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Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
time properties. In the automata-theoretic approach to LTL verification, formu-
lae are translated into ω-automata, and the product of these automata with the
system is analyzed. Therefore, generating small ω-automata is crucial for the
efficiency of the approach.

In quantitative probabilistic verification, LTL formulae need to be translated
into deterministic ω-automata [BK08, CGK13]. Until recently, this required to
proceed in two steps: first translate the formula into a non-deterministic Büchi
automaton (NBA), and then apply Safra’s construction [Saf88], or improve-
ments on it [Pit06, Sch09] to transform the NBA into a deterministic automaton
(usually a Rabin automaton, or DRA). This is also the approach adopted in
PRISM [KNP11], a leading probabilistic model checker, which reimplements the
optimized Safra’s construction of ltl2dstar [Kle].

In [KE12] we presented an algorithm that directly constructs a generalized
DRA (GDRA) for the fragment of LTL containing only the temporal operators
F and G. The GDRA can be either (1) degeneralized into a standard DRA, or
(2) used directly in the probabilistic verification process [CGK13]. In both cases
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we get much smaller automata for many formulae. For instance, the standard
approach translates a conjunction of three fairness constraints into an automaton
with over a million states, while the algorithm of [KE12] yields a GDRA with
one single state (when acceptance is defined on transitions), and a DRA with
462 states. In [GKE12, KLG13] our approach was extended to larger fragments
of LTL containing the X operator and restricted appearances ofU, but a general
algorithm remained elusive.

In this paper we present a novel approach able to handle full LTL, and even
the alternation-free linear-time μ-calculus. The approach is compositional: the
automaton is obtained as a parallel composition of automata for different parts of
the formula, running in lockstep1. More specifically, the automaton is the parallel
composition of a master automaton and an array of slave automata, one for each
G-subformula of the original formula, say ϕ. Intuitively, the master monitors the
formula that remains to be fulfilled (for example, if ϕ = (¬a∧Xa)∨XXGa, then
the remaining formula after ∅{a} is tt, and after {a} it is XGa), and takes care
of checking safety and reachability properties. The slave for a subformula Gψ of
ϕ checks whether Gψ eventually holds, i.e., whether FGψ holds. It also monitors
the formula that remains to be fulfilled, but only partially: more precisely, it does
not monitor any G-subformula of ψ, as other slaves are responsible for them. For
instance, if ψ = a∧Gb∧Gc, then the slave for Gψ only checks that eventually a
always holds, and “delegates” checking FGb and FGc to other slaves. Further,
and crucially, the slave may provide the information that not only FGψ, but a
stronger formula holds; the master needs this to decide that, for instance, not
only FGϕ but even XGϕ holds.

The acceptance condition of the parallel composition of master and slaves is a
disjunction over all possible subsets of G-subformulas, and all possible stronger
formulas the slaves can check. The parallel composition accepts a word with the
disjunct corresponding to the subset of formulas which hold in it.

The paper is organized incrementally. In Section 3 we show how to construct
a DRA for a formula FGϕ, where ϕ has no occurrence of G. This gives the DRA
for a bottom-level slave. Section 4 constructs a DRA for an arbitrary formula
FGϕ, which gives the DRA for a general slave, in charge of a formula that
possible has G-subformulas. Finally, Section 5 constructs a DRA for arbitrary
formulas by introducing the master and its parallel composition with the slaves.
Full proofs can be found in [EK14].

Related work. There are many constructions translating LTL to NBA, e.g.,
[Cou99, DGV99, EH00, SB00, GO01, GL02, Fri03, BKRS12, DL13]. The one rec-
ommended by ltl2dstar and used in PRISM is LTL2BA [GO01]. Safra’s construc-
tion with optimizations described in [KB07] has been implemented in ltl2dstar
[Kle], and reimplemenetd in PRISM [KNP11]. A comparison of LTL translators
into deterministic ω-automata can be found in [BKS13].

1 We could also speak of a product of automata, but the operational view behind the
term parallel composition helps to convey the intuition.
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2 Linear Temporal Logic

In this paper, N denotes the set of natural numbers including zero. “For almost
every i ∈ N” means for all but finitely many i ∈ N.

This section recalls the notion of linear temporal logic (LTL). We consider the
negation normal form and we have the future operator explicitly in the syntax:

Definition 1 (LTL Syntax). The formulae of the linear temporal logic (LTL)
are given by the following syntax:

ϕ ::=tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

over a finite fixed set Ap of atomic propositions.

Definition 2 (Words and LTL Semantics). Let w ∈ (2Ap)ω be a word. The
ith letter of w is denoted w[i], i.e. w = w[0]w[1] · · · . We write wij for the finite
word w[i]w[i + 1] · · ·w[j], and wi∞ or just wi for the suffix w[i]w[i + 1] · · · .

The semantics of a formula on a word w is defined inductively as follows:

w |= tt
w �|= ff
w |= a ⇐⇒ a ∈ w[0]
w |= ¬a ⇐⇒ a /∈ w[0]
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ
w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Xϕ ⇐⇒ w1 |= ϕ
w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ
w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ
w |= ϕUψ ⇐⇒ ∃ k ∈ N : wk |= ψ and

∀ 0 ≤ j < k : wj |= ϕ

Definition 3 (Propositional implication). Given two formulae ϕ and ψ,
we say that ϕ propositionally implies ψ, denoted by ϕ |=p ψ, if we can prove
ϕ |= ψ using only the axioms of propositional logic. We say that ϕ and ψ are
propositionally equivalent, denoted by ϕ ≡p ψ, if ϕ and ψ propositionally imply
each other.

