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Abstract. We introduce ICE, a robust learning paradigm for synthesizing invari-
ants, that learns using examples, counter-examples, and implications, and show
that it admits honest teachers and strongly convergent mechanisms for invariant
synthesis. We observe that existing algorithms for black-box abstract interpre-
tation can be interpreted as ICE-learning algorithms. We develop new strongly
convergent ICE-learning algorithms for two domains, one for learning Boolean
combinations of numerical invariants for scalar variables and one for quantified
invariants for arrays and dynamic lists. We implement these ICE-learning algo-
rithms in a verification tool and show they are robust, practical, and efficient.

1 Introduction
The problem of generating adequate inductive invariants to prove a program correct
is at the heart of automated program verification. Synthesizing invariants is in fact the
hardest aspect of program verification—once adequate inductive invariants are synthe-
sized [1–5], program verification reduces to checking validity of verification conditions
obtained from finite loop-free paths [6–8], which is a logic problem that has been highly
automated over the years.

Invariant generation techniques can be broadly classified into two kinds: white-box
techniques where the synthesizer of the invariant is acutely aware of the precise pro-
gram and property that is being proved and black-box techniques where the synthesizer
is largely agnostic to the structure of the program and property, but works with a partial
view of the requirements of the invariant. Abstract interpretation [1], counter-example
guided abstraction refinement, predicate abstraction [9, 10], the method of Craig inter-
polants [11, 12], IC3 [13], etc. all fall into the white-box category. In this paper, we are
interested in the newly emerging black-box techniques for invariant generation.
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- - -Learning Invariants: One prominent black-
box technique for invariant generation is the
emerging paradigm of learning. Intuitively
(see picture on the right), we have two com-
ponents in the verification tool: a white-box teacher and a black-box learner. The
learner synthesizes suggestions for the invariants in each round. The teacher is com-
pletely aware of the program and the property being verified, and is responsible for two
things: (a) to check if a purported invariant H (for hypothesis) supplied by the learner
is indeed an invariant and is adequate in proving the property of the program (typi-
cally using a constraint solver), and (b) if the invariant is not adequate, to come up with
concrete program configurations that need to be added or removed from the invariant
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(denoted by + and − in the figure). The learner, who comes up with the invariant H
is completely agnostic of the program and property being verified, and aims to build a
simple formula that is consistent with the sample.

When learning an invariant, the teacher and learner talk to each other in rounds,
where in each round the teacher comes up with additional constraints involving new
data-points and the learner replies with some set satisfying the constraints, until the
teacher finds the set to be an adequate inductive invariant. The above learning approach
for invariants has been explored for quite some time in various contexts [14–16], and is
gaining considerable excitement and traction in recent years [17–20].

Advantages of Learning: There are many advantages the learning approach has over
white-box approaches. First, a synthesizer of invariants that works cognizant of the
program and property is very hard to build, simply due to the fact that it has to deal
with the complex logic of the program. When a program manipulates complex data-
structures, pointers, objects, etc. with a complex memory model and semantics, build-
ing a set that is guaranteed to be an invariant gets extremely complex. However, the
invariant for a loop in such a program may be much simpler, and hence a black-box
technique that uses a “guess and check” approach guided by a finite set of configura-
tions is much more light-weight and has better chances of finding the invariant. (See [4]
where a similar argument is made for black-box generation of the abstract post in an
abstract interpretation setting.) Second, learning, which typically concentrates on find-
ing the simplest concept that satisfies the constraints, implicitly provides a tactic for
generalization, while white-box techniques (like interpolation) need to build in tactics
to generalize. Finally, the black-box approach allows us to seamlessly integrate highly
scalable machine-learning techniques into the verification framework [21, 22].

ICE-learning: The problem with the learning approach described above is that it is
broken, as we show in this paper! Approaches to learning invariants have been unduly
influenced by algorithmic learning theory, automata learning, and machine learning
techniques, which have traditionally offered learning from positive and negative ex-
amples. As we show in this paper, learning using examples and counter-examples does
not form a robust learning framework for synthesizing invariants. To see why, consider
the following simple program—

pre; S ; while (b) do L; od S ′; post
with a single loop body for which we want to synthesize an invariant that proves that
when the pre-condition to the program holds, the post-condition holds upon exit. As-
sume that the learner has just proposed a particular set H as a hypothesis invariant. In
order to check if H is an adequate invariant, the teacher checks three things:
(a) whether the strongest-post of the pre-condition across S implies H; if not finds a

concrete data-point p and passes this as a positive example to the learner.
(b) whether the strongest-post of (H ∧ ¬b) across S ′ implies the post-condition; if not,

pass a data-point p in H that shouldn’t belong to the invariant as a negative example.
(c) whether H is inductive; i.e., whether the strongest post of H∧ b across loop body L

implies H; if not, finds two concrete configurations p and p′, with p ∈ H, p′ � H.
In the last case above, the teacher is stuck. Since she does not know the precise invariant
(there are after all many), she has no way of knowing whether p should be excluded
from H or whether p′ should be included. In many learning algorithms in the literature
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[14–16, 20], the teacher cheats: she arbitrarily makes one choice and goes with that,
hoping that it will result in an invariant. However, this makes the entire framework non-
robust, causing divergence,blocking the learner from learning the simplest concepts, and
introducing arbitrary bias that is very hard to control. If learning is to be seriously de-
veloped for synthesizing invariants, we need to fix this foundationally in the framework
itself.

