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Foreword

In the summer of 2014, Vienna hosted the largest scientific conference in the
history of logic. The Vienna Summer of Logic (VSL, http://vsl2014.at) con-
sisted of twelve large conferences and 82 workshops, attracting more than 2000
researchers from all over the world. This unique event was organized by the Kurt
Gödel Society and took place at Vienna University of Technology during July
9 to 24, 2014, under the auspices of the Federal President of the Republic of
Austria, Dr. Heinz Fischer.

The conferences and workshops dealt with the main theme, logic, from three
important angles: logic in computer science, mathematical logic, and logic in
artificial intelligence. They naturally gave rise to respective streams gathering
the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)
• 27th IEEE Computer Security Foundations Symposium (CSF)
• 30th International Conference on Logic Programming (ICLP)
• 7th International Joint Conference on Automated Reasoning (IJCAR)
• 5th Conference on Interactive Theorem Proving (ITP)
• Joint meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th ACM/IEEE Symposium on Logic in Computer
Science (LICS)
• 25th International Conference on Rewriting Techniques and Applications
(RTA) joint with the 12th International Conference on Typed Lambda Cal-
culi and Applications (TLCA)
• 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT)
• 76 FLoC Workshops
• FLoC Olympic Games (System Competitions)
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Mathematical Logic

• Logic Colloquium 2014 (LC)
• Logic, Algebra and Truth Degrees 2014 (LATD)
• Compositional Meaning in Logic (GeTFun 2.0)
• The Infinity Workshop (INFINITY)
• Workshop on Logic and Games (LG)
• Kurt Gödel Fellowship Competition

Logic in Artificial Intelligence

• 14th International Conference on Principles of Knowledge Representation
and Reasoning (KR)
• 27th International Workshop on Description Logics (DL)
• 15th International Workshop on Non-Monotonic Reasoning (NMR)
• 6th International Workshop on Knowledge Representation for Health Care
2014 (KR4HC)

The VSL keynote talks which were directed to all participants were given by
Franz Baader (Technische Universität Dresden), Edmund Clarke (Carnegie Mel-
lon University), Christos Papadimitriou (University of California, Berkeley) and
Alex Wilkie (University of Manchester); Dana Scott (Carnegie Mellon Univer-
sity) spoke in the opening session. Since the Vienna Summer of Logic contained
more than a hundred invited talks, it would not be feasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only
scientific talks, poster sessions and panels, but also two distinctive events. One
was the award ceremony of the Kurt Gödel Research Prize Fellowship Competi-
tion, in which the Kurt Gödel Society awarded three research fellowship prizes
endowed with 100.000 Euro each to the winners. This was the third edition of
the competition, themed Logical Mind: Connecting Foundations and Technology
this year.

The 1st FLoC Olympic Games formed the other event and were hosted by
the Federated Logic Conference (FLoC) 2014. Intended as a new FLoC element,
the Games brought together 12 established logic solver competitions by different
research communities. In addition to the competitions, the Olympic Games facili-
tated the exchange of expertise between communities, and increased the visibility
and impact of state-of-the-art solver technology. The winners in the competition
categories were honored with Kurt Gödel medals at the FLoC Olympic Games
award ceremonies.

Organizing an event like the Vienna Summer of Logic was a challenge. We
are indebted to numerous people whose enormous efforts were essential in mak-
ing this vision become reality. With so many colleagues and friends working
with us, we are unable to list them individually here. Nevertheless, as rep-
resentatives of the three streams of VSL, we would like to particularly ex-
press our gratitude to all people who helped to make this event a success:
the sponsors and the Honorary Committee; the Organization Committee and
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the local organizers; the conference and workshop chairs and Program Commit-
tee members; the reviewers and authors; and of course all speakers and partici-
pants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought
that started in Ancient Greece and flourished in the city of Gödel, Wittgenstein
and the Vienna Circle. The heroes of our intellectual past shaped the scientific
world-view and changed our understanding of science. Owing to their achieve-
ments, logic has permeated a wide range of disciplines, including computer sci-
ence, mathematics, artificial intelligence, philosophy, linguistics, and many more.
Logic is everywhere – or in the language of Aristotle, ����� ����	 �
���� ����	��

July 2014 Matthias Baaz
Thomas Eiter
Helmut Veith



Preface

This volume contains the papers presented at CAV 2014: International Confer-
ence on Computer Aided Verification held during July 18–22, 2014 in Vienna,
Austria.

CAV 2014 was the 26th in a series dedicated to the advancement of the
theory and practice of computer-aided formal analysis methods for hardware
and software systems.

As part of the Federated Logic Conference (FLoC) and the Vienna Summer
of Logic, CAV 2014 was collocated with many other conferences in logic. CAV
considers it vital to continue spurring advances in hardware and software verifi-
cation while expanding to new domains such as biological systems and computer
security.

The conference covered the spectrum from theoretical results to concrete
applications, with an emphasis on practical verification tools and the algorithms
and techniques that are needed for their implementation. The proceedings of
the conference will have been the Springer-Verlag Lecture Notes in Computer
Science series. A selection of papers was invited to a special issue of Formal
Methods in System Design and the Journal of the ACM.

There were 229 paper submissions, 175 regular papers and 54 short papers.
Each submission was reviewed by at least three, and on average 4 Program Com-
mittee members. The Program Committee decided to accept 57 papers which is
an acceptance rate of 25%, consisting of 46 regular papers (26%) and 11 short
papers (20%).

There were 293 abstract submissions originally and a couple of papers, not
included in the number of 229 papers above, immediately rejected due to ex-
cessively exceeding the page limit. Among the 172 rejected papers considered
for computing the acceptance rate, there were 7 regular and one short paper
withdrawn on behalf of the authors after first versions of reviews had been sent
out during the rebuttal phase.

Regarding paper format, CAV 2014 saw some important changes compared
to previous versions. Beside long papers, e.g., regular papers, there were also
short papers, but short papers were not restricted to be tool papers anymore. It
was also encouraged to submit high quality tool papers and empirical evaluations
as long papers. These regular papers with mostly only empirical results, and not
necessarily new theory, produced some reservations on the side of the review-
ers and was an import topic during the discussion of the Program Committee.
Further, references did not count towards the page limit.

Beside the presentations of the accepted papers, and shared FLoC sessions,
the program of CAV 2014 featured two tutorials, two CAV invited talks, three
competition presentations and last but not least the presentation of the CAV
award.
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The first tutorial was given by David Monniaux, Verimag, Grenoble, France,
on “How Do We Get Inductive Invariants?” and the second tutorial by Fabio
Somenzi, University of Colorado at Boulder, USA, on “Hardware Model Check-
ing”.

The first invited talk by Erik Winfree, Caltech, Pasadena, California, USA,
had “Designing and Verifying Molecular Circuits and Systems Made of DNA” as
the title. The second invited talk by Rance Cleaveland, University of Maryland
and Fraunhofer, USA, discussed “Automated Testing”.

The CAV 2014 affiliated competitions consisted of the first “Syntax-Guided
Synthesis Competition”, organized by Rajeev Alur, Dana Fisman, Rishabh Singh
and Armando Solar-Lezama. Then there was the presentation of the results of
the first Synthesis Competition for Reactive Systems “SYNTCOMP” organized
by Swen Jacobs, Roderick Bloem, Rüdiger Ehlers and the 7th incarnation of the
“Hardware Model Checking Competition”, which was organized by Armin Biere
and Keijo Heljanko.

The CAV award was presented by the CAV Award Committee, which con-
sisted of Moshe Vardi, Ahmed Bouajjani, Tom Ball, and headed by Marta
Kwiatkowska.

The FLoC 2014 Interconference Topics on Security and SAT/SMT/QBF are a
FLoC 2014 initiative by CAV, CSF, and IJCAR to foster exchange and discussion
between conferences. The Interconference Topics consist of sessions from the
participating conferences with a joint thematic focus. They provide a special
opportunity for FLoC participants with particular interest in these topics.

We would like to thank our workshop and competition chair Martina Seidl,
for caring about 21 CAV workshops, including 4 workshops affiliated with other
FLoC conferences too. As publication chair Swen Jacobs did an excellent job
setting up the web-pages and producing the proceedings.

Of course without the tremendous effort put in the reviewing process by our
Program Committee members this conference would not have been possible. We
would further thank the Steering Committee for support and guidance during the
whole conference process as well as Andrei Voronkov for providing the EasyChair
service in general and excellent support during using EasyChair for CAV 2014.

May 2014 Armin Biere
Roderick Bloem
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How Do We Get Inductive Invariants?

David Monniaux

CNRS, Verimag, Grenoble, France

Verifying the correctness of loop-free programs (or of general programs, up to
bounded depth) is difficult: the state space explodes exponentially as the depth
increases. Yet, the difficulty increases as we allow unboundedly many execu-
tion steps; proof approaches then generally rely on finding inductive invariants
(properties shown to hold initially, then to remain true by induction).

Abstract interpretation attempts finding inductive invariants within a given
domain, e.g. conjunctions of linear inequalities. The classical approach iterates a
transformer until the property becomes inductive. In general, this approach may
not terminate; thus termination is often enforced with a “widening” operator,
which attempts at generalizing the iterates into an inductive property. Unfortu-
nately, widening operators are brittle, with non-monotonic behaviors (supplying
more information about a system may result in worse analysis outcomes!). There-
fore, other approaches have been developed (policy iteration,. . . ), which avoid
this pitfall.

Finally, we shall discuss possible combinations of abstract interpretation and
SMT-solving.

Hardware Model Checking

Fabio Somenzi

University of Colorado at Boulder, USA

This tutorial described the state-of-the art in Hardware-Model Checking using
SAT and BDD-based techniques, including a discussion of the overall architec-
ture of modern, multi-engine model checkers.



Designing and Verifying Molecular Circuits and

Systems Made of DNA

Erik Winfree

California Institute of Technology, Pasadena, CA, USA

Inspired by the information processing core of biological organisms and its abil-
ity to fabricate intricate machinery from the molecular scale up to the macro-
scopic scale, research in synthetic biology, molecular programming, and nucleic
acid nanotechnology aims to create information-based chemical systems that
carry out human-defined molecular programs that input, output, and manip-
ulate molecules and molecular structures. For chemistry to become the next
information technology substrate, we will need improved tools for designing,
simulating, and analyzing complex molecular circuits and systems. Using DNA
nanotechnology as a model system, I will discuss how programming languages
can be devised for specifying molecular systems at a high level, how compilers
can translate such specifications into concrete molecular implementations, how
both high-level and low-level specifications can be simulated and verified accord-
ing to behavioral logic and the underlying biophysics of molecular interactions,
and how Bayesian analysis techniques can be used to understand and predict
the behavior of experimental systems that, at this point, still inevitably contain
many ill-characterized components and interactions.

Automated Testing

Rance Cleaveland

University of Maryland, USA

In model-based testing, (semi-)formal models of systems are used to drive the
derivation of test cases to be applied to the system-under-test (SUT). The tech-
nology has long been a part of the traditional hardware-design workflows, and
it is beginning to find application in embedded-software development processes
also. In automotive and land-vehicle control-system design in particular, models
in languages such as MATLAB(r) / Simulink(r) / Stateflow(r) are used to drive
the testing of the software used to control vehicle behavior, with tools like Reac-
tis(r), developed by a team including the speaker, providing automated test-case
generation support for this endeavor.

This talk will discuss how test-case generation capabilities may also be used to
help verify that models meet formal specifications of their behavior. The method
we advocate, Instrumentation-BasedVerification (IBV), involves the formalizaton
of behavior specifications as models that are used to instrument the model to be
verified, and the use of coverage testing of the instrumented model to search for
specification violations. The presentation will discuss the foundations of IBV, the
test-generation approach and other features in Reactis that are used to support
IBV, and the results of several case studies involving the use of the methods.
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The First Syntax-Guided Synthesis Competition

(SyGuS-COMP 2014)

Rajeev Alur1, Dana Fisman1, Rishabh Singh2, and Armando Solar-Lezama2,�

1 University of Pennsylvania
2 Massachusetts Institute of Technology

Abstract. Syntax-Guided Synthesis (SyGuS) is the computational prob-
lem of finding an implementation f that meets both a semantic constraint
given by a logical formula ϕ in a background theory T , and a syntac-
tic constraint given by a grammar G, which specifies the allowed set of
candidate implementations [1]. Such a synthesis problem can be formally
defined in SyGuS-IF [2], a language that is built on top of SMT-LIB.

The Syntax-Guided Synthesis Competition (SyGuS-COMP) is an ef-
fort to facilitate, bring together and accelerate research and development
of efficient solvers for SyGuS by providing a platform for evaluating dif-
ferent synthesis techniques on a comprehensive set of benchmarks. The
benchmarks for the first competition are restricted to the theories of bit-
vector and integer linear arithmetic, yet their origin spans a variety of
domains including bitvector algorithms, concurrency, robotics, and in-
variant generation. The solvers are scored primarily on the number of
benchmark solved and the solving time, and secondarily on the succinct-
ness of the synthesized solution.

References

1. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-Guided Synthesis. In:
FMCAD, pp. 1–17. IEEE (2013)

2. Raghothaman, M., Udupa, A.: Language to Specify Syntax-Guided Synthesis Prob-
lems (May 2014), http://arxiv.org/abs/1405.5590

* This research was supported by NSF Expeditions in Computing award CCF-1138996
and the competition awards were sponsored by Microsoft Research and FLoC.



Hardware Model Checking Competition

CAV 2014 Edition

Armin Biere1 and Keijo Heljanko2

1 Johannes Kepler University Linz, Austria
2 Aalto University, Finland

The results of the 7th International Hardware Model Checking Competition were
presented at CAV 2014. Model checkers were required to produce witnesses for
single safety properties. The traces were checked by the AIGSIM tool, which is
part of the AIGER tools. Otherwise, the competition was run in almost the same
way as in the previous two years. The competition was run on a cluster at Aalto
University with exclusive access to 32 nodes of 2x Six-Core AMD Opteron 2435
2.6GHz with at least 16 GB of RAM. This meant 12 cores for each solver per
benchmark, memory limit of 15 GB and time limit of 900 seconds. As fall back
we had the cluster at JKU with the same characteristics as in previous years.
Beside the requirement to produces witnesses, rules, input and output format
did not change.

During the FLoC Olympic Games ceremony in the second week, three real sil-
ver medals were handed out to the winners of the three tracks of the competition.
These three tracks in the CAV 2014 edition of the competitHardwaion consisted
of: the single safety, the liveness and the deep bound track. There was no multi-
ple property track for the CAV edition. It was considered to be the technically
most challenging track, particularly while moving to new hardware, and further,
only three medals were available. The winner of the deep bound track received
both a medal and check, sponsored again by Oski technology. The competition
further relied on support by the national research network on Rigorous System
Engineering (RiSE) funded by the Austrian Science Fund (FWF) and also used
resources made available through the Science-IT project at Aalto University.
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We present results of the first competition for reactive synthesis tools. For this
first iteration, we focused on safety specifications, which are given as sequential
circuits in an extension of the AIGER format for and-inverter graphs [1]. In
the extended format, input signals of the circuit can be declared as controllable
or uncontrollable. The synthesized implementation can read the uncontrollable
input signals, and uses this information to drive the controllable signals such
that the circuit never emits a true value at its error output signal.

The setting allows to encode a wide range of synthesis problems, and bench-
marks for the first competition ranged from machine and robot controllers to
hardware components like on-chip bus arbiters, and translations of LTL proper-
ties in general. Liveness properties are encodable in the form of bounded liveness
properties, and the competition featured both benchmarks that make and that
do not make use of this approach.

Tools were ranked with respect to the time needed for realizability checks and
the size of circuits produced. Particular focus has been put on the verification
of the synthesized implementations. Tools had to output the resulting controller
in a format that is suitable as input to tools from the hardware model checking
competition (HWMCC), i.e., as another and-inverter-graph circuit. Solutions
had to be verifiable by current model checking tools in order to count for the
competition. The competition also featured a track in which only the realizability
of a specification needed to be checked, i.e., whether some controller exists or
not.

SYNTCOMP was part of the FLoC 2014 Olympic Games and relied on sup-
port by the Austrian national research network on Rigorous Systems Engineering
(RiSE), funded by the Austrian Science Fund (FWF).
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The Spirit of Ghost Code�

Jean-Christophe Filliâtre1,2, Léon Gondelman1, and Andrei Paskevich1,2
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Abstract. In the context of deductive program verification, ghost code
is part of the program that is added for the purpose of specification.
Ghost code must not interfere with regular code, in the sense that it
can be erased without observable difference in the program outcome. In
particular, ghost data cannot participate in regular computations and
ghost code cannot mutate regular data or diverge. The idea exists in the
folklore since the early notion of auxiliary variables and is implemented
in many state-of-the-art program verification tools. However, a rigorous
definition and treatment of ghost code is surprisingly subtle and few
formalizations exist.

In this article, we describe a simple ML-style programming language
with mutable state and ghost code. Non-interference is ensured by a type
system with effects, which allows, notably, the same data types and func-
tions to be used in both regular and ghost code. We define the procedure
of ghost code erasure and we prove its safety using bisimulation. A sim-
ilar type system, with numerous extensions which we briefly discuss, is
implemented in the program verification environment Why3.

1 Introduction

A common technique in deductive program verification consists in introducing
data and computations, traditionally named ghost code, that only serve to fa-
cilitate specification. Ghost code can be safely erased from a program without
affecting its final result. Consequently, a ghost expression cannot be used in a
regular (non-ghost) computation, it cannot modify a regular mutable value, and
it cannot raise exceptions that would escape into regular code. However, a ghost
expression can use regular values and its result can be used in program annota-
tions: preconditions, postconditions, loop invariants, assertions, etc. A classical
use case for ghost code is to equip a data structure with ghost fields containing
auxiliary data for specification purposes. Another example is ghost step counters
to prove the time complexity of an algorithm.

When it comes to computing verification conditions, for instance using a weak-
est precondition calculus, there is no need to make a distinction between ghost
and regular code. At this moment, ghost code is just a computation that supplies
auxiliary values to use in specification and to simplify proofs. This computation,

� This work is partly supported by the Bware (ANR-12-INSE-0010, http://bware.
lri.fr/) project of the French national research organization (ANR).

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014
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however, is not necessary for the program itself and thus should be removed
when we compile the annotated source code. Therefore we need a way to en-
sure, by static analysis, that ghost code does not interfere with the rest of the
program.

Despite that the concept of ghost code exists since the early days of deductive
program verification, and is supported in most state-of-the-art tools [1–4], it is
surprisingly subtle. In particular, a sound non-interference analysis must ensure
that every ghost sub-expression terminates. Otherwise, one could supply such a
sub-expression with an arbitrary postcondition and thus be able to prove any-
thing about the program under consideration. Another non-obvious observation
is that structural equality cannot be applied naively on data with ghost compo-
nents. Indeed, two values could differ only in their ghost parts and consequently
the comparison would yield a different result after the ghost code erasure.

There is a number of design choices that show up when conceiving a language
with ghost code. First, how explicit should we be in our annotations? For ex-
ample, should every ghost variable be annotated as such, or can we infer its
status by looking at the values assigned to it? Second, how much can be shared
between ghost and regular code? For instance, can a ghost value be passed to a
function that does not specifically expect a ghost argument? Similarly, can we
store a ghost value in a data structure that is not specifically designed to hold
ghost data, e.g. an array or a tuple? Generally speaking, we should decide where
ghost code can appear and what can appear in ghost code.

In this article, we show that, using a tailored type system with effects, we can
design a language with ghost code that is both expressive and concise. As a proof
of concept, we describe a simple ML-style programming language with mutable
state, recursive functions, and ghost code. Notably, our type system allows the
same data types and functions to be used in both regular and ghost code. We
give a formal proof of the soundness of ghost code erasure, using a bisimulation
argument. A type system based on the same concepts is implemented in the
verification tool Why3 [4]. The language presented is this paper is deliberately
simplified. The more exciting features, listed in Section 4 and implemented in
Why3, only contribute to more complex effect tracking in the type system, which
is mostly orthogonal to the problem of ghost code non-interference.

Outline. This paper is organized as follows. Section 2 introduces an ML-like
language with ghost code. Section 3 defines the operation of ghost code era-
sure and proves its soundness. Section 4 describes the actual implementation in
Why3. We conclude with related work in Section 5 and perspectives in Sec-
tion 6. An extended version of this paper containing proofs is available at
http://hal.archives-ouvertes.fr/hal-00873187/.

2 GhostML

We introduce GhostML, a mini ML-like language with ghost code. It features
global references (that is, mutable variables), recursive functions, and integer
and Boolean primitive types.

http://hal.archives-ouvertes.fr/hal-00873187/
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2.1 Syntax

The syntax of GhostML is given in Fig. 1. Terms are either values or compound
expressions like application, conditional, reference access and modification. We
assume a fixed finite set of global references. All the language constructions are
standard ML, except for the keyword ghost which turns a term t into ghost code.

t ::= terms

| v value
| t v application
| let xβ = t in t local binding
| if v then t else t conditional
| rβ := v assignment
| !rβ dereference
| ghost t ghost code

τ ::= types

| κ primitive type
| τβ ε

=⇒τ functional type

κ ::= primitive types

| int | bool | unit primitive types

v ::= values

| c constant
| xβ variable
| λxβ : τ. t anonymous function
| rec xβ : τβ ε

=⇒τ. λxβ : τ. t
recursivefunction

c ::= constants

| () unit
| ...,−1, 0, 1, ... integers
| true, false Boolean
| +,∨,=, ... operators

β ∈ {⊥,�} ghost status

ε ∈ {⊥,�} effect

Fig. 1. Syntax

Every variable is tagged with a ghost status β, which is � for ghost vari-
ables and ⊥ for regular ones (here and below, “regular” stands for “non-ghost”).
Similarly, references and formal function parameters carry their ghost status.
Consider the following example:

let upd� = λx⊥ : int. g� := x⊥ in upd� !r⊥

Here, function upd� takes one regular parameter x⊥ and assigns it to a ghost
reference g�. Then upd� is applied to the contents of a regular reference r⊥.

Note that compound terms obey a variant of A-normal form [5]. That is, in
application, conditional, and reference assignment, one of the sub-expressions
must be a value. This does not reduce expressiveness, since a term such as
(t1 (t2 v)) can be rewritten as let xβ = t2 v in t1 xβ , where β depends on the
ghost status of the first formal parameter of t1.

Types are either primitive data-types (int, bool, unit) or function types. A

function type is an arrow τβ2
ε

=⇒τ1 where β stands for the function argument’s
ghost status, and ε is the latent effect of the function. An effect ε is a Boolean
value that indicates presence of regular side effects such as modification of a
regular reference or possible non-termination.
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MiniML Syntax. The syntax of traditional MiniML can be obtained by omitting
all ghost indicators β (on references, variables, parameters, and types) and ex-
cluding the ghost construct. Equivalently, we could define MiniML as the subset
of GhostML where all ghost indicators β are ⊥ and where terms of the form
ghost t do not appear.

2.2 Semantics

Fig. 2 gives a small-step operational semantics to GhostML which corresponds
to a deterministic call-by-value reduction strategy. Each reduction step defines
a relation between states. A state is a pair t | μ of a term t and a store μ. A
store μ maps global references of t to constants. The regular part of a store μ,
written μ⊥, is the restriction of μ to regular references. Rules indicate the store
μ only when relevant.

A reduction step can take place directly at the top of a term t. Such a step
is called a head reduction and is denoted t | μ α→ t′ | μ′ . Rule (E-Ghost) ex-
presses that, from the point of view of operational semantics, there is no difference
between regular and ghost code. Other head reduction rules are standard. For in-
stance, rules (E-Op-λ) and (E-Op-δ) evaluate the application of a constant c0 to
constants c1...cm. Such an application is either partial (1 ≤ m < arity(c0)), and
then turned into a function λx⊥ : κ. c0 c1 . . . cm x⊥, or total (m = arity(c0)),
and then some oracle function δ gives the result δ(c0, c1, . . . , cm). For instance,
δ(not, true) = false, δ(+, 47,−5) = 42, etc.

A reduction step can also be contextual, i.e. it takes place in some sub-
expression. Since our language is in A-normal form, there are only two contextual
rules, (E-Context-App) and (E-Context-Let).

As usual, →� denotes the reflexive, transitive closure of →. We say that a
closed term t evaluates to v in a store μ if there is a μ′ such that t | μ →� v | μ′ .
Note that, since t is closed, v is not a variable. Finally, the divergence of a term
t in a store μ is defined co-inductively as follows:

t | μ →1 t′ | μ′ t′ | μ′ → ∞
t | μ → ∞ (E-Div)

MiniML Semantics. Since ghost statuses do not play any role in the semantics
of GhostML, dropping them (or, equivalently, marking all β as ⊥) and removing
the rule (E-Ghost) results in a standard call-by-value small-step operational
semantics for MiniML. For the sake of clarity, we use a subscript m when writing
MiniML reduction steps: t | μ →m t′ | μ′ .

2.3 Type System

The purpose of the type system is to ensure that “well-typed terms do not go
wrong”. In our case, “do not go wrong” means not only that well-typed terms
verify the classical type soundness property, but also that ghost code does not
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ghost t
α→ t (E-Ghost)

1 ≤ m < arity(c0)

c0 c1 . . . cm
α→ λx⊥ : κ. c0 c1 . . . cm x⊥

(E-Op-λ)

m = arity(c0) δ(c0, c1, . . . , cm) is defined

c0 c1 . . . cm
α→ δ(c0, c1, . . . , cm)

(E-Op-δ)

(λxβ : τ. t) v
α→ t[xβ ← v] (E-App-λ)

(rec fβ : τβ ε
=⇒τ. λxβ : τ. t) v

α→ t[xβ ← v, fβ ← rec fβ : τβ ε
=⇒τ. λxβ : τ. t]

(E-App-Rec)

let xβ = v1 in t2
α→ t2[x

β ← v1] (E-Let)

if true then t1 else t2
α→ t1 (E-If-True)

if false then t1 else t2
α→ t2 (E-If-False)

!rβ | μ α→ μ(rβ) | μ (E-Deref)

rβ := c | μ α→ () | μ[rβ �→ c] (E-Assign)

t | μ α→ t′ | μ′

t | μ → t′ | μ′
(E-Head)

t1 | μ → t′1 | μ′

(t1 v) | μ → (t′1 v) | μ′
(E-Context-App)

t2 | μ → t′2 | μ′

let xβ = t2 in t1 | μ → let xβ = t′2 in t1 | μ′
(E-Context-Let)

Fig. 2. Semantics

interfere with regular code. More precisely, non-interference means that ghost
code never modifies regular references and that it always terminates. For that
purpose, we introduce a type system with effects, where the typing judgment is

Σ, Γ 
 t : τ, β, ε.

Here, τ is the type of term t. Boolean indicators β and ε indicate, respectively,
the ghost status of t and its regular side effects. Γ is a typing environment
that binds variables to types. Σ is a store typing that binds each reference
rβ to the primitive type of the stored value. We restrict types of stored values
to primitive types to avoid a possible non-termination via Landin’s knot (that is,
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Typeof(c) = τ

Σ, Γ 
 c : τ, ⊥, ⊥ (T-Const)

(xβ : τ) ∈ Γ

Σ, Γ 
 xβ : τ, β, ⊥ (T-Var)

Σ, Γ, xβ : τ 
 t : τ0, β0, ε

Σ, Γ 
 (λxβ : τ. t) : τβ ε
=⇒τ0, β0, ⊥

(T-λ)

Σ, Γ, f⊥ : τβ2
�

=⇒τ1 
 (λxβ : τ2. t) : τ
β
2

ε
=⇒τ1, ⊥, ⊥

Σ, Γ 
 (rec f⊥ : τβ2
�

=⇒τ1. λxβ : τ2. t) : τ
β
2

�
=⇒τ1, ⊥, ⊥

(T-Rec)

Σ, Γ 
 v : bool, β0, ⊥ Σ, Γ 
 t1 : τ, β1, ε1 Σ, Γ 
 t2 : τ, β2, ε2
Σ, Γ 
 (if v then t1 else t2) : τ, β0 ∨ β1 ∨ β2, ε1 ∨ ε2

(T-If)

Σ, Γ, x⊥ : τ2 
 t1 : τ1, β1, ε1 Σ, Γ 
 t2 : τ2, β2, ε2
Σ, Γ 
 (let x⊥ = t2 in t1) : τ1, β1 ∨ β2, ε1 ∨ ε2

(T-Let-Regular)

Σ, Γ, x� : τ2 
 t1 : τ1, β1, ε1 Σ, Γ 
 t2 : τ2, β2, ⊥
Σ, Γ 
 (let x� = t2 in t1) : τ1, β1, ε1

(T-Let-Ghost)

Σ, Γ 
 t : τ⊥2
ε1
=⇒τ1, β1, ε2 Σ, Γ 
 v : τ2, β2, ⊥

Σ, Γ 
 (t v) : τ1, β1 ∨ β2, ε1 ∨ ε2
(T-App-Regular)

Σ, Γ 
 t : τ�2
ε1
=⇒τ1, β1, ε2 Σ, Γ 
 v : τ2, β2, ⊥

Σ, Γ 
 (t v) : τ1, β1, ε1 ∨ ε2
(T-App-Ghost)

(rβ : κ) ∈ Σ

Σ, Γ 
 !rβ : κ, β, ⊥ (T-Deref)

Σ, Γ 
 v : κ, β′, ⊥ (rβ : κ) ∈ Σ β ≥ β′

Σ, Γ 
 (rβ := v) : unit, β, ¬β (T-Assign)

Σ, Γ 
 t : τ, β, ⊥
Σ, Γ 
 (ghost t) : τ, �, ⊥ (T-Ghost)

Fig. 3. Typing rules
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recursion encoded using a mutable variable containing a function), which would
be undetected in our type system.

Typing rules are given in Fig. 3. To account for non-interference, each rule
whose conclusion is a judgement Σ, Γ 
 t : τ, β, ε is added the implicit extra
side condition

(β = �)⇒ (ε ∨ ε+(τ) = ⊥) (1)

where ε+(τ) is defined recursively on τ as follows:

ε+(κ) � ⊥
ε+(τβ2

ε
=⇒τ1) � ε ∨ ε+(τ1)

In other words, whenever t is ghost code, it must terminate and must not modify
any regular reference. In particular, a ghost function whose body is possibly
non-terminating or possibly modifies a regular reference is rejected by the type
system.

Let us explain some rules in detail. The rule (T-Const) states that any
constant c is regular code, (i.e. β = ⊥) yet is pure and terminating (i.e. ε =
⊥). Moreover, we assume that if c is some constant operation, then its formal
parameters are all regular. The type of each constant is given by some oracle
function Typeof(c). For instance, Typeof(+) = int⊥ ⊥

=⇒ int⊥ ⊥
=⇒ int.

Recursive functions are typed as follows. For simplicity, we assume that when-
ever a recursive function is used, we may have non-termination. Therefore, we
enforce the latent effect ε of any recursive function to be �. Consequently, no
recursive function can be used or even occur in ghost code. In practice, however,
we do not have to assign a latent non-termination effect to recursive functions
whose termination can be established by static analysis (e.g. by a formal proof).

The rule (T-If) shows how ghost code is propagated through conditional
expressions: if at least one of the branches or the Boolean condition is ghost
code, then the conditional itself becomes ghost. Note, however, that the typing
side-condition (1) will reject conditionals where one part is ghost and another
part has some effect, as in

if true then r⊥ := 42 else ghost ().

The rule (T-Ghost) turns any term t into ghost code, with ghost status �,
whatever the ghost status of t is, provided that t is pure and terminating. Thus,
terms such as ghost (r⊥ := 42) or ghost (fact 3) are ill-typed, since their evalu-
ation would interfere with the evaluation of regular code.

The side condition (β ≥ β′) of the rule (T-Assign) ensures that regular
references cannot be assigned ghost code. (Boolean values are ordered as usual,
with � > ⊥.) Additionally, the rule conclusion ensures that, if the assigned
reference is regular (β = ⊥), then ε is �; on the contrary, if the assigned reference
is ghost (β = �), then ε is ⊥, since ghost reference assignments are not part of
regular effects.

The most subtle rules are those for local bindings and application. Rule (T-

Let-Ghost) states that, whatever the ghost status of a term t2 is, as long as
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t2 is pure and terminating, we can bind a ghost variable x� to t2. Similarly, by
rule (T-App-Ghost) a function that expects a ghost parameter can be applied
to both ghost and regular values.

Rule (T-Let-Regular) is somewhat dual to (T-Let-Ghost): it allows us to
bind a regular variable x⊥ to a ghost term. The difference with the previous case
is that, now, the ghost status of the let expression depends on the ghost status
of t2: if t2 is ghost code, then the “contaminated” let expression becomes ghost
itself. Consequently, if t2 is ghost, then by the implicit side-condition, as ε1 ∨ ε2
must be equal to ⊥, both t1 and t2 must be pure and terminating. Similarly,
rule (T-App-Regular) allows us to pass a ghost value to a function expecting
a regular parameter, in which case the application itself becomes ghost. In other
words, the goal of rules (T-Let-Regular) and (T-App-Regular) is to allow
ghost code to use regular code. This was one of our motivations.

It is worth pointing out that there is no sub-typing in our system. That is, in
rules for application, the formal parameter and the actual argument must have
exactly the same type τ2. In particular, all latent effects and ghost statuses in
function types must be the same. For instance, a function expecting an argument
of type int⊥ ε

=⇒ int cannot be applied to an argument of type int� ε
=⇒ int.

Type System of MiniML. Similarly to operational semantics, if we drop all ghost
statuses (or, equivalently, if we consider them marked as ⊥) and get rid of typing
rule (T-Ghost), we get a standard typing system with effects for MiniML with
simple types. For clarity, we add a subscript m when we write typing judgments
for MiniML terms: Σ, Γ 
m t : τ, ε.

2.4 Type Soundness

The type system of GhostML enjoys the standard soundness property. Any well-
typed program either diverges or evaluates to a value. This property is well
established in the literature for ML with references [6, 7], and we can easily adapt
the proof in our case. Due to lack of space, we only give the main statements.

As usual, we decompose type soundness into preservation and progress lem-
mas. First, we define well-typedness of a store with respect to a store typing.

Definition 1. A store μ is well-typed with respect to a store typing Σ, written
Σ 
 μ, if dom(μ) ⊆ dom(Σ) and μ(rβ) has type Σ(rβ) for every rβ ∈ dom(μ).

With this definition, the preservation lemma is stated as follows:

Lemma 1 (Preservation). If Σ, Γ 
 t : τ, β, ε and Σ 
 μ, then t | μ →
t′ | μ′ implies that Σ, Γ 
 t′ : τ, β′, ε′ and Σ 
 μ′, where β ≥ β′ and ε ≥ ε′.

The only difference with respect to the standard statement is that ghost sta-
tuses and effect indicators can decrease during evaluation.

Lemma 2 (Progress). If Σ, ∅ 
 t : τ, β, ε, then either t is a value or, for
any store μ such that Σ 
 μ, there exists a reduction step t | μ → t′ | μ′ .
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Additionally, we have the following results for effect-less programs.

Lemma 3 (Store Preservation). If Σ, ∅ 
 t : τ, β, ⊥ and Σ 
 μ, then
t | μ → t′ | μ′ implies μ⊥ = μ′⊥.

Lemma 4 (Program Termination). If Σ, ∅ 
 t : τ, β, ⊥ and Σ 
 μ, then
evaluation of t in store μ terminates, that is, there is a value v and a store μ′

such that t | μ →� v | μ′ .

A consequence of the previous lemmas and the side condition (1) is that ghost
code does not modify the regular store and is terminating.

3 From GhostML to MiniML

This section describes an erasure operation that turns a GhostML term into a
MiniML term. The goal is to show that ghost code can be erased from a regular
program without observable difference in the program outcome.

The erasure is written either Eβ(.), when parameterized by some ghost status
β, and simply E(.) otherwise. First, we define erasure on types and terms. The
main idea is to preserve the structure of regular terms and types, and to replace
any ghost code by a value of type unit.

Definition 2 (τ-erasure). Let τ be some GhostML type. The erasure Eβ(τ) of
type τ with respect to β is defined by induction on the structure of τ as follows:

E�(τ) � unit

E⊥(τβ2

2
ε

=⇒τ1) � Eβ2(τ2)
ε

=⇒E⊥(τ1)
E⊥(κ) � κ

In other words, the structure of regular types is preserved and all ghost types
are turned into type unit. Now we can define erasure on terms.

Definition 3 (t-Erasure). Let t be such that Σ, Γ 
 t : τ, β, ε holds. The
erasure Eβ(t) is defined by induction on the structure of t as follows:

E�(t) � ()

E⊥(c) � c

E⊥(x⊥) � x

E⊥(λxβ : τ. t) � λx : Eβ(τ). E⊥(t)
E⊥(rec f⊥ : τβ2

2
�

=⇒τ1. t) � rec f : E⊥(τβ2

2
�

=⇒τ1). E⊥(t)
E⊥(r⊥ := v) � r := E⊥(v)
E⊥(!r⊥) � !r

E⊥(if v then t1 else t2) � if E⊥(v) then E⊥(t1) else E⊥(t2)
E⊥(t v) � E⊥(t) Eβ′(v) where t has type τ2

β′ ε1
=⇒τ1

E⊥(let xβ
′
= t2 in t1) � let x = Eβ′(t2) in E⊥(t1)
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Note that ghosts variables and ghost references do not occur anymore in E⊥(t).
Note also that a regular function (recursive or not) with a ghost parameter
remains a function, but with an argument of type unit. Similarly, a let expression
that binds a ghost variable inside a regular code remains a let, but now binds a
variable to (). More generally, E⊥(t) is a value if and only if t is a value.

Leaving unit values and arguments in the outcome of erasure may seem un-
necessary. However, because of latent effects, full erasure of ghost code is not
possible. Consider for instance the function

λx⊥ : int. λy� : int. r⊥ := x

where r is a regular reference. Then a partial application of this function to a
single argument should not trigger the modification of r. Our solution is to keep
a second argument y of type unit.

3.1 Well-Typedness Preservation

We prove that erasure preserves well-typedness of terms. To do so, we first
define the erasure of a typing context and of a store typing by a straightforward
induction on their size:

Definition 4 (Γ -erasure and Σ-erasure).

E(∅) � ∅ E(∅) � ∅
E(Γ, x� : τ) � E(Γ ), x : unit E(Σ, r� : κ) � E(Σ)

E(Γ, x⊥ : τ) � E(Γ ), x : E⊥(τ) E(Σ, r⊥ : κ) � E(Σ), r : κ

With these definitions, we prove well-typedness preservation under erasure:

Theorem 1 (Well-typedness Preservation). If Σ, Γ 
 t : τ, ⊥, ε holds,
then E(Σ), E(Γ ) 
m E⊥(t) : E⊥(τ), ε holds.

3.2 Correctness of Erasure

Finally, we prove correctness of erasure, that is, evaluation is preserved by era-
sure. To turn this into a formal statement, we first define the erasure of a store
μ by a straightforward induction on the store size:

Definition 5 (μ-erasure).

E(∅) � ∅
E(μ � {r� �→ c}) � E(μ)
E(μ � {r⊥ �→ c}) � E(μ) � {r �→ c}

Notice that E(μ) removes ghost annotations, and thus is not the same that μ⊥.
The correctness of erasure means that, for any evaluation t | μ →� v | μ′ in

GhostML, we have E⊥(t) | E(μ) →�
m E⊥(v) | E(μ′) in MiniML and that, for any
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diverging evaluation t | μ → ∞ in GhostML, we have E⊥(t) | E(μ) →m ∞ in
MiniML. We prove these two statements using a bisimulation argument. First, we
need the substitution lemma below, which states that substitution and erasure
commute.

Lemma 5 (Substitution Under Erasure). Let t be a GhostML term and v
a GhostML value such that Σ, Γ, xβ : τ 
 t : τ0, ⊥, ε and Σ, Γ 
 v : τ, β′, ⊥,
with β ≥ β′, hold. Then the following holds:

E⊥(t)[x← Eβ(v)] = E⊥(t[xβ ← v]).

Note that if Σ 
 μ then E(Σ) 
m E(μ). To prove erasure correctness for
terminating programs, we use the following forward simulation argument:

Lemma 6 (Forward Simulation of GhostML). If Σ, ∅ 
 t : τ, ⊥, ε and,
for some store μ such that Σ 
 μ, we have t | μ → t′ | μ′ , then the following

holds in MiniML: E⊥(t) | E(μ) →0|1
m E⊥(t′) | E(μ′) .

We are now able to prove the first part of the main theorem:

Theorem 2 (Terminating Evaluation Preservation). If typing judgment
Σ, ∅ 
 t : τ, ⊥, ε holds and t | μ →� v | μ′ , for some value v and some store

μ such that Σ 
 μ, then E⊥(t) | E(μ) →�
m E⊥(v) | E(μ′) .

To prove the second part of the erasure correctness (non-termination preser-
vation), we use the following simulation argument.

Lemma 7 (Forward Simulation of MiniML). If Σ, ∅ 
 t : τ, ⊥, ε holds,
then, for any store μ such that Σ 
 μ, if E⊥(t) | E(μ) →m q | ν for some term

q and some store ν, then t | μ →≥1 t′ | μ′ where E⊥(t′) = q and E(μ′) = ν.

Finally, we establish non-termination preservation:

Theorem 3 (Non-termination Preservation). If Σ, ∅ 
 t : τ, ⊥, ε holds
and t | μ → ∞, for some store μ such that Σ 
 μ, then E⊥(t) also diverges,

that is, E⊥(t) | E(μ) →m ∞.

4 Implementation

Our method to handle ghost code is implemented in the verification tool Why31.
With respect to GhostML, the language and the type system of Why3 have the
following extensions:

Type Polymorphism. The type system of Why3 is first-order and features ML-
style type polymorphism. Our approach to associate ghost status with variables
and expressions, and not with types, makes this extension straightforward.

1 Why3 is freely available from http://why3.lri.fr/

http://why3.lri.fr/
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Local References. Another obvious extension of GhostML is the support of non-
global references. As long as such a reference cannot be an alias for another one,
the type system of GhostML requires practically no changes. In a system where
aliases are admitted, the type system and, possibly, the verification condition
generator must be adapted to detect modifications made by a ghost code in
locations accessible from regular code. In Why3, aliases are tracked statically,
and thus non-interference is ensured purely by type checking.

Data Structures with Ghost Fields. Why3 supports algebraic data types (in par-
ticular, records), whose fields may be regular or ghost. Pattern matching on such
structures requires certain precautions. Any variable bound in the ghost part of
a pattern must be ghost. Moreover, pattern matching over a ghost expression
that has at least two branches must make the whole expression ghost, whatever
the right-hand sides of the branches are, just as in the case of a conditional over
a ghost Boolean expression.

That said, ghost code can use the same data types as regular code. A ghost
variable may be a record with regular, mutable fields, which can be accessed and
modified in ghost code. Similarly, Why3 has a unique type of arrays and admits
both regular and ghost arrays.

Exceptions. Adding exceptions is rather straightforward, since in Why3 excep-
tions are introduced only at the top level. Indeed, it suffices to add a new effect
indicator, that is the set of exceptions possibly raised by a program expression.
We can use the same exceptions in ghost and regular code, provided that the
ghost status of an expression that raises an exception is propagated upwards
until the exception is caught.

Provable Termination. For the sake of simplicity, GhostML forbids the use of
recursive functions in ghost code. In Why3, the use of recursive functions and
loops in ghost code is allowed. The system requires that such constructs are
supplied with a “variant” clause, so that verification conditions for termination
are generated.

Example. Let us illustrate the use of ghost code in Why3 on a simple example.
Fig. 4 contains an implementation of a mutable queue data type, in Baker’s
style. A queue is a pair of two immutable singly-linked lists, which serve to
amortize push and pop operations. Our implementation additionally stores the
pure logical view of the queue as a list, in the third, ghost field of the record.
Notice that we use the same list type both for regular and ghost data.

We illustrate propagation in function push (lines 27–30), where a local
variable v is used to hold some intermediate value, to be stored later in the
ghost field of the structure. Despite the fact that variable v is not declared
ghost, and the fact that function append is a regular function, Why3 infers that
v is ghost. Indeed, the ghost value q.view contaminates the result of append. It
would therefore generate an error if we tried to store v in a non-ghost field of an
existing regular structure. Since the expression append q.view (Cons x Nil)
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1 module Queue

2

3 type elt

4

5 type list = Nil | Cons elt list

6

7 let rec append (l1 l2: list) : list

8 variant { l1 }

9 = match l1 with

10 | Nil → l2

11 | Cons x r1 → Cons x (append r1 l2)

12 end

13

14 let rec rev_append (l1 l2: list) : list

15 variant { l1 }

16 = match l1 with

17 | Nil → l2

18 | Cons x r1 → rev_append r1 (Cons x l2)

19 end

20

21 type queue = {

22 mutable front: list;

23 mutable rear: list;

24 ghost mutable view: list;

25 }

26

27 let push (x: elt) (q: queue) : unit

28 = q.rear ← Cons x q.rear;

29 let v = append q.view (Cons x Nil) in

30 q.view ← v

31

32 exception Empty

33

34 let pop (q: queue): elt

35 raises { Empty }

36 = match q.front with

37 | Cons x f →
38 q.front ← f;

39 q.view ← append f (rev_append q.rear Nil);

40 x

41 | Nil →
42 match rev_append q.rear Nil with

43 | Nil →
44 raise Empty

45 | Cons x f →
46 q.front ← f;

47 q.rear ← Nil;

48 q.view ← f;

49 x

50 end

51 end

52 end

Fig. 4. Queue implementation in Why3
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is ghost, it must not diverge. Thus Why3 requires function append to be termi-
nating. This is ensured by the variant clause on line 8. In function pop (lines
34–52), the regular function rev_append is used both in regular code (line 42)
and ghost code (line 39).

The online gallery of verified Why3 programs contains several other exam-
ples of use of ghost code2, in particular, ghost function parameters and ghost
functions to supply automatic induction proofs (also known as lemma functions).

5 Related Work

The idea to use ghost code in a program to ease specification exists since the early
days (late sixties) of deductive program verification, when so-called auxiliary
variables became a useful technique in the context of concurrent programming.
According to Jones [8] and Reynolds [9], the notion of auxiliary variable was first
introduced by Lucas in 1968 [10]. Since then, numerous authors have adapted
this technique in various domains.

It is worth pointing out that some authors, in particular Kleymann [11] and
Reynolds [9], make a clear distinction between non-operational variables used in
program annotations and specification-purpose variables that can appear in the
program itself. The latter notion has gradually evolved into the wider idea that
ghost code can be arbitrary code, provided it does not interfere with regular
code. For example, Zhang et al. [12] discuss the use of auxiliary code in the con-
text of concurrent program verification. They present a simple WHILE language
with parallelism and auxiliary code, and prove that the latter does not interfere
with the rest of the program. In their case, non-interference is ensured by the
stratified syntax of the language. For instance, loops can contain auxiliary code,
but auxiliary code cannot contain loops, which ensures termination. They also
define auxiliary code erasure and prove that a program with ghost code has no
less behaviors than its regular part. Schmaltz [13] proposes a rigorous descrip-
tion of ghost code for a large fragment of C with parallelism, in the context
of the VCC verification tool [2]. VCC includes ghost data types, ghost fields in
regular structures, ghost parameters in regular functions, and ghost variables. In
particular, ghost code is used to manipulate ownership information. A notable
difference w.r.t. our work is that VCC does not perform any kind of inference of
ghost code. Another difference is that VCC assumes that ghost code terminates,
and the presence of constructions such as ghost(goto l) makes it difficult to
reason about ghost code termination.

Another example of a modern deductive verification tool implementing ghost
code is the program verifier Dafny [1]. In Dafny, “the concept of ghost versus
non-ghost declarations is an integral part of the Dafny language: each func-
tion, method, variable, and parameter can be declared as either ghost or non-
ghost.” [14]. In addition, a class can contain both ghost fields and regular fields.
Dafny ensures termination of ghost code. Ghost code can update ghost fields, but
is not allowed to allocate memory or update non-ghost fields. Consequently, ghost

2 http://toccata.lri.fr/gallery/ghost.en.html

http://toccata.lri.fr/gallery/ghost.en.html
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code cannot obtain full reuse of libraries that allocate and mutate classes or ar-
rays. However, on the fragment of Dafny’s language corresponding to GhostML,
Dafny provides a semantics of ghost code similar to what is presented here.

The property of non-interference of ghost code is a special case of information
flow non-interference [15]. Indeed, one can see ghost code as high-security infor-
mation and regular code as low-security information, and non-interference pre-
cisely means that high-security information does not leak into low-security com-
putations. Information flow properties can be checked using a type system [16]
and proofs in that domain typically involve a bisimulation technique (though not
necessarily through an erasure operation). Notice that applying an information
flow type system to solve our problem is not straightforward, since termination
of ghost code is a crucial requirement. For instance, the type system described by
Simonet and Pottier [17] simply assumes termination of secret code. To the best
of our knowledge, this connection between information flow and ghost code has
not been made before, and mainstream deductive verification tools employ syn-
tactical criteria of non-interference instead of type-based ones. In this paper, we
develop such a type-based approach, specifically tailored for program verification.

6 Conclusion and Perspectives

In this paper, we described an ML-like language with ghost code. Non-interfe-
rence between ghost code and regular code is ensured using a type system with
effects. We formally proved the soundness of this type system, that is, ghost code
can be erased without observable difference. Our type system results in a highly
expressive language, where the same data types and functions can be reused in
both ghost and regular code.

We see two primary directions of future work on ghost code and Why3. First,
ghost code, especially ghost fields, plays an important role in program refine-
ment. Indeed, ghost fields that give sufficient information to specify a data type
are naturally shared between the interface and the implementation of this data
type. In this way, the glue invariant becomes nothing more than the data type
invariant linking regular and ghost fields together. Our intention is to design
and implement in Why3 a module system with refinement that makes extensive
use of ghost code and data. Second, since ghost code does not have to be exe-
cutable, it should be possible to use in ghost code various constructs which, up to
now, may only appear in specifications, such as quantifiers, inductive predicates,
non-deterministic choice, or infinitely parallel computations (cf. the aggregate
forall statement in Dafny).

Acknowledgments. We are grateful to Sylvain Conchon, Rustan Leino, and
François Pottier for comments and discussions regarding earlier versions of this
paper.
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Abstract. We present an SMT-based symbolic model checking algo-
rithm for safety verification of recursive programs. The algorithm is
modular and analyzes procedures individually. Unlike other SMT-based
approaches, it maintains both over- and under-approximations of pro-
cedure summaries. Under-approximations are used to analyze procedure
calls without inlining. Over-approximations are used to block infeasi-
ble counterexamples and detect convergence to a proof. We show that
for programs and properties over a decidable theory, the algorithm is
guaranteed to find a counterexample, if one exists. However, efficiency
depends on an oracle for quantifier elimination (QE). For Boolean Pro-
grams, the algorithm is a polynomial decision procedure, matching the
worst-case bounds of the best BDD-based algorithms. For Linear Arith-
metic (integers and rationals), we give an efficient instantiation of the
algorithm by applying QE lazily. We use existing interpolation techniques
to over-approximate QE and introduce Model Based Projection to under-
approximate QE. Empirical evaluation on SV-COMP benchmarks shows
that our algorithm improves significantly on the state-of-the-art.

1 Introduction

We are interested in the problem of safety of recursive programs, i.e., deciding
whether a assertion always holds. The first step in Software Model Checking is
to approximate the input program by a program model where the program op-
erations are terms in a first-order theory D. Many program models exist today,
e.g., Boolean Programs [6] of SLAM [5], Goto programs of CBMC [14], Boo-

giePL of Boogie [7], and, indirectly, internal representations of many tools
such as UFO [1], HSF [21], etc. Given a safety property and a program model
over D, it is possible to analyze bounded executions using an oracle for Satisfi-
ability Modulo Theories (SMT) for D. However, in the presence of unbounded
recursion, safety is undecidable in general. Throughout this paper, we assume
that procedures cannot be passed as parameters.

There exist several program models where safety is efficiently decidable1, e.g.,
Boolean Programs with unbounded recursion and the unbounded use of stack
[36,6]. The general observation behind these algorithms is that one can summarize
the input-output behavior of a procedure. A summary of a procedure is an input-
output relation describing what is currently known about its behavior. Thus,
1 This is no longer true when we allow procedures as parameters [12].
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a summary can be used to analyze a procedure call without inlining or analyz-
ing the body of the callee [11,37]. For a Boolean Program, the number of states is
finite and hence, a summary can only be updated finitely many times. This obser-
vation led to a number of efficient algorithms that are polynomial in the number
of states, e.g., the RHS framework [36], recursive state machines [4], and sym-
bolic BDD-based algorithms of Bebop [6] and Moped [19]. When safety is un-
decidable (e.g., when D is Linear Rational Arithmetic (LRA) or Linear Integer
Arithmetic (LIA)), several existing software model checkers work by iteratively
obtaining Boolean Program abstractions using Predicate Abstraction [13,5]. In
this paper, we are interested in an alternative algorithm that works directly on
the original program model without an explicit step of Boolean abstraction. De-
spite the undecidability, we are interested in an algorithm that is guaranteed to
find a counterexample to safety, if one exists.

Several algorithms have been recently proposed for verifying recursive pro-
grams without predicate abstraction. Notable examples are Whale [2], HSF [21],
GPDR [27], Ultimate Automizer [24,25] and Duality [33]. With the exception of
GPDR, these algorithms are based on a combination of Bounded Model Checking
(BMC) [8] and Craig Interpolation [16]. First, they use an SMT-solver to check
for a bounded counterexample, where the bound is on the depth of the call stack
(i.e., the number of nested procedure calls). Second, they use (tree) interpolation
to over-approximate procedure summaries. This is repeated with increasing val-
ues of the bound until a counterexample is found or the approximate summaries
are inductive. The reduction to BMC ensures that the algorithms are guaran-
teed to find a counterexample. However, the size of the SMT instance grows
exponentially with the bound on the call-stack (i.e., linear in the size of the call
tree). Therefore, for Boolean Programs, these algorithms are at least worst-case
exponential in the number of states.

On the other hand, GPDR follows the approach of IC3 [9] by solving BMC
incrementally without unrolling the call-graph. Interpolation is used to over-
approximate summaries and caching is used to indirectly under-approximate
them. For some configurations, GPDR is worst-case polynomial for Boolean Pro-
grams. However, even for LRA, GPDR might fail to find a counterexample [28].

In this paper, we introduce RecMC, the first SMT-based algorithm for model
checking safety of recursive programs that is worst-case polynomial (in the num-
ber of states) for Boolean Programs while being a co-semidecision procedure for
programs over decidable theories (see Section 4). Our main insight is to maintain
not only over-approximations of procedure summaries (which we call summary
facts), but also their under-approximations (which we call reachability facts).
While summary facts are used to block spurious counterexamples, reachability
facts are used to analyze a procedure call without inlining or analyzing the body
of the callee. Our use of reachability facts is similar to that of summary edges
of the RHS [36] algorithm. This explains our complexity result for Boolean Pro-
grams. However, our summary facts make an important difference. While the
use of summary facts is an interesting heuristic for Boolean Programs that does
not improve the worst-case complexity, it is crucial for richer theories.
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M |=n ϕsafe ?

(update ρ and σ) σ inductive?

UNSAFE SAFE

Y

N
Y

cex ρ
proof

σ

n := n+ 1

n := 0
ρ := ∅
σ := ∅

N
A B

Fig. 1. Flow of the algorithm RecMC to check if M |= ϕsafe

Almost every step of RecMC results in existential quantification of variables.
RecMC tries to eliminate these variables, as otherwise, they would accumulate
and the size of an inferred reachability fact, for example, grows exponentially in
the bound on the call-stack. But, a naïve use of quantifier elimination (QE) is
expensive. Instead, we develop an alternative approach that under-approximates
QE. However, obtaining arbitrary under-approximations can lead to divergence
of the algorithm. We introduce the concept of Model Based Projection (MBP),
for covering ∃x · ϕ(x, y) by finitely-many quantifier-free under-approximations
obtained using models of ϕ(x, y). We developed efficient MBPs (see Section 5)
for Linear Arithmetic based on the QE methods by Loos-Weispfenning [31] for
LRA and Cooper [15] for LIA. We use MBP to under-approximate reachability
facts in RecMC. In the best case, only a partial under-approximation is needed
and a complete quantifier elimination can be avoided.

We have implemented RecMC as part of our tool Spacer using the frame-
work of Z3 [17] and evaluated it on 799 benchmarks from SV-COMP [38]. Spacer
significantly outperforms the implementation of GPDR in Z3 (see Section 6).

In summary, our contributions are: (a) an efficient SMT-based algorithm for
model checking recursive programs, that analyzes procedures individually using
under- and over-approximations of procedure summaries, (b) MBP functions
for under-approximating quantifier elimination for LRA and LIA, (c) a new,
complete algorithm for Boolean Programs, with complexity polynomial in the
number of states, similar to the best known method [6], and (d) an implemen-
tation and an empirical evaluation of the approach.

2 Overview

In this section, we give an overview of RecMC and illustrate it on an example.
Let A be a recursive program. For simplicity of presentation, assume no loops,
no global variables and that arguments are passed by reference. Let P (v) ∈ A
be a procedure with parameters v and let v0 be fresh variables not appearing in
P with |v| = |v0|. A safety property for P is an assertion ϕ(v0, v). We say that P
satisfies ϕ, denoted P (v) |= ϕ(v0, v), iff the Hoare-triple {v = v0} P (v) {ϕ(v0, v)}
is valid. Note that every Hoare-triple corresponds to a safety property in this
sense, as shown by Clarke [11], using a Rule of Adaptation. Given a safety prop-
erty ϕ and a natural number n ≥ 0, the problem of bounded safety is to determine
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falsified using ρ? satisfied using σ?
refine ρ and σ

Y Y

N NP |=b ϕ ?

update ρ for (P, b) update σ for (P, b)

1 2 3

False True

for bounds < b

Fig. 2. Flow of the algorithm BndSafety to check P |=b ϕ

M (m) {
T (m);
D (m);
D (m); }

T (t) {
if (t>0) {

t := t-2;
T (t);
t := t+1; } }

D (d) {
d := d-1;

}

Fig. 3. A recursive program with 3 procedures

whether all executions of P using a call-stack bounded by n satisfy ϕ. We use
P (v) |=n ϕ(v0, v) to denote bounded safety.

The key steps of RecMC are shown in Fig. 1. RecMC decides safety for the
main procedure M of A. RecMC maintains two assertion maps ρ and σ. The
reachability map ρ maps each procedure P (v) ∈ A to a set of assertions over
v0∪v that under-approximate its behavior. Similarly, the summary map σ maps
a procedure P to a set of assertions that over-approximate its behavior. Given
P , the maps are partitioned according to the bound on the call-stack. That is,
if δ(v0, v) ∈ ρ(P, n) for n ≥ 0, then for every model m of δ, there is an execution
of P that begins in m(v0) and ends in m(v), using a call-stack bounded by n.
Similarly, if δ(v0, v) ∈ σ(P, n), then P (v) |=n δ(v0, v).

RecMC alternates between two steps: (A) deciding bounded safety (that
also updates ρ and σ maps) and (B) checking whether the current proof of
bounded safety is inductive (i.e., independent of the bound). It terminates when
a counterexample or a proof is found.

Bounded safety, P |=b ϕ, is decided using BndSafety shown in Fig. 2. Step 1
checks whether ϕ is falsified by current reachability facts in ρ of the callees of P .
If so, it infers a new reachability fact for P at bound b witnessing the falsification
of ϕ. Step 2 checks whether ϕ is satisfied using current summary facts in σ of
the callees. If so, it infers a new summary fact for P at bound b witnessing the
satisfaction of ϕ. If the prior two steps fail, there is a potential counterexample
π in P with a call to some procedure R such that the reachability facts of R are
too strong to witness π, but the summary facts of R are too weak to block it.
Step 3 updates ρ and σ by creating (and recursively deciding) a new bounded
safety problem for R at bound b− 1.

We conclude this section with an illustration of RecMC on the program in
Fig. 3 (adapted from [11]). The program has 3 procedures: the main procedure M,
and procedures T and D. M calls T and D. T modifies its argument t and calls itself
recursively. D decrements its argument d. Let the property be ϕ = m0 ≥ 2m+4.
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M(m) |=1 m0 ≥ 2m+ 4 ?

D(d) |=0 ⊥ ?

T(t) |=0 t0 ≥ 2t ?

D(d) |=0 d ≤ d0 − 1 ?

1: N 2: N 3

1: Y ρ(D, 0) ← {d = d0 − 1}
1: N 2: N 3

1: N σ(T, 0) ← {t0 ≥ 2t}2: Y

1: N 2: N 3

1: N σ(D, 0) ← {d ≤ d0 − 1}2: Y

1: N 2: Y σ(M, 1) ← {m0 ≥ 2m+ 4}

iter 1

iter 2

iter 3

iter 4

Fig. 4. A run of BndSafety on program in Fig. 3 and a bound 1 on the stack depth.
Numbers in bold refer to the steps in Fig. 2.

The first iteration of RecMC is trivial. The bound n = 0 and since M has
no call-free executions it vacuously satisfies any bounded safety property. Fig. 4
shows the four iterations of BndSafety for the second iteration of RecMC

where n = 1. For this bound, the maps ρ and σ are initially empty. The first
iteration of BndSafety finds a potential counterexample path in M and the
approximation for D is updated with a new reachability fact: d = d0 − 1. In the
second iteration, the approximation for T is updated. Note that the two calls
to D are “jumped over” using the reachability fact for D computed in the first
iteration. The new summary fact for T is: t0 ≥ 2t. In the third iteration, the
approximation for D is updated again, now with a summary fact d ≤ d0 − 1.
Finally, the summary facts for T and D at bound 0 are sufficient to establish
bounded safety at n = 1. At this point, the summary map σ is:

σ(M, 1) = {m0 ≥ 2m+ 4} σ(T, 0) = {t0 ≥ 2t} σ(D, 0) = {d ≤ d0 − 1}

Ignoring the bounds, σ is inductive. For example, we can prove that the body of
T satisfies t0 ≥ 2t, assuming that the calls do. Thus, step B of RecMC succeeds
and the algorithm terminates declaring the program SAFE. In the rest of the
paper, we show how to automate RecMC using an SMT-oracle.

3 Preliminaries

Consider a first-order language with equality and let S be its signature, i.e.,
the set of non-logical function and predicate symbols (including equality). An
S-structure I consists of a domain of interpretation, denoted |I|, and assigns
elements of |I| to variables, and functions and predicates on |I| to the symbols
of S. Let ϕ be a formula. We assume the usual definition of satisfaction of ϕ by
I, denoted I |= ϕ. I is called a model of ϕ iff I |= ϕ and this can be extended
to a set of formulas. A first-order S-theory Th is a set of deductively closed
S-sentences. I satisfies ϕ modulo Th, denoted I |=Th ϕ, iff I |= Th ∪ {ϕ}. ϕ is
valid modulo Th, denoted |=Th ϕ, iff every model of Th is also a model of ϕ.

Let I be an S-structure and w be a list of fresh function/predicate symbols
not in S. A (S ∪w)-structure J is called an expansion of I to w iff |J | = |I| and
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J agrees with I on the assignments to all variables and the symbols of S. We
use the notation I{w �→ u} to denote the expansion of I to w that assigns the
function/predicate ui to the symbol wi. For an S-sentence ϕ, we write I(ϕ) to
denote the truth value of ϕ under I. For a formula ϕ(x) with free variables x, we
overload the notation I(ϕ) to mean {a ∈ |I||x| | I{x �→ a} |= ϕ}. For simplicity
of presentation, we sometimes identify the truth value true with |I| and false
with ∅.

We assume that programs do not have internal procedures and that proce-
dures cannot be passed as parameters. Furthermore, without loss of generality,
we assume that programs do not have loops or global variables. In the following,
we define programs using a logical representation, as opposed to giving a concrete
syntax. A program A is a finite list of procedures with a designated main proce-
dure M where the program begins. A procedure P is a tuple 〈ιP , oP , ΣP , �P , βP 〉,
where (a) ιP is the finite list of variables denoting the input values of the pa-
rameters, (b) oP is the finite list of variables denoting the output values of the
parameters, (c) ΣP is a fresh predicate symbol of arity |ιP | + |oP |, (d) �P is
the finite list of local variables, and (e) βP is a quantifier-free sentence over the
signature (S ∪ {ΣQ | Q ∈ A} ∪ ιP ∪ oP ∪ �P ) in which a predicate symbol ΣQ

appears only positively. We use vP to denote ιP ∪ oP .
Intuitively, for a procedure P , ΣP is used to denote its semantics and βP

encodes its body using the predicate symbol ΣQ for a call to the procedure Q.
We require that a predicate symbol ΣQ appears only positively in βP to ensure a
fixed-point characterization of the semantics as shown later on. For example, for
the signature S = 〈0, Succ,−,+,≤, >,=〉, the program in Fig. 3 is represented as
〈M,T,D〉 with M = 〈m0,m,ΣM , 〈�0, �1〉, βM 〉, T = 〈t0, t, ΣT , 〈�0, �1〉, βT 〉 and
D = 〈d0, d, ΣD, ∅, βD〉, where

βM = ΣT (m0, �0) ∧ΣD(�0, �1) ∧ΣD(�1,m) βD = (d = d0 − 1)

βT = (t0 ≤ 0 ∧ t0 = t) ∨ (t0 > 0 ∧ �0 = t0 − 2 ∧ΣT (�0, �1) ∧ t = �1 + 1)
(1)

Here, we abbreviate Succi(0) by i and (m0, t0, d0) and (m, t, d) denote the
input and the output values of the parameters of the original program, respec-
tively. For a procedure P , let Paths(P ) denote the set of all prime-implicants of
βP . Intuitively, each element of Paths(P ) encodes a path in the procedure.

Let A = 〈P0, . . . , Pn〉 be a program and I be an S-structure. Let X be a list of
length n such that each Xi is either (i) a truth value if |vPi | = 0, or (ii) a subset of
|I||vPi

| if |vPi | ≥ 1. Let J(I,X) denote the expansion I{ΣP0 �→ X0} . . .{ΣPn �→
Xn}. The semantics of a procedure Pi given I, denoted �Pi�I , characterizes all
the terminating executions of Pi and is defined as follows. 〈�P0�I , . . . , �Pn�I〉 is
the (pointwise) least X such that for all Q ∈ A, J(I,X) |= ∀vQ ∪ �Q · (βQ ⇒
ΣQ(vQ)). This has a well-known least fixed-point characterization [11].

For a bound b ≥ 0 on the call-stack, the bounded semantics of a procedure Pi

given I, denoted �Pi�
b
I , characterizes all the executions using a stack of depth

bounded by b and is defined by induction on b:

�Pi�
0
I = J(I, 〈∅, . . . , ∅〉)(∃�Pi · βPi), �Pi�

b
I = J(I, 〈�P0�

b−1
I , . . . , �Pn�b−1

I 〉)(∃�Pi · βPi)
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An environment is a function that maps a predicate symbol ΣP to a formula
over vP . Given a formula τ and an environment E, we abuse the notation �·�
and write �τ�E for the formula obtained by instantiating every predicate symbol
ΣP by E(ΣP ) in τ .

Let Th be an S-theory. A safety property for a procedure P ∈ A is a formula
over vP . P satisfies a safety property ϕ w.r.t Th, denoted P |=Th ϕ, iff for all
models I of Th, �P �I ⊆ I(ϕ). A safety property ψ of the program A is a safety
property of its main procedure. A safety proof for ψ(vM ) is an environment Π
that is both safe and inductive:

|=Th �∀x ·ΣM (x)⇒ ψ(x)�Π , ∀P ∈ A· |=Th �∀vP ∪ �P · (βP ⇒ ΣP (vP ))�Π

Given a formula ϕ(vP ) and b ≥ 0, a procedure P satisfies bounded safety w.r.t
Th, denoted P |=b,Th ϕ, iff for all models I of Th, �P �bI ⊆ I(ϕ). In this case, we
also call ϕ a summary fact for 〈P, b〉. We call ϕ a reachability fact for 〈P, b〉 iff
I(ϕ) ⊆ �P �bI , for all models I of Th . Intuitively, summary facts and reachability
facts for 〈P, b〉, respectively, over- and under-approximate �P �bI for every model
I of Th.

A bounded assertion map maps a procedure P and a natural number b ≥ 0
to a set of formulas over vP . Given a bounded assertion map m and b ≥ 0, we
define two special environments U b

m and Ob
m as follows.

U b
m : ΣP �→

∨
{δ ∈ m(P, b′) | b′ ≤ b} Ob

m : ΣP �→
∧
{δ ∈ m(P, b′) | b′ ≥ b}

We use U b
m and Ob

m to under- and over-approximate the bounded semantics. For
convenience, let U−1

m and O−1
m be environments that map every symbol to ⊥.

4 Model Checking Recursive Programs

In this section, we present our algorithm RecMC(A, ϕsafe) that determines
whether a program A satisfies a safety property ϕsafe . Let S be the signature
of the first-order language under consideration and assume a fixed S-theory
Th. To avoid clutter, we drop the subscript Th from the notation |=Th and
|=b,Th . We also establish the soundness and complexity of RecMC. An efficient
instantiation of RecMC to Linear Arithmetic is presented in Section 5.

Main Loop. RecMC maintains two bounded assertion maps ρ and σ for reach-
ability and summary facts, respectively. For brevity, for a first-order formula
τ , we write �τ�bρ and �τ�bσ to denote �τ�Ub

ρ
and �τ�Ob

σ
, respectively, where the

environments U b
ρ and Ob

σ are as defined in Section 3. Intuitively, �τ�bρ and �τ�bσ ,
respectively, under- and over-approximate τ using ρ and σ.

The pseudo-code of the main loop of RecMC (corresponding to the flow dia-
gram in Fig. 1) is shown in Fig. 5. RecMC follows an iterative deepening
strategy. In each iteration, BndSafety (described below) checks whether all ex-
ecutions of A satisfy ϕsafe for a bound n ≥ 0 on the call-stack, i.e., if M |=n
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RecMC(A, ϕsafe)
1 n ← 0 ; ρ ← ∅ ; σ ← ∅
2 while true do
3 res, ρ, σ ← BndSafety(A, ϕsafe , n, ρ, σ)
4 if res is UNSAFE then
5 return UNSAFE, ρ

else
6 ind , σ ← CheckInductive(A, σ, n)
7 if ind then
8 return SAFE, σ

9 n ← n+ 1

CheckInductive(A, σ, n)
10 ind ← true
11 foreach P ∈ A do
12 foreach δ ∈ σ(P, n) do
13 if |= �βP �nσ ⇒ δ then
14 σ ← σ ∪ (〈P, n+ 1〉 �→ δ)

else
15 ind ← false

16 return (ind , σ)

Fig. 5. Pseudo-code of RecMC

ϕsafe . BndSafety also updates the maps ρ and σ. Whenever BndSafety re-
turns UNSAFE , the reachability facts in ρ are sufficient to construct a counterex-
ample and the loop terminates. Whenever BndSafety returns SAFE , the sum-
mary facts in σ are sufficient to prove the absence of a counterexample for the cur-
rent bound n on the call-stack. In this case, if σ is also inductive, as determined by
CheckInductive, On

σ is a safety proof and the loop terminates. Otherwise, the
bound on the call-stack is incremented and a new iteration of the loop begins. Note
that, as a side-effect of CheckInductive, some summary facts are propagated
to the bound n+ 1. This is similar to push generalization in IC3 [9].

Bounded Safety. We describe the routine BndSafety(A, ϕsafe , n, ρInit , σInit )
as an abstract transition system [34] defined by the inference rules shown in
Fig. 6. Here, n is the current bound on the call-stack and ρInit and σInit are
the maps of reachability and summary facts input to the routine. A state of
BndSafety is a triple Q ‖ ρ ‖ σ, where ρ and σ are the current maps and Q is
a set of triples 〈P, ϕ, b〉 for a procedure P , a formula ϕ over vP , and a number
b ≥ 0. A triple 〈P, ϕ, b〉 ∈ Q is called a bounded reachability query and asks
whether P �|=b ¬ϕ, i.e., whether there is an execution in P using a call-stack
bounded by b where the values of vP satisfy ϕ.

BndSafety starts with a single query 〈M,¬ϕsafe , n〉 and initializes the maps
of reachability and summary facts (rule Init). It checks whether M |=n ϕsafe by
inferring new summary and reachability facts to answer existing queries (rules
Sum and Reach) and generating new queries (rule Query). When there are
no queries left to answer, i.e., Q is empty, it terminates with a result of either
UNSAFE or SAFE (rules Unsafe and Safe).

Sum infers a new summary fact when a query 〈P, ϕ, b〉 can be answered
negatively. In this case, there is an over-approximation of the bounded se-
mantics of P at b, obtained using the summary facts of callees at bound b −
1, that is unsatisfiable with ϕ. That is, |= �βP �b−1

σ ⇒ ¬ϕ. The inference of
the new fact is by interpolation [16] (denoted by Itp in the side-condition
of the rule). Thus, the new summary fact ψ is a formula over vP such that
|=

(
�βP �b−1

σ ⇒ ψ(vP )
)
∧ (ψ(vP ) ⇒ ¬ϕ). Note that ψ over-approximates the

bounded semantics of P at b. Every query 〈P, η, c〉 ∈ Q such that η is unsat-
isfiable with the updated environment Oc

σ(ΣP ) is immediately answered and
removed.
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Init
{〈M,¬ϕsafe , n〉} ‖ ρInit ‖ σInit

Sum
Q ‖ ρ ‖ σ 〈P,ϕ, b〉 ∈ Q |= �βP �b−1

σ ⇒ ¬ϕ
Q \ {〈P, η, c〉 | c ≤ b, |= �ΣP �cσ ∧ ψ ⇒ ¬η} ‖ ρ ‖ σ ∪ {〈P, b〉 �→ ψ}

where ψ = Itp(�βP �b−1
σ ,¬ϕ)

Reach
Q ‖ ρ ‖ σ 〈P,ϕ, b〉 ∈ Q π ∈ Paths(P ) �|= �π�b−1

ρ ⇒ ¬ϕ
Q \ {〈P, η, c〉 | c ≥ b, �|= ψ ⇒ ¬η} ‖ ρ ∪ {〈P, b〉 �→ ψ} ‖ σ

where ψ = ∃�P · �π�b−1
ρ

Query

Q ‖ ρ ‖ σ 〈P,ϕ, b〉 ∈ Q |= �βP �b−1
ρ ⇒ ¬ϕ π ∈ Paths(P )

π = πu ∧ΣR(a) ∧ πv |= �πu�b−1
σ ∧ �ΣR(a)�

b−1
ρ ∧ �πv�

b−1
ρ ⇒ ¬ϕ

�|= �πu�b−1
σ ∧ �ΣR(a)�

b−1
σ ∧ �πv�

b−1
ρ ⇒ ¬ϕ

Q∪ {〈R,ψ, b− 1〉} ‖ ρ ‖ σ

where

{
ψ =

(
∃
(
vP ∪ �P

)
\ a · �πu�b−1

σ ∧ �πv�
b−1
ρ ∧ ϕ

)
[a← vR]

for all 〈R, η, b− 1〉 ∈ Q, |= ψ ⇒ ¬η

Unsafe
∅ ‖ ρ ‖ σ �|= �ΣM�nρ ⇒ ϕsafe

UNSAFE
Safe

∅ ‖ ρ ‖ σ |= �ΣM�nσ ⇒ ϕsafe

SAFE

Fig. 6. Rules defining BndSafety(A, ϕsafe , n, ρInit , σInit)

Reach infers a new reachability fact when a query 〈P, ϕ, b〉 can be answered
positively. In this case, there is an under-approximation of the bounded semantics
of P at b, obtained using the reachability facts of callees at bound b− 1, that is
satisfiable with ϕ. That is, �|= �βP �b−1

ρ ⇒ ¬ϕ. In particular, there exists a path π

in Paths(P ) such that �|= �π�b−1
ρ ⇒ ¬ϕ. The new reachability fact ψ is obtained

by choosing such a π non-deterministically and existentially quantifying all local
variables from �π�b−1

ρ . Note that ψ under-approximates the bounded semantics
of P at b. Every query 〈P, η, c〉 ∈ Q such that η is satisfiable with the updated
environment U c

ρ(ΣP ) is immediately answered and removed.
Query creates a new query when a query 〈P, ϕ, b〉 cannot be answered using

current ρ and σ. In this case, the current over-approximation of the bounded
semantics of P at b is satisfiable with ϕ while its current under-approximation
is unsatisfiable with ϕ. That is, �|= �βP �b−1

σ ⇒ ¬ϕ and |= �βP �b−1
ρ ⇒ ¬ϕ. In

particular, there exists a path π in Paths(P ) such that �|= �π�b−1
σ ⇒ ¬ϕ and

|= �π�b−1
ρ ⇒ ¬ϕ. Intuitively, π is a potential counterexample path that needs to

be checked for feasibility. Such a π is chosen non-deterministically. π is guaran-
teed to have a call ΣR(a) to a procedure R such that the under-approximation
�ΣR(a)�

b−1
ρ is too strong to witness π but the over-approximation �ΣR(a)�

b−1
σ
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πi �πi�
0
ρ �πi�

0
σ

i = 1 ΣT (m0, �0) ⊥ �
i = 2 ΣD(�0, �1) �1 = �0 − 1 �
i = 3 ΣD(�1,m) m = �1 − 1 �

Fig. 7. Approximations of the only path π of the procedure M in Fig. 3

is too weak to block it. That is, π can be partitioned into a prefix πu, a call
ΣR(a) to R, and a suffix πv such that the following hold:

|= �ΣR(a)�
b−1
ρ ⇒

(
(�πu�b−1

σ ∧ �πv�
b−1
ρ )⇒ ¬ϕ

)
�|= �ΣR(a)�

b−1
σ ⇒

(
(�πu�b−1

σ ∧ �πv�
b−1
ρ )⇒ ¬ϕ

)
Note that the prefix πu and the suffix πv are over- and under-approximated,
respectively. A new query 〈R,ψ, b−1〉 is created where ψ is obtained by existen-
tially quantifying all variables from �πu�b−1

σ ∧ �πv�
b−1
ρ ∧ ϕ except the arguments

a of the call, and renaming appropriately. If the new query is answered nega-
tively (using Sum), all executions along π where the values of vP ∪ �P satisfy
�πv�

b−1
ρ are spurious counterexamples. An additional side-condition requires that

ψ “does not overlap” with η for any other query 〈R, η, b− 1〉 in Q. This is neces-
sary for termination of BndSafety (Theorem 2). In practice, the side-condition
is trivially satisfied by always applying the rule to 〈P, ϕ, b〉 with the smallest b.

For example, consider the program in Fig. 3 represented by (1) and the query
〈M,ϕ, 1〉 where ϕ ≡ m0 < 2m + 4. Let σ = ∅, ρ(D, 0) = {d = d0 − 1} and
ρ(T, 0) = ∅. Let π = (ΣT (m0, �0) ∧ ΣD(�0, �1) ∧ ΣD(�1,m)) denote the only
path in the procedure M . Fig. 7 shows �πi�

0
ρ and �πi�

0
σ for each conjunct πi of

π. As the figure shows, �π�0σ is satisfiable with ϕ, witnessed by the execution
e ≡ 〈m0 = 3, �0 = 3, �1 = 2,m = 1〉. Note that this execution also satisfies
�π2 ∧ π3�

0
ρ. But, �π1�

0
ρ is too strong to witness it, where π1 is the call ΣT (m0, �0).

To create a new query for T , we first existentially quantify all variables other
than the arguments m0 and �0 from π2 ∧ π3 ∧ϕ, obtaining m0 < 2�0. Renaming
the arguments by the parameters of T results in the new query 〈T, t0 < 2t, 0〉.
Further iterations of BndSafety would answer this query negatively making
the execution e spurious. Note that this would also make all other executions
where the values to 〈m0, �0, �1,m〉 satisfy �π2 ∧ π3�

0
ρ spurious.

Soundness and Complexity. Soundness of RecMC follows from that of
BndSafety, which can be shown by a case analysis on the inference rules2.

Theorem 1. BndSafety and RecMC are sound.

BndSafety is complete relative to an oracle for satisfiability modulo Th .
Even though the number of reachable states of a procedure is unbounded in
general, the number of reachability facts inferred by BndSafety is finite. This
is because a reachability fact corresponds to a path (see Reach) and given
a bound on the call-stack, the number of such facts is bounded. This further
bounds the number of queries that can be created.
2 Proofs of all of the theorems can be found in the extended version of the paper [28].
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Theorem 2. Given an oracle for Th, BndSafety(A, ϕ, n, ∅, ∅) terminates.

As a corollary of Theorem 2, RecMC is a co-semidecision procedure for safety,
i.e., RecMC is guaranteed to find a counterexample if one exists. In contrast,
the closest related algorithm GPDR [27] is not a co-semidecision procedure [28].
Finally, for Boolean Programs RecMC is a complete decision procedure. Unlike
the general case, the number of reachable states of a Boolean Program, and
hence the number of reachability facts, is finite and independent of the bound
on the call-stack. Let N = |A| and k = max{|vP | | P ∈ A}.

Theorem 3. Let A be a Boolean Program. Then RecMC(A, ϕ) terminates in
O(N2 · 22k)-many applications of the rules in Fig. 6.

Note that due to the iterative deepening strategy of RecMC, the complexity
is quadratic in the number of procedures (and not linear as in [6]). In contrast,
other SMT-based algorithms, such as Whale [2], are worst-case exponential in
the number of states of a Boolean Program.

In summary, RecMC checks safety of a recursive program by inferring the nec-
essary under- and over-approximations of procedure semantics and using them
to analyze procedures individually.

5 Model Based Projection

RecMC, as presented in Section 4, can be used as-is, when Th is Linear Arith-
metic. But, note that the rulesReach andQuery introduce existential quantifiers
in reachability facts and queries. Unless eliminated, these quantifiers accumulate
and the size of the formulas grows exponentially in the bound on the call-stack.
Eliminating them using quantifier elimination (QE) is expensive. Instead, we sug-
gest an alternative approach that under-approximates existential quantification
with quantifier-free formulas lazily and efficiently.Wefirst introduce amodel-based
under-approximation of QE, called Model Based Projection (MBP). Second, we
give an efficient (linear in the size of formulas involved) MBP procedure for Lin-
ear Rational Arithmetic (LRA). Due to space limitations, MBP for Linear Integer
Arithmetic (LIA) is described in the extended version [28]. Finally, we show a mod-
ified version of BndSafety that uses MBP instead of existential quantification
and show that it is sound and terminating.

Model Based Projection (MBP). Let λ(y) be the existentially quantified for-
mula ∃x · λm(x, y) where λm is quantifier free. A function Proj λ from models
(modulo Th) of λm to quantifier-free formulas over y is a Model Based Projection
(for λ) iff it has a finite image, λ ≡

∨
M|=λm

Proj λ(M), and for every model M
of λm, M |= Proj λ(M).

In other words, Proj λ covers the space of all models of λm(x, y) by a finite
set of quantifier-free formulas over y. MBP exists for any theory that admits
quantifier elimination, because one can first obtain an equivalent quantifier-free
formula and map every model to it.
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MBP for Linear Rational Arithmetic. We begin with a brief overview
of Loos-Weispfenning (LW) method [31] for quantifier elimination in LRA. We
borrow our presentation from Nipkow [35] to which we refer the reader for more
details. Let λ(y) = ∃x · λm(x, y) as above. Without loss of generality, assume
that x is singleton, λm is in Negation Normal Form, and x only appears in the
literals of the form � < x, x < u, and x = e, where �, u, and e are x-free. Let
lits(λ) denote the literals of λ. The LW-method states that

∃x · λm(x) ≡

⎛⎝ ∨
(x=e)∈lits(λ)

λm[e] ∨
∨

(�<x)∈lits(λ)

λm[�+ ε] ∨ λm[−∞]

⎞⎠ (2)

where λm[·] denotes a virtual substitution for the literals containing x. Intuitively,
λm[e] covers the case when a literal (x = e) is true. Otherwise, the set of �’s in
the literals (� < x) identify intervals in which x can lie which are covered by
the remaining substitutions. We omit the details of the substitution and instead
illustrate it on an example. Let λm be (x = e∧φ1)∨(� < x∧x < u)∨(x < u∧φ2),
where �, e, u, φ1, φ2 are x-free. Then,

∃x · λm(x) ≡ λm[e] ∨ λm[�+ ε] ∨ λm[−∞]

≡
(
φ1 ∨ (� < e ∧ e < u) ∨ (e < u ∧ φ2)

)
∨
(
� < u ∨ (� < u ∧ φ2)

)
∨ φ2

≡ φ1 ∨ (� < u) ∨ φ2

We now define an MBP LRAProj λ for LRA as a map from models of λm
to disjuncts in (2). Given M |= λm, LRAProj λ picks a disjunct that covers
M based on values of the literals of the form x = e and � < x in M . Ties
are broken by a syntactic ordering on terms (e.g., when M |= �′ = � for two
literals � < x and �′ < x).

LRAProjλ(M) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λm[e], if (x = e) ∈ lits(λ) ∧M |= x = e

λm[� + ε], else if (� < x) ∈ lits(λ) ∧M |= � < x ∧
∀(�′ < x) ∈ lits(λ) ·M |= ((�′ < x)⇒ (�′ ≤ �))

λm[−∞], otherwise

Theorem 4. LRAProjλ is a Model Based Projection.

Note that LRAProjλ is linear in the size of λ. An MBP for LIA can be defined
similarly [28] based on Cooper’s method [15].

Bounded Safety with MBP. Intuitively, each quantifier-free formula in the
image of Proj λ under-approximates λ. As above, we use λm for the quantifier-
free matrix of λ. We modify the side-condition ψ = λ of Reach and Query

to use quantifier-free under-approximations as follows: (i) for Reach, the new
side-condition is ψ = Proj λ(M) where M |= λm ∧ ϕ, (ii) for Query, the new
side-condition is ψ = Proj λ(M) where M |= λm ∧ �ΣR(a)�

b−1
σ . Note that to

avoid redundant applications of the rules, we require M to satisfy a formula
stronger than λm. Intuitively, (i) ensures that the newly inferred reachability
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Slam Svcomp-1 Svcomp-2 Svcomp-3

SAFE UNSAFE SAFE UNSAFE SAFE UNSAFE SAFE UNSAFE
Spacer 1,721 985 249 509 213 497 234 482
Z3 1,722 997 245 509 208 493 234 477
VBS 1,727 998 252 509 225 500 240 482

Fig. 8. Number of programs verified by Spacer, Z3 and the Virtual Best Solver

fact answers the current query and (ii) ensures that the new query cannot be
immediately answered by known facts. In both cases, the required model M can
be obtained as a side-effect of discharging the premises of the rules. Soundness
of BndSafety is unaffected and termination of BndSafety follows from the
image-finiteness of Proj λ.

Theorem 5. Assuming an oracle and an MBP for Th, BndSafety is sound
and terminating with the modified rules.

Thus, BndSafety with a linear-time MBP (such as LRAProjλ) keeps the
size of the formulas small by efficiently inferring only the necessary under-
approximations of the quantified formulas.

6 Implementation and Experiments

We have implemented RecMC for analyzing C programs as part of the tool
Spacer. The back-end is based on Z3 [18] which is used for SMT-solving and
interpolation. It supports propositional logic, linear arithmetic, and bit-vectors
(via bit-blasting). The front-end is based on UFO [3]. It converts C programs to
the Horn-SMT format of Z3, which corresponds to the logical program represen-
tation of Section 3. The implementation and benchmarks are available online3.

We evaluated Spacer on two sets of benchmarks. The first set contains 2,908
Boolean Programs obtained from the SLAM toolkit4. The second contains 799
C programs from the Software Verification Competition (SVCOMP) 2014 [38].
We call this set Svcomp-1. We also evaluated on two variants of Svcomp-1,
which we call Svcomp-2 and Svcomp-3, obtained by factoring out parts of
the program into procedures and introducing more modularity. We compared
Spacer against the implementation of GPDR in Z3. We used a time limit of
30 minutes and a memory limit of 16GB, on an Ubuntu machine with a 2.2
GHz AMD Opteron(TM) Processor 6174 and 516GB RAM. The results are
summarized in Fig. 8. Since there are programs verified by only one of the tools,
Fig. 8 also reports the number of programs verified by at least one, i.e., the
Virtual Best Solver (VBS).

Boolean Program Benchmarks. On most of the SLAM benchmarks, the
runtimes of Spacer and Z3 are similar (within 2 minutes). We then evaluated on
a Boolean Program from [6] in which the size of the call-tree grows exponentially
3 http://www.cs.cmu.edu/~akomurav/projects/spacer/home.html
4 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/BOOL/
slam.zip

http://www.cs.cmu.edu/~akomurav/projects/spacer/home.html
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/BOOL/slam.zip
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/BOOL/slam.zip
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Fig. 9. Spacer vs. Z3 for (a) Bebop example and (b) Svcomp-1 benchmarks
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Fig. 10. Spacer vs. Z3 for the benchmarks (a) Svcomp-2 and (b) Svcomp-3

in the number of procedures. As Fig. 9(a) shows, Spacer handles the increasing
complexity in the example significantly better than Z3.

SVCOMP 2014 Benchmarks. Fig. 9(b), 10(a) and 10(b) show the scatter
plots for Svcomp-1, Svcomp-2 and Svcomp-3 benchmarks. A diamond indi-
cates a time-out and a star indicates a mem-out. The plots show that Spacer is
significantly better on most of the programs. This shows the practical advantage
of the approximations and MBP of RecMC.

7 Related Work

There is a large body of work on interprocedural program analysis. It was
pointed out early on that verification of recursive programs is reducible to the
computation of a fixed-point over relations (called summaries) representing the
input-output behavior of each procedure [11,37]. Such procedure summaries are
called partial correctness relations in [11], and are part of the functional approach
of [37]. Reps, Horwitz, and Sagiv [36] showed that for a large class of finite inter-
procedural dataflow problems the summaries can be computed in time polyno-
mial in the number of facts and procedures. Ball and Rajamani [6] adapted the
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RHS algorithm to the verification of Boolean Programs. Following the SLAM
project, other software model checkers – such as blast [26] and magic [10]
– also implemented the CEGAR loop with predicate abstraction. None used
under-approximations of procedure semantics as we do.

Recently, several SMT-based algorithms have been proposed for safety ver-
ification of recursive programs, including Whale [2], HSF [21], Duality [33],
Ultimate Automizer [24], and Corral [30]. While these algorithms have been de-
veloped independently, they share a similar structure. They use SMT-solvers
to look for counterexamples and interpolation to over-approximate summaries.
Corral is an exception, which relies on user input and heuristics to supply the
summaries. The algorithms differ in the SMT encoding and the heuristics used.
However, in the worst-case, they completely unroll the call graph into a tree.

The work closest to ours is Generalized Property Driven Reachability (GPDR)
of Hoder and Bjørner [27]. GPDR extends the hardware model checking algo-
rithm IC3 of Bradley [9] to SMT-supported theories and recursive programs.
Unlike RecMC, GPDR does not maintain reachability facts. In the context of
Fig. 6, this means that ρ is always empty and there is no Reach rule. Instead,
the Query rule is modified to use a model M that satisfies the premises (instead
of our use of the path π when creating a query). Furthermore, the answers to
the queries are cached. In the context of Boolean Programs, this ensures that
every query is asked at most once (and either cached or blocked by a summary
fact). Since there are only finitely many models, the algorithm always termi-
nates. However, in the case of Linear Arithmetic, a formula can have infinitely
many models and GPDR might end up applying the Query rule indefinitely. In
contrast, RecMC creates only finitely many queries for a given bound on the
call-stack and is guaranteed to find a counterexample if one exists.

Combination of over- and under-approximations for analysis of procedural
programs has also been explored in [23,20]. However, our notion of an under-
approximation is very different. Both [23,20] under-approximate summaries by
must transitions. A must transition is a pair of formulas 〈ϕ, ψ〉 that under-
approximates the summary of a procedure P iff for every state that satisfies ϕ,
P has an execution that ends in a state satisfying ψ. In contrast, our reachability
facts are similar to summary edges of RHS [36]. A reachability fact is a single
formula ϕ such that every satisfying assignment to ϕ captures a terminating
execution of P .

8 Conclusion

We presented RecMC, a new SMT-based algorithm for model checking safety
properties of recursive programs. For programs and properties over decidable
theories, RecMC is guaranteed to find a counterexample if one exists. To our
knowledge, this is the first SMT-based algorithm with such a guarantee while
being polynomial for Boolean Programs. The key idea is to use a combination
of under- and over-approximations of the semantics of procedures, avoiding re-
exploration of parts of the state-space. We described an efficient instantiation
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of RecMC for Linear Arithmetic (over rationals and integers) by introducing
Model-Based Projection to under-approximate the expensive quantifier elimina-
tion. We have implemented it in our tool Spacer and shown empirical evidence
that it significantly improves on the state-of-the-art.

In the future, we would like to explore extensions to other theories. Of par-
ticular interest are the theory EUF of uninterpreted functions with equality and
the theory of arrays. The challenge is to deal with the lack of quantifier elim-
ination. Another direction of interest is to combine RecMC with Proof-based
Abstraction [32,22,29] to explore a combination of the approximations of proce-
dure semantics with transition-relation abstraction.
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Abstract. This paper addresses the problem of automatically generating quan-
tified invariants for programs that manipulate singly and doubly linked-list data
structures. Our algorithm is property-directed—i.e., its choices are driven by the
properties to be proven. The algorithm is able to establish that a correct pro-
gram has no memory-safety violations—e.g., null-pointer dereferences, double
frees—and that data-structure invariants are preserved. For programs with errors,
the algorithm produces concrete counterexamples.

More broadly, the paper describes how to integrate IC3 with full predicate
abstraction. The analysis method is complete in the following sense: if an induc-
tive invariant that proves that the program satisfies a given property is expressible
as a Boolean combination of a given set of predicates, then the analysis will find
such an invariant. To the best of our knowledge, this method represents the first
shape-analysis algorithm that is capable of (i) reporting concrete counterexam-
ples, or alternatively (ii) establishing that the predicates in use are not capable of
proving the property in question.

1 Introduction

The goal of our work is to automatically generate quantified invariants for programs that
manipulate singly-linked and doubly-linked list data structures. For a correct program,
the invariant generated ensures that the program has no memory-safety violations, such
as null-pointer dereferences, and that data-structure invariants are preserved. For a pro-
gram in which it is possible to have a memory-safety violation or for a data-structure
invariant to be violated, the algorithm produces a concrete counterexample. Although
in this paper we mainly discuss memory-safety properties and data-structure invariants,
the technique can be easily extended to other correctness properties (see §5).

To the best of our knowledge, our method represents the first shape-analysis algo-
rithm that is capable of (i) reporting concrete counterexamples, or alternatively (ii) es-
tablishing that the abstraction in use is not capable of proving the property in question.
This result is achieved by combining several existing ideas in a new way:

– The algorithm uses a predicate-abstraction domain [12] in which quantified pred-
icates express properties of singly and doubly linked lists. In contrast to most re-
cent work, which uses restricted forms of predicate abstraction—such as Cartesian
abstraction [1]—our algorithm uses full predicate abstraction (i.e., the abstraction
uses arbitrary Boolean combinations of predicates).
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– The abstraction predicates and language semantics are expressed in recently devel-
oped reachability logics, AFR and EAR, respectively, which are decidable using a
reduction to SAT [17].

– The algorithm is property-directed—i.e., its choices are driven by the memory-
safety properties to be proven. In particular, the algorithm is based on IC3 [3],
which we here refer to as property-directed reachability (PDR).

PDR integrates well with full predicate abstraction: in effect, the analysis obtains the
same precision as the best abstract transformer for full predicate abstraction, without
ever constructing the transformers explicitly. In particular, we cast PDR as a framework
that is parameterized on

– the logic L in which the semantics of program statements are expressed, and

– the finite set of predicates that define the abstract domain A in which invariants
can be expressed. An element of A is an arbitrary Boolean combination of the
predicates.

Furthermore, our PDR framework is relatively complete with respect to the given ab-
straction. That is, the analysis is guaranteed to terminate and either (i) verifies the given
property, (ii) generates a concrete counterexample to the given property, or (iii) reports
that the abstract domain is not expressive enough to establish the proof. Outcome (ii)
is possible because the “frame” structure maintained during PDR can be used to build
a trace formula; if the formula is satisfiable, the model can be presented to the user as
a concrete counterexample. Moreover, if the analysis fails to prove the property or find
a concrete counterexample (outcome (iii)), then there is no way to express an inductive
invariant that establishes the property in question using a Boolean combination of the
abstraction predicates. Note that outcome (iii) is a much stronger guarantee than what
other approaches provide in such cases when they neither succeed nor give a concrete
counterexample.

Key to instantiating the PDR framework for shape analysis was a recent development
of the AFR and EAR logics for expressing properties of linked lists [17]. AFR is used
to define abstraction predicates, and EAR is used to express the language semantics.
AFR is a decidable, alternation-free fragment of first-order logic with transitive closure
(FOTC). When applied to list-manipulation programs, atomic formulas of AFR can de-
note reachability relations between memory locations pointed to by pointer variables,
where reachability corresponds to repeated dereferences of next or prev fields. One ad-
vantage of AFR is that it does not require any special-purpose reasoning machinery: an
AFR formula can be converted to a formula in “effectively propositional” logic, which
can be reduced to SAT solving. That is, in contrast to much previous work on shape
analysis, our method makes use of a general purpose SMT solver, Z3 [5] (rather than
specialized tools developed for reasoning about linked data structures, e.g., [25,6,2,11]).

The main restriction in AFR is that it allows the use of a relation symbol f ∗ that
denotes the transitive closure of a function symbol f , but only limited use of f itself.
Although this restriction can be somewhat awkward, it is mainly a concern for the
analysis designer (and the details have already been worked out in [17]). As a language
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Table 1. Predicates for expressing various properties of linked lists whose elements hold data val-
ues. x and y denote program variables that point to list elements or null. f and b are parameters
that denote pointer fields. (The mnemonics are referred to in Table 6.).

Name Description Mnemonic
x = y equality
x 〈f 〉y x->f = y
x 〈f ∗〉y an f path from x to y
f .ls [x , y] unshared f linked-list segment between x and y
alloc(x ) x points to an allocated element St
f .stable(h) any f -path from h leads to an allocated element St
f /b.rev [x , y] reversed f /b linked-list segment between x and y R
f .sorted [x , y] sorted f list segment between x and y S

for expressing invariants, AFR provides a fairly natural abstraction, which means that
analysis results should be understandable by non-experts (see §2).1

Our work represents the first algorithm for shape analysis that either (i) succeeds,
(ii) returns a concrete counterexample, or (iii) returns an abstract trace showing that
the abstraction in use is not capable of proving the property in question. The specific
contributions of our work include

– A framework, based on the PDR algorithm, for finding an inductive invariant in
a certain logic fragment (abstract domain) that allows one to prove that a given
pre-/post-condition holds or find a concrete counter-example to the property, or, in
the case of a negative result, the information that there is no inductive invariant
expressible in the abstract domain (§3).

– An instantiation of the framework for finding invariants of programs that manip-
ulate singly-linked or doubly-linked lists. This instantiation uses AFR to define a
simple predicate-abstraction domain, and is the first application of PDR to establish
quantified invariants of programs that manipulate linked lists (§4).

– An empirical evaluation showing the efficacy of the PDR framework for a set of
linked-list programs (§5).

2 A Motivating Example
To illustrate the analysis, we use the procedure insert, shown in Fig. 1, that inserts
a new element pointed to by e into the non-empty, singly-linked list pointed to by h.
insert is annotated with a pre-condition and a post-condition.

Table 1 shows a set of predicates for expressing properties of linked lists whose ele-
ments hold data values. The predicates above the horizontal line in Table 1 are inspired
by earlier work on shape analysis [13] and separation logic [24].

Given an input procedure, optionally annotated with a pre-condition Pre and post-
condition Post (expressed as formulas over the same vocabulary of predicates); the goal

1 By a “non-expert”, we mean someone who has no knowledge of either the analysis algorithm,
or the abstraction techniques used inside the algorithm.
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void insert(List e, List h, List x) {
Requires: h �= null ∧ h〈n+〉x ∧ x〈n∗〉null ∧ e �= null ∧ e〈n〉null ∧ ¬h〈n∗〉e
Ensures: h �= null ∧ h〈n∗〉e ∧ e〈n〉x ∧ x〈n∗〉null
p = h;
q = null;
while (p != x && p != null) {
q = p;
p = p->n;

}
q->n = e;
e->n = p;

}

Fig. 1. A procedure to insert the element pointed to by e into the non-empty, singly-linked list
pointed by h

of the analysis is to compute an invariant for the head of each loop2 expressed as a CNF
formula over the predicates given in Table 1 (and their negations).

The task is not trivial because (i) a loop invariant may be more complex than a pro-
gram’s pre-condition or post-condition, and (ii) it is infeasible to enumerate all the po-
tential invariants expressible as CNF formulas over the predicates shown in Table 1. For
instance, there are 6 variables in insert (including null), and hence 26×6×6 clauses
can be created from the 36 possible instantiations of each of the 6 binary predicates in
Table 1. Therefore, the number of candidate invariants that can be formulated with these
predicates is more than 22

6×6×6

. It would be infeasible to investigate them all explicitly.
Our analysis algorithm is based on property-directed reachability [3]. It starts with

the trivial invariant true, which is repeatedly refined until it becomes inductive.3 On
each iteration, a concrete counterexample to inductiveness is used to refine the invariant
by excluding predicates that are implied by that counterexample.

When applied to the procedure in Fig. 1, our analysis algorithm terminated in about
24 seconds, and inferred the following 13-clause loop invariant:

q �= e ∧ (h〈n∗〉x ∧ p = x → h〈n∗〉q) ∧ (p = x → q〈n〉p)
∧ (¬e〈n〉e) ∧ (q〈n∗〉p → q〈n〉p) ∧ (h〈n∗〉p ∨ p = null)
∧ (e〈n〉null) ∧ (x = null ∨ p〈n∗〉x) ∧ (q �= x ∨ p �= null)
∧ ¬h〈n∗〉e ∧ (p = null→ h〈n∗〉q) ∧ (p = q ∨ q〈n〉p)

∧ (h〈n∗〉q ∧ h〈n∗〉x → h〈n〉q ∨ q〈n∗〉x)

(1)

This loop invariant also guarantees that the code is memory safe. It is also possible
to apply the analysis to infer sufficient conditions for memory safety using true post-
conditions.

Our analysis is also capable of finding concrete counterexamples when the proce-
dure violates the specification. For example, when the conjunct “x �= h” is added to

2 The current implementation supports procedures with only a single loop; however, this restric-
tion is not an essential limitation of our technique.

3 An invariant I is inductive at the entry to a loop if whenever the code of the loop body is
executed on an arbitrary state that satisfies both I and the loop condition, the result is a state
that satisfies I .
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null e q h p x

v1 v2 v3 v4 v5 v6 v7v0

(a)

null e q h p x

v1 v2 v3 v4 v5 v6 v7v0

(b)

Fig. 2. A two-state counterexample trace obtained from the algorithm when it is applied to a
version of Fig. 1 in which the conjunct x �= h was added to the precondition and e �= null was
removed. (a) First state at the loop head; (b) second state at the loop head, at which point the loop
exits, and a null-dereference violation subsequently occurs.

Algorithm 1: PDRA(Init, ρ,Bad)

1 R[−1] := false
2 R[0] := true
3 N := 0
4 while true do
5 if there exists 0 ≤ i < N

such that R[i ] = R[i +1]
then

6 return valid
7 (r ,A) := CheckA(Bad,R[N ])
8 if r = unsat then
9 N := N + 1

10 R[N ] := true

11 else
12 reduceA(N ,A)

Algorithm 2: reduceA(j ,A)
1 (r ,A1) := CheckA(Init,A)
2 if r = sat then
3 σ := Model(Init ∧ ρN−j ∧ (Bad)′×(N−j)

)
4 if σ is None then error “abstraction failure”
5 else error “concrete counterexample(σ)”
6 while true do
7 (r ,A2) :=
8 CheckA((Init)′ ∨ (R[j − 1] ∧ ρ), (A)′)
9 if r = unsat then break

10 else reduceA(j − 1,A2)

11 for i = 0 . . . j do
12 R[i ] := R[i ] ∧ (¬A1 ∨ ¬A2)

the precondition in Fig. 1 and “e �= null” is removed, the algorithm returns the coun-
terexample trace shown in Fig. 2. Not surprisingly, e is null in the first state at the
loop head (Fig. 1(a)). The loop body executes once, at which point we reach the loop
head in the state shown in Fig. 1(b). The loop then exits, and there is a null-dereference
violation on e in the statement e->next = p.

3 Property-Directed Reachability

In this section, we present an adaptation of the IC3 algorithm that uses predicate ab-
straction. In this paper, by predicate abstraction we mean the technique that performs
verification using a given fixed set of abstraction predicates [9], and not techniques
that incorporate automatic refinement of the abstraction predicates; e.g. CEGAR. The
PDR algorithm shown in Alg. 1 is parameterized by a given finite set of predicates P
expressed in a logic L. The requirements on the logic L are:

R1 L is decidable (for satisfiability).
R2 The transition relation for each statement of the programming language can be

expressed as a two-vocabulary L formula.
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Then for a particular program, we are given:

– A finite set of predicates P = {pi ∈ L}, 1 ≤ i ≤ n .
– The transition relation of the system as a two-vocabulary formula ρ ∈ L.
– The initial condition of the system, Init ∈ L.
– The formula specifying the set of bad states, Bad ∈ L.

Let A be the full predicate abstraction domain over the predicates P . That is, each
element A ∈ A is an arbitrary Boolean combination of the predicates P . A ∈ A is
inductive with respect to Init and ρ if and only if Init → A and A ∧ ρ → (A)′. (ϕ)′

renames the vocabulary of constant symbols and relation symbols occurring in ϕ from
{c, . . . , r , . . .} to {c′, . . . , r ′, . . .}. ϕ is (ϕ)′ stripped of primes.

If the logic L is propositional logic, then Alg. 1 is an instance of IC3 [3]. Our pre-
sentation is a simplification of more advanced variants [3,7,14]. For instance, the pre-
sentation omits inductive generalization, although our implementation does implement
inductive generalization (see §5). Furthermore, this simplified presentation brings out
the fact that the PDR algorithm is really an analysis framework that is parameterized on
the set of abstraction predicates P .

The algorithm employs an unbounded array R, where each frame R[i ] ∈ A over-
approximates the set of concrete states after executing the loop at most i times. The
algorithm maintains an integer N , called the frame counter, such that the following
invariants hold for all 0 ≤ i < N :

1. Init is a subset of all R[i ], i.e., Init→ R[i ].
2. The safety requirements are satisfied, i.e., R[i ]→ ¬Bad.
3. Each of the R[i + 1] includes the states in R[i ], i.e., R[i ]→ R[i + 1].
4. The successors of R[i ] are included in R[i + 1], i.e., for all σ, σ′ if σ |= R[i ] and
〈σ, σ′〉 |= ρ, then σ′ |= R[i + 1].

We illustrate the workings of the algorithm using a simple example, after which we
explain the algorithm in detail.

Example 1. Consider the program while (x != y) x = x.n; with precondi-
tion Init

def
= y �= null ∧ x 〈n+〉y . We wish to prove absence of null-dereference; that

is, Bad
def
= x �= y ∧ x = null.

Table 2 shows a trace of PDR running with this input; each line represents a SAT
query carried out by PDRA (line 7) or by reduceA (line 8). At each stage, if the result
(r ) is “unsat”, then either we unfold one more loop iteration (N := N + 1) or we
learn a new clause to add to R[j ] of the previous step, as marked by the “↗” symbol.
If the result is “sat”, the resulting model is used to further refine an earlier clause by
recursively calling reduceA.

On the first row, we start with R[0] = true, so definitely R[0]∧Bad is satisfiable, for
example with a model where x = y = null. The algorithm checks if this model repre-
sents a reachable state at iteration 0 (see the second row), and indeed it is not—the result
is “unsat” and the unsat-core is y = null (Init∧y = null is not satisfiable). Therefore, we
infer the negation, y �= null, and add that to R[0]. The algorithm progresses in the same
manner—e.g., after two more lines, R[0] = (y �= null∧x �= null), and so on. Eventually,
the loop terminates when R[i ] = R[i + 1] for some i ; in this example, the algorithm
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Table 2. Example run with Init
def
= y �= null ∧ x〈n+〉y , Bad

def
= x �= y ∧ x = null, and ρ

def
= (x ′ =

n(x)). The output invariant is I := x〈n∗〉y .

j Formula Model A := βA(Model ) Inferred

0 R[0] ∧ Bad (null, 1) 1 �→ null A := x = null ∧ x �= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x �= null

−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ↗
0 R[0] ∧ Bad unsat
1 R[1] ∧ Bad (null, 1) 1 �→ null A := x = null ∧ x �= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x −
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 1) 1 �→ null A := x = y �= null ∧ x 〈n∗〉y ∧ y〈n∗〉x x �= y
−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ↗
1 R[1] ∧ Bad (null, 1) 1 �→ null A := x = null ∧ x �= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x −
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 2) 1, 2 �→ null A := x �= y ∧ x , y �= null ∧ ¬x 〈n∗〉y ∧ ¬y〈n∗〉x x 〈n∗〉y
−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ↗
1 R[1] ∧ Bad (null, 1) 1 �→ null A := x = null ∧ x �= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 〈n∗〉y
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ unsat ↗
1 R[1] ∧ Bad unsat
2 R[2] ∧ Bad (null, 1) 1 �→ null A := x = null ∧ x �= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 〈n∗〉y
1 ((Init)′ ∨ (R[1] ∧ ρ)) ∧ (A)′ unsat ↗
R[1] = R[2] valid

terminates because R[1] = R[2]. The resulting invariant is R[2] ≡ (y �= null∧x 〈n∗〉y),
a slight generalization of Pre in this case. ��

Some terminology used in the PDR algorithm:

– Model(ϕ) returns a model σ satisfying ϕ if it exists, and None if it doesn’t.
– The abstraction of a model σ, denoted by βA(σ), is the cube of predicates from P

that hold in σ: βA(σ) =
∧
{p | σ |= p, p ∈ P} ∧

∧
{¬q | σ |= ¬q, q ∈ P}.

– Let ϕ ∈ L is a formula in the unprimed vocabulary, A ∈ A is a value in the
unprimed or primed vocabulary. CheckA(ϕ,A) returns a pair (r ,A1) such that
• if ϕ∧A is satisfiable, then r = sat and A1 is the abstraction of a concrete state

in the unprimed vocabulary. That is, if the given A is in the unprimed vocabu-
lary, then βA(σ) for some σ |= ϕ ∧ A; else if A is in the primed vocabulary,
then A1 = βA(σ) for some (σ, σ′) |= ϕ ∧ A.
• if ϕ ∧ A is unsatisfiable, then r = unsat, and A1 is a predicate such that
A→ A1 and ϕ ∧ A1 is unsatisfiable. The vocabulary of A1 is the same as that
of A. If A is in the primed vocabulary (as in line 8 of Alg. 2), CheckA drops
the primes from A1 before returning the value.

A valid choice for A1 in the unsatisfiable case would be A1 = A (and indeed the
algorithm would still be correct), but ideally A1 should be the weakest such pred-
icate. For instance, CheckA(false,A) should return (unsat, true). In practice,
when ϕ ∧ A is unsatisfiable, the A1 returned is an unsat core of ϕ ∧ A constructed
exclusively from conjuncts of A. Such an unsat core is a Boolean combination of
predicates in P , and thus is an element of A.

We now give a more detailed explanation of Alg. 1. Each R[i ], i ≥ 0 is initialized
to true (lines 2 and 10), and R[−1] is false. N is initialized to 0 (line 3). At line 5,
the algorithm checks whether R[i ] = R[i + 1] for some 0 ≤ i < N . If true, then an
inductive invariant proving unreachability of Bad has been found, and the algorithm
returns valid (line 6).
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At line 7, the algorithm checks whetherR[N ]∧Bad is satisfiable. If it is unsatisfiable,
it means that R[N ] excludes the states described by Bad, and the frame counter N is
incremented (line 9). Otherwise,A ∈ A represents an abstract state that satisfies R[N ]∧
Bad. PDR then attempts to reduce R[N ] to try and exclude this abstract counterexample
by calling reduceA(N ,A) (line 12).

The reduce algorithm (Alg. 2) takes as input an integer j , 0 ≤ j ≤ N , and an abstract
state A ∈ A such that there is a path starting from A of length N − j that reaches Bad.
Alg. 2 tries to strengthen R[j ] so as to exclude A. At line 1, reduce first checks whether
Init ∧ A is satisfiable. If it is satisfiable, then there is an abstract trace of length N − j
from Init to Bad, using the transition relation ρ. The call to Model at line 3 checks
whether there exists a concrete model corresponding to the abstract counterexample.
ρk denotes k unfoldings of the transition relation ρ; ρ0 is true. (Bad)′×k denotes k
applications of the renaming operation (·)′ to Bad. If no such concrete model is found,
then the abstraction was not precise enough to prove the required property (line 4);
otherwise, a concrete counterexample to the property is returned (line 5).

Now consider the case when Init ∧ A is unsatisfiable on line 1. A1 ∈ A returned by
the call to CheckA is such that Init ∧A1 is unsatisfiable; that is, Init→ ¬A1.

The while-loop on lines 6–10 checks whether the (N − j )-length path to Bad can
be extended backward to an (N − j + 1)-length path. In particular, it checks whether
R[j − 1] ∧ ρ ∧ (A)′ is satisfiable. If it is satisfiable, then the algorithm calls reduce
recursively on j − 1 and A2 (line 10). If no such backward extension is possible, the
algorithm exits the while loop (line 9). Note that if j = 0, CheckA(R[j − 1] ∧ ρ,A)
returns (unsat, true), because R[−1] is set to false.

The conjunction of (¬A1 ∨ ¬A2) to R[i ], 0 ≤ i ≤ j , in the loop on lines 11–12
eliminates abstract counterexample A while preserving the required invariants on R.
In particular, the invariant Init → R[i ] is maintained because Init → ¬A1, and hence
Init→ (R[i ]∧(¬A1∨¬A2)). Furthermore,A2 is the abstract state from which there is a
(spurious) path of length N − j to Bad. By the properties of CheckA, ¬A1 and ¬A2 are
each disjoint from A, and hence (¬A1 ∨¬A2) is also disjoint from A. Thus, conjoining
(¬A1 ∨ ¬A2) to R[i ], 0 ≤ i ≤ j eliminates the spurious abstract counterexample A.
Lastly, the invariant R[i ] → R[i + 1] is preserved because (¬A1 ∨ ¬A2) is conjoined
to all R[i ], 0 ≤ i ≤ j , and not just R[j ].

Formally, the output of PDRA(Init, ρ,Bad) is captured by the following theorem:

Theorem 1. Given (i) the set of abstraction predicates P = {pi ∈ L}, 1 ≤ i ≤ n
where L is a decidable logic, and the full predicate abstraction domain A over P ,
(ii) the initial condition Init ∈ L, (iii) a transition relation ρ expressed as a two-
vocabulary formula in L, and (iv) a formula Bad ∈ L specifying the set of bad states,
PDRA(Init, ρ,Bad) terminates, and reports either

1. valid if there exists A ∈ A s.t. (i) Init→ A, (ii) A is inductive, and (iii) A→ ¬Bad,
2. a concrete counterexample trace, which reaches a state satisfying Bad, or
3. an abstract trace, if the inductive invariant required to prove the property cannot

be expressed as an element ofA. ��
The proof of Theorem 1 in [18] is based on the observation that, when “abstraction

failure” is reported by reduceA(j ,A), the set of models σi |= R[i ] (j ≤ i < N )
represents an abstract error trace.
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Inductive Generalization. Each R[i ] is a conjunction of clauses ϕ1 ∧ · · · ∧ ϕm . If we
detect that some ψj comprising a subset of literals of ϕj , it holds that R[i ] ∧ ρ ∧ ψj |=
(ψj )

′, then ψj is inductive relative to R[i ]. In this case, it is safe to conjoin ψj to R[k ]
for k ≤ i + 1. Spurious counter-examples can also be purged if they are inductively
blocked. The advantages of this method are explained thoroughly by Bradley [3].

4 Property-Directed Reachability for Linked-List Programs

In this section, we describe how PDRA(Init, ρ,Bad) described in Alg. 1 can be in-
stantiated for verifying linked-list programs. The key insight is the use of the recently
developed reachability logics for expressing properties of linked lists [17].

4.1 Reachability Logics

We use two related logics for expressing properties of linked data structures:

– AFR is a decidable fragment of first-order logic with transitive closure (FOTC),
which is an alternation-free quantified logic. This logic is used to express the ab-
straction predicates P , and pre- and post-conditions. It is closed under negation,
and decidable for both satisfiability and validity.

– EAR allows there to be universal quantifiers inside of existential ones. It is used to
define the transition formulas of statements that allocate new nodes and dereference
pointers. This logic is not closed under negation, and is only decidable for satisfia-
bility. We count on the fact that transition formulas are only used in a positive form
in the satisfiability queries in Alg. 1.

Although AFR is used as the language for defining the predicates in P , the wlp rules go
slightly outside of AFR, producing EAR formulas (see Table 5 below).

Definition 1. (EAR) A term, t , is a variable or constant symbol. An atomic formula
is one of the following: (i) t1 = t2; (ii) r(t1, t2, . . . , ta) where r is a relation sym-
bol of arity a (iii) A reachability constraint t1〈f ∗〉t2, where f is a function symbol. A
quantifier-free formula (QFR) is a boolean combination of atomic formulas. A univer-
sal formula begins with zero or more universal quantifiers followed by a quantifier-free
formula. An alternation-free formula (AFR) is a boolean combination of universal for-
mulas. EAR consists of formulas with quantifier-prefix ∃∗∀∗.

In particular, QFR ⊂ AFR ⊂ EAR. ��

Technically, EAR forbids any use of an individual function symbol f ; however, when
f defines an acyclic linkage chain—as in acyclic singly linked and doubly linked lists—
f can be defined in terms of f ∗ by using universal quantification to express that an ele-
ment is the closest in the chain to another element. This idea is formalized by showing
that for all α and β, f (α) = β ↔ Ef (α, β) where Ef is defined as follows:

Ef (α, β)
def
= α〈f +〉β ∧ ∀γ : α〈f +〉γ → β〈f ∗〉γ, (2)

where α〈f +〉β def
= α〈f ∗〉β ∧ α �= β. However, because of the quantifier in Eqn. (2),

the right-hand side of Eqn. (2) can only be used in a context that does not introduce a
quantifier alternation (so that the formula remains in a decidable fragment of FOTC).
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Table 3. AFR formulas for the derived predicates shown in Table 1. f and b denote pointer fields.
dle is an uninterpreted predicate that denotes a total order on the data values. The intention is
that dle(α, β) holds whenever α->d ≤ β->d , where d is the data field. We assume that the
semantics of dle are enforced by an appropriate total-order background theory.

Name Formula
x 〈f 〉y Ef (x , y)
f .ls [x , y] ∀α, β : x 〈f ∗〉α ∧ α〈f ∗〉y ∧ β〈f ∗〉α→ (β〈f ∗〉x ∨ x 〈f ∗〉β)
f .stable(h) ∀α : h〈f ∗〉α→ alloc(α)

f /b.rev [x , y] ∀α, β :

(
α �= null ∧ β �= null

∧ x 〈f ∗〉α ∧ α〈f ∗〉y ∧ x 〈f ∗〉β ∧ β〈f ∗〉y

)
→

(
α〈f ∗〉β ↔ β〈b∗〉α

)
f .sorted [x , y] ∀α, β :

(
α �= null ∧ β �= null

∧ x 〈f ∗〉α ∧ α〈f ∗〉β ∧ β〈f ∗〉y

)
→ dle(α, β)

A Predicate Abstraction Domain that Uses AFR. The abstraction predicates used
for verifying properties of linked list programs were introduced informally in Table 1.
Table 3 gives the corresponding formal definition of the predicates as AFR formulas.
Note that all four predicates defined in Table 3 are quantified. (The quantified formula
for Ef is given in Eqn. (2).) In essence, we use a template-based approach for obtaining
quantified invariants: the discovered invariants have a quantifier-free structure, but the
atomic formulas can be quantified AFR formulas.

We now show that the EAR logic satisfies requirements R1 and R2 for the PDR
algorithm stated in §3.

Decidability of EAR. To satisfy requirement R1 stated in §3, we have to show that
EAR is decidable for satisfiability.

EAR is decidable for satisfiability because any formula in this logic can be trans-
lated into the “effectively propositional” decidable logic of ∃∗∀∗ formulas described by
Piskac et al. [22]. EAR includes relations of the form f ∗ (the reflexive transitive closure
of a function symbol f ), but only allows limited use of f itself.

Every EAR formula can be translated into an ∃∗∀∗ formula using the following
steps [17]: (i) add a new uninterpreted relationRf , which is intended to represent reflex-
ive transitive reachability via f ; (ii) add the consistency rule ΓlinOrd shown in Table 4,
which asserts that Rf is a partial order, i.e., reflexive, transitive, acyclic, and linear;4

and (iii) replace all occurrences of t1〈f ∗〉t2 by Rf (t1, t2). (By means of this translation
step, acyclicity is built into the logic.)

Proposition 1 (Simulation of EAR). Consider EAR formula ϕ over vocabulary V =

〈C,F ,R〉. Let ϕ′ def
= ϕ[Rf (t1, t2)/t1〈f ∗〉t2]. Then ϕ′ is a first-order formula over vo-

cabulary V ′ = 〈C, ∅,R∪ {Rf : f ∈ F〉, and ΓlinOrd∧ϕ′ is satisfiable if and only if the
original formula ϕ is satisfiable.

This proposition is the dual of [16, Proposition 3, Appendix A.1] for validity of ∀∗∃∗
formulas.

4 Note that the order is a partial order and not a total order, because not every pair of elements
must be ordered.
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Table 4. A universal formula, ΓlinOrd, which asserts that all points reachable from a given point
are linearly ordered

∀α : Rf (α, α) reflexivity
∧ ∀α, β, γ : Rf (α, β) ∧ Rf (β, γ)→ Rf (α, γ) transitivity
∧ ∀α, β : Rf (α, β) ∧ Rf (β, α)→ α = β acyclicity
∧ ∀α, β, γ : Rf (α, β) ∧ Rf (α, γ)→ (Rf (β, γ) ∨ Rf (γ, β)) linearity

Table 5. Rules for wlp for atomic commands. alloc stands for a memory location that has been al-
located and not subsequently freed. Ef (y , α) is the universal formula defined in Eqn. (2). Q [y/x ]
denotes Q with all occurrences of atomic formula x replaced by y .

Command C wlp(C ,Q)
assume ϕ ϕ→ Q
x = y Q [y/x ]
x = y->f y �= null ∧ ∃α : (Ef (y, α) ∧Q [α/x ])
x->f = null x �= null ∧Q [α〈f ∗〉β ∧ (¬α〈f ∗〉x ∨ β〈f ∗〉x )/α〈f ∗〉β]
x->f = y x �= null ∧Q [α〈f ∗〉β ∨ (α〈f ∗〉x ∧ y〈f ∗〉β)/α〈f ∗〉β]
x = malloc() ∃α : ¬alloc(α) ∧Q [(alloc(β) ∨ (β = α ∧ β = x ))/alloc(β))]
free(x) alloc(x ) ∧Q [(alloc(β) ∧ β �= x )/alloc(β))]

Axiomatic Specification of Concrete Semantics in EAR. To satisfy requirement R2
stated in §3, we have to show that the transition relation for each statement Cmd of
the programming language can be expressed as a two-vocabulary formula ρ ∈ EAR.
Let wlp(Cmd,Q) be the weakest liberal precondition of command Cmd with respect
Q ∈ EAR. Then, the transition formula for command Cmd is wlp(Cmd, Id), where Id is
a two-vocabulary formula that specifies that the input and the output states are identical,
i.e.,

Id
def
=

∧
c∈C

c = c′ ∧
∧
f∈F
∀α, β : α〈f ∗〉β ⇔ α〈f ′∗〉β.

To show that the concrete semantics of linked list programs can be expressed in
EAR, we have to prove that EAR is closed under wlp; that is, for all commands Cmd
and Q ∈ EAR, wlp(Cmd,Q) ∈ EAR.

Table 5 shows rules for computing wlp for atomic commands. Note that pointer-
related rules in Table 5 each include a memory-safety condition to detect null-
dereferences. For instance, the rule for “x->f = y” includes the conjunct “x �=
null”; if, in addition, we wish to detect accesses to unallocated memory, the rule
would be extended with the conjunct “alloc(x )”.

The following lemma establishes the soundness and completeness of the wlp rules.

Lemma 1. Consider a command C of the form defined in Table 5 and postcondition
Q . Then, σ |= wlp(C ,Q) if and only if the execution of C on σ can yield a state σ′

such that σ′ |= Q .

This lemma is the dual of [16, Prop. 1, App. A.1] for validity of ∀∗∃∗ formulas.
Weakest liberal preconditions of compound commands C1;C2 (sequencing) and

C1|C2 (nondeterministic choice) are defined in the standard way, i.e.,
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Table 6. Experimental results. Column A signifies the set of predicates used (blank = only the
top part of Table 1; S = with the addition of the sorted predicate family; R = with the addition
of the rev family; St = with the addition of the stable family, where alloc conjuncts are added
in wlp rules). Running time is measured in seconds. N denotes the highest index for a generated
element R[i ]. The number of clauses refers to the inferred loop invariant.

Benchmark
Memory-safety

+ data-structure integrity Additional properties
A Time N # calls to Z3 # clauses A Time N # calls to Z3 # clauses

create 1.37 3 28 3 8.19 4 96 7
delete 14.55 4 61 6 9.32 3 67 7
deleteAll St 6.77 3 72 6 St 37.35 7 308 12
filter 2.37 3 27 4 55.53 5 94 5
insert 26.38 5 220 16 25.25 4 155 13
prev 0.21 2 3 0 11.64 4 118 6
last 0.33 2 3 0 7.49 3 41 4
reverse 5.35 5 128 4 146.42 6 723 11
sorted insert S 41.07 3 48 7 S 51.46 4 134 10
sorted merge 26.69 4 87 10 S 256.41 5 140 14
make doubly-linked 18.91 3 44 5 R 1086.61 5 112 8

wlp(C1;C2,Q)
def
= wlp(C1,wlp(C2,Q)) wlp(C1|C2,Q)

def
= wlp(C1,Q) ∧ wlp(C2,Q)

Consider a program with a single loop “while Cond do Cmd”. Alg. 1 can be
used to prove whether or not a precondition Pre ∈ AFR before the loop implies that
a postcondition Post ∈ AFR holds after the loop, if the loop terminates: we supply
Alg. 1 with Init

def
= Pre, ρ

def
= Cond ∧ wlp(Cmd, Id) and Bad

def
= ¬Cond ∧ ¬Post.

Furthermore, memory safety can be enforced on the loop body by setting Bad
def
=

(¬Cond ∧ ¬Post) ∨ (Cond ∧ ¬wlp(Cmd, true)).

5 Experiments

To evaluate the usefulness of the analysis algorithm, we applied it to a collection of
sequential procedures that manipulate singly and doubly-linked lists (see Table 6). For
each program, we report the predicates used, the time (in seconds), the number of PDR
frames, the number of calls to Z3, and the size of the resulting inductive invariant, in
terms of the number of clauses. All experiments were run on a 1.7GHz Intel Core i5
machine with 4GB of RAM, running OS X 10.7.5. We used version 4.3.2 of Z3 [5],
compiled for a 64-bit Intel architecture (using gcc 4.2 and LLVM).

For each of the benchmarks, we verified that the program avoids null-dereferences,
as well as that it preserves the data-structure invariant that the inputs and outputs are
acyclic linked-lists. In addition, for some of the benchmarks we were also able to ver-
ify some additional correctness properties. While full functional correctness, or even
partial correctness, is hard to achieve using predicate abstraction, we were able to use
simple formulas to verify several interesting properties that go beyond memory-safety
properties and data-structure invariants. Table 7 describes the properties we checked for
the various examples. As seen from columns 3, 4, 8, and 9 of the entries for delete and
insert in Table 6, trying to prove stronger properties can sometimes result in fewer
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Table 7. Some correctness properties that can be verified by the analysis procedure. For each of
the programs, we have defined suitable Pre snf Post formulas in AFR.

Benchmark Property checked

create Some memory location pointed to by x (a global variable) that was allocated
prior to the call, is not reachable from the list head, h.

delete The argument x is no longer reachable from h.
deleteAll An arbitrary non-null element x of the list becomes non-allocated.
filter Two arbitrary elements x and y that satisfy the filtering criterion and have an

n-path between them, maintain that path.
insert The new element e is reachable from h and is the direct predecessor of the

argument x.
last The function returns the last element of the list.
prev The function returns the element just before x, if one exists.
reverse If x comes before y in the input, then x should come after y in the output.
sorted insert The list rooted at h remains sorted.
make doubly-linked The resulting p is the inverse of n within the list rooted at h.

Table 8. Results of experiments with buggy programs. Running time is measured in seconds. N
denotes the highest index for a generated element R[i ]. “C.e. size” denotes the largest number of
individuals in a model in the counterexample trace.

Automatic bug finding
Benchmark Bug description Time N # calls to Z3 c.e. size

insert Precondition is too weak (omitted e �= null) 4.46 1 17 8
filter Potential null dereference 6.30 1 21 3

Typo: list head used instead of list iterator 103.10 3 79 4
reverse Corrupted data structure: a cycle is created 0.96 1 9 2

iterations being needed, resulting in a shorter running time. In the remainder of the
examples, handling additional properties beyond memory-safety properties and data-
structure invariants required more processing effort, which can be attributed mainly to
the larger set of symbols (and hence predicates) in the computation.

Bug Finding. We also ran our analysis on programs containing deliberate bugs, to
demonstrate the utility of this approach to bug finding. In all of the cases, the method
was able to detect the bug and generate a concrete trace in which the safety or cor-
rectness properties are violated. The output in that case is a series of concrete states
σ0..σN where each σi contains the set of heap locations, pointer references, and pro-
gram variables at step i . The experiments and their results are shown in Table 8. We
found both the length of the trace and the size of the heap structures to be very small.
Their small size makes the traces useful to present to a human programmer, which can
help in locating and fixing the bug.

Observations. It is worth noting that for programs where the proof of safety is trivial—
because every access is guarded by an appropriate conditional check, such as in prev

and last—the algorithm terminates almost immediately with the correct invariant
true. This behavior is due to the property-directedness of the approach, in contrast
with abstract interpretation, which always tries to find the least fixed point, regardless
of the desired property.
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We experimented with different refinements of inductive-generalization (§12). Our
algorithm could in many cases succeed without it, but without the most basic version
that just pushes each clause (without removing literals), we observed runs with up to
N = 40 iterations. On the other hand, the more advanced versions of inductive general-
ization did not help us: trying to remove literals resulted in a large number of expensive
(and useless) solver calls; and blocking spurious counter-examples using inductive gen-
eralization also turned out to be quite expensive in our setting.

We also noticed that the analysis procedure is sensitive to the number of abstraction
predicates used. In particular, using predicates whose definitions involve quantifiers
can affect the running time considerably. When the predicate families f .sorted [x , y]
and f /b.rev [x , y] are added to A, running times can increase substantially (about 20-
60 times). This effect occurred even in the case of sorted merge, where we did not
attempt to prove an additional correctness property beyond safety and integrity—and
indeed there were no occurrences of the added predicates in the loop invariant obtained.
As can be seen from Table 6, the PDR algorithm per se is well-behaved, in the sense
that the number of calls to Z3 increased only modestly with the additional predicates.
However, each call to Z3 took a lot more time.

6 Related Work

The literature on program analysis is vast, and the subject of shape analysis alone has
an extensive literature. Thus, in this section we are only able to touch on a few pieces
of prior work that relate to the ideas used in this paper.

Predicate Abstraction. Houdini [8] is the first algorithm of which we are aware that
aims to identify a loop invariant, given a set of predicates as candidate ingredients.
However, Houdini only infers conjunctive invariants from a given set of predicates.
Santini [29,28] is a recent algorithm for discovering invariants expressed in terms of
a set of candidate predicates. Like our algorithm, Santini is based on full predicate
abstraction (i.e., it uses arbitrary Boolean combinations of a set of predicates), and
thus is strictly more powerful than Houdini. Santini could make use of the predicates
and abstract domain described in this paper; however, unlike our algorithm, Santini
would not be able to report counterexamples when verification fails. Other work infers
quantified invariants [27,15] but does not support the reporting of counterexamples.
Templates are used in many tools to define the abstract domains used to represent sets
of states, by fixing the form of the constraints permitted. Template Constraint Matrices
[26] are based on inequalities in linear real arithmetic (i.e., polyhedra), but leave the
linear coefficients as symbolic inputs to the analysis. The values of the coefficients are
derived in the course of running the analysis. In comparison, a coefficient in our use of
EAR corresponds to one of the finitely many constants that appear in the program, and
we instantiated our templates prior to using PDR.

As mentioned in §1, PDR meshes well with full predicate abstraction: in effect, the
analysis obtains the benefit of the precision of the abstract transformers for full pred-
icate abstraction, without ever constructing the abstract transformers explicitly. PDR
also allows a predicate-abstraction-based tool to create concrete counterexamples when
verification fails.
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Abstractions Based on Linked-list Segments. In this paper, our abstract domain is
based on formulas expressed in AFR, which has very limited capabilities to express
properties of stretches of data structures that are not pointed to by a program variable.
This feature is similar to the self-imposed limitations on expressibility used in a number
of past approaches, including (a) canonical abstraction [25]; (b) a prior method for
applying predicate abstraction to linked lists [21]; (c) an abstraction method based on
“must-paths” between nodes that are either pointed to by variables or are list-merge
points [19]; and (d) domains based on separation logic’s list-segment primitive [6,2]
(i.e., “ls[x , y]” asserts the existence of a possibly empty list segment running from the
node pointed to by x to the node pointed to by y). Decision procedures have been
used in previous work to compute the best transformer for individual statements that
manipulate linked lists [30,23].

STRAND and Elastic Quantified Data Automata. Recently, Garg et al. developed
methods for obtaining quantified invariants for programs that manipulate linked lists
via an abstract domain of quantified data automata [10,11]. To create an abstract do-
main with the right properties, they use a weakened form of automaton—so-called elas-
tic quantified data automata—that is unable to observe the details of stretches of data
structures that are not pointed to by a program variable. (Thus, an elastic automaton
has some of the characteristics of the work based on linked-list segments described
above.) An elastic automaton can be converted to a formula in the decidable fragment
of STRAND over lists [20].

Other Work on IC3/PDR. Our work represents the first application of PDR to pro-
grams that manipulate dynamically allocated storage. We chose to use PDR because it
has been shown to work extremely well in other domains, such as hardware verification
[3,7]. Subsequently, it was generalized to software model checking for program models
that use linear real arithmetic [14] and linear rational arithmetic [4]. Cimatti and Grig-
gio [4] employ a quantifier-elimination procedure for linear rational arithmetic, based
on an approximate pre-image operation. Our use of a predicate-abstraction domain al-
lows us to obtain an approximate pre-image as the unsat core of a single call to an SMT
solver (line 8 of Alg. 2).

7 Conclusion

Compared to past work on shape analysis, our approach (i) is based on full predicate
abstraction, (ii) makes use of standard theorem proving techniques, (iii) is capable of
reporting concrete counterexamples, and (iv) is based on property-directed reachability.
The experimental evaluation in §5 illustrates these four advantages of our approach.
The algorithm is able to establish memory-safety and preservation of data-structure
invariants for all of the examples, using only the simple predicates given in Table 1.
This result is surprising because earlier work on shape analysis that employed the same
predicates [13] failed to prove these properties. One reason is that [13] only uses positive
and negative combinations of these predicates, whereas our algorithm uses arbitrary
Boolean combinations of predicates.



50 S. Itzhaky et al.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking
C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283.
Springer, Heidelberg (2001)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

4. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012)

5. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

6. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

7. Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property directed reacha-
bility. In: FMCAD (2011)

8. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira,
J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg (2001)

9. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL (2002)
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Abstract. We present a new modular shape analysis that can synthesize heap
memory specification on a per method basis. We rely on a second-order bi-
abduction mechanism that can give interpretations to unknown shape predicates.
There are several novel features in our shape analysis. Firstly, it is grounded on
second-order bi-abduction. Secondly, we distinguish unknown pre-predicates in
pre-conditions, from unknown post-predicates in post-condition; since the former
may be strengthened, while the latter may be weakened. Thirdly, we provide a
new heap guard mechanism to support more precise preconditions for heap spec-
ification. Lastly, we formalise a set of derivation and normalization rules to give
concise definitions for unknown predicates. Our approach has been proven sound
and is implemented on top of an existing automated verification system. We show
its versatility in synthesizing a wide range of intricate shape specifications.

1 Introduction

An important challenge for automatic program verifiers lies in inferring shapes describ-
ing abstractions for data structures used by each method. In the context of heap ma-
nipulating programs, determining the shape abstraction is crucial for proving memory
safety and is a precursor to supporting functional correctness.

However, discovering shape abstractions can be rather challenging, as linked data
structures span a wide variety of forms, from singly-linked lists, doubly-linked lists,
circular lists, to tree-like data structures. Previous shape analysis proposals have made
great progress in solving this problem. However, the prevailing approach relies on us-
ing a predefined vocabulary of shape definitions (typically limited to singly-linked list
segments) and trying to determine if any of the pre-defined shapes fit the data struc-
tures used. This works well with programs that use simpler shapes, but would fail for
programs which use more intricate data structures. An example is the method below
(written in C and adapted from [19]) to build a tree whose leaf nodes are linked as a list.

struct tree { struct tree∗ parent; struct tree∗ l; struct tree∗ r; struct tree∗ next}
struct tree∗ tll(struct tree∗ x, struct tree∗ p, struct tree∗ t)
{ x->parent = p;
if (x->r==NULL) { x->next=t; return x; }
else{ struct tree∗ lm = tll(x->r, x, t); return tll(x->l, x, lm); } }

Our approach to modular shape analysis would introduce an unknown pre-predicate
H (as the pre-condition), and an unknown post-predicate G (as the post-condition), as
shown below, where res is the method’s result.

requires H(x, p, t) ensures G(x, p, res, t)

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 52–68, 2014.
c© Springer International Publishing Switzerland 2014
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Using Hoare-style verification and a new second-order bi-abduction entailment
procedure, we would derive a set of relational assumptions for the two unknown pred-
icates. These derived assumptions are to ensure memory safety, and can be systemat-
ically transformed into concise predicate definitions for the unknown predicates, such
as: H(x,p,t) ≡ x�→tree(Dp,Dl,r,Dn) ∧ r=NULL

∨ x�→tree(Dp,l,r,Dn)∗H(l,x,lm)∗H(r,x,t) ∧ r �= NULL

G(x,p,res,t) ≡ x�→tree(p,Dl,r,t) ∧ res=x∧r=NULL

∨ x�→tree(p,l,r,Dn)∗G(l,x,res,lm)∗G(r,x,lm,t)∧r�=NULL

Fig. 1. An example of G(x,p,res,t)

The derived pre-predicate H captures a bi-
nary tree-like shape that would be traversed by
the method. x�→tree(Dp,Dl,r,Dn) denotes that x
refers to a tree node with its parent,l,r and next

fields beingDp,Dl, r andDn, respectively. We use
dangling references, such asDl,Dp,Dn, as generic

markers that denote field pointers that are not traversed by the method. Thus no asser-
tion can be made on any of the D pointers. The post-predicate G, illustrated in Fig 1,
adds parent field links for all nodes, and next field links for just the leaves. 1

Current shape analysis mechanisms [12,4,6] are unable to infer pre/post specifica-
tions that ensure memory-safety for such complex examples. In this paper, we propose
a fresh approach to shape analysis that can synthesize, from scratch, a set of shape ab-
stractions that ensure memory safety. The central concept behind our proposal is the use
of unknown predicates (or second-order variables) as place holders for shape predicates
that are to be synthesized directly from proof obligations gathered by our verification
process. Our proposal is based on a novel bi-abductive entailment that supports second-
order variables. The core of the new entailment procedure generates a set of relational
assumptions on unknown predicates to ensure memory safety. These assumptions are
then refined into predicate definitions, by predicate derivation and normalization steps.

By building the generation of the required relational assumptions over unknown
predicates directly into the new entailment checker, we were able to integrate our shape
analysis into an existing program verifier with changes made only to the entailment
process, rather than the program verification/analysis itself. Our proposed shape analy-
sis thus applies an almost standard set of Hoare rules in constructing proof obligations
which are discharged through the use of a new second-order bi-abductive entailment.

This paper makes the following four primary contributions.

– A novel second-order bi-abduction guided by an annotation scheme to infer rela-
tional assumptions (over unknown predicates) as part of Hoare-style verification.

– A set of formal rules for deriving and normalizing each unknown predicate defini-
tion from the relational assumptions with heap guard conditions.

– A sound and modular shape analysis, that is applied on a per method basis2.
– Our implementation and experiments on shape inference, closely integrated into an

automated verification system. The report [21] contains more details of our tool.

1 Note that new links formed by the method are colored in red.
2 Most existing shape analyses require either global analyses or re-verification after analysis.

For example, bi-abduction in [6] requires its method’s inferred pre-condition to be re-verified
due to its use of over-approximation on heap pre-condition which can be unsound.
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2 Logic Syntax for Shape Specification

Separation logic is an extension of Hoare logic for reasoning with heap-based programs
[20,28]. We outline below the fragment underlying the proposed analysis:

Disj. formula Φ ::= Δ | Φ1 ∨ Φ2

Guarded Disj. Φg ::= Δ | (Δ@ (κ∧π)) | Φg
1 ∨ Φg

2

Conj. formula Δ ::= ∃v̄·(κ∧π)
Spatial formula κ ::= emp | � | v �→c(v̄) | P(v̄) | U(v̄) | κ1∗κ2

Pure formula π ::= α | ¬α | π1∧π2

Var (Dis)Equality α ::= v|v1=v2|v=NULL|v1 �=v2|v �=NULL

Pred. Defn. Pdef::= P(v̄) ≡ Φg

Pred. Dict. Γ ::= {Pdef1 , . . . , Pdefn }
P ∈ Known Predicates U ∈ Unknown Predicates
c ∈ Data Nodes v ∈ Variables v̄ ≡ v1. . .vn

We introduce Δ@ (κ∧π), a special syntactic form called guarded heap that capture a
heap context κ∧π in which Δ holds. Thus, Δ@ (κ∧π) holds for heap configurations
that satisfy Δ and that can be extended such that they satisfy Δ ∗ κ∧π. In Sec.5 we
will describe its use in allowing our shape inference to incorporate path sensitive infor-
mation in the synthesized predicates. The assertion language is also extended with the
following formula for describing heaps: emp denoting the empty heap; � denoting an
arbitrary heap (pointed by dangling reference); points-to assertion, x�→c(v̄), specifying
the heap in which x points to a data structure of type c whose fields contain the values
v̄; known predicate, P(v̄), which holds for heaps in which the shape of the memory
locations reachable from v̄ can be described by the P predicate; unknown predicates,
U(v̄), with no prior given definitions. Separation conjunction κ1∗κ2 holds for heaps that
can be partitioned in two disjoint components satisfying κ1 and κ2, respectively. The
pure formula captures only pointer equality and disequality. We allow a special constant
NULL to denote a pointer which does not point to any heap location. Known predicates
P(v̄) are defined inductively through disjunctive formulas Φg . Their definitions are ei-
ther user-given or synthesised by our analysis. We will use Γ to denote the repository
(or set) of available predicate definitions. Through our analysis, we shall construct an
inductive definition for each unknown predicate, where possible. Unknown predicates
that have not been instantiated would not have any definition. They denote data fields
that are not accessed by their methods, and would be marked as dangling pointers.

3 Overview of Our Approach

Our approach comprises three main steps: (i) inferring relational assumptions for un-
known predicates via Hoare-style verification, (ii) deriving predicates from relational
assumptions, (iii) normalizing predicates. For (i), a key machinery is the entailment
procedure that must work with second-order variables (unknown predicates). Previous
bi-abduction entailment proposals, pioneered by [6], would take an antecedent Δante

and a consequent Δconseq and return a frame residue Δframe and the precondition Δpre,
such that the following holds: Δpre∗Δante � Δconseq∗Δframe . Here, all four components
use separation logic formulas based on known predicates with prior definitions.
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Taking a different tact, we start with an existing entailment procedure for separation
logic with user-defined predicates, and extend it to accept formulas with second-order
variables such that given an antecedent Δante and a consequent Δconseq the resulting
entailment procedure infers both the frame residue Δframe and a set (or conjunction) of
relational assumptions (on unknowns) of the form R =

∧n
i=1(Δi ⇒ Φg

i) such that:

R ∧Δante � Δconseq∗Δframe

The inferred R ensures the entailment’s validity. We shall use the following notation
Δante �Δconseq � (R, Δframe) for this second-order bi-abduction process.

