q� 2 intK and, finally, . N�; NU ; Nv/ 2 W E .DLFw/. ut
Theorem 6.10. If . N�; NU ; Nv/ 2 W E .DLFw/, then NUbC Nv 2 WMin.L.A /CK;K/.

Proof. Let Nd WD NUb C Nv 2 WMax.hFw.BFw/;K/. Analogously to the proof of
Theorem 6.4 one can show that A ¤ ;. Suppose now that Nd … L.A /CK. Using
the steps from the proof of Theorem 6.4, it follows that L.A / C K is a closed
convex set. Applying [178, Corollary 11.4.2] we obtain a � 2 R

k n f0g and an
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˛ 2 R such that

�> Nd < ˛ < �>.Lx C k/ 8x 2 A 8k 2 K: (6.2.12)

Furthermore, � 2 K�nf0g. In the lines of the proof of Theorem 6.4 we can construct
a � 2 K� n f0g. There is strong duality for the scalar linear optimization problem

inf
x2A

�>.Lx/

and its Lagrange dual

sup
�2Rm;

L>�CA>�2Rn
C

n
� �>b

o
;

so the latter has an optimal solution, say N�, and infx2A �
>.Lx/ C N�>b D 0 and

L>�CA> N� 2 R
nC. As N� 2 K�nf0g, there exists a Q� 2 intK such that N�> Q� D 1. Let

U WD �Q� N�>. It follows that .L� UA/>� 2 R
nC and infx2A �

>.Lx/ D �>.Ub/ and,
moreover, �> Nd < �>.Ub/. Then there exists a Nk 2 intK such that �>. Nd C Nk/ D
�>.Ub/.

Considering the hyperplane H WD fUb C v W �>v D 0g D fw 2 R
k W �>w D

�>.Ub/g � hFw.BFw/, Nd C Nk lies in it, thus also in hFw.BFw/. But Nd <K Nd C Nk,
so we have just arrived to a contradiction to the weak maximality of Nd to the image
set of the vector dual problem .DFLw/. Therefore our initial supposition is false,
consequently Nd 2 L.A /CK.

Then there exist Nx 2 A such that L Nx� NUb� Nv 2 �K and the conclusion follows
via Theorem 6.8. ut

Regarding necessary and optimality conditions for the primal-dual pair of vector
optimization problems .PLFw/ � .DLFw/ we make the following observation.

Remark 6.13. If Nx 2 A and . N�; NU ; Nv/ 2 BFw are, like in Theorem 6.9, such that
L Nx D NUbC Nv, then the complementarity condition Nx>.L� NUA/> N� D 0 is fulfilled.

Analogously to Corollary 6.1, we summarize the duality results proven above in
a general duality statement for .PLF/ and .DLF/.

Corollary 6.2. One has

WMin.L.A /;K/ � WMax.hFw.BFw/;K/ � WMin.L.A /CK;K/:

To complete the investigation on the primal-dual pair of vector optimization
problems .PLFw/ � .DLFw/ we give also the following assertions.

Theorem 6.11. If A ¤ ;, one has W E .PLFw/ D ; if and only if BFw D ;.
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Proof. “)” The lack of weakly efficient solutions to .PLFw/ yields 0CL.A / \
.� intK/ ¤ ;. Indeed, assuming the contrary there must exist a y 2 L.A / such
that y� intK … L.A /. Applying Eidelheit’s separation statement for the nonempty
convex sets y � intK and L.A /, we obtain a � 2 R

k n f0g for which

�>.y � k/ < 0 � �>.Lx/ 8x 2 A 8k 2 intK: (6.2.13)

Assuming that � … K� yields the existence of a k 2 intK such that �>.�k/ � 0,
that contradicts (6.2.13). Consequently, � 2 K� n f0g and by (6.2.13) it follows
immediately that �>y � �>.Lx/ for all x 2 A , i.e. y 2 W E .PLFw/. But
W E .PLFw/ D ;, so a contradiction has been reached, consequently 0CL.A / \
.� intK/ ¤ ;. Then .L � UA/.RnC/ \ .� intK/ ¤ ; for all U 2 R

k�m and
employing Proposition 6.6 we see that BFw cannot contain in this situation any
element.

“(” Assuming that .PLFw/ has weakly efficient solutions, Theorem 6.9 yields
that .DLFw/ has a weakly efficient solution, too. But this cannot happen since the
dual has no feasible elements, consequently W E .PLFw/ D ;. ut
Remark 6.14. In the proof of Theorem 6.11 we have shown that W E .PLFw/ D ;
yields 0CL.A / \ .� intK/ ¤ ;. The reverse implication holds, too, and can be
shown in the lines of [117, Lemma 2.1.i/ ) .i i/]. If 0CL.A / \ .� intK/ ¤ ;,
there exists a Ny belonging to both these sets. Then, whenever y 2 L.A /, one has
yC Ny 2 L.A /. But y � .yC Ny/ D � Ny 2 intK. Therefore, for all y 2 L.A / there
exists a yC Ny 2 L.A / such that yC Ny <K y, i.e. W E .PLFw/ D ;. As in the above
considerationsL.A / can be replaced by any nonempty convex subsetM � R

k , one
obtains for the latter that WMin.M;K/ ¤ ; if and only if 0CM \ .� intK/ D ;.
In this way we extend the equivalence .i/ , .ii/ of [117, Lemma 2.1] to weakly
minimal elements, too.

Theorem 6.12. If BFw ¤ ;, one has W E .DLFw/ D ; if and only if A D ;.

Proof. “)” Assume that A ¤ ;. If W E .PLFw/ D ;, Theorem 6.11 would yield
the false assertion BFw D ;, therefore W E .PLFw/ ¤ ;. Employing Theorem 6.9
it follows that W E .DLFw/ ¤ ;, contradicting the assumption we made. Therefore
A D ;.

“(” Assuming that W E .DLFw/ ¤ ;, Theorem 6.10 yields that WMin.L.A /C
K;K/ ¤ ;, thus A ¤ ;. But A D ;, thus W E .DLFw/ D ;. ut

For .DLFJw/ weak duality holds in general, but for strong and converse duality
one needs to impose additionally the condition b ¤ 0 to the hypotheses of the
corresponding theorems given for .DLFw/ (see also [48, Sections 4.5 and 5.5]).
Since .DLFIw/ has the same image set, the duality assertions concerning it require
the same hypotheses.

For .DLFHw / the weak and strong duality statements hold under the hypotheses
of the corresponding theorems regarding .DLF/, too.
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Theorem 6.13. There exist no x 2 A and U 2 BH
Fw

such that Lx <K Ub C v,
where v 2 WMin

�
.L � UA/.RnC/;K

�
.

Proof. Assume the existence of some x 2 A andU 2 BH
Fw

such that Lx <K UbCv,
where v 2 WMin

�
.L� UA/.RnC/;K

�
. Since v 2 WMin

�
.L� UA/.RnC/;K

�
, there

exists a � 2 K� n f0g such that �>v � �>..L � UA/y/ for all y 2 R
nC. Then, as

x 2 A , one has �>.Lx�Ub�v/ D �>..L�UA/x�v/ � 0. But �>.Lx�Ub�v/ < 0,
due to the assumption we made above. A contradiction is reached, consequently the
assumption we made is false and, therefore, the assertion is proven. ut

The proof of the strong duality statement is different and simpler than its
counterpart for the vector dual problem to .PLF/ with respect to efficient solutions
given in [117].

Theorem 6.14. If Nx 2 W E .PLFw/, there exist NU 2 W E .DLFHw / and Nv 2
WMin

�
.L � UA/.RnC/;K

�
such that L Nx D NUb C Nv.

Proof. As Nx 2 W E .PLFw/, there exists a N� 2 K�nf0g such that N�>.L Nx/ � N�>.Lx/
for all x 2 A . Like in the proof of Theorem 6.9, a NU 2 R

k�m for which
.L � NUA/> N� 2 R

nC can be obtained. Then, via Proposition 6.6, .L � UA/.RnC/ \
.� intK/ D ;, consequently NU 2 BH

Fw
. Denoting Nv WD L Nx � NUb 2 R

k , one can

easily verify that Nv D .L�UA/ Nx 2 .L�UA/.RnC/ and N�> Nv D 0. As .L� NUA/> N� 2
R
nC, it follows that N�>..L � NUA/x/ � 0 for all x 2 R

nC. Consequently, Nv 2
WMin

�
.L�UA/.RnC/;K

�
. Assuming that NU … W E .DLFHw / one gets immediately

a contradiction to Theorem 6.13. Consequently, NU 2 W E .DLFHw /. Moreover,
L Nx D NUb C Nv. ut

Concerning .DLFLw/ and .DLFDw /, which have the same image set, weak and
strong duality were shown (for instance in [48, 140]), but the converse duality
statement, proven in case K D R

kC in [48, 156], does not follow directly in the
more general framework considered here. However, it can be proven in the lines of
Theorem 6.7, modified according to the proof of Theorem 6.10.

Theorem 6.15. If . N�; Nz; Nv/ 2 W E .DLFLw/, then Nv 2 WMin.L.A /CK;K/.

The results given within this subsection can be summarized in the following
chains of inclusions and equalities involving the sets of maximal elements of the
sets mentioned in (6.2.11), namely, when b ¤ 0

WMin.L.A /;K/ � WMax.hIFw
.BI

Fw
/;K/ D WMax.hJFw

.BJ
Fw
/;K/

� WMax.hFw.BFw/;K/ D WMax.hDFw
.BD

Fw
/;K/ D WMax.hLFw

.BL
Fw
/;K/

� WMin.L.A /CK;K/;
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while in case b D 0 it holds

WMax.hIFw
.BI

Fw
/;K/ D WMax.hJFw

.BJ
Fw
/;K/ � WMin.L.A /;K/

� WMax.hFw.BFw/;K/ D WMax.hDFw
.BD

Fw
/;K/

D WMax.hLFw
.BL

Fw
/;K/ � WMin.L.A /CK;K/:

Thus the scheme from [48, Remark 5.5.5] remains valid when the image space of
the considered vector problems is partially ordered by a nontrivial pointed closed
convex cone K � R

k .

6.3 Linear Vector Duality in Infinitely Dimensional Spaces

In this section we extend the investigations from the previous one to the infinitely
dimensional case, as proposed in our paper [34]. As we shall see, some things can
be easily generalized, while for others additional hypotheses are needed. Consider
like in Chaps. 3–5 the Hausdorff locally convex vector spaces X , Z and V , with
Z partially ordered by the convex cone C � Z and V by the nontrivial pointed
convex cone K � V . Let L 2 L .X; V /, A 2 L .X;Z/, b 2 Z and the convex
cone S � X .

The primal linear vector optimization problem we consider now is

.PLI/ Min
x2A

Lx;

where

A D ˚
x 2 S W Ax � b 2 C �:

In case X D R
n, Z D R

m, V D R
k , S D R

nC and C D f0g, where the
linear continuous mappings L and A can be identified with the matrices L 2 R

k�n
and, respectively, A 2 R

m�n, .PLI/ becomes the classical linear vector optimization
problem .PLF/ investigated within Sect. 6.2.

Recall that an element Nx 2 A is said to be a properly efficient solution in the
sense of linear scalarization to .PLI/ if L Nx 2 PMinLS.L.A /;K/, i.e. there exists
a � 2 K�0 such that h�;L Nxi � h�;Lxi for all x 2 A , and the set of all the
properly efficient solutions to .PLI/ in the sense of linear scalarization is denoted
by PE LS.PLI/. An element Nx 2 A is said to be an efficient solution to .PLI/ if
L Nx 2 Min.L.A /;K/, i.e. there exists no x 2 A such that Lx �K L Nx, and the
set of all the efficient solutions to .PLI/ is denoted by E .PLI/. A properly efficient
solution Nx to .PLI/ is also efficient to .PLI/.
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Remark 6.15. In general not all the efficient solutions to .PLI/ are also properly
efficient to it, as it is the case in the finitely dimensional framework of Sect. 6.2 (see
Theorem 6.1). However, conditions sufficient to ensure the mentioned coincidence
in the present setting can be derived from Theorems 3.4–3.5 or their consequences.

6.3.1 Vector Duals to the Linear Vector Optimization Problem

The vector dual problems assigned to .PLF/ within Sect. 6.2.2 can be extended
to the infinitely dimensional case, too, some straightforwardly. The dual abstract
optimization problem to .PLI/ is (cf. [48, 140])

.DLIJ / Max
.�;U /2BJ

I

hJI .�; U /;

where

BJ
I D

n
.�; U / 2 K�0 � L .Z; V / W U �� 2 C �; .L � U ı A/�� 2 S�o

and

hJI .�; U / D Ub:

The vulnerability this vector dual problem presented in the framework of Sect. 6.2
in case b D 0 is inherited to the more general setting treated here, too.

The vector Lagrange type dual to .PLI/ is (cf. [48, 140])

.DLIL/ Max
.�;z�;v/2BL

I

hLI .�; z
�; v/;

where

BL
I D

n
.�; z�; v/ 2 K�0 � C � � V W h�; vi � hz�; bi; L�� � A�z� 2 S�o

and

hLI .�; z
�; v/ D v:

The vector duals .DLF I /, .DLFH/, .DLF/ and .DLFD/ were considered prior
to [34] only in the finitely dimensional setting of Sect. 6.2, but they can be extended
to the present framework, too, as follows. The generalization we propose for the
vector dual inspired by Isermann’s works is

.DLII / Max
U2BI

I

hII .U /;
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where

BI
I D

n
U 2 L .Z; V / W �.L � U ı A/.S/C U.C/

� \ .�K/ D f0g
o

and

hII .U / D Ub;

while the vector dual that extends .DLFH/ is

.DLIH/ Max
U2BH

I

hHI .U /;

where

BH
I D

n
U 2 L .Z; V / W �.L � U ı A/.S/C U.C/

� \ .�K/ D f0g
o

and

hHI .U / D Ub C PMinLS
�
.L � U ı A/.S/C U.C/;K

�
:

When X D R
n, S D R

nC, V D R
k , Z D R

m and C D f0g these vector
duals to .PLI/ turn out to be exactly .DLFI / and .DLFH/, respectively, taking also
in consideration that (see Theorem 6.1) in that framework the properly efficient
solutions of the vector minimization problem in the objective function of .DLIH/
coincide with the efficient ones of the same problem.

The generalizations to the present framework of .DLF/ and .DLFD/ are

.DLI/ Max
.�;U;v/2BI

hI .�; U; v/;

where

BI D
n
.�; U; v/ 2 K�0 � L .Z; V / � V W h�; vi D 0; U �� 2 C �;

.L � U ı A/�� 2 S�o

and

hI .�; U; v/ D Ub C v;

and, respectively,

.DLID/ Max
.�;U;v/2BD

I

hDI .�; U; v/;
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where

BD
I D

n
.�; U; v/ 2 K�0 � L .Z; V / � V W h�; vi � 0; U �� 2 C �;

.L � U ı A/�� 2 S�o

and

hDI .�; U; v/ D Ub C v:

Remark 6.16. If .�; U; v/ 2 BI , one can easily note that v … .K [ .�K// n f0g,
while when .�; U; v/ 2 BD

I it follows that v … K n f0g.

We begin with a result that generalizes in one direction Proposition 6.1,
establishing thus a connection between the feasible elements of .DLIJ / and the ones
of .DLII /. A possible way to achieve also here an equivalence like in Proposition 6.1
would be by strongly separating the sets .L�U ıA/.S/CU.C/ and �K. This can
be done, under additional hypotheses, for instance by [140, Theorem 3.22], [117,
Lemma 2.2] or [178, Theorem 11.4].

Proposition 6.7. If � 2 K�0 and U 2 L .Z; V / fulfill U �� 2 C � and .L � U ı
A/�� 2 S�, then

�
.L � U ı A/.S/C U.C/

� \ .�K/ D f0g.

Proof. Assume to the contrary that the conclusion is false. Then there exist x 2 S

and c 2 C such that 0 ¤ .L � U ı A/x C Uc 2 �K. Consequently, h�; .L � U ı
A/x C Uci < 0. But h�; .L � U ı A/x C Uci D h.L � U ı A/��; xi C hU ��; ci
and the hypotheses imply the nonnegativity of the both terms in the right-hand side
of the last equality, so we reached the desired contradiction. ut

Let us compare now the image sets of the vector duals assigned to .PLI/ in this
section. We begin with a consequence of Proposition 6.7.

Proposition 6.8. One has hJI .B
J
I / � hII .B

I
I /.

Proof. Let d 2 hJI .B
J
I /. Thus, there exists .�; U / 2 BJ

I such that d D Ub. By
Proposition 6.7 we obtain immediately that U 2 BI

I . As hJI .�; U / D Ub D hII .U /,
the conclusion follows. ut
Proposition 6.9. One has hII .B

I
I / � hHI .B

H
I /.

Proof. Let d 2 hI .BI /. Thus, there exists a U 2 BI
I such that d D Ub. But BI

I

and BH
I coincide, thus U 2 BH

I . Moreover, .L � U ı A/.0/ C U.0/ D 0 and
whenever x 2 S and c 2 C there holds h�; .L � U ı A/x C Uci D h.L � U ı
A/��; xi C hU ��; ci and this is nonnegative because .�; U / 2 BJ . Consequently,
0 2 PMinLS

�
.L � U ı A/.S/C U.C/;K

�
and d 2 hHI .BH

I /. ut
Proposition 6.10. One has hHI .B

H
I / � hI .BI /.
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Proof. Let d 2 hHI .BH
I /. Thus, there exists a U 2 BH such that d D Ub C v, with

v 2 PMinLS
�
.L � U ı A/.S/C U.C/;K

�
. Then, there exist � 2 K�0, x 2 S and

c 2 C such that v D .L � U ı A/x C Uc and

h�; .L�U ıA/x CUci � h�; .L�U ıA/x CUci 8x 2 S 8c 2 C: (6.3.14)

Taking in the right-hand side of (6.3.14) c WD c, it follows h�; .L � U ı A/xi �
h�; .L � U ı A/xi for all x 2 S . S being a cone, the existence of a point Qx 2 S

for which h�; .L � U ı A/ Qxi < 0 would yield h�; .L � U ı A/xi D �1, that is
impossible, so h�; .L�U ıA/xi � 0 for all x 2 S . Consequently, .L�U ıA/�� 2
S�. As 0 2 S , it follows also that h�; .L�U ıA/xi � 0, so h�; .L�U ıA/xi D 0.

Back to (6.3.14), taking now x WD x one gets h�; U ci � h�; Uci for all c 2 C .
Since C is a cone, too, the same argumentation as above leads to U �� 2 C � and
h�; U ci D 0. Consequently, h�; .L�U ıA/xCUci D h�; vi D 0, so .�; U; v/ 2 BI

and hI .�; U; v/ D d . Therefore d 2 hI .BI /. ut
Remark 6.17. By construction one has hI .BI / � hDI .B

D
I /.

Remark 6.18. Due to the fact that in the framework of Sect. 6.2 the vector duals
we consider within this section become their counterparts considered there, the
examples mentioned in Remarks 6.5, 6.6 and 6.8 can be invoked in order to show
that the inclusions provided in Propositions 6.8–6.10 and Remark 6.17 do not turn
in general into equalities.

Proposition 6.4 can be directly extended to the infinitely dimensional case, too.

Proposition 6.11. One has hDI .B
D
I / D hLI .B

L
I /.

Proof. “�” If d 2 hDI .B
D
I /, there exist .�; U; v/ 2 BD

I such that d D
hDI .�; U; v/ D Ub C v. Taking z� WD U ��, one gets h�; d i D hU ��; bi C h�; vi �
hz�; bi, while L�� � A�z� D .L � UA/�� 2 S�. Consequently, .�; z�; d / 2 BL

I

and, since hLI .�; z
�; d / D d , it follows that hDI .B

D
I / � hLI .B

L
I /.