The main contribution of this paper is a new learning framework called ICE-learning,
which stands for learning using Examples, Counter-examples, and Implications. We
propose that we should build learning algorithms that do not take just examples and
counter-examples, as most traditional learning algorithms do, but instead also handle
implications. The teacher, when faced with non-inductiveness of the current conjecture
H in terms of a pair (p, p′), simply communicates this implication pair to the learner,
demanding that the learnt set satisfies the property that if p is included in H, then so is
p′. The learner makes the choice, based on considerations of simplicity, generalization,
etc., whether it would include both p and p′ in its set or leave p out.

We show that ICE-learning is a robust learning model, in the sense that the teacher
can always communicate to a learner precisely why a conjecture is not an invariant (even
for programs with multiple loops, nested loops, etc.). This robustness then leads to new
questions that we can formulate about learning, which we cannot ask in the setting of
learning with only examples and counter-examples. In particular, we can ask whether
the iterative learning process, for a particular learner, strongly converges— whether the
learner will eventually learn the invariant, provided one exists expressible as a concept,
no matter how the teacher gives examples, counter-examples, and implications to refute
the learner’s conjectures.

We emphasize that earlier works in the literature have indeed seen inductiveness as
an important aspect of synthesizing invariants, and several mechanisms for guiding the
search towards an inductive property are known [13,23–26]. Our work here is however
the first that we know that develops a robust learning model that explicitly incorporates
the search for inductive sets in black-box invariant generation.

Our main contributions are as follows:
– We propose the ICE-learning framework as a robust learning framework for syn-

thesizing invariants. We study ICE-learning algorithms at two levels: ICE-learning
for a particular sample as well as the iterative ICE-model in which the teacher and
learner iteratively interact to find the invariant. The complexity of the ICE-learner
for a sample, strong convergence of iterative learning, and the number of rounds of
iteration required to learn are pertinent questions.

– We show that when the class of concepts forms a lattice, ICE learning can be often
achieved, and in fact methods that already exist in the literature can be seen as
ICE-learning algorithms. In particular, the abstract Houdini algorithm [3,4] and the
work reported in [27] for invariant synthesis over abstract numerical domain lattices
are in fact ICE-learning algorithms. However, these algorithms are not typically
strongly convergent and moreover, cannot learn from negative examples at all. We
hence concentrate on strongly convergent ICE-learning algorithms for two different
domains in this paper that do use negative examples and implications effectively.
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– We develop a new ICE-learning algorithm for Boolean combinations of numerical
invariants, which does not form a complete lattice. Given an ICE-sample, we show
how to find the simplest expressible formula that satisfies the sample. Our algorithm
iterates over all possible template formulas, growing in complexity, till it finds
an appropriate formula, and adapts template-based synthesis techniques that use
constraint solvers [28–31] to build a black-box ICE-learning algorithm. We prove
that the resulting iterative ICE-algorithm is strongly convergent. Note that the user
only specifies the logic for the invariants, and does not need to give templates.
We build a tool over Boogie [8] for synthesizing invariants over scalar variables
and show that it is extremely effective: it mostly outperforms other techniques,
and furthermore gives guarantees of simplicity and strong convergence that other
algorithms do not.

– As a second instantiation of the ICE-framework, we develop a new strongly con-
vergent ICE-learning algorithm for quantified invariants. We develop a general
technique of reducing ICE-learning of quantified properties to ICE-learning of
quantifier-free properties, but where the latter is generalized to sets of configura-
tions rather than single configurations. We instantiate this technique to build an
ICE-learner for quantified properties of arrays and lists. This new learning algo-
rithm (which is the most involved technical contribution of this paper) extends the
classical RPNI learning algorithm for automata [32] to learning in the ICE-model
and further learns quantified data automata [20], which can be converted to quan-
tified logical formulas over arrays/lists. We build a prototype verifier by building
this learner and the teacher as well, and show that this results in extremely efficient
and robust learning of quantified invariants.

Related Work: Prominent white-box techniques for invariant synthesis include ab-
stract interpretation [1], interpolation [11, 12] and IC3 [13]. Abstract interpretation has
been used for generating invariants over mostly convex domains [2, 33], some non-
convex domains [34,35] and more recently even over non-lattice abstract domains [36].
Template based approaches to synthesizing invariants using constraint solvers have been
explored in a white-box setting in [28–31], and we adapt these techniques in Section 4
for developing an ICE-learning algorithm for numerical invariants. Several white-box
techniques for synthesizing quantified invariants are also known. Most of them are
based on abstract interpretation or on interpolation theorems for array theories [37–45].

Turning to black-box learning-based techniques for synthesizing invariants,
Daikon [46] was a prominent early technique proposed for conjunctive Boolean
learning to find likely invariants from configurations recorded along test runs. Learning
was introduced in the context of verification by Cobleigh et al. [14], which was
followed by applications of Angluin’s L∗ algorithm [47] to finding rely-guarantee
contracts [15] and stateful interfaces for programs [16]. Houdini [3] uses essentially
conjunctive Boolean learning (which can be achieved in polynomial time) to learn
conjunctive invariants over templates of atomic formulas. In Section 3, we show that
the Houdini algorithm along with its generalization by Thakur et al. [4] and [27] to
arbitrary abstract domains like intervals, octagons, polyhedrons, linear equalities, etc.
are in fact ICE-learning algorithms.
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Recently, there is renewed interest in the application of learning to program verifica-
tion, in particular to synthesize invariants [17–19] by using scalable machine learning
techniques [21, 22] to find classifiers that can separate good states that the program can
reach (positive examples) from the bad states the program is forbidden from reaching
(counter-examples). Quantified likely invariants for linear data-structures and arrays are
found from dynamic executions using learning in [20], but these aren’t necessarily ad-
equate. Boolean formula learning has also been applied recently for learning quantified
invariants in [48]. In addition, learning has been applied towards inductive program
synthesis [49, 50] and model extraction and testing of software [51, 52].