There are two scenarios to consider for unknown predicates: (1) Δante contains an
unknown predicate instance that matched with a points-to or known predicate in Δconseq;
(2) Δconseq contains an unknown predicate instance. An example of the first scenario is:

U(x) � x�→snode(n)� (U(x)⇒x�→snode(n)∗U0(n), U0(n))

Here, we generated a relational assumption to denote an unfolding (or instantiation)
for the unknown predicate U to a heap node snode followed by another unknown U0(n)
predicate. The data structure snode is defined as struct snode { struct snode∗ next}.
A simple example of the second scenario is shown next.

x�→snode(NULL)∗y�→snode(NULL) � U1(x)� (x�→snode(NULL)⇒U1(x), y�→snode(NULL))

The generated relational assumption depicts a folding process for unknown U1(x) which
captures a heap state traversed from the pointer x. Both folding and unfolding of un-
known predicates are crucial for second-order bi-abduction. To make it work properly
for unknown predicates with multiple parameters, we shall later provide a novel #-
annotation scheme to guide these processes. For the moment, we shall use this annota-
tion scheme implicitly. Consider the following method which traverses a singly-linked
list and converts it to a doubly-linked list (let us ignore the states α1, .., α5 for now):

struct node { struct node∗ prev; struct node∗ next}
void sll2dll(struct node∗ x, struct node∗ q)
{(α1) if (x==NULL) (α2) return; (α3) x->prev = q; (α4) sll2dll(x->next, x); (α5)}

To synthesize the shape specification for this method, we introduce two unknown
predicates, H for the pre-condition and G for the post-condition, as below.

requires H(x, q) ensures G(x, q)

We then apply code verification using these pre/post specifications with unknown pred-
icates and attempt to collect a set of relational assumptions (over the unknown predi-
cates) that must hold to ensure memory-safety. These assumptions would also ensure
that the pre-condition of each method call is satisfied, and that the coresponding post-
condition is ensured at the end of the method body. For example, our analysis can infer
four relational assumptions for the sll2dll method as shown in Fig. 2(a).

These relational assumptions include two new unknown predicates, Hp and Hn, cre-
ated during the code verification process. All relational assumptions are of the form
Δlhs⇒Δrhs, except for (A3) which has the form Δlhs⇒Δrhs @Δg where Δg denotes
a heap guard condition. Such heap guard condition allows more precise pre-conditions
to be synthesized (e.g. Hn in (A3)), and is shorthand for Δlhs∗Δg⇒Δrhs∗Δg.

Let us look at how relational assumptions are inferred. At the start of the method, we
have (α1), shown in Fig. 2 (b), as our program state. Upon exit from the then branch, the
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(A1).H(x, q) ∧ x=NULL ⇒ G(x,q)

(A2).H(x, q) ∧ x
=NULL ⇒
x�→node(xp, xn)∗Hp(xp, q)∗Hn(xn, q)

(A3).Hn(xn, q) ⇒ H(xn, x)@ x�→node(q, xn)

(A4).x�→node(q,xn)∗G(xn,x) ⇒ G(x,q)

(a)

(α1). H(x,q)

(α2). H(x, q)∧x=NULL

(α3). x�→node(xp,xn)∗Hp(xp,q)∗Hn(xn,q)∧x
=NULL

(α4). x�→node(q, xn)∗Hp(xp, q)∗Hn(xn, q)∧x
=NULL

(α5). x�→node(q, xn)∗Hp(xp, q)∗G(xn, x)∧x
=NULL

(b)

Fig. 2. Relational assumptions (a) and program states (b) for sll2dll

verification requires that the postcondition G(x, q) be established by the program state
(α2), generating the relational assumption (A1) via the following entailment:

(α2) � G(x,q) � (A1, emp ∧ x=NULL) (E1)

To get ready for the field access x->prev, the following entailment is invoked to unfold
the unknown H predicate to a heap node, generating the relational assumption (A2):

H(x, q)∧x�=NULL � x�→node(xp,xn) � (A2, Hp(xp,q)∗Hn(xn,q) ∧ x�=NULL) (E2)

Two new unknown predicates Hp and Hn are added to capture the prev (xp) and next

(xn) fields of x (i.e. they represent heaps referred to by xp and xn respectively). After
binding, the verification now reaches the state (α3), which is then changed to (α4) by
the field update x->prev = q. Relational assumption (A3) is inferred from proving the
precondition H(xn,x) of the recursive call sll2dll(x->next, x) at the program state (α4):

(α4) � H(xn, x) � (A3, x�→node(q,xn)∗Hp(xp,q)∧x�=NULL) (E3)

Note that the heap guard x �→node(q, xn) from (α4) is recorded in (A3), and is crucial for
predicate derivation. The program state at the end of the recursive call, (α5), is required
to establish the post-condition G(x, q), generating the relational assumption (A4):

(α5) � G(x,q) � (A4, Hp(xp,q)∧x�=NULL) (E4)

These relational assumptions are automatically inferred symbolically during code
verification. Our next step (ii) uses a predicate derivation procedure to transform (by
either equivalence-preserving or abductive steps) the set of relational assumptions into
a set of predicate definitions. Sec. 5 gives more details on predicate derivation. For our
sll2dll example, we initially derive the following predicate definitions (for H and G):

H(x, q) ≡ emp ∧ x=NULL ∨ x�→node(xp, xn) ∗ Hp(xp, q) ∗ H(xn, x)
G(x, q) ≡ emp ∧ x=NULL ∨ x�→node(q, xn) ∗ G(xn, x)

In the last step (iii), we use a normalization procedure to simplify the definition of
predicate H. Since Hp is discovered as a dangling predicate, the special variable Dp cor-
responds to a dangling reference introduced: H(x, q)≡ emp∧x=NULL∨x�→node(Dp, xn)∗
H(xn, x). Furthermore, we can synthesize a more concise H2 from H by eliminating its
useless q parameter: H(x, q)≡ H2(x) and H2(x)≡ emp∧x=NULL∨x�→node(Dp, xn)∗H2(xn).

Our approach currently works only for shape abstractions of tree-like data structures
with forward and back pointers. (We are unable to infer specifications for graph-like
or overlaid data structures yet.) These abstractions are being inferred modularly on a
per method basis. The inferred preconditions are typically the weakest ones that would
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ensure memory safety, and would be applicable to all contexts of use. Furthermore, the
normalization step aims to ensure concise and re-useable predicate definitions. We shall
next elaborate and formalise on our second-order bi-abduction process.

4 Second-Order Bi-Abduction with an Annotation Scheme

We have seen the need for a bi-abductive entailment procedure to systematically han-
dle unknown predicates. To cater to predicates with multiple parameters, we shall use
an automatic #-annotation scheme to support both unfolding and folding of unknown
predicates. Consider a predicate U(v1, .., vn, w1#, .., wm#), where parameters v1, .., vn
are unannotated and parameters w1, .., wm are #-annotated. From the perspective of un-
folding, we permit each variable from v1, .., vn to be instantiated at most once (we
call them instantiatable), while variables w1, .., wm are disallowed from instantiation
(we call them non-instantiatable). This scheme ensures that each pointer is instanti-
ated at most once, and avoids formulae, like U3(y, y) or U2(r, y)∗U3(y, x#), from being
formed. Such formulae, where a variable may be repeatedly instantiated, may cause a
trivial FALSE pre-condition to be inferred. Though sound, it is imprecise. From the per-
spective of folding, we allow heap traversals to start from variables v1, .., vn and would
stop whenever references to w1, .., wm are encountered. This allows us to properly infer
segmented shape predicates and back pointers. Our annotation scheme is fully auto-
mated, as we would infer the #-annotation of pre-predicates based on which parameters
could be field accessed; while parameters of post-predicates are left unannotated. For
our running example, since q parameter is not field accessed (in its method’s body), our
automatic annotation scheme would start with the following pre/post specification:

requires H(x, q#) ensures G(x, q)
Unfold. The entailment below results in an unfolding of the unknown H predicate. It is
essentially (E2) in Sec 3, except that q is marked explicitly as non-instantiatable.

H(x, q#)∧x�=NULL � x�→node(xp, xn)� (A2, Δ1) (E2′)

With non-instantiatable variables explicitly annotated, the assumption (A2) becomes:
A2 ≡ H(x, q#)∧x�=NULL⇒ x�→node(xp, xn)∗Hp(xp, q#)∗Hn(xn, q#)

As mentioned earlier, we generated a new unknown predicate for each pointer field (Hp
for xp, and Hn for xn), so as to allow the full recovery of the shape of the data structure
being traversed or built. Note that each x, xp, xn appears only once in unannotated forms,
while the annotated q# remains annotated throughout to prevent the pointer from being
instantiated. If we allow q to be instantiatable in (E2′) above, we will instead obtain:

H(x, q)∧x�=NULL � x�→node(xp, xn)� (A2′, Δ′
1)

We get A2′ ≡ H(x, q)∧x�=NULL⇒ x�→node(xp, xn)∗Hp(xp, q#)∗Hn(xn, q#)∗U2(q, x#),
where the unfolding process creates extra unknown predicate U2(q, x#) to capture shape
for q.

Our proposal for instantiating unknown predicates is also applicable when known
predicates appear in the RHS. These known predicates may have parameters that act
as continuation fields for the data structure. An example is the list segment lseg(x, p)
predicate where the parameter p is a continuation field.

ll(x) ≡ emp∧x=NULL ∨ x�→snode(n) ∗ ll(n)
lseg(x, p) ≡ emp∧x=p ∨ x�→snode(n) ∗ lseg(n, p)
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Where snode (defined in the previous section) denotes singly-linked list node. Note
that continuation fields play the same role as fields for data nodes. Therefore, for such
parameters, we also generate new unknown parameters to capture the connected data
structure that may have been traversed. We illustrate this with two examples:

U(x) � ll(x)� (U(x)⇒ll(x), emp) U(x) � lseg(x, p)� (U(x)⇒lseg(x, q)∗U2(q), U2(p))

The first predicate ll(x) did not have a continuation field. Hence, we did not generate
any extra unknown predicate. The second predicate lseg(x, p) did have a continua-
tion field p, and we generated an extra unknown predicate U2(p) to capture a possible
extension of the data structure beyond this continuation field.
Fold. A second scenario that must be handled by second-order entailment involves
unknown predicates in the consequent. For each unknown predicate U1(v̄, w̄#) in the
consequent, a corresponding assumption Δ⇒U1(v̄, w̄#)@Δg is inferred where Δ con-
tains unknown predicates with at least one instantiatable parameters from v̄, or heaps
reachable from v̄ (via either any data fields or parameters of known predicates) but
stopping at non-instantiatable variables w̄#; a residual frame is also inferred from the
antecedent (but added with pure approximation of footprint heaps [9]). For example,
consider the following entailment:

x�→snode(q)∗q�→snode(NULL)∧q�=NULL � U1(x, q#)� (Af1, Δ1)

The output of this entailment is:

Af1 ≡ x�→snode(q)∧q�=NULL⇒U1(x, q#) Δ1 ≡ q�→snode(NULL)∧x�=NULL∧x�=q

As a comparison, let us consider the scenario where q is unannotated, as follows:

x�→snode(q)∗q�→snode(NULL)∧q�=NULL � U1(x, q)� (Af2, Δ2)

In this case, the output of the entailment becomes:

Af2 ≡ x�→snode(q)∗q�→snode(NULL)⇒ U1(x, q) Δ2 ≡ x�=NULL∧q�=NULL∧x�=q

Moreover, the folding process also captures known heaps that are reachable from #-
parameters as heap guard conditions, e.g. x�→node(q, xn) in our running example (E3):

x�→node(q,xn)∗Hp(xp,q#)∗Hn(xn,q#)∧x�=NULL � H(xn, x#)
� (Hn(xn, q#)⇒ H(xn, x#)@ x�→node(q, xn), x�→node(q,xn)∗Hp(xp,q#)∧x�=NULL) (E3′)

Such heap guards help with capturing the relations of heap structures and recovering
those relationships when necessary (e.g. back-pointer x#).
Formalism. Bi-abductive unfold is formalized in Fig. 3. Here, slice(w̄, π) is an aux-
iliary function that existentially quantifies in π all free variables that are not in the set w̄.

[SO-ENT-UNFOLD]
κs ≡ r�→c(p̄) or κs ≡ P(r, p̄)

κfields = ∗pj∈p̄ Uj(pj, v̄i#, v̄n#), where Uj: fresh preds
κrem = Urem(v̄i, v̄n#, r#), where Urem: a fresh pred

πa = slice({r, v̄i, v̄n, p̄}, π1) πc = slice({p̄}, π2)
σ ≡ (U(r, v̄i, v̄n#) ∧ πa ⇒ κs ∗κfields ∗κrem ∧ πc)
κ1 ∗ κfields ∗κrem ∧ π1 � κ2 ∧ π2 � (R, ΔR)

U(r, v̄i, v̄n#)∗κ1∧π1 � κs∗κ2∧π2 � (σ∧R, ΔR)

Fig. 3. Bi-Abductive Unfolding

Thus it eliminates from π all
subformulas not related to w̄
(e.g. slice({x, q}, q=NULL∧y>3)

returns q=NULL). In the first
line, a RHS assertion, either a
points-to assertion r�→c(p̄) or a
known predicate instance P(r, p̄)

is paired through the parameter
r with the unknown predicate U.
Second, the unknown predicates
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Uj are generated for the data fields/parameters of κs. Third, the unknown predicate Urem

is generated for the instantiatable parameters v̄i of U. The fourth and fifth lines compute
relevant pure formulas and generate the assumption, respectively. Finally, the unknown
predicates κfields and κrem are combined in the residue of LHS to continue discharging
the remaining formula in RHS.

Bi-abductive fold is formalized in Fig. 4. The function reach(w̄, κ1∧π1, z̄#) extracts
portions from the antecedent heap (κ1) that are (1) unknown predicates containing at least
one instantiatable parameter from w̄; or (2) point-to or known predicates reachable from
w̄, but not reachable from z̄. In our running example (the entailment (E3′) on last page),
the function reach({xn}, x�→node(q, xn)∗Hp(xp, q#)∗Hn(xn, q#)∧x�=NULL, {x#}) is used to
obtain Hn(xn, q#). More detail on this function is in the report [21]. The heaps(Δ) func-
tion enumerates all known predicate instances (of the form P(v̄)) and points-to instances
(of the form r�→c(v̄))) in Δ. The function root(κ) is defined as: root(r�→c(v̄)))={r},
root(P(r, v̄)) = {r}. In the first line, heaps of LHS are separated into the assumption

[SO-ENT-FOLD]
κ11=reach(w̄, κ1∧π1, z̄#) ∃κ12 · κ1=κ11∗κ12

κg = ∗{κ | κ∈heaps(κ12)∧root(κ)⊆z̄} r̄=
⋃

κ∈κg
root(κ)

σ ≡ (κ11∧slice(w̄, π1)⇒ Uc(w̄, z̄#)@κg∧slice(r̄, π1))
κ12 ∧ π1 � κ2 ∧ π2 � (R, ΔR)

κ1 ∧ π1 � Uc(w̄, z̄#) ∗ κ2 ∧ π2 � (σ∧R, ΔR)

Fig. 4. Bi-Abductive Folding

κ11 and the residue κ12.
Second, heap guards (and
their root pointers) are in-
ferred based on κ12 and
the #-annotated parameters
z̄. The assumption is gen-
erated in the third line and
finally, the residual heap is
used to discharge the re-

maining heaps of RHS.

Hoare Rules. We shall now present Hoare rules to show how second-order entailment is
used there. For simplicity, we consider a core imperative language (Fig. 5) that supports
heap-based data structures (datat) and methods (meth).

Prog ::= datat∗ meth∗ datat ::= data c { field∗ }
field ::= t v t ::= int | bool | void | c | . . .
meth ::= t mn (([ref] t v)∗) Φpr Φpo; {e}
e ::= NULL | kτ | v | v.f | v=e | v.f=e | new c(v∗)

| e1; e2 | t v; e | mn(v∗)| if v then e1 else e2

Fig. 5. The Core Language

A method declaration includes a
header with pre-/post-condition
and its body. Methods can
have call-by-reference parame-
ters (prefixed with ref). Loops,
including nested loops, are trans-
formed to tail-recursive methods

with ref parameters to capture mutable variables. To support shape analysis, code ver-
ification is formalized as a proof of quadruple: � {Δpre} e {R,Δpost}, where R accu-
mulates the set of relational assumptions generated by the entailment procedure. The
specification may contain unknown predicates in preconditions and postconditions. We
list in Fig. 6 the rules for field access, method calls and method declaration. Note that
primed variable (e.g. x′) denotes the latest value (of the program variable x). The for-
mula Δ1∗̄vΔ2 denotes ∃r̄· ([r̄/v̄′]Δ1) ∗([r̄/v̄]Δ2) (see [9]).

The key outcome is that if a solution for the set of relational assumptionsR can be
found, the program is memory-safe and all the methods abide by their specifications.
Furthermore, we propose a bottom-up verification process which is able to incremen-
tally build suitable predicate instantiations one method at a time by solving the collected
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[SA-CALL]
t0 mn ((ref ti vi)

m−1
i=1, (tj vj)

n
j=m) Φpr Φpo; {e} ∈ Prog

ρ=[v′k/vk]
n
k=1 Φ′

pr = ρ(Φpr) W={v1, .., vm−1} V={vm, .., vn}
Δ � Φ′

pr � (R, Δ2) Δ3=(Δ2 ∧
∧

n

i=m
(v′i = vi)) ∗V∪W Φpo

� {Δ} mn(v1, .., vm−1, vm, .., vn) {R, Δ3}
[SA-FLD-RD]

data c {t1 f1, .., tn fn} ∈ Prog

Δ1 � x′ �→c(v1..vn)� (R, Δ3)
Δ4=∃v1..vn · (Δ3∗x′ �→c(v1..vn)∧res=vi)

� {Δ1} x.fi {R, Δ4}

[SA-METH]
� {Φpr∧

∧
(u′=u)∗} e {R1,Δ1}

Δ1 � Φpo � (R2, Δ2)
Γ = solve(R1∪R2)

t0 mn ((t u)∗) Φpr Φpo {e}
Fig. 6. Several Hoare Rules

relational assumptionsR progressively. The predicate definition synthesis (solve) con-
sists of two separate operations : predicate synthesis, PRED SYN, and predicate normal-
ization, PRED NORM. That is solve(R) = PRED NORM(PRED SYN(R)). After the method
is successfully verified, the resulting predicate definitions Γ provide an interpretation
for the unknown predicates appearing in the specifications such that memory safety is
guaranteed. By returning Γ, the method verification allows the inferred definitions and
specifications to be consistently reused in the verification of the remaining methods.

5 Derivation of Shape Predicates
Once the relational assumptions have been inferred, we proceed to apply a series of
refinement steps to derive predicate definitions for each pre- and post-predicate. Fig. 7

function PRED SYN(R)
Γ ← ∅
R ← exhaustively apply [syn-base] on R
Rpre,Rpost ← sort-group(R)
whileRpre �=∅ do
Upre, σ ← pick unknown & assumption inRpre

U
pre

def← apply [syn-case], [syn-group-pre], and
[syn-pre-def ] on σ

Rpre,Rpost ← inline Upredef in (Rpre\σ), Rpost

discharge Upre obligations
Γ ← Γ ∪ {Upredef}

end while
whileRpost �=∅ do
Upost, σ ← pick unknown & assumption inRpost

U
post

def ← apply[syn-group-post], [syn-post-def ] on σ
discharge Upost obligations
Rpost ←Rpost \ σ Γ ← Γ ∪ {Upostdef }

end while
return Γ

end function

Fig. 7. Shape Derivation Outline

outlines our strategy for pred-
icate synthesis. We use the
[syn-∗] notation to name re-
finement rules. For space rea-
sons, we describe some rules
and leave the rest to the re-
port [21]. Steps that are left out
include: (i) sort-group to de-
cide on the transformation or-
der of relational assumptions;
(ii) rules to process some re-
lational assumptions as proof
obligations. For example, if the
result of the recursive method is
field-accessed after the recursive
call, the post-predicate would
appear as an unknown predicate
for heap instantiation. This must
be processed as an entailment
obligation, after the definition of
its post-predicate has been de-

rived; (iii) inline to unfold synthesized predicates in the remaining assumptions.
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5.1 Base Splitting of Pre/Post-Predicates

We first deal with relational assumptions of the form Upre(. . .)∗Δ ⇒ Upost(. . .), which
capture constraints on both a pre-predicate and a post-predicate. To allow greater flexi-
bility in applying specialized techniques for pre-predicates or post-predicates, we split
the assumption into two assumptions such that pre-predicate Upre is separated from post-
predicate Upost. Base splitting can be formalized as follows:

[syn-base]
σ : Upre(x̄)∗κ∧π⇒ Upost(ȳ) σ1 : Upre(x̄)∧slice(x̄, π)⇒emp σ2 : κ∧π⇒ Upost(ȳ)

κg=∗{κ1 | κ1∈heaps(κ)∧pars(κ1)∩x̄�=∅} w̄=
⋃
{pars(κ1) | κ1∈κg}

σ3 : Upre(x̄)⇒Ufr(x̄)@κg∧slice(x̄∪w̄, π) σ4 : Ufr(x̄)⇒�
if is base(x̄, π)=true then (σ1∧σ2) else (σ∧σ3∧σ4)

The premise contains an assumption (σ) which could be split. The conclusion captures
the new relational assumptions. There are two scenarios:
(1) The first scenario takes place when the test is base(x̄, π) holds. It signifies that π
contains a base case formula for some pointer(s) in x̄. Note that is base(x̄, π) holds if
and only if (∃ v∈x̄. π � v=NULL) or (∃v1,v2∈x̄.π � v1=v2). In such a situation, the as-
sumption σ is split into σ1 and σ2. This reflects the observation that a pre-predicate
guard will likely constrain the pre-predicate to a base-case with empty heap. This sce-
nario happens in our running example where the assumption (A1) is split to:

(A1a). H(x, q) ∧ x=NULL⇒ emp (A1b). emp ∧ x=NULL⇒ G(x,q)

(2) If the test is base(x̄, π) fails, there is no base case information available for us to
instantiate Upre(x̄). The assumption σ is not split and kept in the result. To have a more
precise derivation, we would also record the fact that Upre(x̄) has no instantiation under
the current context. To do this, in the second line we record in κg such a heap context (re-
lated to x̄), extract in w̄ related pointers from the context, and introduce a fresh unknown
predicate Ufr as the instantiation for Upre, as indicated by the assumption σ3 in the third
line. Note the heap guard specifies the context under which such an assumption holds.
We also add σ4 into the result, where the new predicate Ufr is instantiated to the afore-
mentioned memory locations (encapsulated by�). Assumptions of the form Ufr(p)⇒ �
are being used to denote dangling pointers. We also note that introducing the dangling
predicate Ufr into the guarded assumption σ3 is essential to help relate non-traversed
pointer fields between the pre-predicate Upre and the post-predicate Upost. The function
pars(κ) (the 2nd line) retrieves parameters: pars(r�→c(v̄))) = v̄, pars(P(r, v̄)) = v̄.

As an example, consider splitting (σ5) : Upre(p)∗x�→node(p,n)∧n=NULL⇒ Upost(x).
The test is base({p}, n=NULL) fails. In addition to (σ5), the splitting returns also

(σ6) : U
pre(p)⇒ Ufr(p)@ (x�→node(p,n)∧n=NULL) (σ7) : U

fr(p)⇒ �

5.2 Deriving Pre-Predicates

Pre-predicates typically appear in relational assumptions under pure guards π, of the
form Upre(. . .)∧π⇒Δ. To derive definitions for these pre-predicates, the first step is to
transform relational assumptions that overlap on their guards by forcing a case analysis
that generates a set of relational assumptions with disjoint guard conditions:

[syn-case]
U(x̄)∧π1⇒Δ1 @Δ1g U(x̄)∧π2⇒Δ2 @Δ2g π1∧π2 �⇒FALSE

Δ1∧Δ2⇒x̄
∧Δ3 Δ1g∧Δ2g⇒x̄

∧Δ3g SAT(Δ3g)

U(x̄)∧π1∧¬π2⇒Δ1 @Δ3g U(x̄)∧π2∧¬π1⇒Δ2 @Δ3g U(x̄)∧π1∧π2⇒Δ3 @Δ3g
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For brevity, we assume a renaming of free variables to allow x̄ to be used as arguments
in both assumptions. Furthermore, we use the⇒x̄∧ operator to denote a normalization
of overlapping conjunction, Δ1∧Δ2 [28]. Informally, in order for Δ1 ∧Δ2 to hold, it
is necessary that the shapes described by Δ1 and Δ2 agree when describing the same
memory locations. Normalization thus determines the overlapping locations, Δc such
that Δ1=Δc∗Δ′

1 and Δ2=Δc∗Δ′
2 and returns Δc∗Δ′

1∗Δ′
2. We leave a formal defini-

tion of⇒x̄
∧ to the technical report [21]. Once all the relational assumptions for a given

pre-predicate have been transformed such that the pure guards do not overlap, we may
proceed to combine them using the rule [syn-group-pre] shown below. We shall perform
this exhaustively until a single relational assumption for U is derived. If the assump-
tion RHS is independent of any post-predicate, it becomes the unknown pre-predicate
definition, as shown in the rule [syn-pre-def ] below.

[syn-group-pre]
U(x̄)∧π1 ⇒ Φg

1 U(x̄)∧π2 ⇒ Φg
2 π1∧π2 ⇒ FALSE

U(x̄) ∧ (π1∨π2)⇒ Φg
1∧π1 ∨ Φg

2∧π2

[syn-pre-def ]
Upre(x̄)⇒Φg no post(Φg)

Upre(x̄) ≡ Φg

For the sll2dll example, applying the [syn-group-pre] rule to (A2) and (A1a) yields:

(A5). H(x, q)⇒ x�→node(xp, xn)∗Hp(xp, q)∗Hn(xn, q) ∨ emp ∧ x=NULL

This is then trivially converted into a definition for its pre-predicate, without any
weakening, thus ensuring soundness of our pre-conditions.

5.3 Deriving Post-Predicates

We start the derivation for a post-predicate after all pre-predicates have been derived.
We can incrementally group each pair of relational assumptions on a post-predicate via
the [syn-group-post] rule shown below. By exhaustively applying [syn-group-post] rule all
assumptions relating to predicate Upost get condensed into an assumption of the form:
Δ1 ∨ . . . ∨ Δn ⇒ Upost(x̄). This may then be used to confirm the post-predicate by
generating the predicate definition via the [syn-post-def ] rule.

[syn-group-post]
Δa ⇒ Upost(x̄) Δb ⇒ Upost(x̄)

Δa ∨Δb ⇒ Upost(x̄)

[syn-post-def ]
Δ1 ∨ . . . ∨Δn ⇒ Upost(x̄)

Upost(x̄) ≡ Δ1 ∨ . . . ∨Δn

Using these rules, we can combine (A4) and (A1b) in the sll2dll example to obtain:
G(x, q) ≡ emp ∧ x=NULL ∨ x�→node(q, xn) ∗ G(xn, x)

5.4 Predicate Normalization for More Concise Definitions

After we have synthesized suitable predicate definitions, we proceed with predicate
normalization to convert each predicate definition to its most concise form. Our current
method, PRED NORM, uses four key steps: (i) eliminate dangling predicates, (ii) elim-
inate useless parameters, (iii) re-use predicate definitions and (iv) perform predicate
splitting. We briefly explain the normalization steps and leave details in the report [21].
The first step deals with dangling predicates which do not have any definition. Though
it is safe to drop such predicates (by frame rule), our normalization procedure replaces
them by special variables, to help capture linking information between pre- and post-
conditions. The second step eliminates predicate arguments that are not used in their
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synthesized definitions, with the help of second-order entailment. The third step lever-
age on our entailment procedure to conduct an equivalence proof to try to match a newly
inferred definition with a definition previously provided or inferred. Lastly, to increase
the chance for such predicate reuse, we allow predicates to be split into smaller predi-
cates. This is again done with the help of second-order entailment procedure, allowing
us to undertake such normalization tasks soundly and easily.

6 Soundness Lemmas and Theorem

Here we briefly state several key soundness results, and leave the proof details to the
report [21]. For brevity, we introduce the notationR(Γ) to denote a set of predicate in-
stantiations Γ={U1(v̄1)≡Δ1, ..Un(v̄n)≡Δn} satisfying the set of assumptionsR. That is, for
all assumptions Δ⇒ Φg ∈ R, (i) Γ contains a predicate instantiation for each unknown
predicate appearing in Δ and Φg ; (ii) by interpreting all unknown predicates according
to Γ, then it is provable that Δ implies Φg , written as Γ :Δ � Φg .
Soundness of Bi-abductive Entailment. Abduction soundness requires that if all the
relational assumptions generated are satisfiable, then the entailment is valid.
Lemma 1. Given the entailment judgement Δa �Δc � (R, Δf), if there exists Γ such
that R(Γ), then the entailment Γ : Δa � Δc ∗Δf holds.

Derivation Soundness. For derivation soundness, if a set of predicate definitions is con-
structed then those definitions must satisfy the initial set of assumptions. We argue that
(i) assumption refinement does not introduce spurious instantiations, (ii) the generated
predicates satisfy the refined assumptions, (iii) normalization is meaning preserving.
Lemma 2. Given a set of relational assumptions R, let R′ be the set obtained by ap-
plying any of the refinement steps, then for any Γ such that R′(Γ), we haveR(Γ).

Lemma 3. If R contains only one pre-assumption on predicate Upre,Upre(v̄)⇒Φg and
if our algorithm returns a solution Γ, then (Upre(v̄)≡Φg)∈ Γ. Similarly, if R has a sole
post-assumption on Upost, Φ⇒Upost and if solution Γ is returned, then (Upost(v̄)≡Φ)∈ Γ.

Lemma 4. Given a set of assumptions R, if PRED SYN(R) returns a solution Γ then
R(Γ). Furthermore, if PRED NORM(Γ) returns a solution Γ′ then R(Γ′).

Theorem 6.1 (Soundness) IfΔa �Δc � (R, Δf) and Γ=PRED NORM(PRED SYN(R)) then
Γ : Δa � Δc ∗Δf.

7 Implementation and Experimental Results

We have implemented the proposed shape analysis within HIP [9], a separation logic
verification system. The resulting verifier, called S2, uses an available CIL-based [27]
translator 3 from C to the expression-oriented core language. Our analysis modularly
infers the pre/post specification for each method. It attempts to provide the weakest
possible precondition to ensure memory safety (from null dereferencing and memory
leaks), and the strongest possible post-condition on heap usage patterns, where possible.

Expressivity. We have explored the generality and efficiency of the proposed analy-

3 Our translation preserves the semantics of source programs, subject to CIL’s limitations.



64 Q.L. Le et al.

Table 1. Experimental Results (c for check and t for traverse)

Example
w/o norm. w/ norm.

Veri.
size Syn. size Syn.

SLL (delete) 9 0.23 2 0.29 0.22
SLL (reverse) 20 0.21 8 0.22 0.2
SLL (insert) 13 0.2 11 0.21 0.2
SLL (setTail) 7 0.16 2 0.18 0.16
SLL (get-last) 20 0.7 17 0.75 0.21
SLL-sorted (c) 11 0.26 2 0.27 0.22

SLL (bubblesort) 13 0.28 9 0.36 0.26
SLL (insertsort) 15 0.3 11 0.3 0.27

SLL (zip) 20 0.27 2 0.32 0.24
SLL-zip-leq 20 0.27 2 0.27 0.25

SLL + head (c) 12 0.24 2 0.71 0.2
SLL + tail (c) 10 0.19 2 0.72 0.18
skip-list2 (c) 9 0.28 1 0.32 0.25
skip-list3 (c) 9 0.36 1 0.46 0.3

SLL of 0/1 SLLs 8 0.25 1 0.26 0.23
CSLL (c) 17 0.18 2 0.23 0.21

Example
w/o norm. w/ norm.

Veri.
size Syn. size Syn.

CSLL (t) 8 0.22 5 0.23 0.24
CSLL of CSLLs (c) 18 0.24 4 0.23 0.22

SLL2DLL 18 0.19 2 0.2 0.18
DLL (check) 8 0.21 2 0.23 0.19

DLL (append) 11 0.2 8 0.2 0.2
CDLL (c) 23 0.22 8 0.26 0.21

CDLL of 5CSLLs (c) 28 0.39 4 0.66 1.3
CDLL of CSLLs2 (c) 29 0.33 4 0.44 0.29

btree (search) 33 0.23 2 0.24 0.23
btree-parent (t) 11 0.23 2 0.29 0.24

rose-tree (c) 14 0.28 14 0.3 0.23
swl (t) 19 0.23 13 0.27 22
mcf (c) 19 0.26 17 0.28 0.26
tll (t) 21 0.23 2 0.25 0.21
tll (c) 21 0.29 2 0.32 0.19

tll (set-parent) 39 0.24 2 0.35 0.24

sis through a number of small but challenging examples. We have evaluated programs
which manipulate lists, trees and combinations (e.g. tll: trees whose leaves are chained
in a linked list). The experiments were performed on a machine with the Intel i7-960
(3.2GHz) processor and 16 GB of RAM. Table 1 presents our experimental results. For
each test, we list the name of the manipulated data structure and the effect of the veri-
fied code under the Example column. Here we used SLL,DLL,CLL,CDLL for singly-,
doubly-, cyclic-singly-, cyclic-doubly- linked lists. SLL + head/tail for an SLL where
each element points to the SLL’s head/tail. SLL of 0/1 SLLs uses an SLL nested in a
SLL of size 0 or 1, CSLL of CSLLs for CSLL nested in CSLL, CDLL of 5CSLLs for
an CDLL where each node is a source of five CSLL, and CDLL of CSLLs2 for CDLL
where each node is a nested CSLL. The skip lists subscript denotes the number of
skip pointers. The swl procedure implements list traversal following the DeutschSchorr-
Waite style. rose-trees are trees with nodes that are allowed to have variable number of
children, typically stored as linked lists, and mcf trees [16] are rose-tree variants where
children are stored in doubly-linked lists with sibling and parent pointers. In order to
evaluate the performance of our shape synthesis, we re-verified the source programs
against the inferred specifications and listed the verification time (in seconds) in the
Veri. column and the synthesis times in column Syn.. In total, the specification infer-
ence took 8.37s while the re-verification4 took 8.25s.

The experiments showed that our tool can handle fairly complex recursive methods,
like trees with linked leaves. It can synthesize shape abstractions for a large variety of

4 Due to our use of sound inference mechanisms, re-verification is not strictly required. We
perform it here to illustrate the benefit of integrating inference within a verification framework.
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data structures; from list and tree variants to combinations. Furthermore, the tool can
infer shapes with mutual-recursive definitions, like the rose-trees and mcf trees.

The normalization phase aims to simplify inferred shape predicates. To evaluate its
effectiveness, we performed the synthesis on two scenarios: without (w/o) and with (w/)
normalization. The number of conjuncts in the synthesized shapes is captured with size
column. The results show that normalization is helpful; it reduces by 68% (169/533)
the size of synthesized predicates with a time overhead of 27% (8.37s/10.62s).
Larger Experiments. We evaluated S2 on real source code from the Glib open source
library [1]. Glib is a cross-platform C library including non-GUI code from the GTK+
toolkit and the GNOME desktop environment. We focused our experiments on

LOC #Proc #Loop #
√

Syn. (sec)
gslist.c 698 33 18 47 11.73
glist.c 784 35 19 49 7.43
gtree.c 1204 36 14 44 3.69
gnode.c 1128 37 27 52 16.34

Fig. 8. Experiments on Glib Programs

the files which implemented heap data
structures, i.e. SLL (gslist.c), DLL
(glist.c), balanced binary trees (gtree.c)
and N-ary trees (gnode.c). In Fig.8 we list
for each file number of lines of code (ex-
cluding comments) LOC, number of pro-
cedures (while/for loops) #Proc (#Loop).
#
√

describes the number of procedures
and loops for which S2 inferred specifi-
cations that guarantee memory safety. S2

can infer specifications that guarantee memory safety for 89% of procedures and loops
(192/216).5

Limitations. Our present proposal cannot handle graphs and overlaid data structures
since our instantiation mechanism always expands into tree-like data structures with
back pointers. This is a key limitation of our approach. For an example, see the report
[21]. For future work, we also intend to combine shape analysis with other analyses
domains, in order to capture more expressive specifications, beyond memory safety.

8 Related Work and Conclusion

A significant body of research has been devoted to shape analysis. Most proposals are
orthogonal to our work as they focus on determining shapes based on a fixed set of shape
domains. For instance, the analysis in [26] can infer shape and certain numerical prop-
erties but is limited to the linked list domain. The analyses from [32,11,4,15,3,24] are
tailored to variants of lists and a fixed family of list interleavings. Likewise, Calcagno
et al. [7] describes an analysis for determining lock invariants with only linked lists.
Lee et al. [22] presents a shape analysis specifically tailored to overlaid data structures.
In the matching logic framework, a set of predicates is typically assumed for program
verification [31]. The work [2] extends this with specification inference. However, it
currently does not deal with the inference of inductive data structure abstractions.

The proposal by Magill et al. [26] is able to infer numerical properties, but it is still
parametric in the shape domain. Similarly, the separation logic bi-abduction described
in [6,17] assumes a set of built-in or user-defined predicates. Xisa, a tool presented

5 Our current implementation does not support array data structures. Hence, some procedures
like g tree insert internal cannot be verified.
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by Rival et. al. [8], works on programs with more varied shapes as long as structural
invariant checkers, which play the role of shape definitions, are provided. A later ex-
tension [30] also considers shape summaries for procedures with the additional help of
global analysis. Other similarly parameterized analysis includes [13]. In comparison,
our approach is built upon the foundation of second-order bi-abductive entailment, and
is able to infer unknown predicates from scratch or guided by user-supplied assertions.
This set-up is therefore highly flexible, as we could support a mix of inference and
verification, due to our integration into an existing verification system.

With respect to fully automatic analyses, there are [5], [16] and the Forester system
[18]. Although very expressive in terms of the inferred shape classes, the analysis pro-
posed by Guo et al. [16] relies on a heavy formalism and depends wholly on the shape
construction patterns being present in the code. They describe a global analysis that
requires program slicing techniques to shrink the analyzed code and to avoid noise on
the analysis. Furthermore, the soundness of their inference could not be guaranteed;
therefore a re-verification of the inferred invariants is required. Brotherston and Goro-
giannis [5] propose a novel way to synthesize inductive predicates by ensuring both
memory safety and termination. However, their proposal is currently limited to a sim-
ple imperative language without methods. A completely different approach is presented
in the Forrester system [18] where a fully automated shape synthesis is described in
terms of graph transformations over forest automata. Their approach is based on learn-
ing techniques that can discover suitable forest automata by incrementally constructing
shape abstractions called boxes. However, their proposal is currently restricted both in
terms of the analysed programs, e.g. recursion is not yet supported, and in terms of the
inferred shapes, as recursive nested boxes (needed by tll) are not supported.

In the TVLA tradition, [29] describes an interprocedural shape analysis for cut-free
programs. The approach explores the interaction between framing and the reachability-
based representation. Other approaches to shape analysis include grammar-based infer-
ence, e.g. [23] which relies on inferred grammars to define the recursive backbone of
the shape predicates. Although [23] is able to handle various types of structures, e.g.
trees and dlls, it is limited to structures with only one argument for back pointers. [25]
employs inductive logic programming (ILP) to infer recursive pure predicates. While, it
might be possible to apply a similar approach to shape inference, there has not yet been
any such effort. Furthermore, we believe a targeted approach would be able to easily
cater for the more intricate shapes. Since ILP has been shown to effectively synthesize
recursive predicates, it would be interesting to explore an integration of ILP with our
proposal for inferring recursive predicates of both shape and pure properties. A recent
work [14] that aims to automatically construct verification tools has implemented vari-
ous proof rules for reachability and termination properties however it does not focus on
the synthesis of shape abstractions. In an orthogonal direction, [10] presents an analy-
sis for constructing precise and compact method summaries. Unfortunately, both these
works lack the ability to handle recursive data structures.

Conclusion. We have presented a novel approach to modular shape analysis that can
automatically synthesize, from scratch, a set of shape abstractions that are needed for
ensuring memory safety. This capability is premised on our decision to build shape
predicate inference capability directly into a new second-order bi-abductive entailment
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procedure. Second-order variables are placeholders for unknown predicates that can
be synthesized from proof obligations gathered by Hoare-style verification. Thus, the
soundness of our inference is based on the soundness of the entailment procedure it-
self, and is not subjected to a re-verification process. Our proposal for shape analysis
has been structured into three key stages: (i) gathering of relational assumptions on un-
known shape predicates; (ii) synthesis of predicate definitions via derivation; and (iii)
normalization steps to provide concise shape definitions. We have also implemented a
prototype of our inference system into an existing verification infrastructure, and have
evaluated on a range of examples with complex heap usage patterns.
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18. Holik, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated shape analysis
based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 740–755. Springer, Heidelberg (2013)

19. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive defi-
nitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer,
Heidelberg (2013)

20. Ishtiaq, S., O’Hearn, P.W.: BI as an Assertion Language for Mutable Data Structures. In:
ACM POPL, London (January 2001)

21. Le, Q.L., Gherghina, C., Qin, S., Chin, W.N.: Shape analysis via second-order bi-abduction.
In Technical Report, Soc, NUS (February 2014), http://loris-7.ddns.comp.nus.
edu.sg/˜project/s2/beta/src/TRs2.pdf

22. Lee, O., Yang, H., Petersen, R.: Program analysis for overlaid data structures. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 592–608. Springer, Heidelberg
(2011)

23. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using grammar-based
shape analysis. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 124–140. Springer,
Heidelberg (2005)

24. Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantified
preconditions. Technical Report TR-2007-12-01, Tel Aviv University (2007)

25. Loginov, A., Reps, T., Sagiv, M.: Abstraction Refinement via Inductive Learning. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 519–533. Springer,
Heidelberg (2005)

26. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for heap-
manipulating programs. In: POPL, pp. 211–222 (2010)

27. Necula, G., McPeak, S., Rahul, S., Weimer, W.: CIL: Intermediate Language and Tools for
Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.) CC 2002. LNCS,
vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

28. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: IEEE LICS,
pp. 55–74 (2002)

29. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free pro-
grams. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302. Springer,
Heidelberg (2005)

30. Rival, X., Chang, B.-Y.E.: Calling context abstraction with shapes. In: POPL, pp. 173–186
(2011)

31. Rosu, G., Stefanescu, A.: Checking reachability using matching logic. In: OOPSLA,
pp. 555–574. ACM (2012)

32. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable
shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/src/TRs2.pdf
http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/src/TRs2.pdf
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Abstract. We introduce ICE, a robust learning paradigm for synthesizing invari-
ants, that learns using examples, counter-examples, and implications, and show
that it admits honest teachers and strongly convergent mechanisms for invariant
synthesis. We observe that existing algorithms for black-box abstract interpre-
tation can be interpreted as ICE-learning algorithms. We develop new strongly
convergent ICE-learning algorithms for two domains, one for learning Boolean
combinations of numerical invariants for scalar variables and one for quantified
invariants for arrays and dynamic lists. We implement these ICE-learning algo-
rithms in a verification tool and show they are robust, practical, and efficient.

1 Introduction
The problem of generating adequate inductive invariants to prove a program correct
is at the heart of automated program verification. Synthesizing invariants is in fact the
hardest aspect of program verification—once adequate inductive invariants are synthe-
sized [1–5], program verification reduces to checking validity of verification conditions
obtained from finite loop-free paths [6–8], which is a logic problem that has been highly
automated over the years.

Invariant generation techniques can be broadly classified into two kinds: white-box
techniques where the synthesizer of the invariant is acutely aware of the precise pro-
gram and property that is being proved and black-box techniques where the synthesizer
is largely agnostic to the structure of the program and property, but works with a partial
view of the requirements of the invariant. Abstract interpretation [1], counter-example
guided abstraction refinement, predicate abstraction [9, 10], the method of Craig inter-
polants [11, 12], IC3 [13], etc. all fall into the white-box category. In this paper, we are
interested in the newly emerging black-box techniques for invariant generation.
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- - -Learning Invariants: One prominent black-
box technique for invariant generation is the
emerging paradigm of learning. Intuitively
(see picture on the right), we have two com-
ponents in the verification tool: a white-box teacher and a black-box learner. The
learner synthesizes suggestions for the invariants in each round. The teacher is com-
pletely aware of the program and the property being verified, and is responsible for two
things: (a) to check if a purported invariant H (for hypothesis) supplied by the learner
is indeed an invariant and is adequate in proving the property of the program (typi-
cally using a constraint solver), and (b) if the invariant is not adequate, to come up with
concrete program configurations that need to be added or removed from the invariant
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(denoted by + and − in the figure). The learner, who comes up with the invariant H
is completely agnostic of the program and property being verified, and aims to build a
simple formula that is consistent with the sample.

When learning an invariant, the teacher and learner talk to each other in rounds,
where in each round the teacher comes up with additional constraints involving new
data-points and the learner replies with some set satisfying the constraints, until the
teacher finds the set to be an adequate inductive invariant. The above learning approach
for invariants has been explored for quite some time in various contexts [14–16], and is
gaining considerable excitement and traction in recent years [17–20].

Advantages of Learning: There are many advantages the learning approach has over
white-box approaches. First, a synthesizer of invariants that works cognizant of the
program and property is very hard to build, simply due to the fact that it has to deal
with the complex logic of the program. When a program manipulates complex data-
structures, pointers, objects, etc. with a complex memory model and semantics, build-
ing a set that is guaranteed to be an invariant gets extremely complex. However, the
invariant for a loop in such a program may be much simpler, and hence a black-box
technique that uses a “guess and check” approach guided by a finite set of configura-
tions is much more light-weight and has better chances of finding the invariant. (See [4]
where a similar argument is made for black-box generation of the abstract post in an
abstract interpretation setting.) Second, learning, which typically concentrates on find-
ing the simplest concept that satisfies the constraints, implicitly provides a tactic for
generalization, while white-box techniques (like interpolation) need to build in tactics
to generalize. Finally, the black-box approach allows us to seamlessly integrate highly
scalable machine-learning techniques into the verification framework [21, 22].

ICE-learning: The problem with the learning approach described above is that it is
broken, as we show in this paper! Approaches to learning invariants have been unduly
influenced by algorithmic learning theory, automata learning, and machine learning
techniques, which have traditionally offered learning from positive and negative ex-
amples. As we show in this paper, learning using examples and counter-examples does
not form a robust learning framework for synthesizing invariants. To see why, consider
the following simple program—

pre; S ; while (b) do L; od S ′; post
with a single loop body for which we want to synthesize an invariant that proves that
when the pre-condition to the program holds, the post-condition holds upon exit. As-
sume that the learner has just proposed a particular set H as a hypothesis invariant. In
order to check if H is an adequate invariant, the teacher checks three things:
(a) whether the strongest-post of the pre-condition across S implies H; if not finds a

concrete data-point p and passes this as a positive example to the learner.
(b) whether the strongest-post of (H ∧ ¬b) across S ′ implies the post-condition; if not,

pass a data-point p in H that shouldn’t belong to the invariant as a negative example.
(c) whether H is inductive; i.e., whether the strongest post of H∧ b across loop body L

implies H; if not, finds two concrete configurations p and p′, with p ∈ H, p′ � H.
In the last case above, the teacher is stuck. Since she does not know the precise invariant
(there are after all many), she has no way of knowing whether p should be excluded
from H or whether p′ should be included. In many learning algorithms in the literature
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[14–16, 20], the teacher cheats: she arbitrarily makes one choice and goes with that,
hoping that it will result in an invariant. However, this makes the entire framework non-
robust, causing divergence,blocking the learner from learning the simplest concepts, and
introducing arbitrary bias that is very hard to control. If learning is to be seriously de-
veloped for synthesizing invariants, we need to fix this foundationally in the framework
itself.

The main contribution of this paper is a new learning framework called ICE-learning,
which stands for learning using Examples, Counter-examples, and Implications. We
propose that we should build learning algorithms that do not take just examples and
counter-examples, as most traditional learning algorithms do, but instead also handle
implications. The teacher, when faced with non-inductiveness of the current conjecture
H in terms of a pair (p, p′), simply communicates this implication pair to the learner,
demanding that the learnt set satisfies the property that if p is included in H, then so is
p′. The learner makes the choice, based on considerations of simplicity, generalization,
etc., whether it would include both p and p′ in its set or leave p out.

We show that ICE-learning is a robust learning model, in the sense that the teacher
can always communicate to a learner precisely why a conjecture is not an invariant (even
for programs with multiple loops, nested loops, etc.). This robustness then leads to new
questions that we can formulate about learning, which we cannot ask in the setting of
learning with only examples and counter-examples. In particular, we can ask whether
the iterative learning process, for a particular learner, strongly converges— whether the
learner will eventually learn the invariant, provided one exists expressible as a concept,
no matter how the teacher gives examples, counter-examples, and implications to refute
the learner’s conjectures.

We emphasize that earlier works in the literature have indeed seen inductiveness as
an important aspect of synthesizing invariants, and several mechanisms for guiding the
search towards an inductive property are known [13,23–26]. Our work here is however
the first that we know that develops a robust learning model that explicitly incorporates
the search for inductive sets in black-box invariant generation.

Our main contributions are as follows:
– We propose the ICE-learning framework as a robust learning framework for syn-

thesizing invariants. We study ICE-learning algorithms at two levels: ICE-learning
for a particular sample as well as the iterative ICE-model in which the teacher and
learner iteratively interact to find the invariant. The complexity of the ICE-learner
for a sample, strong convergence of iterative learning, and the number of rounds of
iteration required to learn are pertinent questions.

– We show that when the class of concepts forms a lattice, ICE learning can be often
achieved, and in fact methods that already exist in the literature can be seen as
ICE-learning algorithms. In particular, the abstract Houdini algorithm [3,4] and the
work reported in [27] for invariant synthesis over abstract numerical domain lattices
are in fact ICE-learning algorithms. However, these algorithms are not typically
strongly convergent and moreover, cannot learn from negative examples at all. We
hence concentrate on strongly convergent ICE-learning algorithms for two different
domains in this paper that do use negative examples and implications effectively.
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– We develop a new ICE-learning algorithm for Boolean combinations of numerical
invariants, which does not form a complete lattice. Given an ICE-sample, we show
how to find the simplest expressible formula that satisfies the sample. Our algorithm
iterates over all possible template formulas, growing in complexity, till it finds
an appropriate formula, and adapts template-based synthesis techniques that use
constraint solvers [28–31] to build a black-box ICE-learning algorithm. We prove
that the resulting iterative ICE-algorithm is strongly convergent. Note that the user
only specifies the logic for the invariants, and does not need to give templates.
We build a tool over Boogie [8] for synthesizing invariants over scalar variables
and show that it is extremely effective: it mostly outperforms other techniques,
and furthermore gives guarantees of simplicity and strong convergence that other
algorithms do not.

– As a second instantiation of the ICE-framework, we develop a new strongly con-
vergent ICE-learning algorithm for quantified invariants. We develop a general
technique of reducing ICE-learning of quantified properties to ICE-learning of
quantifier-free properties, but where the latter is generalized to sets of configura-
tions rather than single configurations. We instantiate this technique to build an
ICE-learner for quantified properties of arrays and lists. This new learning algo-
rithm (which is the most involved technical contribution of this paper) extends the
classical RPNI learning algorithm for automata [32] to learning in the ICE-model
and further learns quantified data automata [20], which can be converted to quan-
tified logical formulas over arrays/lists. We build a prototype verifier by building
this learner and the teacher as well, and show that this results in extremely efficient
and robust learning of quantified invariants.

Related Work: Prominent white-box techniques for invariant synthesis include ab-
stract interpretation [1], interpolation [11, 12] and IC3 [13]. Abstract interpretation has
been used for generating invariants over mostly convex domains [2, 33], some non-
convex domains [34,35] and more recently even over non-lattice abstract domains [36].
Template based approaches to synthesizing invariants using constraint solvers have been
explored in a white-box setting in [28–31], and we adapt these techniques in Section 4
for developing an ICE-learning algorithm for numerical invariants. Several white-box
techniques for synthesizing quantified invariants are also known. Most of them are
based on abstract interpretation or on interpolation theorems for array theories [37–45].

Turning to black-box learning-based techniques for synthesizing invariants,
Daikon [46] was a prominent early technique proposed for conjunctive Boolean
learning to find likely invariants from configurations recorded along test runs. Learning
was introduced in the context of verification by Cobleigh et al. [14], which was
followed by applications of Angluin’s L∗ algorithm [47] to finding rely-guarantee
contracts [15] and stateful interfaces for programs [16]. Houdini [3] uses essentially
conjunctive Boolean learning (which can be achieved in polynomial time) to learn
conjunctive invariants over templates of atomic formulas. In Section 3, we show that
the Houdini algorithm along with its generalization by Thakur et al. [4] and [27] to
arbitrary abstract domains like intervals, octagons, polyhedrons, linear equalities, etc.
are in fact ICE-learning algorithms.
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Recently, there is renewed interest in the application of learning to program verifica-
tion, in particular to synthesize invariants [17–19] by using scalable machine learning
techniques [21, 22] to find classifiers that can separate good states that the program can
reach (positive examples) from the bad states the program is forbidden from reaching
(counter-examples). Quantified likely invariants for linear data-structures and arrays are
found from dynamic executions using learning in [20], but these aren’t necessarily ad-
equate. Boolean formula learning has also been applied recently for learning quantified
invariants in [48]. In addition, learning has been applied towards inductive program
synthesis [49, 50] and model extraction and testing of software [51, 52].

Counterexamples to inductiveness of an invariant have been handled in the past [24–
26], but only in the context of lattice domains where the learned concepts grow mono-
tonically and implications essentially yield positive examples. Recently, [23] tries to
find inductive invariants by finding common interpolants for same program locations.
Though [18] mentions a heuristic for handling implication samples in their algorithm
for learning invariants their tool does not implement that heuristic. As far as we know,
our work here is the first to explicitly incorporate the search for inductive sets in black-
box invariant generation.

2 Illustrative Example
#include <vcc.h>
int foo(int a[], int p)
_(requires (p>=25 && p<75))
_(requires a[p]==1)
_(requires \thread_local_array

(a, 100))
{

int i=0, j=0;
while (i<100)
_(invariant (i>p ==> j==1))
{

if (a[i]==1)
j = 1;

i = i+1;
}
_(assert j==1);

}

Consider the C program on the right. This program re-
quires a scalar loop invariant (i> p⇒ j=1) for its ver-
ification using VCC [53]. Even in order to synthesize
such a scalar invariant, white-box techniques would
need to reason about the array a[] in the program, and
in general have to deal with complex language features
like objects, pointers, a complex memory model and
its semantics, etc. A black-box approach can however
learn such an invariant from a small set of program
configurations restricted to scalars.

Consider a black-box engine that calls foo with
the values for p— 25, 26, . . . and that unrolls the loop
a few times to find positive examples for (i, j, p) in
the kind (0, 0, 25), (1, 0, 25), (1, 1, 25), . . . for a small
number of values of i, and counter-examples of the form (100, 0, 25), (100, 2, 25),
. . . (99, 0, 25), (99, 2, 25), . . . (values close to 100 for i and different from 1 for j). From
these positive and negative examples, the learner could naturally come up with a con-
jecture such as (i>50⇒ j=1) (machine learning algorithms tend to come up with such
invariants).

Now notice that the teacher is stuck as all positive and negative examples are satisfied
by the conjecture, though it is not inductive. Consequently, when using a learner from
only positive and negative samples, the teacher cannot make progress. However, in ICE-
learning, the teacher can give an implication pair, say of the form ((50, 0, 25), (51, 0, 25)),
and proceed with the learning. Hence we can make progress in learning, and a learner
that produces the simplest conjectures satisfying the samples would eventually general-
ize a large enough sample to come up with a correct invariant. Our tool from Section 4
precisely learns the above mentioned invariant for this program.
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3 The ICE-Learning Framework
When defining a (machine) learning problem, one usually specifies a domain D (like
points in the real plane or finite words over an alphabet), and a class of concepts C (like
rectangles in the plane or regular languages), which is a class of subsets of the domain.
In classical learning frameworks (see [22]), the teacher provides a set of positive exam-
ples in D that are part of the target concept, and a set of counter-examples (or negative
examples) in D that are not part of the target concept. Based on these, the learner must
construct a hypothesis that approximates the target concept the teacher has in mind.

ICE-learning: In our setting, the teacher does not have a precise target concept from C
in mind, but is looking for an inductive set which meets certain additional constraints.
Consequently, we extend this learning setting with a third type of information that can
be provided by the teacher: implications. Formally, let D be some domain and C ⊆ 2D

be a class of subsets of D, called the concepts. The teacher knows a triple (P,N,R),
where P ⊆ D is an (infinite) set of positive examples, N ⊆ D is an (infinite) set of
counter-examples (or negative examples), and R ⊆ D × D is a relation interpreted as an
(infinite) set of implications. We call (P,N,R) the target description, and these sets are
typically infinite and are obtained from the program, but the teacher has the ability to
query these sets effectively.

The learner is given a finite part of this information (E,C, I) with E ⊆ P, C ⊆ N,
and I ⊆ R. We refer to (E,C, I) as an (ICE) sample. The task of the ICE-learner is to
construct some hypothesis H ∈ C such that P ⊆ H, N ∩ H = ∅, and for each pair
(x, y) ∈ R, if x ∈ H, then y ∈ H. A hypothesis with these properties is called a correct
hypothesis. Note that a target description (P,N,R) may have several correct hypotheses
(while H must include P, exclude N, and be R-closed, there can be several such sets).

Iterative ICE-learning: The above ICE-learning corresponds to a passive learning
setting, in which the learner does not interact with the teacher. In general, the quality
of the hypothesis will heavily depend on the amount of information contained in the
sample. However, when the hypothesis is wrong, we would like the learner to gain
information from the teacher using new samples. Since such a learning process proceeds
in rounds, we refer to it as iterative ICE-learning.

The iterative ICE-learning happens in rounds, where in each round, the learner starts
with some sample (E,C, I) (from previous rounds or an initialization) and constructs a
hypothesis H ∈ C from this information, and asks the teacher whether this is correct.
If the hypothesis is correct (i.e., if P ⊆ H, H ∩ N = ∅, and for every (x, y) ∈ R, if
x ∈ H, then y ∈ H as well), then the teacher answers “correct” and the learning process
terminates. Otherwise, the teacher returns either some element d ∈ D with d ∈ P \ H or
d ∈ H ∩ N, or an implication (x, y) ∈ R with x ∈ H and y � H. This new information is
added to the sample of the learner.

The learning proceeds in rounds and when the learning terminates, the learner has
learnt some R-closed concept that includes P and excludes N.

Using ICE-Learning to Synthesize Invariants: Honesty and Progress
Given an ICE-learning algorithm for a concept class, we can build algorithms for syn-
thesizing invariants by building the required (white-box) teacher. We can apply such
learning for finding invariants in programs with multiple loops, nested loops, etc.
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The learning will simultaneously learn all these invariant annotations. The teacher can
check the hypotheses by generating verification conditions for the hypothesized invari-
ants and by using automatic theorem provers to check their validity.

The two salient features of ICE-learning is that it facilitates progress and honesty. The
teacher can always make progress by adding an example/counter-example/implication
such that H (and any other previous hypothesis) does not satisfy it. Furthermore, while
augmenting the sample, the teacher can answer honestly, not precluding any possible
adequate inductive invariant of the program. Honesty and progress are impossible to
achieve when learning just from positive and negative examples (when the hypothesis
is not inductive, there is no way to make progress without making a dishonest choice).

Convergence: The setting of iterative ICE-learning naturally raises the question of
convergence of the learner, that is, does the learner find a correct hypothesis in a finite
number of rounds? We say that a learner strongly converges, if for every target de-
scription (P,N,R) it reaches a correct hypothesis (from the empty sample) after a finite
number of rounds, no matter what information is provided by the teacher (of course, the
teacher has to answer correctly according to the target description (P,N,R)).

Note that the definition above demands convergence for arbitrary triples (P,N,R),
and allows the teacher in each round to provide any information that contradicts the
current hypothesis, and is hence a very strong property.

Observe now that for a finite class C of concepts, a learner strongly converges if it
never constructs the same hypothesis twice. This assumption on the learner is satisfied
if it only produces hypotheses H that are consistent with the sample (E,C, I), that is, if
E ⊆ H, C ∩ H = ∅, and for each pair (x, y) ∈ I, if x ∈ H, then y ∈ H. Such a learner is
called a consistent learner. Since the teacher always provides a witness for an incorrect
hypothesis, the next hypothesis constructed by a consistent learner must be different
from all the previous ones.

Lemma 1. For a finite class C of concepts, every consistent learner strongly converges.

For various iterative ICE-algorithm classes, where class of concepts may be infinite, we
will study strong convergence.

ICE-Learning over Lattice Domains: It turns out that ICE-algorithms are especially
easy to build when the class of concepts forms a lattice, as typical in an abstract inter-
pretation setting.

Consider an abstract domain that is a lattice. Then given any sample (E,C, I), we
can compute the best (smallest) abstract element that satisfies the constraints (E,C, I)
as follows. First, we take the least upper bound of the set of all α(e), for each e ∈ E. Then
we see if these satisfy the implication constraints; if not, then for every pair (p, p′) ∈ I
that is not satisfied, we know that p′ must be added to the set (since p belongs to every
set that includes E). Hence all these elements p′ can be added by applying α to them,
and we can take the lub with respect to the existing set. We continue in this fashion till
we converge to an abstract element that is the smallest satisfying E and I. Now, we can
check if C is excluded from it; if yes, we have computed the best set, else there is no set
satisfying the constraints. The above is an ICE-algorithm for any abstract domain.

We can, using this argument, establish polynomial-time (non-iterative) ICE-learning
algorithms for conjunctive formulas (in fact, this is what the classical Houdini algorithm
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does [3,22]), k-CNF formulas [22], and for abstract domains such as octagons, polyhe-
dra, etc. as in [24, 25]

However, note that the iterative extension of the above ICE-algorithm may not halt
(unless the domain has finite height). One can of course use a widening heuristically
after some rounds to halt, but then clearly the iterative ICE algorithm will not be nec-
essarily strongly convergent. The iterative ICE-algorithm with widening is, in fact, pre-
cisely the abstract Houdini algorithm proposed recently in [4], and is similar to another
recent work in [27], and are not strongly convergent.

The iterative ICE-learning algorithms we develop in this paper are strongly con-
vergent. While the above derived iterative ICE-algorithms essentially ignore counter-
examples, and fail to use counter-examples and implications as a way to come down the
lattice after a widening/over-generalization, the algorithms we propose in the next two
sections are more general schemes that truly utilize examples, counter-examples, and
implications to find succinct expressions.

4 An ICE-Learning Algorithm for Numerical Invariants

In this section, we describe a learning algorithm for synthesizing invariants that are ar-
bitrary Boolean combinations of numerical atomic formulas. Since we want the learning
algorithm to generalize the sample (and not capture precisely the finite set of implication-
closed positive examples), we would like it to learn a formula with the simplest Boolean
structure. In order to do so, we iterate over templates over the Boolean structure of the
formulas, and learn a formula in the given template.

Note that the domain is a join-semilattice (every pair of elements has a least upper
bound) since formulas are closed under disjunction. Hence we can employ the generic
abstract Houdini algorithm [4] to obtain a passive ICE-learning algorithm. However, us-
ing the vanilla algorithm will learn only the precise set of positive and implication-closed
set, and hence not generalize without a widening. Widening for disjunctive domains is
not easy, as there are several ways to generalize disjunctive sets [54]. Furthermore, even
with a widening, we will not get a strongly convergent iterative ICE-algorithm that we
desire (see experiments in this section where abstract Houdini diverges even on conjunc-
tive domains on some programs for this reason). The algorithm we build in this section
will not only be strongly convergent but also will produce the simplest expressible in-
variant.

Let Var = {x1, · · · , xn} be the set of (integer) variables in the scope of the program.
For simplicity, let us restrict atomic formulas in our concept class to octagonal con-
straints, over program configurations, of the general form:

s1v1 + s2v2 ≤ c, s1, s2 ∈ {0,+1,−1}, v1, v2 ∈ Var, v1 � v2, c ∈ Z.
(We can handle more general atomic formulas as well; we stick to the above for sim-
plicity and effectiveness.)

Our ICE-learning algorithm will work by iterating over more and more complex
templates till it finds the simplest formula that satisfies the sample. A template fixes
the Boolean structure of the desired invariants and also restricts the constants c ∈
Z appearing in the atomic formulas to lie within a finite range [−M,+M], for some
M ∈ Z+. Bounding the constants leads to strong convergence as we show below. For a
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Note that Ψ falls in the theory of quantifier-free linear integer arithmetic, the satisfi-
ability of which is decidable. A satisfying assignment for Ψ gives a consistent formula
that the learner conjectures as an invariant. If Ψ is unsatisfiable, then there is no invari-
ant for the current template consistent with the given sample. In this case we iterate by
increasing the complexity of the template. For a given template, the class of formulas
conforming to the template is finite. Our enumeration of templates dovetails between
the Boolean structure and the range of constants in the template, thereby progressively
increasing the complexity of the template. Consequently, the ICE-learning algorithm
always synthesizes a consistent hypothesis if there is one, and furthermore synthesizes
a hypothesis of the simplest template.

A similar approach can be used for learning invariants over linear constraints, and
even more general constraints if there is an effective solver for the resulting theory.

Convergence: Our iterative ICE-algorithm conjectures a consistent hypothesis in each
round, and hence ensures that we do not repeat hypotheses. Furthermore, the enumera-
tion of templates using dovetailing ensures that all templates are eventually considered,
and together with the fact that there are a finite number of formulas conforming to any
template ensures strong convergence.

Theorem 1. The above ICE-learning algorithm always produces consistent conjec-
tures and the corresponding iterative ICE-algorithm strongly converges.

Our learning algorithm is quite different from earlier white-box constraint based ap-
proaches to invariant synthesis [28–31]. These approaches directly encode the adequacy
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of the invariant (encoding the entire program’s body) into a constraint, and use Farkas’
lemma to reduce the problem to satisfiability of quantifier-free non-linear arithmetic
formulas, which is harder and in general undecidable. We, on the other hand, split
the task between a white-box teacher and a black-box learner, communicating only
through ICE-constraints on concrete data-points. This greatly reduces the complexity
of the problem, leading to a simple teacher and a much simpler learner. Our idea is
more similar to [19] which use algebraic techniques to guess the coefficients.

Table 1. Results for ICE-learning numerical invariants. ICE is the total time taken by our tool.
All times reported are in seconds. × means an adequate invariant was not found.

Program

White Black

Program Invariant

White Black
Inv- Box Box Box Box

ariant InvGen CPA absH ML ICE InvGen CPA absH ML ICE
[31] [55] [4] [18] [31] [55] [4] [18]

w1[29] x ≤ n 0.1 × 0.1 0.2 0.0 w2[29] x ≤ n − 1 0.1 × 0.2 0.1 0.0
fig6[56] true 0.1 1.3 0.1 0.1 0.0 fig1[29] x ≤ −1 ∨ y ≥ 1 × 4.5 × × 0.1
fig8[56] true 0.0 1.4 0.0 0.0 0.0 fig3[56] lock = 1 ∨ x ≤ y − 1 0.1 1.4 × 0.1 0.0
ex14[57] x ≥ 1 × 1.5 0.2 0.2 0.0 fig9[56] x = 0 ∧ y ≥ 0 0.1 1.4 0.0 0.2 0.0
finf1 x = 0 0.1 1.5 0.1 0.4 0.0

ex23[57]
0 ≤ y ≤ z∧ × 90.5 0.2 × 14.2

finf2 x = 0 0.1 1.4 0.0 0.1 0.0 z ≤ c + 4572
sum3 sn = x 0.1 1.5 0.1 0.1 0.0 ex7 [57] 0 ≤ i ∧ y ≤ len × 1.6 0.2 0.4 0.0
term2 true 0.0 1.6 0.0 0.0 0.0

sum1
sn = i − 1∧ × × × × 1.8

term3 true 0.0 1.4 0.0 0.0 0.0 (sn = 0 ∨ sn ≤ n)
trex1 z >= 1 0.1 1.5 0.1 0.4 0.0 sum4 sn = i − 1 ∧ sn ≤ 8 0.1 2.8 × × 2.6
trex2 true 0.0 1.4 0.0 0.0 0.0

tcs [12]
i ≤ j − 1 ∨ i ≥ j + 1∨

0.1 1.4 × 0.5 1.4
trex4 true 0.0 1.4 0.0 0.0 0.0 x = y
winf1 x = 0 0.0 1.4 0.0 0.0 0.0

trex3
0 ≤ x1 ∧ 0 ≤ x2∧

0.5 × × × 2.2winf2 x = 0 0.0 1.4 0.0 0.0 0.0 0 ≤ x3 ∧ d1 = 1∧
winf3 x = 0 × 1.4 0.3 0.1 0.1 d2 = 1 ∧ d3 = 1
vmail i ≥ 0 × 1.4 0.1 0.3 0.0

matrix
a[0][0]≤m ∨ j≤0; × × × × 5.8

lucmp n = 5 × 77.0 0.0 0.1 0.0 a[0][0]≤m ∨ j+k≤0

n.c11
0 ≤ len

0.1 2.2 × 0.2 0.6 cgr2[29]
N ≤ 0 ∨ (x ≥ 0∧ × 1.8 × × 7.3≤ 4 0 ≤ m ≤ N − 1)

cgr1[29] x − y ≤ 2 0.1 1.5 0.1 0.2 0.0 array j ≤ 0 ∨ m ≤ a[0] × × × 0.2 0.3
oct x + y ≤ 2 0.0 1.3 0.2 0.1 0.2 vbsd pathlim ≤ tmp × 1.6 0.5 × 0.0

Experimental Results: We have implemented our learning algorithm as an invariant
synthesis tool 1 in Boogie [8]. In our tool we enumerate templates in an increasing order
of their complexity. For a given Boolean structure of the template Bi, we fix the range
of constants M in the template to be the greater value out of i and the maximum integer
in the program. If an adequate invariant is not found, we increase i. If an adequate
invariant is found, we use binary search on M to find an invariant that has the same
Boolean structure but the smallest constants. This enumeration of templates is complete
and it ensures that we learn the simplest invariant. In our tool, ICE-samples discovered
while learning an invariant belonging to a simpler template are not wasted but used
in subsequent rounds. As already mentioned, our learner uses an incremental Z3 [58]
solver that adds a new constraint for every ICE-sample discovered by the Boogie based
teacher.

1 Available at http://www.cs.uiuc.edu/~madhu/cav14/

http://www.cs.uiuc.edu/~madhu/cav14/
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We evaluate our tool on SV-COMP benchmarks2 and several other programs from
the literature (see Table 1). We use SMACK [59] to convert C programs to Boogie and
use our tool to learn loop invariants for the resulting Boogie programs. We use inlining
to infer invariants for programs with multiple procedures. In Table 1 we compare our
tool to invariant synthesis using abstract Houdini [4] (called absH in Table 1), [18]
(called ML), Invgen [31] and interpolation based Impact algorithm [60] implemented
in CPAchecker (called CPA) [55]. We implemented the octagonal domain in abstract
Houdini for a comparison with our tool. As mentioned in Section 3, abstract Houdini
is an ICE-learning algorithm but is not strongly convergent. Unlike our tool, abstract
Houdini is not able to learn disjunctive octagonal invariants. In addition, it is unable
to prove programs like trex3 and n.c11 where it loses precision due to widening.
InvGen [31] uses a white-box constraint-based approach to invariant synthesis. Unlike
our tool that enumerates all templates, InvGen requires the user to specify a template
for the invariants. Being white-box, it cannot handle programs with arrays and pointers,
even if the required invariants are numerical constraints over scalar variables. Being
incomplete, it is also unable to prove several scalar programs like fig1 and cegar2.
Finally, [18] is a machine learning algorithm for inferring numerical invariants. From
our experience, the inference procedure in [18] is very sensitive to the test harness used
to obtain the set of safe/unsafe program configurations. For several programs, we could
not learn an adequate invariant using [18] despite many attempts with different test
harnesses.

The experiments show that our tool outperforms [4, 18, 31, 55] on most programs,
and learns an adequate invariant for all programs in reasonable time. Though we use
the more complex but more robust framework of ICE-learning that promises to learn the
simplest invariants and is strongly convergent, it is generally faster than other learning
algorithms like [17, 18] that learn invariants from just positive and negative examples,
and lack any such promises.

5 Learning Universally Quantified Properties
In this section we describe a setting of ICE-learning for universally quantified con-
cepts over linear data-structures like arrays and lists. A configuration of a program
can be described by the heap structure (locations, the various field-pointers, etc.), and
a finite set of pointer variables pointing into the heap. Since the heap is unbounded,
typical invariants for programs manipulating heaps require universally quantified for-
mulas. For example, a list is sorted if the data at all pairs y1, y2 of successive posi-
tions is sorted correctly. We consider synthesis of universal properties of the form
ψ = ∀y1, . . . , ykϕ(y1, . . . , yk), where ϕ is a quantifier-free formula. We now describe how
to modify the ICE-learning framework so that we can use a learner for the quantifier-
free property described by ϕ(y1, . . . , yk).

We consider for each concrete program configuration c the set S c of valuation con-
figurations of the form (c, val), where val is a valuation of the variables y1, . . . , yk. For
example, if the configurations are heaps, then the valuation maps each quantified vari-
able yi to a cell in the heap, akin to a scalar pointer variable. Then c |= ψ if (c, val) |= ϕ
for all valuations val, and c �|= ψ if (c, val) �|= ϕ for some valuation val.

2 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/

https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/
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This leads to the setting of data-set based ICE-learning. In this setting, the target
description is of the form (P̂, N̂, R̂) where P̂, N̂ ⊆ 2D and R̂ ⊆ 2D × 2D. A hypothesis
H ⊆ D is correct if P ⊆ H for each P ∈ P̂, N � H for each N ∈ N̂, and for each
pair (X, Y) ∈ R̂, if X ⊆ H, then also Y ⊆ H. The sample is a finite part of the target
description, that is, it is of the form (Ê, Ĉ, Î), where Ê, Ĉ ⊆ 2D, and Î ⊆ 2D × 2D.

An ICE-learner for the data-set based setting corresponds to an ICE-learner for uni-
versally quantified concepts in the original data-point based setting using the following
connection. Given a standard target description (P,N,R) over D, we now consider the
domain Dval extended with valuations of the quantified variables y1, . . . , yk as described
above. Replacing each element c of the domain by the set S c ⊆ Dval transforms (P,N,R)
into a set-based target description. Then a hypothesis H (described by a quantifier-free
formula ϕ(y1, . . . , yk)) is correct w.r.t. the set-based target description iff the hypothesis
described by ∀y1, . . . , ykϕ(y1, . . . , yk) is correct w.r.t. the original target description. Un-
like [40] that uses “Skolem constants”, learning over data-sets allows us to learn from
not only examples, but also from counter-examples and implications (where simple
Skolem constants will not work).

Recap of Quantified Data Automata and Related Results [20]:
We will develop ICE-learning algorithms for universally quantified invariants over ar-
rays and lists that can be expressed by an automaton model called quantified data au-
tomata (QDA) introduced by Garg et al. in [20]. We here briefly recall the main ideas
concerning this model and refer the reader to [20] for more detailed definitions.

For example, consider a typical invariant in a sorting program over an array A:
∀y1, y2.((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]). This says that for all
successive cells y1, y2 that occur somewhere in the array A before the cell pointed to by
a scalar pointer variable i, the data stored at y1 is no larger than the data stored at y2.

We model arrays (or other linear data structures) by data words, in which each po-
sition corresponds to an element or cell in the data structure. Each position in such a
word is labeled with a tuple of a set of pointer variables of the program that indicates
their position in the data structure and a data value from some data domain (e.g., inte-
gers) that indicates the value contained in the cell of the data structure. A QDA defines
a set of data words. However, to capture the idea of expressing universally quantified
properties, a QDA reads valuation words, which are additionally annotated with univer-
sally quantified variables. The alphabet of a QDA is a pair in which the first component
corresponds to the pointer variables, and the second component contains the universally
quantified variable at that position (if any).

q1 q2 q3 q4q5

b =̂ no pointer var.
− =̂ no universal var.
b =̂ (b,−)
∗ =̂ arbitrary valued(y1) ≤ d(y2)

true

(b, y1 )

(i, ∗), (b, y2)

b

(b, y2 )b, (i,−)

(i, y2)

(i,−)

b b∗

Fig. 1. An example QDA representing an invariant of a sorting routine

The sortedness invariant above is captured by the QDA in Figure 1. The QDA accepts a
valuation word if the data values at the positions of y1 and y2 satisfy the formula at the
final state it reaches. Moreover, the automaton accepts a data word w if for all possible
valuations of y1 and y2, the automaton accepts the corresponding valuation word.
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We assume that the set of formulas used to label the final states of a QDA forms a
finite lattice in which the order � is compatible with implication of formulas, that is, if
ϕ1 � ϕ2, then ϕ1 ⇒ ϕ2.

In [20] the subclass of elastic QDAs (EQDAs) is considered because they have a
decidable emptiness problem and can be translated into decidable logics, like the array
property fragment (APF) [61] for arrays, or a decidable fragment of the logic Strand
[62] for lists. The key property of these logics is their inability to express that quantified
variables are only a bounded distance away from each other. This is captured at the
automaton level by only allowing self loops on b in EQDAs. The example QDA in
Figure 1 is not an elastic QDA because there is a b-transition from q2 to q5. However,
there is an EQDA for an equivalent invariant in which the sortedness property is checked
for every pair of cells y1, y2 such that y1 ≤ y2. Note that since each variable can occur
only once, the blank symbol is the only one that can appear arbitrarily often in an
input word. Therefore, there are only finitely many EQDAs for a fixed alphabet (set of
variables). We refer the reader to [20] for more details on EQDAs.

ICE-Learning Algorithms for EQDAs. The goal of this section is to develop an it-
erative ICE-learner for concepts represented by EQDAs. The first relevant question is
whether there is a polynomial time iterative ICE-learner. We show that this is impos-
sible when the set of pointers and quantified variables is unbounded (see the technical
report [63] for a proof sketch).

Theorem 2. There is no polynomial time iterative ICE-learner for EQDAs, when the
alphabet size is unbounded.

The theorem is proved by adapting a result from [64], namely that there is no polyno-
mial time learning algorithm for DFAs that only uses equivalence queries. This shows
that there is no hope of obtaining an iterative ICE-learner for EQDAs (or even QDAs) in
the style of the well-known L∗ algorithm of Angluin, which learns DFAs in polynomial
time using equivalence and membership queries.

Though we cannot hope for a polynomial time iterative ICE-learner, we develop a
(non-iterative) ICE-learner that constructs an EQDA from a given sample in polynomial
time. In the iterative setting this yields a learner for which each round is polynomial,
while the number of rounds is not polynomial, in general. Our ICE-learning algorithm
is adapted from the classical RPNI passive learning algorithm [32], which takes as
input a sample (E,C) of positive example words E and counter-example words C, and
constructs a DFA that DFA accepts all words in E and rejects all words in C.

RPNI can be viewed as an instance of an abstract state merging algorithm that is
sketched as Algorithm 1. In this general setting, the algorithm takes a finite collection
S of data, called a sample, as input and produces a Moore machine (i.e., a DFA with
output) that is consistent with the sample (we define this formally later). In the case of
classical RPNI, S = (E,C) consists of two finite sets of example and counter-example
words, the resulting Moore machine is interpreted as a DFA, and we require that all
words in E be accepted whereas all words in C be rejected by the DFA.

Algorithm 1 proceeds in two consecutive phases. In Phase 1 (Lines 1 and 2), it calls
init(S) to construct an initial Moore machine Ainit from S that satisfies the sample
(assuming that this is possible). Then, it picks a total order q0 < . . . < qn on the states of
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Ainit, which determines the order in which the states are to be merged in the subsequent
phase. The actual state merging then takes place in Phase 2 (Lines 3 to 14). According
to the given order, Algorithm 1 tries to merge each state qi with a “smaller” state q j (i.e.,
j < i) and calls test on the resulting Moore machine to check whether this machine

Algorithm 1: Generic State Merging algorithm.

Input: A sample S
Output: A Moore machineA that passes test(A)

1 Ainit = (Q, Σ, Γ, q0, δ, f )← init(S);
2 (q0, . . . , qn)← order(Q);

3 ∼0← {(q, q) | q ∈ Q};
4 for i = 1, . . . , n do
5 if qi �i−1 q j for all j ∈ {0, . . . , i − 1} then
6 j← 0;
7 repeat
8 Let ∼ be the smallest congruence that

contains ∼i−1 and the pair (qi, q j);
9 j← j + 1;

10 until test(Ainit/∼);
11 ∼i←∼;
12 else
13 ∼i←∼i−1;
14 end
15 returnAinit/∼n ;

still satisfies the sample; since a
merge can cause nondeterminism, it
might be necessary to merge further
states in order to restore determin-
ism. A merge is kept if the Moore
machine passes test; otherwise the
merge is discarded, guaranteeing
that the final Moore machine still
satisfies sample. Note that we repre-
sent merging of states by means of a
congruence relation ∼⊆ Q×Q over
the states (i.e., ∼ is an equivalence
relation that is compatible with the
transitions) and the actual merging
operation as constructing the quo-
tient Moore machine Ainit/∼ in the
usual way. Note that in the case of
DFAs, each merge increases the lan-
guage and thus can be seen as a
generalization step in the learning
algorithm.3

We are now ready to describe our new ICE-learning algorithm for EQDAs that ex-
tends the above Algorithm 1, handling both EQDAs and implication samples. In our
setting, a sample is of the form (Ê, Ĉ, Î) where Ê, Ĉ are sets of sets of valuation words
and Î contains pairs of sets of valuation words. From [20] we know that EQDAs can be
viewed as Moore machines that read valuation words and output data formulas. Hence
we can adapt the RPNI algorithm to learn EQDAs, as explained below.

For the initialization init(S) we construct an EQDA whose language is the small-
est (w.r.t. inclusion) EQDA-definable language that is consistent with the sample S. To
do this, we consider the set of all positive examples, i.e., the set E :=

⋃
Ê. This is a set

of valuation words, from which we strip off the data part, obtaining a set E′ of symbolic
words only made up of pointers and universally quantified variables. We start with the
prefix tree of E′ using the prefixes of words in E′ as states (as the original RPNI does).
The final states are the words in E′. Each such word w ∈ E′ originates from a set of
valuation words in E (all the extensions of w by data that result in a valuation word in
E). If we denote this set by Ew, then we label the state corresponding to w with the least
formula that is satisfied in all valuation words in Ew (recall that the formulas form a
lattice). This defines the smallest QDA-definable set that contains all words in E. If this
QDA is not consistent with the sample, then either there is no such QDA, or the QDA
is not consistent with an implication, that is, for some (X, Y) ∈ Î it accepts everything in

3 We refer the reader to the technical report [63] more details.
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X but not everything in Y. In this case, we add X and Y to Ê and restart the construction
(since every QDA consistent with the sample must accept all of X and all of Y).

To make this QDA A elastic, all states that are connected by a b-transition are
merged. This defines the smallest EQDA-definable set that contains all words accepted
by A (see [20]). Hence, if this EQDA is not consistent with the sample, then either
there is no such EQDA, or an implication (X, Y) ∈ Î is violated, and we proceed as
above by adding X and Y to Ê and restarting the computation. This adapted initializa-
tion results in an EQDA whose language is the smallest EQDA-definable language that
is consistent with the sample.

Table 2. RPNI-based ICE-learning for
quantified array invariants. R: # rounds of
iterative-ICE; |Q|: # states in final EQDA. ×
means timeout of 5 min.

Program
White-Box Black-Box

SAFARI (s) R |Q| ICE(s)

copy 0.0 4 8 0.7
copy-lt-key × 5 13 1.2
init 0.7 4 8 0.6
init-partial × 8 12 1.5
compare 0.1 9 8 1.3
find 0.2 9 8 1.2
max 0.1 3 8 0.4
increment × 5 8 0.7
sorted-find × 8 17 5.1
sorted-insert × 6 21 2.0
sorted-reverse × 18 17 9.4
devres [48] 0.1 3 8 0.7
rm_pkey [48] 0.3 3 8 0.7

Once Phase 1 is finished, our algorithm
proceeds to Phase 2, in which it successively
merges states ofAinit, to obtain an EQDA that
remains consistent with the sample but has
less states. When merging accepting states,
the new formula at the combined state is ob-
tained as the lub of the formulas of the orig-
inal states. Note that merging states of an
EQDA preserves the self-loop condition for
b-transitions. Finally, the test routine sim-
ply checks whether the merged EQDA is con-
sistent with the sample.

It follows that the hypothesis constructed
by this adapted version of RPNI is an EQDA
that is consistent with the sample. Hence
we have described a consistent learner. For
a fixed set of pointer variables and uni-
versally quantified variables there are only
a finite number of EQDAs. Therefore by
Lemma 1 we conclude that the above learning
is strongly convergent (though the number of
rounds need not be polynomial).

Theorem 3. The adaption of the RPNI algorithm for iterative set-based ICE-learning
of EQDAs strongly converges.

Experiments: We built a prototype tool implementing the set-based ICE-learning al-
gorithm for EQDAs, consisting of both a learner and a teacher. The ICE-learner is im-
plemented by extending the classical RPNI algorithm from the libALF library [65].
Given an EQDA conjectured by the learner, the teacher we build converts it to a quan-
tified formula in the APF [61] or decidable Strand for lists [62], and uses a constraint
solver to check adequacy of invariants. Since there is no tool implementing the decision
procedure for Strand, we evaluate our prototype on array programs only.

Table 2 presents the results of our prototype on typical programs manipulating ar-
rays4.We compare our results to SAFARI [44], a verification tool based on interpola-
tion in array theories. SAFARI, in general, cannot handle list programs, and also array

4 Available at http://www.cs.uiuc.edu/~madhu/cav14/

http://www.cs.uiuc.edu/~madhu/cav14/
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programs like sorted-find that have quantified pre-conditions. On the others, SAFARI
diverges for some programs, and probably needs manually provided term abstractions
to achieve convergence. The results show that our ICE-learning algorithm for quanti-
fied invariants is effective, in addition to promising polynomial-per-round efficiency,
promising invariants that fall in decidable theories, and promising strong convergence.

Acknowledgements. This work was partially funded by NSF CAREER award #0747041
and NSF Expeditions in Computing ExCAPE Award #1138994.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: POPL, ACM, pp. 238–252.
ACM (1977)

2. Miné, A.: The octagon abstract domain. In: WCRE, pp. 310–319 (2001)
3. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for eSC/Java. In: Oliveira,

J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg (2001)
4. Thakur, A., Lal, A., Lim, J., Reps, T.: PostHat and all that: Attaining most-precise inductive

invariants. Technical Report TR1790, University of Wisconsin, Madison, WI (April 2013)
5. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation. In: Beckert,

B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30. Springer, Heidelberg
(2011)

6. Floyd, R.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Mathematical Aspects of
Computer Science. Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32.
AMS (1967)

7. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

8. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

9. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis.
In: POPL, pp. 1–3. ACM (2002)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70.
ACM (2002)

11. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

12. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer,
Heidelberg (2006)

13. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)
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Abstract. We describe a general framework c2i for generating an in-
variant inference procedure from an invariant checking procedure. Given
a checker and a language of possible invariants, c2i generates an inference
procedure that iteratively invokes two phases. The search phase uses ran-
domized search to discover candidate invariants and the validate phase
uses the checker to either prove or refute that the candidate is an actual
invariant. To demonstrate the applicability of c2i, we use it to generate
inference procedures that prove safety properties of numerical programs,
prove non-termination of numerical programs, prove functional specifi-
cations of array manipulating programs, prove safety properties of string
manipulating programs, and prove functional specifications of heap ma-
nipulating programs that use linked list data structures.

1 Introduction

In traditional program verification, a human annotates the loops of a given pro-
gram with invariants and a decision procedure checks these invariants by proving
some verification conditions (VCs). We explore whether decision procedures can
also be used to infer the loop invariants; doing so helps automate one of the
core problems in verification (discovering appropriate invariants) and relieves
programmers from a significant annotation burden.

The idea of using decision procedures for invariant inference is not new [28,16].
However, this approach has been applied previously only in domains with some
special structure, e.g., when the VCs belong to theories that admit quantifier
elimination, such as linear rational arithmetic (Farkas’ lemma) or linear integer
arithmetic (Cooper’s method). For general inference tasks, such theory-specific
techniques do not apply, and the use of decision procedures for such tasks has
been restricted to invariant checking: to prove or refute a given manually pro-
vided candidate invariant.

We describe a general framework c2i that, given a procedure for checking
invariants, uses that checker to produce an invariant inference engine for a given
language of possible invariants. We apply c2i to various classes of invariants; we
use it to generate inference procedures that prove safety properties of numer-
ical programs, prove non-termination of numerical programs, prove functional
specifications of array manipulating programs, prove safety properties of string
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manipulating programs, and prove functional specifications of heap manipulat-
ing programs that use linked list data structures. The two main characteristics
of c2i are

– The decision procedure is only used to check a program annotated with can-
didate invariants (in contrast to approaches that use the decision procedure
directly to infer an invariant).

– c2i uses a randomized search algorithm to search for candidate invariants.
Empirically, the search technique is effective for generating good candidates
for various classes of invariants.

The use of a decision procedure as a checker for candidate invariants is also not
novel [34,36,45,46,42,20,19]. The main contribution of this paper is a general and
effective search procedure that makes a framework like c2i feasible. The use of
randomized search is motivated by its recent success in program synthesis [44,2]
and recognizing that invariant inference is also a synthesis task. More specifically,
our contributions are:

– We describe a framework c2i that iteratively invokes randomized search and
a decision procedure to perform invariant inference. The randomized search
combines random walks with hill climbing and is an instantiation of the
well-known Metropolis Hastings MCMC sampler [11].

– We empirically demonstrate the generality of our search algorithm. We use
randomized search for finding numerical invariants, recurrent sets [27], uni-
versally quantified invariants over arrays, invariants over string operators,
and invariants involving reachability predicates for linked list manipulating
programs. These studies show that invariant inference is amenable to ran-
domized search.

– Even though we expect the general inference engines based on randomized
search to be significantly inferior in performance to the domain-specific in-
variant inference approaches, our experiments show that randomized search
has competitive performance with the more specialized techniques.

– Randomized search is effective only when done efficiently. We describe op-
timizations that allow us to obtain practical randomized search algorithms
for invariant inference.

The rest of the paper is organized as follows. We describe our search algorithm
in Section 2. Next, we describe inference of numerical invariants in Section 3,
universally quantified invariants over arrays in Section 4, string invariants in
Section 5, and invariants over linked lists in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 Preliminaries

An imperative program annotated with invariants can be verified by checking
some verification conditions (VCs), which must be discharged by a decision pro-
cedure. As an example, consider the following program:

assume P ; while B do S od; assert Q
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The loop has a pre-condition P . The entry to the loop is guarded by the predicate
B and S is the loop body (which, for the moment, we assume to be loop-free).
We assert that the states obtained after execution of the loop satisfy Q. Given
a loop invariant I, we can prove that the assertion holds if the following three
VCs are valid:

P ⇒ I; {I ∧B}S{I}; I ∧ ¬B ⇒ Q (1)

In this paper, we explore finding such an invariant I by randomized search. Given
a candidate invariant, a decision procedure checks the conditions of Eqn. 1. Since
there are three conditions for a predicate to be an invariant, there are three
queries that need to be discharged to check a candidate. Each query, if it fails,
generates a different kind of counterexample; we discuss these next.

Let C be a candidate invariant. The first condition states that for any in-
variant I, any state that satisfies P also satisfies I. However, if P ∧ ¬C has a
satisfying assignment g, then P (g) is true and C(g) is false and hence g proves
C is not an invariant. We call any state that must be satisfied by an actual
invariant, such as g, a good state. Now consider the second condition of Eqn. 1.
A pair (s, t) satisfies the property that s satisfies B and if the execution of S
is started in state s then S can terminate in state t. Since an actual invari-
ant I is inductive, it should satisfy I(s) ⇒ I(t). Hence, a pair (s, t) satisfying
C(s)∧¬C(t) proves C is not an invariant. Finally, consider the third condition.
A satisfying assignment b of C ∧ ¬B ∧ ¬Q proves C is inadequate to discharge
the post-condition. For an adequate invariant I, I(b) should be false. We call
a state that must not be satisfied by an adequate invariant, such as b, a bad
state. Hence, given an incorrect candidate invariant and a decision procedure
that can produce counterexamples, the decision procedure can produce either a
good state, a pair, or a bad state as a counterexample to refute the candidate.

Problems other than invariant inference can also be reduced to finding some
unknown predicates to satisfy some VCs [21]. Consider the following problem:
prove that the loop while B do S od fails to terminate if executed with input
i. One can obtain such a proof by demonstrating a recurrent set [9,27] I which
makes the following VCs valid.

I(i); {I ∧B}S{I}; I ⇒ B (2)

Our inference algorithm consumes VCs with some unknown predicates. We use
the term invariant for any such unknown predicate that we want to infer. In the
rest of this section, we focus on the case when we need to infer a single predicate.
The development here generalizes easily to inferring multiple predicates.

2.1 Metropolis Hastings

We denote the verification conditions by V , the unknown invariant by I, a can-
didate invariant by C, the set of predicates that satisfy V by I (more than one
predicate can satisfy V ), and the set of all possible candidate invariants by S.

We view inference as a cost minimization problem. For each predicate P ∈ S
we assign a non-negative cost cV (P ) where the subscript indicates that the cost
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depends on the VCs. Suppose the cost function is designed to obey C ∈ I ⇔
cV (C) = 0. Then by minimizing cV we can find an invariant. In general, cV
is highly irregular and not amenable to exact optimization techniques. In this
paper, we use a MCMC sampler to minimize cV .

Search(J : Initial candidate)
Returns: A candidate C with cV (C) = 0.

1. C := J
2. while cV (C) �= 0 do
3. m := SampleMove(rand())
4. C′ := m(C)
5. co := cV (C), cn := cV (C′)
6. if cn < co or e−γ(cn−c0) > rand()

RANDMAX
then

7. C := C′

8. end if
9. end while
10. return C

Fig. 1. Metropolis Hastings for cost minimization

The basic idea of a Metropolis Hastings sampler is given in Figure 1. The
algorithm maintains a current candidate C. It also has a set of moves. A move,
m : S �→ S, mutates a candidate to a different candidate. The goal of the search
is to sample candidates with low cost. By applying a randomly chosen move, the
search transitions from a candidate C to a new candidate C′. If C′ has lower
cost than C we keep it and C′ becomes the current candidate. If C′ has higher
cost than C, then with some probability we still keep C′. Otherwise, we undo
this move and apply another randomly selected move to C. Using these random
mutations, combined with the use of the cost function, the search moves towards
low cost candidates. We continue proposing moves until the search converges:
the cost reduces to zero.

The algorithm in Figure 1, when instantiated with a suitable proposal mech-
anism (SampleMove) and a cost function (cV ), can be used for a variety of
optimization tasks. If the proposal mechanism is designed to be symmetric and
ergodic then Figure 1 has interesting theoretical guarantees.

A proposal mechanism is symmetric if the probability of proposing a transition
from C1 to C2 is equal to the probability of proposing a transition from C2 to
C1. Note that the cost is not involved here: whether the proposal is accepted or
rejected is a different matter. Symmetry just talks about the probability that a
particular transition is proposed from the available transitions.

A proposal mechanism is ergodic if there is a non-zero probability of reaching
every possible candidate C2 starting from any arbitrary candidate C1. That
is, there is a sequence of moves, m1,m2, . . . ,mk, such that the probability of
sampling each mi is non-zero and C2 = mk(. . . (m1(C1) . . .). This property is
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desirable because it says that it is not impossible to reach I starting from a
bad initial guess. If the proposal mechanism is symmetric and ergodic then the
following theorem holds [4]:

Theorem 1. In the limit, the algorithm in Figure 1 samples candidates in in-
verse proportion to their cost.

Intuitively, this theorem says that the candidates with lower cost are sampled
more frequently. A corollary of this theorem is that the search always converges.
The proof of this theorem relies on the fact that the search space S should be
finite dimensional. Note that MCMC sampling has been shown to be effective
in practice for extremely large search spaces and, with good cost functions, is
empirically known to converge well before the limit is reached [4]. Hence, we
design our search space of invariants to be a large but finite dimensional space
that contains most useful invariants by using templates. For example, our search
space of disjunctive numerical invariants restricts the boolean structure of the
invariants to be a DNF formula with ten disjuncts where each disjunct is a
conjunction of ten linear inequalities. This very large search space is more than
sufficient to express all the invariants in our numerical benchmarks.

Theorem 1 has limitations. The guarantee is only asymptotic and convergence
could require more than the remaining lifetime of the universe. However, if the
cost function is arbitrary then it is unlikely that any better guarantee can be
made. In practice, for a wide range of cost functions with domains ranging from
protein alignment [40] to superoptimization [44], MCMC sampling has been
demonstrated to converge in reasonable time. Empirically, cost functions that
provide feedback to the search have been found to be useful [44]. If the search
makes a move that takes it closer to the answer then it should be rewarded with
a decrease in cost. Similarly, if the search transitions to something worse then
the cost should increase. We next present our cost function.

2.2 Cost Function

Consider the VCs of Eqn. 1. One natural choice for the cost function is

cV (C) = 1−Validate(V [C/I])

where Validate(X ) is 1 if predicate X is valid and 0 otherwise. We substitute
the candidate C for the unknown predicate I in the VCs and if the VCs are
valid then the cost is zero and otherwise the cost is one. This cost function has
the advantage that a candidate with cost zero is an invariant. However, this cost
function is a poor choice for two reasons:

1. Validation is slow. A decision procedure takes several milliseconds in the
best case to discharge a query. For a random search to be effective we need
to be able to explore a large number of proposals quickly.

2. This cost function does not give any incremental feedback. The cost of all
incorrect candidates is one, although some candidates are clearly closer to
the correct invariant than others.
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Empirically, search based on this cost function times out on even the simplest
of our benchmarks. Instead of using a decision procedure in the inner loop of
the search, we use a set of concrete program states that allows us to quickly
identify incorrect candidates. As we shall see, concrete states also give us a
straightforward way to measure how close a candidate is to a true invariant.

Recall from the discussion of Eqn. 1 that there are three different kinds of
interesting concrete states. Assume we have a set of good states G, a set of bad
states B, and a set of pairs Z. The data elements encode constraints that a
true invariant must satisfy. A good candidate C is should satisfy the following
constraints:

1. It should separate all the good states from all the bad states: ∀g ∈ G.∀b ∈
B.¬(C(g)⇔ C(b)).

2. It should contain all good states: ∀g ∈ G.C(g).
3. It should exclude all bad states: ∀b ∈ B.¬C(b).
4. It should satisfy all pairs: ∀(s, t) ∈ Z.C(s)⇒ C(t).

For most classes of predicates it is easy to check whether a candidate satisfies
these constraints for given sets G, B, and Z without using decision procedures.
For every violated constraint, we assign a penalty cost. In general, we can as-
sign different weights to different constraints, but for simplicity, we weight them
equally. The reader may notice that the first constraint is subsumed by con-
straints 2 and 3. However, we keep it as a separate constraint as it encodes the
amount of data that justifies a candidate. If a move causes a candidate to sat-
isfy a bad state (which it did not satisfy before) then intuitively the increase in
cost should be higher if the initial candidate satisfied many good states than if
it satisfied only one good state. The third constraint penalizes equally in both
scenarios (the cost increases by 1) and in such situations the first constraint is
useful. The result is a cost function that does not require decision procedure
calls, is fast to evaluate, and can give incremental credit to the search: the can-
didates that violate more constraints are assigned a higher cost than those that
violate only a few constraints.

cV (C) =
∑

g∈G
∑

b∈B
(
¬C(g) ∗ ¬C(b) + C(g) ∗ C(b)

)
+∑

g∈G ¬C(g) +
∑

b∈B C(b) +
∑

(s,t)∈Z C(s) ∗ ¬C(t)
(3)

In evaluating this expression, we interpret false as zero and true as one.
This cost function has one serious limitation: Even if a candidate has zero

cost, still the candidate might not be an invariant. Once a zero cost candidate
C is found, we check whether C is an invariant using a decision procedure;
note this decision procedure call is made only if C satisfies all the constraints
and therefore has at least some chance of actually being an invariant. If C is
not an invariant one of the three parts of Eqn. 1 will fail and if the decision
procedure can produce counterexamples then the counterexample will also be
one of three possible kinds. If the candidate violates the first condition of Eqn. 1
then the counterexample is a good state and we add it to G. If the candidate
violates the second condition then the counter example is a pair that we add to
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Z, and finally if the candidate violates the third condition then we get a bad
state that we add to B. We then search again for a candidate with zero cost
according to the updated data. Thus our inference procedure can be thought
of as a counterexample guided inductive synthesis (CEGIS) procedure [49], in
particular, as an ICE learner [20]. Note that a pair (s, t) can also contribute to
G or B. If s ∈ G then t can be added to G. Similarly, if t ∈ B then s can be
added to B. If a state is in both G and B then we abort the search. Such a state
is both a certificate of the invalidity of the VCs and of a bug in the program.

Not all decision procedures can produce counterexamples; in fact, in many
more expressive domains of interest (e.g., the theory of arrays) generating coun-
terexamples is impossible in general. In such situations the data we need can also
be obtained by running the program. Consider the program point η where the
invariant is supposed to hold. Good states are generated by running the program
with inputs that satisfy the pre-conditions and collecting the states that reach
η. Next, we start the execution of the program from η with an arbitrary state
σ; i.e., we start the execution of the program “in the middle”. If an assertion
violation happens during the execution then all the states reaching η, including
σ, during this execution are bad states. Otherwise, including the case when the
program does not terminate (the loop is halted after a user-specified number
of iterations), the successive states reaching η can be added as pairs. Note that
successive states reaching the loop head are always pairs and may also be pairs
of good states, bad states, or even neither.

The cost function of Eqn. 3 easily generalizes to the case when we have mul-
tiple unknown predicates. Suppose there are n unknown predicates I1, I2, . . . In
in the VCs. We associate a set of good states Gi and bad states Bi with every
predicate Ii. For pairs, we observe that VCs in our benchmarks have at most
one unknown predicate symbol to the right of the implication and one unknown
predicate symbol to the left (both occurring positively), implying that commonly
n2 sets of pairs suffices: a set of pairs Zi,j is associated with every pair of un-
known predicates Ii and Ij . A candidate C1, . . . , Cn satisfies the set of pairs Zi,j

if ∀(s, t) ∈ Zi,j.Ci(s) ⇒ Cj(t). For the pair (s, t) ∈ Zi,j, if s ∈ Gi then we add
t to Gj and if t ∈ Bj then we add s to Bi. Each of Gi, Bi, and Zi,j induces
constraints and a candidate is penalized by each constraint it fails to satisfy.

In subsequent sections we use the cost function in Eqn. 3 and the search
algorithm in Figure 1, irrespective of the type of program (numeric, array, string,
or list) under consideration. What differs is the instantiation of c2i with different
decision procedures and search spaces of invariants. Since a proposal mechanism
dictates how a search space is traversed, different search spaces require different
proposal mechanisms. In general, when c2i is instantiated with a search space,
the user must provide a proposal mechanism and a function eval that evaluates
a predicate in the search space on a concrete state, returning true or false. The
function eval is used to evaluate the cost function; for the search spaces discussed
in this paper, the implementation of eval is straightforward and we omit it. We
discuss the proposal mechanisms for each of the search spaces in some detail in
the subsequent sections.
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3 Numerical Invariants

We describe the proposal mechanism for inferring numerical invariants. Suppose
x1, x2, . . . , xn are the variables of the program, all of type Z. A program state
σ is a valuation of these variables: σ ∈ Zn. For each unknown predicate of the
given VCs, the search space S is formulas of the following form:

α∨
i=1

β∧
j=1

(
n∑

k=1

w
(i,j)
k xk ≤ d(i,j)

)

Hence, predicates in S are boolean combinations of linear inequalities. We refer
to w’s as coefficients and d’s as constants. The possible values that w’s and d’s
can take are restricted to a finite bag of coefficients W = {w1, w2, . . . , w|W |} and
a finite bag of constants D = {d1, d2, . . . , d|D|} respectively. These bags contain
all of the statically occurring constants in the program as well as their sums and
differences, which has sufficed in our experience. If needed, heuristics to mine
relevant constants from concrete states, as described in [46], can be used.

For our experiments, for the benchmarks that require conjunctive invariants
we set α = 1 and β = 10 and for those that require disjunctive invariants we set
α = β = 10. This search space, S, is sufficiently large to contain invariants for
all of our benchmarks.

3.1 Proposal Mechanism

We use y ∼ Y to denote that y is selected uniformly at random from the set Y
and [a : b] to denote the set of integers in the range {a, a+1, . . . , b−1, b}. Unless
stated otherwise, all random choices are derived from uniform distributions.
Before a move we make the following random selections: i ∼ [1 : α], j ∼ [1 : β],
and k ∼ [1 : n] .We have the following three moves, each of which is selected
with probability 1

3 :

– Coefficient move: select l ∼ [1 : |W |] and update w
(i,j)
k to Wl.

– Constant move: select m ∼ [1 : |D|] and update d(i,j) to Dm.
– Inequality move: With probability 1 − ρ, apply constant move to d(i,j) and

coefficient move to w
(i,j)
h for all h ∈ [1 : n]. Otherwise (with probability ρ)

remove the inequality by replacing it with true.

These moves are motivated by the fact that prior empirical studies of MCMC
have found that a proposal mechanism that has a bias towards simple solutions
and a good mixture of moves that make minor and major changes to a candidate
leads to good results [44]. This proposal mechanism is symmetric and ergodic.
Combining this proposal mechanism with the cost function in Eqn. 3 and the
procedure in Figure 1 provides us a search procedure for numerical invariants.
We call this procedure MCMC in the empirical evaluation of Section 3.3. The user
can also restrict the constituent inequalities of the candidate invariants to a given
abstract domain. This variation is called Templ in the evaluation in Section 3.3.



96 R. Sharma and A. Aiken

Table 1. Inference of numerical invariants for proving safety properties

Program Z3-H ICE [46] [28] MCMC Templ

cgr1 [25] 0.0 0.0 0.2 0.1 0.0 0.0

cgr2 [25] 0.0 7.3 ? ? 1.5 1.2

fig1 [25] 0.0 0.1 ? ? 0.9 1.4

w1 [25] 0.0 0.0 0.2 0.1 0.0 0.0

fig3 [22] 0.0 0.0 0.1 0.1 0.0 0.0

fig9 [22] 0.0 0.0 0.2 0.1 0.0 0.0

tacas [33] TO 1.4 0.5 0.1 0.5 0.0

ex23 [32] ? 14.2 ? ? 0.1 0.1

Program Z3-H ICE [46] [28] MCMC Templ

ex7 [32] 0.0 0.0 0.4 ? 0.0 0.0

ex14 [32] 0.0 0.0 0.2 ? 0.0 0.0

array [5] 0.0 0.3 0.2 ? 0.2 0.3

fil1 [5] 0.0 0.0 0.4 0.1 0.0 0.0

ex11 [5] 0.0 0.6 0.2 0.1 0.0 0.0

trex01 [5] 0.0 0.0 0.4 0.1 0.0 0.0

monniaux 5.14 0.0 1.0 0.2 0.0 0.0

nested 0.0 ? 1.0 0.0 0.3 2.1

3.2 Example

We now give a simple example to illustrate the moves. Suppose we have two
variables x1 and x2, α = β = 1, the initial candidate is C ≡ 0 ∗ x1 + 0 ∗ x2 ≤ 0,
W = {0, 1}, and D = {0, 1}. Then a coefficient move leaves C unchanged with
probability 0.5 and mutates it to 1 ∗ x1 + 0 ∗ x2 ≤ 0 or 0 ∗ x1 + 1 ∗ x2 ≤ 0 with
probability 0.25 each. A constant move leaves C unchanged with probability 0.5
and mutates it to 0 ∗ x1 + 0 ∗ x2 ≤ 1 with probability 0.5. A predicate move
(for ρ = 0) leaves C unchanged with probability 0.125 and mutates it to x1 ≤ 0,
x2 ≤ 0, 0 ≤ 1, x1 ≤ 1, x2 ≤ 1, x1+x2 ≤ 0, or x1+x2 ≤ 1 with probability 0.125
each.

3.3 Evaluation

We start with no data: G = B = Z = ∅. The initial candidate invariant J is
the predicate in S that has all the coefficients and the constants set to zero:

∀i, j, k.w(i,j)
k = 0 ∧ d(i,j) = 0. The cost is evaluated using Eqn. 3 and when a

candidate with cost zero is found then the decision procedure Z3 [38] is called.
If Z3 proves that the candidate is indeed an invariant then we are done. Other-
wise, Z3 provides a counterexample that is incorporated in the data and the
search is restarted with J as the initial candidate. A round consists of one
search-and-validate iteration: finding a predicate with zero cost and asking Z3
to prove/refute it.

For each benchmark in Table 1, the problem is to find an invariant strong
enough to discharge assertions in the program. The Z3-H column shows the time
taken by Z3-Horn [30]. Z3-Horn is a decision procedure inside Z3 for solv-
ing VCs with unknown predicates. ICE shows the search-and-validate approach
of [20]. The next column evaluates a geometric machine learning algorithm [46]
to search for candidate invariants and the next column is InvGen [28] a symbolic
invariant inference engine that uses concrete data for constraint simplification.
Columns ICE, [46], and [28] have been copied verbatim from [20] and the reader
is referred to [20] for details. The MCMC column shows for MCMC search the to-
tal time of all the rounds including the time for both search and validation.The
Templ column shows the time when we manually provide abstract domains (oc-
tagons/octahedra) to the search. All of our experiments were performed on a
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Table 2. Results on non-termination benchmarks

Program Z3-H MCMC Templ

term1 0.01 0.02 0.01

term2 TO 0.04 0.05

term3 TO 0.04 0.06

term4 0.01 0.04 0.06

term5 0.01 0.01 0.02

term6 TO 0.12 0.07

2.2 GHz Intel i7 with 4GB of memory. The experiments we compare to in Ta-
ble 1 and in the rest of the paper were performed on a variety of machines.
Our goal in reporting performance numbers is not to make precise comparisons,
but only to show that c2i has competitive performance with other techniques.
Indeed, we observe that the time measurements of the c2i searches in Table 1
are competitive with previous techniques.

We consider the benchmarks for proving non-termination from TnT [27] and
Looper in Table 2. Since these papers do not include performance results, we
compare randomized search with Z3-Horn. In Table 2, Z3-Horn is fast on
half of the benchmarks and times out after thirty minutes on the other half.
This observation suggests the sensitivity of symbolic inference engines to the
search heuristics and the usefulness of Theorem 1. Randomized search, with an
asymptotic convergence guarantee, successfully handles all the benchmarks in
less than a second.

4 Arrays

We consider the inference of universally quantified invariants over arrays. A
program state for an array manipulating program contains the values of all the
numerical variables and the arrays in scope. Given an invariant, existing decision
procedures are robust enough to check that it indeed is an actual invariant, but
generally fail to find concrete counterexamples to refute incorrect candidates.
This situation is a real concern, because if our technique is to be generally
applicable then it must deal with the possibility that the decision procedures
might not always be able to produce counterexamples to drive the search. As
outlined in Section 2.2, the good states, the bad states, and the pairs required
for search can also be obtained from program executions.

We use an approach similar to [46,19] to generate data. Let Σk denote all
states in which all numerical variables are assigned values ≤ k, all arrays have
sizes ≤ k, and all elements of these arrays are also ≤ k. We generate all states in
Σ0, then Σ1, and so on. To generate data, we run the loop with these states (see
Section 2.2). To refute a candidate invariant, states from these runs are returned
to the search. For our benchmarks, we did not need to enumerate beyond Σ4

(at most 150 states) before an invariant was discovered. Note that [46,19] test
only on reachable states. We additionally test on unreachable states to obtain
bad states and pairs. Better testing approaches are certainly possible [29].
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Table 3. Results on array manipulating programs

Program [15] Z3-H ARMC Dual MCMC Templ

init 0.01 0.06 0.15 0.72 0.02 0.01

init-nc 0.02 0.08 0.48 6.60 0.15 0.02

init-p 0.01 0.03 0.14 2.60 0.01 0.01

init-e 0.04 TO TO TO TO TO

2darray 0.04 0.18 ? TO 0.41 0.02

copy 0.01 0.04 0.20 1.40 0.80 0.02

copy-p 0.01 0.04 0.21 1.80 0.13 0.01

copy-o 0.04 TO ? 4.50 TO 0.50

reverse 0.03 0.12 2.28 8.50 3.48 0.03

swap 0.12 0.41 3.0 40.60 TO 0.21

Program [15] Z3-H ARMC Dual MCMC Templ

d-swap 0.16 1.37 4.4 TO TO 0.51

strcpy 0.07 0.05 0.15 0.62 0.02 0.01

strlen 0.02 0.07 0.02 0.20 0.01 0.01

memcpy 0.04 0.20 16.30 0.20 0.03 0.01

find 0.02 0.01 0.08 0.38 0.30 0.02

find-n 0.02 0.01 0.08 0.39 0.95 0.01

append 0.02 0.04 1.76 1.50 TO 0.12

merge 0.09 0.04 ? 1.50 TO 0.41

alloc-f 0.02 0.02 0.09 0.69 0.10 0.01

alloc-nf 0.03 0.03 0.13 0.42 0.14 0.07

We now define a search space of invariants to simulate the fluid updates ab-
straction for reasoning about arrays [15]. If x1, . . . , xn are the numerical variables
of the program and f and g are array variables, then we are interested in array
invariants of the following form:

∀u, v.T (x1, x2, . . . , xn, u, v)⇒ f [u] = g[v] (4)

The variables u and v are universally quantified variables and T is a numerical
predicate in the quantified variables and the variables of the program. Using
this template, we reduce the search for array invariants to numerical predicates
T (x1, x2, . . . , xn, u, v). The search for T proceeds as described in Section 3.

4.1 Evaluation

We evaluate the randomized search algorithms on the benchmarks of [15] in
Table 3. The VCs for these benchmarks were obtained from the repository of the
competition on software verification.1 We have omitted benchmarks with bugs
from the original benchmark set; these bugs are triggered during data generation.
The second column shows the time taken to analyze these benchmarks using
the fluid updates abstraction in [15]. Using a specialized abstract domain leads
to a very efficient analysis, but the scope of the analysis is limited to array
manipulating programs that have invariants given by Eqn. 4.

In [8], the authors use templates to reduce the task of inferring universally
quantified invariants for array manipulating programs to numerical invariants
and show results using three different back-ends: Z3-Horn [30], Armc [21], and
Duality [37]. These are reproduced verbatim as columns Z3-H, ARMC, and Dual

of Table 3. Details about these columns can be found in the original text [8].
Note that the benchmark init-e requires a divisibility constraint that none of
these back-ends or our search algorithms currently support.

Columns MCMC and Templ describe our randomized searches: the total time
to search (with sufficient data) and validate an invariant. Again the results are

1 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/QALIA/

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/QALIA/
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i := 0; x := "a";

while(non_det()){ i++; x := "(" + x + ")"; }

assert( x.length == 2*i+1 );

if(i>0) assert( x.contains( "(a)" ) );

Fig. 2. A string manipulating program

competitive with previous domain-specific approaches.Also, a comparison of MCMC
and Templ shows that convergence depends crucially on the proposal mechanism.

5 Strings

Consider the string manipulating program in Figure 2. To validate its assertions,
the invariants must express facts about the contents of strings, integers, and
lengths of strings; we are unaware of any previous inference technique that can
infer such invariants. The string operations such as length (compute the length
of a string), indexof (find the position of a string in another string), substr
(extract a substring between given indices), etc., intermix integers and strings
and pose a challenge for invariant inference. However, the decision procedure Z3-
str [51] can decide formulas over strings and integers. We use c2i to construct
an invariant inference procedure from Z3-str.

A program state contains the values of all the numerical and the string vari-
ables. The search space S consists of boolean combinations of predicates that
belong to a given bag P of predicates:

∨α
j=1

(∧β
k=1 P

j
k

)
where P j

k ∈ P . The bag P
is constructed using the constants and the predicates occurring in the program.
We set α = 5, β = 10, and for Figure 2, P has predicates x.contains(y), y1 = y2,
w1i+w2x.length+w3 ≤ 0 where y ∈ {x, “a”, “(”, “)”, “(a)”} and w ∈ [−2 : 2]. A
move replaces a randomly selected P j

k with a randomly selected predicate from
P . The current counterexample generation capabilities of Z3-str are unreliable
and we generate data using the process explained in Section 4. (At most 25 data
elements are sufficient to obtain an invariant.) For the program in Figure 2,
randomized search discovers the following invariant:(

x = “a” ∧ i = 0
)
∨
(
x.contains(“(a)”) ∧ x.length = 2i+ 1

)
We consider some additional examples in Table 4 and the name indicates the
string operations they use. Due to the absence of an existing benchmark suite
for string-manipulating programs, our evaluation is limited to a few handwritten
examples.

One alternative to c2i for proving these examples involves designing a new
abstract interpretation [14,13], which requires designing an abstract domain that
incorporates both strings and integers, an abstraction function, a widening oper-
ator, and abstract transfer functions that are precise enough to find disjunctive
invariants like the one shown above. Such an alternative requires significantly
greater effort than instantiating c2i. In our implementation, both the proposal
mechanism and the eval function required to instantiate c2i are under 50 lines
of C++ each.



100 R. Sharma and A. Aiken

6 Relations

In this section we define a proposal mechanism to find invariants over rela-
tions. We are given a program with variables x1, x2, . . . , xn and some rela-
tions R1, R2, . . . , Rm. A program state is an evaluation of these variables and
these relations. The search space consists of predicates F given by the following
grammar:

Predicate F ::=
∧θ

i=1 F
i

Formula F i ::=
∧δ

j=1 G
i
j

Subformula Gi ::= ∀u1, u2, . . . , ui.T

QF Predicate T ::=
∨α

k=1

∧β
l=1 L

k
l

Literal L ::= A | ¬A
Atom A ::= R(V1, . . . , Va) a = arity(R)

Argument V ::= x | u | κ

(5)

A predicate in the search space is a conjunction of formulas. The superscript of
F i denotes the number of quantified variables in its subformulas. A subformula
Gi is a quantified predicate with its quantifier free part T expressed in DNF.
Each atomic proposition of this DNF formula is a relation whose arguments can
be a variable of the program (x), a quantified variable (u), or some constant
(κ) like null. The variables in scope of a relation in a predicate are the program
variables and the quantified variables in the associated subformula.

Next we define the moves of our proposal mechanism. We select a move uni-
formly at random from the list below and apply it to the current candidate C.
As usual, we write “at random” to mean “uniformly at random”.

1. Variable move: Select an atom of C at random. Next, select one of the
arguments and replace it with an argument selected at random from the
variables in scope and the constants.

2. Relation move: Select an atom of C at random and replace its relation with
a relation selected at random from the set of relations of the same arity. The
arguments are unaffected.

3. Atom move: Select an atom of C at random and replace its relation with
a relation selected at random from all available relations. Perform variable
moves to fill the arguments of the new relation.

4. Flip polarity: Negate a literal selected at random from the literals of C.
5. Literal move: Perform an atom move and flip polarity.

These moves are symmetric and ergodic. Next, we evaluate the MCMC algorithm
in Figure 1 with this proposal mechanism and the cost function of Eqn. 3.

We instantiate the relational proposal mechanism with reachability relations:
The reachability relation n∗(i, j) holds if the cell pointed to by j can be reached
from i using zero or more pointer dereferences. A recently published decision
procedure is complete for such candidates via a reduction of such formulas to
boolean satisfiability [31]. We use this decision procedure as our validator and
randomized search to find invariants for some standard singly linked list manip-
ulating programs (described in [31]) in Table 5.
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Table 4. Results on string manipulat-
ing programs. The time taken (in sec-
onds) by MCMC search and by Z3-str

(for proving the correctness of the in-
variants) are shown.

Figure 2 replace index substring

Search 0.8 0.02 0.06 0.05

Z3-str 0.03 TO 114.6 0.01

Table 5. Results for list manipulating
programs

Program #G #R Search Valid

delete 50 2 0.20 0.04

delete-all 20 7 1.03 0.13

find 50 9 0.42 0.04

filter 50 26 10.41 0.11

last 50 3 0.90 0.04

reverse 20 54 55.11 0.08

6.1 Evaluation

For defining the search space using Eqn. 5 we set α = β = δ = 5 and θ = 2,
which is sufficient to express the invariants for benchmarks in Table 5. We run our
benchmarks on lists of length up to five to generate an initial set of good states,
the size of which is shown in the column #G. Starting from a non-empty set of
good states results in faster convergence than starting from an empty set. Next,
we start our search with zero bad states and zero pairs and generate candidate
invariants. The number of rounds for the search to converge to an invariant is
shown in the column #R. Later rounds take more time than the initial rounds.
Columns Search and Valid describe the time to search (with sufficient data)
and to validate an invariant respectively.

During our evaluation of various verification tasks, we observe that the deci-
sion procedures for advanced logics are not able to accept all formulas in their
input language. Hence, sometimes we must perform some equality-preserving
simplifications on the candidate invariants our search discovers. Currently we
perform this step manually when necessary, but the simplifications could be
automated.

7 Related Work

The goal of this paper is a framework to obtain inference engines from deci-
sion procedures. c2i is parametrized by the language of possible invariants. This
characteristic is similar to TVLA [43]. TVLA requires specialized heuristics (fo-
cus, coerce, etc.) to maintain precision. We do not require these heuristics and
this generality aids us in obtaining inference procedures for verification tasks be-
yond shape analysis. c2i is a template-based analysis that does not use decision
procedures to instantiate the templates and limits their use to checking an an-
notated program. We do not rely on decision procedures to compute a predicate
cover [26], or for fixpoint iterations [18,50], or on Farkas’ lemma [25,28,12,7].
Hence, c2i is applicable to various decision procedures, including incomplete
procedures (Section 4 and Section 5).
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The literature on invariant inference is huge. Most techniques for invariant
inference are symbolic analyses that trade generality for effective techniques in
specific domains [35,28,16,10,6,1]. We are not aware of any symbolic inference
technique that has been successfully demonstrated to infer invariants for the
various types of programs that we consider (numeric, array, string, and list).
Daikon [17] and Houdini [18] use conjunctive learning, [45,41] use equation solv-
ing, and [47] uses SVMs: these fail to infer disjunctive invariants over inequalities.
The underlying machine learning algorithm of [46] uses geometry and hence is
applicable to numerical predicates only.

Algorithmic learning [36,34] approaches also iteratively invoke search and val-
idate phases. They use a CDNF learning algorithm that requires membership
queries, “is a conjunction of atomic predicates contained in the invariant?”, that
are resolved heuristically. We do not require membership queries. Other tech-
niques that use concrete data to guide verification include [22,3,24,39].

We are unaware of the any previous work that uses Metropolis Hastings for
invariant inference. In a related work, [23] uses Gibbs sampling for inference of
numerical invariants. However, the inference does not use concrete states and
the resulting cost function is expensive to evaluate. Handling programs with
pointers and arrays is left as an open problem by [23].

We use efficiency to guide the choice of parameters for randomized search.
E.g., in our evaluations, we set γ in Figure 1 to loge 2. Systematic approaches
described in [48] can also be used for setting such parameters.

8 Conclusion

We have demonstrated a general procedure for generating an inference procedure
from a checking procedure and applied it to a variety of programs. The inference
procedure uses randomized search for generating candidate invariants that are
proven or refuted by the checker. While c2i is general and can handle many
classes of useful invariants, its performance is still competitive with state of the
art tools that are specialized for specific domains.

Acknowledgements. We thank Eric Schkufza, Manolis Papadakis, and the
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any copyright notation thereon.
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20. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A Robust Framework for
Learning Invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–86. Springer, Heidelberg (2014)

21. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012)

https://svn.sosy-lab.org/software/svbenchmarks/tags/svcomp13/loops/


104 R. Sharma and A. Aiken

22. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: FSE (2006)

23. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL
(2007)

24. Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpreta-
tion. In: POPL (2003)

25. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI (2008)

26. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)

27. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. In: POPL (2008)

28. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276. Springer,
Heidelberg (2009)

29. Harder, M., Mellen, J., Ernst, M.D.: Improving test suites via operational abstrac-
tion. In: ICSE (2003)

30. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

31. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013)

32. Ivancic, F., Sankaranarayanan, S.: NECLA Static Analysis Benchmarks,
http://www.neclabs.com/research/system/systems SAV-website/

small static bench-v1.1.tar.gz

33. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

34. Jung, Y., Kong, S., Wang, B.-Y., Yi, K.: Deriving invariants by algorithmic learn-
ing, decision procedures, and predicate abstraction. In: Barthe, G., Hermenegildo,
M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 180–196. Springer, Heidelberg (2010)

35. Kannan, Y., Sen, K.: Universal symbolic execution and its application to likely
data structure invariant generation. In: ISSTA (2008)

36. Kong, S., Jung, Y., David, C., Wang, B.-Y., Yi, K.: Automatically inferring quan-
tified loop invariants by algorithmic learning from simple templates. In: Ueda, K.
(ed.) APLAS 2010. LNCS, vol. 6461, pp. 328–343. Springer, Heidelberg (2010)

37. McMillan, K., Rybalchenko, A.: Combinatorial approach to some sparse-matrix
problems. Tech. rep., Microsoft Research (2013)

38. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

39. Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL
(2012)

40. Neuwald, A.F., Liu, J.S., Lipman, D.J., Lawrence, C.E.: Extracting protein align-
ment models from the sequence database. Nucleic Acids Research 25 (1997)

41. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE (2012)

http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-v1.1.tar.gz
http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-v1.1.tar.gz


From Invariant Checking to Invariant Inference 105

42. Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/SIGSOFT FSE
(2013)

43. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3) (2002)

44. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: ASPLOS
(2013)

45. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013)

46. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Program verification
as learning geometric concepts. In: SAS (2013)

47. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012)

48. Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis. In:
POPL (2014)

49. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009)

50. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI (2009)

51. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web appli-
cation analysis. In: ESEC/SIGSOFT FSE (2013)



SMACK: Decoupling Source Language Details

from Verifier Implementations�
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Abstract. A major obstacle to putting software verification research
into practice is the high cost of developing the infrastructure enabling
the application of verification algorithms to actual production code, in
all of its complexity. Handling an entire programming language is a huge
endeavor that few researchers are willing to undertake; even fewer could
invest the effort to implement a verification algorithm for many source
languages. To decouple the implementations of verification algorithms
from the details of source languages, and enable rapid prototyping on
production code, we have developed SMACK. At its core, SMACK is a
translator from the LLVM intermediate representation (IR) into the Boo-
gie intermediate verification language (IVL). Sourcing LLVM exploits an
increasing number of compiler front ends, optimizations, and analyses.
Targeting Boogie exploits a canonical platform which simplifies the im-
plementation of algorithms for verification, model checking, and abstract
interpretation. Our initial experience in verifying C-language programs is
encouraging: SMACK is competitive in SV-COMP benchmarks, is able
to translate large programs (100 KLOC), and is being used in several
verification research prototypes.

1 Introduction

A major obstacle to putting software verification research into practice is the
high cost of developing the infrastructure enabling the application of verification
algorithms to actual production code, in all of its complexity. Each high-level
programming language brings a diverse assortment of statements and expressions
with varying semantics. Handling an entire language is a huge effort which few
researchers are willing to undertake; even fewer could invest the effort required
to implement their verification algorithms for multiple source languages.

To address this problem, we introduce SMACK: a translator from the LLVM
compiler’s popular intermediate representation (IR) [27,24] into the Boogie in-
termediate verification language (IVL) [19,26]. SMACK’s primary function is to
precisely and efficiently translate the rich set of LLVM-IR features, including dy-
namic memory allocation and pointer arithmetic, to the comparatively-simple
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Boogie IVL, which does not include such features. SMACK thus promotes the
development of verification algorithms on simple IVLs, effectively decoupling the
implementations of verification algorithms from the details of source languages,
and enabling rapid prototyping on production code. Sourcing LLVM IR exploits
a rapidly-growing frontier of LLVM frontends, encompassing a diverse set of lan-
guages including C/C++, Java, Haskell, Erlang, Python, Ruby, Ada, and For-
tran. In addition, SMACK benefits from code simplifications made by LLVM’s
optimizer, including constant propagation and dead-code elimination, as well as
readily-available analyses, including LLVM’s pointer analyses. Targeting Boogie
IVL exploits a canonical platform which simplifies the implementation of verifi-
cation algorithms due to Boogie’s minimal syntax and mathematically-focused
expression language, which is easily rendered into the satisfiability modulo theo-
ries (SMT) format of automated theorem provers [6]. By embracing Boogie IVL
as a canonical program representation, SMACK not only simplifies the devel-
opment of program verification technology, but also fosters the development of
interoperable technology in which verification backends can be easily swapped.

Our initial experience in verifying C-language programs with SMACK, us-
ing Microsoft Research’s Boogie and Corral [23] as backends, is encouraging.
SMACK has eased the development of our research prototypes by enabling IVL-
level, rather than C-level or LLVM-level, implementations. In doing so, it appears
that our approach does not significantly compromise performance, as SMACK
(with Boogie and Corral backends) is competitive on SV-COMP [33] bench-
marks. Furthermore, SMACK translates large, full-featured programs — includ-
ing the entire Contiki operating system [15], at around 100 KLOC of C code
— and has been used on intricate implementations which make extensive use of
features such as dynamic memory allocation.

While our experience with SMACK has thus far been centered on SMT-based
bounded verification, i.e., validation of program assertions up to recursion-depth
and loop-unroll bounds, our prior experience [10,30] suggests that SMACK can
also be applied straightforwardly to deductive verification, i.e., validation of
assertions in programs adequately annotated with loop invariants and proce-
dure pre- and post-conditions. While in theory SMACK is equally applicable
for fully automatic unbounded verification methods (e.g., based on computing
fixed points), in practice such applications may require powerful reasoning en-
gines capable of generating quantified invariants over the unbounded maps which
SMACK uses to model dynamically-allocated memory; it remains to be seen
whether such applications are feasible.

SMACK is an open source project available on GitHub1 implemented in
roughly 4K lines of C++ code, and is integrated into the rise4fun website.2

Currently, SMACK is supported on Linux, OSX, and Windows, and is used in
several projects, including Microsoft Research’s Q program verifier.3

1 http://github.com/smackers/smack
2 http://rise4fun.com/SMACK
3 http://research.microsoft.com/en-us/projects/verifierq

http://github.com/smackers/smack
http://rise4fun.com/SMACK
http://research.microsoft.com/en-us/projects/verifierq
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Fig. 1. Design of the SMACK modular software verification ecosystem

Related Work. Automatic verification using automated theorem provers, and in
particular SMT solvers, is an active area of research. Many tools are available
with various capabilities, features, and trade-offs, including Caduceus [21], Ca-
lysto [4], Cascade [34], CBMC [13], CPAchecker [7], ESBMC [16], Frama-C [17],
GraVy [2], HAVOC [10], Joogie [3], KLEE [9], LLBMC [28], SATABS [12], Sym-
bolic PathFinder [29], TASS [32], UFO [1], and VCC [14]. Our SMACK effort
stands alone, since none of these tools combine the language independence of lever-
aging a popular IR with the ease of implementation provided by IVLs. Further-
more, SMACKhas been designed to accommodate a diverse set of extensions, from
supporting new source language features to generating alternate IVL encodings.

2 Translation from LLVM IR to Boogie IVL

We have developed SMACK as one essential component of the software verifi-
cation ecosystem depicted in Fig. 1. Currently, the other components include
the Clang compiler [11], the LLVM compiler infrastructure [27,24], and the Boo-
gie [19,26] and Corral [23] verification engines. Beginning from a program written
in C/C++, we use Clang to emit LLVM bitcode in an intermediate representa-
tion (IR) used by LLVM. LLVM IR is a typed, static single assignment (SSA),
and platform-independent assembly language, and an ideal representation for
LLVM’s code optimizer/analyzer.

Following LLVM code optimizations, such as constant propagation and
dead-code elimination, SMACK translates LLVM bitcode to code in Boogie’s
intermediate verification language (IVL). Boogie IVL is typed, imperative, and
procedural, includes a rich mathematical expression language, and is an ideal rep-
resentation for program verifiers. The Boogie programs which SMACK generates
are essentially control-flow graphs with very few statements — they have goto,
assignment, procedure call & return, and assume/assert statements — which
manipulate global and procedure-local variables over very few types — only
integers and maps from integers to integers. For the most part, SMACK’s trans-
lation is tight, in the sense that LLVM data and instructions correspond closely



SMACK: Decoupling Source Language Details 109

to Boogie data and instructions, modulo representing fixed-width integers with
mathematical integers.4

While there are many syntactic differences between LLVM IR and Boogie
IVL, a key fundamental difference which SMACK addresses is memory repre-
sentation: while LLVM IR performs dynamic allocation on the memory heap,
programs in Boogie IVL have only a fixed number of global variables, albeit
over unbounded types including mathematical integers and maps (i.e., arrays).
Although in theory the entire heap could be represented with one single map,
experience indicates that this strategy is not efficient; a verifier which represents
map-type variables with array-theory expressions would suffer as the map is up-
dated across many addresses. Instead, SMACK uses static analyses in LLVM to
infer a set of memory regions which are disjoint, in the sense that two distinct
regions are never accessed by the same program expression; each region of the
heap is then given its own map, and each heap access translates to an expression
using the accessed region’s map [31]. SMACK’s modular design facilitates the
implementation of alternate memory models by, for example, redefining: (1) the
Boogie-code implementations of malloc and free to describe alternate allocation
policies (which does not require recompiling SMACK), or (2) the translation
of load and store operations to model heap accesses at byte-sized granularity
(currently requires recompilation).

SMACK passes the resulting Boogie-IVL program to either the Boogie or
Corral verifier; both function by generating verification conditions [5] which are
discharged using satisfiability modulo theories (SMT) solvers, such as Z3 [18].

3 An Example Translation

We illustrate our verification workflow step-by-step on the program listed in
Fig. 2. The C program (top left) is first compiled with Clang into the LLVM
IR program shown on the right. In the process, calls to malloc in C are com-
piled into the respective invocations in the LLVM IR. Structure field accesses
are compiled into a combination of getelementptr and load/store instructions,
where getelementptr performs the structure field address computation that is
subsequently accessed using load/store. Note that while the LLVM IR is a simple
representation, it does include dynamic memory allocation, pointer arithmetic,
and complex data types — none of which are included in the Boogie IVL.

From the LLVM IR program, SMACK generates the Boogie IVL program by
leveraging LLVM’s static data structure analysis (DSA) [25] to split memory
into a set of disjoint regions so that pointers to two distinct regions can never
alias [31]. Each such region is then statically assigned its own map, and each
memory access translates to an expression using the accessed region’s map. In
Fig. 2, based on the fact that DSA accurately reported that LLVM IR pointer
variables %5 and {%6, %7} cannot alias, SMACK statically introduced memory

4 While our current implementation uses unbounded integers and maps thereof, in
principle we could also use bit-vectors to model, e.g., 32-bit integers precisely.
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// original C code
typedef struct { int f; int g; } S;

void main() {
S *x = malloc(sizeof(S));
S *y = malloc(sizeof(S));
x->f = 1;
y->f = 2;
y->g = 3;
assert(x->f == 1);

}

// Boogie IVL code from SMACK
var $M.0, $M.1: [int] int;

procedure main() {
var $p, $p1, $p2, .., $p6: int;

$bb0:
call $p := $malloc(8);
call $p1 := $malloc(8);
$p2 := $pa($pa($p, 0, 8), 0, 1);
$M.0[$p2] := 1;
$p3 := $pa($pa($p1, 0, 8), 0, 1);
$M.1[$p3] := 2;
$p4 := $pa($pa($p1, 0, 8), 4, 1);
$M.1[$p4] := 3;
$p5 := $pa($pa($p, 0, 8), 0, 1);
$p6 := $M.0[$p5];
assert($p6 == 1);
return;

}

// LLVM IR code from Clang/LLVM
define void @main() #0 {

%1 = call i8* @malloc(i64 8)
%2 = bitcast i8* %1 to %struct.S*
%3 = call i8* @malloc(i64 8)
%4 = bitcast i8* %3 to %struct.S*
%5 = getelementptr inbounds

%struct.S* %2, i32 0, i32 0
store i32 1, i32* %5, align 4
%6 = getelementptr inbounds

%struct.S* %4, i32 0, i32 0
store i32 2, i32* %6, align 4
%7 = getelementptr inbounds

%struct.S* %4, i32 0, i32 1
store i32 3, i32* %7, align 4
%8 = getelementptr inbounds

%struct.S* %2, i32 0, i32 0
%9 = load i32* %8, align 4
%10 = icmp eq i32 %9, 1
... assertion omitted ...
ret void

}

Fig. 2. An example program in C, along with its LLVM IR and Boogie IVL translations

maps $M.0 and $M.1 in Boogie code, respectively. While not shown, our transla-
tion defines the $pa function to model getelementptr, and the $malloc procedure
to model memory allocation, by keeping track precisely of allocated and unallo-
cated sections of memory. The load and store instructions are then translated as
accesses into the appropriate region’s map. Finally, assertions in C are ultimately
translated into Boogie assertions, and checked using our backend verifiers.

4 Our Experience with SMACK

Our experience in using SMACK for developing research prototype verification
tools has benefited from increased productivity without prohibitive performance
sacrifices. One example is the c2s project5 which implements various concurrent-
to-sequential Boogie code translations — so called “sequentializations” — for
delay-bounded verification [20], and which has been used in several of the au-
thors’ research projects. The authors of the CSeq tool [22], which implements a
related sequentialization directly in C code rather than in a simple IVL, admit
a telling limitation:

5 http://github.com/michael-emmi/c2s

http://github.com/michael-emmi/c2s
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Table 1. Comparison of SMACK, CPAchecker, CBMC, and UFO on SV-COMP bench-
marks. #B is the number of benchmarks (both correct and buggy) in a suite. No-Reuse
and Reuse correspond to two distinct memory models currently provided by SMACK.
Experiments were performed on an Intel Core i7-3930K 3.20 GHz machine with 32 GB
of memory running Ubuntu 12.04. All runtimes are in seconds.

Benchmark
Suite

#B KLOC

SMACK
SV-COMP 2014

No-Reuse Reuse

Boogie Corral Boogie Corral CPAchecker CBMC UFO

locks 13 2.3 9.1 9.3 9.0 9.3 365.1 1.4 2.9

ntdrivers-simpl 10 18.1 12.3 85.7 12.3 86.4 43.5 4.6 3.4

“CSeq does not support [heap-allocated memory] yet. Lifting these re-
strictions, and in particular supporting dynamic memory . . . will require
significant efforts.”

In contrast, the Boogie IVL-based c2s tool was simple to implement, and has
been used for the analysis of intricate C-language concurrent data structure
implementations which make extensive use of dynamic memory allocation [8].

Despite the threat to performance incurred by separating backend verifiers
from source languages, SMACK-based tools are competitive with state-of-the-
art verifiers. While a truly-meaningful comparison is difficult, since different veri-
fiers generally provide different guarantees, Table 1 makes an attempt, comparing
SMACK with 3 competitive verifiers (CPAchecker [7], CBMC [13], UFO [1]) on
2 benchmark suites from the SV-COMP [33] annual software verification compe-
tition. Both suites contain both correct and buggy benchmarks, and all verifiers
categorize them correctly: neither false positives nor negatives are reported.6

Note that since these are preliminary results mixing tools aimed at bug-finding
(SMACK, CBMC) with those aimed at verification (CPAchecker, UFO), a direct
comparison of runtimes is somewhat unfair. However, the table does illustrate
that even though SMACK has not been optimized for SV-COMP benchmarks
— thus far we have spent minimal effort in optimization — its performance is
comparable to established verifiers which regularly participate in SV-COMP. As
future work, we plan to expand these preliminary results with more benchmarks,
and enroll SMACK in a future SV-COMP.

As expected, the current version of SMACK does have some limitations. First,
integer datatypes are modeled with unbounded mathematical integers; this lim-
itation can be lifted by leveraging Boogie’s support for bit-vectors. Floating
point datatypes pose a more serious challenge, as they are not widely supported
by current software verifiers and automated theorem provers. Finally, SMACK
currently precisely handles word-aligned memory accesses only.

6 To make our results readily reproducible, we created a virtual machine profile in the
Apt testbed facility containing all used tools, scripts, and benchmarks. It is available
at https://www.aptlab.net/p/fmr/smack-cav2014.

https://www.aptlab.net/p/fmr/smack-cav2014


112 Z. Rakamarić and M. Emmi
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Abstract. We propose a new synthesis method for generating countermeasures
for cryptographic software code to mitigate power analysis based side channel at-
tacks. Side channel attacks may arise when computers and microchips leak sensi-
tive information about the software code and data that they process, e.g., through
power dissipation or electromagnetic radiation. Such information leaks have been
exploited in commercial systems in the embedded space. Our new method takes
an unprotected C program as input and returns a functionally equivalent but side
channel leak free new program as output. The new program is guaranteed to be
perfectly masked in that all intermediate computation results are made statisti-
cally independent from the secret data. We have implemented our new method in
a tool based on the LLVM compiler and the Yices SMT solver. Our experiments
on a set of cryptographic software benchmarks show that the new method is both
effective and scalable for applications of realistic size.

1 Introduction

When cryptographic algorithms are proved to be secure against thousands of years of
brute force cryptanalysis attacks, the assumption is that sensitive information can be
manipulated in a closed computing environment. Unfortunately, real computers and
microchips leak information about the software code and data that they process, e.g.
through power dissipation or electromagnetic radiation. For example, the power con-
sumption of a typical embedded device executing instruction a=t⊕k may depend on
the value of the secret variable k [21]. Such information can be exploited by an adver-
sary through statistical post-processing such as differential power analysis (DPA [19]),
leading to successful attacks in linear time. In recent years, many commercial systems
in the embedded space have shown weakness against such attacks [25,22,4].

In this paper, we propose a new synthesis method, which takes an unprotected soft-
ware program as input and returns a functionally equivalent but side channel leak free
new program as output. By leveraging a new verification procedure that we developed
recently, called SC Sniffer [14,15], we can guarantee that the synthesized new program
is secure by construction. That is, all intermediate computations of the program are per-
fectly masked [9] in that their computation results are statistically independent from the
secret data. Masking is a popular and relatively low-cost mitigation strategy for remov-
ing the statistical dependency between sensitive data and side channel emissions. For
example, Boolean masking [4,26] uses an XOR operation of a random bit r with vari-
able a to obtain a masked variable: am = a⊕ r. The original value can be restored by a
second XOR operation: am ⊕ r = a. Since am no longer depends on the sensitive data
a statistically, subsequent computations based on am will not leak information about
the value of a.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 114–130, 2014.
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When a computation f(z) is in the linear domain in terms of⊕ and with respect to the
sensitive input z, masking can be implemented as f(z⊕ r)⊕ f(r) since it is equivalent
to f(z) ⊕ f(r) ⊕ f(r) = f(z). That is, we mask z using an XOR with random bit
r before the computation and de-mask using an XOR with f(r) afterward. However,
when f(z) is a non-linear function, the computation f(z) often needs to be completely
redesigned, e.g., by splitting f() into f ′() and f ′′() such that f ′(z⊕r)⊕f ′′(r) = f(z).
Finding the proper f ′() and f ′′() is a highly creative process currently performed by
cryptographic experts. Indeed, designing a new masking countermeasure for algorithms
such as AES and SHA-3 would be publishable work in cryptographic venues.

Our new synthesis method relies on inductive synthesis and satisfiability modulo
theory (SMT) solvers to search for masking countermeasures within a bounded de-
sign space. More specifically, given the software code to be masked, we use a set of
quantifier-free first-order logic formulas to encode the two requirements of the syn-
thesized new code – that it must be perfectly masked and that it must be functionally
equivalent to the original code. The resulting formulas can be decided by an off-the-
shelf SMT solver. Based on this formal analysis, we can guarantee that the synthesized
program is provably secure against power analysis based side channel attacks even on
devices with physical emissions.

In recent years, there is a growing interest in using compilers to automate the ap-
plication of side-channel countermeasures [1,5,7,23]. However, these existing methods
rely on matching known code patterns and applying predefined code transformations.
They do not employ SMT solver based exhaustive search or the notion of perfect mask-
ing during the process. As a result, they cannot guarantee to find the leakage free new
program even if such program exists, or formally prove that the generated code is leak-
age free. Our new method provides both guarantees. Although inductive synthesis has
enjoyed remarkable success recently (e.g., [17,16,20,3,27]), this is the first time that it
is applied to mitigating side channel attacks.

We have implemented our new method in a software tool called SC Masker, which
builds upon the LLVM compiler [11] and the Yices SMT solver [12]. We have con-
ducted experiments on a set of cryptographic software benchmarks, including both AES
and MAC-Keccak. Our experiments show that the new method is both effective in elim-
inating side channel leaks and scalable for handling cryptographic software code of
practical size.