Remark 4. We consider formulae up to propositional equivalence, i.e., ϕ = ψ
means that ϕ and ψ are propositionally equivalent. Sometimes (when there is
risk of confusion) we explicitly write ≡p instead of =.

2.1 The Formula af (ϕ,w)

Given a formula ϕ and a finite word w, we define a formula af (ϕ,w), read “ϕ
after w”. Intuitively, it is the formula that any infinite continuation w′ must
satisfy for ww′ to satisfy ϕ.

Definition 5. Let ϕ be a formula and ν ∈ 2Ap. We define the formula af (ϕ, ν)
as follows:

af (tt, ν) = tt
af (ff , ν) = ff

af (a, ν) =

{
tt if a ∈ ν
ff if a /∈ ν

af (¬a, ν) = ¬af (a, ν)
af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)
af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ
af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ
af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ
af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)
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We extend the definition to finite words as follows: af (ϕ, ε) = ϕ and af (ϕ, νw) =
af (af (ϕ, ν), w). Finally, we define Reach(ϕ) = {af (ϕ,w) | w ∈ (2Ap)∗}.

Example 6. Let Ap = {a, b, c}, and consider the formula ϕ = a ∨ (b U c).
For example, we have af (ϕ, {a}) = tt af (ϕ, {b}) = (b U c), af (ϕ, {c}) = tt,
and af (ϕ, ∅) = ff . Reach(ϕ) = {ϕ, α ∧ ϕ, β ∨ ϕ, tt,ff}, and Reach(ϕ) = {a ∨
(b U c), (b U c), tt,ff}.

Lemma 7. Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word.
Then ww′ |= ϕ iff w′ |= af (ϕ,w).

Proof. Straightforward induction on the length of w. 
�

3 DRAs for Simple FG-Formulae

We start with formulae FGϕ where ϕ is G-free, i.e., contains no occurrence of
G. The main building block of our paper is a procedure to construct a DRA rec-
ognizing L(FGϕ). (Notice that even the formula FGa has no deterministic Büchi
automaton.) We proceed in two steps. First we introduce Mojmir automata and
construct a Mojmir automaton that clearly recognizes L(FGϕ). We then show
how to transform Mojmir automata into equivalent DRAs.

A Mojmir automaton2 is a deterministic automaton that, at each step, puts a
fresh token in the initial state, and moves all older tokens according to the tran-
sition function. The automaton accepts if all but finitely many tokens eventually
reach an accepting state.

Definition 8. A Mojmir automaton M over an alphabet Σ is a tuple (Q, i, δ, F ),
where Q is a set of states, i ∈ Q is the initial state, δ : Q×Σ → Q is a transition
function, and F ⊆ Q is a set of accepting states satisfying δ(F,Σ) ⊆ F , i.e.,
states reachable from final states are also final.

The run of M over a word w[0]w[1] · · · ∈ (2Ap)ω is the infinite sequence
(q00)(q

1
0 , q

1
1)(q

2
0 , q

2
1 , q

2
2) · · · such that

qsteptoken =

{
i if token = step,

δ(qstep−1
token , w[step − 1]) if token < step

A run is accepting if for almost every token ∈ N there exists step ≥ token such
that qsteptoken ∈ F .

Notice that if two tokens reach the same state at the same time point, then
from this moment on they “travel together”.

The Mojmir automaton for a formula ϕ has formulae as states. The automaton
is constructed so that, when running on a word w, the i-th token “tracks” the
formula that must hold for wi to satisfy ϕ. That is, after j steps the i-th token is
on the formula af (ϕ,wij). There is only one accepting state here, namely the one
propositionally equivalent to tt. Therefore, if the i-th token reaches an accepting
state, then wi satisfies ϕ.

2 Named in honour of Mojmı́r Křet́ınský, father of one of the authors.
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Definition 9. Let ϕ be a G-free formula. The Mojmir automaton for ϕ is
M(ϕ) = (Reach(ϕ), ϕ, af , {tt}).

Example 10. Figure 1 on the left shows the Mojmir automaton for the formula

ϕ = a ∨ (b U c). The notation for transitions is standard: q1
a+āc−→ q3 means that

there is a transitions from q1 to q3 for each subset of 2Ap that contains a, or
does not contain a and contains c.

q1 : a ∨ (bU c)

q2 : bU c

q3 : tt q4 : ff

ābc̄

a+ āc āb̄c̄
bc̄

c b̄c̄

true true

(1,⊥)

(2,1)

t1 : a+ āc
t2 : āb̄c̄

t3 : ābc̄

t6 : c
t7 : ab̄c̄
t8 : āb̄c̄

t4 : abc̄
t5 : ābc̄

Fig. 1. A Mojmir automaton for a ∨ (b U c) and its corresponding DRA

Since M(ϕ) accepts iff almost every token eventually reaches an accepting
state, M(ϕ) accepts a word w iff w |= FGϕ.