Counterexamples to inductiveness of an invariant have been handled in the past [24–
26], but only in the context of lattice domains where the learned concepts grow mono-
tonically and implications essentially yield positive examples. Recently, [23] tries to
find inductive invariants by finding common interpolants for same program locations.
Though [18] mentions a heuristic for handling implication samples in their algorithm
for learning invariants their tool does not implement that heuristic. As far as we know,
our work here is the first to explicitly incorporate the search for inductive sets in black-
box invariant generation.

2 Illustrative Example
#include <vcc.h>
int foo(int a[], int p)
_(requires (p>=25 && p<75))
_(requires a[p]==1)
_(requires \thread_local_array

(a, 100))
{

int i=0, j=0;
while (i<100)
_(invariant (i>p ==> j==1))
{

if (a[i]==1)
j = 1;

i = i+1;
}
_(assert j==1);

}

Consider the C program on the right. This program re-
quires a scalar loop invariant (i> p⇒ j=1) for its ver-
ification using VCC [53]. Even in order to synthesize
such a scalar invariant, white-box techniques would
need to reason about the array a[] in the program, and
in general have to deal with complex language features
like objects, pointers, a complex memory model and
its semantics, etc. A black-box approach can however
learn such an invariant from a small set of program
configurations restricted to scalars.

Consider a black-box engine that calls foo with
the values for p— 25, 26, . . . and that unrolls the loop
a few times to find positive examples for (i, j, p) in
the kind (0, 0, 25), (1, 0, 25), (1, 1, 25), . . . for a small
number of values of i, and counter-examples of the form (100, 0, 25), (100, 2, 25),
. . . (99, 0, 25), (99, 2, 25), . . . (values close to 100 for i and different from 1 for j). From
these positive and negative examples, the learner could naturally come up with a con-
jecture such as (i>50⇒ j=1) (machine learning algorithms tend to come up with such
invariants).

Now notice that the teacher is stuck as all positive and negative examples are satisfied
by the conjecture, though it is not inductive. Consequently, when using a learner from
only positive and negative samples, the teacher cannot make progress. However, in ICE-
learning, the teacher can give an implication pair, say of the form ((50, 0, 25), (51, 0, 25)),
and proceed with the learning. Hence we can make progress in learning, and a learner
that produces the simplest conjectures satisfying the samples would eventually general-
ize a large enough sample to come up with a correct invariant. Our tool from Section 4
precisely learns the above mentioned invariant for this program.
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3 The ICE-Learning Framework
When defining a (machine) learning problem, one usually specifies a domain D (like
points in the real plane or finite words over an alphabet), and a class of concepts C (like
rectangles in the plane or regular languages), which is a class of subsets of the domain.
In classical learning frameworks (see [22]), the teacher provides a set of positive exam-
ples in D that are part of the target concept, and a set of counter-examples (or negative
examples) in D that are not part of the target concept. Based on these, the learner must
construct a hypothesis that approximates the target concept the teacher has in mind.

ICE-learning: In our setting, the teacher does not have a precise target concept from C
in mind, but is looking for an inductive set which meets certain additional constraints.
Consequently, we extend this learning setting with a third type of information that can
be provided by the teacher: implications. Formally, let D be some domain and C ⊆ 2D

be a class of subsets of D, called the concepts. The teacher knows a triple (P,N,R),
where P ⊆ D is an (infinite) set of positive examples, N ⊆ D is an (infinite) set of
counter-examples (or negative examples), and R ⊆ D × D is a relation interpreted as an
(infinite) set of implications. We call (P,N,R) the target description, and these sets are
typically infinite and are obtained from the program, but the teacher has the ability to
query these sets effectively.

The learner is given a finite part of this information (E,C, I) with E ⊆ P, C ⊆ N,
and I ⊆ R. We refer to (E,C, I) as an (ICE) sample. The task of the ICE-learner is to
construct some hypothesis H ∈ C such that P ⊆ H, N ∩ H = ∅, and for each pair
(x, y) ∈ R, if x ∈ H, then y ∈ H. A hypothesis with these properties is called a correct
hypothesis. Note that a target description (P,N,R) may have several correct hypotheses
(while H must include P, exclude N, and be R-closed, there can be several such sets).

Iterative ICE-learning: The above ICE-learning corresponds to a passive learning
setting, in which the learner does not interact with the teacher. In general, the quality
of the hypothesis will heavily depend on the amount of information contained in the
sample. However, when the hypothesis is wrong, we would like the learner to gain
information from the teacher using new samples. Since such a learning process proceeds
in rounds, we refer to it as iterative ICE-learning.

The iterative ICE-learning happens in rounds, where in each round, the learner starts
with some sample (E,C, I) (from previous rounds or an initialization) and constructs a
hypothesis H ∈ C from this information, and asks the teacher whether this is correct.
If the hypothesis is correct (i.e., if P ⊆ H, H ∩ N = ∅, and for every (x, y) ∈ R, if
x ∈ H, then y ∈ H as well), then the teacher answers “correct” and the learning process
terminates. Otherwise, the teacher returns either some element d ∈ D with d ∈ P \ H or
d ∈ H ∩ N, or an implication (x, y) ∈ R with x ∈ H and y � H. This new information is
added to the sample of the learner.

The learning proceeds in rounds and when the learning terminates, the learner has
learnt some R-closed concept that includes P and excludes N.

Using ICE-Learning to Synthesize Invariants: Honesty and Progress
Given an ICE-learning algorithm for a concept class, we can build algorithms for syn-
thesizing invariants by building the required (white-box) teacher. We can apply such
learning for finding invariants in programs with multiple loops, nested loops, etc.
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The learning will simultaneously learn all these invariant annotations. The teacher can
check the hypotheses by generating verification conditions for the hypothesized invari-
ants and by using automatic theorem provers to check their validity.