To sum up, we have made the following contributions:

– We propose a new method for synthesizing masking countermeasures to protect
cryptographic software code against power analysis attacks.

– We implement the method in a software tool, which takes an unprotected C program
as input and returns a perfectly masked new program as output.

– We conduct experiments on a set of cryptographic software benchmarks to demon-
strate the effectiveness and scalability of the new method.

The remainder of this paper is organized as follows. We will establish notation and
define the synthesis problem in Section 2. We will illustrate the overall flow of our
method using an example in Section 3. The detailed algorithms will be presented in Sec-
tion 4, which include both inductively computing the candidate program and formally
verifying the candidate program. We will present a partitioned synthesis procedure in
Section 5 to further improve the runtime performance. Our experimental results will be
presented in Section 6. Finally, we will give our conclusions in Section 7.



116 H. Eldib and C. Wang

2 Preliminaries

Following the notation used by Blömer et al. [9], we assume that a sensitive computa-
tion c← f(x, k) takes a plaintext x and a secret key k as input and returns a ciphertext
c as output. The implementation of function f(x, k) consists of a sequence of interme-
diate operations. Each intermediate operation is referred to as a function Ii(x, k), where
i is the index of that operation.

Side Channel Attacks. We assume that the plaintext x and the ciphertext c may be
observed by an adversary, whereas the secret key k is hidden in the computing device.
The goal of the adversary is to deduce k based on observing x, c, and the power leakage
of the device. Based on the widely used Hamming Weight (HW) model, we assume
that the power leakage of the device correlates to the values involved in the sensitive
operations I1(x, k) . . . In(x, k). Here, Ii(x, k) refers to the i-th instruction whose result
is a function of both x and k. Given two different key values k and k′, for instance, the
power consumption of k ⊕ x and k′ ⊕ x may differ. The information leak may be
exploited by techniques such as differential power analysis (DPA [19]).

To eliminate side channel leaks, a countermeasure called masking can be imple-
mented to randomize the instantaneous power consumption to make it statistically in-
dependent from the secret data. For example, when the computation f(z) is a linear
function of variable z in the ⊕ domain, meaning that f(z1 ⊕ z2) = f(z1) ⊕ f(z2),
masking requires no modification of the original implementation of function f(z).

f(z ⊕ r) ⊕ f(r) = f(z)⊕ f(r)⊕ f(r) = f(z) .

Here, the random bit r is generated internally on the cryptographic device so the adver-
sary cannot access its value. Due to commutativity of the XOR operation, we can mask
z with r before the computation on the device and de-mask with f(r) afterward.

However, when f(z) is a non-linear function, the implementation of f(z) often needs
to be completely redesigned. Depending on the order of attacks to be mitigated, for in-
stance, z may have to be divided into n chunks by using XOR operations with n ran-
dom bits r1 . . . rn. Then, each chunk is fed to a newly designed cryptographic function
f ′i(z ⊕ ri, ri), where 1 ≤ i ≤ n. At the end, these results are combined to reconstruct
f(z) by using XOR operations with another function f ′′i (z⊕ri, ri). Consider n=1 as an
example. We require the new functions f ′() and f ′′() to satisfy the following constraint:

f ′(z ⊕ r, r)⊕ f ′′(z ⊕ r, r) = f(z) .

However, the design of such cryptographic functions f ′ and f ′′ is a highly creative
manual process currently undertaken by experts – it is labor intensive and error prone.
Furthermore, even if the masking algorithm is provably secure, bugs introduced during
the software coding process may still cause information leaks.

Iterative Inductive Synthesis. To overcome these problems, we propose using induc-
tive synthesis to generate implementations of perfect masking countermeasures. We
follow the iterative synthesis procedure shown in Fig. 1, which consists of three steps:

1. Given an unprotected program as input, we first compute a candidate new program
that is masked and is functionally equivalent to the original program, at least for a
small set of test inputs.
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2. We try to prove that the candidate program is perfectly masked and is functionally
equivalent to the original program under all possible test inputs.

3. If the verification succeeds, we are done. Otherwise, the candidate program is in-
valid. In the latter case, we block this solution, go back to Step 1, and try again.

Passed

Failed

      +
  Spec

program
 Block the 

Program Synthesized
    program

Find a candidate
       program

Verify found
    program

Fig. 1. The iterative inductive synthesis procedure

The reason why we choose not
to generate, in one step, a candi-
date program that is valid for all
possible test inputs is because
of performance concerns. A
candidate program valid for all
possible test inputs would be
prohibitively more expensive for
an SMT solver to compute.
By separating the synthesis task
into three subtasks, namely the inductive synthesis of candidate programs, the formal
verification of candidate programs, and the iterative refinement step, we can make all
three substeps practically feasible to complete.

In this work, the verification step will consist of two substeps. First, we prove that the
candidate program is functionally equivalent to the original program under all possible
inputs. Second, we prove that all intermediate computations in the candidate program
are perfectly masked. Toward this end, we leverage a verification procedure that we
developed recently, called SC Sniffer [14,15], which can check whether an intermediate
computation result of the program is statistically dependent on the secret data.

Verifying Perfect Masking. Given a pair (x, k) of plaintext and key for the func-
tion f(x, k) and an intermediate computation result Ii(x, k, r) masked by the random
variable r, we use Dx,k(R) to denote the distribution of I(x, k, r). Here, r is an s-bit
random variable uniformly distributed in the domain R = {0, 1}s; it is meant to be used
to remove the information leakage of Ii(x, k, r) while maintaining the input-output re-
lation of function f(x, k). If Dx,k(R) is statistically independent from k, we say that
the function is perfectly masked [9]. Otherwise, the function has side channel leaks.

Definition 1. Given an implementation of function f(x, k) and a set of its intermediate
results {Ii(x, k, r)}, we say that the function is perfectly masked if for each Ii(x, k, r),

Dx,k(R) = Dx,k′(R) for any two pairs (x, k) and (x, k′) .

As an example, consider Fig. 2 where ciphertexts c1,c2,c3,c4 are results of four
different masking schemes for plaintext bit x and key bit k using random bits r1 and
r2. According to the truth tables on the right-hand side, all of these four outputs are
logically dependent on r1,r2. However, this does not imply statistical independence
from the secret k. Indeed, c1,c2,c3 all leak sensitive information. Specifically, when
x is logical 0, and when c1 is 1, we know for sure that the secret k is also 1, regardless
of the values of the random variables. Similarly, when c2 is logical 0, we know for sure
that k is also 0. When c3 is logical 1 (or 0), there is a 75% chance that k is logical 1 (or
0). In contrast, c4 is the only leak-free output because it is statistically independent of
k – when k is logical 1 (or 0), there is 50% chance that c4 is logical 1 (or 0).

Our method in SC Sniffer [14,15] relies on translating the verification problem into
a set of satisfiability (SAT) problems, each of which is encoded as a logical formula.
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c1 = x⊕ k∧(r1∧r2)
c2 = x⊕ k∨(r1∧r2)
c3 = x⊕ k⊕(r1∧r2)
c4 = x⊕ k⊕(r1⊕r2)

x k r1 r2 c1 c2 c3 c4
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 1

x k r1 r2 c1 c2 c3 c4
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0
1 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 1 0 1 1 0

Fig. 2. The values of c1,c2,c3 are statistically dependent on the key bit k although they are
masked by random bits r1 and r2 – knowing the value of these ciphertexts and plaintext x, an
adversary can deduce the value of k with high probability. In contrast, c4 is perfectly masked.

These formulas can be decided using an off-the-shelf SMT solver. More specifically,
we start by marking all the plaintext bits in x as public, the key bits in k as secret,
and the mask bits in r as random. Then, we traverse the entire program and for each
intermediate computation I(x, k, r), check the satisfiability of the following formula:

∃x, k, k′ .
(∑
r∈R

I(x, k, r) �=
∑
r∈R

I(x, k′, r)

)

Here, k and k′ are two different values of the secret key and R is the set of values of
random variable r. The summation

∑
r∈R I(x, k, r) represents the number of values of

r that can make I(x, k, r) evaluate to logical 1, and the summation
∑

r∈R I(x, k′, r)
represents the number of values of r that can make I(x, k′, r) evaluate to logical 1.
Assume that random variable r is uniformly distributed in the domain R, the above two
summations represent the probabilities of I being logical 1 under key values k and k′,
respectively. If the above formula is satisfiable, then we have found a plaintext x and two
values (k, k′) such that the distributions of I(x, k, r) and I(x, k′, r) differs – it means
that the value of the secret key bit is leaked. In contrast, if the formula is unsatisfiable,
it is a formal proof that I(x, k, r) is perfectly masked by r. We will present the detailed
SMT encoding in Section 4.2.

3 Motivating Example

In this section, we illustrate the overall flow of our synthesis method using an exam-
ple. Our example is part of the implementation of MAC-Keccak, the newly standard-
ized SHA-3 cryptographic hashing algorithm [24], after three rounds of competitions
by cryptographic experts worldwide. The MAC-Keccak code [8] consists of five main
functions that are repeated for 24 rounds on the input bits (plaintext and key) in order to
compute the output (ciphertext). The computation in a single round can be represented
by out = ι.χ.π.ρ.θ(in), where ι(), π(), ρ() and θ() are linear functions in the domain
of ⊕, consisting of operations such as XOR, SHIFT and ROTATE, whereas χ() is a
nonlinear function, containing nonlinear operations such as AND.

Our synthesis procedure takes the MAC-Keccak code as input and returns a perfectly
masked version of the code as output. It starts by transforming the original program into
an intermediate representation (IR) using the LLVM compiler front-end. Since we fo-
cus on cryptographic software, not general purpose software, we can assume that all
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1 : Chi(bool i1, bool i2, bool i3) {
2 : bool n1, n2, n3;
3 : n3 = ¬i2;
4 : n2 = n3 ∧ i3;
5 : n1 = n2⊕ i1;
6 : return n1;
7 : }

i1 i2 i3 n3 n2 n1
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 1 0 1
1 1 0 0 0 1
1 1 1 0 0 1

1 : mChi(bool i1, bool i2, bool i3) {
2 : bool r1, r2, r3; //random bits added

3 : bool b1, b2, b3, n1, n2, n3, n4, n5, n6, n7, n8, n9;
4 : b1 = i1⊕ r1;
5 : b2 = i2⊕ r2;
6 : b3 = i3⊕ r3;
7 : n9 = b3 ∧ r2;
8 : n8 = r3 ∧ r2;
9 : n7 = r3 ∨ b2;
10 : n6 = r1⊕ n9;
11 : n5 = n7⊕ n8;
12 : n4 = b2 ∨ b3;
13 : n3 = n5⊕ n6;
14 : n2 = n4⊕ b1;
15 : n1 = n2⊕ n3;
16 : return n1;
17 : }

Fig. 3. The original χ function in MAC-Keccak, its truth table, and the synthesized χ function.
Here ¬ denotes NOT, ∧ denotes AND, ∨ denotes OR, and ⊕ denotes XOR.

program variables are bounded integers and there is no input-dependent control flow.
(Cryptographic software typically do not have input-dependent control flow because it
is vulnerable to timing attacks.) Therefore, it is relatively straightforward to transform
the input program into a Boolean program, e.g., by merging if-else conditions, unwind-
ing loops, inlining functions, and bit-blasting the integer operations. Thus, from now
on, we are only concerned with an IR where all instructions operate on bits. Focusing
on the bit-level analysis allows us to detect leaks at the finest granularity possible.

The next step is traversing the abstract syntax tree of the Boolean program in a topo-
logical order, starting at the input nodes and ending at the output node. For each internal
node, we first check whether its function is linear in the domain of⊕. As we have shown
earlier, for a linear function f(z), we can mask the input z with an XOR of a random bit
r before the computation and demask with an XOR of f(r) afterward. Furthermore, to
make sure that all intermediate nodes stay masked, we need to chain the mask-demask
segments together, by masking the output of a function with a new random variable
before demasking it with the previous random variable.

For nonlinear functions, such as χ(), there are no easy ways of generating the coun-
termeasures. In this work, we rely on the iterative inductive synthesis and SMT solvers
to search for a valid countermeasure in a bounded design space. Given the χ() function
in Fig. 3 (left), our method will produce the new code in Fig. 3 (right). Our method en-
sures that these two versions have the same input-output relation, and at the same time,
all the intermediate computation results in the new program are perfectly masked with
random bits r1, r2 and r3. Our method has two main advantages over the state of the
art. First, it is more economical and sustainable than the manual mitigation approach,
especially when considering the rapid increase in the application size and platform va-
riety. Second, it eliminates both the design errors and the implementation errors while
guaranteeing that the synthesized program is secure by construction. That is, by assum-
ing that each of r1, r2 and r3 in Fig. 3 (right) is randomly distributed, our method
guarantees that the probability of each intermediate result being logical 1 (or 0) is sta-
tistically independent from the values of i1, i2 and i3.
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4 Synthesis of Masking Countermeasures

In this section, we present our basic algorithm for iteratively synthesizing a masked
version of the input Boolean program. We leave performance optimizations to the next
section. The pseudocode is shown in Algorithm 1, where P is the original program,
inputs is the set of inputs, and output is the output. The input variables also have an-
notations indicating whether they are plaintext bits, key bits, or random bits. The syn-
thesis procedure returns a new program newP whose input-output relation is equivalent
to that of P . At the same time, all internal nodes of newP are perfectly masked. New
random bits may be added by the synthesis procedure gradually, on a need-to basis.

Algorithm 1. Inductive synthesis of a masked version of the input program P .
1. SYNTHESIZEMASKING (P, inputs , output) {
2. blocked ← { };
3. testSet← { };
4. size← 1;
5. while (size < MAX CODE SIZE) {
6. newP ← COMPUTECANDIDATE(P,inputs , output , size, blocked, testSet);
7. if (newP does not exist)
8. size← size+ 1;
9. else {

10. test1 ← CHECKEQUIVALENCE(newP, P );
11. test2 ← CHECKINFOLEAKAGE(newP);
12. if ( {test1 , test2 } == { } )
13. return newP ;
14. blocked ← blocked ∪{newP};
15. testSet← testSet ∪{test1 , test2 };
16. }
17. }
18. return no solution;
19. }

The synthesis procedure iterates through three elementary steps: (1) compute a can-
didate program newP which is functionally equivalent to the original program P , at
least for a selected set of test inputs; (2) verify that newP is functionally equivalent
to P for all possible inputs and is perfectly masked; (3) if any of the two verification
substeps fails, we block this solution, add the failure triggering inputs to testSet, and
repeat. The synthesis procedure iteratively searches for a new candidate program with
increasing code size, until the size reaches MAX CODE SIZE. We record the bad so-
lutions in the set blocked to avoid repeating them in the future. We record in testSet all
the test cases that led to failures at some previous verification steps.

In the remainder of this section, we present the detailed algorithms for two elemen-
tary steps: computing the candidate program and verifying the candidate program.

4.1 Computing the Candidate Program

The first step in computing newP fromP is to create a parameterized AST that captures
all possible masked Boolean programs up to a bounded size. Following the notation
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used in [13], we call this parameterized AST as a skeleton. An example is shown in
Fig. 4, which has 11 nodes. Each node is either an Op node or a V node. The internal
node Op can be instantiated to any bit-level operation such as ⊕,&, |, or !. The V node
can be instantiated to any variable in the original program, or fresh random bit added
by the synthesis procedure, or constant (logical 0 or 1). The instantiation of Op nodes
and V nodes is controlled by a set of auxiliary variables, whose values will be assigned
by the SMT solver.

n10
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Op

Op OpV
V

V V V V

n7

n11
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n3
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Fig. 4. A candidate program skeleton con-
sisting of 11 parameterized AST nodes
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Fig. 5. The synthesized candidate program
with instantiated Boolean masking

As an example, consider node n8 in Fig. 4. The corresponding logical constraint
may be ((N8==V1)&&bV1)||(N8==V2)&&bV2), where N8 denotes the output of n8

and V1 and V2 are two variables in the input program. Auxiliary variables bV1 and
bV2 are added to decide which of the node types are chosen – we would add another
constraint saying that one and only one of bV1 and bV2 must be true. Based on which
variable is set to true by the SMT solver, the output of node n8 is determined. For node
n1, the constraint may be ((N1==(N2&N3))&&bAND1)||((N1==(N2|N3))&&bOR1)
||((N1==(N2⊕N3))&&bXOR1) ||((N1==(⊕N2))&&bNOT1 where N1, N2 and N3
denote the output of node n1, n2, and n3, respectively. Auxiliary variables bAND1,
bOR1, bXOR1, and bNOT1 are constrained such that one and only one of them must be
true. Fig. 5 shows a masked candidate program synthesized by the SMT solver, which
represents n1 = i1 ⊕ i2.

The next step is to build an SMT formula Φ that imposes two additional require-
ments: (1) the input-output relation of the candidate program skeleton is equivalent
to the original program P , and (2) the internal nodes of the candidate program are all
masked by some random variables. More formally, the formula Φ is defined as follows:

Φ = ΦP ∧ Φskel ∧ ΦiEqv ∧ ΦoEqv ∧ Φmasked ∧ ΦtestSet ∧ Φblocked ,

where the subformulas are defined as follows:

– ΦP encodes the program logic of P .
– Φskel encodes the program logic of the skeleton.
– ΦiEqv asserts that the input variables of P and skeleton have the same values.
– ΦoEqv asserts that the outputs of P and skeleton have the same value.
– Φmasked asserts that all internal nodes are masked by some random bits – some

random bit must appear in the support of the function of each node.
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– ΦtestSet asserts that the input variables should take values only from testSet .
– Φblocked asserts that the previously failed solutions should not be selected.

If formula Φ is satisfiable, a candidate solution is found, and it will be verified for
equivalence and perfect masking in the following step. Otherwise, the skeleton size
will be incremented and the SMT solver will be invoked again on the new formula.

4.2 Verifying the Candidate Program

Given a candidate program newP , which is computed by the SMT solver for a set
of selected test inputs, we verify that it is a valid solution for all possible inputs. We
formulate the verification problem into two satisfiability subproblems, where we look
for counterexamples, or test inputs, under which either newP is not equivalent to P , or
some nodes in newP are not perfectly masked.

Checking Functional Equivalence. We construct formula Ψ1 such that it is satisfiable
if and only if there exists a test input under which newP and P have different outputs.
The formula is defined as follows:

Ψ1 = ΦP ∧ ΦnewP ∧ ΦiEqv ∧ ΦoDiff ,

where ΦP and ΦnewP encode the input-output relations of the two programs, ΦiEqv

asserts that they have the same input values, and ΦoDiff asserts that they have different
outputs. If Ψ1 is satisfiable, we find a test case showing that newP is a bad solution. If
Ψ1 is unsatisfiable, then newP and P are functional equivalent.

Checking for Information Leakage. We construct formulaΨ2 such that it is satisfiable
if and only if there exists an intermediate node in newP that leaks sensitive information.
Toward this end, we leverage our recently developed verification procedure [14,15] to
check, for each intermediate node I(x, k, r), whether there exist a plaintext x and two
key values k, k′ such that

∑
r∈R I(x, k, r) �=

∑
r∈R I(x, k′, r). As we have explained

in Section 2, this inequality means that the probabilistic distributions of I(x, k, r) and
I(x, k′, r) differ for the two key values k and k′. The formula Ψ2 is defined as follows:

Ψ2 :=

(∧
r∈R

ΦI (x ,k ,r)

)
∧
(∧
r∈R

ΦI (x ,k ′,r)

)
∧ Φb2i ∧ Φsum ∧ ΦsumDiff ,

where the subformulas are defined as follows:

– Program logic (ΦI (x ,k ,r)): Each subformula ΦI (x ,k ,r) encodes the input-output re-
lation of I(x, k, r) with a fixed value r ∈ R and variable k. Each subformula
ΦI (x ,k ′,r) encodes the input-output relation of I(x, k′, r) with a fixed value r ∈ R
and variable k′. All subformulas share the same plaintext variable x.

– Boolean-to-int (Φb2i ): This subformula encodes the conversion of the bit output of
each I(x, k, r) to an integer (true becomes 1 and false becomes 0), which will be
summed up later to compute

∑
r∈R I(x, k, r) and

∑
r∈R I(x, k′, r).

– Sum-up-the-1s (Φsum ): This subformula encodes the two summations of the logical
1’s in the outputs of the |R| copies of I(x, k, r) and the |R| copies of I(x, k′, r).

– Different sums (ΦsumDiff ): It asserts that the two summations have different results.
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Fig. 6. SMT encoding for checking the statistical dependence of an output on secret data (k1, k2)

If Ψ2 is unsatisfiable, then the intermediate result I is perfectly masked. If Ψ2 is satisfi-
able, then I has information leakage.

Fig. 6 provides a pictorial illustration of our SMT encoding for an intermediate result
I(k1, k2, r1, r2), where k1, k2 are the key bits and r1, r2 are the random bits. The first
four boxes encode the program logic of ΦI(x,k,0) . . . ΦI(x,k,3) for key bits (k1k2), with
the random bits set to 00, 01, 10, and 11, respectively. The other four boxes encode the
program logic of ΦI(x,k′,0) . . . ΦI(x,k′,3) for key bits (k1′k2′), with the random bits set
to 00, 01, 10, and 11, respectively. The entire formula checks whether there exist two
sets of key values (k1k2 and k1′k2′) under which the probabilities of I being logical 1
are different.

As a more concrete example, consider the computation c2 = x ⊕ k ∨ (r1 ∧ r2) in
Fig. 2. The SMT solver may return the solution x=0, k=0 and k′=1 because, according
to the truth table in Fig. 2,

∑
r∈R c2(0, 0, r) = 1 whereas

∑
r∈R c2(0, 1, r) = 4.

Consider c4 = x ⊕ k ⊕ (r1 ⊕ r2) in Fig. 2 as another example. The SMT solver will
not be able to find any solution because it is perfectly masked. For instance, when x=0,
k=0 and k′=1, we have

∑
r∈R c4(0, 0, r) = 2 and

∑
r∈R c4(0, 1, r) = 2.

5 Partitioned Synthesis to Improve Performance

SMT solver based inductive synthesis has the advantage of being exhaustive during the
search of countermeasures within a bounded design space. With the help of the verifica-
tion subprocedure, our method also guarantees that the resulting program is secure by
construction. However, its main disadvantage is the limited scalability, since the SMT
solver slows down quickly as the program size increases. Although we expect SMT
solvers to continue improving in the coming years, it is unlikely that a monolithic SMT
based synthesis procedure will scale up to large programs (this is consistent with what
others in the field have observed [3,2]). In this section, we propose a partitioned synthe-
sis procedure to combine static code analysis with judicious use of inductive synthesis
so that the combined method can handle cryptographic software code of realistic size.

The partitioned synthesis procedure (Fig. 7) starts by traversing the AST nodes of the
program in a topological order, from the inputs to the output. Depending on whether the
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Fig. 7. The partitioned synthesis procedure for applying masking countermeasures locally

AST node n is linear or nonlinear as shown in Algorithm 2, it invokes either MASKLIN-
EAR or SYNTHESIZEMASKING (presented in the previous section). When n is a linear
function, we mask its input variables and demask the output with random variables,
without modifying the linear function itself, as explained in Section 2. When n is a
nonlinear function, instead of invoking SYNTHESIZEMASKING for the entire fan-in
cone of n, we partition it into small code regions, and synthesize a masked version for
each region. Then, we substitute the original code region reg in program P with the
new code region new reg . The entire synthesis procedure terminates when all small
code regions of all nonlinear AST nodes in program P are perfectly masked.

Algorithm 2. Partitioned synthesis algorithm for masking the program P .
1. PARTITIONEDSYNTHESIS (P, inputs , output) {
2. for each (AST node n ∈ P ) {
3. if ( n represents a linear function)
4. new n ← MASKLINEAR(P, inputs , n);
5. replace n in program P with new n;
6. else {
7. while ( ∃ unprotected code region reg ∈ FanIn(n) ) {
8. Let (reg ins, reg out) be the inputs and output of reg ;
9. new reg ← SYNTHESIZEMASKING(P,reg ins, reg out);

10. replace reg in program P with new reg ;
11. }
12. }
13. }
14. return P ;
15. }

Selecting a Code Region. While selecting a code region in FanIn(n) of a nonlinear
node n, we first start from an AST nodem ∈ FanIn(n) that is not yet perfectly masked,
and then include a number of its connected unprotected nodes. The exact number of fan-
in nodes to be included in the code region of node m is controlled by a user specified
bound. Choosing the right bound, and hence the size of the code region, is a tradeoff
between the compactness of the synthesized program and the computational overhead.
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On the one hand, if we set the bound to positive infinity, the partitioned synthesis pro-
cedure would degenerate to the monolithic approach. On the other hand, if we set the
bound to a small number, the synthesized solution may be suboptimal in that some of
the masking operations are unnecessary.

For illustration purposes only, we consider an extreme case where the region size
is set to 1, meaning that each nonlinear AST node is masked separately. Under this
assumption, in Fig. 3, we illustrate the process of masking the χ() function from Fig. 8.
The first code region involves the NOT operation at Line 3, whose masked version is
shown in the middle column. The second code region involves the AND operation at
Line 4, whose masked version is shown in the middle column. The third code region
involves the XOR of n2 and i1 at Line 5, whose masked version is shown in the middle
column. It is worth pointing out that, in this extreme case, the resulting program will be
suboptimal. However, the actual implementation of our partitioned synthesis procedure
was able to obtain a perfectly masked countermeasure whose size is more compact.

b1 = i2 ⊕ r1; b1 = i2 ⊕ r1;
L3: n3 = ¬ i2; → t1 = ¬ b1; → t1 = ¬ b1;

n3 = t1 ⊕ r1; n3 = t1 ⊕ r2; //swap with r1

b3 = i3 ⊕ r3; b3 = i3 ⊕ r3;
b2 = n3 ⊕ r2; b2 = n3 ⊕ r1; //swap with r2
t10 = ¬ b2; t10 = ¬ b2;
t9 = b3 ∧ r2; t9 = b3 ∧ r2;

L4: n2 = n3 ∧ i3; → t8 = ¬ r3; → t8 = ¬ r3;
t7 = t10 ∧ r3; t7 = t10 ∧ r3;
t6 = b2 ∧ b3; t6 = b2 ∧ b3;
t5 = ¬ t9; t5 = ¬ t9;
t4 = t8 ∨ r2; t4 = t8 ∨ r2;
t3 = t6 ∨ t7; t3 = t6 ∨ t7;
t2 = t4 ⊕ t5; t2 = t4 ⊕ t5;
n2 = t2 ⊕ t3; n2 = t2 ⊕ r4; //swap with t3

b4 = n2 ⊕ r4; b4 = n2 ⊕ t3; //swap with r4
b5 = i1 ⊕ r1; b5 = i1 ⊕ r1;

L5: n1 = n2 ⊕ i1; → t12 = b4 ⊕ b5; → t12 = b4 ⊕ b5;
t11 = r1 ⊕ r4; t11 = r1 ⊕ r4;
n1 = t11 ⊕ t12; n1 = t11 ⊕ t12;

Fig. 8. Example: the process of masking individual code regions and composing them together

Replacing the Code Region. Continue with the above extreme case exercise, we now
explain how to use the newly synthesized code region (new reg) to replace the original
code region (reg) in program P . The replacement process is mostly straightforward,
due to the fact that our partitioned synthesis procedure traverses regions in a bottom-up
topological order. However, there is one caveat – before demasking the output of the
new region new reg , we need to mask it with another random variable; otherwise, the
output of new reg would become unmasked.

We solve this problem by asserting, while computing the candidate program in pro-
cedure SYNTHESIZEMASKING, that the output and all inputs must be an XOR operation
with some random variables. Due to the associativity of XOR operations, and the fact
that now two adjacent code regions are connected through two XOR operations, we
can switch the order of the two XOR operations during region replacement, without
modifying the functionality of the final output.
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In Fig. 8, the right-hand-side column shows an example for chaining the three new
code regions of the χ function obtained in the middle column, by swapping their adja-
cent XOR operations with random bits.

Reusing Random Variables. To further reduce the size of the synthesized program,
we reuse random variables as much as possible while masking the non-adjacent code
regions. Specifically, while building the candidate program skeleton for a code region
reg (see Section 4.1), we first need to create a list of random variables to be used in the
V nodes. The number of random variables is at most as large as the number of input
variables in reg . However, we do not have to create fresh random variables every time
they are needed. Instead, we can reuse existing random variables in the program, as
long as they are not used in the code regions adjacent to reg . This optimization can
significantly reduce the number of random bits required in the masked new program,
while at the same time soundly maintaining the statistical independence of the masked
nodes.

6 Experiments

We have implemented our new synthesis method in a software tool called SC Masker,
which builds upon the LLVM compiler front-end and the Yices SMT solver. Our tool
runs in two modes: the monolithic mode and the partitioned mode, to facilitate exper-
imental comparison of the two approaches. We have evaluated our method on a set
of cryptographic software benchmarks. Our experimental evaluation was designed to
answer the following questions:

– How effective is the new synthesis method in eliminating side channel leaks? Is the
synthesized program as compact as the countermeasures handcrafted by experts?

– How scalable is the tool in handling code of realistic size? Our partitioned synthesis
procedure is designed to address the scalability problem. Is it effective in practice?

Our benchmarks fall into three categories. The first set, from P1 to P8, are medium
sized cryptographic functions that are partially masked. Specifically, P1 and P2 are
taken from Bayrak et al. [6], which are incorrectly masked computations due to code
motion in compiler optimization. P3 and P4 are from Herbst et al. [18], which are
gate-level implementations of partially masked AES. P5 and P6 are masked versions
of the χ function from Bertoni et al. [8], after integer to Boolean compilation with
optimizations. P7 and P8 are two modified versions of the MAC-Keccak nonlinear χ
functions. The second set, from P9 to P12, are small to medium sized cryptographic
functions that are completely unmasked. Specifically, P9 is the original MAC-Keccak
χ function taken from the reference implementation [8] (Equation 5.2 on Page 46). P10
and P11 are two nonlinear functions, mul4 and invg4, from an implementation of AES
in [10]. P12 is a single-round complete implementation of AES found in [10]. The third
set, from P13 to P18, are partially masked large programs with a significant number
of instructions not yet masked. These programs are generated by us from the MAC-
Keccak reference code [24] after converting it from an integer program to a Boolean
program. In each case, the whole program has been transformed into a single function
to test the scalability of our new methods.

Table 1 shows the experimental results obtained on a machine with a 3.4 GHz Intel
i7-2600 CPU, 4 GB RAM, and a 32-bit Linux OS. Columns 1-6 show the statistics
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Table 1. Comparing performance of the monolithic and partitioned methods in SC Masker

Program Monolithic Partitioned
Name LoC Keys Plains Rands Nodes Rands Nodes Time Rands Nodes Time

P1 79 16 16 16 47 16 85 2.9s 16 85 2.9s
P2 67 8 8 16 31 16 55 1.5s 16 55 1.5s
P3 32 2 2 2 9 4 15 8.3s 4 15 8.1s
P4 32 2 2 2 6 6 9 0.2s 6 9 0.2s
P5 59 3 3 4 18 8 24 19m17s 8 27 8.3s
P6 60 3 3 4 18 8 24 0.5s 8 24 0.5s
P7 66 3 3 4 22 8 25 0.3s 8 25 0.3s
P8 66 3 3 4 22 8 25 0.3s 8 25 0.3s
P9 9 3 0 0 3 - - TO 4 14 3.1s
P10 57 8 0 0 37 - - TO 8 264 4m36s
P11 82 8 0 0 48 - - TO 4 485 13m10s
P12 365 8 0 0 182 - - TO 8 1072 22m10s
P13 56k 58 161 58 19k - - TO 58 20k 24m7s
P14 56k 58 161 58 19k - - TO 58 21k 41m37s
P15 56k 58 161 58 19k - - TO 58 21k 36m21s
P16 56k 58 161 58 19k - - TO 58 21k 35m42s
P17 56k 58 161 58 19k - - TO 58 21k 48m15s
P18 56k 58 161 58 19k - - TO 58 20k 23m41s

of each benchmark, including the name, the lines of code, the number of key bits, the
number of plaintext bits, the number of random bits, and the number of operations
(Nodes). Columns 7-9 show the results of the monolithic synthesis algorithm, including
the number of random bits and the number of operations (Nodes) in the synthesized
program, as well as the run time. Columns 10-12 show the results of the partitioned
synthesis algorithm, including the number of random bits and the number of operations
(Nodes) in the synthesized program, as well as the run time. Here, TO means that the
SC Masker tool ran out of the time limit of 4 hours.

The experimental results show that our new synthesis method, especially when it
runs in the partitioned mode, is scalable in handling cryptographic software of realis-
tic size. On the first set of test cases, where the programs are small, both monolithic
and partitioned procedures can complete quickly, and the differences in run time and
compactness of the new program are small. However, on large programs such as AES
and MAC Keccak, the monolithic method can not finish within four hours, whereas the
partitioned method can finish in a reasonably small amount of time. Furthermore, we
can see that most of the existing random bits in the original programs were reused.

As far as the compactness of the new program is concerned, we know of only one
benchmark (P9) that has a previously published masking countermeasure. The counter-
measure [8] handcrafted by cryptographic engineering experts has 14 operations. The
countermeasure synthesized by our own tool (using the partitioned approach) also has
14 operations. Therefore, at least for this example, it is as compact than the handcrafted
countermeasure. However, recall that our method has the additional advantages of being
fully automated and at the same time guaranteeing that the synthesized new program
is provably secure. Furthermore, when given more CPU time – for example, by setting
the time limit to 10 hours and using a larger region size – our synthesis procedure in SC
Masker was able to produce a countermeasure with only 12 operations, which is more
compact than the countermeasure handcrafted by experts. We can also show that this
is the smallest possible solution because reducing the skeleton size further causes the
SMT solver to report unsatisfiability.



128 H. Eldib and C. Wang

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11

Monolithic

Partitioned

Fig. 9. Comparing the run time of the two synthesis meth-
ods in SC Masker (the time is in seconds)

As another measurement of
the scalability of our new meth-
ods, we conducted experiments
on a parameterized version of
test program P1 by expanding it
from 1 encryption round up to
10 rounds. In each program, the
input for one round is the out-
put from the previous round. We
ran the SC Masker tool twice,
once with the monolithic ap-
proach and once with the parti-
tioned approach. The results are
plotted in Fig. 9, where the x-
axis shows the program size in terms of the number of encryption rounds and the y-axis
shows the run time in seconds. Also note that the y-axis is in logarithmic scale. Whereas
the monolithic approach quickly ran out of time for programs with ≥ 5 rounds, the ex-
ecution time increase of the partitioned approach remains modest – this demonstrates
the capability of our partitioned method in handling large programs.

7 Conclusions

We have presented a new synthesis method for automatically generating perfect mask-
ing countermeasures for cryptographic software to defend against power analysis based
side channel attacks. Our method guarantees that the resulting software code is secure
by construction. We have implemented our method in the SC Masker tool and evaluated
it on a set of cryptographic software benchmarks. Our experiments show that the new
method is effective in eliminating side channel leaks and at the same time is scalable for
handling programs of practical size. For future work, we plan to continue optimizing
our SMT based encoding and at the same time extending it to handle other masking
schemes, including additive masking, multiplicative masking, as well as application
specific masking such as RSA blinding.

Acknowledgments. This work is supported in part by the NSF grant CNS-1128903
and the ONR grant N00014-13-1-0527.

References

1. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate power
analysis countermeasures. In: ACM/IEEE Design Automation Conference, pp. 77–82 (2012)

2. Akiba, T., Imajo, K., Iwami, H., Iwata, Y., Kataoka, T., Takahashi, N., Moskal, M., Swamy,
N.: Calibrating research in program synthesis using 72,000 hours of programmer time. Tech-
nical report, Microsoft Research (2013)

3. Alur, R., Bodı́k, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh, R.,
Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: International Confer-
ence on Formal Methods in Computer-Aided Design, pp. 1–17 (2013)



Synthesis of Masking Countermeasures against Side Channel Attacks 129

4. Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power analysis of Atmel
CryptoMemory – recovering keys from secure EEPROMs. In: RSA Conference Cryptogra-
phers’ Track, pp. 19–34 (2012)

5. Bayrak, A., Regazzoni, F., Brisk, P., Standaert, F.-X., Ienne, P.: A first step towards auto-
matic application of power analysis countermeasures. In: ACM/IEEE Design Automation
Conference, pp. 230–235 (2011)

6. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: Automated verification of software
power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 293–310. Springer, Heidelberg (2013)

7. Bayrak, A., Velickovic, N., Ienne, P., Burleson, W.: An architecture-independent instruction
shuffler to protect against side-channel attacks. ACM Transactions on Architecture and Code
Optimization 8(4), 20 (2012)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keccak implemen-
tation overview, http://keccak.neokeon.org/Keccak-implementation-3.
2.pdf
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Abstract. Fragments of first-order temporal logic are useful for repre-
senting many practical privacy and security policies. Past work has pro-
posed two strategies for checking event trace (audit log) compliance with
policies: online monitoring and offline audit. Although online monitor-
ing is space- and time-efficient, existing techniques insist that satisfying
instances of all subformulas of the policy be amenable to caching, which
limits expressiveness when some subformulas have infinite support. In
contrast, offline audit is brute force and can handle more policies but is
not as efficient. This paper proposes a new online monitoring algorithm
that caches satisfying instances when it can, and falls back to the brute
force search when it cannot. Our key technical insight is a new flow- and
time-sensitive static check of variable groundedness, called the temporal
mode check, which determines subformulas for which such caching is fea-
sible and those for which it is not and, hence, guides our algorithm. We
prove the correctness of our algorithm and evaluate its performance over
synthetic traces and realistic policies.

Keywords: Mode checking, runtime monitoring, metric first-order tem-
poral logic, privacy policy.

1 Introduction

Many organizations routinely collect sensitive personal information like medical
and financial records to carry out business operations and to provide services
to clients. These organizations must handle sensitive information in compliance
with applicable privacy legislation like the Health Insurance Portability and
Accountability Act (HIPAA) [1] and the Gramm-Leach-Bliley Act (GLBA) [2].
Violations attract substantial monetary and even criminal penalties [3]. Hence,
developing mechanisms and automatic tools to check privacy policy compliance
in organizations is an important problem.

The overarching goal of this paper is to improve the state of the art in
checking whether an event trace or audit log, which records relevant events of an
organization’s data handling operations, is compliant with a given privacy policy.
At a high-level, this problem can be approached in two different ways. First,
logs may be recorded and compliance may be checked offline, when demanded
by an audit authority. Alternatively, an online program may monitor privacy-
relevant events, check them against the prevailing privacy policy and report
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violations on the fly. Both approaches have been considered in literature: An
algorithm for offline compliance checking has been proposed by a subset of the
authors [4], whereas online monitoring has been the subject of extensive work
by other researchers [5–11].

These two lines of work have two common features. First, they both assume
that privacy policies are represented in first-order temporal logic, extended with
explicit time. Such extensions have been demonstrated adequate for representing
the privacy requirements of both HIPAA and GLBA [12]. Second, to ensure that
only finitely many instances of quantifiers are tested during compliance checking,
both lines of work use static policy checks to restrict the syntax of the logic. The
specific static checks vary, but always rely on assumptions about finiteness of
predicates provided by the policy designer. Some work, e.g. [5, 8–11], is based
on the safe-range check [5], which requires syntactic subformulas to have finite
support independent of each other; other work, e.g. [4, 7], is based on the mode
check from logic programming [13–15], which is more general and can propagate
variable groundedness information across subformulas.

Both lines of work have their relative advantages and disadvantages. An
online monitor can cache policy-relevant information from logs on the fly (in
so-called summary structures) and discard the remaining log immediately. This
saves space. It also saves time because the summary structures are organized
according to the policy formula so lookups are quicker than scans of the log in the
offline method. However, online monitoring algorithms proposed so far require
that all subformulas of the policy formula be amenable to caching. Furthermore,
many real policies, including several privacy requirements of HIPAA and GLBA,
are not amenable to such caching. In contrast, the offline algorithm proposed in
our prior work [4] uses brute force search over a stored log. This is inefficient
when compared to an online monitor, but it can handle all privacy requirements
of HIPAA and GLBA. In this work, we combine the space- and time-efficiency of
online monitoring with the generality of offline monitoring: We extend existing
work in online monitoring [5] for privacy policy violations with a brute force
search fallback based on offline audit for subformulas that are not amenable to
caching. Like the work of Basin et al. [5], our work uses policies written in metric
first-order temporal logic (MFOTL) [16].

Our key technical innovation is what we call the temporal mode check, a new
static check on formulas to ensure finiteness of quantifier instantiation in our al-
gorithm. Like a standard mode check, the temporal mode check is flow-sensitive:
It can propagate variable groundedness information across subformulas. Addi-
tionally, the temporal mode check is time-sensitive: It conservatively approxi-
mates whether the grounding substitution for a variable comes from the future or
the past. This allows us to classify all subformulas into those for which we build
summary structures during online monitoring (we call such formulas buildable
or B-formulas) and those for which we do not build summary structures and,
hence, use brute force search.

As an example, consider the formula ∃x, y, z.(p(x) ∧q(x, y) ∧r(x, z)),
which means that in all states, there exist x, y, z such that p(x) holds and in
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some past states q(x, y) and r(x, z) hold. Assume that p and q are finite predi-
cates and that r is infinite, but given a ground value for its first argument, the
second argument has finite computable support. One possible efficient strategy
for monitoring this formula is to build summary structures for p and q and in
each state where an x satisfying p exists, to quickly lookup the summary struc-
ture for q to find a past state and a y such that q(x, y) holds, and to scan the
log brute force to find a past state and z such that r(x, z) holds. Note that
doing so requires marking p and q as B-formulas, but r as not a B-formula
(because z can be computed only after x is known, but x is known from satisfac-
tion of p, which happens in the future of r). Unlike the safe-range check or the
standard mode check, our new temporal mode check captures this information
correctly and our monitoring algorithm, précis, implements this strategy. No
existing work on online monitoring can handle this formula because r cannot be
summarized [5–11]. The work on offline checking can handle this formula [4], it
does not build summary structures and is needlessly inefficient on q.

We prove the correctness of précis over formulas that pass the temporal
mode check and analyze its asymptotic complexity. We also empirically evaluate
the performance of précis on synthetically generated traces, with respect to
privacy policies derived from HIPAA and GLBA. The goal of our experiment is to
demonstrate that incrementally maintaining summary structures for B-formulas
of the policy can improve the performance of policy compliance checking relative
to a baseline of pure brute force search. This baseline algorithm is very similar
to the offline monitoring algorithm of [4], called reduce. In our experiments, we
observe marked improvements in running time over reduce, e.g., up to 2.5x-6.5x
speedup for HIPAA and up to 1.5x speed for GLBA, even with very conservative
(unfavorable) assumptions about disk access. Even though these speedups are
not universal (online monitoring optimistically constructs summary structures
and if those structures are not used later then computation is wasted), they do
indicate that temporal mode checking and our monitoring algorithm could have
substantial practical benefit for privacy policy compliance.

Due to space restrictions, we defer the correctness proof of précis and several
other details to a technical report [17].

2 Policy Specification Logic
Our policy specification logic, GMP, is a fragment of MFOTL [16, 18] with
restricted universal quantifiers. The syntax of GMP is shown below.
(Policy formula) ϕ ::= p(t) | � | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃x.ϕ | ∀x.(ϕ1 → ϕ2)

ϕ1 S Iϕ2 |Iϕ | Iϕ | Iϕ | ϕ1 U Iϕ2 |Iϕ | Iϕ | Iϕ

The letter t denotes terms, which are constants or variables (x, y, etc.).
Bold-faced roman letters like t denote sequences or vectors. Policy formulas are
denoted by ϕ, α, and β. Universal quantifiers have a restricted form ∀x.ϕ1 → ϕ2.
A guard [19] ϕ1 is required as explained further in Section 3.

Policy formulas include both past temporal operators (, , S , ) and
future temporal operators (, , U , ). Each temporal operator has an as-
sociated time interval I of the form [lo, hi], where lo, hi ∈ N and lo ≤ hi. The
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interval selects a sub-part of the trace in which the immediate subformula is
interpreted. For example, [2,6]ϕ means that at some point between 2 and 6
time units in the past, ϕ holds. For past temporal operators, we allow the higher
limit (hi) of I to be ∞. We omit the interval when it is [0, ∞]. Policies must
be future-bounded: both limits (lo and hi) of intervals associated with future
temporal operators must be finite. GMP is not closed under negation due to
the absence of the duals of operators S and U . However, these operators do
not arise in the practical privacy policies we have investigated.

Formulas are interpreted over a timed event trace (or, log) L. Given a possibly-
infinite domain of terms D, each element of L—the ith element is denoted Li—
maps each ground atom p(t) for t ∈ D to either true or false. Each position Li

is associated with a time stamp, τi ∈ N, which is used to interpret intervals in
formulas. We use τ to represent the sequence of time stamps, each of which is a
natural number. For any arbitrary i, j ∈ N with i > j, τi > τj (monotonicity).
The environment η maps free variables to values in D. Given an execution trace
L and a time stamp-sequence τ , a position i ∈ N in the trace, an environment
η, and a formula ϕ, we write L, τ, i, η |= ϕ to mean that ϕ is satisfied in the ith
position of L with respect to η and τ . The definition of |= is standard and can
be found in the technical report [17].
Example policy. The following GMP formula represents a privacy rule from
clause §6802(a) of the U.S. privacy law GLBA [2]. It states that a financial
institution can disclose to a non-affiliated third party any non-public personal
information (e.g., name, SSN) if such financial institution provides (within 30
days) or has provided, to the consumer, a notice of the disclosure.

∀p1, p2, q, m, t, u, d. ( send(p−
1 , p−

2 , m−) ∧ contains(m+, q−, t−) ∧ info(m+, d−, u−) →
inrole(p−

1 , institution+) ∧ nonAffiliate(p+
2 , p+

1 ) ∧ consumerOf(q−, p+
1 ) ∧ attrIn(t, npi)

∧(∃m1.send(p−
1 , q−, m−

1 ) ∧ noticeOfDisclosure(m+
1 , p+

1 , p+
2 , q+, t+)) ) ∨

[0,30]∃m2.send(p−
1 , q−, m−

2 ) ∧ noticeOfDisclosure(m+
2 , p+

1 , p+
2 , q+, t+) )

3 Temporal Mode Checking

We review mode-checking and provide an overview of our key insight, temporal
mode-checking. Then, we define temporal mode-checking for GMP formally.
Mode-checking. Consider a predicate addLessEq(x, y, a), meaning x + y ≤ a,
where x, y, and a range over N. If we are given ground values for x and a, then
the number of substitutions for y for which addLessEq(x, y, a) holds is finite. In
this case, we may say that addLessEq’s argument position 1 and 3 are input po-
sitions (denoted by ‘+’) and argument position 2 is an output position (denoted
by ‘−’), denoted addLessEq(x+, y−, a+). Such a specification of inputs and out-
puts is called a mode-specification. The meaning of a mode-specification for a
predicate is that if we are given ground values for arguments in the input posi-
tions, then the number of substitutions for the variables in the output positions
that result in a satisfied relation is finite. For instance, addLessEq(x+, y+, a−)
is not a valid mode-specification. Mode analysis (or mode-checking) lifts input-
output specifications on predicates to input-output specification on formulas. It
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is commonly formalized as a judgment χin 	 ϕ : χout, which states that given
a grounding substitution for variables in χin, there is at most a finite set of
substitutions for variables in χout that could together satisfy ϕ. For instance,
consider the formula ϕ ≡ p(x) ∧ q(x, y). Given the mode-specification p(x−) and
q(x+, y−) and a left-to-right evaluation order for conjunction, ϕ passes mode
analysis with χin = {} and χout = {x, y}. Mode analysis guides an algorithm to
obtaining satisfying substitutions. In our example, we first obtain substitutions
for x that satisfy p(x). Then, we plug ground values for x in q(x, y) to get sub-
stitutions for y. However, if the mode-specification is p(x+) and q(x+, y−), then
ϕ will fail mode analysis unless x is already ground (i.e., x ∈ χin).

Mode analysis can be used to identify universally quantified formulas whose
truth is finitely checkable. We only need to restrict universal quantifiers to the
form ∀x.(ϕ1 → ϕ2), and require that x be in the output of ϕ1 and that ϕ2 be
well-moded (x may be in its input). To check that ∀x.(ϕ1 → ϕ2) is true, we first
find the values of x that satisfy ϕ1. This is a finite set because x is in the output
of ϕ1. We then check that for each of these x’s, ϕ2 is satisfied.

Overview of temporal mode-checking. Consider the policy ϕp ≡ p(x−) ∧
q(x+, y−) and consider the following obvious but inefficient way to monitor
it: We wait for p(x) to hold for some x, then we look back in the trace to find a
position where q(x, y) holds for some y. This is mode-compliant (we only check q
with its input x ground) but requires us to traverse the trace backward whenever
p(x) holds for some x, which can be slow.

Ideally, we would like to incrementally build a summary structure forq(x, y)
containing all the substitutions for x and y for which the formula holds as the
monitor processes each new trace event. When we see p(x), we could quickly look
through the summary structure to check whether a relation of the form q(x, y)
for the specific x and any y exists. However, note that building such a struc-
ture may be impossible here. Why? The mode-specification q(x+, y−) tells us
only that we will obtain a finite set of satisfying substitutions when x is already
ground. However, in this example, the ground x comes from p, which holds in the
future of q, so the summary structure may be infinite and, hence, unbuildable.
In contrast, if the mode-specification of q is q(x−, y−), then we can build the
summary structure because, independent of whether or not x is ground, only
a finite number of substitutions can satisfy q. In this example, we would label
q(x, y) buildable or a B-formula when the mode-specification is q(x−, y−) and
a non-B-formula when the mode-specification is q(x+, y−).

With conventional mode analysis, ϕp is well-moded under both mode-specifi-
cations of q. Consequently, in order to decide whether ϕp is a B-formula, we
need a refined analysis which takes into account the fact that, with the mode-
specification q(x+, y−), information about grounding of x flows backward in time
from p to q and, hence, q(x, y) is not a B-formula. This is precisely what
our temporal mode-check accomplishes: It tracks whether an input substitution
comes from the past/current state, or from the future. By doing so, it provides
enough information to determine which subformulas are B-formulas.
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χC 	B ϕ : χO ∀k ∈ I(p).fv(tk) ⊆ χC χO =
⋃

j∈O(p)

fv(tj)

χC 	B p(t1, . . . , tn) : χO

B-PRE

χC 	B ϕ1 : χ1 χC ∪ χ1 	B ϕ2 : χ2 χO = χ1 ∪ χ2

χC 	B ϕ1 ∧ ϕ2 : χO

B-AND

{} 	B ϕ2 : χ1 χ1 	B ϕ1 : χ2 χO = χ1

χC 	B ϕ1 S Iϕ2 : χO

B-SINCE

χC , χF 	 ϕ : χO

∀k ∈ I(p).fv(tk) ⊆ (χC ∪ χF ) χO =
⋃

j∈O(p)

fv(tj)

χC , χF 	 p(t1, . . . , tn) : χO

PRE

{} 	B ϕ2 : χ1 χ1, χC ∪ χF 	 ϕ1 : χ2 χO = χ1

χC , χF 	 ϕ1 S Iϕ2 : χO

SINCE-1

χC 	B ϕ2 : χ1 χC , χF ∪ χ1 	 ϕ1 : χ2 χO = χ1

χC , χF 	 ϕ1 U Iϕ2 : χO

UNTIL-1

χC , χF 	 ϕ1 : χ1 {x} ⊆ χ1
fv(ϕ1) ⊆ χC ∪ χF ∪ {x} fv(ϕ2) ⊆ (χC ∪ χ1 ∪ χF )

χC , χF ∪ χ1 	 ϕ2 : χ2

χC , χF 	 ∀x.(ϕ1 → ϕ2) : {} UNIV-1

Fig. 1 Selected rules of temporal mode-checking

Formally, our temporal mode-checking has two judgments: χC 	B ϕ : χO

and χC , χF 	 ϕ : χO. The first judgment assumes that substitutions for χC are
available from the past or at the current time point; any subformula satisfying
such a judgment is labeled as a B-formula. The second judgment assumes that
substitutions for χC are available from the past or at current time point, but
those for χF will be available in future. A formula satisfying such a judgment is
not a B-formula but can be handled by brute force search. Our implementation
of temporal mode analysis first tries to check a formula by the first judgment,
and falls back to the second when it fails. The formal rules for mode analysis
(described later) allow for both possibilities but do not prescribe a preference.
At the top-level, ϕ is well-moded if {}, {} 	 ϕ : χO for some χO.

To keep things simple, we do not build summary structures for future for-
mulas such as α U Iβ, and do not allow future formulas in the judgment form
χC 	B ϕ : χO (however, we do build summary structures for nested past-
subformulas of future formulas). To check α U Iβ, we wait until the upper limit
of I is exceeded and then search backward. As an optimization, one may build
conservative summary structures for future formulas, as in some prior work [5].
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Recognizing B-formulas. We list selected rules of temporal mode-checking in
Figure 1. Rule B-Pre, which applies to an atom p(t1, . . . , tn), checks that all
variables in input positions of p are in χC . The output χO is the set of variables
in output positions of p. (I(p) and O(p) are the sets of input and output positions
of p, respectively.) The rule for conjunctions ϕ1 ∧ ϕ2 first checks ϕ1 and then
checks ϕ2, propagating variables in the output of ϕ1 to the input of ϕ2. These
two rules are standard in mode-checking. The new, interesting rule is B-Since
for the formula ϕ1 S Iϕ2. Since structures for ϕ1 and ϕ2 could be built at time
points earlier than the current time, the premise simply ignores the input χC .
The first premise of B-since checks ϕ2 with an empty input. Based on the
semantics of temporal logic, ϕ1 needs to be true on the trace after ϕ2, so all
variables ground by ϕ2 (i.e., χ1) are available as “current” input in ϕ1. As an
example, {} 	B � S q(x−, y−) : {x, y}.
Temporal mode-checking judgement. In the mode-checking judgment χC ,
χF 	 ϕ : χO, we separate the set of input variables for which substitutions are
available at the current time point or from the past (χC) from the set of variables
for which substitutions are available from the future (χF ). The distinction is
needed because sub-derivations of the form χ′

C 	B ϕ′ : χ′
O should be passed

only the former variables as input.
Rule Pre for atoms checks that variables in input positions are in the union of

χC and χF . There are four rules for ϕ1 S Iϕ2, accounting for the buildability/non-
buildability of each of the two subformulas. We show only one of these four rules,
Since-1, which applies when ϕ2 is a B-formula but ϕ1 is not. In this case, ϕ2
will be evaluated (for creating the summary structure) at time points earlier than
ϕ1 S ϕ2 and, therefore, cannot use variables in χC or χF as input (see Figure 2).
When checking ϕ1, variables in the output of ϕ2 (called χ1), χC and χF are all
inputs, but those in χC or χF come from the future. The entire formula is not
a B-formula as ϕ1 is not.

Similarly, there are four rules for ϕ1 U Iϕ2, of which we show only one, Until-
1. This rule applies when ϕ2 is a B-formula, but ϕ1 is not. Its first premise checks
that ϕ2 is a B-formula with input χC . Our algorithm checks ϕ1 only when ϕ2 is
true, so the outputs χ1 of ϕ2 are available as input for ϕ1. In checking ϕ1, both
χ1 and χF may come from the future.

The first premise of rule UNIV-1 checks that the guard ϕ1 is well-moded
with some output χ1. The second premise, {x} ⊆ χ1, ensures that the guard
ϕ1 can be satisfied only for a finite number of substitutions for x, which is
necessary to feasibly check ϕ2. The third premise, fv(ϕ1) ⊆ (χC ∪ χF ∪ {x}),

ϕ2 ϕ1 ϕ1 ϕ1 S Iϕ2 Current time

χC
χF

χ1

χ1
χ1

Time

Fig. 2. Example: Temporal information in mode checking ϕ 1 S Iϕ2
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ensures that no variables other than x are additionally grounded by checking ϕ1.
The fourth premise, fv(ϕ2) ⊆ (χC ∪ χF ∪ χ1), ensures that all free variables in
ϕ2 are already grounded by the time ϕ2 needs to be checked. The final premise
ensures the well-modedness of ϕ2. The third and fourth premises are technical
conditions, needed for the soundness of our algorithm.

4 Runtime Monitoring Algorithm

Our policy compliance algorithm précis takes as input a well-moded GMP
policy ϕ, monitors the system trace as it grows, builds summary structures for
nested B-formulas and reports a violation as soon as it is detected.

We write σ to denote a substitution, a finite map from variables to values
in the domain D. The identity substitution is denoted • and σ⊥ represents an
invalid substitution. For instance, the result of joining (�) two substitutions σ1
and σ2 that do not agree on the values of shared variables is σ⊥. We say that
σ′ extends σ, written σ′ ≥ σ, if the domain of σ′ is a superset of the domain
of σ and they agree on mappings of variables that are in the domain of σ. We
summarize relevant algorithmic functions below.
précis(ϕ) is the top-level function (Algorithm 1).
checkCompliance(L, i, τ, π, ϕ) checks whether events in the ith position of the

trace L satisfy ϕ, given the algorithm’s internal state π and the time stamps
τ . State π contains up-to-date summary structures for all B-formulas of ϕ.

uSS(L, i, τ, π, ϕ) incrementally updates summary structures for B-formula ϕ
when log position i is seen. It assumes that the input π is up-to-date w.r.t.
earlier log positions and it returns the state with the updated summary
structure for ϕ. (uSS abbreviates updateSummaryStructures).

sat(L, i, τ, p(t), σ) returns the set of all substitutions σ1 for free variables in
p(t) that make p(t)σ1 true in the ith position of L, given σ that grounds
variables in the input positions of p. Here, σ1 ≥ σ.

ips(L, i, τ, π, σ, ϕ) generalizes sat from atomic predicates to policy formulas. It
takes the state π as an input to look up summary structures when B-formulas
are encountered.

Top-level monitoring algorithm. Algorithm 1 (précis), the top-level mon-
itoring process, uses two pointers to log entries: curPtr points to the last entry
in the log L, and evalPtr points to the position at which we next check whether
ϕ is satisfied. Naturally, curPtr ≥ evalPtr . The gap between these two pointers
is determined by the intervals occurring in future temporal operators in ϕ. For
example, with the policy[lo,hi]β, β can be evaluated at log position i only after
a position j ≥ i with τj −τi ≥ hi has been observed. We define a simple function
Δ(ϕ) that computes a coarse but finite upper bound on the maximum time the
monitor needs to wait before ϕ can be evaluated (see [17] for details).

The algorithm précis first initializes relevant data structures and labels
B-formulas using mode analysis (lines 1-2). The main body of the précis is
a trace-event triggered loop. In each iteration of the loop, précis: (1) updates
the summary structures in π based on the newly available log entries (lines 6-7),
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Algorithm 1 pŕecis algorithm
Require: A GMP policy ϕ
1: π ← ∅; curPtr ← 0; evalPtr ← 0; L ← ∅; τ ← ∅;
2: Mode-check ϕ. Label all B-formulas of ϕ.
3: while (true) do
4: Wait until new events are available
5: Extend L and τ with new entries
6: for all (B-formulas ϕs of ϕ in ascending formula size) do
7: π ← uSS(L, curPtr , τ, π, ϕs) //update summary structures
8: while (evalPtr ≤ curPtr) do
9: if (τcurPtr − τevalPtr ≥ Δ(ϕ)) then

10: tV al ← checkCompliance(L, evalPtr , τ, π, ϕ)
11: if tV al = false then
12: Report violation on L position evalPtr
13: evalPtr ← evalPtr + 1
14: else
15: break
16: curPtr ← curPtr + 1

and (2) evaluates the policy at positions where it can be fully evaluated, i.e.,
where the difference between the entry’s time point and the current time point
(curP tr) exceeds the maximum delay Δ(ϕ). Step (1) uses the function uSS and
step (2) uses the function checkCompliance. checkCompliance is a wrapper for
ips that calls ips with • as the input substitution. If ips returns an empty set
of satisfying substitutions, checkCompliance returns false, signaling a violation
at the current time point, else it returns true.

Finding substitutions for policy formulas. The recursive function ips re-
turns the set of substitutions that satisfy a formula at a given log position, given
a substitution for the formula’s input variables. Selected clauses of the definition
of ips are shown in Figure 3. When the formula is an atom, ips invokes sat,
an abstract wrapper around specific implementations of predicates. When the
policy is a universally quantified formula, ips is called on the guard ϕ1 to find
the guard’s satisfying substitutions Σ1. Then, ips is called to check that ϕ2 is
true for all substitutions in Σ1. If the latter fails, ips returns the empty set of
substitutions to signal a violation, else it returns {σin}.

When a B-formula α S Iβ is encountered, all its satisfying substitutions have
already been computed and stored in π. Therefore, ips simply finds these substi-
tutions in π (expression π.A(α S Iβ)(i).IR), and discards those that are inconsis-
tent with σin by performing a join (�). For the non-B-formula α S Iβ, ips calls
itself recursively on the sub-formulas α and β, and computes the substitutions
brute force.

Incrementally updating summary structures. We explain how we update
summary structures for formulas of the form ϕ1 S Iϕ2 here. Updates for Iϕ,
Iϕ, and Iϕ are similar and can be found in the technical report [17].
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ips(L, i, τ, π, σin, p(t)) = sat(L, i, τ, p(t), σin)

ips(L, i, τ, π, σin,
∀x.(ϕ1 → ϕ2)) =

let Σ1 ← ips(L, i, τ, π, σin, ϕ1)

return
{∅ if ∃σc ∈ Σ1.(ips(L, i, τ, π, σc, ϕ2) = ∅)

{σin} otherwise

ips(L, i, τ, π, σin, α S Iβ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If α S Iβ is a B-formula then
return σin � π.A(α S Iβ)(i).IR

Else
let Sβ ← {〈σ, k〉|k = max l.((0 ≤ l ≤ i) ∧ ((τi − τl) ∈ I)

∧σ ∈ ips(L, l, τ, π, σin, β))}
SR1 ← {σ|〈σ, i〉 ∈ Sβ ∧ 0 ∈ I}
SR2 ← {��σα

l �= σ⊥|∃〈σβ , k〉 ∈ Sβ .k < i∧
∀l.(k < l ≤ i → σα

l ∈ ips(L, l, τ, π, σβ , ϕ1))}
return SR1 ∪ SR2

Fig. 3. Definition of the ips function, selected clauses

For each B-formula of the form α S [lo,hi]β, we build three structures: Sβ ,
Sα, and IR. The structure Sβ contains a set of pairs of form 〈σ, k〉 in which
σ represents a substitution and k ∈ N is a position in L. Each pair of form
〈σ, k〉 ∈ Sβ represents that for all σ′ ≥ σ, the formula βσ′ is true at position
k of L. The structure Sα contains a set of pairs of form 〈σ, k〉, each of which
represents that for all σ′ ≥ σ the formula ασ′ has been true from position k
until the current position in L. The structure IR contains a set of substitutions,
which make (α S [lo,hi]β) true in the current position of L. We use IRi (similarly
for other structures too) to represent the structure IR at position i of L. We
also assume S(−1)

β , S(−1)
α , and IR(−1) to be empty (the same applies for other

structures too). We show here how the structures Sβ and IR are updated. We
defer the description of update of Sα to the technical report [17].

To update the structure Sβ , we first calculate the set Σβ of substitutions that
make β true at i by calling ips. Pairing all these substitutions with the position
i yields Sβ

new. Next, we compute the set Sβ
remove of all old 〈σ, k〉 pairs that do not

satisfy the interval constraint [lo, hi] (i.e., for which τi − τk > hi). The updated
structure Si

β is then obtained by taking a union of Sβ
new and the old structure

S(i−1)
β , and removing all the pairs in the set Sβ

remove.

Σβ ← ips(L, i, τ, π, •, β) Sβ
remove ← {〈σ, k〉 | 〈σ, k〉 ∈ S(i−1)

β ∧ (τi − τk) > hi}
Sβ

new ← {〈σ, i〉 | σ ∈ Σβ} Si
β ← (S(i−1)

β ∪ Sβ
new) \ Sβ

remove

To compute the summary structure IR for α S Iβ at i, we first compute the
set SR1 of all substitutions for which the formula β is true in the ith position
and the interval constraint is respected by the position i. Then we compute SR2

as the join σ � σ1 of substitutions σ for which β was satisfied at some prior
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position k, and substitutions σ1 for which α is true from position k + 1 to i. The
updated structure IRi is the union of SR1 and SR2 .

SR1 ← {σ | 〈σ, i〉 ∈ Si
β ∧ 0 ∈ [lo, hi]}

SR2 ← {σ � σ1 | ∃k, j.〈σ, k〉 ∈ Si
β ∧ (k �= i) ∧ (τi − τk ∈ [lo, hi]) ∧ 〈σ1, j〉 ∈ Si

α∧
(j ≤ (k + 1)) ∧ σ � σ1 �= σ⊥}

IRi ← SR1 ∪ SR2

Optimizations. When all temporal sub-formulas of ϕ are B-formulas, curPtr
and evalPtr proceed in synchronization and only the summary structure for
position curPtr needs to be maintained. When ϕ contains future temporal for-
mulas but all past temporal sub-formulas of ϕ are B-formulas, then we need to
maintain only the summary structures for positions in [evalPtr , curPtr ], but the
rest of the log can be discarded immediately. When ϕ contains at least one past
temporal subformula that is not a B-formula we need to store the slice of the
trace that contains all predicates in that non-B-formula.

The following theorem states that on well-moded policies, précis terminates
and is correct. The theorem requires that the internal state π be strongly con-
sistent at curP tr with respect to the log L, time stamp sequence τ , and policy
ϕ. Strong consistency means that the state π contains sound and complete sub-
stitutions for all B-formulas of ϕ for all trace positions in [0, curP tr] (see [17]).
Theorem 1 (Correctness of précis). For all GMP policies ϕ, for all evalP tr,
curP tr ∈ N, for all traces L, for all time stamp sequences τ , for all internal
states π, for all empty environments η0 such that (1) π is strongly consistent
at curP tr with respect to L, τ , and ϕ, (2) curP tr ≥ evalP tr and τcurPtr −
τevalPtr ≥ Δ(ϕ), and (3) {}, {} 	 ϕ : χO where χO ⊆ fv(ϕ), it is the case that
checkCompliance(L, evalP tr, τ, π, ϕ) terminates and if checkCompliance(L, ev-
alP tr, τ , π, ϕ) = tV al, then (tV al = true) ↔ ∃σ.(L, τ, evalP tr, η0 |= ϕσ).
Proof. By induction on the policy formula ϕ (see [17]).
Complexity of précis. The runtime complexity of one iteration of précis for
a given policy ϕ is |ϕ| × (complexity of the uSS function) + (complexity of ips
function), where |ϕ| is the policy size. We first analyze the runtime complexity of
ips. Suppose the maximum number of substitutions returned by a single call to
sat (for any position in the trace) is F and the maximum time required by sat
to produce one substitution is A. The worst case runtime of ips occurs when
all subformulas of ϕ are non-B-formulas of the form ϕ1 S ϕ2 and in that case
the complexity is O((A × F × L)O(|ϕ|)) where L denotes the length of the trace.
uSS is invoked only for B-formulas. From the definition of mode-checking, all
sub-formulas of a B-formula are also B-formulas. This property of B-formulas
ensures that when uSS calls ips, the worst case behavior of ips is not encoun-
tered. The overall complexity of uSS is O(|ϕ|× (A×F)O(|ϕ|)). Thus, the runtime
complexity of each iteration of the précis function is O((A × F × L)O(|ϕ|)).

5 Implementation and Evaluation

This section reports an experimental evaluation of the précis algorithm. All
measurements were made on a 2.67GHz Intel Xeon CPU X5650 running Debian
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GNU/Linux 7 (Linux kernel 3.2.48.1.amd64-smp) on 48GB RAM, of which at
most 2.2GB is used in our experiments. We store traces in a SQLite database.
Each n-ary predicate is represented by a n+1 column table whose first n columns
store arguments that make the predicate true on the trace and the last column
stores the trace position where the predicate is true. We index each table by
the columns corresponding to input positions of the predicate. We experiment
with randomly generated synthetic traces. Given a GMP policy and a target
trace length, at each trace point, our synthetic trace generator randomly decides
whether to generate a policy-compliant action or a policy violating action. For
a compliant action, it recursively traverses the syntax of the policy and creates
trace actions to satisfy the policy. Disjunctive choices are resolved randomly.
Non-compliant actions are handled dually. The source code and traces used in
the experiments are available from the authors’ homepages.

Our goal is to demonstrate that incrementally maintaining summary struc-
tures for B-formulas can improve the performance of policy compliance check-
ing. Our baseline for comparison is a variant of précis that does not use any
summary structures and, hence, checks temporal operators by brute force scan-
ning. This baseline algorithm is very similar to the reduce algorithm of prior
work [4] and, indeed, in the sequel we refer to our baseline as reduce. For the
experimental results reported here, we deliberately hold traces in an in-memory
SQLite database. This choice is conservative; using a disk-backed database im-
proves précis’ performance relative to reduce because reduce accesses the
database more intensively (our technical report contains comparative evalua-
tion using a disk-backed database and confirms this claim [17]). Another goal of
our experiment is to identify how précis scales when larger summary structures
must be maintained. Accordingly, we vary the upper bound hi in intervals [lo, hi]
in past temporal operators.

We experiment with two privacy policies that contain selected clauses of
HIPAA and GLBA, respectively. As précis and reduce check compliance of
non-B-formulas similarly, to demonstrate the utility of building summary struc-
tures, we ensure that the policies contain B-formulas (in our HIPAA policy, 7
out of 8 past temporal formulas are B-formulas; for GLBA the number is 4
out of 9). Our technical report [17] lists the policies we used. Figure 4 show our
evaluation times for the HIPAA privacy policy for the following upper bounds
on the past temporal operators: 100, 1000, 3000, and ∞. Points along the x-axis
are the size of the trace and also the number of privacy-critical events checked.
The y-axis represents the average monitoring time per event. We plot four curves
for each bound: (1) The time taken by précis, (2) The time taken by reduce,
(3) The time spent by précis in building and accessing summary structures for
B-formulas, and (4) The time spent by reduce in evaluating B-formulas. For
all trace positions i ∈ N, τi+1 − τi = 1.

The difference between (1) and (3), and (2) and (4) is similar at all trace
lengths because it is the time spent on non-buildable parts of the policy, which
is similar in précis and reduce. For the policy considered here, reduce spends
most time on B-formulas, so construction of summary structures improves per-
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Fig. 4. Experimental results (HIPAA)

formance. For trace lengths greater than the bound, the curves flatten out, as
expected. As the bound increases, the average execution time for reduce in-
creases as the algorithm has to look back further on the trace, and so does the
relative advantage of précis. Overall, précis achieves a speedup up of 2.5x-
6.5x over reduce after the curves flatten out in the HIPAA policy. The results
for GLBA, not shown here but discussed in our technical report [17] are similar,
with speedups of 1.25x to 1.5x. The technical report also describes the amount
of memory needed to store summary structures in précis. Briefly, this number
grows proportional to the minimum of trace length and policy bound. The max-
imum we observe (for trace length 13000 and bound ∞) is 2.2 GB, which is very
reasonable. This can be further improved by compression.
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Algorithms Incomplete
states allowed? Mode of operation Summary structures

(past formulas)
Summary structures
(future formulas)

précis no online yes no
reduce [4] yes offline no no

Chomicki [8, 9] no online yes noKrukow et al. [10]
Bauer et al. [11] yes online yes no
Basin et al. [5, 7] no online yes yes
Basin et al. [6] yes online yes yes

Bauer et al. [20] no online (automata)* (automata)*

Table 1. Comparison of design choices in précis and prior work using first-
order temporal logic for privacy compliance. *Automata-based approaches have
no explicit notion of summary structures.

6 Related Work

Runtime monitoring of propositional linear temporal logic (pLTL) formulas [21],
regular expressions, finite automata, and other equivalent variants has been stud-
ied in literature extensively [22–48]. However, pLTL and its variants are not suf-
ficient to capture the privacy requirements of legislation like HIPAA and GLBA.
To address this limitation, many logics and languages have been proposed for
specifying privacy policies. Some examples are P3P [49, 50], EPAL [51, 52], Pri-
vacy APIs [53], LPU [54, 55], past-only fragment of first-order temporal logic
(FOTL) [10,11], predLTL [56], pLogic [57], PrivacyLFP [12], MFOTL [5–7], the
guarded fragment of first-order logic with explicit time [4], and P-RBAC [58].
Our policy language, GMP, is more expressive than many existing policy lan-
guages such as LPU [54,55], P3P [49,50], EPAL [51,52], and P-RBAC [58].

In Table 1, we summarize design choices in précis and other existing work on
privacy policy compliance checking using first-order temporal logics. The column
“Incomplete states allowed?” indicates whether the work can handle some form
of incompleteness in observation about states. Our own prior work [4] presents
the algorithm reduce that checks compliance of a mode-checked fragment of
FOL policies with respect to potentially incomplete logs. This paper makes the
mode check time-aware and adds summary structures to reduce, but we assume
that our event traces have complete information in all observed states.

Bauer et al. [11] present a compliance-checking algorithm for the (non-metric)
past fragment of FOTL. GMP can handle both past and future (metric) tem-
poral operators. However, Bauer et al. allow counting operators, arbitrary com-
putable functions, and partial observability of events, which we do not allow.
They allow a somewhat simplified guarded universal quantification where the
guard is a single predicate. In GMP, we allow the guard of the universal quan-
tification to be a complex GMP formula. For instance, the following formula
cannot be expressed in the language proposed by Bauer et al. but GMP mode
checks it: ∀x, y. (q(x+, y+) S p(x−, y−)) → r(x+, y+). Moreover, Bauer et al. only
consider closed formulas and also assume that each predicate argument position
is output. We do not insist on these restrictions. In further development, Bauer et
al. [20], propose an automata-based, incomplete monitoring algorithm for a frag-
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ment of FOTL called LTLFO. They consider non-safety policies (unbounded
future operators), which we do not consider.

Basin et al. [5] present a runtime monitoring algorithm for a fragment of
MFOTL. Our summary structures are directly inspired by this work and the
work of Chomicki [8, 9]. We improve expressiveness through the possibility of
brute force search similar to [4], when subformulas are not amenable to summa-
rization. Basin et al. build summary structures for future operators, which we do
not (such structures can be added to our monitoring algorithm). In subsequent
work, Basin et al. [6] extend their runtime monitoring algorithm to handle in-
complete logs and inconsistent logs using a three-valued logic, which we do not
consider. In more recent work, Basin et al. [7] extend the monitoring algorithm
to handle aggregation operators and function symbols, which GMP does not
include. These extensions are orthogonal to our work.

Our temporal mode check directly extends mode checking from [4] by adding
time-sensitivity, although the setting is different— [4] is based on first-order logic
with an explicit theory of linear time whereas we work with MFOTL. The added
time-sensitivity allows us to classify subformulas into those that can be summa-
rized and those that must be brute forced. Some prior work, e.g. [5–11], is based
on the safe-range check instead of the mode check. The safe-range check is less
expressive than a mode check. For example, the safe-range check does not accept
the formula q(x+, y+, z−) S p(x−, y−), but our temporal mode check does (how-
ever, the safe-range check will accept the formula q(x−, y−, z−) S p(x−, y−)).
More recent work [7] uses a static check intermediate in expressiveness between
the safe-range check and a full-blown mode check.

7 Conclusion

We have presented a privacy policy compliance-checking algorithm for a frag-
ment of MFOTL. The fragment is characterized by a novel temporal mode-check,
which, like a conventional mode-check, ensures that only finitely many instantia-
tions of quantifiers are tested but is, additionally, time-aware and can determine
which subformulas of the policy are amenable to construction of summary struc-
tures. Using information from the temporal mode-check, our algorithm précis
performs best-effort runtime monitoring, falling back to brute force search when
summary structures cannot be constructed. Empirical evaluation shows that
summary structures improve performance significantly, compared to a baseline
without them.
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Abstract. We present a decision procedure for a logic that combines
(i) word equations over string variables denoting words of arbitrary
lengths, together with (ii) constraints on the length of words, and on
(iii) the regular languages to which words belong. Decidability of this
general logic is still open. Our procedure is sound for the general logic,
and a decision procedure for a particularly rich fragment that restricts
the form in which word equations are written. In contrast to many ex-
isting procedures, our method does not make assumptions about the
maximum length of words. We have developed a prototypical implemen-
tation of our decision procedure, and integrated it into a CEGAR-based
model checker for the analysis of programs encoded as Horn clauses. Our
tool is able to automatically establish the correctness of several programs
that are beyond the reach of existing methods.

1 Introduction

Software model checking is an active research area that has witnessed a remark-
able success in the past decades [15,8]. Model checking tools are already used in
industrial applications [2]. One reason for this success is recent developments in
SMT technology [5,7,3], which allow efficient symbolic representations of differ-
ent data types in programs. This dependence encompasses, however, that model
checking tools are inherently limited by the data types that can be handled by
the underlying SMT solver. A data type for which satisfying decision proce-
dures have been missing is that of strings. Our work proposes a rich string logic
together with a decision procedure targeting model checking applications.

String data types are present in programming and scripting languages. In fact,
it is impossible to capture the essence of many programs, for instance in database
and web applications, without the ability to precisely represent and reason about
string data types. The control flow of programs can depend on words denoted
by string variables, on the length of words, or on regular languages to which
they belong. For example, a program allowing users to choose a username and

� Supported by the Uppsala Programming for Multicore Architectures Research Cen-
ter (UPMARC), the Czech Science Foundation (13-37876P), Brno University of
Technology (FIT-S-12-1, FIT-S-14-2486), and the Linköping CENIIT Center (12.04).
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a password may require the password to be of a minimal length, to be different
from the username, and to be free from invalid characters. Reasoning about such
constraints is also crucial when verifying that database and web applications are
free from SQL injections and other security vulnerabilities.

Existing solvers for programs manipulating string variables and their length
are either unsound, not expressive enough, or lack the ability to provide coun-
terexamples. Many solvers [9,23,24] are unsound since they assume an a priori
fixed upper bound on the length of the possible words. Others [9,17,26] are not
expressive enough as they do not handle word equations, length constraints, or
membership predicates. Such solvers are mostly aimed at performing symbolic
executions, i.e., establishing feasibility of paths in a program. The solver in [25]
performs sound over-approximation, but without supplying counterexamples in
case the verification fails. In contrast, our decision procedure specifically targets
model checking applications. In fact, we use it in a prototype model checker in
order to automatically establish program correctness for several examples.

Our decision procedure establishes satisfiability of formulae written as Boolean
combinations of: (i) word (dis)equalities such as (a · u = v · b) or (a · u �= v · b),
where a, b are letters and u, v are string variables denoting words of arbitrary
lengths, (ii) length constraints such as (|u| = |v| + 1), where |u| refers to the
length of the word denoted by string variable u, and (iii) predicates representing
membership in regular expressions, e.g., u ∈ c · (a+ b)∗. Each of these predicates
can be crucial for capturing the behavior and establishing the correctness of
a string-manipulating program (cf. the program in Section 2). The analysis is
not trivial as it needs to capture subtle interactions between different types of
predicates. For instance, the formulae φ1 = (a · u = v · b) ∧ (|u| = |v| + 1) and
φ2 = (a · u = v · b) ∧ v ∈ c · (a + b)∗ are unsatisfiable, i.e., there is no possible
assignment of words to u and v that makes the conjunctions evaluate to true. The
analysis then needs to propagate facts from one type of predicates to another;
e.g., in φ1 the analysis deduces from (a · u = v · b) that |u| = |v|, which results
in an unsatisfiable formula (|u| = |v| ∧ |u| = |v| + 1)). The general decidability
problem is still open. We guarantee termination of our procedure for a fragment
of the logic including the three types of predicates. The fragment we consider is
rich enough to capture all the practical examples we have encountered.

We have integrated our decision procedure in a prototype model checker and
used it to verify properties of implementations of common string manipulating
functions such as the Hamming and Levenshtein distances. Predicates required
for verification can be provided by hand; to achieve automation, in addition we
propose a constraint-based interpolation procedure for regular word constraints.
In combination with our decision procedure for words, this enables us to auto-
matically analyze programs that are currently beyond the reach of state-of-the-
art software model checkers.

Related Work. The pioneering work by Makanin [18] proposed a decision pro-
cedure for word equations (i.e., Boolean combinations of (dis)equalities) where
the variables can denote words of arbitrary lengths. The decidability problem is
already open [4] when word equations are combined with length constraints of
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the form |u| = |v|. Our logic adds predicates representing membership in regular
languages to word equations and length constraints. This means that decidabil-
ity is still an open problem. A contribution of our work is the definition of a rich
sub-logic for which we guarantee the termination of our procedure.

In a work close to ours, the authors in [10] show decidability of a logic that is
strictly weaker than the one for which we guarantee termination. For instance,
in [10], membership predicates are allowed only under the assumption that no
string variables can appear in the right hand sides of the equality predicates. This
severely restricts the expressiveness of the logic. In [26], the authors augment
the Z3 [7] SMT solver in order to handle word equations with length constraints.
However, they do not support regular membership predicates. In our experience,
these are crucial during model checking based verification.

Finally, in addition to considering more general equations, our work comes
with an interpolation-based verification technique adapted for string programs.
Notice that neither of [10,26] can establish correctness of programs with loops.

Outline. In the next section, we use a simple program to illustrate our approach.
In Section 3 we introduce a logic for word equations with arithmetic and regular
constraints, and then describe in Section 4 a procedure for deciding satisfiability
of formulae in the logic. In Section 5 we define a class formulae for which we
guarantee the termination of our decision procedure. We describe the verification
procedure in Section 6 and the implementation effort in Section 7. Finally in
Section 8 we give some conclusions and directions for future work.

2 A Simple Example

In this section, we use the simple program listed in Fig. 1 to give a flavor of
our verification approach. The listing makes use of features that are common in
string manipulating programs. We will argue that establishing correctness for
such programs requires: (i) the ability to refer to string variables of arbitrary
lengths, (ii) the ability to express combinations of constraints, like that the
words denoted by the variables belong to regular expressions, that their lengths
obey arithmetic inequalities, or that the words themselves are solutions to word
equations, and (iii) the ability for a decision procedure to precisely capture the
subtle interaction between the different kinds of involved constraints.

In the program of Fig. 1, a string variable s is initialized with the empty word.
A loop is then executed an arbitrary number of times. At each iteration of the
loop, the instruction s= ’a’ + s + ’b’ appends the letter ’a’ at the beginning
of variable s and the letter ’b’ at its end. After the loop, the program asserts that
s does not have the word ’ba’ as a substring (denoted by !s.contains(’ba’),
and that its length (denoted by s.length()) is even.

Observe that the string variable s does not assume a maximal length. Any
verification procedure that requires an a priori fixed bound on the length of the
string variables is necessarily unsound and will fail to establish correctness.

Moreover, establishing correctness requires the ability to express and to reason
about predicates such as those mentioned in the comments of the code in Fig. 1.
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// Pre = (true)
String s= ’’;

// P1 = (s ∈ ε)
while(*){

// P2 = (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v|)
s= ’a’ + s + ’b’;

}

// P3 = P2

assert(!s.contains(’ba’) && (s.length() % 2) == 0);

// Post = P3

Fig. 1. A simple program manipulating a string variable s. Our logic allows to precisely
capture the word equations, membership predicates and length constraints that are
required for validating the assertion is never violated. Our decision procedure can then
automatically validate the required verification conditions described in Fig. 2.

vc1 : post(Pre,s = ””) =⇒ P1 vc2 : P1 =⇒ P2

vc3 : post(P2, s = ”a” · s · ”b”) =⇒ P2 vc4 : P2 =⇒ P3

vc5 : post(P3, assume(s.contains("ba") || !(s.length()%2 ==0))) =⇒ false
vc6 : post(P3, assume(!s.contains("ba") && (s.length()%2 ==0))) =⇒ Post

Fig. 2. Verification conditions for the simple program of Fig. 1

For instance, the loop invariant P2 states that: (i) the variable s denotes a finite
word ws of arbitrary length, (ii) that ws equals the concatenation of two words
wu and wv, (iii) that wu ∈ a∗ and wv ∈ b∗, and (iv) that the length |wu| of word
wu equals the length |wv| of word wv.

Using the predicates in Fig. 1, we can formulate program correctness in terms
of the validity of each of the implications listed in Fig. 2. For instance, validity
of the verification condition vc5 amounts to showing that ¬vc5 = (s = u ·v∧u ∈
a∗ ∧ v ∈ b∗ ∧ |u| = |v|) ∧ (s = s1 · b · a · s2 ∨ ¬(|s| = 2n)) is unsatisfiable. To
establish this result, our decision procedure generates the two proof obligations
¬vc51 : (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v| ∧ s = s1 · b · a · s2) and
¬vc52 : (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v| ∧ ¬(|s| = 2n)).

In order to check vc51, the procedure symbolically matches all the possible
ways in which a word denoted by u · v can also be denoted by s1 · b · a · s2.
For instance, u = s1 · b ∧ v = a · s2 is one possible matching. In order to be
able to show unsatisfiability, the decision procedure has to also consider the
other possible matchings. For instance, the case where the word denoted by
u is a strict prefix of the one denoted by s1 has also to be considered. For this
reason, the matching process might trigger new matchings. In general, there is no
guarantee that the sequence of generated matchings will terminate. However, we
show that this sequence terminates for an expressive fragment of the logic. This
fragment includes the predicates of mentioned in this section and all predicates
we encountered in practical programs, The procedure then checks satisfiability
of each such a matching. For instance, the matching u = s1 · b ∧ v = a · s2
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is shown to be unsatisfiable due the the membership predicate v ∈ b∗. In fact
our procedure automatically proves that ¬v51 is not satisfiable after checking all
possible matchings.

So for ¬vc5 to be satisfiable, ¬vc52 needs to be satisfiable. Our procedure
deduces that this would imply that |u| = |v| ∧¬(|u|+ |v| = 2n) is satisfiable. We
leverage on existing standard decision procedures for linear arithmetic in order
to show that this is not the case. Hence ¬vc5 is unsatisfiable and vc5 is valid. For
this example, and those we report on in Section 6, our procedure can establish
correctness fully automatically given the required predicates.

Observe that establishing validity requires the ability to capture interactions
among the different types of predicates. For instance, establishing validity of vc5
involves the ability to combine the word equations (s = u · v ∧ s = s1 · b · a · s2)
with the membership predicates (u ∈ a∗ ∧ v ∈ b∗) for vc51, and with the length
constraints (|u| = |v| ∧ ¬(|s| = 2n)) for vc52. Capturing such interactions is
crucial for establishing correctness and for eliminating false positives.

3 Defining the String Logic Ee,r,l

In this section we introduce a logic, which we call Ee,r,l, for word equations,
regular constraints (short for membership constraints in regular languages) and
length and arithmetic inequalities. We assume a finite alphabet Σ and write Σ∗

to mean the set of finite words over Σ. We work with a set U of string variables
denoting words in Σ∗ and write Z for the set of integer numbers.

Syntax. We let variables u, v range over the set U . We write |u| to mean the
length of the word denoted by variable u, k to mean an integer in Z, c to mean
a letter in Σ and w to mean a word in Σ∗. The syntax of formulae in Ee,r,l is
defined as follows:

φ ::= φ ∧ φ || ¬φ || ϕe || ϕl || ϕr formulae

ϕe ::= tr = tr || tr �= tr (dis)equalities

ϕl ::= e ≤ e arithmetic inequalities
ϕr ::= tr ∈ R membership predicates

tr ::= ε || c || u || tr · tr terms

R ::= ∅ || ε || c || w || R · R || R+R || R ∩ R || RC || R∗ regular expressions

e ::= k || |tr| || k ∗ e || e+ e integer expressions

Assume variables {ui}ni=1, terms {tri}ni=1 and integer expressions {ei}ni=1. We
write φ[u1/tr1] . . . [un/trn] (resp. φ[|u1|/e1] . . . [|un|/en]) to mean the formula
obtained by syntactically substituting in φ each occurrence of ui by term tri
(resp. each occurrence of |ui| by expression ei). Such a substitution is said to be
well-defined if no variable ui (resp. |ui|) appears in any tri (resp. ei).

The set of word variables appearing in a term is defined as follows: Vars(ε) =
∅, Vars(c) = ∅, Vars(u) = {u} and Vars(tr1 · tr2) = Vars(tr1) ∪ Vars(tr2).
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Semantics. The semantics of Ee,r,l is mostly standard. We describe it using a
mapping η (called interpretation) that assigns words in Σ∗ to string variables
in U . We extend η to terms as follows: η(ε) = ε, η(c) = c and η(tr1.tr2) =
η(tr1).η(tr2). Every regular expression R is evaluated to the language L(R)
it represents. Given an interpretation η, we define another mapping βη that
associates a number in Z to integer expressions as follows: βη(k) = k, βη(|u|) =
|η(u)|, βη(|tr|) = |η(tr)|, βη(k ∗ e) = k ∗ βη(e), and βη(e1 + e2) = βη(e1) + β(e2).
A formula in Ee,r,l is then evaluated to a value in {ff , tt} as follows:

valη(φ1 ∧ φ2) = tt iff valη(φ1) = tt and valη(φ2) = tt

valη(¬φ1) = tt iff valη(φ1) = ff

valη(tr ∈ R) = tt iff η(tr) ∈ L(R)
valη(tr1 = tr2) = tt iff η(tr1) = η(tr2)

valη(tr1 �= tr2) = tt iff ¬(η(tr1) = η(tr2))

valη(e1 ≤ e2) = tt iff βη(e1) ≤ βη(e2)

A formula φ is said to be satisfiable if there is an interpretation η such that
valη(φ) = tt . It is said to be unsatisfiable otherwise.

4 Inference Rules

In this section, we describe our set of inference rules for checking the satisfiability
of formulae in the logic Ee,r,l of Section 3. Given a formula φ, we build a proof
tree rooted at φ by repeatedly applying the inference rules introduced in this
Section. We can assume, without loss of generality, that the formula is given in
Disjunctive Normal Form. An inference rule is of the form:

Name :
B1 B2 ... Bn

A
cond

In this inference rule, Name is the name of the rule, cond is a side condition on
A for the application of the rule, B1 B2 ... Bn are called premises, and A is called
the conclusion of the rule. (We omit the side condition cond from Name when
it is tt .) The premises and conclusion are formulae in Ee,r,l. Each application
consumes a conclusion and produces the set of premises. The inference rule is
said to be sound if the satisfiability of the conclusion implies the satisfiability of
one of the premises. It is said to be locally complete if the satisfiability of one
of the premises implies the satisfiability of the conclusion. If all inference rules
are locally complete, and if φ or one of the produced premises turns out to be
satisfiable, then φ is also satisfiable. If all the inference rules are sound and none
of the produced premises is satisfiable, then φ is also unsatisfiable.

We organize the inference rules in four groups. We use the rules of the first
group to eliminate disequalities. The rules of the second group are used to sim-
plify equalities. The rules of the third group are used to eliminate membership
predicates. The rules of the last group are used to propagate length constraints.
In addition, we assume standard decision procedures [3] for integer arithmetic.
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Lemma 1. The inference rules of this section are sound and locally complete.

4.1 Removing Disequalities

We use rules Not-Eq and Diseq-Split in order to eliminate disequalities. In
rule Not-Eq, we establish that tr �= tr ∧ φ is not satisfiable and close this
branch of the proof. In the second rule Diseq-Split, we eliminate disequalities
involving arbitrary terms. For this, we make use of the fact that the alpha-
bet Σ is finite and replace any disequality with a finite set of equalities. More
precisely, assume a formula tr �= tr′ ∧ φ in Ee,r,l. We observe that the disequal-
ity tr �= tr′ holds iff the words wtr and wtr′ denoted by the terms tr and tr′

are different. This corresponds to one of three cases. Assume three fresh vari-
ables u, v and v′. In the first case, the words wtr and wtr′ contain different
letters c �= c′ after a common prefix wu. They are written as the concatena-
tions wu · c · wv and wu · c′ · wv′ respectively. We capture this case using the
set SplitDiseq-Split = {tr = u · c · v ∧ tr′ = u · c′ · v′ ∧ φ | c, c′ ∈ Σ and c �= c′}.
In the second case, the word wtr′ = wu is a strict prefix of wtr = wu · c ·wv. We
capture this with Split

′
Diseq-Split

= {tr = u · c · v ∧ tr′ = u ∧ φ | c ∈ Σ}. In the
third case, the wordwtr = wu is a strict prefix of wtr′ = wu·c′·w′

v, and we capture
this case using the set Split′′

Diseq-Split
= {tr = u ∧ tr′ = u · c · v′ ∧ φ | c ∈ Σ}.

Not-Eq :
∗

tr �= tr ∧ φ
Eq :

φ

tr = tr ∧ φ

Diseq-Split :
SplitDiseq-Split ∪ Split

′
Diseq-Split

∪ Split
′′
Diseq-Split

tr �= tr′ ∧ φ

4.2 Simplifying Equalities

We introduce rules Eq, Eq-Var, and Eq-Word to manipulate equalities. Rule
applications take into account symmetry of the equality operator (i.e., if a rule
can apply to w · tr1 = tr2 ∧ φ then it can also apply to tr2 = w · tr1 ∧ φ). Rule
Eq eliminates trivial equalities of the form tr = tr.

Rule Eq-Var eliminates variable u from the equality u · tr1 = tr2 ∧ φ. Let
wu be some word denoted by u. For the equality to hold, wu must be a prefix
of the word denoted by tr2. There are two cases. The first case, represented by
SplitEq-Var in Eq-Var, captures situations where wu coincides with a word
denoted by a prefix tr3 of tr2. The second case, represented by Split

′
Eq-Var

,
captures situations where wu does not coincide with a word denoted by a prefix
of tr2. Instead, tr2 can be written as tr3 · v · tr4 and the word wu is written as
the concatenation of two words, one that is denoted by tr3 and another that is
prefix of the word denoted by v.

Eq-Var :
SplitEq-Var ∪ Split

′
Eq-Var

u · tr1 = tr2 ∧ φ

The set SplitEq-Var captures the first case, when wu coincides with a word
denoted by a prefix tr3 of tr2. The premises for this case are partitioned into
two sets, namely SplitEq-Var-1 and SplitEq-Var-2:
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SplitEq-Var-1 =

{
(tr1 = tr4 ∧ φ)[u/tr3] |
tr2 = tr3 · tr4 and u does not syntactically appear in tr3

}
SplitEq-Var-2 =

{
tr1 = tr4 ∧ tr5 · tr6 ∈ ε ∧ φ |
tr2 = tr3 · tr4 and tr3 = tr5 · u · tr6

}
Variable u is eliminated from the premises contained in the set SplitEq-Var-1.
The second set SplitEq-Var-2 captures cases where u does syntactically appear
in tr3. Variable u might still appear in some of the premises of SplitEq-Var-2.

The set Split
′
Eq-Var

in Eq-Var captures the second case, namely when wu

does not coincide with a word denoted by a prefix of tr2, written tr3 · v · tr4
for some variable v. The premises in Split

′
Eq-Var

are partitioned into two sets,
namely Split

′
Eq-Var-1

and Split
′
Eq-Var-2

:

Split
′
Eq-Var-1

=

{(
(tr1 = v2 · tr4 ∧ φ)[u/tr3 · v1]

)
[v/v1 · v2] |

tr2 = tr3 · v · tr4 and u appears neither in tr3 nor in v

}
Split

′
Eq-Var-2

=

{(
tr1 = u2 · tr4 ∧ u1 · u2 = tr3 · u1 ∧ φ

)
[u/tr3 · u1] |

tr2 = tr3 · u · tr4 and u does not appear in tr3

}
The premises in Split

′
Eq-Var-1

mention neither u nor v. The set Split
′
Eq-Var-2

captures cases where u in the left-hand side overlaps with its occurrence on the
right-hand side. Cases where u appears in tr3 are captured in SplitEq-Var.

Rule Eq-Word eliminates the word w from the equality w · tr1 = tr2 ∧ φ:

Eq-Word :
SplitEq-Word ∪ Split

′
Eq-Word

w · tr1 = tr2 ∧ φ

Again, we define two sets representing the premises of the rule:

SplitEq-Word =
{
tr3 ∈ w ∧ tr4 = tr1 ∧ φ | tr2 = tr3 · tr4

}
Split

′
Eq-Word

=
{(

tr3 · v1 ∈ w ∧ v2 · tr4 = tr1 ∧ φ
)
[v/v1 · v2] | tr2 = tr3 · v · tr4

}
To simplify the presentation, we do not present suffix versions for rulesEq-Var

and Eq-Word. Such rules match suffixes instead of prefixes and simply mirror
the rules described above.

4.3 Removing Membership Predicates

We use rules Reg-Neg, Memb, Not-Memb, Reg-Split and Reg-Len to sim-
plify and eliminate membership predicates. We describe them below.

Rule Reg-Neg replaces the negation of a membership predicate in a regular
expression R with a membership predicate in its complement RC .

Reg-Neg :
tr ∈ RC ∧ φ

¬(tr ∈ R) ∧ φ

Rule Memb eliminates the predicate w ∈ R in case the word w belongs to
the language L(R) of the regular expression R. If w does not belong to L(R)
then rule Not-Memb closes this branch of the proof.
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Memb :
φ

w ∈ R∧ φ
w ∈ L(R) Not-Memb :

∗
w ∈ R ∧ φ

w �∈ L(R)

Rule Reg-Split simplifies membership predicates of the form tr · tr′ ∈ R.
Given such a predicate, the rule replaces it with a disjunction

∨n
i=1

(
tr ∈ Ri ∧

tr′ ∈ R′
i

)
where the set {(Ri,R′

i)}ni=1 is finite and only depends on the regular
expression R. To define this set, represent L(R) using some arbitrary but fixed
finite automaton (S, s0, δ, F ). Assume S = {s0, . . . , sn}. Choose the regular ex-
pressions Ri,R′

i such that : (1) Ri has the same language as the automaton
(S, s0, δ, {si}), and (2) R′

i has the same language as the automaton(S, si, δ, F ).
For any word wtr · wtr′ denoted by tr · tr′ and accepted by R, there will be a
state si in S such that wtr is accepted by Ri and wtr′ is accepted by R′

i. Given
a regular expression R, we let F(R) denote the set {(Ri,R′

i)}
n
i=1 above.

Reg-Split :
{tr ∈ R′ ∧ tr′ ∈ R′′ ∧ φ | (R′,R′′) ∈ F(R)}

tr · tr′ ∈ R ∧ φ

Rule Reg-Len can only be applied in certain cases. To identify these cases,
we define the condition Γ (φ, u) which states, given a formula φ and a variable
u, that u is not used in any membership predicate or in any (dis)equation in
φ. In other words, the condition states that if u occurs in φ then it occurs in a
length predicate. The rule Reg-Len replaces, in one step, all the membership
predicates {u ∈ Ri}ni=1 with an arithmetic constraint Len(R1 ∩ . . . ∩ Rm, u).
This arithmetic constraint expresses that the length |u| of variable u belongs to
the semi-linear set corresponding to the Parikh image of the intersection of all
regular expressions {Ri}ni=1 appearing in membership predicates of variable u. It
is possible to determine a representation of this semi linear set by starting from
a finite state automaton representing the intersection ∩iRi and replacing all
letters with a unique arbitrary letter. The obtained automaton is determinized
and the semi linear set is deduced from the length of the obtained lasso if any
(notice that since the automaton is deterministic and its alphabet is a singleton,
its form will be either a lasso or a simple path.) After this step, there will be no
membership predicates involving u.

Reg-Len :
Len(R1 ∩ . . . ∩Rm, u) ∧ φ

u ∈ R1 ∧ . . . ∧ u ∈ Rm ∧ φ
Γ (φ, u)

4.4 Propagating Term Lengths

The ruleTerm-Leng is the only inference rule in the fourth group. It substitutes
the expression |tr|+ |tr′| for every occurrence in φ of the expression |tr · tr′|.

Term-Leng :
φ[|tr · tr′|/|tr|+ |tr′|]

φ
|tr · tr′| appears in φ

We can also add rules to systematically add the length predicate |tr| = |tr′|
each time an equality tr = tr′ appears in a formula; however, such rules are not
necessary for the completeness of our procedure, as shown in the next section.
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5 Completeness of the Procedure

In this section, we define a class of formulae of acyclic form (we say a formula is
in acyclic form, or acyclic for short) for which the decision procedure in Section 4
is guaranteed to terminate. For simplicity, we assume w.l.o.g that the formula is
a conjunction of predicates and negated predicates.

Non-termination may be caused by an infinite chain of applications of rule
Eq-Var of Section 4.2 for removing equalities. Consider for instance the equal-
ity u · v = v · u. One of the cases generated within the disjunct Split

′
Eq-Var-1

of Eq-Var is v1 · v2 = v2 · v1. This is the same as the original equality up to
renaming of variables. In this case, the process of removing equalities clearly
does not terminate. To prevent this, we will require that no variable can ap-
pear on both sides of an equality. We also need to prevent the repetition of a
variable inside one side of an equality. This is needed in cases like u · u = v · v
where Split

′
Eq-Var-1

includes v1 = v2 · v1 · v2, with a variable v1 on both sides
of the equality, which is the situation which we wanted to prevent at the first
place. These restrictions must hold initially and must be preserved by applica-
tions of any of the rules presented in Sections 4. Attention must be given to
rules that modify equalities. Rules such as Eq-Var involve substitution of a
variable from one side of an equality by a term from the other side. We need
to prevent chains of such substitutions that cause variables to appear several
times in a (dis)equality. Acyclic formulae must also guarantee that the undesired
cases cannot appear after a use of Diseq-Split of Section 4.1 that transforms a
disequality to equalities. We respectively state preservation of these restriction
and termination of the procedure of Section 4 in theorems 1 and 2 at the end of
this Section. First, we need some definitions.

Linear formulae. A formula in Ee,r,l is said to be linear if it contains no equality
or disequality where a variable appears more than once.

Given a conjunction φ in Ee,r,l involving m (dis)equalities, we can build a
dependency graph Gφ = (N,E, label, map) in the following way. We order the
(dis)equalities from e1 to em, where each ej is of the form lhs(j) ≈ rhs(j) for
j : 1 ≤ j ≤ m and ≈∈ {=, �=}. For each j : 1 ≤ j ≤ m, a node n2j−1 is used to re-
fer to the left-hand side of the jth (dis)equality, and n2j to its right-hand side. For
example, two different nodes are used even in the case of the simple equality u = u,
one to refer to the left-hand side, and the other to refer the right-hand side. N is
then the set of 2×m nodes {ni|i : 1 ≤ i ≤ 2×m}. The mapping label associates
the term lhs(j) (resp. rhs(j)) to each node n2j−1 (resp. n2j) for j : 1 ≤ j ≤ m.
label is not necessarily a one to onemapping. Themapping map : E → {rel, var}
labels edges as follows: map(n, n′) = rel for each (n, n′) = (n2j−1, n2j) for each
j : 1 ≤ j ≤ m, and map(n, n′) = var iff n �= n′, and label(n) and label(n′)
have some common variables. By construction, map is defined to be total, i.e., E
contains only edges that are labeled by map.

A dependency cycle in Gφ = (N,E, label, map) is a cycle where successive edges
have alternating labels. Formally, a dependency cycle is a sequence of distinct
nodes n0, n1, . . . , nk in N with k ≥ 1 such that 1) for every i : 0 ≤ i ≤ k,
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map(ni, ni+1%(k+1)) is defined, and 2) for each i : 0 ≤ i < k, map(ni, ni+1) �=
map(ni+1, ni+2%(k+1)).

Acyclic graph. A conjunction φ in Ee,r,l is said to be acyclic iff it is linear and
its dependency graph does not contain any dependency cycle.

Theorem 1. Application of rules of Section 4 preserves acyclicity.

An ordered procedure is any procedure that applies the rules of Section 4
on a formula in Ee,r,l in the four following phases. In the first phase, all dise-
qualities are eliminated using Diseq-Split and Not-Eq. In the second phase,
the procedure eliminates one equality at a time by repeatedly applying Eq-Var,
Eq-Word and Eq. In the third phase, membership predicates are eliminated by
repeatedly applying Reg-Neg, Memb, Not-Memb, Reg-Split and Reg-Len.
In the last phase, arithmetic predicates are solved using a standard decision
procedure [3].

Theorem 2. Ordered procedures terminate on acyclic formulae.

6 Complete Verification of String-Processing Programs

The analysis of string-processing programs has gained importance due to the in-
creased use of string-based APIs and protocols, for instance in the context of
databases and Web programming. Much of the existing work has focused on the
detection of bugs or the synthesis of attacks; in contrast, the work presented in
this paper primarily targets verification of functional correctness. The following
sections outline how we use our logic Ee,r,l for this purpose. On the one hand, our
solver is designed to handle the satisfiability checks needed when constructing fi-
nite abstractions of programs, with the help of predicate abstraction [11,13] or
Impact-style algorithms [19]; since Ee,r,l can express both length properties and
regular expressions, it covers predicates sufficient for a wide range of verification
applications. On the other hand, we propose a constraint-based Craig interpola-
tion algorithm for the automatic refinement of programabstractions (Section 6.2),
leading to a completeness result in the style of [16]. We represent programs in the
framework of Horn clauses [20,12], which make it easy to handle language features
like recursion; however, our work is in no way restricted to this setting.

6.1 Horn Constraints with Strings

In our context, a Horn clause is a formula H ← C ∧B1 ∧ · · · ∧Bn where C is a
formula (constraint) in Ee,r,l; each Bi is an application p(t1, . . . , tk) of a relation
symbol p ∈ R to first-order terms; H is either an application p(t1, . . . , tk) of
p ∈ R to first-order terms, or the constraint false. H is called the head of the
clause, C ∧ B1 ∧ · · · ∧ Bn the body. A set HC of Horn clauses is called solvable
if there is an assignment that maps every n-ary relation symbol p to a word
formula Cp[x1, . . . , xn] with n free variables, such that every clause inHC is valid.
Since Horn clauses can capture properties such as initiation and consecution of
invariants, programs can be encoded as sets of Horn clauses in such a way that
the clauses are solvable if and only if the program is correct.
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Example 1. The example from Section 2 is represented by the following set of
Horn clauses, encoding constraints on the intermediate assertions Pre, P1, P2, P3.
Note that the clauses closely correspond to the verification conditions given in
Fig. 2. Any solution of the Horn clauses represents a set of mutually inductive
invariants, and witnesses correctness of the program.

Pre(s)← true
P1(s

′)← s′ = ε ∧ Pre(s)
P2(s)← P1(s)

P2(”a” · s · ”b”)← P2(s)

P3(s)← P2(s)
false ← s ∈ (a|b)∗ · ba · (a|b)∗ ∧ P3(s)
false ← ∀k. 2k �= |s| ∧ P3(s)

Algorithms to construct solutions of Horn clauses with the help of predicate
abstraction have been proposed for instance in [12]; in this context, automatic
solving is split into two main steps: 1) the synthesis of predicates as building
blocks for solutions, and 2) the construction of solutions as Boolean combinations
of the predicates. The second step requires a solver to decide consistency of sets of
predicates, as well as implication between predicates (a set of predicates implies
some other predicate); our logic is designed for this purpose.
Ee,r,l covers a major part of the string operations commonly used in software

programs; further operations can be encoded elegantly, including:

– extraction of substring v of length len from a string u, starting at posi-
tion pos , which is defined by the formula:

u = p · v · s ∧ |v| = len ∧ |p| = pos

– replacement of the substring v (of length len , starting at position pos) by v′,
resulting in the new overall string u′:

u = p · v · s ∧ u′ = p · v′ · s ∧ |v| = len ∧ |p| = pos

– search for the first occurrence of a string, using either equations or regular
expression constraints.

6.2 Constraint-Based Craig Interpolation

In order to synthesize new predicates for verification, we propose a constraint-
based Craig interpolation algorithm [6]. We say that a formula I[s̄] is an inter-
polant of a conjunction A[s̄], B[s̄] over common variables s̄ = s1, . . . , sn (and
possibly including further local variables), if the conjunctions A[s̄] ∧ ¬I[s̄] and
B[s̄] ∧ I[s̄] are unsatisfiable. In other words, an interpolant I[s̄] is an over-
approximation of A[s̄] that is disjoint from B[s̄]. It is well-known that inter-
polants are suitable candidates for predicates in software model checking; for a
detailed account on the use of interpolants for solving Horn clauses, we refer the
reader to [22].

Our interpolation procedure is shown in Alg. 1, and generates interpolants
in the form of regular constraints separating A[s̄] and B[s̄]. This means that
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Algorithm 1. Constraint-based interpolation of string formulae

Input: Interpolation problem A[s̄] ∧ B[s̄] with common variables s̄; bound L.
Output: Interpolant s1|s2| · · · |sn ∈ R; or result Inseparable.

1 Aw← ∅; Bw← ∅;
2 while there is RE R of size ≤ L such that Aw ⊆ L(R) and Bw ∩ L(R) = ∅ do
3 if A[s̄] ∧ ¬(s1|s2| · · · |sn ∈ R) is satisfiable with assignment η then
4 Aw← Aw ∪ {η(s1)| · · · |η(sn)};
5 else if B[s̄] ∧ (s1|s2| · · · |sn ∈ R) is satisfiable with assignment η then
6 Bw← Bw ∪ {η(s1)| · · · |η(sn)};
7 else
8 return s1|s2| · · · |sn ∈ R;
9 end

10 end
11 return Inseparable;

interpolants are not arbitrary formulae in the logic Ee,r,l, but are restricted to
the form s1|s2| · · · |sn ∈ R, where ”|” ∈ Σ is a distinguished separating letter,
and R is a regular expression. In addition, only interpolants up to a bound L are
considered; L can limit, for instance, the length of the regular expression R, or
the number of states in a finite automaton representing R.

Alg. 1 maintains finite sets Aw and Bw of words representing solutions of A[s̄]
andB[s̄], respectively. In line 2, a candidate interpolant of the form s1|s2| · · · |sn ∈
R is constructed, in such a way that L(R) is a superset of Aw but disjoint from
Bw. The concrete construction of candidate interpolants of size ≤ L can be im-
plemented in a number of ways, for instance via an encoding as a SAT or SMT
problem (as done in our implementation), or with the help of learning algorithms
like L∗ [1]. It is then checked whether s1|s2| · · · |sn ∈ R satisfies the properties of
an interpolant (lines 3, 5), which can be done using the string solver developed in
this paper. If any of the properties is violated, the constructed satisfying assign-
ment η gives rise to a further word to be included in Aw or Bw.

Lemma 2 (Correctness). Suppose bound L is chosen such that it is only sat-
isfied by finitely many formulae s1|s2| · · · |sn ∈ R. Then Alg. 1 terminates and
either returns a correct interpolant s1|s2| · · · |sn ∈ R, or reports Inseparable.

By iteratively increasing bound L, eventually a regular interpolant for any
(unsatisfiable) conjunction A[s̄] ∧ B[s̄] can be found, provided that such an in-
terpolant exists at all. This scheme of bounded interpolation is suitable for inte-
gration in the complete model checking algorithm given in [16]: since only finitely
many predicates can be inferred for every value L, divergence of model checking
is impossible for any fixed L. By globally increasing L in an iterative manner,
eventually every predicate that can be expressed in the form s1|s2| · · · |sn ∈ R
will be found.
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7 Implementation

We have implemented our algorithm in a tool called Norn
1 The tool takes as

input a formula in the logic described in Section 3, and returns either Sat together
with a witness of satisfiability (i.e., concrete string values for all variables), or
Unsat. Norn first converts the given formula to DNF, after which each disjunct
goes through the following steps:

1. Recursively split equalities, backtracking if necessary, until no equality con-
straints are left.

2. Recursively split membership constraints, again backtracking if necessary,
and compute the language of each variable. From the language, we extract
length constraints which we add to the formula.

3. Solve the remaining length constraints using Princess [3].

We will now explain the second step in more detail. Assume that we have
a membership constraint tr ∈ A, where A is an automaton (Norn makes use
of dk.brics.automaton [21] for all automata operations). We can remove a
sequence of trailing constants a1a2 · · · ak in tr = tr′ ·a1a2 · · · an by replacing the
constraint with tr′ ∈ rev(δak···a2a1(rev(A))), where δs(A) denotes the derivative
of A w.r.t. the string s, and rev(A) denotes the reverse of A. We now have a
membership constraint s1 · · · sn ∈ A′ where the term consists of a number of
segments si, each of the form a1 · · · aniXi, i.e., a number of constants followed
by a variable. The procedure keeps, at each step, a mapping m that maps each
variable to an automaton representing the language it admits. For the constraint
to be satisfiable, the constraints s1 ∈ A′

1 and s2 · · · sn ∈ A′
2 must be satisfiable

for some pair (A1, A2) in the splitting of A′. This means that we can update
our mapping by m(Xi) = m(Xi) ∩ δa1···ani

(A1) and recurse on s2 · · · sn ∈ A′
2.

If at any point any automaton in the mapping becomes empty, the membership
constraint is unsatisfiable, and we backtrack.

If, in the third step, Princess tells that the given formula is satisfiable, it
gives concrete lengths for all variables. By restricting each variable to the solution
given by Princess and reversing the substitutions performed in step 1, we can
compute witnesses for the variables in the original formula.

Norn can be used both as a library and as a command line tool. In addition
to the logic in Section 3, Norn supports character ranges (e.g. [a − c]) and
the wildcard character (.) in regular expressions. It also supports the divisibility
predicate x div y, which says that x divides y. This translates to the arithmetic
constraint x = y ∗ n, where n is a free variable.

Model Checking. We have integrated Norn into the predicate abstraction-based
model checker Eldarica [14], on the basis of the algorithm and interpolation
procedure from Section 6. We use the regular interpolation procedure from Sec-
tion 6.2 in combination with an ordinary interpolation procedure for Presburger
arithmetic to infer predicates about word length. Table 1 gives an overview

1 Available at http://user.it.uu.se/~jarst116/norn/.

http://user.it.uu.se/~jarst116/norn/
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Table 1. Verification runtime for a set of string-processing programs. Experiments
were done on an Intel Core i5 machine with 3.2GHz, running 64 bit Linux.

Program Property Time

anbn (Fig. 1) s �∈ (a+ b)∗ · ba · (a+ b)∗ ∧ ∃k. 2k = |s| 8.0s
StringReplace pre: s ∈ (a+ b+ c)∗; post: s ∈ (a+ c)∗ 4.5s
ChunkSplit pre: s ∈ (a+ b)∗; post: s ∈ (a+ b+ c)∗ 5.5s
Levenshtein dist ≤ |s|+ |t| 5.3s
HammingDistance dist = |v| if u ∈ 0∗, v ∈ 1∗ 27.1s

of preliminary results obtained when analyzing a set of hand-written string-
processing programs. Although the programs are quite small, the presence of
string operations makes them intricate to analyze using automated model check-
ing techniques; most of the programs require invariants in form of regular ex-
pressions for verification to succeed. Our implementation is able to verify all
programs fully automatically within a few seconds; since performance has not
been the main focus of our implementation work so far, further optimization will
likely result in much reduced runtimes. To the best of our knowledge, all of the
programs are beyond the scope of other state-of-the-art software model checkers.

8 Conclusions and Future Work

In contrast to much of the existing work that has focused on the detection of
bugs or the synthesis of attacks for string-manipulating programs; the work pre-
sented in this paper primarily targets verification of functional correctness. To
achieve this goal, we have made several key contributions. First, we have pre-
sented a decision procedure for a rich logic of strings. Although the problem
in its generality remains open, we are able to identify an expressive fragment
for which our procedure is both sound and complete. We are not aware of any
decision procedure with a similar expressive power. Second, we leverage on the
fact that our logic is able to reason both about length properties and regular
expressions in order to capture and manipulate predicates sufficient for a wide
range of verification applications. Future works include experimenting with bet-
ter integrations of the different theories, exploring different Craig interpolation
techniques, and exploring the applicability of our framework to more general
classes of string processing applications.
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Abstract. We present a case study in verified security for realistic systems: the
implementation of a conference management system, whose functional kernel
is faithfully represented in the Isabelle theorem prover, where we specify and
verify confidentiality properties. The various theoretical and practical challenges
posed by this development led to a novel security model and verification method
generally applicable to systems describable as input–output automata.

1 Introduction

Information-flow security is concerned with preventing or facilitating (un)desired flow
of information in computer systems, covering aspects such as confidentiality, integrity,
and availability of information. Dieter Gollmann wrote in 2005 [15]: “Currently, infor-
mation flow and noninterference models are areas of research rather than the bases of
a practical methodology for the design of secure systems.” The situation has improved
somewhat in the past ten years, with mature software systems such as Jif [1] offering
powerful and scalable information flow technology integrated with programming.

However, the state of the art in information-flow security models [24] is still far from
finding its way towards applications to real-world systems. If we further restrict atten-
tion to mechanically verified work, the situation is even more dramatic, with examples
of realistic system verification [3,8,28] being brave exceptions. This is partly explained
by the complexity of information-flow properties, which is much greater than that of
traditional functional properties [23]. However, this situation is certainly undesirable,
in a world where confidentiality and secrecy raise higher and higher challenges.

In this paper, we take on the task of implementing, and verifying the confidentiality
of, a realistic system: CoCon,1 a full-fledged conference system, featuring multiple
users and conferences and offering much of the functionality of widely used systems
such as EasyChair [10] and HotCRP [11].

Conference systems are widely used in the scientific community—EasyChair alone
claims one million users. Moreover, the information flow in such systems possesses
enough complexity so that errors can sneak inside implementations, sometimes with
bitter–comical consequences. Recently, Popescu, as well as the authors of 267 papers
submitted to a major security conference, initially received an acceptance notification,
followed by a retraction [19]: “We are sorry to inform you that your paper was not
accepted for this year’s conference. We received 307 submissions and only accepted 40
of them . . .We apologize for an earlier acceptance notification, due to a system error.”2

1 A running version of CoCon, as well as the formal proof sources, are available at [20].
2 After reading the initial acceptance notification, Popescu went out to celebrate; it was only

hours later when he read the retraction.
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Fig. 1. Confidentiality bug in HotCRP

The above is an information-integrity violation (a distorted decision was initially
communicated to the authors) and could have been caused by a human error rather than
a system error—but there is the question whether the system should not prevent even
such human errors. The problem with a past version of HotCRP [11] shown in Fig. 1 is
even more interesting: it describes a genuine confidentiality violation, probably stem-
ming from the logic of the system, giving the authors capabilities to read confidential
comments by the program committee (PC).

Although our methods would equally apply to integrity violations, guarding against
confidentiality violations is the focus of this verification work. We verify properties
such as the following (where DIS addresses the problem in Fig. 1):

PAP1: A group of users learn nothing about a paper unless one of them becomes an
author of that paper or a PC member at the paper’s conference

PAP2: A group of users learn nothing about a paper beyond the last submitted version
unless one of them becomes an author of that paper

REV: A group of users learn nothing about the content of a review beyond the last
submitted version before the discussion phase and the later versions unless one of
them is that review’s author

DIS: The authors learn nothing about the discussion of their paper
We will be concerned with properties restricting the information flow from the various
documents maintained by the system (papers, reviews, comments, decisions) towards
the users of the system. The restrictions refer to certain conditions (e.g., authorship, PC
membership) as well as to upper bounds (e.g., at most the last submitted version) for
information release.

We specify CoCon’s kernel using the proof assistant Isabelle [29, 30], with which
we formulate and verify confidentiality. The functional implementation of this kernel
is automatically synthesized from the specification and wrapped into a web application
offering the expected behavior of a conference system as a menu-based interface.

A first contribution of this paper is the engineering approach behind the system spec-
ification and implementation (§2). To keep the Isabelle specification (§3) manageable,
yet faithful to the implementation and therefore reach a decent balance between trust
and usability, we employ state-of-the-art theorem proving and code synthesis technol-
ogy towards a security-preserving layered architecture.

A second contribution is a novel security model called bounded-deducibility (BD)
security, born from confronting notions from the literature with the challenges posed by
our system (§4). The result is a reusable framework, applicable to any IO automaton.
Its main novelty is wide flexibility: it allows the precise formulation of role-based and
time-based declassification triggers and of declassification upper bounds. We endow
this framework with a declassification-oriented unwinding proof technique (§5).

Our third and last contribution is the verification itself: the BD security framework,
its general unwinding theorem, and the unwinding proofs for CoCon’s confidentiality
properties expressed as instances of BD security are all mechanized in Isabelle.
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2 Overall Architecture and Security Guarantees

Web
Application

Functional
Program

Isabelle
Specification

code generation

The architecture of our system follows the paradigm of security by design:

– We formalize and verify the kernel of the system in the Isabelle proof assistant
– The formalization is automatically translated in a functional programming language
– The translated program is wrapped in a web application

Isabelle Specification. We specify the system as an input–output automaton (Mealy
machine), with the inputs called “actions”. We first define, using Isabelle’s records, the
notions of state (holding information about users, conferences, and papers) and user
action (representing user requests for manipulating documents and rights in the system:
upload/download papers, edit reviews, assign reviewers, etc.). Then we define the step
function that takes a state and an action and returns a new state and an output.

Scala Functional Program. The specification was designed to fall within the exe-
cutable fragment of Isabelle. This allows us to automatically synthesize, using Isabelle’s
code generator [17], a program in the functional fragment of Scala [2] isomorphic to
the specification. The types of data used in the specification (numbers, strings, tuples,
records) are mapped to the corresponding Scala types. An exception is the Isabelle type
of paper contents, which is mapped to the Scala/JVM file type.

Web Application. Finally, the Scala program is wrapped in a web application, offering
a menu-based user interface. Upon login, a user sees his conferences and his roles for
each of them; the menus offer role-sensitive choices, e.g., assign reviewers (for chairs)
or upload papers (for authors).

Overall Security Guarantees. Our Isabelle verification targets information-flow prop-
erties. These properties express that for any possible trace of the system, there is no way
to infer from certain observations on that trace (e.g., actions performed by designated
users), certain values extracted from that trace (e.g., the paper uploads by other users).
The question arises as to what guarantees we have that the properties we verified for-
mally for the specification also hold for the overall system. E.g., if we prove in Isabelle
that users never learn the content of other users’ papers, how can we be sure that this
is actually the case when using the web interface? We do not have a formal answer to
this, but only an informal argument in terms of the trustworthiness of two trusted steps.

First, we need to trust Isabelle’s code generator. Its general-purpose design is very
flexible, supporting program and data refinement [17]. In the presence of these rich
features, the code generator is only known to preserve partial correctness, hence safety
properties [16, 17]. However, here we use the code generator in a very restrictive man-
ner, to “refine” an already deterministic specification which is an implementation in its
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own right—the code generator simply translates it from the functional language of Isa-
belle to that of Scala. In addition, all the used Isabelle functions are proved to terminate,
and nontrivial data refinement is disabled. These allow us to (informally) conclude that
the synthesized implementation is trace-isomorphic to the specification, hence the for-
mer leaks as little information as the latter. (This meta-argument does not cover timing
channels, but these seem to be of little importance for leaking document content.)

Second, we need to trust that no further leakage occurs via the web application wrap-
per. To acquire this trust, we make sure that the web application acts as a stateless in-
terface to the step function: upon a user request, all it does is invoke “step” (one or
multiple times) with input from the user and then process and display the output of
the step function. The third-party libraries used by our web application also have to be
trusted to not be vulnerable to exploits.

In summary, the formal guarantees we provide in Isabelle have to be combined with a
few trusted steps to apply to the whole system. Our verification targets only the system’s
implementation logic—lower-level attacks such as browser-level forging are out of its
reach, but are orthogonal issues that could in principle be mitigated separately.

3 System Specification

The system behaves similarly to EasyChair [10], a popular conference system created
by Andrei Voronkov. It hosts multiple users and conferences, allowing the creation of
new users and conferences at any time. The system has a superuser, which we call
voronkov as a tribute to EasyChair. The voronkov is the first user of the system, and his
role is to approve new-conference requests. A conference goes through several phases.
No-Phase. Any user can apply for a new conference, with the effect of registering it in
the system with “No-Phase”. After approval from the voronkov, the conference moves
to the setup phase, with the applicant becoming a conference chair.
Setup. A conference chair can add new chairs and new regular PC members. From here
on, moving the conference to successor phases can be done by the chairs.
Submission. A user can list the conferences awaiting submissions (i.e., being in sub-
mission phase). He can submit a paper, upload new versions, or indicate other users as
coauthors thereby granting them reading and editing rights.
Bidding. Authors are no longer allowed to upload or register new papers and PC mem-
bers are allowed to view the submitted papers. PC members can place bids, indicating
for each paper one of the following preferences: “want to review”, “would review”, “no
preference”, “would not review”, and “conflict”. If the preference is “conflict”, the PC
member cannot be assigned that paper, and will not see its discussion. “Conflict” is
assigned automatically to papers authored by a PC member.
Reviewing. Chairs can assign papers to PC members for reviewing either manually or
by invoking an external program to establish fair assignment based on some parameters:
preferences, number of papers per PC member, and number of reviewers per paper.
Discussion. All PC members having no conflict with a paper can see its reviews and
can add comments. Also, chairs can edit the decision.
Notification. The authors can read the reviews and the accept/reject decision, which no
one can edit any longer.
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3.1 State, Actions, and Step Function

The state stores the lists of registered conference, user, and paper IDs and, for each
ID, actual conference, user, or paper information. Each paper ID is assigned a paper
having title, abstract, content, and, in due time, a list of reviews, a discussion text, and
a decision: Paper = String×String×Paper_Content×List(Review)×Dis×Dec

We keep different versions of the decision and of each review, as they may transpar-
ently change during discussion:Dec= List(String) andReview= List(Review_Content)
where Review_Content consists of triples (expertise, text, score).

In addition, the state stores: for each conference, the list of (IDs of) papers submitted
to that conference, the list of news updated by the chairs, and the current phase; for each
user and paper, the preferences resulted from biddings; for each user and conference, a
list of roles: chair, PC member, paper author, or paper reviewer (the last two roles also
containing paper IDs).
record State =
confIDs : List(ConfID) conf : ConfID→ Conf userIDs : List(UserID)
pass : UserID→ Pass user : UserID→ User roles : ConfID→ UserID→ List(Role)
paperIDs : ConfID→ List(PaperID) paper : PaperID→ Paper
pref : UserID→ PaperID→ Pref news : ConfID→ List(String) phase : ConfID→ Phase

Actions are parameterized by user IDs and passwords. There are 45 actions forming
five categories: creation, update, undestructive update (u-update), reading and listing.

The creation actions register new objects (users, conferences, chairs, PC members,
papers, authors), assign reviewers (by registering new review objects), and declare con-
flicts. E.g., cPaper cid uid pw pid title abs is an action by user uid with password pw
attempting to register to conference cid a new paper pid with indicated title and abstract.

The update actions modify the various documents of the system: user information
and password, paper content, reviewing preference, review content, etc. For example,
uPaperC cid uid pw pid ct is an attempt to upload a new version of paper pid by modi-
fying its content to ct. The u-update actions are similar, but also record the history of a
document’s versions. E.g., if a reviewer decides to change his review during the discus-
sion phase, then the previous version is still stored in the system and visible to the other
PC members (although never to the authors). Other documents subject to u-updates are
the news, the discussion, and the accept-reject decision.

The reading actions access the content of the system’s documents: papers, reviews,
comments, decisions, news. The listing actions produce lists of IDs satisfying various
filters—e.g., all conferences awaiting paper submissions, all PC members of a confer-
ence, all the papers submitted by a given user, etc.

Note that the first three categories of actions are aimed at modifying the state, and
the last two are aimed at observing the state through outputs. However, the modification
actions also produce a simple output, since they may succeed or fail. Moreover, the
observation actions can also be seen as changing the state to itself. Therefore we can
assume that both types produce a pair consisting of a new state and an action.

We define the function step : State→ Act→Out×State that operates by determin-
ing the type of the action and dispatching specialized handler functions. The initial state
of the system, istate ∈ State, is the one with a single user, the voronkov, and a dummy
password (which can be changed immediately). The step function and the initial state
are the only items exported by our specification to the outside world.
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4 Security Model

Here we first analyze the literature for possible inspiration concerning a suitable secu-
rity model for our system. Then we introduce our own notion, which is an extension of
Sutherland’s nondeducibility [38] that factors in declassification triggers and bounds.

4.1 Relevant Literature
There is a vast amount of literature on information-flow security, with many variants of
formalisms and verification techniques. An important distinction is between notions that
completely forbid information flow (between designated sources and sinks) and notions
that only restrict the flow, allowing some declassification. Historically, the former were
introduced first, and the latter were subsequently introduced as generalizations.

Absence of Information Flow. The information-flow security literature starts in the
late 1970s and early 1980s [7, 13, 32], motivated by the desire to express the absence
of information leaks of systems more abstractly and more precisely than by means of
access control [4, 21]. Very influential were Goguen and Meseguer’s notion of nonin-
terference [13] and its associated proof by unwinding [14]. Unwinding is essentially a
form of simulation that allows one to construct incrementally, from a perturbed trace of
the system, an alternative “corrected” trace that “closes the leak”. Many other notions
were introduced subsequently, either in specialized programming-language-based [36]
or process-algebra-based [12,35] settings or in purely semantic, event-system-based set-
tings [25,26,31,38]. (Here we are mostly interested in the last category.) These notions
are aimed at extending noninterference to nondeterministic systems, closing Trojan-
horse channels, or achieving compositionality. The unwinding technique has been gen-
eralized for some of these variants—McLean [27] and Mantel [23] give overviews.

Even ignoring our aimed declassification aspect, most of these notions do not ade-
quately model our properties of interest exemplified in the introduction. One problem is
that they are not flexible enough w.r.t. the observations. They state nondetectability of
absence or occurrence of certain events anywhere in a system trace. By contrast, we are
interested in a very controlled positioning of such undetectable events: in the property
PAP2 from the introduction, the unauthorized user should not learn of preliminary (non-
final) uploads of a paper. Moreover, we are not interested in whole events, but rather in
certain relevant values extracted from the events: e.g., the content of the paper, and not
the ID of one of the particular authors who uploads it.

A fortunate exception to the above flexibility problems is Sutherland’s early notion
of nondeducibility [38]. One considers a set of worlds World and two functions F :
World→ J and H : World→ K. For example, the worlds could be the valid traces of
the system, F could select the actions of certain users (potential attackers), and H could
select the actions of other users (intended as being secret). Nondeducibility of H from F
says that the following holds for all w ∈World: for all k in the image of H, there exists
w1 ∈World such that F w1 = F w and H w1 = k. Intuitively, from what the attacker
(modeled as F) knows about the actual world w, the secret actions (the value of H)
could be anything (in the image of H)—hence cannot be “deduced”. The generality of
this framework allows one to fine-tune both the location of the relevant events in the
trace and their values of interest. But generality is no free lunch: it is no longer clear
how to provide an unwinding-like incremental proof method.
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Halpern and O’Neill [18] recast nondeducibility as a property called secrecy main-
tenance, in a multi-agent framework of “runs-and-systems” [33] based on epistemic
logic. Their formulation enables general-purpose epistemic logic primitives for deduc-
ing absence of leaks, but no unwinding or any other inductive reasoning technique.

On the practical verification side, Arapinis et al. [3] introduce ConfiChair, a con-
ference system that improves on standard systems such as EasyChair by guaranteeing
that “the cloud”, consisting of the system provider/administrator, cannot learn the con-
tent of the papers and reviews and cannot link users with their written reviews. This is
achieved by a cryptographic protocol based on key translations and mixes. They encode
the desired properties as strong secrecy (a property similar to Goguen-Meseguer nonin-
terference) and verify them using the ProVerif [5] tool specialized in security protocols.
Our work differs from theirs in three major aspects. First, they propose a cryptography-
based enhancement, while we focus on a traditional conference systems not involving
cryptography. Second, they manage to encode and verify the desired properties auto-
matically, while we use interactive theorem proving. While their automatic verification
is an impressive achievement, we cannot hope for the same with our targeted properties
which, while having a similar nature, are more nuanced and complex. E.g., proper-
ties like PAP2 and REV, with such flexible indications of declassification bounds, go
far beyond strong secrecy and require interactive verification. Finally, we synthesize
functional code isomorphic to the specification, whereas they provide a separate imple-
mentation, not linked to the specification which abstracts away from many functionality
aspects.
Restriction of Information Flow. A large body of work on declassification was pur-
sued in a language-based setting. Sabelfeld and Sands [37] give an overview of the state
of the art up to 2009. Although they target language-based declassification, they phrase
some generic dimensions of declassification most of which apply to our case:

– What information is released? Here, document content, e.g., of papers, reviews, etc.
– Where in the system is information released? In our case, the relevant “where” is

a “from where” (referring to the source, not to the exit point): from selected places
in the system trace, e.g., the last submitted version before the deadline.

– When can information be released? After a certain trigger occurs, e.g., authorship.
Sabelfeld and Sands consider another interesting instance of the “where” dimension,
namely intransitive noninterference [22, 34]. This is an extension of noninterference
that allows downgrading of information, say, from High to Low, via a controlled De-
classifier level. It could be possible to encode aspects of our properties of interest as
intransitive noninterference—e.g., we could encode the act of a user becoming an au-
thor as a declassifying action for the target paper. However, such an encoding would be
rather technical and somewhat artificial for our system; additionally, it is not clear how
to factor in our aforementioned specific “where” dimension.

Recently, the “when” aspect of declassification has been included as first-class cit-
izen in customized temporal logics [6, 9], which can express aspects of our desired
properties, e.g., “unless/until he becomes an author”. Their work is focused on effi-
ciently model-checking finite systems, whereas we are interested in verifying an infinite
system. Combining model checking with infinite-to-finite abstraction is an interesting
prospect, but reflecting information-flow security properties under abstraction is diffi-
cult problem.
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4.2 Bounded-Deducibility Security

We introduce a novel notion of information-flow security that:

– retains the precision and versatility of nondeducibility
– factors in declassification as required by our motivating examples
– is amenable to a general unwinding technique

We shall formulate security in general, not only for our concrete system from §3.1,
but for any IO automaton indicated by the following data. We fix sets of states, State,
actions, Act, and outputs, Out, an initial state istate ∈ State, and a step function step :
State→ Act → Out× State. We let Trans, the set of transitions, be State×Act×
Out×State. Thus, a transition trn is a tuple, written (s, a, o, s′); s indicates the source,
a the action, o the output, and s′ the target. trn is called valid if it is induced by the step
function, namely step s a = (o, s′).

A trace tr ∈ Trace is any list of transitions: Trace= List (Trans). For any s ∈ State,
the set of valid traces starting in s, Valids ⊆ Trace, consists of the traces of the form
[(s1, a1, o1, s2), (s2, a2, o2, s3), . . . , (sn−1, an−1, on, sn)] for some n where s1 = s and
each transition (si, ai, oi, si) is valid. We will be interested in the valid traces starting in
the initial state istate—we simply call these valid traces and write Valid for Validistate.

Besides the IO automaton, we assume that we are given the following data:

– a value domain Val, together with a value filter ϕ : Trans→ Bool and a value pro-
ducer f : Trans→ Val

– an observation domain Obs, together with an observation filter γ : Trans→ Bool
and an observation producer g : Trans→ Obs

We define the value function V : Trace→ List(Val) componentwise, filtering out values
not satisfying ϕ and applying f :

V []≡ [] V([trn] · tr)≡ if ϕ trn then ( f trn) · (V tr) else V tr

We also define the observation function O : Trace→ List(Obs) just like V, but using γ
as a filter and g as a producer.

We think of the above as an instantiation of the abstract framework for nondeducibil-
ity recalled in §4.1, where World = Valid, F = O, and H = V. Thus, nondeducibility
states that the observer O may learn nothing about V. Here we are concerned with a
more fine-grained analysis, asking ourselves what may the observer O learn about V.

Using the idea underlying nondeducibility, we can answer this precisely: Given a
trace tr ∈ Valid, the observer sees O tr and therefore can infer that V tr belongs to the
set of all values V tr1 for some tr1 ∈ Valid such that O tr1 = O tr. In other words, he
can infer that the value is in the set V (O−1(O tr) ∩ Valid), and nothing beyond this.
We call this set the declassification associated to tr, written Dectr.

We want to establish, under certain conditions, upper bounds for declassification, or
in set-theoretic terms, lower bounds for Dectr. To this end, we further fix:

– a declassification bound B : List(Val)→ List(Val)→ Bool
– a declassification trigger T : Trans→ Bool

The system is called bounded-deducibility-secure (BD-secure) if for all tr ∈ Trace such
that never T tr, it holds that {vl1 | B (V tr) vl1} ⊆ Dectr (where “never T tr” means “T
holds for no transition in tr”). Informally, BD security expresses the following:
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If the trigger T never holds (i.e., unless T eventually holds, i.e., until T holds),
the observer O can learn nothing about the values V beyond B

We can think of B positively, as an upper bound for declassification, or negatively, as
a lower bound for uncertainty. On the other hand,T is a trigger removing the boundB—
as soon as T becomes true, the containment of declassification is no longer guaranteed.
In the extreme case of B being everywhere true and T everywhere false, we have no
declassification, i.e., total uncertainty—in other words, standard nondeducibility.

Unfolding some definitions, we can alternatively express BD security as the follow-
ing being true for all tr ∈ Valid and vl, vl1 ∈ List(Val):

never T tr ∧ V tr = vl ∧ B vl vl1 → (∃tr1 ∈ Valid.O tr1 = O tr ∧ V tr1 = vl1) (∗)

4.3 Discussion
BD security is a natural extension of nondeducibility. If one considers the latter as
reasonably expressing the absence of information leak, then one is likely to accept the
former as a reasonable means to indicate bounds on the leak. Unlike previous notions
in the literature, BD security allows to express the bounds as precisely as desired.

As an extension of nondeducibility, BD security is subject to the same criticism. The
problem with nondeducibility [25, 27, 35] is that in some cases it is too weak, since it
takes as plausible each possible explanation for an observation: if the observation se-
quence is ol, then any trace tr such that O tr = vl is plausible. But what if the low-level
observers can synchronize their actions and observations with the actions of other enti-
ties, such as a high-level user or a Trojan horse acting on his behalf, or even a third-party
entity that is neither high nor low? Even without synchronization, the low-level observer
may learn from outside the system, of certain behavior patterns of the high-level users.
Then the set of plausible explanations can be reduced, leading to information leak.

In our case, the low-level observers are a group of users assumed to never acquire
a certain status (e.g., authorship of a paper). The other users of the system are either
“high-level” (e.g., the authors of the paper) or “third-party” (e.g., the non-author users
not in the group of observers). Concerning the high-level users, it does not make sense
to assume that they would cooperate to leak information through the system, since they
certainly have better means to do that outside the system, e.g., via email. Users also
do not have to trust external software, since everything is filtered through the system
kernel—e.g., a chair can run an external linear-programming tool for assigning review-
ers, but each assignment is still done through the verified step function. As for the
possible third-party cooperation towards leaks of information, this is bypassed by our
consideration of arbitrary groups of observers: in the worst case, all the unauthorized
users can be placed in this group. However, the possibility to learn and exploit behavior
patterns from outside the system is not explicitly addressed by BD security—it would
be best dealt with by a probabilistic analysis.

4.4 Instantiation to Our Running Examples
Recall that BD security involves the following parameters:

– an IO automaton (State, Act,Out, istate, step)
– infrastructures for values (Val, ϕ, f ) and observations (Obs, γ, g)
– a declassification specification: trigger T and bound B
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In particular, this applies to our conference system automaton. BD security then cap-
tures our examples by suitably instantiating the observation and declassification param-
eters. For all our examples, we have the same observation infrastructure. We fix UIDs,
the set of IDs of the observing users. We let Obs = Act×Out. Given a transition, γ
holds iff the action’s subject is a user in UIDs, and g returns the pair (action,output).
O tr thus purges tr keeping only actions of users in UIDs.

The value infrastructure depends on the considered type of document. For PAP1 and
PAP2 we fix PID, the ID of the paper of interest. We let Val = List(Paper_Content).
Given a transition, ϕ holds iff the action is an upload of paper PID, and f returns the
uploaded content. V tr thus returns the list of all uploaded paper contents for PID.

The declassification triggers and bounds are specific to each example. For PAP1,
we define T(s, a, o, s′) as “in state s′, some user in UIDs is an author of PID or a PC
member of some conference cid where PID is registered,” formally:

∃uid ∈ UIDs. isAut s′ uid PID ∨ (∃cid. PID ∈ paperIDs s′ cid ∧ isPC s′ uid cid)

Intuitively, the intent with PAP1 is that, provided T never holds, users in UIDs learn
nothing about the various consecutive versions of PID. But is it true that they can learn
absolutely nothing? There is a remote possibility that a user could infer that no version
was submitted (by probing the current phases of the conferences in the system and
noticing that none has reached the submission phase). But indeed, nothing beyond this
quite harmless information should leak: any nonempty value sequence vl might as well
have been any other (possibly empty!) sequence vl1. Hence we define B vl vl1 as vl �= [].

For PAP2, the trigger involves only authorship, ignoring PC membership at the pa-
per’s conference—we take T(s, a, o, s′) to be ∃uid ∈ UIDs. isAut s′ uid PID. Here we
have a genuine example of nontrivial declassification bound—since a PC member can
learn the paper’s content but only as its last submitted version, we define B vl vl1 as
vl �= [] �= vl1∧ last vl = last vl1, where the function last returns the last element of a list.

For REV, the value infrastructure refers not only to the review’s content but also to
the conference phase: Val= List (Phase×Review_Content). The functions ϕ and f are
defined similarly to those for paper contents, mutatis mutandis; in particular, f returns
a pair (ph, rct) consisting of the conference’s current phase and the updated review’s
content; hence V returns a list of such pairs. The trigger T is similar to that of PAP2 but
refers to review authorship rather than paper authorship. The bound B is more complex.
Any user can infer that the only possiblities for the phase are Reviewing and Discussion,
in this order—i.e., that vl has the form ul ·wl such that the pairs in ul have Reviewing as
first component and the pairs in wl have Discussion. Moreover, any PC member having
no conflict with PID can learn last ul (the last submitted version before Discussion),
and wl (the versions updated during Discussion, public to non-conflict PC members);
but (until T holds) nothing beyond these. So B vl vl1 states that vl decomposes as ul ·wl
as indicated above, vl1 decomposes similarly as ul1 ·wl, and last ul = last ul1.

DIS needs rephrasing to be captured as BD security. It can be decomposed into:

DIS1: An author always has conflict with his papers
DIS2: A group of users learn nothing about a paper’s discussion unless one of them

becomes a PC member at the paper’s conference having no conflict with the paper

DIS1 is a safety property. DIS2 is an instance of BD security defined as expected.
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Source Declassification Trigger Declassification Bound
1 Paper Content Paper Authorship Last Uploaded Version
2 Paper Authorship or PC MembershipB Absence of Any Upload

3 Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

4
Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

5
Review Authorship or
Non-Conflict PC MembershipD or
PC MembershipN or Paper AuthorshipN

Absence of Any Edit

6 Discussion Non-Conflict PC Membership Absence of Any Edit
7 Decision Non-Conflict PC Membership Last Edited Version

8
Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Absence of Any Edit

9
Reviewer
Assignment

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers and No. of Reviews

10
Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review

4.5 More Instances

The above table shows an array of confidentiality properties formulated as BD security.
They provide a classification of relevant roles, statuses and conference phases that are
necessary conditions for degrees of information release. The observation infrastructure
is always the same, given by the actions and outputs of a fixed group of users as in §4.4.

The table lists several information sources, each yielding a different value infrastruc-
ture. In rows 1–8, the sources are actual documents: paper content, review, discussion,
decision. The properties PAP1, PAP2, REV and DIS2 form the rows 2, 1, 3, and 6. In
rows 9 and 10, the sources are the identities of the reviewers assigned to the paper.

The declassification triggers express paper or review authorship (being or becom-
ing an author of the indicated document) or PC membership at the paper’s conference,
with or without the requirement of lack of conflict with the paper. Some triggers are
also listed with “phase stamps” that strengthens the statements. E.g., row 2 contains a
strengthening of the trigger discussed so far for PAP1: “PC membershipB” should be
read as “PC membership and paper’s conference phase being at least bidding.” Some of
the triggers require lack of conflict with the paper, which is often important for the se-
curity statement to be strong enough. This is the case of DIS2 (row 6), since without the
non-conflict assumption DIS2 and DIS1 would no longer imply DIS. By contrast, lack
of conflict cannot be added to PC membership in PAP1 (row 2), since such a stronger
version would not hold: even if a PC member decides to indicate conflict with a paper,
this happens after he had the opportunity to see the paper’s content.

Most of the declassification bounds are similar to those from §4.4. The row 10 prop-
erty states that, unless one becomes a PC member having no conflict with a paper in the
reviewing phase or a paper’s author in the notification phase, one can’t learn anything
about the paper’s assigned reviewers beyond what everyone knows: that reviewers are
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non-conflict PC members. If we remove the non-authorship restriction, then the user
may also infer the number of reviewers—but, as row 9 states, nothing beyond this.

5 Verification

To cope with general declassification bounds, BD security speaks about system traces
in conjunction with value sequences that must be produced by these traces. We extend
the unwinding proof technique to this situation and employ the result to the verification
of our confidentiality properties.