Lemma 11. Let ϕ be a G-free formula and let w be a word. Then w |= ϕ iff
af (ϕ,w0i) = tt for some i ∈ N.

Theorem 12. Let ϕ be a G-free formula. Then L(M(ϕ)) = L(FGϕ).

3.1 From Mojmir Automata to DRAs

Given a Mojmir automaton M = (Q, i, δ, F ) we construct an equivalent DRA.
We illustrate all steps on the Mojmir automaton on the left of Figure 1. It is
convenient to use shorthands qa to qe for state names as shown in the figure.

We label tokens with their dates of birth (token i is the token born at “day”
i). Initially there is only one token, token 0, placed on the initial state i. If, say,
δ(i, ν) = q, then after M reads ν token 0 moves to q, and token 1 appears on i.

A state of a Mojmir automaton is a sink if it is not the initial state and all its
outgoing transitions are self-loops. For instance, q3 and q4 are the sinks of the
automaton on the left of Figure 1. We define a configuration of M as a mapping
C : Q \ S → 2N, where S is the set of sinks and C(q) is the set of (dates of birth
of the) tokens that are currently at state q. Notice that we do not keep track of
tokens in sinks.

We extend the transition function to configurations: δ(C) is the configuration
obtained by moving all tokens ofC according to δ. Let us represent a configuration
C of our example by the vector (C(q1), C(q2)). For instance,we have δ(({1, 2}, {0}),
ābc̄)) = ({3}, {0, 1, 2}).We represent a run as an infinite sequence of configurations
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starting at ({0}, ∅). The run (q1) abc−→ (q3, q1)
ābc̄−→ (q3, q2, q1)

ābc̄−→ (q3, q2, q2, q1) · · ·
is represented by (0, ∅) abc−→ (1, ∅) ābc̄−→ (2, 1)

ābc̄−→ (3, {1, 2}) · · · where for readabil-
ity we identify the singleton {n} and the number n.

We now define a finite abstraction of configurations. A ranking ofQ is a partial
function r : Q → {1, . . . , |Q|} that assigns to some states q a rank and satisfies:
(1) the initial state is ranked (i.e., r(i) is defined) and all sinks are unranked;
(2) distinct ranked states have distinct ranks; and (3) if some state has rank j,
then some state has rank k for every 1 ≤ k ≤ j. For i < j, we say that i is
older than j. The abstraction of a configuration C is the ranking α[C] defined as
follows for every non-sink q. If C(q) = ∅, then q is unranked. If C(q) �= ∅, then
let xq = min{C(q)} be the oldest token in C(q). We call xq the senior token
of state q, and {xq ∈ N | q ∈ Q} the set of senior tokens. We define α[C](q)
as the seniority rank of xq: if xq is the oldest senior token, then α[C](q) = 1;
if it is the second oldest, then α[C](q) = 2, and so on. For instance, the senior
tokens of (2, {0, 1}, ∅) are 2 and 0, andso α(2, {0, 1}, ∅) = (2,1,⊥) (recall that
sinks are unranked). Notice that there are only finitely many rankings, and so
only finitely many abstract configurations.

The transition function δ can be lifted to a transition function δ′ on ab-
stract configurations by defining δ′(α[C], ν) = α[δ(C, ν)]. It is easy to see that
δ′(α[C], ν) can be computed directly from α[C] (even if C is not known). We
describe how, and at the same time illustrate by computing δ′((2,1), ābc̄) for
our running example.

(i) Move the senior tokens according to δ. (Tokens with ranks 1 and 2 move to
q2.)

(ii) If a state holds more than one token, keep only the most senior token. (Only
the token with rank 1 survives.)

(iii) Recompute the seniority ranks of the remaining tokens. (In this case unnec-
essary; if, for instance, the token of rank 3 survives and the token of rank
2 does not, then the token of rank 3 gets its rank upgraded to 2.)

(iv) If there is no token on the initial state, add one with the next lowest seniority
rank. (Add a token to q1 of rank 2.)

Example 13. Figure 1 shows on the right the transition system generated by the
function δ′ starting at the abstract configuration (1,⊥).

It is useful to think of tokens as companies that can buy other companies: at
step (2), the senior company buys all junior companies; they all get the rank
of the senior company, and from this moment on travel around the automaton
together with the senior company. So, at every moment in time, every token in a
non-sink state has a rank (the rank of its senior token). The rank of a token can
age as it moves along the run, for two different reasons: its senior token can be
bought by another senior token of an older rank, or all tokens of an older rank
reach a sink. However, ranks can never get younger.

Further, observe that in any run, the tokens that never reach any sink even-
tually get the oldest ranks, i.e., ranks 1 to i− 1 for some i ≥ 1. We call these



198 J. Esparza and J. Křet́ınský

tokens squatters. Each squatter either enters the set of accepting states (and
stays there by assumption on Mojmir automata) or never visits any accepting
state. Now, consider a run in which almost every token succeeds. Squatters that
never visit accepting states eventually stop buying other tokens, because oth-
erwise infinitely many tokens would travel with them, and thus infinitely many
tokens would never reach final states. So the run satisfies these conditions:

(1) Only finitely many tokens reach a non-accepting sink (“fail”).
(2) There is a rank i such that
(2.1) tokens of rank older than i buy other tokens in non-accepting states only

finitely often, and
(2.2) infinitely many tokens of rank i reach an accepting state (“succeed”).