The two salient features of ICE-learning is that it facilitates progress and honesty. The
teacher can always make progress by adding an example/counter-example/implication
such that H (and any other previous hypothesis) does not satisfy it. Furthermore, while
augmenting the sample, the teacher can answer honestly, not precluding any possible
adequate inductive invariant of the program. Honesty and progress are impossible to
achieve when learning just from positive and negative examples (when the hypothesis
is not inductive, there is no way to make progress without making a dishonest choice).

Convergence: The setting of iterative ICE-learning naturally raises the question of
convergence of the learner, that is, does the learner find a correct hypothesis in a finite
number of rounds? We say that a learner strongly converges, if for every target de-
scription (P,N,R) it reaches a correct hypothesis (from the empty sample) after a finite
number of rounds, no matter what information is provided by the teacher (of course, the
teacher has to answer correctly according to the target description (P,N,R)).

Note that the definition above demands convergence for arbitrary triples (P,N,R),
and allows the teacher in each round to provide any information that contradicts the
current hypothesis, and is hence a very strong property.

Observe now that for a finite class C of concepts, a learner strongly converges if it
never constructs the same hypothesis twice. This assumption on the learner is satisfied
if it only produces hypotheses H that are consistent with the sample (E,C, I), that is, if
E ⊆ H, C ∩ H = ∅, and for each pair (x, y) ∈ I, if x ∈ H, then y ∈ H. Such a learner is
called a consistent learner. Since the teacher always provides a witness for an incorrect
hypothesis, the next hypothesis constructed by a consistent learner must be different
from all the previous ones.

Lemma 1. For a finite class C of concepts, every consistent learner strongly converges.

For various iterative ICE-algorithm classes, where class of concepts may be infinite, we
will study strong convergence.

ICE-Learning over Lattice Domains: It turns out that ICE-algorithms are especially
easy to build when the class of concepts forms a lattice, as typical in an abstract inter-
pretation setting.

Consider an abstract domain that is a lattice. Then given any sample (E,C, I), we
can compute the best (smallest) abstract element that satisfies the constraints (E,C, I)
as follows. First, we take the least upper bound of the set of all α(e), for each e ∈ E. Then
we see if these satisfy the implication constraints; if not, then for every pair (p, p′) ∈ I
that is not satisfied, we know that p′ must be added to the set (since p belongs to every
set that includes E). Hence all these elements p′ can be added by applying α to them,
and we can take the lub with respect to the existing set. We continue in this fashion till
we converge to an abstract element that is the smallest satisfying E and I. Now, we can
check if C is excluded from it; if yes, we have computed the best set, else there is no set
satisfying the constraints. The above is an ICE-algorithm for any abstract domain.

We can, using this argument, establish polynomial-time (non-iterative) ICE-learning
algorithms for conjunctive formulas (in fact, this is what the classical Houdini algorithm
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does [3,22]), k-CNF formulas [22], and for abstract domains such as octagons, polyhe-
dra, etc. as in [24, 25]

However, note that the iterative extension of the above ICE-algorithm may not halt
(unless the domain has finite height). One can of course use a widening heuristically
after some rounds to halt, but then clearly the iterative ICE algorithm will not be nec-
essarily strongly convergent. The iterative ICE-algorithm with widening is, in fact, pre-
cisely the abstract Houdini algorithm proposed recently in [4], and is similar to another
recent work in [27], and are not strongly convergent.

The iterative ICE-learning algorithms we develop in this paper are strongly con-
vergent. While the above derived iterative ICE-algorithms essentially ignore counter-
examples, and fail to use counter-examples and implications as a way to come down the
lattice after a widening/over-generalization, the algorithms we propose in the next two
sections are more general schemes that truly utilize examples, counter-examples, and
implications to find succinct expressions.

4 An ICE-Learning Algorithm for Numerical Invariants

In this section, we describe a learning algorithm for synthesizing invariants that are ar-
bitrary Boolean combinations of numerical atomic formulas. Since we want the learning
algorithm to generalize the sample (and not capture precisely the finite set of implication-
closed positive examples), we would like it to learn a formula with the simplest Boolean
structure. In order to do so, we iterate over templates over the Boolean structure of the
formulas, and learn a formula in the given template.

Note that the domain is a join-semilattice (every pair of elements has a least upper
bound) since formulas are closed under disjunction. Hence we can employ the generic
abstract Houdini algorithm [4] to obtain a passive ICE-learning algorithm. However, us-
ing the vanilla algorithm will learn only the precise set of positive and implication-closed
set, and hence not generalize without a widening. Widening for disjunctive domains is
not easy, as there are several ways to generalize disjunctive sets [54]. Furthermore, even
with a widening, we will not get a strongly convergent iterative ICE-algorithm that we
desire (see experiments in this section where abstract Houdini diverges even on conjunc-
tive domains on some programs for this reason). The algorithm we build in this section
will not only be strongly convergent but also will produce the simplest expressible in-
variant.

Let Var = {x1, · · · , xn} be the set of (integer) variables in the scope of the program.
For simplicity, let us restrict atomic formulas in our concept class to octagonal con-
straints, over program configurations, of the general form:

s1v1 + s2v2 ≤ c, s1, s2 ∈ {0,+1,−1}, v1, v2 ∈ Var, v1 � v2, c ∈ Z.
(We can handle more general atomic formulas as well; we stick to the above for sim-
plicity and effectiveness.)