“	” If d 2 hLI .BL
I /, there exist .�; z�; d / 2 BL

I such that d D hLI .�; z
�; d /. As

� 2 K�0, there exists a Q� 2 K such that h�; Q�i D 1. Let U 2 L .Z; V / be defined
by U z WD hz�; zi Q� for z 2 Z, and v WD d � Ub. Then h�; vi D h�; d i � hz�; bi � 0

and .L � UA/�� D L�� � A�z� 2 S�. Consequently, .�; U; v/ 2 BD
I and, since

hDI .�; U; v/ D Ub C v D d , it follows that hDI .B
D
I / 	 hLI .B

L
I /. ut

Taking into consideration Propositions 6.8–6.10, Remark 6.17, Proposition 6.11
and Remark 6.18, one can conclude that the images of the feasible sets through their
objective functions of the vector duals to .PLI/ we dealt with respect the following
inclusions chain

hJI .B
J
I / � hII .B

I
I /   hHI .B

H
I /   hI .BI /   hDI .B

D
I / D hLI .B

L
I /; (6.3.15)

extending thus (6.2.5) to infinitely dimensional spaces.
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6.3.2 Duality Results for the Linear Vector Optimization
Problem and Its Vector Duals

Let us prove now for the primal-dual pair of vector optimization problems .PLI/ �
.DLI/ weak, strong and converse duality statements.

Theorem 6.16. There exist no x 2 A and .�; U; v/ 2 BI such that Lx �K UbCv.

Proof. Assume the existence of x 2 A and .�; U; v/ 2 BI such that Lx �K UbCv.
Then 0 < h�;Ub C v � Lxi D h�;Ub � Lxi D h�;Ub �U ı Ax CU ı Ax � Lxi D
hU ��; b � Axi � h.L � U ı A/��; xi � 0. As this cannot happen, the assumption
we made is false. ut

In order to prove strong and converse duality for .DLI/ one needs additional
hypotheses. The regularity conditions .RCVG

i /, i 2 f1; 2; 3; 4g become in this case

.RCVI
1 / 9x0 2 S such that Ax0 � b 2 intC;

.RCVI
2 / X and Y are Fréchet spaces, S and C are closed and b 2 sqri.A.S/�C/;

.RCVI
3 / dim lin.A.S/ � C/ < C1 and b 2 ri.A.S/�C/;

and, respectively,

.RCVI
4 /

S and C are closed and for any � 2 K�0
�

S

z�2C�

.x�; r/ 2 X� � R W hz�; bi � r; x� 2 L�� � A�z� � S�
�

is closed in the topology !.X�; X/ � R:

Remark 6.19. When X and Z are finitely dimensional, instead of the regularity
condition .RCVI

3 / one can equivalently write b 2 A.riS/ � riC and, moreover, in
this condition one can replace the relative interiors of the cones which are actually
orthants with the cones themselves.

Theorem 6.17. If Nx 2 PE LS.PLI/ and one of the regularity conditions .RCVI
i /,

i 2 f1; 2; 3; 4g, is fulfilled, there exists . N�; NU ; Nv/ 2 E .DLI/ such that L Nx D NUbC Nv.

Proof. Since Nx is properly efficient to .PLI/, there exists a N� 2 K�0 such that
h N�;L Nxi � hN�;Lxi for all x 2 A . The fulfillment of any of the considered regularity
conditions yields that for the scalar optimization problem

inf
x2A

h N�;Lxi

and its Lagrange dual

sup
z�2C�

inf
x2S

�h N�;Lxi C hz�; b � Axi�;
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which can be equivalently written as

sup
z�2C�;

L� N��A�z�2S�

hz�; bi;

there is strong duality, i.e. their optimal objective values coincide and the dual has
an optimal solution, say Nz� 2 C �. Consequently, as Nx solves the primal problem,
one gets h N�;L Nxi D hNz�; bi, where L� N� � A�Nz� 2 S�.

Because N� 2 K�0, there exists a Q� 2 K n f0g such that h N�; Q�i D 1. Let NU 2
L .Z; V / be defined by NU z WD hNz�; zi Q� for z 2 Z, and Nv WD L Nx � NUb 2 V .
Then h N�; Nvi D hN�;L Nx � NUbi D hN�;L Nxi � hNz�; bi D 0, NU � N� D Nz� 2 C � and
.L� NU ıA/� N� D L� N��A�Nz� 2 S�. Consequently, . N�; NU ; Nv/ 2 BI and NUbC Nv D
NUb C L Nx � NUb D L Nx. Assuming that . N�; NU ; Nv/ were not efficient to .DLI/, i.e.

the existence of another feasible solution .�; U; v/ 2 BI satisfying NUb C Nv �K

Ub C v, it follows L Nx �K Ub C v, which contradicts Theorem 6.16. Consequently,
. N�; NU ; Nv/ 2 E .DLI/ and L Nx D NUb C Nv. ut

Like in the finitely dimensional case, a converse duality statement for .DLI/ can
be provided, too, but under additional hypotheses.

Theorem 6.18. If . N�; NU ; Nv/ 2 E .DLI/, one of the regularity conditions .RCVI
i /,

i 2 f1; 2; 3; 4g, is fulfilled and L.A /CK is closed, there exists an Nx 2 PE LS.PLI/
such that L Nx D NUb C Nv.

Proof. Let Nd WD NUbCNv and suppose that Nd … L.A /. Using Theorem 6.16 it follows
easily that Nd … L.A /C K, too. Then Tuckey’s separation theorem guarantees the
existence of � 2 V � n f0g and a 2 R such that

h�; Nd i < a < h�;Lx C ki 8x 2 A 8k 2 K: (6.3.16)

Assuming that � … K� would yield the existence of a k 2 K for which
h�; ki < 0. Taking into account that K is a cone, this implies a contradiction to
(6.3.16), consequently � 2 K�. Taking k D 0 in (6.3.16) it follows

h�; Nd i < h�;Lxi 8x 2 A : (6.3.17)

On the other hand, one has h N�; Nd i D hN�; NUb C Nvi D h NU � N�; bi � h NU � N�;Axi for all
x 2 A , so it holds

h N�;Lx � Nd i � h.L � NU ı A/� N�; xi � 0 8x 2 A : (6.3.18)

Now, taking p WD a � h�; Nd i > 0 it follows h.r N� C .1 � r/�/; Nd i D a � p C
r.h N�; Nd i � a C p/ for all r 2 R. Note that there exists an Nr 2 .0; 1/ such that
Nr.h N�; Nd i � aC p/ < p=2 and Nr.h N�; Nd i � a/ > �p=2, and let � WD Nr N�C .1 � Nr/� .
It is clear that � 2 K�0. By (6.3.17) and (6.3.18) it follows rh N�; Nd i C .1 � r/a <
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hr N�C .1 � r/�;Lxi for all x 2 A and all r 2 .0; 1/, consequently

h�; Nd i D Nrh N�; Nd i C .1 � Nr/h�; Nd i D Nrh N�; Nd i C .1 � Nr/.a � p/
<
p

2
C Nr.a � p/C .1 � Nr/.a � p/ D a � p

2
< h�;Lxi 8x 2 A :

Moreover, there exists a Q� 2 K n f0g such that h�; Q�i D 1. Like in the proof
of Theorem 6.17, the validity of any of the considered regularity conditions yields
strong duality for the scalar optimization problem infx2A h�;Lxi and its Lagrange
dual, i.e. there exists a Nz� 2 C � with L���A�Nz� 2 S� for which infx2A h�;Lxi D
hNz�; bi.

Taking U 2 L .Z; V / be defined by U z WD hNz�; zi Q�, z 2 Z. Then U �� D Nz� 2
C � and .L � U ı A/�� 2 S�. Consequently, the hyperplane H WD fUb C v W
v 2 V; h�; vi D 0g, which is nothing but the set fw 2 V W h�;wi D h�;Ubig, is
contained in hI .BI /.

On the other hand, as h�; Nd i < hNz�; bi D h�;Ubi, there exists a Nk 2 K n f0g
such that h�; Nd C Nki D h�;Ubi. Hence Nd C Nk 2 H � hI .BI /. Noting that
Nd �K

Nd C Nk, we have just arrived to a contradiction to the maximality of Nd to the
set hI .BI /. Thus our initial supposition is false, consequently Nd 2 L.A /. Then
there exists an Nx 2 A such that L Nx D Nd D NUb C Nv. Using (6.3.18), it follows that
Nx 2 PE LS.PLI/. ut

Regarding necessary and optimality conditions for the primal-dual pair of vector
optimization problems .PLI/ � .DLI/ we make the following observation.

Remark 6.20. If Nx 2 A and . N�; NU ; Nv/ 2 B fulfill L Nx D NUb C Nv, then the
complementarity conditions h.L � NU ı A/� N�; Nxi D 0 and h NU � N�;A Nx � bi D 0

are fulfilled.

Remark 6.21. In the framework of Sect. 6.2 the set L.A / C K is closed. Thus, a
natural question is when is the closedness of this set guaranteed in more general
settings. Let us investigate what happens when X D R

n, Z D R
m and V D R

k and
we have also the convex cones S � R

n, C � R
m and the nontrivial pointed convex

cone K � R
k . Then L 2 R

k�n, A 2 R
m�n and b 2 R

m. If S and C are closed
and A�1.b C riC/ ¤ ;, then via [178, Theorem 6.7] it follows that A is closed.
Moreover, in this case [178, Corollary 8.3.3] yields 0CA D 0C.A�1.b C C// \
0C.S/ D �

0C.A�1.C // C 0C.A�1.b//
� \ S , where the last equality follows via

[178, Corollary 9.1.2]. Employing [178, Corollary 8.3.4] one gets 0C.A�1.C // D
A�1.0CC/, consequently 0CA D .A�1.C / C A�1.0// \ S D A�1.C / \ S . If
kerL \ A�1.C / \ S D f0g, then via [178, Theorem 9.1] it follows that L.A / is
closed and L.0CA / D 0CL.A /, consequently 0CL.A / D L.A�1.C /\ S/. Note
that 0 2 L.A�1.C / \ S/. For .�; U; v/ 2 BI , one gets via Proposition 6.7 that
.L� UA/.S/\ .�K/ D f0g, which yields .L� UA/.A�1.C /\ S/\ .�K/ D f0g.
Assuming moreover that K is closed (then K�0 D intK�) and L.A�1.C / \ S/ �
.L � UA/.A�1.C / \ S/, it follows that 0CL.A / \ .�K/ D f0g and, finally, [178,
Corollary 9.1.2] yields thatL.A /CK is closed. One can note that several additional
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hypotheses, that are automatically fulfilled or may be skipped in the framework
of Sect. 6.2, were necessary in order to guarantee the desired outcome even if we
worked in finitely dimensional spaces. Other sufficient conditions that ensure the
closedness of L.A /CK can be found for instance in [221, Theorem 1.1.8] or [220,
Corollary 3.12].

Combining Proposition 6.10 and Theorem 6.16, one can easily provide the weak
duality statement for .PLI/ and .DLIH/, too.

Theorem 6.19. There exist no x 2 A ,U 2 BH
I and v 2 PMinLS

�
.L�U ıA/.S/C

U.C/;K
�

such that Lx �K Ub C v.

Strong duality for .DLIH/ can be proven under the same hypotheses as for .DLI/,
too.

Theorem 6.20. If Nx 2 PE LS.PLI/ and one of the regularity conditions .RCVI
i /,

i 2 f1; 2; 3; 4g, is fulfilled, there exists a NU 2 E .DLIH/ such that L Nx D NUb C Nv,
where Nv 2 PMinLS

�
.L � NU ı A/.S/C NU .C/;K�.

Proof. Like in the proof of Theorem 6.17, the proper efficiency of Nx to .PLI/
delivers a N� 2 K�0 and the fulfillment of any of the considered regularity conditions
a Nz� 2 C � such that h N�;L Nxi D hNz�; bi and L� N� � A�Nz� 2 S�. As N� 2 K�0, there
exists a Q� 2 K n f0g such that h N�; Q�i D 1. Taking NU 2 L .Z; V / be defined by
NU z WD hNz�; zi Q�, z 2 Z, Proposition 6.7 yields then NU 2 BH

I .
Taking Nv WD L Nx � NUb, one gets Nv D .L � NU ı A/ Nx C NU.A Nx � b/ 2 .L � NU ı

A/.S/ C NU.C/. One has h N�; Nvi D hN�;L Nx � NUbi D hNz�; bi � hN�; hNz�; biki D 0

and h N�; .L � NU ı A/x C NUci � 0 for all x 2 S and c 2 C . Consequently, Nv 2
PMinLS

�
.L � NU ı A/.S/C NU .C/;K�.

Assuming that NU were not efficient to .DLIH/, i.e. the existence of another
feasible solution U 2 BH satisfying NUb C Nv �K Ub C v for a v 2 PMinLS

�
.L �

U ıA/.S/CU.C/;K
�
, it follows L Nx �K UbCv, which contradicts Theorem 6.19.

Consequently, NU 2 E .DLIH/ and L Nx D NUb C Nv. ut
Remark 6.22. It remains an open question whether a converse duality theorem for
.DLIH/ is valid under hypotheses similar to the ones of Theorem 6.18. Moreover,
one can provide duality statements for .DLII /, too, but we skip them here since
even in the finitely dimensional case of Sect. 6.2 such statements are valid for this
vector dual only for b ¤ 0, when they coincide with the ones for the corresponding
Lagrange type vector dual problem.

Finally, let us compare the sets of maximal elements of the image sets of the
vector duals we assigned to .PLI/.

Theorem 6.21. It holds

Max.hJI .B
J
I /;K/ � Max.hI .BI /;K/ D Max.hLI .B

L
I /;K/

and the inclusion becomes equality when b ¤ 0.
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Proof. Assume the existence of a d 2 Max.hI .BI /;K/ n Max.hLI .B
L
I /;K/. Then

there exist a Nd 2 hLI .B
L
I /, such that d �K

Nd , and .�; z�; Nd/ 2 BL
I such that

Nd D hLI .�; z
�; Nd/ and h�; Nd i D hz�; bi. There exists also a Q� 2 K n f0g such that

h�; Q�i D 1. Let U 2 L .Z; V / be defined by U z WD hz�; zi Q�, for z 2 Z. Then
U �� D z� 2 C �. Moreover, .L � U ı A/�� D L�� � A�z� 2 S�. Taking v WD
Nd � Ub, one gets h�; vi D 0. Consequently, .�; U; v/ 2 BI and thus Nd 2 hI .BI /.

But since d 2 Max.hI .BI /;K/ and d �K
Nd a contradiction is attained, therefore

Max.hI .BI /;K/ � Max.hLI .B
L
I /;K/.

Take now d 2 Max.hLI .B
L
I /;K/. Then there exists .�; z�; d / 2 BL

I such that
h�; d i � hz�; bi. From the maximality of d in hLI .B

L
I / it follows that one actually

has h�; d i D hz�; bi. Defining U and v like above, one can directly verify that
.�; U; v/ 2 BI and d 2 hI .BI /. By (6.3.15) it follows that d 2 Max.hI .BI /;K/,
hence Max.hLI .B

L
I /;K/ � Max.hI .BI /;K/, too.

Therefore Max.hI .BI /;K/ D Max.hLI .B
L
I /;K/ and the rest follows from [48,

Theorem 4.5.2]. ut
Remark 6.23. From Theorem 6.20 one can conclude that when one of the regularity
conditions .RCVI

i /, i 2 f1; 2; 3; 4g, is fulfilled one has PMinLS.L.A /;K/ �
Max.hHI .B

H
I /;K/. It remains an open challenge to find out under which hypothe-

ses does this inclusion turn into an equality and also to see that in general
Max.hHI .B

H
I /; K/ actually coincides with the maximal sets of the image sets con-

sidered within Theorem 6.21. In the next statement we show that in the framework
considered in Remark 6.21 under an additional hypothesis Max.hHI .B

H
I /;K/ is

larger than its counterparts, generalizing thus [48, Proposition 5.5.7].

Theorem 6.22. Let X D R
n, Z D R

m and V D R
k . Take S � R

n and C � R
m to

be convex cones and the nontrivial pointed closed convex cone K � R
k , as well as

L 2 R
k�n, A 2 R

m�n and b 2 R
m. If .L � UA/.S/C U.C/ is closed, it holds

Max.hI .BI /;K/ � Max.hHI .B
H
I /;K/:

Proof. Assume the existence of a d 2 Max.hI .BI /;K/ n hHI .BH
I /. Then there

exists an element .�; U; v/ 2 BI such that d D Ub C v and U 2 BH
I , as well as

v … .L � UA/.S/C U.C/.
Assuming that there exist x 2 S and c 2 C such that .L � UA/x C Uc �K v

yields 0 � �>..L� UA/xCUc/ < �>v D 0, that is a contradiction. Consequently,
..L� UA/.S/CU.C/� v/\ .�K/ D ;. Then Proposition 6.5 yields the existence
of a N� 2 intK� such that N�>v < 0, .L � UA/> N� 2 S� and U> N� 2 C �.

Then � C N� 2 intK� and h� C N�; vi < 0, hence there exists a Qv 2 V such that
v �K Qv and h�CN�; Qvi D 0. Moreover, .L�UA/>.�CN�/ 2 S� andU>.�CN�/ 2 C �,
therefore .� C N�;U; Qv/ 2 BI . Then d D Ub C v �K Ub C Qv, that contradicts the
maximality of d in hI .BI /. Hence d 2 hHI .BH

I / and there exist Nx 2 S and Nc 2 C
such that v D .L � UA/ Nx C U Nc 2 PMinLS

�
.L � U ı A/.S/ C U.C/;K

�
. If

Ub C v … Max.hHI .B
H
I /;K/ and there exists an element w 2 hHI .B

H
I / such that
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Ub C v �K w, Proposition 6.10 yields w 2 hI .BI / and the maximality of d in
hI .BI / is contradicted again. ut
Remark 6.24. Working in the framework of Theorem 6.22, one can work analo-
gously to Remark 6.21 to identify hypotheses that guarantee the closedness of .L�
UA/.S/CU.C/. Note also that in the setting of Sect. 6.2 the set .L�UA/.S/CU.C/
is closed.

Remark 6.25. From Theorems 6.17, 6.18, 6.20 and 6.21 one can conclude that when
one of the regularity conditions .RCVI

i /, i 2 f1; 2; 3; 4g, is fulfilled and L.A /CK

is closed the following inclusion scheme holds

Max.hJI .B
J
I /;K/ � PMinLS.L.A /;K/ D Max.hI .BI /;K/

D Max.hLI .B
L
I /;K/ � Max.hHI .B

H
I /;K/;

(6.3.19)

and the first inclusion becomes an equality when b ¤ 0. Because of (6.3.15) we
believe that the second inclusion in (6.3.19) is fulfilled as an equality under the
hypotheses mentioned above, too, but a proof of this fact is still unknown.

6.3.3 Wolfe and Mond-Weir Type Linear Vector Duality

Other vector dual problems that can be attached to the primal linear vector
optimization problem .PLI/ can be obtained by particularizing the Wolfe and
Mond-Weir type vector duals assigned to a general constrained vector optimization
problem in Sects. 5.3.2 and 5.4.2. Due to the continuity of the involved functions,
the mentioned vector duals to .PLI/ of Lagrange type and Fenchel-Lagrange type
coincide (see for instance Remark 5.30 for more on this), thus we shall consider
here only the first ones.