Conversely, we prove that if infinitely many tokens never succeed, then (1) or (2)
does not hold. If infinitely many tokens fail, then (1) does not hold. If only finitely
many tokens fail, but infinitelymany tokens squat in non-accepting non-sinks, then
(2) does not hold. Indeed, since the number of states is finite, infinitelymany squat-
ters get bought in non-accepting states and, since ranks can only improve, their
ranks eventually stabilize. Let j− 1 be the youngest rank such that infinitelymany
tokens stabilize with that rank. Then the squatters are exactly the tokens of ranks
1, . . . , j− 1, and infinitely many tokens of rank j reach (accepting) sinks. But then
(2.2) is violated for every i< j, and (2.1) is violated for every i≥ j as, by the pigeon-
hole principle, there is a squatter (with rank older than j) residing in non-accepting
states and buying infintely many tokens.

So the runs in which almost every token succeeds are exactly those satisfy-
ing (1) and (2). We define a Rabin automaton having rankings as states, and
accepting exactly these runs. We use a Rabin condition with pairs of sets of tran-
sitions, instead of states.3 Let fail be the set of transitions that move a token
into a non-accepting sink. Further, for every rank j let succeed(j) be the set of
transitions that move a token of rank j into an accepting state, and buy(j) the
set of transitions that move a token of rank older than j and another token into
the same non-accepting state, causing one of the two to buy the other.

Definition 14. Let M = (Q, i, δ, F ) be a Mojmir automaton with a set S of

sinks. The deterministic Rabin automaton R(M) = (QR, iR, δR,
∨|Q|

i=1 Pi) is de-
fined as follows:

– QR is the set of rankings r : Q → {1, . . . , |Q|};
– iR is the ranking defined only at the initial state i (and so iR(i) = 1);
– δR(r, ν) = α[δ(r, ν)] for every ranking r and letter ν;
– Pj = (fail ∪ buy(j), succeed(j)), where

fail = {(r, ν, s) ∈ δR | ∃q ∈ Q : r(q) ∈ N ∧ δ(q, ν) ∈ S \ F}
succeed(j) = {(r, ν, s) ∈ δR | ∃q ∈ Q : r(q) = j ∧ δ(q, ν) ∈ F}

buy(j) = {(r, ν, s) ∈ δR | ∃q, q′ ∈ Q : r(q) < j ∧ r(q′) ∈ N

∧
(
δ(q, ν) = δ(q′, ν) /∈ F ∨ δ(q, ν) = i /∈ F

)
}

3 It is straightforward to give an equivalent automaton with a condition on states, but
transitions are better for us.



From LTL to Deterministic Automata: A Safraless Compositional Approach 199

We say that a word w ∈ L(R(M)) is accepted at rank j if Pj is the accepting pair
in the run of R(M) on w with smallest index. The rank at which w is accepted
is denoted by rk(w).

By the discussion above, we have

Theorem 15. For every Mojmir automaton M: L(M) = L(R(M)).

Example 16. Let us determine the accepting pairs of the DRA on the right of
Figure 1. We have fail = {t2, t7, t8}, buy(1) = ∅, succeed(1) = {t1, t6}, and
buy(2) = {t5, t8}, succeed(2) = {t4, t6, t7}.

It is easy to see that the runs accepted by the pair P1 are those that take
t2, t7, t8 only finitely often, and visit (1,⊥) infinitely often. They are accepted
at rank 1. The runs accepted at rank 2 are those accepted by P2 but not by P1.
They take t1, t2, t5, t6, t7, t8 finitely often, and so they are exactly the runs with
a tω4 suffix.

3.2 The Automaton R(ϕ)

Given a G-free formula ϕ, we define R(ϕ) = R(M(ϕ)). By Theorem 12 and
Theorem 15, we have L(R(ϕ)) = L(FGϕ).

If w is accepted by R(ϕ) at rank rk(w), then we not only know that w satisfies
FGϕ. In order to explain exactly what else we know, we need the following
definition.

Definition 17. Let δR be the transition function of the DRA R(ϕ) and let
w ∈ L(ϕ) be a word. For every j ∈ N, we denote by F(w0j) the conjunction of
the formulae of rank younger than or equal to rk(w) at the state δR(iR, w0j).

Intuitively, we also know that wj satisfies F(w0j) for almost every index j ∈ N,
a fact we will use for the accepting condition of the Rabin automaton for general
formulae in Section 5. Before proving this, we give an example.

Example 18. Consider the Rabin automaton on the right of Figure 1. Let w =
({b}{c})ω. Its corresponding run is (t3t6)

ω, which is accepted at rank 1. For
every even value j, F(w0j) is the conjunction of the formulae of rank 1 and 2
at the state (2,1). So we get F(w0j) = (a ∨ (b U c)) ∧ (b U c) ≡p (b U c), and
therefore we know that infinitely many suffixes of w satisfy (b U c). In other
words, the automaton tells us not only that w |= FG(a∨ (b U c)), but also that
w |= FG(b U c).

