
Reachability Analysis of Hybrid Systems

Using Symbolic Orthogonal Projections�

Willem Hagemann

Carl von Ossietzky Universität Oldenburg,
Ammerländer Heerstraße 114–118, 26111 Oldenburg, Germany

willem.hagemann@informatik.uni-oldenburg.de

Abstract. This paper deals with reachability analysis of hybrid systems
with continuous dynamics described by linear differential inclusions and
arbitrary linear maps for discrete updates. The invariants, guards, and
sets of reachable states are given as convex polyhedra. Our reachability
algorithm is based on a novel representation class for convex polyhedra,
the symbolic orthogonal projections (sops), on which various geometric
operations, including convex hulls, Minkowski sums, linear maps, and
intersections, can be performed efficiently and exactly. The capability
to represent intersections of convex polyhedra exactly is superior to sup-
port function-based approaches like the LGG-algorithm (Le Guernic and
Girard [21]).

Accompanied by some simple examples, we address the problem of the
monotonic growth of the exact representation and propose a combination
of our reachability algorithm with the LGG-algorithm. This results in
an efficient method of better accuracy than the LGG-algorithm and its
productive implementation in SpaceEx [13].

1 Introduction

Reachability analysis of hybrid systems has to deal with two problems: The first
one is a systematic representation of the reachable states. Aside from nonconvex
approaches like [4,5,22], the reachable states are usually represented as unions of
convex sets, for which different representations, including polyhedra [7], template
polyhedra [23], zonotopes [15,16], ellipsoids [19], and support functions [20], are
used. The choice of the representation has a wide influence on the approximations
of the underlying sets and on the efficiency of the operations required for the
reachability analysis, e. g. zonotopes, ellipsoids, and support functions are chal-
lenging for intersections with guard sets [1,16]. The second problem is to tackle
the dynamics of the system. Typical classes of admissible dynamics vary from
constant derivatives [9,18], linear differential equations or inclusions [13,15,19]
to nonlinear differential equations [23,6]. However, in order to approximate com-
plexer dynamics, the classes should allow differential inclusions [2,3,12]. In turn,

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 407–423, 2014.
c© Springer International Publishing Switzerland 2014

408 W. Hagemann

the choice of the admissible dynamics has an impact on the required operations
for the post image computation. Hence, both problems are highly related.

In this paper we focus on the reachability analysis of hybrid systems with con-
tinuous dynamics described by linear differential inclusions and arbitrary linear
maps for discrete updates. The invariants, guards, and sets of reachable states
are given as convex polyhedra, where we assume that the polyhedra are given
as intersections of half-spaces (H-representation) and not as convex hulls of ver-
tices and rays (V-representation). Our reachability algorithm is based on a novel
representation class for convex polyhedra, the symbolic orthogonal projections
(sops), on which various geometric operations, including convex hulls, Minkowski
sums, linear maps, and intersections, can be performed efficiently and exactly.
The capability to represent intersections of convex polyhedra exactly is superior
to support function-based approaches.

Due to space limitations we omit the proofs. The interested reader will find
the proofs and some additional materials in [17].

2 Template Polyhedra and Support Functions

In their 2009 article [21], Le Guernic and Girard proposed an algorithm for
reachability analysis of hybrid systems based on the usage of support functions.
This reachability algorithm, we call it the LGG-algorithm for short, as been
implemented in the verification tool box SpaceEx [13]. The efficiency of the
LGG-algorithm is achieved by a clever combination of support functions and
template polyhedra. We briefly restate their representations of convex sets.

Template polyhedra are H-polyhedra P (Afix, a) = {x |Afixx ≤ a} where the
template matrix Afix is fixed a priori. For a – not necessarily convex – set S ⊆ R

d

and a direction n ∈ R
d the value of the support function is defined as hS(n) =

supx∈S n
Tx. For an H-polyhedron P (A, a) the value of the support function

is given by the linear program “maximize nTx subject to Ax ≤ a”. Support
functions behaves nicely under most geometric operations; in detail, for any
two compact convex sets P, Q in R

d, and any (d × d)-matrix M the following
equations are easily computable:

hM(P)(n) = hP(M
Tn), (linear map)

hP+Q(n) = hP(n) + hQ(n), (Minkowski sum)

hconv(P∪Q) = max(hP(n), hQ(n)), (closed convex hull)

while the intersection is not easily computable

hP∩Q(n) = inf
m∈Rd

hP(n−m) + hQ(m).

Given the template matrix Afix and the support function hS of some set S,
one easily obtains a closed convex over-approximation P (Afix, aS) of S: The ith
coefficient of the vector aS is given by hS(ni), where nT

i is the ith row of the
template matrix. We will use the notation aS = hS(Afix) for such a row-wise
computation of the vector aS.

Reachability Analysis Using Symbolic Orthogonal Projections 409

3 Symbolic Orthogonal Projections

We introduce a novel representation class for polyhedral sets which we call sym-
bolic orthogonal projections, or sops, for short. Sops can be realized in any vector
space K

d over an ordered field K. Any sop P = P (A,L, a) ⊆ K
d, where A is an

(m× d)-matrix, L is an (m× k)-matrix, and a is a column vector in K
m, is the

orthogonal projection of an H-polyhedron P
((
A L

)
, a
) ⊆ K

d+k onto K
d, where

k is the number of columns in L, i. e.,

P = P (A,L, a) =
{
x ∈ K

d
∣
∣∃z ∈ K

k, Ax+ Lz ≤ a
}
.