In order to formulate them, we have to see what becomes in this framework the
constraint involving a subdifferential that appears in all of them. For u 2 S , � 2 K�0
and z� 2 C �, one has

@
�
.�L/C .z�.b � A�//C ıS

�
.u/ D ˚

x� 2 X� W x� 2 L�� � A�z� � S�;

hL�� � A�z� � x�; ui D 0
�
;

therefore 0 2 @�.�L/C z�.b � A�/C ıS
�
.u/ if and only if L�� � A�z� 2 S� and

hL�� � A�z� � x�; ui D 0.
Given these considerations, the vector dual to .PLI/ that is a special case of

.DVCL
W / turns out to be

.DLIW / Max
.�;z�;u;r/2BIW

hIW .�; z
�; u; r/;
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where

BIW D
n
.�; z�; v; r/ 2 K�0 � C � � S � .K n f0g/ W L�� � A�z� 2 S�;

hL�� � A�z�; ui D 0
o

and

hIW .�; z
�; u; r/ D Lu C hz�; b � Aui

h�; ri r:

Analogously, the vector dual to .PLI/ that is a special case of .DVCL
M / turns out

to be

.DLIM/ Max
.�;z�;u/2BIM

hIM .�; z
�; u/;

where

BIM D
n
.�; z�; u/ 2 K�0 � C � � A W L�� � A�z� 2 S�; hL�� � A�z�; ui D 0

o

and

hIM .�; z
�; u/ D Lu;

while the one arising from .DVCL
MW/ is

.DLIMW/ Max
.�;z�;u/2BIMW

hIMW .�; z
�; u/;

where

BIMW D
n
.�; z�; u/ 2 K�0 � C � � S W L�� � A�z� 2 S�; hL�� � A�z�; ui D 0;

hz�; .b � Au/i � 0
o

and

hIMW .�; z
�; u/ D Lu:

On the other hand, the vector dual to .PLI/ that is a special case of .DVCW
L / turns

out to be

.DLIW / Max
.�;z�;u;v/2BIW

hIW .�; z
�; u; v/;
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where

BIW D
n
.�; z�; u; v/ 2 K�0 � C � � S � V W L�� � A�z� 2 S�;

hL�� � A�z�; ui D 0; h�; vi � hz�; bi
o

and

hIW .�; z
�; u; v/ D v:

Analogously, the vector dual to .PLI/ that is obtained as a special case of
.DVCM

L / is

.DLIM/ Max
.�;z�;u;v/2BIM

hIM .�; z
�; u; v/;

where

BIM D
n
.�; z�; u; v/ 2 K�0 � C � � A � V W L�� � A�z� 2 S�;

hL�� � A�z�; ui D 0; h�; v � Lui � 0
o

and

hIM .�; z
�; u/ D v;

while the one arising from .DVCMW
L / is

.DLIMW/ Max
.�;z�;u;v/2BIMW

hIMW .�; z�; u; v/;

where

BIMW D
n
.�; z�; u; v/ 2 K�0 � C � � S � V W L�� � A�z� 2 S�;

hL�� � A�z�; ui D 0; hz�; b � Aui � 0; h�; v � Lui � 0
o

and

hIMW .�; z�; u; v/ D v:

In order to provide vector dual problems to .PLI/ that share the same image sets
as the ones given above and rely on the formulation of the classical contributions
to this matter, one can consider, like in the proof of Theorems 6.17 or 6.20, for
.�; z�; u/ 2 K�0 � C � � S , the linear continuous maping U 2 L .Z; V /, defined
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by U z WD hz�; zi Q�, z 2 Z, where Q� 2 K n f0g fulfilling h�; Q�i D 1 exists because
� 2 K�0. Then z� D U �� and L���A�z� becomes .L�U ıA/��, and the vector
duals provided above can be correspondingly modified, as follows.

The vector duals to .PLI/ that are special cases of .DVGW / turn out to become

.DLIW / Max
.�;U;u;r/2BIW

hIW .�; U; u; r/;

where

BIW D
n
.�; U; v; r/ 2 K�0 � L .Z; V / � S � .K n f0g/ W U �� 2 C �;

.L � U ı A/�� 2 S�; h.L � U ı A/��; ui D 0
o

and

hIW .�; U; u; r/ D Lu C hU ��; b � Aui
h�; ri r;

.DLIM/ Max
.�;U;u/2BIM

hIM .�; U; u/;

where

BIM D
n
.�; U; u/ 2 K�0 � L .Z; V / � A W U �� 2 C �;

.L � U ı A/�� 2 S�; h.L � U ı A/��; ui D 0
o

and

hIM .�; U; u/ D Lu;

and, respectively

.DLIMW/ Max
.�;U;u/2BIMW

hIMW .�; U; u/;

where

BIMW D
n
.�; U; u/ 2 K�0 � L .Z; V / � S W U �� 2 C �; .L � U ı A/�� 2 S�;

h.L � U ı A/��; ui D 0; hU ��; .b � Au/i � 0
o

and

hIMW .�; U; u/ D Lu:
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On the other hand, the vector duals to .PLI/ that are special cases of .DVGW /

turn into

.DLIW / Max
.�;U;u;v/2BIW

hIW .�; U; u; v/;

where

BIW D
n
.�; U; u; v/ 2 K�0 � L .Z; V / � S � V W U �� 2 C �;

.L � U ı A/�� 2 S�; h.L � U ı A/��; ui D 0; h�; vi � hU ��; bi
o

and

hIW .�; U; u; v/ D v;

.DLIM/ Max
.�;U;u;v/2BIM

hIM .�; U; u; v/;

where

BIM D
n
.�; U; u; v/ 2 K�0 � L .Z; V / � A � V W U �� 2 C �;

.L � U ı A/�� 2 S�; h.L � U ı A/��; ui D 0; h�; v � Lui � 0
o

and

hIM .�; U; u/ D v;

and, respectively,

.DLIMW/ Max
.�;U;u;v/2BIMW

hIMW .�; U; u; v/;

where

BIMW D
n
.�; U; u; v/2K�0 � L .Z; V /�S �V W U ��2C�; .L�U ıA/��2S�;

h.L � U ı A/��; ui D 0; hU ��; b � Aui � 0; h�; v � Lui � 0
o

and

hIMW .�; U; u; v/ D v:

The weak and strong duality assertions for the primal linear vector optimiza-
tion problem .PLI/ and these vector duals to it follow from the general case.



212 6 Vector Duality for Linear and Semidefinite Vector Optimization Problems

Furthermore, the image sets of these vector duals and their maximal sets can be
compared with the others we assigned to .PLI/ within this section, taking also into
consideration the general inclusions proven in Sect. 5.5.

In the finitely dimensional framework considered in Sect. 6.2, the vector duals
considered in this subsection should be correspondingly modified and the duality
statements hold, like for the other vector duals to .PLF/ investigated there, without
assuming the fulfillment of any regularity condition. Moreover, note that the case
b D 0 produces no trouble to the vector dual problems considered within this
subsection, too.

6.3.4 Duality with Respect to Weakly Efficient Solutions

In this subsection we deliver vector duality statements for the classical linear vector
optimization problem in infinitely dimensional spaces and its vector dual problems
with respect to weakly efficient solutions. To the framework considered in the rest
of this section we add the hypotheses that qiK ¤ ; and K is closed. The primal
linear vector optimization problem is in this case

.PLIw/ WMin
x2A

Lx;

where

A D ˚
x 2 S W Ax � b 2 C �:

Recall that an element Nx 2 A is said to be a weakly efficient solution to .PLIw/

if L Nx 2 WMin.L.A /;K/, i.e. there exists a � 2 K� n f0g such that h�;L Nxi �
h�;Lxi for all x 2 A , and the set of all the weakly efficient solutions to .PLIw/ is
denoted by W E .PLIw/.

We begin with a result that extends Proposition 6.7, establishing as we shall see
a connection between the feasible sets of elements of the vector dual problems with
respect to weakly efficient solutions we assign to .PLIw/. Note that in this case we
have actually an equivalence like in Proposition 6.6.

Proposition 6.12. If U 2 L .Z; V / and the pair .K; .L � U ı A/.S/ C U.C//

has the property .QC/, there exists a � 2 K� n f0g fulfilling U �� 2 C � and
.L � U ı A/�� 2 S� if and only if ..L � U ı A/.S/C U.C// \ .� qiK/ D ;.

Proof. “)” Assume to the contrary that the conclusion is false. Then there exist
x 2 S and c 2 C such that .L � U ı A/x C Uc 2 � qiK. Consequently, h�; .L �
U ıA/xCUci < 0. But h�; .L�U ıA/xCUci D h.L�U ıA/��; xiChU ��; ci
and the hypotheses imply the nonnegativity of the both terms in the right-hand side
of the last equality, so we reached the desired contradiction.

“(” The hypothesis yields 0 … .L�U ıA/.S/CU.C//CqiK D qi.KC.L�U ı
A/.S/CU.C//, due to .QC/. But the setKC.L�U ıA/.S/CU.C/ is convex and
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it contains 0. One can apply then Lemma 1.2, which guarantees the existence of a
� 2 V � nf0g satisfying h�; 0i � h�; v Cki for all v 2 KC .L�U ıA/.S/CU.C/

and all k 2 K. As 0 2 .L � U ı A/.S/ C U.C/ and K is a cone, it follows
that � 2 K� n f0g. Analogously, as 0 2 .L � U ı A/.S/ \ U.C/ \ K, one gets
h.L�U ıA/��; xi � 0 for all x 2 S , and hU ��; zi � 0 for all z 2 C . Consequently,
U �� 2 C � and .L � U ı A/�� 2 S�. ut
Remark 6.26. In case K has a nonempty interior it needs not be closed for the
investigations performed within this subsection and the property .QC/ is automat-
ically fulfilled for the pair .K; .L � U ı A/.S/C U.C// whenever U 2 L .Z; V /.
Proposition 6.12 remains valid in that case, too, the only important modification in
its proof being the usage of Eidelheit’s separation statement for separating the sets
.L � U ı A/.S/C U.C// and K.

The vector dual problems assigned to .PLFw/ within Sect. 6.2.4 can be extended
to the infinitely dimensional case, too. The dual abstract optimization problem to
.PLIw/ is (cf. [48, 140])

.DLIJw/ WMax
.�;U /2BJ

Iw

hJIw
.�; U /;

where

BJ
Iw

D
n
.�; U / 2 .K� n f0g/ � L .Z; V / W U �� 2 C �; .L � U ı A/�� 2 S�o

and

hJIw
.�; U / D Ub;

while the generalization we propose for the vector dual inspired by Isermann’s
works is

.DLIIw/ WMax
U2BI

Iw

hIIw
.U /;

where

BI
Iw

D
n
U 2 L .Z; V / W �.L � U ı A/.S/C U.C/

� \ .� qiK/ D ;
o

and

hIIw
.U / D Ub:

The vulnerability these vector dual problems presented in the framework of
Sect. 6.2.4 in case b D 0 is inherited to the more general setting treated here, too.
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The vector Lagrange type dual to .PLIw/ is (cf. [48, 140])

.DLILw/ WMax
.�;z�;v/2BL

Iw

hLIw
.�; z�; v/;

where

BL
Iw

D
n
.�; z�; v/ 2 .K� n f0g/ � C � � V W h�; vi � hz�; bi; L�� � A�z� 2 S�o

and

hLIw
.�; z�; v/ D v;

while the vector dual with respect to weakly efficient solutions modeled after
.DLIH/ is

.DLIHw / WMax
U2BH

Iw

hHIw
.U /;

where

BH
Iw

D
n
U 2 L .Z; V / W �.L � U ı A/.S/C U.C/

� \ .� qiK/ D ;
o

and

hHIw
.U / D Ub C WMin

�
.L � U ı A/.S/C U.C/;K

�
:

The generalizations to the present framework of .DLFw/ and .DLFDw / are

.DLIw/ WMax
.�;U;v/2BIw

hIw.�; U; v/;

where

BIw D
n
.�; U; v/ 2 .K� n f0g/ � L .Z; V / � V W h�; vi D 0;

U �� 2 C �; .L � U ı A/�� 2 S�o

and

hIw.�; U; v/ D Ub C v;

and, respectively,

.DLIDw / WMax
.�;U;v/2BD

Iw

hDIw
.�; U; v/;
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where

BD
Iw

D
n
.�; U; v/ 2 .K� n f0g/ � L .Z; V / � V W h�; vi � 0;

U �� 2 C �; .L � U ı A/�� 2 S�o

and

hDIw
.�; U; v/ D Ub C v:

Remark 6.27. If .�; U; v/ 2 BIw , one can easily note that v … qiK [ .� qiK/,
while when .�; U; v/ 2 BD

Iw
it follows that v … qiK.

An inclusion chain similar to the ones given for their counterparts with respect to
efficient solutions in (6.3.15) holds for these vector duals to .PLIw/, too, extending
thus the one given in [48, Section 5.5] for only some of them in case K D R

kC.
Therefore, assuming that for all U 2 BI

Iw
the pair .K; .L�U ıA/.S/CU.C// has

the property .QC/, one obtains

hJIw
.BJ

Iw
/ D hIIw

.BI
Iw
/   hHIw

.BH
Iw
/   hIw.BIw/   hDIw

.BD
Iw
/ D hLIw

.BL
Iw
/:

(6.3.20)

For the primal-dual pair of vector optimization problems .PLIw/� .DLIw/ weak,
strong and converse duality statements can be proven similarly to their counterparts
from Sect. 6.3.2, employing where necessary the modifications performed in the
finitely dimensional case for the same purpose.

Theorem 6.23. There exist no x 2 A and .�; U; v/ 2 BIw such that Lx <K UbCv.

Theorem 6.24. If Nx 2 W E .PLIw/ and one of the regularity conditions .RCVI
i /,

i 2 f1; 2; 3; 4g, is fulfilled, there exists . N�; NU ; Nv/ 2 W E .DLIw/ such that L Nx D
NUb C Nv.

Theorem 6.25. When . N�; NU ; Nv/ 2 W E .DLIw/, L.A / C K is closed and one of
the regularity conditions .RCVI

i /, i 2 f1; 2; 3; 4g, is fulfilled, then NUb C Nv 2
WMin.L.A / CK;K/.
Remark 6.28. If Nx 2 A and . N�; NU ; Nv/ 2 Bw fulfill L Nx D NUb C Nv, then the
complementarity conditions h.L � NU ı A/� N�; Nxi D 0 and h NU � N�;A Nx � bi D 0

are fulfilled.

Note that Remarks 6.19, 6.21 and 6.22 remain valid in the framework of this
subsection, too.

For the primal-dual pair of vector optimization problems .PLIw/ � .DLIHw /, we
deliver weak and strong duality statements, too.
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Theorem 6.26. There exist no x 2 A , U 2 BH
Iw

and v 2 WMin
�
.L�U ıA/.S/C

U.C/;K
�

such that Lx <K Ub C v.

Theorem 6.27. If Nx 2 W E .PLIw/ and one of the regularity conditions .RCVI
i /,

i 2 f1; 2; 3; 4g, is fulfilled, there exist NU 2 W E .DLIHw / and Nv 2 WMin
�
.L � NU ı

A/.S/C NU .C/;K� such that L Nx D NUb C Nv.

Regarding the sets of weakly maximal elements of the vector duals we considered
within this subsection, one can show the following statement by following the proof
of Theorem 6.21.

Theorem 6.28. It holds

WMax.hJIw
.BJ

Iw
/;K/ � WMax.hIw.BIw/;K/ D WMax.hLIw

.BL
Iw
/;K/

and the inclusion becomes equality when b ¤ 0.

Remark 6.29. From Theorem 6.27 one can conclude that when one of the regularity
conditions .RCVI

i /, i 2 f1; 2; 3; 4g, is fulfilled one has WMin.L.A /;K/ �
WMax.hHIw

.BH
Iw
/;K/. It remains an open challenge to find out under which

hypotheses does this inclusion turn into an equality and also to compare in general
WMax.hHIw

.BH
Iw
/;K/ with the maximal sets of the image sets considered within

Theorem 6.28.

Remark 6.30. From Theorems 6.24, 6.25, 6.27 and 6.28 one can conclude that
when one of the regularity conditions .RCVI

i /, i 2 f1; 2; 3; 4g, is fulfilled, the pair
.K; .L�U ıA/.S/CU.C// has the property .QC/ for all U 2 BI

Iw
andL.A /CK

is closed the following inclusion scheme holds in case b ¤ 0

WMin.L.A /;K/ � WMax.hJIw
.BJ

Iw
/;K/ D WMax.hIIw

.BI
Iw
/;K/

D WMax.hIw.BIw/;K/ D WMax.hLIw
.BL

Iw
/;K/ � WMin.L.A /CK;K/;

while if b D 0 one has

WMax.hJIw
.BJ

Iw
/;K/ D WMax.hIIw

.BI
Iw
/;K/ � WMin.L.A /;K/

� WMax.hIw.BIw/;K/ D WMax.hLIw
.BL

Iw
/;K/ � WMin.L.A /CK;K/:

6.4 Vector Duality for Vector Semidefinite Optimization
Problems

In this section we deal by means of vector duality with a vector optimization
problem consisting in the vector minimization of a matrix function with respect to
the cone of the symmetric positive semidefinite matrices subject to both geometric
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and semidefinite inequality constraints. Let the nonempty set S � R
n and the matrix

functions F W Rn ! S k and H W Rn ! S m. For i; j 2 f1; : : : ; kg, denote by
fij W R

n ! R the function defined as fij.x/ D .F.x//ij. Recall that the scalar
product of two matrices A;B 2 S k is defined as hA;Bi D Tr.A>B/. The primal
semidefinite vector optimization problem we consider now is

.PVS/ Min
x2A

F.x/;

where

A D ˚
x 2 S W H.x/ 2 �S mC

�
;

where the vector minimization is done with respect to the cone S kC.
Recall that an element Nx 2 A is said to be a properly efficient solution in the

sense of linear scalarization to .PVS/ if F. Nx/ 2 PMinLS.F.A /;S kC/, i.e. there

exists a � 2 OS kC such that Tr
�
�>F. Nx/� � Tr

�
�>F.x/

�
for all x 2 A , and the

set of all the properly efficient solutions to .PVS/ in the sense of linear scalarization
is denoted by PE LS.PVS/. An element Nx 2 A is said to be an efficient solution to
.PVS/ if F. Nx/ 2 Min.F.A /;S kC/, i.e. there exists no x 2 A such that F.x/ �k

F. Nx/, and the set of all the efficient solutions to .PVS/ is denoted by E .PVS/. A
properly efficient solution Nx to .PVS/ is also efficient to .PVS/.

Remark 6.31. Similar vector optimization problems were considered, for instance,
in [111, 112], with all the involved functions taken cone-convex and differentiable,
without the geometric constraint x 2 S and by considering finitely many similar
semidefinite inequality constraints. Besides delivering optimality conditions regard-
ing the ideal efficient points to considered vector optimization problems, some
investigations via duality were performed for them, too, Lagrange and Wolfe dual
problems being assigned to the attached scalarized problems. Moreover, a Lagrange
type vector dual was proposed in [111], but with a different construction than the
ones considered within this work.

The vector dual problem we assign to .PVS/ is inspired by the ones proposed
in Sects. 6.2 and 6.3 for primal linear optimization problems and by the ones
considered in [200,201] for vector optimization problems whose image spaces were
partially ordered by the corresponding nonnegative orthants, being

.DVS/ Max
.�;Q;P;V /2BS

HS.�;Q;P; V /,

where

BS D
�
.�;Q;P; V / 2 OS kC � S mC � .Rn/k�k � R

k�k W P D .pij/i;jD1;:::;k ;

pij 2 dom f �
ij 8i; j 2 f1; : : : ; kg s.t. �ij ¤ 0;

�
kP

i;jD1
�ijpij 2 dom.QH/�S ;Tr.�>V / D 0

�
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and, for i; j D 1; : : : ; k,

.HS.�;Q;P; V //ij

D Vij �

8
<̂

:̂

f �
ij .pij/C 1

z.�/�ij
.QH/�S

 

�
kP

i;jD1
�ijpij

!

; if �ij ¤ 0;

0; otherwise;

where z.�/ denotes the number of nonzero entries of the matrix �.

Remark 6.32. Like for the other vector dual problems we considered within this
work, one can replace in BS the constraint equality Tr.�>V / D 0 by Tr.�>V / �
0, obtaining thus a vector dual problem to .PVS/ with a larger feasible set and,
consequently, image set.

Remark 6.33. If .�;Q;P; V / 2 BS , one can easily note that V … .S kC[.�S kC//n
f0g.

Now let us formulate the weak duality statement for .PVS/ and .DVS/.

Theorem 6.29. There exist no x 2 A and .�;Q;P; V / 2 BS such that F.x/ �k

HS.�;Q;P; V /.