We now show this formally. If w |= FGϕ, there is a smallest index ind(w,ϕ)
at which ϕ “starts to hold”. For every index j ≥ ind(w,ϕ), we have wj |=∧j

k=ind(w,ϕ) af (ϕ,wkj) . Intuitively, this formula is the conjunction of the formu-

lae “tracked” by the tokens ofM(ϕ) born on days ind(w,ϕ), ind (w,ϕ)+1, . . . , j.
These are the “true” tokens of M(ϕ), that is, those that eventually reach an ac-
cepting state. We get:

Lemma 19. Let ϕ be a G-free formula and let w ∈ L(R(ϕ)). Then

(1) F(w0j) ≡
∧j

k=ind(w,ϕ) af (ϕ,wkj) for almost every j ∈ N; and

(2) wj |= F(w0j) for almost every j ∈ N.
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4 DRAs for Arbitrary FG-Formulae

We construct a DRA for an arbitrary formula FG-formula FGϕ. It suffices
to construct a Mojmir automaton, and then apply the construction of Section
3.1. We show that the Mojmir automaton can be defined compositionally, as a
parallel composition of Mojmir automata, one for each G-subformula.

Definition 20. Given a formula ϕ, we denote by G(ϕ) the set of G-subformulae
of ϕ, i.e., the subformulae of ϕ of the form Gψ.

More precisely, for every G ⊆ G(FGϕ) and every Gψ ∈ G, we construct a Mo-
jmir automatonM(ψ,G). AutomataM(ψ,G) andM(ψ,G′) for two different sets
G,G′ have the same transition system, i.e., they differ only on the accepting con-
dition. The automaton M(ψ,G) checks that FGψ holds, under the assumption
that FGψ′ holds for all the subformulae Gψ′ of ψ that belong to G. Circularity
is avoided, because automata for ψ only rely on assumptions about proper sub-
formulae of ψ. Loosely speaking, the Rabin automaton for FGϕ is the parallel
composition (or product) of the Rabin automata for the M(ψ,G) (which are
independent of G), with an acceptance condition obtained from the acceptance
conditions of the M(ψ,G).

We only need to define the automatonM(ϕ,G), because the automataM(ψ,G)
are defined inductively in exactly the same way. Intuitively, the automaton for
M(ϕ,G) does not “track” G-subformulae of ϕ, it delegates that task to the au-
tomata for its subformulae. This is formalized with the help of the following
definition.

Definition 21. Let ϕ be a formula and ν ∈ 2Ap. The formula af G(ϕ, ν) is
inductively defined as af (ϕ, ν), with only this difference:

afG(Gϕ, ν) = Gϕ (instead of af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ).

We define ReachG(ϕ) = {afG(ϕ,w) | w ∈ (2Ap)∗} (up to ≡p).

Example 22. Let ϕ = ψU¬a, where ψ = G(a ∧X¬a). We have

af G(ϕ, {a}) = af G(ψ, {a}) ∧ ϕ ≡p ψ ∧ ϕ
af (ϕ, {a}) = af (ψ, {a}) ∧ ϕ ≡p ¬a ∧ ψ ∧ ϕ

Definition 23. Let ϕ be a formula and let G ⊆ G(ϕ). The Mojmir automaton of
ϕ with respect to G is the quadruple M(ϕ,G) = (ReachG(ϕ), ϕ, af G, FG), where
FG contains the formulae ϕ′ ∈ ReachG(ϕ) propositionally implied by G, i.e. the
formulae satisfying

∧
Gψ∈G Gψ |=p ϕ′.

Observe that only the set of accepting states of M(ϕ,G) depends on G. The
following lemma shows that states reachable from final states are also final.

Lemma 24. Let ϕ be a formula and let G ⊆ G(ϕ). For every ϕ′ ∈ ReachG(ϕ),
if
∧

Gψ∈G Gψ |=p ϕ′ then
∧

Gψ∈G Gψ |=p af G(ϕ′, ν) for every ν ∈ 2Ap.
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Proof. Follows easily from the definition of |=p and af G(Gψ) = Gψ.

Example 25. Let ϕ = (Gψ)U¬a, where ψ = a ∧X¬a. We have G(ϕ) = {Gψ},
and so two automata M(ϕ, ∅) and M(ϕ, {Gψ}), whose common transition sys-
tem is shown on the left of Figure 2. We have one single automaton M(ψ, ∅),
shown on the right of the figure. A formula ϕ′ is an accepting state of M(ψ, ∅)
if tt |=p ϕ′; and so the only accepting state of the automaton on the right is tt.
On the other hand, M(ϕ, {Gψ}) has both Gψ and tt as accepting states, but
the only accepting state of M(ϕ, ∅) is tt.

ϕ

Gψ ∧ ϕ tt

Gψ

a ā

ā

a true

true

ψ

¬a ff

tt

a ā

a

ā

true

true

Fig. 2. Mojmir automata for ϕ = (Gψ) U¬a, where ψ = a ∧X¬a

Theorem 26. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there is
G ⊆ G(ϕ) such that (1) w ∈ L(M(ϕ,G)), and (2) w |= FGψ for everyGψ ∈ G.

Using induction on the structure of G-subformulae we obtain:

Theorem 27. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) such that w ∈ L(M(ψ,G)) for every Gψ ∈ G.