5.1 Unwinding Proof Method

We see from definition (∗) that to prove BD security, one starts with a valid tr (starting
in s and having value sequence vl) and an “alternative” value sequence vl1 such that
B vl vl1 and one needs to produce an “alternative” trace tr1 starting in s whose value
sequence is vl1 and whose observation sequence is the same as that of tr.

In the tradition of unwinding for noninterference [14, 34], we wish to construct tr1

from tr incrementally: as tr grows, tr1 should grow nearly synchronously. In order for
tr1 to have the same observation sequence (produced by O) as tr, we need to require
that the observable transitions of tr1 (i.e., for which γ holds) be identical to those of tr.

As for the value sequences (produced by V), we face the following problem. In con-
trast to the unwinding relations studied so far in the literature, we must consider an
additional parameter, namely the a priori given value sequence vl1 that needs to be
produced by tr1. In fact, it appears that one would need to maintain, besides an unwind-
ing relation on states θ : State→ State→ Bool, also an “evolving” generalization of
the declassification trigger B; then θ and B would certainly need to be synchronized.
We resolve this by enlarging the domain of the unwindings to quaternary relations
Δ : State→ List(Val)→ State→ List(Val)→ Bool that generalize both θ and B. Intu-
itively, Δ s vl s1 vl1 keeps track of the current state of tr, the remaining value sequence
of tr, the current state of tr1, and the remaining value sequence of tr1.

Let the predicate consume trn vl vl′ mean that the transition trn either produces a
value that is consumed from vl yielding vl′ or produces no value and vl = vl′. Formally:

if ϕ trn then (vl �= [] ∧ f trn = head vl ∧ vl′ = tail vl) else (vl′ = vl)
In light of the above discussion, we are tempted to define an unwinding as a relation Δ
such that Δ s vl s1 vl1 implies either of the following conditions:

– REACTION: For any valid transition (s, a, o, s′) and lists of values vl, vl′ such that
consume (s, a, o, s′) vl vl′ holds, either of the following holds:
• IGNORE: The transition yields no observation (¬ γ a o) and Δ s′ vl′ s1 vl1 holds
• MATCH: There exist a valid transition (s1, a1, o1, s′1) and a list of values vl′1

such that consume (s, a, o, s′) vl1 vl′1 and Δ s1 vl′ s′1 vl′1 hold
– INDEPENDENT ACTION: There exist a valid transition (s1, a1, o1, s′1) that yields

no observation (¬ γ a1 o1) and a list of values vl′1 such that consume a1 o1 vl1 vl′1
and Δ s vl s′1 vl′1 hold

The intent is that BD security should hold if there exists an unwinding Δ that “initially
includes” B. A trace tr1 could then be constructed incrementally from tr, vl and vl1,
applying REACTION or INDEPENDENT ACTION until the three lists become empty.
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Progress. However, such an argument faces difficulties. First, INDEPENDENT ACTION

is not guaranteed to decrease any of the lists. To address this, we strengthen INDEPEN-
DENT ACTION by adding the requirement that ϕ (s1, a1, o1, s′1) holds—this ensures
that vl1 decreases (i.e., vl′1 is strictly shorter then vl1). This way, we know that each RE-
ACTION and INDEPENDENT ACTION decreases at least one list: the former tr and the
latter vl1; and since vl is empty whenever tr is, the progress problem seems resolved.

Yet, there is a second, more subtle difficulty: after tr has become empty, how can we
know that vl1 will start decreasing? With the restrictions so far, one may still choose
REACTION with parameters that leave vl1 unaffected. So we need to make sure that the
following implication holds: if tr = [] and vl1 �= [], then vl1 will be consumed. Since
from inside the unwinding relation we cannot (and do not want to!) see tr, but only
vl, we weaken the assumption of this implication to “if vl = [] and vl1 �= [];” more-
over, we strengthen its conclusion to requiring that only the INDEPENDENT ACTION

choice (guaranteed to shorten vl1) be available. Equivalently, we condition the alterna-
tive choice of REACTION by the negation of the above, namely vl �= [] ∨ vl1 = [].

Exit Condition. The third observation is not concerned with a difficulty, but with an
optimization. We note that BD security holds trivially if the original trace tr cannot
saturate the value list vl, i.e., if V tr �= vl—this happens if and only if, at some point, an
element v of vl can no longer be saturated, i.e., for some decompositions tr = tr′ · tr′′
and vl = vl′ · [v] ·vl′′ of tr and vl, it holds that V tr′ = vl′ and ∀trn∈ tr′′. ϕ trn→ f trn �= v.
Can we detect such a situation from within Δ? The answer is (an over-approximated)
yes: after Δ s vl s1 vl1 evolves by REACTION and INDEPENDENT ACTION to Δ s′ ([v] ·
vl′′) s′1 vl′1 for some s′, s′1 and vl′1 (presumably consuming tr′ and saturating the vl′ prefix
of vl), then one can safely exit the game if one proves that no valid trace tr′′ starting
from s′ can ever saturate v, in that it satisfies ∀trn ∈ tr′′. ϕ trn→ f trn �= v.

The final definition of BD unwinding is given below, where reach : State→ Bool
is the state reachability predicate and reach ¬ T : State→ Bool is its strengthening to
reachability by transitions that do not satisfy T:

unwind Δ ≡ ∀s vl s1 vl1. reach ¬ T s ∧ reach s1 ∧ Δ s vl s1 vl1 →
((vl �= [] ∨ vl1 = []) ∧ reaction Δ s s vl s1 vl1) ∨
iaction Δ s s vl s1 vl1 ∨
(vl �= [] ∧ exit s (head vl))

The predicates iaction and reaction formalize INDEPENDENT ACTION (with its afore-
mentioned strengthening) and REACTION, the latter being a disjunction of predicates
formalizing IGNORE and MATCH. The predicate exit s v is defined as ∀ tr trn. (tr ·
[trn]) ∈ Valids ∧ ϕ trn→ f trn �= v. It expresses a safety property, and therefore can be
verified in a trace-free manner. We can now prove that indeed any unwinding relation
constructs an “alternative” trace tr1 from any trace tr starting in a P-reachable state:

Lemma. unwindΔ ∧ reach ¬ T s ∧ reach s1 ∧ Δ s vl s1 vl1 ∧ tr ∈Valids ∧ never T tr ∧
V tr = vl → (∃tr1. tr1 ∈ Valids1 ∧ O tr1 = O tr ∧ V tr1 = vl1)

Unwinding Theorem. If unwind Δ and ∀vl vl1. B vl vl1 → Δ istate vl istate vl1, then
the system is BD-secure.
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Proof ideas. The lemma follows by induction on length tr + length vl1 (as discussed
above about progress). The theorem follows from the lemma taking s1 = s = istate.

According to the theorem, BD unwinding is a sound proof method for BD security:
to check BD security it suffices to define a relation Δ and prove that it coincides with B
on the initial state and that it is a BD unwinding.

5.2 Compositional Reasoning
To keep each reasoning step manageable, it is convenient to allow decomposing the
single unwinding relation Δ into relations Δ1, . . . , Δn. Unlike Δ, a component Δi may
unwind not only to itself but to any combination of Δ j’s. Technically, we define the
predicate unwind_to just like unwind but taking two arguments instead of one: a first
relation and a second relation to which the first one unwinds. We replace the single
requirement unwind Δ with a set of requirements unwind_to Δi (disj (next Δi)), where
next Δi is a chosen subset of {Δ1, . . . , Δn} and disj takes the disjunction of a set of predi-
cates. This enables a form of sound compositional reasoning: if we verify a condition as
above for each componentΔi, we obtain an overall unwinding relation disj {Δ1, . . . , Δn}.

The network of components can form any directed graph —Fig. 3 shows an example.
However, our unwinding proofs will be phase-directed, and hence the following linear
network will suffice (Fig. 4): each Δi unwinds either to itself, or to Δi+1 (if i �= n), or to
an exit component Δe that invariably chooses the “exit” unwinding condition. For the
first component, Δ1, we need to verify that it extends B on the initial state.

5.3 Verification of Concrete Instances
We have verified all the BD security instances listed in §4.5. For each of them we
defined a suitable chain of unwinding components Δi as in Fig. 4.

Recall from the definition of BD security that one needs to construct an alternative
trace tr1 (which produces the value sequence vl1) from the original trace tr (which
produces the value sequence vl). A chain of Δi’s witnesses the strategy for such a con-
struction, although it does not record the whole traces tr1 and tr but only the states they
have reached so far, s and s1. The separation between Δi’s is guided by milestones in
the journey of tr and tr1, such as: a paper’s registration to a conference, conference
phases, the registration of a relevant agent like a chair, a non-conflicted PC member, or
a reviewer. E.g., Fig. 5 shows the unwinding components in the proof of PAP2, where
B vl vl1 is the declassification bound (vl �= [] �= vl1 ∧ last vl = last vl1) and the changes
from Δi to Δi+1 are emphasized.
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Δ1 s vl s1 vl1 ¬ (∃cid. PID ∈ paperIDs s cid) ∧ s = s1 ∧ B vl vl1
Δ2 s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid ∧ phase s cid = Submission )∧ s =PID s1 ∧B vl vl1
Δ3 s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid)∧ s = s1 ∧ vl = vl1 = []

Δe s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid ∧ phase s cid > Submission) ∧ vl �= []

Fig. 5. The unwinding components for the proof of PAP2

Each property has one or more critical phases, the only phases when vl and vl1 can
be produced. E.g., for PAP2, paper uploading is only available in Submission (while for
REV, there is an update action in Reviewing, and an u-update one in Discussion). Until
those phases, tr1 proceeds synchronously to tr taking the same actions—consequently,
the states s and s1 are equal in Δ1. In the critical phases, the traces tr and tr1 will diverge,
due to the need of producing different (but B-related) value sequences. As a result, the
equality between s and s1 is replaced with the weaker relation of equality everywhere
except on certain components of the state, e.g., the content of a given paper (written
=PID for PAP2), or of a given review, or of the previous versions of a given review, etc.

At the end of the critical phases, tr1 will usually need to resynchronize with tr and
hereafter proceed with identical actions. Consequently, s and s1 will become connected
by a stronger “equality everywhere except” relation or even plain equality again. The
smooth transition between consecutive components Δi and Δi+1 that impose different
state equalities is ensured by a suitable INDEPENDENT-ACTION/REACTION strategy.
For PAP2, such a strategy for transitioning from Δ2 to Δ3 (with emptying vl and vl1 at
the same time) is the following: by INDEPENDENT ACTION, tr1 will produce all values
in vl1 save for the last one, which will be produced by REACTION in sync with tr when
tr reaches the last value in vl; this is possible since B guarantees last vl = last vl1. The
exit component Δe witnesses situations (s, vl) not producible from any system trace tr
in order to exclude them via Exit. For PAP2, such a situation is the paper’s conference
phase exceeding Submission with values vl still to be produced. Δe is reached from Δ2

when a change-phase action occurs.
Several safety properties are needed in the unwinding proofs. For PAP2, we use that

there is at most one conference to which a paper can be registered—this ensures that no
value can be produced (i.e., ϕ (head vl) does not hold) from within Δ1 or Δ2, since no
paper upload is possible without prior registration.

The verification took us two person months, during which we also developed reusable
proof infrastructure and automation. Eventually, we could prove the auxiliary safety
properties automatically. The unwinding proofs still required some interaction for in-
dicating the INDEPENDENT-ACTION/REACTION strategy—we are currently exploring
the prospect of fully automating the strategy part too, based on a suitable security-
preserving abstraction in conjunction with an external model checker.

Conclusion. Most of the information-flow security models proposed by theoreticians
have not been confronted with the complexity of a realistic application, and therefore
fail to address, or abstract away from, important aspects of the conditions for infor-
mation release or restraint. In our verification case study, we approached the problem
bottom-up: we faithfully formalized a realistic system, on which we identified, for-
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mulated and verified confidentiality properties. This experience led to the design of a
flexible verification infrastructure for restricted information flow in IO automata.
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Abstract. In this paper we present Vac, an automatic tool for verifying
security properties of administrative Role-based Access Control (RBAC).
RBAC has become an increasingly popular access control model, partic-
ularly suitable for large organizations, and it is implemented in several
software. Automatic security analysis of administrative RBAC systems is
recognized as an important problem, as an analysis tool can help designers
check whether their policies meet expected security properties. Vac con-
verts administrativeRBAC policies to imperative programs that simulate
the policies both precisely and abstractly and supports several automatic
verification back-ends to analyze the resulting programs. In this paper, we
describe the architecture ofVac and overview the analysis techniques that
have been implemented in the tool. We also report on experiments with
several benchmarks from the literature.

1 Introduction

Access control models allow to restrict access to shared resources by selectively
assigning permissions to users. Role-based Access Control (RBAC) has become
an increasingly popular access control model [5], it is standardized by NIST and
is implemented in several software, such as Microsoft SQL Servers, Microsoft
Active Directory, SELinux, and Oracle DBMS. RBAC reduces the complex-
ity of user permissions administration by grouping users into roles and assign-
ing permissions to each role. An Administrative RBAC User-Role Assignment
(ARBAC-URA) policy defines a set of administrative roles and rules which
specify how administrators can assign or can revoke roles to users [27].

Automatic security analysis ofARBAC systems is recognized as an important
problem, as an analysis tool can help designers check whether their policies meet
the expected security properties [25]. This is particularly desirable whenever
policies need to be correct by design, for instance when accesses are not mediated
by a monitor [6]. Most interesting security properties, such as privilege escalation
and separation of duties, can be phrased as the role-reachability problem (i.e., is
there a reachable configuration where some user can eventually be assigned to
a target role?) [19, 7]. The role-reachability problem is known to be PSPACE-
complete and hard to solve on real-world policies having hundreds of roles and
rules and thousands of users [28].
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Fig. 1. Vac’s Architecture

In this paper, we present Vac (Verifier of Access Control), an automatic and
scalable tool for solving the role-reachability problem of ARBAC-URA policies.
The main components of Vac are a pruning module that aims at simplifying the
state space by reducing a policy to a smaller one that preserves the reachability
of the target role, and a policy-to-program translation module that converts a
policy to an imperative program that simulates the policy both precisely and
abstractly. Vac supports a plethora of automatic verification back-ends for the
analysis of the resulting programs and has a built-in counterexample generator.

In the rest of the paper, we describe the architecture of Vac and overview
the analysis techniques implemented in the tool. Finally, we present experimen-
tal results showing the effectiveness of Vac on analyzing realistic and complex
benchmarks from the literature.

2 Software Architecture and Verification Approaches

The high-level architecture of Vac is shown in Fig. 1. We first describe the input
format of Vac and then its components.
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Input Format. We refer to [8] for the syntax and the semantics of an ARBAC-

URA system. To illustrate the input format of Vac1 we use the toy example of
an hospital policy shown in Fig. 2.

����� and ����� are keywords used
����� Employee Doctor Manager

Patient;
����� Anna Luke Steve Lucy;
�� 〈Anna, Doctor〉 〈Lucy, Man-

ager〉 〈Luke, Doctor〉 〈Steve, Pa-

tient〉;
	� 〈Doctor, Patient〉 〈Doctor,

Manager〉;
	� 〈Doctor, Employee & -Doctor,

Manager〉 〈Doctor, true, Patient〉;
�
�� Anna Luke;
���� Doctor;

Fig. 2. A Vac’s input file

to list roles and users, respectively.��
defines the initial user-role assignment,
whereas 	� and 	� specify the ad-
ministrative rules Can-Revoke and
Can-Assign, respectively. A 	� rule
is a pair of roles. For instance, the 	�
rule 〈 Doctor, Patient 〉 says that
any administrator with role Doctor

can revoke the role Patient from any
user. A 	� rule also contains a pre-
condition, that is, a Boolean formula
written as a conjunction of literals over
roles. For instance, the	� rule 〈Doc-

tor, Employee & -Doctor, Manager 〉 says that any administrator with
role Doctor can assign any user u to the role Manager provided that u is
member of Employee and not a member of Doctor. The keyword �
�� is
used to list all users that are also administrators2. Finally, the keyword ����

is used to specify the role-reachability query, namely the target role. Vac can
also be used to check whether the target role is reachable by a specific user. For
instance, the query ���� Lucy Doctor allows to check whether Lucy can
ever obtain role Doctor.

Pruning Module. This module takes as input a policy, which we refer as the
original policy, and outputs a simplified one (in the same format as the input)
that preserves the reachability of the target role. The module implements the
pruning heuristic from [8] which is crucial for scalability. It eliminates roles, rules
and users with the aim of reducing the state space to explore. This heuristic re-
lies upon a fundamental theorem which states that the role-reachability problem
can be solved by tracking only k+1 users, where k is the number of adminis-
trative roles [8]. Thus, the heuristic exploits sufficient conditions to eliminate
administrative roles that are not relevant for the analysis. The effectiveness of
the above method is amplified by a static pruning algorithm consisting of six
pruning actions: the first three aim at discarding roles that are irrelevant to the
reachability of the target role while the remaining ones identify administrative
rules that can be combined or eliminated. Furthermore, whenever the target role
is reachable within two steps in the intermediate policy, the pruning procedure
terminates immediately returning the counterexample.

Policy-to-Program Translation. This module takes as input a policy and
translates it into a program that simulates the evolution of the system. Vac
provides the following two policy-to-program translations:

1
Vac’s input format is compatible with that of Mohawk [16].

2 The list of administrators can be obtained from 	� and 	� rules. However, we
include the keyword �
�� to be consistent with Mohawk’s input format [16].



Vac - Verifier of Administrative Role-Based Access Control Policies 187

Abstract Transformer. This module implements the policy-to-program transla-
tion proposed in [7]. A policy P is translated into an imperative non-deterministic
while-program P ′ with an error location. P ′ uses only integer variables to capture
the number of users in a subset of role combinations and abstractly simulates the
evolution of the system in such a way that if the error location is not reachable
then the role reachability problem has a negative answer on P . On the contrary,
if the error location is reachable in P ′, this may correspond to a false positive
as P ′ over-approximates the behaviour of P . P ′ is then analyzed by Vac using
Interproc [18] with the box abstract domain.
Precise Transformer. This module translates a policy P into a Boolean program
P ′ that precisely simulates the evolution of the system tracking at most k+1
users picked non-deterministically, where k is the number of administrative roles.
The correctness of this approach relies on a fundamental theorem proven in [8].
The program uses k+1 blocks of n Boolean variables, where n is the number
of roles in the policy. Each block tracks the role-membership of a selected user.
The rest of the program consists of an infinite loop in which the administrative
rules are non-deterministically simulated on a non-deterministically chosen user.
The loop contains also an error location that is reachable whenever a tracked
user reaches the target role. The role-reachability problem admits a positive
answer on P if and only if the error location is reachable in P ′. The reach-
ability problem for Boolean programs is decidable and Vac supports several
automated tools as back-ends for the analysis of P ′. In particular, a complete
analysis can be performed by using either (1) one of the following tools for Horn
clauses: Z3 (μZ) [4, 13], HSF [11, 12], and Eldarica [15, 14], or (2) Moped [20, 29]
and Getafix [23, 24] which are model checkers for Boolean Programs based on
BDDs, or (3) NuSMV a model checker based on BDDs and SAT solvers [2, 3].
Vac uses the C bounded model checker CBMC [21, 22] for under-approximate
analysis, particularly effective to find errors. If CBMC finds an error, it returns a
counterexample showing how the error location can be reached in the program.
Otherwise, Vac reports Unknown.

Counterexample Module. Vac implements an involved built-in counterexam-
ple generationmodule that takes as input the counterexample of the pruned policy
returned by CBMC along with some information collected during the execution
of the pruning, and outputs a counterexample (attack) of the original policy.

3 Implementation and Availability

Implementation.Vac is implemented in C and has dependencies with ANTLR
(v3.2 for C), ROXML, and CCL libraries3.
Availability. The source code, a set of benchmarks and static Linux binaries
are available at: http://users.ecs.soton.ac.uk/gp4/VAC.
Usage. The shell command ./vac.sh <InputFile> runs Vac with the default
setting: (1) runs the abstract transformer and Interproc to prove correctness;

3 ANTLR, ROXML and CCL are respectively available at http://www.antlr.org/,
http://www.libroxml.net, and https://code.google.com/p/ccl/.

http://users.ecs.soton.ac.uk/gp4/VAC
http://www.antlr.org/
http://www.libroxml.net
https://code.google.com/p/ccl/
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Table 1. Vac’s results on realistic case studies

ARBAC Policy Pruning Reach
name #roles #rules #admin #users #roles #rules #admin #users Time Answer Time

1

Hospital1 13 37 5 1092 4 5 3 6 0.009s No 0.029s
Hospital2 13 37 5 1092 4 5 3 6 0.009s No 0.023s
Hospital3 13 37 5 1092 3 2 1 4 0.009s Yes 0.103s
Hospital4 13 37 5 1092 4 4 1 4 0.009s Yes 0.110s

2

University1 32 449 9 943 6 7 3 13 0.009s No 0.034s
University2 32 449 9 943 6 8 3 13 0.004s Yes 0.192s
University3 32 449 9 943 4 5 1 6 0.006s No 0.021s
University4 32 449 9 943 12 37 4 31 0.004s Yes 1.571s

3

Bank1 343 2225 1 2 3 2 1 2 0.007s Yes 0.112s
Bank2 683 4445 1 2 3 2 1 2 0.019s Yes 0.139s
Bank3 1023 6665 1 2 3 2 1 2 0.024s Yes 0.167s
Bank4 1363 8885 1 2 3 2 1 2 0.030s Yes 0.168s
Bank5 343 2225 1 2 3 2 1 2 0.044s Yes 0.138s
Bank6 683 4445 1 2 3 2 1 2 0.155s Yes 0.247s
Bank7 1023 6665 1 2 3 2 1 2 0.300s Yes 0.435s
Bank8 1363 8885 1 2 3 2 1 2 0.522s Yes 0.663s
Bank9 531 5126 1 2000 2 0 1 2 0.244s No 0.253s
Bank10 531 5126 1 2000 2 0 1 2 0.248s No 0.254s
Bank11 531 5126 1 2000 3 2 1 2 0.245s Yes 0.396s
Bank12 531 5126 1 2000 6 5 1 2 0.066s Yes 0.223s

(2) if a proof cannot be provided, Vac runs the precise transformer and CBMC
(with unwind set to 2) to find a counterexample; (3) if CBMC does not find an
error,Vac runs μZ for complete analysis.Vac has options to print the translated
programs and the simplified policies, and select the back-end for the analysis.

4 Experimental Results

We evaluate Vac, using the default setting, on several benchmarks from the
literature. All experiments have been performed on a Linux 64-bit machine with
Intel Core i7-3770 CPU and 16GB of RAM.

Table 1 shows the results on three sets of benchmarks based on realistic case
studies. The first two case studies are carried out by Stoller at al. [30] and
represent policies for a university and for an hospital, respectively. The third
case study, conducted by Jayaraman et al. [16], models a bank with several
branches4. While the first eight bank policies are from [16], we have built the last
four from [16] by slightly modifying their policies to add more users and to make
two of them correct. Table 1 reports the number of roles, rules, administrative
roles and users of both the original policy and that after pruning. It also reports
the tool’s answer, the time taken by the pruning, and the overall analysis time.

Table 1 shows that the pruning module significantly reduces the size of these
policies. Furthermore, Vac is extremely efficient in verifying these policies,
regardless of whether the target role is reachable or not. More precisely, all
benchmarks with a negative answer can be proved correct in less than a second.
Similarly, on benchmarks with a reachable target the analysis takes less than 2
seconds including the time to generate the counterexample.

4 The number of roles and rules depends on the number of branches considered. For
instance, 343 roles corresponds to 10 branches and 1363 to 40 branches.
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Table 2. Vac’ s results on complex test suites

Size Policy
Vac

First Suite Second Suite Third Suite

#roles #rules
Pruning Verification Pruning Verification Pruning Verification

#roles #rules Time #roles #rules Time #roles #rules Time
4 10 3 1 0.080s 3 1 0.084s 2 1 0.085s
5 25 4 2 0.087s 4 2 0.096s 2 1 0.092s

20 100 3 1 0.099s 3 1 0.089s 3 2 0.087s
40 200 4 2 0.099s 4 2 0.096s 2 1 0.091s

200 1000 2 1 0.101s 2 1 0.088s 2 1 0.096s
500 2500 3 1 0.100s 3 1 0.104s 3 2 0.128s

4000 20000 2 1 0.239s 2 1 0.198s 4 3 0.252s
20000 80000 2 1 0.844s 2 1 0.579s 3 2 0.922s
30000 120000 2 1 1.288s 2 1 0.849s 2 1 1.285s
40000 200000 2 1 1.586s 2 1 1.100s 4 3 1.646s

Table 2 shows the results on three sets of complex test suites, synthetically
generated by Jayaraman et al. [16], with the aim of capturing the complexity of
real systems. Each suite consists of ten policies where the number of roles and
rules ranges respectively from 4 to 40k and 10 to 200k. The role-reachability
problem has a positive answer on all these benchmarks. Vac is very effective on
these policies as well. The analysis takes less than 2 seconds on all policies and
the pruning module reduces the policies to equivalent systems with a handful of
roles and rules.

5 Conclusions

We have presented Vac an automatic and efficient tool for verifying security
properties of administrative role-based access control policies. The main com-
ponents of Vac are a pruning module which is essential for scalability, and a
policy-to-program translation module that reduces the role-reachability prob-
lem to program verification problems. It supports several tools for the analysis,
such as CBMC, Eldarica, Getafix, Interproc, Moped, NuSMV, HSF, and Z3
(μZ). Furthermore, it can provide counterexamples.

Related Work. Among the state-of-the-art tools for the analysis of ARBAC-

URA systems, Vac is the only tool that simultaneously has the following fea-
tures: (1) complete analysis (2) counterexample generation, and (3) scalable
analysis on large policies. Mohawk [16] performs only under-approximate analy-
sis, though it now considers thresholds for completeness [17]; RBAC-PAT [10] is
unable to handle large policies. They also can only analyze policies with separate
administration where administrators cannot change their role-membership; this
is not realistic, but simplifies analysis as only a single user needs to be tracked.

asaspXL is the latest tool developed by Ranise et al. for the analysis of
ARBAC policies [26]. A previous version (asasp [1]) was not able to scale on
large policies. asaspXL is mainly designed to handle large policies and does so
by encoding the instances to MCMT [9] which is a model checker for infinite state
systems based on SMT solvers and backward reachability. In contrast, Vac does
not target any specific kind of instances, and handles large policies by carrying
out an effective pruning that is independent of the verification technique used
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for the analysis. Vac and asaspXL can potentially handle the same kind of
instances though they have different input formats.

All tools above do not generate counterexamples. Furthermore, Vac, on the
policies of Section 4, has either the same performances or outperforms the tools
mentioned above.Vac has also been used for the analysis of temporal RBAC [31].

Acknowledgements. Research was partially supported by ERC Advanced
Grant ERC-2010-AdG-267188-CRIPTO and NSF CCF #1018182.
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cation Toolkit for Numerical Transition Systems. In: Giannakopoulou, D., Méry,
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Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
time properties. In the automata-theoretic approach to LTL verification, formu-
lae are translated into ω-automata, and the product of these automata with the
system is analyzed. Therefore, generating small ω-automata is crucial for the
efficiency of the approach.

In quantitative probabilistic verification, LTL formulae need to be translated
into deterministic ω-automata [BK08, CGK13]. Until recently, this required to
proceed in two steps: first translate the formula into a non-deterministic Büchi
automaton (NBA), and then apply Safra’s construction [Saf88], or improve-
ments on it [Pit06, Sch09] to transform the NBA into a deterministic automaton
(usually a Rabin automaton, or DRA). This is also the approach adopted in
PRISM [KNP11], a leading probabilistic model checker, which reimplements the
optimized Safra’s construction of ltl2dstar [Kle].

In [KE12] we presented an algorithm that directly constructs a generalized
DRA (GDRA) for the fragment of LTL containing only the temporal operators
F and G. The GDRA can be either (1) degeneralized into a standard DRA, or
(2) used directly in the probabilistic verification process [CGK13]. In both cases
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we get much smaller automata for many formulae. For instance, the standard
approach translates a conjunction of three fairness constraints into an automaton
with over a million states, while the algorithm of [KE12] yields a GDRA with
one single state (when acceptance is defined on transitions), and a DRA with
462 states. In [GKE12, KLG13] our approach was extended to larger fragments
of LTL containing the X operator and restricted appearances ofU, but a general
algorithm remained elusive.

In this paper we present a novel approach able to handle full LTL, and even
the alternation-free linear-time μ-calculus. The approach is compositional: the
automaton is obtained as a parallel composition of automata for different parts of
the formula, running in lockstep1. More specifically, the automaton is the parallel
composition of a master automaton and an array of slave automata, one for each
G-subformula of the original formula, say ϕ. Intuitively, the master monitors the
formula that remains to be fulfilled (for example, if ϕ = (¬a∧Xa)∨XXGa, then
the remaining formula after ∅{a} is tt, and after {a} it is XGa), and takes care
of checking safety and reachability properties. The slave for a subformula Gψ of
ϕ checks whether Gψ eventually holds, i.e., whether FGψ holds. It also monitors
the formula that remains to be fulfilled, but only partially: more precisely, it does
not monitor any G-subformula of ψ, as other slaves are responsible for them. For
instance, if ψ = a∧Gb∧Gc, then the slave for Gψ only checks that eventually a
always holds, and “delegates” checking FGb and FGc to other slaves. Further,
and crucially, the slave may provide the information that not only FGψ, but a
stronger formula holds; the master needs this to decide that, for instance, not
only FGϕ but even XGϕ holds.

The acceptance condition of the parallel composition of master and slaves is a
disjunction over all possible subsets of G-subformulas, and all possible stronger
formulas the slaves can check. The parallel composition accepts a word with the
disjunct corresponding to the subset of formulas which hold in it.

The paper is organized incrementally. In Section 3 we show how to construct
a DRA for a formula FGϕ, where ϕ has no occurrence of G. This gives the DRA
for a bottom-level slave. Section 4 constructs a DRA for an arbitrary formula
FGϕ, which gives the DRA for a general slave, in charge of a formula that
possible has G-subformulas. Finally, Section 5 constructs a DRA for arbitrary
formulas by introducing the master and its parallel composition with the slaves.
Full proofs can be found in [EK14].

Related work. There are many constructions translating LTL to NBA, e.g.,
[Cou99, DGV99, EH00, SB00, GO01, GL02, Fri03, BKRS12, DL13]. The one rec-
ommended by ltl2dstar and used in PRISM is LTL2BA [GO01]. Safra’s construc-
tion with optimizations described in [KB07] has been implemented in ltl2dstar
[Kle], and reimplemenetd in PRISM [KNP11]. A comparison of LTL translators
into deterministic ω-automata can be found in [BKS13].

1 We could also speak of a product of automata, but the operational view behind the
term parallel composition helps to convey the intuition.
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2 Linear Temporal Logic

In this paper, N denotes the set of natural numbers including zero. “For almost
every i ∈ N” means for all but finitely many i ∈ N.

This section recalls the notion of linear temporal logic (LTL). We consider the
negation normal form and we have the future operator explicitly in the syntax:

Definition 1 (LTL Syntax). The formulae of the linear temporal logic (LTL)
are given by the following syntax:

ϕ ::=tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

over a finite fixed set Ap of atomic propositions.

Definition 2 (Words and LTL Semantics). Let w ∈ (2Ap)ω be a word. The
ith letter of w is denoted w[i], i.e. w = w[0]w[1] · · · . We write wij for the finite
word w[i]w[i + 1] · · ·w[j], and wi∞ or just wi for the suffix w[i]w[i + 1] · · · .

The semantics of a formula on a word w is defined inductively as follows:

w |= tt
w �|= ff
w |= a ⇐⇒ a ∈ w[0]
w |= ¬a ⇐⇒ a /∈ w[0]
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ
w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Xϕ ⇐⇒ w1 |= ϕ
w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ
w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ
w |= ϕUψ ⇐⇒ ∃ k ∈ N : wk |= ψ and

∀ 0 ≤ j < k : wj |= ϕ

Definition 3 (Propositional implication). Given two formulae ϕ and ψ,
we say that ϕ propositionally implies ψ, denoted by ϕ |=p ψ, if we can prove
ϕ |= ψ using only the axioms of propositional logic. We say that ϕ and ψ are
propositionally equivalent, denoted by ϕ ≡p ψ, if ϕ and ψ propositionally imply
each other.

Remark 4. We consider formulae up to propositional equivalence, i.e., ϕ = ψ
means that ϕ and ψ are propositionally equivalent. Sometimes (when there is
risk of confusion) we explicitly write ≡p instead of =.

2.1 The Formula af (ϕ,w)

Given a formula ϕ and a finite word w, we define a formula af (ϕ,w), read “ϕ
after w”. Intuitively, it is the formula that any infinite continuation w′ must
satisfy for ww′ to satisfy ϕ.

Definition 5. Let ϕ be a formula and ν ∈ 2Ap. We define the formula af (ϕ, ν)
as follows:

af (tt, ν) = tt
af (ff , ν) = ff

af (a, ν) =

{
tt if a ∈ ν
ff if a /∈ ν

af (¬a, ν) = ¬af (a, ν)
af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)
af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ
af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ
af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ
af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)
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We extend the definition to finite words as follows: af (ϕ, ε) = ϕ and af (ϕ, νw) =
af (af (ϕ, ν), w). Finally, we define Reach(ϕ) = {af (ϕ,w) | w ∈ (2Ap)∗}.

Example 6. Let Ap = {a, b, c}, and consider the formula ϕ = a ∨ (b U c).
For example, we have af (ϕ, {a}) = tt af (ϕ, {b}) = (b U c), af (ϕ, {c}) = tt,
and af (ϕ, ∅) = ff . Reach(ϕ) = {ϕ, α ∧ ϕ, β ∨ ϕ, tt,ff}, and Reach(ϕ) = {a ∨
(b U c), (b U c), tt,ff}.

Lemma 7. Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word.
Then ww′ |= ϕ iff w′ |= af (ϕ,w).

Proof. Straightforward induction on the length of w. ��

3 DRAs for Simple FG-Formulae

We start with formulae FGϕ where ϕ is G-free, i.e., contains no occurrence of
G. The main building block of our paper is a procedure to construct a DRA rec-
ognizing L(FGϕ). (Notice that even the formula FGa has no deterministic Büchi
automaton.) We proceed in two steps. First we introduce Mojmir automata and
construct a Mojmir automaton that clearly recognizes L(FGϕ). We then show
how to transform Mojmir automata into equivalent DRAs.

A Mojmir automaton2 is a deterministic automaton that, at each step, puts a
fresh token in the initial state, and moves all older tokens according to the tran-
sition function. The automaton accepts if all but finitely many tokens eventually
reach an accepting state.

Definition 8. A Mojmir automatonM over an alphabet Σ is a tuple (Q, i, δ, F ),
where Q is a set of states, i ∈ Q is the initial state, δ : Q×Σ → Q is a transition
function, and F ⊆ Q is a set of accepting states satisfying δ(F,Σ) ⊆ F , i.e.,
states reachable from final states are also final.

The run of M over a word w[0]w[1] · · · ∈ (2Ap)ω is the infinite sequence
(q00)(q

1
0 , q

1
1)(q

2
0 , q

2
1 , q

2
2) · · · such that

qsteptoken =

{
i if token = step,

δ(qstep−1
token , w[step − 1]) if token < step

A run is accepting if for almost every token ∈ N there exists step ≥ token such
that qsteptoken ∈ F .

Notice that if two tokens reach the same state at the same time point, then
from this moment on they “travel together”.

The Mojmir automaton for a formula ϕ has formulae as states. The automaton
is constructed so that, when running on a word w, the i-th token “tracks” the
formula that must hold for wi to satisfy ϕ. That is, after j steps the i-th token is
on the formula af (ϕ,wij). There is only one accepting state here, namely the one
propositionally equivalent to tt. Therefore, if the i-th token reaches an accepting
state, then wi satisfies ϕ.

2 Named in honour of Mojmı́r Křet́ınský, father of one of the authors.
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Definition 9. Let ϕ be a G-free formula. The Mojmir automaton for ϕ is
M(ϕ) = (Reach(ϕ), ϕ, af , {tt}).

Example 10. Figure 1 on the left shows the Mojmir automaton for the formula

ϕ = a ∨ (b U c). The notation for transitions is standard: q1
a+āc−→ q3 means that

there is a transitions from q1 to q3 for each subset of 2Ap that contains a, or
does not contain a and contains c.

q1 : a ∨ (bU c)

q2 : bU c

q3 : tt q4 : ff

ābc̄

a+ āc āb̄c̄
bc̄

c b̄c̄

true true

(1,⊥)

(2,1)

t1 : a+ āc
t2 : āb̄c̄

t3 : ābc̄

t6 : c
t7 : ab̄c̄
t8 : āb̄c̄

t4 : abc̄
t5 : ābc̄

Fig. 1. A Mojmir automaton for a ∨ (b U c) and its corresponding DRA

Since M(ϕ) accepts iff almost every token eventually reaches an accepting
state,M(ϕ) accepts a word w iff w |= FGϕ.

Lemma 11. Let ϕ be a G-free formula and let w be a word. Then w |= ϕ iff
af (ϕ,w0i) = tt for some i ∈ N.

Theorem 12. Let ϕ be a G-free formula. Then L(M(ϕ)) = L(FGϕ).

3.1 From Mojmir Automata to DRAs

Given a Mojmir automatonM = (Q, i, δ, F ) we construct an equivalent DRA.
We illustrate all steps on the Mojmir automaton on the left of Figure 1. It is
convenient to use shorthands qa to qe for state names as shown in the figure.

We label tokens with their dates of birth (token i is the token born at “day”
i). Initially there is only one token, token 0, placed on the initial state i. If, say,
δ(i, ν) = q, then afterM reads ν token 0 moves to q, and token 1 appears on i.

A state of a Mojmir automaton is a sink if it is not the initial state and all its
outgoing transitions are self-loops. For instance, q3 and q4 are the sinks of the
automaton on the left of Figure 1. We define a configuration ofM as a mapping
C : Q \ S → 2N, where S is the set of sinks and C(q) is the set of (dates of birth
of the) tokens that are currently at state q. Notice that we do not keep track of
tokens in sinks.

We extend the transition function to configurations: δ(C) is the configuration
obtained by moving all tokens ofC according to δ. Let us represent a configuration
C of our example by the vector (C(q1), C(q2)). For instance,we have δ(({1, 2}, {0}),
ābc̄)) = ({3}, {0, 1, 2}).We represent a run as an infinite sequence of configurations
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starting at ({0}, ∅). The run (q1) abc−→ (q3, q1)
ābc̄−→ (q3, q2, q1)

ābc̄−→ (q3, q2, q2, q1) · · ·
is represented by (0, ∅) abc−→ (1, ∅) ābc̄−→ (2, 1)

ābc̄−→ (3, {1, 2}) · · · where for readabil-
ity we identify the singleton {n} and the number n.

We now define a finite abstraction of configurations. A ranking ofQ is a partial
function r : Q→ {1, . . . , |Q|} that assigns to some states q a rank and satisfies:
(1) the initial state is ranked (i.e., r(i) is defined) and all sinks are unranked;
(2) distinct ranked states have distinct ranks; and (3) if some state has rank j,
then some state has rank k for every 1 ≤ k ≤ j. For i < j, we say that i is
older than j. The abstraction of a configuration C is the ranking α[C] defined as
follows for every non-sink q. If C(q) = ∅, then q is unranked. If C(q) �= ∅, then
let xq = min{C(q)} be the oldest token in C(q). We call xq the senior token
of state q, and {xq ∈ N | q ∈ Q} the set of senior tokens. We define α[C](q)
as the seniority rank of xq: if xq is the oldest senior token, then α[C](q) = 1;
if it is the second oldest, then α[C](q) = 2, and so on. For instance, the senior
tokens of (2, {0, 1}, ∅) are 2 and 0, andso α(2, {0, 1}, ∅) = (2,1,⊥) (recall that
sinks are unranked). Notice that there are only finitely many rankings, and so
only finitely many abstract configurations.

The transition function δ can be lifted to a transition function δ′ on ab-
stract configurations by defining δ′(α[C], ν) = α[δ(C, ν)]. It is easy to see that
δ′(α[C], ν) can be computed directly from α[C] (even if C is not known). We
describe how, and at the same time illustrate by computing δ′((2,1), ābc̄) for
our running example.

(i) Move the senior tokens according to δ. (Tokens with ranks 1 and 2 move to
q2.)

(ii) If a state holds more than one token, keep only the most senior token. (Only
the token with rank 1 survives.)

(iii) Recompute the seniority ranks of the remaining tokens. (In this case unnec-
essary; if, for instance, the token of rank 3 survives and the token of rank
2 does not, then the token of rank 3 gets its rank upgraded to 2.)

(iv) If there is no token on the initial state, add one with the next lowest seniority
rank. (Add a token to q1 of rank 2.)

Example 13. Figure 1 shows on the right the transition system generated by the
function δ′ starting at the abstract configuration (1,⊥).

It is useful to think of tokens as companies that can buy other companies: at
step (2), the senior company buys all junior companies; they all get the rank
of the senior company, and from this moment on travel around the automaton
together with the senior company. So, at every moment in time, every token in a
non-sink state has a rank (the rank of its senior token). The rank of a token can
age as it moves along the run, for two different reasons: its senior token can be
bought by another senior token of an older rank, or all tokens of an older rank
reach a sink. However, ranks can never get younger.

Further, observe that in any run, the tokens that never reach any sink even-
tually get the oldest ranks, i.e., ranks 1 to i− 1 for some i ≥ 1. We call these
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tokens squatters. Each squatter either enters the set of accepting states (and
stays there by assumption on Mojmir automata) or never visits any accepting
state. Now, consider a run in which almost every token succeeds. Squatters that
never visit accepting states eventually stop buying other tokens, because oth-
erwise infinitely many tokens would travel with them, and thus infinitely many
tokens would never reach final states. So the run satisfies these conditions:

(1) Only finitely many tokens reach a non-accepting sink (“fail”).
(2) There is a rank i such that
(2.1) tokens of rank older than i buy other tokens in non-accepting states only

finitely often, and
(2.2) infinitely many tokens of rank i reach an accepting state (“succeed”).

Conversely, we prove that if infinitely many tokens never succeed, then (1) or (2)
does not hold. If infinitely many tokens fail, then (1) does not hold. If only finitely
many tokens fail, but infinitelymany tokens squat in non-accepting non-sinks, then
(2) does not hold. Indeed, since the number of states is finite, infinitelymany squat-
ters get bought in non-accepting states and, since ranks can only improve, their
ranks eventually stabilize. Let j− 1 be the youngest rank such that infinitelymany
tokens stabilize with that rank. Then the squatters are exactly the tokens of ranks
1, . . . , j− 1, and infinitely many tokens of rank j reach (accepting) sinks. But then
(2.2) is violated for every i< j, and (2.1) is violated for every i≥ j as, by the pigeon-
hole principle, there is a squatter (with rank older than j) residing in non-accepting
states and buying infintely many tokens.

So the runs in which almost every token succeeds are exactly those satisfy-
ing (1) and (2). We define a Rabin automaton having rankings as states, and
accepting exactly these runs. We use a Rabin condition with pairs of sets of tran-
sitions, instead of states.3 Let fail be the set of transitions that move a token
into a non-accepting sink. Further, for every rank j let succeed(j) be the set of
transitions that move a token of rank j into an accepting state, and buy(j) the
set of transitions that move a token of rank older than j and another token into
the same non-accepting state, causing one of the two to buy the other.

Definition 14. Let M = (Q, i, δ, F ) be a Mojmir automaton with a set S of

sinks. The deterministic Rabin automaton R(M) = (QR, iR, δR,
∨|Q|

i=1 Pi) is de-
fined as follows:

– QR is the set of rankings r : Q→ {1, . . . , |Q|};
– iR is the ranking defined only at the initial state i (and so iR(i) = 1);
– δR(r, ν) = α[δ(r, ν)] for every ranking r and letter ν;
– Pj = (fail ∪ buy(j), succeed(j)), where

fail = {(r, ν, s) ∈ δR | ∃q ∈ Q : r(q) ∈ N ∧ δ(q, ν) ∈ S \ F}
succeed(j) = {(r, ν, s) ∈ δR | ∃q ∈ Q : r(q) = j ∧ δ(q, ν) ∈ F}

buy(j) = {(r, ν, s) ∈ δR | ∃q, q′ ∈ Q : r(q) < j ∧ r(q′) ∈ N
∧
(
δ(q, ν) = δ(q′, ν) /∈ F ∨ δ(q, ν) = i /∈ F

)
}

3 It is straightforward to give an equivalent automaton with a condition on states, but
transitions are better for us.
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We say that a word w ∈ L(R(M)) is accepted at rank j if Pj is the accepting pair
in the run of R(M) on w with smallest index. The rank at which w is accepted
is denoted by rk(w).

By the discussion above, we have

Theorem 15. For every Mojmir automatonM: L(M) = L(R(M)).

Example 16. Let us determine the accepting pairs of the DRA on the right of
Figure 1. We have fail = {t2, t7, t8}, buy(1) = ∅, succeed(1) = {t1, t6}, and
buy(2) = {t5, t8}, succeed(2) = {t4, t6, t7}.

It is easy to see that the runs accepted by the pair P1 are those that take
t2, t7, t8 only finitely often, and visit (1,⊥) infinitely often. They are accepted
at rank 1. The runs accepted at rank 2 are those accepted by P2 but not by P1.
They take t1, t2, t5, t6, t7, t8 finitely often, and so they are exactly the runs with
a tω4 suffix.

3.2 The Automaton R(ϕ)

Given a G-free formula ϕ, we define R(ϕ) = R(M(ϕ)). By Theorem 12 and
Theorem 15, we have L(R(ϕ)) = L(FGϕ).

If w is accepted by R(ϕ) at rank rk(w), then we not only know that w satisfies
FGϕ. In order to explain exactly what else we know, we need the following
definition.

Definition 17. Let δR be the transition function of the DRA R(ϕ) and let
w ∈ L(ϕ) be a word. For every j ∈ N, we denote by F(w0j) the conjunction of
the formulae of rank younger than or equal to rk(w) at the state δR(iR, w0j).

Intuitively, we also know that wj satisfies F(w0j) for almost every index j ∈ N,
a fact we will use for the accepting condition of the Rabin automaton for general
formulae in Section 5. Before proving this, we give an example.

Example 18. Consider the Rabin automaton on the right of Figure 1. Let w =
({b}{c})ω. Its corresponding run is (t3t6)

ω, which is accepted at rank 1. For
every even value j, F(w0j) is the conjunction of the formulae of rank 1 and 2
at the state (2,1). So we get F(w0j) = (a ∨ (b U c)) ∧ (b U c) ≡p (b U c), and
therefore we know that infinitely many suffixes of w satisfy (b U c). In other
words, the automaton tells us not only that w |= FG(a∨ (b U c)), but also that
w |= FG(b U c).

We now show this formally. If w |= FGϕ, there is a smallest index ind(w,ϕ)
at which ϕ “starts to hold”. For every index j ≥ ind(w,ϕ), we have wj |=∧j

k=ind(w,ϕ) af (ϕ,wkj) . Intuitively, this formula is the conjunction of the formu-

lae “tracked” by the tokens ofM(ϕ) born on days ind(w,ϕ), ind (w,ϕ)+1, . . . , j.
These are the “true” tokens ofM(ϕ), that is, those that eventually reach an ac-
cepting state. We get:

Lemma 19. Let ϕ be a G-free formula and let w ∈ L(R(ϕ)). Then
(1) F(w0j) ≡

∧j
k=ind(w,ϕ) af (ϕ,wkj) for almost every j ∈ N; and

(2) wj |= F(w0j) for almost every j ∈ N.



200 J. Esparza and J. Křet́ınský

4 DRAs for Arbitrary FG-Formulae

We construct a DRA for an arbitrary formula FG-formula FGϕ. It suffices
to construct a Mojmir automaton, and then apply the construction of Section
3.1. We show that the Mojmir automaton can be defined compositionally, as a
parallel composition of Mojmir automata, one for each G-subformula.

Definition 20. Given a formula ϕ, we denote by G(ϕ) the set of G-subformulae
of ϕ, i.e., the subformulae of ϕ of the form Gψ.

More precisely, for every G ⊆ G(FGϕ) and every Gψ ∈ G, we construct a Mo-
jmir automatonM(ψ,G). AutomataM(ψ,G) andM(ψ,G′) for two different sets
G,G′ have the same transition system, i.e., they differ only on the accepting con-
dition. The automatonM(ψ,G) checks that FGψ holds, under the assumption
that FGψ′ holds for all the subformulae Gψ′ of ψ that belong to G. Circularity
is avoided, because automata for ψ only rely on assumptions about proper sub-
formulae of ψ. Loosely speaking, the Rabin automaton for FGϕ is the parallel
composition (or product) of the Rabin automata for the M(ψ,G) (which are
independent of G), with an acceptance condition obtained from the acceptance
conditions of theM(ψ,G).

We only need to define the automatonM(ϕ,G), because the automataM(ψ,G)
are defined inductively in exactly the same way. Intuitively, the automaton for
M(ϕ,G) does not “track” G-subformulae of ϕ, it delegates that task to the au-
tomata for its subformulae. This is formalized with the help of the following
definition.

Definition 21. Let ϕ be a formula and ν ∈ 2Ap. The formula af G(ϕ, ν) is
inductively defined as af (ϕ, ν), with only this difference:

afG(Gϕ, ν) = Gϕ (instead of af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ).

We define ReachG(ϕ) = {afG(ϕ,w) | w ∈ (2Ap)∗} (up to ≡p).

Example 22. Let ϕ = ψU¬a, where ψ = G(a ∧X¬a). We have

af G(ϕ, {a}) = af G(ψ, {a}) ∧ ϕ ≡p ψ ∧ ϕ
af (ϕ, {a}) = af (ψ, {a}) ∧ ϕ ≡p ¬a ∧ ψ ∧ ϕ

Definition 23. Let ϕ be a formula and let G ⊆ G(ϕ). The Mojmir automaton of
ϕ with respect to G is the quadrupleM(ϕ,G) = (ReachG(ϕ), ϕ, af G, FG), where
FG contains the formulae ϕ′ ∈ ReachG(ϕ) propositionally implied by G, i.e. the
formulae satisfying

∧
Gψ∈G Gψ |=p ϕ′.

Observe that only the set of accepting states of M(ϕ,G) depends on G. The
following lemma shows that states reachable from final states are also final.

Lemma 24. Let ϕ be a formula and let G ⊆ G(ϕ). For every ϕ′ ∈ ReachG(ϕ),
if

∧
Gψ∈G Gψ |=p ϕ′ then

∧
Gψ∈G Gψ |=p af G(ϕ′, ν) for every ν ∈ 2Ap.
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Proof. Follows easily from the definition of |=p and af G(Gψ) = Gψ.

Example 25. Let ϕ = (Gψ)U¬a, where ψ = a ∧X¬a. We have G(ϕ) = {Gψ},
and so two automataM(ϕ, ∅) andM(ϕ, {Gψ}), whose common transition sys-
tem is shown on the left of Figure 2. We have one single automaton M(ψ, ∅),
shown on the right of the figure. A formula ϕ′ is an accepting state ofM(ψ, ∅)
if tt |=p ϕ′; and so the only accepting state of the automaton on the right is tt.
On the other hand,M(ϕ, {Gψ}) has both Gψ and tt as accepting states, but
the only accepting state ofM(ϕ, ∅) is tt.

ϕ

Gψ ∧ ϕ tt

Gψ

a ā

ā

a true

true

ψ

¬a ff

tt

a ā

a

ā

true

true

Fig. 2. Mojmir automata for ϕ = (Gψ) U¬a, where ψ = a ∧X¬a

Theorem 26. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there is
G ⊆ G(ϕ) such that (1) w ∈ L(M(ϕ,G)), and (2) w |= FGψ for everyGψ ∈ G.

Using induction on the structure of G-subformulae we obtain:

Theorem 27. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) such that w ∈ L(M(ψ,G)) for every Gψ ∈ G.

4.1 The Product Automaton

Theorem 27 allows us to construct a Rabin automaton for an arbitrary formula of
the form FGϕ. For every Gψ ∈ G(FGϕ) and every G ⊆ G(FGϕ) let R(ψ,G) =
(Qψ, iψ, δψ,Acc

G
ψ) be the Rabin automaton obtained by applying Definition 14

to the Mojmir automaton M(ψ,G). Since Qψ, iψ, δψ do not depend on G, we
define the product automaton P(ϕ) as

P(ϕ) =

⎛⎝ ∏
Gψ∈G(ϕ)

Qψ,
∏

Gψ∈G(ϕ)

{iψ},
∏

Gψ∈G(ϕ)

δψ,
∨

G⊆Gϕ

∧
Gψ∈G(ϕ)

AccGψ

⎞⎠
Since each of the AccGψ is a Rabin condition, we obtain a generalized Rabin

condition. This automaton can then be transformed into an equivalent Rabin
automaton [KE12]. However, as shown in [CGK13], for many applications it is
better to keep it in this form. By Theorem 27 we immediately get:

Theorem 28. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) such that w ∈ L(P(ϕ)).
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5 DRAs for Arbitrary Formulae

In order to explain the last step of our procedure, consider the following example.

Example 29. Let ϕ = b∧Xb∧Gψ, where ψ = a∧X(bUc) and let Ap = {a, b, c}.
The Mojmir automatonM(ψ) is shown in the middle of Figure 3. Its correspond-
ing Rabin automaton R(ψ) is shown on the right, where the state (i, j) indicates
that ψ has rank i and bUc has rank j. We have fail = {t1, t5, t6, t7, t8}, buy(1) =
∅, succeed(1) = {t4, t7} and buy(2) = {t3}, succeed(2) = ∅.

BothM(ψ) and R(ψ) recognize L(FGψ), but not L(Gψ). In particular, even
though any word whose first letter does not contain a can be immediately re-
jected,M(ψ) fails to capture this. This is a general problem of Mojmir automata:
they can never “reject (or accept) in finite time” because the acceptance condi-
tion refers to an infinite number of tokens.

ϕ

b ∧ (bUc) ∧Gψ

(bUc) ∧Gψ

ff

ab
ā+ b̄

ab
ā+ b̄

a(b+ c)

ā+ (b̄c̄)

true

ψ

bUc ff

tt

a ā

b̄c̄
c

bc̄

true

true

(1,⊥)

(2, 1)

t2 : a t7 : āct8 : āb̄c̄

t1 : ā

t4 : ac t5 : ab̄c̄

t3 : abc̄ t6 : ābc̄

Fig. 3. Automata T (ϕ), M(ψ), and R(ψ) for ϕ = b ∧Xb ∧Gψ and ψ = a ∧X(bUc)

5.1 Master Transition System

The “accept/reject in finite time” problem can be solved with the help of the
master transition system (an automaton without an accepting condition).

Definition 30. Let ϕ be a formula. The master transition system for ϕ is the
tuple T (ϕ) = (Reach(ϕ), ϕ, af ).

The master transition system for the formula of Example 29 is shown on the left
of Figure 3. Whenever we enter state ff , we have af (ϕ,w) = ff for the word w
read so far, and so the run is not accepting.

Consider now the word w = {a, b, c}ω, which clearly satisfies ϕ. How do master
T (ϕ) and slave M(ψ) decide together that w |= ϕ holds? Intuitively, M(ψ)
accepts, and tells the master that w |= FGψ holds. The master reaches the
state (bU c)∧Gψ and stays there forever. Since she knows that FGψ holds, the
master deduces that w |= ϕ holds if w |= FG(bU c). But where can it get this
information from?
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At this point the master resorts to Lemma 19: the slave M(ψ) (or, more
precisely, its Rabin automaton R(ψ)) not only tells the master that w satisfies
FGψ, but also at which rank, and so that wj satisfies F(w0j) for almost every
j ∈ N. In our example, during the run w = {a, b, c}ω, all tokens flow down the

path a ∧ X(bU c)
a−→ bU c

c−→ tt “in lockstep”. No token buys any other,
and all tokens of rank 1 succeed. The corresponding run of R(ψ) executes the
sequence t2t

ω
4 of transitions, stays in (2,1) forever, and accepts at rank 1. So

we have F(w0j) = (bU c) ∧ ψ for every j ≥ 0, and therefore the slave tells the
master that wj |= (bU c) for almost every j ∈ N.

So in this example the information required by the master is precisely the
additional information supplied byM(ψ) due to Lemma 19. The next theorem
shows that this is always the case.

Theorem 31. Let ϕ be a formula and let w be a word. Let G be the set of
formulae Gψ ∈ G(ϕ) such that w |= FGψ. We have w |= ϕ iff for almost every
i ∈ N: ∧

Gψ∈G

(
Gψ ∧ F(ψ,w0i)

)
|=p af (ϕ,w0i) .

The automaton recognizing ϕ is a product of the automaton P(ϕ) defined in
Section 4.1, and T (ϕ). The run of P(ϕ) of a word w determines the set G ⊆ G(ϕ)
such that w |= FGψ iff ψ ∈ G. Moreover, each component of P(ϕ) accepts at
a certain rank, and this determines the formula F(ψ,w0i) for every i ≥ 0 (it
suffices to look at the state reached by the component of P(ϕ) in charge of the
formula ψ). By Theorem 31, it remains to check whether eventually∧

Gψ∈G

(
Gψ ∧ F(ψ,w0i)

)
|=p af (ϕ,w0i)

holds. This is done with the help of T (ϕ), which “tracks” af (ϕ,w0i). To check
the property, we turn the accepting condition into a disjunction not only on
the possible G ⊆ G(ϕ), but also on the possible rankings that assign to each
formula Gψ ∈ G a rank. This corresponds to letting the product guess which G-
subformulae will hold, and at which rank they will be accepted. The slaves check
the guess, and the master checks that it eventually only visits states implied by
the guess.

5.2 The GDRA A(ϕ)

We can now formally define the final automatonA(ϕ) recognizing ϕ. Let P(ϕ) =
(QP , iP , δP ,AccP) be the product automaton described in Section 4.1, and let
T (ϕ) = (Reach(ϕ), ϕ, af ). We let

A(ϕ) = (Reach(ϕ)×QP , (ϕ, iP), af × δP ,Acc)

where the accepting condition Acc is defined top-down as follows:

– Acc is a disjunction containing a disjunct AccGπ for each pair (G, π), where
G ⊆ G(ϕ) and π is a mapping assigning to each ψ ∈ G a rank, i.e., a number
between 1 and the number of Rabin pairs of R(ϕ,G).
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– The disjunct AccGπ is a conjunction of the form AccGπ = M G
π ∧

∧
ψ∈G

Accπ(ψ).

– Condition Accπ(ψ) states that R(ψ,G) accepts with rank π(ψ) for every
ψ ∈ G. It is therefore a Rabin condition with only one Rabin pair.

– Condition M G
π states that A(ϕ) eventually stays within a subset F of states

defined as follows. Let (ϕ′, rψ1 , . . . , rψk
) ∈ Reach(ϕ) × QP , where rψ is a

ranking of the formulae of ReachG(ψ) for every Gψ ∈ G(ϕ), and let F(rψ)
be the conjunction of the states ofM(ψ) to which rψ assigns rank π(ψ) or
higher. Then

(ϕ′, rψ1 , . . . , rψk
) ∈ F iff

∧
Gψ∈G

Gψ ∧ F(rψ) |=p ϕ′ .

Notice that M G
π is a co-Büchi condition, and so a Rabin condition with only

one pair.

Theorem 32. For any LTL formula ϕ, L(A(ϕ)) = L(ϕ).

6 The Alternation-Free Linear-Time μ-Calculus

The linear-time μ-calculus is a linear-time logic with the same expressive power
as Büchi automata and DRAs (see e.g. [Var88, Dam92]). It extends propositional
logic with the next operator X, and least and greatest fixpoints. This section is
addressed to readers familiar with this logic. We take as syntax

ϕ ::= tt | ff | a | ¬a | y | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | μx.ϕ | νx.ϕ

where y ranges over a set of variables. We assume that if σy.ϕ and σz.ψ are
distinct subformulae of a formula, then y and z are also distinct. A formula is
alternation-free if for every subformula μy.ϕ (νy.ϕ) no path of the syntax tree
leading from μy (νy) to y contains an occurrence of νz (μz) for some variable z.
For instance, μy.(a∨μz.(y∨Xz) is alternation-free, but νy.μz((a∧y)∨Xz) is not.
It is well known that the alternation-free fragment is strictly more expressive
than LTL and strictly less expressive than the full linear-time μ-calculus. In
particular, the property “a holds at every even moment” is not expressible in
LTL, but corresponds to νy.(a ∧XXy).

Our technique extends to the alternation-free linear-time μ-calculus. We have
refrained from presenting it for this more general logic because it is less well
known and formulae are more difficult to read. We only need to change the
definition of the functions af and afG. For the common part of the syntax
(everything but the fixpoint formulae) the definition is identical. For the rest we
define

af (μy.ϕ, ν) = af (ϕ, ν) ∨ μy.ϕ
af (νy.ϕ, ν) = af (ϕ, ν) ∧ νy.ϕ

afG(μy.ϕ, ν) = afG(ϕ, ν) ∨ μy.ϕ
af G(νy.ϕ, ν) = νy.ϕ

The automaton A(ϕ) is a product of automata, one for every ν-subformula of ϕ,
and a master transition system. Our constructions can be reused, and the proofs
require only technical changes in the structural inductions.
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7 Experimental Results

We compare the performance of the following tools and methods:

(T1) ltl2dstar [Kle] implements and optimizes [KB07] Safra’s construction
[Saf88]. It uses LTL2BA [GO01] to obtain the non-deterministic Büchi
automata (NBA) first. Other translators to NBA may also be used, such
as Spot [DL13] or LTL3BA [BKRS12] and in some cases may yield better
results (see [BKS13] for comparison thereof), but LTL2BA is recommended
by ltl2dstar and is used this way in PRISM [KNP11].

(T2) Rabinizer [GKE12] and Rabinizer 2 [KLG13] implement a direct construc-
tion based on [KE12] for fragments LTL(F,G) and LTL\GU, respectively.
The latter is used only on formulae not in LTL(F,G).

(T3) LTL3DRA [BBKS13] which implements a construction via alternating au-
tomata, which is “inspired by [KE12]” (quoted from [BBKS13]) and per-
forms several optimizations.

(T4) Our new construction. Notice that we produce a state space with a logical
structure, which permits many optimizations; for instance, one could in-
corporate the suspension optimization of LTL3BA [BBDL+13]. However,
in our prototype implementation we use only the following optimization:
In each state we only keep track of the slaves for formulae ψ that are still
“relevant” for the master’s state ϕ, i.e. ϕ[ψ/tt] �≡p ϕ[ψ/ff ]. For instance,
after reading ∅ in GFa∨ (b∧GFc), it is no longer interesting to track if c
occurs infinitely often.

Table 1 compares these four tools. For T1 and T2 we produce DRAs (although
Rabinizer 2 can also produce GDRAs). For T3 and T4 we produce GDRAs with
transition acceptance (tGDRAs), which can be directly used for probabilistic
model checking without blow-up [CGK13]. The table shows experimental results
on four sets of formulae (see the four parts of the table)

1. Formulae of the LTL(F,G) fragment taken from (i) BEEM (BEnchmarks
for Explicit Model checkers) [Pel07] and from [SB00] on which ltl2dstar was
originally tested [KB06] (see [EK14]); and (ii) fairness-like formulae. All the
formulae were used already in [KE12, BBKS13]. Our method usually achieves
the same results as the optimized LTL3DRA, outperforming the first two
approaches.

2. Formulae of LTL\GU taken from [KLG13] and [EH00]. They illustrate the
problems of the standard approach to handle (i) X operators inside the scope
of other temporal operators and (ii) conjunctions of liveness properties.

3. Some further formulae illustrating teh same phenomenon.
4. Some complex LTL formulae expressing “after Q until R” properties, taken

from Spec Pattern [DAC99] (available at [spe]) .

All automata were constructed within a few seconds, with the exception
of the larger automata generated by ltl2dstar: it took several minutes for au-
tomata over ten thousand states and hours for hundreds of thousands of states.
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Formula T1 T2 T3 T4

FGa ∨GFb 4 4 1 1
(FGa ∨GFb) ∧ (FGc ∨GFd) 11 324 18 1 1∧3

i=1(GFai → GFbi) 1 304 706 462 1 1∧2
i=1(GFai → GFai+1) 572 11 1 1∧3
i=1(GFai → GFai+1) 290 046 52 1 1

(X(Gr ∨ rU(r ∧ sUp)))U(Gr ∨ rU(r ∧ s)) 18 9 8 8
pU(q ∧X(r ∧ (F(s ∧X(F(t ∧X(F(u ∧XFv)))))))) 9 13 13 13
(GF(a ∧XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧XXb)) 353 73 − 12
GF(XXXa ∧XXXXb)∧GF(b ∨Xc) ∧GF(c ∧XXa) 2 127 169 − 16
(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨Xe)) 18 176 80 − 2
(GF(a ∧XXc) ∨ FGb) ∧ (GFc ∨ FG(d ∨Xa ∧XXb)) ? 142 − 12
aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨ FGd)∨ 640 771 210 8 7

∨aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb)

FG((a ∧XXb ∧GFb)U(G(XX!c ∨XX(a ∧ b)))) 2 053 − − 11
G(F!a ∧ F(b ∧X!c) ∧GF(aUd)) ∧GF((Xd)U(b ∨Gc)) 283 − − 7

ϕ35 : 2 cause-1 effect precedence chain 6 − − 6
ϕ40 : 1 cause-2 effect precedence chain 314 − − 32
ϕ45 : 2 stimulus-1 response chain 1 450 − − 78
ϕ50 : 1 stimulus-2 response chain 28 − − 23

Table 1. Some experimental results

The automaton for
∧3

i=1(GFai → GFbi) took even more than a day and ?
denotes a time-out after one day. Not applicability of the tool to the formula is
denoted by −. Additional details and more experimental results can be found in
[EK14].

8 Conclusions

We have presented the first direct translation from LTL formulae to deterministic
Rabin automata able to handle arbitrary formulae. The construction generalizes
previous ones for LTL fragments [KE12, GKE12, KLG13]. Given ϕ, we compute
(1) the master, the slaves for each Gψ ∈ G(ϕ), and their parallel composition,
and (2) the acceptance condition: we first guess G ⊆ G(ϕ) which are true (this
yields the accepting states of slaves), and then guess the ranks (this yields the
information for the master’s co-Büchi acceptance condition).

The compositional approach opens the door to many possible optimizations.
Since slave automata are typically very small, we can aggressively try to opti-
mize them, knowing that each reduced state in one slave potentially leads to
large savings in the final number of states of the product. So far we have only
implemented the simplest optimizations, and we think there is still much room
for improvement.

We have conducted a detailed experimental comparison. Our construction
outperforms two-step approaches that first translate the formula into a Büchi
automaton and then apply Safra’s construction. Moreover, despite handling full
LTL, it is at least as efficient as previous constructions for fragments. Finally,
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we produce a (often much smaller) generalized Rabin automaton, which can be
directly used for verification, without a further translation into a standard Rabin
automaton.
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terministic Rabin automata translators. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 164–172.
Springer, Heidelberg (2013)

[CGK13] Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized Ra-
bin pairs for probabilistic model checking and LTL synthesis. In: Shary-
gina,N.,Veith,H. (eds.)CAV2013.LNCS,vol. 8044,pp. 559–575.Springer,
Heidelberg (2013)

[Cou99] Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In:
World Congress on Formal Methods, pp. 253–271 (1999)

[DAC99] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifi-
cations for finite-state verification. In: ICSE, pp. 411–420 (1999)
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Abstract. Nested words model data with both linear and hierarchical
structure such as XML documents and program traces. A nested word
is a sequence of positions together with a matching relation that con-
nects open tags (calls) with the corresponding close tags (returns). Vis-
ibly Pushdown Automata are a restricted class of pushdown automata
that process nested words, and have many appealing theoretical proper-
ties such as closure under Boolean operations and decidable equivalence.
However, like any classical automata models, they are limited to finite
alphabets. This limitation is restrictive for practical applications to both
XML processing and program trace analysis, where values for individual
symbols are usually drawn from an unbounded domain. With this mo-
tivation, we introduce Symbolic Visibly Pushdown Automata (SVPA)
as an executable model for nested words over infinite alphabets. In this
model, transitions are labeled with predicates over the input alphabet,
analogous to symbolic automata processing strings over infinite alpha-
bets. A key novelty of SVPAs is the use of binary predicates to model
relations between open and close tags in a nested word. We show how
SVPAs still enjoy the decidability and closure properties of Visibly Push-
down Automata. We use SVPAs to model XML validation policies and
program properties that are not naturally expressible with previous for-
malisms and provide experimental results for our implementation.

Keywords: visibly pushdown automata, symbolic automata, XML.

1 Introduction

Nested words model data with both linear and hierarchical structure such as
XML documents and program traces. A nested word is a sequence of positions
together with a matching relation that connects open tags (calls) with the corre-
sponding close tags (returns). Visibly Pushdown Languages operate over nested
words, and are defined as the languages accepted by Visibly Pushdown Automata
(VPA) [1,2]. It can be shown that this class is closed under Boolean operations
and enjoys decidable equivalence. The model of VPA has been proven to be useful
in many computational tasks, from streaming XML processing [11,13,18] to ver-
ification of recursive programs [5,12]. As many classical models, VPAs build on
two basic assumptions: there is a finite state space; and there is a finite alphabet.
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While finiteness of the state-space is a key aspect that enables many decidable
properties, the finite alphabet assumption is in general not necessary. Moreover,
practical applications such as XML processing and program trace analysis, use
values for individual symbols that are typically drawn from an infinite domain.
This paper focuses on this limitation and proposes a way to extend VPAs to
infinite domains based on the recently proposed idea of symbolic automata.

Symbolic Finite Automata (SFAs) [3,9,19] are finite state automata in which
the alphabet is given by a Boolean algebra that may have an infinite domain,
and transitions are labeled with predicates over such algebra. In order for SFAs
to be closed under Boolean operations and preserve decidability of equivalence,
it should be decidable to check whether predicates in the algebra are satisfiable.
SFAs accept languages of strings over a potentially infinite domain. Although
strictly more expressive than finite-state automata, Symbolic Finite Automata
are closed under Boolean operations and admit decidable equivalence.

We introduce Symbolic Visibly Pushdown Automata (SVPA) as an executable
model for nested words over infinite alphabets. In SVPAs transitions are labeled
with predicates over the input alphabet, analogous to symbolic automata for
strings over infinite alphabets. A key novelty of SVPAs is the use of binary
predicates to model relations between open and close tags in a nested word.
Even though SVPAs completely subsume VPAs, we show how SVPAs still enjoy
the decidability and closure properties of VPAs. This result is quite surprising
since previous extensions of Symbolic Automata with binary predicates have
undecidable equivalence and are not closed under Boolean operations [7].

We finally investigate potential applications of SVPAs in the context of anal-
ysis of XML documents and monitoring of recursive programs over infinite do-
mains. We show how SVPAs can model XML validation policies and program
properties that are not naturally expressible with previous formalisms and pro-
vide experimental results on the performance of our implementation. For exam-
ple SVPAs can naturally express the following properties: an XML document is
well-matched (every close tag is the same as the corresponding open tag), every
person has age greater than 5, and every person’s name starts with a capital
letter. Using the closure properties of SVPAs, all these properties can then be
expressed as a single deterministic SVPAs that can be efficiently executed.

Contributions: In summary, our contributions are:

– the new model of Symbolic Visibly Pushdown Automata (Section 3);
– new algorithms for intersecting, complementing, and determinizing SVPAs,

and for checking emptiness of SVPAs, that extend classical algorithms to
the symbolic setting (Section 4); and

– a prototype implementation of SVPAs and its evaluation using XML pro-
cessing and program monitoring as case-studies (Section 5).

2 Motivating Example: Dynamic Analysis of Programs

In dynamic analysis program properties are monitored at runtime. Automata
theory has come handy in specifying monitors. Let x be a global variable of
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a program P . We can use Finite State Automata (FSA) to describe “correct”
values of x during the execution of P . For example if x has type bool, an FSA
can specify that x starts with value true and has value false when P terminates.

Infinite Domains. In the previous example, x has type bool. In practice, one
would want to express properties about variables of any type. If x is of type int
and has infinitely many possible values, FSAs do not suffice any more. For exam-
ple no FSA can express the property ϕev stating that x remains even throughout
the whole execution of P . One solution to this problem is that of using predicate
abstraction and create an alphabet of two symbols even(x) and ¬even(x). How-
ever, this solution causes the input alphabet to be different from the original
one ({even(x),¬even(x)} instead of the set of integers), and requires to choose
a priori which abstraction to use.

Symbolic Finite Automata (SFA) [9,19] solve this problem by allowing tran-
sitions to be labeled with predicates over a decidable theory. Despite this, SFAs
enjoy all the closure and decidability properties of finite state automata. The
SFA Aev for the property ϕev has one state looping on an edge labeled with
the predicate even(x) expressible in Presburger arithmetic. Unlike predicate ab-
straction, SFAs do not change the underlying alphabet and allow predicates to
be combined. For example, let Apos be the SFA accepting all the sequences of
positive integers. When intersecting Apos and Aev the transitions predicates will
be combined, and we will obtain an SFA accepting all the sequences containing
only integers that are both even and positive. An important restriction is that
the underlying theory of the predicates needs to be decidable. For example, the
property ϕpr, which states that x is a prime number at some point in P , cannot
be expressed by an SFA.

SFAs allow only unary predicates and cannot relate values at different posi-
tions. Extended Symbolic Finite Automata (ESFA) [8] allow binary predicates
for comparing adjacent positions, but this extension causes the model to lose
closure and decidability properties [7]. Other models for comparing values over
infinite alphabets at different positions are Data Automata (DA) [4] and Reg-
ister Automata (RA) [6] where one can for example check that all the symbols
in an input sequence are equal. This property is not expressible by an SFA or
an ESFA, however Data Automata can only use equality and cannot specify
properties such as even(x).

Procedure Calls. Let x be of type bool and let’s assume that the program P
contains a procedure q. The following property ϕ= can be specified by neither
an FSA nor a SFA: every time q is called, the value of x at the call is the same as
the value of x when q returns. The problem is that none of the previous model is
able to “remember”’ which call corresponds to which return. Visibly Pushdown
Automata (VPA) [2] solve this problem by storing the value of x on a stack at a
call and then retrieve it at the corresponding return. Unlike classical pushdown
automata, this model still enjoys closure under Boolean operations and decidable
equivalence. This is achieved by making calls and returns visible in the input
and allowing the stack to push only at calls and to pop only at returns.
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Table 1. Properties of different automata models

Model Bool. Closure and
Decidable Equiv.

Determinizability Hierarchical
Inputs

Infinite
Alphabets

Binary
Predicates

FSA ✓ ✓ ✗ ✗ —

SFA ✓ ✓ ✗ ✓ —

ESFA ✗ ✗ ✗ ✓ Adjacent Positions

DA, RA some variants ✗ trees ✓ Only Equality

VPA ✓ ✓ ✓ ✗ —

SVPA (this paper) ✓ ✓ ✓ ✓ Calls/Returns

Procedure Calls and Infinite Domains. Let x be of type int and let’s assume
that the program P contains a procedure q. No VPA can express the property
ψ< requiring that, whenever q is called the value of x at the call is smaller than
the value of x at the corresponding return. Expressing this kind of property in
a decidable automaton model is the topic of this paper.

We introduce Symbolic Visibly Pushdown Automata (SVPA) that combine
the features of SFAs and VPAs by allowing transitions to be labeled with pred-
icates over any decidable theory and values to be stored on a stack at calls and
retrieved at the corresponding returns. The property ψ< can then be expressed
by an SVPA A< as follows. At a procedure call of q, A< will store the value
c of x on the stack. When reading the value r of x at a procedure return of q,
the value c of x at the corresponding call will be on top of the stack. Using the
predicate c < r, the transition assures that the property ψ< is met. SVPAs still
enjoy closure under Boolean operations, determinizability, and decidable equiv-
alence, and the key to decidability is that binary predicates can only be used to
compare values at matching calls and returns (unlike ESFAs). Data Automata
and Register Automata have been extended to trees and grammars [4,6,14] but
their expressiveness, for the same reason we discussed for strings, is orthogo-
nal to that of SVPAs. Table 1 summarizes the properties of all the models we
discussed.

3 Symbolic Visibly Pushdown Automata

In this section we formally define Symbolic Visibly Pushdown Automata (SVPA).
We first provide some preliminary definitions for symbolic alphabets. Next we
recall the basic definition of tagged alphabet and nested words, and we extend
such definition to infinite alphabets. Last, we define SVPAs and their semantics.

3.1 Preliminaries

We use standard first-order logic and follow the notational conventions that are
consistent with the original definition of symbolic transducers [21]. We write Σ
for the input alphabet. A label theory is given by a recursively enumerable set Ψ
of formulas that is closed under Boolean operations. We use Px(Ψ) and Px,y(Ψ) to
denote the set of unary and binary predicates in Ψ respectively. We assume that
every unary predicate in Px(Ψ) contains x as the only free variable (similarly
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Px,y(Ψ) with x and y). It is easy to observe that given two unary predicates
ϕ1, ϕ2 ∈ Px(Ψ), the predicates ϕ1 ∧ ϕ2 and ¬ϕ1 are also unary predicates in
Px(Ψ), and given a predicate ϕ1 ∈ Px(Ψ) ∪ Px,y(Ψ) and a binary predicate
ϕ2 ∈ Px,y(Ψ) the predicates ϕ1 ∧ ϕ2 and ¬ϕ2 are also binary predicates in
Px,y(Ψ). A predicate ϕ ∈ Px (resp. ϕ ∈ Px,y) is satisfiable, IsSat(ϕ), if there
exists a witness a ∈ Σ (resp. (a, b) ∈ Σ ×Σ) that when substituted to x makes
ϕ true, [[ϕ[a/x]]] = true (resp. [[ϕ[a/x, b/y]]] = true). A label theory Ψ is decidable
when, for any ϕ ∈ Ψ , checking whether IsSat(ϕ) is true is decidable.

Nested words. Data with both linear and hierarchical structure can be encoded
using nested words [2]. Given a set Σ of symbols, the tagged alphabet Σ̂ consists
of the symbols a, 〈a, and a〉, for each a ∈ Σ. A nested word over Σ is a finite
sequence over Σ̂. For a nested word a1 · · · ak, a position j, for 1 ≤ j ≤ k, is
said to be a call position if the symbol aj is of the form 〈a, a return position
if the symbol aj is of the form a〉, and an internal position otherwise. The tags
induce a matching relation between call and return positions. Nested words can
naturally encode strings and ordered trees.

3.2 Model

We can now formally define the model of symbolic visibly pushdown automata.

Definition 1 (SVPA). A (nondeterministic) symbolic visibly pushdown au-
tomaton over an alphabet Σ is a tuple A = (Q,Q0, P, δi, δc, δr, QF ), where

– Q is a finite set of states,
– Q0 ⊆ Q is a set of initial states,
– P is a finite set of stack symbols,
– δi ⊆ Q× Px ×Q is a finite set of internal transitions
– δc ⊆ Q × Px ×Q× P , is a finite set of call transitions,
– δr ⊆ Q× Px,y × P ×Q, is a finite set of return transitions,
– δb ⊆ Q× Px ×Q, is a finite set of empty-stack return transitions, and
– QF ⊆ Q is a set of accepting states.

A transition (q, ϕ, q′) ∈ δi, where ϕ ∈ Px, when reading a symbol a such that
a ∈ [[ϕ]], starting in state q, updates the state to q′. A transition (q, ϕ, q′, p) ∈ δc,
where ϕ ∈ Px, and p ∈ P , when reading a symbol 〈a such that a ∈ [[ϕ]], starting
in state q, pushes the symbol p on the stack along with the symbol a, and updates
the state to q′. A transition (q, ϕ, p, q′) ∈ δr, where ϕ ∈ Px,y, is triggered when
reading an input b〉, starting in state q, and with (p, a) ∈ P × Σ on top of the
stack such that (a, b) ∈ [[ϕ]]; the transition pops the element on the top of the
stack and updates the state to q′. A transition (q, ϕ, q′) ∈ δb, where ϕ ∈ Px, is
triggered when reading a tagged input a〉 such that a ∈ [[ϕ]], starting in state q,
and with the current stack being empty; the transition updates the state to q′.

A stack is a finite sequence over P ×Σ. We denote by Γ the set of all stacks.
Given a nested word w = a1 . . . ak in Σ∗, a run of M on w starting in state q
is a sequence ρq(w) = (q1, θ1), . . . , (qk+1, θk+1), where q = q1, each qi ∈ Q, each



214 L. D’Antoni and R. Alur

θi ∈ Γ , the initial stack θ1 is the empty sequence ε, and for every 1 ≤ i ≤ k the
following holds:

Internal if ai is internal, there exists (q, ϕ, q′) ∈ δi, such that q = qi, q
′ = qi+1,

ai ∈ [[ϕ]], and θi+1 = θi;

Call if ai = 〈a, for some a, there exists (q, ϕ, q′, p) ∈ δc, such that q = qi,
q′ = qi+1, a ∈ [[ϕ]], and θi+1 = θi(p, a); and

Return if ai = a〉, for some a, there exists (q, ϕ, p, q′) ∈ δr, b ∈ Σ, and θ′ ∈ Γ ,
such that q = qi, q

′ = qi+1, θi = θ′(p, b), θi+1 = θ′, and (b, a) ∈ [[ϕ]].
Bottom if ai = a〉, for some a, there exists (q, ϕ, q′) ∈ δb, such that q = qi,

q′ = qi+1, θi = θi+1 = ε, and a ∈ [[ϕ]].

A run is accepting if q1 is an initial state in Q0 and qk+1 is a final state in F . A
nested word w is accepted by A if there exists an accepting run of A on w. The
language L(A) accepted by A is the set of nested words accepted by A.

Definition 2 (Deterministic SVPA). A symbolic visibly pushdown automa-
ton A is deterministic iff |Q0| = 1 and

– for each two transitions t1 = (q1, ϕ1, q
′
1), t2 = (q2, ϕ2, q

′
2) ∈ δi, if q1 = q2 and

IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2;
– for each two transitions t1 = (q1, ϕ1, q

′
1, p1), t2 = (q2, ϕ2, q

′
2, p2) ∈ δc, if q1 = q2

and IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2 and p1 = p2;

– for each two transitions t1 = (q1, ϕ1, p1, q
′
1), t2 = (q2, ϕ2, p2, q

′
2) ∈ δr, if q1 =

q2, p1 = p2, and IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2; and
– for each two transitions t1 = (q1, ϕ1, q

′
1), t2 = (q2, ϕ2, q

′
2) ∈ δb, if q1 = q2, and

IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2.

For a deterministic SVPA A we use q0 to denote the only initial state of A.

Definition 3 (Complete SVPA). A deterministic symbolic visibly pushdown
automaton A is complete iff for each q ∈ Q, a, b ∈ Σ, and p ∈ P , there exist 1)
a transition (q, ϕ, q′) ∈ δi, such that a ∈ [[ϕ]]; 2) a transition (q, ϕ, q′, p′) ∈ δc,
such that a ∈ [[ϕ]]; 3) a transition (q, ϕ, p, q′) ∈ δr, such that (a, b) ∈ [[ϕ]]; and 4)
a transition (q, ϕ, q′) ∈ δb, such that a ∈ [[ϕ]].

4 Closure Properties and Decision Procedures

In this section we describe the closure and decidability properties of SVPAs.
We first introduce few preliminary concepts and then show how SVPAs are
equivalent in expressiveness to deterministic SVPAs, and complete SVPAs. We
then prove that SVPAs are closed under Boolean operations. Last, we provide an
algorithm for checking emptiness of SVPAs over decidable label theories and use
it to prove the decidability of SVPA language equivalence. For each construction
we provide a complexity parameterized by the underlying theory, and we assume
that transitions are only added to a construction when satisfiable.
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4.1 Closure Properties

Before describing the determinization algorithm we introduce the concept of a
minterm. The notion of a minterm is fundamental for determinizing symbolic
automata, and it captures the set of equivalence classes of the input alphabet
for a given symbolic automaton. Intuitively, for every state q of the symbolic
automaton, a minterm is a set of input symbols that q will always treat in the
same manner. Given a set of predicates Φ a minterm is a minimal satisfiable
Boolean combination of all predicates that occur in Φ. We use the notation
Mt(Φ) to denote the set of minterms of Φ. For example the set of predicates
Φ = {x > 2, x < 5} over the theory of linear integer arithmetic has minterms
Mt(Φ) = {x > 2 ∧ x < 5, ¬x > 2 ∧ x < 5, x > 2 ∧ ¬x < 5}. While in the
case of symbolic finite automata this definition is simpler (see [9]), in our setting
we need to pay extra attention to the presence of binary predicates. We need
therefore to define two types of minterms, one for unary predicates and one for
binary predicates. Given an SVPA A we define

– the set ΦA
1 of unary predicates of A as the set {ϕ | ∃q, q′, p.(q, ϕ, q′) ∈ δi ∨

(q, ϕ, q′, p) ∈ δc ∨ (q, ϕ, q′) ∈ δb};
– the set ΦA

2 of binary predicates of A as the set {ϕ | ∃q, q′, p.(q, ϕ, p, q′) ∈ δr};
– the set MtA1 as the set Mt(ΦA

1 ) of unary predicate minterms of A; and

– the set MtA2 as the set Mt(ΦA
2 ) of binary predicate minterms of A.

The goal of minterms is that of capturing the equivalence classes of the label
theory in the current SVPA. Let Φ be the set of minterms of an SVPAA. Consider
two nested words s = a1 . . . an and t = b1 . . . bn of equal length and such that for
every i, ai has the same tag as bi (both internals, etc.). Now assume the following
is true: for every 1 ≤ i ≤ n, if ai is internal there exists a minterm ϕ ∈ MtA1
such that both ai and bi are models of ϕ, and, if ai is a call with corresponding
return aj , then there exists a minterm ψ ∈ MtA2 such that both (ai, aj) and
(bi, bj) are models of ψ. If the previous condition holds, the two nested words
will be indistinguishable in the SVPA A, meaning that they will have exactly
the same set of runs. Following, this intuition we have that even though the
alphabet might be infinite, only a finite number of predicates is interesting. We
can now discuss the determinization construction.

Theorem 1 (Determinization). For every SVPA A there exists a determin-
istic SVPA B accepting the same language.

Proof. The main difference between the determinization algorithm in [2] and the
symbolic version is in the use of minterms. Similarly to the approach presented
in [9], we use the minterm computation to generate a finite set of relevant predi-
cates. After we have done so, we can generalize the determinization construction
shown in [2].

We now describe the intuition behind the construction. Given a nested word
n, A can have multiple runs over n. Thus, at any position, the state of B needs
to keep track of all possible states of A, as in case of classical subset construction
for determinization of nondeterministic word automata. However, keeping only
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a set of states of A is not enough: at a return position, B needs to use the
information on the top of the stack and in the state to figure out which pairs of
states (starting in state q you can reach state q′) belong to the same run. The
main idea behind the construction is to do a subset construction over summaries
(pairs of states) but postpone handling the call-transitions by storing the set of
summaries before the call, along with the minterm containing the call symbol,
in the stack, and simulate the effect of the corresponding call-transition at the
time of the matching return for every possible minterm.

The components of the deterministic automaton B equivalent to
A = (Q,Q0, P, δc, δi, δr, QF ) are the following. The states of B are Q′ = 2Q×Q.
The initial state is the set Q0 × Q0 of pairs of initial states. A state S ∈ Q′

is accepting iff it contains a pair of the form (q, q′) with q′ ∈ Qf . The stack

symbols of B are P ′ = Q′ × MtA1 . The internal transition function δ′i is given
by: for S ∈ Q′, and ϕ ∈ MtA1 , δ′i(S, ϕ) consists of pairs (q, q′′) such that
there exists (q, q′) ∈ S and an internal transition (q′, ϕ′, q′′) ∈ δi such that
IsSat(ϕ∧ϕ′). The call transition function δ′c is given by: for S ∈ Q′ and ϕ ∈ MtA1 ,
δ′c(S, ϕ) = (S′, (S, ϕ)), where S′ consists of pairs (q′′, q′′) such that there exists
(q, q′) ∈ S, a stack symbol p ∈ P , and a call transition (q′, ϕ′, q′′, p) ∈ δc such
that IsSat(ϕ ∧ ϕ′). The return transition function δ′r is given by: for S, S′ ∈ Q′

and ϕ1 ∈ MtA1 , ϕ2 ∈ MtA2 , the state δ′r(S, (S′, ϕ1), ϕ2) consists of pairs (q, q′′)
such that there exists (q, q′) ∈ S′, (q1, q2) ∈ S, a stack symbol p ∈ P , a call tran-
sition (q′, ϕ′

1, q1, p) ∈ δc, and a return transition (q2, p, ϕ
′
2, q

′′) ∈ δr such that
IsSat(ϕ1 ∧ ϕ′

1) and IsSat(ϕ2 ∧ ϕ′
2). The empty-stack return transition function

δ′b is given by: for S ∈ Q′ and ϕ ∈ MtA1 , the state δ
′
b(S, ϕ) consists of pairs (q, q

′′)
such that there exists (q, q′) ∈ S and a return transition (q′, ϕ′, q′′) ∈ δb such
that IsSat(ϕ∧ϕ′). Our construction differs from the one in [2] in two aspects:

– in [2] each stack symbol contains an element from Σ. This technique cannot
be used in our setting and in our construction each stack symbol contains a
predicate from the set of unary minterms.

– the construction in [2] builds on the notion of reachability and looks for match-
ing pairs of calls and returns. In our construction, this operation has to be
performed symbolically, by checking whether the unary predicate stored by
the call on the stack and the binary predicate at the return are not disjoint.

We finally discuss the complexity of the determinization procedure. Assume A
has n states, m stack symbols, and p different predicates of size at most �. We
first observer that the number of minterms is at most 2p and each minterm has
size O(p�).1 If f(a) is the cost of checking the satisfiability of a predicate of size
a, then the minterm computation has complexity O(2pf(�p)). The resulting au-

tomaton B has O(2n
2

) states, and O(2p2n
2

) stack symbols. The determinization

procedure has worst complexity O(2p2n
2

m+ 2pf(p�)).

Theorem 2 (Completeness). For every SVPA A there exists a complete SVPA
B accepting the same language.

1 If the alphabet is finite the number of minterms is bounded by min(2p, |Σ|).
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Proof. Since the procedure is trivial we only discuss its complexity. Assume A
has n states, m stack symbols, and p different predicates of size at most �.
Let f(a) be the cost of checking the satisfiability of a predicate of size a. The
procedure has complexity O(nmf(�p)). �

Theorem 3 (Boolean Closure). SVPAs are closed under Boolean operations.

Proof. We prove that SVPAs are closed under complement and intersection.
We first prove that SVPAs are closed under complement. Given an SVPA A
we construct a complete SVPA C such that C accepts a nested word n iff
n is not accepted by A. First, we use Theorem 2 to construct an equivalent
deterministic SVPA B = (Q, q0, P, δi, δc, δr, QF ). We can now construct the
SVPA C = (Q, q0, P, δi, δc, δr, Q \ QF ) in which the set of accepting states is
complemented.

We next prove that SVPAs are closed under intersection. Given two determin-
istic SVPAs A1 = (Q1, q10 , P

1, δ1i , δ
1
c , δ

1
r , Q

1
F ) and A2 = (Q2, q20 , P

2, δ2i , δ
2
c , δ

2
r , Q

2
F )

(using Theorem 1) we construct an SVPA B such that B accepts a nested word
n iff n is accepted by both A1 and A2. The construction of B is a classical prod-
uct construction. The SVPA B will have state set Q′ = Q1 × Q2, initial state
q′0 = (q10 , q

2
0), stack symbol set P ′ = P 1×P 2, and final state set Q′

F = Q1
F ×Q2

F ,
The transition function will simulate both A1 and A2 at the same time.

– for each (q1, ϕ1, q
′
1) ∈ δ1i , and (q2, ϕ2, q

′
2) ∈ δ2i , δ

′
i will contain the transition

((q1, q2), ϕ1 ∧ ϕ2, (q
′
1, q

′
2));

– for each (q1, ϕ1, q
′
1, p1) ∈ δ1c , and (q2, ϕ2, q

′
2, p2) ∈ δ2c , and δ′c will contain the

transition ((q1, q2), ϕ1 ∧ ϕ2, (q
′
1, q

′
2), (p1, p2));

– for each (q1, ϕ1, p1, q
′
1) ∈ δ1r , and (q2, ϕ2, p2, q

′
2) ∈ δ2r , δ′r will contain the

transition ((q1, q2), ϕ1 ∧ ϕ2, (p1, p2), (q
′
1, q

′
2)); and

– for each (q1, ϕ1, q
′
1) ∈ δ1b , and (q2, ϕ2, q

′
2) ∈ δ2b , δ

′
b will contain the transition

((q1, q2), ϕ1 ∧ ϕ2, (q
′
1, q

′
2));

Assume each SVPA Ai has ni states, mi stack symbols, and pi different predi-
cates of size at most �i. Let f(a) be the cost of checking the satisfiability of a
predicate of size a. The intersection procedure has complexity O(n1n2m1m2 +
p1p2f(�1 + �2)).

4.2 Decision Procedures

We conclude this section with an algorithm for checking emptiness of SVPAs
over decidable label theories, which we finally use to prove the decidability of
SVPA equivalence.

Theorem 4 (Emptiness). Given an SVPA A over a decidable label theory it
is decidable whether L(A) = ∅.

Proof. The algorithm for checking emptiness is a symbolic variant of the al-
gorithm for checking emptiness of a pushdown automaton. We are given an
SVPA A = (Q, q0, P, δi, δc, δr, QF ) over a decidable theory Ψ . First, for every
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two states q, q′ ∈ Q we compute the reachability relation Rwm ⊆ Q × Q such
that (q, q′) ∈ Rwm iff there exists a run ρq(w) that, staring in state q, after read-
ing a well matched nested word w, ends in state q′. We define Rwm as follows:

– for all q ∈ Q, (q, q) ∈ Rwm;

– if (q1, q2) ∈ Rwm, and there exists q, q′ ∈ Q, p ∈ P , ϕ1 ∈ Px(Ψ), ϕ2 ∈
Px,y(Ψ), such that (q, ϕ1, q1, p) ∈ δc, (q2, ϕ2, p, q

′) ∈ δr, and IsSat(ϕ1 ∧ ϕ2),
then (q, q′) ∈ Rwm. Observe that unary and binary predicates unify on the
first variable x;

– if (q1, q2) ∈ Rwm, and there exists q ∈ Q, ϕ ∈ Px(Ψ), such that (q, ϕ, q1) ∈ δi,
and IsSat(ϕ), then (q, q2) ∈ Rwm; and

– if (q1, q2) ∈ Rwm and (q2, q3) ∈ Rwm, then (q1, q3) ∈ Rwm.

The above reachability relation captures all the runs over well-matched nested
words. Unmatched calls and returns can be handled using a similar set of rules.
We can then compute therefore the reachability relation R ⊆ Q ×Q such that
(q, q′) ∈ R iff there exists a run ρq(w) that ends in state q′ after reading a nested
word w. The SVPA A is empty iff (Q0 ×QF ) ∩R = ∅.

Assume A has n states, m stack symbols, t transitions, and p predicates of
size at most �. Let f(a) be the cost of checking the satisfiability of a predicate
of size a. The emptiness procedure has complexity O(n3mt+ p2f(�)).

We can now combine the closure under Boolean operations and the decidabil-
ity of emptiness to show that equivalence of SVPAs is decidable.

Corollary 1 (Equivalence). Given two SVPAs A and B over a decidable label
theory it is decidable whether L(A) ⊆ L(B) and whether L(A) = L(B).

Complexity: In [2] it is shown that the VPA universality, inclusion, and equiva-
lence problems are ExpTime-hard. If the function IsSat() can be computed in
polynomial time the same complexity bounds hold for SVPAs. �

5 Applications and Evaluation

In this section we present potential applications of SVPAs together with exper-
imental results. First, we illustrate how the presence of symbolic alphabets and
closure properties enables complex XML validation, HTML sanitization, and
runtime monitoring of recursive programs. Finally, we present some experimen-
tal results on SVPA’s execution and algorithms.2

5.1 XML Validation

XML (and HTML) documents are ubiquitous. Validating an XML document
is the task of checking whether such a document meets a given specification.
XML Schema is the most common language for writing XML specifications and
their properties have been studied in depth [17,22]. The XML schema S shown in

2 All the experiments were run on a 4 Cores Intel i7-2600 CPU 3.40GHz, with 8GB
of RAM. The library is configured for 32 bits architecture.
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<xs:schema>

<xs:element name="people" type="PeopleType"/>

<xs:complexType name="PeopleType"><xs:sequence>

<xs:element name="person" minOccurs="0" maxOccurs="unbounded">

<xs:complexType><xs:sequence>

<xs:element name="firstname">

<xs:simpleType><xs:restriction base="xs:string">

<xs:pattern value="[A-Z]([a-z])*"/>

</xs:restriction></xs:simpleType>

</xs:element>

<xs:element name="lastname">

<xs:simpleType><xs:restriction base="xs:string">

<xs:pattern value="[A-Z]([a-z])*"/>

</xs:restriction></xs:simpleType>

</xs:element>

</xs:sequence></xs:complexType>

</xs:element>

</xs:sequence></xs:complexType>

</xs:schema>

(1) XML Schema S

<people>

<person>

<firstname>

Mark

</firstname>

<lastname>

Red

</lastname>

</person>

<person>

<firstname>

Mario

</firstname>

<lastname>

Rossi

</lastname>

</person>

</people>

(2) Document Example

9 

I: x  [A-Z][a-z]* 

9 0 0

C: x=“people”, p 

1 

C: x=“person”, p 

2 

C: x=“firstname”, p 

3 4 4

5 

6 

I: x  [A-Z][a-z]* 

7 7

5
R: x=“firstname”, p C: x=“lastname”, p 

9

1

8 8

R: x=“people”, p 

R: x=“person”, p 

R: x=“lastname”, p 

(3) SVPA As

Fig. 1. (1) XML Schema S describing documents containing a person with a first and
last name, (2) an XML document accepted by S, and 3) an SVPA AS accepting the
same XML documents as S.

Figure 1 describes the format of XML documents containing first and last names.
In words the document should start with the tag people and then contain a
sequence of person each of which has a first and last name. First and last name
should be both strings belonging to the regular expression [A-Z]([a-z])*.

Dealing with infinite alphabets. Although the XML Schema in Figure 1 only uses
a finite set of possible nodes (people, firstname, etc.), it allows the content of
the leaves to be any string accepted by the regular expression [A-Z]([a-z])*.
This kind of constraints can be easily captured using an SVPA over the theory
of strings. Such a SVPA AS is depicted in Figure 1.3.3 The letters I, C, and R
on each transition respectively stand for internal, call, and return transitions.

Although in this particular setting the alphabet could be made finite by lin-
earizing each string, such encoding would not be natural and would cause the
corresponding VPA to be very complex. Moreover previous models that use such
an encoding, such as [16,17], require the parser to further split each node value
into separate characters. In the case of SVPAs, as it can be observed in Figure 1,

3 We encode each XML document as a nested word over the theory of strings. For
each open tag, close tag, attribute, attribute value, and text node the nested word
contains one input symbol with the corresponding value.
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there is a clear separation between the constraints on the tree structure (captured
by the states), and the constraints on the leaves (captured by the predicates).
This natural representation makes the model more succinct and executable since
it reflects the typical representation of XML via events (SAX parser, etc.).

5.2 HTML Filters

A central concern for secure web application is untrusted user inputs. These lead
to cross-site scripting (XSS) attacks, which may echo an untrusted input verba-
tim back to the browser. HTML filters aim at blocking potentially malicious user

Fig. 2. The SVPA A rejects HTML documents
that contain scripts, while the SVPA B accepts
the documents containing malicious images

HTML code from being
executed on the server. For ex-
ample, a security sensitive ap-
plication might want to discard
all documents containing script

nodes which might contain ma-
licious JavaScript code (this is
commonly done in HTML saniti-
zation). Since HTML5 allows to
define custom tags, the set of
possible node names is infinite and cannot be known a priori. In this partic-
ular setting, an HTML schema would not be able to characterize such an HTML
filter. This simple property can be checked using an SVPA over the theory of
strings. Such an SVPA A is depicted on the left of Figure 2. The SVPA A only
accepts nested words that do not contain script nodes. Notice that the call
transition is triggered by any string different from script and the alphabet is
therefore infinite.

Since SVPAs can be intersected, complemented, and determinized, we can
take advantage of these properties to make the design of HTML filters modular.
We now consider an example for which it is much simpler to specify what it
means for a document to be malicious rather than to be safe. On the right of
Figure 2 it is shown a non-deterministic SVPA B for checking whether a img tag
may call JavaScript code in one of its attributes. To compute our filter (the set
of safe inputs) we can now compute the complement B′ of B that only accepts
HTML documents that do not contain malicious img tags.

0 0

I: true 
C: true, p 
R: x=y, p 

Fig. 3. SVPA W ac-
cepting HTML docu-
ments with matching
open and close tags

We can now combine A and B′ into a single filter. This
can be easily done by computing the intersection F = A∩
B′. If necessary, the SVPA F can then be determinized,
obtaining an executable filter that can efficiently process
HTML documents with a single left-to-right pass.

The power of binary predicates. The previous HTML fil-
ter is meant to process only well-formed HTML docu-
ments. A well-formed HTML document is one in which
all the open tags are correctly matched (every open tag
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is closed by a close tag containing the same symbol). In practice the input doc-
uments goes first through a well-formedness checker and then through a filter.
This causes the input HTML to be processed multiple times and in performance
critical applications this is not feasible. This check can however be performed by
the SVPA W in Figure 3.

5.3 Runtime Program Monitors

We already discussed in Section 2 how SVPAs are useful for defining monitors
for dynamic analysis of programs. In this section we present an example of how
SVPAs can be used to express complex properties about programs over infinite
domains such as integers. Consider the recursive implementation of Fibonacci

function Fib(int x)
if x < 2 then return x
return Fib(x − 1) + Fib(x− 2)

on the right. Let’s assume we are interested
into monitoring the values of x at every call
of Fib, and the values returned by Fib. For
example for the input 5, our monitored nested word will be 〈2 〈1 1〉 〈0 0〉 1〉.
The following properties can all be expressed using SVPAs:

1. if the input of Fib is greater or equal than 0, then the same hold for all the
subsequent inputs of Fib;

2. if the output of Fib is negative, than Fib was called exactly once in the
whole execution and with a negative input;

3. the output of Fib is greater or equal than the corresponding input.

We can then intersect the SVPAs corresponding to each property and generate
a single pass linear time monitor for Fib. As we discussed in Section 2, SVPAs
cannot express properties that relate all the values in the computation such as:
the value of a variable x increases monotonically throughout the computation.
However, thanks to the presence of binary predicates at returns, SVPAs provide a
model for describing pre and post conditions of programs over decidable theories
(see property 3). In particular, SVPAs can describe post conditions that relate
the values of the inputs and the outputs of a function.

5.4 Experimental Results
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Execution performance. We implemented the
filter F = A ∩ B̄ ∩W and analyzed the perfor-
mance of filtering HTML documents with size
between 8 and 1293 KB, depth between 3 and
11, number of tokens between 1305 and 84242,
and average token length between 11 and 14
characters.4 Constructing the SVPA F took 435 milliseconds. The running times

4 To solve the underlying theory of equality plus regular constraints, we implemented
a solver on top of the Microsoft Automata library [20]. We decided not to use a full
blown solver such as Hampi [15], since it was not necessary in our setting.
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per number of tokens (in seconds) are shown in the figure on the right. We ob-
served that the depth of the input does not affect the running time, while the
length affects it linearly. Surprisingly, the running time is also not affected by
the average length of the tokens. This is due to the fact that most tokens can
be rejected by partially reading them.

Algorithms performance: data. We evaluated the determinization and equiva-
lence algorithms on a representative set of SVPAs over three different alphabet
theories: strings, integers, and bitvectors (characters).5 For each theory t we
generated an initial set of SVPAs St

1 containing 5 nondeterministic SVPAs for
properties of the following form: 1) the input contains a call and matching re-
turn with different symbols; 2) the input contains an internal symbol satisfying a
predicate ϕ0; 3) the input contains a subword 〈a b c〉 such that a ∈ [[ϕ1]], b ∈ [[ϕ2]],
and a = c; 4) the input contains a subword 〈a 〈b such that a ∈ [[ϕ3]], b ∈ [[ϕ4]]; and
5) for every internal symbol a in the input, a ∈ [[ϕ4]], or a ∈ [[ϕ5]]. The predicates
Φ = {ϕ0, . . . , ϕ5} vary for each theory and are all different. For each theory we
then computed the set St

2 = {A∩B | A,B ∈ St
1}∪{A∩B∩C | A,B,C ∈ St

1}. We
then used the sets St

2 to evaluate the determinization algorithm, and computed
the corresponding set of deterministic SVPAsDt

2. Finally we checked equivalence
of any two SVPAs A and B in Dt

2.
The results of our experiments are shown in Figure 4: the left column shows

the size of each test set and the number of instances for which the algorithms
timed out (5 minutes). The right column shows the running time for the instances
in which the algorithms did not time out. For both algorithms we plot against
number of states and number of transitions. For the determinization, the sizes
refer to the automaton before determinization, while in the case of equivalence,
the sizes refer to the sum of the corresponding metrics of the two input SVPAs.
The distribution of the sizes of the SVPAs differed slightly when varying the
theories, but since the differences are very small we show the average sizes. For
each theory we determinized a total of 65 SVPAs and checked for equivalence
241 pairs of SVPAs. For both operation, on average, 96% of the time is spent in
the theory solver. For the theory of characters we also compared our tool to the
VPALib library, a Java implementation of VPAs.6 The application timed out for
all the inputs considered in our experiments.

Algorithms performance: data analysis. Except for few instances involving the
theory of integers, our implementation was able to determinize all the consid-
ered SVPAs in less than 5 minuets. The situation was different in the case of
equivalence, where most of the input pairs with more than 250 transitions or 13
states timed out. Most of such pairs were required to check satisfiability of more
than 15000 predicates that were generated when building the intersected SVPAs
necessary to check equivalence. We could observe that the theory of characters is

5 The characters and strings solver are implemented on top of the Automata li-
brary [20] which is based on BDDs, while the integer solver is Z3 [10].

6 Available http://www.emn.fr/z-info/hnguyen/vpa/

http://www.emn.fr/z-info/hnguyen/vpa/
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Fig. 4. Running times for equivalence and determinization

on average 6 times faster than the theory of strings and 10 times faster than the
theory of integers. However, we did observe that the theory of integers timed out
less often in the case of equivalence. We believe that this is due to the different
choices of predicates in Φ and to the fact that Z3 uses a caching mechanism
that avoids checking for satisfiability of the same predicate twice. While during
the determinization such a technique is not very beneficial due to the limited
number of different minterms, in the case of equivalence, especially for bigger
inputs, many of the predicates are repeated making caching useful in practice.

When comparing against an existing implementation of VPAs, we observed
that the benefit of using SVPA is immense: due to the large size of the alphabet
(216 characters), VPALib timed out for each input we considered.

6 Conclusion

We introduce Symbolic Visibly Pushdown Automata that extend VPAs with
predicates over a decidable input theory, while preserving the closure prop-
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erties of VPAs. We show how XML/HTML processing and program moni-
toring can benefit from the expressiveness and closure properties of SVPAs.
We implemented SVPAs on top of different and potentially infinite input theo-
ries and observed that our implementation can handle reasonably big and com-
plex SVPAs. Moreover, we observed that thanks to their succinctness SVPAs
are able to handle large finite input alphabets, such as UTF16, that previous
implementations of VPAs cannot handle.
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Abstract. We report on practical experiences over the last 2.5 years related to the
engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU
kernels, plotting the progress of GPUVerify from a prototype to a fully functional
and relatively efficient analysis tool. Our hope is that this experience report will
serve the verification community by helping to inform future tooling efforts.

1 Introduction

Graphics processing units (GPUs) are now a mainstay technology with which to ac-
celerate computationally intensive applications. The OpenCL [25] and CUDA [33]
programming models allow general-purpose computations to be offloaded to run on
a variety of GPU platforms. In these programming models, a computation to run on
the GPU is described using a kernel function, a template describing the behaviour of a
single thread. Threads are organized into a set of groups, threads in the same group can
synchronize with each other using barriers, and each thread has a unique id which it
can use to access distinct data and follow distinct control paths from other threads.

A challenge in GPU programming is to avoid data races, where distinct threads ac-
cess a common memory location, at least one access is a write, and there is no interven-
ing barrier synchronization. Data races tend to arise due to a combination of intricate
data access patterns necessary to achieve high memory performance, which can be hard
to write correctly, and the desire to minimize expensive barrier synchronization opera-
tions, also to maximize performance. Data races lead to nondeterministically occurring
bugs that can be hard to diagnose and fix, and since performance is the sole motivation
for GPU offloading, race-prone programming styles are not likely to go away.

In response to the GPU programming paradigm and the problem of data races, a
variety of formal and semi-formal methods for finding, or proving absence, of defects
in GPU kernels have been proposed [27,8,26,23,28,14,29,10,4,12,5]. Over the last 2.5
years, our contribution to this area has been GPUVerify,1 an open source tool for static
verification of race-freedom for OpenCL and CUDA kernels.

Our research papers [8,15,11] have presented the top-level ideas that underpin the
GPUVerify approach, and focus on arguing soundness of the approach with respect to

� Peter Collingbourne was at Imperial College London when he contributed to this work.
1 http://multicore.doc.ic.ac.uk/tools/GPUVerify

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 226–242, 2014.
c© Springer International Publishing Switzerland 2014
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an operational semantics for a core GPU kernel programming language. Embedding
these ideas in a tool that can be applied directly to the source code of real-world ex-
amples with a reasonable degree of efficiency and automation has required a significant
optimization effort and a number of important engineering decisions. This has been
guided by a growing set of GPU kernel benchmarks which now counts 564 examples.
In this tool paper we aim to communicate this engineering experience and insight, not
reflected in the aforementioned research papers, to the verification community in the
hope that it will be of general interest and may help inform future tooling efforts.

We provide an overview of GPUVerify (Sect. 2) and describe how we have evolved
the front-end capabilities of the tool in order to handle a large set of benchmarks
(Sect. 3). We then describe and evaluate several methods for improving the verification
performance of the tool (Sect. 4). Our aim is for GPUVerify to be useful to industry,
motivating steps for minimizing false positives and presenting clear error messages,
which we describe (Sect. 5); we also discuss steps taken to ease uptake of the tool by
industrial partners (Sect. 6). We conclude with a summary of lessons learned and the
identification of invariant generation as a key challenge for future work (Sect. 7).

Related Work. A number of other works on GPU kernel analysis have appeared recently
and can be categorized into methods for verification [27,26,23,12,4] and bug-finding via
symbolic execution [28,14,29,10]. Our research papers provide a detailed discussion of
how these works relate to GPUVerify, including experimental comparisons [8,11]. We
do not compare GPUVerify with related tools here: the aim of this work is not to promote
GPUVerify as “the colonel of kernel verification tools,” but rather to communicate the
insights into verification tool development that have emerged from the project.

2 Overview of the GPUVerify Technique

The key idea behind GPUVerify is that a massively parallel GPU kernel can be proven
free from data races by deriving a sequential program from the kernel and verifying
that this program is free from assertion failures. This avoids reasoning about thread
interleavings and allows existing verification techniques for sequential programs to be
reused. If verification of the sequential program fails, the proof failure may shed light
on a defect in the original kernel, if one exists. Alternatively, the failure may be a false
positive arising due to the abstractions employed while constructing the sequential pro-
gram, or due to limitations of the method used to verify the sequential program; in
practice, the main limitation relates to loop invariant generation.

The method GPUVerify uses to transform a kernel into a sequential program is pre-
sented in detail in [8,15]. The transformation proceeds in three steps. First, thread id-
sensitive control flow is eliminated by predicating each statement [1]. For example, the

if (tid > 0) s1;
else s2;

(tid > 0) ⇒ s1;
!(tid > 0) ⇒ s2;

if-statement shown to the right will be turned
into the code on the far right, where a state-
ment of the form p⇒ s is a predicated statement which behaves as a no-op if p is false,
and has the same effect as s if p is true. Predication is semantics-preserving and ensures
that every thread follows the same control path through the kernel.

Second, each access to a shared memory array is instrumented to allow data races to
be detected. For each thread t and each array A two sets are introduced: one to track
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Fig. 1. The GPUVerify architecture, which draws on the Clang/LLVM and Boogie frameworks

reads from and one to track writes to A by t. Upon an access, the offset at which the
access occurs is recorded in the appropriate set, and occurrence of a data race is checked
by considering overlap between relevant sets.

The third and final step applies a two-thread reduction. This is an abstraction that
removes all but two arbitrary threads and then combines the two threads into a sin-
gle sequential program by applying a round-robin schedule. The effects of additional
unmodeled threads on the shared state are over-approximated using abstraction. That
the reduction is sound is explained in detail in [8,15], and hinges on the observation
that if barriers are the only mechanism for synchronization then a race-free kernel be-
haves deterministically when applied to a given input; thus, as long as data races are
detected, analysis can focus on the single round-robin schedule. The method is incom-
plete due to the shared state abstraction which over-approximates the effects of ad-
ditional threads, and may include error-inducing behaviours that are infeasible during
concrete execution. The two-thread reduction has been used in other works on GPU ker-
nel analysis [27], and the idea of reducing verification complexity through pairwise rea-
soning is well-known and has been employed, for example, in model checking of cache
coherence protocols [13,30,39].

Architecture. The architecture of GPUVerify is depicted in Fig. 1, and leverages the
mature and widely used Clang/LLVM2 and Boogie [6] tool chains. Clang/LLVM is
used to parse CUDA and OpenCL kernels and lower them into LLVM intermediate
representation (IR). This removes all complex syntactic features (including C++ tem-
plates), yielding a simple representation of a kernel. The kernel transformation process
first invokes Bugle, our custom-built LLVM IR-to-Boogie translator, to translate the ob-
tained LLVM IR into a Boogie program, giving a Boogie representation of the kernel.
Predication, race instrumentation and two-thread reduction are then applied, as outlined
above, to yield the sequential Boogie program to be verified. Kernel transformation also
speculates candidate loop invariants based on a number of custom-designed templates,
which attempt to capture data access idioms we observed in many kernels.

After kernel transformation, GPUVerify uses the Houdini algorithm [20] (imple-
mented as part of the Boogie framework) to compute the largest conjunctive invari-
ant over the set of speculated loop invariants, discarding any candidate invariants that
cannot be proven.3 The sequential program and synthesized invariant are then passed
to the Boogie verification engine for the actual verification. Boogie in turn invokes an
SMT solver: the Z3 solver is the default [32], and we have added support for the CVC4
solver [7], as discussed further in Sect. 4. The result of this stage is either successful ver-
ification of the sequential program, which implies race-freedom of the original kernel,
or an error indicating that the original kernel may exhibit a defect.

2 http://llvm.org/
3 That we obtain the largest conjunction is a property of the Houdini algorithm [20].
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3 Applying GPUVerify to a Large Set of Benchmarks

We have applied GPUVerify to 564 kernels gathered from nine sources:

– AMD Accelerated Parallel Processing SDK v2.6 [2] (78 OpenCL kernels)
– NVIDIA GPU Computing SDK v5.0 [34] (166 CUDA kernels); we also include a

further 8 CUDA kernels from a previous version of the SDK (v2.0)
– Microsoft C++ AMP Sample Projects [31] (20 kernels, hand translated to CUDA)
– The gpgpu-sim benchmarks [3] (33 CUDA kernels)
– The Parboil benchmarks v2.5 [38] (25 OpenCL kernels)
– The Rodinia benchmark suite v2.4 [9] (36 OpenCL kernels)
– The SHOC benchmark suite [16] (87 OpenCL kernels)
– The PolyBench/GPU benchmark suite [21] (49 OpenCL kernels)
– Rightware Basemark CL v1.1 [37] (62 OpenCL kernels)

Each suite is publicly available except for Basemark CL which was provided to us
under an academic license. This collection covers all the publicly available GPU bench-
mark suites that we are aware of. The kernel counts above do not include 41 kernels
that we manually removed from our study: (i) 16 kernels are trivially race-free as they
are run by a single thread, (ii) 8 kernels use features that are currently unsupported
by GPUVerify, such as CUDA surfaces, and (iii) 17 kernels require refinements of the
GPUVerify verification method that cannot currently be applied automatically [11].

Our default assumption is that these benchmarks are free from defects, thus our aim
is verification. However, in the process of applying GPUVerify we have identified, re-
ported and fixed several data race bugs. At the time of writing, running with full opti-
mizations on our experimental platform (described in Sect. 4), and with a timeout of 10
minutes per benchmark, GPUVerify can verify 422 kernels and reports possible defects
for 115. We know that some of these failures are (and expect most to be) false positives
that demand improved invariant inference, but some may correspond to further bugs
that we have not yet identified. The timeout is reached in 27 cases.

We now explain how we have managed the evolution of GPUVerify’s front-end ca-
pabilities from a simple prototype applied to hand-crafted examples to a tool with wide
applicability to GPU kernel benchmarks. In Sect. 4 we discuss engineering decisions
related to the performance of verification.

Incremental Front-End Support. The starting point for GPUVerify was the idea of
using sequential program verification technology to analyse GPU kernels, but it took
several iterations to arrive at the method described in Sect. 2. To allow us to experiment
with example kernels while our ideas were in flux, we first devised a manual process for
translating GPU kernels into Boogie. Starting with Boogie mitigated the risk of invest-
ing in a CUDA or OpenCL front-end and subsequently discovering that our ideas would
not be practical. Using our Boogie-based GPU kernel language we implemented a pro-
totype of the kernel transformation step from Fig. 1 and manually encoded a number
of kernels into Boogie to evaluate the prototype. After encoding around 20 examples
it became clear that our technique had promise, but that we would need to invest in a
front-end for OpenCL and/or CUDA to study a larger set of examples.

We first designed a translator that mapped OpenCL and CUDA kernels (subject to
various restrictions) into our Boogie kernel language. This translator used Clang to
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parse kernels, and performed translation at the level of the Clang abstract syntax tree
(AST). The structured nature of the Clang AST allowed for a relatively simple trans-
formation into structured Boogie. This was essential as we did not know how to apply
predication (a key part of our method, see Sect. 2) to unstructured programs. We were
able to process a fairly large set of benchmarks using this front-end, facilitating our first
publication on GPUVerify [8] which presents an evaluation using 163 kernels. How-
ever, the “structured” limitation eliminated kernels exhibiting unstructured control-flow
(arising e.g. from switch statements and short-circuit evaluation of Boolean operators).
Working at the Clang AST level also meant that we had to directly deal with syn-
tactic features ranging from the difference between while and for loops (easy but
annoying), through details of struct accesses (medium difficulty), to handling of C++
templates arising in CUDA code (fiendishly difficult, and not attempted).

We realized that to apply the tool widely it would be beneficial to work at the level
of LLVM intermediate representation (IR), by which point complex syntactic features
have been desugared. Because LLVM IR is unstructured, we focused on solving the
problem of applying predication to unstructured control-flow-graphs [15] and imple-
mented Bugle, our custom LLVM-to-Boogie translator (see Sect. 2), which produces
unstructured Boogie code to which the new predication method can be applied. We
considered leveraging an existing LLVM-to-Boogie translator, SMACK [35], but opted
to build a custom translator that could take direct advantage of the relatively simple
nature of the GPU programming model.

Environment Modeling for OpenCL and CUDA Significant further engineering ef-
fort was required to model built-in functions provided by OpenCL and CUDA. For
OpenCL and CUDA, respectively, this included 164 and 231 built-in math functions
and 136 and 30 atomic operations. For OpenCL we benefited from libclc,4 an open
source OpenCL library implementation. In addition, we have equipped GPUVerify with
support for OpenCL image types, CUDA textures and an abstraction of a widely used
CUDA random number generation library. Our environment modeling is not complete
(e.g. we do not yet support CUDA surfaces) and it is a moving target as OpenCL and
CUDA continue to evolve. Nevertheless, our modeling effort so far allows GPUVerify
to process many practical examples.

4 Engineering Issues for Efficient Verification

Our first implementation of GPUVerify worked for small examples, but did not perform
well on more complex kernels involving multiple loops and many shared memory ac-
cesses. We now describe the steps we have taken to improve verification performance
through efficient memory modeling, uniformity analysis to reduce the need for predica-
tion, supporting multiple SMT solvers, and optimizations to produce formulas that can
be efficiently processed by SMT solvers.

Experimental Setup. Throughout this section we report experimental results over the
564 kernels in our benchmark collection (see Sect. 3). All experiments were conducted
on a compute cluster using nodes with Intel Xeon EP-2620 cores at 2GHz with 16GB

4 http://libclc.llvm.org/
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RAM running RedHat Linux 6.3, using Z3 v4.3.1, CVC4 v1.4-prerelease from 29-01-
2014 and Clang/LLVM v3.4. Times reported are averages over three runs.

We use baseline to refer to GPUVerify equipped with the efficient memory model
and uniformity analysis described below, but without any of the additional optimiza-
tions we go on to discuss. We use the responsive set to refer to the 492 kernels for
which verification completes (in 391 with “success”, in 101 with “possible defect”) for
baseline and all more highly optimized configurations. We report speedup results with
respect to the responsive set. We do not further discuss 12 kernels for which GPUVer-
ify reached the timeout with every optimization configuration. In 60 cases, GPUVerify
reached the timeout for some optimization configurations but not others. We do not
include these cases when discussing speedups afforded by optimizations.

Our tool chain, non-commercial benchmarks and experimental data (in the form of
interactive graphs) are available online.5

Modeling Memory. The C language rules for pointer casting apply to CUDA and
OpenCL, meaning that it is legitimate to cast an expression e of type T∗, where T is
some type, to an expression of type char∗, after which offsets from e can be addressed
with byte-level granularity. An example of casting in practical GPU code appears in a
histogram kernel shipped with the CUDA SDK. The kernel works on an array of char
data and starts by initializing the array to be uniformly zero. During initialization the
array is cast from char∗ to int∗ to allow zero-initialization to be performed word-by-
word, which is more efficient than working byte-by-byte.

For GPUVerify to work “out-of-the-box” we must handle this kind of pointer usage
even though it is uncommon. We initially let our Bugle front-end model memory at
byte-level granularity. To illustrate this, consider an arrayA with elements of type short,
and a write instruction A[i] = x. In the Boogie code generated by Bugle with byte-level
memory modeling, A is declared as a map from 32-bit offsets to bytes, and the single
write is translated into two byte-level writes (‘bv’ stands for bitvector):

var A : [bv32]bv8; // Map from addresses to bytes
A[i*2+0] := x[8:0]; // The write to A is modeled by two byte-level writes.
A[i*2+1] := x[16:8]; // We use *, + and integer literals for brevity.

This representation is problematic, especially for data types with large widths such as
double: it leads to many loads and stores that need to be instrumented when performing
race analysis and complicates the loop invariants necessary to prove race-freedom. Both
issues place significant demands on the underlying SMT solver. In practice we found
that verification with this simple memory model was unacceptably slow.

To overcome this problem we have developed a unification algorithm that conserva-
tively determines whether an array A with element type T may ever be accessed at a
granularity that is not a multiple of sizeof(T). If such an access may be possible, A is
modeled with byte-level granularity as described above. Otherwise A is modeled with
“type-level” granularity as a map from addresses to bitvectors of size 8 ∗ sizeof(T):
accessing an element of A leads to a single read or write in the generated Boogie code.

With this analysis, byte-level modeling is avoided in all but 40 of our 564 kernels
and in 39 of these cases at least one array is still modeled with type-level granularity.
We evaluated the impact of byte- vs. type-level modeling using the 365 kernels in our

5 http://multicore.doc.ic.ac.uk/tools/GPUVerify/CAV2014

http://multicore.doc.ic.ac.uk/tools/GPUVerify/CAV2014
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collection for which baseline GPUVerify responds within 60 seconds. Turning off the
memory analysis described above, forcing byte-level memory modeling everywhere,
we find that 31 kernels reach the 10 minute timeout and 12 kernels flip from verifying
to failing (due to more complex invariants that can be necessary when reasoning at the
byte level). Overall, analysis took 6.6× longer, but this is not a fully fair comparison
because (a) the 31 kernels that timeout might in practice take much longer to verify,
and (b) comparing times for a kernel where the verification result differs has limited
meaning. Nevertheless, the slow-down associated with byte-level modeling indicates
that our memory analysis is necessary in making GPUVerify practically useful.

Our experience supports existing evidence that, in the context of verification, mod-
eling memory at the lowest common denominator level of bytes does not scale [36].

Uniformity Analysis. The kernel transformation performed by GPUVerify involves
predicating a kernel and applying the two-thread reduction (see Sect. 2). Predication is
essential for handling fragments of a kernel where threads might take different control
flow paths, and because distinct threads may operate on distinct data the two-thread re-
duction must in general introduce a pair of variables for each private variable appearing
in a kernel, one copy for each thread being modeled.

We have observed that in practical kernels, some or all control flow is often uniform
across threads: the guards of conditional and loop statements do not depend (directly
or indirectly) on thread ids. In fact, to achieve high performance when writing code
for mainstream GPUs it is important to minimize thread divergence, and have threads
follow the same control flow path whenever possible [22]. We found it often necessary
to provide loop invariants to recover uniformity between the two threads under con-
sideration, by asserting equality between predicates guarding execution and between
id-insensitive private variables.

To avoid the overhead of generating such invariants and the duplication of private
variables that are guaranteed to be uniform, we have designed and implemented a uni-
formity analysis. This is a taint analysis working at the control-flow graph level that
uses the program dependence graph [18] to determine which variables and basic blocks
are non-uniform because they are (transitively) control- or data-dependent on the thread
ids. The analysis initially sets every variable and block to be uniform, except the tid
variable which is non-uniform. Uniformity information is then updated repeatedly until
a fixpoint is reached: a variable becomes non-uniform if it is assigned an expression that
contains a non-uniform variable, or if it is updated inside a non-uniform block; a block
becomes non-uniform if it is found to be (transitively) control-dependent on a condition
that contains a non-uniform variable. Predication need only be applied to non-uniform
blocks, and only non-uniform private variables need to be duplicated when the two-
thread reduction is applied. This reduces the burden of loop invariant generation and
leads to smaller SMT formulas due to the reduction in private variables.

To illustrate uniformity analysis, consider the example code snippet of Fig. 2(a),
contrived for purposes of illustration, where private variables x, y and z are assumed to
be initially uniform between threads. Fig. 2(b) shows the result of applying predication
to the kernel according to the scheme discussed in Sect. 2, and then duplicating the
statements according to the two-thread reduction so that each of the two threads has
its own copy vi of each private variable v (i ∈ {1, 2}) and every statement is executed
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if (x > 0) {
if (tid < x)

y++;
z += y;
x /= 2;

}

(a)

(x1 > 0 ∧ tid1 < x1) ⇒ y1++;
(x2 > 0 ∧ tid2 < x2) ⇒ y2++;
(x1 > 0) ⇒ z1 += y1;
(x2 > 0) ⇒ z2 += y2;
(x1 > 0) ⇒ x1 /= 2;
(x2 > 0) ⇒ x2 /= 2;

(b)

if (x > 0) {
(tid1 < x) ⇒ y1++;
(tid2 < x) ⇒ y2++;
z1 += y1;
z2 += y2;
x /= 2;

}

(c)

Fig. 2. Uniformity analysis: (a) original code with the outer conditional uniform and the inner
conditional non-uniform; (b) after predication and two-threaded duplication, without uniformity
analysis; (c) after predication and two-threaded duplication, with uniformity analysis

separately by each thread. Uniformity analysis determines that the condition tid <
x is non-uniform, because it refers to tid. As a result, y is non-uniform because the
statement y++ is control-dependent on the condition tid < x. Because y is non-
uniform, z is also deemed non-uniform because it is updated by the statement z += y
which involves y on the right-hand side. The variable x and thus the condition x < 0
remain uniform. With the results of uniformity analysis, GPUVerify is free to perform
less aggressive predication and duplication of the kernel, illustrated by Fig. 2(c). Only
the inner conditional is predicated, the private variable x is not duplicated, and there is
thus only one assignment to x.

As in the byte-level modeling experiment described above, we evaluated the im-
pact of uniformity analysis using the 365 kernels in the responsive set for which base-
line GPUVerify responds within 60 seconds. Turning off uniformity analysis, 6 kernels
reach the 10 minute timeout and 33 flip from verifying to failing; the latter is due to
the lack of loop invariants required to recover uniformity when the analysis is disabled.
Overall, analysis took 1.9× longer with uniformity analysis disabled, but this is not a
fully fair comparison for the same reasons as in the byte-level modeling experiment.

A similar analysis has been proposed for optimizing OpenCL kernels for CPU (rather
than GPU) performance [24]. The analyses were developed independently.

Support for CVC4. Boogie uses the Z3 solver [32] by default. We added support to
Boogie for CVC4 [7], which also provides the theories used by GPUVerify (bitvectors,
arrays, and uninterpreted functions). Our main motivation here was CVC4’s permissive
license: shipping GPUVerify with CVC4 in place of Z3 would make it easier for indus-
trial users to try the tool (see Sect. 6). Two by-products of this effort are that we found
and reported several bugs in CVC4 which were promptly fixed, and that our CVC4 sup-
port has been committed to Boogie, making CVC4 available to other Boogie users. It is
also useful for us to have two solvers available for evaluation, to help determine when
poor performance on a kernel is due to a solver quirk vs. a fundamental issue.

Fig. 3 presents log scale scatter plots comparing the performance of GPUVerify using
CVC4 vs. Z3 with (a) baseline (no optimizations) and (b) all optimizations described be-
low enabled, over the responsive benchmarks. A point (x, y) corresponds to a kernel for
which end-to-end verification took x and y seconds, using Z3 and CVC4 respectively.
Points above/below the diagonal correspond to kernels where Z3 performed better/worse
than CVC4. We distinguish between kernels for which verification succeeds (+) and fails
(◦). The total time for analysis using Z3 and CVC4 with all optimizations was 5774 sec-
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(b) All optimizations

Fig. 3. Scatter plots comparing the performance of Z3 and CVC4 over the responsive benchmarks.
A symbol +, respectively ◦, represents a kernel for which verification succeeds, respectively fails.

onds and 3448 seconds respectively, indicating that CVC4 was 1.7× faster than Z3 over
the responsive set. Going beyond this set and with optimizations enabled, verification
for 15 kernels timed out using Z3 but completed using CVC4, and the converse was
true for 8 kernels.

Optimizing for Verification Performance. We now describe four methods for optimiz-
ing the Boogie programs generated by GPUVerify so that they lead to SMT formulas
that are easier to decide. The optimizations preserve the result of verification (precisely
the same assertions can fail).6 Each optimization was motivated by one or more chal-
lenging examples, for which the optimization led to an encouraging speedup. We eval-
uate the optimizations experimentally across our benchmark suite using Z3 and CVC4,
and comment on the performance that could be gained through portfolio verification.

Eliminating redundant read instrumentation. The first optimization is extremely sim-
ple: when we can deduce statically that an array is never written to, we do not perform
race analysis for the array. This is a common situation, as GPU kernels often read data
from one or more input arrays, and write results to separate output arrays. The opti-
mization may seem trivial, but we mention it because we only considered it after two
years’ work on GPUVerify. Our efforts and attention were focused on more sophisti-
cated challenges, and this “low hanging fruit” escaped our attention. Our results below
show that the optimization is effective overall, serving as a reminder that, when op-
timizing a program analysis method, it is worth exploring easy optimization avenues
first.

Optimizing within barrier intervals. The idea of redundant read instrumentation led
us to devise a refinement of this optimization. Define a barrier interval to be a call-

6 An exception to this is that in some cases the “redundant reads” optimization actually aids in
verification, because shared state abstraction is unnecessary for read-only arrays.



Engineering a Static Verification Tool for GPU Kernels 235

free, single-entry single-exit region of a control flow graph which starts and ends with a
barrier [28]. If shared array A is never written to in a barrier interval I then there is no
need to check for races on A during I: in the absence of writes, there is no possibility
for races between instructions in I, and the barriers guarding entry to and exit from I
eliminate the possibility of races between reads inside and writes outside I.7

Private array removal. Vector data types and operations are widely used in GPU code.
In LLVM IR, thread-private vector data is represented as residing in memory, rather than
in virtual registers. Our Bugle front-end translates each private memory region in LLVM
IR into a separate Boogie map, and vector element access are represented at the Boogie
level via indexing operations into these maps. Because a vector has a fixed number of
elements (e.g. x, y, z and w for a 4D vector), the map indexing expressions are always
taken from a small set of literal values. We implemented a pass in GPUVerify which
identifies when a map is indexed exclusively using a set of k distinct literals. In such
cases, the map and associated indexing expressions are replaced by k distinct scalar
variables, each representing an element of the original map. This reduces the extent to
which array reasoning is required; our hypothesis was that this would improve solver
performance.

Watchdog race checking. Recall from Sect. 2 that data race detection is performed by
introducing sets containing the offsets of array accesses. In practice, such sets can be
modeled via their characteristic functions using maps. However, this requires quantifiers
to express invariants relating to the contents of sets, such as emptiness.

To avoid quantifiers and the associated theorem proving burden, we originally de-
vised a non-deterministic representation of sets [8], based on [17]. Let s and t denote the
arbitrary threads considered by the two-thread reduction. For an array A, we introduce
variables allowing at most one read from and at most one write to A to be tracked. We
then instrument each read operation issued by thread s with a nondeterministic choice
between updating the instrumentation variables to record the offset that was read from,
or leaving the instrumentation variables untouched. Write operations are instrumented
similarly. On kernel entry, and at each barrier, the instrumentation variables are set to
indicate that no accesses are tracked. Races between s and t are detected by checking
whether offsets accessed by thread t conflict with the offsets tracked by the instrumenta-
tion variables. The nondeterministic encoding is sound for race detection because prov-
ing correctness of the sequential program generated by GPUVerify involves showing
that a conflict between threads on an array is impossible for all resolutions of nondeter-
minism [8]. Treating the two threads under consideration asymmetrically is also sound
because verification involves considering all possible ordered pairs of distinct threads,
so for any pair of distinct threads s and t, analysis will be performed with respect to the
ordered pair (s, t) as well as the ordered pair (t, s).

The above encoding avoids quantifiers, but each array access leads to a nondeter-
ministic choice so that the number of paths through the instrumented program grows
exponentially with the number of accesses. For kernels that exhibit hundreds of syntac-
tically distinct reads and writes, this leads to prohibitively slow verification.

7 For brevity, this description of the optimization focusses on the situation where all threads
executing a kernel are in a single work group; GPUVerify is sensitive to the multi-group case.
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Table 1. Summary of optimization results for different solvers. Each speedup is reported with
respect to the baseline results for the relevant solver.

Solver Configuration Total Time (secs) Total Speedup Aggregate Speedups
All Pass Fail All Pass Fail Min Max Med Avg

z3 baseline 11882 9070 2812

rr 10464 8074 2389 1.1 1.1 1.2 0.5 15.7 1.0 1.2

rr+bi 10016 7629 2387 1.2 1.2 1.2 0.6 18.5 1.0 1.3

rr+bi+pa 8206 5973 2232 1.4 1.5 1.3 0.6 77.1 1.1 1.8

rr+bi+pa+wd 5774 3966 1807 2.1 2.3 1.6 0.5 86.9 1.1 2.5

cvc4 baseline 6080 3616 2464

rr 5000 3116 1884 1.2 1.2 1.3 0.1 4.4 1.2 1.3

rr+bi 5002 3094 1907 1.2 1.2 1.3 0.1 4.3 1.1 1.3

rr+bi+pa 4450 2611 1838 1.4 1.4 1.3 0.1 16.6 1.1 1.4

rr+bi+pa+wd 3448 1921 1526 1.8 1.9 1.6 0.3 16.5 1.2 1.5

This led us to devise an alternative race detection method which we call watchdog
race checking. Watchdog race checking uses a single, unconstrained constant repre-
senting an offset with respect to which races should be checked: the “watched offset”.
Verification involves proving for every array that a data race at the watched offset is im-
possible. Because the watched offset is arbitrary, this implies that every offset of each
array is race-free. For each array, two Booleans are introduced to record whether a read
from or write to the watched offset has occurred. Initially these Booleans are false, and
they are reset at each barrier. Thread s sets the “read” Boolean to true whenever it reads
from the watched offset, and similarly for the “write” Boolean. A race between s and t
is reported if thread t reads from the watched offset and the “write” Boolean is true, or
if thread t writes to the watched offset and either the “read” or “write” Boolean is true.
The non-deterministic choice per array access is eliminated.

In practice we have adapted the watchdog method so that at each barrier we nonde-
terministically choose whether to check for data races until the next barrier. This allows
the Boolean variables to be set to false at barriers by simply assuming that they are
false. This removes these variables from the modifies sets (modsets) of loops, simplify-
ing invariant generation. We thus reduce blow-up from being exponential in the number
of array accesses to exponential in the number of barriers, typically a much smaller
number.

Effect of Optimizations on the Benchmarks. Table 1 shows the effects of our opti-
mizations over the responsive set of kernels. We show results with Z3 and CVC4 being
used for SMT solving. Recall that baseline refers to GPUVerify with type-level mem-
ory modeling and uniformity analysis but without further optimizations. We use rr, bi,
pa and wd to refer to the redundant read, barrier interval, private array and watchdog
race checking optimizations, respectively. We consider applying these optimizations on
top of baseline in this order; this was the order in which we added the optimizations to
GPUVerify, so it illustrates the evolution of the tool. The Total Time columns show the
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Table 2. Summary of theoretical optimization results using portfolio solving

Portfolio Configuration Total Time (secs)
All Pass Fail

Z3 and CVC4, baseline 4875 3031 1843
Z3 and CVC4, all optimizations 2900 1696 1203
All solver and optimization configurations 2825 1659 1166

total time for analysis, summed over all benchmarks (All), and also restricted to bench-
marks for which verification passes (Pass) and fails (Fail). For each configuration except
baseline, the Speedup columns show the speedup of an optimization configuration over
baseline, for each solver. The Aggregate Speedups columns show the minimum (Min),
maximum (Max), median (Med) and mean (Avg) speedups over baseline.

The key message from Table 1 is that our optimizations are increasingly effective,
and effective overall, but that the overall speedups afforded by our efforts are mod-
est: 2.1× with Z3 and a 1.8× with CVC4. The maximum and minimum speedups per
benchmark show that the effects of an “optimization” can be dramatic, both positively
and negatively: an 86.9× speedup is observed for one benchmark with Z3 and full op-
timizations (543 seconds to 6 seconds); with CVC the worst speedup is 0.3× (a 3.3×
slowdown) with full optimizations. The median and mean results suggest that our op-
timizations have little impact on a significant number of the benchmarks. With the ex-
ception of watchdog race checking (a change in race instrumentation is relevant to all
benchmarks) this is not surprising: many kernels do not exhibit read-only arrays (thus
rr cannot help), many do not use vectors (thus pa cannot help) and we have already
argued that the bi optimization is rather specialized. We find it counter-intuitive that
the rr optimization, which simplifies the Boogie program generated by GPUVerify, has
such a negative impact in the worst case with CVC4. The associated kernel has a single
read-only array and went from 4 seconds using baseline to 49 seconds using rr. The
unpredictable nature of SMT solvers motivates using multiple solvers during analysis.

The potential for portfolio verification. Our combination of solvers and optimizations
opens the door for “portfolio verification”: running multiple instances of GPUVerify
completely independently using different solver and optimization configurations, re-
porting the first analysis result yielded by a configuration. Table 2 shows the lowest
total time for analysis over the responsive benchmarks that could be expected using
portfolio verification with multiple solver and optimization configurations. Comparing
the best total time in Table 1 (3448 seconds for CVC4) with the total time for full portfo-
lio verification in Table 2 (2825 seconds) the best further speedup portfolio verification
could give is a modest 1.2× overall. We see the main potential of portfolio verification
to be minimizing the response time of GPUVerify.

5 False Positives and Error Reporting

Although GPUVerify performs sound verification, we envisage the tool being useful in
practice for bug-finding, where failed proof attempts shed light on genuine defects. Feed-
back from GPU programmers elicited through talks and tutorials at industry-focused
events appear to support this usage mode. We have taken several steps to reduce false
positives and improve the quality of error messages reported by the tool.
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Aliasing Assumptions on Kernel Entry. A GPU kernel operates on a number of
shared arrays, provided as pointer arguments. According to the OpenCL and CUDA
documentation, there is nothing to stop these pointers from aliasing one another. In
practice we have not encountered a single case of such aliasing across our set of 564
benchmarks. To be truly sound, GPUVerify should assume that pointers could overlap
arbitrarily. This would lead to false positive race reports for practically all array ac-
cesses, rendering the tool unusable. To avoid this, we took the pragmatic decision to
have GPUVerify silently assume that distinct pointer parameters to a kernel refer to
disjoint arrays.

While validating GPUVerify, an engineer at our industrial partner Rightware identi-

__kernel void
aliasing(__global int* a,

__global int* b) {
b[get_global_id(0)+1]

= a[get_global_id(0)];
}

fied this source of unsoundness: “I have probably
uncovered a minor bug in GPUVerify . . . if we have
a kernel like [the slightly simplified example on the
right] GPUVerify happily says it’s all right. However
the user can ... set the same memory object as an
argument for both a and b ... [w]hich has a clear race condition”. When asked whether
this scenario is likely in practice, the engineer confirmed: “We don’t have any kernels
where it would be wise to pass the same pointer value in multiple arguments”, but
suggested that GPUVerify could emit a warning about its aliasing assumptions if the
developer has not used the C99 restrict qualifier to indicate explicitly that pointer
arguments refer to disjoint data: “I’d recommend a warning when not using restrict,
because in probably all the practical cases the kernel arguments are separate”.

In response to this advice we added a pass to GPUVerify which emits a warning if a
kernel has multiple global pointer arguments that are not restrict-annotated.

Auto-inlining. Although GPUVerify supports a modular analysis mode, automatic gen-
eration of procedure specifications is challenging, and imprecise specifications lead to
false positives. Typical GPU kernels are free from recursion and function pointers (both
are forbidden in OpenCL and only recently allowed in CUDA as part of CUDA 3.1) and
are presented in whole-program form. To avoid false positives we automatically apply
aggressive inlining to kernels that do not use recursion or function pointers, repeatedly
inlining calls until no calls remain. All non-kernel functions are then discarded, and
verification is attempted on the now monolithic kernel functions. One downside to this
pragmatic approach is that if a source file contains a function that is never invoked, but
which would exhibit a data race if it were to be invoked, GPUVerify will not analyse the
function and thus will not report a possible defect. Across the responsive set, in baseline
mode, we find that disabling auto-inlining leads to false positives being reported for 31
kernels where verification succeeds with auto-inlining enabled.

KernelInterceptor: Verifying Dynamically Collected Kernel Instances. A GPU ker-
nel is typically designed to work correctly only for certain thread counts and input val-
ues, and GPUVerify requires preconditions specifying constraints on these parameters to
avoid false positive error reports. Providing these preconditions can be a barrier to using
the tool: preliminary experience with engineers at Rightware and ARM suggest that even
the developer of a kernel may not be able to immediately identify suitable constraints on
kernel parameters. To help overcome this we have designed KernelInterceptor [5], a tool
to accompany GPUVerify for analysis of OpenCL kernels. KernelInterceptor is a shim
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which intercepts calls to the OpenCL host API used to specify thread counts and input
parameters, gathering this data for all kernel instances launched during the running of
an application. GPUVerify can then be automatically invoked using preconditions cor-
responding to each kernel instance that was observed, eliminating false positives arising
due to unrealistic parameter values.

Error Reporting. Our initial GPUVerify prototype reported verification failures by
printing a trace for the Boogie program generated by the tool; this information was of
limited use even to us as the tool’s developers. To allow clear error reports referring to
the original source code of a kernel we have extended our Bugle front-end so that source
information, available from LLVM IR if Clang is invoked appropriately, is embedded
in the generated Boogie code via Boogie attributes.

Meaningfully reporting data races proved more difficult than we anticipated, because
a data race involves two access operations: a first access is logged, and subsequently a
race is detected due to a conflicting second access. At the Boogie level, an assertion
corresponding to the second access fails. Source information for this access is available
from attributes attached to the assertion, but source information for the first access is
not directly available. Furthermore, the race report may stem from an abstract trace that
jumps over a loop by replacing the loop with a summary computed using an invariant.
In this case it may be that no specific first access is responsible for the race report;
instead, it may be that GPUVerify could not find a strong enough invariant to prove race-
freedom between the loop and the second access. To overcome this reporting problem
we use Boogie’s state capture facility to ask the SMT solver to provide a valuation of
all program variables after each logging operation and at the head of each loop. This
allows us to walk an abstract counterexample trace and determine whether the possible
race is due to a specific first access or instead stems from the abstraction of a loop. In
the former case we can provide a specific race report, otherwise we report all relevant
array accesses in the loop as possibly racing with the second access.