Our ICE-learning algorithm will work by iterating over more and more complex
templates till it finds the simplest formula that satisfies the sample. A template fixes
the Boolean structure of the desired invariants and also restricts the constants c ∈
Z appearing in the atomic formulas to lie within a finite range [−M,+M], for some
M ∈ Z+. Bounding the constants leads to strong convergence as we show below. For a
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Note that Ψ falls in the theory of quantifier-free linear integer arithmetic, the satisfi-
ability of which is decidable. A satisfying assignment for Ψ gives a consistent formula
that the learner conjectures as an invariant. If Ψ is unsatisfiable, then there is no invari-
ant for the current template consistent with the given sample. In this case we iterate by
increasing the complexity of the template. For a given template, the class of formulas
conforming to the template is finite. Our enumeration of templates dovetails between
the Boolean structure and the range of constants in the template, thereby progressively
increasing the complexity of the template. Consequently, the ICE-learning algorithm
always synthesizes a consistent hypothesis if there is one, and furthermore synthesizes
a hypothesis of the simplest template.

A similar approach can be used for learning invariants over linear constraints, and
even more general constraints if there is an effective solver for the resulting theory.

Convergence: Our iterative ICE-algorithm conjectures a consistent hypothesis in each
round, and hence ensures that we do not repeat hypotheses. Furthermore, the enumera-
tion of templates using dovetailing ensures that all templates are eventually considered,
and together with the fact that there are a finite number of formulas conforming to any
template ensures strong convergence.

Theorem 1. The above ICE-learning algorithm always produces consistent conjec-
tures and the corresponding iterative ICE-algorithm strongly converges.

Our learning algorithm is quite different from earlier white-box constraint based ap-
proaches to invariant synthesis [28–31]. These approaches directly encode the adequacy
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of the invariant (encoding the entire program’s body) into a constraint, and use Farkas’
lemma to reduce the problem to satisfiability of quantifier-free non-linear arithmetic
formulas, which is harder and in general undecidable. We, on the other hand, split
the task between a white-box teacher and a black-box learner, communicating only
through ICE-constraints on concrete data-points. This greatly reduces the complexity
of the problem, leading to a simple teacher and a much simpler learner. Our idea is
more similar to [19] which use algebraic techniques to guess the coefficients.

Table 1. Results for ICE-learning numerical invariants. ICE is the total time taken by our tool.
All times reported are in seconds. × means an adequate invariant was not found.

Program

White Black

Program Invariant

White Black
Inv- Box Box Box Box

ariant InvGen CPA absH ML ICE InvGen CPA absH ML ICE
[31] [55] [4] [18] [31] [55] [4] [18]

w1[29] x ≤ n 0.1 × 0.1 0.2 0.0 w2[29] x ≤ n − 1 0.1 × 0.2 0.1 0.0
fig6[56] true 0.1 1.3 0.1 0.1 0.0 fig1[29] x ≤ −1 ∨ y ≥ 1 × 4.5 × × 0.1
fig8[56] true 0.0 1.4 0.0 0.0 0.0 fig3[56] lock = 1 ∨ x ≤ y − 1 0.1 1.4 × 0.1 0.0
ex14[57] x ≥ 1 × 1.5 0.2 0.2 0.0 fig9[56] x = 0 ∧ y ≥ 0 0.1 1.4 0.0 0.2 0.0
finf1 x = 0 0.1 1.5 0.1 0.4 0.0

ex23[57]
0 ≤ y ≤ z∧ × 90.5 0.2 × 14.2

finf2 x = 0 0.1 1.4 0.0 0.1 0.0 z ≤ c + 4572
sum3 sn = x 0.1 1.5 0.1 0.1 0.0 ex7 [57] 0 ≤ i ∧ y ≤ len × 1.6 0.2 0.4 0.0
term2 true 0.0 1.6 0.0 0.0 0.0

sum1
sn = i − 1∧ × × × × 1.8

term3 true 0.0 1.4 0.0 0.0 0.0 (sn = 0 ∨ sn ≤ n)
trex1 z >= 1 0.1 1.5 0.1 0.4 0.0 sum4 sn = i − 1 ∧ sn ≤ 8 0.1 2.8 × × 2.6
trex2 true 0.0 1.4 0.0 0.0 0.0

tcs [12]
i ≤ j − 1 ∨ i ≥ j + 1∨

0.1 1.4 × 0.5 1.4
trex4 true 0.0 1.4 0.0 0.0 0.0 x = y
winf1 x = 0 0.0 1.4 0.0 0.0 0.0

trex3
0 ≤ x1 ∧ 0 ≤ x2∧

0.5 × × × 2.2winf2 x = 0 0.0 1.4 0.0 0.0 0.0 0 ≤ x3 ∧ d1 = 1∧
winf3 x = 0 × 1.4 0.3 0.1 0.1 d2 = 1 ∧ d3 = 1
vmail i ≥ 0 × 1.4 0.1 0.3 0.0

matrix
a[0][0]≤m ∨ j≤0; × × × × 5.8

lucmp n = 5 × 77.0 0.0 0.1 0.0 a[0][0]≤m ∨ j+k≤0

n.c11
0 ≤ len

0.1 2.2 × 0.2 0.6 cgr2[29]
N ≤ 0 ∨ (x ≥ 0∧ × 1.8 × × 7.3≤ 4 0 ≤ m ≤ N − 1)

cgr1[29] x − y ≤ 2 0.1 1.5 0.1 0.2 0.0 array j ≤ 0 ∨ m ≤ a[0] × × × 0.2 0.3
oct x + y ≤ 2 0.0 1.3 0.2 0.1 0.2 vbsd pathlim ≤ tmp × 1.6 0.5 × 0.0

Experimental Results: We have implemented our learning algorithm as an invariant
synthesis tool 1 in Boogie [8]. In our tool we enumerate templates in an increasing order
of their complexity. For a given Boolean structure of the template Bi, we fix the range
of constants M in the template to be the greater value out of i and the maximum integer
in the program. If an adequate invariant is not found, we increase i. If an adequate
invariant is found, we use binary search on M to find an invariant that has the same
Boolean structure but the smallest constants. This enumeration of templates is complete
and it ensures that we learn the simplest invariant. In our tool, ICE-samples discovered
while learning an invariant belonging to a simpler template are not wasted but used
in subsequent rounds. As already mentioned, our learner uses an incremental Z3 [58]
solver that adds a new constraint for every ICE-sample discovered by the Boogie based
teacher.