4.1 The Product Automaton

Theorem 27 allows us to construct a Rabin automaton for an arbitrary formula of
the form FGϕ. For every Gψ ∈ G(FGϕ) and every G ⊆ G(FGϕ) let R(ψ,G) =
(Qψ, iψ, δψ,Acc

G
ψ) be the Rabin automaton obtained by applying Definition 14

to the Mojmir automaton M(ψ,G). Since Qψ, iψ, δψ do not depend on G, we
define the product automaton P(ϕ) as

P(ϕ) =

⎛
⎝ ∏

Gψ∈G(ϕ)

Qψ,
∏

Gψ∈G(ϕ)

{iψ},
∏

Gψ∈G(ϕ)

δψ,
∨

G⊆Gϕ

∧
Gψ∈G(ϕ)

AccGψ

⎞
⎠

Since each of the AccGψ is a Rabin condition, we obtain a generalized Rabin
condition. This automaton can then be transformed into an equivalent Rabin
automaton [KE12]. However, as shown in [CGK13], for many applications it is
better to keep it in this form. By Theorem 27 we immediately get:

Theorem 28. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) such that w ∈ L(P(ϕ)).
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5 DRAs for Arbitrary Formulae

In order to explain the last step of our procedure, consider the following example.

Example 29. Let ϕ = b∧Xb∧Gψ, where ψ = a∧X(bUc) and let Ap = {a, b, c}.
The Mojmir automatonM(ψ) is shown in the middle of Figure 3. Its correspond-
ing Rabin automaton R(ψ) is shown on the right, where the state (i, j) indicates
that ψ has rank i and bUc has rank j. We have fail = {t1, t5, t6, t7, t8}, buy(1) =
∅, succeed(1) = {t4, t7} and buy(2) = {t3}, succeed(2) = ∅.

Both M(ψ) and R(ψ) recognize L(FGψ), but not L(Gψ). In particular, even
though any word whose first letter does not contain a can be immediately re-
jected,M(ψ) fails to capture this. This is a general problem of Mojmir automata:
they can never “reject (or accept) in finite time” because the acceptance condi-
tion refers to an infinite number of tokens.

ϕ

b ∧ (bUc) ∧Gψ

(bUc) ∧Gψ

ff

ab
ā+ b̄

ab
ā+ b̄

a(b+ c)

ā+ (b̄c̄)

true

ψ

bUc ff

tt

a ā

b̄c̄
c

bc̄

true

true

(1,⊥)

(2, 1)

t2 : a t7 : āct8 : āb̄c̄

t1 : ā

t4 : ac t5 : ab̄c̄

t3 : abc̄ t6 : ābc̄

Fig. 3. Automata T (ϕ), M(ψ), and R(ψ) for ϕ = b ∧Xb ∧Gψ and ψ = a ∧X(bUc)

5.1 Master Transition System

The “accept/reject in finite time” problem can be solved with the help of the
master transition system (an automaton without an accepting condition).

Definition 30. Let ϕ be a formula. The master transition system for ϕ is the
tuple T (ϕ) = (Reach(ϕ), ϕ, af ).

The master transition system for the formula of Example 29 is shown on the left
of Figure 3. Whenever we enter state ff , we have af (ϕ,w) = ff for the word w
read so far, and so the run is not accepting.

Consider now the word w = {a, b, c}ω, which clearly satisfies ϕ. How do master
T (ϕ) and slave M(ψ) decide together that w |= ϕ holds? Intuitively, M(ψ)
accepts, and tells the master that w |= FGψ holds. The master reaches the
state (bU c)∧Gψ and stays there forever. Since she knows that FGψ holds, the
master deduces that w |= ϕ holds if w |= FG(bU c). But where can it get this
information from?
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At this point the master resorts to Lemma 19: the slave M(ψ) (or, more
precisely, its Rabin automaton R(ψ)) not only tells the master that w satisfies
FGψ, but also at which rank, and so that wj satisfies F(w0j) for almost every
j ∈ N. In our example, during the run w = {a, b, c}ω, all tokens flow down the

path a ∧ X(bU c)
a−→ bU c

c−→ tt “in lockstep”. No token buys any other,
and all tokens of rank 1 succeed. The corresponding run of R(ψ) executes the
sequence t2t

ω
4 of transitions, stays in (2,1) forever, and accepts at rank 1. So

we have F(w0j) = (bU c) ∧ ψ for every j ≥ 0, and therefore the slave tells the
master that wj |= (bU c) for almost every j ∈ N.

So in this example the information required by the master is precisely the
additional information supplied by M(ψ) due to Lemma 19. The next theorem
shows that this is always the case.

Theorem 31. Let ϕ be a formula and let w be a word. Let G be the set of
formulae Gψ ∈ G(ϕ) such that w |= FGψ. We have w |= ϕ iff for almost every
i ∈ N: ∧

Gψ∈G

(
Gψ ∧ F(ψ,w0i)

)
|=p af (ϕ,w0i) .