Proof. Assume the existence of x 2 A and .�;Q;P; V / 2 BS such that
F.x/ �k HS.�;Q;P; V /. Then 0 > Tr

�
�>.F.x/ � HS.�;Q;P; V //

� D
Pk

i;jD1 �ij.fij.x/ C f �
ij .pij// C .QH/�S

� � Pk
i;jD1 �ijpij

� � .
Pk

i;jD1 �ijp
>
ij x �

Tr.Q>H.x// � ıS .x/ � .
Pk

i;jD1 �ijpij/
>x � 0 because x 2 A . As this cannot

happen, the assumption we made is false. ut
In order to prove strong duality for .DVS/ one needs additional hypotheses. The

regularity conditions .RCVG
i /, i 2 f1; 2; 3; 4g become in this case

.RCVS
1 / 9x0 2 S such that H.x0/ 2 � OS mC ;

.RCVS
2 / 0 2 ri.H.S/ � C/;

which is obtained as a special case of both .RCVG
2 / and .RCVG

3 / due to the fact that
we work here in finitely dimensional spaces, and, respectively,

.RCVS
4 / S is closed and for any � 2 OS k

C
epi.�F /� C S

Q2S m
C

epi.QH/�S is closed:

Theorem 6.30. If S is a convex set, fij, i; j D 1; : : : ; k, are convex functions,
H is S mC -convex, Nx 2 PE LS.PVS/ and one of the regularity conditions .RCVS

i /,
i 2 f1; 2; 4g, is fulfilled, there exists . N�; NQ; NP ; NV / 2 E .DVS/ such that F. Nx/ D
HS. N�; NQ; NP ; NV /.
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Proof. Since Nx is properly efficient to .PVS/, there exists a N� 2 OS kC such that
Tr
�
�>F. Nx/� � Tr

�
�>F.x/

�
for all x 2 A . The fulfillment of any of the

considered regularity conditions yields strong duality for the scalarized optimization
problem attached to .PVS/

inf
x2A

Tr
�
�>F.x/

�

and its Fenchel-Lagrange dual

sup
Q2S m

C
;

T2Rn

n
� .�F /�.T / � .QH/�S .�T /

o
;

thus the latter has the optimal solutions NQ and NT and

Tr
�
�>F. Nx/� D �. N�F /�. NT / � . NQH/�S .� NT /:

Because fij, i; j D 1; : : : ; k, are convex functions defined on R
n with full domain

they are continuous, too, consequently there exist Qpij 2 R
n, i; j D 1; : : : ; k, such

that Qpij D 0 if N�ij D 0,

. N�F /�. NT / D
kX

i;jD1;
N�ij¤0

. N�ijfij/
�. Qpij/ D

kX

i;jD1;
N�ij¤0

N�ijf
�

ij

 
Qpij

N�ij

!

and
Pk

i;jD1 Qpij D NT . For i; j 2 f1; : : : ; kg take Npij D Qpij= N�ij and

NVij D fij. Nx/C f �
ij . Npij/C 1

z. N�/ N�ij
. NQH/�S

0

@�
kX

i;jD1
Qpij

1

A

if N�ij ¤ 0 and Npij D Qpij and NVij D fij. Nx/ otherwise. Then

Tr. N�> NV /

D
kX

i;jD1;
N�ij¤0

N�ij

0

@fij. Nx/C f �
ij . Npij/C

 
1

z. N�/ N�ij

!

. NQH/�S

0

@�
kX

i;jD1
N�ij Npij

1

A

1

A D 0:

Consequently, after denoting NP D . Npij/i;jD1;:::;k , one notices that . N�; NQ; NP ; NV / 2
BS . Assuming that . N�; NQ; NP ; NV / … E .DVS/, employing Theorem 6.29 yields a
contradiction, therefore . N�; NQ; NP ; NV / 2 E .DVS/. ut
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The corresponding statement giving necessary and sufficient optimality condi-
tions for the primal-dual pair of problems .PVS/ � .DVS/ follows.

Theorem 6.31. (a) If S is a convex set, fij, i; j D 1; : : : ; k, are convex functions,
H is S mC -convex, Nx 2 PE LS.PVS/ and one of the regularity conditions
.RCVS

i /, i 2 f1; 2; 4g, is fulfilled, there exists . N�; NQ; NP ; NV / 2 E .DVS/ such
that

(i) F. Nx/ D HS. N�; NQ; NP ; NV /;
(ii) fij. Nx/C f �

ij . Npij/ D Np>
ij Nx when N�ij ¤ 0;

(iii) . NQH/�S
 

�
kP

i;jD1
N�ij Npij

!

D �
 

kP

i;jD1
N�ij Npij

!>
Nx;

(iv) Tr. NQ>H. Nx// D 0;
(v) Tr. N�> NV / D 0;

(b) Assume that Nx 2 A and . N�; NQ; NP ; NV / 2 OS kC � S mC � .Rn/k�k � R
k�k fulfill

the relations .i/ � .v/, where NP D . Npij/i;jD1;:::;k . Then Nx 2 PE LS.PVS/ and
. N�; NQ; NP ; NV / 2 E .DVS/.

Proof. (a) The existence of a . N�; NQ; NP ; NV / 2 E .DVS/, where NP D . Npij/i;jD1;:::;k ,
such that F. Nx/ D HS. N�; NQ; NP ; NV / is guaranteed by Theorem 6.30. The
relations .i/ and .v/ are thus satisfied. Moreover,

Tr. N�> NV /

D
kX

i;jD1;
N�ij¤0

N�ij

0

@fij. Nx/C f �
ij . Npij/C

 
1

z. N�/ N�ij

!

. NQH/�S

0

@�
kX

i;jD1
N�ij Npij

1

A

1

A;

and this is actually equal to 0. On the other hand, the Young-Fenchel inequality
yields fij. Nx/C f �

ij . Npij/ � Np>
ij Nx and

. NQH/�S

0

@�
kX

i;jD1
N�ij Npij

1

AC Tr
� NQ>H. Nx/� �

0

@�
kX

i;jD1
N�ij Npij

1

A

>

Nx;

which, taking into consideration the equality from above, imply Tr. NQ>
H. Nx// � 0. But Tr. NQ>H. Nx// � 0 because Q 2 S mC and H. Nx/ 2 �S mC ,
consequently both Young-Fenchel inequalities are fulfilled as equalities and
Tr. NQ>H. Nx// D 0, hence relations .ii/ � .iv/ are fulfilled, too.

(b) From .ii/ it follows that Npij 2 dom f �
ij for all i; j 2 f1; : : : ; kg such that

N�ij ¤ 0, while .iii/ yields �Pk
i;jD1 N�ij Npij 2 dom dom.QH/�S . Because of

.v/, it follows that . N�; NQ; NP ; NV / 2 BS .
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Multiplying .ii/ for fij with N�ij and summing up these relations and also
.iii/ � .iv/ one obtains

kX

i;jD1;
N�ij¤0

N�ij

0

@fij. Nx/C f �
ij . Npij/C

 
1

z. N�/ N�ij

!

. NQH/�S

0

@�
kX

i;jD1
N�ij Npij

1

A

1

A D 0;

that yields because of the strong duality for the scalarized optimization problem
attached to .PVS/

inf
x2A

Tr
�
�>F.x/

�

and its Fenchel-Lagrange dual that Nx 2 PE LS.PVS/. The efficiency of
. N�; NQ; NP ; NV / to .DVS/ follows immediately by .i/ and Theorem 6.29. ut

Remark 6.34. A possible way to generalize the investigations made within this
subsection may be by means of the K-semidefinite cone introduced in [85], that
has as special case when K D R

n the corresponding cone of positive semidefinite
matrices.



Chapter 7
Monotone Operators Approached via Convex
Analysis

7.1 Historical Overview and Motivation

The monotone operators started being intensively investigated during the 1960’s
by authors like Browder, Brézis or Minty, and it did not take much time until
their connections with convex analysis were noticed by Rockafellar, Gossez and
others. The fact that the (convex) subdifferential of a proper, convex and lower
semicontinuous function is a maximally monotone operator was one of the reasons
for connecting these at a first sight maybe unrelated research fields. One of the
most important challenges of the next decades was to identify a function that could
be associated to a monotone operator in order to help investigating it by means
of convex analysis, in addition to the previously used methods belonging to fixed
point theory and equilibrium problems. Such functions were proposed by Coodey,
Simons or Krauss, but the real breakthrough was brought by Fitzpatrick’s function,
introduced in [86], neglected for more than a decade and independently rediscovered
in the early 2000’s by Martínez-Legaz and Théra, and Burachik and Svaiter,
respectively. Shortly afterwards, the Fitzpatrick family of representative functions
was introduced, offering new tools for approaching the monotone operators via
convex analysis. Since then, the number of papers where different aspects of
monotone operators were investigated, especially by means of convex analysis, has
increased in a spectacular manner, due to authors like Bauschke, Borwein, Boţ,
Marques Alves, Martínez-Legaz, Penot, Simons, Svaiter, Voisei, Yao, Zălinescu and
some of the already mentioned ones, besides the new results many older statements
being rediscovered or improved in this way.

Perhaps the most famous problem regarding monotone operators concerns the
maximality of the sum of two maximally monotone operators. Different hypotheses
that guarantee the mentioned outcome were successfully proposed for the case the
space on which the mentioned monotone operators are defined on is reflexive, but
it is still unknown whether they work or not if the space is a general Banach one.
Other interesting problems involving monotone operators regard their surjectivity

© Springer International Publishing Switzerland 2015
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properties, the properties of their domains and ranges, the relations between
different classes of them, their extensions etc. The investigations on monotone
operators have led to advances back in convex analysis, too, let us mention here
only the notions of Fenchel totally unstable functions (cf. [21, 190]) or sets that are
closed regarding others (cf. [42, 45]). Moreover, the algorithms for finding zeros
of (combinations of) monotone operators were successfully employed for solving
convex optimization problems, too.

The sum of the ranges of two monotone operators defined on Banach spaces is
usually larger than the range of their sum. Under some additional conditions these
sets are almost equal, i.e. their interiors and closures coincide. Brézis and Haraux
brought the first contributions in this directions in [60] and since then determining
when the sum of the ranges of two monotone operators is almost equal in the
sense mentioned above to the range of their sum is known as the Brézis-Haraux
approximation problem, being treated in works like [9, 70, 72, 73, 171, 176, 190].
There is a rich literature on the applications of the Brézis-Haraux approximation,
let us mention here only the ones for variational inequality problems, Hammerstein
equations and Neumann problem (cf. [60]), complementarity problems (cf. [70]),
generalized equations of maximally monotone type (cf. [171]) and Bregman and
projection algorithms. Our contributions to this topic, summarized in Sect. 7.3 and
originally published in [35, 40, 42, 44], concern Brézis-Haraux type approximation
statements for the sum of a monotone operator with the composition with a linear
mapping of another one, where the involved spaces are general Banach ones. When
particularizing the involved operators to subdifferentials of proper, convex and
lower semicontinuous functions, some statements from [70, 176] are corrected and
extended, respectively.

Problems arising from fields like inverse problems, Fenchel-Rockafellar and
Singer-Toland duality schemes, Clarke-Ekeland least action principle (cf. [5]),
variational inequalities (cf. [19]), Schrödinger equations and others (cf. [4]) can be
modelled to lead to the surjectivity or the identification of zeros of a combination
of monotone operators. These, together with the known surjectivity properties of
a monotone operator, let us mention just the classical ones due to Minty and
Rockafellar (see, for instance, [190]), respectively, motivated the investigations
regarding the ranges of combinations of monotone operators whose outcomes were
published in recent works such as [162, 163, 177, 190, 222]. In Sect. 7.4 we present,
following our paper [30], weak closedness type conditions involving representative
functions that equivalently characterize or guarantee the surjectivity of a sum of a
maximally monotone operator with a translation of another one. Particularizing then
these results for the zeros of the mentioned sum and for the case when the involved
monotone operators are subdifferentials, we improved several recent statements
from the literature.

Similarities and connections between monotone operators and bifunctions were
noticed in the seminal paper [12], followed by works like [116, 135, 160], where
the latter were investigated mostly by means of equilibrium problems and different
maximality or boundedness results for them were provided. On the other hand, we
proposed in [33] a way to deal with the maximal monotonicity of the bifunctions
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by means of representative functions and this path was followed in very recent
papers like [2, 136]. In Sect. 7.5 we attach to a bifunction two functions which are
then used for approaching the maximal monotonicity of the bifunction by means
of convex analysis. We succeeded to extend in this way to general Banach spaces
some results known in the literature only for reflexive ones. Moreover, we provided
positive answers to some recently posed conjectures from [135, 136].

7.2 Preliminaries on Monotone Operators

Before proceeding with our investigations on monotone operators, we present some
notions and preliminary results used later in the exposition, following [19,21,65,86,
104, 161, 172, 173, 190, 221] and some of the references therein.

7.2.1 Monotone Operators

Within this chapter, unless otherwise mentioned, the involved spaces will be
considered to be Banach spaces, equipped with norms usually denoted by k � k,
while the norm on its dual space is denoted by k � k�. Let X and Y be nontrivial real
Banach spaces. We present first the definition of a monotone operator, followed by
ones of different properties the latter can have.

Definition 7.1. A multifunction T W X � X� is called a monotone operator
provided that for any x; y 2 X one has hy� � x�; y � xi � 0 whenever x� 2 T .x/
and y� 2 T .y/.

Having a monotone operator T W X � X�, its domain is the set D.T / D
fx 2 X W T .x/ ¤ ;g, its range is R.T / D [fT .x/ W x 2 Xg, while its graph
is G.T / D f.x; x�/ W x 2 X; x� 2 T .x/g. One can also consider the monotone
operator �T W X � X� whose graph isG.�T / D f.x; x�/ 2 X�X� W .x;�x�/ 2
G.T /g.

Definition 7.2. The monotone operator T W X � X� is called maximal when its
graph is not properly included in the graph of any other monotone operator T 0 W
X � X�.

The next class of monotone operators was introduced in [104] and afterwards it
was shown that it coincides in the maximality case with some other ones considered
in various circumstances in the literature.

Definition 7.3. A monotone operator T W X � X� is called of type .D/ provided
that each element of its monotone closure operator T W X�� � X�,

G.T / D ˚
.x��; x�/ 2 X�� �X� W hx�� � y; x� � y�i � 0 8.y; y�/ 2 G.T /�
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is the limit in the weak�� strong topology of X�� � X� of a bounded net
f.xi ; x�

i /ig � G.T /.

Remark 7.1. The monotone closure is not the only closure of a monotone operator
considered in the literature. Another one can be found, for instance, in [62].

Remark 7.2. In reflexive Banach spaces every maximally monotone operator is of
type .D/ and coincides with its closure operator. On the other hand, not every
monotone operator of type .D/ is maximal, as the example presented in [104,
Remarques 2, p.376] shows. Note also that according to [173], clR.T / D clR.T /
for any monotone operator T W X � X�.

Another class of monotone operators we consider within this work is the
following one, originally introduced in [60], but mentioned in the literature under
different names like star-monotone operators (see [171]), 3�-monotone operators
(cf. [70, 176, 217]) and .BH/-operators (in [72, 73]).

Definition 7.4. A monotone operator T W X � X� is said to be rectangular
if for all x� 2 R.T / and x 2 D.T / there is some ˇ.x�; x/ 2 R such that
inf.y;y�/2G.T /hx� � y�; x � yi � ˇ.x�; x/.

Example 7.1. The subdifferential of a proper, convex and lower semicontinuous
function defined on X is a classical example for all these classes of monotone
operators. In [104, Théoréme 3.1] it was proven that it is a monotone operator of
type .D/, according to [217] (see also [190]) it is rectangular, while its maximal
monotonicity was proven for the first time in [179]. However, one can find in the
literature (see, for instance, [9, 10, 104, 190]) also examples of monotone operators
belonging to the mentioned classes that are not subdifferentials. Moreover, in [10,
Example 5.4] one can find a maximally monotone operator that is not rectangular,
while in [10, Example 3.3] a rectangular monotone operator that is not maximal is
mentioned.

Remark 7.3. One of the most important maximally monotone operators is the
duality map

J W X � X�;

J .x/ D @
�1
2

k � k2
	
.x/ D

n
x� 2 X� W kxk2 D kx�k2� D hx�; xi

o
; x 2 X;

that can be used, for instance, as noted below, for formulating a maximality
criterium for a monotone operator.

The following statements from [19] and [176], respectively, will be used later in
our investigations.

Lemma 7.1. When X is a reflexive Banach space, a monotone operator T W X �
X� is maximal if and only if the mapping T .x C �/ C J .�/ is surjective for all
x 2 X .
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Lemma 7.2. Given the monotone operator of type .D/ T W X � X� and the
nonempty subset E � X� such that for any x� 2 E there is some x 2 X fulfilling
inf.y;y�/2G.T /hx� � y�; x � yi > �1, one has E � cl.R.T // and int.E/ � R.T /.

7.2.2 Representative Functions

In order to deal with monotone operators by means of convex analysis, different
functions were attached to them in the literature. The one that has facilitated the
most important progresses in this direction is the one introduced by Fitzpatrick in
[86].

Definition 7.5. The Fitzpatrick function attached to the monotone operator T W
X � X� is

'T W X �X� ! R; 'T .x; x
�/ D sup

˚hy�; xi C hx�; yi � hy�; yi W y� 2 Ty�:

The Fitzpatrick function attached to any monotone operator is convex and weak-
weak� lower semicontinuous. Moreover, using it one can show that a monotone
operator T W X � X� is rectangular if and only if D.T / � R.T / � dom'T .
Note also that in [9] one can find interesting connections between rectangular
monotone operators and almost convex sets (that are called there nearly convex).
The function  T WD co.c C ıG.T //, where the closure is considered in the strong
topology, is very well connected to the Fitzpatrick function. On X � X� we have
 �>
T D 'T and, when X is a reflexive Banach space, one also has '�>

T D  T .
If T W X � X� is maximally monotone, then 'T � c and G.T / D f.x; x�/ 2
X � X� W 'T .x; x�/ D hx�; xig. These properties of the Fitzpatrick function
motivate attaching to monotone operators other functions, as follows.

Definition 7.6. Given the monotone operator T W X � X�, a convex and strong-
strong lower semicontinuous function hT W X � X� ! R fulfilling hT � c and
G.T / � f.x; x�/ 2 X � X� W hT .x; x�/ D c.x; x�/g is said to be a representative
function of T . The set FT of all the representative functions of the monotone
operator T is said to be the Fitzpatrick family of T .

Note that if G.T / ¤ ; (in particular if T is maximally monotone), then every
representative function of T is proper. It follows immediately that 'T ;  T 2 FT .
If f W X ! R is a proper, convex and lower semicontinuous function, then the
function .x; x�/ 7! f .x/ C f �.x�/ is a representative function of the maximally
monotone operator @f W X � X� and we call it the Fenchel representative function
(cf. [30]). If f is moreover sublinear, the only representative function associated to
@f is the Fenchel one, which coincides in this case with the Fitzpatrick function of
@f . Some properties of maximally monotone operators and representative functions
attached to them that we need further follow (cf. [65]).
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Lemma 7.3. Let T W X � X� be a maximally monotone operator and hT 2 FT .
Then

(i) 'T .x; x�/ � hT .x; x
�/ �  T .x; x

�/ for all .x; x�/ 2 X �X�;
(ii) The restriction of h�>

T to X �X� is also a representative function of T ;
(iii)

˚
.x; x�/ 2 X � X� W hT .x; x�/ D c.x; x�/

� D ˚
.x; x�/ 2 X � X� W

h�>
T .x; x�/ D c.x; x�/

� D G.T /.

Given the monotone operator T W X � X� with G.T / ¤ ; and hT 2 FT ,
denote by OhT W X � X� ! R the function defined as OhT .x; x�/ D hT .x;�x�/,
x 2 X , x� 2 X�. Note that OfT is proper, convex and strong-strong lower
semicontinuous, too and OhT .x; x�/ � �hx�; xi and Oh�

T .x
�; x/ D h�

T .x
�;�x/ for

all x 2 X and all x� 2 X�.
Let us now give two maximality criteria for monotone operators involving convex

functions, the first one, following [65, Theorem 3.1] and [172, Proposition 2.1],
in reflexive spaces, the other one originally given in [161, Theorem 3.1] with the
hypothesis 0 2 sqri

�
PrX .dom h/

�
and generalized by translation arguments as

given below in [33].

Lemma 7.4. Let X be reflexive. If h W X � X� ! R is a proper, convex and
lower semicontinuous function with h � c, then the monotone operator f.x; x�/ 2
X �X� W h.x; x�/ D c.x; x�/g is maximal if and only if h�> � c.

Lemma 7.5. Let h W X � X� ! R be a proper and convex function with h � c

and h�> � c on X � X�. If sqri PrX.dom h/ ¤ ;, then the operator f.x; x�/ 2
X �X� W h�.x�; x/ D c.x; x�/g is maximally monotone.