6 Engagement With Industry

We briefly summarize our efforts to make it easy for industrial users to access and learn
about GPUVerify, and discuss preliminary feedback from two industrial partners.

Industry-Friendly Licenses. The licenses associated with the Clang/LLVM and Boo-
gie frameworks mean that they can be used freely in a commercial context. This is not
true of the Z3 solver. Providing support for CVC4, with a license attractive to industry,
has been vital in allowing industrial partners to try out GPUVerify.

Web Access. We have made GPUVerify available as a web service through Microsoft’s
rise4fun site,8 allowing interested users to try the tool with no installation overhead.

Tutorial Videos. To give potential users in industry a practical overview of GPUVerify
we have recorded a series of tutorial videos, available on YouTube. We have also given
in-person tutorials at industry-focussed conferences and OpenCL vendor sites.

Preliminary Industrial Feedback. Feedback from our industrial contacts at Right-
ware and ARM on GPUVerify has been encouraging. Rightware have used GPUVerify

8 http://rise4fun.com/GPUVerify-OpenCL and http://rise4fun.com/GPUVerify-CUDA

http://rise4fun.com/GPUVerify-OpenCL
http://rise4fun.com/GPUVerify-CUDA
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to verify race-freedom across their Basemark CL suite, discovering one defect in the
process. We are collaborating with engineers at ARM on adapting GPUVerify to pro-
vide tailored analysis support for OpenCL kernels targeting ARM’s Mali GPU series.

7 Lessons Learned and Future Problems

We summarize the principal take-aways from our experience building GPUVerify, and
pose what in our view is the main challenge associated with future work in this area.

Lessons Learned. We hope the following may be informative for future projects.

Target a tractable problem. GPUVerify’s goals are modest: attempt to verify race-
freedom (not full functional correctness) for GPU kernels (not arbitrary C programs).
With this tight scope we have been able to exploit the relative simplicity of GPU kernels
to achieve a fairly high degree of automation and efficiency.

Re-use infrastructure. We cannot overstate how much we have gained by exploiting
Clang/LLVM, Boogie, Z3 and CVC4. When considering infrastructure re-use, it is
worth paying attention to licensing issues if the ultimate goal is industrial uptake.

Evolve front-end capabilities. All software verification tools have to face the “front-
end” problem. Restricting to a toy language simplifies front-end development but dooms
a tool to only academic use; working with a full-fledged compiler infrastructure can
blur implementation difficulty with the essence of a new idea. We advocate a staged ap-
proach to this problem as outlined in Sect. 3, which is aided by intermediate verification
languages such as Boogie [6] and Why3 [19].

Beware of outliers. We optimized GPUVerify in response to kernels for which per-
formance was particularly bad. We achieved massive speedups for some outliers, but
were brought down to earth by the modest overall speedups and new negative outliers
resulting from our optimizations (see Table 1). Evaluating the general effectiveness of
verification optimizations requires a large set of benchmarks.

Challenge: Flexible Invariant Generation. The main weakness of GPUVerify is its
invariant generation capabilities. We use Houdini for invariant generation in GPUVer-
ify because, though somewhat brute force, it is flexible and applicable to arbitrary pro-
grams. At present we are unable to exploit advanced invariant generation techniques
because they restrict the form of programs to which they can be applied. We offer our
large set of publicly available benchmarks as a challenge for invariant generation re-
searchers interested in lifting restrictions on program form.
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Abstract. Lazy Annotation is a method of software model checking
that performs a backtracking search for a symbolic counterexample.
When the search backtracks, the program is annotated with a learned
fact that constrains future search. In this sense, the method is closely
analogous to conflict-driven clause learning in SAT solvers.

In this paper, we develop several improvements to the basic Lazy An-
notation approach. The resulting algorithm is compared both conceptu-
ally and experimentally to two approaches based on similar principles
but using different learning strategies: unfolding-based Bounded Model
Checking and Property-Driven Reachability.

1 Introduction

Lazy Annotation is a method of software model checking motivated by conflict-
driven clause learning (CDCL) in Boolean satisfiability (SAT) solvers. It per-
forms a backtracking search for a symbolic execution of a program that violates
a safety property. When the search reaches a conflict, it backtracks, annotating
the program with a learned fact that constrains future search. As in CDCL, the
learned fact is derived as a Craig interpolant.

In this paper, we develop several improvements to the basic Lazy Annota-
tion approach. Among other things, we adapt Lazy Abstraction to large-block
encodings [6], allowing us to exploit the power of modern satisfiability modulo
theories (SMT) solvers. We compare the resulting algorithm to unfolding-based
Bounded Model Checking and to Property-Driven Reachability. These methods
share the general approach of conflict-driven learning, but differ in their search
and learning strategies. Our goal will be to clarify these distinctions conceptu-
ally, and to test empirically the relative strengths of the different strategies. In
particular, we will try to answer two questions:

1. Whether structured or unstructured search is more effective, and
2. What characterizes an effective conflict learning strategy, in terms of reduc-

ing bounded search and converging to an unbounded solution.

Related Work. The basic idea of Lazy Annotation was introduced by Jaffar et
al. [17] in the context of Constraint Logic Programming (CLP). A more general
approach, handling richer theories and recursive procedures, was introduced by
the author [21], along with the name Lazy Annotation. Here, we adopt the lat-
ter approach, in particular its use of proof-based interpolants and its method
of inferring unbounded proofs from bounded proofs. Following Jaffar et al.,

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 243–259, 2014.
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we work within the CLP framework, but generalize from simple linear arith-
metic constraints to constraints in full first-order logic, exploiting the strength
of modern SMT solvers. Moreover, we will allow clauses with multiple sub-goals
(called the nonlinear case in [16]). Thus we can verify, for example, recursive
procedural programs.

The IC3 method of Bradley [9] is similar at a high level to Lazy Annota-
tion. Both methods perform bounded verification for increasing bounds, until
an inductive invariant can be inferred from the bounded proof. Both methods
generate symbolic goal states that are known to reach an error. These are refuted
in a bounded sense by computing interpolants (in a sense we will define). Apart
from various optimizations, the primary difference is in the particular strategy
for computing these interpolants, an issue we will study in detail.

The class of algorithms based on IC3 has been called Property-Driven Reach-
ability [12]. Although PDR originally applied only to propositional logic and the
linear case, the approach was later extended to the non-linear case and richer log-
ics [16] making it suitable for software model checking. Cimatti and Griggio give
a hybrid approach applying PDR to software model checking [10]. Propositional
PDR can also be applied to software via predicate abstraction [16,11].

Another related approach was introduced recently by Bayless et al. [5] for
the propositional linear case. In addition, there are various other CDCL-like
methods [15,24] to which the conclusions of this study may be relevant.

2 Informal Discussion of Lazy Annotation

To give an intuitive explanation of the basic search and learning strategy of
Lazy Annotation (LA in the sequel) we first consider the special case of transition
systems (equivalently, imperative programs with a single loop). This will allow us
to use the familiar vocabulary of transition systems, and to compare approaches
more easily.

We model a transition system using the following constrained Horn clauses :

I(x̄)⇒ R(x̄) (1)

R(x̄) ∧ T (x̄, x̄′)⇒ R(x̄′) (2)

Here, x̄ is a vector of variables representing the program state. The free variables
are considered to be universally quantified in these clauses (a convention we will
use in the remainder of the paper). The predicate I is a fixed set of initial
states, while T is a fixed transition relation. Predicate R represents an unknown
inductive invariant for which we wish to solve. The solution must satisfy the
query formula R(x̄) ⇒ S(x̄), where S is a fixed set of safe states. Any such R
constitutes a proof that our transition system is safe (that is, no initial state can
reach a non-safe state via any sequence of transitions).

Our strategy for finding a solution for R will be to search for a refutation. A
refutation takes the form of path in the transition system from an initial state to
a non-safe state. As we will see, such a path corresponds to a ground derivation
of a contradiction using our clauses.
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As in bounded model checking, we search for a refutation path by unwinding
the system k steps. This gives the following set of clauses:

I(x̄) ⇒ R0(x̄)

R0(x̄) ∧ T (x̄, x̄′) ⇒ R1(x̄
′)

. . .

Rk−1(x̄) ∧ T (x̄, x̄′) ⇒ Rk(x̄
′)

Rk(x̄) ⇒ S(x̄)

A refutation for this acyclic (or non-recursive) set of clauses is a transition se-
quence that violates safety after exactly k steps. Correspondingly, a solution for
R0 . . . Rk represents a proof that there is no such path. If we find a solution of
the k-step unwound system, we can then attempt to derive from it a solution for
the original cyclic system.

During our search for a refutation path, we maintain a candidate solution for
R0 . . . Rk called the annotation. The annotation of Ri is an over-approximation
of the set of reachable states of the system after i steps. We require that the
annotation be inductive. That is, it must satisfy all the Horn clauses, but not
necessarily the query (unlike in PDR, we don’t require that the annotation be
an expanding chain).

Our search takes the unsafe states as an initial goal and symbolically executes
the system backward from this goal. At each step we narrow the search by
making a decision. A decision is simply an arbitrary constraint on our symbolic
path. The search reaches a conflict when the goal (the symbolic path) becomes
unsatisfiable. In this case, we backtrack, undoing the most recent decision. In the
process we learn an annotation that prevents us from making the same decision
in the future. The learned annotation is computed as an interpolant.

A search goal is a conjunction of facts to be derived and constraints to be
satisfied. Our initial goal is Rk(x̄k) ∧ ¬S(x̄k). That is, we wish to derive an
unsafe state reachable in k steps. A backward step in the search corresponds to
resolution of the goal with a clause. Thus, in the first step, we resolve the goal
with the clause Rk−1(x̄)∧T (x̄, x̄′)⇒ Rk(x̄

′) to obtain the new goalRk−1(x̄k−1)∧
T (x̄k−1, x̄k)∧ ¬S(x̄k). This goal represents a state reachable in k − 1 steps that
can reach an unsafe state in one step. As we perform resolution steps, our goal
represents execution paths of increasing length.

Now suppose a goal is satisfiable in the current annotation. That is, when we
substitute the annotation for Ri into the goal, the resulting formula is satisfiable.
This means we can reach the error from Ri. We then make a decision, adding
an arbitrary constraint to the goal. Decisions prevent the goal from becoming
overly complex as we perform resolution steps. A decision typically constrains the
most recent execution step. Thus, if our goal is Ri(x̄i)∧T (x̄i, x̄i+1)∧· · · ¬S(x̄k),
it becomes Ri(x̄i) ∧ Di(x̄i, x̄i+1) ∧ T (x̄i, x̄i+1) ∧ · · · ¬S(x̄k). Here Di is a fixed
predicate representing the i-th decision. The choice is Di is arbitrary, but we
require that the goal remain satisfiable.

Because decisions constrain the search, we may find after making a resolution
step that the goal is unsatisfiable. At this point we are in conflict, and must
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backtrack to the previous goal, undoing one resolution step and one decision.
In the process, we strengthen the annotation so that the last decision becomes
infeasible. Our strengthening must be a value of Ri+1 such that the resolved
clause is true, that is,

Ri(x̄i) ∧ T (x̄i, x̄i+1)⇒ Ri+1(x̄i+1) (3)

and such that the prior decision is infeasible, that is, such that

Ri+1(x̄i+1) ∧Di+1(x̄i+1, x̄i+2) ∧ T (x̄i+1, x̄i+2) ∧ · · · ¬S(x̄k) (4)

is unsatisfiable. The reader may recognize that the formula Ri+1(x̄i+1) is an
interpolant between two parts of the infeasible goal. We can compute such an
interpolant from a proof of unsatisfiability of the goal, provided the proof system
admits feasible interpolation [20]. The new annotation forces a different decision
after backtracking.

LA can terminate in one of two ways. After resolving on R0, the goal contains
no facts to derive. In this case, it is a feasible BMC formula representing a
path from initial to unsafe states. On the other hand, if the initial goal becomes
unsatisfiable (that is, if Rk implies S under the annotation) then we have a proof
that no unsafe state is reachable in k steps.

We can then use the annotation of the bounded unwinding as a hint in con-
structing a solution of the original cyclic problem. We will will refer to this as
the convergence phase. In [21], the convergence approach was to start with all of
the conjuncts of annotations Ri of the bounded problem and apply the Houdini
algorithm [13] to reduce these to their maximal inductive subset. If this yields a
solution, we are done, otherwise we increase the unfolding depth k. The conver-
gence phase in PDR is similar: annotations are propagated forward until a fixed
point is reached. There are many other possibilities, however, including Lazy
Abstraction with Interpolants (LAWI) and predicate abstraction. Here, we will
focus on solving the bounded problem and leave aside the largely orthogonal
question of convergence.

3 Formal Description of Lazy Annotation

We will now formalize LA as an algorithm, extending it from simple transition
systems to the general case of constrained Horn clauses.

We use standard first-order logic over a signature Σ of function and predicate
symbols of defined arities. We use φ, ψ for formulas, P,Q,R for predicate sym-
bols, x, y, z for individual variables t, u for terms and x̄ for a vector of variables.
Truth of a formula is relative to a background theory T . A subset of the signa-
ture ΣI ⊆ Σ is interpreted by the theory. We assume the symbol = has the usual
interpretation. We assume theory T is complete in that it has at most one model.
Thus, every sentence over ΣI has a defined truth value. This assumption can be
removed, in which case many of the definitions that follow become relative to a
choice of theory model. Unless otherwise stated, we assume that T is decidable.
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The vocabulary of φ, denoted L(φ), consists of its free variables and the subset
of Σ \ ΣI occurring in φ. An interpolant for A ∧ B is a formula I such that
A⇒ I and B ⇒ ¬I are valid, and L(I) ⊆ L(A)∩L(B). We will write φ[X ] for a
formula with free variables in X . A P -fact is a formula of the form P (t1, . . . , tn).
A formula or term is ground if it contains no variables. When a set of formulas
appears as a formula, it represents the conjunction of the set. If φ is a formula
and σ a symbol substitution, φσ is the result of performing substitution σ on φ.

Definition 1. Relative to a vocabulary of predicate symbols R, we say

1. A fact is a P -fact for some P ∈ R,
2. A constraint is a formula φ s.t. L(φ) ∩R = ∅,
3. A goal is a set of facts and constraints.
4. A rule is a sentence of the form ∀X.B[X ]⇒ H [X ] where the body B[X ] is

a goal and the head H [X ] is a fact.

We will also write goals in the form F [X ] | C[X ] and rules in the form F [X ]⇒
H [X ] | C[X ], where F [X ] is the set of facts (the subgoals) and C[X ] is the set
of constraints.

Definition 2. A ground instance of a rule F [X ] ⇒ H [X ] | C[X ] (respectively
a goal F [X ] | C[X ]) is Fσ ⇒ Hσ (respectively Fσ) for any ground substitution
σ on X such that Cσ is true in T .

Definition 3. A ground derivation from a set of rules C is a sequence of ground
instances of rules in C in which each subgoal is the head of a preceding clause. A
ground derivation of a goal G is a ground derivation of all the subgoals of some
ground instance of G.

Definition 4. A Horn reachability problem is a triple (R, C, G) where R is a
vocabulary of predicate symbols, C is a set of rules over R and G is a goal over
R. It is satisfiable if there is a ground derivation of G from C. A dual solution
of the problem is a model of C in which G is unsatisfiable.

Definition 5. A Horn reachability problem (R, C, G) is acyclic if there is a total
order < on R such that for all rules F ⇒ P (x̄) | C in C and all subgoals Q(ȳ)
in F , Q < P .

A set of Horn clauses has a least model, which is the set of derivable facts.
Thus, a Horn reachability problem has a dual solution iff it is unsatisfiable.

We assume that the predicates in R occur only in the form P (x̄) where x̄ is
a vector of distinct variables. We can enforce this by introducing new variables
and equalities, for example rewriting B[X ] ⇒ P (f(x)) to B[X ] ∧ y = f(x) ⇒
P (y). We represent the interpretation of a predicate P (x̄) symbolically by a
characteristic formula φ[x̄]. We write α(P ) = λx̄. φ[x̄] to mean that, in the
interpretation α, P (x̄) holds iff φ holds. Given relations P and Q, we write
P ∧Q for the intersection of P and Q and P ∨Q for their union. Further, we will
write � for λx̄. True and ⊥ for λx̄. False (where the arity of x̄ is understood
from context).
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The procedure maintains a model α of the rules C called the annotation.
This model over-approximates the derivable facts (i.e. reachable program states).
Initially, α(P ) = � for all P ∈ R. The LA procedure is shown in Figure 1. As
Jaffar et al. observe [17], it is essentially Prolog execution with a form of tabling
using interpolants. We assume a procedure Itp(A,B) that takes two inconsistent
formulas A and B and returns an interpolant for A ∧B.

The main procedure is Search, which takes a goalG and searches for a ground
derivation of it. It assumes that the goal is satisfiable in the current annotation,
that is, Gα is satisfiable. If not, the problem is trivially unsatisfiable. If there are
no subgoals in G, the problem is trivially satisfiable, and we return Sat. Else we
arbitrarily choose a subgoal P (x̄) to derive. We then loop over all rules C with
head matching P (x̄). For each such C, we call the procedure Rstep to continue
the search using C to derive P (x̄) (procedure Ren renames the variables in C to
avoid clashes with the goal). If the search succeeds, we return Sat. Else Rstep

returns a value for P that contains all facts derivable using C and rules out the
goal. After the loop, the disjunction of the returned values over-approximates
P . Thus, we strengthen α(P ) by this disjunction, maintaining α as a model of
C and making Gα unsatisfiable.

Procedure Rstep takes a goal G, a subgoal P (x̄) of G to be satisfied, and a
rule C of the form B ⇒ P (ȳ) to be used to derive the subgoal (where the free
variables of the goal G and clause C are distinct). First we resolve the rule with
the goal. Since ȳ is a vector of variables, the most general unifier is trivial: we
just map ȳ to x̄. We produce the prefix by applying the unifier to the body of
the rule and the suffix by removing the subgoal from G. The resolvent G′ is the
union of the prefix and suffix. This is our new goal.

Now we test whether the new goal G′ is satisfiable in the current annotation,
using decision procedure for theory T (for example, an SMT solver). If it is
unsatisfiable, we compute an interpolant φ[x̄] between the prefix and suffix.
Because φ[x̄] is implied by the prefix, we know that the assignment P = λx̄. φ
satisfies rule C in the current annotation. Moreover, since φ[x̄] is inconsistent
with the suffix, we know that this interpretation is inconsistent with the original
goalG. We therefore return the symbolic relation λx̄. φ as an over-approximation
of P showing that the subgoal cannot be derived using rule C.

On the other hand, suppose the new goal is satisfiable in the current anno-
tation. We now make a decision. The decision is chosen from a finite language
LD(G′) using only the variables of the new goal G′. Though the decision is
arbitrary, it must at least be consistent with G′ so that the resulting goal is sat-
isfiable. This means that the disjunction of formulas in language LD(G′) must
be valid. In our implementation, our decision language is the set of truth assign-
ments to the atoms of G′. Thus, we can construct a decision consistent with G′

by using the satisfying assignment returned by our decision procedure. Having
made a decision, we now have a satisfiable goal, which we attempt to solve by
calling the main procedure Search recursively.

Theorem 1 (Total correctness). Given an acyclic Horn reachability problem
Π = (R, C, G), such that G is satisfiable, Search(G) terminates and:
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Procedure Rstep(G,P (x̄), C = (B ⇒ P (ȳ)))
Input: goal G, subgoal P (x̄), rule C
Output: Sat, or a bound on P refuting the goal

1 Let pref = B〈x̄/ȳ〉 and suff = G \ {P (x̄)}
2 Let G′ = pref ∪ suff
3 While True do:
4 if G′α is unsatisfiable, return λx̄. Itp(pref, suff)
5 choose D in LD(G′) s.t. (D ∧G′)α is satisfiable
6 if Search(G′ ∪ {D}) = Sat return Sat

7 Done.

Procedure Search(G = (F | C))
Input: goal G s.t. Gα satisfiable
Output: Sat or Unsat and Gα unsatisfiable

1 If F (the subgoal set) is empty, return SAT
2 Choose a subgoal P (x̄) in F
3 Let R = ∅
3 For each rule C = (B ⇒ P (ȳ)) in C do:
4 Let RC = Rstep(G,P (x̄),Ren(C))
5 If RC = Sat return Sat

6 Let R = R ∪ {RC}
7 Done
8 Let α(P ) = α(P ) ∧ (∨R)
9 Return Unsat.

Fig. 1. Basic unwinding algorithm

– if it returns Sat, Π is satisfiable
– if it returns Unsat, Π is unsatisfiable and α is a dual solution of Π.

The proof can be found in [23].

3.1 Comparison to BMC

We will use BMC to refer to Bounded Model Checking by unfolding and applying
a decision procedure, as in [7]. In the transition system case, a completed search
goal in LA is precisely a k-step BMC formula. If we make no decisions, LA
reduces to BMC followed by interpolation. The difference between BMC and LA
is therefore in the decision and learning strategies. Decision-making in BMC is
unstructured in the sense that the decision procedure may make decisions on any
variables in the goal formula in any order. In LA, decision making is structured.
That is, we alternate resolution (unfolding) and decision steps. Similarly, learning
in BMC is unstructured. The decision procedure may learn clauses that span the
entire BMC formula. In LA, learning is structured. Each learned annotation is
a set of facts describing a single program state.

It is not clear a priori what the most effective strategy is. The unstructured
approach allows greater flexibility and more opportunities for heuristic optimiza-
tion. On the other hand, a more structured approach may guide us to learn more
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general facts, reducing the search space more rapidly. In section 5.2 we will try
to resolve this question empirically.

3.2 Comparison to PDR

Like LA, PDR has structured search and learning strategies. The fundamental
differences are in the form of the goals and the interpolation approach.

The Variable Elimination Trade-Off. In PDR, the goal is restricted to the
form R(x̄) ∧ C(x̄) where R(x̄) is an atom to be derived, and the constraint
C(x̄) is a (quantifier-free) conjunction of literals. Thus, after resolving we must
approximate the goal in some way that uses only the variables x̄. For example,
suppose we resolve the goal Rk(x̄k) ∧ Ck(x̄k) with the clause Rk−1(x̄k−1) ∧
T (x̄k−1, x̄k)⇒ Rk(x̄k) to obtain Rk−1(x̄k−1) ∧ T (x̄k−1, x̄k) ∧Ck(x̄k). To obtain
a new goal, we must somehow eliminate x̄k. The weakest such goal would be
equivalent to ∃x̄k. Rk−1(x̄k−1) ∧ T (x̄k−1, x̄k) ∧ Ck(x̄k). However, it may not be
possible or desirable to eliminate this quantifier precisely.

Instead, we may compute a stronger goal in the right vocabulary. This is, in
effect, decision making. As an example, if we constrain each unwanted variable to
have a specific concrete value, then eliminating those variables becomes trivial.
However, this may result in too-specific goal, and hence weak or irrelevant anno-
tations. An alternative would be to use quantifier elimination for those variables
for which it is inexpensive, and to use concrete values otherwise. In any event,
there is an inherent trade-off to be made between the generality of a goal and its
cost. We will refer to this as the variable elimination trade-off. LA avoids this
trade-off by simply not eliminating variables from the goals. A disadvantage of
this as that the goals grow syntactically larger as the search deepens.

Interpolation in PDR. The most important difference between PDR and
LA is in the computation of interpolants. For simplicity, consider the transition
system case. In LA, the interpolant is computed by dividing the goal into two
parts (Equations 3 and 4). The prefix is a single step from Ri to Ri+1, while
the suffix is a path from Ri+1 to a safety violation at Rk. By contrast, in PDR
the interpolant is between a prefix path from R0 to Ri+1 and a cube Ci+1[x̄i+1]
(a conjunction of literals). In other words, the clause learned by PDR is an
interpolant for A ∧B, where

A ≡ I(x̄k) ∧
∧

k=0...i

T (x̄k, x̄k+1)

B ≡ Ci+1[x̄i+1]

In fact, it is not any such interpolant, but an interpolant that is inductive rela-
tive to the current annotation. This means that if P is the interpolant, we have
Rk(x̄k) ∧ P (x̄k) ∧ T (x̄k, x̄k+1) ⇒ P (x̄k+1), for k = 0 . . . i. Intuitively, a sim-
ple relatively inductive interpolant might be likely to participate in an eventual
inductive invariant. We may construct such an interpolant as a clause using a
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subset of (the negations of) the literals in the goal. Bradley gives an approach
to finding such a clause that is relative inductive [9]. We may also apply gener-
alization rules specific to theories [16].

This approach to interpolation has advantages and disadvantages. The form
of the goal makes it possible to search effectively for a relatively inductive inter-
polant. On the other hand, because of the variable elimination trade-off, the goal
may be more specialized than necessary. The resulting weak or irrelevant anno-
tation may provide little reduction in the search space. This is another question
that must be answered empirically, and we will attempt to do this in Section 5.1.

Goal Preservation. Implementations of PDR typically carry the refutation of
each goal all the way to the depth bound, prioritizing goals by depth. We will
call this method “goal preservation”. This tends to speed the bounded refutation
process and also can produce counterexamples longer than the depth bound [9].
Goal preservation is equally applicable to LA, though we will not use it here.

4 Improvements to Lazy Annotation

In this section, we introduce a number of improvements within the basic LA
framework, relative to the implementation described in [21].

Decision Space. In the implementation of [21], a decision is simply a choice of
basic block exiting a control location in the control-flow graph. This is effective
for simple basic blocks, but in a “large block” encoding [6] the resulting goals are
too complex. We require a more fine-grained decision space to sufficiently narrow
the search. To achieve this, we use truth assignments to the atomic formulas of
the goal (i.e., minterms) as decisions. Such a minterm is easily extracted from
a satisfying assignment. In a large-block encoding, a minterm of the transition
relation corresponds roughly to an execution path. If the code has disjunctive
guards, a minterm also fixes a disjunct that is true. However, we do not fix the
values of data variables. This reduces the combinatorial complexity of the prob-
lem while allowing a large space of data values.

Back-Jumping. In a CDCL SAT solver, many decisions are not actually used
in the proof of a conflict. In such a case, we backtrack over the decision to an
earlier decision that is actually used, and learn an interpolant at that point. The
same situation can occur in LA in the case of multiple sub-goals. It will help to
think of a goal in LA as a tree in which the leaves are sub-goals and the interior
vertices are constraints. Each resolution step expands one leaf of the tree. Now
suppose we expand leaf Q, followed by leaf R on a different branch, and reach a
conflict. Suppose further that the proof of unsatisfiability does not use any for-
mulas introduced in the expansion of Q. After backtracking from the expansion
of R (strengthening R using an interpolant) we can immediately backtrack from
the expansion of Q without any additional annotation (put another way, since
this step is not used in the proof, its interpolant is True). We may continue to
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back-jump in this way until we reach an expansion that is in the proof core of
the conflict, eliminating unneeded calls to the decision procedure.

Resolution Heuristic. Each time we make a resolution step, we must choose
a sub-goal to expand and a rule to derive it. We can use a heuristic for this
choice that is closely related to variable scoring heuristics in CDCL SAT solvers.
We maintain a relevance score for each rule, initially zero. When we backtrack
from a resolution without strengthening the annotation (for example, by back-
jumping) we decrement the relevance score of the rule. When choosing a rule to
resolve with, we select first the rule with the highest score.

Interpolant Generalization. Given a proof of a conflict produced by an SMT
solver, we can compute an interpolant for the resolution step using methods of
feasible interpolation [20]. However, these interpolants may be both syntactically
complex and weaker than necessary, depending on the proof actually obtained
by the decision procedure. We can borrow an idea from PDR to improve the
result. First, notice the asymmetry between the prefix and suffix in the inter-
polation. The suffix has fixed truth values assigned to each atom by decision
making. The prefix on the other hand contains propositionally complex formu-
las from the annotation and the transition relation. The interpolant thus tends
to be a disjunction at the top level, as most case splitting in the proof will occur
on the prefix side. We therefore attempt to strengthen it by greedily dropping
disjuncts as long as it remains implied by the prefix. Often this leads to a simple
interpolant in clause form. If the interpolant is still syntactically complex, we
can use more aggressive interpolation methods as in [2]. A simple approach is to
sample prime implicants of the prefix. The interpolant is the disjunction of the
interpolants for the prime implicants.

Eager Propagation. In IC3, before increasing the unwinding depth, anno-
tations are propagated forward. That is, we copy annotations from earlier to
later predicates in the unwinding while the annotation remains a model of the
rules. More frequent propagation is also possible and was found to be effective
by Suda [25]. In experiments with LA, propagation after completing a bound
was found to strengthen the annotation infrequently. A somewhat more effec-
tive approach is to propagate eagerly, during the search. When backtracking to a
sub-goal with predicate Ri that is an instance of R in the unwinding, we attempt
to propagate annotations of earlier instances of R. If any propagation succeeds
in strengthening the annotation of R, we backtrack again, in the hope that the
strengthening will rule out an earlier sub-goal.

5 Experiments

We will now consider some experiments comparing the performance of PDR,
traditional BMC and our improved LA for large-block encodings. We wish to
determine experimentally (1) whether structured or unstructured search is more
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effective, and (2) which interpolation approach is more effective in reducing the
bounded search and in converging to an unbounded solution.

As a representative implementation of PDR, we will use the PDR engine im-
plemented in the Z3 theorem prover [16]. This implementation supports linear
integer arithmetic (LIA) and has limited support for other theories, such as
the theory of arrays. Z3/PDR computes interpolants for linear arithmetic us-
ing Farkas’ lemma and inductive generalization. To represent BMC, we will use
Stratified Inlining (SI) in Corral [18]. This tool inlines procedures until either
a complete error path is found (using Z3), or the problem becomes unsatisfi-
able (indicating the program is safe) or until a given recursion bound is reached
(in which case the result is inconclusive). Inlining a procedure is equivalent to
performing a resolution step on the procedure’s summary. The author has imple-
mented LA within Z3. It is used as a non-recursive Horn solver in Duality [19].
Bounded solving is done using LA, while convergence is achieved using LAWI.
Duality supports full (quantified) first-order logic with linear integer arithmetic
and arrays using an interpolation procedure for proofs in this theory imple-
mented in Z3 [22]. Neither Z3/PDR nor Duality use goal preservation in the
experiments. This is the default setting in Z3/PDR, as the authors report the
method does not produce a clear benefit [8].

Details of the experimental setup can be found in an extended version of this
paper [23]. It includes details on obtaining the benchmarks, source code of the
tools, and addition data.

5.1 First Experiment

Our first experiment uses benchmark problems from the SV-COMP 2013 soft-
ware model checking competition. We use an encoding of these problems into
a Horn clause representation available in the SV-COMP repository, provided
by Gurfinkel [14]. These are linear cyclic problems that are obtained by inlin-
ing all procedures. For the experiment, two subsets of the benchmark problems
were chosen: the “Control Flow and Integer Variables” subset and the “Product
Lines” subset. These were chosen because they do not rely on complex pointer
reasoning and can be encoded using only the theory of linear arithmetic, allow-
ing them to be handled by PDR. This choice was made in advance and was not
expanded after obtaining and analyzing data to avoid the possibility of bias due
to “benchmark shopping”.

For additional context, we include the tool UFO [1]. This tool was the win-
ner of the SV-COMP 2013 in both of the chosen categories. Fortuitously, the
Horn clause versions of the problems were generated by UFO. Thus we can be
fairly confident that UFO, Z3/PDR and Duality/LA are using the same logical
representation of the problem, giving a direct comparison. On the other hand,
since Corral cannot use this problem representation (and thus would require a
different language front-end) we omit it from this experiment. An additional
difficulty in comparison arises because the competition version of UFO is not
a single algorithm, but a portfolio of seven algorithms run in parallel. To make
a fair comparison against the other algorithms, we use the two most successful
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Fig. 2. Cactus plot of run times on SV-COMP 2013 problems

of these seven (those that most frequently had the least run time). The first we
will call Boxes. It augments LAWI with a multiple-interval abstract domain.
The second we will call CPred. It augments LAWI with a Cartesian predicate
abstraction domain.

The four chosen tool configurations were run on a 4-core 64-bit 2.67GHz Intel
Xeon CPU with 24GB of main memory. The tools were run on all benchmark
problems with a time-out of 180 seconds. Time for compilation and optimiza-
tion of the C language source code is not included. The benchmark problems
completed by all tools in under one second were discarded. The run times for
the remaining problems are plotted in Figure 2. Each line shows the run times
for all completed benchmarks sorted in increasing order. Thus, a lower line is
better. We observe that overall CPred and Z3/PDR are roughly comparable,
while Duality solves a larger subset of problems (in fact, all but one).

The are several possible reasons for the difference between LA and PDR. One
possibility is that the outer convergence loop is generating different unwind-
ings. To eliminate this possibility, we will focus on the subset of benchmarks
in the “ssh” and “ssh-simplified” sub-categories. These benchmarks are simple
loops (i.e. transition systems) and therefore have only one possible unwinding.
For simple loops, we may compare the quality of the annotations generated by
the two methods in terms of the number of resolutions and the depth of the
unwinding at convergence.

Figure 3 shows scatter plots comparing the unwinding depth at convergence
and the number of resolutions steps for Z3/PDR and Duality/LA. Points on the
boundary are time-outs. Both measures are substantially lower for Duality/LA,
indicating more effective conflict learning. The greater convergence depth for
Z3/PDR could be explained by learning many annotations that are true only
to a bounded depth. To obtain an inductive invariant in PDR, the search must
exceed the depth at which these annotations fail to propagate. The greater search
depth may be sufficient to explain the higher number of resolution steps.

From this, it appears that inductive generalization is not able to fully rem-
edy the over-specialization resulting from the variable elimination trade-off in
PDR, though it is crucial to the performance of PDR in this benchmark [23].
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We may conjecture two possible reasons for the greater convergence depth in
PDR: over-specialization producing irrelevant learned clauses or too-aggressive
propagation of these clauses. In [23] we observe that propagation only weakly
affects performance while generalization strongly affects convergence, providing
some evidence for the former hypothesis.

5.2 Second Experiment

In our second experiment, we consider a broader class of Horn reachability prob-
lems. We use procedural programs modeled using unknown relations as proce-
dure summaries. Each procedure is represented by a single rule. For example,
procedure P that calls Q twice on its input and then increments the result would
be modeled by the clause Q(x, y)∧Q(y, z)∧ x′ = z +1⇒ P (x, x′). Because one
procedure may call many procedures, we will have multiple sub-goals. Further,
we expand the constraint language to include uninterpreted function symbols
(UIF’s), arrays and quantifiers, and we allow user-specified background axioms.

Our benchmark examples come from the Static Device Driver (SDV) tool [3].
They are safety properties of example device drivers for the Microsoft Windows
kernel. SDV translates these problems into the Boogie programming language [4].
Corral then checks the required properties using a field abstraction. Global vari-
ables and fields of structures are added to the abstraction on a counter-example
driven basis until the property is proved, or a counterexample is successfully con-
cretized. We translate the verification of each abstract model into a Horn reacha-
bility problem using the Boogie verification condition generator, after converting
program loops into tail-recursive procedures.

We compare the performance of SI with Stratified Inlining (SI). To make a fair
comparison, we check only bounded safety properties (that is, we assume each
loop is executed up to k times for fixed k). We effect this bound in Duality by
simply terminating the unwinding if and when it reaches the recursion bound (as
it happens, such termination does not occur, so Duality/LA performs unbounded
verification).
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The benchmark problems in Boogie use UIF’s to model operations on heap
addresses. Universal quantifiers occur both in the background axioms that define
these functions and in “assume” statements in the program code (assumptions
about the initial state of the heap). Since Z3/PDR does not support uninter-
preted function symbols and quantifiers in constraints, we are unable to apply it
to this benchmark set. This shows a significant disadvantage of the interpolation
strategy of PDR. That is, it is not obvious how to resolve the variable elimi-
nation trade-off in this case because UIF’s do not admit quantifier elimination.
Thus, it would be necessary to fall back on decision making, but in this case the
decisions would have to be made on models of the UIF’s, which could lead to
significant problems of over-specialization. LA’s strategy avoids this problem by
exploiting feasible interpolation.

Both LA and SI may fail due to the undecidability of the theory. This means
that both methods may produce “false alarms” caused by a failure of Z3’s quan-
tifier instantiation heuristics. The comparison is fair, however, since the correct-
ness of counterexamples is in both cases determined by Corral, using Z3 for
concretization (in no case did either tool produce a counterexample that Corral
determined to be incorrect).

A scatter plot comparing the run times of LA and SI is shown in Figure 4. Each
point represents the full verification time for one property, including the time
for Corral to compute abstraction refinements. We observe that in some cases SI
is approximately two times faster. This can be accounted for by the overhead of
running Z3 in proof-generating mode in order to produce interpolants. On the
other hand, on a significant number problems LA is substantially faster, by up
to two orders of magnitude.
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We note several important over-
heads in LA relative to SI. First,
the learning phase in LA is orders-
of-magnitude more costly than clause
learning in an SMT solver. Further,
because of backtracking, LA may add
and remove a given constraint in the
goal many times (while SI never re-
moves constraints). Thus we must at-
tribute the overall better performance
of LA on bounded problems to more
effective learning. In fact, inspection
shows that LA often learns concise
and relevant procedure summaries,
even in the presence of quantifiers.
For example, we see summaries of the
form ∀i.a′[i] = a[i]∨p(a′[i]), where p is
a simple predicate. This says the pro-
cedure preserves elements of array a
except where it establishes property p.
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An aspect of these problems that may help to explain better learning perfor-
mance of LA is the fact that some procedures are called at many sites. Whenever
an annotation of such a procedure is learned, it simultaneously strengthens the
summaries of all of the instances of the procedure in the current goal. Thus the
learned annotations are re-usable in a way that is not possible in an unstructured
search.

Finally, we consider the effects of the individual improvements to LA intro-
duced here. To briefly summarize, minterm decision making may help or hurt,
but with interpolant generalization it helps significantly. Generalization seems to
be needed in the case when convergence depth is an issue. The heuristic for sub-
goal choice is not very effective, while back-jumping provides a modest speed-up.
Eager propagation is effective in the limited case (simple loops) for which it was
implemented. Details of the experiments supporting these conclusions can be
found in [23].

6 Conclusion

We have observed that traditional BMC, LA and PDR can all be viewed as back-
tracking search with conflict-driven learning. The methods differ fundamentally
in two aspects: search strategy (structured vs. unstructured) and interpolation
strategy (relative induction vs. proof-based). Comparing LA with PDR on soft-
ware model checking problems, we found that PDR’s interpolation strategy as
implemented in Z3 produced less effective learned annotations. We conjectured
that this is due to over-specialized goals resulting from the variable elimination
trade-off. This is illustrative of a general tension in CDCL-like methods relat-
ing the generality and cost of decisions and interpolants. Comparing LA with
BMC, we found that structured conflict learning in LA was more effective than
unstructured learning in an SMT solver, even on bounded problems (consistent
with the results of [5] in the propositional case). The high overhead of learning in
LA was more than compensated by the resulting reduction in search. We found
that decision making does in fact lead to improved performance for large-block
encodings by reducing the decision problems. However, it requires some form
of interpolant generalization to prevent over-specialized goals from producing
weak annotations. An interesting remaining question is whether some form of
inductive generalization would helpful in LA, or whether the cost outweighs the
benefit.

Acknowledgments. The author would like to thank Akash Lal for assistance
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Abstract. Current SAT-based Model Checking is based on two ma-
jor approaches: Interpolation-based (Imc) (global, with unrollings) and
Property Directed Reachability/IC3 (Pdr) (local, without unrollings).
Imc generates candidate invariants using interpolation over an unrolling
of a system, without putting any restrictions on the SAT-solver’s search.
Pdr generates candidate invariants by a local search over a single in-
stantiation of the transition relation, effectively guiding the SAT solver’s
search. The two techniques are considered to be orthogonal and have
different strength and limitations. In this paper, we present a new tech-
nique, called Avy, that effectively combines the key insights of the two
approaches. Like Imc, it uses unrollings and interpolants to construct
an initial candidate invariant, and, like Pdr, it uses local inductive gen-
eralization to keep the invariants in compact clausal form. On the one
hand, Avy is an incremental Imc extended with a local search for CNF
interpolants. On the other, it is Pdr extended with a global search for
bounded counterexamples. We implemented the technique using ABC
and have evaluated it on the HWMCC benchmark-suite from 2012 and
2013. Our results show that the prototype significantly outperforms Pdr
and McMillan’s interpolation algorithm (as implemented in ABC) on the
industrial sub-category of the benchmark.

1 Introduction

SAT-based (unbounded) Model Checking (MC) is an extremely successful tech-
nique for both Hardware [12,4,10] and Software [13,2,11] verification. Current
state-of-the-art techniques are Interpolation-based Model Checking (Imc) [12,15]
and Property Directed Reachability/IC3 (Pdr) [4,10]. Pdr and Imc are able to
either verify a property by generating a safe inductive invariant, or falsify a
property by finding a counterexample. Conceptually, both work by repeatedly
generalizing bounded proofs of correctness, until either a safe inductive invariant
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is synthesized or a counterexample is found. They scale to systems with an enor-
mous number of states, are considered orthogonal, and have different strength
and weaknesses.

Imc works by searching for a counterexample via repeatedly posing Bounded
Model Checking [3] (BMC) queries to a SAT-solver. If a BMC query Q is satis-
fied, a counterexample is found. Otherwise, the SAT-solver generates a proof of
unsatisfiability of Q. An interpolation procedure is then used to generalize the
proof to a candidate safe invariant using sequence interpolants [15]. If the invari-
ant is also inductive (checked by an additional SAT query), the procedure stops
and returns SAFE to the user, indicating the validity of the checked property.
Otherwise, the process repeats with another, longer, BMC query.

Imc leverages both advances in BMC and in interpolation. It can be seen as
a simple addition to BMC that turns it into a complete Model Checking pro-
cedure. Other than proof-logging which is necessary for interpolation, it poses
no restrictions on the SAT-solver’s search. However, Imc does not offer much
control over generalization. It is at the mercy of both the SAT-solver that pro-
vides a particular resolution proof, and of the procedure used to generate the
interpolant. For example, attempts to improve Imc by using interpolation algo-
rithms with different strength have not been very successful [9]. Furthermore,
the interpolants tend to be large, which poses additional limitation on their use.

Pdr is similar to Imc, but approaches the process in a completely differ-
ent manner. Instead of blindly relying on the SAT-solver, it manages both the
search for the counterexample and the generalization phases. Conceptually, Pdr
is based on a backward search. Starting with a bad (UNSAFE) state, it uses a
SAT-solver to repeatedly find a one-step predecessor state. Thus, all SAT-queries
are local, involving only one instance of the transition relation, and no BMC-
unrolling is used. If the bad suffix can be extended all the way to the initial state,
a counterexample is found. Otherwise, when a suffix cannot be extended further,
a process called inductive generalization [4], is used to learn a consequence that
blocks the current suffix (and possibly many others). The conjunction of all such
learned consequences is used to synthesize an inductive invariant. While this
description omits many important aspects of Pdr, it is sufficient for now.

Pdr offers many advantages compared to Imc, including incremental solving
and fine-grained control over generalization. However, it is limited to a fixed
local search strategy that can be inefficient. In fact, it is not difficult to construct
examples in which backward search is ineffective and Pdr does not perform well.

In this paper, we present a new algorithm,Avy, that strives to overcome these
deficiencies by combining both global interpolant-driven generalization with local
inductive generalization. Avy can be seen as a combination of Pdr and Imc. On
the one hand, it extends Imc with Pdr-like local reasoning in the form of local
search and inductive generalization. On the other hand, it extends Pdr with the
use of unrolling and proof-based interpolation. More interestingly, it allows the
combination of Imc and Pdr strategies inside a single solver.

The first step of Avy is similar to Imc: it unrolls the system and searches
for a counterexample. If none is found, it generates a candidate invariant using
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sequence interpolants [15]. This is the global generalization phase. Next, it enters
the local generalization phase and uses Pdr-style inductive generalization to
strengthen the candidate invariant and to put it into CNF. If the candidate is
inductive, the process stops. Otherwise, the next global phase is entered.

Maintaining the candidate invariant in CNF allows Avy to use it as “learned
clauses” in the next global phase. When a new global phase starts, Avy adds the
clauses from the previously computed candidate invariant into the checked BMC
formula, thus making the global phase incremental. This significantly reduces
the search space for the SAT-solver to explore. It also reduces the size of the
resulting resolution proof and the computed interpolants. This addresses the
main problem with Imc: lack of incrementality as already learned interpolants
are not used in successive iterations and interpolant growth.

Adding the learned clauses to the BMC problem at a given iteration N , makes
it, in a way, equivalent to the problem Pdr tries to solve at iteration N . Though,
unlike Pdr, Avy handles this problem globally, with one SAT-solver instance
that can roam over the entire search space, and does not break it to local checks
as part of a backward search. This kind of strategy addresses the main weakness
of Pdr: no use of “global” knowledge during the search.

The combination of interpolation and inductive reasoning allowsAvy to bene-
fit from the advantages of both methods. It uses the SAT-solver without guiding
it during the search, but it does guide its proof construction. The advantage of
this combination is evident in our experiments. We have implemented Avy on
top of ABC [5] and compared it against Pdr and McMillan’s interpolation (Itp),
as implemented in ABC, on the HWMCC’12/13 benchmarks. Our experiments
indicate that Avy can solve a considerable number of test cases, especially on
the industrial sub-category, that are not solved by either Pdr nor Itp.
Related work. This paper builds on Interpolation-based Model Checking [12,15],
IC3 [4], and Pdr [10]. We describe them in detail in Section 3. Some of the
techniques used in Avy have appeared before, but not in the way Avy combines
them. Like [6], we use sequence interpolants, but we show that they can be
more efficient than the original algorithm in [12]. Like [1], we re-use previously
computed interpolants, but we combine re-use with inductive generalization. Our
approach can be seen as an efficient extension of [7] to sequence interpolation.

As stated above, Avy is a synergy between an interpolation-based approach
and Pdr. Ideas for combining the two have also appeared in [16,17]. In [16],
the authors suggest to use both forward and backward reachable sets of states.
This allows them to try and block a set of all bad states in a local manner that
resembles the blocking of a bad state applied by Pdr. Unlike [16], in this work we
only use the forward reachable states that are derived by means of interpolation,
and use specific Pdr functionality to transform these sets into CNF and use them
to simplify the successive BMC invocations. In [17], the authors show how to
compute interpolants in CNF and create a variant of the algorithm that appears
in [12], which uses the fact that interpolants are in CNF in order to apply Pdr-
style reasoning. There are two major differences between Avy and the approach
that appear in [17]. First, in [17], the resolution refutation is used to derive a
”near interpolant” in CNF, which is then strengthened and transformed into
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an interpolant by applying inductive generalization on the (A,B) pair, while
Avy derives a sequence interpolant, and then uses Pdr to transform it to CNF.
Second, like in [17], Avy also uses the fact that interpolants are in CNF and tries
to push clauses between different interpolants. But, while [17] uses pushing only
to learn clauses that may appear in later interpolants that were not computed
yet, Avy, as stated, uses the pushed clauses to simplify the BMC formula.

The rest of the paper is structured as follows. After describing the necessary
background and notation in Section 2, we give an overview of SAT-based Model
Checking in Section 3. Section 4 presents two versions of Avy, a basic and an
optimized one. We describe our experimental results in Section 5, and conclude
in Section 6.

2 Preliminaries

In this section, we present notations and background that is required for the
description of our algorithm.

Safety verification. A transition system T is a tuple (V , Init ,Tr ,Bad), where
V is a set of variables that defines the states of the system (i.e., 2V), Init and
Bad are formulas with variables in V denoting the set of initial states and bad
states, respectively, and Tr is a formula with free variables in V ∪ V ′, denoting
the transition relation. A state s ∈ 2V is said to be reachable in T if and only if
(iff) there exists a state s0 ∈ Init , and (si, si+1) ∈ Tr for 0 ≤ i ≤ N , and s = sN .

A transition system T is UNSAFE iff there exists a state s ∈ Bad s.t. s is
reachable. Equivalently, T is UNSAFE iff there exists a number N such that the
following formula is satisfiable:

Init(v0) ∧
(
N−1∧
i=0

Tr(vi, vi+1)

)
∧ Bad(vN ) (1)

When T is UNSAFE and sN ∈ Bad is the reachable state, the path from s0 ∈ Init
to sN is called a counterexample (CEX).

A transition system T is SAFE iff all reachable states in T do not satisfy Bad .
Equivalently, there exists a formula Inv , called an inductive safe invariant1, that
satisfies:

Init(v)→ Inv(v) Inv(v) ∧ Tr(v, u)→ Inv(u) Inv(v)→ ¬Bad(v) (2)

A safety verification problem is to decide whether a transition system T is SAFE
or UNSAFE, i.e., whether there exists an initial state in Init that can reach a
bad state in Bad , or synthesize a safe inductive invariant.

In SAT-based model checking, the verification problem is determined by com-
puting over-approximations of the states reachable in T and, by that, trying to
either construct an invariant or find a CEX.
1 The reachable states form an inductive invariant. The inductive invariant is safe if
the reachable states do not intersect the bad states.
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Craig Interpolation. Given a pair of inconsistent formulas (A,B) (i.e., A ∧B |=
⊥), a Craig interpolant [8] for (A,B) is a formula I such that:

A→ I I → ¬B L(I) ⊆ L(A) ∩ L(B) (3)

where L(A) denotes the set of all atomic propositions in A. A sequence (or
path) interpolant extends interpolation to a sequence of formulas. We write F =
[F1, . . . , FN ] to denote a sequence with N elements, and F i for the ith element of
the sequence. Given an unsatisfiable sequence of formulas A = [A1, . . . , AN ], i.e.,
A1 ∧ · · · ∧ AN |= ⊥, a sequence interpolant I = seqItp(A) for A is a sequence
of formulas I = [I1, . . . , IN−1] such that:

A1 → I1 ∀1 < i < N · Ii−1 ∧ Ai → Ii IN−1 ∧AN → ⊥ (4)

and for all 1 ≤ i ≤ N , L(Ii) ⊆ L(A1 ∧ · · · ∧ Ai) ∩ L(Ai+1 ∧ · · · ∧ AN ). We
use subscripts on brackets to mark interpolation partitions for a formula. For
example, (A)0 ∧ (B)1 ∧ (C)0 means that A and C belong to partition 0 and B
to partition 1, respectively.

3 SAT-Based Model Checking

In this section, we review two algorithms for SAT-based unbounded Model Check-
ing – Interpolation-based Model Checking (IMC), and Property Directed Reach-
ability/IC3 (PDR).

The key insight in both algorithms is to maintain an over-approximation of
a set of reachable states in an inductive trace. An inductive trace, or simply a
trace, is a sequence of formulas [F0, . . . , FN ] that satisfy:

Init → F0 ∀0 ≤ i < N · Fi(v) ∧ Tr(v, u)→ Fi+1(u) (5)

A trace is safe if each Fi is safe: ∀i · Fi → ¬Bad ; it is monotone if ∀0 ≤ i <
N · Fi → Fi+1; it is clausal if each Fi is in CNF (in this case, we often abuse
notation and treat each Fi as a set of clauses). A trace [F0, . . . , FN ] is stronger
than a trace [G0, . . . , GN ] if ∀0 ≤ i ≤ N · Fi → Gi. We assume that traces
are silently extended as needed, by letting Fi = � for all i > N for any trace
[F0, . . . , FN ]. Traces are closed under pointwise conjunction.

A trace [F0, . . . , FN ] is closed if ∃1 ≤ i ≤ N · Fi →
(∨i−1

j=0 Fj

)
. There is an

obvious relationship between existence of closed traces and safety of a transition
system:

Theorem 1. A transition system T is SAFE iff it admits a safe closed trace.

Thus, safety verification is reduced to searching for a safe closed trace or finding
a CEX.
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Input: Transition system T = (Init ,Tr ,Bad)
1 F0 ← Init ;N ← 0
2 repeat
3 G← ImcMkSafe([F0, . . . , FN ],Bad)
4 if G = [ ] then return UNSAFE ∀0 ≤ i ≤ N · Fi ← G[i]

// Invariant: F0, . . . , FN is a safe trace

5 if ∃1 ≤ i ≤ N · Fi → (
∨i−1

j=0 Fj) then return SAFE
N ← N + 1 ; FN ← �

6 until ∞;
Algorithm 1. Imc

Input: Transition system T = (Init ,Tr ,Bad)
Input: A trace F0, . . . , FN

1 ϕ← (Init(v0))0 ∧
∧N−1

i=0 (Tr(vi, vi+1))i ∧ (Bad(vN ))N
2 if isSat(ϕ) then return [ ] I1, . . . , IN ← seqItp(ϕ)
3 G0 ← Init ; ∀1 ≤ i ≤ N ·Gi ← Fi ∧ Ii
4 return [G0, . . . , GN ]

Algorithm 2. ImcMkSafe

3.1 Interpolation-Based Model Checking

The original interpolation-based algorithm is due to McMillan [12]. Here, we
present its variant from [15], called Imc, based on sequence interpolants. This
version is closer to Pdr (described in Section 3.2) and is a basis for our algorithm.

Imc is shown in Alg. 1. It maintains a trace [F0, . . . , FN ]. The trace is made
safe toward the end of the loop (line 4). In the beginning of each iteration,
a candidate trace is made safe using ImcMkSafe, if possible. The algorithm
terminates when either a trace cannot be made safe, or when a closed trace is
discovered.

ImcMkSafe is shown in Alg. 2. The key insight is that a safe trace can be
constructed by sequence interpolation. First, a BMC problem is solved to check
for absence of a CEX. Second, a sequence interpolant is computed and is used to
strengthen the current trace. Note that the sequence interpolant Init , I1, . . . , IN
itself is a trace. Hence, correctness follows via closure of traces under conjunction.

The main advantage of Imc is that it integrates well with BMC, effectively
turning incremental BMC into a complete Model Checking procedure. A main
deficiency is that interpolants from one BMC check are not used to help the next
one. An obvious improvement is to use the current trace to strengthen the BMC
query at line 1 of ImcMkSafe as follows:

ϕ← Init(v0) ∧
N−1∧
i=0

Tr(vi, vi+1) ∧ Fi+1(vi+1) ∧ Bad(vN ) (6)

This, however, is not effective in practice. The formulas Fi are typically large
(as propositional formulas) and adding them significantly slows down BMC.
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Input: Transition system T = (Init ,Tr ,Bad)
1 F0 ← Init ;N ← 0
2 repeat
3 G← PdrMkSafe([F0, . . . , FN ],Bad)
4 if G = [ ] then return UNSAFE ∀0 ≤ i ≤ N · Fi ← G[i]
5 F0, . . . , FN ← PdrPush([F0, . . . , FN ])

// F0, . . . , FN is a safe δ-trace
6 if ∃0 ≤ i ≤ N · Fi = ∅ then return SAFE N ← N + 1 ; FN ← ∅
7 until ∞;

Algorithm 3. PDR/IC3

3.2 Property Directed Reachability

In this section, we give an overview of Property Directed Reachability (PDR/IC3)
algorithm and its properties. Our presentation of PDR/IC3 is unorthodox, but
it highlights the parts necessary for understanding our new algorithm. For more
details on PDR/IC3 the reader is referred to [4,10].

Like Imc, Pdr computes an inductive trace. Unlike Imc, Pdr does not use an
unrolling of the transition system during the computation of the trace. Further-
more, the trace is kept monotone and clausal. To better explain the characteris-
tics of the trace computed by Pdr, we introduce the notion of a δ-trace: A δ-trace
is a sequence of formulas [F0, . . . , FN ] such that the sequence [G0, . . . , GN ], where

Gi =
∧N

j=i Fj , is a monotone clausal trace. For a δ-trace F , we write F ↑
i for the

ith element of the corresponding trace (i.e., Gi above). Note that a δ-trace F is
closed if there exists an i such that F i = ∅.

Pdr is shown in Alg. 3. It maintains a loop invariant that F0, . . . , FN is a safe
δ-trace (after line 5). Each iteration starts with a δ-trace that is safe except for
the last element FN . If possible, the trace is made safe via PdrMkSafe, other-
wise the problem is decided UNSAFE. Then, the now safe δ-trace F0, . . . , FN is
strengthened using PdrPush. PdrPush takes a δ-trace F = [F0, . . . , FN ] and
returns a stronger pushed δ-trace G = [G0, . . . , GN ] defined as follows:

H0 = F0 Hi = Fi ∪ {c ∈ Hi−1 | (Hi−1(u) ∧Tr(u, v))→ c(v)} (7)

GN = HN Gi = Hi \Hi+1 for 0 ≤ i < N (8)

If this closes the trace, the problem is decided SAFE. Otherwise, N is incre-
mented and the loop is repeated.

PdrMkSafe takes a δ-trace F = [F0, . . . , FN ] that is safe except for FN

and makes it safe (by strengthening it) if possible, and, if not, returns an
empty sequence. This is the main procedure of Pdr. We only give a high-
level description of it here. Intuitively, PdrMkSafe does a backward search
along the given trace F , starting in some state sN ∈ Bad (recall, FN is un-
safe, so such sN always exists). Then, a predecessor sN−1 is extracted from a
model of FN−1(v) ∧ Tr(v, u) ∧ sN (u). This is repeated until Init is reached,
or, for some i, Fi−1(v) ∧ Tr(v, u) ∧ si(u) becomes UNSAT. In the latter case,
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Fi−1(u)∧Tr (u, v)→ ¬si(u), and ¬si can be conjoined (added as a clause) to Fi.
PdrMkSafe improves this by a process called inductive generalization. Instead
of adding ¬si directly, it finds a sub-clause c→ ¬si such that

Init → c F ↑
i (u) ∧ c(u) ∧Tr(u, v)→ c(v) (9)

Such c is guaranteed to exist, in the worst case ¬si is taken as c. Inductive
generalization is often argued to be the most important element that contributes
to the efficiency of Pdr. This process is continued until FN becomes safe. An
important property of PdrMkSafe is that it is guaranteed to find some safe
strengthening of F if a strengthening exists.

Pdr offers many advantages, including incrementally (at each iteration only
longer paths are explored) and locality of its SAT queries (all queries are over
a single transition relation only). However, locality and the backward search
strategy are also its Achilles’ heel. There are many practical problems for which
Imc’s global and less directed search is superior.

4 Interpolating Property Directed Reachability

In this section, we introduce Avy, a Model Checking algorithm that, like Imc,
uses BMC and sequence interpolants, and furthermore, like Pdr it uses backward
search and inductive generalization. We first describe the basic building blocks
of Avy, and then go into fine-grained details.

4.1 Basic Algortihm

Avy is shown in Alg. 4. Like Pdr it maintains a safe δ-trace F = [F0, . . . , FN ]
and has the same high-level structure. However, the main steps for construct-
ing the trace, making it safe (via AvyMkSafe) and maintaining δ-form (via
AvyMkDelta), are done differently. We first give a high-level description of
Avy and then of the two main functions.

Main loop. First, AvyMkSafe is used to check whether the current trace can
be safely extended to the next bound. If possible, it returns a safe trace G that is
stronger than F . However,G is not necessarily a δ-trace. Second,AvyMkDelta

strengthens (again) G and makes it a δ-trace. Finally, the algorithm continues as
Pdr, using PdrPush to further strengthen the trace and check for convergence.
In each iteration the trace can be incremented by an arbitrary step. But, for
simplicity of presentation, assume that step = 1 unless stated otherwise. Note
that the main loop maintains a safe δ-trace. Hence, in each iteration, the main
loop of Pdr can be used instead, leading to an interleaved version of the two
algorithms.

AvyMkSafe is presented in Alg. 5. It resembles ImcMkSafe, but with one
key difference: it uses the existing trace to simplify both the BMC and interpo-
lation problems (see line 1, where F ↑

i is conjoined to the ith copy of the Tr). If
the BMC formula ϕ is UNSAT, AvyMkSafe extracts the sequence interpolant
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and uses it to strengthen and extend the existing trace. Otherwise, ϕ is SAT and
AvyMkSafe returns an empty trace.

There are multiple ways to partition the BMC formula ϕ for interpolation.
To better understand the choice made in AvyMkSafe, consider the following
example: T = ({x}, x = 0, x′ = x + 1, x ≥ 6). T represents a simple counter
that counts from 0, and the bad region is where the counter goes beyond 5. Let
us assume that we have the following trace [x = 0, x ≤ 1,�], and consider the
BMC problem for bound 2, with the partitioning used by AvyMkSafe:

((x0 = 0) ∧ (x1 = x0 + 1))0 ∧ ((x1 ≤ 1) ∧ (x2 = x1 + 1))1 ∧ (x2 ≥ 6)2 (10)

An alternative way to partition the formula is to add the ith element of the trace
to the i− 1 partition (for i ≥ 1):

((x0 = 0) ∧ (x1 = x0 + 1) ∧ (x1 ≤ 1))0 ∧ (x2 = x1 + 1)1 ∧ (x2 ≥ 6)2 (11)

The choice of the partitioning influences the resulting sequence interpolant.
In (10), the sequence interpolant contains only the parts that are needed to
strengthen the existing trace. In (11), the interpolant is stronger than the trace
(i.e., as if the trace was not added to the BMC formula).

In our example, in (10), since x1 ≤ 1 is strong enough, the suffix ((x1 ≤
1) ∧ (x2 = x1 + 1))1 ∧ (x2 ≥ 6)2 is UNSAT. By that we conclude that the
first element of the sequence interpolant is �. That is, F1 in the trace needs no
strengthening, which is evident in the resulting interpolant.

The example illustrates the advantage in choosing the partitioning used by
Avy: the newly computed sequence interpolant takes into account the existing
trace and only strengthens it as needed. This is part of the incrementality in Avy.

AvyMkDelta is shown in Alg. 6. We first describe the intuition, then the
mechanics. AvyMkDelta converts a safe trace G = [G0, . . . , GN ] into a mono-
tone and clausal trace F = [F0, . . . , FN ]. Note that the result of AvyMkSafe

is safe but neither monotone nor clausal. One alternative to making a trace
[G0, . . . , GN ] monotone is to replace each element Gi by a disjunction of its pre-
decessors {Gj}j<i, i.e., by letting Fi =

∨
j<i Gj . But this is inefficient because

the resulting formulas are too large.
Another alternative is to use interpolation. For example, let [Init , G1, G2] be

a safe but non-monotone and non-clausal trace. To make it monotone, we need
Init→ G1 and G1 → G2. For the first implication, create the following problem

A = Init(v) ∨ (Init(u) ∧ Tr(u, v)) B = ¬Init(v) ∧ ¬G1(v) (12)

From the definition of a trace, A∧B is unsatisfiable. Let F1 be a corresponding
interpolant. By construction, Init→ F1 and Init(u)∧Tr(u, v)→ F1(v). For the
second implication, we compute an interpolant F2 between A = F1(v)∨ (F1(u)∧
Tr(u, v)) and B = ¬(F1(v)∨G2(v)). F2 satisfies: F1 → F2 and F1(v)∧Tr (v, v′)→
F2(v

′). Hence, the trace [Init, F1, F2] is safe and monotone.
However, in addition to monotonicity, we require that the trace is a clausal δ-

trace. Transforming an arbitrary propositional formula into CNF without adding
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Input: Transition system T = (Init ,Tr ,Bad)
1 F0 ← Init ;N ← 0
2 repeat
3 G← AvyMkSafe([F0, . . . , FN ],Bad)
4 if G = [ ] then return UNSAFE F0, . . . , FN ← AvyMkDelta(G)
5 F0, . . . , FN ← PdrPush([F0, . . . , FN ])

// F0, . . . , FN is a safe δ-trace
6 if ∃0 ≤ i ≤ N · Fi = ∅ then return SAFE pick step ≥ 1
7 ∀N ≤ i < N + step · Fi ← ∅
8 N ← N + step

9 until ∞;
Algorithm 4. Avy (simplified)

Input: Transition system T = (Init ,Tr ,Bad)
Input: A δ-trace F = [F0, . . . , FN ]

1 ϕ←
∧N−1

i=0

(
F ↑

i (vi) ∧ Tr(vi, vi+1)
)
i
∧ (F ↑

N (vN ) ∧ Bad(vN ))N

2 if isSat(ϕ) then return [ ] I1, . . . , IN ← seqItp(ϕ)

3 G0 ← Init ; ∀1 ≤ i ≤ N ·Gi ← F ↑
i ∧ Ii

4 return [G0, . . . , GN ]
Algorithm 5. AvyMkSafe

new variables is expensive. One possibility is to generate interpolants in CNF
by a CNF-producing interpolation procedure (e.g., [17]). While [17] is efficient
it does not generate a δ-trace.

Instead, we have chosen to re-use Pdr’s PdrMkSafe that already maintains
a δ-trace. Our unorthodox use of PdrMkSafe is guided towards our purpose.
We establish the correctness of this method at the end of the section.

As before, consider a non-monotone non-clausal trace [Init = G0, G1, G2].
Recall that PdrMkSafe takes a δ-trace and returns a strengthened safe δ-trace
w.r.t. a given property. For the first element of the trace, we define [Init ,�] as
the input δ-trace. Then, PdrMkSafe is used to transform this δ-trace into a
safe δ-trace w.r.t. the property Init ∨G1. The result of PdrMkSafe is therefore
a safe δ-trace [Init , F1] s.t. Init → F ↑

1 and Init(u) ∧ Tr(u, v) → F ↑
1(v). For the

second element G2, the δ-trace [Init , F1,�] is used. Now, PdrMkSafe is used

to transform w.r.t. the property F ↑
1 ∨ G2. The result is again, a safe δ-trace

[Init , F1, F2] s.t. the previous holds and in addition, F ↑
1 → F ↑

2 and F ↑
1(u) ∧

Tr(u, v)→ F ↑
2(v). The general version of this algorithm is shown in Alg. 6.

We conclude with an outline of the correctness argument. To show correctness,
it is enough to show that (a) AvyMkSafe always returns a safe trace if possible,
and (b) AvyMkDelta returns a safe δ-trace given a safe trace. The rest of
the proof (both for soundness and completeness) is the same as for Pdr. Part
(a) is an immediate consequence of sequence interpolation property, and we do
not expand on it further. To show (b), we need to show that (i) the calls to
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Input: Transition system T = (Init ,Tr ,Bad)
Input: A safe trace G = [G0, . . . , GN ]
Output: A safe δ-trace F = [F0 . . . , FN ]

1 F0 ← Init
2 [ , F1]← PdrMkSafe([Init ,�],¬(Init ∨G1))
3 for i← 2 to N do
4 [ , , Fi]← PdrMkSafe([Init , Fi−1,�],¬(Fi−1 ∨Gi))
5 end

Algorithm 6. AvyMkDelta

PdrMkSafe always return a safe δ-trace, and (ii) δ-traces can be concatenated
together. Part (ii) is an immediate consequence of the δ-trace property:

Lemma 1. If F = [Init , F1, . . . , FN ] and G = [Init , FN , G2] are safe δ-traces,
then so is [Init , F1, . . . , FN , G2].

To establish (i), we only need to show that the input to PdrMkSafe can be
made safe. For the call at line 2 of AvyMkDelta, by the trace property of G,
Init(u) ∧ Tr(u, v) → G1(v). For the call at line 4, we show by induction that
(Fi−1(u) ∧Tr(u, v))→ (Fi−1(v) ∨Gi(v)). The base case is i = 2. We know that
F1 → (Init ∨ G1) (the call at line 2). Since both [G0, G1, G2] and [Init , F1] are
traces, we have: (G1(u) ∧ Tr(u, v))→ G2(v)) and (Init(u) ∧ Tr(u, v))→ F1(v).
By these three facts we get (F1(u)∧Tr(u, v))→ (F1(v)∨G2(v)). The inductive
case is similar. Using (Fi−1(u)∧Tr(u, v))→ (Fi−1(v)∨Gi(v)), we can conclude
that each call at line 4 does not change Fi−1 and thus Lemma 1 is applicable.

Theorem 2. Avy is sound and complete for step = 1.

When step > 1, AvyMkSafe is not guaranteed to return a safe trace. While
the last frame is safe, the intermediate ones might not be. One way around this
is to require that Tr gets trapped in the Bad region.

Definition 1 (Stuck-On-Error). A transition system T = (Init ,Tr ,Bad) is
stuck-on-error iff ∀s ∈ Bad · ∃t ∈ Bad · Tr(s, t).

Note that stuck-on-error can be enforced for any Tr by adding a self-loop on all
Bad states. The rest of the proof remains unchanged.

Theorem 3. Avy is sound and complete for step > 1 for any transition system
T that satisfies stuck-on-error property of Def. 1.

4.2 The Whole Picture

In the previous section, we gave a simplified description of Avy. Here, we de-
scribe some of its key features. The complete algorithm is shown in Alg. 7. The
biggest change is that this version combines all the steps into a single function.
In the rest of the section, we explain some features in detail.
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Global δ-trace. Unlike the simplified presentation before, this version maintains
a single global δ-trace. At every iteration, F is used incrementally by adding
missing clauses. This is evident at lines 5–7. Note that both at line 5 and at
line 7, the δ-trace that is given to PdrMkSafe already has clauses that were
learned in previous iterations. Hence, when transforming the newly generated
interpolant to CNF, only clauses that are missing are added to F . This eliminates
an expensive clause re-learning of the simplified version of the algorithm.

Guided Proofs. The upside of relying on interpolation is that Avy does not
interfere with the SAT-solver during the BMC step. The downside is that, com-
pared to Pdr, there is very little control on the quality of the generated lemmas.
A solution we adopt is to “guide” the SAT-solver that is producing the proof
for interpolation. This is done by asking the solver to produce Minimal Unsat-
isfiable Subset (MUS) that excludes as many clauses from Tr and includes as
many clauses from F as possible. The choice of a MUS affects the quality of the
generated interpolants, and the choice of MUS algorithm affects the efficiency.
In our implementation, we use a basic MUS algorithm (cf. [14]), and the MUS
strategies described next.

We have tried two strategies for guiding the proof. First, called min-core,
simply computes the MUS, letting the MUS algorithm pick which clauses to
select. While this strategy is very fine grained, it was not effective in practice.
It did cause an order of magnitude improvement in one example, but degraded
performance overall.

The second strategy, called min-suffix, attempts to find a MUS that com-
pletely contains a suffix of the BMC problem. That is, it looks for the largest k
such that (

∧N−1
i=k F ↑

i (vi) ∧ Tr(vi, vi+1)) ∧ F ↑
N (vN ) ∧ Bad(vN ) is unsatisfiable.

To illustrate, consider the example from the previous section (reproduced here
for convenience):

((x0 = 0) ∧ (x1 = x0 + 1))0 ∧ ((x1 ≤ 1) ∧ (x2 = x1 + 1))1 ∧ (x2 ≥ 6)2 (13)

Recall, x ≤ 1 is sufficient and, therefore, min-suffix reduces it to:

(�)0 ∧ ((x0 ≤ 1) ∧ (x1 = x0 + 1))1 ∧ (x1 ≥ 6)2 (14)

The immediate benefits of min-suffix are: (a) the solved BMC formula is simpler
(shorter bound); (b) the extracted sequence interpolant is smaller and, therefore,
less interpolants need to be transformed to monotone clausal form; and (c) the
proof is guided towards the important facts (e.g., to x ≤ 1 in the case above).
This makes generalization more effective.

Shallow Push. At each iteration of trace strengthening, new clauses are added
to the global trace F . Therefore, it is possible to push the clauses forward after
adding them (line 8) as they might be useful for the next iteration. Note that
this is very different from the simplified version of the algorithm. There, the
pushing-phase happens only after all of the strengthening. In practice, we push
more conservatively, to which we refer as shallow push. During shallow push,
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Input: Transition system T = (Init ,Tr ,Bad)
Data: A δ-trace F = [F0, . . . , FN ]

1 F0 ← Init ;N ← 0
2 repeat

3 ϕ←
∧N−1

i=0

(
F ↑

i (vi) ∧ Tr(vi, vi+1)
)
i
∧ (F ↑

N (vN ) ∧ Bad(vN ))N

4 if isSat(ϕ) then return UNSAFE I1, . . . , IN ← seqItp(ϕ)

5 [ , F1]← PdrMkSafe([Init ,F ↑
1],¬(Init ∨ I1))

6 for i← 2 to N do

7 [ , , Fi]← PdrMkSafe([Init ,F ↑
i−1,F

↑
i ],¬(F

↑
i−1 ∨ Ii))

8 F0, . . . , FN ← PdrPush([F0, . . . , FN ])

9 end
// F0, . . . , FN is a safe δ-trace

10 if ∃0 ≤ i ≤ N · Fi = ∅ then return SAFE pick step ≥ 1
11 ∀N ≤ i < N + step · Fi ← ∅
12 N ← N + step

13 until ∞;
Algorithm 7. Avy

clauses are only pushed starting from the ith location (where clauses were just
added). This way, in the next iteration, when PdrMkSafe is applied, it may
need to find less clauses (or even none at all).

Table 1. Summary of solved instances on HWMCC’12 and HWMCC’13. CNF-ITP
appears with (*) since we were not able to run it on the entire HWMCC’13 benchmark
due to technical issues.

Status Avy Pdr Itp CNF-ITP Virtual Best

SAFE 76 72 62 59(*) 112

UNSAFE 24 15 26 25(*) 29

5 Experiments

We have implemented Avy
2 using C++ on top of ABC [5] – a well known

open-source verification framework. We have compared it on HWMCC’12 and
HWMCC’13 benchmark suites against Pdr, McMillan’s Interpolation algorithm
(Itp) [12] as implemented in ABC, and CNF-ITP [17]. Note that Itp is slightly
different from Imc described in Section 3.1. While an efficient implementation of
Imc was not available, prior experiments indicate that Itp outperforms Imc on
HWMCC benchmarks [6]. All experiments were performed on Intel E5-2697V2
running at 2.7GHz and with 256GB of RAM with a 900 seconds timeout.

2 Available at http://www.cs.technion.ac.il/~yvizel/avy.html

http://www.cs.technion.ac.il/~yvizel/avy.html
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Table 2. Detailed experimental results. D represents the depth of convergence, �
Clauses - the number of clauses in the proof, and Time is the runtime in seconds.
(*) Note that CNF-ITP failed to run on the OSKI cases due to technical issues.

Test Status ITP CNF-ITP PDR Avy
D Time[s] D � Clauses Time[s] D � Clauses Time[s] D � Clauses Time[s]

6s102 T 53 TO 46 16,350 111 13 2966 222.22 23 162 61.92
6s121 T 342 TO 42 2,907 13.2 17 – TO 49 1,713 499.14
6s130 T 14 18.66 18 93,600 856 7 – TO 9 2,669 114.7
6s144 T 35 TO 23 – TO 9 – TO 22 371 449.53
6s159 T 63 11.5 10 280 0.3 45 114 2.7 36 19 10.2
6s189 T 37 TO 23 – TO 8 – TO 26 384 793.15
6s194 T 70 TO 80 – TO 38 4,763 93.32 50 – TO

6s205b16 T 61 213.01 35 – TO 43 – TO 10 – TO
6s206rb025 T 7 2.51 6 24 2.5 4 8 0.22 4 8 8.28
6s207rb16 F 9 2.52 10 – TO 5 – TO 8 – 22.94
6s282b15 T 33 13.38 33 49,025 65 19 1,576 9.99 25 697 116.59
6s288r T 83 TO 40 3,998 155 19 236 10.38 21 106 170.49
6s131 T 13 19.18 20 – TO 6 – TO 8 2,626 96.88
6s162 F 73 217.72 73 – TO 13 – TO 72 – 173.63
6s38 T 23 TO 24 4,508 558 9 – TO 12 1,193 130.15

6s407rb296 T 18 TO 9 – TO 9 – TO 12 238 173.18
6s408rb191 T 37 TO 16 33,116 228 6 883 0.97 8 644 199.94

6s8 T 43 TO 38 – TO 26 – TO 35 2,021 829.12
6s9 T 14 30.56 10 – TO 9 – TO 8 2,727 96.85

intel011 T 72 TO 20 – TO 27 – TO 52 572 233.94
intel015 T 72 TO 21 – TO 51 – TO 60 726 124.29
intel018 T 78 TO 16 – TO 50 – TO 60 328 56.6
intel020 T 90 TO 15 3,975 48 33 – TO 46 370 56.28
intel021 T 92 TO 18 5,958 115 33 – TO 52 365 99.62
intel022 T 84 TO 21 – TO 27 – TO 38 405 73.18
intel023 T 96 TO 32 9,312 606 30 – TO 50 243 57.09
intel024 T 96 TO 15 4,395 78 23 – TO 38 194 23.43
intel025 T 60 TO 17 – TO 23 – TO 42 1,204 421.07
intel029 T 84 TO 16 – TO 47 – TO 54 230 53.31
intel034 T 86 TO 16 1,344 119 55 – TO 72 232 603.85

oski1rub03 T 9 4.02 –(*) –(*) –(*) 8 169 12.71 6 43 13.96
oski1rub04 F 13 28.46 –(*) –(*) –(*) 14 – 112.42 12 – 81.89
oski1rub07 T 4 1.22 –(*) –(*) –(*) 7 144 3.51 2 140 6.22

We have joined HWMCC’12 and HWMCC’13 together into a set of bench-
marks, excluding Beem

3 test cases as we put emphasis on the industrial section
of the benchmark (which includes 328 test cases).

The results are summarized in Table 1. Avy dominates the benchmark in
number of solved instances. In particular, on the Intel set, Avy and CNF-
ITP are the only techniques able to solve safe instances, though Avy solves
considerably more instances than CNF-ITP. Inspecting the entire set of solved
instances, the instances solved by Avy and Pdr are significantly different. The
“Virtual Best” column shows the result of a solver that runs all 3 techniques and
takes the best result. It shows thatAvy is complimentary to Pdr. Together, they
solve at least a third more benchmarks than either one in isolation.

3 http://paradise.fi.muni.cz/beem

http://paradise.fi.muni.cz/beem


274 Y. Vizel and A. Gurfinkel

(a) Pdr vs. Avy: All. (b) Itp vs. Avy: All.

Fig. 1. Runtime comparison between Avy (y-axis) and Pdr and Itp

More details are shown in Table 2. There are two important parameters to
notice: the depth at which a proof (fixpoint) is found and the number of clauses
in the proof. On the cases where both Pdr and Avy reach to a fixpoint, the
number of clauses in the proof Avy finds is smaller than those in the proof found
by Pdr, even in the cases where Pdr converges at a lower depth.

The run-time results for the entire benchmark are shown in Fig. 1. In all plots,
Avy is represented by the y-axis. While whenever Avy solves a problem that
is solved by another method, it is slower, it solves a large number of problems
not solved by other techniques. We believe that the performance issues are in
part due to our implementation of interpolation and lack of support for the
combination of incremental SAT-solving and interpolation.

We have also evaluated the effect of specific techniques used by Avy and
found all of them to be important. Avy is not competitive if any of them are
disabled. In particular, maintaining the global δ-trace and guiding the proof
towards minimal unsatisfiable suffix are critical to performance. In addition, 3
test cases were only solved with the min-core option.

6 Conclusion

We introduce Avy, a new SAT-based model checking algorithm. Like Imc and
Pdr, Avy constructs a safe inductive invariant to show the validity of a prop-
erty. It uses BMC-unrolling with sequence interpolants to construct an initial
candidate invariant (similar to Imc), but then uses local backward search and
inductive generalization to keep the candidate invariant in a compact clausal
form. Avy combines the advantages of both Imc and Pdr. Our experiments
show that Avy is a very capable algorithm that can solve a considerable number
of test cases that are not solvable by neither Pdr nor Itp and CNF-ITP.

As future directions, we would like to experiment with other methods that can
keep the trace in compact clausal form (e.g., using the approach from [17]). In
addition, we believe that the concepts that were introduced in this paper extends
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beyond finite state systems and can be applied in the context of software model
checking.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig Interpretation. In: Miné, A.,
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Abstract. In this paper we consider the problem of formally verifying
hardware that is specified to compute reciprocal, reciprocal square
root, and power-of-two functions on floating point numbers to within a
given relative error. Such specifications differ from the common case in
which any given input is specified to have exactly one correct output.
Our approach is based on symbolic simulation with binary decision
diagrams, and involves two distinct steps. First, we prove a lemma that
reduces the relative error specification to several inequalities that involve
reasoning about natural numbers only. The most complex of these in-
equalities asserts that the product of several naturals is less-than/greater-
than another natural. Second, we invoke one of several customized
algorithms that decides the inequality, without performing the expen-
sive symbolic multiplications directly. We demonstrate the effectiveness
of our approach on a next-generation IntelR© processor design and report
encouraging time and space metrics for these proofs.

1 Introduction

Formal verification of hardware data path designs is by now standard practice
for many design organizations, see e.g. [8,16,12,17]. Typically the specifications
for such circuits are functional, meaning that there is exactly one correct output
for any given input. In principle, verification can be carried out by writing an
executable specification and checking that for all inputs, the output of the design
is equal to that of the specification. Symbolic simulation allows one to verify this
for all inputs in one fell swoop.1

In this paper, we consider designs with specifications that are not functional
since a given input can correctly produce any one of a multitude of possible
outputs. These specifications only require that the design result approximates
the true mathematical result, in the sense that the relative error is less than
some bound. Note that this is distinct from many functional specifications that
allow approximate results via rounding; in that case the rounding is precisely
defined so that there is still exactly one correct answer.

1 Although for some operations, one must employ case splitting and/or decomposition
due to exponential blow up.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 277–292, 2014.
c© Springer International Publishing Switzerland 2014
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We consider three unary operations in this work: reciprocal (RCP), reciprocal
square root (RSQRT), and power-of-two (EXP2). The first two take one IEEE
floating point number as input, while power-of-two takes a fixed-point number;
all three produce one IEEE floating point number as output. The common thread
in verifying these three operations is summarized by the following two elements:

1. Express the relative error specification as two inequalities, each of the form

B <>

n∏
i=1

Mi (1)

where <> is either < or >, along with some simpler conditions also involving
only integer reasoning. Here B and M1, . . . ,Mn are positive integers that
are specific to the operation under consideration, and each have tractable
symbolic representations. The equivalence of these inequalities to the desired
relative error bounds are stated and proven as meta-theorems in this paper.

2. Use one of several custom algorithms for deciding the inequalities (1).
These algorithms are optimized for efficient symbolic computation; though
M1, . . . ,Mn have tractable representations, the product typically does not,
so directly computing the product and checking the inequality can be
prohibitively expensive. The other conditions involving integers are simple
enough that they don’t require any specially optimized algorithms to decide
symbolically.

The general technique of reducing problems involving floating point numbers
to problems involving integers is well-known, and for example has been used
to find test vectors for floating point units where the outputs are very close to
rounding boundaries [11]. The chief novelty of this paper is the specific recipes
for reducing the relative error specifications of three families of floating point
operations—RCP, RSQRT and EXP2—to a form that can be proved by symbolic
computation techniques.

The primary contribution of the paper presents these novel reductions and
demonstrates how they can be integrated with standard symbolic simulation
tools for RTL. This facilitates formal verification of relative error bounds for our
three instruction classes on a next-generation Intel R© processor. This is the first
verification approach for relative error bounds that uses symbolic simulation
instead of theorem proving, which offers the advantage of providing counter-
examples whenever the verification fails, shortening debugging time. A secondary
contribution of this paper is the technique for verifying the relative error bounds
of the EXP2 floating point operation, which computes an approximation to 2x

for an input x. We present a recipe for verifying bounds of this transcendental
function using symbolic arithmetic operations.

The rest of the paper is organized as follows. Background notions and nota-
tions are given in Sect. 2. The lemmas that reduce the relative error specifications
to integer reasoning are give in Sect. 3. Sect. 4 presents the three symbolic deci-
sion procedures for (1). Our case study results, paper summary, and a discussion
of related work correspond to Sects. 5, 6, and 7, respectively.
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2 Background

2.1 Relative Error

Let B, N, Z, and R represent the set of booleans {0, 1}, naturals {0, 1, 2, . . .},
integers, and reals, respectively. For any x ∈ R, we use the usual floor and ceiling
operations that map x ∈ R to Z: *x+ is the maximum integer n such that n ≤ x
and ,x- is the minimum integer n such that n ≥ x. We also define 〈x〉 = x−*x+,
i.e. 〈x〉 is the “fractional” part of x.

Let y and y∗ be reals; here y can be thought of as a mathematically precise
result, whereas y∗ is an approximation of y. For real ε > 0, we say that y∗

approximates y with relative error ε if∣∣∣∣y∗ − y

y

∣∣∣∣ < ε

For a natural p ≥ 2, we use the notation y∗ ≈p y to assert that y∗ approximates
y with relative error 2−p. We make the assumption that p ≥ 2, and hence the
relative error is at most 1

4 , to rule out some pathological cases in our proofs.2 In
this paper we will be interested in establishing

∀x. h(x) ≈p f(x)

where h(x) is the output of a hardware design given input x, and f is the
mathematical function that the hardware is designed to approximate.

2.2 Floating Point Numbers

A floating point number [5], or simply float, is a triple (s, e,m) where s ∈ {−1, 1}
is called the sign, e ∈ Z is called the exponent, and m ∈ N is called the mantissa.3

The mantissa must satisfy a range constraint 2� ≤ m < 2�+1 where � ∈ N is a
constant called the mantissa fraction length.4 In this paper we will deal with
single precision and double precision floats, which have � = 23 and � = 52,
respectively. If x is a floating point number, we write s(x), e(x), and m(x) for
the sign, exponent, and mantissa of x, respectively. The real number represented
by x is defined to be

s(x)m(x)2e(x)−�

and in a minor abuse of notation we will use x and the represented real inter-
changeably.

2 The relative errors used in our hardware verification case studies have p ∈
{11, 14, 23, 28}.

3 Here we abstract slightly away from bit-level floating point encodings, e.g. as defined
in IEEE Standard 754 [7].

4 In practice e also satisfies a range constraint emin ≤ e ≤ emax , where emin and
emax are maximal and minimal exponents. However, the results in this paper do not
depend on exponent range constraints and so we omit them.



280 J. Bingham and J. Leslie-Hurd

2.3 Symbolic Simulation

Let V be a finite set of boolean-valued variables. An assignment (to V ) is a func-
tion α : V → B. For any set S (which we’ll call the base type), a function of type
(V → B)→ S is called a symbolic S; if S is unspecified we will simply refer to this
as a symbolic object. Thus a symbolic S is a function that takes an assignment
and produces an element of the base type S. In this paper we will be interested
in symbolic booleans (a.k.a boolean functions), symbolic integers/naturals, and
symbolic floats. To represent and manipulate boolean functions we will use the
well-known binary decision diagram (BDD) [2] data structure. One can then
represent a symbolic integer b using a finite list of boolean functions bn, . . . , b0
and twos-complement encoding; i.e. for an assignment α,

b(α) = −bn(α)2n + bn−1(α)2
n−1 + · · ·+ b0(α)2

0

Once equipped with symbolic integers, we can represent symbolic floats as
(s, e,m), where s is a boolean function indicating the sign, and e and m are
symbolic integers. Furthermore, any function involving the various base types of
interest can be extended to take and return symbolic objects. In code, this typi-
cally involves simply replacing primitive operations with symbolic variants. One
fundamental operation that we will use symbolically is if-then-else, explained as
follows. Let Xi and Xe be symbolic objects having the same base type, and let
c be a boolean function. Then we define

ite(c,Xi, Xe) = λα. if c(α) then Xi(α) else Xe(α)

For the rest of the paper, we assume availability of symbolic variants of other
fundamental operations, such as addition, subtraction, multiplication, exponen-
tiation, and constants, and will not notationally distinguish the symbolic from
the non-symbolic operations.

Symbolic simulation is a well-known approach wherein symbolic objects are
propagated through the primitives of a hardware (or software) design [4]. In this
paper we employ BDD-based symbolic simulation, e.g. [15]. Here, a hardware de-
scription language representation of the design is compiled down to a gate-level
implementation, which operates on wires carrying boolean values. Roughly, sym-
bolic simulation involves associating to each input wire a unique boolean variable
from V (represented by a BDD), and then propagating the symbolic booleans
through the gates according to the gate’s function. Symbolic simulation proper
completes when the resulting BDDs on the output wires of interest have been
computed. These output BDDs are then fed into a specification-checking phase
that either proves correctness or returns a counter-example in the form of an
assignment to V . In the framework in which we did our work, the specification
refers to inputs and output being naturals, integers, or floats; i.e. the BDDs seen
by the symbolic simulator are packaged into symbolic objects before evaluat-
ing the specification. Hence, even though symbolic simulation works on a “bit-
blasted”, gate-level representation, we can meaningfully construct a specification
that relates the input float to the output float (or other type, as appropriate).
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3 Bounded Product Reduction

In this section we present the meta-theorems needed to reduce the relative error
verification problem for RCP (Sect. 3.1), RSQRT (Sect. 3.2), and EXP2 (Sect. 3.3) to
integer inequalities. Note that the theorem (and proof) for the first two are quite
similar, though sufficiently different as to warrant separate theorems, whereas
the reduction for EXP2 is somewhat more elaborate. Though the reduction for
RSQRT involves reasoning about irrational numbers, these can be eliminated by
squaring; however the irrationality of EXP2 cannot be disposed of in such an easy
manner and requires more sophisticated techniques.

3.1 Reciprocal

Suppose we wish to establish y ≈p 1/x, where x and y are floating point numbers.
To reduce the problem to purely integer reasoning, we invoke the following key
lemma.

Lemma 1 (Reduction for RCP).
Let x and y be floating point numbers. Then we have y ≈p 1/x if and only if

all of the following three conditions hold:

(i) s(x) = s(y)

(ii) e(x) + e(y) ∈ {−2,−1, 0}
(iii) 22�+2 − 22�+2−p < m(x)m(y)2e(x)+e(y)+2 < 22�+2 + 22�+2−p

Proof. We have

y ≈p 1/x
⇔ |xy − 1| < 2−p

⇔
∣∣(s(x)m(x)2e(x)−�

) (
s(y)m(y)2e(y)−�

)
− 1

∣∣ < 2−p

⇔
∣∣s(x)s(y)m(x)m(y)2−2�2e(x)+e(y) − 1

∣∣ < 2−p

⇔ 1− 2−p < s(x)s(y)m(x)m(y)2−2�2e(x)+e(y) < 1 + 2−p

⇔ 22�+2(1 − 2−p) < s(x)s(y)m(x)m(y)2e(x)+e(y)+2 < 22�+2(1 + 2−p)

which is equivalent to

22�+2 − 22�+2−p < s(x)s(y)m(x)m(y)2e(x)+e(y)+2 < 22�+2 + 22�+2−p (2)

Since 22�+2 − 22�+2−p is positive, we must have s(x) = s(y). Thus, since
s(x)s(y) = 1, the above is equivalent to Condition (iii) of the lemma
statement. Also, from the definition of floating point number, we have
22� ≤ m(x)m(y) < 22�+2. If e(x) + e(y) ≤ −3, then

m(x)m(y)2e(x)+e(y)+2 ≤ m(x)m(y)/2 < 22�+1 ≤ 22�+2 − 22�+2−p

(since p is a positive integer), contradicting the lower bound of (2). Similarly, if
e(x) + e(y) ≥ 1, then

m(x)m(y)2e(x)+e(y)+2 ≥ m(x)m(y)23 > 22�+3 > 22�+2 + 22�+2−p

which violates the upper bound of (2). ��
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Conditions (i) and (ii) of Lemma 1 clearly only involve integers; furthermore,
assuming p ≤ 2� + 2, so too does (iii).5 Hence, we have reduced y ≈p 1/x to
two instances of (1) with n = 2, where M1 = m(x)2e(x)+e(y)+2 and M2 = m(y),
and the bound B = 22�+2(1− 2−p) (resp. B = 22�+2(1 + 2−p)) in the first (resp.
second) instance. Note that we choose to multiply m(x) by 2e(x)+e(y)+2 to create
M1, rather than have n = 3. The BDD complexity introduced by multiplying
m(x) by 2e(x)+e(y)+2 is relatively insignificant, since under condition (ii) the
latter ranges over just {1, 2, 4}.

3.2 Reciprocal Square Root

Reciprocal square root involves a similar derivation as reciprocal, except we can
disregard the sign, since the operation is only defined on non-negative floats.

Lemma 2 (Reduction for RSQRT). Let x and y be positive floating point num-
bers. Then we have y ≈p 1/

√
x if and only if both of the following conditions

hold:

(i) −3 ≤ e(x) + 2e(y) ≤ 0

(ii) 23�+3 − 23�+4−p + 23�+3−2p < m(x)m(y)22e(x)+2e(y)+3

< 23�+3 + 23�+4−p + 23�+3−2p

Proof. We have

y ≈p 1/
√
x

⇔ |y
√
x− 1| < 2−p

⇔ −2−p < y
√
x− 1 < 2−p

⇔ 1− 2−p < y
√
x < 1 + 2−p

⇔ (1 − 2−p)2 < xy2 < (1 + 2−p)2

⇔ (1 − 2−p)2 <
(
m(x)2e(x)−�

) (
m(y)2e(y)−�

)2
< (1 + 2−p)2

⇔ (1 − 2−p)2 < m(x)m(y)22e(x)+2e(y)−3� < (1 + 2−p)2

⇔ 23�+3(1− 2−p)2 < m(x)m(y)22e(x)+2e(y)+3 < 23�+3(1 + 2−p)2

⇔ 23�+3 − 23�+4−p + 23�+3−2p < m(x)m(y)22e(x)+2e(y)+3

< 23�+3 + 23�+4−p + 23�+3−2p

Note that since p ≥ 2, we have 23�+2 < 23�+3 − 23�+4−p + 23�+3−2p and 23�+3 +
23�+4−p+23�+3−2p < 23�+4, and from the definition of floating point number, we
have 23� ≤ m(x)m(y)2 < 23�+3. If e(x)+2e(y) ≤ −4, the we get the contradiction

23�+2 < m(x)m(y)22e(x)+2e(y)+3 ≤ m(x)m(y)22−1 < 23�+2

If e(x) + 2e(y) ≥ 1, then we get the contradiction

23�+4 > m(x)m(y)22e(x)+2e(y)+3 ≥ m(x)m(y)224 ≥ 23�+4

��
5 In all our hardware verification case studies we have p ≤ 2�+2, however if this does
not hold, one need only multiply all three quantities by 2p−2�−2 to obtain integers.
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3.3 Power-of-Two

In this section, we consider relative error bounds for an instruction EXP2 that
takes an input x and returns an approximation of 2x. Unlike the preceding
instructions, EXP2 does not take a floating point number as input, but rather a
fixed point number. A fixed point number with precision q is a real number x such
that x2q ∈ Z. Though EXP2 takes a fixed point number as input, it produces a
floating point number as output.

Lemma 3. Let x be a fixed point number with precision q and let y be a positive
floating point number, and let p ≥ 2 be an integer. Then we have y ≈p 2x if and
only if both of the following conditions hold:

(i) e(y)− *x+ ∈ {−1, 0, 1}
(ii) 2〈x〉2�(2p − 1) < m(y)2p+e(y)−�x� < 2〈x〉2�(2p + 1)

Proof. Letting d = e(y)− *x+, we have

y ≈p 2x

⇔ |y2−x − 1| < 2−p

⇔
∣∣m(y)2e(y)−�−�x�−〈x〉 − 1

∣∣ < 2−p

⇔
∣∣m(y)2−�2−〈x〉2d − 1

∣∣ < 2−p

⇔ 1− 2p < m(y)2−�2−〈x〉2d < 1 + 2−p

⇔ 2〈x〉2�(2p − 1) < m(y)2p+d < 2〈x〉2�(2p + 1)

Since 0 ≤ 〈x〉 < 1, we have 1
2 < 2−〈x〉 ≤ 1; we also have 1 ≤ m(y)2−� < 2. Thus,

1
2 < m(y)2−�2−〈x〉 < 2

and therefore if 2d ≤ 1
4 or 4 ≤ 2d, the left-hand side of the inequality becomes

strictly greater than 1
2 , and thus the inequality cannot hold since the right-hand

side is less than or equal to 1
2 . Thus d ∈ {−1, 0, 1}. ��

All quantities involved in the inequalities (ii) above are integers, except the
value 2〈x〉, which in general is an irrational in [1, 2). Hence we cannot hope to
simply scale all values by some power of two to make an equi-satisfiable integer
inequality, as was done in Lemmas 1 and 2. However, if we are equipped with a
means of computing

⌊
2k2〈x〉

⌋
and

⌈
2k2〈x〉

⌉
precisely, for any k ∈ N, we can still

obtain an equivalent computable inequality. This is afforded by the following
lemma.

Lemma 4. Let r be a real and m and n be naturals. Then rm < n (resp.
n < rm) if and only if there exists some natural k such that

⌈
r2k

⌉
m < n2k

(resp. n2k <
⌊
r2k

⌋
m)

Proof. The ⇐ direction is easy. For the ⇒ direction, suppose rm < n. Then
rm + q = n for some real q > 0, and thus r + q/m = n/m. Choose k such that
2−k < q/m. Then n = rm + q > rm + m2−k, and thus n2k > r2km + m =
(r2k + 1)m >

⌈
r2k

⌉
m. The respective statement is proven analogously. ��
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We now exploit Lemma 4 to create a “computable” version of Lemma 3:

Lemma 5. Let x be a fixed point number with precision q, let y be a positive
floating point number, and let p > 0 be an integer. Then we have y ≈p 2x if and
only if e(y)− *x+ ∈ {−1, 0, 1} and there exists natural k such that⌈

2k+〈x〉
⌉
2�(2p − 1) < m(y)2k+p+e(y)−�x� <

⌊
2k+〈x〉

⌋
2�(2p + 1) (3)

Proof. Follows from Lemmas 3 and 4 ��

Although the condition (3) from Lemma 5 only involves integers, it still re-
quires a means of symbolically computing

⌈
2k+〈x〉⌉ and ⌊

2k+〈x〉⌋. Such computa-
tions are possible, however we chose to merely compute upper- and lower-bounds,
respectively, on these two quantities. We now elaborate on this scheme.

Observe that since x is a fixed-point number with precision q, we have that
〈x〉 =

∑q
i=1 xi2

−i, where xi ∈ B, and hence

2k+〈x〉 = 2k
q∏

i=1

2xi2
−i

Now let us suppose we have a pair of functions sqrt2L, sqrt2U : N × N → N
such that for all n, i ∈ N we have sqrt2L(n, i) ≤ 2n+2−i ≤ sqrt2U (n, i). Here we
may think of n as a bit-precision used to approximate the 2ith-root of 2. Taking
k = nq and replacing the exponent xi with an ite operator yields⌊

2nq+〈x〉⌋ ≥ ∏q
i=1 ite(xi, sqrt2L(n, i), 2

n)⌈
2nq+〈x〉⌉ ≤ ∏q

i=1 ite(xi, sqrt2U (n, i), 2n)
(4)

The introduction of the ceiling and floor operators on the LHSs of (4) are justified
since the RHSs are naturals. Condition (3) is hence implied by

2�(2p − 1)
∏q

i=1 ite(xi, sqrt2U (n, i), 2n) < m(y)2k+p+e(y)−�x�

2�(2p + 1)
∏q

i=1 ite(xi, sqrt2L(n, i), 2
n) > m(y)2k+p+e(y)−�x� (5)

We have obtained adequate functions for sqrt2L and sqrt2U via some straightfor-
ward modifications of a pre-existing function that performs (floor of) square-root
on symbolic naturals. Therefore, when verifying EXP2, we need only decide in-
equalities of the form (5), with the “precision” parameter n selected large enough
for the verification to succeed.

4 Deciding Symbolic Product Inequalities

Section 3 showed how the relative error specification for RCP, RSQRT, and EXP2

can be reduced to two inequalities of the form (1): B <>
∏n

i=1 Mi, where <>
is either < or > and each Mi ∈ N. In this section we describe three algorithms
for deciding symbolic inequalities of this form. Technically, these algorithms
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return the symbolic boolean characterizing the space of assignments for which
the inequality holds; verification is successful iff this is the constant function
True. Let us abbreviate

∏n
i=1 Mi by Π , and let us refer to our problem as <-

bounding (resp. >-bounding) when <> is < (resp. >).
A common feature of the three algorithms is that all involve a loop that

iteratively computes closer and closer approximations a0, a1, . . . of Π . When <-
bounding, this sequence is such that for all i, ai ≤ ai+1 ≤ Π ; thus if we reach an
i such that B < ai, we have proven B < Π . The analogous statement with all
inequalities reversed holds for >-bounding. Let sat i denote the symbolic boolean
B <> ai. Assuming it exists, let v ∈ N be minimal such that satv = True.
Clearly, after iteration v the algorithm can safely return True. Furthermore, if
av �= Π , we have proven the bound without computing Π exactly. This early
termination saves significant time and space, since v can be much smaller than
the total number of iterations the algorithm would otherwise execute, and the
BDD sizes in the representation of av are much smaller than that of Π .

Since the sequence a0, a1, . . . is monotonic, so too is sat0, sat1, . . ., in the sense
that sat i ⇒ sat i+1 for all i. Let u ∈ N be minimal such that satu �= False. Typi-
cally, u is somewhat smaller than v, which implies there are iterations i wherein
False �= sat i �= True (i.e., sat i is a non-constant boolean function). This reveals
a certain redundancy in these later iterations; even though we have completed
the proof for the space sat i, we continue to do computationally complex opera-
tions to go from ai to ai+1, which implicitly involve all assignments. We hence
investigated the use of an optimization called sat-space restriction (SSR), in
which, at the end of the ith iteration, we replace ai with ite(sat i, 0, ai). SSR
thus zeros out the approximations ai in the space wherein the bound is already
established. Our intuition suggests that SSR might be an impactful optimiza-
tion, but its efficacy is an empirical question. Experiments have confirmed that
it is indeed useful. For instance, for single precision RCP with p = 28 and using
the algorithm of Sect. 4.3, computing the relative error specification took 8,771
and 7,038 seconds when SSR was off and on respectively, giving a 20% runtime
improvement.6

The SSR optimization also improves the robustness of our symbolic prod-
uct algorithms in the presence of hardware bugs, which can cause many more
iterations of the Π-approximating loop. SSR ensures that the extra iterations
only perform symbolic computations within the space of the buggy inputs. As an
extreme example, if this space contains a single input vector, then the extra iter-
ations will involve BDDs that are either constants or the minterm corresponding
to the buggy input, and hence are immune to blow-up.

An orthogonal optimization to SSR is truncation (Tr), which involves truncat-
ing a certain number of lower order “bits” from each ai. For a natural t and sym-
bolic natural a, define truncLt(a) = 2t *a2−t+ and truncU t(a) = 2t(*a2−t++ 1).
Clearly truncLt(a) ≤ a ≤ truncU t(a); and we may safely apply truncL (resp.
truncU ) when <-bounding (resp. >-bounding). Truncating can be useful, since

6 These results were averaged over 3 runs.
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the lower order t BDDs in intermediate computations might introduce significant
complexity, while negligibly contributing to the magnitude of the value.

We now present the three algorithms we use for deciding (1).

4.1 Brute Force

This algorithm does full symbolic multiplications, but can apply Tr on inter-
mediate results. In terms of the above characterization, the approximation se-
quence is degenerate and has just the single element a0 = bn, where b0 = 1
and bi+1 = b′iMi and b′i is either truncLt(bi) or truncU t(bi) for <-bounding
or >-bounding, respectively. We then simply symbolically evaluate and return
B <> bn. We call this brute force since the individual multiplications b′iMi are
done with an off-the-shelf symbolic multiplication algorithm that is oblivious to
the fact that we only wish to bound the final product. This is not the case for
the next two algorithms, wherein multiplication is aware of B and <>.

4.2 Partial Product Summation

The partial product summation is only used when n = 2; we will write x and y for
M1 andM2, respectively. Let yi be the the ith “bit” of the symbolic natural y, i.e.
y =

∑r
i=1 yi2

i where r is selected to be large enough to accommodate all values
in y’s range. The approximations a0, a1, . . . are based on the “partial product”
expansion xy =

∑r
j=0 yjx2

j . In particular, ai involves summing the first i + 1
terms of this expansion, and replacing the remaining terms by a (symbolically
simpler) natural φi.

ai = φi +

r∑
j=r−i

yjx2
j

When <-bounding, we simply use φi = 0; while for >-bounding, φi = x2r−i.7

Fig. 1 depicts the algorithmic expression of the >-bounding partial product
summation. The approximation ai is computed on line 6; this is separate from
acc, which is simply the sum of the first i + 1 term of the partial product
summation. Line 7 updates the sat space, handling the final iteration (wherein
acc = xy, but is typically not reached) with a special case. Lines 8-10 check
for and do early termination, which invariably happens in our case studies that
use this algorithm. Lines 11 and 12 are the optional Tr and SSR optimizations,
respectively.

4.3 Polynomial Expansion

Though this approach can be generalized for any n, we only use it for RCP and
RSQRT, and hence n ∈ {2, 3}. Here we explain the n = 3 case and denote our
three multiplicands by x, y, and z. Let us fix a natural b ≥ 1, and assume that

7 One can safely tighten this slightly to x(2r−i − 1), but we used x2k since its repre-
sentation as a symbolic natural is not more complex than that of x.
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1: function PP Bound Upper(B,x, y)
2: acc := 0
3: sat := false
4: for i := 0 upto r do
5: acc := acc + ite(yr−i, x2

r−i, 0)
6: a := acc + x2r−i

7: sat := sat ∨ ite(i = r,B > acc, B ≥ a)
8: if sat = True then
9: return True
10: end if
11: acc := truncLt(acc)
12: acc := ite(sat , 0, acc)
13: end for
14: return sat
15: end function

Fig. 1. The partial product summation algorithm (>-bounding)

each of x, y, and z is representable using rb bits; i.e. each of the three symbolic
naturals is in the range [0, 2rb). Let us express x as x =

∑r
j=0 xjd

j , where d = 2b

and each xi is a symbolic natural with range {0, . . . , d − 1}. Note that in the
symbolic natural representation discussed in Sect. 2.3, obtaining the xi’s from x
is trivial, since each xi is represented by a “bit slice” of x. We express y and z
similarly, respectively yielding yr, . . . , y0 and zr, . . . , z0. Our approach is based
on the identity xyz =

∑
h,j,k xhyjzkd

h+j+k, where the sum ranges over all

triples (h, j, k) ∈ {0, . . . , r}3.
Let τ0, τ1, . . . be a total ordering of the triples {0, . . . , r}3, and let Ti = {τj :

j ≤ i}. For <-bounds, we form ai by simply summing the terms corresponding to
the triples of Ti, which clearly is a lower bound, since each term is nonnegative.

ai =
∑

(h,j,k)∈Ti

xhyjzkd
h+j+k ≤ xyz (6)

For >-bounds, the analogous ai is somewhat more involved:

ai =
(
dr+1 − 1

)3 − ∑
(h,j,k)∈Ti

(
(d− 1)3 − xhyjzk

)
dh+j+k (7)

≥
(
dr+1 − 1

)3 −∑
h,j,k

(
(d− 1)3 − xhyjzk

)
dh+j+k

=
∑
h,j,k

(d− 1)3dh+j+k −
∑
h,j,k

((d− 1)3 − xhyjzk)d
h+j+k

=
∑
h,j,k

(
(d− 1)3 − (d− 1)3 + xhyjzk

)
dh+j+k

= xyz

The natural choice of τ0, τ1, . . . (for either direction of bounding) is one that
orders terms with higher powers of d first. In other words, whenever h+ j+ k >
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h′+j′+k′, the triple (h, j, k) comes before (h′, j′, k′) and triples with equal sums
are ordered arbitrarily. Fig 2 gives the <-bounding variant of the algorithm; >-
bounding is similar, but uses (7) instead of (6). In particular, line 3 is replaced
with a := (dr+1− 1)3, and line 6 is replaced with a := a− ((d− 1)3−xhyjzk)d

σ ;
lines 7 and 11 are modified in the obvious way. Similar to Fig. 1, lines 11 and 12
are the optional optimizations Tr and SSR, respectively.

1: function Poly Expansion Bound Lower(B, x, y, z)
2: sat := False
3: a := 0
4: for σ := 3r downto 0 do
5: for all (h, j, k) ∈ N3 such that h+ j + k = σ do
6: a := a+ xhyjzkd

σ

7: sat := sat ∨B < a
8: if sat = True then
9: return True
10: end if
11: a := truncLt(a)
12: a := ite(sat , 0, a)
13: end for
14: end for
15: return sat
16: end function

Fig. 2. The polynomial expansion algorithm (<-bounding)

5 Case Studies

Our method has been implemented in reFLect, the lazy functional language used
to program Intel’s Forte tool suite [14], and sits as a specification layer on top of
the Relational STE [10] symbolic simulator. The design under verification was
from a next-generation many-core CPU under development at Intel R©. The RCP

and RSQRT instructions analyzed in the paper are used as initial approximations
in the implementation of division and squareroot computations; it is therefore
crucial that they satisfy the specified relative error for the final result to be
correct. Each core on the CPU is equipped with a SIMD unit that implements a
fused-multiply-add (FMA) datapath, which computes x+ yz with only a single
rounding for floats x, y, and z, as well as special-purpose hardware for our three
approximate instruction families. The instruction classes RCP and RSQRT have
instances for the three relative errors 2−11, 2−14 and 2−28; most of which are
supported for both single precision (SP) and double-precision (DP) floats, while
EXP2 has only relative error 2−23, but has an instance that produce each of SP
and DP results. The input for the SP (resp. DP) EXP2 flavor is a fixed-point
integer with precision 24 and an 8-bit (resp. 11-bit) integer part, i.e. they fall in
the range [−27, 27) (resp. [−210, 210)). All instructions in our three classes are
implemented using a similar method. Roughly, a selection of bits from the input
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Table 1. Verification Results

Op. Tot. Time Spec. Time. Mem. Alg. Case split

RCP 11S 58 3 1.8 P No
RCP 14S 103 49 1.8 P No
RCP 14D 135 51 1.8 P No
RCP 28S 14,972 7,038 17.4 E(4,0) No
RCP 28D 2.7 days 1.3 days 3.6 E(5,0) 512-way

RSQRT 11S 68 4 1.8 P No
RSQRT 14S 124 69 1.8 P No
RSQRT 14D 139 55 1.8 P No
RSQRT 28S 18,301 13,173 6.0 E(5,0) 16-way
RSQRT 28D 22.7 days 16.7 days 9.0 E(5,110) 1,024-way

EXP2 23S 72,759 63,428 2.9 B(30) 128-way
EXP2 23D 59,706 51,152 2.8 B(30) 128-way

are used to map into a instruction-specific ROM to obtain coefficients to use
in a quadratic approximation. The FMA hardware is then used to perform the
operations (multiplication, addition, normalization and rounding) necessary for
evaluating the quadratic formula into a floating point result.

Table 1 gives the verification results.8 The Op column gives the instruction
type, along with the value of p and an indication of single precision (S) or double
precision (P) floats.9 The Tot Time column gives the total (wall clock) run time
for the proof; the units are seconds except for the entries measured in days. Spec
Time is the time for just computing the relative error specification; the time for
symbolic simulation is not included.10 Mem is the maximum virtual memory, in
GB, the Forte process used during execution. Alg indicated which of the decision
procedures from Sect. 4 was used: B(t) is the brute force algorithm from Sect. 4.1
with parameter t, P is the “partial product“ approach from Sect. 4.2 with SSR
enabled, while E(r,t) is the algorithm of Sect. 4.3 with SSR and parameters r
and t. Some instructions require case splitting [1], which partitions the input
space into a number of cases; the Case split column indicates if this was used,
and if so how many cases. The case splits were obvious and involved holding
constant some of the input bits used to index into the coefficient ROMs in the
circuit. It is important to note that the multi-day runs were in reality performed
by grouping the cases into 10 buckets and running them on different machines

8 All runs used the BDD variable order of sign, exponent, and then mantissa source
variables.

9 The instructions RCP28S and RSQRT28S are oddities since the minimum relative error
allowed by the single precision format is 2−23. The specification says to do the
computation in the double precision domain, and then round to the nearest single
precision. We were able to verify that the relative error bound was 2−22 and 2−23,
respectively, for these instructions.

10 The time accounted to symbolic simulation also involves a non-negligible component
for a cone-of-influence reduction.
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concurrently—case splits are embarrassingly parallelizable—so the real time used
for even RSQRT 28D was just over 2 days.

The 2−14 flavors of RCP and RSQRT are interesting in that, unlike the others,
they support denormal inputs and outputs. Denormal floats are very small values
that have the minimum possible exponent, and have m(x) < 2�. Though our
theory assumes normal floats, it is still applicable to denormals since we have
not assumed any lower bound on the exponent. Our specification code simply
“normalizes” the float before doing the relative error check, this means that we
map the denormal float (s, e,m) to (s, e − j,m2j), where j ∈ N is selected so
that 2� ≤ m2j < 2�+1. This operation clearly preserves the value represented by
the float. This step did not introduce any significant verification complexity.

6 Summary

This paper has presented a novel technique for verifying relative error specifica-
tions using symbolic simulation, demonstrated on three operations taken from
an industrial case study. For each of the three operations, the relative error spec-
ification is reduced to inequalities between products of integers, which is then
symbolically evaluated using a custom procedure to avoid BDD blow-up. In addi-
tion to verifying an industry hardware design, this technique delivered additional
benefits when applied in an industrial setting. We found that the ability of sym-
bolic simulation to deliver counter-examples greatly improved communication
between the verification and design teams, and as a consequence the debugging
cycle was shortened.

7 Related Work

The most relevant existing work is a paper by Sawada [13] which presents a tech-
nique for verifying the relative error of approximate RCP and RSQRT instructions.
The technique relies on the manual construction of a high level model of the hard-
ware implementation, expressed in terms of bounded polynomial functions. The
high level model is proved to satisfy the relative error bounds by using custom
proof strategies in the ACL2 theorem prover. The advantage of this approach is
that it mechanizes the high level reasoning needed to reduce the relative error
specification to a form suitable for automatic analysis. Our approach currently
relies on pen-and-paper meta-theorems to support this reduction, although we
are confident they could be mechanized using the Goaled theorem prover inte-
grated with Forte [10]. However, the advantage of our approach is that it works
directly on the register transfer level (RTL)—there is no need to construct a high
level model of its behaviour—and it can also be applied to verify the relative
error bounds of EXP2. Sawada’s paper reports results for precisions only up to
p = 14, at which level a relative error verification of reciprocal required 13,953
seconds on a 2.93GHz processor. Our verification of RCP14 for DP float inputs
required only 133 seconds (on a 3.07 GHz machine).
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Another related work is a paper by Harrison [6] presenting a verification of
relative error bounds for trigonometric functions implemented using software
floating point operations. Although this was an interactive proof carried out us-
ing the HOL Light theorem prover, it made essential use of a custom automatic
proof tactic for proving that the operations implementing the range reduction
step are sufficiently accurate for every possible floating point input. This is sim-
ilar to our relative error verification, although the technique presented in the
paper of encoding a tailored real analysis argument as an automatic proof tac-
tic is very different from our technique of reducing floating point numbers to
integers followed by symbolic simulation using BDDs.

Our verification approach relies on performing symbolic arithmetic operations
on integers represented by lists of BDDs, using a technique introduced by Mi-
nato and Somenzi [9]. The chief difficulty of performing symbolic arithmetic in
this way is that the representing BDDs tend to blow up in size. For example, it
was shown by Bryant [3] that any BDD representing the middle bit of a product
of two symbolic integers is necessarily exponential in the number of bits of the
multiplicands (regardless of the ordering of the variables). Thatchachar [18] also
proves exponential bounds for RCP and square root (but does not cover RSQRT)
for a general class of representations that includes BDDs. Hence a possible alter-
native approach that computes the “exact” RCP result and then shows that the
hardware output is within the relative error would be infeasible, and our more
sophisticated methods are justified.

Acknowledgement. We extend gratitude to Professor Alan Hu for agreeing to
present this paper on our behalf.
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Abstract. Regression test selection analyzes incremental changes to a
codebase and chooses to run only those tests whose behavior may be
affected by the latest changes in the code. By focusing on a small subset
of all the tests, the testing process runs faster and can be more tightly
integrated into the development process. Existing techniques for regres-
sion test selection consider two versions of the code at a time, effectively
assuming a development process where changes to the code occur in a
linear sequence.

Modern development processes that use distributed version-control
systems are more complex. Software version histories are generally mod-
eled as directed graphs; in addition to version changes occurring lin-
early, multiple versions can be related by other commands, e.g., branch,
merge, rebase, cherry-pick, revert, etc. This paper describes a regression
test-selection technique for software developed using modern distributed
version-control systems. By modeling different branch or merge com-
mands directly in our technique, it computes safe test sets that can be
substantially smaller than applying previous techniques to a linearization
of the software history.

We evaluate our technique on software histories of several large open-
source projects. The results are encouraging: our technique obtained an
average of 10.89× reduction in the number of tests over an existing tech-
nique while still selecting all tests whose behavior may differ.

1 Introduction

Regression testing [22, 36, 37] reruns previously completed tests whenever a
change is made to a piece of software, to ensure that the change has not af-
fected the outcome of those tests. Regression testing can be expensive if the test
suite is large and tests take a long time to run. Therefore, substantial research
has focused on speeding up regression testing by selecting an adequate subset of
tests (with several extensive surveys [5,11,37] on the topic). These test-selection
techniques are usually based on computing changes between two program ver-
sions1, the “old” and the “new” versions, and using a fast syntactic algorithm to

1 We use the term “version” for what version-control systems often call “revision”.
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identify the subset of tests whose behavior may change between the old and new
versions. Empirically, these techniques are effective in reducing the set of tests to
be run and are widely used in companies such as Google [16] and Microsoft [34].

Fig. 1. Linux history

Existing test-selection techniques view software his-
tory as a linear sequence of commits to a centralized
version-control system (such as CVS or SVN). How-
ever, modern software development processes that use
distributed version-control systems (DVCSs) do not
match this simplistic view. Software version histories
that use DVCSs, such as Git and Mercurial, are com-
plex graphs of branches, merges, and rebases of the
code that mirror more complex sharing patterns be-
tween developers. For example, Figure 1 shows a part
of the Linux Kernel Git repository [25]: this software
history is a complex graph, with multiple branches
being merged. (There is a case in Linux where 30
branches are merged at once.) We empirically find that such complexities are not
isolated to the Linux kernel development: most open-source codebases perform
frequent merges. Section 4 reports detailed results for a number of open-source
projects; we find about third of the commits to be merge-related.

In this paper, we consider the problem of test selection for codebases that
use DVCS commands. One possible baseline approach is to apply traditional
test selection by picking an arbitrary linearization of the history. While this
technique is safe, i.e., it does not miss tests whose outcome may be affected by
the change, we empirically demonstrate that this approach can be very imprecise,
i.e., it can select many tests whose outcome cannot be affected by the change.
Instead, we propose a test-selection technique that explicitly takes into account
the history graph of software versions. We have implemented our technique and
show, through an evaluation on several open-source code repositories, that our
technique selects on average an order of magnitude fewer tests than the baseline
technique while still retaining safety.

We evaluate our technique both on real open-source code repositories that
use DVCS and on distributed repositories that we systematically generate from
projects that use a linear sequence of commits. We compare several options for
selecting tests at each merge version of such repositories. These options have
different trade-offs in terms of cost (how many traditional test selections need to
be performed to compute the selected tests) and precision (how many tests are
selected to be run, while maintaining safety). In particular, we describe a fast
test-selection technique for code merges that does not require any test selection
computation, but still achieves a reduction of 10.89× better than a baseline
technique that performs one traditional test selection for a merge point, and
only 2.78× worse than an expensive technique that performs one traditional test
selection for each branch being merged.

The accompanying technical report [15] provides additional results, visualiza-
tions, and proofs.
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n1

{t1,t2,t3,t4}

n2

{t1,t4}

n3

{t2,t4}

n4

{t1,t4}

n5

{t2,t4}

n6

{t2,t4}

n7

{t3}

b1

master

b2

δ1(m)

δ5(p)

δ3(m)

δ2(p)

δ4(p)

δ6(q)

(a) Example software history

Code
Methods in C

m p q

T
e
s
ts

in
T t1 {m(); } � ✗ ✗

t2 {p(); } ✗ � ✗

t3 {q(); } ✗ ✗ �
t4 {m(); p(); } � � ✗

(b) Methods and tests in C and T

1 git init // initialize the repository
2 git add C // add C to the repository
3 git add T // add T to the repository
4 git commit -m ‘C and T’ // commit n1

5 git checkout -b b1 // go to a new branch ‘b1’
6 δ1(m) // modify method ‘m’ in branch ‘b1’
7 git commit -am ‘Modified m’ // commit n2

8 δ2(p) // modify method ‘p’ in branch ‘b1’
9 git commit -am ‘Modified p’ // commit n3

10 git checkout master // go to ‘master’ branch
11 git checkout -b b2 // go to a new branch ‘b2’
12 δ3(m) // modify method ‘m’ in branch ‘b2’
13 git commit -am ‘Modified m’ // commit n4

14 δ4(p) // modify method ‘p’ in branch ‘b2’
15 git commit -am ‘Modified p’ // commit n5

16 git checkout master // go to ‘master’ branch
17 δ5(p) // modify method ‘p’ in ‘master’ branch
18 git commit -am ‘Modified p’ // commit n6

19 δ6(q) // modify method ‘q’ in ‘master’ branch
20 git commit -am ‘Modified q’ // commit n7

(c) Sequence of commands that
creates the history on the left

Fig. 2. Example of a software history and one potential sequence of changes and com-
mands to create this history

2 Overview

We motivate regression test selection through an example session using Git [14],
a popular DVCS.

Distributed Software Histories. Figure 2a visualizes a version history ob-
tained by performing the sequence of Git commands from Figure 2c. First, we
initialize the software history2, add two files and make a commit n1 with these
files (lines 1-4). Figure 2b shows the abstract representation of the committed
files C and T; file C (“Code”) defines three methods m, p, and q that are checked
by tests t1, t2, t3, and t4 defined in file T (“Test”). Second, we create a new
branch b1 (line 5), make and commit changes to m (lines 6–7) and p (lines 8–9).
Third, we create another branch b2 (lines 10–11) and perform a similar sequence
of commands as on the first branch (lines 12–15). Finally, we switch to the
master branch (line 16) and perform a similar sequence of commands (lines 17–
20). Although the sequence of commands is similar for each branch, we assume
non-conflicting changes on different branches.

Figure 2b further shows which test executes which method; we will assume
that we have available such a coverage matrix for every version in the software
history. When a method changes, the tests that executed that method are called
modification-traversing tests. We focus on modifications at a method level for
simplicity; one can track coverage of other program elements as well [37].

2 git init creates the initial node not shown in Figure 2a.
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Traditional Test Selection. Traditional test selection takes as input an old
version, a new version, and a coverage matrix for the old version, and returns
a set of tests such that each test in the set either is new or traverses at least
one of the changes made between the old and the new version. (We formally
define test selection in Section 3.) Tests that traverse a change can be found
from the coverage matrix by taking all the tests that have a checkmark (’�’) for
any changed method (corresponding to the appropriate column in Figure 2b).

In our running example, all tests are new at n1, thus all tests are selected. (Fig-
ure 2a indicates above each node the set of selected tests.) At versionn2, after mod-
ifying method m, test selection would take as input n1 and n2 and return tests that
traverse the changed method. Based on our coverage matrix (Figure 2b), tests t1
and t4 should be selected. Following the same reasoning, we can obtain a set of se-
lected tests for each version in the graph. For simplicity of exposition, we assume
that the coveragematrix remains the same for all the versions.However, thematrix
may change if a modification of anymethod leads to modification in the call graph.
In case of a change, the matrix would be recomputed; however, note that for each
test that is not selected (because it does not execute any changedmethod), the row
in the coverage matrix would not change.

Test Selection for Distributed Software Histories. Test selection for dis-
tributed software histories has not been studied previously. We illustrate what
the traditional test selection would select when a software history (Figure 2a)
is extended by executing some of the commands available in DVCSs. Specifi-
cally, we show that a naive application of the traditional test selection leads
to safe but imprecise results (i.e., selects too much), or requires several runs of
traditional test-selection techniques, which introduces additional overhead and
therefore reduces the benefits of test selection. We consider three commands:
merge, cherry-pick, and revert.

Command: Merge. The merge command joins two or more development
branches together. A merge without conflicts and any additional edits is called
auto-merge and is the most common case in practice. Auto-merge has a property
that the changes between the merge point and its parents are a subset of the
changes between the lowest common ancestors [3,10] of the parents and the par-
ents; we exploit this property in our technique and discuss it further in Section 3.
If we execute git merge b1 b2 after the sequence shown in Figure 2c, while we
are still on the master branch, we will merge branches b1 and b2 into a new
version n8 on the master branch; this version n8 will have three parents: n3, n5,
and n7. The question is what tests to select to run at version n8.

We propose multiple options (and Section 4 summarizes how to automatically
choose between these options). First, we can use traditional test selection between
the immediate dominator [1] of the new version (n1) and the new version (n8). In
our example, the changes between these two versions modify all the methods, so
test selection would select all four tests. The advantage of this option is that it runs
traditional test selection only once, but there can be many changes, and therefore
many tests are selected. Second, we can run the traditional test selection between
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thenewversionandeachof its parents and take the intersectionof the selected tests.
In our example, we would run the traditional test selection between the following
pairs: (n3, n8), (n5, n8), (n7, n8); the results for each pair would be: {t1, t2, t3, t4},
{t1, t2, t3, t4}, and {t1, t2, t4}, respectively. The intersection of these sets gives the
final result: {t1, t2, t4}. The intuition is that the tests not in the intersection, {t3},
need not be run because their result for the new version, n8, can be copied from
at least one parent, in this case from n7. Although the second option selects fewer
tests, it requires running traditional test selection three times, which can lead to
significant overhead. Third, we can collect tests that were modification-traversing
on at least two branches (from the branching version at n1 to the parents that get
merged). In our example, we would select {t1, t2, t4}. As opposed to previous op-
tions, this option requires zero runs of the traditional test-selection techniques.
However, this option is only safe for auto merge and requires that the test selec-
tion results be stored for previous versions.

Command: Cherry-Pick. Cherry-pick copies the changes introduced by some
existing commit. If we execute git cherry-pick n2 after the sequence shown in
Figure 2c, we will apply changes (δ1) made between versions n1 and n2 on top of
version n7 in master branch (which is extended with a new version n8). Naively
applying the traditional test selection on versions n7 and n8 would select the
same tests as at version n2. However, test t1 does not need to be selected at
n8, as this test is not affected by changes on the master branch (on which the
cherry-picked commit is applied). Therefore, the outcome of t1 at n8 will be the
same as at n2.

Command: Revert. This command reverts some existing commits. If we exe-
cute git revert n6 after the sequence shown in Figure 2c, we will revert changes
made between versions n1 and n6. The master branch will be extended with a
new version n8. Naively applying traditional test-selection techniques between
versions n7 and n8 would select the same set of tests as at version n6. Instead, if
we consider the revert command being executed and changes being made, we can
reuse the results of a test from version n1 as long as the test is not modification-
traversing for any other change after the version being reverted (n6). In our
example, we can see that the result of all tests can be reused, and therefore no
test has to be selected.

To conclude, naively applying traditional test selection may lead to imprecise
results and/or spend too much time on analysis. We believe that our technique,
which reasons about the history and commands being executed, leads to a good
balance between reduction (in terms of the number of tests being executed) and
time spent on analysis.

3 Test Selection Technique

3.1 Modeling Distributed Software Histories

We model a distributed software history as a directed acyclic graph G = 〈N,E〉
with a unique root n0 ∈ N corresponding to the initial version. Each node n ∈ N
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corresponds to a version, and each edge corresponds to the parent-child relation
among versions. Each node is created by applying one of the DVCS commands to
a set of parent nodes; we assume the command is known. (While the command
that creates a node is definitely known at the point of creation, it is not usually
kept in the DVCS and cannot always be uniquely determined from the history.)
The functions pred(n) = {n′ ∈ N | 〈n′, n〉 ∈ E} and succ(n) = {n′ ∈ N |
〈n, n′〉 ∈ E} denote the set of parents and children of version n, respectively. We
write n . n′ if there exists a directed path from n to n′ or the two nodes are
the same. We write n .∗ n′ to denote the set of all nodes between versions n
and n′: n .∗ n′ = {n′′ | n . n′′ and n′′ . n′}. Similarly, we write n .e n′ to
denote the set of all edges between versions n and n′: n .e n′ = {〈n′′, n′′′〉 ∈ E |
n′′, n′′′ ∈ n .∗ n′}. The function sdom(n) = {n′ | n0 .e n′∪n′ .e n = n0 .e n
and n �= n′} denotes the set of nodes that strictly dominate n. For n �= n0, the
function imd(n) denotes the unique immediate dominator [1] of n, i.e., imd(n) =
n′ such that n′ ∈ sdom(n) and �n′′ ∈ sdom(n) such that n′ ∈ sdom(n′′). The
function dom(n, n′) denotes the lowest common dominator of n and n′, i.e., for
a version n′′ such that pred(n′′) ⊇ {n, n′}, dom(n, n′) = imd(n′′). The function
lca(n, n′) denotes the lowest common ancestors [3,9,10] (also known as “merge-
bases” or “best common ancestors” in Git terminology [13,20]) for two versions,
i.e., lca(n, n′) = {n′′ | n′′ . n and n′′ . n′ and �n′′′ �= n′′ such that n′′′ . n
and n′′′ . n′ and n′′ . n′′′}. (We illustrate the difference between lca and dom
in the technical report [15].) The following property holds for all nodes:

dom(n, n′) . lca(n, n′) (1)

3.2 Test Selection for Two Versions

We formalize test selection following earlier work in the area [32, 37] and also
model changes and modification-traversing tests. This section focuses on test
selection between two software versions. Next sections present our technique for
distributed software histories.

Let G be a distributed software history. For a version n, let A(n) denote
the set of tests available at the version n. Let n and n′ be two versions such
that n . n′. A test selection technique takes as input the versions n and n′

and returns a subset Ssel(n, n′) of A(n′). Note that new tests, i.e, A(n′) \ A(n)
are always in Ssel(n, n′). A test-selection technique is safe [31] if every test in
A(n′) \ Ssel(n, n′) has the same outcome when run on the versions n and n′.

A trivially safe test-selection technique returns A(n′). However, we are inter-
ested in selection techniques that select as small a subset as possible. One way to
obtain a minimal set is to run each test inA(n′) on the two versions and keep those
that have different outcomes. However, the purpose of the test selection technique
is to be more efficient than running all tests. A compromise between minimality
and efficiency is provided by the notion ofmodification-traversing tests [32], which
syntactically approximate the set of tests that may have a different outcome. Let
∂(n, n′) be the set of static code changes between versions n and n′ (which
need not be parent-child versions). Various techniques compute these changes
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at various levels of granularity (e.g., basic blocks, statements, methods, or other
program elements). By extension, we denote the set of changes on all edges from
n to n′ as

∂�(n, n′) =
⋃

〈n′′,n′′′〉 ∈n�en′
∂(n′′, n′′′)

We use the following property:

∂(n, n′) ⊆ ∂�(n, n′) (2)

It is not an equality because some changes can be reverted on a path from n
to n′, e.g., consider a graph with three versions n1, n2, and n3, where all the
changes between n1 and n2 are reverted between n2 and n3: the code at n3 is
exactly the same as the code at n1, and therefore ∂(n1, n3) = {}.

A test is called modification-traversing if its execution on n executes any
code element that is modified in n′. (Note that “modified” includes all the cases
where the existing elements from n are changed or removed in n′ or where
new elements are added in n′.) We define a predicate ς(t, ∂) that holds if the
test t is modification-traversing for any change in the given set of changes ∂.
The predicate can be computed by tracking code paths during a test run and
intersecting covered program elements with a syntactic difference between the
two versions. We define a function mt(T , ∂) = {t ∈ T | ς(t, ∂)} that returns
every test from the set of tests T that is modification-traversing for any change
in the set of changes ∂. Two properties that we will need later are that mt
distributes over changes:

mt(T , ∂1 ∪ ∂1) = mt(T , ∂1) ∪mt(T , ∂2) (3)

and thus mt is monotonic with respect to the set of changes:

∂ ⊆ ∂′ implies mt(T , ∂) ⊆ mt(T , ∂′) (4)

Traditional test selection selects all modification-traversing tests from the old
version that remain in the new version and the new tests from the new version:

tts(n, n′) = mt(A(n) ∩ A(n′), ∂(n, n′)) ∪ (A(n′) \ A(n)) (5)

As pred(n′) is often a singleton {n}, we also write tts({n}, n′) = tts(n, n′).
Under the assumption that tests execute deterministically, test selection based

on modification-traversing tests is provably safe [32, 33].

3.3 Test Selection for Distributed Software Histories

Our technique for test selection takes as inputs (1) the software history G =
〈N,E〉 optionally annotated with tests selected at each version, (2) a specific
version h ∈ N that represents the latest version (which is usually called HEAD in
DVCS), and (3) optionally the DVCS command used to create the version h. It
produces as output a set of selected tests Ssel(h) at the given software version.
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We define our technique and prove that it guarantees safe test selection.

Command: Commit. The h version has one parent, and the changes between
the parent and h can be arbitrary, with no special knowledge of how they were
created.

The set of selected tests can be computed by applying the traditional test
selection between the h version and its parent:

Scommit(h) = tts(pred(h), h) (6)

Command: Merge. Merge joins two or more versions and extends the history
with a new version that becomes h. We propose two options to compute the set
of selected tests at h: the first is fast but possibly imprecise, the second is slower
but more precise.

Option 1: This option performs the traditional test selection between the
immediate dominator of h and h itself:

S1merge(h) = tts(imd(h), h) (7)

This option is fast: it computes only one traditional test selection, even if the
merge has many parents. However, the number of modifications between the
two versions being compared can be large, leading to many tests being selected
unnecessarily. Our empirical evaluation in Section 4 shows that this option indeed
selects too many tests, discouraging the straightforward use of this option.

Option 2: This option performs one traditional test selection between each
parent of the merged version and the merged version h itself, and then intersects
the resulting sets:

Skmerge(h) =
⋂

n∈pred(h)

tts(n, h) (8)

This option can be more precise, selecting substantially fewer tests. However, it
has to run k traditional test selections for k parents.

Theorem 1. S1merge(h) and Skmerge(h) are safe for every merge version h.

Command: Automerge. A common special case ofmerge is auto merge, where
versions are merged automatically without any manual changes to resolve con-
flicts. (Using the existing DVCS commands can quickly check if a merge is an
auto merge.) Empirically (see Figure 3), auto merge is very common: on average
over 90% of versions with more than one parent are auto merges.

The key property of auto merge is that the merged code version has a union
of all code changes from all branches but has only those changes (i.e., no other
manual changes). Formally, given k parents p1, p2, . . . pk that get merged into a
new version h, the changes from each parent p to the merged version h reflect
the changes on all the branches for different parents:

∂(p, h) =
⋃

p′∈pred(h),p′ �=p

⋃
l∈lca(p,p′)

∂(l, p′) (9)
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The formula uses lca because of the way Git auto merges branches [13, 20].
For auto merge, we give a test-selection technique, S0merge, that is based en-

tirely on the software history up to the parents being merged and does not
require running any traditional test selection between pairs of code versions at
the point of merge (although it assumes that test selection was performed on
the versions up to the parents of the merge). The set of selected tests consists
of (1) existing tests (from the lowest common dominator of two (different) par-
ents of h) affected by changes on at least two different branches being merged
(because the interplay of the changes from various branches can flip the test
outcome):

Saff (h) =
⋃

p,p′∈pred(h),p�=p′,d=dom(p,p′)

(
⋃

n∈d�∗p\{d}
Ssel(n)) ∩ (

⋃
n∈d�∗p′\{d}

Ssel(n))

(10)

and (2) new tests available at the merge point but not available on all branches:

Snew (h) = A(h) \
⋂

p′′∈pred(h)

A(p′′) (11)

Finally, S0merge(h) = Saff (h) ∪ Snew (h). The advantage of this option is that
it runs zero traditional test selections. One disadvantage is that it could select
more tests than Skmerge. Another disadvantage is that it requires storing tests
selected at each version.

Theorem 2. S0merge(h) is safe for every auto merge version h.

Intuitively, S0merge is safe because a test that is affected on only one branch
need not be rerun at the merge point: it has the same result at that point as on
that one branch. The proof is in the technical report [15].

Command: Cherry-Pick. Cherry-pick reapplies the changes that were per-
formed between a commit ncp and one of its parents n′cp ∈ pred(ncp) (the parent
can be implicit for non-merge ncp), and extends the software history (on the
branch where the command is applied) with a new version h. We propose two
options to determine the set of selected tests at h. The first option uses the
general selection for a commit (the traditional test selection between the current
node and its parent): S1cherry(h) = tts(pred(h), h).

The second option, called S0cherry, does not require running traditional test
selection, but is safe only for auto cherry-pick. This option selects each test that
satisfies one of the following three conditions: (1) tests selected between n′cp and
ncp as well as between the point p at which cherry-pick is applied ({p} = pred(h))
and d = dom(p, n′cp), (2) tests selected between n′cp and ncp and also selected
before n′cp up to d, and (3) new tests at ncp.

S0cherry(h) = (Ssel(n
′
cp, ncp) ∩ ((∪n∈d�∗p\{d}Ssel(n)) ∪ (∪n∈d�∗n′

cp\{d}Ssel(n))))

∪ (A(ncp) \ A(n′cp)) (12)
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The intuition for (1) is that the combination of changes that affected tests on
both branches, from d to p and from d to n′cp, may lead to different test outcomes.
The intuition for (2) is that changes before ncp may not exist in the branch on
which the cherry-pick is applied and so the outcome of these tests may change.
If neither (1) nor (2) hold, the test result can be copied from ncp itself. The
formula for cherry pick is similar to that for auto merge but applies to only one
commit being cherry picked rather than to an entire branch being merged.

Command: Revert. Revert computes inverse changes of some existing commit
nre and extends the software history by applying those inverse changes to create
a new version that becomes h. (Reverting a merge creates additional issues that
we do not handle specially: one can always run the traditional test selection.)
Similar to cherry-pick, we propose two options to determine the set of selected
tests. The first option is a naive application of the traditional test selection
between h and its parent, i.e., S1revert(h) = tts(pred(h), h).

The second option, called S0revert, does not run traditional test selection, but
is safe only for auto revert. It selects each test that satisfies one of the following
three conditions: (1) tests selected between nre and its parent ({p′} = pred(nre))
as well as before the point to which the revert is applied ({p} = pred(h)) up to
their dominator (d = dom(p, p′)), (2) tests selected between nre and its parent
p′ and also selected before the point that is being reverted (p′) up to d, and
(3) tests that were deleted at the point being reverted (such that in the inverse
change tests are added):

S0revert(h) = (Ssel(p
′, nre) ∩ ((∪n∈d�∗p\{d}Ssel(n)) ∪ (∪n∈d�∗p′\{d}Ssel(n))))

∪ (A(p′) \ A(nre)) (13)

Intuitively, revert is an inverse of cherry-pick and safe for the same reasons: the
tests that are not selected would have the same outcome at the h version as at
the version prior to nre.

4 Evaluation

We performed several experiments to evaluate the effectiveness of our technique.
First, we demonstrate the importance of having a test-selection technique for
distributed software histories. Second, we evaluate the effectiveness of our test-
selection technique by comparing the number of tests selected using S1merge,

Skmerge, and S0merge on a number of software histories (both real and system-
atically generated), i.e., we consider how much test selection would have saved
had it been run on the versions in the history. Third, we compare S1cherry and

S0cherry on a number of real cherry-pick commits.

Real Software Histories are Highly Non-Linear. We collected statistics
for software histories of several large open-source projects that use Git. To check
whether software histories are non-linear across many project types, we chose
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Fig. 3. Statistics for several projects that use Git

projects from different domains (e.g., Cucumber is a tool for running acceptance
tests, JGit is a pure Java implementation of the Git version-control system, etc.),
implemented in different languages, of various sizes, having different number of
unit tests and developers. Figure 3 shows the collected statistics (in detail for 10
projects and averages for 14 others; we provide an extended table in the techni-
cal report [15]). The key column is (M+R+CR)/C that shows the ratio of the
number of merges, rebases3, cherry-picks, and reverts over the total number of
commits for the entire software history. The ratio can be as high as 63.37% and
is 31.76% on average. Stated differently, we may be able to improve test selection
for about a third of the commits in an average DVCS history. Additionally, we
collected a similar ratio only for the master branch, because most development
processes run tests for all commits on that branch but not necessarily on other
branches (e.g., see the Google process for testing commits [16]). While this ratio
included only merges (and not rebases, cherry-picks, or reverts), its average is
even higher for the master branch than for the entire repository (34.05% vs.
31.76%), which increases the importance of test selection for distributed soft-
ware histories. Finally, to confirm that the ratio of merges is independent of
the DVCS, we collected statistics on three projects that use Mercurial [27]—
OpenJDK, Mercurial, and NetBeans—and the average ratio of merges was 20%,
which is slightly lower than the average number for Git but still significant.

3 Note that we approximate the number of rebases by counting commits with different
author and committer field.
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Fig. 4. Percentage of selected tests for real merges using various techniques

Implementation. We implemented a tool in Java to perform test selection pro-
posed in Section 3. The tool is independent of the DVCS being used and scales
to quite large projects. Because any test-selection technique for distributed his-
tories would require a traditional test selection between two versions (tts) for
linear histories, and because there is no publicly available tool for the tradi-
tional test selection that scales to the large projects used in our study, we im-
plemented a simple prototype tool for projects written in Java, following known
results [5, 28, 37, 38]. Specifically, our tts computes changes and tracks executed
code at the class level but still guarantees safety [28].

Real Merges. Our first set of experiments evaluates our technique on the actual
software histories. We used software histories of four large open-source projects
(downloaded from GitHub): Cucumber, GraphHopper, JGit, and Retrofit. We se-
lected these projects as their setup was not too complex4, and they differ in size,
number of authors, number of commits, and number of merges. For each project,
we identify the last merge commit in the current software history and then run

4 We have to build and run tests over a large number of commits, and dependencies
in many real projects make running tests from older commits rather non-trivial.
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our test-selection tool on all the merge commits whose immediate dominator
was in the 50 commits before the last merge commit.

At every merge, we run all three options—S1merge, Skmerge, and S0merge—and
compare the number of tests they select. Testing literature [5,12,33,35,37] com-
monly measures the speedup of test selection as the ratio of the number of
selected tests over the number of available tests (Ssel/A)5. In addition, Figure 4
reports the min and max number of available tests across the considered merge
commits, and the min and max total time to execute these tests. All tests in
these projects are unit tests and take a similar amount of time to execute, so
computing the ratio of the numbers of tests is a decent approximation of the
ratio of test execution times.

Figure 4 plots the results for these four projects. In most cases, Skmerge and
S0merge achieve substantial saving compared to S1merge. (Calculated differently,

the average speedup of S0merge over S1merge was 10.89× and Skmerge over S0merge

was 2.78×.) Although S0merge achieved lower saving than Skmerge in a few cases

(that we discuss below in more detail), it is important to recall that Skmerge

requires k runs of traditional test selection, while S0merge requires 0 runs.

We inspected in more detail the cases where Skmerge/S0merge was low. For
GraphHopper (versions 2, 10, and 11), two branches have a large number of exactly
the same commits (in particular, one branch has 11 commits and another has 10
of those 11 commits, which were created with some cherry-picking); when these
branches were merged, the differences between the merged version and parents
were rather small, resulting in a few tests being selected by Skmerge, although
the changes between the parents and the dominator were rather big, resulting in
many tests being selected by S0merge. For JGit (version 10) and Cucumber (version
14), some new tests were added on one branch before merging it with another;
S0merge is rather conservative in selecting (all) new tests, but new tests are not
added frequently.

5 For space reasons, we omit the set cardinality from the ratios.
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Based on this inspection, we propose the following heuristic for choosing the
best option for test selection at a merge version:
Smerge(h) = if (automerge & selection done at every commit)

if (many new tests) Sk
merge(h) else S0

merge(h)

else if (short branches) S1
merge(h) else Sk

merge(h)

Systematically Generated Merges. Our second set of experiments system-
atically compares the merge selection options on a set of graphs generated to
represent potential software histories. Specifically, for a given number of nodes
k, we generate all the graphs where nodes have the out degree (branching)
of at most two, each branch contains between 1 and k/2 − 2 nodes, all the
branches have the same number of nodes, and there are no linear segments on
the master branch (except the last few nodes that remained after generating
the branches). In other words, the generated graphs are diamonds of different
length. For example for k = 7, we have the following two graphs: ·<:>·<:>·
and ·<: :>·−·. The total number of merges for the given number of nodes k is
*(k − 1)/3++ *(k − 1)/5++ . . .+ *(k − 1)/(k − 1)+.

In addition to generating history graphs, we need to assign code and tests
to each node of the graph. As random code or tests could produce too unreal-
istic data, we use the following approach: (1) we took the latest 50 versions
of four large open-source projects with linear software histories: JFreeChart

(SVN: 3021), Goldman Sachs collections (Git: 28070efd), Ivy (SVN: 1550956),
and Functor (SVN: 1439120) (as an example, Figure 5b shows the number of
available and selected tests for JFreeChart), (2) we assigned a version from the
linear history to a node of the graph by preserving the relative ordering of ver-
sions such that a linear extension of the generated graph (partial order) matches
the given linear history (total order). Using the above formula to calculate the
number of merges for generated graph, for 50 versions, there are 68 merges (in
24 graphs); as we have four projects, the total number of merges is 272.