1 Available at http://www.cs.uiuc.edu/~madhu/cav14/

http://www.cs.uiuc.edu/~madhu/cav14/
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We evaluate our tool on SV-COMP benchmarks2 and several other programs from
the literature (see Table 1). We use SMACK [59] to convert C programs to Boogie and
use our tool to learn loop invariants for the resulting Boogie programs. We use inlining
to infer invariants for programs with multiple procedures. In Table 1 we compare our
tool to invariant synthesis using abstract Houdini [4] (called absH in Table 1), [18]
(called ML), Invgen [31] and interpolation based Impact algorithm [60] implemented
in CPAchecker (called CPA) [55]. We implemented the octagonal domain in abstract
Houdini for a comparison with our tool. As mentioned in Section 3, abstract Houdini
is an ICE-learning algorithm but is not strongly convergent. Unlike our tool, abstract
Houdini is not able to learn disjunctive octagonal invariants. In addition, it is unable
to prove programs like trex3 and n.c11 where it loses precision due to widening.
InvGen [31] uses a white-box constraint-based approach to invariant synthesis. Unlike
our tool that enumerates all templates, InvGen requires the user to specify a template
for the invariants. Being white-box, it cannot handle programs with arrays and pointers,
even if the required invariants are numerical constraints over scalar variables. Being
incomplete, it is also unable to prove several scalar programs like fig1 and cegar2.
Finally, [18] is a machine learning algorithm for inferring numerical invariants. From
our experience, the inference procedure in [18] is very sensitive to the test harness used
to obtain the set of safe/unsafe program configurations. For several programs, we could
not learn an adequate invariant using [18] despite many attempts with different test
harnesses.

The experiments show that our tool outperforms [4, 18, 31, 55] on most programs,
and learns an adequate invariant for all programs in reasonable time. Though we use
the more complex but more robust framework of ICE-learning that promises to learn the
simplest invariants and is strongly convergent, it is generally faster than other learning
algorithms like [17, 18] that learn invariants from just positive and negative examples,
and lack any such promises.

5 Learning Universally Quantified Properties
In this section we describe a setting of ICE-learning for universally quantified con-
cepts over linear data-structures like arrays and lists. A configuration of a program
can be described by the heap structure (locations, the various field-pointers, etc.), and
a finite set of pointer variables pointing into the heap. Since the heap is unbounded,
typical invariants for programs manipulating heaps require universally quantified for-
mulas. For example, a list is sorted if the data at all pairs y1, y2 of successive posi-
tions is sorted correctly. We consider synthesis of universal properties of the form
ψ = ∀y1, . . . , ykϕ(y1, . . . , yk), where ϕ is a quantifier-free formula. We now describe how
to modify the ICE-learning framework so that we can use a learner for the quantifier-
free property described by ϕ(y1, . . . , yk).

We consider for each concrete program configuration c the set S c of valuation con-
figurations of the form (c, val), where val is a valuation of the variables y1, . . . , yk. For
example, if the configurations are heaps, then the valuation maps each quantified vari-
able yi to a cell in the heap, akin to a scalar pointer variable. Then c |= ψ if (c, val) |= ϕ
for all valuations val, and c �|= ψ if (c, val) �|= ϕ for some valuation val.

2 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/

https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/
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This leads to the setting of data-set based ICE-learning. In this setting, the target
description is of the form (P̂, N̂, R̂) where P̂, N̂ ⊆ 2D and R̂ ⊆ 2D × 2D. A hypothesis
H ⊆ D is correct if P ⊆ H for each P ∈ P̂, N � H for each N ∈ N̂, and for each
pair (X, Y) ∈ R̂, if X ⊆ H, then also Y ⊆ H. The sample is a finite part of the target
description, that is, it is of the form (Ê, Ĉ, Î), where Ê, Ĉ ⊆ 2D, and Î ⊆ 2D × 2D.

An ICE-learner for the data-set based setting corresponds to an ICE-learner for uni-
versally quantified concepts in the original data-point based setting using the following
connection. Given a standard target description (P,N,R) over D, we now consider the
domain Dval extended with valuations of the quantified variables y1, . . . , yk as described
above. Replacing each element c of the domain by the set S c ⊆ Dval transforms (P,N,R)
into a set-based target description. Then a hypothesis H (described by a quantifier-free
formula ϕ(y1, . . . , yk)) is correct w.r.t. the set-based target description iff the hypothesis
described by ∀y1, . . . , ykϕ(y1, . . . , yk) is correct w.r.t. the original target description. Un-
like [40] that uses “Skolem constants”, learning over data-sets allows us to learn from
not only examples, but also from counter-examples and implications (where simple
Skolem constants will not work).

Recap of Quantified Data Automata and Related Results [20]:
We will develop ICE-learning algorithms for universally quantified invariants over ar-
rays and lists that can be expressed by an automaton model called quantified data au-
tomata (QDA) introduced by Garg et al. in [20]. We here briefly recall the main ideas
concerning this model and refer the reader to [20] for more detailed definitions.

For example, consider a typical invariant in a sorting program over an array A:
∀y1, y2.((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]). This says that for all
successive cells y1, y2 that occur somewhere in the array A before the cell pointed to by
a scalar pointer variable i, the data stored at y1 is no larger than the data stored at y2.