7.3 Brézis-Haraux Type Approximations

We give in this section some results concerning the so-called Brézis-Haraux type
approximation of the range of the sum of a monotone operator with a monotone
operator composed with a linear continuous mapping, following our papers [35, 40,
42, 44]. These results are then particularized by taking for the monotone operators
the subdifferentials of some proper, convex and lower semicontinuous functions.

7.3.1 Brézis-Haraux Type Approximations for Sums
of Rectangular Monotone Operators

Consider two monotone operators S W X � X� and T W Y � Y � and a linear
continuous mapping A W X ! Y . It is known that S C A� ı T ı A is a monotone
operator and under certain conditions it is maximally monotone (see [42, 44, 171,
172], for instance). The construction S C A� ı T ı A encompasses at least two



7.3 Brézis-Haraux Type Approximations 229

important special cases. Taking S to be the zero operator defined as S.x/ D f0g for
all x 2 X , the results we give provide their counterparts for the composition of a
monotone operator with a linear continuous mapping, while when X D Y and A is
the identity mapping of X one obtains corresponding results regarding the sum of
two monotone operators. We show first that S C A� ı T ı A is rectangular when S
and T are rectangular monotone operators.

Theorem 7.1. If the monotone operators S and T are rectangular, then S C A� ı
T ı A is rectangular, too.

Proof. If D.S C A� ı T ı A/ D ;, the conclusion arises trivially. Otherwise take
w� 2 R.S C A� ı T ı A/, i.e. there are some w 2 X and x�; z� 2 X� such that
x� 2 S.w/, z� 2 A� ı T ı A.w/ and w� D x� C z�. Let x 2 D.S C A� ı T ı A/.
We have

inf
.y;y�/2G.SCA�ıT ıA/hw

� �y�; x�yi D inf
.y;u�/2G.S/;

.y;v�/2G.A�ıT ıA/;
u�Cv�Dy�

hx� C z� � .u� C v�/; x�yi

� inf
.y;u�/2G.S/hx

� � u�; x � yi C inf
.y;v�/2G.A�ıT ıA/hz

� � v�; x � yi: (7.3.1)

As z� 2 A� ı T ıA.w/, there is some r� 2 T ıA.w/ such that z� D A�r�. Clearly,
r� 2 R.T /. Denote u D Ax 2 D.T /. When v� 2 A� ı T ı A.y/ there is some
s� 2 T ı A.y/ such that v� D A�s�. We have

inf
.y;v�/2G.A�ıT ıA/hz

� � v�; x � yi D inf
.y;s�/2G.T ıA/hA

�r� � A�s�; x � yi

D inf
.y;s�/2G.T ıA/hr

� � s�; A.x � y/i � inf
.v;s�/2G.T /hr

� � s�; u � vi � ˇ.r�; u/ 2 R;

since T is rectangular. As S is also rectangular, (7.3.1) yields that S C A� ı T ı A
is rectangular, too. ut
Remark 7.4. TakingX D Y andA to be the identity mapping ofX , one rediscovers
as a special case of Theorem 7.1 the result given in [9, Lemma 11], i.e. that the sum
of two rectangular monotone operators is rectangular, too.

The next statement provides a Brézis-Haraux type approximation of the range of
S C A� ı T ı A through the ranges of the monotone operators S and T .

Theorem 7.2. If the monotone operators S and T are rectangular and S C A� ı
T ı A is of type .D/, one has

(i) clR.S C A� ı T ı A/ D cl.R.S/C A�.R.T /// D clR.S C A� ı T ı A/;
(ii) intR.S C A� ı T ı A/ � int.R.S/C A�.R.T /// � intR.S C A� ı T ı A/.
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Proof. As the monotone operator S C A� ı T ı A is of type .D/ its domain is
nonempty, thus D.S/ \ D.A� ı T ı A/ ¤ ;. By Theorem 7.1 we obtain that it is
rectangular, too.

Take x� 2 R.S C A� ı T ı A/. Then there exist x 2 D.S C A� ı T ı A/
and y�; z� 2 X� such that x� D y� C z�, y� 2 S.x/ and z� 2 A� ı T ı A.x/.
Obviously z� 2 A�.R.T //, thus x� D y� C z� 2 R.S/CA�.R.T //. Consequently
R.SCA� ıT ıA/ � R.S/CA�.R.T // and the same inclusion exists also between
the closures, respectively the interiors, of these sets.

Let now x� 2 R.S/CA�.R.T //, thus there are some x�
1 2 R.S/, x�

2 2 R.A� ı
T ı A/ and z� 2 R.T / such that x� D x�

1 C x�
2 and x�

2 D A�z�. Taking an
x 2 D.S C A� ı T ı A/ there holds

inf
.y;y�/2G.SCA�ıT ıA/hx

� �y�; x�yi D inf
.y;u�/2G.S/;

.y;v�/2G.A�ıT ıA/;
u�Cv�Dy�

hx�
1 Cx�

2 � .u� Cv�/; x�yi

� inf
.y;u�/2G.S/hx

�
1 � u�; x � yi C inf

.y;v�/2G.A�ıT ıA/hx
�
2 � v�; x � yi > �1;

as both S and A� ı T ı A are rectangular. Applying Lemma 7.2 for E D R.S/C
A�.R.T // and SCA�ıT ıA, we obtain thatR.S/CA�.R.T // � clR.SCA�ıT ı
A/ and int.R.S/ C A�.R.T /// � R.S C A� ı T ı A/. Taking into consideration
what we have already proven above, .i/ and .ii/ follow. ut
Remark 7.5. TakingX D Y andA to be the identity mapping ofX , one rediscovers
as a special case of Theorem 7.2 the result given in [70, Theorem 3.1] and [176,
Theorem 1].

When X is moreover reflexive the inequalities in Theorem 7.2.ii/ turn into
equalities and we get a more accurate Brézis-Haraux approximation of the range
of S C A� ı T ı A.

Theorem 7.3. If the Banach spaceX is moreover reflexive, the monotone operators
S and T are rectangular and S C A� ı T ı A is maximally monotone, one has

(i) cl.R.S/C A�.R.T /// D clR.S C A� ı T ı A/;
(ii) intR.S C A� ı T ı A/ D int.R.S/C A�.R.T ///.

Proof. As X is reflexive, the maximally monotone operator S C A� ı T ı A is of
type .D/, too, and S CA� ı T ıA D S C A� ı T ı A. The conclusion follows via
Theorem 7.2. ut
Remark 7.6. TakingX D Y andA to be the identity mapping ofX , one rediscovers
as a special case of Theorem 7.3 the result given in [70, Corollary 3.1] and [176,
Corollary 1].
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7.3.2 Brézis-Haraux Type Approximations for Sums
of Subdifferentials

Now we turn our attention to the most famous example for many classes of
monotone operators, namely the subdifferential of a proper, convex and lower semi-
continuous function. Let the proper, convex and lower semicontinuous functions f W
X ! R and g W Y ! R, and the linear continuous mapping A W X ! Y fulfilling
the feasibility condition A.dom f /\ domg ¤ ;. Like in Sects. 2.2.3, 2.3.3, and the
other places where we dealt with unconstrained optimization problems, let us note
that valuable special cases of the results presented in the following can be obtained
by taking X D Y and A to be the identity mapping of X and, respectively, when f
is the zero function. Before giving a Brézis-Haraux type statement involving ranges
of subdifferentials, we introduce the following regularity condition inspired from
.RCU

4 /

.RCMBH/
ˇ
ˇ epi f � C .A� � idR/.epig�/ is closed in the topology !.X�; X/ � R:

Theorem 7.4. If .RCMBH/ is valid, then one has

(i) cl.R.@f /C A�.R.@g/// D clR.@f C A� ı @g ı A/ D clR.@.f C g ı A//;
(ii) intR.@.f Cg ıA// D intR.@f CA� ı@g ıA/ � int.R.@f /CA�.R.@g/// �

int D.@.f ��A�g�// D intD.@.f C g ı A/�/.
Proof. As f , g and f C g ı A are proper, convex and lower semicontinuous, by
Example 7.1 we know that @.f C g ıA/ is a monotone operator of type .D/, while
@f and @g are rectangular.

By Corollary 2.14 we know that .RCMBH/ implies @f C A� ı @g ı A D @.f C
g ı A/, therefore @f C A� ı @g ı A is maximally monotone operator of type .D/,
too.

Applying Theorem 7.2 for S D @f and T D @g we get

cl.R.@f /C A�.R.@g/// D clR.@f C A� ı @g ı A/ D clR.@.f C g ı A//;

i.e. .i/, and

intR.@f CA� ı @g ıA/ � int.R.@f /CA�.R.@f /// � intR.@f C A� ı @g ı A/;

which becomes

intR.@.f C g ı A// � int.R.@f /C A�.R.@g/// � intR.@.f C g ı A//:
(7.3.2)

From Sect. 2.2.3 one can deduce that under .RCMBH/ it holds .f C g ı A/� D
f ��A�g�, by [104, Théoréme 3.1] we get R.@.f C g ı A// D D.@.f C g ı
A/�/ D D.@.f ��A�g�//. Combining this with (7.3.2) one gets .ii/. ut
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Remark 7.7. Similar results to the ones in Theorem 7.4 have been obtained for the
case when X D Y and A is the identity mapping of X in [176, Corollary 2] and
[70, Corollary 3.2], under the hypothesis that

S
t>0 t.dom f � domg/ is a closed

linear subspace of X . However, some of the results obtained there are not true in
general Banach spaces. In [176] it is claimed that the mentioned hypotheses yield
int.R.@f /C R.@g// D intD.@.f ��g�//, while according to [70] they imply that
int.R.@f / C R.@g// D intD.@.f C g/�/. However, as the situation depicted in
Example 7.2, which is due to Fitzpatrick and was brought into our attention by [173,
Example 2.21], shows, these conclusions can be false when working in nonreflexive
Banach spaces.

Example 7.2. Take X D c0, the space of the real sequences converging to 0, which
is a nonreflexive Banach space with the usual norm kxk D supn�1 jxnj for x D
.xn/n�1 2 c0, and let f; g W c0 ! R, with f taking everywhere the value 0 and
g.x/ D kxkCkx�e1k, for all x 2 c0, where e1 D .1; 0; 0; : : :/ 2 c0. Both functions
f and g are proper, convex and continuous and the regularity condition required in
[70, 176] is fulfilled. Moreover for any x 2 c0 one has @g.x/ D @k � k.x/ C @k �
�e1k.x/. The dual space of c0 is `1, which consists of all the sequences y D .yn/n�1
such that kyk� D PC1

nD1 jynj < C1. Denote by F the set of sequences in `1 having
finitely many nonzero entries and by B� the closed unit ball in `1.

It is known that k � k�.y/ D 0 if kyk� � 1 and k � k�.y/ D C1 otherwise,
which leads to @k � k.x/ D B� if x D 0, @k � k.e1/ D fe1g, @k � k.�e1/ D f�e1g
and @k � k.x/ D fy 2 `1 W kyk� � 1, hy; xi D kxkg � F , otherwise, where we
note that e1 2 `1, too. Moreover, we have @k � �e1k.x/ D @k � k.x � e1/ for any
x 2 c0. Further one gets @g.0/ D �e1 CB� and @g.e1/ D e1 CB�. Otherwise, i.e.
if x 2 c0nf0; e1g, @g.x/ � F . Therefore

R.@g/ � .�e1 C B�/ [ .e1 C B�/ [ F: (7.3.3)

Since intR.@g/ includes intB� ˙ e1, assuming it convex yields 0 D 1=2.e1 � e1/ 2
intR.@g/. Hence there exists a neighborhood of 0, say U , completely included in
R.@g/. Take some � > 0 sufficiently small such that

	.�/ D


0;
�

22
;
�

23
;
�

24
; : : :

�
2 U:

Thus 	.�/ 2 R.@g/. One can check that k	.�/˙ e1k� D 1C �
2
> 1, so, taking into

consideration (7.3.3), 	.�/ must be in F . It is clear that this does not happen, thus
we reached a contradiction. Therefore intR.@g/ is not convex, unlike intR.@g/,
whose convexity follows via [189, Theorem 20].

On the other hand, the relations claimed in [70, 176] to be valid and mentioned
in Remark 7.7 become both now intR.@g/ D intD.@g�/, which is equivalent, via
[104, Théoréme 3.1], to intR.@g/ D intR.@g/. But, as we have seen above, this
does not happen for f and g as selected above, thus the allegations concerning the
interior of the sum of the ranges of two subdifferentials in [70, 176] are false.
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In the light of Remark 7.7 and Example 7.2, let us give below the consequence
of Theorem 7.4 for the case X D Y and A is the identity mapping of X which
corrects and generalizes, by asking the fulfillment of a weaker regularity condition,
[176, Corollary 2] and [70, Corollary 3.2].

Corollary 7.1. Let f and g be two proper, convex and lower semicontinuous
functions on the Banach space X with extended real values such that dom f \
domg ¤ ;. Assuming that

epi f � C epig�is closed in the product topology !.X�; X/ � R;

one has

(i) cl.R.@f /CR.@g// D clR.@f C @g/ D clR.@.f C g//;
(ii) intR.@f C @g/ D intR.@.f C g// � int.R.@f / C R.@g// �

intD.@.f ��g�// D intD.@..f C g/�//.

Remark 7.8. Considering moreover that the Banach space X is reflexive, Theo-
rem 7.3 yields that the inclusions in Corollary 7.1.ii/ turn into equalities.

7.3.3 Applications of the Brézis-Haraux Type Approximations

Besides the fields of applications of the Brézis-Haraux type approximations men-
tioned before (see, for instance, [60, 171]), we present below two concrete ways to
apply the results we provided within this section.

7.3.3.1 Existence of a Solution to an Optimization Problem

Let the proper, convex and lower semicontinuous functions f W X ! R and g W
Y ! R and the linear continuous mapping A W X ! Y such that A.dom f / \
domg ¤ ;.

Theorem 7.5. Assume that .RCMBH/ is satisfied and moreover that 0 2
int.R .@f /CA�.R.@g///. Then there exists a neighborhood V of 0 in X� such that
for all x� 2 V there exists an Nx 2 dom f \ A�1.domg/ for which

f . Nx/C g.A Nx/ � hx�; Nxi D min
x2X

�
f .x/C g.Ax/ � hx�; xi�:

Proof. By Theorem 7.4 we have int.R.@f /CA�.R.@g/// � intD.@.f ��A�g�//,
thus 0 2 intD.@.f ��A�g�//, i.e. there is a neighborhood V of 0 in X� such that
V � D.@.f ��A�g�// D D.@..f C g ı A/�//.

Let x� 2 V . The properties of the subdifferential yield that there is an Nx 2
dom f \A�1.domg/ such that .f C g ıA/�.x�/C .f C g ıA/��. Nx/ D hx�; Nxi.
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As f C g ı A is a proper, convex and lower semicontinuous function we have
.f C g ı A/�� D f C g ı A, hence the equality stated above becomes

f . Nx/Cg.A Nx/�hx�; Nxi D �.f CgıA/�.x�/ D � max
x2X fhx�; xi�f .x/�g.Ax/g;

yielding thus the conclusion. ut
Remark 7.9. Under the hypotheses of Theorem 7.5, .RCMBH/ is equivalent to

inf
x2X

�
f .x/Cg.Ax/� hx�; xi� D max

y�2Y �

˚�f �.x� �A�y�/�g�.y�/
� 8x� 2 X�:

Thus one may notice that the conclusion of the mentioned statement can be refined
in the sense that the outcome is something that may be called locally stable total
Fenchel duality, i.e. the situation where both the primal and the dual problem have
optimal solutions and their values coincide for small enough linear perturbations of
the objective function of the primal problem. Let us notice moreover that as 0 2 V ,
for x� D 0 we obtain also the Fenchel total duality statement, too.

7.3.3.2 Existence of a Solution to a Complementarity Problem

Consider now X to be a reflexive Banach space, let C � X be a closed convex cone
and S W X � X� a maximally monotone operator. In the following we will show
that Theorem 7.3 can guarantee under certain hypotheses the existence of a solution
to the complementarity problem (cf. [70])

.CP/

8
<

:

x 2 C; x� 2 C �;
hx�; xi D 0;

x� 2 S.x/:

But before we can prove the mentioned statement we have to mention a recent
result of ours, originally given in [42, 44]. Recall that the sum of two maximally
monotone operators is always a monotone operator that in general fails to be
maximal and the problem of finding hypotheses that guarantee its maximality has
been firstly solved in [180].

Lemma 7.6. Given two maximally monotone operators S; T W X � X�, if the
condition

.RCMM/
f.x� C y�; x; y; r/ W '�

S .x
�; x/C '�

T .y
�; y/ � rg is closed

regarding the subspace X� ��X � R;

is fulfilled then S C T is a maximally monotone operator, too.
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Proof. Fix first some z 2 X and z� 2 X�. We prove that there is always an Nx 2 X
such that z� 2 .SCT /. NxCz/CJ . Nx/. Consider the functions f , g W X�X� ! R,
defined by

f .x; x�/ D inf
y�2X�

�
'S.x C z; x� C z� � y�/C 'T .x C z; y�/

� � hx� C z�; zi

and

g.x; x�/ D 1

2
kxk2 C 1

2
kx�k2� � hz�; xi; .x; x�/ 2 X �X�:

Let us calculate the conjugates of f and g. For any .w�;w/ 2 X� �X we have

f �.w�;w/ D sup
x2X;
x�2X�

n
hw�; xi C hx�;wi � inf

y�2X�

�
'S.x C z; x� C z� � y�/

C'T .x C z; y�/
�Chx� C z�; zi

o
D sup

x2X;
x�;y�2X�

fhw�; xi C hx�;wi C hx� C z�; zi

�'S.x C z; x� C z� � y�/ � 'T .x C z; y�/g D sup
u2X;

u�;y�2X�

fhw�; u � zi C hu� C y�

�z�;wi C hu� C y�; zi � 'S.u; u�/ � 'T .u; y�/g D sup
u2X;

u�;y�2X�

fhw�; ui C hu� C y�;

w C zi � 'S.u; u�/ � 'T .u; y�/g � hw�; zi � hz�;wi:
Considering the function F W X � X � X� � X� ! R, F.a; b; a�; b�/ D

'S.a; a
�/C'T .b; b�/ and the linear mappingsA W X�X��X� ! X�X�X��X�,

A.a; a�; b�/ D .a; a; a�; b�/ and M W X� � X ! X� � X � X;M.a�; a/ D
.a�; a; a/, we have that

f �.w�;w/ D .F ı A/�.M.w�;w C z// � hw�; zi � hz�;wi 8.w�;w/ 2 X� �X:

Because F � W X� �X� �X �X ! R, F �.a�; b�; a; b/ D '�
S .a

�; a/C '�
T .b

�; b/
and A� W X� �X� �X �X ! X� �X �X , A�.a�; b�; a; b/ D .a� C b�; a; b/,
one has

A� � idR.epi.F �// D f.a� C b�; a; b; r/ W '�
S .a

�; a/C '�
T .b

�; b/ � rg:

Knowing that ImM � R D X� � �X � R, the regularity condition .RCMM/ is
equivalent to saying thatA��idR.epi.F �// is closed regarding the subspace ImM�
R. So, by Theorem 2.10, we have that for any .w�;w/ 2 X� �X it holds

.F ı A/�.M.w�;w C z//

D min
˚
F �.a�; b�; a; b/ W .a� C b�; a; b/ D .w�;w C z;w C z/

�
:
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Back to f �, one gets immediately that for any .w�;w/ 2 X� �X

f �.w�;w/ D min
a�Cb�Dw�

�
'�
S .a

�;w C z/C '�
T .b

�;w C z/
� � hw�; zi � hz�;wi:

Regarding g�, the conjugate of g, for any .w�;w/ 2 X� �X one has

g�.w�;w/ D sup
x2X;
x�2X�

n
hw�; xi C hx�;wi � 1

2
kxk2 � 1

2
kx�k2� C hz�; xi

o

D sup
x2X

n
hw� C z�; xi � 1

2
kxk2

o
C sup

x�2X�

n
hx�;wi � 1

2
kx�k2�

o

D 1

2
kw� C z�k2� C 1

2
kwk2:

For any .x; x�/ 2 X �X� and y� 2 X�, by Lemma 7.3 one gets

'S.x C z; x� C z� � y�/C 'T .x C z; y�/ � hx� C z�; zi C g.x; x�/ �
hx� C z� � y�; x C zi C hy�; x C zi � hx� C z�; ziC

1

2
kxk2 C 1

2
kx�k2� � hz�; xi D 1

2
kxk2 C 1

2
kx�k2� C hx�; xi � 0:

Taking in the left-hand side the infimum subject to all y� 2 X�, we get
f .x; x�/Cg.x; x�/ � 0. Thus inf.x;x�/2X�X� Œf .x; x�/Cg.x; x�/� � 0. Because of
the convexity of f and g and since the latter is continuous Fenchel’s duality theorem
(cf. [48, Theorem 3.3.7]) guarantees the existence of a pair . Nx�; Nx/ 2 X� �X such
that

inf
.x;x�/2X�X�

Œf .x; x�/C g.x; x�/� D max
.x�;x/2X��X

f�f �.x�; x/ � g�.�x�;�x/g

D �f �. Nx�; Nx/ � g�.� Nx�;� Nx/:

Using the result from above, one gets f �. Nx�; Nx/C g�.� Nx�;� Nx/ � 0. So there are
some Na� and Nb� in X� such that Na� C Nb� D Nx� and

'�
S . Na�; NxCz/C'�

T .
Nb�; NxCz/�h Nx�; zi�hz�; NxiC 1

2
k� Nx� Cz�k2� C 1

2
k� Nxk2 � 0:

Taking into account that Na� C Nb� D Nx�, we get

0 � �
'�
S . Na�; Nx C z/ � hNa�; Nx C zi�C �

'�
T .