After the software histories are fully generated, we perform test selection
on each of the graphs for each of the projects and collect the number of tests
selected by all three options at each merge commit. As for the experiments on
real software histories, we calculate the speedup as the ratio of the number of
tests. Figure 5a shows the average speedup (across all four projects) for various
number of nodes per branch. As expected, with more commits per branch, the
speedup decreases, because the sets of changes on each branch become bigger
and thus their intersection (as computed by our S0merge option) becomes larger.
However, the speedup remains high for quite long branches. In fact, this speedup
is likely an under-approximation of what can be achieved in real software projects
because the assignment of changes across branches may not be representative of
actual software histories: many related changes may be sprinkled across branches,
which leads to a smaller speedup. Also, linear software histories are known to
include more changes per commit [2]. We can see from the comparison of absolute
values of the speedup in Figure 5a and Figure 4 that real software histories have
an even higher speedup than our generated histories.
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Real Cherry-Picks. We also compared S1cherry and S0cherry on 7 cherry-picks
identified in the Retrofit project. (No other version from the other three projects
in our experiments used a cherry-pick command.) For 6 cases, S0cherry selected 7

tests more than S1cherry, but all these tests were new. As mentioned, our current
technique is rather conservative in selecting new tests; in future, we plan to
improve our technique by considering coverage matrices across branches. In the
remaining case, S0cherry selected 43% fewer tests (42 vs. 73 tests) than S1cherry.

5 Related Work

Test selection is the most common optimization technique in regression test-
ing [5, 11, 37]. Regression testing in general, and test selection in particular,
have been studied for more than three decades [5,11,19,22,36,37] and are quite
important in practice [16, 34]. Prior research has investigated regression-testing
techniques for various languages and domains [5,6,8,11,12,21,26,33–35,37], but
all previous techniques considered only two program versions at a time. Most
traditional test-selection techniques are safe; the key difference is how they de-
fine the coverage matrix and identify differences between software versions. For
example, Rothermel and Harrold [33] presented a test-selection technique based
on control-flow graphs. Zhang et al. [38] defined the coverage matrix on extended
call graphs. Harrold and Soffa [18] and Gupta et al. [17] defined the coverage
matrix on definition-use pairs. Several researchers [23, 24, 28] used a coverage
matrix on modules (also known as “firewall” approach). Many other approaches
have been proposed; for an overview, see the recent surveys [5, 11, 37].

Our technique for distributed histories is compatible with all these traditional
techniques for linear histories as we abstract them in the core mt and tts func-
tions. We are the first to propose a technique for safe test selection for distributed
software histories; we use traditional test selection when a version is created by a
commit command, and we reason about software history, modification-traversing
tests, and commands being executed when a version is created by other DVCS
commands (merge, cherry-pick, and revert).

Others [2, 4, 7, 29, 30] have observed several pitfalls of mining DVCS, e.g.,
DVCS commands are not recorded. We assume our test-selection technique is
run at the time a new version is created (when the executed command is known).

6 Conclusions

We proposed the first test-selection technique that takes into account version
histories arising out of distributed development, and proposed several options
that trade off computation effort and precision. Our experimental results on real
software histories demonstrate that our technique scales to large projects and
achieves high effectiveness over a naive application of traditional test selection.
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Abstract. This paper presents parallel algorithms for component
decomposition of graph structures on General Purpose Graphics Process-
ing Units (GPUs). In particular, we consider the problem of decompos-
ing sparse graphs into strongly connected components, and decomposing
stochastic games (such as Markov decision processes) into maximal end
components. These problems are key ingredients of many (probabilis-
tic) model-checking algorithms. We explain the main rationales behind
our GPU-algorithms, and show a significant speed-up over the sequential
counterparts in several case studies.

1 Introduction

Strongly connected components (SCCs, for short) are sub-graphs in which each
pair of states is mutually reachable. Finding maximal SCCs, i.e., SCCs that are
not contained in others, is a key ingredient of various model-checking algorithms.
To mention a few, this applies to the standard verification algorithms for CTL-
formulas of the form EGϕ as well as for verifying fair CTL [1, Ch. 6] and checking
language emptiness [2]. The high relevance of SCCs has led to various dedicated
variants of Tarjan’s classical algorithm [3] such as symbolic [4] and a plethora
of parallel [5–7] algorithms. In the context of probabilistic model checking, a
generalisation of SCCs – known as maximal end components (MECs) – play a
pivotal role [8, 9]. Determining MECs is a main step in the verification of qual-
itative and quantitative properties on Markov decision processes (MDPs) and
continuous-time variants thereof. MDPs are an important class of models used for
the analysis of probabilistic systems consisting of several components running in
parallel. Parallelism is modelled by non-determinism whereas the steps within a
component may be probabilistic (e.g., modelling a coin flip). MDP model check-
ing is a very active branch of probabilistic model checking with applications
in amongst others planning and randomised distributed algorithms. MECs are
maximal strongly connected sub-graphs in which the MDP can ensure to reside
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when playing against a probabilistic adversary. MEC decomposition of MDPs
is typically a pre-processing step of probabilistic model checking to determining
almost-sure limiting properties [1, Ch. 10]. Other applications include the analy-
sis of multi-player stochastic games [10] as well as recent approaches to combined
worst-case and expected value objectives for mean pay-off games [11]. Improve-
ments of the traditional sequential algorithms for determining MECs [1, 8, 9]
have been reported [12] and were tailored to MDPs with low tree-width [13].

In this paper, we provide new algorithms to efficiently decompose graphs into
SCCs and MECs by exploiting GPUs (Graphical Processing Units). Our de-
composition algorithms build upon three key principles. First, inspired by the
Forward-Backward algorithm (FB) [14], each thread combines a forward and a
backward reachability search so as to identify SCCs. Previous work on GPU-based
SCC decomposition [5–7] identified the FB algorithm (combined with a trimming
procedure to remove trivial SCCs) as the best performing one for general input
graphs. Opposed to these works, we focus on graphs that are commonly observed
in model checking, i.e., sparse graphs with a low average out-degree (number of
outgoing transitions per state) and tailor our algorithms to treat these graphs ef-
ficiently. The backward and forward search are started from some common state,
called the pivot. The second main principle is to exploit a novel pivot selection
strategy which turns out to be simple and efficient. Finally, we optimise the mem-
ory management to achieve coalesced memory access by the individual threads,
i.e., data access can be accomplished in a single memory fetch. Altogether this al-
leviates memory latency and thread divergence where part of the threads execute
one branch of the common code, while others take another branch. The overall
memory requirements are significantly lower than for competitive algorithms [5]
as besides the input graph G = (V,E), only a single additional integer array of
size |V | is needed to store decomposition results. Given the restricted memory
size on a GPU, this memory reduction is essential. Our GPU-based MEC de-
composition algorithm uses the same principles as the SCC algorithm; it can be
viewed as a parallel version of the standard sequential algorithms [1, 8, 9]. To
the best of our knowledge, this is the first GPU-based MEC decomposition. We
implemented our algorithms using CUDA1 for NVIDIA GPUs, and ran them
on examples of the PRISM benchmark suite [15]. Speed-up factors of 15-30 and
79 have been achieved for SCC and MEC decomposition, respectively. For SCC
decomposition, this is a significant improvement over previous results (e.g. [5])
for sparse graphs with a low average out-degree.

Exploiting general purpose GPUs (GPGPUs, for short) in the setting of model
checking is not new. Thanks to efforts of several research groups [16–18], GPG-
PUs have been applied to significantly improve the run times of model checking
algorithms. In the context of probabilistic model checking, these improvements
usually targeted the numerical part of the algorithms, so as to exploit the inher-
ent advantages of the GPUs [16, 19, 20]. More recently, we presented an on-the-fly
search algorithm for standard model checking running entirely on GPUs [21].

1 http://www.nvidia.com/object/cuda_home_new.html.

http://www.nvidia.com/object/cuda_home_new.html
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Organisation of the paper. Section 2 treats the basics of MDPs, MECs and
relevant SCC and MEC decomposition algorithms. Section 3 gives a detailed
account of our GPU algorithms focussing on our main design choices. Section 4
presents the experimental results, and Section 5 concludes.

2 Preliminaries

This section gives an introduction to the main concepts of MDPs and MECs [1,
Ch. 10], presents the parallel FB algorithm for SCC decomposition [14] and the
standard sequential algorithm for MEC decomposition [8, 9] of MDPs.

2.1 Markov Decision Processes and Maximal-End Components

Let Δ(X) denote the set of probability distributions over the countable set X ,
i.e., the set of functions μ : X → [0, 1] with

∑
x∈X μ(x) = 1.

Definition 1 (Markov Decision Process). AMarkovdecisionprocess (MDP)
is a tuple M = (S, ŝ, T ), where S is a finite set of states, ŝ ∈ S is the initial state,
and T : S → 2Δ(S) is the transition function with T (s) �= ∅ and T (s) is finite for
all s ∈ S.

The transition function T maps every state s ∈ S to a finite, non-empty set of
distributions over S. In state s, one of the distributions in μ ∈ T (s) is selected
non-deterministically, and the MDP evolves to state s′ with probability μ(s′). As
T (s) is non-empty for every state, this procedure can be repeated ad infinitum.
For state s, T (s) can be viewed as the set of distributions that are selected in
a non-deterministic manner. Alternatively, an MDP can be consider as a single-
player game in which the system plays against a random adversary. An MDP
naturally induces a digraph in the following sense.

Definition 2 (MDP Graph). The induced labelled digraph of MDP M =
(S, ŝ, T ) is G = (V,E) with V = S is the set of vertices and E ⊆ V ×Δ(V )×V is
the set of labelled edges defined by: (u, μ, v) ∈ E iff μ(v) > 0 for some μ ∈ T (u).

Intuitively speaking, there is a μ-labelled edge between two vertices (states) u
and v whenever v is in the support of distribution μ in T (u). For node u and
distribution μ, let Eμ(u) = {v ∈ V | (u, μ, v) ∈ E}. We call Eμ(u) the set
of target vertices (states) of the source vertex (state) u under distribution μ.
Moreover, let E(u) =

⋃
μEμ(u). For labelled digraphs we adopt the standard

graph-theoretical notions like paths, cycles, components, etc.. An MDP graph
G = (V,E) is strongly connected iff for every two vertices u, v ∈ V there is a
path from u to v and a path from v to u. The set of nodes C ⊆ V is a strongly
connected component (SCC) of G iff G restricted to C, denoted G↑C, i.e., the
graph G↑C = (C, (C×Δ(C)×C)∩E), is strongly connected. SCC C is maximal
iff there is no SCC C ′ �= C with C ⊂ C′. In the sequel, unless stated otherwise,
we use the abbreviation SCC for maximal SCCs. In the following, let G = (V,E)
be an MDP graph.
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Definition 3 (SCC Decomposition). An SCC decomposition of graph G =
(V,E) is a partitioning of V that consists of all maximal SCCs of G.
It is convenient to distinguish vertices that are potentially “closed” in the sense
that for at least one non-deterministic choice (distribution) all transitions remain
within a given set.
Definition 4 (E-Closed Nodes). Vertex v ∈ V is existentially closed (e-
closed) for X ⊆ V iff Eμ(v) ⊆ X for some μ ∈ T (v).

Definition 5 (End-Components). U ⊆ V is an end-component of MDP
graph G if G↑U is strongly connected and every u ∈ U is e-closed for U .

End-components that share common nodes can be merged into a single end-
component. A maximal end-component (MEC) of G is an end-component C for
which there is no end-component C′ �= C such that C ⊂ C′. Observe that every
vertex in V belongs to at most one maximal end-component.

Definition 6 (MEC Decomposition). A MEC decomposition of MDP graph
G is the partitioning of V into the MECs of G and the set of vertices that do
not belong to any MEC (of G).

For the description of the MDP algorithms (below) we define the notion of
attractor. Stated in words, an attractor is a set of vertices in which the MDP
may reside with positive probability no matter which distributions are non-
deterministically selected.
Definition 7 (Attractor). The attractor Attr(U) of U ⊆ V is defined as
Attr(U) =

⋃
i≥0 Ui where Ui is defined inductively by:

– U0 = U , and
– Ui+1 = Ui ∪ {u ∈ V | ∀μ.Eμ(u) ∩ Ui �= ∅}, for i ≥ 0.

The attractor Attr(U) contains U plus all vertices from which the vertices in
U can be reached via at least one transition regardless of the resolution of the
non-deterministic choices by the adversary. The MEC-decomposition algorithm
discussed later on exploits the following two results from [22]. The first result
identifies the vertices that do not belong to any MEC and thus can be removed
without affecting the MEC decomposition of the rest of the MDP graph.

Lemma 1 (Removing Attractor Nodes). Let G = (V,E) be an MDP graph.

1. For SCC C in G, let U = {v ∈ C | ∀μ.Eμ(v) �⊆ C} and Z = Attr(U) ∩ C.
Then: for every MEC X of G it holds that Z ∩X = ∅.

2. Let C be a MEC in G and Z = Attr(C) \ C. Then: for every MEC X �= C
of G it holds that Z ∩X = ∅.

The second result from [22] provides a sufficient criterion for an SCC to be a
MEC.

Lemma 2 (Closed SCCs are MECs). An SCC C of the MDP graph G =
(V,E) with E(v) ⊆ C for all v ∈ C, is a MEC.

A corollary of Lemma 2 is that every bottom SCC, i.e., an SCC C such that all
transitions from C lead back to C, is a MEC.
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2.2 SCC Decomposition Using Forward-Backward Search

Many algorithms exist to perform SCC decomposition. Linear-time algorithms
such as the ones by Tarjan [3] and Dijkstra [23] are based on depth-first search
and thus very hard to parallelize, especially when the goal is to run thousands
of threads in parallel as is the case with GPUs. An alternative for SCC de-
composition is the Forward-Backward algorithm (FB, for short) proposed by
Fleischer et al. [14]. This algorithm is based on a breadth-first search (BFS) strat-
egy, combining a forward and a backward search. It has worst-case complexity
O(|V |2 + |V | · |E|), but offers great potential for GPU-based parallelization.

Algorithm 1. FB with Trimming (FBT)
Require: graph G = (V,E)
Ensure: SCC decomposition of G is given

V ′ ← Trim(V ) produces trivial SCCs
2: if V ′ �= ∅ then

pivot ← selectPivot(V ′)
4: F ← fwdBfs(pivot, (V ′,E))

B ← bwdBfs(pivot, (V ′,E))
6: remove SCC F ∩ B from V ′

do in parallel
8: FBT(((F \B), E))

FBT(((B \ F ), E))
10: FBT(((V \ (B ∪ F )), E))

The Forward-Backward (FB) al-
gorithm starts by (randomly) select-
ing a pivot vertex p (see Alg. 1, line
3). The SCC to which p belongs is
then found by performing both a
forward BFS and a backward BFS
starting from p, to determine the
forward and backward closure (of p),
respectively (Alg. 1, lines 4-5). The
intersection of the vertices reached
via the forward and backward BFSs
constitutes an SCC (and is removed, Alg. 1, line 6). The graph vertices are
then partitioned into the vertices belonging only to the forward closure, those
only in the backward closure, and those outside both closures. These subsets
are referred to as search regions. Subsequently, FB can be invoked recursively
in parallel on the three search regions. This can be done, since all other, not
yet detected SCCs, are contained in one of these search regions. The FB algo-
rithm can be improved by trimming [24] (see Alg. 1, line 1). This step eliminates
the trivial SCCs consisting of only one vertex. The trimming procedure exploits
topological sort elimination by starting in a vertex with zero in- or out-degree.
As such vertex cannot be a part of a non-trivial SCC, they can be safely removed
to avoid using them as pivots in the FB search. Since the removal can create
other trimming candidates, the procedure is iterated (in the method Trim(V )
in Alg. 1) until there are no vertices for trimming left. Trimming is also used
in our parallel SCC algorithm. Several studies [5–7] have shown that parallel
SCC decomposition algorithms including Coloring heads off [25] and Recursive
OBF [26], show inferior performance compared to the FBT algorithm.

2.3 Sequential MEC Decomposition Algorithms

The basic sequential algorithm for MEC decomposition of MDP graph G =
(V,E) is based on iterative SCC decomposition of G followed by transforming
the SCCs into MECs [1, 8, 9]. The algorithm consists of the following stages:

1. Compute the SCC decomposition of G. For SCC C, let U = {v ∈ C |
∀μ.Eμ(v) �⊆ C}.
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2. If U �= ∅, remove Attr(U) ∩ C from G. (cf. Lemma 1.)
3. Every SCC C without an outgoing edge is a MEC 2 (cf. Lemma 2). As

justified by Lemma 1.2, remove Attr(C) for every C for which we established
that C is a MEC.

4. Recursively compute the MEC-decompositions of the sub-MDP graphs ob-
tained after the removal of the vertices in steps 2 and 3. (This is needed since
the removal of the vertices might have destroyed the strong connectivity of
some of the components.)

The first step of the algorithm, i.e., the SCC decomposition of the MDP graph,
can be done in O(m) time, where m = |E| is the number of edges, e.g., using,
e.g., Tarjan’s algorithm [3]. The second step can be done in O(m) time. There
are at most n = |V | iterations implied by step 3, since in each iteration at least
one vertex is removed. This yields an overall time complexity of O(m ·n). Recent
works [22] and [13] present an adapted MEC-decomposition algorithm with time
complexity O(m·min(

√
m,n2/3)) and O(n·k2.38·2k), respectively, where k is the

so-called tree width of G. We base our GPU algorithm on the basic algorithm,
since the recent algorithms involve steps that seem very hard to perform within
the many-core paradigm of GPUs, like the lock-step search phase of [22].

3 GPU-Based Graph Decomposition Algorithm

3.1 GPU Basics

Harnessing the power of GPUs is facilitated by specific Application Program-
ming Interfaces. In this paper, we assume a concrete NVIDIA GPU architecture
and the Compute Unified Device Architecture (CUDA) interface. Nevertheless,
the algorithms that we present here can be straightforwardly applied to any ar-
chitecture which provides massive hardware multithreading, supports the SIMT
(Single Instruction Multiple Threads) model, and relies on coalesced access to
the memory.

CUDA is an interface by NVIDIA which is used to program GPUs. CUDA ex-
tends C and Fortran. We use the C extension. GPU-specific features of CUDA
include special declarations to explicitly place variables in the various types of
memory (see Figure 1), predefined keywords containing the IDs of individual
threads and blocks of threads, synchronization statements for cooperation be-
tween threads, run time API for memory management (allocation, deallocation),
and statements to launch functions, referred to as kernels, on a GPU. In this
section we give a brief overview of CUDA, adequate for presenting our results in
subsequent sections. More details can be found in, for instance, [16, 21].
CUDA Programming Model. A CUDA program consists of a host program which
runs on the Central Processing Unit (CPU) and a (collection of) CUDA kernels.
Kernels, which describe the parallel parts of the program, are executed many
times in parallel by different threads on the GPU device, and are launched from
2 Since G has at least one bottom SCC, i.e. at least one SCC satisfies this criterion.
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the host. Most GPUs have the restriction that at most one kernel can be launched
at a time, but there are also GPUs available that allow to run multiple different
kernels on different threads. When launching a kernel, the number of threads
that should execute it needs to be specified. All those threads execute the same
kernel, i.e. code. Each thread is executed by a streaming processor (SP), see
Figure 1. In general, GPU threads are grouped in blocks of a predefined size,
usually a power of two. We refer to this size with BlockSize. A block of threads
is assigned to a multiprocessor. Each thread block is uniquely identifiable by its
block ID (referred to with the keyword BlockId) and analogously each thread
is uniquely identifiable by its thread ID (keyword ThreadId) within its block.
Using these, it is possible to define other IDs, such as the GPU-global thread ID
Global-ThreadId = (BlockId ·BlockSize)+ThreadId. The total number of threads
running is defined by NrOfThreads.

Multiprocessor 1
SP SP

SP SP

SP SP

SP SP

Shared memory

Multiprocessor N

SP SP

SP SP

SP SP

SP SP

Shared memory

· · · · · · · · ·· · · · · ·

L1 & L2 cache

Global memory

128B 128B

Fig. 1. Hardware model of CUDA GPUs

CUDA Memory Model. Threads
have access to different kinds
of memory. Each thread has
its own on-chip registers, ac-
cess to which is very fast.
Moreover, threads within a
block can communicate via
the shared memory of a mul-
tiprocessor, which is on-chip
and also very fast. If multiple
blocks are executed in paral-
lel then the shared memory is
equally split between them. All
blocks have access to the global
memory which is large (usu-
ally up to 5 GB), but slow, since it is off-chip. Two caches called L1 and L2
are used to cache data read from the global memory. The host has read and
write access to the global memory. Thus, the global memory is used for commu-
nication between the host and the kernel.
GPU Architecture. As already mentioned, the architecture of a GPU features a
set of streaming multiprocessors (SMs). Each of those contains a set of SPs. The
NVIDIA Kepler K20m, which we used for our experiments, has 13 SMs, each
consisting of 192 SPs, which gives in total 2496 SPs. Furthermore, it has 5 GB
global memory.
CUDA Execution Model. Threads are executed using the SIMT model. This
means that each thread is executed independently with its own instruction ad-
dress and local state (registers and local memory), but their execution is orga-
nized in groups of 32 called warps. The threads in a warp execute instructions
in a synchronous manner, meaning that they move through the code in lock-
step. This limits the possibilities for data races, but it also means that so-called
divergence of thread executions can negatively impact performance of the com-
putation. Consider the if-then-else construct if C then A else B. If the threads
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in a warp start executing this, and there are both threads for which C holds and
threads for which it does not, then all the threads will together step through
both alternatives A and B. The ones that do not need to execute A (or B) will
have to ‘go along’ due to the SIMT model, but they will not actually execute
it. Avoiding thread divergence is one of the main worries when implementing a
program for the GPU.

Similarly, memory accesses of the threads in a single warp are serialized when
they need to access separate parts of the global memory. If these accesses can be
grouped together physically, i.e. if the accesses are coalesced, then the data can
be obtained using a single fetch, thereby greatly improving the runtime. Hence,
global memory access should be coalesced as much as possible. This is orthogo-
nal to the fact that in graph decomposition algorithms, accessing transitions is
irregular. Thus, achieving coalesced access is non-trivial. For sparse graphs, we
propose a technique to reduce irregular memory access later in this section.

3.2 Related GPU Implementations

Sparse graphs are usually stored in the Compressed Sparse Row format. An
integer array trans of size |E| is used to store all the transitions, in order of the
source state IDs, and an array offsets consisting of |V |+ 1 integers provides the
start and end indices of the outgoing transitions of each source state, e.g. for
state i, its outgoing transitions are stored in trans from position offsets [i ] up to
and including offsets [i + 1 ]− 1 .

The usual approach to perform a BFS-like search through a CSR descrip-
tion on a GPU involves the threads repeatedly scanning the offsets array us-
ing their ID, as in [27]; first, they start with reading offsets [ThreadId] and
offsets [ThreadId + 1 ], later possibly moving to other offsets depending on the
total number of threads running and the size of the graph. Each time that offsets
have been read, and the corresponding source state is in the search frontier, the
relevant range of transitions can be accessed next, and, in cases that the target
states have not yet been visited, these are added to the new frontier.

Li et al. [7] remark that a GPU BFS which avoids a one-to-one mapping
between threads and nodes is preferable over the standard quadratic approach.
In other words, approaches like the one of Merrill et al. [28], which uses a work
queue, would be preferable. An important reason is that many threads otherwise
idle, and with large differences in the out-degree of nodes, work imbalance tends
to occur. With sparse matrices such as those underlying MDPs, however, this
is not a big concern. The out-degree of most states tends to be similar, and
small. In fact, in [29], an implementation of Merrill’s approach does not result in
further speedups for model checking problems, but it does require more memory.
Therefore, we opt for the standard approach to do BFS on a GPU.

Pivot selection is an important step in SCC decomposition, which is non-
trivial to implement efficiently on a GPU, since all threads need to agree on the
pivots used for the newly discovered regions before launching new BFSs, and
the regions need to be distinguishable by means of unique IDs. Several elaborate
schemes for this have been presented. In [5], an additional array of size |V | is
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used, and all threads assigned to states in regions that need to be searched try to
write their ID to a common entry in this array. Determining which entry should
be targeted is done using a region counting scheme and renumbering heuristics.
Also in [7], such an array is used, but instead of racing to entries, a random
number generator is implemented, state IDs are written to designated entries,
and a prefix sum is used to count the number of new regions. Finally, Hong et
al. [6] maintain set representations while doing the forward and backward BFSs,
and use these to select pivots. We claim that our solution, which we explain
in this section, is more elegant than earlier attempts, and at least as efficient.
Instead of essentially trying to use a region counter, we simply use the pivot IDs
themselves to identify regions, and our procedure requires no additional memory,
instead using the results and trans arrays.

In addition to our new pivot selection, we also contribute compared to earlier
work by using SM local caching of states, and restructuring the input to increase
the number of coalesced memory accesses. Finally, we merge the frontier and
explored set representations with the graph representation, thereby being more
economic with the memory, and avoiding additional memory lookups.

3.3 SCC Decomposition on the GPU

Data representation. For the encoding of a transition, first of all note that for
our problems, the probability distributions in MDP graphs are not relevant,
only 1) the target states, and 2) the distribution group a transition belongs to.
In our implementations, we desire to work with 32-bit integers, as opposed to
64-bit integers, since CUDA provides special atomic read and write operations
for them. Hence, we assume that for each transition, an encoding of the group
and the target state together fits in a 32-bit integer. Our program actually checks
this: first, it is determined for the input what the maximum number of groups
per source state is, say m. Then, the log(m) highest bits of each transition integer
are reserved for the group encoding.

To produce the desired output, i.e. the SCC decomposition, we allocate mem-
ory for another integer array results of size |V |. After decomposition, its content
indicates which states belong to which SCC. Any two states i, j belong to the
same SCC iff results [i ] = results [j ].

Besides the original input, when memory allows, we also store the transposed
MDP graph on the GPU. Since the original representation is tailored for a (for-
ward) BFS, the transposed graph will be for a backward BFS. If there is not
enough memory, then a kernel is available for scanning offsets and trans to
perform a backward BFS, which is possible, but requires more memory accesses.

Finally, for bookkeeping purposes, we reserve the three highest bits in each
entry of offsets and results . The highest bit of entry i is used to indicate that
state i is no longer involved in the current search iteration, i.e. it is already
identified as part of a component. The second and third highest bits in offsets
and results entries are used to keep track of the search frontier and the set of
explored states in the forward and the backward BFSs, respectively. We reason
that this is acceptable: with this restriction, it is still possible to refer to 229
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offsets s0 s1 s2 s3 · · ·

trans t00 t01 t02 t10 t11 t20 t30 · · ·

offsets s0 s1 s2 s3 · · ·

trans t00 t10 t20 t01 t11 t02 · · ·

Fig. 2. Fetching transitions before and after restructuring

states, i.e. about 537 million states. For a graph to be decomposed by our GPU
implementation, at least 2 · |V |+ |E|+1 integers are needed. A typical GPU has
up to 5 GB global memory, which allows up to 1.3 billion integers to be stored,
hence 29 bits is sufficient to refer to all the states of a graph that can be handled.

Restructuring input for coalesced memory access. In a BFS iteration, offsets are
read in a coalesced way by the fact that the threads in a warp, with consecutive
IDs, access an uninterrupted range of offsets. For the transitions in trans , though,
this is a different matter, which is illustrated on the left in Figure 2. For the sake
of clarity, we assume in this example that the warp size is 3. In the figure,
transition t00 is the first outgoing transition of state s0, t10 is the first one of
state s1, and so on. Since the transitions are stored in separate blocks in trans ,
it is clear that access to trans will not be coalesced.

To fix this, we interleave the transition entries such that for all the states
assigned to a warp, their first transitions are stored in an uninterrupted block,
followed by all the second transitions, and so on. This allows to fetch transitions
in a coalesced way. The drawback of this is that padding might be required to
ensure that each thread accesses the same number of entries. On the right of
Figure 2, the interleaved version of the example is given. We call a block of
transitions ordered in this fashion which is assigned to a warp a segment. To
avoid extensive padding, though, we use a hybrid representation. For a user-
defined out-degree upper-bound u, which we call the segment interval, all the
states with at most u outgoing transitions are renumbered to appear in the first
part of offsets and trans , and all the other states are placed at the tail end. In
the corresponding first part of trans , restructuring is applied, but on the tail
part it is not. This allows to avoid that states with unusually many transitions
cause the introduction of too many padding entries across the whole trans array.

Algorithm. To illustrate our implementation of FBT for GPUs, we will discuss
some of its more interesting aspects. Essentially, every step of Alg. 1 is paral-
lelised by means of a separate kernel. In addition to this, we also have a kernel for
the combination of lines 4 and 5, i.e. the BFSs. In this hybrid kernel, iterations
of both BFSs are performed simultaneously during a single scan of the offsets.

Alg. 2 describes the GPU forward BFS. A local cache is allocated in shared
memory. The size of this cache is defined in the host code, i.e. externally, as
its declaration mentions. Its contents is initialised as empty. At lines 3-7, the
offsets entries assigned to the executing thread are read and checked. Note that
GPU specific notions such as NrOfThreads and BlockSize have been defined in
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Algorithm 2. gpu-fwdBfs with local caching
Require: number of iterations NrIters
Ensure: NrIters local BFS iterations from the given search frontier have been performed

extern volatile shared unsigned int cache []
2: <initialise cache>

for (i ← Global-ThreadId; i < |V |; i ← i+ NrOfThreads) do
4: srcinfo ← offsets[i]

if inFrontier(srcinfo) then
6: offsets[i] ← movetoExplored(srcinfo)

explore(srcinfo)
8: for (iter ← 1; iter < NrIters; iter ++) do

for i ← ThreadId; i < cachesize; i ← i + BlockSize do
10: srcinfo ← cache[i]

if srcinfo �= empty then
12: cache[i] ← empty

explore(srcinfo)

Section 3.1. Two of the three highest bits in the offsets entries indicate whether
the corresponding state is 1) in the search frontier or not and 2) has been explored
or not. If a state is in the frontier, it is removed and set to explored by the
operation movetoExplored at line 6. After that, the state is explored.

This approach to BFS requires many complete scans of offsets to detect the
current frontier and explore states. Since global memory is slow, this is a major
performance bottleneck. To mitigate this, we have opted for using SM local
state caches residing in the shared memory. The gpu-fwdBfs kernel accepts a
given number of iterations NrIters. In the first iteration, the usual scanning is
performed, but in addition to being added to the frontier in the global memory,
newly discovered states are added to the cache. After the first iteration, lines
8-13 are executed, in which the cache is scanned for exploration work.

In Alg. 3, the GPU explore procedure is described, which is in the implemen-
tation actually directly integrated with gpu-fwdBfs. First, stepsize is defined
depending on whether the transitions belonging to state i to be explored reside
in a segment or not. If so, the variable thcont is set, which at line 7, when all the
threads in a warp exchange their value of thcont (the broadcast procedure),
results in the entire warp commencing with the exploration, since at least one
thread needs to explore. At line 9, srcregion stores the FBT search region (see
Section 2.2) to which state i belongs. Note that at lines 11-12, if the thread is
scanning a segment, the upper bound offset can be derived using the segment
interval, and reading a second offsets entry can actually be avoided. The seg-
ment interval indicates the number of transition entries for each source state in
a segment. Starting at line 15, the successors of i are read. Threads that are only
reading entries to assure coalesced accesses do not execute lines beyond line 17.
At line 20, isActive checks if the search region of the target state j of transition
t has already been identified as an SCC in a previous round. This is the case if
both the second and third highest bits of results [j ] are set. If it is not part of
a detected SCC, and both the source and target state of t are part of the same
search region (line 22), where tgtregion represents the search region of the target
state (line 21), then the target state is elligible for addition to the frontier. If
its offsets entry indicates that the state is newly discovered, then, depending
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on the current search iteration, the target state is or is not added to the local
cache (lines 25-27). Besides this, nextIter is set, which is read by the host after
each search iteration to determine whether another iteration is required. Also,
the target state is added to the search frontier (lines 30-31). Finally, in the final
iteration, no states are added to the cache, since after the final iteration, kernel
execution will stop anyway, and the contents of the shared memory does not
survive once a kernel has terminated.

Similar to gpu-fwdBfs, we also have a backward BFS variant operating
on the transposed graph, if present, and a backward BFS variant operating on
the original graph, which works different from Alg. 3, since it involves in each
iteration checking that from a state, the current frontier can be reached. Keeping
track of the contents of the frontier and the set of explored states is done by using
the bookkeeping bits in results . Besides this, we have a hybrid approach, in which
both an iteration of the forward BFS and the backward BFS is performed. All
these different versions allow to manage at the host level which searches should
be performed in the next iteration, based on the feedback given by the threads.

Finally, the other main challenge is in selecting pivots. After merging the
results of the forward and backward BFS in the bookkeeping bits of results ,
we resolve this by hashing the current regions of states to locations in trans .
Note that state i belongs to search region results [i ]. For this state, location
results [i ] + reachedinBwd(results [i ]) + 2 ·reachedinFwd(results [i ]), will be
accessed in trans , with reachedinBwd and reachedinFwd indicating whether
the state has been reached in the backward or forward BFS, respectively. Since
this location may actually be beyond the bounds of results , pivot selection is
performed in several iterations, in each iteration j only considering the regions
with a hash between j ·|E| and (j+1)·|E|. Once a thread has determined the hash
h, it will try to ‘claim’ the corresponding trans [h] entry by atomically writing the
ID of its state with the highest bit set to lock the entry. Exactly one thread i will
be able to do this, after which that thread will store the original trans [h] entry
temporarily in results [i ], and all other threads read the new contents of trans [h],
and write this new region information into their results entries. The enforced
data races are used to pseudo-randomly choose pivots. Finally, to revert trans
back to its original content, after pivot selection, thread i swaps results [i ] and
the unlocked trans [h]. Note that with this approach, SCCs are actually identified
by their pivots, and any number of pivots can be selected in parallel.

3.4 MEC Decomposition on the GPU

Our GPU implementation for MEC decomposition is based on the basic algo-
rithm presented in Section 2. For step 1, we use our GPU SCC decomposition.
For step 2, we first reset the second and third highest bookkeeping bits in results
to reuse them as follows: one bit is used to indicate that a state should be re-
moved, and the other bit is used to mark newly discovered MECs. First, a single
scan of the input suffices to identify the sets U of the various SCCs. Whenever a
state i in the SCC with ID pivot is identified to be in U, we lock entry trans [pivot ]
to indicate that this SCC cannot be a MEC, and we mark results [i ] for removal.
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Algorithm 3. explore with local caching for GPU
Require: offset entry srcinfo of a state i
Ensure: if i is in search frontier, then the successors of i are added to search frontier, and i is moved

to the explored set
thcont = 0

2: if i < 32 ·#segments then
stepsize ← 32

4: thcont = 1
else

6: stepsize ← 1
broadcast(thcont)

8: if thcont then
srcregion ← getRegion(results[i])

10: offset1 ← getOffset(srcinfo)
if stepsize = 32 then

12: offset2 ← offset1 + (32 · segmentinterval)
else

14: offset2 ← getOffset(offsets[i + 1 ])
for (j ← offset1; j < offset2; j ← j + stepsize) do

16: t ← trans[j ]
if inFrontier(srcinfo) then

18: k ← getTgtstate(t)
r ← results[j ]

20: if isActive(r) then
tgtregion ← getRegion(r)

22: if srcregion = tgtregion then
tgtinfo ← offsets[k ]

24: if isNew(tgtinfo) then
if iter < NrIters − 1 then

26: if ¬storeInCache(k) then
nextIter ← true

28: else
nextIter ← true

30: addToFrontier(tgtinfo)
offsets[k ] ← tgtinfo

After that, we compute the intersections of the attractor sets of the U and the
SCCs that they belong to; states in those sets are marked for removal. In step 3,
results is scanned and all entries with region pivot and trans [pivot ] unlocked are
marked as being in a MEC. Subsequently, we repeatedly compute the attractor
sets of those MECs and mark the entries for removal. Concluding, in a single
scan, locked trans entries are unlocked, to be removed results entries are set to
a defined ‘empty’ value (and their offsets entry is locked), and discovered MECs
are locked as well. Locking of offsets and results entries means that the highest
bit is set, and those entries are effectively removed from the search.

It is important to note that SCCs discovered in a MEC decomposition iter-
ation must necessarily be subsets of SCCs discovered in the previous iteration.
This means that we can reuse earlier results to select multiple pivots at the start
of an iteration, thereby starting multiple FBT searches in parallel.

4 Experiments

We conducted experiments to measure the performance of our implementations
using a representative set of benchmark models taken from the standard dis-
tribution of the PRISM model checker and additional models provided through
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Table 1. SCC decomposition results of Tarjan and several GPU configurations

Model |V| |E| out #CC Tar F0,1 F0,7 F3,1 F3,7 F0,1-nh

wlan.2500 12.6M 28.1M 2.23 12.5M 6.17 29.16 20.71 119.00 61.90 26.73

phil.7 11.0M 98.5M 8.97 1 23.47 0.70 0.71 1.14 1.18 0.73
diningcrypt.t.10.(0.5) 42.9M 279.4M 6.51 42.9M 41.42 1.63 1.62 1.74 1.75 2.08
test-and-set.7 51.4M 468.5M 9.12 4672 103.92 30.33 36.04 95.67 92.40 19.12
leader.7 68.7M 280.5M 4.08 42.2M 68.08 45.02 5.35 110.18 12.27 47.84
phil_lss.5,10 72.9M 425.6M 5.84 1 99.75 3.28 3.30 6.46 6.34 3.25
coin.8.3 87.9M 583.0M 6.63 5.4M 135.61 125.94 9.10 582.59 42.04 179.00

mutual.7.13 76.2M 653.7M 8.58 1 121.31 4.08 3.72 4.97 4.66 4.71
zeroconf_dl.F.200.1k.6 118.6M 273.5M 2.31 118.6M 97.91 28.63 6.12 28.98 6.23 28.63
firewire_dl.800.36.(0.2) 129.3M 293.6M 2.27 129.3M 104.07 26.71 6.71 26.97 6.87 26.60

its dedicated website.3 In fact, we have selected all available MDP models that
were scalable to interesting proportions while not requiring more memory than
our GPU could handle, and were accepted by the latest version of PRISM. All
experiments were performed on machines running CentOS Linux, with an In-

tel E5-2620 2.0 GHz CPU, 64 GB RAM, and an NVIDIA Kepler K20m GPU.
This GPU has 2496 cores and 5 GB global memory.

For all GPU experiments, we launched |V |/512 blocks of 512 threads each,
i.e. one thread per state. This keeps the amount of work per thread minimal,
and does not introduce idle threads that keep the scheduler busy.

Table 2. MEC dec. results

Model BM GM

wlan.2500 32.33 21.46

phil.7 51.22 0.73

diningcrypt.t.10.(0.5) 140.85 1.80

test-and-set.7 203.50 36.70

leader.7 239.80 7.48

phil_lss.5,10 281.32 3.45

coin.8.3 363.07 12.63

mutual.7.13 -N 302.66 3.83

zeroconf_dl.F.200.1k.6 390.05 6.23

firewire_dl.800.36.(0.2) 470.96 6.90

For comparison, we used a CPU implemen-
tation of Tarjan’s SCC decomposition. Ta-
ble 1 presents the graph characteristics of the
cases and the runtimes in seconds running
the CPU and GPU implementions, the lat-
ter in a range of different configurations. The
‘out’ column provides the average out-degree,
while the ‘#CC’ column displays the number
of SCCs in the graph. ‘Tar’ stands for Tarjan,
and Fi, j represents GPU FBT with i search
iterations per BFS kernel launch using the lo-
cal cache, and j being the interval (out-degree
upperbound) used for restructuring the input.
Finally, F0, 1-nh is an FBT search in which we
have disabled the hybrid search kernel.

Most graphs have a very particular structure; several consist practically en-
tirely of trivial SCCs, and others are a single SCC. We have not preselected
any models, so it is interesting to note this phenomenon. It merits further study
whether most MDP problems boil down to MDP graphs of one of these types.

For graphs consisting of only one SCC, speedups of around 30 times can be
observed. This is not surprising, since these can be analysed in a single GPU

3 All relevant material is available at http://www.win.tue.nl/~awijs/gpudecompose.

http://www.win.tue.nl/~awijs/gpudecompose
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search iteration. When there are many trivial SCCs present, the trimming pro-
cedure is very influential. The efficiency of the trimming procedure is bound by
the average out-degree of a graph; the more connected a trivial SCC state is to
other states, the more potential there is for detecting other trivial SCCs in the
next trimming iteration. For this reason, the diningcrypt case can be decomposed
quickly compared to the zeroconf and firewire cases.

Concerning the latter two cases and other cases with many non-trivial SCCs,
it can be observed that the input restructuring works very well (F0,7). In most
cases, speedups of about 15 times can be observed. This is significant when con-
sidering that in related work [5], only speedups up to 5-6 times were measured
for graphs representing model checking problems. Besides the restructuring, the
new pivot selection procedure and the data representation likely also play a role
in the improved speedup, but it is hard to determine how much, since these are
core aspects of our implementation that we cannot easily disable. An experimen-
tal comparison with the work of [5] seems useful, however their implementation
cannot handle graphs of similar size, due to the fact that eight bits are used per
integer for bookkeeping, whereas we only use three. In addition, their implemen-
tation does not accept MDP graphs, so some reimplementation work would be
required. It is clear, however, that coalesced data access, which is improved by
using the restructuring option, is the main cause for the improved speedups. The
controlled experiments in which we disabled the hybrid search kernel (F0,1-nh)
shows that using the kernel at best only causes a minor speedup. In some cases,
disabling it even results in speedups, because it results for those particular graph
structures in fewer memory accesses. The contribution of the local caches is min-
imal (cases F3,1 and F3,7), and in some cases using them causes a slowdown.
An overall negative result has been obtained for wlan. Its graph has a structure
which considerably limits the trimming procedure. It both has a low average
out-degree and only a few states from which trimming can be instantiated.

In Table 2, results for MEC decomposition are presented. BM stands for
Basic MEC decomposition on the CPU, using Tarjan’s SCC decomposition for
the first step. GM is GPU MEC decomposition using the overall best setup
without caches and with restructuring (F0,7). Speedups up to 79 times were
measured. The cause for the increased speedups is that the additional steps
after SCC decomposition in BM can be performed extremely efficient in parallel
on a GPU, since they require (fully coalesced) scanning of the input arrays.

5 Conclusions

We presented GPU algorithms for finding SCCs and MECs in sparse graphs.
The implementations exhibit speedups of 15-30 times for SCC decomposition
and up to 79 times for MEC decomposition. A critical improvement for SCC
decomposition compared to related work is achieved by improving (coalesced)
data access. The extra steps for MEC decomposition are very suitable for GPUs.

For future work, we plan to address similar problems in probabilistic model
checking [1], and to integrate the algorithms in model checking tools.
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Abstract. Software verification often requires a large amount of com-
puting resources. In the last years, cloud services emerged as an inexpen-
sive, flexible, and energy-efficient source of computing power. We have
investigated if such cloud resources can be used effectively for verification.
We chose the platform-as-a-service offer Google App Engine and ported
the open-source verification framework CPAchecker to it. We provide our
new verification service as a web front-end to users who wish to solve sin-
gle verification tasks (tutorial usage), and an API for integrating the
service into existing verification infrastructures (massively parallel bulk
usage). We experimentally evaluate the effectiveness of this service and
show that it can be successfully used to offload verification work to the
cloud, considerably sparing local verification resources.

1 Introduction

Software verification usually requires a large amount of computation resources.
In practice, it is often not only a single verification task that needs to be solved,
but a large quantity of individual tasks. This occurs for example in regression
verification, where the correctness of all components of a system has to be re-
established after some development work. For illustration, let us consider Linux
driver verification: there are approximately 1 200 commits per week affecting on
average 4 device drivers. Assuming that each changed driver is verified against
only 100 safety properties after each commit, and that only 12 s of run time
are necessary per verification task, the weekly verification time would sum up
to 67 days. Those tasks are usually independent and can be run in parallel to
reduce the time until the answers are available to the developers. Instead of
buying and maintaining an expensive cluster of machines for occasional peaks
of computational load, we can also move the actual verification execution into
a computing cloud, where resources are available on demand. This enables a
verification process that is less expensive (only actual usage is paid) and faster
(higher degree of parallelism).

Two of the different flavors of computing cloud services are suitable for im-
plementing a cloud-service-based verification system: Infrastructure as a Ser-
vice (IaaS) and Platform as a Service (PaaS). For IaaS, a large number of virtual
machines (VMs) is reserved, and expenses incur only for the actual uptime of the
machines. Amazon’s Elastic Compute Cloud (EC2) is a popular example for IaaS.
The customer is responsible for all setup work for the VM, including setup of
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the operating system and applications, and an infrastructure for load-balancing
(starting VMs as necessary) needs to be implemented by the customer. For PaaS,
the customer is allowed to run own applications on an application server, and
expenses incur only for the actual consumption of resources by the application.
Google’s App Engine is a popular example for PaaS. The PaaS provider oper-
ates the application server and will automatically run the application on as many
machine instances as necessary depending on the demand. This provides a high
degree of scalability without administrative effort by the customer.

We are interested to evaluate the applicability of the Google App Engine
as verification infrastructure. There are a number of requirements that an ap-
plication has to satisfy in order to be runnable on a PaaS. For example, in a
typical PaaS environment, the application has no or only limited direct access
to external services such as the file system, and the application needs to be in-
tegrated using specific APIs for serving user requests. Due to the traditionally
high resource consumption of verification tools and the restricted environment,
we wanted to investigate if an effective and efficient verification service can be
implemented based on the Google App Engine. The convenient scalability and
the eliminated administration effort make it a promising approach.

Related Work. Several approaches exist to distribute a single verification task
across multiple machines [7, 11, 12], for which IaaS clouds can be used as a
source of a high number of virtual machines. Such techniques usually do not
scale perfectly with the number of machines due to the communication effort,
and require specialized verification algorithms. We focus instead on distributing
many independent tasks, which works with any existing automatic verification
technique and does not require communication between the worker machines.
This concept is used in other areas of computation for a long time, but was
not yet evaluated for automatic software verification. Also the applicability of a
restricted environment and a PaaS offer for verification was not yet studied.

The idea of providing a web front-end for verification services which is usable
with a browser is not new, and several such services are available from differ-
ent groups1,2,3,4. These are intended to serve for demonstration and evaluation
purposes, and not as a possibility to offload high-volume verification load.

2 Background

Google App Engine. The Google App Engine [13] is a PaaS offer to run web
applications on Google’s infrastructure. It provides services that are designed to
be scalable, reliable, and highly available under heavy load or huge amounts of
data. Scaling and load balancing are automatically adjusted to the needs of the
application. The App Engine allows to run applications in Java, Python, PHP,

1 Multiple tools from Microsoft and others: http://rise4fun.com
2 Aprove: http://aprove.informatik.rwth-aachen.de/index_llvm.asp
3 Divine: http://divine.fi.muni.cz/try.cgi
4 Interproc: http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

http://rise4fun.com
http://aprove.informatik.rwth-aachen.de/index_llvm.asp
http://divine.fi.muni.cz/try.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
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or Go. Applications are executed in a sandbox that abstracts the underlying
operating system, and provides a secure and isolated environment.

An App-Engine application provides specialized request handlers, which rep-
resent the entry points into the application. To serve requests, an application
has a pool of zero or more instances allocated. Instances are long-living contain-
ers for request handlers that retain local memory and are initialized ahead of
incoming requests. The use of a single instance with the smallest configuration
of 128 MB of RAM and a 600 MHz CPU for one hour counts as one ‘instance
hour’ and costs 0.05 USD as of May 20145. There are more powerful instances
available (up to 1 GB of RAM and a 4.8 GHz CPU) that consume the instance
hours at a higher rate. The App Engine also offers a schema-less data store
and a task-queue service, which is used to enqueue tasks for execution in the
background independent from user interaction.

Restrictions. To provide abstraction from the operating system and to ensure
security, the Java run-time environment of the App Engine restricts access to a
specific set of classes in the Java standard library6. The most important of the
forbidden actions are file-system writes, starting external processes, and loading
native libraries. Data need to be stored using the data-store service or the Google
Cloud Storage. For the other operations, no alternatives are possible except
implementing all functionality in Java code. There are also some restrictions on
the resource usage of applications7. Request handlers are expected to terminate
quickly (in under 60 s), but tasks in the task queue are allowed to take up to
10 minutes. The data store takes entities up to a size of 1 MB, which poses a
problem with large log or source-code files.

Billing. The pricing model of the App Engine specifies the cost for each re-
source in detail, and charges incur only for the resources that were actually used.
Most resources are freely available up to a resource-specific quota8. For example,
28 instance hours can be used free of charge each day.

CPAchecker. CPAchecker [3] is an open-source framework for software verifi-
cation, which is available online9 under the Apache 2.0 license. It is based on the
concept of Configurable Program Analysis [2], which supports the integration
of different verification components. CPAchecker implements a wide range of
well-known verification techniques, such as lazy abstraction [10], CEGAR [9],
predicate abstraction [4], bounded model checking [6], and explicit-value anal-
ysis [5]. It is platform-independent because it is implemented entirely in Java
(including its libraries, e.g., the Java-based SMT solver SMTinterpol [8]).

5 https://developers.google.com/appengine/pricing
6 https://developers.google.com/appengine/docs/java/jrewhitelist
7 https://developers.google.com/appengine/docs/java/backends/
8 https://developers.google.com/appengine/docs/quotas
9 http://cpachecker.sosy-lab.org

https://developers.google.com/appengine/pricing
https://developers.google.com/appengine/docs/java/jrewhitelist
https://developers.google.com/appengine/docs/java/backends/
https://developers.google.com/appengine/docs/quotas
http://cpachecker.sosy-lab.org
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3 Verification in the Google App-Engine Cloud

Porting CPAchecker. It is in principle possible to use all analyses of
CPAchecker in the Google App Engine because it is written in Java. Due to
the above-mentioned restrictions, some adoptions were necessary. Most features
of CPAchecker that rely on disabled Java APIs are either optional or non-
critical, and could thus be turned off with CPAchecker’s own configuration
mechanism. This includes, for example, extended time and memory measure-
ments, and counterexample checks with the external checker CBMC (which is
written in C++ and thus not portable to the App Engine). If an SMT solver
is needed, we use SMTInterpol, which is written in Java. The major obstacle
for porting CPAchecker to the App Engine was to re-design file-system writes.
CPAchecker expected the source-code file on the disk and would usually write
several output files with information about the analyzed program and perhaps
a counterexample. While the output files are optional, they provide helpful in-
formation to the user and thus should be available. Thus, we integrated an
abstraction layer for all file-system operations of CPAchecker that re-routes
the reading of the input program and the writing of all output files to the data-
store service. Apart from minor other adoptions, these were the only changes to
CPAchecker. All of our work was integrated into the CPAchecker project and
is available as open source from its repository.

API for Bulk Usage. The most important application of our cloud-based
verification service is solving a large quantity of verification tasks, as in regres-
sion verification. We developed an API for automatically submitting tasks and
retrieving results. We integrated a client for this API in CPAchecker’s execu-
tion infrastructure, such that in terms of user interaction, there is no difference
between running the verification tasks locally or using the App Engine. Due
to the scalability of the App Engine, the results will be available quickly be-
cause many verification tasks can be solved in parallel. Another application of
the verification-service API is an integration in situations where verification is
needed but resources are limited or a verifier might not be available. For exam-
ple, using the verification service inside an IDE plug-in would make it easier and
faster for developers to verify their code.

Front-End for Tutorial Usage. The second channel of access is provided for
users who wish to try out CPAchecker, or experiment with software verification
in general: we provide a web-based user interface that is easy to use in a web
browser and requires no installation effort from the user. The user uploads or
enters a program, selects a specification that the program should satisfy, and
chooses a configuration of the verifier. After starting the verification run, the
user is kept informed about the current status of the task, and the result is
provided after the run is finished. Further output like log files, statistics, and
information about counterexamples are presented and available for download.
The front-end that we implemented is available online10.

10 http://cpachecker.appspot.com

http://cpachecker.appspot.com
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4 Experimental Evaluation
To evaluate the effectiveness and efficiency of the Google App-Engine cloud
for verification purposes, we run CPAchecker in version 1.3.2-cav14 on verifi-
cation tasks from the International Competition on Software Verification (SV-
COMP’14) [1]. We compare the amount of successfully verified programs and the
verification time to a local execution of the verifier. To show the applicability of
the cloud service, we use two verification approaches that have different charac-
teristics with regard to performance and resource requirements: an explicit-value
analysis [5] and a predicate analysis [4] (using the SMT solver SMTInterpol).

Setup. We limit the wall time for each verification task to 9 minutes. We did not
use any limits for CPU time, because this is not supported by the App Engine.
In the App Engine, we used the default of the available instances, which provides
128 MB of RAM and 600 MHz of CPU frequency. For a direct comparison, we also
limited the size of the Java heap memory to 128 MB for the local executions. For
desktop machines, this is a rather low limit as current machines provide much
more RAM. Thus, we additionally ran the same analyses with a heap size of
4 096 MB. In both cases, we assigned one CPU core (plus one hyper-threading
core) of an Intel Core i7-2600 quad-core CPU with 3.4 GHz. In the App Engine,
we reserved 100 instances at the same time. For local execution, we ran 4 tasks
in parallel on the same machine. We selected those categories from the SV-
COMP repository11 as benchmark verification tasks that are well-supported by
the chosen analyses: ControlFlow, DeviceDrivers64, SequentializedConcurrent,
and Simple. We excluded programs whose source code was larger than 1 MB
(restriction by the data store). This resulted in 2 458 program files written in C.

Results. Table 1 shows a summary of the results. For each configuration, we
list the number of successfully computed answers, and the CPU time that was
necessary to compute them. We also show the wall time that elapsed between
start and end of the benchmark, i.e., the time the user has to wait for all results.
Both times are rounded to two significant digits. In Fig. 1 we show quantile
functions for the successful results (i.e., the verifier returned an answer) of all
configurations. The results are sorted by their run time, i.e., a data point (x, y)
means that the respective configuration has successfully verified x programs in
at most y seconds each. The area under a graph represents the sum of the CPU
time that is necessary for computing the answers (the lower a graph is, the faster
a configuration is). This value can also be seen in the row ‘CPU Time’ of Table 1.
The further to the right a graph stretches, the more answers were returned by
a configuration. Dark lines (red, blue) in the plot show executions in the App
Engine, the corresponding light lines (orange, cyan) show the local executions.

The plot shows that the App Engine is actually often faster. This is due to the
relatively long startup time of a JVM on the local machine (almost 2 s), which
is not needed in the App Engine. The table and the graph both show that
CPAchecker running in the App Engine is not able to verify as many programs
as locally within the same time limit, and needs more CPU time. Impressively,
11 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/
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Table 1. Summary of results comparing App-Engine execution with local execution

Analysis Explicit-Value Predicate
Location App Engine Local App Engine Local
CPU Frequency 600 MHz 3.4 GHz 3.4 GHz 600 MHz 3.4 GHz 3.4GHz
Heap Size 128 MB 128 MB 4096 MB 128 MB 128 MB 4096 MB

Successful: No. of Results 1 842 1 920 2 021 1 771 1 952 2 012
CPU Time (s) 16 000 13 000 31 000 41 000 39 000 50 000

Total: Wall Time (s) 11 000 30 000 53 000 9 900 46 000 58 000
Effective Parallelization 25 4 4 30 4 4

Fig. 1. Quantile functions showing the CPU time for the successful results; symbols at
every 100-th data point; linear scale between 0 s and 1 s, logarithmic scale beyond

the difference in the number of results is only about 10 %. Note that we used the
rather slow standard instances in the App Engine which provide a much lower
CPU speed than our local machine. More powerful instances would be available
as well (at a higher price). Furthermore, the row ‘Total Wall Time’ in Table 1
shows that due to the high scalability of the cloud and the massive parallelism,
the total waiting time for the user is much lower (3 hours instead of 8 to 16 hours),
even though we ran 4 tasks in parallel locally. The effective parallelization in the
App Engine is less than the number of instances (100) due to queue saturation
problems which could be fixed with an improved implementation. More details
on this issue can be found on the supplementary webpage12.

Running all 4 916 tasks in the cloud cost 38.09 USD where the explicit-value
and predicate analysis consumed 17.78 USD and 20.31 USD, respectively. All
experiments that we ran for the preparation of this paper cost only 185.72 USD
in total (for obtaining valid results, we had to run the experiments several times).
The experiments were done when the prices were still higher, with prices of
May 2014 the cost would have been 38 % less.

12 http://www.sosy-lab.org/~dbeyer/cpa-appengine

http://www.sosy-lab.org/~dbeyer/cpa-appengine
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5 Conclusion
We ported the successful open-source verification framework CPAchecker to the
Google App Engine, and have shown that cloud-based verification is an effective
way to gain scalability and a high degree of parallelism, allowing users to receive
verification results much faster. This new verification service enables a convenient
integration of software verification into development environments that do not
support the execution of a verification engine locally. It also provides a convenient
way for tutorial-like experiments with a verifier without any installation effort.
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Abstract. This paper describes the NUXMV symbolic model checker for finite-
and infinite-state synchronous transition systems. NUXMV is the evolution of the
NUSMV open source model checker. It builds on and extends NUSMV along
two main directions. For finite-state systems it complements the basic verification
techniques of NUSMV with state-of-the-art verification algorithms. For infinite-
state systems, it extends the NUSMV language with new data types, namely Inte-
gers and Reals, and it provides advanced SMT-based model checking techniques.

Besides extended functionalities, NUXMV has been optimized in terms of per-
formance to be competitive with the state of the art. NUXMV has been used in
several industrial projects as verification back-end, and it is the basis for sev-
eral extensions to cope with requirements analysis, contract based design, model
checking of hybrid systems, safety assessment, and software model checking.

1 Introduction

NUSMV [1] is a symbolic model checker for finite state fair transition systems. It has
been developed jointly by Carnegie Mellon University, the University of Trento and
Fondazione Bruno Kessler (FBK) since 1999. It is distributed as open source under
the LGPL license, and it integrates some of the most successful BDD and SAT based
symbolic model checking algorithms up to 2011 (the year of its last official release).

Since its first release in 1999, the public available version of NUSMV has been
complemented and extended, internally at FBK, with multiple functionalities. This was
done in order to facilitate its deployment in several operational settings, and to take into
account the needs resulting from industrial and research projects. In particular, we in-
tegrated functionalities for requirements engineering, safety assessment, contract based
design, and techniques for the analysis of hybrid systems; we also interfaced NUXMV

with SMT engines. The whole set of new functionalities were developed as a single
code-base, referred in several papers as NuSMT and NuSMV3. To better maintain such
features, and to facilitate the deployment, we started a re-engineering process where we
separated all of them in several different tools. In this view, NUSMV is the code-base
that provides basic functionalities and common data structures to all the other tools (e.g.
symbol table, handling of expressions, interface with the CUDD [2] BDD package, in-
terface with the SAT solvers (e.g. MINISAT [3]). NUSMV also provides all the basic
model checking algorithms for the pure Boolean case.

� This work was carried out within the D-MILS project, which is partially funded under the
European Commission’s Seventh Framework Programme (FP7).

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 334–342, 2014.
c© Springer International Publishing Switzerland 2014
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In this paper we describe NUXMV, a new symbolic model checker for finite- and
infinite-state synchronous fair transition systems. NUXMV is the evolution of NUSMV,
as such it builds on NUSMV and extends it along two main directions. For finite-
state systems, it complements NUSMV basic verification techniques with a family of
new state-of-the-art verification algorithms. For infinite-state systems, it extends the
NUSMV language with new data types, namely Integers and Reals, and it provides
advanced SMT-based model checking techniques. NUXMV participated in the 2013
hardware model checking competition (HWMCC’13) positioning among the first four
in the single and multiple tracks. NUXMV also compares well with other model check-
ers for infinite-state systems. Finally, NUXMV has been successfully used in several
application domains and in industrial settings. It is currently the core verification en-
gine for many other tools (also industrial ones). The tool is distributed in binary code,
free to be used for academic research and for non-commercial uses. The latest version
of NUXMV can be downloaded from https://nuxmv.fbk.eu.

2 Functionalities

NUXMV inherits, and thus provides to the user, all the functionalities of NUSMV [1].
In this section we describe all the new features distinguishing them in those for the
analysis of finite-state domains, those for the analysis of infinite-state domains, and
other generic features.

2.1 Analysis of Finite-State Domains

NUXMV complements the NUSMV language with the AIGER [4] format. AIGER is the
language adopted in the hardware model checking competition. Once the AIGER file is
read, the internal data structures of NUXMV are populated, and it is possible to verify
the properties (if any) with any of the available verification algorithms, or specify new
properties interactively “playing” with the design.

NUXMV implements a vast portfolio of algorithms for invariant checking. We cur-
rently provide an implementation for the McMillan interpolation-based approach [5] and
for the interpolation sequence approach [6]. Interpolation based algorithms are comple-
mented with k-induction algorithms [7] and a family of algorithms based on IC3 [8,9,10].
The IC3 algorithm using abstraction refinement [10] comes in two variant depending on
the approach to refinement: the original one based on IC3, and a new variant based on
BMC. All these techniques, benefit from the use of temporal decomposition [11] and
from techniques to discover equivalences to simplify the problem. We remark that, to
implement the interpolation based algorithms we extended MINISAT [3] to build a res-
olution proof.

Still related to the verification of invariants, we also improved the BDD based in-
variant checking algorithms by allowing the user to specify hints in the spirit of guided
reachability [12]. The hints are specified using a restricted fragment of the PSL SERE
[13]. The hints can also be used to compute the full set of the reachable states.

For LTL SAT based model checking, we complemented the BMC based algorithms
of NUSMV [14,15] with k-liveness [16] integrated within an IC3 framework. K-liveness
is based on counting and bounding the number of times a fairness constraint can become

https://nuxmv.fbk.eu
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true. This is used in conjunction with the construction of a monitor for LTL properties,
for which we use the LTL2SMV [17] as provided by NUSMV.

2.2 Analysis of Infinite-State Domains

1 MODULE main
2 IVAR
3 d : Real ;
4 VAR
5 s t a t e : {s0 , s1};
6 res : Real ;
7 ASSIGN
8 i n i t ( s t a t e ) := s0 ;
9 next ( s t a t e ) := case

10 s t a t e = s0 & res >= 0.10 : s1 ;
11 s t a t e = s1 & res >= 0.20 : s0 ;
12 TRUE : s t a t e ;
13 esac ;
14 next ( t ) := case
15 s t a t e = s0 & res < 0.10 : res + d ;
16 s t a t e = s1 & res < 0.20 : res + d ;
17 TRUE : 0 . 0 ;
18 esac ;
19 INIT
20 res >= 0.0
21 TRANS
22 ( s t a t e = s0 −> ( d >= 0 & d <= 0 . 0 1 ) ) &
23 ( s t a t e = s1 −> ( d >= 0 & d <= 0 . 0 2 ) )
24 INVARSPEC res <= 0 . 3 ;

Fig. 1. Example of the NUXMV language

In order to allow the user to specify infinite-
state systems, we extended the language of
NUSMV with two new data types, namely Re-
als and unbounded Integers. This, for instance,
enables to specify domains with infinite data
types (like e.g. the example in Fig. 1).

To analyze such kind of designs, we inte-
grated in NUXMV several new verification al-
gorithms based on Satisfiability Modulo Theory
(SMT) [18] and on abstraction, or combination
of abstraction with other techniques.

We lifted Simple Bounded Model Checking
(SBMC) [15] from the pure Boolean case to the
SMT case. The encoding is the same as that of
SBMC, but instead of using a SAT solver we
use an SMT solver. The SBMC SMT based approach for LTL verification is comple-
mented with k-liveness combined with IC3 extended to the infinite-state case [19]. This
approach relies on recent results on applying an IC3-based approach to the verification
of infinite-state systems [20]. We remark that, although these approaches are in general
incomplete, if a lazo-shaped counterexample exists, it is guaranteed to be eventually
found. Moreover, for certain designs, they are able to conclude that the property hold.

As far as invariant checking is concerned, we lifted the pure Boolean approaches like
BMC, k-induction, interpolation, and IC3 to the infinite-state systems case. Intuitively,
we use an SMT solver in place of the SAT solver. Similarly to the finite case, we
provide an SMT based implementation for the McMillan approach [5], the interpolation
sequence approach [6], k-induction [7] and for algorithms based on IC3 [20,21].

NUXMV also implements several approaches based on abstraction refinement [22].
We provide new algorithms combining abstraction with BMC and k-induction [23].
The algorithms do not rely on quantifier elimination techniques to compute the ab-
straction, but encode the model checking problem over the abstract state space into
SMT problems. The advantage, is that they avoid the possible bottleneck of abstrac-
tion computation. The very same approach has been recently lifted and tightly inte-
grated within the IC3 framework [21], with very good results. All these techniques
complement the “classical” counterexample guided (predicate) abstraction refinement
(CEGAR) [22], also implemented in NUXMV. The CEGAR approach requires the com-
putation of a quantifier-free formula that is equivalent to the abstract transition relation
w.r.t. a given set of predicates. This, in turn, requires the solving of an AllSAT prob-
lem [24]. For this step, NUXMV implements different techniques: a combination of
BDD and SMT [25,26], where BDDs are used as compact Boolean model enumerators
within an AllSMT approach; a technique that exploits the structure of the system under
verification, to partition the abstraction problem into the combination of several smaller
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abstraction problems [27]. For the refinement step to discard the spurious counterex-
ample, NUXMV implements three approaches based on the analysis of the unsatisfiable
core, on the analysis of the interpolants, and on the weakest preconditions.

2.3 Miscellaneous Functionalities

NUXMV provides novel functionalities that aim at facilitating the modeling and the un-
derstanding of complex designs. For instance, it allows for the generation of an explicit
state representation (subject to the projection over a set of user specified predicates) in
XMI format of the design under verification. The generated XMI can be visualized in
any UML based viewer supporting the import from XMI.

LTL and invariant properties have been extended to allow for the use of input signals
and next values of state variables. This does not add any expressive power to the lan-
guage, but facilitates the writing of properties from the user’s point of view. Internally,
each state formula containing a reference to an input or next signal is replaced with a
corresponding monitor allowing for the reuse of off-the-shelf verification engines.

NUXMV also provides several model transformation techniques aiming to reduce the
state space of the design. It uses static analysis techniques to extract possible values for
variables, and then re-encode the design using such information (e.g. using a word at 32
bit to store 2 values can be re-encoded with just one Boolean variable). These techniques
are complemented with others aiming at simplifying the model through constants and
free inputs propagation [28].

Finally, in NUXMV we removed the NUSMV limitation that restricted the support
to bit vectors with less than 64 bits only.

3 Architecture

NUXMV extends the NUSMV [1] architecture as described here after. NUXMV shares
with NUSMV all the basic functionalities, e.g. the symbol table, the flattening of the
design, the Boolean encoding of scalar variables, the representation of the finite-state
machines at the different abstraction levels (e.g., scalar, BDD). Moreover, it inherits
from NUSMV all the basic model checking algorithms for finite domains both using
BDDs (using the CUDD [2]) and SAT (e.g. MINISAT [3]). To implement the new func-
tionalities, we added new Boolean reasoning engines. We extended MINISAT with the
construction of the resolution proof. On top of this, we built an interface to extract inter-
polants. In this respect, we extended the standard API in NUSMV to also provide API
for extracting and manipulating interpolants. This also enables for the use of different
SAT engines in a transparent way.

For IC3 based algorithms, NUXMV provides two modes: execution as a library, or
call of an external executable (this was also done to participate to the hardware model
checking competition). The use of an external executable also opens to experiment with
other engines, and to reuse the results within NUXMV, provided the I/O interface is
respected. The model checking problem is dumped into AIGER format, and for violated
properties the resulting AIGER trace is converted back into a NUXMV trace.

To reason over infinite-state systems, we created an interface towards SMT en-
gines. We instantiated this interface on the MATHSAT5 [29] SMT solver (although in
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Fig. 2. Results for finite domains on the HWMCC13 samples

principle other SMT solvers could be plugged in). The interface enables for a wide
range of queries: satisfiability checking and AllSMT queries; extraction of unsatisfiable
cores and of interpolants; and, quantifier elimination. This interface is the basis on top of
which the majority of the SMT based algorithms are built. For IC3 based algorithms, a
more tight integration with the SMT solver is required, therefore we implemented them
directly on top of MATHSAT5. We then interfaced this new engine with NUXMV.

NUXMV has been developed in C and in C++. It compiles and executes on the most
widely used Operating Systems (OSs) and architectures; namely, Linux, MS Windows,
and MacOS X. Porting to other OSs is also possible (although not tested yet).

4 Performance Evaluation

In order to see where NUXMV is positioned w.r.t. the state-of-the-art, we report in this
section some results. In Fig. 2 we plot the comparison of NUXMV against the three best
performers at the HWMCC13. The comparison is run on the same benchmarks used in
the HWMCC13 in the single safety (left) and in the liveness (right) tracks. We com-
pare two versions of NUXMV, the one that participated in the competition (NUXMV-
HWMCC13) and the current one. The results show that, still ABC is the top performer,
but the current version of NUXMV is able to solve more problems that the one submitted
to the competition. Moreover, it solves more problems than iimc and v3 that are per-
forming better than NUXMV-HWMCC13. Concerning the liveness track, NUXMV did
not participate in the competition. Here iimc is still the winner, but NUXMV performs
better than v3 and tip (positioned 2nd and 3rd resp. in the HWMCC13).

In Fig. 3 we report some results for the SMT cases. On the left we compare IC3 with
implicit abstraction algorithm [21] as available in NUXMV against state-of-the-art en-
gines on a set of bit-vector (BV) benchmarks (we took all the benchmarks used in [20],
using BV as background theory instead of LRA, the instances of the bitvector set
of the Software Verification Competition [30] and the instances from the test suite of In-
vGen [31]). For the other solvers, bit-blasting was performed. In Fig. 3 on the right, we
compare NUXMV with other model checkers for Linear Integer Arithmetic (LIA). (The
label nuXmv-IC3(IA) corresponds to the label IC3+IA(BV) of [21]). We used bench-
marks taken from Lustre programs as available from the web page of Kind [32]. These
results show that in both cases NUXMV can solve more problems than the other state-
of-the-art tools.

These results, clearly show that NUXMV is well positioned in the space of formal
verification engines, both for the finite domain case, and for the infinite domain one.
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Fig. 3. Results on SMT domains: BV and LIA (taken from [21]

5 Applications

The NUXMV symbolic model checker has been used in a wide range of applications,
both at academic and at industrial level.

As far as the industrial settings are concerned, we report that NUXMV is used at
Rockwell-Collins as one of the available back-end verification engines [33]. NUXMV

has been extended and is daily used by Ales s.r.l., also as a back-end verification engine,
for their internal verification flow [34]. Moreover, Ansaldo STS integrated NUXMV

within their development environment for the verification of railways interlocking soft-
ware [35]. We also remark that NUXMV has been widely used in several industrial
projects with the European Space Agency (ESA). For instance, it is the back-end of
the COMPASS tool [36], developed within the COMPASS [37] and AUTOGEF [38]
projects both funded by ESA. It has also been used in the EuRailCheck tool for the
validation of a fragment of the ETCS requirements [39]. EuRailCheck was developed
in response of an invitation to tender issued by the European Railway Agency.

NUXMV is also the back-end of several other tools. (We remark that, since the devel-
opment of NUXMV started a long time ago, its functionalities were used already by other
tools, often relying on intermediate, non-official versions of NUXMV itself.) It has been
integrated in AutoFocus [40]. It is used in the KRATOS [41] software model checker, in
RATSY [42] for temporal logic synthesis, and in OCRA [43] for contract based require-
ments analysis. Finally, it is the basis on top of which we built the safety assessment tool
FSAP [44] and the HyCOMP [45] tool for the verification of hybrid systems.

6 Conclusions and Future Work

In this paper we presented NUXMV, a new symbolic model checker for finite- and
infinite-state transition systems. We described its functionalities, and we reported some
results that compare its performance with the state-of-the-art. The results show that it is
well positioned w.r.t. the other possible competitors.

As future work, we would like to add support for arrays, their combination with
bit vectors, and uninterpreted functions, and to interface with the BTOR format. We
would like to exploit multi-core architecures to further speed-up the analyses. Finally,
we would like to wrap the NUXMV functionalities in a scripting language to facilitate
the experimentation of new algorithms and the customization w.r.t. user needs.
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Abstract. Deciphering the developmental program of an embryo is a
fundamental question in biology. Landmark papers [9,10] have recently
shown how computational models of gene regulatory networks provide
system-level causal understanding of the developmental processes of the
sea urchin, and enable powerful predictive capabilities. A crucial aspect
of the work is empirically deriving plausible models that explain all the
known experimental data, a task that becomes infeasible in practice due
to the inherent complexity of the biological systems. We present a generic
Satisfiability Modulo Theories based approach to analyze and synthesize
data constrained models. We apply our approach to the sea urchin em-
bryo, and successfully improve the state-of-the-art by synthesizing, for
the first time, models that explain all the experimental observations in
[10]. A strength of the proposed approach is the combination of accu-
rate synthesis procedures for deriving biologically plausible models with
the ability to prove inconsistency results, showing that for a given set
of experiments and possible class of models no solution exists, and thus
enabling practical refutation of biological models.

1 Introduction

Understanding the underlying developmental program of an embryo is a fasci-
nating scientific question. How do cells divide and organize to form a body plan,
each one becoming a specific cell type capable of performing specialized functions
and interacting with other nearby cells to form a living organism? Answering
these questions, apart from their significant scientific value, has far reaching ap-
plications, for instance in early diagnosis, disease treatment, and regenerative
medicine.

At the heart of understanding the complexity of development is the chal-
lenge of understanding the process of biological computation that is performed
within living cells and organisms. The information processing is implemented
via highly concurrent biological machinery determining when to express specific
genes, which in an abstract view is seen as turning these genes on or off. Gene
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regulatory networks (GRNs) control the dynamic (and spatial) patterns of gene
expression, which influence the decisions cells make during development. Unrav-
eling the structure and logic of these GRNs is thus a key research challenge.

Landmark papers studying the development of the sea urchin [9,10] have re-
cently shown how computational models of gene regulatory networks provide
system-level causal understanding of the embryonic developmental processes,
and enable powerful predictive capabilities. The methodology used in that work
is based on modeling and simulation of Boolean systems with time delays and
discrete time semantics using a form of vector-based equations that determine
the dynamics of gene expression. A crucial aspect of this work is deriving biolog-
ically plausible models that explain all the known experimental data, a task that
becomes infeasible when using simulation based methods, due to the inherent
complexity of the biological systems.

We present an SMT-based approach that enables the analysis of realistic
GRNs and synthesizes models that accurately explain all known data. Our
method significantly extends the framework presented in [14] in order to in-
corporate time delays, spatial domains and the systematic use of uninterpreted
functions. We take a pragmatic approach, and rather than introducing a new
language for biological modeling we formalize the vector equation notation in-
troduced in [10] which has been demonstrated to be useful for experimental
biologists, shedding light on some of its constructs and features that were pre-
viously described informally.

The GRN reconstruction described in [9] is a result of over thirty years of
research, and incorporates detailed experimental data from various sources and
techniques. The scientific essence of a model is its ability to explain all existing
data and make new testable predictions. The detailed data of the expression
of many relevant genes at different time points and different spatial domains
in the embryo make the construction of such a model very hard. We explain
how we were able to construct the first model that fully explains all of the data
from [9], including perturbation experiments, through the use of formal analysis
and synthesis methods. Furthermore, we demonstrate that a subset of vector
equations is inconsistent with experimental data, regardless of how the other
vector equations are set, which is essential information for experimentalists and
which is impossible to obtain through the use of simulation techniques only. The
scalability of our methods as shown by analyzing the sea urchin model paves the
way for practical usage of formal methods, potentially transforming the way in
which computational modeling and experiments enhance our understanding of
biology.

2 Background

To establish a formal basis for our analysis, we first define some basic concepts
and a succinct notion of Gene Regulatory Networks with spatial and temporal
domains, as well as observations and perturbations.
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At the most fundamental level we require the set of Boolean values B = {0, 1}
and the usual Boolean operations. A bit-vector b ∈ Bn is a vector of Boolean
variables b0, b1, . . . , bn−1, where bi ∈ B for each i = 0, . . . , n − 1. We assume
the usual bit-wise operations on bit-vectors, including the arithmetic operators
+,−, ∗, /. We write bi = bj to indicate the logical equivalence bi ⇐⇒ bj .

For most of the problems we investigate in this paper, it is convenient to have
one compact mathematical object which carries all the information available
from the biological context over the formal context. For this reason we define
the notion of Gene Regulatory networks with Delays, and spatial Domains:

Definition 1 (GRNDD). A Gene Regulatory Network with Delays and spa-
tial Domains (GRNDD) is a tuple (G,D, SR,T, F ), where:

– G is a finite set of genes;

– D is a finite set of spatial domains;

– SR is a finite set of spatial relations between domains;

– T = {0, 1, . . . , tmax} is the discrete time domain; and

– F is a finite set of vector equations.

A GRNDD captures the required information describing the system dynamics
which can be represented as a transition system. The components of the tran-
sition system are the genes G, the spatial domains D and the vector equations
(which implicitly define the transition relation). SR is a set of relations that
describes the relationship between spatial domains (e.g., whether they are next
to each other, or close to each other, etc). Each element of SR is a function
r : T ×D ×D → B, and r(t, di, dj) = 1 iff the relation r holds between spatial
domains di and dj at time t.

Note that our definition of a GRNDD contains a discrete and bounded time
domain, where tmax is themaximum execution time. The problems we investigate
in the remainder of this paper are always related to a set of observational data,
which represent finite executions of the system, often providing experimental
measurements for each time step from steps 0 to tmax.

A state q of a GRNDD is a valuation of the expression of each gene in each
spatial domain, i.e., essentially a bit-vector that describes whether each of the
genes is enabled or not in a spatial domain. Thus, we define the set of states
Q := B|G×D|. The expression (valuation) of gene g in domain d in a state q is
denoted by q(g, d). A path is a sequence of states and we denote the set of paths
as Π := {< q0, . . . , qi > | 0 ≤ i ≤ tmax ∧ qi ∈ Q} and π[i] denotes the i-th state
in path π.

The set of vector equations F of a GRNDD contains an update function for
every gene g ∈ G which has the signature fg : Π × T × D → B. In other
words, the vector equation of a gene g is a function fg(π, t, d) which determines
whether g is expressed at a time t in spatial domain d in a path π. Note that
these update functions depend on a whole path through the system, because
they may depend not only on a unique previous state, but on a sequence of
previously visited states. As pointed out in [10], the term “vector equation”
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reflects the matrices of gene expression in space and time that these equations
generate. We provide a syntax and semantics of these functions in Sec. 2.1.

To incorporate experimental data into our analysis, we define a set of obser-
vations as follows:

Definition 2 (Observations). Observations are sets of tuples (C,E), where

– C is a set of perturbed vector equations; and
– E is a set of predicates e : Π ×Π → B describing effects.

The most basic observation is that of the so-called wild type, which means that
a system is observed without making changes to the system; such an observation
has the form (∅, π) where π is a predicate that describes a concrete path (of finite
length). Observations with non-empty C are called perturbation (or mutation)
experiments. These describe the system behavior after some change is made
to the system. A common experiment is that of a knock-out where some gene
is repressed, e.g., C = {fg(π, t, d) := 0} for some gene g. In Section 3.1, we
illustrate how the predicates in E can be defined for expressing perturbation
effects.

2.1 Formal Syntax and Semantics of Vector Equations

A formal syntax for vector equations is not strictly required. In practice however,
the establishment of a language greatly simplifies the modeling task. In [10] such
a language is proposed, but a a formal syntax or semantics is not provided. To
establish a fully formal basis, we revisit their operators and prescribe a formal
semantics to them.1

Definition 3 (Vector equation language). The syntax of vector equations
is given by the following grammar:

V ::= g | > t | < t | In d̄ | ¬V | V ∧ V | V ∨ V

| At-n V | After-n V | Perm-n V | In d̄ V | In r d̄ V

where g ∈ G, t ∈ T, n ∈ N, r ∈ SR and d̄ ∈ D.

The semantics of a term V within the vector equation language is defined with
respect to a path π, a time point i, and a spatial domain d using the Boolean
connectors ¬, ∧ and ∨. The semantics of temporal operators are defined as:

g(π, i, d) ⇐⇒ π[i](g, d) (gene expression)

> t (π, i, d) ⇐⇒ i > t (time boundary)

< t (π, i, d) ⇐⇒ i < t (time boundary)

At-n V (π, i, d) ⇐⇒ n ≤ i ∧ V (π, i− n, d) (delayed temporary effect)

1 It is interesting to note that our formalization turns out to be within a subset of
the past fragment of linear temporal logic (details omitted from this version of the
paper).
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g(π, i, d)

f

0 1 2 3

(a) f = At-1 g(π, i, d)

g(π, i, d)

f

0 1 2 3

(b) f = After-1 g(π, i, d)

g(π, i, d)

f

0 1 2 3

(c) f = Perm-1 g(π, i, d)

Fig. 1. Examples showing the semantics of temporal operators. Yellow squares corre-
spond to the points where the gene is on, gray squares where the gene is off.

After-n V (π, i, d) ⇐⇒
∃k. 0 ≤ k ≤ i− n ∧ V (π, k, d) (permanent activation)

Perm-n V (π, i, d) ⇐⇒
¬(∃k. 1 ≤ k ≤ i− n ∧ V (π, k, d) ∧ ¬V (π, k − 1, d)) (permanent repression)

The At-n V (π, i, d) operator corresponds to the evaluation of V at n steps in
the past. After-n V (π, i, d) evaluates to true and stays true thereafter, if V is
true n steps earlier, while Perm-n V (π, i, d) evaluates to false, and stays false
thereafter, if V becomes true n steps earlier. Note that Perm-n does not simply
represent the negation of After-n operator, but instead implies that V has to
be false n− 1 and become true n steps in the past. An illustration of the path-
based semantics of the At-, After- and Perm- operators is provided in Fig. 1.

The semantics of spatial operators are defined as

In d̄ (π, i, d) ⇐⇒ d = d̄ (evaluation at domain d̄)

In d̄ V (π, i, ) ⇐⇒ V (π, i, d̄) (evaluation of V at domain d̄)

In r d̄ V (π, i, ) ⇐⇒ ∃d . r(i, d̄, d) ∧ V (π, i, d) (eval. of V in a related domain)

While In d̄ and In d̄ E(π, i, ) evaluate whether an atom or formula E holds at
a given domain, In r d̄ E(π, i, ) evaluates to 1 when E holds in some domain d
related to d̄ via the spatial relation r at time t.

3 Gene Expression Computation as a Path Synthesis
Problem

We adapt the method presented in [14] for the encoding of Boolean networks as
finite transition systems (over bit-vectors), in order to support spatial domains
and time delays.

Definition 4 (Dynamics of a GRNDD). The dynamics of a GRNDD N =
(G,D, SR,T, F ) is formally a finite-state automaton with

– set of states Q = B|G×D|;
– initial state q0 ∈ Q; and
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– transition relation δ : Π → B =

δ(π) ⇐⇒
∧

0<i≤T,g∈G,d∈D
π[i](g, d) = fg(π, i, d)

Intuitively, given a path π ∈ Π , δ(π) holds if π is a valid execution of the system.
Note that we do not require an input alphabet. This is because GRNDDs do not
have external input. However, non-deterministic behaviour is possible as part of
the initial state selection or for update functions with delays beyond the initial
time (e.g. fg(π, i, d) = At-3 V (π, i, d), at i = 2) or referring to the current time
(e.g. fg(π, i, d) = At-0 V (π, i, d)). Such non-determinism can be limited by the
requirement that the system’s dynamics are consistent with certain observations.

Note that our model of dynamics is based on that of a concurrent but syn-
chronous execution model, meaning that the expressions of all genes of the net-
work are updated within one step of the execution. In principle, it is possible
to integrate asynchronous dynamics, even if for this work we have followed the
semantics proposed in [10].

We are now ready to state the computation of the temporal and spatial gene
expression in terms of a path synthesis problem:

Problem 1 (Gene expression computation). Let N = (G,D, SR,T, F ) be
a GRNDD. The computation of the temporal and spatial gene expression of net-
work N corresponds to the synthesis of a (set of) path(s) {πi} ⊆ Π of length |T|
such that for each πi, δ(πi) holds.

In our experiments, we encode this problem into the theory of bit-vector and
uninterpreted functions (SMT QF UFBV). If these constraints are satisfiable,
i.e. there exist paths πi such that δ(πi) holds, then the SMT solver is able to
construct them one by one.

The dynamics of a perturbed GRNDD are defined in a straight-forward way:

Definition 5 (Perturbed Dynamics). Let N = (G,D, SR,T, F ) be a
GRNDD, let o = (C,E) be an observation. Set F ′ to be F with all functions that
have a definition in C replaced with their definition. Then the dynamics of the
perturbed system are the dynamics of (G,D, SR,T, F ′).

Finally, we need to be able to check whether a given GRNDD indeed replicates
the behavior seen in a set of observations. Formally, we do this by computing
gene expressions under all perturbations and checking whether the effects that
were observed experimentally are also observed in the GRNDD:

Problem 2 (Adequacy). Let N = (G,D, SR,T, F ) be a GRNDD and let O be
a set of observations. Let ΠN be the computed gene expressions for N . Determine
whether for each observation (Ci, Ei) ∈ O there is a path πi of length |T| which
is contained in ΠN and a path π′i of the same length in N perturbed by Ci, such
that Ei(πi, π

′
i) holds.

If a GRNDD N is adequate, i.e., if Problem 2 is answered in the positive, then
N does indeed allow executions that perfectly explain all observational data. In
the next section we make use of this problem definition to synthesize adequate
GRNDDs.
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3.1 Comparison Operators

In the biological literature, the effects of perturbation experiments are often
only formulated in a qualitative fashion (e.g. ‘if gene g0 is knocked out, then
g1 is over-expressed’), rather than in actual execution traces. For the purposes
of formal analysis however, a formal semantics of the effects of perturbations is
required. To do so, we characterize the class of comparison operators that can
occur in the predicates Ei in observations. We consider predicates of the form

(πi, gi, di, [t
s
i , t

e
i ])  ! (πj , gj , dj , [t

s
j , t

e
j ])

in order to compare the expression of a gene gi, in a domain di, in a path πi
and in a discrete time interval [tsi , . . . , t

e
i ], with the expression of a gene gj , in

a domain dj , in a path πj and in a time interval [tsj , . . . , t
e
j ]. We consider two

types of operators: First, the weak operators are  ! ∈ {>,<,≤,≥,=} and they
are used to compare the ‘average’ expression of the operands in the considered
time intervals. We define

(πi, gi, di, [t
s
i , t

e
i ])  ! (πj , gj , dj , [t

s
j , t

e
j ]) ⇐⇒∑tei

t=tsi
πi[t](gi, di)

tei − tsi
 !

∑tej
t=tsj

πj [t](gj , dj)

tej − tsj

Second, the strong operators are  ! ∈ {1,2,1=,=2,==} and they compare
gene expressions point-by-point, and not on the basis of their average over a time
interval. Hence, they are defined only if tei − tsi = tej − tsj , i.e. if the time intervals
of the two operands have the same length. Let us assume that tsi = tsj + k and
that tei = tej + k, with k ∈ Z. Then,

(πi, gi, di, [t
s
i , t

e
i ])  ! (πj , gj , dj , [t

s
j , t

e
j ]) ⇐⇒

tei∧
t=tsi

πi[t](gi, di)  !w πj [t+ k](gj, dj)

where  !w denotes the weak version of a strong operator  !. Fig. 2 shows two
examples of how these operators apply.

4 Synthesis of Vector Equations

In this section we present a procedure for the automated synthesis of vector
equations, so that the computed temporal expressions meet the observations,
with the aim of answering positively to Problem 2. We extend the vector equa-
tion language to enable synthesis of basic gene interactions, i.e. simple regulatory
interactions from which more complex gene functions are constructed; and the
synthesis of generic Boolean functions, based on the use of uninterpreted func-
tions for finding admissible logical combinations of vector equation terms.
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πi, gi, di
πj, gj, dj

0 1 2 3 4

(a)

πi, gi, di
πj, gj, dj

0 1 2 3 4

(b)

Fig. 2. Comparison of two temporal expression patterns πi and πj . Yellow squares
indicate time-points where the gene is expressed, gray squares where it is not. Gene
gi in πi and domain di is overexpressed w.r.t. gene gj in πj and domain dj . How-
ever, the strong comparison operator �= does not hold in the example (a) over the
time interval [0, 4], while its weak equivalent (≥) does. Contrarily in example (b),
(πi, gi, di, [0, 4]) �= (πj , gj , dj , [0, 4]), because the comparison is verified point-by-
point, and thus (πi, gi, di, [0, 4]) ≥ (πj , gj , dj , [0, 4]) also holds.

Definition 6 (Basic interaction). Let N = (G,D, SR,T, F ) be a GRNDD.
A basic interaction (BI) of N is a tuple f = (g, b, d, r, t, op) where:

– g ⊆ G is a set of input genes;
– b ⊆ B is a set of Boolean values indicating whether genes in g are expressed

or not;
– d ⊆ Dε = D ∪ {ε} is a possibly empty set of (d = ε) spatial domains;
– r ⊆ SRε = SR ∪ {ε} is a possibly empty set of spatial relations;
– op ⊆ {At-,After-,Perm-} and t ∈ T are a set of temporal operators and

a corresponding set of delays, respectively.

A BI f = (g, b, d, r, t, op) describes a set of interactions where an input gene
g′ ∈ g (whose expression depends on a b′ ∈ b) affects the target gene according
to a temporal operator op′ ∈ op and delay in t′ ∈ t, and possibly occurring in a
domain d′ ∈ d, or in a domain that is in a spatial relation r′ ∈ r with d′. In order
to avoid unwanted redundancies and non-determinism, we exclude the empty
temporal operator which is semantically equivalent to At-0. The choice of this
particular template for BIs was driven by observing that in the sea urchin model
presented in [10], every vector equation takes the form of a logical combination of
terms characterized by the same information. On the specification side, we want
to allow the modeler to incorporate some degree of flexibility in the declaration of
a BI to synthesize, and in turn to include gene regulations that are supported by
experimental evidence. Moreover, constraining the set of potential interactions
has the added benefit that the resulting functions are easily interpreted by the
domain expert who specified the templates, and that the same templates enables
the exclusion of unwanted or biologically unlikely interactions. Of course, there
is also a performance advantage, because a smaller set of functions is considered
by the solver.

Formally, the declaration of a basic interaction is of the form

f ⊆ G× B×Dε × SRε × T× {At-,After-,Perm-} → B

where f is a symbol from the set I of declared BI symbols. In practice, we con-
strain every BI by a declaration of choice of (subsets of) admissible values to each
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of its elements. For example, f
dec
= ({g},B, {ε}, {ε}, {0, 1, 2}, {After-,Perm-})

describes an interaction with a gene g whose expression is unknown (b can
take any Boolean value), where no domain-specific or inter-domain signaling
occurs (both d and r are fixed to ε), and causing a permanent effect (op =
{After-,Perm-}) on the target gene with a maximum delay of 2.

Obviously, for every declaration f
dec
= (g, b, d, r, t, op), we need to impose the

BI f to be evaluated to one of the admissible values specified in its declaration,
which imposes the constraint∨

g′∈g,b′∈b,d′∈d,r′∈r,t′∈t,op′∈op
f = (g′, b′, d′, r′, t′, op′)

Apart from basic interactions, we also allow the specification of arbitrary
Boolean functions by the use of uninterpreted functions (UF) of the form uf :
Bn → B. The only constraint we impose on such functions is whether input
variables are allowed to be negated or not. This information depends on domain
knowledge, e.g., it may be known that expression of some gene inhibits the
expression of another gene, but the precise mechanism of inhibition is unknown.

Indeed the negation of a term radically changes the regulatory input it
represents, by turning an activation input into an inhibition (and vice versa).
Therefore, if we require that the synthesized function does not contradict known
biological hypotheses about the kind of input interaction, for a UF uf of arity
n the following constraints are imposed:∧

i=1,...,n

uf(b1, . . . , bi−1, 0, bi+1, . . . bn) =⇒ uf(b1, . . . , bi−1, 1, bi+1, . . . bn)

We briefly explain the rationale behind this formula. According to the sum-
of-products (SoP, DNF) form of uf , if uf(b1, . . . , bi−1, 0, bi+1, . . . , bn) holds for
some choice of b1, . . . , bn, then the function translates to a formula of the form

uf = (b′1 ∧ . . . ∧ b′i−1 ∧ ¬bi ∧ b′i+1 ∧ . . . ∧ b′n) ∨ . . .

which contains a min-term where the i-th variable is negated and b′j is either bj
or ¬bj for j �= i. A way to get rid of the negated term ¬bi is to enforce that
uf(b1, . . . , bi−1, 1, bi+1, . . . , bn) holds for the same choice of variables b1, . . . , bi−1,
bi+1, . . . , bn. By doing so, in the SoP representation of uf the negated term would
conveniently simplify because

(b′1 ∧ . . . ∧ b′i−1 ∧ ¬bi ∧ b′i+1 ∧ . . . ∧ b′n)∨
(b′1 ∧ . . . ∧ b′i−1 ∧ bi ∧ b′i+1 ∧ . . . ∧ b′n) ∨ . . .

= (b′1 ∧ . . . ∧ b′i−1 ∧ b′i+1 ∧ . . . ∧ b′n) ∨ . . .

We now extend the vector equation language in order to support the specifi-
cation of BIs and UFs to be synthesized:
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Definition 7 (Vector equation language for synthesis). The syntax of vec-
tor equations supporting the synthesis of basic interactions and Boolean functions
is given by the following grammar:

V ::=f | uf(V, . . . , V ) | g | > t | < t | In d̄ | ¬V | V ∧ V | V ∨ V

| At-n V | After-n V | Perm-n V | In d̄ V | In r d̄ V

where g ∈ G, t ∈ T, n ∈ N, r ∈ SR, d̄ ∈ D, f ∈ I is a declared BI symbol; and
uf ∈ U is a declared UF symbol.

The semantics of the expression uf(V1, . . . , Vn) simply consists in the appli-
cation of the UF uf over its arguments:

uf(V1, . . . , Vn) (π, i, d) ⇐⇒ uf(V1(π, i, d), . . . , Vn(π, i, d)) .

The semantics of a BI f is defined as a conjunction of formulas of the form
f = (g′, b′, d′, r′, t′, op′) =⇒ V (π, i, d) which relate any synthesizable evaluation
of f to the corresponding vector equation term V :∧
g′ ∈ g, b′ ∈ b,
d′ ∈ d, r′ ∈ r,
t′ ∈ t, op′ ∈ op

f = (g′, b′, d′, r′, t′, op′) =⇒ op′ t′(IN r′d′(b′ ⇐⇒ g′)) (π, i, d)

where IN r′d′ V corresponds to INd′ V if r′ = ε∧d′ �= ε, or to V if d′ = ε. A BI
is naturally mapped to a vector equation term describing the same interaction.
For instance, the interaction (g, 1, d, ε, 2,At-) corresponds to termAt-2(In d(g)),
while (g, 0, d, r, 0,Perm-) corresponds to Perm-0(In r d(¬g)).

Bit-Vector Encoding of Basic Interactions. To make use of specialized simpli-
fication and solving procedures in the solver, we use a bit-vector encoding of
BIs. Given an interaction f = (g, b, d, r, t, op), let us denote with f its bit-
vector encoding, and with f(g) ∈ B�log2|G|�, f(b) ∈ B, f(d) ∈ B�log2(|D|+1)�,
f(r) ∈ B�log2(|SR|+1)�, f(t) ∈ B�log2|T|� and f(op) ∈ B2 the fields of f encoding
the finite-ranging elements g, b, d, r, t and op, respectively, as subsequences of f .
Thus, the total length of f is:

N = ,log2|G|-+ 1 + ,log2(|D|+ 1)-+ ,log2(|SR|+ 1)-+ ,log2|T|-+ 2 .

Note that it is typically unnecessary to allocate ,log2|T|- bits to describe a delay
t, since in any non-trivial model, it is very unlikely to have delays as long as the
total execution time. Hence, in most cases it is worth fixing a maximum delay
t̄ < |T| for a more efficient bit-vector representation of the interaction.

5 Predicting Sea Urchin Development

We evaluated our approach by considering one of the most complete models of
sea urchin embryonic development [10], which contains 45 genes (and the vector
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equations describing their dynamics); 4 spatial domains ; and 2 spatial relations
between domains. The sea urchin is a well established model organism, allowing
to study fundamental biological processes in a simpler setting, with mature and
powerful experimental methods, and the advantage that many of the underlying
mechanisms are conserved in higher level organisms. The model execution spans
the discrete time interval [0, 30] hours post fertilization (hpf), corresponding to
the early stages of development. We implemented the vector equation language
and the synthesis methods in a prototype where we make extensive use of the
QF UFBV support in the Z3 theorem prover [4].

We summarize the procedure followed for synthesizing a set of vector equa-
tions that completely explain all experimental data (both wild-type expression
and perturbation effects). The resulting equations have been obtained by consid-
erably changing the original formulation of the sea urchin model that explains
most but not all the data. Although the synthesis of vector equations in terms of
their regulatory logic and input interactions is fully automated, the final model
is derived after a number of manual refinement steps, which allows to progres-
sively add assumptions that are both biologically plausible and logically consis-
tent. This semi-automated strategy helps in excluding models able to reproduce
experimental observations but that are not biologically meaningful.

Initially, we validated the correctness of our formalization of the language, by
showing that the SMT-based implementation of the original model produced the
same expression patterns as reported in [10].

1. Removal of Hard-Coded Data Constraints. The original model contains a num-
ber of terms formulated in a way that reproduces exactly wild-type observations,
of the form IN d ∧ t > ts ∧ t < te. Such a term basically forces the expression
of the output gene to be expressed in a specific domain (d) and time-interval
([ts + 1, te − 1]), regardless of the initial conditions or interactions with other
genes, thus providing just a description of the observation and no predictive ca-
pabilities. We removed from the original equations any occurrence of such terms
(present in 8 vector equations), and we found that the resulting model still does
not admit solutions that meet experimental observations.

2. Exploration of Unsatisfiable Vector Equations. Identifying the components
of a biological model which fail in reproducing the expected behavior is a hard
task, especially if the system is characterized by a large numbers of interacting
components like in our case. We address this problem with the automated ex-
traction of unsatisfiable subsets of vector equations, that are not able to explain
experimental data regardless of how the other equations are defined. This kind
of analysis points the biologist to the exact source of inconsistency, thus prompt-
ing further investigation of the underlying regulatory interactions that make the
model contradict experimental data.

In our case, we found that 14 out of the 45 original equations were inconsis-
tent on their own, i.e. solving Problem 2 with a GRNDD model that contains
only one among those equations determines inadequacy. Note that the removal
of inconsistent equations from the model does not necessarily make it satisfiable.
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Indeed, our model was found inconsistent even after excluding all these problem-
atic equations, suggesting that any minimal unsatisfiable subset would include
a major part of the original equations. We therefore synthesize a new equation
for every gene, as explained in the following step:

3. Reformulation of Vector Equations into Functions to Synthesize. With our
framework we are able to synthesize correct models that also incorporate biolog-
ical knowledge and assumptions. The procedure consists of replacing each vector
equation with an uninterpreted Boolean function over a set of basic interactions
to synthesize, one for each term of the original equation. The final equations are
obtained through an iterative refinement where initially, each term to synthesize
is constrained to meet the original specification only in the input gene and in the
temporal operator, which are the most fundamental information of a regulatory
interaction. Then, we restrict the space of solutions by gradually restoring the
satisfiable features of the initial model (and removing hard-coded observations
as described in Step 1).

Specifically, consider a general vector equation f of the form:

f = . . . op t(IN r d(b ⇐⇒ g)) . . .

where op is the temporal operator, t the delay, d and r the (possibly empty)
domain and spatial relation, respectively, g the input gene and b the Boolean
indicating whether g is on or off. A UF uf is considered in place of the initial
logical combination of terms, and each term is replaced by a BI as follows:

f = uf(. . . , ({g},B, Dε, SRε,T′, {op}), . . .)

where only g and op are constrained to their original values, and T′ = [0, 12] hpf
is a reasonably large set of admissible delays. The subsequent refinement steps
include restoring b and constraining each function uf so that its interpretation
does not negate the involved terms; setting back the original spatial relation and
domain; and restricting the delay to the interval [max(0, t − 3), t + 3] so that
we admit an error of 3 hpf, which is reported in [10] to be the resolution of
experimental observations. Using the following procedure we have synthesized a
biologically plausible model that fully explains all the experimental data repre-
sented in [10]. The proposed SMT-based approach paves the way for new kinds
of in silico experiments, infeasible without automated reasoning and synthesis
techniques. The biological interpretation of our model is however beyond the
scope of this paper.

6 Related Work

6.1 Program Synthesis

In our work synthesis is used to support the abstract reasoning process biolo-
gists perform in their research towards deriving mechanistic predictive models.
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Our system takes observation data and equations templates as specifications
and produces new vector equations which fully reproduce the observations and
respect the initial templates. In program synthesis the aim is to automate the
process of implementation and ensure that the program is correct by construc-
tion. Program synthesis accepts specifications and generates code fulfilling those
specifications.

In [12] sketches are used to synthesize programs. A sketch is a program with
placeholders. The synthesizer takes a sketch along a working reference imple-
mentation and generates an optimized version of the reference implementation.
This work has been extended to take into account Boolean constraints and a
numerical qualitative objective [3].

Work in [13] introduced a so called proof-theoretic synthesis that interprets
program synthesis as generalized program verification. It requires the user to
provide an input-output functional specification, a description of the atomic
operations in the programming language, and a specification of the synthesized
programs looping structure, allowed stack space, and bound on usage of certain
operations. Their system works by using the Z3 theorem prover to reconcile
constraints that relate unknown statements, guards, inductive invariants, and
ranking functions.

These synthesis tools require a higher level of specification effort. This is differ-
ent from our work which uses less information to start with. In particular, we do
not ask the biologist to provide a working set of fully specified vector equations,
or fine details on the generated equations. However our approach enables biol-
ogists to provide additional constraints that capture information inferred from
experimental results or biological intuition, which helps the synthesis methods
to derive more realistic models.

6.2 Computational Biology and Synthesis

The use of synthesis as a method to construct models of biological systems has
gained interest in the setting of discrete models that capture biological behav-
ior and enable important predictions and understanding. In particular several
approaches have been developed and applied to a classical system in develop-
mental biology describing fate specification of Vulval Precursor Cells (VPCs) in
the C. elegans nematode. In [7] a method that introduces a set of don’t care (dc)
Boolean variables that must be assigned values in order to obtain a concrete
model is presented. When a dc variable is set to 1, this indicates that the infor-
mation from the corresponding component does not contribute to the observed
result. The problem is formulated as maximizing the number of dc variables that
are set to 1, while retaining a model solution that is consistent and explains all
the given known data. This amounts to solving a QBF formula with a maxi-
mization goal for the dc variables. In [5] the question of synthesizing concurrent
models with bounded asynchrony satisfying a set of experiments that include ge-
netic mutations is addressed and the developed language and tools are applied
to the VPC system. Technically this turns out to be a QBF formula with three
levels of alternation, and new algorithms are developed to solve it. Additional
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work on synthesis from scenario-based specifications and its application to the
VPC system is described in [8,6], there the approach considered views the prob-
lem as a game between the environment (the experimentalist) and the system
(the nematode) and the solution relies on computing fix-points symbolically via
compositional methods.

Besides being applicable to the reverse engineering of biological systems, ap-
proaches based on the use of formal synthesis and verification are also relevant
for their design. For example, in the field of synthetic biology one goal is to
engineer genetic networks with specific, useful properties. In [2] temporal logic
was used to capture such properties and model-checking was applied to study
if a synthetic gene network design was consistent with these specifications. A
parameter synthesis strategy was also developed to tune a design in order to
achieve the required behavior in [2] and, more recently, similar modular design
strategies were proposed in [1].

In [14] we introduce Z34Bio, an SMT-based framework for the automated
analysis and design of several classes of biological systems, where a common
symbolic representation as transition systems over bit-vectors is used to encode
multiple classes of biological models, including Boolean networks and chemi-
cal reaction networks. The framework was applied in [14] to the verification of
DNA circuit design and to the stability analysis of gene regulatory networks, in
particular showing how multiple gene knockouts that affect the stability of the
system are automatically identified. Recent extensions to this framework include
methods for analyzing probabilistic systems [11].

7 Conclusion

Deciphering and understanding the underlying developmental program of an
embryo is a fundamental problem. In particular, biologists have spent several
decades detailing how a complex gene regulatory network controls the develop-
ment of sea urchin embryos. In [10] it is shown how a model of the sea urchin
GRN is turned empirically into a predictive dynamic Boolean model. Beyond
the mere understanding of a complex process, this result provides a tool with
which to test in silico regulatory circuitry and developmental perturbations.

In this paper, we present a generic SMT-based approach for analyzing GRNs
in order to synthesize predictive dynamic and Boolean GRN. We applied our
approach to the sea urchin embryo, and successfully improve the current state-
of-the art by providing, for the first time, biologists with models that perfectly
explain all known data.

There are several major benefits to our method. First, our approach saves
biologists and modelers months or even years of tedious work trying to derive
the best predictive model. Second, biologists may have greater confidence in
silico tests since the provided models perfectly explain all known data. Third,
our method enables to determine that part of a model is inconsistent and cannot
explain all known experimental data, helping to focus research efforts on specific
biological mechanisms and assumptions that require reevaluation.
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This last benefit is related to the finding of minimal unsatisfiable cores in
verification applications. However, in our context, this represents much more
than the discovery of a transient problem with a particular version of a chip
design or software component. Instead, it represents a new way to push the
boundaries of knowledge, by driving biologists toward new scientific findings
and empowering their capacity to understand life.
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Abstract. The stability of biological models is an important test for es-
tablishing their soundness and accuracy. Stability in biological systems
represents the ability of a robust system to always return to homeosta-
sis. In recent work, modular approaches for proving stability have been
found to be swift and scalable. If stability is however not proved, the
currently available techniques apply an exhaustive search through the
unstable state space to find loops. This search is frequently prohibitively
computationally expensive, limiting its usefulness. Here we present a
new modular approach eliminating the need for an exhaustive search
for loops. Using models of biological systems we show that the technique
finds loops significantly faster than brute force approaches. Furthermore,
for a subset of stable systems which are resistant to modular proofs, we
observe a speed up of up to 3 orders of magnitude as the exhaustive
searches for loops which cause instability are avoided. With our new
procedure we are able to prove instability and stability in a number of
realistic biological models, including adaptation in bacterial chemotaxis,
the lambda phage lysogeny/lysis switch, voltage gated channel opening
and cAMP oscillations in the slime mold Dictyostelium discoideum. This
new approach will support the development of new tools for biomedicine.

Keywords: Stability, instability, verification, biology.

1 Introduction

Traditional computer science approaches are playing an increasingly important
role in the modeling and analysis of biological systems. Formal verification ap-
proaches for biological signaling systems have been successfully applied in a wide
range of different organisms and phenomena [1–3]. In different systems, proofs
of both reachability [4, 5], and stability [6] can give powerful insights into the
mechanisms of cell differentiation and homeostasis. Stability specifically offers
a valuable tool when considering systems which can be reliably considered as
being at equilibrium or homeostatic. We consider stability here in terms of a
guarantee that the system always eventually moves towards a single self-loop
state, regardless of the initial state of the model. In the context of biological
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systems, instability can therefore indicate a developmental switch (e.g. bifurca-
tion) or oscillation (e.g. cycles with lengths greater than 1). In contrast, stability
demonstrates that the system is at a robust equilibrium, as any temporary per-
turbation will eventually converge to the equilibrium state.

The development of formal models of biological systems further offers a new
platform for discoveries in the life sciences and medical research. By translating
the diagrammatic models typically generated in experimental disciplines into
forms which can be explored using verification techniques, we can highlight
inadequacies in the model and propose new testable hypotheses. In contrast
to models based on precise reproduction of physical or chemical properties of
a given biological phenomenum, executable models avoid a reliance on highly
accurate quantitative data from experimental studies. For questions such as
"could a drug targeted to this protein ever kill the cell?" or "does the model
accurately represent a robust equilibrium?", the relative independence of for-
mal models from detailed physical constants is a strength of this technique over
traditional physico-chemical simulation. Furthermore, this degree of abstraction
more closely mimics the qualitative data generated by genetic screens. Boolean
and qualitative networks specifically have been successfully used in the study
of diverse systems. Initially applied to the study of gene regulation [7] these
formalisms have been applied to blood cell differentiation, skin homeostasis and
cancer development [8–11]. The ability to analyze models with these approaches
has great relevance to clinicians and the biomedical industries. Furthermore,
Boolean networks have been used successfully to systematically model drug in-
teractions in tumorigenesis [12], in order to rationally identify new drug targets.
This ability to validate drug targets in silico offers the potential to avoid costly
failures at late stage clinical trials, and as such new model checking techniques
have great relevance to clinicans and the biomedical industries.

Existing tools suitable for the analysis of biological qualitative networks, such
as GinSim [13] and NuSMV [14], explore stability through the use of efficient
representations of the state transitions as binary decision diagrams and multi-
valued decision diagrams [15], coupled with simulation. The reliance on exhaus-
tive simulation however limits the size of the models which can practically be
analysed, forcing users with large models to reduce the size of the model by a
semi-automated process of model reduction (e.g. [10]). Additionally, encoding
complex transition functions in these tools is laborious, making expression of
realistic biological models difficult.

Proofs of stabilization in biological systems are complicated by the complex
temporal relationships between interacting elements which are necessary for sta-
bility, and prevent the use of scalable techniques which abstract these details
away. These temporal interactions are necessary to describe systems which show
adaptation [16], or timed switches [17]. Previous work presented an algorithm for
proving stability [6] which is sound and complete, and reverts to an exhaustive
search for cycles of increasing length (up to the diameter of the system) if sta-
bility cannot be proved rapidly. Failure to find multiple self-loop states or cycles
proves the stability of the system. Thus, if a stable model is resistant to quick
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proofs of stability, the search for cyclic counterexamples can be prohibitive. As
a result of the rapid growth in the number and diversity of biological qualitative
networks, we have recently identified several realistic, stable models which resist
the approach of [6].

In this paper, we tackle the problem of proving instability with a new modular
approach. This greatly increases the speed of disproving stability in several sys-
tems by rapidly identifying loops arising from cyclic instabilities. Previous tech-
niques proved stability by taking lemmas of the form: [FG(p1)∧· · ·∧FG(pk)]⇒
FG(q), where p1 . . . pk are formulae over the inputs of a given component, and q
is a formula about the component’s output, where F and G denote "eventually"
and "always" in linear temporal logic [18]. If this fails to find a single self-loop
state, exhaustive searches for multiple self-loop states and loops are performed.

To avoid this costly calculation, our new approach searches for counterexam-
ples using a divide/conquer technique, based around a modular approach for
proving stability. If a single or multiple self-loops cannot be found when an-
alyzing the system, the state space is divided into two, and each individually
searched for local self-loops. Finally, through an analysis of the cut and a small
number of steps of simulation, either counter examples of cycles are found or
stability is proved.

Our new approach increases the speed of the proof of instability and stability
(in the case that stability cannot be proved easily) by over 2 orders of magnitude
compared with previous approaches [6] in addition to being sound and complete.

2 Verifying Stability in Qualitative Networks

Qualitative Networks (QNs) [8] have been extensively used to model biological
phenomena. A QN Q(V, T,N), of granularity N + 1 consists of n variables:
V = (v1, v2, · · · , vn). The state of the system is a finite map s : V → {0, 1, · · ·N}.
The set of initial states is the set of all states. Each variable vi ∈ V has a
target function Ti ∈ T associated with it: Ti : {0, 1, · · · , N}n → {0, 1, · · ·N}.
Qualitative networks update the variables using synchronous parallelism.

Target functions in qualitative networks direct the execution of the network
from state s = (d1, d2, · · · , dn). The next state s′ = (d′1, d

′
2, · · · , d′n) is computed

by:

d′v =

⎧⎪⎪⎨⎪⎪⎩
dv + 1 dv < Tv(s) and dv < N,

dv − 1 dv > Tv(s) and dv > 0,

dv otherwise.

(1)

A target function of a variable v is typically a simple algebraic function, such
as sum, over several other variables w1, w2, · · ·wm. Variables w1, w2, · · · , wm are
called inputs of v and v is an output of each one of w1, w2, · · · , wm. The input
function induces a dependency graph of the network with the variables as nodes,
where an edge (u, v) exists iff u is an input of v.
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A QN Q(V, T,N) defines a state space Σ = {s : V → {0, 1, · · ·N}} and a
transition function δ : Σ → Σ, where δ(s) = s′ such that for every v ∈ V ,
s′(v) depends on Tv(s) as in Eq. 1. For a state s ∈ Σ we denote s(v) also by
sv. Likewise, δ(s)v = δ(s)(v) is the value of v in δ(s). We say that a state s is
recurring if it is possible to get back to s after a finite number of applications
of δ. That is, if for some i > 0, we have δi(s) = s. As the state space of a
qualitative network is finite, the set of recurring states is never empty. We say
that a network is stabilizing if there exists a unique recurring state s. That is,
there is a unique state s such that δ(s) = s, and for every other state s′ and
every i > 0 we have δi(s′) �= s′. Intuitively, this means that starting from an
arbitrary state, we always end up in a self-loop state and always the same one.
For an unstable network, we have two possibilities: (a) multiple self-loop states;
(b) at most one self-loop state but non-trivial cycles.

In [6], the problem of determining whether a network stabilizes or not is solved
by proving local lemmas about the range of values a variable can eventually take
depending upon already proven lemmas about its inputs. Each newly proven
lemma is then used to strengthen the lemmas about its outputs until nothing
changes. The order in which variables are picked for strengthening is arbitrary.
The proven lemmas can sometimes be enough to determine that a network sta-
bilizes. If not, an explicit search for counter-examples is carried out. First, the
existence of multiple self-loops is checked by encoding it as a Boolean satisfiabil-
ity problem. If this check fails, bounded model-checking (BMC) is used to find
non-trivial cycles of increasing length. For stabilizing networks where modular
lemmas are not strong enough to show the same (see Fig. 1b), BMC unrolling
to a length more than or equal to the system’s diameter is required to show
non-existence of cycles, which is infeasible even for moderately sized networks.

Here, we revisit the modular proof-based approach from [6], using a technique
similar in spirit to abstract interpretation [19, 20]. We present a novel, scalable
instability detection algorithm in Sec. 3 that reuses the old algorithm as one of
its sub-procedures.

2.1 Over-approximating Recurring States

All states of a QN are considered initial states. Let Σi, i ≥ 0 be the set of states
of the QN that are reachable in i or more steps starting from some initial state.
Note that if a state s of a QN is not reachable in i or more steps, then it is
not reachable in i′ or more steps for every i′ > i. Hence, Σ = Σ0 ⊇ Σ1 ⊇
Σ2 ⊇ · · · is a decreasing sequence. Since the state space is finite, there will exist
l ≤ diameter(Σ), such that Σl′ = Σl, for every l′ ≥ l. The set Σl is the set of all
recurring states of the network, which is a singleton for a stabilizing network.

Computing the exact reachability sets is not feasible in practice. Instead we
try to over-approximate the set of recurring states by using a layer of abstraction
to represent sets of states. Analogous to interval domain from abstract interpre-
tation [19,20], for each variable v, we just keep track of the range of its possible
values. Let [i, j], i, j ∈ Z, i ≤ j, denote the interval containing all integers from
i to j inclusive. Interval [i1, j1] contains another interval [i2, j2] iff i1 ≤ i2 and



362 B. Cook et al.

j1 ≥ j2. Let LN be the the set of all intervals contained in [0, N ]. An element
(I1, · · · , In) of the set S = LnN represents a sub-space of Σ where variable v can
take all values in the interval Iv. We refer to elements of S as regions. A region
ρI = (I1, · · · , In) is said to contain another region ρJ = (J1, · · ·Jn) (written as
ρI 3 ρJ) iff Ik contains Jk for every 1 ≤ k ≤ n. (S,3) is a finite (hence complete)
partial order with [0, N ]n as the � element. A region ρ = ([l1, h1], · · · , [ln, hn])
can be equivalently represented by functions V ρ

lo and V ρ
hi s.t. ∀v ∈ {0, · · · , n},

V ρ
lo(v) = lv and V ρ

hi(v) = hv. The set of states s in ρ s.t. δ(s) is outside of ρ is
denoted by ρ• = {s ∈ ρ ∧ δ(s) �∈ ρ}. If ρ• is not empty, we say the region ρ is
open wrt δ, otherwise it is closed.

Let v be a variable and (w1, · · · , wm) be its inputs. We define a function
F : S → S, which updates the bounds of eventually possible values of v using
the bounds on the values of its inputs as restricted to ρ. Let (w1, · · · , wm) =
inputs(v). We compute the set of values of the target function Tv applied to
all possible input combinations in ρ and use that to update the interval of v.
Formally, F (ρ) = (f1(ρ), · · · fn(ρ)), with

fv(ρ) = [min(θv(ρ)),max(θv(ρ))], where (2)
θv(ρ) = Tv([V

ρ
lo(w1), V

ρ
hi(w1)]× · · · × [V ρ

lo(wm), V ρ
hi(wm)]) (3)

by suitably lifting the definition of Tv to sets of states.
Note that F is monotonic because ρ1 3 ρ2 implies Tv(ρ1) ⊇ Tv(ρ2) and

thereby fv(ρ1) contains fv(ρ2). By Kleene’s fixed point theorem, F will have a
greatest fixed point νF , which can be computed by finite number of repeated
applications of F on �. Since F is monotonic, repeated applications of F on �
would give rise to a decreasing sequence of regions � 3 F (�) 3 F 2(�) 3 · · · .
Every element of this sequence is a closed region, because an outgoing transition
from some state s in F i(�) would mean that in s, target function of some variable
v takes a value not contained in [V

F i(�)
lo (v), V

F i(�)
hi (v)], implying F i+1(�) �4

F i(�). Using these observations, we claim the following.

Lemma 1. The greatest fixed point νF is an over-approximation of the set of
recurring states in Σ.

We can prove this by induction on the number of times F is applied. � =
[0, N ]n = Σ contains all recurring states, which proves the base case. Assume the
inductive hypothesis that for some i ≥ 0, F i(�) contains all recurring states.
We show that one more application of F cannot remove even one recurring
states from F i(�). For some state s ∈ F i(�) \ F i+1(�), there exists a variable
v s.t. fv(F i(�)) does not contain sv. For the sake of contradiction, assume s
is recurring. Then, there exists m > 0 s.t. ∀i ∈ {1, · · · ,m − 1} · δi(s) �= s
and δm(s) = s. Since all variables can change by at most 1 in each transition
according to Eq. 1, there must exist i, j ∈ {0, · · · ,m − 1} s.t. Tv(δi(s)) ≥ sv
and Tv(δ

j(s)) ≤ sv. Since F i(�) is closed, δi(s), δj(s) ∈ F i(�). This means
fv(F

i(�)) must contain sv which leads to a contradiction. Thus, F i+1(�) also
contains all recurring states, proving our claim.
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2.2 Computing the Greatest Fixed Point νF

We refer to one application of some fv as an update. Then, νF is a fixed point
of a system of equations, one equation corresponding to each fv. The simplest
algorithm to compute νF is to repeatedly apply F until a fixed point is reached.
One application of F corresponds to a parallel application of each fv. This
algorithm is far from optimal since it does not exploit the dependencies in the
network. In the worst case, when each application of F changes either lower
or upper bounds of exactly one of the variables by 1, it can perform O(Nn2)
updates. Biological models expressed as QNs are typically expected to have a
small granularity, reflecting the high level of abstraction from the underlying
physico-chemical nature. Since every fi is monotonic, every sequential algorithm
will find the greatest fixed point as long each fi is applied a sufficient number
of times. Each update can be compared to a lemma generation step (Algorithm
4 in [6]).

Computing νF is often scalable because most variables in a typical QN have
a small number of inputs. Each update to a variable means going over all pos-
sible combinations of its inputs w1, · · · , wm within the current region ρ, i.e.
([V ρ

lo(w1), V
ρ
hi(w1)]× · · · × [V ρ

lo(wm), V ρ
hi(wm)]), which is feasible when the num-

ber of inputs is small. In many cases the target functions are also monotonic in
some inputs, which allows for checking only the boundaries of the region (instead
of the complete Cartesian product) to get the min/max possible target function
value.

In cases where νF is a singleton, we safely conclude that the network stabilizes.
We denote such networks as being trivially stable. When it is not a singleton, it
may still be possible that the network is stable and the over-approximation is
too coarse. Such networks are termed as being non-trivially stable.

2.3 Example

Fig. 1 shows how the fixed-point computation would proceed on the example
transition systems. Each of them are of granularity 3 and have two variables A
and B. The target functions corresponding to the transition system in Fig.1a are:
TA(a, b) = 0, TB(a, b) = if a = 0 then 0 else b. Target functions of the other two
transitions systems are cumbersome to write and are hence omitted in the text.
In case of Fig.1a, two updates are enough to determine that the only recurring
state is A = 0, B = 0. In Fig.1b even though the network is stabilizing, it is
not possible to strengthen the intervals of either A or B beyond [0, 2]× [0, 2]. In
Fig.1c, the network is unstable due to presence of a cycle, and one update each
to intervals of A and B leads to the greatest fixed point region [0, 1]× [0, 1]. We
still have to explicitly check for presence of cycles within this smaller region.

3 Finding Instability

If the greatest fixed point νF is not a singleton, we can think of the following
disjoint possibilities: (a) the network is unstable due to presence of (a.1) at least
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(a) Trivially Stable

(b) Non-trivially
Stable

(c) Cyclic Instability

Fig. 1. Computing νF on transition systems of example QNs. Circles denote states and
arrows between states denote transitions. Solid circle means that the state is recurring.
Rounded rectangles are used to represent regions (interval domain).

two self-loop states, or (a.2) at most one self-loop state but at least one non-
trivial cycle; (b) the network stabilizes and νF is too coarse to conclude that,
in which case it has exactly one self-loop and no non-trivial cycles. Checking
(a.1) can be encoded as a Boolean satisfiability problem. A decision procedure
is used to check the existence of two distinct states: u and w such that both are
self-loops: ∀i ∈ {1, · · · , n} · (δ(u)i = ui) ∧ (δ(w)i = wi). This decision procedure
usually works very well. On the contrary, as mentioned earlier the check for
distinguishing (a.2) and (b) is a brute force call to a decision procedure that
searches for loops of increasing length (up to the diameter of the network).
Especially in the case that (b) is true, performance is prohibitive. This motivates
development of a new algorithm to distinguish between cases (a.2) and (b).

First, we define some terminology. Let ρ be a region of the QN Q. A pair
(ρ1, ρ2) of disjoint regions such that ρ1 ∪ ρ2 = ρ is called a cut of ρ. As both
ρ1 and ρ2 are regions and ρ1 ∪ ρ2 must be ρ, it follows that there exists some
variable v and a value d such that ρ1 = {s ∈ ρ | s(v) ≤ d} and ρ2 = {s ∈
ρ | s(v) > d} without loss of generality. In this case it must also be the case
that ρ1 ∪ ρ2 = ρ1 � ρ2 (where � is the join operation in the lattice of regions).
Let ρ1 • ρ2 = {s|s ∈ ρ1 ∧ δ(s) ∈ ρ2} be the set of states in ρ1 that have a
transition to some state in ρ2 and δ(ρ1 • ρ2) is the image of ρ1 • ρ2 wrt δ. We
have δ(ρ1 • ρ2) ⊆ ρ2. A pair of sets of states γ = (γρ1 , γρ2) is a frontier of the
cut (ρ1, ρ2) iff ρ1 • ρ2 ⊆ γρ1 ⊆ ρ1, δ(ρ2 • ρ1) ⊆ γρ1 and ρ2 • ρ1 ⊆ γρ2 ⊆ ρ2,
δ(ρ1 • ρ2) ⊆ γρ2 . A cut (ρ1, ρ2) can have one of three natures:(1) zero-way iff
there is no transition from a state in ρ1 to a state in ρ2 and also the other
way;(2)one-way iff there are transitions in exactly one direction; (3) two-way if
there are transitions in both directions. That is, (ρ1, ρ2) is: zero-way iff both
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ρ1 • ρ2 and ρ1 • ρ1 are empty; one-way iff exactly one of ρ1 • ρ2 and ρ2 • ρ1
is empty; two-way iff both ρ1 • ρ2 and ρ2 • ρ1 are non-empty. The nature of a
frontier is also defined similarly, based on directionality of transitions between
γρ1 and γρ2 . Note that all frontiers of a cut have the same nature as the cut,
hence determining the nature of some frontier suffices to determine the nature
of the cut.

We use (s0, k) to denote a simple cycle (s0, δ(s0) �= s0, · · · , δk−1(s0) �= s0, δ
k

(s0) = s0) of length k > 0. A cycle (s0, k) is non-trivial iff k > 1. We say that (s0, k)
is within a region ρ if ∀i ∈ {0, · · · , k} · δi(s0) ∈ ρ. Algorithm 1 guarantees to find
a non-trivial cycle (if one exists) within a region ρ by using two generic procedures
Shrink and Cut.

Shrink: S → S. Shrink takes a region ρ as input and returns a region
ρ′ 4 ρ such that ρ′ still contains every cycle that exists within ρ. In particular,
Shrink could ignore transitions that lead from ρ outside of ρ.

Cut: S → (S × S) × (P(Σ) × P(Σ)). Cut takes a region ρ as input and
returns a cut (ρ1, ρ2) of ρ and a frontier γ = (γρ1 , γρ2) of the cut.

Later in the section, we describe concrete implementations of these proce-
dures that were used in our experiments, but it should be noted that every
implementation that follows the specifications would work as far as correctness
of Algorithm 1 is concerned. Algorithm 1 is a recursive procedure that first ap-
plies Shrink to the input region ρ to find a smaller region containing all cycles
that exist within ρ. If the smaller region contains a single state, we can con-
clude that ρ does not have non-trivial cycles. Otherwise, we use Cut to split
the shrunk region in two disjoint sub-regions ρ1 and ρ2 to which Algorithm 1
can be applied recursively. If a cycle is found within one of the sub-regions, it
can be returned as a cycle within ρ. In case no cycle is found within either of
the sub-regions, we still have to look for cycles that may exist across the cut
(ρ1, ρ2). This is done using Algorithm 2.

Algorithm 2 uses a frontier γ = (γρ1 , γρ2) of the cut (ρ1, ρ2) found by Cut. If
the cut is one/zero-way, there can’t exist a non-trivial cycle across this cut (ex-
istence of a cycle across (ρ1, ρ2) would imply that there is at least one transition
from a state in ρ1 to a state in ρ2 and also the other way and hence both ρ1 • ρ2
and ρ2 • ρ1 would be non-empty). We use a frontier to find the nature of the cut
because ρ1 • ρ2 and ρ2 • ρ1 can be difficult to compute exactly. How to compute
a frontier and determine its nature is described in more detail in Sec. 3.1.

In case the cut is two-way, we start an exhaustive search for a cycle across the
cut by sequentially running simulations starting at each state in γρ1 . Each sim-
ulation is run until either the current state in the simulation is outside of region
ρ or a lasso is found. If there is cycle across the cut, this search is guaranteed to
find it because there would exist a state sρ1 on the cycle such that δ(sρ1) = ρ2
and hence sρ1 ∈ ρ1 • ρ2 ⊆ γρ1 .

Lemma 2. FindInstability(νF ) returns a simple non-trivial cycle (s0, k > 1)
iff there exists at least one non-trivial cycle in Q and returns null otherwise.

A rigorous proof of this statement can be sketched using structural induction
on regions following the reasoning above.
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Algorithm 1: FindInstability
Input: A region ρ
Output: Either a simple non-trivial cycle (s0, k > 1) within ρ or null if ρ does

not contain a non-trivial cycle
1 ρ← Shrink(ρ)
2 if ρ contains a single state then
3 return null
4 else
5 (ρ1, ρ2), γ ← Cut(ρ)
6 res1 ← FindInstability(ρ1)
7 if res1 �= null then return res1 res2 ← FindInstability(ρ2)
8 if res2 �= null then return res2 return

FindCycleAcrossCut((ρ1, ρ2), γ)
9 end

Algorithm 2: FindCycleAcrossCut

Input: A cut (ρ1, ρ2) of the region ρ1 ∪ ρ2 = ρ and frontier γ = (γρ1 , γρ2) of the
cut. The regions ρ1 and ρ2 do not have any cycles within them.

Output: Either a simple non-trivial cycle (s0, k > 1) within ρ s.t.
∃i, j ∈ {0, · · · , k}.δi(s0) ∈ ρ1 ∧ δj(s0) ∈ ρ2 or null if there is no such
cycle

1 if γ is one-way or zero-way then
2 return null
3 else
4 iterγ ← iterator(γρ1)
5 cyc← null
6 while cyc = null ∧ ¬exhausted?(iterγ) do
7 cur ← getElemAndAdvance(iterγ)
8 seen, i← emptyMap, 0
9 while cur �∈ keys(seen) ∧ cur ∈ ρ do

10 seen[cur]← i
11 cur, i← δ(cur), i+ 1

12 end
13 if cur ∈ ρ then
14 len← i− seen[cur]
15 if len > 1 then cyc← (cur, len)

16

17 end
18 return cyc

19 end

3.1 Concrete Implementations of Shrink and Cut

In this section we describe the concrete implementation of Shrink and Cut

that we used in our experiments.
Shrink: Given a region ρ, consider the modified target function T ρ

v of a
variable v:

T ρ
v (s) = min(V ρ

hi(v),max(V ρ
lo(v), Tv(s)))
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The modified transition function δρ is defined using Eq. 1 by replacing Tv by
T ρ
v . The intention with T ρ

v is to create target functions tailored to ρ so that ρ
is closed wrt δρ, while still preserving all transitions that are completely within
ρ. This is done by forcing the target function value to be within [V ρ

lo(v), V
ρ
hi(v)],

truncating to the upper/lower bound if the original value is too large/too small.
The function Fρ is defined by replacing Tv by T ρ

v in Eq. 3. Let Sρ be the set
of all regions contained within ρ and (Sρ,3) be the corresponding partial order.
It can be shown that for every state s: (1) s ∈ ρ \ ρ• → δρ(s) = δ(s), and (2)
s ∈ ρ• → δρ(s) ∈ ρ. This means ρ is closed wrt to δρ and hence the greatest fixed
point νSρFρ on Sρ is well defined. Thus, νSρFρ is an over-approximation of the set
of states in ρ that are recurring wrt δρ. Also, if there exists a cycle (wrt δ) within
ρ, it will also be a cycle wrt δρ and hence be within νSρFρ. Shrink(ρ) = νSρFρ

can be computed following the approach in Sec. 2.
Cut: The straight-forward way to cut a region ρ is to split the interval of one of

the variables into two. Let ρ|[v]=I denote the region obtained from ρ by replacing
the interval corresponding to v by I and keeping other intervals unchanged.
Upon splitting v at α with V ρ

lo(v) ≤ α < V ρ
hi(v), we get the cut (ρ1, ρ2) with

ρ1 = ρ|[v]=[V ρ
lo
(v),α] and ρ2 = ρ|[v]=[α+1,V ρ

hi
(v)]. Since we know that for every

state s and variable v, δ(s)v differs from sv by at most 1, we can safely choose
(γρ1 , γρ2) as a frontier of this cut, where γρ1 = {s|s ∈ ρ|[v]=[α,α]} and γρ2 =
{s|s ∈ ρ|[v]=[α+1,α+1]}. The nature of this cut can be determined by encoding
the problem of checking the nature of the frontier as a boolean satisfiability
problem. Checking existence of a transition from γρ1 to γρ2 is equivalent to
checking existence of a state w s.t. w ∈ ρ1 ∧wv = α∧ δ(w) ∈ ρ2 ∧ δ(w)v = α+1,
where w ∈ ρ1 would be a conjunction of simple predicates restricting the range
of each variable in w to be within ρ1 and likewise for δ(w) ∈ ρ2.

We have n choices for variable v and then V ρ
hi(v) − V ρ

lo(v) choices for the
splitting point α for each v. Cut(ρ) enumerates through all these possibilities
and returns the first one that has a zero/one-way nature. A zero/one-way cut
saves the effort of finding cycles across it later. If all possibilities are two-way,
then it returns a balanced cut, one for which ρ1 and ρ2 are similar in size.

3.2 Efficiency of FindInstability

In the worst case, Algorithm 1 can be equivalent to a brute-force enumeration
over all states of the QN that tries to build cycles by running simulations, but the
effectiveness of Shrink to eliminate parts of the state space that do not contain
cycles and the existence of zero/one-way cuts makes it scale to considerably large
QNs. Experiments show that this can be better than a bounded model-checking
based approach by a few orders of magnitude. However, a stable system which
resisted an initial Shrink and for which only a two-way cut could be found
would be expected to require such a brute-force search. One possible approach
to reduce the search space would be to search specifically for two-way cuts whose
frontiers can be bisected into a two-way cut and a zero-way cut. In the continued
development of new models, we hope to discover examples of this behavior,
and will be look to address this issue in future. In the absence of such models
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(a) Non-trivially Stable

(b) Cyclic Instability

Fig. 2. Progress of Algorithm 1 on transition systems in Fig.1b,1c. Dotted lines rep-
resent the splitting point in Cut. Dotted arrows represent the modifications made to
transition functions of sub-regions in order to apply Shrink. Sharp-edged rectangles
denote frontiers. Other notation is the same as in Fig.1.

at present however we have here restricted our testing to implementations of
Algorithm 1.

3.3 Example

Fig.2 illustrates how Algorithm 1 makes progress on examples from Fig.1b and
Fig.1c. In Fig.2a, for the non-trivially stable system, Cut splits the interval
of A at 0 to produce two sub-regions. One Shrink operation on each of the
sub-regions reduces them to singletons, hence confirming non-existence of cycles
within them. Owing to the cut being one-way, non-existence of cycles across it is
also easily checked. In Fig.2b, Algorithm 1 is applied to the fixed point obtained
previously ([0, 1]× [0, 1]). Similar to the previous example, interval of A is split
at 0, and the sub-regions get reduced to singletons by Shrink. However, the cut
is two-way and Algorithm 2 successfully finds a cycle by running a simulation
from a point in the frontier.

4 Benchmarks and Evaluation

We implemented the approach in a tool called BioModelAnalyzer+ (BMA+) and
compared directly against the approach from [6] implemented within BioMod-
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elAnalyzer (BMA, [18, 21, 22]). For each benchmark, BMA+ first computes the
greatest fixed point νF . If stability cannot be proved, it tries to find a counter-
example of type multiple self-loops by encoding it as a satisfiability problem. If
such a counter-example cannot be found, Algorithm 1 is used to check for exis-
tence of a cycle. All calculations were performed single-threaded on a Windows
8 PC with an Intel i7 processor @ 2.1 GHz. There was an upper bound of 2GB
on memory usage. Time out was set at 15 mins. We used Z3 [23] version 3 as
the decision procedure. All benchmark systems are available at http://www.
cs.le.ac.uk/people/npiterman/publications/2014/instability/, and an
implementation of the BMA+ algorithm is available through the BioModelAn-
alyzer website (http://biomodelanalyzer.research.microsoft.com/, right
click the proof button to access the tool and select "SCM analysis").

We study the results for models of different nature separately. Comparisons
with other available tools are available from [6].

4.1 Trivially Stable Systems and Systems with Multiple Self-Loops

We benchmarked our new approach using a range of well characterized stable and
bifurcating (multiple self-loops) systems from previous studies [6, 8, 18, 21, 24].
Both tools run extremely fast and show similar performance for these bench-
marks, as would be expected. See Table 1. However, we still see a slowdown for
BMA+ arising from changes in the procedure which are not relevant here.

Table 1. Results for trivially stable (TS) and bifurcating (BF) models. N+1 is the
granularity, |E| is the number of edges in dependency graph, |V| is the number of vari-
ables. BMA and BMA+ denote the running time of the respective tools in milliseconds.

Model Nature N+1 |E| |V| BMA BMA+ BMA
BMA+

Leukaemia TS 3 81 51 71 94 0.8
Diabetes TS 3 125 87 66 93 0.7
Budding yeast TS 5 26 16 55 80 0.7
VPC lin15KO TS 3 140 85 56 122 0.5
Dicty single cell TS 2 12 8 47 111 0.4
Skin 1D unstable BF 5 89 75 2206 1973 1.1
Skin 1D BF 5 94 75 239 238 1
Skin 1D unstable 2 BF 5 89 75 383 357 1.1
Skin 2D 5x2 TF BF 5 239 198 337 315 1.1
MCP Array BF 2 104 45 140 241 0.6

4.2 Systems with cyclic instability

Oscillations occur in a wide range of different biological systems. In nerves un-
der constant stimulation, the patterns of opening and closing of ion channels in
an action potential are expected to generate cycles. Oscillations are also widely
found in different biological systems as a mechanism for synchronizing popula-
tions of cells in organs and whole animals. In Dictyostelium discoideum, coordi-

http://www.cs.le.ac.uk/people/npiterman/publications/2014/instability/
http://www.cs.le.ac.uk/people/npiterman/publications/2014/instability/
http://biomodelanalyzer.research.microsoft.com/
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Table 2. Results for models with cyclic instabilities. K is the length of the cycle found
by BMA+. TO denotes a time out. In comparing systems where BMA times out, the
speed up is calculated relative to the time limit (15 minutes) and noted with ">".
Other notation is same as in Table 1

Model N+1 |E| |V| K BMA BMA+ BMA
BMA+

Dicty population 2 71 35 5 60066 2541 23.6
Firing Neuron 2 21 21 6 218 458 0.5
LModel 4 105 25 5 43934 9865 4.5
Leukaemia unstable 3 92 57 5 4497 446 10.1
SSkin 1D 5 46 30 11 TO 132350 >6.8
SSkin 2D 3 cells 2 layers 5 64 40 18 TO 2706 >322.6

Table 3. Results for non-trivially stable models. TO denotes time out. Other notation
is same as in Tables 1 and 2

.

Model N+1 |E| |V| BMA BMA+ BMA
BMA+

Ion channel 2 7 10 499 173 2.9
Lambda phage 2 13 8 3113 197 15.8
Resting neuron 2 28 21 TO 244949 >3.7
E. coli chemotaxis 5 10 9 TO 250 >3600

nated oscillations in groups of cells signal the transition from unicellular growth
to multicellular development [25]. BMA+ consistently performs almost an order
of magnitude better than BMA for these benchmarks. See Table 2.

4.3 Non-trivially Stable Systems

The non-trivially stable systems highlight important examples of stable biologi-
cal systems which cannot be proved to be stable with Shrink alone. Chemotaxis
in E. coli is a paradigm for bacterial signaling. Attractants and repellents bind
to a receptors at the cell pole, altering the activity of the kinase CheA. This
in turn both alters the switching behavior of the flagellar motor and changes
the sensitivity of the receptor array to allow for adaptation. The alteration of
receptor sensitivity is slower than motor activation, ensuring that the flagellar
switching behavior reverts to an equilibrium state in an unchanging environ-
ment. Similarly, an action potential passes along a neuron by the opening of ion
channels (triggered by changes in the local membrane potential), followed by
a delayed closure of the pore. The time delay aspects in both of these models
(speed of the adaptation machinery in chemotaxis, and the slow closure of the
ion channels) lead to them both being stable systems. However, proving stability
is non-trivial because of this property. Table 3 shows the benefit of BMA+ over
BMA. We observe significant speed up in all cases.

Particularly noteworthy is the improvement in the calculation of the stable
state in the E. coli signaling system, as despite being a significantly smaller
model than many others presented here (in terms of number of variables and
edges), proofs of stability using the previous approach were prohibitively costly.
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Through a single application of the cut, the stability of the system was proved
comparably quickly to a simple example of the same size.

5 Conclusions

This paper describes a new algorithm for the formal analysis of biological mod-
els, which offers a rapid approach for proving instability arising from loops.
This technique builds on previous approaches by rapidly searching for cycles in
cases where stability cannot be proved trivially. We find a large speed up for
proving instability of cyclic systems, but additionally we show that it offers an
impressive speed up when considering the behavior of stable systems with timed
switches, such as bacterial chemotaxis. By proving stability in these new models
our findings further reinforce the importance of inherent biological robustness [6]
in signaling systems. In order to build accurate models of chemotaxis signaling
in E. coli and action potentials in a neuron, we need to include timing effects to
reproduce realistic biological behavior. Without these timing effects, the models
unnaturally show bifurcation and cycling behavior respectively. Our new ap-
proach allows us to better identify loops and pseudo-loops in biological signaling
systems observed in this biomedically important class of systems.

Acknowledgments. We thank Dr C Pears and Dr A Watson for insightful
comments and advice.
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Abstract. Verification algorithms for networks of nonlinear hybrid au-
tomata (HA) can aid us understand and control biological processes such
as cardiac arrhythmia, formation of memory, and genetic regulation. We
present an algorithm for over-approximating reach sets of networks of
nonlinear HA which can be used for sound and relatively complete in-
variant checking. First, it uses automatically computed input-to-state
discrepancy functions for the individual automata modules in the net-
work A for constructing a low-dimensional modelM. Simulations of both
A and M are then used to compute the reach tubes for A. These tech-
niques enable us to handle a challenging verification problem involving
a network of cardiac cells, where each cell has four continuous variables
and 29 locations. Our prototype tool can check bounded-time invariants
for networks with 5 cells (20 continuous variables, 295 locations) typi-
cally in less than 15 minutes for up to reasonable time horizons. From
the computed reach tubes we can infer biologically relevant properties of
the network from a set of initial states.

Keywords: Biological networks, hybrid systems, invariants, verification.

1 Introduction

Central to understanding and controlling behavior of complex biological net-
works are invariant properties. For example, synchronization of the action po-
tentials of cardiac cells and neurons is responsible for normal functioning of
the heart and for formation of memory [6, 16], and maintenance of synchrony
is an invariant property. Real-time prediction of loss of synchrony can enable
automatic deployment of counter-measures. For instance, embedded defibrilla-
tor devices are being designed to preempt possible cardiac arrest that arises
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from loss of synchrony. Offline invariant checks can aid in debugging pacemak-
ers and brain-machine interfaces. Checking invariant properties for networks
of dynamical systems is challenging. Analytical results exist only for modules
with relatively simple dynamics and on special types of topologies such as scale-
free and random graphs [7, 9, 38, 40, 43]. These approaches cannot be applied
to modules with nonlinear and hybrid dynamics such as the models of cardiac
cells in [11, 20]. Aside from the nonlinearities in the modules, the complete net-
work model involves shared continuous variables between modules (ion-channels)
which have limited support in analytical and verification approaches. In the ab-
sence of analytical approaches, one performs simulation experiments which are
computationally inexpensive but fall short of providing guarantees and are of
limited utility in studying invariants for sets of initial states or parameter val-
ues. For example, if we wanted to know if the voltage of an action potential stays
within some range from a set of initial states, then a finite number of simulations
cannot give us a provably correct answer.

In this paper, we present an algorithm for verifying bounded-time invariant
properties of networks of deterministic nonlinear hybrid automata. The under-
lying principle is simulation-based verification which combines numerical simu-
lations with formal analysis [5,14,15]. First, a simulation ψ is computed from a
single initial state v. This ψ is then bloated by some factor to over-approximate
all executions from a neighborhood Bv of v of non-zero measure. By repeat-
ing this process for different v’s, all behaviors from a set of initial states can
be over-approximated and robust invariants can be checked. In [15], we used
user-provided model annotations (discrepancy functions) to statically compute
the bloating factor in a way that can make the over-approximations arbitrar-
ily precise. The resulting algorithm enjoys scalability and relative completeness:
if the system satisfies the invariant robustly, then the algorithm is guaranteed
to terminate. The burden of finding discrepancy functions for large models is
partly alleviated in [26] for nonlinear differential equations. That paper proposes
input-to-state (IS) discrepancy functions for each module Ai of a larger system
A = A1‖ . . . ‖AN . These user-provided, albeit modular, annotations are used to
construct a lower-dimensional nonlinear time-varying system whose trajectories
give the necessary bloating factor for the trajectories of the system A.