Obviously, the sop P (A,L, a) is empty if and only if P
((
A L

)
, a
)
is empty, and

any H-polyhedron P = P (A, a) ∈ K
d may be represented by the sop P (A, ∅, a),

where ∅ denotes an empty matrix. Furthermore, for any sop P (A,L, a) in K
d and

any given direction n ∈ K
d the optimal value of the linear program “maximize

nTx subject to Ax+Lz ≤ a” provides the value of the support function hP(n).
Hence, sops can easily be over-approximated by template polyhedra.

As a rather technical notion, we call a sop P (A,L, a) complete if there exists
some u ≥ 0 with 0 = ATu, 0 = LTu, and 1 = aTu. Any sop can be completed
by adding the redundant row (0T ,0T , 1) to its representation (A,L, a).1

Convex Hull, Minkowski Sum, and Intersection. We show that sym-
bolic orthogonal projections allow to efficiently represent closed convex hulls,
Minkowski sums, and intersections of polyhedra. All these operations are realized
as block matrices over the original matrices. The zero matrix is denoted by O.

Proposition 1. Let P1 = P (A1, L1, a1) and P2 = P (A2, L2, a2) be two non-
empty sops in K

d. Then the following equations hold:

conv(P1 ∪P2) = P

((
A1

O

)
,

(
A1 L1 O a1
−A2 O L2 −a2

)
,

(
a1
0

))
,

if P1 and P2 are complete;

P1 +P2 = P

((
A1

O

)
,

(
A1 L1 O
−A2 O L2

)
,

(
a1
a2

))
;

P1 ∩P2 = P

((
A1

A2

)
,

(
L1 O
O L2

)
,

(
a1
a2

))
.

Linear Mappings. Any linear mapping φ is uniquely determined by its trans-
formation matrix M ∈ K

n×m, i. e., φ(x) = Mx. We are interested in three
types of linear mappings, where the (n×n)-identity matrix is denoted by In: (i)
automorphisms, having invertible transformation matrices; (ii) orthogonal pro-
jections projk, for 0 ≤ k ≤ d, having (k × d)-matrices of the form (Ik O); and
(iii) elementary embeddings embedl, for l ≥ d, having (l × d)-matrices of the
form

(
Id
O

)
.

1 One can show that any sop P which represents a fully dimensional polytope in K
d

with d ≥ 1 is complete. For a geometric interpretation of completeness, see [17].

410 W. Hagemann

Proposition 2. Every transformation matrix M can be written as the product
M = S−1EPT−1, where S and T are invertible, E is the matrix of an elementary
embedding, and P is the matrix of an orthogonal projection.

Proposition 3. Let P1 = P (A1, L1, a1) be a sop in K
d, S an invertible (d×d)-

transformation matrix of the linear mapping φ, projk an orthogonal projection
with 0 ≤ k ≤ d, and embedl an elementary embedding with l ≥ d. Then

φ(P1) = P
(
A1S

−1, L1, a1
)
,

embedl(P1) = P

⎛

⎝

⎛

⎝
A1 O
O Il−d

O −Il−d

⎞

⎠,

⎛

⎝
L1

O
O

⎞

⎠,

⎛

⎝
a1
0
0

⎞

⎠

⎞

⎠ ,

projk(P1) = P (A,L, a1) ,

where
(
A L

)
=

(
A1 L1

)
and A has k columns.

Problem of Set Entailment. We should address an open issue: Up to now,
there is – to the author’s best knowledge – no efficient method to decide sub-
set relations for polyhedra represented as support functions or sops, and it is
questionable whether such efficient methods exists.

Overview. The adjacent table provides an overview on the hardness of perform-
ing linear transformations, Minkowski sums, closed convex hulls, intersections,

Representation M(·) ·+ · conv · ∩ · · ⊆ ·
(· ∪ ·)

V-representation � � � − �
H-representation �a − − � �
support function �b � � − −
sop � � � � −
afor automorphism, bfor endomorphism

and deciding subset relations on
polyhedra in the respective rep-
resentation. The tick indicates
computability in (weakly) poly-
nomial time and a minus-sign
indicates that the enumeration
problem is either NP-hard or its
complexity is unknown, see [25].

3.1 Beyond Template Polyhedra

Sops profit from the underlying H-representation, i. e., we may solve linear pro-
grams to test for emptiness or to find relative interior points. Additionally, we
may switch from the primal system of linear inequalities to its dual. In this sec-
tion we shall make use of these techniques and present a method which allows
to find the facet-defining half-space of a sop P in some given direction. This
method is then extended to an interpolation method which improves existing
over-approximations. The needed geometrical concepts are shortly introduced in
the following. A comprehensive introduction can be found in [26]. For the theory
of linear programming, see [24].

Let P = P (A, a) be an H-polyhedron. The points of P are those vectors x
which satisfy the system Ax ≤ a. A point x ofP is an interior point if there exists

Reachability Analysis Using Symbolic Orthogonal Projections 411

a ball Bε = {x | |x| ≤ ε} with ε > 0 such that x+Bε ⊆ P. Only full-dimensional
polyhedra have interior points. However, any polyhedron P = P (A, a) is full-
dimensional relatively to its affine hull aff(P). Hence, we call a point x of P a
relative interior point relatively to aff(P) if there exists a ball Bε with ε > 0 such
that (x + Bε) ∩ aff(P) ⊆ P. A facet-defining half-space H of P is a half-space
H =

{
x
∣
∣nTx ≤ b

}
, P ⊆ H, such that P ∩ {

x
∣
∣nTx = b

}
has a relative interior

point relatively to aff(P) ∩ {
x
∣
∣nTx = b

}
.