The automaton recognizing ϕ is a product of the automaton P(ϕ) defined in
Section 4.1, and T (ϕ). The run of P(ϕ) of a word w determines the set G ⊆ G(ϕ)
such that w |= FGψ iff ψ ∈ G. Moreover, each component of P(ϕ) accepts at
a certain rank, and this determines the formula F(ψ,w0i) for every i ≥ 0 (it
suffices to look at the state reached by the component of P(ϕ) in charge of the
formula ψ). By Theorem 31, it remains to check whether eventually∧

Gψ∈G

(
Gψ ∧ F(ψ,w0i)

)
|=p af (ϕ,w0i)

holds. This is done with the help of T (ϕ), which “tracks” af (ϕ,w0i). To check
the property, we turn the accepting condition into a disjunction not only on
the possible G ⊆ G(ϕ), but also on the possible rankings that assign to each
formula Gψ ∈ G a rank. This corresponds to letting the product guess which G-
subformulae will hold, and at which rank they will be accepted. The slaves check
the guess, and the master checks that it eventually only visits states implied by
the guess.

5.2 The GDRA A(ϕ)

We can now formally define the final automatonA(ϕ) recognizing ϕ. Let P(ϕ) =
(QP , iP , δP ,AccP) be the product automaton described in Section 4.1, and let
T (ϕ) = (Reach(ϕ), ϕ, af ). We let

A(ϕ) = (Reach(ϕ)×QP , (ϕ, iP), af × δP ,Acc)

where the accepting condition Acc is defined top-down as follows:

– Acc is a disjunction containing a disjunct AccGπ for each pair (G, π), where
G ⊆ G(ϕ) and π is a mapping assigning to each ψ ∈ G a rank, i.e., a number
between 1 and the number of Rabin pairs of R(ϕ,G).
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– The disjunct AccGπ is a conjunction of the form AccGπ = M G
π ∧

∧
ψ∈G

Accπ(ψ).

– Condition Accπ(ψ) states that R(ψ,G) accepts with rank π(ψ) for every
ψ ∈ G. It is therefore a Rabin condition with only one Rabin pair.

– Condition M G
π states that A(ϕ) eventually stays within a subset F of states

defined as follows. Let (ϕ′, rψ1 , . . . , rψk
) ∈ Reach(ϕ) × QP , where rψ is a

ranking of the formulae of ReachG(ψ) for every Gψ ∈ G(ϕ), and let F(rψ)
be the conjunction of the states of M(ψ) to which rψ assigns rank π(ψ) or
higher. Then

(ϕ′, rψ1 , . . . , rψk
) ∈ F iff

∧
Gψ∈G

Gψ ∧ F(rψ) |=p ϕ′ .

Notice that M G
π is a co-Büchi condition, and so a Rabin condition with only

one pair.

Theorem 32. For any LTL formula ϕ, L(A(ϕ)) = L(ϕ).

6 The Alternation-Free Linear-Time μ-Calculus

The linear-time μ-calculus is a linear-time logic with the same expressive power
as Büchi automata and DRAs (see e.g. [Var88, Dam92]). It extends propositional
logic with the next operator X, and least and greatest fixpoints. This section is
addressed to readers familiar with this logic. We take as syntax

ϕ ::= tt | ff | a | ¬a | y | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | μx.ϕ | νx.ϕ

where y ranges over a set of variables. We assume that if σy.ϕ and σz.ψ are
distinct subformulae of a formula, then y and z are also distinct. A formula is
alternation-free if for every subformula μy.ϕ (νy.ϕ) no path of the syntax tree
leading from μy (νy) to y contains an occurrence of νz (μz) for some variable z.
For instance, μy.(a∨μz.(y∨Xz) is alternation-free, but νy.μz((a∧y)∨Xz) is not.
It is well known that the alternation-free fragment is strictly more expressive
than LTL and strictly less expressive than the full linear-time μ-calculus. In
particular, the property “a holds at every even moment” is not expressible in
LTL, but corresponds to νy.(a ∧XXy).

Our technique extends to the alternation-free linear-time μ-calculus. We have
refrained from presenting it for this more general logic because it is less well
known and formulae are more difficult to read. We only need to change the
definition of the functions af and afG. For the common part of the syntax
(everything but the fixpoint formulae) the definition is identical. For the rest we
define

af (μy.ϕ, ν) = af (ϕ, ν) ∨ μy.ϕ
af (νy.ϕ, ν) = af (ϕ, ν) ∧ νy.ϕ

afG(μy.ϕ, ν) = afG(ϕ, ν) ∨ μy.ϕ
af G(νy.ϕ, ν) = νy.ϕ

The automaton A(ϕ) is a product of automata, one for every ν-subformula of ϕ,
and a master transition system. Our constructions can be reused, and the proofs
require only technical changes in the structural inductions.
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7 Experimental Results

We compare the performance of the following tools and methods:

(T1) ltl2dstar [Kle] implements and optimizes [KB07] Safra’s construction
[Saf88]. It uses LTL2BA [GO01] to obtain the non-deterministic Büchi
automata (NBA) first. Other translators to NBA may also be used, such
as Spot [DL13] or LTL3BA [BKRS12] and in some cases may yield better
results (see [BKS13] for comparison thereof), but LTL2BA is recommended
by ltl2dstar and is used this way in PRISM [KNP11].

(T2) Rabinizer [GKE12] and Rabinizer 2 [KLG13] implement a direct construc-
tion based on [KE12] for fragments LTL(F,G) and LTL\GU, respectively.
The latter is used only on formulae not in LTL(F,G).