Nb�; Nx C z/ � h Nb�; Nx C zi�

C
�
h Nx� � z�; Nxi C 1

2
k Nx� � z�k2� C 1

2
k Nxk2

	
� 0;
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where the last inequality comes from Lemma 7.3. Thus the inequalities above must
hold as equalities, hence

'�
S . Na�; Nx C z/ D hNa�; Nx C zi; '�

T .
Nb�; Nx C z/ D h Nb�; Nx C zi;

and

h Na� C Nb� � z�; Nxi C 1

2
k Na� C Nb� � z�k2� C 1

2
k Nxk2 D 0:

These three equalities are equivalent, due to Lemma 7.3, to Na� 2 S. Nx C z/, Nb� 2
T . Nx C z/ and, respectively,

z� � Na� � Nb� 2 @1
2

k � k2. Nx/ D J . Nx/:

Summing these three relations up, one gets

z� � Na� � Nb� C Na� C Nb� 2 .S C T /. Nx C z/C J . Nx/:

As z and z� have been arbitrarily chosen, the conclusion follows via Lemma 7.1. ut
Remark 7.10. The regularity condition .RCMM/ we gave in Lemma 7.6 is the
weakest in the literature that guarantees the maximal monotonicity of the sum of
two maximally monotone operators. For a review on more restrictive regularity
conditions that deliver the same outcome the reader is referred to [44]. Note more-
over that in [21, Theorem 25.4] one can find another weak regularity condition for
this, that is formulated via arbitrary representative functions attached to the involved
maximally monotone operators, while in [42, Theorem 1] and [21, Theorem 25.1]
(see also [38]) weak hypotheses that guarantee the maximal monotonicity of the
sum of a maximally monotone operator with another one that is composed with a
linear continuous mapping are provided.

Now we are ready to formulate the announced assertion regarding the existence
of a solution to .CP/.

Theorem 7.6. Suppose that the monotone operator S is maximal and rectangular,
the regularity condition

.RCMC /
f.x� C y�; x; y; r/ W .x�; x; r/ 2 epi.'�

S /; y 2 C; y� 2 �C �g is closed
regarding the subspace X� ��X � R;

is satisfied and 0 2 int.R.S/�C �/. Then the complementarity problem .CP/ admits
a solution.
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Proof. Recall first that ı�
C D ı�C� and NC .x/ D fy� 2 �C � W hy�; xi D 0g for all

x 2 C . Moreover, R.NC / D �C � since R.NC / � �C � D NC .0/.
The Fitzpatrick function attached to NC is, when .x; x�/ 2 X �X�,

'NC .x; x
�/ D sup

.y;y�/2G.NC /
fhy�; xi C hx�; yi � hy�; yig

D sup
y2C;y�2�C�;

hy�;yiD0

fhy�; xi C hx�; yig D
�
0; if x 2 C; x� 2 �C �;
C1; otherwise;

while its conjugate at .z�; z/ 2 X� �X is

'�
NC
.z�; z/ D sup

x2C;
x�2�C�

fhz�; xi C hx�; zig D
�
0; if z 2 C; z� 2 �C �;
C1; otherwise:

As .RCMC / is actually .RCMM/ for S and NC , the maximality of the monotone
operator S CNC is secured via Lemma 7.6, so by Theorem 7.3 one gets

int.R.S/ � C �/ D int.R.S/CR.NC // D intR.S CNC /:

Then we get 0 2 intR.S CNC /, thus 0 2 R.S CNC /, i.e. there exists an x 2 C
such that 0 2 .SCNC /.x/. Thus we found an x� 2 S.x/ such that �x� 2 �NC .x/,
which, since NC .x/ � C �, yields that .x; x�/ is a solution to .CP/. ut

7.4 Surjectivity Results Involving the Sum of Two Maximally
Monotone Operators

In this section we approach by means of convex analysis different surjectivity
problems involving maximally monotone operators defined on a reflexive Banach
space, following our paper [30]. First we deliver characterizations via closedness
type regularity conditions involving representative functions of the surjectivity of
the sum of a maximally monotone operator with a translation of another one.
Besides particularizing them for some valuable special cases, we derive from these
equivalences regularity conditions for guaranteeing the surjectivity of the sum of
two maximally monotone operators and different particular instances of it that are
weaker than their previous counterparts from the literature.
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7.4.1 Surjectivity Results for the Sum of Two Maximally
Monotone Operators

Let X be a reflexive Banach space and S and T be two maximally monotone
operators defined on X . Before giving the first main statement of this subsection,
the following observation is necessary.

Remark 7.11. Let p 2 X and p� 2 X�. Then p� 2 R.S.pC �/CT .�// if and only
if .p; p�/ 2 G.S/ �G.�T /.
Theorem 7.7. Let p 2 X and p� 2 X�. The following statements are equivalent

(i) p� 2 R.S.p C �/C T .�//;
(ii) for all hS 2 FS and all hT 2 FT one has dom hS \ .dom OhT C .p; p�// ¤ ;

and the function h�
S�
� Oh�
T Ch.p�; p/; .�; �/i� is lower semicontinuous at .p�; p/

and exact at .p�; p/;
(iii) there exist hS 2 FS and hT 2 FT fulfilling dom hS \.dom OhT C.p; p�// ¤ ;

such that the function h�
S�
� Oh�
T C h.p�; p/; .�; �/i� is lower semicontinuous at

.p�; p/ and exact at .p�; p/.

Proof. Note first that the assertion “.ii/ ) .iii/” is immediate and one also has

� OhT .� � p; � � p�/
�� D Oh�

T C hp�; �i C h�; pi: (7.4.4)

“.iii/ ) .i/” Proposition 2.1 yields the equivalence of .iii/ to

�
hS C OhT .� � p; � � p�/

��
.p�; p/ D min

u�2X�;u2X
�
h�
S .p

� � u�; p � u/

C Oh�
T .u

�; u/C hp�; ui C hu�; pi� :(7.4.5)

Denoting by .Nu�; Nu/ 2 X� �X the point where this minimum is attained, we obtain,
via Lemma 7.3,

�
hS C OhT .� � p; � � p�/

��
.p�; p/ D h�

S .p
� � Nu�; p � Nu/C Oh�

T .Nu�; Nu/C hp�; Nui
ChNu�; pi �hp��Nu�; p�Nui�hNu�; NuiChp�; NuiChNu�; piDhp�; pi: (7.4.6)

But Lemma 7.3 also yields for every x 2 X and x� 2 X�

.hS C OhT .� � p; � � p�//.x; x�/ � hx�; xi C h�.x� � p�/; x � pi
D hx�; pi C hp�; xi � hp�; pi;
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thus hp�; pi � hx�; pi C hp�; xi � .hS C OhT .� �p; � �p�//.x; x�/. Consequently,

�
hS C OhT .� � p; � � p�/

��
.p�; p/ � hp�; pi: (7.4.7)

Together with (7.4.6) this yields

�
hS C OhT .� � p; � � p�/

��
.p�; p/ D hp�; pi;

and consequently the inequalities invoked to obtain (7.4.6) must be fulfilled as
equalities. Therefore

h�
S .p

� � Nu�; p � Nu/ D hp� � Nu�; p � Nui and Oh�
T .Nu�; Nu/ D h�Nu�; Nui: (7.4.8)

Having these, Lemma 7.3 yields then p� � Nu� 2 S.p� Nu/ and Nu� 2 T .�Nu/, followed
by p� 2 S.p � Nu/C T .�Nu/, i.e. p� 2 R.S.p C �/C T .�//.

“.i/ ) .ii/” Whenever hS 2 FS , hT 2 FT , .i/ yields, via Remark 7.11,
.p; p�/ 2 dom hS � dom OhT , i.e. dom hS \ .dom OhT C .p�; p// ¤ ;.

For every hS 2 FS , hT 2 FT , u 2 X and u� 2 X� we have h�
S .p

� � u�; p �
u/ C Oh�

T .u
�; u/ C h.p�; p/; .u; u�/i � hp� � u�; p � ui � hu�; ui C hp�; ui C

hu�; pi D hp�; pi, consequently, h�
S�
� Oh�
T C h.p�; p/; .�; �/i� .p�; p/ � hp�; pi

and, since the function in the right-hand side is strong-strong continuous its value

at .p�; p/ must be also smaller than h�
S�
� Oh�
T C h.p�; p/; .�; �/i�.p�; p/. But from

[21, Theorem 7.6] we know, via (7.4.4), that one has h�
S�
� Oh�
T C h.p�; p/; .�; �/i� D

.hS C OhT .�.p�; p/ C .�; �///� and since (7.4.7) always holds, it follows that

h�
S�
� Oh�
T C h.p�; p/; .�; �/i� .p�; p/ � hp�; pi. Consequently,

h�
S�
� Oh�
T C h.p�; p/; .�; �/i�.p�; p/� h�

S�
� Oh�
T C h.p�; p/; .�; �/i�.p�; p/D hp�; pi:

(7.4.9)

Since p� 2 R.S.p C �/ C T .�//, there exist .Nu�; Nu/ 2 X� � X fulfilling (7.4.8).
Then h�

S .p
� � Nu�; p� Nu/C Oh�

T .Nu�; Nu/Ch.p�; p/; .Nu; Nu�/i D hp�; pi, i.e. h�
S�
� Oh�
T C

h.p�; p/, .�; �/i�.p�; p/ D h�
S .p

� � Nu�; p � Nu/C Oh�
T .Nu�; Nu/C h.p�; p/; .Nu; Nu�/i D

hp�; pi, therefore the exactness of the infimal convolution in .ii/ is proven, while
its lower semicontinuity follows via (7.4.9). ut

From Theorem 7.7 we obtain immediately the following surjectivity result.

Corollary 7.2. For p 2 X , one has R.S.p C �/C T .�// D X� if and only if

8p� 2 X�8hS 2 FS8hT 2 FT one has dom hS \ .dom OhT C .p; p�// ¤ ; and
h�

S�
� Oh�

T C h.p�; p/; .�; �/i� is lower semicontinuous at.p�; p/and exact at.p�; p/;
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and this is further equivalent to

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS\ .dom OhT C .p; p�//¤ ;such that
h�
S�
�Oh�
T Ch.p�; p/; .�; �/i� is lower semicontinuous at .p�; p/ and exact at .p�; p/:

Inspired by Corollary 7.2 we are able to introduce a sufficient condition that
guarantees the surjectivity of S.p C �/C T .�/ for a given p 2 X .

Theorem 7.8. Let p 2 X . Then R.S.p C �/C T .�// D X� if

.RCMS /

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS \ .dom OhT C .p; p�// ¤ ;
such that h�

S�
�Oh�
T Ch.p�; p/; .�; �/i� is lower semicontinuous

on X� � fpg and exact at .p�; p/:

Next we characterize the surjectivity of the monotone operator S C T via a
condition involving representative functions. The first statement follows directly
from Theorem 7.7, while the second one is a direct consequence.

Theorem 7.9. Let p� 2 X�. The following statements are equivalent

(i) p� 2 R.S C T /;
(ii) for all hS 2 FS and hT 2 FT one has dom hS \ .dom OhT C .0; p�// ¤ ; and

the function h�
S�
� Oh�
T C hp�; �i� is lower semicontinuous at .p�; 0/ and exact

at .p�; 0/;
(iii) there exist hS 2 FS and hT 2 FT with dom hS \ .dom OhT C .0; p�// ¤ ;

such that the function h�
S�
� Oh�
T C hp�; �i� is lower semicontinuous at .p�; 0/

and exact at .p�; 0/.

Corollary 7.3. One has R.S C T / D X� if and only if

8p� 2 X�8hS 2 FS8hT 2 FT one has dom hS \ .dom OhT C .0; p�// ¤ ; and
h�
S�
� Oh�
T C hp�; �i� is lower semicontinuous at .p�; 0/ and exact at .p�; 0/;

and this is further equivalent to

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS \ .dom OhT C .0; p�// ¤ ; such that
h�

S�
� Oh�

T C hp�; �i� is lower semicontinuous at .p�; 0/ and exact at .p�; 0/:

Inspired by Corollary 7.3 we are able to introduce a sufficient condition that
guarantees the surjectivity of S C T .

Theorem 7.10. One has R.S C T / D X� if

.RCMJ /

8p� 2 X�9hS 2 FS9hT 2 FT with dom hS \ .dom OhT C .0; p�// ¤ ;
such that h�

S�
� Oh�
T C hp�; �i� is lower semicontinuous on X� � f0g

and exact at .p�; 0/:
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Remark 7.12. In the literature there were given other regularity conditions guaran-
teeing the surjectivity of S C T , namely, for fixed hS 2 FS and hT 2 FT ,

– (cf. [163, Corollary 2.7]) dom hT D X �X�;
– (cf. [190, Theorem 30.2]) dom hS � dom OhT D X �X�;
– (cf. [222, Corollary 4]) f0g �X� � sqri.dom hS � dom OhT /.
It is obvious that the first one implies the second, whose fulfillment yields the
validity of the third condition. This one yields that for any x�; p� 2 X� one has

�
hS C OhT .�; ��p�/

��
.x�; 0/ D min

u�2X�;u2X
�
h�
S .x

� �u�;�u/C Oh�
T .u

�; u/Chp�; ui�;

which is equivalent, when dom hS \ .dom OhT C .0; p�// ¤ ; (condition automati-
cally fulfilled when any of the three regularity conditions given above is satisfied),
to the fact that whenever p� 2 X� the function h�

S�
� Oh�
T C hp�; �i� is lower

semicontinuous at .x�; 0/ and exact at .x�; 0/ for all x� 2 X�. It is obvious that
this implies .RCMJ / and below we present a situation where .RCMJ / holds, unlike
the conditions cited from the literature for the surjectivity of S C T .

Example 7.3. Let X D R and consider the maximally monotone operators S; T W
R � R defined by

S.x/ D
8
<

:

f0g; if x > 0;
.�1; 0�; if x D 0;

;; otherwise;
and T .x/ D

�
R; if x D 0;

;; otherwise;
x 2 R:

They are actually subdifferentials of proper, convex and lower-semicontinuous
functions, which are also sublinear, namely S D NŒ0;C1/ and T D Nf0g. Obviously,
R.S C T / D R and the Fitzpatrick families of both S and T contain only
the corresponding Fitzpatrick function, i.e. 'S D ıŒ0;C1/�.�1;0� D '�>

S and
'T D ıf0g�R D '�>

T .
Then dom'S � dom O'T D RC �R, where RC D Œ0;C1/, and it is obvious that

f0g � R is not included in sqri.dom'S � dom O'T / D .0;C1/ � R. Consequently,
the three conditions mentioned in Remark 7.12 fail in this situation. On the other
hand, for p�; x; x� 2 R one has

'�
S�

� O'�
T C hp�; �i�.x�; x/ D

�
0; if x � 0;

C1; if x < 0;

and this function is lower semicontinuous on R � RC and exact at all .x�; x/ 2
R � RC. Consequently, .RCMJ / is valid in this case.

Remark 7.13. When one of hS and hT is continuous, the condition .RCMJ / is
automatically fulfilled. It is known (see for instance [190]) that the domain of the
Fitzpatrick function attached to the duality map J , which is a maximally monotone
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operator, is the whole product space X � X�. By [221, Theorem 2.2.20] it follows
that 'J is continuous, thus by Corollary 7.2 we obtain that S.p C �/ C J .�/ is
surjective, whenever p 2 X . In this way we rediscover a known property of the
maximally monotone operators, already mentioned in Lemma 7.1, used for instance
for verifying the maximal monotonicity of the sum of two monotone operators under
certain hypotheses, as done for instance in [42, 44]. Moreover, via Corollary 7.3
one gets that S C J is surjective, rediscovering Rockafellar’s classical surjectivity
theorem for maximally monotone operators (see for instance [190, Theorem 29.5]).

Remark 7.14. One can notice via (7.4.4) that (7.4.5) can be rewritten when p� D 0

and p D 0 as

inf
x2X;x�2X�

�
hS.x; x

�/C OhT .x; x�/
� D max

u�2X�;u2X
˚ � h�

S .�u�;�u/ � Oh�
T .u

�; u/
�
;

(7.4.10)

i.e. there is strong duality for the convex optimization problem formulated above in
the left-hand side of (7.4.10) and its Fenchel dual problem. When .Nu; Nu�/ 2 X �X�
is an optimal solution to the dual problem, i.e. the point where the maximum in the
right-hand side of (7.4.10) is attained, one obtains Nu� 2 S.Nu/ and �Nu� 2 T .Nu/.
Employing now Lemma 7.3, we obtain hS.Nu; Nu�/ D h�

S .�Nu�;�Nu/ D hNu�; Nui and
OhT .Nu; Nu�/ D Oh�

T .Nu�; Nu/ D �hNu�; Nui, therefore

hS.Nu; Nu�/C OhT .Nu; Nu�/ D h�
S .�Nu�;�Nu/C Oh�

T .Nu�; Nu/ D 0:

Thus, the infimum in the left-hand side of (7.4.10) is attained, i.e. the primal
optimization problem given there has an optimal solution, too, so total duality holds
for the primal-dual pair of optimization problems in discussion. Therefore we can
note for this special kind of optimization problems the coincidence of the strong and
total Fenchel duality.

Remark 7.15. Given p 2 X and p� 2 X�, the function h�
S�
� Oh�
T C h.p�; p/; .�; �/i�

can be replaced in Theorem 7.7.ii/–.iii/ with
�
h�
S � h.p�; p/; .�; �/i�� Oh�

T without
altering the statement. The other conditions considered afterwards within this
section can be correspondingly rewritten, too.

Remark 7.16. The results given within this subsection can be extended for the sum
of a maximally monotone operator with another one composed with a linear map-
ping, as considered in Sect. 7.3. However, because even in the case treated here the
results are quite complicated we chose to work in the present framework. Another
possible direction of generalization of the results provided in this subsection is for
the situation when the involved Banach spaces are not necessarily reflexive, possibly
by exploiting ideas and techniques from [161, 162]. Last but not least, it should be
possible to obtain Lemma 7.6 as a consequence of Theorem 7.10 and taking into
consideration Remark 7.13.
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7.4.2 Special Cases

7.4.2.1 Zeros of Sums of Monotone Operators

An important consequence of Theorem 7.9 is the following statement, where we
provide equivalent characterizations by means of representative functions of the
situation when 0 lies in the range of S C T .