The topological concept of a relative interior point can equivalently be defined
on the system Ax ≤ a of the polyhedron P = P (A, a). Every solution x of the
system of strict linear inequalities Ax < a is an interior point of P. If nTx ≤ b
is an inequality of the system Ax ≤ a, and if all solutions x of the system
Ax ≤ a satisfy nTx = b, then nTx = b is called an implicit equality of the
system. For any set I of row indices of Ax ≤ a we denote the corresponding
subsystem by AIx ≤ aI . The linear equalities representing the affine hull are
linear combinations of the implicit equalities of the system Ax ≤ a and vice
versa. Let I be the set of indices of the implicit equalities in Ax ≤ a and S
be the set of the remaining indices. Each solution x of the system AIx = aI ,
ASx < aS is a relative interior point of P.

Relative interior points and implicit equalities can be found by means of linear
programming: The optimal solution (x0, λ0) of the linear program “maximize λ
subject to AIx = aI , AS + 1λ ≤ aS , 0 ≤ λ ≤ 1” determines a relative interior
point x0 if λ0 > 0. For λ0 = 0 one obtains sufficient hints to find further implicit
equalities, see [14]. Let I be the set of indices of all implicit equalities of P and S
the set of the remaining indices. The facet-defining inequalities of P are exactly
those inequalities whose index j is in S and the linear program “maximize λ
subject to AI∪{j}x = aI∪{j}, AS\{j + 1λ ≤ aS\{j}, 0 ≤ λ ≤ 1” has a positive
optimal solution. The corresponding half-spaces to a facet-defining inequality
are also facet-defining.

The orthogonal projection of a relative interior point is a relative interior
point of the projected set. Let P = P (A,L, a) ⊆ K

d be a sop, z be a relative
interior point of P ((A L), a), and zd the vector of the first d coefficients of z.
Then zd is a relative interior point of P and P′ = P (A,L, a− (A L)z) is a sop
representing the translated polyhedron P′ = P − zd, which contains the origin
0 as a relative interior point.

Proposition 4 (Ray Shooting). Let P = P (A,L, a) be a nonempty and com-
plete sop in K

d which contains the origin 0 as a relative interior point. Then the
following linear program is feasible for any vector r ∈ K

d:

maximize rTATu subject to LTu = 0, aTu = 1, u ≥ 0,

and exactly one of the following statements holds:

1. The linear program is unbounded and r is not in aff(P).
2. The optimal value equals zero and P is unbounded in direction r.
3. The optimal value rTATu0 is positive and P is bounded in direction r. Let

λ = 1
rTATu0

, n = ATu0, and H = H(n, 1) be a half-space. Then λr is a
boundary point of P and H is a supporting half-space of P in λr.

412 W. Hagemann

Hence, for any given ray r we find the maximal length λ = 1
rTATu0

such that λr
is on the boundary of P, and we obtain a supporting half-space of P in λr. If
λr is a relative interior point of a facet, – which is most likely the case if r was
chosen randomly – then ray shooting returns a facet-defining half-space.2

A sop P and an over-approximating template polyhedron P′ have, in general,
none or only a few facet-defining half-spaces in common. Hence, we may use
Proposition 4 to find facet-defining half-spaces of P and add them to P′ yielding
a better over-approximation P′′ of P. We call P′′ an interpolation of P and
P′. Throughout this paper we use the following simple interpolation strategy:
Initially, P′′ is set to the affine hull of P. For an arbitrary inequality of P′

we decide whether it is face-defining in P′ ∩ P′′. If not, it is removed from
P′. Otherwise, we choose r as a relative interior point of the defined facet,
and apply Proposition 4 on P and r. The resulting half-space is then added to
the representation of P′′. Now, we proceed with any inequality of P′ until all
inequalities of P′ are removed.

More sophisticated interpolations are possible but not investigated here.

4 Reachability Analysis Using Sops

In this section we first give a short outline of the reachability analysis for linear
hybrid systems. Then we discuss the usage of sops as a novel exact data struc-
ture for the reachability analysis. We will observe the monotonic growth of the
assembled sops. While the assembly can be done efficiently, any evaluation of the
assembled sops by means of linear programs gets increasingly harder. Finally, we
analyze why the LGG-algorithm is that much faster and show how to combine
both approaches to obtain a fast and improved reachability algorithm.

Hybrid Systems. A hybrid system H = (Var,Mod, Init,LDE, Inv,Trans) en-
codes the nondeterministic evolution of some initial states over time. A state
of the hybrid system is uniquely determined by the pair (x,m) of a real-valued
vector x ∈ R

d and a mode m of the finite set Mod of modes. A symbolic state is
a pair (P,m) of a polyhedron P ⊆ R

d and a mode m ∈ Mod. Each dimension of
R

d is associated with a variable in Var. Init is a designated set of initial states.
Each mode m is associated with a linear differential equation in LDE of the
form ẋ(t) = Ax(t) + u(t) describing the time derivative of the evolution of the
continuous variables Var during the mode m. Here, A is a real-valued (d × d)-
matrix, and u(t) ∈ U ⊆ R

d is given as a bounded polyhedron which models the
set of disturbances or admissible inputs of the continuous flow. The system may
only remain in a mode m as long as the state (x,m) is inside the associated

2 In any case, it is possible to test whether the resulting half-space H is face-defining:
Let d be the dimension of the affine hull of the sop P and H= be the bounding
hyperplane of H. Then H is a facet-defining half-space if and only if aff(P ∩ H=)
has the dimension d− 1. In practice, one has to solve several linear programs which
makes this test costly.