(T3) LTL3DRA [BBKS13] which implements a construction via alternating au-
tomata, which is “inspired by [KE12]” (quoted from [BBKS13]) and per-
forms several optimizations.

(T4) Our new construction. Notice that we produce a state space with a logical
structure, which permits many optimizations; for instance, one could in-
corporate the suspension optimization of LTL3BA [BBDL+13]. However,
in our prototype implementation we use only the following optimization:
In each state we only keep track of the slaves for formulae ψ that are still
“relevant” for the master’s state ϕ, i.e. ϕ[ψ/tt] �≡p ϕ[ψ/ff ]. For instance,
after reading ∅ in GFa∨ (b∧GFc), it is no longer interesting to track if c
occurs infinitely often.

Table 1 compares these four tools. For T1 and T2 we produce DRAs (although
Rabinizer 2 can also produce GDRAs). For T3 and T4 we produce GDRAs with
transition acceptance (tGDRAs), which can be directly used for probabilistic
model checking without blow-up [CGK13]. The table shows experimental results
on four sets of formulae (see the four parts of the table)

1. Formulae of the LTL(F,G) fragment taken from (i) BEEM (BEnchmarks
for Explicit Model checkers) [Pel07] and from [SB00] on which ltl2dstar was
originally tested [KB06] (see [EK14]); and (ii) fairness-like formulae. All the
formulae were used already in [KE12, BBKS13]. Our method usually achieves
the same results as the optimized LTL3DRA, outperforming the first two
approaches.

2. Formulae of LTL\GU taken from [KLG13] and [EH00]. They illustrate the
problems of the standard approach to handle (i) X operators inside the scope
of other temporal operators and (ii) conjunctions of liveness properties.

3. Some further formulae illustrating teh same phenomenon.
4. Some complex LTL formulae expressing “after Q until R” properties, taken

from Spec Pattern [DAC99] (available at [spe]) .

All automata were constructed within a few seconds, with the exception
of the larger automata generated by ltl2dstar: it took several minutes for au-
tomata over ten thousand states and hours for hundreds of thousands of states.
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Formula T1 T2 T3 T4

FGa ∨GFb 4 4 1 1
(FGa ∨GFb) ∧ (FGc ∨GFd) 11 324 18 1 1
∧3

i=1(GFai → GFbi) 1 304 706 462 1 1
∧2

i=1(GFai → GFai+1) 572 11 1 1
∧3

i=1(GFai → GFai+1) 290 046 52 1 1

(X(Gr ∨ rU(r ∧ sUp)))U(Gr ∨ rU(r ∧ s)) 18 9 8 8
pU(q ∧X(r ∧ (F(s ∧X(F(t ∧X(F(u ∧XFv)))))))) 9 13 13 13
(GF(a ∧XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧XXb)) 353 73 − 12
GF(XXXa ∧XXXXb)∧GF(b ∨Xc) ∧GF(c ∧XXa) 2 127 169 − 16
(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨Xe)) 18 176 80 − 2
(GF(a ∧XXc) ∨ FGb) ∧ (GFc ∨ FG(d ∨Xa ∧XXb)) ? 142 − 12
aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨ FGd)∨ 640 771 210 8 7

∨aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb)

FG((a ∧XXb ∧GFb)U(G(XX!c ∨XX(a ∧ b)))) 2 053 − − 11
G(F!a ∧ F(b ∧X!c) ∧GF(aUd)) ∧GF((Xd)U(b ∨Gc)) 283 − − 7

ϕ35 : 2 cause-1 effect precedence chain 6 − − 6
ϕ40 : 1 cause-2 effect precedence chain 314 − − 32
ϕ45 : 2 stimulus-1 response chain 1 450 − − 78
ϕ50 : 1 stimulus-2 response chain 28 − − 23

Table 1. Some experimental results

The automaton for
∧3

i=1(GFai → GFbi) took even more than a day and ?
denotes a time-out after one day. Not applicability of the tool to the formula is
denoted by −. Additional details and more experimental results can be found in
[EK14].

8 Conclusions

We have presented the first direct translation from LTL formulae to deterministic
Rabin automata able to handle arbitrary formulae. The construction generalizes
previous ones for LTL fragments [KE12, GKE12, KLG13]. Given ϕ, we compute
(1) the master, the slaves for each Gψ ∈ G(ϕ), and their parallel composition,
and (2) the acceptance condition: we first guess G ⊆ G(ϕ) which are true (this
yields the accepting states of slaves), and then guess the ranks (this yields the
information for the master’s co-Büchi acceptance condition).

The compositional approach opens the door to many possible optimizations.
Since slave automata are typically very small, we can aggressively try to opti-
mize them, knowing that each reduced state in one slave potentially leads to
large savings in the final number of states of the product. So far we have only
implemented the simplest optimizations, and we think there is still much room
for improvement.

We have conducted a detailed experimental comparison. Our construction
outperforms two-step approaches that first translate the formula into a Büchi
automaton and then apply Safra’s construction. Moreover, despite handling full
LTL, it is at least as efficient as previous constructions for fragments. Finally,
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we produce a (often much smaller) generalized Rabin automaton, which can be
directly used for verification, without a further translation into a standard Rabin
automaton.
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