Corollary 7.4. One has 0 2 R.S C T / if and only if

8hS 2 FS8hT 2 FT one has dom hS \ dom OhT ¤ ; and the function
h�
S� Oh�

T is lower semicontinuous at .0; 0/ and exact at .0; 0/;

and this is further equivalent to

9hS 2 FS9hT 2 FT with dom hS \ dom OhT ¤ ; such that the function
h�
S� Oh�

T is lower semicontinuous at .0; 0/ and exact at .0; 0/:

From Corollary 7.4 one can deduce a sufficient condition which ensures that 0 2
R.S C T /.

Corollary 7.5. One has 0 2 R.S C T / if

.RCMZ/
9hS 2 FS9hT 2 FT with dom hS \ dom OhT ¤ ; such that
h�
S� Oh�

T is lower semicontinuous on X� � f0g and exact at .0; 0/:

Remark 7.17. The problem of guaranteeing that 0 2 R.S C T / and furthermore
of finding a solution of this equation has received a large interest in the literature
because of both theoretical and practical reasons. In [19, Theorem 4.5] the condition
.0; 0/ 2 core.coG.S/�coG.�T // is shown to imply 0 2 R.SCT /, while in [222,
Lemma 1] the same result is achieved under the assumption .0; 0/ 2 sqri.dom hS �
dom OhT /. Following similar arguments to the ones in Remark 7.12 one can show that
both these conditions yield the validity of .RCMZ/. Checking the situation from
Example 7.3, we see that the second condition fails, while .RCMZ/ is fulfilled.
As core.coG.S/ � coG.�T // D int.RC � .�RC/ � f0g � R/ D .0;C1/ � R

does not contain .0; 0/, it is straightforward that .RCMZ/ is indeed weaker than both
conditions mentioned above.

7.4.2.2 Surjectivity Results Involving Normal Cones

Let U � X be a nonempty closed convex set. Its normal cone NU is a maximally
monotone operator whose only representative function (cf. [8, Corollary 5.9]) is the
Fenchel one, namely hNU .x; x

�/ D ıU .x/C �U .x
�/, .x; x�/ 2 X �X�.
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From Theorem 7.7 and its consequences we obtain by taking T D NU the
following results.

Corollary 7.6. Let p 2 X . Then R.S.p C �/CNU .�// D X� if and only if

8p� 2 X�8hS 2 FS one has domhS \ .U � dom ��U C .p; p�// ¤ ; and the
function .y�; y/ 7! inf

x2�U;x�
2X�

�
.h�

S � h.p�; p/; .�; �/i/.y� � x�; y � x/C �U .x
�/
�

is lower semicontinuous at .p�; p/ and the infimum within
is attained when .y�; y/ D .p�; p/;

and this is further equivalent to

8p� 2 X�9hS 2 FS with domhS \ .U � dom ��U C .p; p�// ¤ ; the
function .y�; y/ 7! inf

x2�U;x�
2X�

�
.h�

S � h.p�; p/; .�; �/i/.y� � x�; y � x/C �U .x
�/
�

is lower semicontinuous at .p�; p/ and the infimum within is attained
when .y�; y/ D .p�; p/:

Corollary 7.7. Let p 2 X . Then R.S.p C �/CNU .�// D X� if

8p� 2 X�9hS 2 FS with domhS \ .U � dom ��U C .p; p�// ¤ ; the
function .y�; y/ 7! inf

x2�U;x�
2X�

�
.h�

S � h.p�; p/; .�; �/i/.y� � x�; y � x/C �U .x
�/
�

is lower semicontinuous on X� � fpg and the infimum within
is attained when .y�; y/ D .p�; p/:

Corollary 7.8. One has 0 2 R.S CNU / if

.RCMN /

9hS 2 FS with dom hS \ .U � dom ��U / ¤ ; such that the function
.y�; y/ 7! inf

x2UŒ.h
�
S .�; y C x/��U /.y�/� is lower semicontinuous

on X� � f0g and the infimum within is attained when .y�; y/ D .0; 0/:

Remark 7.18. In [19, Corollary 5.7] it is stated that the regularity condition 0 2
core co.D.S/ � U/ yields 0 2 R.S C NU /. Similarly to the considerations from
Remarks 7.12 and 7.17 one can notice that this condition is indeed stronger than
.RCMN /.

Not without importance is the question how can one equivalently characterize the
surjectivity of a maximally monotone operator via its representative functions. To
proceed to answering it, take U D X . Then T D NX , i.e. T .x/ D f0g for all x 2 X ,
and the Fenchel representative function of NX is .x; x�/ 7! ıX.x/ C �X.x

�/ D
ıf0g.x�/. Then S C T D S and the surjectivity of S can be characterized, via
Corollary 7.6, as follows.

Corollary 7.9. One has R.S/ D X� if and only if

8p� 2 X�8hS 2 FS the function y� 7! ��h�
S .y

�; �/��.p�/ is lower
semicontinuous at p� and 9x 2 X such that p� 2 .@h�

S .p
�; �//.x/;
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and this is further equivalent to

8p� 2 X�9hS 2 FS the function y� 7! ��h�
S .y

�; �/��.p�/ is lower
semicontinuous at p� and 9x 2 X such that p� 2 .@h�

S .p
�; �//.x/:

Proof. Corollary 7.6 asserts the equivalence of the surjectivity of the maximally
monotone operator S to the lower semicontinuity at .p�; 0/ of the function

.y�; y/ 7! inf
x2X;x�2X�

�
.h�
S � hp�; �i/.y� � x�; y C x/C �X.x

�/
�

concurring with the attainment of the infimum within when .y�; y/ D .p�; 0/,
for every p� 2 X�. Taking a closer look at this function, we note that it can be
simplified to .y�; y/ 7! infx2X

�
h�
S .y

�; y C x/ � hp�; y C xi�, which can be
further reduced to y� 7! ��h�

S .y
�; �/��.p�/.

For p� 2 X�, the attainment of the infimum from above when .y�; y/ D .p�; 0/
means actually the existence of an x 2 X such that h�

S .p
�; x/ � hp�; xi D

��h�
S .p

�; �/�� .p�/, which is nothing but p� 2 .@h�
S .p

�; �//.x/. ut
Remark 7.19. In [163, Corollary 2.2] it is shown that S is surjective if dom.'S/ D
X � X�. This result can be obtained as a consequence of Corollary 7.9 knowing
that the characterizations provided there for R.S/ D X� are fulfilled when 'S is
continuous.

Remark 7.20. Since determining when 0 2 R.S/ is important even beyond
optimization, using Corollary 7.9 one can provide the following regularity condition
for guaranteeing this

9hS 2 FS the function y� 7! ��h�
S .y

�; �/��.0/ is lower
semicontinuous and 9x 2 X such that p� 2 .@h�

S .0; �//.x/:

7.4.2.3 Surjectivity Results Involving Subdifferentials

Let now the proper, convex and lower semicontinuous functions f; g W X ! R.
Take first T D @g and consider for it the Fenchel representative function. Then
Corollary 7.2 yields the following statement.

Corollary 7.10. Let p 2 X . Then R.S.p C �/C @g.�// D X� if and only if

8p� 2 X�8hS 2 FS one has dom hS \ .domg � .� domg�/C .p; p�// ¤ ;
and the function h�

S�
�
g.��/C g�.�/C h.p�; p/; .�; �/i� is

lower semicontinuous at .p�; p/ and exact at .p�; p/;
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and this is further equivalent to

8p� 2 X�9hS 2 FS with dom hS \ .domg � .� domg�/C .p; p�// ¤ ;
such that the function h�

S�
�
g.��/C g�.�/C h.p�; p/; .�; �/i� is

lower semicontinuous at .p�; p/ and exact at .p�; p/:

Remark 7.21. In [163, Proposition 2.9] it was proven that when g and g� are real
valued the monotone operator S.pC �/C @g.�/ is surjective whenever p 2 X . This
statement can be rediscovered as a consequence of Corollary 7.10, too. Using [221,
Proposition 2.1.6] one obtains that g and g� are continuous under the mentioned
hypotheses. Then the Fenchel representative function of @g is continuous and this
yields the fulfillment of the regularity condition from Corollary 7.10. Consequently,
S.p C �/C @g.�/ is surjective whenever p 2 X .

The other statements involving two maximally monotone operators given above
can be particularized for this special case, too. However, we give here only a
consequence of Corollary 7.5.

Corollary 7.11. One has 0 2 R.S C @g/ if

9hS 2 FS with dom hS \ .domg � .� domg�// ¤ ; such that the function
h�
S�
�
g.��/C g�.�/� is lower semicontinuous on X� � f0g and exact at .0; 0/:

Take now also S D @f , to which we associate the Fenchel representative
function, too. Let the function Og W X ! R, Og.x/ D g.�x/. Corollary 7.2 yields the
following result.

Corollary 7.12. Let p 2 X . If dom f \ .p C domg/ ¤ ;, then R.@f .p C �/ C
@g.�// D X� if and only if

8p� 2 X� one has dom f � \ .p� � domg�/ ¤ ;; the function f�. Og C p�/
is lower semicontinuous at p and exact at p and the function
f ��.g� C p/ is lower semicontinuous at p� and exact at p�:

Moreover, from Corollary 7.11 one can deduce the following statement.

Corollary 7.13. One has 0 2 R.@f C @g/ if dom f \ domg ¤ ;, dom f � \
.� dom g�/ ¤ ; and

f� Og is lower semicontinuous at 0 and exact at 0 and the
function f ��g� is lower semicontinuous and exact at 0:
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7.5 Dealing with the Maximal Monotonicity of Bifunctions
via Representative Functions

The study of the maximal monotonicity of bifunctions began with the seminal paper
[12], followed by works like [116, 135, 160], and in all of them the investigations
were based on the theory of equilibrium problems. However, motivated by the
recent results on maximally monotone operators, obtained almost exclusively by
means of representative functions, we involved the latter in the new approach of the
maximal monotonicity of bifunctions proposed in [33]. In this way we succeeded
in extending some statements from the literature and, moreover, in proving some
recent conjectures. This section is dedicated to presenting these results, but before
stating them some preliminaries on monotone bifunctions are necessary.

7.5.1 Monotone Bifunctions

We begin with some preliminaries on bifunctions, following [116,135]. Take further
X to be a normed space. Let the nonempty set C � X . A function F W C �C ! R

is called bifunction. The bifunction F is called monotone if F.x; y/C F.y; x/ � 0

for all x; y 2 C . To the bifunction F one can attach the diagonal subdifferential
operators AF W X � X� and FA W X � X� defined by

AF .x/ D
� fx� 2 X� W F.x; y/ � F.x; x/ � hx�; y � xi 8y 2 C g; if x 2 C;

;; otherwise;

and, respectively,

FA.x/ D
� fx� 2 X� W F.x; x/ � F.y; x/ � hx�; y � xi 8y 2 C g; if x 2 C;

;; otherwise:

When F.x; x/ D 0 for all x 2 C and F (respectively �F ) is monotone, then AF

(FA) is a monotone operator. When F is monotone and F.x; x/ D 0 for all x 2 C

one has G
�
AF
� � G

�
FA
�
.

The monotone bifunction F fulfilling F.x; x/ D 0 for all x 2 C is said
to be maximally monotone if AF is maximally monotone and, respectively, BO-
maximally monotone (where BO stands for Blum-Oettli, as this type of monotone
bifunction was introduced in [12]) when for every .x; x�/ 2 C �X� it holds

F.y; x/C hx�; y � xi � 0 8y 2 C ) F.x; y/ � hx�; y � xi 8y 2 C:
When F is monotone and F.x; x/ D 0 for all x 2 C , itsBO-maximal monotonicity
is equivalent to FA D AF . Any maximally monotone bifunction is BO-maximally
monotone, but the opposite implication is not always valid, as the situation in [116,
Example 2.2] shows.
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In order not to overcomplicate the presentation, when x 2 C we denote by a
slight abuse of notation by F.x; �/ C ıC the function defined on X with extended
real values which is equal to F.x; �/ on C and takes the value C1 otherwise.
Analogously, when y 2 C we denote by �F.�; y/ C ıC the function defined
on X with extended real values which is equal to �F.�; y/ on C and takes the
value C1 otherwise. Hence, when F.x; x/ D 0 for all x 2 C , one can write
AF .x/ D @.F.x; �/ C ıC /.x/ and FA.x/ D @.�F.�; x/ C ıC /.x/ for all x 2 X .
Note that AF and FA are not subdifferentials of functions, being at each point the
subdifferential of another function.

We close this preliminary subsection by presenting a statement which holds in a
more general framework than originally considered in [12, Lemma 3], followed by
a consequence needed later in our investigations.

Lemma 7.7. Let F and G be two bifunctions defined on the nonempty and convex
set C � X , satisfying F.x; x/ D G.x; x/ D 0 for all x 2 C , such that F
is monotone, F.x; �/ and G.x; �/ are convex for all x 2 C and F.�; y/ is upper
hemicontinuous for all y 2 C . Then the following statements are equivalent

(i) Nx 2 C and F.y; Nx/ � G. Nx; y/ for all y 2 C ;
(ii) Nx 2 C and 0 � F. Nx; y/CG. Nx; y/ for all y 2 C .

Remark 7.22. The monotonicity of F is required only for proving the implication
“.ii/ ) .i/” in Lemma 7.7, which actually holds even if the convexity and
topological hypotheses are removed.

Lemma 7.8. Let F be a bifunction defined on the nonempty and convex set C � X ,
satisfying F.x; x/ D 0 for all x 2 C . If F.x; �/ is convex for all x 2 C and F.�; y/
is upper hemicontinuous for all y 2 C , then G

�
FA
� � G

�
AF
�
.

Proof. Let .x; x�/ 2 G�FA�. Then x 2 C and F.y; x/ � hx�; x�yi for all y 2 C .
By Lemma 7.7.i/ ) .ii/ one gets 0 � F.x; y/C hx�; x � yi for all y 2 C , thus
.x; x�/ 2 G�AF �. ut
Remark 7.23. If in addition to the assumptions of Lemma 7.8 F is taken moreover
monotone, one also gets that F is BO-maximally monotone.

7.5.2 Maximal Monotone Bifunctions

Let F W C � C ! R be a bifunction, where C � X is nonempty. In order to deal
with its maximal monotonicity, we attach to F the functions hF ; gF W X�X� ! R,
defined at .x; x�/ 2 X �X� by

hF .x; x
�/ D sup

y2C
˚hx�; yi � F.x; y/�C ıC .x/ D .F.x; �/C ıC /

�.x�/C ıC .x/
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and

gF .x; x
�/ D sup

y2C
˚hx�; yi C F.y; x/

�C ıC .x/ D .�F.�; x/C ıC /
�.x�/C ıC .x/:

Regarding their conjugates, for .x�; x/ 2 X� �X one has

h�
F .x

�; x/ D sup
y2C

˚hx�; yi C .F.y; �/C ıC /
��.x/

�

and

g�
F .x

�; x/ D sup
y2C

˚hx�; yi C .�F.�; y/C ıC /
��.x/

�
:

Other properties of these functions are given in the following statements, whose
proofs are trivial hence skipped.

Proposition 7.1. (a) For all .x; x�/ 2 X �X�, it holds gF .x; x�/ � h�
F .x

�; x/.
(b) If F.x; x/ D 0 for all x 2 C , then hF � c and gF � c.
(c) If F is monotone, then hF .x; x�/ � gF .x; x

�/ and cohF .x; x�/ � h�
F .x

�; x/
for all .x; x�/ 2 X �X�.

Remark 7.24. If F.x; x/ D 0 for all x 2 C , one has that hF .x; x�/ D c.x; x�/ if
and only if .x; x�/ 2 G

�
AF
�

and, respectively, gF .x; x�/ D c.x; x�/ if and only
if .x; x�/ 2 G

�
FA
�
. However, gF and hF are in general neither convex nor lower

semicontinuous, therefore they are not always representative functions for AF in
case this is monotone. Note also that in [2] a function that slightly extends gF is
called the Fitzpatrick transform of the monotone bifunction F .

In the next statements we provide sufficient conditions for the maximal mono-
tonicity of AF . We begin with an assertion where F is not even asked to be
monotone.

Theorem 7.11. Let C be convex and closed and F be fulfilling F.x; x/ D 0 for all
x 2 C . If sqriC ¤ ;, F.x; �/ is convex and lower semicontinuous for all x 2 C

and F.�; y/ concave and upper semicontinuous for all y 2 C , then AF is maximally
monotone and AF D FA.

Proof. The convexity and topological assumptions on C and F.x; �/, for x 2 C ,
yield that the function F.x; �/ C ıC is proper, convex and lower semicontinuous
whenever x 2 C . Then .F.x; �/CıC /��.z/ D F.x; z/CıC .z/ whenever x 2 C and
z 2 X , consequently, via Proposition 7.1, h�>

F D gF � c on X �X�. Analogously,
the convexity and topological assumptions on C and �F.�; y/, y 2 C , imply hF D
g�>

F � c onX�X�. Obviously, hF and gF are in this case convex functions, whose
properness follows immediately, too.

One gets PrX.dom hF / � PrX.domgF / � C . Taking an x 2 C , since
F.x; �/ C ıC is proper, convex and lower semicontinuous, its conjugate is proper
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(cf. [221, Theorem 2.3.3]), so there exists an x� 2 X� such that .F.x; �/ C
ıC /

�.x�/ < C1. Consequently, hF .x; x�/ < C1, i.e. C � PrX.dom hF /.
Therefore PrX.dom hF / D PrX.domgF / D C . We are now ready to apply
Lemma 7.5 for hF and gF , obtaining that the operators (identified through their
graphs)

f.x; x�/2X �X� W h�
F .x

�; x/ D c.x; x�/g
D f.x; x�/2X �X� W gF .x; x�/ D c.x; x�/g;

which is actually G
�
FA
�
, and

f.x; x�/2X �X� W g�
F .x

�; x/ D c.x; x�/g
D f.x; x�/2X �X� W hF .x; x�/ D c.x; x�/g;

that is G
�
AF
�
, are maximally monotone.

Using Lemma 7.8, it follows G
�
FA
� � G

�
AF
�
, consequently, AF D FA, since

both are maximally monotone operators. ut
Remark 7.25. If X is reflexive, the hypothesis sqriC ¤ ; is no longer needed in
Theorem 7.11, since one can use in its proof in this case Lemma 7.4 instead of
Lemma 7.5.

If C D X the condition sqriC ¤ ; is automatically satisfied and Theorem 7.11
yields the following statement, noting that the lower/upper semicontinuity of a real
valued convex/concave function on the entire space is equivalent to its continuity
(cf. [221, Proposition 2.1.6]).

Corollary 7.14. Let F.x; x/ D 0 for all x 2 X , F.x; �/ be convex and continuous
for all x 2 X and F.�; y/ concave and continuous for all y 2 X . Then AF is
maximally monotone and AF D FA.

Remark 7.26. In Theorem 7.12 we prove one of the conjectures formulated at the
end of [135], actually slightly weakening its hypotheses since instead of taking F
continuous we ask it to be continuous in each of its variables. If X is reflexive,
Theorem 7.12 slightly improves [135, Theorem 3.6(i)], by bringing the mentioned
weakening of its hypotheses.

Taking F to be monotone, here are some hypotheses that guarantee its maximal-
ity even in the absence of convexity assumptions in its first variable.

Theorem 7.12. Let C be convex and closed and F be monotone and fulfilling
F.x; x/ D 0 for all x 2 C . If sqriC ¤ ;, F.x; �/ is convex and lower
semicontinuous for all x 2 C and F.�; y/ upper hemicontinuous for all y 2 C ,
then F is maximally monotone.