Reachability Analysis Using Symbolic Orthogonal Projections 413

invariant (I,m) ∈ Inv, i. e., x is in the polyhedron I ⊆ R
d. Further, for each

mode m there is a finite number of associated discrete transitions. A discrete
transition (G,m,Asgn,m′) ∈ Trans is enabled if the state (x,m) satisfies the
guard (G,m), i. e., x is in the polyhedron G ⊆ R

d. If a transition is enabled,
the state (x,m) may jump to (x′,m′), where x′ is in the image of x under the
affine transformation Asgn.

For safety checks, we additionally use specialized transitions (U,m, ∅, ∅). Here,
(U,m) represents designated states for which we want to decide whether the
system can reach these states. As soon as such a reachability is established we
may stop the reachability analysis and return an appropriate message.

Reachability Analysis of Linear Hybrid Systems. As in [13], we define the
discrete post-operator postd(P,m) as the set of states which are reachable by
a discrete transition of (P,m) and the continuous post-operator postc(P,m) as
the set of states which are reachable from (P,m) by letting an arbitrary amount
of time elapse. The set R of reachable states is then the fix-point of the sequence

R0 = postc(Init), Rk+1 = Rk ∪postc(postd(Rk)).

The fix-point computation needs an efficient method to decide set entailment.
We already mentioned that for support functions and sops we do not have such
an efficient method at hand. While this deficiency might be compensated by
using template polyhedra, we restrict this paper to bounded model checking,
i. e., we do not compute the actual fix-point, but compute a restricted sequence
until a given time bound is exceeded.

The discrete post-operator simply comprises the individual application of the
affine transformations to the symbolic states and can be done efficiently using
sops. Hence, we dedicate our attention to the continuous post-operator.

Reachability Analysis of Linear Systems. For each symbolic state (X0,m),
the continuous post-operator boils down to a reachability analysis of a single
linear system, as it can be found in [13,20]: Given some initial state set X0 ⊆ R

d,
we want to compute all reachable statesR[0,t] within the time interval [0, t] under
the linear differential equation

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0, u(t) ∈ U.

The computation of the reachable set R[0,t](X0) is done by a step-wise compu-
tation of flow segments R[kδ,(k+1)δ](X0) over a time interval of length δ:

R[0,t](X0) =
⋃

k=0,...,N

R[kδ,(k+1)δ](X0).

The computation is based on two important ingredients:

– the initial segment R[0,δ](X0) and a set which collects the influence of the
bounded inputs Rδ({0}) := R[δ,δ]({0});

– the exact recurrence relation for k > 0

414 W. Hagemann

R[kδ,(k+1)δ](X0) = eδAR[(k−1)δ,kδ](X0) +Rδ({0}). (1)

In general, the sets in the first item are not convex. Hence, one has to compute
convex over-approximations of these sets, which is called the initial bloating pro-
cedure. The recurrence relation (1) is then applied to the bloated sets resulting
in an over-approximation of the reachable sets.

Initial Bloating. In this section we discuss how to compute convex over-
approximations R0 of R[0,δ](X0) and V of Rδ({0}). There are several ways
to compute such over-approximations, varying from conservative over-approxi-
mation [15] to an accurate bloating of the convex hull clconv(X0 ∪ eδA(X0)) [8].
The novel method given below is inspired by the method proposed by Le Guernic
[20], which has been slightly improved and implemented in SpaceEx [13]. Any-
how, we cannot apply that bloating method directly, since we are dealing with
polyhedral sets only, while the method of Le Guernic involves piecewise quadratic
functions to describe the support function of the bloated sets. Although we made
no effort to give an precise comparison of both bloating methods, we expect the
support functions based method to provide better results in general. However,
since sops also have support functions, the following bloating procedure can also
be applied to reachability analysis using support functions. A detailed compari-
son of both bloating methods is considered as future work.

We use the superposition principle to decompose R[0,δ](X0) into the sum

R[0,δ](X0) =
⋃

t∈[0,δ]

etA(X0) +
⋃

t∈[0,δ]

Rt({0}).

The first summand
⋃

t∈[0,δ] e
tA(X0) is exactly the set of reachable states of the

related autonomous system ẋ = Ax within the time interval [0, δ] and the latter
summandR[0,δ]({0}) =

⋃
t∈[0,δ] Rt({0}) accounts for the accumulated influences

of all admissible inputs. We over-approximate both summands separately and
add them afterwards to obtain an over-approximation of the reachable states of
the nonautonomous system.

For the following let �(X) be the symmetric interval hull ofX, that is, �(X) =
[−z1, z1]×· · ·× [−zd, zd] where zi = max

(∣∣infx∈X eTi x
∣
∣ ,
∣
∣supx∈X eTi x

∣
∣). Further,

let |x| and |A| be the vector and the matrix where all coefficients are replaced by
their absolute values. Hence, for any vector x and any setX we have x ≤ |x| and,
if x ∈ X, then |x| ∈ �(X). We define the abbreviation �eδAX� = �

(
eδ|A|(�(X))

)

and obtain the following over-approximation of etA(X0).