These previous results do not extend to hybrid systems with guards and re-
sets, and their applicability is still limited by the annotation required from the
user. One challenge is that individual simulations capture a particular sequence
of locations. However, the states reached in a bloated version of the simula-
tion may intersect with many other guards and visit a completely different se-
quence of locations. Our contributions address this and other technical hurdles,
demonstrating a promising approach for invariant verification of nonlinear hy-
brid networks. (a) We present a new simulation-based verification algorithm
for nonlinear hybrid networks that uses modular input-to-state (IS) discrep-
ancy functions. Modular annotations and the simulation-based approach make it
scalable. The algorithm is sound; it systematically discovers possible transitions
and then generates new simulations for different location sequences. We identify
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general robustness conditions that yield relative-completeness. (b) We develop a
set of techniques for automatically computing input-to-state discrepancy func-
tions for a general class of nonlinear hybrid models. (c) The performance of
our prototype implementation in checking bounded-time invariants of complex
Simulink models of cardiac cell networks illustrate the promise of the approach
[25]. For networks with 5 cells, each with 4 dimensions and 29 locations, and
multi-affine dynamics (total of 20 continuous variables, 295 locations), invari-
ants for up to reasonable time horizons are established typically in less than
15 minutes. In two minutes, it finds counter-examples of networks with 8 cells.
All of this enables us to check biologically relevant properties for cardiac cells
networks.

Section 2 provides background for hybrid automata, whereas Section 3 intro-
duces IS discrepancy and techniques for computing them. Section 4 describes
the main algorithm and Section 5 presents its applications in checking cardiac
networks. Finally, Section 6 discusses related works and concludes the paper.

2 Hybrid Automata Modules and Networks

Hybrid Input/Output Automata. (HA) is a framework for specifying interact-
ing modules that evolve discretely and continuously and share information over
continuous variables and discrete transitions [31, 34, 35]. Please see the full ver-
sion [25] for related definitions and notations.

For a variable v, its type, denoted by type(v), is the set of values that it can
take. For a set of variables V , a valuation v maps each v ∈ V to a point in type(v).
Given a valuation v for V , the valuation of a particular variable v′ ∈ V , denoted
by v.v′, is the restriction of v to v′; for a set V ⊆ V , v.V is the restriction of v to
V . Val(V) is the set of all valuations for V . A trajectory for V models continuous
evolution of the values of the variables over a closed interval [0, T ] called the
domain. A trajectory ξ is a map ξ : [0, T ]→ Val(V). Restriction of ξ to a subset
of variables X ⊆ V is denoted by ξ ↓ X . For a trajectory ξ of V ∪U with domain
[0, T ], we define ξ. fstate as (ξ ↓ V)(0) and ξ. lstate as (ξ ↓ V)(T ). A variable is
continuous if all its trajectories are piece-wise continuous and it is discrete if its
trajectories are piece-wise constant. A HA has a set of continuous variables X
that evolve along trajectories (defined by differential equations with inputs U)
and can be reset, and a set of discrete variables L that change with transitions.

Definition 1. A Hybrid I/O Automaton (HA) A is a tuple (L,X ,U , Θ,D, T )
where (a) L is a set of discrete variables. Val(L) is the set of locations. (b) X is
a set of real-valued continuous variables. V := X ∪L is the set of state variables;
Val(V) is the state space. (c) U is a set of real-valued input variables; Val(U) is
the input space. (d) Θ ⊆ Val(V) is a set of start states; (e) D ⊆ Val(V)×Val(V)
is a set of discrete transitions. (f) T is the set of trajectories for V ∪ U that is
closed under prefix, suffix, and concatenation [31]. Over any trajectory ξ ∈ T , L
remains constant. For any state v and piece-wise continuous input trajectory η,
there exists a state trajectory ξ such that ξ. fstate = v and either (i) ξ ↓ U = η,
or (ii) ξ ↓ U matches a prefix of η with a transition enabled at ξ. lstate.
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A transition (v,v′) ∈ D, for any two states v, v′, is written as v→A v′ or as
v→ v′ when A is clear from the context. The transitions of A are specified for
pairs of locations in the guard-reset style. For each pair (�, �′) of locations the
guard G�,�′ ⊆ Val(X ) is the set of states from which a transition from location �
to �′ is enabled and the reset map is a continuous function Val(X )→ Val(X ).

For location � ∈ Val(L), the trajectories of A are defined by a trajectory
invariant I� ⊆ Val(X ) and a set of ordinary differential equations (ODEs) in-
volving the variables in X and U . The ODE is specified by a Lipschitz continuous
function called dynamic mapping f� : Val(X ) × Val(U) → Val(X ). Given a in-
put trajectory η of U and a state v ∈ Val(V), a state trajectory from v with
η is a function ξv,η : [0, T ] → Val(V) satisfying: (a) ξv,η(0) = v, (b) for any
t ∈ [0, T ], the time derivative of ξ ↓ X at t satisfies the differential equation
d(ξ↓X )(t)

dt = f�((ξ ↓ X )(t), η(t)), and (c) (ξ ↓ X )(t) ∈ I� and (ξ ↓ L)(t) = �. As
in the last two statements, we will drop the subscripts of a trajectory when the
dependence on the initial state and the input is clear. Because of the invariant
I�, in some location � ∈ Val(L) all the trajectories might be of finite duration.
Conditions (i) and (ii) in Definition 1 make the HA input enabled, that is, from
any state A is able to consume any input η completely (i) or up to some time
at which it reacts with a transition (ii).

A HA without inputs (U = ∅) is closed; otherwise, it is open. A HA with
a single location and no transitions is called a dynamical system. We denote
the components of HA A by LA,XA,UA, ΘA,DA,→A and TA, and for Ai its
components are denoted by Li,Xi,Ui, Θi,Di,→i and Ti.

Semantics. We assume that the discrete transitions are urgent and deterministic.
That is, from any state v = (x, �) at most one of following two things can happen:
(a) a transition to a unique state (x′, �′), or (b) a trajectory ξv of non-zero
duration. A bounded execution of A records the evolution of the variables along
a particular run. A bounded execution fragment is a finite sequence of trajectories
ξ(0), ξ(1), . . ., such that, for each i, ξ(i) ∈ T and ξ(i). lstate → ξ(i+1). fstate. A
bounded execution is an execution fragment with ξ(0). fstate in Θ. A state v is
reachable if it is the last state of some execution. We denote the set of reachable
states of A by ReachA. The reachable states up to a bounded time horizon
T > 0 are denoted by ReachA(T ). The reachable states from a subset of initial
states Θ′ ⊆ Θ up to T are denoted by ReachA(Θ′, T ). A set Inv ⊆ Val(V) is an
invariant of a closed HA A if ReachA ⊆ Inv . Checking invariants corresponds
to verifying safety properties. Computing ReachA exactly is undecidable but for
the simplest classes of hybrid automata [1, 23, 32, 44].

For relative completeness, we define robustness of HA. A HA A(c) is a c-
perturbation of A if A(c) is obtained by perturbing the initial set and dynamical
mappings of A by at most c. That is, A and A(c) are identical except that
(i) d(ΘA, ΘA(c)) ≤ c where d(·, ·) is the Hausdorff distance and (ii) for every
location � and any continuous state x ∈ Val(X ), the dynamical mappings of
the two HA satisfy |f�,A(x) − f�,A(c)(x)| ≤ c. The c-perturbed reach set of A,
denoted by c-ReachA, is the set of states reachable by some c-perturbation of A.
For a time bound T > 0, Inv is a robust invariant up to time T if there exists
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a positive constant c > 0 such that c-ReachA(T ) ⊆ Inv . In this paper we will
present semi-decision procedures for bounded-time robust invariant checking of
networks of deterministic nonlinear HA.

Composition. Large and complex models can be created by composing smaller
automata. The composition operation identifies (“plugs-in”) the input variables
of one automaton Ai with the state variables of another automaton1. A pair of
HAs A1 and A2 are compatible if their state variables are disjoint V1 ∩ V2 = ∅.

Definition 2. Given a pair of compatible HAs A1 and A2 the composed au-
tomaton A = A1‖A2 is 〈L,X ,U , Θ,D, T 〉, where (a) L := L1 ∪ L2, (b) X :=
X1 ∪X2, (c) Θ = Θ1 ×Θ2, (d) U = U1 ∪U2 \ (V1 ∪V2), (e) D: v→ v′ iff either
v.V1 →1 v′.V1 and v.V2 = v′.V2, or v.V2 →2 v′.V2 and v.V1 = v′.V1, and (f) A
trajectory ξ of V ∪ U is in T iff ξ ↓ (Vi ∪ Ui) ∈ Ti for each i ∈ {1, 2}.
Note that the composition of two or more HA will define a network.A satisfies the
requirements for Definition 1 and can be constructed by syntactically combining
the guards, resets, and ODEs of its components.

Example 1. In the 2-dimensional FitzHugh-Nagumo (FHN) cardiac cell net-
work, the ith cell automaton Ai has a single location, two continuous variables
X = {xi1, xi2} corresponding to fast and slow currents, and inputs (ui1, ui2), cor-
responding to diffusion from neighboring cells, and ui3, a stimulus. The evolution
is given by the ODEs (dynamic mapping): ẋi1 = (a−xi1)(xi1−1)xi1−xi2+ui3+
D
h2 (ui1 + ui2 − 2xi1), ẋi2 = ε(βxi1 − γxi2 − δ), where a, β, δ, γ, ε are parameters

of the cell, the ui3 term models direct stimulus input, and the D
h2 (.) term mod-

els the effect of the diffusion coupling with neighboring cells. In Figure 1, three
FHN cells A1,A2 and A3 are interconnected in a ring and with a pulse genera-
tor. In each cycle, the pulse is activated for Son time and stays off for Soff time.
The composed system is defined by identifying input variables of one automaton
with the state variables of another. For example, u11 = x21, u12 = x31 defines
the part of the ring where A1 gets diffused current inputs from its neighbors and
and u13 = st connects the output of the pulse generator to A1.

3 Annotations for Modules in a Network

We proposed simulation-based robust invariant verification of dynamical and
switched systems in [15]. The approach requires the designers to provide special
annotations called discrepancy functions for each location of the automaton. The
algorithm first computes a validated numerical simulation from an initial state,
say v, and then bloats the simulation using the discrepancy function to compute
arbitrarily precise over-approximations of ReachA(Bδ(v), T ). Repeating this over
a set of initial states v and with varying precision δ, one obtains a decision
procedure for robust invariant checking. Towards our goal of verifying hybrid
networks, in this section we present new techniques for computing discrepancy
functions for such models.
1 We do not allow HA to interact via transition synchronization as in [31,35].
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ẋ11 = f1(x11, x12, u11, u12, ui3)
ẋ12 = f2(x11, x12)

ẋ21 = f1(x21, x22, u21, u22, 0)
ẋ22 = f2(x21, x22)

ẋ31 = f1(x31, x32, u31, u32, 0)
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1

Fig. 1. Ring of 3 FHN-modules with a simple pulse generator. Reach set from a set of
initial states projected on x11 and x12.

3.1 IS Discrepancy and Approximations

First of all, we will use the definition of Input-to-State (IS) discrepancy func-
tion [26], which enables us to use annotations for individual modules in a dynam-
ical system to then check invariants of the composed system. The IS discrepancy
function for a location � of A (or for a dynamical system) bounds the distance
between two trajectories in location � from different initial states, as a function
of time and the inputs they receive.

Definition 3. For a HA A = (L,X ,U , Θ,D, T ), a continuous function V :
Val(X )2 → R≥0 is an input-to-state discrepancy function for a location � if

(a) ∃ class-K functions (see [26]) α, α, s.t., ∀ x,x′ ∈ Val(X ), α(|x − x′|) ≤
V (x,x′) ≤ α(|x− x′|), and

(b) ∃β : R≥0×R≥0 → R≥0 and γ ∈ K such that for any x,x′, any pair of input
trajectories u, u′: U , and any t ∈ R≥0,

V (ξx,�,u(t), ξx′,�,u′(t)) ≤ β(|x − x′|, t) +
∫ t

0 γ(|u(s)− u′(s)|)ds.

In addition, β(·, ·) is of class-K in the first argument and β(·, 0) = α(·).

Here ξx,�,u denotes the trajectory of the continuous variables X in location
� from state x and with the input trajectory u. The tuple (α, α, β, γ) is called
the witness of the discrepancy function V . The first condition merely bounds V
in terms of the norm of its arguments. The more important second condition
ensures that the distance between the trajectories is bounded as a function
of β and γ, and can be reduced arbitrarily by making x → x′ and u → u′.
IS discrepancy is related to integral input-to-state stability [2–4, 42]. However,
for our verification algorithms, we do not require neighboring trajectories to
converge over time. Using the IS discrepancy functions along with their witnesses,
we construct a reduced order model M which can be employed to compute
precise over-approximations of ReachA(T ). Given a dynamical system (HA with
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one location) A = A1‖A2 connected in a ring and IS discrepancy with witnesses
for each of the modules, the IS approximation of A is a (2+1)-dimensional closed
deterministic dynamical system M defined as follows.

Definition 4. For a pair of nonnegative constants (δ1, δ2), the (δ1, δ2)-IS approx-
imation of A is a closed dynamical system with three variables X = {m1,m2, clk}
initialized to {β1(δ1, 0), β2(δ2, 0), 0}, and dynamics ẋ = fM (x), where

fM (x) =

⎡⎢⎢⎣
β̇1(δ1,x(clk )) + γ1 ◦ α−1

2 (x(m2))

β̇2(δ2,x(clk )) + γ2 ◦ α−1
1 (x(m1))

1

⎤⎥⎥⎦ . (1)

The variable clk tracks the real time, and both the initial state and the dy-
namics of M depend on the choice of the parameters δ1 and δ2. It can be shown
that the valuations of mi along μ (the trajectory of M) give an upperbound on
the distance between any trajectories of Ai that start from initial states and are
at most δi apart. The following theorem establishes that the reach set of A from
a set of states can be precisely over-approximated by bloating an individual ex-
ecution ξ of A by a factor that is entirely determined by (a) a pair V = (V1, V2)
of IS discrepancy functions of A1 and A2 along with their witnesses, and (b) the
trajectory μ.

Theorem 1 (Theorems 5.4 and 5.7 from [26]). Let ξv be a trajectory of
A. For any nonnegative pair δ = (δ1, δ2), and any time T ≥ 0, suppose μ is
the trajectory of the (δ1, δ2)-IS approximation M . Then ReachA(Bδ(v), T ) ⊆⋃

t∈[0,T ]B
V
μ(t)(ξv(t)). Further, for any ε > 0 and T > 0, ∃ δ1, δ2 > 0 such that, for

the (δ1, δ2)-IS approximation M ,
⋃

t∈[0,T ] B
V
μ(t)(ξv(t)) ⊆ ε-ReachA(Bδ(v), T )).

The precision of the over-approximation can be improved by reducing the
parameters δ1 and δ2, and thus creating a finer covering of the initial set ΘA. The
result is generalized to dynamical systems with N modules connected in general
network topologies [26], where the IS approximation is (N + 1)-dimensional.

For a hybrid system A = A1‖A2, instead of providing annotations for the to-
tal of |Val(L1)|× |Val(L2)| locations of A, the user has to provide IS discrepancy
functions for |Val(L1)|+ |Val(L2)| locations. From there, our algorithm automat-
ically constructs |Val(L1)| × |Val(L2)| IS approximations corresponding to each
location-pair of A. For cardiac cell networks, where all the automata modules
are identical, this means working with |Val(L1)| IS discrepancy functions. The
next proposition gives a technique for computing IS discrepancy functions.

Proposition 1. For a dynamical system with linear input ẋ = f(x)+Bu, where
B is a matrix, V (x1,x2) = |x1 − x2| is an IS discrepancy function with

V (ξ1(t), ξ2(t)) ≤ eλmaxt|x1 − x2|+
∫ t

0

M |B||(υ1(τ) − υ2(τ))|dτ ,

where λmax is the largest eigenvalue of the Jacobian matrix J = 1
2 (

∂T

∂x f(x) +
∂
∂xf(x)+I), M = sups∈[0,t] e

λmaxs is the supremum of an exponential function of
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λmax, and ξi is the state trajectory from xi with input trajectory υi. Specifically,
for a linear time invariant system ẋ = Ax+Bu, λmax is the largest eigenvalue
of the matrix A, and M = sups∈[0,t] |eAs|.

For linear dynamical systems, we use the special case to obtain tight IS dis-
crepancy functions by solving Linear Matrix Inequalities. The more general case
establishes IS discrepancy functions for a larger class of non-linear systems for
which the Jacobian matrix has bounded eigenvalues. For the nonlinear dynamic
maps in this paper, computing the maximum eigenvalue of the Jacobian is solved
using the MATLAB optimization toolbox or by a sum of squares solver [41].

4 Checking Bounded Invariants of HA Networks

First we define simulations for hybrid automata, and then we describe the veri-
fication algorithm that uses simulations and IS discrepancy functions.

4.1 Simulations of Dynamical Systems

For a closed dynamical system A with an initial state v, validated ODE solvers
[10, 12, 37] can compute a sequence of sets R0, . . . , Rl ⊆ Val(X ) such that the
trajectory ξv of A is contained in Rk over the interval [(k − 1)τ, kτ ], where τ is
the simulation time-step. We formalize this as follows:

Definition 5. Consider a deterministic closed HA A, an initial state v, an
error bound ε > 0, and time step τ > 0. Let the location of v.L be � and
ξv be the execution of A starting from v. A (v, ε, τ)-simulation fragment is a
finite sequence ρ = (R0, t0), . . . , (Rl, tl) where, for each k ∈ {0, . . . , l}, (a) 0 <
tk− tk−1 ≤ τ , (b) Rk is contained in the invariant I� except possibly the last Rl,
(c) dia(Rk) ≤ ε, and (d) for any time t ∈ [tk−1, tk], ξv(t).X ∈ Rk.

For relative completeness of verification, we will require that for a desired error
bound ε > 0 the diameter of Rk can be made smaller than ε by reducing the
step size τ . A simulation for a HA is a sequence of simulation fragments (for
different locations) that captures all the transitions of at least one execution.

Definition 6. Consider a HA A, an initial state v, an error bound ε > 0, a
time bound T > 0, a transition bound l, and a time step τ > 0. Let ξv be the
execution from v with ξv.dur ≤ T , where ξv.dur is the time duration of the
trajectory ξv, and with l transitions at times σ1, . . . , σl ∈ R≥0; let σ0 = 0. A
(v, ε, τ, T, l)-simulation is a finite sequence ψ = ρ0, . . . , ρl where (a) each ρk =
(Rk(1), tk(1)), . . . , (Rk(mk), tk(mk)) is a (ξ(σk), ε, τ)-simulation fragment with mk

samples, (b) t0 = 0, tl(ml)−1 = T , and for each k > 0, tk(mk) ≥ t(k+1)(1), and
(c) σk ∈ [t(k+1)(1), tk(mk)].

A (v, ε, τ, T, l)-simulation ψ is a sequence of l simulation fragments where each
fragment ρk has mk elements with indices k(1), . . . , k(mk). The k

th transition on
the actual execution ξv has to occur between the last sample period of ρk−1 and
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the first sample interval of ρk (condition (c)). In addition, ρk is a (ξv(σk), ε, τ)-
simulation fragment, that is, it contains the trajectory of A starting from the
post state ξv(σk) of the k

th transition. In Algorithm 2, the subroutine Simulate
computes a simulation of HA of the above type. The simulation ψ represents
other executions that start near v. Formally, we say an execution fragment ξ
is captured by ψ if duration of ξ is at most T , ξ experiences exactly the same
sequence of locations as recorded in some prefix of ψ, and its k(th) transition
occurs in the intervals [tk(mk), t(k+1)(1)].

4.2 Verification Algorithm

We sketch the key ideas that enable the checking of bounded-time invariants of
closed networks of hybrid automata. The main inputs of InvVerify (Algorithm
1) are the specification of the composed automaton A = A1‖ . . . ‖AN , the open
unsafe set U, and the collection of discrepancy functions and witnesses ISD for
every location of each subsystem. The variable C (line 2) is initialized to a
collection of tuples {(vk, δ, ε, τ)}k∈|C|, such that {vk} is a δ-cover of Θ, that is,
Θ ⊆ ∪k∈|C|Bδ(vk), and (δ, ε, τ) are parameters. For each (v, δ, ε, τ) in C, the
subroutine ReachFromCover (Algorithm 2) computes flag and a set S. The flag
is set to SAFE if all executions from Bδ(v) are disjoint from U up to time
T and in that case v is removed from C. The flag is set to UNSAFE if at
least one execution reaches U, and in that case InvVerify returns UNSAFE and
R. Finally, if the flag is set to REFINE then v is replaced by a finer cover of
Θ∩Bδ(v). In addition to having δ/2-radius balls covering Bδ(v), the parameters
ε and τ are also halved to compute more precise over-approximations. The sets
S and R compute over-approximations of ReachA(Bδ(v), T ) and ReachA(T ),
respectively. ReachFromCover checks safety with respect to U of the states
reachable from Bδ(v) up to time T and with at most n > 0 transitions. First, it
computes an over-approximation (R) of ReachA(Bδ(v), T ) with certain precision

Algorithm 1. InvVerify(A, ISD,U, T, ε0, δ0, n0): Verifies invariants of hybrid networks.

1 end R ← ∅; δ ← δ0; ε← ε0; τ ← τ0;n← n0;
2 C ← {(v, δ, ε, τ ) | {v} is a δ-Cover(Θ)};
3 while C �= ∅ for each (v, δ, ε, τ ) ∈ C do
4 (flag, S)← ReachFromCover (A,v, δ, ε, τ, T, ISD, n);
5 switch flag do
6 case SAFE: C ← C\{(v, δ, ε, τ )}; R← R∪ S case UNSAFE: return

(UNSAFE,R) case REFINE:
7 C ← C\{(v, δ, ε, τ )}; δ ← δ/2; ε← ε/2; τ ← τ/2;n← 2n;
8 C ← C ∪ {(v, δ, ε, τ ) | {v} is a δ−Cover(Θ ∩Bδ(v))};
9 end

10 end

11 end
12 return (SAFE,R);
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Algorithm 2. ReachFromCover(A, ISD,U,v, δ, ε, τ, T, n): Over-approx ReachA(Bδ(v)).

1 R ← ∅; C ← {(v, 0)}; count← 0;
2 while C �= ∅ for each (v, t0) ∈ C do
3 r ← δ; ψ ← Simulate(A,v, T − t0, ε, τ ); count← count + 1;
4 for k = 0 : l, where ψ = ρ0, ρ1, . . . , ρl do
5 (Sk, r)← BloatWithISD(ρk, ISD, r, ε, τ,A);
6 end
7 if a transition (�, �′) is enabled from Sj but is not captured by ψ then
8 C ← C ∪ {(v, t0) | {v} is the δ-Cover(R�,�′(Sk ∩G�,�′)),
9 t0 is the first time(�, �′) is enabled};

10 if a transition is captured by ψ but is not enabled for a subset S′
k ⊆ Sk then

11 C ← C ∪ {(v, t0) | {v} is the δ-Cover(S′
k),

12 t0 is the first time the transition is captured};
13 end
14 if (∪jsj ∩ U = ∅) ∧ (count < n) then R ← R∪ (∪jsj); C ← C\{(Θ, t0)}

else if (∃ Rj ⊆ U) ∧ (count = 1) then return (UNSAFE,R) else
return (REFINE,R)

15 end
16 return (SAFE,R);

(determined by the parameters δ, ε, and τ). If this over-approximation is sufficient
to prove/disprove safety with respect to U then it sets the flag to SAFE or
UNSAFE, and otherwise it returns REFINE. If it detects that more than n
transitions are possible within time T , then also it returns REFINE.

In computing R in ReachFromCover , the set C stores a set of state-time pairs
that are yet to be processed. If (v, t0) ∈ C then ReachA(Bδ(v), T − t0) is yet
to be evaluated and added to R. For each (v, t0) in the cover C, a (v, ε, τ, T, l)-
simulation ψ = ρ0, . . . ρl is computed. The variable count tracks the number
of new simulation branches initiated in a run of the algorithm. Let ξ be the
actual execution starting from v and G�,�′ be the guard from location � to �′.
By Definition 6, each ρk of ψ is a simulation fragment. By Definition 4, the
IS approximation is a (small) dynamical system, whose trajectory gives an up-
per bound of the distance between continuous trajectories of A. The subroutine
BloatWithISD(ρk, ISD , r, ε, τ,A) (i) creates an IS Approximation M of A us-
ing the discrepancy functions in ISD that correspond to the location of ρk,
(ii) generates a (r, ε, τ, T, 0)-simulation of M , say μ, (iii) bloats each set Rj in
ρk with the valuation of μ(tj) to obtain a set sj , (iv) returns the sequence of
sets Sk = (sk(1), tk(1)), . . . , (sk(m), tk(m)), and finally (v) applies the transition
between ρk and ρk+1 on the set sk(m) and returns r as the radius of image of the
reset function. From Theorem 1, Sk contains all continuous trajectories of A that
start from Br(Rk(1)). It can be checked that ∪jsj precisely over-approximates
all the executions from Br(v) that are captured by ψ (Proposition 2-3).

To over-approximate the states reached via executions from Bδ(v) that are
not captured by ψ, the algorithm generates new simulations (line 7-13) and adds
up count. The algorithm transverses Sk and generates and checks two possible
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cases as described in line 7 and 10. Then the algorithm decides whether the
computed over-approximation R is safe, unsafe, or needs further refinement.

4.3 Soundness and Relative Completeness

We will state the key propositions of the algorithms that are used for proving
correctness. The details of the proofs are given in the technical report [25].
In what follows, all the program variables refer to their valuations at the pth

iteration of the while loop of ReachFromCover , unless otherwise stated. That
is, (v, t0) is the time-state pair being explored in the pth iteration. Propositions 2
and 3 follow from straightforward inductive application of Theorem 1, the fact
that ψ is a simulation from v with the properties stated in Definition 6, and the
continuity of the reset functions for all location pairs.

Proposition 2. Let ψ be a simulation from v(p). For any execution fragment ξ
starting from a state in Bδ(v

(p)), if the transition sequence of ξ is captured by ψ

then, for any t ∈ [0, T − t
(p)
0 ], ξ(t) ∈ ∪l(ml)

j=1 sj. Recall that l(ml) denotes the last
index of ρl and thus the total number of elements in ψ.

Proposition 3. For the execution ξv from v, and any r > 0, there exists suffi-

ciently small δ, ε, τ , such that ∪l(ml)
j=1 sj ⊆ ∪t∈[0,T−t0]Br(ξv(t)).

Using Proposition 2, we can prove the soundness of the algorithm.We show that
every execution from Θ can be decomposed into execution segments that are cap-
tured by some simulation generated during the while loop of ReachFromCover .

Theorem 2 (Soundness). If InvVerify returns SAFE then A is safe with re-
spect to U up to T , and if it returns UNSAFE then A is unsafe.

We establish termination of InvVerify under the following robustness assump-
tion.

Assumption 1. (i) A has an average dwell time [24]. That is, there exists
N ′ ≥ 0 and τ ′ > 0 such that, for any execution fragment ξ of A, the number of
transitions occurring in ξ is upperbounded by N ′+ ξ. dur

τ ′ . (ii) One of the following
conditions hold: (a) Ū is a robust invariant of A up to time T . (b) There exists
c > 0, such that all c-perturbations of A reach U with in T .

Assumption 1(i) is standard for well-designed systems and can be automat-
ically checked for certain model classes [36]. Part (ii) is a robustness condition
with respect to the invariant Ū (complement of U) such that the satisfaction
of the invariant remains unchanged under sufficiently small perturbations to the
models. Since the over-approximation can be computed up to arbitrary precision
(Proposition 3), InvVerify is guaranteed to terminate.

Theorem 3 (Relative completeness). Under Assumption 1, InvVerify ter-
minates.
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5 Checking Invariants for Cardiac Cell Networks

We present a challenging case study modeling a cardiac cell that involves non-
linear HA networks. The purpose of the case study is to demonstrate the effec-
tiveness of InvVerify . Our case study is the minimal ventricular (MV) model
of Bueno-Orovio et al. [11] that generates action ptential (APs) on cardiac
rings [17]. Unlike the FHN model of Example 1, the MV model can reproduce
realistic and important AP phenomena, e.g. alternans [22], and yet is computa-
tionally more efficient than some of the other models in the literature. Using the
techniques from Grosu et al. [19], we abstract the MV model into a network of
multi-affine hybrid (MAH ) automata (see Figure 2). On the resulting network
we check a key invariant property.

5.1 The MAH Cardiac Cell Network Model

The MV model describes the flow of currents through a cell. The model is defined
by four nonlinear PDEs representing the transmembrane potential x1(d, t), the
fast channel gate x2(d, t), and two slow channel gates, x3(d, t) and x4(d, t). All
of the four variables are time and position d := (dx, dy, dz) ∈ R3 dependent. For
one dimensional tissue, i.e., d := dx, the evolution of transmembrane potential
is given by:

∂x1(dx, t)

∂t
= D

∂2x1(dx, t)

∂d2x
+ e(x1, t)− (Jfi + Jso + Jsi), (2)

where D ∈ R is the diffusion coefficient, e(d, t) is the external stimulus applied
to the cell, Jfi is the fast inward current, Jsi is the slow inward current and
Jso is the slow outward current. The currents Jfi, Jso and Jsi are described by
Heaviside function. To define the propagation of the action potential on a cardiac
ring of length L, we set the boundary conditions to: xi(0, t) = xi(L, t) for all
i ∈ {0, . . . , 4} and t ∈ R.

MAH approximation. One alternative to solving these highly nonlinear PDEs is
to discretize space and hybridize the dynamics. The result is the MAH model.
Following the approach of [19] we first hybridize the dynamics and obtain a HA
with 29 locations. The basic idea is to approximate the Heaviside function from
Jfi, Jso and Jsi with a sequence of ramp functions. Each location of the resulting
HA contains a multi-affine ODE such as:

ẋ1 = −0.935x1 + 12.70x2 − 8.0193x1x2 + 0.529x3x4 + 0.87 + st

ẋ2 = −0.689x2; ẋ3 = −0.0025x3; ẋ4 = 0.0293x1 − 0.0625x4 + 0.0142,

where st is the time-varying stimulus input. Urgent transitions from each location
�i to the next (and predecessor) location �i+1, i ∈ [29], are enabled by the guards
of the form x1 ≥ θ′i and x1 < θi, where θi, θ

′
i are the constants arising from ramp

approximations of the Heaviside functions.



Invariant Verification of Nonlinear Hybrid Automata Networks 385

Next, we discretize the 2nd order derivative D ∂2x1(dx,t)
∂d2

x
from Eq. (2) with a

discretization step of Δ using 2nd order central difference method and obtain

D x1(dx+Δ,t)−2x1(dx,t)+x1(dx−Δ,t)
Δ2 . Informally, Δ represents the spatial discretiza-

tion and corresponds to the length of the cell in the ring. This 2nd order central
difference term is added to the right hand side of the dynamic mapping for x1 (in
each location) to obtain the final MAH model of a single cardiac cell. Note that
by using the central difference method the approximation error for the original
MV model is of the order O(Δ2). To check invariants of a cardiac ring of length
L, we connect all of the * LΔ+ HA into a network such that the input variables of

every HA Ai, i ∈
[
* LΔ+

]
, are identified with the variable x(i+1)1 of the successor

Ai+1 and the state variable x(i−1)1 of Ai−1 in the ring. We consider scenarios
where one HA in the ring gets a sequence of stimuli from a pulse generator and
for the remaining HA st(t) := 0.

5.2 Experimental Results

For understanding the effect of stimuli on cardiac tissue (cell networks) the
key invariant properties of interest are of the form x1 ≤ θmax, where θmax is
a threshold voltage value. Other properties about timing of action potentials
can be constructed using these building block invariants and additional timers.
We implemented the algorithms of Section 4 in MATLAB programs that take as
input Simulink/Stateflow models of FHM and MAH networks (see Figure 2). For

Fig. 2. Top left: top-level Simulink/Stateflow model for a ring of five MAH cells; the
Pacemaker block stimulates one cell. Center: Stateflow model of a single MAH cell. Top
right: dynamics and guards in 3 locations of a single cell. Bottom: reach set projected
on x11 (AP) for stimulation period of 1000 msec (left) and 600 msec (right) with x-axis
for time and y-axis for voltage.
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Table 1. (a) Scaling with network size. N : number of cells in the ring network, θmax:
threshold voltage defining invariant, Sims: number of simulations, Refs: max. number
of refinements, RT: running time in seconds. (b) Verification of FHM networks with
time horizon T=1200 ms, initial set uncertainty ±0.01 mV. (c) Comparison of running
time with S-taliro over 3 cell MAH networks for cases where both tools find counter-
examples.

N θmax Sims Refs RT(s) xi1 ≤ θmax

3 2 16 0 104.8 �
3 1.65 16 0 103.8 �
3 1.55 17 1 110.6 �
3 1.5 NA NA 9.0 ×
5 2 3 0 208.0 �
5 1.65 5 1 281.6 �
5 1.65 170 125 945.0 �
5 1.5 NA NA 63.4 ×
8 2 3 0 240.1 �
8 1.65 73 9 2376.5 �
8 1.5 NA NA 119.7 ×

(a)

N θmax Sims Refs RT xi1 ≤ θmax

3 1.5 1 0 1.5 �
3 1.0 16 1 20.4 �
5 1.5 8 2 9.2 �
5 1.0 NA NA 1.1 ×
8 1.5 1 0 1.8 �
8 1.0 24 3 33.5 �

(b)

T S-taliro Our tool

100 24.2 3.1

1000 27.4 9.3

10000 55.5 62.9

(c)

all the locations the IS-discrepancy functions are computed using the techniques
of Section 3. The cells being identical, essentially Val(L) IS discrepancy functions
are sufficient. We computed the Jacobian matrices for each location by hand.
Exploiting the loose coupling of the variables, in this case, we are able to find
a closed form upperbound for the maximum eigenvalue for the Jacobians. The
results presented here are based on experiments performed on a Intel Xeon V2
desktop computer using Simulink’s ode45 simulation engine. Table 2(a) shows
typical running times of our prototype on MAH networks of size 3, 5, and 8 cells
with different invariant properties (defined by x1 ≤ θmax). These are for a time
horizon (T) of 1200 ms with a stimulus of 5 ms exciting one of the cells every
600 ms. The uncertainty in the initial set is ±0.0001 mV for each of the cells
in the network (for comparison, the invariant ranges for the first few locations
are 0.003 mV), except for the 2nd network with 5 cells, where the initial set has
higher uncertainty of ±0.0001 mV. With this larger initial set, even with the
same threshold, the algorithm requires many more refinements and simulations
to prove the invariant. Analogous results for 3, 5, and 8 cell FHN networks are
shown in Table 2(b), with the longer time horizon T = 10000 ms and greater
uncertainty in the initial set of ±0.01 mV. The two orders of magnitude faster
running time (even for the same number of simulations) can be explained by
the lower dimension (2) of FHN cells, and the absence of any transitions which
spawn new branches in the execution of MAH -simulations. A comparable tool
that can check for counter-examples in this class of HA models models is S-
taliro [5]. We were able to find counter-examples using S-taliro for the 3 cell
MAH networks with similar initial states (running times shown in Table 2(c)).
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On average, for smaller time horizons (T ) S-taliro found counter-examples faster,
but for longer T (and appropriate initial sets) the running times were comparable
to our prototype.

It is known that electrical alternans initiate and destabilize reentrant waves
which my induce cardiac arrhythmia such as ventricular fibrillation [27]. The
electrical alternans involve long-short beat-to-beat alternation of AP duration
at fast pacing rates. In Figure 2 (bottom left) we plot the reach set from a set of
initial states with pacing rate of 1000 msec and observe that the AP durations
do not change, whereas at a pacing rate of 600 msec (bottom right) the AP
durations alternate. The reach set approximations computed by our tool enable
us to prove absence of alternans over bounded-time horizons and also to find
initial states from which they may arise.

6 Related Work, Discussion and Conclusions

Networks of timed automata to model the propagation of APs in human heart
are employed in the Virtual Heart Model [28–30, 39] and hybrid automata are
used in [8,45]. In [18,33], the authors develop a model of the cardiac conduction
system that addresses the stochastic behavior of the heart, validated via simula-
tion. However, the hybrid behavior of the heart is not considered. Grosu et al. [21]
carry out automated formal analysis of a realistic cardiac cell model. In [19] a
method to learn and to detect the emergent behavior (i.e. the spiral formation)
is proposed. Simulation-based analysis of general nonlinear HA has been inves-
tigated in [5], where a search for counter-examples is carried out using sampling
and stochastic optimization. Our approach is designed to prove bounded-time
invariants. Other promising tools include Breach [14] and Flow∗ [13]; their ap-
plication to cardiac cell networks will be an interesting direction to explore once
support for these types of Simulink/Stateflow models is established.

In this paper, we present an algorithm to check robust bounded-time invari-
ants for networks of nonlinear hybrid automata. We used automatically com-
puted input-to-state discrepancy functions for individual locations of individual
automata modules to over-approximate reachable states of the network. All of
the developed techniques and the symmetry in the network of cells enabled us
to check key invariants of networks of nonlinear cardiac cells, where each cell
has four continuous variables and 29 locations. We will extend our algorithms to
support richer classes of properties specified in metric or signal temporal logic.
These results also suggest new strategies for pacemaker control algorithms, for
example, for avoiding alternans and other undesirable behavior.
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Abstract. A major obstacle for using partial order reduction in the context of
real time verification is that the presence of clocks and clock constraints breaks
the usual diamond structure of otherwise independent transitions. This is espe-
cially true when information of the relative values of clocks is preserved in the
form of diagonal constraints. However, when diagonal constraints are relaxed by
a suitable abstraction, some diamond structure is re-introduced in the zone graph.
In this article, we introduce a variant of the stubborn set method for reducing an
abstracted zone graph. Our method works with all abstractions, but especially tar-
gets situations where one abstract execution can simulate several permutations of
the corresponding concrete execution, even though it might not be able to simu-
late the permutations of the abstract execution. We define independence relations
that capture this “hidden” diamond structure, and define stubborn sets using these
relations. We provide a reference implementation for verifying timed language
inclusion, to demonstrate the effectiveness of our method.

1 Introduction

State space methods for timed systems have to deal with not only state explosion but
also clock explosion, i.e., complexity resulting from time constraints of the runs of the
system. In a non-timed system, state explosion caused by concurrency and interleav-
ing semantics can often be alleviated by commutativity based reductions, a.k.a. partial
order reductions, that work by eliminating unnecessary interleaving of sequences.

Fig. 1 shows a simple example of how partial order reduction works. Two processes
P1 and P2 can perform events a and b, respectively, as shown in Figs. 1 (a) and (b). The
concurrent behaviors, ab and ba, of P1 and P2 constitute a diamond structure as shown
in Fig. 1 (c). If the property checks for the reachability of state l2m2, it is sufficient to
only explore the representative path ba marked in solid arrows.

The presence of clocks interferes with partial order reduction, because the relative
order of events is preserved in time stamps. Consider a simple timed system of two
concurrent events, a and b, and two clocks xa and xb, which record the time elapsed
since the previous occurrence of the events. If both events occur, but a takes place before
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Fig. 1. Diamond Structure
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xa − xb ≤ 3
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a[xb ≤ 2], {xa} b[xa ≤ 3], {xb}

b[xa ≤ 3], {xb} a[xb ≤ 2], {xa}

(c) M1 ‖ M2

Fig. 2. Broken Diamond Structure

b, then the time constraint xa ≥ xb will hold, and if the order is reversed, then xb ≥ xa
will hold. Fig. 2 shows the broken diamond structure that results from time constraints.

Abstraction in this article refers to relaxing of some constraints of a system so that
we will lose the ability to distinguish between some configurations. We deal exclu-
sively with time abstraction and safety in this article. When verifying safety properties,
abstractions give over-approximations, so that all errors are preserved, and some new
errors may be introduced. Abstraction refinement means that verification starts with a
coarse over-approximation which is then refined until either the property is verified or
a concrete counterexample is found.

The objectives of this article are the following. Firstly, we define novel relations
called weak and strong independence for an abstract transition system. They guarantee
that one order of executing two independent abstract events can simulate the other order.
Strong independence is symmetric, but weak independence is not. Fig. 2 serves as an
example. Observing the bottom left configuration, if we relax the constraint xb−xa ≤ 0
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and replace it with a constraint xb − xa ≤ n for any sufficiently large n, the resulting
abstract configuration can simulate the configuration on the bottom right of the same
figure. The independence relations preserve their validity when an abstraction is made
coarser, which is summarized in Theorem 1.

Secondly, we modify the stubborn set method to make use of these relations and
reduce an abstract state graph. Our reduction works so that if the original state graph
contains a counterexample, then the reduced version of the abstract state graph contains
one as well, and this is proven in Theorem 2. Due to the two theorems, our theory is
general enough, so that it could be combined with any form of abstraction, as long as
one can analyse the independence relations for some finer grained abstraction.

We chose to experiment with the approach in combination with an abstraction re-
finement loop. The abstraction in our implementation combines a simple family of ab-
stractions that omit some diagonal constraints, with LU-simulation check. Even this
rudimentary implementation provides excellent improvement in scalability.

Organization. In the following we discuss how our work relates to previous work in the
literature. In Section 2, we define timed automata, timed languages, and the composition
of a system from component automata, and their semantics over transition systems. Sec-
tion 3 defines the stubborn set reduction for an abstract transition system, and explains a
state exploration algorithm for checking non-emptiness under reduction. In Section 3.3,
we discuss one possible implementation. Section 4 discusses some experiments, while
the final section concludes.

Related Work. The seminal work on stubborn sets are [16] and [17]. In particular, [17]
explores the use of stubborn sets in a synchronous model. Both deal with strong stub-
born sets, although earlier work does identify weak sets as well. Dependency and reduc-
tion of the control structures for weak stubborn sets have been presented in [9], along
with an algorithm for calculating stubborn sets. This article generalizes weak and strong
(in)dependence to time constraints. Weak sets have the potential (at least in theory) to
reduce more than strong sets.

The theory of timed automata is mostly from [1]. We use the original timed au-
tomata definition that does not include invariants. Invariants can be taken into account
in our theory as additional guards for transition entering or leaving locations that have
them, without compromising safety. Earlier work on partial order reduction for timed
automata includes [4] and [12], which identify the problems related to commutativity.
Both consider a concept of local time, where delays are either global or local to compo-
nent automata, but provide no empirical evidence. The problematic nature of time zones
is also discussed in [5], where a concept called covering is applied. Weak independence
is a generalization of covering, and localized time can be viewed as an abstraction
technique compatible with our method. Event zones that record the time elapsed be-
tween given events, have been used in [11] and [13] to implement Mazurkiewicz-trace-
reduction, which is based on a symmetric concept of independence. Various abstraction
techniques for zones exist [6,3,10], we combined our method with the latter two. The
idea behind our timed abstraction refinement loop originates from [2].

An alternative approach to using commutativity is discussed in [14]. The method is
a search where the zones resulting from different permutations of a set of events are
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merged. The exact relationship to our method is unknown to us, but we conjecture that
the two methods can be combined to increase the effectiveness of both; we leave this
for future work.

2 Preliminaries

Let Σ be a finite alphabet and R+ be the set of non-negative real numbers. A timed
word over Σ is a finite sequence wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ (Σ × R+)∗, such
that the sequence t1t2 . . . tn of time-stamps is non-decreasing.

Let C be a set of clocks where a clock is a variable over non-negative real numbers
R+. We assume that all clocks progress at the same rate. Let ∼∈ {<,≤,≥, >} and
≺∈ {<,≤}. An atomic clock constraint η is defined as η = xa ∼ n | xa − xb ≺ n
for xa, xb ∈ C, and n ∈ Z. A clock constraint φ is a conjunction of atomic clock
constraints.

A clock constraintφ identifies a convex |C|-dimensional polyhedron �φ� ⊆ (R+)|C|.
An atomic clock guard is an inequality of the form xa ∼ n for xa ∈ C, ∼∈ {<,≤, >
,≥}, and n ∈ N. A clock guard g is a conjunction of atomic clock guards. A clock
guard g identifies a |C|-dimensional cuboid �g� ⊆ (R+)|C|. We use GC to denote the
set of clock guards over C, and GA

C ⊆ GC to denote the set of atomic clock guards.
A clock valuation γ : C �→ R+ assigns a non-negative real number to a clock. For

a clock valuation γ, clock resetting c ⊆ C, denoted by γ[c �→ 0], is the clock valuation
γ′ such that γ′(x) = 0 for all x ∈ c and γ′(y) = γ(y) for all y ∈ C \ c. Given a
constant d ∈ R+ and a clock valuation γ, we use γ + d to denote the valuation such
that (γ + d)(x) = γ(x) + d for all x ∈ C. The set of clock valuations is denoted ΓC .

Definition 1. Let C be a set of clocks. A timed automaton (TA) over C is a tuple T =
(Σ,L, L0, δ, Lf), where Σ is a finite input alphabet, L is a finite set of locations, L0 ⊆
L is a set of initial locations, Lf ⊆ L is a set of accepting locations, and δ : L ×Σ ×
GC × 2C �→ 2L is a partial transition function.

In a transition δ(l, a, g, c), l is the starting control location, a is the event, g is a guard
and c is the set of reset clocks, while the result is a set of control locations. It is common
to think of transitions as edges between two control locations that are decorated with

a, g and c. For convenience, sometimes we write l
a[g],c−−−→ l′ or even l

a−→ l′ when
l′ ∈ δ(l, a, g, c) for some l, l′ ∈ L, a ∈ Σ, g ∈ GC , and c ⊆ C. When such l′ exists,

we write l
a−→. l

ab−→ l′ means there is some l∗ ∈ L such that l
a−→ l∗ and l∗ b−→ l′. We

generalise this to longer sequences in the natural way.
We writeR(a) as the union of all c such that δ(l, a, g, c) is defined for some l and g,

i.e., R(a) is the set of clocks that could be reset by executing a. Likewise G(a) is the
set of clocks that appear in some g such that δ(l, a, g, c) is defined for some l and c.

Definition 2. A run σ of a TA M = (Σ,L, L0, δ, Lf) over a timed word
wt = (a1, t1)(a2, t2) · · · (an, tn) is a finite sequence of the form

(l0, γ0)
a1−→
t1

(l1, γ1)
a2−→
t2

(l2, γ2)
a3−→
t3
· · · an−→

tn
(ln, γn)

with li ∈ L and γi ∈ ΓC for all 0 ≤ i ≤ n, satisfying the following requirements:
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– l0 ∈ L0 and γ0(x) = 0 for all x ∈ C

– there is a transition li−1
ai[gi],ci−−−−−→ li such that (γi−1 + ti − ti−1) |= gi and γi =

(γi−1 + ti − ti−1)[ci �→ 0] for all 1 ≤ i ≤ n

A run σ is an accepting run if ln ∈ Lf . A timed word wt is accepted by M if M has an
accepting run over wt. The timed language accepted by M , denoted by L(M), is the
set of all the timed words accepted by M .

We call the set V = {a ∈ Σ | ∃l ∈ L \ Lf : ∃l′ ∈ Lf : l
a−→ l′ ∨ l′ a−→ l} visible

events. Visible events are the events whose occurrence may change the control location
from accepting to non-accepting or vice versa. For future reference, V does not need to
be exact, approximating with a larger set will be sufficient.

Given a set of timed automata Mi = (Σi, Li, L
0
i , δi, L

f
i ) for i ∈ {1, 2, . . . , n},

their parallel composition is the timed automaton M1 ‖ · · · ‖ Mn = (Σ,L, L0, δ, Lf)

where Σ =
⋃

1≤i≤nΣi, L = L1×· · ·×Ln, L0 = (L0
1, . . . , L

0
n), L

f = Lf
1 ×· · ·×Lf

n,
and the transition relation δ is defined as follows. Let Σ(a) = {i | a ∈ Σi}. Then

(l1, . . . , ln)
a[
∧

i∈Σ(a) gi],∪i∈Σ(a)ci−−−−−−−−−−−−−−−→ (l′1, . . . l
′
n), if (1) li

a[gi],ci−−−−−→ l′i, whenever i ∈ Σ(a),
and (2) li = l′i, whenever i /∈ Σ(a).

If a clock constraint φ is satisfiable, there is a unique canonical clock constraint,
denoted by Can(φ), among all the clock constraints identifying the polyhedron �φ�,
obtained by closing φ under all consequences of pairs of conjuncts in φ. Let C0 =
C ∪ {x0} where x0 is the dummy clock. We assume x0 = 0 at all times. Can(φ) can
always be expressed as

∧
x,y∈C0

x−y ≺xy nxy . A common canonical representation is
the difference bound matrix or DBM. A DBM represents Can(φ) in the following way.
Given a numbering {0, 1, . . . , |C|} for the set of clocks, we represent any satisfiable
constraint as a matrix D = 〈nij ,≺ij〉, where i, j ∈ {0, 1, . . . , |C|}. The conjunct
xi − xj ≺ij nij is represented by the entry 〈nij ,≺ij〉. The index 0 corresponds to the
dummy clock, so that a lower bound xi ≺ ni0 is represented by 〈ni0,≺〉, and an upper
bound−xi ≺ n0i is represented by 〈n0i,≺〉.

Given a clock constraint φ, we define the reset of a set of clocks c in φ, denoted
by φ[c �→ 0], as Can(φ[c �→ 0]). This set of constraints is obtained from Can(φ) by
removing all conjunctions where some x ∈ c is included, adding the conjunct x = 0,
and closing w.r.t. the remaining conjuncts. We define the time elapsing of φ, denoted by
φ ↑, as Can(φ ↑) where φ ↑ is obtained from Can(φ) by removing all upper bounds on
clocks. For example, given a constraint φ : 0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2, its canonical form
is Can(φ) : 0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2 ∧ −3 ≤ y − x ≤ 2, φ[{x} �→ 0] : x = 0 ∧ 0 ≤
y ≤ 2 ∧ 0 ≤ y − x ≤ 2, and time elapsing φ ↑: 0 ≤ x ∧ 0 ≤ y ∧ −3 ≤ y − x ≤ 2.

Given a precondition φ, and an event a with guard ga and reset clocks ca, we define
the strongest postcondition of a as sp(φ, (a, ga, ca)) = ((φ ∧ ga)[ca �→ 0]) ↑. We
define a abstract postcondition POSTα as a mapping that satisfies sp(φ, (a, ga, ca)) ⊆
POSTα(φ, (a, g, c)). If POSTα1 and POSTα2 are two abstract postconditions such
that for every a, g and c, POSTα1(φ, (a, g, c)) ⊆ POSTα2(φ, (a, g, c)), we write
α1 4 α2, and we say that α2 is a coarser abstraction.
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Definition 3. The semantics of a timed automaton M = (Σ,L, L0, δ, L
f) is defined

by an abstract transition system (S, S0,=⇒α), where S ⊆ L× P((R+)|C|), and S0 =
{(l0, Z0) | l0 ∈ L0}. Z0 is called the initial zone. “=⇒α” ⊆ S × Σ × S is defined as
follows:

– (l, Z)
a

=⇒α (l′, Z ′), if and only if a ∈ Σ and l′ ∈ δ(l, a, g, c) for some g and c,
and Z ′ = POSTα(Z, (a, g, c)) �= ∅.

where POSTα(Z, (a, g, c)) is an abstract postcondition operation. When such (l′, Z ′)
exists, we write (l, Z)

a
=⇒α.

Given (l, Z) ∈ S, we write enα((l, Z)) = {a | ∃(l′, Z ′) : (l, Z)
a

=⇒α (l′, Z ′)}, for the
set of enabled events at state (l, Z). The abstraction is determined by the postcondition
POSTα(Z, (a, g, c)). We leave that open for now, as well as what Z0 really is. We
write POSTα(Z, a) and omit the guard g and the set of clocks c if they do not matter
or are clear from the context. We abuse the notations to write (l, Z)

a
=⇒sp (l′, Z ′),

when Z ′ = sp(Z, (a, g, c)) for some g, c and l
a−→ l′, even if (l, Z) is not an actual state

of the transition system we are discussing. When Z ⊆ Z ′ we say that the state (l, Z ′)
simulates the state (l, Z), and write (l, Z) ≺ (l, Z ′).

Definition 4. Given an abstract transition system (S, S0,=⇒α), a sequence 〈(l0, Z0),

a1, (l1, Z1), . . . , an, (ln, Zn)〉 such that (li−1, Zi−1)
ai=⇒α (li, Zi) and ln ∈ Lf is

called a counterexample of the transition system.

The following proposition is the basis of timed verification using transition systems,
and it is a standard result [1].

Proposition 1. If (S, S0,=⇒sp) is the transition system of the timed automaton M =
(Σ,L, L0, δ, L

f) under strongest postcondition, then L(M) = ∅ if and only if the tran-
sition system does not have a counterexample.

A corollary to Proposition 1 follows immediately from the assumption that sp(Z, a) ⊆
POSTα(Z, a): If an abstract transition system of M under α has no counterexamples,
then L(M) = ∅.

3 Reduction of Abstract Transition Systems

We define reduction functions for abstract transition systems without specifying the
abstraction function. The reduction preserves the existence of counterexamples of the
concrete system, of which the abstract system is an over-approximation; the existence
of spurious counterexamples may not be preserved.

3.1 Stubborn Sets

Definition 5. Given a timed automaton M = (Σ,L, L0, δ, Lf) and its abstract tran-
sition system (S, S0,=⇒α), we define a reduction function as T : S → 2Σ . Given
a reduction T , we define the reduced abstract transition system (ST , S0,=⇒T

α) as the
minimal transition system such that,
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– S0 ⊆ ST

– if s ∈ ST , a ∈ T (s), and s
a

=⇒α s′, then s′ ∈ ST and s
a

=⇒
T

α s′.

Definition 6. Given a timed automaton M = (Σ,L, L0, δ, Lf), IS ⊆ Σ ×Σ is a

– strong structural independence relation if for all (a, b) ∈ IS and all locations l, l′ ∈
L such that l

a−→ ∧l b−→ we have l
ab−→ l′ if and only if l

ba−→ l′, and
– a weak structural independence relation if for all (a, b) ∈ IS locations l, l′ ∈ L,

l
ba−→ l′ implies l

ab−→ l′.

When checking whether an event a is enabled, we consider a to have a set of structural
guards, all of which need to be satisfied before a is enabled.

Definition 7. Given a timed automaton M = (Σ,L, L0, δ, Lf), a structural guard is
a mapping g : L → {true, false}. We denote the set of structural guards by GS . The
relation RS ⊆ Σ×GS is called a structural guard relation, if and only if 1) (a, g) ∈ RS

and l
a−→ imply g(l) = true, and 2) l � a−→ implies ∃(a, g) ∈ RS : g(l) = false .

In a parallel composition of automata M1 ‖ · · · ‖ Mn, fix an event a. This a is struc-
turally enabled in a location l = (l1, . . . , ln), if and only if for every i such that a ∈ Σi,
li

a−→ in Mi. These conditions (one for each such i) can serve as structural guards. We
can denote them gai , i.e., gai (l)⇔ li

a−→.
The guard relation can be under-approximated, as long as for every disabled action

we can find at least one unsatisfied guard.
We say that the event b structurally enables the guard g, if there is some l and l′ such

that l
b−→ l′ and g(l′) = true and g(l) = false . A relation ES ⊆ GS × Σ is called a

structural enabling relation if (g, b) ∈ ES whenever b structurally enables g.
In the context of a parallel composition we can look at the locations of component

Mi. Let li, l′i be locations such that li
b−→ l′i and l′i

a−→, then we would have (gi, b) ∈ ES .
The safe direction of approximating enabling relations is over-approximation. For

instance if g is a guard of a then (g, b) holds for at least all those events that can locally
lead to a state where a is enabled, but possibly others.

In Fig. 2, for instance, a would have a structural guard g1, and any event that moves
control onM1 to l1, would enable g1. The events a and b are structurally independent,
but the figure demonstrates that this is not sufficient for reducing timed automata, as
a and b are dependent in terms of time: After the event a, we have the zone indicated
by φa ⇔ xb − xa ≤ 2 ∧ xa − xb ≤ 0. After the event b, we have φb ⇔ xb − xa ≤
0 ∧ xa − xb ≤ 3. If we have no reason to know in which order a and b took place, we
could merge the two zones into φ = φa ∨ φb ⇔ xb − xa ≤ 2 ∧ xa − xb ≤ 3.

Ideally we would like to have an abstraction that exactly removes such information.
To achieve a more general theory, we will define independence relations for events, with
respect to a given abstraction. The question of abstraction is deliberately left open, as it
is relevant only with respect to a particular implementation.

Definition 8. Given a timed automaton M = (Σ,L, L0, δ, Lf) and an abstract transi-
tion relation =⇒α. IT ⊆ Σ ×Σ is a
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– strong temporal independence relation under α , if for all (a, b) ∈ IT , all clock
constraints Z and for all transitions δ(la, a, ga, ca) and δ(lb, b, gb, cb), Z |= ga and
Z |= gb together imply that
1. sp(sp(Z, (a, ga, ca)), (b, gb, cb)) ⊆ POSTα(POSTα(Z, (b, gb, cb)),

(a, ga, ca)), and
2. sp(sp(Z, (b, gb, cb)), (a, ga, ca)) ⊆ POSTα(POSTα(Z, (a, ga, ca)),

(b, gb, cb)).
– weak temporal independence relation under α, if for all (a, b) ∈ IT and all clock

constraints Z , Z |= gb and sp(Z, (b, gb, cb)) |= ga imply that

sp(sp(Z, (b, gb, cb)), (a, ga, ca)) ⊆ POSTα(POSTα(Z, (a, ga, ca)), (b, gb, cb))

Strong temporal independence says that in any configuration, a and b can be executed in
either order, and the resulting configuration can simulate all executions of the transition
system under sp-semantics. Weak temporal independence promises that if a could be
executed after b in the concrete system, the abstract system can execute a first and then
b, and still simulate all the executions that were possible in the concrete system. For
instance, if the constraint xb − xa ≤ 0 in location (l2,m2) of Fig. 2(c) is replaced by
xb − xa ≤ ∞ then a is weakly temporally independent of b. Unless xa − xb is not
similarly relaxed, the converse does not hold, i.e., b is not weakly independent of a.

Theorem 1. Let α1 and α2 be abstractions, such that α1 4 α2. If IT is a strong
(weak) temporal independence relation under α1, then IT is a strong (weak) temporal
independence relation under α2.

Events have clock guards GC , and these need to be taken into account in the reduc-
tion. We make no assumptions about the guards other than when an event is disabled
due to time constraints, it has at least one (atomic) guard that is false.

Definition 9. A relation RT ⊆ Σ × GC is a time guard relation if 1) (b, g) ∈ RT

and (l, Z)
b

=⇒sp imply that Z |= g, and 2) if l
b−→ and (l, Z) � b=⇒sp then ∃g : (b, g) ∈

RT ∧Z �|= g. We say that the event a ∈ Σ is time enabling for a guard g under α if there
exists (l, Z)

a
=⇒α (l′, Z ′) such that Z �|= g and Z ′ |= g. A relation ET ⊆ GC × Σ, is

a time enabling relation under α, if (a, g) ∈ ET if a is time enabling for g.

In Fig. 2, a has the guard xb ≤ 2. If control is locally at l1, but xb > 2, then this
guard is false. b is enabling for xb ≤ 2, because it resets xb.

As with structural guards, the conservative approximation for a guard relation is an
under approximation as long as the relation is non-empty. The conservative approxima-
tion for enabling is an over approximation. This is reflected in the definition by the fact
that the time guard relation is defined in terms of sp-semantics and the enabling relation
is defined in terms of abstract semantics.

In the following, let G = GS ∪GC , the set of all structural and clock guards.

Definition 10. A relation IS ⊆ Σ × Σ is a strong independence relation, if there ex-
ist a strong structural independence relation IS and a strong temporal independence
relation IT such that IS = IS ∩ IT . A weak independence relation IW is defined anal-
ogously. A relation R ⊆ Σ × G is a guard relation if there exist structural and time
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guard relations RS and RT such that R = RS ∪ RT . A relation E ⊆ G × Σ is an
enabling relation, if there exist structural and time enabling relations ES and ET such
that E = ES ∪ ET .

Definition 11. Let (S, S0,=⇒α) be the abstract transition system for the timed au-
tomaton M = (Σ,L, S0, δ, Lf), and let IS , IW , E and R be the strong and weak
independence, enabling, and guard relations under α, respectively, and let (l, Z) ∈ S,
and let G(l,Z) = {g | g ∈ G ∧ (l, Z) �|= g}. let U ⊆ Σ ∪G(l,Z). Then U is a Stubborn
set at (l, Z) if the following conditions hold:

1. ∀a ∈ en(l, Z) ∩ U : (∀b ∈ Σ \ U : (a, b) ∈ IS) ∨ (∀b ∈ Σ \ U : (a, b) ∈ IW ),
2. Either en(l, Z) = ∅ or ∃a ∈ en(l, Z) ∩ U : ∀b ∈ Σ \ U : (a, b) ∈ IS . When this

condition holds for a, then a is called a key event.
3. ∀a ∈ (Σ \ en(l, Z)) ∩ U : ∃g ∈ G(l,Z) : (g, a) ∈ R ∧ g ∈ U .
4. ∀g ∈ G(l,Z) ∩ U : ∀a : (a, g) ∈ E ⇒ a ∈ U .

Intuitively, a stubborn set contains events, and for computational convenience, also
guards. Condition 1 states that each enabled stubborn event is either weakly independent
of all non-stubborn events or strongly independent of all non-stubborn events. Condi-
tion 2 states that unless the current configuration is a deadlock, a stubborn set contains
an enabled key event, which is strongly independent of all non-stubborn events, and as
a consequence, non-stubborn events can never disable a key event. Condition 3 states
that if a stubborn event is disabled, it has a guard that is inside the set, preventing it
from becoming enabled. Condition 4 states that a guard of the set cannot be enabled
by a non-stubborn event. In other words, conditions 3 and 4 work to guarantee that
non-stubborn events alone cannot enable disabled stubborn events.

Stubborn sets can be easily calculated, for instance, using the modified deletion algo-
rithm presented in [8]. We do not reproduce any algorithm here, as there are numerous
algorithms in the literature.

Definition 12. Let M = (Σ,L, L0, δ, Lf) be a timed automaton, let V ⊆ Σ be the
set of visible events, and let (S, S0,=⇒α) be the abstract transition system for M . The
reduction function T : S → 2Σ is a Stubborn set reduction function if

1. T (l, Z) is a stubborn set at every (l, Z) ∈ S.

2. If a ∈ enα(l, Z), then there exists a sequence (l0, Z0)
b1=⇒α (l1, Z1)

b2=⇒α · · ·
bk=⇒α

(lk, Zk) such that (l0, Z0) = (l, Z), bi is a key event for (li−1, Zi−1), and a ∈
T (lk, Zk).

3. If V ∩ T (l, Z) ∩ enα(l, Z) �= ∅, then V ⊆ T (l, Z).

The conditions say: 1) the reduction function must produce a stubborn set, 2) if an action
is ignored in a given state, it will be executed in some future state that is reachable using
key events, and 3) if one of the enabled events in the stubborn set is visible, then all
visible events must be included in the stubborn set. We reduce the abstract transition
system, but unlike the usual reductions, our version of stubborn sets does not guarantee
that non-emptiness of the abstract transition system is preserved. Instead, we prove only
that if the original system contains counterexamples, then the reduced abstract transition
system contains one.
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Theorem 2. Let M = (Σ,L, L0, δ, Lf) be a timed automaton, Let (S, S0,=⇒α) be
the abstract transition system for M . If T is a stubborn set reduction function for
(S, S0,=⇒α), and L(M) is not empty, then the reduced abstract transition system
(ST , S0,=⇒T

α) has a counterexample.

Proof. We prove a slightly stronger result, i.e., that if an arbitrary abstract configuration
could reach an accepting location under strongest postcondition semantics, then the
reduced system will reach one under the abstract semantics.

Let (l, Z) ∈ ST be arbitrary. Let β be a sequence of events such that (l, Z)
β

=⇒sp

(l0, Z0) is a minimal length execution to an accepting location l0 under strongest post-
condition semantics, with |β| = n. We show that there exists a state (l′, Z ′) ∈ ST , a
location l1 ∈ Lf Z1 �= ∅, and a sequence of events ρ such that (l′, Z ′)

ρ
=⇒sp (l1, Z1),

and |ρ| < n, which proves the claim by induction.

Let β = b1 · · · bn, and let us denote (l, Z) = (l0, Z0) and (l0, Z0)
b1···bi=⇒ sp (li, Zi) for

the ith state in the sequence. Due to the minimality of n, no intermediate li is accepting,
other than ln = l0. This means, that bn ∈ V , by definition, as it leads from a non-
accepting to an accepting location. The proof branches to two cases based on whether
∃i : 1 ≤ i ≤ n ∧ bi ∈ T (l, Z) holds or not.

As “case A”, let us assume bi ∈ T (l, Z) for some i. Let 1 ≤ i ≤ n be minimal such
that bi ∈ T (l, Z). Firstly, we prove bi ∈ enα(l, Z): If bi is disabled, then there is some,
either time or structural guard, that makes bi disabled at (l, Z), say g, by point 3 of the
definition of stubborn sets, and g ∈ T (l, Z). Then, point 4 would guarantee, that any
event that can cause g to become enabled would be in T (l, Z), meaning, none of the bj
with 1 ≤ j < i could enable it, as they are not in T (l, Z), leading to a contradiction.
To prove that bi is also enabled in all the intermediate states before its appearance in
the accepting sequence, notice that if bi is strongly independent of all the bj with j < i,
none of them can disable bi. If bi is weakly independent of all bj with j < i, then none
of them can enable bi. If bi were disabled in some intermediate state, this would lead to
a contradiction. We call this case A0.

When i = 1, A0 suffices as such. When i > 1, bi, by property 1 of stubborn
sets, is independent of bj for 1 ≤ j < i, either weakly or strongly. By assump-

tion, (li−2, Zi−2)
bi−1bi
=⇒ sp (li, Zi) holds and independence guarantees that (li−2, Zi−2)

bibi−1
=⇒ α (li, Z

∗
i ) where Zi ⊆ Z∗

i , which then implies (li, Z
∗
i )

bi+1···bn
=⇒ sp (l0, Z∗) so

that Z0 ⊆ Z∗. Doing the same step i times, we permute bi to (l0, Z0), and we get

(l, Z)
bib1=⇒α (l′1, Z

′
1), and (l′1, Z

′
1)

b2···bi−1
=⇒ sp (li, Z

∗∗
i )

bi+1···bn
=⇒ sp (l0, Z∗∗) so that

Z0 ⊆ Z∗∗.
Let us mark the sequence b2 · · · bi−1bi+1 · · · bn with β′. Therefore, we have (l, Z)

bi=⇒α (l′, Z ′) so that (l′, Z ′) ∈ ST , and we have (l′, Z ′) b1=⇒α (l′1, Z
′
1), with (l′1, Z

′
1)

β′
=⇒sp (l0, Z ′0). We again have a branch, but with three cases. A1) If b1 ∈ T (l′, Z ′) the
claim is proven, as (l′1, Z ′

1) ∈ ST , and |β′| < n. A2) If bj ∈ T (l′, Z ′), with a similar de-
duction as before, we can find bj that is, again, weakly (or strongly) independent of the

events that precede it in β′, and commute it, like before, so that (l′, Z ′)
bj
=⇒α (l′′, Z ′′)

so that (l′′, Z ′′) b1=⇒α (l′′1 , Z
′′
1 ) and (l′′1 , Z

′′
1 )

β′′
=⇒sp (l0, Z ′′0), thereby shortening the
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distance by one, but otherwise like before: one abstract step, and then an actual coun-
terexample. A2) can only repeat itself until the accepting state is just one abstract step
away, otherwise it reduces to A0 or A3; we call case A3) the situation when none of the
bis of β′ are in T (l′, Z ′′).

We merge cases B and A3, because they are similar. Let (l, Z)
b1=⇒x

b2···bn=⇒ sp (l0, Z0)

so that x is either sp or α, and bi /∈ T (l, Z), for 1 ≤ i ≤ n. Note that (l, Z)
bi=⇒sp

implies that (l, Z)
bi=⇒α, so that at the least b1 ∈ enα(l, Z) holds. We mark the inter-

mediate states on this path with superscripts indicating the number of steps remaining
to (l0, Z0), so that (l, Z) = (ln, Zn).

Stubborn set reduction function property 2 guarantees the existence of sequence of
key events a1, . . . , ak with k ≥ 0, such that (l, Z) = (l0, Z0) and (l0, Z0)

a1···ak=⇒ α

(lk, Zk). These subscripts are not to be confused with the notation in the A-case. We
mark the intermediate states (li, Zi). On this path – which in its entirety is in ST – there
is a state (li, Zi) for which one of bjs is in T (li, Zi). At the very least, (lk, Zk) is such
a state, as per property 2 of stubborn set reduction functions.

Let us choose the minimum such i. We must then show that (li, Zi)
b1=⇒x

b2···bn=⇒ sp

(l0i , Z
0
i ), so that l0i is an accepting location; once this is proven, again, the property

reduces to one of the cases A0 to A2.
Suppose this property holds for (lj , Zj) with j < i. It then holds for j = 0, as

assumed in this case. (li−1, Zi−1)
ai=⇒α (li, Zi) is a key event, and (li−1, Zi−1)

b1=⇒x

(ln−1
i−1 , Z

n−1
i−1 )

b2···bn=⇒ sp (l0i−1, Z
0
i−1). Because ai is a key event, it is strongly independent

of all bi, which (almost) gives us the result, so that x = α at (li, Zi).
To show that l0i ∈ Lf , inductive hypothesis gives us l0i−1 ∈ Lf . Structural strong

independence gives us l0i−1
ai−→ l0i , and if l0i /∈ Lf , then ai ∈ V must hold. Bearing

in mind that bn ∈ V , this would contradict either point 3 of stubborn set reduction
function or the assumption that none of the bi is in T (lj, Zj) for j < i. ��

3.2 Ignoring Problem and Key Events

Property 2 of the stubborn set reduction function in Definition 12 is intended to solve the
ignoring problem [16]. Previously suggested solutions for the ignoring problem include
techniques based on strongly connected components [16] and complex conditions that
deal with on-stack states [7].

The fact that key events and other events need to be considered separately further
complicates the matter. One solution for this problem was given in [8], in the context of
the Tarjan algorithm, but here we discuss implementation details for algorithms that do
not need to detect strong components.

Let us re-iterate Property 2 from the point of view of a search algorithm that explores
the reduced state space: given a state s, with en(s) as the set of enabled events, and T (s)
as the set of stubborn events, property 2 says that for every a ∈ en(s)\T (s), there must
be some state s∗, reachable from s using key events, so that a ∈ T (s∗).

Consider a usual depth-first search, which maintains a stack of states Q (along with
other necessary information). Let us assume the top state of the stack is currently s.
We can store a bitset of satisfied events, denoted sat(s) for every state in the stack.
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a ∈ sat(s) means that we know there is a sequence of key events from s to some state
s′ such that a ∈ T (s′). Obviously sat(s) = T (s) when state s is initially put on the
stack and T (s) calculated.

When we are about to backtrack from s, we check that en(s) ⊆ sat(s); if not, then
more events need to be explored. In out test implementation we fully expand the state s,
which satisfies the condition trivially, but extending the stubborn set so that at least one
new key event gets added would also be correct and potentially result in more reduction.

On the other hand, when we backtrack from s to some state s′, this means that s′ a−→ s
for some a ∈ T (s′). If a is a key event, then all the events that were satisfied in s, are
also satisfied in s′, so we can set sat(s′) = sat(s′) ∪ sat(s); we say that s is a key-
successor of s′.

This concept points to alternatives that work for searches other than depth-first search.
In a state s, with T (s) as the stubborn set, we propagate information forward to one of
the key-successors of the current state. The events in en(s) \ T (s) need to be satisfied
by one key-successor. If in a given state s, the key-successors are all old states, one
calculates a larger T (s) until either T (s) = en(s) or an unexplored key-successor is
generated. We did not experiment with this solution, as dept-first search makes is easier
to extract counterexamples. We leave exploring such solutions for future work.

3.3 Abstraction-Refinement and Independence

An abstraction refinement loop in general works by successively refining abstraction
until non-emptiness has been decided by either finding a concrete counterexample or
an empty abstract transition system. The loop starts with the loosest abstraction, which
in our implementation means omitting diagonal timing constraints altogether. In every
iteration, we calculate the dependency relations with respect to the current abstractionα.

The abstract transition system is then checked for counterexamples; because we need
counterexamples, we used depth-first search in our implementation, with the ignoring
conditions as described in the previous subsection.

If no counterexample is found, the system is correct, due to Proposition 1 and Theo-
rems 1 and 2. If we find a counterexample, it is a guarded word that leads to an accept-
ing location in the abstract transition system. We then try to simulate the word using
strongest postcondition semantics. If a simulation leads to an accepting location, we
have found an actual counterexample.

If the counterexample cannot be replicated, all simulations (the system may be non-
deterministic) lead to non-accepting locations or end in empty zones before they end. In
this case we tighten the abstraction by considering more timing constraints. The exact
details depend on the family of abstractions used, and we will discuss only one example
in this section.

The particular abstraction is merely an example. Any abstraction or family of ab-
stractions will work as long as we can calculate independence relations that satisfy
Definition 8. Also, any abstraction technique that makes each abstraction more coarse,
can be combined with our method, due to Theorem 1.

The example implementation uses an abstraction which we call pairwise dependence
of clocks (PDC), in combination with LU-simulation [3,10]. The abstraction is imple-
mented by partitioning the clocks into dependency classes. The diagonal constraints
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between clocks of different classes are omitted. Let Dα ⊆ C×C be an equivalence re-
lation for clocks. When calculating the post-condition of an event, diagonal constraints
of the form x−y ≺ n are only considered when (x, y) ∈ Dα, otherwise n is considered
to be∞.

The POSTα-operation with respect to Dα is defined as follows. Time zones in the
abstract transition system are given by the canonical constraints where Canα(Z) is of
the form

∧
(x,y)∈D0

α
x− y ≺xy nxy, where (x, y) ∈ D0

α if (x, y) ∈ Dα or if either a of
b is the dummy clock x0 which is always 0.

Any independence relation for the events must meet the criteria of Definition 8 under
POSTα to be valid. We propose the following: Let C(a) = R(a) ∪ G(a), and define
temporal dependency relations using the following checklist:

1. If there are clocks x, y such that x ∈ R(a) and y ∈ R(b) and (x, y) ∈ Dα then a
and b are dependent (both weakly and strongly).

2. If for all clocks x, y: x ∈ C(a) and y ∈ C(b) implies that (x, y) /∈ Dα, then
(a, b) ∈ ITS , and symmetrically for (b, a). Intuitively, if the events do not share any
dependent clocks, they are strongly (and weakly) independent under Dα.

3. If for every x ∈ C(a) and y ∈ C(b) such that (x, y) ∈ Dα, the guard of a contains
no lower bounds for x, then a is weakly independent of b.

4. If also in the previous case the guard of b contains no lower bounds for y, then a is
strongly independent of b.

Lemma 1. The relations described above are valid temporal independence relations
for the abstract transition system under PDC-abstraction.

4 Experiments

We created an implementation1 of our method in the PAT framework [15]. The main
question to answer is whether and how much the method is able to reduce, and whether
the benefits (in reduced states) outweight the cost (in overhead in calculating the sets).
Our implementation was an iterative version of the deletion algorithm [8], with opti-
mizations that aim at faster calculation.

We measured the performance of a direct verification of the zone graph, using LU-
simulation alone (with BFS), LU simulation and abstraction refinement that uses our
stubborn sets, and for comparison, LU- simulation with abstraction refinement but with-
out reduction. Our implementation of abstraction was the PDC-abstraction explained in
Section 3.3, and LU-simulation was calculated on top of that. Structural relations were
analyzed by examining the control structure of component automata and using sim-
ple heuristics for shared variable access, such as write/write and read/write of a shared
variable. The algorithm for state exploration for the two AR implementations was a
depth-first search, due to the need for counterexamples.

For reference, we did the tests also with UPPAAL on the same models; the models
may not produce exactly the same number of states, as it is possible that there are small

1 See https://sites.google.com/site/shangweilin/timedpor for additional
updates on performance.
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Table 1. Verification results

model PAT/BFS+LU PAT/AR+LU+POR PAT/AR+LU UPPAAL BFS
|S| time |S| time |S| time |S| time

CSMACD 5 2705 0,18 1131 0,17 2942 0,19 2156 0.03
CSMACD 6 12355 0,25 3488 0,21 11585 0,79 8976 0.08
CSMACD 7 54522 1 10146 0,7 44349 3 35739 0.36
CSMACD 8 234600 7 28272 2 164257 17 137678 1
CSMACD 9 991483 40 76185 7 592113 78 516751 6
CSMACD 10 4139285 232 199804 21 O/M 1899028 28
CSMACD 11 O/M 512344 62 O/M 6857723 117
FDDI 5 459 0,02 41 0 41 0,35 286 0
FDDI 10 10637 1 81 0,02 81 0,04 6043 0.19
FDDI 15 O/M 121 0,04 121 0,06 105990 34
FDDI 20 O/M 161 0,1 161 0,1 O/M
Fischer 5 3277 0,04 807 0,07 5785 0,38 2958 0.02
Fischer 6 15229 0,19 2570 0,27 20470 1 12777 0.08
Fischer 7 69602 1 8185 1 115633 7 54372 0.42
Fischer 8 313421 6 26104 3 578311 47 229559 2
Fischer 9 1393599 37 83339 14 O/M 965466 12
Fischer 10 6131109 242 266118 56 O/M 4053445 62
Fischer 11 O/M 849213 220 O/M 17005200 315
Railways 5 34197 0,7 1587 0,16 19217 1 16726 0.09
Railways 6 465634 10 9572 0,96 230714 14 200821 1
Railways 7 7250443 302 67069 7 O/M 2811642 22

differences in the models, and also, because the optimizations of UPPAAL are different
from our implementation. The idea is to give some indication of scalability issues.

Our experiment set consisted of some well-known safe examples, CSMA/CD net-
working, Fiber distributed data interface (FDDI), the famous Fischer protocol, and a
railway controller protocol. We measured the total number of generated configurations
and time in seconds. We ran the experiments on a PC with an Intel Core-i7, 3.4GHz and
8GB of RAM. Running times should be taken only to indicate order of magnitude and
scalability, because during the tests computer load and similar factors cause substantial
variation in running times.

The results of our experiments are given in Table 1. The best performances in terms
of number of states generated and execution time are indicated with boldface characters.
The results under reduction are given in the second column, and in all the cases, no other
approach generated fewer states.

The effects of reduction on scalability mean that eventually it is superior to every
other solution in our tests. Comparing execution times, we notice that our method slows
state generation down by a significant factor. However, this is more than compensated
by the effect on scalability of larger models. Another observation from the first and third
columns is that the abstraction refinement implementation without partial order reduc-
tion also slows down state generation significantly; It is plausible that our implementa-
tion of the PDC-abstraction is far from optimal and the time of actually calculating the
abstract successors dominates the execution times.
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Some of the reduction in the number of states comes from abstraction itself, (in
FDDI, all of it) but for instance, in the Fischer model PDC abstraction actually makes
the state space bigger, but when reduction is used, the state space is greatly reduced.
UPPAAL was chosen as a reference, as it can be viewed as the gold-standard for timed
verification. It performs significantly better than PAT when reduction is not used. UP-
PAAL also clearly has the advantage that it seems to generate states much faster. How-
ever, despite this handicap, our partial order reduction eventually beats even UPPAAL,
not only in terms of states, but also in verification time, when the models get large
enough.

5 Conclusion

We defined a variant of the stubborn set method for timed verification, which makes use
of abstraction. The method uses dependence and independence defined in terms of con-
crete behaviors that the abstract system must preserve instead of directly defining them
on the abstract zone graph. We believe the method overcomes a fundamental hurdle for
commutativity based reduction in real time verification, that of clocks causing superflu-
ous dependency. To the best of our knowledge, this is the first successful application of
the “standard” partial order reduction methods on timed automata.

In our measurements, our method was able to provide outstanding reduction, but
naturally, it can only reduce models that exhibit a high degree of concurrency and in-
terleaving. The theory is general and works with any abstract semantics as long as suf-
ficient conditions for weak and strong (temporal) independence can be extracted. Even
the simple heuristics in our reference implementation turned out to be very efficient in
reducing the number of states explored during verification of some models.
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was partly supported by project ”IDD11100102” from SUTD, ”Formal Verification on
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Abstract. This paper deals with reachability analysis of hybrid systems
with continuous dynamics described by linear differential inclusions and
arbitrary linear maps for discrete updates. The invariants, guards, and
sets of reachable states are given as convex polyhedra. Our reachability
algorithm is based on a novel representation class for convex polyhedra,
the symbolic orthogonal projections (sops), on which various geometric
operations, including convex hulls, Minkowski sums, linear maps, and
intersections, can be performed efficiently and exactly. The capability
to represent intersections of convex polyhedra exactly is superior to sup-
port function-based approaches like the LGG-algorithm (Le Guernic and
Girard [21]).

Accompanied by some simple examples, we address the problem of the
monotonic growth of the exact representation and propose a combination
of our reachability algorithm with the LGG-algorithm. This results in
an efficient method of better accuracy than the LGG-algorithm and its
productive implementation in SpaceEx [13].

1 Introduction

Reachability analysis of hybrid systems has to deal with two problems: The first
one is a systematic representation of the reachable states. Aside from nonconvex
approaches like [4,5,22], the reachable states are usually represented as unions of
convex sets, for which different representations, including polyhedra [7], template
polyhedra [23], zonotopes [15,16], ellipsoids [19], and support functions [20], are
used. The choice of the representation has a wide influence on the approximations
of the underlying sets and on the efficiency of the operations required for the
reachability analysis, e. g. zonotopes, ellipsoids, and support functions are chal-
lenging for intersections with guard sets [1,16]. The second problem is to tackle
the dynamics of the system. Typical classes of admissible dynamics vary from
constant derivatives [9,18], linear differential equations or inclusions [13,15,19]
to nonlinear differential equations [23,6]. However, in order to approximate com-
plexer dynamics, the classes should allow differential inclusions [2,3,12]. In turn,
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the choice of the admissible dynamics has an impact on the required operations
for the post image computation. Hence, both problems are highly related.

In this paper we focus on the reachability analysis of hybrid systems with con-
tinuous dynamics described by linear differential inclusions and arbitrary linear
maps for discrete updates. The invariants, guards, and sets of reachable states
are given as convex polyhedra, where we assume that the polyhedra are given
as intersections of half-spaces (H-representation) and not as convex hulls of ver-
tices and rays (V-representation). Our reachability algorithm is based on a novel
representation class for convex polyhedra, the symbolic orthogonal projections
(sops), on which various geometric operations, including convex hulls, Minkowski
sums, linear maps, and intersections, can be performed efficiently and exactly.
The capability to represent intersections of convex polyhedra exactly is superior
to support function-based approaches.

Due to space limitations we omit the proofs. The interested reader will find
the proofs and some additional materials in [17].

2 Template Polyhedra and Support Functions

In their 2009 article [21], Le Guernic and Girard proposed an algorithm for
reachability analysis of hybrid systems based on the usage of support functions.
This reachability algorithm, we call it the LGG-algorithm for short, as been
implemented in the verification tool box SpaceEx [13]. The efficiency of the
LGG-algorithm is achieved by a clever combination of support functions and
template polyhedra. We briefly restate their representations of convex sets.

Template polyhedra are H-polyhedra P (Afix, a) = {x |Afixx ≤ a} where the
template matrix Afix is fixed a priori. For a – not necessarily convex – set S ⊆ Rd

and a direction n ∈ Rd the value of the support function is defined as hS(n) =
supx∈S n

Tx. For an H-polyhedron P (A, a) the value of the support function
is given by the linear program “maximize nTx subject to Ax ≤ a”. Support
functions behaves nicely under most geometric operations; in detail, for any
two compact convex sets P, Q in Rd, and any (d × d)-matrix M the following
equations are easily computable:

hM(P)(n) = hP(M
Tn), (linear map)

hP+Q(n) = hP(n) + hQ(n), (Minkowski sum)

hconv(P∪Q) = max(hP(n), hQ(n)), (closed convex hull)

while the intersection is not easily computable

hP∩Q(n) = inf
m∈Rd

hP(n−m) + hQ(m).

Given the template matrix Afix and the support function hS of some set S,
one easily obtains a closed convex over-approximation P (Afix, aS) of S: The ith
coefficient of the vector aS is given by hS(ni), where nT

i is the ith row of the
template matrix. We will use the notation aS = hS(Afix) for such a row-wise
computation of the vector aS.
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3 Symbolic Orthogonal Projections

We introduce a novel representation class for polyhedral sets which we call sym-
bolic orthogonal projections, or sops, for short. Sops can be realized in any vector
space Kd over an ordered field K. Any sop P = P (A,L, a) ⊆ Kd, where A is an
(m× d)-matrix, L is an (m× k)-matrix, and a is a column vector in Km, is the
orthogonal projection of an H-polyhedron P

((
A L

)
, a

)
⊆ Kd+k onto Kd, where

k is the number of columns in L, i. e.,

P = P (A,L, a) =
{
x ∈ Kd

∣∣∃z ∈ Kk, Ax+ Lz ≤ a
}
.

Obviously, the sop P (A,L, a) is empty if and only if P
((
A L

)
, a

)
is empty, and

any H-polyhedron P = P (A, a) ∈ Kd may be represented by the sop P (A, ∅, a),
where ∅ denotes an empty matrix. Furthermore, for any sop P (A,L, a) in Kd and
any given direction n ∈ Kd the optimal value of the linear program “maximize
nTx subject to Ax+Lz ≤ a” provides the value of the support function hP(n).
Hence, sops can easily be over-approximated by template polyhedra.

As a rather technical notion, we call a sop P (A,L, a) complete if there exists
some u ≥ 0 with 0 = ATu, 0 = LTu, and 1 = aTu. Any sop can be completed
by adding the redundant row (0T ,0T , 1) to its representation (A,L, a).1

Convex Hull, Minkowski Sum, and Intersection. We show that sym-
bolic orthogonal projections allow to efficiently represent closed convex hulls,
Minkowski sums, and intersections of polyhedra. All these operations are realized
as block matrices over the original matrices. The zero matrix is denoted by O.

Proposition 1. Let P1 = P (A1, L1, a1) and P2 = P (A2, L2, a2) be two non-
empty sops in Kd. Then the following equations hold:

conv(P1 ∪P2) = P

((
A1

O

)
,

(
A1 L1 O a1
−A2 O L2 −a2

)
,

(
a1
0

))
,

if P1 and P2 are complete;

P1 +P2 = P

((
A1

O

)
,

(
A1 L1 O
−A2 O L2

)
,

(
a1
a2

))
;

P1 ∩P2 = P

((
A1

A2

)
,

(
L1 O
O L2

)
,

(
a1
a2

))
.

Linear Mappings. Any linear mapping φ is uniquely determined by its trans-
formation matrix M ∈ Kn×m, i. e., φ(x) = Mx. We are interested in three
types of linear mappings, where the (n×n)-identity matrix is denoted by In: (i)
automorphisms, having invertible transformation matrices; (ii) orthogonal pro-
jections projk, for 0 ≤ k ≤ d, having (k × d)-matrices of the form (Ik O); and
(iii) elementary embeddings embedl, for l ≥ d, having (l × d)-matrices of the
form

(
Id
O

)
.

1 One can show that any sop P which represents a fully dimensional polytope in Kd

with d ≥ 1 is complete. For a geometric interpretation of completeness, see [17].
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Proposition 2. Every transformation matrix M can be written as the product
M = S−1EPT−1, where S and T are invertible, E is the matrix of an elementary
embedding, and P is the matrix of an orthogonal projection.

Proposition 3. Let P1 = P (A1, L1, a1) be a sop in Kd, S an invertible (d×d)-
transformation matrix of the linear mapping φ, projk an orthogonal projection
with 0 ≤ k ≤ d, and embedl an elementary embedding with l ≥ d. Then

φ(P1) = P
(
A1S

−1, L1, a1
)
,

embedl(P1) = P

⎛⎝⎛⎝A1 O
O Il−d

O −Il−d

⎞⎠,

⎛⎝L1

O
O

⎞⎠,

⎛⎝a1
0
0

⎞⎠⎞⎠ ,

projk(P1) = P (A,L, a1) ,

where
(
A L

)
=

(
A1 L1

)
and A has k columns.

Problem of Set Entailment. We should address an open issue: Up to now,
there is – to the author’s best knowledge – no efficient method to decide sub-
set relations for polyhedra represented as support functions or sops, and it is
questionable whether such efficient methods exists.

Overview. The adjacent table provides an overview on the hardness of perform-
ing linear transformations, Minkowski sums, closed convex hulls, intersections,

Representation M(·) ·+ · conv · ∩ · · ⊆ ·
(· ∪ ·)

V-representation � � � − �
H-representation �a − − � �
support function �b � � − −
sop � � � � −
afor automorphism, bfor endomorphism

and deciding subset relations on
polyhedra in the respective rep-
resentation. The tick indicates
computability in (weakly) poly-
nomial time and a minus-sign
indicates that the enumeration
problem is either NP-hard or its
complexity is unknown, see [25].

3.1 Beyond Template Polyhedra

Sops profit from the underlying H-representation, i. e., we may solve linear pro-
grams to test for emptiness or to find relative interior points. Additionally, we
may switch from the primal system of linear inequalities to its dual. In this sec-
tion we shall make use of these techniques and present a method which allows
to find the facet-defining half-space of a sop P in some given direction. This
method is then extended to an interpolation method which improves existing
over-approximations. The needed geometrical concepts are shortly introduced in
the following. A comprehensive introduction can be found in [26]. For the theory
of linear programming, see [24].

Let P = P (A, a) be an H-polyhedron. The points of P are those vectors x
which satisfy the system Ax ≤ a. A point x ofP is an interior point if there exists
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a ball Bε = {x | |x| ≤ ε} with ε > 0 such that x+Bε ⊆ P. Only full-dimensional
polyhedra have interior points. However, any polyhedron P = P (A, a) is full-
dimensional relatively to its affine hull aff(P). Hence, we call a point x of P a
relative interior point relatively to aff(P) if there exists a ball Bε with ε > 0 such
that (x + Bε) ∩ aff(P) ⊆ P. A facet-defining half-space H of P is a half-space
H =

{
x
∣∣nTx ≤ b

}
, P ⊆ H, such that P ∩

{
x
∣∣nTx = b

}
has a relative interior

point relatively to aff(P) ∩
{
x
∣∣nTx = b

}
.

The topological concept of a relative interior point can equivalently be defined
on the system Ax ≤ a of the polyhedron P = P (A, a). Every solution x of the
system of strict linear inequalities Ax < a is an interior point of P. If nTx ≤ b
is an inequality of the system Ax ≤ a, and if all solutions x of the system
Ax ≤ a satisfy nTx = b, then nTx = b is called an implicit equality of the
system. For any set I of row indices of Ax ≤ a we denote the corresponding
subsystem by AIx ≤ aI . The linear equalities representing the affine hull are
linear combinations of the implicit equalities of the system Ax ≤ a and vice
versa. Let I be the set of indices of the implicit equalities in Ax ≤ a and S
be the set of the remaining indices. Each solution x of the system AIx = aI ,
ASx < aS is a relative interior point of P.

Relative interior points and implicit equalities can be found by means of linear
programming: The optimal solution (x0, λ0) of the linear program “maximize λ
subject to AIx = aI , AS + 1λ ≤ aS , 0 ≤ λ ≤ 1” determines a relative interior
point x0 if λ0 > 0. For λ0 = 0 one obtains sufficient hints to find further implicit
equalities, see [14]. Let I be the set of indices of all implicit equalities of P and S
the set of the remaining indices. The facet-defining inequalities of P are exactly
those inequalities whose index j is in S and the linear program “maximize λ
subject to AI∪{j}x = aI∪{j}, AS\{j + 1λ ≤ aS\{j}, 0 ≤ λ ≤ 1” has a positive
optimal solution. The corresponding half-spaces to a facet-defining inequality
are also facet-defining.

The orthogonal projection of a relative interior point is a relative interior
point of the projected set. Let P = P (A,L, a) ⊆ Kd be a sop, z be a relative
interior point of P ((A L), a), and zd the vector of the first d coefficients of z.
Then zd is a relative interior point of P and P′ = P (A,L, a− (A L)z) is a sop
representing the translated polyhedron P′ = P − zd, which contains the origin
0 as a relative interior point.

Proposition 4 (Ray Shooting). Let P = P (A,L, a) be a nonempty and com-
plete sop in Kd which contains the origin 0 as a relative interior point. Then the
following linear program is feasible for any vector r ∈ Kd:

maximize rTATu subject to LTu = 0, aTu = 1, u ≥ 0,

and exactly one of the following statements holds:

1. The linear program is unbounded and r is not in aff(P).
2. The optimal value equals zero and P is unbounded in direction r.
3. The optimal value rTATu0 is positive and P is bounded in direction r. Let

λ = 1
rTATu0

, n = ATu0, and H = H(n, 1) be a half-space. Then λr is a
boundary point of P and H is a supporting half-space of P in λr.
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Hence, for any given ray r we find the maximal length λ = 1
rTATu0

such that λr
is on the boundary of P, and we obtain a supporting half-space of P in λr. If
λr is a relative interior point of a facet, – which is most likely the case if r was
chosen randomly – then ray shooting returns a facet-defining half-space.2

A sop P and an over-approximating template polyhedron P′ have, in general,
none or only a few facet-defining half-spaces in common. Hence, we may use
Proposition 4 to find facet-defining half-spaces of P and add them to P′ yielding
a better over-approximation P′′ of P. We call P′′ an interpolation of P and
P′. Throughout this paper we use the following simple interpolation strategy:
Initially, P′′ is set to the affine hull of P. For an arbitrary inequality of P′

we decide whether it is face-defining in P′ ∩ P′′. If not, it is removed from
P′. Otherwise, we choose r as a relative interior point of the defined facet,
and apply Proposition 4 on P and r. The resulting half-space is then added to
the representation of P′′. Now, we proceed with any inequality of P′ until all
inequalities of P′ are removed.

More sophisticated interpolations are possible but not investigated here.

4 Reachability Analysis Using Sops

In this section we first give a short outline of the reachability analysis for linear
hybrid systems. Then we discuss the usage of sops as a novel exact data struc-
ture for the reachability analysis. We will observe the monotonic growth of the
assembled sops. While the assembly can be done efficiently, any evaluation of the
assembled sops by means of linear programs gets increasingly harder. Finally, we
analyze why the LGG-algorithm is that much faster and show how to combine
both approaches to obtain a fast and improved reachability algorithm.

Hybrid Systems. A hybrid system H = (Var,Mod, Init,LDE, Inv,Trans) en-
codes the nondeterministic evolution of some initial states over time. A state
of the hybrid system is uniquely determined by the pair (x,m) of a real-valued
vector x ∈ Rd and a mode m of the finite set Mod of modes. A symbolic state is
a pair (P,m) of a polyhedron P ⊆ Rd and a mode m ∈ Mod. Each dimension of
Rd is associated with a variable in Var. Init is a designated set of initial states.
Each mode m is associated with a linear differential equation in LDE of the
form ẋ(t) = Ax(t) + u(t) describing the time derivative of the evolution of the
continuous variables Var during the mode m. Here, A is a real-valued (d × d)-
matrix, and u(t) ∈ U ⊆ Rd is given as a bounded polyhedron which models the
set of disturbances or admissible inputs of the continuous flow. The system may
only remain in a mode m as long as the state (x,m) is inside the associated

2 In any case, it is possible to test whether the resulting half-space H is face-defining:
Let d be the dimension of the affine hull of the sop P and H= be the bounding
hyperplane of H. Then H is a facet-defining half-space if and only if aff(P ∩H=)
has the dimension d− 1. In practice, one has to solve several linear programs which
makes this test costly.
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invariant (I,m) ∈ Inv, i. e., x is in the polyhedron I ⊆ Rd. Further, for each
mode m there is a finite number of associated discrete transitions. A discrete
transition (G,m,Asgn,m′) ∈ Trans is enabled if the state (x,m) satisfies the
guard (G,m), i. e., x is in the polyhedron G ⊆ Rd. If a transition is enabled,
the state (x,m) may jump to (x′,m′), where x′ is in the image of x under the
affine transformation Asgn.

For safety checks, we additionally use specialized transitions (U,m, ∅, ∅). Here,
(U,m) represents designated states for which we want to decide whether the
system can reach these states. As soon as such a reachability is established we
may stop the reachability analysis and return an appropriate message.

Reachability Analysis of Linear Hybrid Systems. As in [13], we define the
discrete post-operator postd(P,m) as the set of states which are reachable by
a discrete transition of (P,m) and the continuous post-operator postc(P,m) as
the set of states which are reachable from (P,m) by letting an arbitrary amount
of time elapse. The set R of reachable states is then the fix-point of the sequence

R0 = postc(Init), Rk+1 = Rk ∪postc(postd(Rk)).

The fix-point computation needs an efficient method to decide set entailment.
We already mentioned that for support functions and sops we do not have such
an efficient method at hand. While this deficiency might be compensated by
using template polyhedra, we restrict this paper to bounded model checking,
i. e., we do not compute the actual fix-point, but compute a restricted sequence
until a given time bound is exceeded.

The discrete post-operator simply comprises the individual application of the
affine transformations to the symbolic states and can be done efficiently using
sops. Hence, we dedicate our attention to the continuous post-operator.

Reachability Analysis of Linear Systems. For each symbolic state (X0,m),
the continuous post-operator boils down to a reachability analysis of a single
linear system, as it can be found in [13,20]: Given some initial state set X0 ⊆ Rd,
we want to compute all reachable statesR[0,t] within the time interval [0, t] under
the linear differential equation

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0, u(t) ∈ U.

The computation of the reachable set R[0,t](X0) is done by a step-wise compu-
tation of flow segments R[kδ,(k+1)δ](X0) over a time interval of length δ:

R[0,t](X0) =
⋃

k=0,...,N

R[kδ,(k+1)δ](X0).

The computation is based on two important ingredients:

– the initial segment R[0,δ](X0) and a set which collects the influence of the
bounded inputs Rδ({0}) := R[δ,δ]({0});

– the exact recurrence relation for k > 0
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R[kδ,(k+1)δ](X0) = eδAR[(k−1)δ,kδ](X0) +Rδ({0}). (1)

In general, the sets in the first item are not convex. Hence, one has to compute
convex over-approximations of these sets, which is called the initial bloating pro-
cedure. The recurrence relation (1) is then applied to the bloated sets resulting
in an over-approximation of the reachable sets.

Initial Bloating. In this section we discuss how to compute convex over-
approximations R0 of R[0,δ](X0) and V of Rδ({0}). There are several ways
to compute such over-approximations, varying from conservative over-approxi-
mation [15] to an accurate bloating of the convex hull clconv(X0 ∪ eδA(X0)) [8].
The novel method given below is inspired by the method proposed by Le Guernic
[20], which has been slightly improved and implemented in SpaceEx [13]. Any-
how, we cannot apply that bloating method directly, since we are dealing with
polyhedral sets only, while the method of Le Guernic involves piecewise quadratic
functions to describe the support function of the bloated sets. Although we made
no effort to give an precise comparison of both bloating methods, we expect the
support functions based method to provide better results in general. However,
since sops also have support functions, the following bloating procedure can also
be applied to reachability analysis using support functions. A detailed compari-
son of both bloating methods is considered as future work.

We use the superposition principle to decompose R[0,δ](X0) into the sum

R[0,δ](X0) =
⋃

t∈[0,δ]

etA(X0) +
⋃

t∈[0,δ]

Rt({0}).

The first summand
⋃

t∈[0,δ] e
tA(X0) is exactly the set of reachable states of the

related autonomous system ẋ = Ax within the time interval [0, δ] and the latter
summandR[0,δ]({0}) =

⋃
t∈[0,δ]Rt({0}) accounts for the accumulated influences

of all admissible inputs. We over-approximate both summands separately and
add them afterwards to obtain an over-approximation of the reachable states of
the nonautonomous system.

For the following let �(X) be the symmetric interval hull ofX, that is, �(X) =
[−z1, z1]×· · ·× [−zd, zd] where zi = max

(∣∣infx∈X eTi x
∣∣ , ∣∣supx∈X eTi x

∣∣). Further,
let |x| and |A| be the vector and the matrix where all coefficients are replaced by
their absolute values. Hence, for any vector x and any setX we have x ≤ |x| and,
if x ∈ X, then |x| ∈ �(X). We define the abbreviation �eδAX� = �

(
eδ|A|(�(X))

)
and obtain the following over-approximation of etA(X0).

Lemma 1. For all t ∈ [0, δ] the set inclusion etA(X) ⊆ �eδAX� holds.

The next lemma is based on a Taylor approximation of mth order and an
over-approximation of the Lagrange form of the remainder involving Lemma 1.
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Lemma 2. For any nonnegative integer m and any t ∈ [0, δ] the following set
inclusions hold

etA(X0) ⊆
m∑
k=0

tk

k!
Ak(X0) +

tm+1

(m+ 1)!
Am+1(�eδAX0�),

Rt({0}) ⊆
m∑
k=0

tk+1

(k + 1)!
Ak(U) +

tm+2

(m+ 2)!
A(m+1)(�eδAU�). (2)

For t = δ, (2) already provides an over-approximation of Rδ({0}). We choose
m = 0 and obtain the first-order approximation

V = δAk(U) +
t2

2
A(�eδAU�) ⊇ Rδ({0}).

We use the fact, that for any x, k ≥ 0, and t ∈ [0, δ] the term tk

k!A
kx can be

written as the convex combination (1− λ)0+ λ δk

k!A
kx with λ = tk

δk , and hence,
as stipulated, 0 ≤ λ ≤ 1. We introduce the notion �(X) = clconv({0} ∪X) and
obtain a first-order approximations of

⋃
t∈[0,δ] e

tA(X0) and
⋃

t∈[0,δ]Rt({0}).

Lemma 3. The following set inclusions hold⋃
t∈[0,δ]

etA(X0) ⊆ X0 +�(δA(X0)) + �
(
δ2

2
A2(�eδAX0�)

)
,

⋃
t∈[0,δ]

Rt({0}) ⊆ �(δU) +�
(
δ2

2
A(�eδAU�)

)
.

The first inclusion in Lemma 3 provides an over-approximation of the reachable
states in forward direction. We may also compute an over-approximation in
backward direction starting from eδA(X0). Finally we obtain the proposition:

Proposition 5 (Over-Approximation of R[0,δ](X0)). Let X1 = eδA(X0).
Then the following set inclusion holds:

R[0,δ](X0) ⊆
(
X0 +�(δA(X0)) +�

(
δ2

2
A2(�eδA(X0)�)

))
∩
(
X1 +�(−δA(X1)) +�

(
δ2

2
(−A)2(�e−δA(X1)�)

))
+�(δU) +�

(
δ2

2
A(�eδA(U)�)

)
= R0.

4.1 A Reachability Algorithm for Linear Systems with Invariants

We compute the reachable states of a linear system according to Algorithm 1
[20,21]. The inputs of the algorithm are the first flow segment R0, the set V –
both obtained by the initial bloating procedure –, the invariant I, and the set
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Algorithm 1. Reachability Algorithm for a Linear System (SOP)

Input: the matrix A of the linear differential equation, an invariant I, the set G of
guards, an over-approximation R0 ⊆ I of R[0,δ](X0), an over-approximation V of
Rδ({0}), and an integer N =

⌊
t
δ

⌋
.

Output: A collection of the intersections of R[0,t](X0) and the guards in G.
1. for k← 0, . . . , N do
2. if Rk = ∅ then break;
3. for each guard Gj ∈ G do
4. if Rk ∩Gj �= ∅ then collect the intersection Rk ∩Gj ;
5. end for;
6. Rk+1 ← (eδARk +V) ∩ I;
7. end for;
8. return collected intersections with the guards;

G = {G1, . . . ,Gg} of guards. The computation of the next flow segment in Line 6
is based on (1). Additionally, this computation fully respects the influences of the
invariant. Hence, the sequence (Rk) of flow segments computed by the algorithm
is exact provided R0, V, and eδA are exact. In Lines 3-5 the intersections of the
current flow segment with the guards are computed and collected. Yet, we did
not specify how the actual collection is performed. There are several possibilities
varying from returning each single intersection, which potentially leads to a
multiplication of the symbolic state sets, to returning the convex hull of all
intersections. We implemented a collection strategy where an individual convex
hull is assembled of all intersections for each guard traversal.

The following observations were made on a implementation of Algorithm 1.

1. The algorithm provides a new degree of exactness. The only theoretical
source of inexactness are the computation of the matrix exponential eδA,
the over-approximations due to the initial bloating procedure, and the over-
approximations in the collection step (Line 4). In practice, we also have to
care for numerical issues due to the usage of floats.

2. The main drawback of a pure sop-based approach is the monotonic growth
of the representation matrices of the involved sops. While the assembly of
huge sops (Line 6) can be done efficiently, the evaluation of such sops gets
increasingly harder. Based on our experiences we assess the following parts
of the reachability analysis in order of increasing influence on the growth of
the sops:
(a) The initial bloating procedure has the mildest influence on the growth,

since it is only applied once for each symbolic state.
(b) The intersection with the invariant can be efficiently combined with a

redundancy removal to avoid unneeded growth.
(c) While the implemented collection strategy keeps the number of symbolic

states small, the representation matrices of such collections can be quite
large. The size is highly dependent on the time step parameter δ.

(d) The Minkowski sum in Line 6 has the highest influence: A nonempty set
V leads to a linear growth of the representation matrices.
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4.2 Le Guernic and Girard’s Reachability Algorithm

Compared in run-time, our prototype of Algorithm 1 is clearly behind the reach-
ability algorithm of Le Guernic and Girard [21]. Algorithm 2 restates their algo-
rithm in our context. The algorithm is based on a clever combination of support
functions and template polyhedra and profits from the weaker handling of the
invariant. In fact, the influence of the invariant only accounts for the current
flow segment and is not carried over to the next flow segment. This leads to an
efficient computation of the next flow segment in Lines 7–9, where the invari-
ant is completely ignored. The influences of the bounded input are accumulated
in the sequence (sk), and, instead of updating the state set R0, only an up-
dated template matrix Tk+1 is computed; based on the fact that the optimal
values of the two linear programs “maximize nTx subject to x ∈ ekδA(R0)”
and “maximize (nT ekδA)x subject to x ∈ R0” agree. In every step the com-
putation of the template polyhedra P(T0,bk+1), which over-approximate the
flow segments Rk+1, can be done in constant time3. The quality of the over-
approximation highly depends on the template matrix T0. In order to improve
the handling of the invariant, the facet normals of the invariant should be added
to the template directions [13].

Algorithm 2. Reachability Algorithm for a Linear System (LGG)

Input: A, I , G, R0, V, N as specified in Algorithm 1 and an additional template
polyhedron P(T0,b0) over-approximating R0.

Output: A collection of the intersections of R[0,t](X0) and the guards in G.
1. s0 ← 0;
2. for k← 0, . . . , N do
3. if P(T0,bk) ∩ I = ∅ then break;
4. for each guard Gj ∈ G do
5. if P(T0,bk) ∩ I ∩Gj �= ∅ then collect the intersection P(T0,bk) ∩ I ∩Gj ;
6. end for;
7. sk+1 ← sk + hV(Tk);
8. Tk+1 ← Tke

δA;
9. bk ← hR0(Tk+1) + sk+1;
10. end for;
11. return collected intersections with the guards;

Combining Algorithm 1 and Algorithm 2. Algorithm 3 is a combination of
Algorithm 1 and Algorithm 2. While it preserves the exactness of the sop-based
algorithm, all involved linear programs have a constant number of variables and
constraints (Lines 3, 5, and 12). Also the assembly of the sop in Line 10 and

3 This is more a practical observation than a theoretical result. Although there exists
an algorithm which solves rational linear programs of fixed dimension and m con-
straints in O(m) elementary arithmetic operations on numbers of polynomial size,
the complexity of linear programs is usually given by a polynomial bound which also
depends on the maximum bit size of the coefficients [24].
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This figure shows the first intersection
of a bouncing ball with the guard (the
floor). For the model description see Sect.
5. We used the time step δ = 0.02. The
outer slices show the intersections com-
puted by Algorithm 2 using a rectangular
template matrix. Each inner slice shows a
tight rectangular over-approximation of
the sops computed by Algorithm 1. Their

representation matrices reach a size of about 3500 rows and 2000 columns with 9000
nonzero coefficients. The convex hull of all intersections has a size of 82652 rows, 46999
columns and 283006 nonzero coefficients.

Fig. 1. Comparison of Algorithm 1 and 2

Line 12 can be done in constant time. Lines 10–13 are an equivalent replacement
for the assignment Rk+1 ← (eδARk + V) ∩ I with an additional redundancy
removal, see also Item 2b in Sect. 4.1.

Algorithm 3. Reachability Algorithm for a Linear System (SOP + LGG)

Input: A, I , G, R0, V, N as specified in Algorithm 1 and an additional template
polyhedron P(T0,b0) over-approximating R0.

Output: A collection of the intersections of R[0,t](X0) and the guards in G.
1. s0 ← 0;
2. for k← 0, . . . , N do
3. if P(T0,bk) ∩ I = ∅ then break;
4. for each guard Gj ∈ G do
5. if P(T0,bk) ∩ I ∩Gj �= ∅ then collect the intersection Rk ∩Gj ;
6. end for;
7. sk+1 ← sk + hV(Tk);
8. Tk+1 ← Tke

δA;
9. bk+1 ← hR0(Tk+1) + sk+1;
10. Rk+1 ← eδARk +V;
11. for each constraint ci of I do
12. if ci is not redundant in P(T0,bk+1) then Rk+1 ← Rk+1 ∩ ci;
13. end for;
14. end for;
15. return collected intersections with the guards;

Fighting the Monotonic Growth by Interpolation. In practice, the step
computation of Algorithm 3 is done in constant time. But the size of the sops still
grows monotonically. While this growth can still be handled during the collection
and the discrete updates, latest in the next continuous iteration, when the dis-
crete post-image of a symbolic state is passed to Algorithm 3 again, the enormous
size of the sop has an effect: All involved linear programs of Algorithm 3 have
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to be solved over systems of linear inequalities of enormous size.4 To overcome
this problem, we use the ray shooting based interpolation as described in Sect.
3.1. In every step, we have two representations of the current flow segment: the
template polyhedron P(T0,bk) ∩ I and the set Rk represented by a sop. Hence,
we compute an interpolating H-polyhedron Q with Rk ⊆ Q ⊆ P(T0,bk) ∩ I.
This interpolating polyhedron is a tight over-approximation of Rk and is at
least as good as the template polyhedron computed by the LGG-algorithm 2.
Then we replace Rk by the interpolating polyhedron and still achieve results
which are at least as good as the results we would achieve by the pure LGG-
algorithm. In our prototype the interpolation and replacement of Rk is applied
after interpolate after step computations. The interpolation can be disabled
by setting interpolate after = 0.

We use a similar strategy to confine the growth of the collected intersections.
Instead of building the convex hull of an arbitrary sequence, we apply the convex
hull and the template hull on at most max conv hull consecutive elements of
the sequence. Then we compute the interpolation between the template hull and
the convex hull. The resulting interpolations form a new sequence for which we
proceed as before. We iterate this process until only one element remains. Again,
this interpolation strategy can be disabled. The resulting set is at least as good
as the result one would achieve with template polyhedra only.

5 Experimental Results

We compare our prototypical implementations of Algorithm 3 and Algorithm
2 against the productive implementation of the LGG-algorithm in SpaceEx,
where we used the SpaceEx Virtual Machine Server v0.9.8b for the compar-
ison. The prototype, called SoapBox, is implemented in Matlab and uses
Gurobi Optimizer 5.6

5 for the linear programming tasks. Furthermore, it has
successfully been applied in a case study [10,11].

Bouncing Ball. For our benchmarks we have chosen a simple model of a bounc-
ing ball. The dynamics of the model are given by ẋ = v, v̇ = −1 ± 0.05, and
ṫ = 1. The ball bounces as soon as it reaches the floor which is modeled by the
invariant x ≥ 0 and the transition v ← − 3

4v, guarded by x ≤ 0 and v ≤ 0. The
initial states are given by the interval hull of 10 ≤ x ≤ 10.2, 0 ≤ v ≤ 0.2, and
t = 0.

Table 1 shows the run-times in seconds for different time steps δ and dif-
ferent numbers of iterations. Throughout all computations we used a rectan-
gular template matrix, and the sop-specific configuration parameters were set
as follows: interpolate after = 20 and max conv hull = 4. Clearly, a C++-
implementation of the LGG-algorithm, as it can be found in SpaceEx, outper-
forms our Matlab-implementation. The run-times of our LGG-algorithm and

4 Actually, the enormous size of the sops already effects the initial bloating procedure.
5 http://www.gurobi.com
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Table 1. Run-Time Comparison of Algorithm 3, Algorithm 2, and SpaceEx (SPX)

# It: 4 5 6

δ Alg. 3 Alg. 2 SPX Alg. 3 Alg. 2 SPX Alg. 3 Alg. 2 SPX

0.08 21.16 15.87 1.88 27.25 29.32 3.90 31.55 56.47 5.78
0.04 46.08 29.74 4.33 58.59 56.92 8.28 68.48 106.69 11.51
0.02 89.24 58.45 7.65 116.59 109.69 14.33 137.16 209.93 25.69
0.01 178.85 114.91 17.03 227.56 218.89 28.88 270.91 424.64 48.47

SpaceEx differ by a factor of 6.9 to 9.8. We have to bear in mind that SpaceEx
additionally performs fix-point checks. Anyhow, the comparison with SpaceEx

might give a hint what speed-up could be expected for a C++-implementation of
our algorithms. We also should note that SpaceEx uses nonpolyhedral bloating.

More significant is a comparison of our prototypes of the LGG-algorithm
2 and the combined Algorithm 3, since they are embedded in the same over-
all reachability algorithm. For an increasing number of iterations, we observe
that Algorithm 3 outperforms Algorithm 2 despite the computational overhead.
Figure 2 shows the reachable positions x over the time t for 6 iterations. The
left hand side diagram shows the reachable states computed by Algorithm 3
and the right hand side diagram shows the reachable states computed by the
LGG-algorithm6. The reachable states computed by Algorithm 3 lie within the
time interval [0, 35], while the reachable states computed by the LGG-algorithm
extend to nearly t ∈ [0, 90] due to the poor handling of intersections and in-
variants. Hence, the LGG-algorithm has to perform much more flow-segment
computations.
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Fig. 2. Comparison of Algorithm 3 and SpaceEx

Approach Velocity Controller. In Fig. 3 we compare the reachable states
computed by Algorithm 3 on the left and SpaceEx on the right. We used a rect-
angular template matrix and the parameters δ = 0.5 and interpolate after =

6 The figure actually show the SpaceEx output. The output of Algorithm 2 looks
quite the same, but we think it is more impressive to compare with SpaceEx here.
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40. The underlying model is a single mode approach velocity controller (AVC).
The AVC controls the velocity v of a following car in order to establish the
desired distance ddes to the leading car which has the velocity va. The current
distance of the cars can be read off the variable d. The dynamics are

ḋ = va − v, v̇ = 0.29(va − v) + 0.01(d− ddes), ṫ = 1,

−0.5 ≤ v̇a ≤ 0.5, 0 ≤ va ≤ 20. (3)

The inequalities (3) restrict the allowed velocity of the leading car: While the
differential inclusion allows some restricted change of the velocity, the invariant
restricts the velocity to a bounded interval. Initially, both cars have a velocity of
20ms and a distance of 450m. By the invariant, the leader is not allowed to drive
backward or exceed some maximal velocity. Clearly, one should expect that this
behavior carries over to the following car, i. e., that the velocity of the follower
is asymptotically bounded by some interval. A comparison of the right and the
left figure shows that SpaceEx (right) is not able to establish any bound on the
velocity of the follower while Algorithm 3 (left) shows the desired behavior.
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Fig. 3. Comparison of Algorithm 3 and SpaceEx

6 Conclusion

We introduced a novel representation class for polyhedra, the symbolic orthogo-
nal projections (sops). Various geometric operations can efficiently be performed
on this representation class. Together with linear programming, sops can be used
to implement an reachability algorithm where all polyhedral operations are done
exactly (Algorithm 1). Due to the monotonic growth of the representation size,
this algorithm is not suitable for practical applications. After combining Algo-
rithm 1 with the LGG-algorithm we achieve an efficient reachability algorithm
(Algorithm 3). The applicability, accuracy, and efficiency of the resulting algo-
rithm is demonstrated on some simple examples.
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Verifying LTL Properties of Hybrid Systems
with K-LIVENESS�

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta

Fondazione Bruno Kessler

Abstract. The verification of liveness properties is an important challenge in the
design of real-time and hybrid systems.

In contrast to the verification of safety properties, for which there are several
solutions available, there are really few tools that support liveness properties such
as general LTL formulas for hybrid systems, even in the case of timed automata.

In the context of finite-state model checking, K-Liveness is a recently pro-
posed algorithm that tackles the problem by proving that an accepting condition
can be visited at most K times. K-Liveness has shown to be very efficient, thanks
also to its tight integration with IC3, a very efficient technique for safety veri-
fication. Unfortunately, the approach is neither complete nor effective (even for
simple properties) in the case of infinite-state systems with continuous time.

In this paper, we extend K-Liveness to deal with LTL for hybrid systems.
On the theoretical side, we show how to extend the reduction from LTL to the
reachability of an accepting condition in order to make the algorithm work with
continuous time. In particular, we prove that the new reduction is complete for a
class of rectangular hybrid automata, in the sense that the LTL property holds if
and only if there exists K such that the accepting condition is visited at most K
times. On the practical side, we present an efficient integration of K-Liveness in
an SMT-version of IC3, and demonstrate its effectiveness on several benchmarks.

1 Introduction

Hybrid systems are an ideal modeling paradigm to represent embedded systems since
they combine discrete behaviors, useful to model protocols and control components,
with continuous behaviors, useful to model physical entities such as time, tempera-
ture, speed, etc. Hybrid systems are becoming increasingly interesting in order to apply
formal methods to the design of safety-critical systems in different domains such as
aerospace, railways, and automotive.

The verification of liveness properties on hybrid systems is very challenging be-
cause infinite paths must be considered. In particular, we focus on Linear-time Tem-
poral Logic (LTL), which is suitable to represent many safety and liveness properties.
The standard approach to verify if a model M satisfies an LTL property φ builds the
automaton M¬φ equivalent to the negation of φ and check if the accepting state of the
product M ×M¬φ can be visited infinitely often.
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In the context of finite-state model checking, many efficient algorithms reduce live-
ness properties to one or more safety properties. For example, K-LIVENESS is a re-
cently proposed technique that proves that the accepting state is visited finitely many
times by checking that it is visited at most K times for increasing values of K . The
latter can be easily reduced to a reachability problem. K-Liveness has shown to be very
efficient, thanks also to its tight integration with IC3, probably the current most effec-
tive technique for safety verification. Unfortunately, the approach is neither complete
nor effective (even for simple properties) in the case of infinite-state systems with con-
tinuous time.

The main problem of techniques based on the reduction to safety is that they rely
for soundness or completeness on the existence of a lasso-shape counterexample, but
in the case of infinite-state systems such as hybrid systems, there may be infinite traces
that do not correspond to any lasso-shape fair path. Moreover, the model may include
Zeno paths where time converges, which must be excluded when checking the liveness
properties. Techniques based on abstraction refinement can prove that a property holds,
but in general the refinement is not guaranteed to converge.

In this paper, we provide a new method that, by forcing the progress of time beyond
symbolic bounds, links the number of iterations of K-LIVENESS to the time elapsed
in the counterexamples, rather than to the number of transitions. We prove that the re-
duction is complete for initialized Rectangular Hybrid Automata (RHA) with bounded
non-determinism even in the presence of parameters. We implemented the techniques
on top of HYCOMP [1], a tool for the verification of hybrid systems. The verification
of reachability is based on an SMT version of IC3 that integrates predicate abstraction
in an efficient way. An experimental evaluation demonstrates the efficiency of the ap-
proach on several benchmarks. To the best of our knowledge, this is the first effective
tool that verifies general LTL properties on Hybrid Automata.

The paper is organized as follows: Section 2 presents some basic notations on RHA,
LTL, and SMT-based techniques to verify hybrid systems; we also give a brief overview
of IC3 and K-LIVENESS; in Section 3, we present the new approach to the LTL verifi-
cation of hybrid systems; in Section 4, we overview the related work; in Section 5, we
describe the implementation, the experimental evaluation, and we present the results;
finally, in Section 6 we draw some conclusions and discuss future directions.

2 Background

2.1 Hybrid and Timed Automata

Hybrid systems have a discrete part, which ranges over the nodes of a graph, and a
continuous part, which ranges over an Euclidian space Rn. Although the approach pre-
sented in this paper can be applied to any hybrid system that can be encoded into a
symbolic transition system, the theoretical results are restricted to the parametric ver-
sion of Rectangular Hybrid Automata [2]. A Parametric Rectangular Hybrid Automaton
(PRHA) is a tuple H = 〈P,Q,Q0, E,X, flow, init, inv, jump, guard, update〉 where:

– P is a finite set of parameters,
– Q is the (possibly infinite) set of locations,
– Q0 ⊆ Q is the (possibly infinite) set of initial locations,
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– E ⊆ Q×Q is the (possibly infinite) set of discrete transitions,
– X is the finite set of continuous variables,
– flow : Q→ X →R is the flow function,
– init : Q→ X →R(P ) is the initial function,
– inv : Q→ X → R(P ) is the invariant function,
– jump : E → 2X is the jump function,
– guard : E → X →R(P ) is the guard function,
– update : E → X →R(P ) is the update function,

where R is the set of (possibly unbounded) real intervals and R(P ) represents the set
of parametric intervals, whose endpoints are either a constant, or ±∞, or a parameter
in P (e,g., [0, 0], (1,+∞), (−∞, p]). We can see parametric intervals as function from
an evaluation of the parameters to the intervals of R. So, if c is an assignment to the
parameters in P and I ∈ R(P ), then I(c) is a real interval.

A Rectangular Hybrid Automaton (RHA) is simply a PRHA with P = ∅. A (Para-
metric) Timed Automaton (TA) is an RHA (resp. PHRA) such that, for all q ∈ Q, for
all x ∈ X , flow(q)(x) = [1, 1], init(q)(x) = [0, 0], and for all e ∈ E, for all x ∈ X ,
update(e)(x) = [0, 0]. A (P)RHA H is initialized iff for every edge 〈q, q′〉 ∈ E, for
all x ∈ X , if flow(q)(x) �= flow(q′)(x), then x ∈ jump(〈q, q′〉). H has bounded non-
determinism iff for all x ∈ X , for all q ∈ Q, for all e ∈ E, init(q)(x), flow(q)(x), and
update(e)(x) are bounded.

As in [3], we use a variable pc �∈ X ∪P as a control variable that ranges over the set
Q of locations (properly encoded in R). Moreover, we use a variable time to represent
the elapsing time and let VH = {time, pc} ∪ P ∪X . A state is an assignment to VH ,
i.e., a function VH → R. We can see a state also as a tuple 〈q, s, c, t〉 where q ∈ Q, s is
an assignment to X , c is an assignment to P , and t is an assignment to time. A path of
a PRHA H is a sequence of states 〈q0, s0, c0, t0〉, 〈q1, s1, c1, t1〉, . . . such that:

– for all i, j ≥ 0, ci = cj = c, for some c;
– t0 = 0 and for all i ≥ 0, ti ≤ ti+1; let δi = ti+1 − ti;
– for all i ≥ 0, if δi > 0, then qi−1 = qi and, for all x ∈ X , si+1(x)−si(x)

δi
∈

flow(qi)(x) (note that, in more general classes of hybrid automata, this would re-
quire a condition on all time points);

– q0 ∈ Q0 and, for all x ∈ X , s0(x) ∈ init(q0)(x)(c);
– for all i ≥ 0, if δi = 0, then
• 〈qi, qi+1〉 ∈ E,
• for all x �∈ jump(〈qi, qi+1〉), si+1(x) = si(x);
• for all x ∈ X , si(x) ∈ guard(〈qi, qi+1〉)(x)(c);
• for all x ∈ jump(〈qi, qi+1〉), si+1(x) ∈ update(〈qi, qi+1〉)(x)(c);

– for all i ≥ 0, for all x ∈ X , si(x) ∈ inv(qi)(x)(c).
Given a sequence of states σ = σ0, σ1, . . ., we denote with σ[i] the i + 1-th state σi

and with σi the suffix sequence starting from the σ[i].
A path whose sequence t0, t1, . . . of time points does not diverge is called Zeno

path (non-Zeno otherwise). A state s is Zeno or time-locking iff there is no non-Zeno
path starting from s. A state s is reachable iff there exists a non-Zeno path σ such that
σ[i] = s for some i ≥ 0.
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2.2 LTL

We use Linear-time Temporal Logic (LTL) [4] to specify properties on a PRHA H .
The atomic formulas Atoms are predicates over the variables VH . Besides the Boolean
connectives, LTL uses the temporal operators X (“next”) and U (“until”). Formally,

– a predicate a ∈ Atoms is an LTL formula,
– if φ1 and φ2 are LTL formulas, then ¬φ1, and φ1 ∧ φ2 are LTL formulas,
– if φ1 and φ2 are LTL formulas, then Xφ1 and φ1Uφ2 are LTL formulas.
We use the standard abbreviations: � := p ∨ ¬p, ⊥ := p ∧ ¬p, Fφ := �Uφ,

Gφ := ¬F¬φ, and φ1Rφ2 := ¬(¬φ1U¬φ2).
Given an LTL formula φ and a sequence σ of states of H , we define σ |= φ, i.e., that

the path σ satisfies the formula φ, as follows:
– σ |= a iff σ[0] |= a – σ |= φ ∧ ψ iff σ |= φ and σ |= ψ
– σ |= ¬φ iff σ �|= φ – σ |= Xφ iff σ1 |= φ
– σ |= φUψ iff for some j ≥ 0, σj |= ψ and for all 0 ≤ k < j, σk |= φ.
Given a PRHA H and an LTL formula φ over VH , we focus on the model checking

problem of finding if, for all non-Zeno paths σ of H , σ |= φ.
Note that, although the predicates can contain references to the time variable, the

logic is interpreted over discrete sequences of states.
The problem is in general undecidable for PRHA and decidable for some fragments

such as initialized RHA with bounded non-determinism [2].

2.3 Transition Systems

A transition system M is a tuple M = 〈V, I, T 〉 where V is a set of (state) variables,
I(V ) is a formula representing the initial states, and T (V, V ′) is a formula representing
the transitions. In this paper, we shall deal with linear rational arithmetic formulas,
that is, Boolean combinations of propositional variables and linear inequalities over
rational variables. A state of M is an assignment to the variables V . We denote with
ΣV the set of states. A [finite] path of M is an infinite sequence s0, s1, . . . [resp., finite
sequence s0, s1, . . . , sk] of states such that s0 |= I and, for all i ≥ 0 [resp., 0 ≤ i < k],
si, s

′
i+1 |= T . Given two transitions systems M1 = 〈V1, I1, T1〉 and M2 = 〈V2, I2, T2〉,

we denote with M1 ×M2 the synchronous product 〈V1 ∪ V2, I1 ∧ I2, T1 ∧ T2〉.
Given a Boolean combinationφ of predicates, the invariant model checking problem,

denoted with M |=fin φ, is the problem to check if, for all finite paths s0, s1, . . . , sk of
M , for all i, 0 ≤ i ≤ k, si |= φ.

Given a LTL formula φ, the LTL model checking problem, denoted with M |= φ, is
the problem to check if, for all (infinite) paths σ of M , σ |= φ.

The automata-based approach [5] to LTL model checking is to build a transition
system M¬φ with a fairness condition f¬φ such that M |= φ iff M×M¬φ |= FG¬f¬φ.
This reduces to finding a counterexample as a fair path, i.e., a path of the system that
visits the fairness condition f¬φ infinitely many times. In case of finite-state systems,
if the property fails there is always a counterexample in a lasso-shape, i.e., formed by a
prefix and a loop.
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2.4 SMT-Based Verification of Reachability for PRHA

Given a PRHA H , we encode H into a transition system MH in order to apply SMT-
based verification techniques for infinite-state systems. Such kind of encoding has been
widely used in the literature (e.g., [6,7]). MH = 〈VH , IH , TH〉 is defined as follows:

– IH
def
= (time = 0) ∧

∧
q∈Q

∧
x∈X x ∈ init(q)(x) ∧ x ∈ inv(q)(x).

– TH
def
= (TIMED∨UNTIMED)∧

∧
q∈Q inv(q)(X)∧inv(q)(X ′)∧

∧
p∈P p′ = p, where

UNTIMED
def
= δ = 0 ∧∧

〈q,q′〉∈E(pc = q ∧ pc = q′) ∧∧
x∈X guard(q)(x)∧

∧
x 
∈jump(〈q,q′〉) x

′ = x ∧∧
x∈jump(〈q,q′〉) x

′ ∈ update(q)(x)

TIMED
def
= δ > 0 ∧ pc′ = pc ∧∧

q∈Q

∧
x∈X(pc = q → (x′ − x) ∈ δ · flow(q)(x))

δ
def
= time′ − time.

There is a one-to-one mapping between the states of H and those of MH , and also
between the paths of H and those of MH . We say that a path of MH is Zeno [non-Zeno]
iff the sequence of assignments to time does not diverge [resp., diverges].

Given a PRHA H , assuming that H does not have Zeno states, a state s is reachable
in H iff MH �|=fin ¬s (where s is seen as a formula).

2.5 IC3 and K-LIVENESS

SAT-based algorithms take in input a propositional (with Boolean variables) transition
system and a property, and try to solve the verification problem with a series of satisfi-
ability queries. These algorithms can be naturally lifted to SMT in order to tackle the
verification of infinite-state systems.

IC3 [8] is a SAT-based algorithm for the verification of invariant properties of transi-
tion systems. It builds an over-approximation of the reachable state space, using clauses
obtained by generalization while disproving candidate counterexamples.

We recently presented in [9] a novel approach to lift IC3 to the SMT case, which is
able to deal with infinite-state systems by means of a tight integration with predicate
abstraction (PA) [10]. The approach leverages Implicit Abstraction (IA) [11], which
allows to express abstract transitions without computing explicitly the abstract system,
and is fully incremental with respect to the addition of new predicates.

In this paper, we focus on K-LIVENESS [12], an algorithm recently proposed to
reduce liveness (and so also LTL verification) to a sequence of invariant checking. Dif-
ferently from other reductions (such as [13]), it lifts naturally to infinite-state systems
without requiring counterexamples to be in a lasso-shape form. K-LIVENESS uses a
standard approach to reduce LTL verification for proving that a certain signal f is even-
tually never visited (FG¬f ). The key insight of K-LIVENESS is that, for finite-state
systems, this is equivalent to find a K such that f is visited at most K times, which in
turn can be reduced to invariant checking.

Given a transition system M , a Boolean combination of predicates φ, and a positive
integer K , for every finite path σ of M , let σ |=fin %(φ) ≤ K iff the size of the set
{i | σ[i] |= φ} is less or equal to K . In [12], it is proved that, for finite-state systems,
M |= FG¬f iff there exists K such that M |=fin %(f) ≤ K . The last check can
be reduced to an invariant checking problem. K-LIVENESS is therefore a simple loop
that increases K at every iteration and calls a subroutine SAFE to check the invariant.
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In particular, the implementation in [12] uses IC3 as SAFE and exploits the incremen-
tality of IC3 to solve the sequence of invariant problems in an efficient way.

3 SMT-Based Verification of LTL for PRHA

3.1 K-LIVENESS for Hybrid Automata

K-LIVENESS is not complete for infinite-state systems, because even if the property
holds, the system may visit the fairness condition an unbounded number of times. Con-
sider for example a system with an integer counter and a parameter p such that the
counter is used to count the number of times the condition f is visited and once the
counter reaches the value of p, the condition is no more visited. This system satisfies
FG¬f because for any value of p, f is visited at most p times. However, K-LIVENESS

will obtain a counterexample to the safety property %(f) ≤ K for every K , by setting p
to K .

Similarly, K-LIVENESS does not work on the transition system representing a TA. In
particular, a fair Zeno path forbids K-LIVENESS to prove the property: for every K , the
fairness is visited more than K times, but in a finite amount of (real) time. Removing
Zeno paths by adding an automaton to force progress is not sufficient for PTA and in
general hybrid systems. In fact, in these systems a finite amount of time can be bounded
by a parameter or a variable that is dynamically set. Therefore, in some cases, there is
no K to bound the occurrences of the fairness, although there is no fair non-Zeno path.

In the following, we show how we make K-LIVENESS work on hybrid automata.
The goal is to provide a method so that K-LIVENESS checks if there is a bound on the
number of times the fairness is visited along a diverging sequence of time points. The
essential point is to use a symbolic expression β based on the automaton structure to
force a minimum distance between two fair time points. We use an additional transition
system Zβ , with a condition fZ , to reduce the problem of proving that H |= φ to
proving that MH × M¬φ × Zβ |= FG¬fZ . In Section 3.2, we prove that the two
problems are equivalent for any positive β. In Section 3.3, we define β so that K-
LIVENESS is not deemed to diverge and, on the contrary, must converge for some class
of automata.

3.2 Linking the Fairness to Time Progress

In this section, we define the transition systemZβ that is later used to make K-LIVENESS

converge. We first define a simpler version ZB that works only for timed automata.
Consider the fair transition system M = MH × M¬φ resulting from the product

of the encoding of an PRHA H and of the negation of the property φ. Let f be the
fairness condition of M . We build a new transition system ZB(f, time) that filters the
occurrences of f along a time sequence where time values are distant more than B
time units. ZB(f, time) is depicted in Figure 1. It has two locations (represented by
a Boolean variable l) and a local real variable t0. The initial condition is l = 0. The
fairness condition fZ is l = 1. The system moves or remains in l = 0 keeping t0
unchanged. It moves or remains in l = 1 if f is true and time ≥ t0 + B and sets t0 to
time.
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l = 0t0 = 0 l = 1

t′0 = time

f ∧ time ≥ t0 +B
t′0 = time

f ∧ time ≥ t0 +B
t′0 = time

t′0 = time

Fig. 1. Monitor ZB(f, time)

l = 0t0 = 0 l = 1

t′0 = t0, X
′
0 = X0

f ∧ time ≥ t0 + β(x0)
t′0 = time ∧ x′

0 = x

f ∧ time ≥ t0 + β(x0)
t′0 = time ∧ x′

0 = x

t′0 = t0, X
′
0 = X0

Fig. 2. Monitor Zβ(f, time,X)

We reduce the problem of checking whether φ holds in H to checking that the fair-
ness condition fZ cannot be true infinitely often in MH×M¬φ×ZB , i.e. MH×M¬φ×
ZB |= FG¬fZ .

Theorem 1. If B > 0, H |= φ iff MH ×M¬φ × ZB |= FG¬fZ .

Proof. If there exists a non-Zeno path π of MH that violates φ, then there exists a fair
path π′ of M¬φ so that π × π′ is a fair non-Zeno path of M ×M¬φ. We can build a
matching path πZ of ZB . In fact, if the path πZ [i] is in l = 0, there are infinitely many
j ≥ i such that π′(j) |= f¬φ and we can pick one moving to l = 1 with time(j) >
time(i) +B since π is non-Zeno.

If a path π of M×M¬φ×ZB visits fZ infinitely often, then for infinitely many points
i ≥ 0, πi |= f¬φ and there exists j ≥ i such that πj |= f¬φ∧ time > t0+B. Therefore
the projection of π over MH corresponds to a fair non-Zeno path of H violating φ. ��

We generalize the construction of ZB considering as bound on time a function β over
some continuous variables of the model. The new monitor is Zβ(f, time,X) shown in
Figure 2. It has a local variable x0 for every variable x occurring in β. X0 is the set
of such variables. Now, when t0 is set to time, we set also x0 to x and this value is
kept until moving to l = 1. The condition on time is now time > t0 + β(X0). It is
easy to see that we can still prove that if β(X) is always positive, then H |= φ iff
MH ×M¬φ × Zβ |= FG¬fZ .

We say that the reduction is complete for K-LIVENESS for a certain class H of
automata iff for every H ∈ H there exists βH such that H |= φ iff there exists K
such that M × M¬φ × ZβH |=fin %(fZ) ≤ K . Thus, if H |= φ, and the reduction
is complete, and the subroutine SAFE terminates at every call, then K-LIVENESS also
terminates proving the property.

3.3 The K-ZENO Algorithm

The K-ZENO algorithm is a simple extension of K-LIVENESS which, given the problem
H |= φ, builds M = MH ×M¬φ × Zβ and calls K-LIVENESS with inputs M and fZ .
As K-LIVENESS, either K-ZENO proves that the property holds or diverges increasing
K up to a certain bound. The crucial part is the choice of β, because the complete-
ness of the reduction depends on β. Note that the reduction may be complete, but the
completeness of K-ZENO still depends on the completeness of the SAFE algorithm.
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loc1
ẋ = 1
x ≤ 1

loc2
ẋ = 1

b := ¬b

Fig. 3. Example of TA

As for TAs, we take as β the maximum among the con-
stants of the model and 1. For example, consider the TA
in figure 3 (it is actually a compact representation of the
TA where loc1 is split into two locations corresponding to
b = � and b = ⊥). It represents an unbounded number
of switches of b within 1 time unit. The model satisfies the
property FGpc = loc2. Taking β = 1, K-ZENO proves
the property with K = 1. In fact, starting from the loca-
tion loc1, after 1 time unit, the automaton cannot reach loc1 anymore. For PTAs, we
consider as β the maximum among the parameters, the constants of the model and 1.

We generalize the above idea to consider PRHA with bounded non-determinism. We
also assume an endpoint of a flow interval is 0, it cannot be open (must me included
in the interval). Guards and invariants of PRHA are conjunctions of inequalities of the
form x  ! B where  !∈ {≤,≥, <,>}. Hereafter, we refer to one of such inequalities
as a constraint of the PRHA.

For every constraint g in the form x ≤ B or x < B (guard or invariant) of HA,
we consider the minimum positive lower bound rg for the derivative of x, if exists. For
example, if we have three locations with ẋ ∈ [1, 2], ẋ ∈ [0, 3], ẋ ∈ [−1, 2], we take
rg = 1 (since 0 and−1 are not positive). We consider the minimum lower bound vg for
the non-deterministic reset of x. For example, if we have three transitions with resets
x′ ∈ [1, 2], x′ ∈ [0, 3], x′ ∈ [−1, 2], we take vg = −1. In case g is in the form x ≥ B
or x > B, we define rg and vg similarly by considering the maximum negative upper
bound of the derivative of x and the maximum upper bound of the reset of x. We define
the bound βg(x0) as follows: βg(x0) = max((B − x0)/rg, (B − vg)/rg).

Finally, as β we take the maximum among the βg for all g in the automaton H for
which rg exists and the constant 1. Note that this coincides with the β defined above for
TA and Parametric TA, where rg is always 1 and vg is always 0 and x0 is always non
negative.

3.4 Completeness for Rectangular Hybrid Automata

In this section, we restrict the focus to PRHA that are initialized and have bounded non-
determinism. Moreover, we restrict the LTL formula to have the atoms that predicate
over pc only. In this settings, we prove that the reduction to K-LIVENESS defined in the
previous section is complete.

Given a PRHA H = 〈P,Q,Q0, E,X, flow, init, inv, jump, guard, update〉 and an
LTL formula φ with transition system M¬φ = 〈V, I, T 〉 and fairness condition f¬φ, we
build a new PRHA H¬φ = 〈P,Q′, Q′

0, E
′, X, flow′, init′, inv′, jump′, guard′, update′〉

where:
– Q′ = {q × s ∈ Q×ΣV | q ∈ Q, s |= q};
– Q′

0 = {q × s ∈ Q′ | q ∈ Q0, s |= I};
– E′ = {〈q × s, q′ × s′〉 ∈ Q′ ×Q′ | 〈q, q′〉 ∈ E, s, s′ |= T };
– for all q × s ∈ Q, flow′(q × s) = flow(q), init′(q × s) = init(q), inv′(q × s) =

inv(q); for all 〈q × s, q′ × s′〉 ∈ E′, jump′(〈q × s, q′ × s′〉) = jump(〈q, q′〉),
guard′(〈q×s, q′×s′〉) = guard(〈q, q′〉), update′(〈q×s, q′×s′〉) = update(〈q, q′〉).

It is easy to see that H |= φ iff H¬φ |= FG¬f¬φ iff MH¬φ
× Zβ |= FG¬fZ .
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In order to prove that the reduction to K-LIVENESS is complete, we prove the
following lemma.

Lemma 1. Consider an initialized with bounded non-determinism PRHA H . Suppose
MH¬φ

× Zβ |= FG¬fZ . Let KH and NH be respectively the number of edges and
locations of H¬φ. Then MH¬φ

× Zβ |=fin %(fZ) ≤ (KC ·NC) + 1.

Proof. We prove the lemma by induction on KH . Suppose KH = 0, i.e., there is no
edge. Therefore, there cannot be a reset of the variables and, therefore, the time spent
along a path of MH¬φ

× Zβ must be less than β(X0) where X0 is the initial value of
X . Thus, fZ cannot be visited twice.

Suppose KH ≥ 1. First, note that, since MH¬φ
× Zβ |= FG¬fZ , MH¬φ

× Zβ

cannot have fair non-Zeno paths. Therefore, for every fair path σ of MH¬φ
, there must

be a constraint (or more than one) of H¬φ that eventually blocks the transition to fZ in
Zβ . Suppose fZ is visited at least once (although for a finite number of times). Then,
there must exist an edge e of H¬φ that is eventually no more taken along σ. Therefore,
σ, after a certain point t, will coincide with a path of MH′ where MH′ is the encoding
of a PRHA H ′ obtained from H¬φ by removing e and setting as initial state the state
reached by σ at point t. Therefore MH′ × Zβ |= FG¬fZ and H ′ has KH − 1 edges.
Thus, by induction fZ must be visited less or equal than (KH − 1) ·NH + 1 times.

Finally we have to show that the number of times fZ is visited before t is less than or
equal to NH . Suppose by contradiction, fZ is visited NH + 1 times. Then, at least one
fair location of H¬φ is repeated so that we have a fair loop in the graph of H¬φ. Due to
the definition of Zβ , for any constraint g in the form x ≤ B (and similar for the other
cases), if x has a positive derivative and is not reset, g must become false between two
fair states. Thus, either g is not used along the loop or x is reset or the derivative may
be non positive. Since H is initialized, if the lower bound of the derivative becomes
non positive, x must be reset. Therefore, every variable involved in a constraint along
the path must be reset or the derivative can remain non-positive never violating the con-
straint. This means that there would be an infinite fair non-Zeno loop, which contradicts
the hypothesis. We conclude that the number of times fZ can be visited along σ is less
than (KH − 1) ·NH + 1 +NH = (KH ·NH) + 1. ��

Theorem 2. If H |= φ, then there exists K such that MH ×M¬φ×Zβ |=fin %(fZ) ≤
K .

Proof. Since there exists a one-to-one mapping between the paths of MH ×M¬φ×Zβ

and those of MH¬φ
×Zβ , by Lemma 1, MH×M¬φ×Zβ |=fin %(fZ) ≤ (KH ·NH)+1

where KH and NH are respectively the edges and locations of H¬φ. ��

good
ẋ = 0
ẏ = 1

bad
ẋ = 1
ẏ = 1
x ≤ 1

y := 0

y > 0

Fig. 4. Stopwatch automaton

If the hybrid automaton falls outside of the class of
initialized PRHA with bounded non-determinism, K-
ZENO is still sound, but no longer guaranteed to be com-
plete. A simple counterexample is shown in Figure 4,
in which the stopwatch variable x is not reset when its
dynamic changes. The automaton satisfies the property
(FGgood), because the invariant on x and the guard on
y make sure that the total time spent in bad is at most 1
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time unit. However, K-ZENO cannot prove it with any K because time can pass indefi-
nitely in good, while x is stopped. Therefore, it is always possible to visit bad and fZ an
unbounded number of times. Finally, note that K-ZENO is able to prove other properties
such as for example that the stopwatch automaton satisfies the formula GFgood.

4 Related Work

There are many works that focus on the verification of safety properties on hybrid sys-
tems [14,15,16,17,18,19], see [20] for a recent survey. We concentrate on the problem
of liveness and deal with a semantics based on infinite paths.

The problem of checking time progress is well known and efficient solutions for
TAs are based either on transforming the automaton in a strongly non-Zeno automa-
ton [21], forcing the original TA to move to an additional (non-accepting) location in
case of Zeno behavior, or on checking if from all reachable states, time can elapse from
the 1 time unit [22]. In UPPAAL, this is achieved by taking the product of the model
with a monitor automaton that changes state every c time units (where c is a “constant
set to a good value w.r.t. the rest of the model”) [23]. This approach is also used by
DIVINE [24], an explicit-state model checker that is capable of verifying LTL prop-
erties over UPPAAL models. The monitors that we use in K-ZENO can be seen as a
generalization of this approach. As discussed, using a constant is not enough for PTAs
and (P)RHAs. Our method uses as bounds for time progress symbolic expressions over
variables that change along a path.