Proof. The convexity and topological assumptions on C and F.x; �/, for x 2 C ,
yield that the function F.x; �/ C ıC is proper, convex and lower semicontinuous
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whenever x 2 C . Then .F.x; �/ C ıC /
��.z/ D F.x; z/ C ıC .z/ whenever x 2 C

and z 2 X , hence h�
F .x

�; x/ D gF .x; x
�/ for all .x; x�/ 2 X �X�. Consequently,

via Proposition 7.1 and taking into consideration the properties of the conjugate
function, one has

hF .x; x
�/ � cohF .x; x

�/ � h�
F .x

�; x/ � c.x; x�/ 8.x; x�/ 2 X �X�:
(7.5.11)

Assuming that hF were improper leads to a contradiction with (7.5.11), conse-
quently hF , cohF and h�

F are all proper. Like in the proof of Theorem 7.11 one
can show that PrX.dom hF / D C . Then

PrX.dom hF / � PrX.dom cohF / � coPrX.dom hF / (7.5.12)

and, since C is convex and closed, we get PrX
�

dom
�
cohF

�� D C .
In the following we show that

G
�
AF
� D ˚

.x; x�/ 2 X �X� W cohF .x; x
�/ D c.x; x�/

�

D ˚
.x; x�/ 2 X �X� W h�

F .x
�; x/ D c.x; x�/

�
: (7.5.13)

If .x; x�/ 2 G�AF �, (7.5.11) yields h�
F .x

�; x/ D c.x; x�/.
Let now .x; x�/ 2 X � X� for which h�

F .x
�; x/ D c.x; x�/. Then .x; x�/ 2

G
�
FA
�
, so Lemma 7.8 yields .x; x�/ 2 G

�
AF
�
. This implies that cohF .x; x�/ D

c.x; x�/ holds if and only if .x; x�/ 2 G
�
AF
�
. Applying Lemma 7.5 for cohF , it

follows that AF is maximally monotone, i.e. F is maximally monotone, too. ut
Remark 7.27. In Theorem 7.12 we provide a positive answer to the conjecture
formulated at the end of [136]. When the space X is reflexive, the regularity
condition sqriC ¤ ; is no longer necessary in the hypotheses of Theorem 7.12
and this statement rediscovers [116, Proposition 3.1], by means of representative
functions, employing tools of convex analysis and without renorming the space X .

Corollary 7.15. Let X be reflexive, C be convex and closed and F be monotone
and fulfilling F.x; x/ D 0 for all x 2 C . If F.x; �/ is convex and lower
semicontinuous for all x 2 C and F.�; y/ upper hemicontinuous for all y 2 C ,
then F is maximally monotone.

Proof. Things work in the lines of the proof of Theorem 7.12, noticing that (7.5.11)
and (7.5.13) are fulfilled. Then we apply Lemma 7.4. ut

When C D X we obtain from Theorem 7.12 the following statement.

Corollary 7.16. Let F be monotone and fulfilling F.x; x/ D 0 for all x 2 X . If
F.x; �/ is convex and continuous for all x 2 X and F.�; y/ upper hemicontinuous
for all y 2 X , then F is maximally monotone.
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Remark 7.28. In [135, Theorem 3.6(ii)] the same conclusion as in Corollary 7.16 is
obtained when X is reflexive for a monotone bifunction F that fulfills F.x; x/ D 0

for all x 2 X , by assuming F.x; �/ only convex for all x 2 X and F.�; y/
continuous for all y 2 X . However, we doubt that this result holds without
any topological assumption on the functions F.x; �/, x 2 X , since in its proof
is used [135, Theorem 3.4(ii)], whose hypotheses should contain also the lower
semicontinuity of F.x; �/ for all x 2 X . A similar comment can be made also
for [135, Theorem 3.6(iii)] and for the conjectures extending the two mentioned
statements to nonreflexive spaces given at the end of [135].

Whenever a monotone bifunction F fulfills F.x; x/ D 0 for all x 2 C is BO-
maximally monotone, one has AF D FA, so Lemma 7.7 is not longer needed in
the proof of Theorem 7.12. Hence we rediscover, in the reflexive case, and extend,
when X is a general Banach space, [160, Proposition 3.2], as follows.

Corollary 7.17. Let C be convex and closed with sqriC ¤ ; and F be BO-
maximally monotone. If F.x; �/ is convex and lower semicontinuous for all x 2 C ,
then F is maximally monotone.

Corollary 7.18. Let X be reflexive, C convex and closed and F be BO-maximally
monotone. If F.x; �/ is convex and lower semicontinuous for all x 2 C , then F is
maximally monotone.

When C D X one can formulate another maximality criterium for a monotone
bifunction, extending [116, Proposition 3.5] to general Banach spaces.

Theorem 7.13. Let F be monotone and fulfilling F.x; x/ D 0 for all x 2 X .
If D

�
AF
� D X and F.�; y/ is upper hemicontinuous for all y 2 X , then F is

maximally monotone.

Proof. As D
�
AF
� D X , for all x 2 X one has @F.x; �/.x/ ¤ ;, which yields

coF.x; �/ .x/ D F.x; x/ D 0. On the other hand, for all x 2 X it holds X D
domF.x; �/ � dom coF.x; �/, which implies dom coF.x; �/ D X and via [221,
Proposition 2.2.5], as coF.x; �/.x/ D 0, also the properness of coF.x; �/. Then, for
any .x; x�/ 2 X �X�, one has

h�
F .x

�; x/ D sup
y2X

˚hx�; yi C .F.y; �//��.x/
� D sup

y2X
˚hx�; yi C coF.y; �/.x/� �

hx�; xi C coF.x; �/.x/ D hx�; xi;

consequently, hF � cohF � h�>
F � c on X � X�. As D

�
AF
� D X ,

PrX.dom hF / D X , using (7.5.12) it follows PrX.dom cohF / D X . Applying
Lemma 7.5 for cohF , the operator having the graph

˚
.x; x�/ 2 X � X� W

h�
F .x

�; x/ D c.x; x�/
�

turns out to be maximally monotone. This graph includes
G
�
AF
�
. To show that the opposite inclusion holds, too, let .x; x�/ 2 X � X�

for which h�
F .x

�; x/ D c.x; x�/. Then h�
F .x

�; x/ � c.x; x�/, so for all y 2 X

it holds coF.y; �/.x/ � hx�; x � yi. This means nothing but .x; x�/ 2 G
�
HA
�
,
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where the bifunction H W X � X ! R is defined by H.x; y/ WD coF.x; �/.y/.
It follows immediately that H.z; z/ D 0 for all z 2 X . As H.z; �/ D coF.z; �/
is convex for all z 2 X and for all y 2 X one can verify that H.�; y/ is upper
hemicontinuous, Lemma 7.8 yields .x; x�/ 2 G

�
AH

�
. This means that for all

y 2 X one has coF.x; �/.y/ � hx�; y � xi, followed by F.x; y/ � hx�; y � xi.
Thus .x; x�/ 2 G

�
AF
�
, therefore (7.5.13) holds. Consequently, F is maximally

monotone. ut
Remark 7.29. One can see in the proofs of Theorems 7.11–7.13 that not only cohF
(which coincides with hF under the hypotheses of the first of them), but also the
restriction toX�X� of h�>

F are representative functions of the maximally monotone
operator AF .

In Theorems 7.11–7.13 we have shown with the help of the theory of repre-
sentative functions that under some hypotheses AF is maximally monotone. Now
let us show that the representative functions of it identified there are actually
representative to AF whenever it is maximally monotone.

Theorem 7.14. Let F be maximally monotone. Then cohF and the restriction to
X �X� of h�>

F are representative functions of AF .

Proof. The maximal monotonicity of F implies via Lemma 7.3 that

G
�
AF
� D ˚

.x; x�/ 2 X �X� W  AF .x; x�/ D c.x; x�/
�

D ˚
.x; x�/ 2 X �X� W 'AF .x; x�/ D c.x; x�/

�
:

On the other hand, the way hF is constructed implies .cCıAF /.x; x
�/ � hF .x; x

�/
for all .x; x�/ 2 X �X�, which yields

h�
F .x

�; x/ � .c C ıAF /
�.x�; x/ D  �

AF
.x�; x/ D 'AF .x; x

�/ 8.x; x�/ 2 X �X�:

Since the monotonicity of F implies, via Proposition 7.2, hF .x; x�/ �
cohF .x; x�/ � h�

F .x
�; x/ for all .x; x�/ 2 X � X�, it follows immediately

that for all .x; x�/ 2 X �X� it holds

 AF .x; x
�/ � cohF .x; x

�/ � h�
F .x

�; x/ � 'AF .x; x
�/ � c.x; x�/:

Consequently,

G
�
AF
� D ˚

.x; x�/ 2 X �X� W cohF .x; x
�/ D c.x; x�/

�

D ˚
.x; x�/ 2 X �X� W h�

F .x
�; x/ D c.x; x�/

�
;

which implies that cohF and h�>
F restricted to X � X� are representative functions

of AF . ut



7.5 Dealing with the Maximal Monotonicity of Bifunctions via Representative. . . 255

Remark 7.30. One can easily see that, when F is maximally monotone with
F.x; x/ D 0 for all x 2 C , then cogF and the restriction to X � X� of g�>

F

are representative functions of AF , too.

Remark 7.31. In the lines of the proof of Theorem 7.14, one can show that if T W
X � X� is a maximally monotone operator and h W X � X� ! R is a function
fulfilling h.x; x�/ � h�.x�; x/ for all .x; x�/ 2 X � X� and h.x; x�/ � c.x; x�/
whenever .x; x�/ 2 G.T /, then cohF and the restriction to X � X� of h�>

F are
representative functions of T .

7.5.3 The Sum of Two Monotone Bifunctions

One of the most dealt with questions regarding maximally monotone operators is
what guarantees that the sum of two of them remains maximally monotone. This
issue was extended for maximally monotone bifunctions in [116], by means of
equilibrium problems. We provide another answer in this matter, preceded by a
preliminary result.

Proposition 7.2. Let F and G be monotone bifunctions defined on a nonempty set
C � X . Then AF .x/CAG.x/ � AFCG.x/ for all x 2 X and F CG is monotone.

Proof. Let x 2 X , y� 2 AF .x/ and z� 2 AG.x/. Then x 2 C and for all y 2 C one
has F.x; y/ � hy�; y�xi andG.x; y/ � hz�; y�xi. Adding these inequalities, one
gets F.x; y/CG.x; y/ � hy� C z�; y � xi for all y 2 C , i.e. y� C z� 2 AFCG.x/.

Analogously, writing what the monotonicity of F and G means and adding the
obtained inequalities one gets that F CG is monotone. ut

For the following statement we need to introduce the bivariate infimal convo-
lution of two functions defined on a cartesian product of sets. Let A and B be
two nonempty sets. When f; g W A � B ! R are proper, their bivariate infimal
convolution is the function f�2g W A � B ! R, f�2g.a; b/ D infff .a; c/ C
g.a; b � c/ W c 2 Bg.

Theorem 7.15. Let X be reflexive and F and G two maximally monotone bifunc-
tions defined on a nonempty set C � X with fF and fG their corresponding
representative functions. If 0 2 sqri

�
D
�
AF
� � D.AG/

�
(or, equivalently, 0 2

sqri
�

PrX.dom fF / � PrX.dom fG/
�
), then F C G is maximally monotone, AF C

AG D AFCG and fF�2fG is a representative function of AFCG .

Proof. By [172, Corollary 3.6] we obtain that the hypotheses yield the maximal
monotonicity of AF C AG , to which fF�2fG is a representative function. Then
Proposition 7.2 implies that AF .x/ C AG.x/ D AFCG.x/ for all x 2 X .
Consequently, F C G is maximally monotone and fF�2fG is a representative
function of AFCG , too. ut
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Remark 7.32. Note that under the hypotheses of Theorem 7.15 also the function
.fF�2fG/

�> is a representative function of AFCG . If one takes fF WD cohF and
fG WD cohG , then it holds

.fF�2fG/
�.x�; x/ D sup

y2C
˚hx�; yi C .F.y; �/C ıC /

��.x/C .G.y; �/C ıC /
��.x/

�

and this is less than h�
FCG.x�; x/ for all .x; x�/ 2 X � X�. Thus the just

identified representative function of AFCG is smaller than the ones obtained for
it via Theorem 7.14.

Remark 7.33. If both F and G satisfy the hypotheses of one of Theorems 7.11–
7.12, Corollary 7.15 or, when C D X , Theorem 7.15, then F CG fulfills them, too,
and this has as consequence its maximal monotonicity.

Now let us present a situation, different from the one displayed in Theorem 7.15,
when the inclusion proven in Proposition 7.2 turns out to be actually an equality.
Note that the space X needs not be reflexive for this statement.

Proposition 7.3. Let F and G be monotone bifunctions defined on the convex and
closed set C fulfilling F.x; x/ D G.x; x/ D 0 for all x 2 C , such that for all
x 2 C the functions F.x; �/ and G.x; �/ are convex and lower semicontinuous.
If 0 2 sqri.C � C/, then AF C AG D AFCG .

Proof. Let x 2 C . One has dom.F.x; �/C ıC / D dom.G.x; �/C ıC / D dom..F C
G/.x; �/ C ıC / D C . By definition, AF .x/ D @.F.x; �/ C ıC /.x/. Note also that
.F.x; �/C ıC /C .G.x; �/C ıC / D .F CG/.x; �/C ıC . By [221, Theorem 2.8.7],
the hypotheses imply

@.F.x; �/C ıC /.x/C @.G.x; �/C ıC /.x/ D @.F.x; �/CG.x; �/C ıC /.x/:

Consequently,AF .x/CAG.x/ D AFCG.x/ and since x 2 C was arbitrarily chosen,
the conclusion follows. ut
Remark 7.34. Note that the hypotheses of Proposition 7.3 ensure that cohFCG
.x; x�/ � h�

FCG.x�, x/ � c.x; x�/ for all .x; x�/ 2 X � X�. Unfortunately, this
is not enough in order to guarantee the maximality of F C G, which would follow
for instance provided the BO-maximal monotonicity of this bifunction. However,
checking also Remark 7.33, this additional assumption would make, at least in the
reflexive case, the condition 0 2 sqri.C � C/ redundant. Therefore, it remains as
an open question what should one add to the hypotheses of Proposition 7.3 in order
to obtain the maximality of F C G under no stronger hypotheses than the ones in
Remark 7.33.
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32. Boţ, R.I., Grad, S.-M.: Extending the classical vector Wolfe and Mond-Weir duality concepts
via perturbations. J. Nonlinear Convex Anal. 12, 81–101 (2011)
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200. Wanka, G., Boţ, R.I.: A new duality approach for multiobjective convex optimization
problems. J. Nonlinear Convex Anal. 3, 41–57 (2002)
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trivial, 5

Dual (scalar)
conjugate, 15
extended Fenchel-Lagrange, 25
Fenchel, 26, 28
Fenchel-Lagrange, 24, 26
Lagrange, 23
Mond-Weir, 117
Mond-Weir-Fenchel, 125, 126
Mond-Weir-Fenchel-Lagrange, 124
Mond-Weir-Lagrange, 120
Wolfe, 117

Wolfe-Fenchel, 125, 126
Wolfe-Fenchel-Lagrange, 123
Wolfe-Lagrange, 120

Dual (vector)
abstract linear, 180, 191, 198, 213
Fenchel, 105, 109
Fenchel-Lagrange, 100, 182, 192, 199, 214
general, 64, 65, 72
Isermann, 180, 191, 198, 213
Lagrange, 96, 181, 192, 198, 214
Mond-Weir, 136, 157
Mond-Weir-Fenchel, 152, 154, 166, 167
Mond-Weir-Fenchel-Lagrange, 149, 164
Mond-Weir-Lagrange, 144, 161, 208
properly efficient, 217
semidefinite, 217
set-valued, 181, 192, 199, 214
Wolfe, 136, 157
Wolfe-Fenchel, 152, 154, 166, 167
Wolfe-Fenchel-Lagrange, 148, 163
Wolfe-Lagrange, 143, 160, 207

Duality (scalar)
" gap, 15
stable " gap, 15
stable strong, 16, 18
strong, 15, 18, 118
weak, 15, 118

Duality (vector)
converse, 186, 188, 193, 196, 203, 215
strong, 140, 158, 185
weak, 138, 158, 185

Element
maximal, 41
minimal, 41, 48
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properly minimal (see Properly minimal)
M -properly minimal, 54
relatively maximal, 57
relatively minimal, 56
weakly maximal, 55
weakly minimal, 54

Function (scalar)
absolute norm, 84
almost convex, 132
bifunction (see Bifunction)
block norm, 84
cone-increasing, 9
conjugate, 10
coupling, 5
domain, 10
dual gauge, 88
epigraph, 10
Fenchel representative, 227
Fitzpatrick, 227
gauge (Minkowski), 86
hull (see Hull (function))
indicator, 5
infimal convolution, 10
Lagrangian, 20
nearly convex, 132
oblique norm, 84
oriented distance, 89
perturbation, 15
proper, 10
relatively strictly cone-increasing, 9
representative, 227
.�; "/-saddle point, 21
strictly cone-increasing, 9
strongly cone-increasing, 9
subdifferential, 10
"-subdifferential, 10
support, 5
transpose, 10
upper hemicontinuous, 10

Function (vector)
cone-almost convex, 132
cone-convex, 11
cone-epi-closed, 11
cone-epigraph, 11
cone-lower semicontinuous, 11
cone-nearly convex, 132
domain, 11
identity, 6
indicator, 5
projection, 5
projection onto, 6
proper, 11

Generalized interior
quasi-relative, 5
strong quasi, 5
strong quasi-relative, 5

Hull (function)
convex, 10
lower semicontinuous, 10
lower semicontinuous convex, 10

Mapping
adjoint, 10
counter image, 10
image, 10
linear continuous, 10

Monotone operator, 225
Brézis-Haraux approximation, 229
diagonal subdifferential, 248
domain, 225
duality map, 226
Fenchel representative function, 227
Fitzpatrick function, 227
graph, 225
maximal, 225
monotone closure, 225
range, 225
rectangular, 226
representative function, 227
sum problem, 234
type .D/, 225

Perturbation function (scalar)
Fenchel, 27, 28
Fenchel-Lagrange, 24–26
Lagrange, 23

Perturbation function (vector)
Fenchel, 105
Fenchel-Lagrange, 99
Lagrange, 96

Problem (scalar)
complementarity, 234
conjugate dual (see Dual (scalar))
constrained, 23, 119
general, 14, 117
optimality conditions, 17, 19
"-optimality conditions, 17
perturbed, 15
primal, 14, 117
stable optimality conditions, 17, 19
unconstrained, 26, 125

Problem (vector)
classical linear, 179, 190, 197, 212
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constrained, 93, 142, 160
dual (see Dual (vector))
general, 63, 135, 156
perturbed, 64
primal, 63, 135, 156
scalarization (see Scalarization)
scalarized, 64
semidefinite, 217
unconstrained, 103, 151, 165

Properly minimal
in the global sense of Borwein, 44, 48
in the sense of Benson, 43
in the sense of Borwein, 42
in the sense of Henig and Lampe, 45
in the sense of Hurwicz, 42
in the sense of linear scalarization, 46, 48

Regularity condition
constrained problem (scalar), 29
constrained problem (vector), 97, 147, 150,

155
constraints (scalar), 24, 25
general (scalar), 18
general (vector), 140
linear (vector), 202
semidefinite (vector), 218
sum (monotone operator), 234
surjectivity (monotone operator), 240, 242
unconstrained problem (scalar), 27
unconstrained problem (vector), 107, 153
zero (monotone operator), 244

Scalarization
function, 63, 71, 75, 83
general, 63
linear, 75
maximum(-linear), 78
norm, 88
oriented distance, 89
quadratic, 91
(semi-)norm, 86
set, 81
set (conical), 83
set (norm generated), 84

vector, 71
weighted Tchebyshev, 80

Set
almost convex, 132
closed regarding a set, 9
efficiency, 63
exposed face, 5
feasible, 23
generalized interior (see Generalized

interior)
maximal, 41, 48
minimal, 41, 48
nearly convex, 132
"-normal, 6
polar, 5
properly minimal, 42–45, 47, 48
relatively maximal, 57
relatively minimal, 56
.0; "/-vertically closed, 9, 18
.0; "/-vertically closed regarding a set, 9,

17
weak efficiency, 63, 73
weakly maximal, 55
weakly minimal, 54

Solution (scalar), "-optimal, 15
Solution (vector)

efficient, 63, 137, 179
properly efficient, 179
S -properly efficient, 63
Sg-properly efficient, 87
Sl -properly efficient, 75
Sq-properly efficient, 91
T -properly efficient, 71
Td -properly efficient, 89
Tl -properly efficient, 76
Tm-properly efficient, 80
Tml-properly efficient, 78
Ts-properly efficient, 81
Tsc-properly efficient, 83
Tsn-properly efficient, 85
weakly efficient, 63, 73

Statement
Farkas type, 20, 183, 190, 200, 212
Gale type, 189
separation, 8, 49
Young-Fenchel inequality, 10
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