Lemma 1. For all t ∈ [0, δ] the set inclusion etA(X) ⊆ �eδAX� holds.

The next lemma is based on a Taylor approximation of mth order and an
over-approximation of the Lagrange form of the remainder involving Lemma 1.

Reachability Analysis Using Symbolic Orthogonal Projections 415

Lemma 2. For any nonnegative integer m and any t ∈ [0, δ] the following set
inclusions hold

etA(X0) ⊆
m∑

k=0

tk

k!
Ak(X0) +

tm+1

(m+ 1)!
Am+1(�eδAX0�),

Rt({0}) ⊆
m∑

k=0

tk+1

(k + 1)!
Ak(U) +

tm+2

(m+ 2)!
A(m+1)(�eδAU�). (2)

For t = δ, (2) already provides an over-approximation of Rδ({0}). We choose
m = 0 and obtain the first-order approximation

V = δAk(U) +
t2

2
A(�eδAU�) ⊇ Rδ({0}).

We use the fact, that for any x, k ≥ 0, and t ∈ [0, δ] the term tk

k!A
kx can be

written as the convex combination (1− λ)0+ λ δk

k!A
kx with λ = tk

δk , and hence,
as stipulated, 0 ≤ λ ≤ 1. We introduce the notion �(X) = clconv({0} ∪X) and
obtain a first-order approximations of

⋃
t∈[0,δ] e

tA(X0) and
⋃

t∈[0,δ]Rt({0}).
Lemma 3. The following set inclusions hold

⋃

t∈[0,δ]

etA(X0) ⊆ X0 +�(δA(X0)) + �
(
δ2

2
A2(�eδAX0�)

)
,

⋃

t∈[0,δ]

Rt({0}) ⊆ �(δU) +�
(
δ2

2
A(�eδAU�)

)
.

The first inclusion in Lemma 3 provides an over-approximation of the reachable
states in forward direction. We may also compute an over-approximation in
backward direction starting from eδA(X0). Finally we obtain the proposition:

Proposition 5 (Over-Approximation of R[0,δ](X0)). Let X1 = eδA(X0).
Then the following set inclusion holds:

R[0,δ](X0) ⊆
(
X0 +�(δA(X0)) +�

(
δ2

2
A2(�eδA(X0)�)

))

∩
(
X1 +�(−δA(X1)) +�

(
δ2

2
(−A)2(�e−δA(X1)�)

))

+�(δU) +�
(
δ2

2
A(�eδA(U)�)

)
= R0.

4.1 A Reachability Algorithm for Linear Systems with Invariants

We compute the reachable states of a linear system according to Algorithm 1
[20,21]. The inputs of the algorithm are the first flow segment R0, the set V –
both obtained by the initial bloating procedure –, the invariant I, and the set

416 W. Hagemann

Algorithm 1. Reachability Algorithm for a Linear System (SOP)

Input: the matrix A of the linear differential equation, an invariant I, the set G of
guards, an over-approximation R0 ⊆ I of R[0,δ](X0), an over-approximation V of
Rδ({0}), and an integer N =

⌊
t
δ

⌋
.

Output: A collection of the intersections of R[0,t](X0) and the guards in G.
1. for k ← 0, . . . , N do
2. if Rk = ∅ then break;
3. for each guard Gj ∈ G do
4. if Rk ∩Gj �= ∅ then collect the intersection Rk ∩Gj ;
5. end for;
6. Rk+1 ← (eδARk +V) ∩ I;
7. end for;
8. return collected intersections with the guards;

G = {G1, . . . ,Gg} of guards. The computation of the next flow segment in Line 6
is based on (1). Additionally, this computation fully respects the influences of the
invariant. Hence, the sequence (Rk) of flow segments computed by the algorithm
is exact provided R0, V, and eδA are exact. In Lines 3-5 the intersections of the
current flow segment with the guards are computed and collected. Yet, we did
not specify how the actual collection is performed. There are several possibilities
varying from returning each single intersection, which potentially leads to a
multiplication of the symbolic state sets, to returning the convex hull of all
intersections. We implemented a collection strategy where an individual convex
hull is assembled of all intersections for each guard traversal.

The following observations were made on a implementation of Algorithm 1.

1. The algorithm provides a new degree of exactness. The only theoretical
source of inexactness are the computation of the matrix exponential eδA,
the over-approximations due to the initial bloating procedure, and the over-
approximations in the collection step (Line 4). In practice, we also have to
care for numerical issues due to the usage of floats.

2. The main drawback of a pure sop-based approach is the monotonic growth
of the representation matrices of the involved sops. While the assembly of
huge sops (Line 6) can be done efficiently, the evaluation of such sops gets
increasingly harder. Based on our experiences we assess the following parts
of the reachability analysis in order of increasing influence on the growth of
the sops:
(a) The initial bloating procedure has the mildest influence on the growth,

since it is only applied once for each symbolic state.
(b) The intersection with the invariant can be efficiently combined with a

redundancy removal to avoid unneeded growth.
(c) While the implemented collection strategy keeps the number of symbolic

states small, the representation matrices of such collections can be quite
large. The size is highly dependent on the time step parameter δ.