We model arrays (or other linear data structures) by data words, in which each po-
sition corresponds to an element or cell in the data structure. Each position in such a
word is labeled with a tuple of a set of pointer variables of the program that indicates
their position in the data structure and a data value from some data domain (e.g., inte-
gers) that indicates the value contained in the cell of the data structure. A QDA defines
a set of data words. However, to capture the idea of expressing universally quantified
properties, a QDA reads valuation words, which are additionally annotated with univer-
sally quantified variables. The alphabet of a QDA is a pair in which the first component
corresponds to the pointer variables, and the second component contains the universally
quantified variable at that position (if any).

q1 q2 q3 q4q5

b =̂ no pointer var.
− =̂ no universal var.
b =̂ (b,−)
∗ =̂ arbitrary valued(y1) ≤ d(y2)

true

(b, y1 )

(i, ∗), (b, y2)

b

(b, y2 )b, (i,−)

(i, y2)

(i,−)

b b∗

Fig. 1. An example QDA representing an invariant of a sorting routine

The sortedness invariant above is captured by the QDA in Figure 1. The QDA accepts a
valuation word if the data values at the positions of y1 and y2 satisfy the formula at the
final state it reaches. Moreover, the automaton accepts a data word w if for all possible
valuations of y1 and y2, the automaton accepts the corresponding valuation word.
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We assume that the set of formulas used to label the final states of a QDA forms a
finite lattice in which the order � is compatible with implication of formulas, that is, if
ϕ1 � ϕ2, then ϕ1 ⇒ ϕ2.

In [20] the subclass of elastic QDAs (EQDAs) is considered because they have a
decidable emptiness problem and can be translated into decidable logics, like the array
property fragment (APF) [61] for arrays, or a decidable fragment of the logic Strand
[62] for lists. The key property of these logics is their inability to express that quantified
variables are only a bounded distance away from each other. This is captured at the
automaton level by only allowing self loops on b in EQDAs. The example QDA in
Figure 1 is not an elastic QDA because there is a b-transition from q2 to q5. However,
there is an EQDA for an equivalent invariant in which the sortedness property is checked
for every pair of cells y1, y2 such that y1 ≤ y2. Note that since each variable can occur
only once, the blank symbol is the only one that can appear arbitrarily often in an
input word. Therefore, there are only finitely many EQDAs for a fixed alphabet (set of
variables). We refer the reader to [20] for more details on EQDAs.

ICE-Learning Algorithms for EQDAs. The goal of this section is to develop an it-
erative ICE-learner for concepts represented by EQDAs. The first relevant question is
whether there is a polynomial time iterative ICE-learner. We show that this is impos-
sible when the set of pointers and quantified variables is unbounded (see the technical
report [63] for a proof sketch).

Theorem 2. There is no polynomial time iterative ICE-learner for EQDAs, when the
alphabet size is unbounded.

The theorem is proved by adapting a result from [64], namely that there is no polyno-
mial time learning algorithm for DFAs that only uses equivalence queries. This shows
that there is no hope of obtaining an iterative ICE-learner for EQDAs (or even QDAs) in
the style of the well-known L∗ algorithm of Angluin, which learns DFAs in polynomial
time using equivalence and membership queries.

Though we cannot hope for a polynomial time iterative ICE-learner, we develop a
(non-iterative) ICE-learner that constructs an EQDA from a given sample in polynomial
time. In the iterative setting this yields a learner for which each round is polynomial,
while the number of rounds is not polynomial, in general. Our ICE-learning algorithm
is adapted from the classical RPNI passive learning algorithm [32], which takes as
input a sample (E,C) of positive example words E and counter-example words C, and
constructs a DFA that DFA accepts all words in E and rejects all words in C.

RPNI can be viewed as an instance of an abstract state merging algorithm that is
sketched as Algorithm 1. In this general setting, the algorithm takes a finite collection
S of data, called a sample, as input and produces a Moore machine (i.e., a DFA with
output) that is consistent with the sample (we define this formally later). In the case of
classical RPNI, S = (E,C) consists of two finite sets of example and counter-example
words, the resulting Moore machine is interpreted as a DFA, and we require that all
words in E be accepted whereas all words in C be rejected by the DFA.

Algorithm 1 proceeds in two consecutive phases. In Phase 1 (Lines 1 and 2), it calls
init(S) to construct an initial Moore machine Ainit from S that satisfies the sample
(assuming that this is possible). Then, it picks a total order q0 < . . . < qn on the states of
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Ainit, which determines the order in which the states are to be merged in the subsequent
phase. The actual state merging then takes place in Phase 2 (Lines 3 to 14). According
to the given order, Algorithm 1 tries to merge each state qi with a “smaller” state q j (i.e.,
j < i) and calls test on the resulting Moore machine to check whether this machine

Algorithm 1: Generic State Merging algorithm.