(d) The Minkowski sum in Line 6 has the highest influence: A nonempty set
V leads to a linear growth of the representation matrices.

Reachability Analysis Using Symbolic Orthogonal Projections 417

4.2 Le Guernic and Girard’s Reachability Algorithm

Compared in run-time, our prototype of Algorithm 1 is clearly behind the reach-
ability algorithm of Le Guernic and Girard [21]. Algorithm 2 restates their algo-
rithm in our context. The algorithm is based on a clever combination of support
functions and template polyhedra and profits from the weaker handling of the
invariant. In fact, the influence of the invariant only accounts for the current
flow segment and is not carried over to the next flow segment. This leads to an
efficient computation of the next flow segment in Lines 7–9, where the invari-
ant is completely ignored. The influences of the bounded input are accumulated
in the sequence (sk), and, instead of updating the state set R0, only an up-
dated template matrix Tk+1 is computed; based on the fact that the optimal
values of the two linear programs “maximize nTx subject to x ∈ ekδA(R0)”
and “maximize (nT ekδA)x subject to x ∈ R0” agree. In every step the com-
putation of the template polyhedra P(T0,bk+1), which over-approximate the
flow segments Rk+1, can be done in constant time3. The quality of the over-
approximation highly depends on the template matrix T0. In order to improve
the handling of the invariant, the facet normals of the invariant should be added
to the template directions [13].

Algorithm 2. Reachability Algorithm for a Linear System (LGG)

Input: A, I , G, R0, V, N as specified in Algorithm 1 and an additional template
polyhedron P(T0,b0) over-approximating R0.

Output: A collection of the intersections of R[0,t](X0) and the guards in G.
1. s0 ← 0;
2. for k ← 0, . . . , N do
3. if P(T0,bk) ∩ I = ∅ then break;
4. for each guard Gj ∈ G do
5. if P(T0,bk) ∩ I ∩Gj �= ∅ then collect the intersection P(T0,bk) ∩ I ∩Gj ;
6. end for;
7. sk+1 ← sk + hV(Tk);
8. Tk+1 ← Tke

δA;
9. bk ← hR0(Tk+1) + sk+1;
10. end for;
11. return collected intersections with the guards;

Combining Algorithm 1 and Algorithm 2. Algorithm 3 is a combination of
Algorithm 1 and Algorithm 2. While it preserves the exactness of the sop-based
algorithm, all involved linear programs have a constant number of variables and
constraints (Lines 3, 5, and 12). Also the assembly of the sop in Line 10 and

3 This is more a practical observation than a theoretical result. Although there exists
an algorithm which solves rational linear programs of fixed dimension and m con-
straints in O(m) elementary arithmetic operations on numbers of polynomial size,
the complexity of linear programs is usually given by a polynomial bound which also
depends on the maximum bit size of the coefficients [24].

418 W. Hagemann

−5.2 −5 −4.8 −4.6 −4.4 −4.2 −4

4.3

4.4

4.5

4.6

4.7

4.8

4.9

v

t
This figure shows the first intersection
of a bouncing ball with the guard (the
floor). For the model description see Sect.
5. We used the time step δ = 0.02. The
outer slices show the intersections com-
puted by Algorithm 2 using a rectangular
template matrix. Each inner slice shows a
tight rectangular over-approximation of
the sops computed by Algorithm 1. Their

representation matrices reach a size of about 3500 rows and 2000 columns with 9000
nonzero coefficients. The convex hull of all intersections has a size of 82652 rows, 46999
columns and 283006 nonzero coefficients.

Fig. 1. Comparison of Algorithm 1 and 2

Line 12 can be done in constant time. Lines 10–13 are an equivalent replacement
for the assignment Rk+1 ← (eδARk + V) ∩ I with an additional redundancy
removal, see also Item 2b in Sect. 4.1.

Algorithm 3. Reachability Algorithm for a Linear System (SOP + LGG)

Input: A, I , G, R0, V, N as specified in Algorithm 1 and an additional template
polyhedron P(T0,b0) over-approximating R0.

Output: A collection of the intersections of R[0,t](X0) and the guards in G.
1. s0 ← 0;
2. for k ← 0, . . . , N do
3. if P(T0,bk) ∩ I = ∅ then break;
4. for each guard Gj ∈ G do
5. if P(T0,bk) ∩ I ∩Gj �= ∅ then collect the intersection Rk ∩Gj ;
6. end for;
7. sk+1 ← sk + hV(Tk);
8. Tk+1 ← Tke

δA;
9. bk+1 ← hR0(Tk+1) + sk+1;
10. Rk+1 ← eδARk +V;
11. for each constraint ci of I do
12. if ci is not redundant in P(T0,bk+1) then Rk+1 ← Rk+1 ∩ ci;
13. end for;
14. end for;
15. return collected intersections with the guards;

Fighting the Monotonic Growth by Interpolation. In practice, the step
computation of Algorithm 3 is done in constant time. But the size of the sops still
grows monotonically. While this growth can still be handled during the collection
and the discrete updates, latest in the next continuous iteration, when the dis-
crete post-image of a symbolic state is passed to Algorithm 3 again, the enormous
size of the sop has an effect: All involved linear programs of Algorithm 3 have

Reachability Analysis Using Symbolic Orthogonal Projections 419

to be solved over systems of linear inequalities of enormous size.4 To overcome
this problem, we use the ray shooting based interpolation as described in Sect.
3.1. In every step, we have two representations of the current flow segment: the
template polyhedron P(T0,bk) ∩ I and the set Rk represented by a sop. Hence,
we compute an interpolating H-polyhedron Q with Rk ⊆ Q ⊆ P(T0,bk) ∩ I.
This interpolating polyhedron is a tight over-approximation of Rk and is at
least as good as the template polyhedron computed by the LGG-algorithm 2.
Then we replace Rk by the interpolating polyhedron and still achieve results
which are at least as good as the results we would achieve by the pure LGG-
algorithm. In our prototype the interpolation and replacement of Rk is applied
after interpolate after step computations. The interpolation can be disabled
by setting interpolate after = 0.