Input: A sample S
Output: A Moore machineA that passes test(A)

1 Ainit = (Q, Σ, Γ, q0, δ, f )← init(S);
2 (q0, . . . , qn)← order(Q);

3 ∼0← {(q, q) | q ∈ Q};
4 for i = 1, . . . , n do
5 if qi �i−1 q j for all j ∈ {0, . . . , i − 1} then
6 j← 0;
7 repeat
8 Let ∼ be the smallest congruence that

contains ∼i−1 and the pair (qi, q j);
9 j← j + 1;

10 until test(Ainit/∼);
11 ∼i←∼;
12 else
13 ∼i←∼i−1;
14 end
15 returnAinit/∼n ;

still satisfies the sample; since a
merge can cause nondeterminism, it
might be necessary to merge further
states in order to restore determin-
ism. A merge is kept if the Moore
machine passes test; otherwise the
merge is discarded, guaranteeing
that the final Moore machine still
satisfies sample. Note that we repre-
sent merging of states by means of a
congruence relation ∼⊆ Q×Q over
the states (i.e., ∼ is an equivalence
relation that is compatible with the
transitions) and the actual merging
operation as constructing the quo-
tient Moore machine Ainit/∼ in the
usual way. Note that in the case of
DFAs, each merge increases the lan-
guage and thus can be seen as a
generalization step in the learning
algorithm.3

We are now ready to describe our new ICE-learning algorithm for EQDAs that ex-
tends the above Algorithm 1, handling both EQDAs and implication samples. In our
setting, a sample is of the form (Ê, Ĉ, Î) where Ê, Ĉ are sets of sets of valuation words
and Î contains pairs of sets of valuation words. From [20] we know that EQDAs can be
viewed as Moore machines that read valuation words and output data formulas. Hence
we can adapt the RPNI algorithm to learn EQDAs, as explained below.

For the initialization init(S) we construct an EQDA whose language is the small-
est (w.r.t. inclusion) EQDA-definable language that is consistent with the sample S. To
do this, we consider the set of all positive examples, i.e., the set E :=

⋃
Ê. This is a set

of valuation words, from which we strip off the data part, obtaining a set E′ of symbolic
words only made up of pointers and universally quantified variables. We start with the
prefix tree of E′ using the prefixes of words in E′ as states (as the original RPNI does).
The final states are the words in E′. Each such word w ∈ E′ originates from a set of
valuation words in E (all the extensions of w by data that result in a valuation word in
E). If we denote this set by Ew, then we label the state corresponding to w with the least
formula that is satisfied in all valuation words in Ew (recall that the formulas form a
lattice). This defines the smallest QDA-definable set that contains all words in E. If this
QDA is not consistent with the sample, then either there is no such QDA, or the QDA
is not consistent with an implication, that is, for some (X, Y) ∈ Î it accepts everything in

3 We refer the reader to the technical report [63] more details.
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X but not everything in Y. In this case, we add X and Y to Ê and restart the construction
(since every QDA consistent with the sample must accept all of X and all of Y).

To make this QDA A elastic, all states that are connected by a b-transition are
merged. This defines the smallest EQDA-definable set that contains all words accepted
by A (see [20]). Hence, if this EQDA is not consistent with the sample, then either
there is no such EQDA, or an implication (X, Y) ∈ Î is violated, and we proceed as
above by adding X and Y to Ê and restarting the computation. This adapted initializa-
tion results in an EQDA whose language is the smallest EQDA-definable language that
is consistent with the sample.

Table 2. RPNI-based ICE-learning for
quantified array invariants. R: # rounds of
iterative-ICE; |Q|: # states in final EQDA. ×
means timeout of 5 min.

Program
White-Box Black-Box

SAFARI (s) R |Q| ICE(s)

copy 0.0 4 8 0.7
copy-lt-key × 5 13 1.2
init 0.7 4 8 0.6
init-partial × 8 12 1.5
compare 0.1 9 8 1.3
find 0.2 9 8 1.2
max 0.1 3 8 0.4
increment × 5 8 0.7
sorted-find × 8 17 5.1
sorted-insert × 6 21 2.0
sorted-reverse × 18 17 9.4
devres [48] 0.1 3 8 0.7
rm_pkey [48] 0.3 3 8 0.7

Once Phase 1 is finished, our algorithm
proceeds to Phase 2, in which it successively
merges states ofAinit, to obtain an EQDA that
remains consistent with the sample but has
less states. When merging accepting states,
the new formula at the combined state is ob-
tained as the lub of the formulas of the orig-
inal states. Note that merging states of an
EQDA preserves the self-loop condition for
b-transitions. Finally, the test routine sim-
ply checks whether the merged EQDA is con-
sistent with the sample.

It follows that the hypothesis constructed
by this adapted version of RPNI is an EQDA
that is consistent with the sample. Hence
we have described a consistent learner. For
a fixed set of pointer variables and uni-
versally quantified variables there are only
a finite number of EQDAs. Therefore by
Lemma 1 we conclude that the above learning
is strongly convergent (though the number of
rounds need not be polynomial).

Theorem 3. The adaption of the RPNI algorithm for iterative set-based ICE-learning
of EQDAs strongly converges.

Experiments: We built a prototype tool implementing the set-based ICE-learning al-
gorithm for EQDAs, consisting of both a learner and a teacher. The ICE-learner is im-
plemented by extending the classical RPNI algorithm from the libALF library [65].
Given an EQDA conjectured by the learner, the teacher we build converts it to a quan-
tified formula in the APF [61] or decidable Strand for lists [62], and uses a constraint
solver to check adequacy of invariants. Since there is no tool implementing the decision
procedure for Strand, we evaluate our prototype on array programs only.

Table 2 presents the results of our prototype on typical programs manipulating ar-
rays4.We compare our results to SAFARI [44], a verification tool based on interpola-
tion in array theories. SAFARI, in general, cannot handle list programs, and also array

4 Available at http://www.cs.uiuc.edu/~madhu/cav14/
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programs like sorted-find that have quantified pre-conditions. On the others, SAFARI
diverges for some programs, and probably needs manually provided term abstractions
to achieve convergence. The results show that our ICE-learning algorithm for quanti-
fied invariants is effective, in addition to promising polynomial-per-round efficiency,
promising invariants that fall in decidable theories, and promising strong convergence.

Acknowledgements. This work was partially funded by NSF CAREER award #0747041
and NSF Expeditions in Computing ExCAPE Award #1138994.
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