We use a similar strategy to confine the growth of the collected intersections.
Instead of building the convex hull of an arbitrary sequence, we apply the convex
hull and the template hull on at most max conv hull consecutive elements of
the sequence. Then we compute the interpolation between the template hull and
the convex hull. The resulting interpolations form a new sequence for which we
proceed as before. We iterate this process until only one element remains. Again,
this interpolation strategy can be disabled. The resulting set is at least as good
as the result one would achieve with template polyhedra only.

5 Experimental Results

We compare our prototypical implementations of Algorithm 3 and Algorithm
2 against the productive implementation of the LGG-algorithm in SpaceEx,
where we used the SpaceEx Virtual Machine Server v0.9.8b for the compar-
ison. The prototype, called SoapBox, is implemented in Matlab and uses
Gurobi Optimizer 5.65 for the linear programming tasks. Furthermore, it has
successfully been applied in a case study [10,11].

Bouncing Ball. For our benchmarks we have chosen a simple model of a bounc-
ing ball. The dynamics of the model are given by ẋ = v, v̇ = −1 ± 0.05, and
ṫ = 1. The ball bounces as soon as it reaches the floor which is modeled by the
invariant x ≥ 0 and the transition v ← − 3

4v, guarded by x ≤ 0 and v ≤ 0. The
initial states are given by the interval hull of 10 ≤ x ≤ 10.2, 0 ≤ v ≤ 0.2, and
t = 0.

Table 1 shows the run-times in seconds for different time steps δ and dif-
ferent numbers of iterations. Throughout all computations we used a rectan-
gular template matrix, and the sop-specific configuration parameters were set
as follows: interpolate after = 20 and max conv hull = 4. Clearly, a C++-
implementation of the LGG-algorithm, as it can be found in SpaceEx, outper-
forms our Matlab-implementation. The run-times of our LGG-algorithm and

4 Actually, the enormous size of the sops already effects the initial bloating procedure.
5 http://www.gurobi.com

420 W. Hagemann

Table 1. Run-Time Comparison of Algorithm 3, Algorithm 2, and SpaceEx (SPX)

It: 4 5 6

δ Alg. 3 Alg. 2 SPX Alg. 3 Alg. 2 SPX Alg. 3 Alg. 2 SPX

0.08 21.16 15.87 1.88 27.25 29.32 3.90 31.55 56.47 5.78
0.04 46.08 29.74 4.33 58.59 56.92 8.28 68.48 106.69 11.51
0.02 89.24 58.45 7.65 116.59 109.69 14.33 137.16 209.93 25.69
0.01 178.85 114.91 17.03 227.56 218.89 28.88 270.91 424.64 48.47

SpaceEx differ by a factor of 6.9 to 9.8. We have to bear in mind that SpaceEx
additionally performs fix-point checks. Anyhow, the comparison with SpaceEx
might give a hint what speed-up could be expected for a C++-implementation of
our algorithms. We also should note that SpaceEx uses nonpolyhedral bloating.

More significant is a comparison of our prototypes of the LGG-algorithm
2 and the combined Algorithm 3, since they are embedded in the same over-
all reachability algorithm. For an increasing number of iterations, we observe
that Algorithm 3 outperforms Algorithm 2 despite the computational overhead.
Figure 2 shows the reachable positions x over the time t for 6 iterations. The
left hand side diagram shows the reachable states computed by Algorithm 3
and the right hand side diagram shows the reachable states computed by the
LGG-algorithm6. The reachable states computed by Algorithm 3 lie within the
time interval [0, 35], while the reachable states computed by the LGG-algorithm
extend to nearly t ∈ [0, 90] due to the poor handling of intersections and in-
variants. Hence, the LGG-algorithm has to perform much more flow-segment
computations.

0 5 10 15 20 25 30
0

2

4

6

8

10

t

x

Fig. 2. Comparison of Algorithm 3 and SpaceEx

Approach Velocity Controller. In Fig. 3 we compare the reachable states
computed by Algorithm 3 on the left and SpaceEx on the right. We used a rect-
angular template matrix and the parameters δ = 0.5 and interpolate after =

6 The figure actually show the SpaceEx output. The output of Algorithm 2 looks
quite the same, but we think it is more impressive to compare with SpaceEx here.

Reachability Analysis Using Symbolic Orthogonal Projections 421

40. The underlying model is a single mode approach velocity controller (AVC).
The AVC controls the velocity v of a following car in order to establish the
desired distance ddes to the leading car which has the velocity va. The current
distance of the cars can be read off the variable d. The dynamics are

ḋ = va − v, v̇ = 0.29(va − v) + 0.01(d− ddes), ṫ = 1,

−0.5 ≤ v̇a ≤ 0.5, 0 ≤ va ≤ 20. (3)

The inequalities (3) restrict the allowed velocity of the leading car: While the
differential inclusion allows some restricted change of the velocity, the invariant
restricts the velocity to a bounded interval. Initially, both cars have a velocity of
20m

s and a distance of 450m. By the invariant, the leader is not allowed to drive
backward or exceed some maximal velocity. Clearly, one should expect that this
behavior carries over to the following car, i. e., that the velocity of the follower
is asymptotically bounded by some interval. A comparison of the right and the
left figure shows that SpaceEx (right) is not able to establish any bound on the
velocity of the follower while Algorithm 3 (left) shows the desired behavior.

0 20 40 60 80 100 120
−60

−40

−20

0

20

40

60

80

100

t

v

Fig. 3. Comparison of Algorithm 3 and SpaceEx

6 Conclusion

We introduced a novel representation class for polyhedra, the symbolic orthogo-
nal projections (sops). Various geometric operations can efficiently be performed
on this representation class. Together with linear programming, sops can be used
to implement an reachability algorithm where all polyhedral operations are done
exactly (Algorithm 1). Due to the monotonic growth of the representation size,
this algorithm is not suitable for practical applications. After combining Algo-
rithm 1 with the LGG-algorithm we achieve an efficient reachability algorithm
(Algorithm 3). The applicability, accuracy, and efficiency of the resulting algo-
rithm is demonstrated on some simple examples.

422 W. Hagemann

Acknowledgements. I would like to thank Uwe Waldmann for the useful dis-
cussion on this paper. Also, I am thankful for the anonymous reviewers for their
constructive comments.

References

1. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reacha-
bility analysis of hybrid systems. In: Proceedings of the 15th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC 2012, pp. 45–54.
ACM, New York (2012)

2. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using
conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 20–35. Springer, Heidelberg (2003)

3. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Informatica 43(7), 451–476 (2007)

4. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

5. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and
computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 46–60. Springer, Heidelberg (1999)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

7. Chutinan, A., Krogh, B.: Computational techniques for hybrid system verification.
IEEE Transactions on Automatic Control 48(1), 64–75 (2003)

8. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes
for dynamic systems. In: Proceedings of the 37th IEEE Conference on Decision
and Control, 1998, vol. 2, pp. 2089–2094 (December 1998)

9. Damm, W., Dierks, H., Disch, S., Hagemann, W., Pigorsch, F., Scholl, C., Wald-
mann, U., Wirtz, B.: Exact and fully symbolic verification of linear hybrid au-
tomata with large discrete state spaces. Science of Computer Programming 77(10-
11), 1122–1150 (2012), aVoCS 2009

10. Damm, W., Hagemann, W., Möhlmann, E., Rakow, A.: Component based design of
hybrid systems: A case study on concurrency and coupling. Reports of SFB/TR 14
AVACS 95, SFB/TR 14 AVACS (2014), http://www.avacs.org, ISSN: 1860-9821

11. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid sys-
tems: A case study on concurrency and coupling. In: Proceedings of the 17th In-
ternational Conference on Hybrid Systems: Computation and Control, HSCC 2014,
pp. 145–150. ACM, New York (2014)

12. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems.
In: Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2010, pp. 11–20. ACM, New York (2010)

13. Frehse, G., et al.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011)

14. Fukuda, K.: Lecture: Polyhedral computation, spring 2011 (2011),
http://stat.ethz.ch/ifor/teaching/

lectures/poly comp ss11/lecture notes

http://www.avacs.org
http://stat.ethz.ch/ifor/teaching/lectures/poly_comp_ss11/lecture_notes
http://stat.ethz.ch/ifor/teaching/lectures/poly_comp_ss11/lecture_notes

Reachability Analysis Using Symbolic Orthogonal Projections 423

15. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

16. Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS,
vol. 4981, pp. 215–228. Springer, Heidelberg (2008)

17. Hagemann, W.: Reachability analysis of hybrid systems using symbolic orthogo-
nal projections. Reports of SFB/TR 14 AVACS 98, SFB/TR 14 AVACS (2014),
http://www.avacs.org, ISSN: 1860-9821

18. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: Amodel checker for hybrid sys-
tems. International Journal on Software Tools for Technology Transfer 1(1-2),
110–122 (1997)

19. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214.
Springer, Heidelberg (2000)

20. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous
dynamics. Ph.D. thesis, Université Grenoble 1 - Joseph Fourier (2009)

21. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using sup-
port functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 540–554. Springer, Heidelberg (2009)

22. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow com-
putations. In: Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control, HSCC 2011, pp. 133–142. ACM, New York (2011)

23. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hy-
brid systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008)

24. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester (1986)

25. Tiwary, H.R.: On the hardness of computing intersection, union and Minkowski
sum of polytopes. Discrete & Computational Geometry 40(3), 469–479 (2008)

26. Ziegler, G.M.: Lectures on polytopes, vol. 152. Springer (1995)

http://www.avacs.org

	Reachability Analysis of Hybrid Systems
Using Symbolic Orthogonal Projections
	1 Introduction
	2 Template Polyhedra and Support Functions
	3 Symbolic Orthogonal Projections
	3.1 Beyond Template Polyhedra

	4 Reachability Analysis Using Sops
	4.1 A Reachability Algorithm for Linear Systems with Invariants
	4.2 Le Guernic and Girard’s Reachability Algorithm

	5 Experimental Results
	6 Conclusion
	References