A well-known reduction of liveness to safety is presented in [13]. The approach uses
copies of the state variables to store the value of a state and search for a fair loop. In
[25], the above technique is extended for different kinds of infinite-state systems such
as pushdown systems and TAs, but each reduction is ad-hoc for the specific class of
systems. A similar technique is also used in [26] for hybrid systems. The technique
is not sound in general for infinite-state systems because there are simple cases where
there are counterexamples but none of them has a lasso shape. So, it may be possible
that the invariant holds in the reduced system but the original property does not hold.
K-LIVENESS and K-ZENO are always sound: if the invariant holds for some K , then
the original property is true.

Restricted to timed automata, apart from DIVINE, the UPPAAL model checker [27]
does not support LTL, but a different fragment of temporal properties. However, this
fragment of temporal logic does not consider infinite Zeno paths, but it is based on finite
paths that possibly end in time-locks. A recent approach [28] considers LTL model
checking for TAs. However, the authors explicitly assume to have TAs without Zeno
paths. First, our approach differs since we allow Zeno paths in the model. Then, our
technique is more general, since we handle hybrid automata with parameters.

With respect to hybrid systems, an interesting liveness property is stability, which
requires that all the paths of the system eventually stay in a region. The work [29]
reduces the verification of stability properties to compute a special kind of relations,
called snapshot sequences, and to prove that these relations are well-founded. In prin-
ciple, the same approach could be used to verify general LTL properties. However, the
application of this technique to LTL properties seems not straightworward and we are
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not aware of a publicly-available implementation with which to compare. Stability is
reduced to termination analysis also in [30], assuming non-Zeno hybrid automata (i.e.
bounded switching speed). In contrast, we focus on LTL properties and we take into
account Zeno paths. In [31] the authors consider the problem of LTL model checking
for discrete-time robust hybrid systems. Instead, we consider continuous-time systems.

Another line of work [32,33,34] for timed and hybrid systems focuses only on the
falsification problem (i.e. find a counterexample if the LTL property does not hold). For
timed automata, the work in [32] extends SMT-based BMC to search for a lasso-shaped
path in the region abstraction. The proposed encoding also removes Zeno paths and,
due to its nature, it could be used to complement our technique in the TA case to find
counterexamples. For hybrid systems, the approach presented in [33] falsifies an LTL
property by a randomized search while the one in [34] falsifies an MTL property under
robustness assumptions. Both approaches do not consider Zeno paths and are not able
to prove that a property holds.

Using the technique of [35], LTL model checking of infinite-state systems (includ-
ing hybrid automata) may be reduced to finding disjunctively well-founded transition
invariants, whose discovery can then be attempted with a solver for recursive Horn-like
clauses like HSF [36]. However, the current implementation of HSF does not handle
strict inequalities with real variables (e.g. A < B is converted into A + 1 ≤ B), and
thus it cannot be applied easily to real-time systems.

5 Experimental Evaluation

5.1 Implementation

We have implemented the K-ZENO algorithm on top of the SMT extension of IC3 de-
scribed in [9]. Given a symbolic system M and an LTL propertyφ, we use HYCOMP [1]
(an extension of the NUSMV model checker) to generate the transition system M¬φ
and to compute the function β for the transition system Zβ(f, time,X) of Figure 2.
Zβ(f, time,X) is then added automatically to the system. In order to count the num-
ber of violations of fZ , we use a simple integer counter. We remark that, although the
completeness results hold only for initialized PHRA with bounded non-determinism,
our implementation supports a more general class of HAs with rectangular dynamics.
However, it currently can only be used to verify LTL properties, and not to disprove
them. If a property does not hold, our tool does not terminate. Similarly to the Boolean
case [12], our implementation consists of relatively few (and simple) lines of code on
top of IC3. Both the tool and the benchmarks used in the evaluation can be downloaded
at http://es.fbk.eu/people/griggio/papers/cav14-kzeno.tar.bz2 for
reproducing our results.

5.2 Benchmarks

We tried our approach on various kinds of benchmarks and properties.

Fischer family benchmarks. We considered 4 different versions of the Fischer mutual
exclusion protocol: the TA version from the UPPAAL distribution (Fischer), a paramet-
ric version (Fischer Param), a hybrid one (Fischer Hybrid), and one that ensures that

http://es.fbk.eu/people/griggio/papers/cav14-kzeno.tar.bz2
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every request is eventually served (Fischer Fair). All the variants are scalable in the
number of processes involved, except for Fischer Fair that only considers 2 processes.

Distributed Controller [37] models the interactions of n sensors with a preemptive
scheduler and a controller. We scaled the benchmark increasing the number of sensors.

Nuclear Reactor [38] models the control of a nuclear reactor with n rods. The bench-
mark is scaled increasing the number of control rods in the reactor.

Navigation family benchmarks: the models are inspired by the benchmarks presented
in [39]. The benchmark describes the movement of an object in an nxn grid of square
cells. Independently from the initial position, the object will eventually reach and stay
in a target region. We created two versions of the benchmark, depending on whether
the initial position of the object is given (NavigationInit) or not (NavigationFree). The
benchmark is scaled by increasing the number of cells in the grid.

Diesel Generator [32]: the benchmark is an industrial model of an emergency diesel
generator intended for the use in a nuclear power plant. The benchmark has three dif-
ferent versions (small, medium, large).

Bridge: the benchmark is from the UPPAAL distribution and models the bridge and
torch puzzle. We used the same LTL properties used in the distribution of DIVINE [24].

Counter: the benchmark consists of an automaton with two locations,

bad
ẋo = 1
. . .

ẋn = 1
x0 ≤ 1

good
ẋo = 1
. . .

ẋn = 1

∀i ∈ [1, n], xi ≤ 1 ∧ xi−1 := 0

Fig. 5. Counter with n+ 1 clocks

bad and good, and n + 1 clocks, x0, x1, . . . , xn.
The initial location bad has the invariant x0 ≤ 1
and a transition to good. bad has n self loops: each
i-th self loop has guard xi ≤ 1 and reset xi−1. The
automaton is shown in Figure 5. On this model
the LTL property (FG good) holds, since x0 will
eventually reach x = 1, forcing the transition to
good. The example is interesting because the ac-
tual K needed to prove the property depends on
the number of edges of the model, as shown in
Lemma 1.

Note that the benchmarks fall in different classes: some of them are timed automata
(Fischer, Diesel Generator, Bridge, Counter), some are parametrized timed automata
(Fischer Param, Fischer Fair), some are initialized rectangular automata (Fischer Hy-
brid, Nuclear Reactor), while some have rectangular dynamics but are not initialized
(Distributed Controller, NavigationInit, NavigationFree).

We manually generated several meaningful LTL properties for the benchmarks of
the Fischer family, the Distributed Controller and the Nuclear Reactor. The prop-
erties match several common patterns for LTL like fairness (GFp), strong fairness
(GFp → GFq), and “leads to” (G(p → Fq)). Moreover, in several cases we added
additional fairness constraints to the common patterns to generate properties that hold
in the model. For the Bridge and Diesel Generator benchmarks we used the properties
already specified in the models. For the navigation benchmark we checked that eventu-
ally the object will stay forever in the “stability” region. Finally, we used the property
(FG good) in the Counter benchmarks.
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Table 1. Selected experimental results

# Bool # Real Trans
Instance Class Property vars vars size k Time
Fischer (8 processes) T (

∧17
i=1 GFpi) → G(¬p18 → Fp18) 132 20 1286 3 6.37

Fischer Fair (2 processes) P (p1 ∧GFp2) → G(p3 → Fp4) 38 12 622 4 76.14
Fischer Hybrid (10 procs) R (GFp1 ∧GFp2 ∧ FGp3) → G(p4 → Fp5) 106 64 8759 1 325.03
Dist Controller (3 sensors) N (GFp1) → (GFp2) 58 27 1737 1 397.24
Nuclear Reactor (9 rods) R G(p1 → Fp2) 82 24 3258 1 530.40
NavigationInit (3x3) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 16 8 808 2 4.37
NavigationInit (10x10) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 22 8 4030 2 453.74
NavigationFree (3x3) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 16 8 808 2 3.37
NavigationFree (9x9) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 22 8 3461 2 872.07
Counter 10 T FGp 10 24 294 10 52.74
Diesel Gen (small) T G(p1 → F(¬p2 ∨ p3)) 84 24 724 1 16.55
Diesel Gen (medium) T G(p1 → F(¬p2 ∨ p3)) 140 30 1184 1 51.24
Diesel Gen (large) T G(p1 → F(¬p2 ∨ p3 ∨ p4)) 264 62 2567 1 538.39

Classes: T: timed, P: parametric timed, R: rectangular, N: non-initialized rectangular.

5.3 Evaluation

Effectiveness. In order to evaluate the feasibility of our approach, we have run it on a
total of 276 verification tasks, consisting of various LTL properties on the benchmark
families described above. Our best configuration could solve 205 instances within the
resource constraints (900 seconds of CPU time and 3Gb of memory). If instead we
consider the “Virtual Best” configuration, obtained by picking the best configuration for
each individual task, our implementation could solve 238 problems. We report details
about some of the properties we could prove in Table 1. On each row, the table shows the
model name, the class of instances it belongs to (timed, parametric, rectangular, non-
initialized rectangular), the property proved (with variables pi’s used as placeholders
for atomic propositions), the size of the symbolic encoding (number of Boolean and
Real variables, and number of nodes in the formula DAG of the transition relation), the
value of k reached by K-LIVENESS1, and the total execution time. We remark that we
are not aware of any other tool capable of verifying similar kinds of LTL properties on
the full class of instances we support.

Heuristics and Implementation Choices. We analyze the performance impact of dif-
ferent heuristics and implementation choices along the following dimensions:

Invariant checking engine. We have two versions of SMT-based IC3, one based on ap-
proximated preimage computations with quantifier elimination (called IC3(QE) here),
and one based on implicit predicate abstraction (IC3(IA)). Our recent results [9] in-
dicate that IC3(IA) is generally superior to IC3(QE) on software verification bench-
marks. However, the situation is less clear in the domain of timed and hybrid systems.

Incrementality. We compare our fully-incremental implementation of K-LIVENESS to a
non-incremental one, in which IC3 is restarted from scratch every time the K-LIVENESS

counter is incremented.

1 On most of the instances the value of k reached by K-LIVENESS is small. The explanation is
that, on real models, the number of constraints that must be violated inside a loop that contains
f¬φ before time diverges is usually low. The benchmarks of the Counter family were created
on purpose, to show that k can increase arbitrarily.
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Configuration # solved Tot time
Virtual Best 238 10603
BMC+IC3(IA) 205 13525
IC3(QE) 173 12895
IC3(IA)-NOINCR 164 12476
BMC+IC3(QE) 164 16888
IC3(QE)-NOINCR 156 17643
IC3(IA) 154 8493

Fig. 6. Experimental comparison of various configuration options

Initial value of the K-LIVENESS counter. We consider the impact of starting the search
with a right (or close to) value for the K-LIVENESS counter k, instead of always starting
from zero, in IC3. For this, we use a simple heuristic that uses BMC to guess a value for
the counter: we run BMC for a limited time (20 seconds in our experiments), increasing
k every time a violation is detected. We then start IC3 with the k value found.

Overall, we considered six different configurations: IC3(IA) and IC3(QE) are the
default, incremental versions of K-LIVENESS with IC3, using either approximate quan-
tifier elimination or implicit abstraction; IC3(IA)-NOINCR and IC3(QE)-NOINCR are
the non-incremental versions; BMC+IC3(IA) and BMC+IC3(QE) are the versions
using a time-limited initial BMC run for computing an initial value for the K-LIVENESS

counter k. The six configurations are compared in Fig. 6, showing the number of in-
stances solved (y-axis) and the total execution time (x-axis). The figure also includes
the “Virtual Best” configuration, constructed by taking the best result for each individ-
ual instance.

Fig. 6 shows that, differently from the case of software verification, the default ver-
sion of IC3(QE) performs much better than IC3(IA). Although we currently do not
have a clear explanation for this, our conjecture is that this is due to the “bad quality” of
the predicates found by IC3(IA) in the process of disproving invariants when the value
of k is too small. Since IC3(IA) never discards predicates, and it only tries to add the
minimal amount of new predicates when performing refinements, it might simply get
lost in computing clauses of poor quality due to the “bad” language of predicates found.
This might also be the reason why IC3(IA)-NOINCR performs better than IC3(IA), de-
spite the runtime cost of restarting the search from scratch every time k changes: when
restarting, IC3(IA)-NOINCR can also throw away bad predicates. A similar argument
can also be applied to BMC+IC3(IA): using BMC to skip the bad values of k allows
IC3(IA) to find predicates that are more relevant/useful for proving the property with
the good (or close to) value of k.

The situation for IC3(QE) is instead completely different. In this case, not only
turning off incrementality significantly hurts performance, as we expected, but also
using BMC is detrimental. This is consistent with the behavior observed in the finite-
state case for the original K-LIVENESS implementation [12]. However, as the authors
of [12], also in this case we do not have a clear explanation for this behavior.
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Fig. 7. Comparison with DIVINE

Comparison with Other Tools. We conclude our evaluation with a comparison of our
implementation with alternative tools and techniques working on similar systems. As
already remarked above, we are not aware of any tool that is able to handle arbitrary
LTL properties on the class of systems that we support. Therefore, we concentrate our
comparison only on Timed Automata, comparing with DIVINE [24]. We use a total of
64 instances from the Fischer, Bridge and Counter families. Unfortunately, we could
not include the industrial Diesel Generator model, since it is modeled as a symbolic
transition system, whereas DIVINE expects a network of timed automata (in UPPAAL

format) as input. However, the Diesel Generator benchmark was reported to be very
challenging for explicit-state approaches [32].

The results are shown in Fig. 7, where we compare DIVINE with our two best con-
figurations, BMC+IC3(IA) and IC3(QE). We can see that DIVINE is very fast for
simple instances, outperforming our tool by orders of magnitude. However, its per-
formance degrades quickly as the size of the instances increases. In contrast, both
BMC+IC3(IA) and IC3(QE) scale better to larger instances. This is particularly evi-
dent for BMC+IC3(IA): after having found a good initial value for the K-LIVENESS

counter with BMC, IC3(IA) can solve almost all the instances in just a few seconds.

6 Conclusions and Future Work

We presented a new approach to the verification of liveness properties on hybrid sys-
tems, in particular of LTL properties, with SMT-based techniques. The approach relies
on the K-LIVENESS idea of reducing the problem for finite-state systems to proving that
an accepting condition can be visited at most K times. The new algorithm, K-ZENO,
exploits the divergence of time to make the reduction succeed in proving properties on
hybrid systems. We prove that the reduction is complete for a class of parametric rectan-
gular hybrid automata. An extensive evaluation shows the effectiveness and scalability
of the approach.

There are various directions for future work. Some of our objectives are to find
optimizations for linear hybrid systems using relational abstraction [40], to apply the
approach to LTL satisfiability in order to enable compositional contract-based reason-
ing [41], and to extend the idea to deal with continuous-time temporal logics and first-
order theories different from reals.
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Abstract. In this paper we address the synthesis problem for specifications given
in linear temporal single-agent epistemic logic, KLTL (or KL1), over single-
agent systems having imperfect information of the environment state. [17] have
shown that this problem is 2Exptime complete. However, their procedure relies
on complex automata constructions that are notoriously resistant to efficient im-
plementations as they use Safra-like determinization.

We propose a ”Safraless” synthesis procedure for a large fragment of KLTL.
The construction transforms first the synthesis problem into the problem of check-
ing emptiness for universal co-Büchi tree automata using an information-set con-
struction. Then we build a safety game that can be solved using an antichain-
based symbolic technique exploiting the structure of the underlying automata.
The technique is implemented and applied to a couple of case studies.

1 Introduction

The goal of system verification is to check that a system satisfies a given property.
One of the major achievements in system verification is the theory of model checking,
that uses automata-based techniques to check properties expressed in temporal logics,
for systems modelled as transitions systems. The synthesis problem is more ambitious:
given a specification of the system, the aim is to automatically synthesise a system that
fulfils the constraints defined by the specification. Therefore, the constraints do not need
to be checked a posteriori, and this allows the designer to focus on defining high-level
specifications, rather than designing complex computational models of the systems.

Reactive systems are non-terminating systems that interact with some environment,
e.g., hardware or software that control transportations systems, or medical devices. One
of the main challenge of synthesis of reactive systems is to cope with the uncontrollable
behaviour of the environment, which usually leads to computationally harder decision
problems, compared to system verification. For instance, model-checking properties
expressed in linear time temporal logic (LTL) is PSpace-c while LTL synthesis is
2Exptime-c [14]. Synthesis of reactive systems from temporal specifications has gain a
lot of interest recently as several works have shown its practical feasibility [13,4,3,12,9].
These progresses were supported by Kupferman and Vardi’s breakthrough in automata-
based synthesis techniques [13]. More precisely, they have shown that the complex

� Work partially supported by the ANR research project “EQINOCS” no. ANR-11-BS02-0004.
�� F.R.S.-FNRS research associate (chercheur qualifié).
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Safra’s determinization operation, used in the classical LTL synthesis algorithm [14],
could be avoided by working directly with universal co-Büchi automata. Since then,
several other “Safraless” procedures have been defined [13,16,10,9]. In [16,9], it is
shown that LTL synthesis reduces to testing the emptiness of a universal co-Büchi tree
automaton, that in turn can be reduced to solving a safety game. The structure of the
safety games can be exploited to define a symbolic game solving algorithm based on
compact antichain representations [9].

In these works, the system is assumed to have perfect information about the state of
the environment. However in many practical scenarios, this assumption is not realistic
since some environment information may be hidden to the system (e.g. private vari-
ables). Towards the (more realistic) synthesis of partially informed systems, imperfect
information two-player games on graphs have been studied [15,7,2,8]. However, they
consider explicit state transition systems rather than synthesis from temporal specifica-
tions. Moreover, the winning objectives that they consider cannot express fine properties
about imperfect information, i.e., cannot speak about knowledge.

Epistemic Temporal Logics. [11] are logics formatted for reasoning about multi-agent
situations. They are extensions of temporal logics with knowledge operators Ki for
each agent. They have been successfully used for verification of various distributed
systems in which the knowledge of the agents is essential for the correctness of the
system specification.

Synthesis problem with temporal epistemic objectives. Vardi and van der Meyden [17]
have considered epistemic temporal logics to define specifications that can, in addition
to temporal properties, also express properties that refer to the imperfect information,
and they studied the synthesis problem. They define the synthesis problem in a multi-
agent setting, for specifications written in LTL extended with knowledge operators Ki

for each agent (KLTL). In such models, transitions between states of the environment
model depend on actions of the environment and the system. The system does not see
which actions are played by the environment but get some observation on the states
in which the environment can be (observations are subsets of states). An execution of
the environment model, from the point of view of the system, is therefore an infinite
sequence alternating between its own actions and observations.

The goal of the KLTL synthesis problem is to automatically generate a strategy for
the system (if it exists) that tells it which action should be played, depending on fi-
nite histories, so that whatever the environment does, all the (concrete) infinite exe-
cutions resulting from this strategy satisfy the KLTL formula. In [17], this problem
was shown to be undecidable even for two agents against an environment. For a sin-
gle agent, they show that the problem is 2Exptime-c, by reduction to the emptiness
of alternating Büchi automata. This theoretically elegant construction is however diffi-
cult to implement and optimize, as it relies on complex Safra-like automata operations
(Muller-Schupp construction).

Contributions. In this paper, we follow the formalisation of [17] and, as our main contri-
bution, define and implement a Safraless synthesis procedure for the positive fragment
of KLTL (KLTL+), i.e., KLTL formulas where the operator K does not occur under any
negations. Our procedure relies on universal co-Büchi tree automata (UCT). More pre-
cisely, given a KLTL+ formula ϕ and some environment modelME , we show how to
construct a UCT Tϕ whose language is exactly the set of strategies that realize ϕ inME .
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Despite the fact that our procedure has 2-ExpTime worst-case complexity, we have
implemented it and shown its practical feasibility through a set of examples. In partic-
ular, based on ideas of [9], we reduce the problem of checking the emptiness of Tϕ to
solving a safety game whose state space can be ordered and compactly represented by
antichains. Moreover, rather than using the reduction of [9] as a blackbox, we further
optimize the antichain representations to improve their compactness. Our implemen-
tation is based on the tool Acacia [5] and, to the best of our knowledge, it is the first
implementation of a synthesis procedure for epistemic temporal specifications. As an
application, this implementation can be used to solve two-player games of imperfect in-
formation whose objectives are given as LTL formulas, or universal co-Büchi automata.

Organization of the paper. In Section 2, we define the KLTL synthesis problem. In
Section 3, we define universal co-Büchi automata for infinite words and trees. In Sec-
tion 4, we consider the particular case of LTL synthesis in an environment model with
imperfect information. The construction explained in that section will be used in the
generalization to KLTL+and moreover, it can be used to solve two-player imperfect
information games with LTL (and more generally ω-regular) objectives. In Section 5,
we define our Safraless procedure for KLTL+, and show in Section 6 how to implement
it with antichain-based symbolic techniques. Finally, we describe our implementation
in Section 7. Full proofs can be found in the full version of the paper[6] in which, for
self-containdness, we also explain the reduction to safety games.

2 KLTL Realizability and Synthesis

In this section, we define the realizability and synthesis problems for KLTL specifica-
tions, for one partially informed agent, called the system, against some environment.

Environment Model. We assume to have, as input of the problem, a model of the be-
haviour of the environment as a transition system. This transition system is defined over
two disjoint sets of actions Σ1 and Σ2, for the system and the environment respectively.
The transition relation from states to states is defined with respect to pairs of actions
in Σ1 × Σ2. Additionally, each state s of the environment model carries an interpre-
tation τe(s) over a (finite) set of propositions P . However, the system is not perfectly
informed about the value of some propositions, i.e., some propositions are visible to the
system, and some are not. Therefore, we partition the set P into two sets Pv (the visible
propositions) and Pi (the invisible ones).

An environment model is a tupleME = (P , Σ1, Σ2, Se, S0, Δe, τe) where

– P is a finite set of propositions, Σ1 and Σ2 are finite set of actions for the system
and the environment resp.,

– Se is a set of states, S0 ⊆ Se a set of initial states,
– τe : Se → 2P is a labelling function,
– Δe ⊆ Se ×Σ1 ×Σ2 × Se is a transition relation.

The model is assumed to be deadlock-free, i.e. from any state, there exists at least one
outgoing transition. Moreover, the model is assumed to be complete for all actions of the
system, i.e. for all states and all actions of the system, there exists an outgoing transition.
The set of executions ofME , denoted by exec(ME), is the set of infinite sequences of
states ρ = s0s1 · · · ∈ Sω

e such that s0 ∈ S0 and for all i > 0, (si, a1, a2, si+1) ∈ Δe
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Fig. 1. Environment modelME of Example 1

for some (a1, a2) ∈ Σ1×Σ2. Given a sequence of states ρ = s0s1 . . . and a set P ⊆ P ,
we denote by traceP (ρ) its projection over P , i.e. traceP (ρ) = (τe(s0) ∩ P )(τe(s1) ∩
P ) . . . . The visible trace of ρ is defined by tracev(ρ) = tracePv(ρ). The language of
ME with respect to P is defined as LP (ME) = {traceP (ρ) | ρ ∈ exec(ME)}. The
language of ME is defined as LP(ME). The visible language of ME is defined as
LPv (ME). Finally, given an infinite sequence of actions a = a01a

0
2 · · · ∈ (Σ1.Σ2)

ω

and an execution ρ = s0s1 . . . of ME , we say that a is compatible with ρ if for all
i ≥ 0, (si, ai1, a

i
2, si+1) ∈ Δe.

This formalization is very close to that of [17]. However in [17], partial observation
is modeled as a partition of the state space. The two models are equivalent. In particular,
we will see that partitioning the propositions into visible and invisible ones also induces
a partition of the state space into observations.

Example 1. We illustrate the notion of environment model on the example of [17], that
describes the behaviour of an environment against a system acting on a timed toggle
switch with two positions (on,off) and a light. It is depicted in Fig. 1. The set P = {t, l}
contains two propositions t (true iff the toggle is on) and l (true iff the light is on).
Actions of the system are Σ1 = {T, S} for “toggle” and “skip” respectively. The system
can change the position of the toggle only if it plays T , and S has no effect. Actions
of the environment are Σ2 = {(tout, lon) | tout, lon ∈ {0, 1}}. The boolean variables
tout and lon indicate that the environment times out the toggle and that it switches
on the light. The transition function is depicted on the figure as well as the labelling
function τe : Se → 2P . The star ∗ means “any action”. The light can be on only if the
toggle in on (state s1), but it can be off even if the toggle is on (state s2), in case it is
broken. This parameter is uncontrollable by the system, and therefore it is controlled
by the environment (action lon). The timer is assumed to be unreliable and therefore
the environment can timeout at any time (action tout). The system sees only the light,
i.e. Pv = {l} and Pi = {t}. The goal of the system is to have a strategy such that he
always knows the position of the toggle.

Observations. The partition of the set of propositions P into a set of visible proposi-
tions Pv and a set of invisible propositions Pi induces an indistinguishability relation
over the states Se. Two states are indistinguishable, denoted s1 ∼ s2, if they have the
same visible propositions, i.e. τe(s1) ∩ Pv = τe(s2) ∩ Pv. It is easy to see that ∼ is
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an equivalence relation over Se. Each equivalence class of Se induced by ∼ is called
an observation. The equivalence class of a state s ∈ Se is denoted by o(s) and the
set of observations is denoted by O. The relation ∼ is naturally extended to (finite or
infinite) executions: ρ1 ∼ ρ2 if tracev(ρ1) = tracev(ρ2). Similarly, two executions
ρ = s0s1 . . . and ρ′ = s′0s

′
1 . . . are said to be indistinguishable up to some position i if

tracev(s0 . . . si) = tracev(s′0 . . . s′i). This indistinguishability notion is also an equiva-
lence relation over executions that we denote by ∼i.

Coming back to Example 1, since the set of visible propositions is Pv = {l} and the
set of invisible ones is Pi = {t}, the states s2 and s3 are indistinguishable (in both s2,
s3 the light is off) and thereforeO = {o0, o1} with o0 = {s2, s3} and o1 = {s1}.

Given an infinite sequence u = a1o1a2o2 · · · ∈ (Σ1.O)ω of actions of Player 1, and
observations, we associate with u the set of possible executions ofME that are com-
patible with u. Formally, we define exec(ME , u) the set of executions ρ = s0s1 · · · ∈
exec(ME) such that for all i ≥ 1, o(si) = oi and there exists an action bi of the en-
vironment such that (si−1, ai, bi, si) ∈ Δe. We also define the traces of u as the set of
traces of all executions ofME compatible with u, i.e. traces(u) = {traces(ρ) | ρ ∈
exec(ME , u)}.
Epistemic Linear Time Temporal Logic (KLTL). We now define the logic KLTL for
one-agent (the system). The logic KLTL extends the logic LTL with an epistemic oper-
ator Kφ, modelling the property that the system knows that the formula φ holds. KLTL
formulae are defined over the set of atomic propositions P by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ1Uϕ2 | Kϕ

in which p ∈ P and© and U are the ”next” and ”until” operators from linear temporal
logic. Formulas of the type Kϕ are read as ”the system knows that ϕ holds”. We de-
fine the macros ♦ (eventually) and � (always) as usual. LTL is the fragment of KLTL
without the K operator.

The semantics of a KLTL formula ϕ is defined for an environment modelME =
(P , Σ1, Σ2, Se, S0, Δe, τe), a set of executions R ⊆ exec(ME), an execution ρ =
s0s1 · · · ∈ R and a position i ≥ 0 in ρ. It is defined inductively:

– R, ρ, i |= p if p ∈ τe(si),
– R, ρ, i |= ¬ϕ if R, ρ, i �|= ϕ,
– R, ρ, i |= ϕ1 ∨ ϕ2 if R, ρ, i |= ϕ1 or R, ρ, i |= ϕ2,
– R, ρ, i |=©ϕ if R, ρ, i+ 1 |= ϕ,
– R, ρ, i |= ϕ1Uϕ2 if ∃j ≥ i s.t. R, ρ, j |= ϕ2 and ∀i ≤ k < j, R, ρ, k |= ϕ1,
– R, ρ, i |= Kϕ if for all ρ′ ∈ R s.t. ρ ∼i ρ

′, we have R, ρ′, i |= ϕ.
In particular, the system knows ϕ at position i in the execution ρ, if all other execu-

tions in R whose prefix up to position i are indistinguishable from that of ρ, also satisfy
ϕ. We write R, ρ |= ϕ if R, ρ, 0 |= ϕ, and R |= ϕ if R, ρ |= ϕ for all executions ρ ∈ R.
We also writeME |= ϕ to mean exec(ME) |= ϕ. Note thatME |= ϕ iffME |= Kϕ.

Consider Example 1 and the set R of executions that eventually loop in s1. Pick
any ρ in R. Then R, ρ, 0 |= �K♦(l). Indeed, take any position i in ρ and any other
executions ρ′ ∈ R such that ρ ∼i ρ

′. Then since ρ′ will eventually loop in s1, it will
satisfy ♦(l). Therefore R, ρ, i |= K♦(l), for all i ≥ 0.

KLTL Realizability and Synthesis. As presented in [9] for the perfect information
setting, the realizability problem, given the environment model ME and the KLTL
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formula ϕ, is best seen as a turn-based game between the system (Player 1) and the
environment (Player 2). In the first round of the play, Player 1 picks some action a01 ∈
Σ1, then Player 2 picks some action in a02 ∈ Σ2 and solves the nondeterminism in Δe,
and a new round starts. The two players play for an infinite duration and the outcome is
an infinite sequence w = a01a

0
2a

1
1a

1
2 . . . . The winning objective is given by some KLTL

formula ϕ. Player 1 wins the play if for all executions ρ of ME that are compatible
with w, we haveME, ρ |= ϕ.

Player 1 plays according to strategies (called protocols in [17]). Since Player 1 has
only partial information about the state of the environment, his strategies are based
on the histories of his own actions and the observations he got from the environment.
Formally, a strategy for Player 1 is a mapping λ : (Σ1O)∗ → Σ1, where, as defined
before, O denotes the set of observations of Player 1 over the states ofME . Fixing a
strategy λ of Player 1 restricts the set of executions of the environment modelME . An
execution ρ = s0s1 · · · ∈ exec(ME) is said to be compatible with λ if there exists an
infinite sequence of actions a = a01a

0
2... ∈ (Σ1.Σ2)

ω , compatible with ρ, such that for
all i ≥ 0, ai1 = λ(a01o(s0)a11o(s1)...a

i−1
1 o(si−1)). We denote by exec(ME , λ) the set

of executions ofME compatible with λ.

Definition 1. A KLTL formula ϕ is realizable inME if there exists a strategy λ for the
system such that exec(ME , λ) |= φ.

Theorem 1 (R. van der Meyden and M. Vardi in [17]). The KLTL realizability prob-
lem (for one agent) is 2ExpTime-complete.

If a formula is realizable, the synthesis problem asks to generate a finite-memory
strategy that realizes the formula. Such a strategy always exists if the specification is
realizable [17]. Finite memory strategies can be represented by Moore machines that
read observations and output actions of Player 1. We refer the reader to [9] for a formal
definition of finite-memory strategies.

Considering again Example 1, the formula ϕ = �(K(t)∨K(¬t)) expresses the fact
that the system knows at each step the position of the toggle. As argued in [17], this
formula is realizable if the initial set of the environment is {s1, s2} since both states are
labelled with t. Then, a winning strategy of the system is to play first time T (it will lead
to s3) and then always play S in order to stay in that state. Following this strategy, in the
first step the formula K(t) is satisfied and then K(¬t) becomes true forever. However,
the formula is not realizable if the set of initial states of the environment is {s2, s3}
since from the beginning the system doesn’t know the value of the toggle.

3 Automata for Infinite Words and Trees

Automata on Infinite Words. An infinite word automaton over some (finite) alphabet
Σ is a tuple A = (Σ,Q,Q0, Δ, α) where Σ is the finite input alphabet, Q is the finite
set of states, Q0 ⊆ Q is the set of initial states, α ⊆ Q is the set of final states (accepting
states) and Δ ⊆ Q×Σ ×Q is the transition relation.

For all q ∈ Q and all σ ∈ Σ, we let Δ(q, σ) = {q′|(q, σ, q′) ∈ Δ}. We let |A| =
|Q|+ |Δ|. We say that A is deterministic if |Q0| = 1 and ∀q ∈ Q, ∀σ ∈ Σ, |Δ(q, σ)| ≤
1. It is complete if ∀q ∈ Q, ∀σ ∈ Σ,Δ(q, σ) �= ∅. In this paper we assume, w.l.o.g.,
that the word automata are always complete.
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A run of the automaton A on an infinite input word w = w0w1w2..., is a sequence
r = q0q1q2... ∈ Qω such that (qi, wi, qi+1) ∈ Δ for all i ≥ 0 and q0 ∈ Q0. We denote
by RunsA(w) the set of runs of A on w and by V isit(r, q) the number of times the
state q is visited along the run r(or∞ if the path visit the state q infinitely often). Here,
we consider two accepting conditions for infinite word automata and name the infinite
word automata according to the accepting condition being used. Let B ∈ N. A word
w ∈ Σω is accepted by A if (according to the accepting condition):

Universal Co-Büchi : ∀r ∈ RunsA(w), ∀q ∈ α, V isit(r, q) <∞
Universal B-Co-Büchi : ∀r ∈ RunsA(w), ∀q ∈ α, V isit(r, q) ≤ B

The set of words accepted by A with the universal co-Büchi (resp. B-co-Büchi)
accepting condition is denoted by Luc(A) (resp. Luc,B(A)) . We say that A is a univer-
sal co-Büchi word automaton (UCW) if the first acceptance condition is used and that
(A,B) is an universal B-co-Büchi word automaton (UBCW) if the second one is used.

Given an LTL formula ϕ, we can translate it into an equivalent universal co-Büchi
word automaton Aϕ . This can be done with a single exponential blow-up by first negat-
ing ϕ, then translating ¬ϕ into an equivalent nondeterministic Büchi word automaton,
and then dualize it into a universal co-Büchi word automaton [9,13].

Automata on Infinite Trees. Given a finite set D of directions, a D−tree is a prefix-
closed set T ⊆ D∗, i.e., if x · d ∈ T , where d ∈ D, then x ∈ T . The elements of T
are called nodes and the empty word ε is the root of T . For every x ∈ T , the nodes
x · d, for d ∈ D, are the successors of x. A node x is a leaf if it has no successor in
T , i.e., ∀d ∈ D, x · d �∈ T . The tree T is complete if for all nodes, there are successors
in all directions, formally, ∀x ∈ T, ∀d ∈ D, x · d ∈ T . Finite and infinite branches π
in a tree T are naturally defined, respectively, as finite and infinite paths in T starting
from the root node. Given an alphabet Σ, a Σ−labelled D−tree is a pair 〈T, τ〉 where
T is a tree and τ : T → Σ maps each node of T to a letter in Σ. We omit τ when it
is clear from the context. Then, in a tree T , an infinite (resp. finite) branch π induces
an infinite (resp. finite) sequence of labels and directions in (Σ.D)ω (resp. (Σ.D)∗Σ).
We denote this sequence by τ(π). For instance, for a set of system’s actions Σ1 and a
set of observations O, a strategy λ : (Σ1O)∗ → Σ1 of the system can be seen has a
Σ1-labelledO-tree whose nodes are finite outcomes1.

A universal co-Büchi tree automaton (UCT) is a tuple T = (Σ,Q,Q0, D,Δ, α)
where Σ is the finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of initial
states, D is the set of directions,Δ : Q×Σ×D→ 2Q is the transition relation (assumed
to be total) and α is the set of final states. If the tree automaton is in some state q at some
node x labelled by some σ ∈ Σ, it will evaluate, for all d ∈ D, the subtree rooted at
x.d in parallel from all the states of Δ(q, σ, d). Let us define the notion of run formally.
For all q ∈ Q and σ ∈ Σ, we denote by Δ(q, σ) = {(q1, d1), . . . , (qn, dn)} the disjoint
union of all sets Δ(q, σ, d) for all d ∈ D. A run of T on an infinite Σ−labelledD−tree
〈T, τ〉 is a (Q ×D∗)−labelled N−tree 〈Tr, τr〉 such that τr(ε) ∈ Q0 × {ε} and, for

1 Technically, a strategy λ is defined also for histories that are not accessible by λ itself from the
initial (empty) history ε. The tree represents only accessible histories but we can, in the rest
of the paper, assume that strategies are only defined for their accessible histories. Formally,
we assume that a strategy is a partial function whose domain H satisfies ε ∈ H and for all
h ∈ H and all o ∈ O, h.λ(h).o ∈ H , and H is minimal (for inclusion) w.r.t. this property.
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all x ∈ Tr such that τr(x) = (q, v), if Δ(q, τ(v)) = {(q1, d1), . . . , (qn, dn)}, we have
x · i ∈ Tr and τr(x · i) = (qi, v · di) for all 0 < i ≤ n, . Note that there is at most one
run per input tree (up to tree isomorphism). A run 〈Tr, τr〉 is accepting if for all infinite
branches π of Tr, τr(π) visits a finite number of accepting states. The language of T ,
denoted by Luc(T ), is the set of Σ-labelled D-trees such that there exists an accepting
run on them. Similarly, we define universal B-co-Büchi tree automata by strengthening
the acceptance conditions on all branches to the B-co-Büchi condition.

As noted in [9,16], testing the emptiness of a UCT automaton reduces to testing the
emptiness of a universal B-co-Büchi accepting condition for a sufficiently large bound
B, which in turn reduces to solving a safety game. Symbolic techniques, that are also
exploited in this paper, have been used to solve the safety games[9].

4 LTL Synthesis under Imperfect Information
In this section, we first explain an automata-based procedure to decide realizability
under imperfect information of LTL formulas against an environment model. This pro-
cedure will be extended in the next section to handle the K operator.

Take an environment modelME = (P , Σ1, Σ2, Se, S0, Δe, τe). Then, a complete
Σ1−labelled O-tree 〈T, τ〉 defines a strategy of the system. Any infinite branch π of
〈T, τ〉 defines an infinite sequence of actions and observations ofME , which in turn
corresponds to a set of possible traces inME . We denote by traces(π) this set of traces,
and it is formally defined by traces(π) = traces(τ(π)) (recall that the set of traces of a
sequence of actions and observations has been defined in Section 2).

Given an LTL formula ψ, we construct a universal co-Büchi tree automaton T =
(Σ1, Q,Q0,O, Δ, α) that accepts all the strategies of Player 1 (the system) that realize
ψ under the environment modelME . First, one converts ψ into an equivalent UCW
A = (2P , QA, QA

0 , Δ
A, αA). Then, as a direct consequence of the definition of KLTL

realizability:

Proposition 1. Given a complete Σ1−labelledO-trees 〈T, τ〉, 〈T, τ〉 defines a strategy
that realizes ψ underME iff for all infinite branches π of 〈T, τ〉 and all traces ρ ∈
traces(π), ρ ∈ L(A).

We now show how to construct a universal tree automaton that checks the property
mentioned in the previous proposition, for all branches of the trees. We use universal
transitions to check, on every branch of the tree, that all the possible traces (possibly
uncountably many) compatible with the sequence of actions in Σ1 and observations in
O defined by the branch satisfy ψ. Based on finite sequences of observations that the
system has received, it can define its knowledge I of the possible states in which the
environment can be, as a subset of states of Se. Given an action a1 ∈ Σ1 of the system
and some observation o ∈ O, we denote by posta(I, o) the new knowledge that the
system can infer from observation o, action a and its previous information I . Formally,
posta(I, o) = {s ∈ Se ∩ o | ∃a2 ∈ Σ2, ∃s′ ∈ I s.t. (s′, a, a2, s) ∈ Δe}.

The states of the universal tree automaton T are pairs of states ofA and knowledges,
plus some extra state (qw,∅), i.e. Q = QA × 2Se ∪ {(qw,∅)} where (qw,∅) is added
for completeness. The final states are defined as α = αA × 2Se and initial states as
Q0 = QA

0 × S0. To define the transition relation, let us consider a state q ∈ QA, a
knowledge set I ⊆ Se, an action a ∈ Σ1 and some observation o ∈ O. We now define
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Δ((q, I), a, o). It could be the case that there is no transition inME from a state of I to
a state of o, i.e. posta(I, o) = ∅. In that case, all the paths from the next o-node of the
tree should be accepting. This situation is modelled by going to the extra state (qw,∅),
i.e. Δ((q, I), a, o) = (qw,∅).

Now suppose that posta(I, o) is non-empty. Since the automaton must check that
all the traces ofME that are compatible with actions of Σ1 and observations are ac-
cepted byA, intuitively, one would define Δ((q, I), a, o) as the set of states of the form
(q′, posta(I, o)) for all states q′ such that there exists s ∈ I such that (q, τe(s), q′) ∈
ΔA. However, it is not correct for several reasons. First, it could be that s has no suc-
cessor in o for action a, and therefore one should not consider it because the traces
up to state s die at the next step after getting observation o. Therefore, one should
only consider states of I that have a successor in o. Second, it is not correct to as-
sociate the new knowledge posta(I, o) with q′, because it could be that there exists a
state s′ ∈ posta(I, o) such that for all its predecessors s′′ in I , there is no transition
(q, τe(s

′′), q′) in ΔA, and therefore, one would also take into account sequences of
interpretations of propositions that do not correspond to any trace ofME .

Taking into account these two remarks, we define, for all states q′, the set Iq,q′ =
{s ∈ I | (q, τ(s), q′) ∈ ΔA}. Then, Δ((q, I), a, o) is defined as the set

Δ((q, I), a, o) = {(q′, posta(Iq,q′ , o)) | ∃s ∈ I, (q, τ(s), q′) ∈ ΔA}
Note that, since

⋃
q′∈QA posta(Iq,q′ , o) = posta(I, o) and the automaton is universal,

the system does not have better knowledge by restricting the knowledge sets.

Lemma 1. The LTL formula ψ is realizable inME iff L(T ) �= ∅.

Moreover, it is known that if a UCT has a non-empty language, then it accepts a
tree that is the unfolding of a finite graph, or equivalently, that can be represented by a
Moore machine. Therefore if ψ is realizable, it is realizable by a finite-memory strategy.
In this paper we will also use the notation Tψ,X for the UCT built for the LTL formula
ψ where the executions ofME start from the set X ⊆ Se,i.e., Q0 = QA

0 ×X .

5 Safraless Procedure for Positive KLTL Synthesis

In this section, we extend the construction of Section 4 to the positive fragment of
KLTL. Positive formulas are defined by the following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | �ϕ | Kϕ | ϕUϕ

Note that this fragment is equivalent to the fragment of KLTL in which all the knowl-
edge operatorsK in formulas occur under an even number of negations. This is obtained
by straightforwardly pushing the negations downwards the atoms. We denote this frag-
ment of KLTL by KLTL+.

Sketch of the Construction. Given a KLTL+ formula ϕ and an environment model
ME = (P , Σ1, Σ2, Se, S0, Δe, τe), we show how to construct a UCT T such that
L(T ) �= ∅ iff ϕ is realizable inME . The construction is compositional and follows,
for the basic blocks, the construction of Section 4 for LTL formulas. The main idea
is to replace subformulas of the form Kγ by fresh atomic propositions kγ so that we
get an LTL formula for which the realizability problem can be transformed into the
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emptiness of a UCT. The realizability of the subformulas Kγ that have been replaced
by kγ is checked by branching universally to a UCT for γ, constructed as in Section
4. Since transitions are universal, this will ensure that all the infinite branches of the
tree from the current node where a new UCT has been triggered also satisfy γ. The
UCTs we construct are defined over an extended alphabet that contains the new atomic
propositions, but we show that we can safely project the final UCT on the alphabet Σ1.
The assumption on positivity of KLTL formulas implies that there is no subformulas of
the form ¬Kγ. The rewriting of subformulas by fresh atomic propositions cannot be
done in any order. We now describe it formally.

We inductively define a sequence of formulas associated with ϕ as: ϕ0 = ϕ and,
for all i > 0, ϕi is the formula ϕi−1 in which the innermost subformulas Kγ are
replaced by fresh atomic propositions kγ . Let d be the smallest index such that ϕd is
an LTL formula (in other words, d is the maximal nesting level of K operators). Let
K denote the set of new atomic propositions, i.e., K =

⋃d
i=0{kγ | Kγ ∈ ϕi}, and let

P ′ = P ∪ K. Note that by definition of the formulas ϕi, for all atomic proposition kγ
occurring in ϕi, γ is an LTL formula over P ′. E.g. if ϕ = p→ K(q → Kr ∨Kz) and
P = {p, q, r, z}, then the sequence of formulas is: ϕ0 = ϕ, ϕ1 = p→ K(q → kr∨kz)
ϕ2 = p→ kγ where γ = q → kr ∨ kz .

Then, we construct incrementally a chain of universal co-Büchi tree automata
T d, . . . , T 0 such that L(T d) ⊇ L(T d−1) ⊇ · · · ⊇ L(T 0) and, the following invariant
is satisfied: for all i ∈ {0, . . . , d}, T i accepts exactly the set of strategies that realize
ϕi inME . Intuitively, the automaton T i is defined by adding new transitions in T i+1,
such that for all atomic propositions kγ occurring in ϕi+1, T i will ensure that Kγ is
indeed satisfied, by branching to a UCT checking γ whenever the atomic proposition
kγ is met. Since formulas ϕi are defined over the extended alphabet P ′ = P ∪ K and
ME is defined over P , we now make clear what we mean by realizability of a formula
ϕi inME . It uses the notion of extended model executions and extended strategies.

Extended Actions, Model Executions and Strategies. We extend the actions of the
system to Σ′

1 = Σ1 × 2K (call e-actions). Informally, the system plays an e-action
(a,K) if it considers formulas Kγ for all kγ ∈ K to be true. An extended execu-
tion (e-execution) of ME is an infinite sequence ρ = (s0,K0)... ∈ (Se × 2K)ω

such that s0s1... ∈ exec(ME). We denote s0s1 . . . by proj1(ρ) and K0K1 . . . by
proj2(ρ). The extended labelling function τ ′e is a function from Se×2K to P ′ defined by
τ ′e(s,K) = τe(s)∪K . The indistinguishability relation between extended executions is
defined, for any two extended executions ρ1, ρ2, by ρ1 ∼ ρ2 iff proj1(ρ1) ∼ proj1(ρ2)
and proj2(ρ1) = proj2(ρ2), i.e., the propositions in K are visible to the system. We de-
fine ∼i over extended executions similarly. Given the extended labelling functions and
indistinguishability relation, the KLTL satisfiability notion R, ρ, i |= ψ can be naturally
defined for a set of e-execution R, ρ ∈ R and ψ a KLTL formula over P ′ = P ∪K.

An extended strategy is a strategy defined over e-actions, i.e. a function from (Σ′
1O)∗

to Σ′
1. For an infinite sequence u = (a0,K0)o0(a1,K1)o1 · · · ∈ (Σ′

1O)ω , we de-
fine proj1(u) as a0o0 . . . . The sequence u defines a set of compatible e-executions
exec(ME , u) as follows: it is the set of e-executions ρ = (s0,K0)(s1,K1)... ∈ (Se ×
2K)ω such that proj1(ρ) ∈ exec(ME , proj1(u)). Similarly, we define for e-strategies λ′

the set exec(ME , λ
′) of e-executions compatible with λ′. A KLTL formula ψ
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over P ′ is realizable in ME if there exists an e-strategy λ′ such that for all runs
ρ ∈ exec(ME , λ

′), we have exec(ME , λ
′), ρ, 0 |= ψ.

Proposition 2. There exists an e-strategy λ′ : (Σ′
1O)∗ → Σ′

1 realizing ϕ0 inME iff
there exists a strategy λ : (Σ1O)∗ → Σ1 realizing ϕ0 inME .

Proof. Let see e-strategies and strategies as Σ′
1−labelled (resp. Σ1-labelled) O-trees.

Given a tree representing λ′, we project its labels on Σ1 to get a tree representing λ.
The strategy λ defined in this way realises ϕ0, as ϕ0 does not contain any occurrence of
propositions in K. Conversely, given a tree representing λ, we extend its labels with ∅ to
get a tree representing λ′. It can be shown for the same reasons that λ′ realizes ϕ0. ��

Incremental Tree Automata Construction. The invariant mentioned before can now be
stated more precisely: for all i, T i accepts the e-strategies λ′ : (Σ′

1O)→ Σ′
1 that realise

ϕi inME . Therefore, the UCT T i are labelled with e-actions Σ′
1. We now explain how

they are constructed.
Since ϕd is an LTL formula, we follow the construction of Section 4 to build the UCT

T d. Then, we construct T i from T i+1, for 0 ≤ i < d. The invariant tells us that T i+1

defines all the e-strategies that realize ϕi+1 inME . It is only an over-approximation of
the set of e-strategies that realize ϕi inME (and a fortiori ϕ0), since the subformulas
of ϕi of the form Kγ correspond to atomic propositions kγ in ϕi+1, and therefore T i+1

does not check that they are satisfied. Therefore to maintain the invariant, T i is obtained
from T i+1 such that whenever an action that contains some formula kγ ∈ sub(ϕi+1)
occurs on a transition of T i+1, we trigger (universally) a new transition to a UCT Tγ,I ,
for the current information set I in T i+1, that will check that Kγ indeed holds. The
assumption on positivity of KLTL formulas is necessary here as we do not have to
check for formulas of the form ¬Kγ, which could not be done without an involved
“non Safraless” complementation step. Since γ is necessarily an LTL formula over P ′

by definition of the formula ϕi+1, we can apply the construction of Section 4 to build
Tγ,I .

Formally, from the incremental way of constructing the automata T j for j ≥ i, we
know that T i+1 has a set of states Qi+1 where all states are of the form (q, I) where
I ⊆ Se is some knowledge. In particular, it can be verified to be true for the state space
of T d by definition of the construction of Section 4. Let also Δi+1 be the transition
relation of T i+1. For all formulas γ such that kγ occurs in ϕi+1, we let Qγ be the set
of states of Tγ,I and Δγ its set of transitions. Again from the construction of Section 4,
we know that Qγ = Q × 2Se where Q is the set of states of a UCW associated with γ
(assumed to be disjoint from that of T i+1) and Q0

γ = Q× I .
We define the set of states Qi of T i by Qi+1 ∪

⋃
kγ∈sub(ϕi+1)Qγ . Its set of tran-

sitions Δi is defined as follows. Assume w.l.o.g. that there is a unique initial state
q0 ∈ Q in the UCW Aγ . If (q′, I ′) ∈ Δi+1((q, I), (a,K), o) where I, I ′ ⊆ Se,
a ∈ Σ1, K ⊆ K, o ∈ O and kγ ∈ K is such that kγ occurs in ϕi+1, then we let
(q′, I ′) ∈ Δi((q, I), (a,K), o) and Δγ((q0, I), (a,K), o) ⊆ Δi((q, I), (a,K), o). The
whole construction is given in [6], as well as the proof of its correctness. The invariant
is satisfied:

Lemma 2. For all i ≥ 0, L(T i) accepts the set of e-strategies that realize ϕi inME .
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From Lemma 2, we know that L(T 0) accepts the set of e-strategies that realize
ϕ0 = ϕ inME . Then by Proposition 2 we get:

Corollary 1. The KLTL+ formula ϕ is realizable inME iff L(T 0) �= ∅.

We now let Tϕ be the UCT obtained by projecting T 0 on Σ1. We have:

Theorem 2. For any KLTL+ formula ϕ, one can construct a UCT Tϕ such that L(Tϕ)
is the set of strategies that realize ϕ inME .

The number of states of Tϕ is (in the worst-case) 2|Se|.(2|ϕ
d| +

∑
kγ∈K 2|γ|), and

since |ϕd|+
∑

γ∈K |γ| is bounded by |ϕ|, the number of states of Tϕ is O(2|Se|+|ϕ|).

6 Antichain Algorithm

In the previous sections, we have shown how to reduce the problem of checking the
realizability of a KLTL+ formula ϕ to the emptiness of a UCT Tϕ (Theorem 2). In this
section, we describe an antichain symbolic algorithm to test the emptiness of Tϕ.

It is already known from [9] that checking emptiness of the language defined by a
UCT T can be reduced to checking the emptiness of Luc,B(T ) for a sufficiently large
bound B, which in turn can be reduced to solving a safety game. Clearly, for all b ≥ 0,
if Luc,b(T ) �= ∅, then Luc(T ) �= ∅. This has led to an incremental algorithm that
starts with the bound 0, and the experiments have shown that in general, a small bound
b is necessary to conclude for realizability of an LTL formula (transformed into the
emptiness of a UCT). We also exploit this idea in our implementation and show that for
the KLTL+ specifications that we considered, this observation still holds: small bounds
are enough.

In [9], it is shown that the safety games can be solve on-the-fly without constructing
them explicitly, and that the fixpoint algorithm used to solve these safety games could
be optimized by using some antichain representation of the sets constructed during the
fixpoint computation. Rather than using the algorithm of [9] as a black box, we study
the state space of the safety games constructed from the UCT Tϕ and show that they
are also equipped with a partial order that allows one to get more compact antichain
representations. We briefly recall the reduction of [9], the full construction of the safety
games is given in [6].

Given a bound b ≥ 0 and a UCT T , the idea is to construct a safety game G(T , b)
such that Player 1 has a winning strategy in G(T , b) iff Luc,b(T ) is non-empty. The
game G(T , b) is obtained by extending the classical automata subset construction with
counters which count, up to b, the maximal number of times all the runs, up to the
current point, have visited accepting states. If Q is the set of states of T , the set of states
of the safety game G(T , b) is all the functions F : Q→ {−1, 0, . . . , b+ 1}. The value
F (q) = −1 means that no run have reached q and F (q) ∈ {0, . . . , b} means that the
maximal number of accepting states that has been visited by some run reaching q is
F (q). The safe states are all the functions F such that F (q) ≤ b for all q ∈ Q. The
set of states can be partially ordered by the pairwise comparison between functions and
it is shown that the sets of states manipulated by the fixpoint algorithm are downward
closed for this order.
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Consider now the UCT Tϕ constructed from the KLTL+ formula ϕ. Its state space is
of the form Q × 2Se where Se is the set of states of the environment, because the con-
struction also takes into account the knowledge the system has from the environment.
Given a bound b, the state space of the safety game G(Tϕ, b) is therefore functions from
Q × 2Se to {−1, . . . , b + 1}. However, we can reduce this state space thanks to the
following result:

Proposition 3. For all runs 〈Tr, τ〉 of Tϕ on some tree T , for all branches π, π′ in Tr
of the same length such that they follow the same sequence of observations, if τ(π) =
(q, I) and τ(π′) = (q, I ′), then I = I ′.

In other words, given the same sequence of observations, the tree automaton Tϕ
computes, for a given state q, the same knowledge.

Based on this proposition, it is clear that reachable states F of G(Tϕ, b) satisfy, for
all states q ∈ Q and knowledges I, I ′, if F (q, I) �= −1 and F (q, I ′) �= −1 then
I = I ′. We can therefore define the state space of G(Tϕ, b) as the set of pairs (F,K)
such that F : Q → {−1, . . . , b + 1} and K : Q → 2Se associates with each state q
a knowledge (we let G(q) = ∅ if F (q) = −1). This state space is naturally ordered
by (F1,K1) . (F2,K2) if for all q ∈ Q, F1(q) ≤ F2(q) and K1(q) ⊆ K2(q). We
show that all the sets manipulated during the fixpoint computation used to solve the
safety games are downward closed for this order and therefore can be represented by
the antichain of their maximal elements. A detailed analysis of the size of the safety
game shows that G(Tφ, B) is doubly exponential in the size of ϕ, and therefore, since
safety games can be solved in linear time, one gets a 2Exptime upper bound for KLTL+

realizability. The technical details are given in [6].

7 Implementation and Case Studies
In this section we briefly present our prototype implementation Acacia-K for KLTL+synthesis
[1], and provide some interesting examples on which we tested the tool, on a laptop
equipped with an Intel Core i7 2.10Ghz CPU. Acacia-K extends the LTL synthesis tool
Acacia+[5]. As Acacia+, the implementation is made in Python together with C for the
low level operations that need efficiency.

As Acacia+, the tool is available in one version working on both Linux and MacOsX
and can be executed using the command-line interface. As parameters, in addition to the
files containing the KLTL+ formula and the partition of the signals and actions, Acacia-
K requires a file with the environment model. The output of the tool is a winning
strategy, if the formula is realizable, given as a Moore machine described in Verilog
and if this strategy is small, Acacia-K also outputs it as a picture.

In order to have a more efficient implementation, the construction of the automata for
the LTL formulas γ is made on demand. That is, we construct the UCT Tγ incrementally
by updating it as soon as it needs to be triggered from some state (q, I) which has not
been constructed yet.

As said before, the synthesis problem is reduced to the problem of solving a safety
game for some bound b on the number of visits to accepting states. The tool is incre-
mental: it tests realizability for small values of b first and increments it as long as it
cannot conclude for realizability. In practice, we have observed, as for classical LTL
synthesis, that small bounds b are sufficient to conclude for realizability. However if the
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formula is not realizable, we have to iterate up to a large upper bound, which in practice
is too large to give an efficient procedure for testing unrealizability. We leave as future
work the implementation of an efficient procedure for testing unrealizability.

Taking now Example 1, the strategy provided by the tool is depicted in Figure 2.
It asks to play first ”toggle” and then keep on playing ”skip” and, depending on the
observation he gets, the system goes in a different state. The state 0 is for the start, the
state 1 is the ”error” state in which the system goes if he receives a wrong observation.
That is, the environment gives an observation even if he cannot go in a state having that
observation. Then, if the observation is correct, after playing the action ”toggle” from
the initial states {s1, s2}, the environment is forced to go in s3 and by playing the action
”skip”, the system forces the environment to stay in s3 and he will know that t is false.
In the strategy, this situation corresponds to the state 2. For this example, Acacia-K
constructed a UCT with 31 states and the total running time is 0.2s.

Tinit

S

T

0

2

1

{s2, s3}

{s1}

{s1} or {s2, s3}

{s
2 , s

3}

{s 1
}

Fig. 2. Winning strategy synthesized by Acacia-K for Example 1

Example 2 (The 3-Coin Game). Another example that we tried is a game played using
three coins which are arranged on a table with either head or tail up. The system doesn’t
see the coins, but knows at each time the number of tails and heads. Then, the game is
infinitely played as follows. At the beginning the environment chooses an initial con-
figuration and then at each round, the system chooses a coin and the environment has
to flip that coin and inform the system about the new number of heads and tails. The
objective of the system is to reach, at least once, the state in which all the coins have the
heads up and to avoid all the time the state in which all the coins are tails. Depending
on the initial number of tails up, the system may or may not have a winning strategy.

In order to model this, we considered an environment model whose states are labelled
with atomic propositions c1, c2, c3 for the three coins, which are not visible for the
system, and two other variables b1, b0 which are visible and represent the bits encoding
the number of heads in the configuration. The actions of the system are C1, C2, C3 with
which he chooses a coin and the environment has to flip the coin chosen by the system
by playing only the action done. A picture of the environment is in [6].

Then, the specification is translated into the KLTL+formula K♦(c1 ∧ c2 ∧ c3) ∧
�K(c1 ∨ c2 ∨ c3). Then, assuming that the initial state of the environment has two
heads, the synthesized strategy proposes to ”check” the position of every coin by double
flipping. If after one flip, the winning state is not reached, the system flips back the coin
and at the third round he chooses another coin to check. A picture of the strategy can be
found in [6]. For this example, Acacia-K constructs a UCT with 79 states, synthesises
a strategy with 10 states, and the total running time is 3.9s.
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Example 3 (n-Prisoners Enigma). Finally, the last example is about n prisoners in a
prison, each one in his own cell and they cannot communicate. There is a special room
with a light bulb and a switch and a policeman that, at each moment of time, sends only
one prisoner in that room and gives him the possibility to turn on or off the light. The
prisoners can only observe the light when they are in the special room. The guardians
ensure that each prisoner is sent into the room an infinite number of times (fairness
assumption). Before the game starts, the prisoners are allowed to communicate, and
they know the initial state of the light. The goal of the prisoners is to learn whether all
of them have visited the special room at least once – more specifically, whenever all
prisoners have visited the room, one specially designated prisoner must know that fact.

Assume that the light is initially off. Then the winning strategy is that the special
prisoner, say prisoner n, will count up to n − 1. For all 1 ≤ j ≤ n − 1, the fairness
assumption ensures that prisoner j will visit the room again and again until the game
stops. The first time j visits the room and the light is off, he turns it on, otherwise
he does nothing. Prisoner n will turn the light off next time he enters the room, and
increment his counter by 1. When the counter reaches n − 1, prisoner n will be sure
that all prisoners have visited the room at least once.

We have tried 3/4/5/6 prisoners versions (including the protagonist) of this problem,
obtaining a one hour timeout for 6 agents. The statistics we obtained are the following:

Pris # |ME | |UCT | |tb− UCT | Aut constr (s) |Mλ| Total time(s)
3 21 144 692 1.79s 12 1.87s
4 53 447 2203 1.98s 16 13.20s
5 129 1310 6514 199.06s 20 553.45s (8 9 min)
6 305 3633 18125 6081.69s N/A N/A

Again, Acacia-K generates strategies that are natural, the same that one would synthe-
size intuitively. For more details about this example see [6]. This fact is remarkable itself
since, in synthesis, it is often a difficult task to generate small and natural strategies.

8 Conclusion

In this paper, we have defined a Safraless procedure for the synthesis of KLTL+

specifications in environment with imperfect information. This problem is 2ExpTime-
c but we have shown that our procedure, based on universal co-Büchi tree automata, can
be implemented efficiently thanks to an antichain symbolic approach. We have imple-
mented a prototype and run some preliminary experiments that prove the feasibility of
our method. While the UCT constructed by the tool are not small (around 1300 states),
our tool can handle them, although in theory, the safety games could be exponentially
larger than the UCT. Moreover, our tool synthesises small strategies that correspond
to the intuitive strategies we would expect, although it goes through a non-trivial au-
tomata construction. As a future work, we want to see if Acacia-K scales well on larger
examples. We also want to extend the tool to handle the full KLTL logic in an effi-
cient way. This paper is an encouraging (and necessary) step towards this objective. In
a first attempt to generalize the specifications, we plan to consider assume-guarantees
specifications Kφ→ ψ, where φ is an LTL formula and ψ a KLTL+ formula.
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Abstract. A standard approach to optimizing long-run running costs of dis-
crete systems is based on minimizing the mean-payoff, i.e., the long-run average
amount of resources (“energy”) consumed per transition. However, this approach
inherently assumes that the energy source has an unbounded capacity, which is
not always realistic. For example, an autonomous robotic device has a battery
of finite capacity that has to be recharged periodically, and the total amount of
energy consumed between two successive charging cycles is bounded by the ca-
pacity. Hence, a controller minimizing the mean-payoffmust obey this restriction.
In this paper we study the controller synthesis problem for consumption systems
with a finite battery capacity, where the task of the controller is to minimize the
mean-payoff while preserving the functionality of the system encoded by a given
linear-time property. We show that an optimal controller always exists, and it
may either need only finite memory or require infinite memory (it is decidable in
polynomial time which of the two cases holds). Further, we show how to compute
an effective description of an optimal controller in polynomial time. Finally, we
consider the limit values achievable by larger and larger battery capacity, show
that these values are computable in polynomial time, and we also analyze the
corresponding rate of convergence. To the best of our knowledge, these are the
first results about optimizing the long-run running costs in systems with bounded
energy stores.

1 Introduction

A standard tool for modelling and analyzing the long-run average running costs in dis-
crete systems is mean-payoff, i.e., the average amount of resources (or “energy”) con-
sumed per transition. More precisely, a system is modeled as a finite directed graph C,
where the set of states S corresponds to configurations, and transitions model the dis-
crete computational steps. Each transition is labeled by a non-negative integer specify-
ing the amount of energy consumed by a given transition. Then, to every run α in C one
can assign the associated mean-payoff, which is the limit of average energy consump-
tion per transition computed for longer and longer prefixes of α. A basic algorithmic
task is to find a suitable controller for a given system which minimizes the mean-payoff.
Recently, the problem has been generalized by requiring that the controller should also
achieve a given linear time property ϕ, i.e., the run produced by a controller should
satisfy ϕ while minimizing the mean-payoff (see, e.g., [15]). This is motivated by the
fact that the system is usually required to achieve some functionality, and not just “run”
with minimal average costs.
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Note that in the above approach, it is inherently assumed that all transitions are al-
ways enabled, i.e., the amount of energy consumed by a transition is always available.
In this paper, we study the long-run average running costs in systems where the energy
stores (“tanks” or “batteries”) have a finite capacity cap ∈ N. As before, the energy
stored in the battery is consumed by performing transitions, but if the amount of en-
ergy currently stored in the battery is smaller than the amount of energy required by a
given transition, then the transition is disabled. From time to time, the battery must be
reloaded, which is possible only in certain situations (e.g., when visiting a petrol sta-
tion). These restrictions are directly reflected in our model, where some states of C are
declared as reload states, and the run produced by a controller must be cap-bounded,
i.e., the total amount of energy consumed between two successive visits to reload states
cannot exceed cap.

The main results of this paper can be summarized as follows. Let C be a system
(with a given subset of reload states) and ϕ a linear-time property encoded as a non-
deterministic Büchi automaton.

(A) We show that for a given capacity cap ∈ N and a given state s of C, there exists
a controller μ optimal for s which produces a cap-bounded run satisfying ϕ while
minimizing the mean payoff. Further, we prove that there is a dichotomy in the
structural complexity of μ, i.e., one of the following possibilities holds:
• The controller μ can be constructed so that it has finitely many memory ele-

ments and can be compactly represented as a counting controller κ which is
computable in time polynomial in the size of C and cap (all integer constants
are encoded in binary).
• The controller μ requires infinite memory (i.e., every optimal controller has

infinite memory) and there exists an optimal advancing controller Σ which
admits a finite description computable in time polynomial in the size of C and
cap.

Further, we show that it is decidable in polynomial time which of the two possibil-
ities holds.

(B) For every state s of C, we consider its limit value, which is the inf of all mean-
payoffs achievable by controllers for larger and larger battery capacity. We show
that the limit value is computable in polynomial time. Further, we show that the
problem whether the limit value is achievable by some fixed finite battery capacity
is decidable in polynomial time. If it is the case, we give an explicit upper bound
for cap; and if not, we give an upper bound for the difference between the limit
value and the best mean-payoff achievable for a given capacity cap.

Technically, the most difficult part is (A), where we need to analyze the structure of
optimal controllers and invent some tricks that allow for compact representation and
computation of optimal controllers. Note that all constants are encoded in binary, and
hence we cannot afford to construct any “unfoldings” of C where the current battery
status (i.e., an integer between 0 and cap) is explicitly represented, because such an
unfolding is exponentially larger than the problem instance. This is overcome by non-
trivial insights into the structure of optimal controllers.

Previous and Related Work. A combination of mean-payoff and linear-time (parity)
objectives has been first studied in [15] for 2-player games. It has been shown that
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optimal strategies exist in such games, but they may require infinite memory. Further,
the values can be computed in time which is pseudo-polynomial in the size of the game
and exponential in the number of priorities. Another closely related formalisms are
energy games and one-counter games, where each transition can both increase and de-
crease the amount of energy, and the basic task of the controller is to avoid the situation
when the battery is empty. Energy games with parity objectives have been considered
in [11]. In these games, the controller also needs to satisfy a given parity condition
apart of avoiding zero. Polynomial-time algorithms for certain subclasses of “pure” en-
ergy games (with zero avoidance objective only) have recently been designed in [14].
Energy games with capacity constraints were studied in [18]. Here it was shown, that
deciding whether a given one-player energy game admits a run along which the accu-
mulated reward stays between 0 and a given positive capacity is already an NP-hard
problem. One-counter Markov decision processes and one-counter stochastic games,
where the counter may change at most by one in each transition, have been studied in
[6,5] for the objective of zero reachability, which is dual to zero avoidance. It has been
shown that for one-counter MDPs (both maximizing and minimizing), the existence of
a controller that reaches zero with probability one is in P. If such a controller exists,
it is computable in polynomial time. For one-counter stochastic games, it was shown
that the same problem is in NP ∩ co-NP. In [10], it was shown how to compute an
ε-optimal controller minimizing the expected number of transitions needed to visit zero
in one-counter MDPs. Another related model with only one counter are energy Markov
decision processes [12], where the counter updates are arbitrary integers encoded in bi-
nary, and the controller aims at maximizing the probability of all runs that avoid visiting
zero and satisfy a given parity condition. The main result of [12] says that the existence
of a controller such that the probability of all runs satisfying the above condition is equal
to one for a sufficiently large initial counter value is in NP∩ co-NP. Yet another related
model are solvency games [3], which can be seen as rather special one-counter Markov
decision processes (with counter updates encoded in binary). The questions studied in
[3] concern the structure of an optimal controller for maximizing the probability of all
runs that avoid visiting negative values, which is closely related to zero avoidance.

There are also results about systems with more than one counter (resource). Exam-
ples include games over vector addition systems with states [8], multiweighted energy
games [18,4], generalized energy games [13], consumption games [7], etc. We refer to
[19] for a more detailed overview.

2 Preliminaries

The sets of all integers, positive integers, and non-negative integers are denoted by Z,
N, and N0, respectively. Given a set A, we use |A| to denote the cardinality of A. The
encoding size of a given object B is denoted by ||B||. In particular, all integer numbers
are encoded in binary, unless otherwise stated.

A labelled graph is a tuple G = (V, → , L, δ) where V is a non-empty finite set of
vertices, → ⊆ V × V is a set of edges, L is a non-empty finite set of labels, and δ is a
function which to every edge assigns a label of L. We write s a→ t if s→ t and a is the
label of (s, t).
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A finite path in G of length n ∈ N0 is a finite sequence γ ≡ v0 . . . vn of vertices such
that vi→ vi+1 for all 0 ≤ i < n. The length of γ is denoted by len(γ), and the label
of vi→ vi+1 is denoted by ai. An infinite path (or run) in G is an infinite sequence of
vertices α such that every finite prefix of α is a finite path in G. Finite paths and runs
in G are also written as sequences of the form v0

a0→ v1
a1→ v2

a2→ · · · . Given a finite or
infinite path α ≡ v0 v1 . . . and i ∈ N0, we use α(i) to denote the i-th vertex vi of α, and
α≤i to denote the prefix v0 . . . vi of α of length i.

A finite path γ ≡ v0 . . . vn in G is a cycle if n ≥ 1 and v0 = vn, and a simple cycle if it
is a cycle and vi � v j for all 0 ≤ i < j < n. Given a finite path γ ≡ v0 . . . vn and a finite
or infinite path α ≡ u0 u1 . . . such that vn = u0, we use γ · α to denote the concatenation
of γ and α, i.e., the path v0 . . . vn u1 u2 . . . Further, if γ is a cycle, we denote by γω the
infinite path γ · γ · γ · · · .

In our next definition, we introduce consumption systems that have been informally
described in Section 1. Recall that an optimal controller for a consumption system
should minimize the mean-payoff of a cap-bounded run and satisfy a given linear-
time property ϕ (encoded by a non-deterministic Büchi automaton B). For technical
convenience, we assume that B has already been multiplied with the considered con-
sumption system (i.e., the synchronized product has already been constructed1). Tech-
nically, we declare some states in consumption systems as accepting and require that a
cap-bounded run visits an accepting state infinitely often.

Definition 1. A consumption system is a tuple C = (S , → , c,R, F) where S is a finite
non-empty set of states, → ⊆ S × S is a transition relation, c is a function assigning a
non-negative integer cost to every transition, R ⊆ S is a set of reload states, and F ⊆ S
a non-empty set of accepting states. We assume that → is total, i.e., for every s ∈ S
there is some t ∈ S such that s→ t.

The encoding size of C is denoted by ||C|| (transition costs are encoded in binary). All
notions defined for labelled graphs naturally extend to consumption systems.

The total cost of a given finite path γ ≡ s0
c0→ s1

c1→ · · · cn→ sn+1 is defined as c(γ) =∑n
i=0 ci, and the mean cost of γ as MC(γ) = c(γ)/(n+1). Further, we define the end cost

of γ as the total cost of the longest suffix si
ci→ · · · cn→ sn+1 of γ such that si+1, . . . , sn+1 �

R (intuitively, the end cost of γ is the total amount of resources consumed since the last
reload, or since the start if no reload happened on γ).

Let cap ∈ N. We say that a finite or infinite path α ≡ s0
c0→ s1

c1→ s2
c2→ · · · is

cap-bounded if the end cost of every finite prefix of α is bounded by cap. Intuitively,
this means that the total amount of resources consumed between two consecutive visits
to reload states in α is bounded by cap (we assume that initially the battery is loaded to
a full capacity). Further, we say a run α in C is accepting if α(i) ∈ F for infinitely many
i ∈ N. For every run α in C we define

Valcap
C (α) =

⎧⎪⎪⎨⎪⎪⎩
lim supi→∞MC(α≤i) if α is cap-bounded and accepting;

∞ otherwise.

1 It will become clear later that B being non-deterministic is not an obstacle here, since we work
in a non-stochastic one-player setting.
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t s u
1 5

0 5

Fig. 1. An optimal controller may require memory of exponential size. Here R = {u} and F = S .

The cap-value of a given state s ∈ S is defined by

Valcap
C (s) = inf

α∈Run(s)
Valcap
C (α)

where Run(s) is the set of all runs in C initiated in s. Intuitively, Valcap
C (s) is the minimal

mean cost of a cap-bounded accepting run initiated in s. The limit value of s is defined
by ValC(s) = limcap→∞ Valcap

C (s).

Definition 2. Let C = (S , → , c,R, F) be a consumption system. A controller for C is a
tuple μ = (M, σn, σu,m0) where M is a set of memory elements, σn : S × M → S is a
next function satisfying s→σn(s,m) for every (s,m) ∈ S × M, σu : S × M → M is an
update function, and m0 is an initial memory element. If M is finite, we say that μ is a
finite-memory controller (FMC).

For every finite path γ = s0 . . . sn in C, we use σ̂u(γ) to denote the unique mem-
ory element “entered” by μ after reading γ. Formally, σ̂u(γ) is defined inductively by
σ̂u(s0) = σu(s0,m0), and σ̂u(s0 . . . sn+1) = σu(sn+1, σ̂u(s0 . . . sn)). Observe that for ev-
ery s0 ∈ S , the controller μ determines a unique run run(μ, s0) defined as follows: the
initial state of run(μ, s0) is s0, and if s0 . . . sn is a prefix of run(μ, s0), then the next state
is σn(sn, σ̂u(s0 . . . sn)). The size of a given FMC μ is denoted by ||μ|| (in particular, note
that ||μ|| ≥ |M|).

Definition 3. Let C be a consumption system, μ a controller for C, and cap ∈ N. We
say that μ is cap-optimal for a given state s of C if Valcap

C (run(μ, s)) = Valcap
C (s).

As we shall see, a cap-optimal controller for s always exists, but it may require infi-
nite memory. Further, even if there is a FMC for s, it may require exponentially many
memory elements. To see this, consider the simple consumption system of Fig. 1. An
optimal controller for s has to (repeatedly) perform cap − 10 visits to t and then one
visit to the only reload state u, which requires cap − 10 memory elements (recall that
cap is encoded in binary). Further examples of a non-trivial optimal behaviour can be
found in the full version of this paper [9].

To overcome these difficulties, we introduce a special type of finite-memory con-
trollers called counting controllers, and a special type of infinite memory controllers
called advancing controllers.

Intuitively, memory elements of a counting controller are pairs of the form (r, d)
where r ranges over a finite set Mem and d is a non-negative integer of a bounded
size. The next and update functions depend only on r and the information whether d
is zero or positive. The update function may change (r, d) to some (r′, d′) where d′ is
obtained from d by performing a counter action, i.e., an instruction of the form dec
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(decrement), noc (no change), or reset(n) where n ∈ N (reset the value to n). Hence,
counting controllers admit a compact representation which utilizes the special structure
of memory elements and the mentioned restrictions.

Definition 4. Let C = (S , → , c,R, F) be a consumption system. A counting controller
for C is a tuple κ = (Mem, σ+n , σ

0
n,Act, σ+u , σ

0
u, r0) where

– Mem is a finite set of basic memory elements,
– σ+n , σ

0
n : S ×Mem→ S are positive and zero next functions satisfying s→σ+n (s, r)

and s→σ0
n(s, r) for every (s, r) ∈ S ×Mem, respectively,

– Act is a finite set of counter actions (note that Act may contain instructions of the
form reset(n) for different constants n);

– σ+u : S ×Mem→ Mem × Act is a positive update function,
– σ0

u : S ×Mem→ Mem × (Act � {dec}) is a zero update function,
– r0 ∈ Mem is an initial basic memory element.

The encoding size of a counting controller κ is denoted by ||κ||, where all constants used
in counter actions are encoded in binary.

The functionality of a counting controller κ = (Mem, σ+n , σ
0
n,Act, σ+u , σ

0
u, r0) is deter-

mined by its associated finite-memory controller μκ = (M, σn, σu,m0) where

– M = Mem × {0, . . . , kmax} where kmax is the largest n such that reset(n) ∈ Act (or 0
if no such n exists);

– σn(s, (r, d)) = σ�n (s, r), where � is either + or 0 depending on whether d > 0 or
d = 0, respectively;

– σu(s, (r, d)) = (r′, d′), where r′ is the first component of σ�u (s, r), and d′ is either d,
d − 1, or n, depending on whether the counter action in the second component of
σ�u (s, r) is noc, dec, or reset(n), respectively (again, � is either + or 0 depending on
whether d > 0 or d = 0);

– m0 = (r0, 0).

Observe that ||κ|| can be exponentially smaller than ||μκ||. Slightly abusing our notation,
we write run(κ, s0) instead of run(μκ, s0).

A counting controller κ can be seen as a program for a computational device with
O(||Mem||) control states and log(kmax) bits of memory needed to represent the bounded
counter. This device “implements” the functionality of μκ.

Definition 5. Let C = (S , → , c,R, F) be a consumption system and s ∈ S . An advanc-
ing controller for C and s is a controller Σ for C such that run(Σ, s) takes the form
γ · β · γ · β2 · γ · β4 · · · γ · β2i · · · where β(0) � β(i) for all 0 < i < len(β).

The encoding size of an advancing controller Σ, denoted by ||Σ||, is given by the total
encoding size of γ, β, and γ. Typically, γ and γ will be of polynomial length, but the
length of β is sometimes exponential and in this case we use a counting controller to
represent β compactly. Formally, we say that ||Σ|| is polynomial in ||C|| and ||cap|| if γ
and γ are of polynomial length and there exists a counting controller κ[β] such that
run(κ[β], β(0)) = βω and ||κ|| is polynomial in ||C|| and ||cap||.

An advancing controller Σ can be seen as a program for a computational device
equipped with two unbounded counters (the first counter maintains the current i and the



Minimizing Running Costs in Consumption Systems 463

other counter is used to count from 2i to zero; if the device cannot implement the ‘2x’
function directly, an auxiliary third counter may be needed). Also note that the device
can use the program of κ[β] as a subroutine to produce the finite path β (and hence also
finite paths of the form β2i

). Since β(0) � β(i) for all 0 < i < len(β), the device simply
simulates κ[β] until revisiting β(0).

3 The Results

In this section, we present the main results of our paper. Our first theorem concerns the
existence and computability of values and optimal controllers in consumption systems.

Theorem 6. Let C be a consumption system, cap ∈ N, and s a state of C. Then Valcap
C (s)

is computable in polynomial time (i.e., in time polynomial in ||C|| and ||cap||, where cap
is encoded in binary). Further, there exists an optimal controller for s. The existence
of an optimal finite memory controller for s is decidable in polynomial time. If there
exists an optimal FMC for s, then there also exists an optimal counting controller for s
computable in polynomial time. Otherwise, there exists an optimal advancing controller
for s computable in polynomial time.

Our second theorem concerns the limit values, achievability of limit values, and the rate
of convergence to limit values.

Theorem 7. Let C be a consumption system and s a state of C. Then ValC(s) can be
computed in polynomial time (i.e., in time polynomial in ||C||).

Further, the problem whether ValC(s) = Valcap
C (s) for some sufficiently large cap ∈ N

is decidable in polynomial time. If the answer is positive, then ValC(s) = Valcap
C (s)

for every cap ≥ 3 · |S | · cmax, where cmax is the maximal cost of a transition in
C. Otherwise, for every cap > 4 · |S | · cmax we have that Valcap

C (s) − ValC(s) ≤
(3 · |S | · cmax)/(cap − 4 · |S | · cmax).

The next subsections are devoted to the proofs of Theorems 6 and 7. Due to space
constrains, some proofs and algorithms have been omitted. They can be found in [9].

3.1 A Proof of Theorem 6

For the rest of this section, we fix a consumption system C = (S ,→, c,R, F), a capacity
cap ∈ N, and an initial state s ∈ S .

An admissibility witness for a state q ∈ S is a cycle γ initiated in q such that γ
contains an accepting state and there is a cap-bounded run initiated in s of the form
γ ·γω. We say that q ∈ S is admissible if there is at least one admissibility witness for q.

Observe that if γ is an admissibility witness for a reload state q, then γ can be freely
“inserted” into any cap-bounded run of the form ξ · δ where δ(0) = q so that the run
ξ · γ · δ is again cap-bounded. Such simple observations about admissibility witnesses
are frequently used in our proof of Theorem 6, which is obtained in several steps:

(1) We show how to compute all states t ∈ S such that Valcap
C (t) = ∞. Note that if

Valcap
C (t) = ∞, then every controller is optimal in t. Hence, if Valcap

C (s) = ∞, we are
done. Otherwise, we remove all states with infinite value from C together with their
adjacent transitions.
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(2) We compute and remove all states t ∈ S that are not reachable from s via a
cap-bounded finite path. This “cleaning” procedure simplifies our considerations
and it can be performed in polynomial time.

(3) We show that Valcap
C (s) = 0 iff C contains a simple cycle with zero total cost ini-

tiated in an admissible state (such a cycle is called a zero-cost cycle). Next, we
show that if there is a zero-cost cycle β containing an accepting state, then there
is an optimal FMC μ for s of polynomial size such that run(μ, s) = γ · βω. Oth-
erwise, every optimal controller for s has infinite memory, and we show how to
compute finite paths γ, γ of polynomial length such that the (cap-bounded) run
α ≡ γ · β · γ · β2 · γ · β4 · · · γ · β2i · · · initiated in s satisfies Valcap

C (α) = 0. Thus, the
finite paths γ, β (which is a simple cycle), and γ represent an optimal advancing
controller of polynomial size.
The existence of a zero-cost cycle (and the existence of a zero-cost cycle that con-
tains an accepting state) is decidable in polynomial time. If a zero-cost cycle exists,
we are done. Otherwise, we proceed to the next step.

(4) Now we assume that C does not contain a zero-cost cycle. We show that there exist
• a cap-bounded cycle β initiated in an admissible state such that β is reload-

short (i.e., it contains at most |R| occurrences of a reload state), MC(β) ≤ MC(δ)
for every cap-bounded cycle δ initiated in an admissible state, and β(0) � β(i)
for all 0 < i < len(β);
• a reload-short cap-bounded cycle β̂ containing an accepting state such that

MC(β̂) ≤ MC(δ̂) for every cap-bounded cycle δ̂ containing an accepting state.
We prove that Valcap

C (s) = MC(β). Further, we show the following:
• If MC(β) = MC(β̂), then there exists an optimal FMC μ for s such that

run(μ, s) = γ · β̂ω, where γ is a finite path of polynomial length. In gen-
eral, len(β̂) (and hence also ||μ||) is exponential in ||C|| and ||cap||. However,
we show that there is always β̂ of a special structure for which we can compute
(in polynomial time) a counting controller κ[β̂] of polynomial size such that
run(κ[β̂], β̂(0)) = β̂ω. Since γ can be computed in polynomial time, it follows
that we can obtain, in polynomial time, a counting controller κ of polynomial
size such that run(κ, s) = run(μ, s), i.e., κ is cap-optimal in s.
• If MC(β) < MC(β̂), then every cap-optimal controller for s has infinite memory.

Again, we show that there is always β of a special structure, for which we
can efficiently compute finite paths γ, γ of polynomial length and a counting
controller κ[β] of polynomial size such that run(κ[β], β(0)) = βω and the run
α ≡ γ · β · γ · β2 · γ · β4 · · · γ · β2i · · · initiated in s satisfies Valcap

C (α) = Valcap
C (s).

Thus, we obtain a cap-optimal advancing controller Σ for s of polynomial size.

We start with step (1).

Lemma 8. Let t ∈ S . The problem whether Valcap
C (t) = ∞ is decidable in polynomial

time.

The next lemma implements step (2).

Lemma 9. Let t ∈ S . The existence of a cap-bounded path from s to t is decidable in
polynomial time. Further, an example of a cap-bounded path from s to t (if it exists) of
length at most |S |2 is computable in polynomial time.
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We also need the following lemma which says that for every admissible state, there is
an efficiently computable admissibility witness.

Lemma 10. The problem whether a given q ∈ S is admissible is decidable in poly-
nomial time. Further, if q is admissible, then there are finite paths γ, γ computable in
polynomial time such that γ · γω is a cap-bounded run initiated in s and γ is an admis-
sibility witness for q of length at most 6 · |S |2.

As we already indicated in the description of step (2), from now on we assume that all
states of C have a finite value and are reachable from s via a cap-bounded finite path.
Recall that a zero-cost cycle is a cycle in C initiated in an admissible state with zero
total cost. Now we proceed to step (3).

Lemma 11. We have that Valcap
C (s) = 0 iff there exists a zero-cost cycle. Further, the

following holds:

1. If there is a zero-cost cycle β containing an accepting state, then the run α ≡ γ · βω,
where γ is any cap-bounded finite path from s to β(0), satisfies Valcap

C (α) = Valcap
C (s).

Hence, there is a FMC μ optimal for s where ||μ|| is polynomial in ||C|| and ||cap||.
2. If there is a zero-cost cycle β but no zero-cost cycle contains an accepting state,

then every cap-optimal controller for s has infinite memory. Further, for a given
zero-cost cycle β there exist finite paths γ and γ computable in polynomial time
such that the run α ≡ γ · β · γ · β2 · · ·γ · β2i · · · satisfies Valcap

C (α) = Valcap
C (s). Hence,

there exists an advancing controller Σ optimal for s where ||Σ|| is polynomial in ||C||
and ||cap||.

In the next lemma we show how to decide the existence of a zero-cost cycle efficiently,
and how to construct an example of a zero-cost cycle if it exists. The same is achieved
for zero-cost cycles containing an accepting state. Thus, we finish step (3).

Lemma 12. The existence of a zero-cost cycle is decidable in polynomial time, and an
example of a zero-cost cycle β (if it exists) is computable in polynomial time. The same
holds for zero-cost cycles containing an accepting state.

It remains to complete step (4), which is the most technical part of our proof. From now
on we assume that C does not contain any zero-cost cycles.

We say that a cycle β in C is reload-short, if β contains at most |R| occurrences of
a reload state. Further, we say that a cycle β is T-visiting, where T ⊆ S , if β is a cap-
bounded reload-short cycle initiated in an admissible reload state such that β contains
a state of T and β(0) � β(i) for all 0 < i < len(β). We say that β is an optimal T-
visiting cycle if MC(β) ≤ MC(δ) for every T-visiting cycle δ. Note that every state of a
T-visiting cycle β is admissible.

Lemma 13. If C does not contain any zero-cost cycle, then it contains an optimal
F-visiting cycle and an optimal S -visiting cycle.

Proof. We give an explicit proof just for F-visiting cycles (the argument for S -visiting
cycles is very similar). First, we show that there is at least one F-visiting cycle, and
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then we prove that every F-visiting cycle has a bounded length. Thus, the set of all
F-visiting cycles is finite, which implies the existence of an optimal one.

Since Valcap
C (s) < ∞, there is a cap-bounded accepting run α initiated in s. Note that

if α contained only finitely many occurrences of reload states, it would have to contain
zero-cost cycle, which contradicts our assumption. Hence, α contains infinitely many
occurrences of a reload state and infinitely many occurrences of an accepting state. Let
α′ be a suffix of α such that every state that appears in α′ appears infinitely often in α′

(hence, all states that appear in α′ are admissible). We say that a subpath α′(i) . . . α′( j)
of α′ is useless if α′(i) = α′( j) ∈ R and no accepting state is visited along this subpath.
Let α̂ be a run obtained from α′ by removing all useless subpaths (observe that α̂ is still
a cap-bounded accepting run). Then, there must be a subpath α̂(i) . . . α̂( j) of α̂ such that
the length of this subpath is positive, α̂(i) = α̂( j) ∈ R, the subpath visits an accepting
state, and no reload state is visited more than once along α̂(i) . . . α̂( j−1). Hence, this
subpath is an F-visiting cycle.

Now let β be an F-visiting cycle. Then every state on β is admissible, which means
that every simple cycle δ that is a subpath of β has positive cost, otherwise δ would be
a zero-cost cycle. This implies that a maximal length of a subpath of β which does not
contain any reload state is (|S | + 1) · (cap + 1) (because β is cap-bounded). From the
reload-shortness of β we get that len(β) ≤ |R| · (|S | + 1) · (cap + 1). ��

We use MCF and MCS to denote the mean cost of an optimal F-visiting cycle and the
mean cost of an optimal S -visiting cycle, respectively. Now we prove the following:

Lemma 14. Suppose that C does not contain any zero-cost cycle. Then Valcap
C (s) =

MCS ≤ MCF. Moreover, the following holds:

1. If MCF = MCS, then for every optimal F-visiting cycle β and every cap-bounded
path γ from s to β(0) we have that the run α ≡ γ · βω satisfies Valcap

C (α) = Valcap
C (s).

Hence, there exists an optimal FMC for s.
2. If MCS < MCF, then every cap-optimal controller for s has infinite memory. Fur-

ther, for a given optimal S -visiting cycle β there exist finite paths γ and γ com-
putable in polynomial time such that the run α ≡ γ · β · γ · β2 · · · γ · β2i · · · satisfies
Valcap
C (α) = Valcap

C (s). Hence, there exists an optimal advancing controller for s.

Proof. Clearly, MCS ≤ MCF, because every F-visiting cycle is also S -visiting. Now
we show that for every run α we have Valcap

C (α) ≥ MCS. This clearly holds for all non-
accepting runs. Every accepting run α must contain infinitely many occurrences of a
reload state, otherwise it would contain a zero-cost cycle as a subpath, which contradicts
our assumption. Let α′ be a suffix of α initiated in a reload state such that every state
which appears in α′ appears infinitely often in α′. Then α′ takes the form β0 · β1 · β2 · · · ,
where for every i ≥ 0, the subpath βi is a cycle initiated in a reload state. Every βi can be
decomposed into reload-short cycles βi,1, βi,2, . . . , βi,im that are initiated in reload states
(here the decomposition is meant in a graph-theoretical sense, i.e., a transition appears
b times on βi if and only if b = b1+ · · ·+bm, where b j is a number of occurrences of this
transition on βi, j). Each of these cycles is an S -visiting cycle (since every state on α′

is admissible) and clearly MC(α) = MC(α′) ≥ infi≥1 MC(βi) ≥ infi≥0,1≤ j≤im MC(βi, j) ≥
MCS.
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Now let us consider the case when MCF = MCS, i.e., for every optimal F-visiting
cycle β we have that MC(β) = MCS. If γ is a cap-bounded path from s to β(0), then we
have that the run α ≡ γ · βω satisfies Valcap

C (γ · βω) = MCS = Valcap
C (s), and hence there

exists an optimal FMC for s.
If MCS < MCF, consider an optimal S -visiting cycle β. Since β(0) is admissible,

there is a cap-bounded run γ · γω initiated in s where γ is an admissibility witness for
β(0) and γ and γ are computable in polynomial time (see Lemma 10). Further, the run
α ≡ γ · β · γ · β2 · · · γ · β2i · · · is accepting and cap-bounded, and one can easily show
that Valcap

C (α) = MC(β) = MCS = Valcap
C (s). Hence, there exists an optimal advancing

controller for s. It remains to show that there is no optimal finite memory controller
for s. For every FMC μ we can write run(μ, s) ≡ γ̂ · β̂ω, where β̂ is a cycle on a reload
state containing an accepting state. Further, Valcap

C (μ) = MC(β̂). The cycle β̂ can be
decomposed, using the same technique as in the first paragraph of this proof, into finitely
many reload-short cycles on reloading states, whose mean cost is at least MCS. At least
one of these cycles is F-visiting. Since MC(β̂) is a convex combination of the mean-
costs of these cycles and MCF > MCS, we obtain MC(β̂) > MCS. ��

Note that Lemma 14 does not specify any bound on the length of β and in general,
this length can be exponential. Now we show that an optimal F-visiting cycle and an
optimal S -visiting cycle can be represented by a counting controller constructible in
polynomial time. This is the technical core of our construction which completes the
proof of Theorem 6.

Lemma 15. Suppose that C does not contain any zero-cost cycle, and let T be either
S or R. Then there exist a counting controller κ and a reload state r computable in
polynomial time such that run(κ, r) = βω where β is an optimal T-visiting cycle.

3.2 A Proof of Lemma 15

We start by refining the notion of an optimal T-visiting cycle and identifying those
cycles that can be represented by counting controllers of polynomial size.

A segment of a path β is a finite subpath η of β such that the first and the last state of
η are reload states and η does not contain any other occurrence of a reload state. Note
that every reload-short cycle is composed of at most |R| segments. Furthermore, we say
that a finite path is compact, if it is a cap-bounded path of the form γ · δk · γ′, where γ
and γ′ are finite paths satisfying len(γ) + len(γ′) ≤ 5|S |3, δ is either a cycle of length
at most |S | or a path of length 0 (i.e., a state), and k ≤ cap. A compact segment is a
compact path that is also a segment.

Later we show that there is an optimal T-visiting cycle β such that every segment
of β is a compact segment. Intuitively, such a cycle can be produced by a counting
controller of polynomial size which has at most |R| reset actions. However, this does not
yet imply that such a counting controller can be efficiently constructed, because there
are exponentially many possible compact segments. Hence, we need to show that we
can restrict our attention to some set of compact segments of polynomial size.

We say that a compact segment γ · δk · γ′ has a characteristic (r, q, t,m, n, b), where
r, t ∈ R, q ∈ S , m, n ∈ N are such that 0 ≤ m ≤ 5|S |3 and 0 ≤ n ≤ |S |, and b ∈ {0, 1}, if
the following holds:
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– γ(0) = r, last(γ) = γ′(0) = q, last(γ′) = t, and len(γ · γ′) = m;
– δ(0) = q, len(δ) = n;
– we either have that n = 0 and k = 1, or n > 0 and then c(δ) > 0 and k is the maximal

number such that γ · δk · γ is a cap-bounded path;
– if b = 1, then γ · γ′ contains a state of T ;
– if δ contains a state of T , then γ · γ′ also contains a state of T .

Note that for a given consumption system there are at most polynomially many distinct
characteristics of compact segments. Also note that not all compact segments have a
characteristic (because of the third and the fifth condition in the above definition), and
conversely, some compact segments may have multiple characteristics (e.g., if a com-
pact segment has a characteristic where b = 1, then it also has one where b = 0). Finally,
note that for any compact segment γ ·δk ·γ′ with a characteristic (r, q, t,m, n, b), the path
γ · γ′ is a compact segment with the characteristic (r, q, t,m, 0, b).

A characteristic χ of a compact segment γ · δk · γ′ imposes certain restrictions on the
form of γ · γ′ and δ. Such a compact segment is optimal for χ if γ · γ′ and δ are paths
of minimal cost among those that meet this restriction. Formally, a compact segment
γ · δk · γ′ with a characteristic χ = (r, q, t,m, n, b) is optimal for χ if

– c(γ · γ′) is minimal among the costs of all segments with the characteristic
(r, q, t,m, 0, b), and

– c(δ) is minimal among the costs of all cycles of length n and positive cost, that are
initiated in q, and that do not contain any reload state with a possible exception of
q (if n = 0, we consider this condition to be satisfied trivially).

Lemma 16. If there is at least one compact segment with a given characteristic χ, then
there is also an optimal compact segment for χ. Moreover, all compact segments optimal
for a given characteristic have the same total cost and length.

Hence, to each of the polynomially many characteristics χ we can assign a segment
optimal for χ and thus form a polynomial-sized candidate set of compact segments. The
following lemma, which is perhaps the most intricate step in the proof of Lemma 15,
shows that there is an optimal T-visiting cycle β such that every segment of β belongs
to the aforementioned candidate set.

Lemma 17. There is an optimal T-visiting cycle β whose every segment is a compact
segment optimal for some characteristic.

Given a characteristic χ, it is easy to compute a succinct representation of some compact
segment optimal for χ, as the next lemma shows.

Lemma 18. Given a characteristic χ, the problem whether the set of all compact seg-
ments with the characteristic χ is non-empty is decidable in polynomial time. Further,
if the set is non-empty, then a tuple (γ, γ′, δ, k) such that γ · δk · γ′ is a compact segment
optimal for χ is computable in polynomial time.

For a given characteristic χ, we denote by CTuple(χ) the tuple (γ, γ′, δ, k) returned for
χ by the algorithm of Lemma 18 (if an optimal compact segment for χ does not exist,
we put CTuple(χ) = ⊥), and by CPath(χ) the corresponding compact segment γ · δk · γ′
(if CTuple(χ) = ⊥, we put CPath(χ) = ⊥). The next lemma is a simple corollary to
Lemma 16 and Lemma 17.
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Lemma 19. There is an optimal T-visiting cycle β such that every segment of β is of the
form CPath(χ) for some characteristic χ.

Now we can easily prove the existence of a polynomial-sized counting controller
representing some optimal T-visiting cycle β. According to Lemma 19, there is a
sequence χ0, χ1, . . . , χ j of at most |R| characteristics such that β = CPath(χ0) ·
CPath(χ1) · · ·CPath(χ j) is an optimal T-visiting cycle. To iterate the cycle β forever
(starting in β(0)), a counting controller requires at most |R| · n basic memory elements,
where n is the maximal number of basic memory elements needed to produce a compact
segment CPath(χi), for 0 ≤ i ≤ j. So, consider a compact segment CPath(χi) = γ ·δk ·γ′.
Note that k ≤ cap since CPath(χi) has a characteristic and thus c(δ) > 0. To produce
CPath(χi), the controller requires at most 5|S |3 basic memory elements to produce the
prefix γ and the suffix γ′ of CPath(χi), and at most |S | basic memory elements to iterate
the cycle δ (whose length is at most |S |) exactly k times. The latter task also requires
counting down from k ≤ cap to 0. Overall, the counting controller producing βω needs
a polynomial number of basic memory elements, and requires at most |R| reset ac-
tions parameterized by numbers of encoding size at most log(cap). To compute such a
counting controller, it clearly suffices to compute the corresponding sequence of tuples
CTuple(χ0), · · · ,CTuple(χ j).

Now we can present the algorithm promised in Proposition 15. In the following, we
use X to denote the set of all possible characteristics of compact segments in C, Xr,t to
denote the set of all characteristics of the form (r, q, t,m, n, b) for some q,m, n, b, and X1

r,t
to denote the set of all characteristics in Xr,t where the last component is equal to 1. The
algorithm first computes the set R′ ⊆ R of all admissible reload states (see Lemma 10).
Note that R′ is non-empty because there exists at least one T-visiting cycle. The idea
now is to compute, for every q̂ ∈ R′, a polynomial-sized labelled graph Gq̂ such that
cycles in this graph correspond to T-visiting cycles in C that are initiated in q̂ and that
can be decomposed into segments of the form CPath(χ). An optimal T-visiting cycle is
then found via a suitable analysis of the constructed graphs.

Formally, for a given q̂ ∈ R′ we construct a labelled graph Gq̂ = (V, �→ , L, δ), where
L ⊂ N2

0, and where:

– V = (R′ ∪ {CTuple(χ) | χ ∈ X}) × {0, . . . , |S |}.
– For every 0 ≤ i < |S |, every pair of states r, t ∈ R′ such that r � q̂, and

every characteristic χ ∈ Xr,t there is an edge ((r, i), (CTuple(χ), i)) labelled by
(c(CPath(χ)), len(CPath(χ))) and an edge ((CTuple(χ), i), (t, i+1)) labelled by (0, 0).

– For every state t ∈ R′ and every characteristic χ ∈ X1
q̂,t there is an

edge ((q̂, 0), (CTuple(χ), 0)) labelled by (c(CPath(χ)), len(CPath(χ))) and an edge
((CTuple(χ), 0), (t, 1)) labelled by (0, 0).

– For every 1 ≤ i ≤ |S | there is an edge ((q̂, i), (q̂, 0)) labelled by (0, 0).
– There are no other edges.

The labelling function of Gq̂ can be computed in polynomial time, because given a
characteristic χ, we can compute CTuple(χ) = (γ, γ′, δ, k) using Lemma 18. Then,
len(CPath(χ)) = len(γ) + len(γ′) + k · len(δ), and similarly for c(CPath(χ)). Note that
every cycle in Gq̂ contains the vertex (q̂, 0). Some of the constructed graphs Gq̂ may not
contain a cycle (the out-degree of (q̂, 0) may be equal to 0), but, as we shall see, at least
one of them does.
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The ratio of a cycle β̂ = v0
(c0,d0)�→ v1

(c1,d1)�→ v2 · · · (ch−1,dh−1)�→ vh in Gq̂ is the value rat(β̂) =
(c0 + c1 + · · · + ch−1)/(d0 + d1 + · · ·dh−1) (the denominator is positive due to the con-
struction of Gq̂). Now let q̂ ∈ R′ be arbitrary. Every cycle βq̂ in Gq̂ (we can assume
that it is initiated in (q̂, 0)) uniquely determines a T-visiting cycle Ψ (βq̂) in C that is
initiated in q̂ and whose every segment has the form CPathχ for some χ. To see this,
note that every second vertex on βq̂ is a 4-tuple of the form CTuple(χ) for some χ, so
if CTuple(χ0),CTuple(χ1), . . . ,CTuple(χ j) is the sequence of these 4-tuples in order in
which they appear in βq̂, then we put Ψ (βq̂) = CPath(χ0) · CPath(χ1) · · ·CPath(χ j).
Clearly MC(Ψ (βq̂)) = rat(βq̂). Moreover, it is easy to see that Ψ is a bijection between
the set of all cycles that appear in some Gq̂ and the set of all T-visiting cycles in C
whose segments are all of the form CPath(χ) for some χ (by Lemma 13, the latter of
these sets – and thus both of them – must be non-empty). Thus, in order to find an
optimal T-visiting cycle, the algorithm finds, for every q̂ ∈ R′, a simple cycle βq̂ of
minimal ratio among all cycles in Gq̂ (this is done using a polynomial-time algorithm
for a well-studied problem of minimum cycle ratio, see, e.g., [16,17]), then simply picks
r̂ ∈ R′ such that the ratio of βr̂ is minimal and computes Ψ (βr̂). The fact that Ψ (βr̂) is
an optimal T-visiting cycle follows from the above observations and from Lemma 19.

3.3 Proof of Theorem 7

For the rest of this section we fix a consumption system C = (S , → , c,R, F) and an
initial state s ∈ S . Intuitively, the controller can approach the limit value of s by inter-
leaving a large number of iterations of some “cheap” cycle with visits to an accepting
state. This motivates our definitions of safe and strongly safe cycles. Intuitively, a cycle
is safe if, assuming unbounded battery capacity, the controller can interleave an arbi-
trary finite number of iterations of this cycle with visits to an accepting state. A cycle is
strongly safe if the same behaviour is achievable for some finite (though possibly large)
capacity.

Formally, we say that two states q, t ∈ S are inter-reachable if there is a path from
q to t and a path from t to q. We say that a cycle β of length at most |S | and with β(0)
reachable from s is safe, if one of the following conditions holds:

– c(β) = 0 and β contains an accepting state,
– β(0) is inter-reachable with a reload state and an accepting state,

A cycle β reachable from s with len(β) ≤ |S | is strongly safe, if one of the following
holds:

– c(β) = 0 and β contains an accepting state,
– c(β) = 0 and β(0) is inter-reachable with a reload state and an accepting state,
– β contains a reload state and β(0) is inter-reachable with an accepting state.

The following lemma characterizes the limit value of s.

Lemma 20. ValC(s) is finite iff there is a safe cycle, in which case ValC(s) =
min{MC(β) | β is a safe cycle}. Further, there is a finite cap ∈ N0 such that Valcap

C (s) =
ValC(s) iff either ValC(s) = ∞, or there is a strongly safe cycle β̂ such that MC(β̂)
= ValC(s). In such a case Valcap

C (s) = ValC(s) for every cap ≥ 3 · |S | · cmax, where cmax is
the maximal cost of a transition in C.
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So, in order to compute the limit value and to decide whether it can be achieved with
some finite capacity, we need to compute a safe and a strongly safe cycle of minimal
mean cost.

Lemma 21. The existence of a safe (or strongly safe) cycle is decidable in polynomial
time. Further, if a safe (or strongly safe) cycle exists, then there is a safe (or strongly
safe) cycle β computable in polynomial time such that MC(β) ≤ MC(β′) for every safe
(or strongly safe) cycle β′.

Now we can prove the computation-related statements of Theorem 7.
To compute the limit value of s, we use the algorithm of Lemma 21 to obtain a safe

cycle β of minimal mean cost. If no such cycle exists, we have ValC(s) = ∞, otherwise
ValC(s) = MC(β). To decide whether ValC(s) can be achieved with some finite capacity,
we again use the algorithm of Lemma 21 to compute a strongly safe cycle β̂ of minimal
mean cost. If such a cycle exists and MC(β̂) = MC(β), then ValC(s) can be achieved
with some finite capacity, otherwise not. The correctness of this approach follows from
Lemma 20.

It remains to bound the rate of convergence to the limit value in case when no finite
capacity suffices to realize it. This is achieved in the following lemma.

Lemma 22. Let cmax be the maximal cost of a transition in C. For every cap > 4·|S |·cmax

we have that

Valcap
C (s) − ValC(s) ≤ 3 · |S | · cmax

cap − 4 · |S | · cmax
.

4 Future work

We have shown that an optimal controller for a given consumption system always exists
and can be efficiently computed. We have also exactly classified the structural complex-
ity of optimal controllers and analyzed the limit values achievable by larger and larger
battery capacity.

The concept of cap-bounded mean-payoff is natural and generic, and we believe it
deserves a deeper study. Since mean-payoff has been widely studied (and applied) in the
context of Markov decision processes, a natural question is whether our results can be
extended to MDPs. Some of our methods are surely applicable, but the question appears
challenging.
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Abstract. We consider Markov decision processes (MDPs) which are a standard
model for probabilistic systems. We focus on qualitative properties for MDPs that
can express that desired behaviors of the system arise almost-surely (with prob-
ability 1) or with positive probability. We introduce a new simulation relation to
capture the refinement relation of MDPs with respect to qualitative properties, and
present discrete graph theoretic algorithms with quadratic complexity to compute
the simulation relation. We present an automated technique for assume-guarantee
style reasoning for compositional analysis of MDPs with qualitative properties by
giving a counterexample guided abstraction-refinement approach to compute our
new simulation relation. We have implemented our algorithms and show that the
compositional analysis leads to significant improvements.

1 Introduction

Markov decision processes. Markov decision processes (MDPs) are standard mod-
els for analysis of probabilistic systems that exhibit both probabilistic and non-
deterministic behavior [46,39]. In verification of probabilistic systems, MDPs have been
adopted as models for concurrent probabilistic systems [32], probabilistic systems oper-
ating in open environments [60], under-specified probabilistic systems [9], and applied
in diverse domains [6,52] such as analysis of randomized communication and security
protocols, stochastic distributed systems, biological systems, etc.

Compositional Analysis and CEGAR. One of the key challenges in analysis of prob-
abilistic systems (as in the case of non-probabilistic systems) is the state explosion
problem [29], as the size of concurrent systems grows exponentially in the number of
components. One key technique to combat the state explosion problem is the assume-
guarantee style composition reasoning [58], where the analysis problem is decomposed
into components and the results for components are used to reason about the whole sys-
tem, instead of verifying the whole system directly. For a system with two components,
the compositional reasoning can be captured as the following simple rule: consider a
system with two components G1 and G2, and a specification G′ to be satisfied by the
system; if A is an abstraction of G2 (i.e., G2 refines A) and G1 in composition with A
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satisfies G′, then the composite systems of G1 and G2 also satisfies G′. Intuitively, A is
an assumption on G1’s environment that can be ensured by G2. This simple, yet elegant
asymmetric rule is very effective in practice, specially with a counterexample guided
abstraction-refinement (CEGAR) loop [30]. There are many symmetric [56] as well
as circular compositional reasoning [35,56,53] rules; however the simple asymmetric
rule is most effective in practice and extensively studied, mostly for non-probabilistic
systems [56,38,12,44].

Compositional Analysis for Probabilistic Systems. There are many works that have
studied the abstraction-refinement and compositional analysis for probabilistic sys-
tems [11,45,51,37]. Our work is most closely related to and inspired by [50] where
a CEGAR approach was presented for analysis of MDPs (or labeled probabilistic tran-
sition systems); and the refinement relation was captured by strong simulation that cap-
tures the logical relation induced by safe-pCTL [41,4,9].

Qualitative Analysis and Its Importance. In this work we consider the fragment of
pCTL∗ [41,4,9] that is relevant for qualitative analysis, and refer to this fragment as
QCTL∗. The qualitative analysis for probabilistic systems refers to almost-sure (resp.
positive) properties that are satisfied with probability 1 (resp. positive probability). The
qualitative analysis for probabilistic systems is an important problem in verification
that is of interest independent of the quantitative analysis problem. There are many
applications where we need to know whether the correct behavior arises with proba-
bility 1. For instance, when analyzing a randomized embedded scheduler, we are in-
terested in whether every thread progresses with probability 1 [17]. Even in settings
where it suffices to satisfy certain specifications with probability λ < 1, the cor-
rect choice of λ is a challenging problem, due to the simplifications introduced dur-
ing modeling. For example, in the analysis of randomized distributed algorithms it is
quite common to require correctness with probability 1 (see, e.g., [59,62]). Further-
more, in contrast to quantitative analysis, qualitative analysis is robust to numerical
perturbations and modeling errors in the transition probabilities. The qualitative anal-
ysis problem has been extensively studied for many probabilistic models, such as for
MDPs [24,25,26], perfect-information stochastic games [27,13], concurrent stochastic
games [36,18], partial-observation MDPs [5,28,16,20], and partial-observation stochas-
tic games [22,8,19,21,55,23].

Our Contributions. In this work we focus on the compositional reasoning of proba-
bilistic systems with respect to qualitative properties, and our main contribution is a
CEGAR approach for qualitative analysis of probabilistic systems. The details of our
contributions are as follows:

1. To establish the logical relation induced by QCTL∗ we consider the logic ATL∗

for two-player games and the two-player game interpretation of an MDP where
the probabilistic choices are resolved by an adversary. In case of non-probabilistic
systems and games there are two classical notions for refinement, namely, sim-
ulation [54] and alternating-simulation [1]. We first show that the logical relation
induced by QCTL∗ is finer than the intersection of simulation and alternating simu-
lation. We then introduce a new notion of simulation, namely, combined simulation,
and show that it captures the logical relation induced by QCTL∗.
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2. We show that our new notion of simulation, which captures the logic relation of
QCTL∗, can be computed using discrete graph theoretic algorithms in quadratic
time. In contrast, the current best known algorithm for strong simulation is poly-
nomial of degree seven and requires numerical algorithms. The other advantage of
our approach is that it can be applied uniformly both to qualitative analysis of prob-
abilistic systems as well as analysis of two-player games (that are standard models
for open non-probabilistic systems).

3. We present a CEGAR approach for the computation of combined simulation, and
the counterexample analysis and abstraction refinement is achieved using the ideas
of [43] proposed for abstraction-refinement for games.

4. We have implemented our approach both for qualitative analysis of MDPs as well
as games, and experimented on a number of well-known examples of MDPs and
games. Our experimental results show that our method achieves significantly better
performance as compared to the non-compositional verification as well as compo-
sitional analysis of MDPs with strong simulation.

Related Works. Compositional and assume-guarantee style reasoning has been ex-
tensively studied mostly in the context of non-probabilistic systems [56,38,12,44].
Game-based abstraction refinement has been studied in the context of probabilistic sys-
tems [51]. The CEGAR approach has been adapted to probabilistic systems for reach-
ability [45] and safe-pCTL [11] under non-compositional abstraction refinement. The
work of [50] considers CEGAR for compositional analysis of probabilistic system with
strong simulation. An abstraction-refinement algorithm for a class of quantitative prop-
erties was studied in [33,34] and also implemented [49]. Our logical characterization
of the simulation relation is similar in spirit to [31], which shows how a fragment of
the modal μ-calculus can be used to efficiently decide behavioral preorders between
components. Our work focuses on CEGAR for compositional analysis of probabilis-
tic systems for qualitative analysis: we characterize the required simulation relation;
present a CEGAR approach for the computation of the simulation relation; and show
the effectiveness of our approach both for qualitative analysis of MDPs and games.

2 Game Graphs and Alternating-Time Temporal Logics

Notations. Let AP denote a non-empty finite set of atomic propositions. Given a finite
set S we will denote by S∗ (respectively Sω) the set of finite (resp. infinite) sequences
of elements from S, and let S+ = S∗ \ {ε}, where ε is the empty string.

2.1 Two-player Games

Two-player Games. A two-player game is a tuple G = (S,A,Av, δ,L, s0), where
– S is a finite set of states and s0 ∈ S is an initial state; and A is a finite set of actions.
– Av : S → 2A \ ∅ is an action-available function that assigns to every state s ∈ S

the set Av(s) of actions available in s.
– δ : S×A→ 2S\∅ is a non-deterministic transition function that given a state s ∈ S

and an action a ∈ Av(s) gives the set δ(s, a) of successors of s given action a.
– L : S → 2AP is a labeling function that labels the states s ∈ S with the set L(s) of

atomic propositions true at s.
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Alternating Games. A two-player gameG is alternating if in every state either Player 1
or Player 2 can make choices. Formally, for all s ∈ S we have either (i) |Av(s)| = 1
(then we refer to s as a Player-2 state); or (ii) for all a ∈ Av(s) we have |δ(s, a)| = 1
(then we refer to s as a Player-1 state). For technical convenience we consider that in
the case of alternating games, there is an atomic proposition turn ∈ AP such that for
Player-1 states s we have turn ∈ L(s), and for Player 2 states s′ we have turn �∈ L(s′).
Plays. A two-player game is played for infinitely many rounds as follows: the game
starts at the initial state, and in every round Player 1 chooses an available action from
the current state and then Player 2 chooses a successor state, and the game proceeds
to the successor state for the next round. Formally, a play in a two-player game is an
infinite sequence ω = s0a0s1a1s2a2 · · · of states and actions such that for all i ≥ 0 we
have that ai ∈ Av(si) and si+1 ∈ δ(si, ai). We denote by Ω the set of all plays.

Strategies. Strategies are recipes that describe how to extend finite prefixes of plays.
Formally, a strategy for Player 1 is a function σ : (S × A)∗ × S → A, that given a
finite history w · s ∈ (S × A)∗ × S of the game gives an action from Av(s) to be
played next. We write Σ for the set of all Player-1 strategies. A strategy for Player 2
is a function θ : (S × A)+ → S, that given a finite history w · s · a of a play selects
a successor state from the set δ(s, a). We write Θ for the set of all Player-2 strategies.
Memoryless strategies are independent of the history, but depend only on the current
state for Player 1 (resp. the current state and action for Player 2) and hence can be
represented as functions S → A for Player 1 (resp. as S ×A→ S for Player 2).

Outcomes. Given a strategy σ for Player 1 and θ for Player 2 the outcome is a unique
play, denoted as Plays(s, σ, θ) = s0a0s1a1 · · · , which is defined as follows: (i) s0 = s;
and (ii) for all i ≥ 0 we have ai = σ(s0a0 . . . si) and si+1 = θ(s0a0 . . . siai). Given a
state s ∈ S we denote by Plays(s, σ) (resp. Plays(s, θ)) the set of possible plays given
σ (resp. θ), i.e.,

⋃
θ′∈Θ Plays(s, σ, θ′) (resp.

⋃
σ′∈Σ Plays(s, σ′, θ)).

Parallel Composition of Two-Player Games. Given games G = (S,A,Av, δ,L, s0)
and G′ = (S′, A,Av′, δ′,L′, s′0) the parallel composition of the games G ‖ G′ =
(S,A,Av, δ,L, s0) is defined as follows: (1) The states of the composition are S = S×
S′. (2) The set of actions is A. (3) For all (s, s′) we have Av((s, s′)) = Av(s)∩Av′(s′).
(4) The transition function for a state (s, s′) ∈ S and an action a ∈ Av((s, s′)) is
defined as δ((s, s′), a) = {(t, t′) | t ∈ δ(s, a) ∧ t′ ∈ δ′(s′, a)}. (5) The labeling
function L((s, s′)) is defined as L(s) ∪ L′(s′). (6) The initial state is s0 = (s0, s

′
0).

Remark 1. For simplicity we assume that the set of actions in both components is iden-
tical, and for every pair of states the intersection of their available actions is non-empty.
Parallel composition can be extended to cases where the sets of actions are different [2].

2.2 Alternating-time Temporal Logic
We consider the Alternating-time Temporal Logic (ATL∗) [3] as a logic to specify
properties for two-player games.

Syntax. The syntax of the logic is given in positive normal form by defining the set of
path formulas (ϕ) and state formulas (ψ) according to the following grammar:

state formulas: ψ ::= q | ¬q | ψ ∨ ψ | ψ ∧ ψ | PQ(ϕ)

path formulas: ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ |�ϕ | ϕUϕ | ϕWϕ;
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where q ∈ AP is an atomic proposition and PQ is a path quantifier. The operators �
(next), U (until), andW (weak until) are the temporal operators. We will use true as a
shorthand for q∨¬q and false for q∧¬q for some q ∈ AP. The path quantifiers PQ are
as follows: ATL∗ path quantifiers: 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉.
Semantics. Given a play ω = s0a0s1a1 · · · we denote by ω[i] the suffix starting at the
i-th state element of the play ω, i.e., ω[i] = siaisi+1ai+1 · · · . The semantics of path
formulas is defined inductively in a standard way. Given a path formula ϕ, we denote
by �ϕ�G the set of plays ω such that ω |= ϕ. We omit the G lower script when the game
is clear from context. The semantics of state formulas for ATL∗ is defined as follows
(the semantics for Boolean formulas is omitted):

s |= 〈〈1〉〉(ϕ) iff ∃σ ∈ Σ, ∀θ ∈ Θ : Plays(s, σ, θ) ∈ �ϕ�
s |= 〈〈2〉〉(ϕ) iff ∃θ ∈ Θ, ∀σ ∈ Σ : Plays(s, σ, θ) ∈ �ϕ�
s |= 〈〈1, 2〉〉(ϕ) iff ∃σ ∈ Σ, ∃θ ∈ Θ : Plays(s, σ, θ) ∈ �ϕ�
s |= 〈〈∅〉〉(ϕ) iff ∀σ ∈ Σ, ∀θ ∈ Θ : Plays(s, σ, θ) ∈ �ϕ�;

where s ∈ S. Given an ATL∗ state formula ψ and a two-player game G, we denote by
�ψ�G = {s ∈ S | s |= ψ} the set of states that satisfy the formula ψ. We omit the G
lower script when the game is clear from context.

Logic Fragments. We define several fragments of the logic ATL∗:
– Restricted temporal operator use. An important fragment of ATL∗ is ATL where

every temporal operator is immediately preceded by a path quantifier.
– Restricting path quantifiers. We also consider fragments of ATL∗ (resp. ATL)

where the path quantifiers are restricted. We consider (i) 1-fragment (denoted
1-ATL∗) where only 〈〈1〉〉 path quantifier is used; (ii) the (1, 2)-fragment (denoted
(1, 2)-ATL

∗) where only 〈〈1, 2〉〉 path quantifier is used; and (iii) the combined frag-
ment (denoted C-ATL∗) where both 〈〈1〉〉 and 〈〈1, 2〉〉 path quantifiers are used. We
use a similar notation for the respective fragments of ATL formulas.

Logical Characterization of States. Given two games G and G′, and a logic fragment
F of ATL∗, we consider the following relations on the state space induced by the logic
fragment F : 	F (G,G′) = {(s, s′) ∈ S × S′ | ∀ψ ∈ F : if s |= ψ then s′ |= ψ};
and when the games are clear from context we simply write 	F for 	F (G,G′). We
will use the following notations for the relation induced by the logic fragments we con-
sider: (i) 	∗

1 (resp. 	1) for the relation induced by the 1-ATL∗ (resp. 1-ATL) fragment;
(ii) 	∗

1,2 (resp. 	1,2) for the relation induced by the (1, 2)-ATL
∗ (resp. (1, 2)-ATL)

fragment; and (iii) 	∗
C (resp. 	C) for the relation induced by the C-ATL∗ (resp.

C-ATL) fragment. Given G and G′ we can also consider G′′ which is the disjoint union
of the two games, and consider the relations on G′′; and hence we will often consider a
single game as input for the relations.

3 Combined Simulation Relation Computation

In this section we first recall the notion of simulation [54] and alternating simulation [1];
and then present a new notion of combined simulation.

Simulation. Given two-player games G = (S,A,Av, δ,L, s0) and G′ =
(S′, A′,Av′, δ′,L′, s′0), a relation S ⊆ S × S′ is a simulation from G to G′ if for
all (s, s′) ∈ S the following conditions hold:
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1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a)

there exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ S.
We denote by SG,G′

max the largest simulation relation between the two games (we write
Smax instead of SG,G′

max when G and G′ are clear from the context). We write G ∼S G′

when (s0, s
′
0) ∈ Smax. The largest simulation relation characterizes the logic relation of

(1, 2)-ATL and (1, 2)-ATL
∗: the (1, 2)-ATL fragment interprets a game as a transition

system and the formulas coincide with existential CTL, and hence the logic character-
ization follows from the classical results on simulation and CTL [54,2].

Proposition 1. For all games G and G′ we have Smax =	∗
1,2=	1,2.

Alternating Simulation. Given two games G = (S,A,Av, δ,L, s0) and G′ =
(S′, A′,Av′, δ′,L′, s′0), a relation A ⊆ S × S′ is an alternating simulation from G
to G′ if for all (s, s′) ∈ A the following conditions hold:
1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists

an action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state
t ∈ δ(s, a) such that (t, t′) ∈ A.

We denote by AG,G′
max the largest alternating-simulation relation between the two games

(we write Amax instead of AG,G′
max when G and G′ are clear from the context). We

write G ∼A G′ when (s0, s
′
0) ∈ Amax. The largest alternating-simulation relation

characterizes the logic relation of 1-ATL and 1-ATL∗ [1].

Proposition 2. For all games G and G′ we haveAmax =	∗
1=	1.

Combined Simulation. We present a new notion of combined simulation that extends
both simulation and alternating simulation, and we show how the combined simulation
characterizes the logic relation induced by C-ATL∗ and C-ATL. Intuitively, the re-
quirements on the combined-simulation relation combine the requirements imposed by
alternating simulation and simulation in a step-wise fashion. Given two-player games
G = (S,A,Av, δ,L, s0) and G′ = (S′, A′,Av′, δ′,L′, s′0), a relation C ⊆ S × S is a
combined simulation from G to G′ if for all (s, s′) ∈ C the following conditions hold:
1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a)

there exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ C.
3. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists

an action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state
t ∈ δ(s, a) such that (t, t′) ∈ C.

We denote by CG,G′
max the largest combined-simulation relation between the two games

(and write Cmax when G and G′ are clear from the context). We also write G ∼C G′

when (s0, s
′
0) ∈ Cmax. We first illustrate with an example that the logic relation 	C in-

duced by C-ATL is finer than the intersection of simulation and alternating-simulation
relation; then present a game theoretic characterization of Cmax; and finally show that
Cmax gives the relations 	∗

C and 	C .
Example 1. Consider the games G and G′ shown in Figure 1. White nodes are labeled
by an atomic proposition p and gray nodes by q. The largest simulation and alternating-
simulation relations between G and G′ are: Smax = {(s0, t0), (s1, t1)},Amax =
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s0 s1

G

t2 t0 t1

G′

a2 a3
a1

a2
a3

a2
a1

Fig. 1. Games G,G′ such that G ∼S G′ and G ∼A G′, but G �∼C G′

{(s0, t0), (s0, t2), (s1, t1)}. However, consider the formula ψ = 〈〈1〉〉(�(p ∧
〈〈1, 2〉〉(�q))). We have that s0 |= ψ, but t0 �|= ψ. It follows that (s0, t0) �∈	C . ��

Combined-Simulation Games. The simulation and the alternating-simulation relation
can be obtained by solving two-player safety games [42,1,14]. We now define a two-
player game GC for the combined-simulation relation characterization. The game is
played on the synchronized product of the two input games. Given a state (s, s′), first
Player 2 decides whether to check for the step-wise simulation condition or the step-
wise alternating-simulation condition.
1. The step-wise simulation condition is checked by playing a two-step game. Intu-

itively, first Player 2 chooses an action a ∈ Av(s) and a successor t ∈ δ(s, a) and
challenges Player 1 to match, and Player 1 responds with an action a′ ∈ Av′(s′)
and a state t′ ∈ δ′(s′, a′).

2. The step-wise alternating-simulation condition is checked by playing a four-step
game. Intuitively, first Player 2 chooses an action a from Av(s) and Player 1 re-
sponds with an action a′ ∈ Av′(s′) (in the first two-steps); then Player 2 chooses a
successor t′ ∈ δ′(s′, a′) and Player 1 responds by choosing a successor t ∈ δ(s, a).

After checking the step-wise conditions, the game proceeds from the state (t, t′). Intu-
itively, Player 2’s goal is to reach a state (s, s′) where the labeling of the original games
do not match; states that satisfy this condition are labeled by atomic proposition p.

In the combined simulation game we refer to Player 1 as the proponent (trying to
establish the combined simulation) and Player 2 as the adversary (trying to violate the
combined simulation).

Shorthand for Safety Objectives. We will use the following shorthand for safety ob-
jectives: � ϕ ≡ ϕW false.

Theorem 1. For all games G and G′ we have Cmax = �〈〈1〉〉(�¬p)�GC ∩ (S × S′).

We establish the relation between combined simulation and C-ATL∗.

Theorem 2. For all games G and G′ we have Cmax =	∗
C=	C .

Remark 2. Theorem 2 also holds for alternating games. Note that in most cases the
action set is constant and the state space of the games are huge. Then the combined
simulation game construction is quadratic, and solving safety games on them can be
achieved in linear time using discrete graph theoretic algorithms [47,7].

Theorem 3. Given two-player games G and G′, the Cmax, 	∗
C , and 	C relations can

be computed in quadratic time using discrete graph theoretic algorithms.
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4 MDPs and Qualitative Logics

In this part we consider Markov decisions processes (MDPs) and logics to reason quali-
tatively about them. We consider MDPs which can be viewed as a variant of two-player
games defined in Section 2. First, we fix some notation: a probability distribution f on
a finite set X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1, and we denote

by D(X) the set of all probability distributions on X . For f ∈ D(X) we denote by
Supp(f) = {x ∈ X | f(x) > 0} the support of f .

4.1 Markov Decision Processes
MDPs. A Markov decision process (MDP) is a tuple G = (S, (S1, SP ), A,Av, δ1,
δP ,L, s0); where (i) S is a finite set of states with a partition of S into Player-1 states
S1 and probabilistic states SP ; (ii) A is a finite set of actions; (iii) Av : S1 → 2A \ ∅ is
an action-available function that assigns to every Player-1 state the non-empty set Av(s)
of actions available in s; (iv) δ1 : S1 × A → S is a deterministic transition function
that given a Player-1 state and an action gives the next state; (v) δP : SP → D(S)
is a probabilistic transition function that given a probabilistic state gives a probability
distribution over the successor states (i.e., δP (s)(s′) is the transition probability from s
to s′); (vi) the function L is the proposition labeling function as for two-player games;
and (vii) s0 is the initial state. Strategies for Player 1 are defined as for games.

Interpretations. We interpret an MDP in two distinct ways: (i) as a 1 1
2 -player game

and (ii) as an alternating two-player game. In the 1 1
2 -player setting in a state s ∈ S1 ,

Player 1 chooses an action a ∈ Av(s) and the MDP moves to a unique successor s′. In
probabilistic states sp ∈ SP the successor is chosen according to the probability distri-
bution δP (sp). In the alternating two-player interpretation, we regard the probabilistic
states as Player-2 states, i.e., in a state sp ∈ SP , Player 2 chooses a successor state
s′ from the support of the probability distribution δP (s). Given an MDP G we denote
by Ĝ its two-player interpretation, and Ĝ is an alternating game. The 1 1

2 -player inter-
pretation is the classical definition of MDPs. We will use the two-player interpretation
to relate logical characterizations of MDPs and logical characterization of two-player
games with fragments of ATL∗.

1 1
2 -Player Interpretation. Once a strategy σ ∈ Σ for Player 1 is fixed, the outcome of

the MDP is a random walk for which the probabilities of events are uniquely defined,
where an event Φ ⊆ Ω is a measurable set of plays [40]. For a state s ∈ S and an event
Φ ⊆ Ω, we write Prσs (Φ) for the probability that a play belongs to Φ if the game starts
from the state s and Player 1 follows the strategy σ.

4.2 Qualitative Logics for MDPs
We consider the qualitative fragment of pCTL∗ [41,4,9] and refer to the logic as quali-
tative pCTL∗ (denoted as QCTL∗) as it can express qualitative properties of MDPs.

Syntax and Semantics. The syntax of the logic is given in positive normal form and is
similar to the syntax of ATL∗. It has the same state and path formulas as ATL∗ with the
exception of path quantifiers. The logic QCTL∗ comes with two path quantifiers (PQ),
namely 〈Almost〉 and 〈Positive〉 (instead of 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉). The semantics
of the logic QCTL∗ is the same for the fragment shared with ATL∗, therefore we
only give semantics for the new path quantifiers. Given a path formula ϕ, we denote
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by �ϕ�G the set of plays ω such that ω |= ϕ. For a state s and a path formula ϕ we
have: s |= 〈Almost〉(ϕ) (resp. s |= 〈Positive〉(ϕ)) iff ∃σ ∈ Σ : Prσs (�ϕ�) = 1 (resp.
Prσs (�ϕ�) > 0). As before, we denote by QCTL the fragment of QCTL∗ where every
temporal operator is immediately preceded by a path quantifier, and for a state formula
ψ the set �ψ�G denotes the set of states in G that satisfy the formula ψ.

Logical Relation Induced by QCTL and QCTL∗. Given two MDPs G and G′, the
logical relation induced by QCTL∗, denoted as 	∗

Q, (resp. by QCTL, denoted as 	Q),
is defined as: 	∗

Q= {(s, s′) ∈ S × S′ | ∀ψ ∈ QCTL∗ : if s |= ψ then s′ |= ψ} (resp.
∀ψ ∈ QCTL).

4.3 Characterization of Qualitative Simulation for MDPs

In this section we establish the equivalence of the 	∗
Q relation on MDPs with the 	∗

C

relation on the two-player interpretation of MDPs, i.e., we prove that for all MDPs G
and G′ we have 	∗

Q (G,G′) =	C (Ĝ, Ĝ′), where Ĝ (resp. Ĝ′) is the two-player inter-
pretation of the MDP G (resp. G′). In the first step we show how to translate some of the
QCTL formulas into C-ATL formulas. We only need to translate the path quantifiers
due to the similarity of path formulas in the logics.

Lemma 1. For all atomic propositions q, r and for all MDPs, we have:
(i) �〈Almost〉(�q)� = �〈〈1〉〉(�q)�; (ii) �〈Almost〉(qWr)� = �〈〈1〉〉(qWr)�;
(iii) �〈Positive〉(�q)� = �〈〈1, 2〉〉(�q)�; (iv) �〈Positive〉(q Ur)� = �〈〈1, 2〉〉(q Ur)�;
(v) �〈Positive〉(qWr)� = �〈〈1, 2〉〉(q Ur)� ∪ �〈〈1, 2〉〉(q U(〈〈1〉〉(qWfalse)))�.

To complete the translation of temporal operators we also express theQCTL formula
�〈Almost〉(q Ur)� in terms of C-ATL∗ [15]. We establish the following result.

Theorem 4. For all MDPs G and G′ we have 	Q =	C ; and 	∗
Q =	Q. The relation

	∗
Q can be computed in quadratic time using discrete graph theoretic algorithms.

5 CEGAR for Combined Simulation

In this section we present a CEGAR approach for computing combined simulation.

5.1 Simulation Abstraction and Alternating-Simulation Abstraction
Abstraction. An abstraction of a game consists of a partition of the game graph such
that in each partition the atomic proposition labeling match for all states. Given an
abstraction of a game, the abstract game can be defined by collapsing states of each
partition and redefining the action-available and transition functions. The redefinition
of the action-available and transition functions can either increase or decrease the power
of the players. If we increase the power of Player 1 and decrease the power of Player 2,
then the abstract game will be in alternating simulation with the original game, and if
we increase the power of both players, then the abstract game will simulate the original
game. We now formally define the partitions, and the two abstractions.

Partitions for Abstraction. A partition of a game G = (S,A,Av, δ,L, s0) is an
equivalence relation Π = {π1, π2, . . . , πk} on S such that: (i) for all 1 ≤ i ≤ k
we have πi ⊆ S and for all s, s′ ∈ πi we have L(s) = L(s′) (labeling match);
(ii)

⋃
1≤i≤k πi = S (covers the state space); and (iii) for all 1 ≤ i, j ≤ k, such that i �= j
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we have πi ∩ πj = ∅ (disjoint). Note that in alternating games Player 1 and Player 2
states are distinguished by proposition turn, so they belong to different partitions.

Simulation Abstraction. Given a two-player game G = (S,A,Av, δ,L, s0) and a
partition Π of G, we define the simulation abstraction of G as a two-player game
AbsΠS (G) = (S,A,Av, δ,L, s0), where: (i) S = Π : the partitions in Π are the states
of the abstract game. (ii) For all πi ∈ Π we have Av(πi) =

⋃
s∈πi

Av(s): the set
of available actions is the union of the actions available to the states in the partition,
and this gives more power to Player 1. (iii) For all πi ∈ Π and a ∈ Av(πi) we have
δ(πi, a) = {πj | ∃s ∈ πi : (a ∈ Av(s)∧∃s′ ∈ πj : s′ ∈ δ(s, a))}: there is a transition
from a partition πi given an action a to a partition πj if some state s ∈ πi can make
an a-transition to some state in s′ ∈ πj . This gives more power to Player 2. (iv) For all
πi ∈ Π we have L(πi) = L(s) for some s ∈ πi: the abstract labeling is well-defined,
since all states in a partition are labeled by the same atomic propositions. (v) s0 is the
partition in Π that contains state s0.

Alternating-Simulation Abstraction. Given a two-player game G =
(S,A,Av, δ,L, s0) and a partition Π of G, we define the alternating-simulation
abstraction of G as a two-player game AbsΠA (G) = (S̃, A, Ãv, δ̃, L̃, s̃0), where:
(i) S̃ = Π ; (ii) for all πi ∈ Π we have Ãv(πi) =

⋃
s∈πi

Av(s); (iii) for all πi ∈ Π we

have L̃(πi) = L(s) for some s ∈ πi; (iv) s̃0 is the partition in Π that contains state
s0 (as in the case of simulation abstraction). (v) For all πi ∈ Π and a ∈ Ãv(πi) we
have δ̃(πi, a) = {πj | ∀s ∈ πi : (a ∈ Av(s) ∧ ∃s′ ∈ πj : s′ ∈ δ(s, a))}: there is a
transition from a partition πi given an action a to a partition πj if all states s ∈ πi can
make an a-transition to some state in s′ ∈ πj . This gives less power to Player 2. For
technical convenience we assume δ̃(πi, a) is non-empty.

The following proposition states that (alternating-)simulation abstraction of a game
G is in (alternating-)simulation with G.

Proposition 3. For all partitions Π of a two-player game G we have: (1) G ∼A
AbsΠA (G); and (2) G ∼S AbsΠS (G).

5.2 Sound Assume-Guarantee Rule

We now present the sound assume-guarantee rule for the combined-simulation problem.
To achieve this we first need an extension of the notion of combined-simulation game.

Modified Combined-Simulation Games. Consider games GAlt = (S,A, δAlt,
AvAlt,L, s0), GSim = (S,A, δSim,AvSim,L, s0) and G′ = (S′, A, δ′,Av′,L′, s′0). The
modified simulation game GM = (SM, AM,AvM, δM,LM, sM0 ) is defined exactly
like the combined simulation game given GAlt and G′, with the exception that the step-
wise simulation gadget is defined using the transitions of GSim instead ofGAlt. We write
(GAlt ⊗GSim) ∼M G′ if and only if (s0, s′0) ∈ �〈〈1〉〉(�¬p)�GM .

Proposition 4. Let G,G′, GAlt, GSim be games such that G ∼A GAlt and G ∼S GSim.
Then (GAlt ⊗GSim) ∼M G′ implies G ∼C G′.

The key proof idea for the above proposition is as follows: if G ∼A GAlt and G ∼S
GSim, then in the modified combined-simulation game GM the adversary is stronger
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than in the combined-simulation game GC . Hence winning in GM for the proponent
implies winning in GC and gives the desired result of the proposition.

Sound Assume-Guarantee Method. Given two games G1 and G2, checking whether
their parallel composition G1 ‖ G2 is in combined simulation with a game G′ can
be done explicitly by constructing the synchronized product. The composition, how-
ever, may be much larger than the components and thus make the method ineffective in
practical cases. We present an alternative method that proves combined simulation in a
compositional manner, by abstracting G2 with some partition Π and then composing it
with G1. The sound assume-guarantee rule follows from Propositions 3 and 4.

Proposition 5 (Sound assume-guarantee rule). Given games G1, G2, G
′, and a par-

tition Π of G2, let A = G1 ‖ AbsΠA (G2) and S = G1 ‖ AbsΠS (G2). If (A⊗S) ∼M G′,
then (G1 ‖ G2) ∼C G′, i.e.,

A = G1 ‖ AbsΠA (G2); S = G1 ‖ AbsΠS (G2); (A⊗ S) ∼M G′

(G1 ‖ G2) ∼C G′ (1)

If the partition Π is coarse, then the abstractions in the assume-guarantee rule can be
smaller than G2 and also their composition with G1. As a consequence, combined sim-
ulation can be proved faster as compared to explicitly computing the composition. In
Section 5.4 we describe how to effectively compute the partitions Π and refine them
using CEGAR approach.

5.3 Counter-examples Analysis

If the premise (A ⊗ S) ∼M G′ of the assume-guarantee rule (1) is not satisfied, then
the adversary (Player 2) has a memoryless winning strategy in GM, and the memory-
less strategy is the counter-example. To use the sound assume-guarantee rule (1) in a
CEGAR loop, we need analysis of counter-examples.

Representation of counter-examples. A counter-example is a memoryless winning strat-
egy for Player 2 in GM. Note that in GM Player 2 has a reachability objective, and thus
a winning strategy ensures that the target set is always reached from the starting state,
and hence no cycle can be formed without reaching the target state once the memory-
less winning strategy is fixed. Hence we represent counter-examples as directed-acyclic
graphs (DAG), where the leafs are the target states and every non-leaf state has a single
successor chosen by the strategy of Player 2 and has all available actions for Player 1.

Abstract, concrete, and spurious counter-examples. Given two-player games G1 and
G2, let G = (G1 ‖ G2) be the parallel composition. Given G and G′, let GC be
the combined-simulation game of G and G′. The abstract game GM is the modified
combined-simulation game of (A ⊗ S) and G′, where A = G1 ‖ AbsΠA (G2) and
S = G1 ‖ AbsΠS (G2). We refer to a counter-example θabs in GM as abstract, and to
a counter-example θcon in GC as concrete. An abstract counter-example is feasible if
we can substitute partitions in A and S with states of G2 to obtain a concrete counter-
example. An abstract counter-example is spurious if it is not feasible.

Concretization of counter-examples. We follow the approach of [43] to check the fea-
sibility of a counter-example by finding a concretization function Conc from states in
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GM to a set of states in G2 that witness a concrete strategy from the abstract strategy.
A state in GM has a component which is a partition for G2, and the concretization con-
structs a subset of the partition. Intuitively, for a state s of GM in the counter-example
DAG, the concretization represents the subset of states of G2 in the partition where
a concrete winning strategy exists using the strategy represented by the DAG below
the state s. Informally, the witness concrete strategy is constructed inductively, going
bottom-up in the DAG as follows: (i) the leaves already represents winning states and
hence their concretization is the entire partition; (ii) for non-leaf states in the DAG of
the abstract counter-example, the concretization represents the set of states of G2 of
the partition which lead to a successor state that belongs to the concretization of the
successor in the DAG. An abstract counter-example is feasible, if the concretization of
the root of the DAG contains the initial state of G2.

5.4 CEGAR

The counter-example analysis presented in the previous section allows us to automati-
cally refine abstractions using the CEGAR paradigm [30]. The algorithm takes games
G1, G2, G

′ as arguments and answers whether (G1 ‖ G2) ∼C G′ holds. Initially, the al-
gorithms computes the coarsest partition Π of G2. Then, it executes the CEGAR loop:
in every iteration the algorithm constructs A (resp. S) as the parallel composition of
G1 and the alternating-simulation abstraction (resp. simulation abstraction) of G2. Let
GM be the modified combined-simulation game of (A ⊗ S) and G′. If Player 1 has a
winning strategy in GM then the algorithm returns YES; otherwise it finds an abstract
counter-example Cex in GM. In case Cex is feasible, then it corresponds to a concrete
counter-example, and the algorithm returns NO. If Cex is spurious a refinement proce-
dure is called that uses the concretization of Cex to return a partition Π ′ finer than Π .

Refinement Procedure. Given a partition Π and a spurious counter-example Cex to-
gether with its concretization function Conc we describe how to compute the refined
partition Π ′. Consider a partition π ∈ Π and let Sπ = {s1, s2, . . . , sm} denote the
states of the abstract counter-example Cex that contain π as its component. Every state
si splits π into at most two sets Conc(si) and π \Conc(si), and let this partition be de-
noted as Ti. We define a partitionPπ as the largest equivalence relation on π that is finer
than any equivalence relation Ti for all 1 ≤ i ≤ m. Formally, Pπ = {π1, π2, . . . , πk}
is a partition of π such that for all 1 ≤ j ≤ k and 1 ≤ i ≤ m we have πj ⊆ Conc(si)
or πj ⊆ π \ Conc(si). The new partition Π ′ is then defined as the union over Pπ for
all π ∈ Π .

Proposition 6. Given a partition Π and a spurious counter-example Cex, the partition
Π ′ obtained as refinement of Π is finer than Π .

Since we consider finite games, the refinement procedure only executes for finitely
many steps and hence the CEGAR loop eventually terminates.

6 Experimental Results

We implemented our CEGAR approach for combined simulation in Java, and experi-
mented with our tool on a number of MDPs and two-player games examples. We use
PRISM [52] model checker to specify the examples and generate input files for our tool.
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Observable actions. To be compatible with the existing benchmarks (e.g. [50]) in our
tool actions are observable instead of atomic propositions. Our algorithms are easily
adapted to this setting. We also allow the user to specify silent actions for components,
which are not required to be matched by the specification G′.

Improved (modified) combined-simulation game. We leverage the fact that MDPs are
interpreted as alternating games to simplify the (modified) combined-simulation game.
When comparing two Player-1 states, the last two steps in the alternating-simulation
gadget can be omitted, since the players have unique successors given the actions cho-
sen in the first two steps. Similarly, for two probabilistic states, the first two steps in the
alternating-simulation gadget can be skipped.

Improved partition refinement procedure. In the implementation we adopt the approach
of [43] for refinement. Given a state s of the abstract counter-example with partition
π as its component, the equivalence relation may split the set π \ Conc(s) into mul-
tiple equivalence classes. Intuitively, this ensures that similar-shaped spurious counter-
examples do not reappear in the following iterations. This approach is more efficient
than the naive one, and also implemented in our tool.

MDP Examples. We used our tool on all the MDP examples from [50]:
– CS1 and CSn model a Client-Server protocol with mutual exclusion with proba-

bilistic failures in one or all of the n clients, respectively.
– MER is an arbiter module of NASAs software for Mars Exploration Rovers which

grants shared resources for several users.
– SN models a network of sensors that communicate via a bounded buffer with prob-

abilistic behavior in the components.
In addition, we also considered two other classical MDP examples:

– LE is based on a PRISM case study [52] that models the Leader election proto-
col [48], where n agents on a ring randomly pick a number from a pool of K
numbers. The agent with the highest number becomes the leader. In case there
are multiple agents with the same highest number the election proceed to the next
round. The specification requires that two leaders cannot be elected at the same
time. The MDP is parametrized by the number of agents and the size of the pool.

– PETP is based on a Peterson’s algorithm [57] for mutual exclusion of n threads,
where the execution order is controlled by a randomized scheduler. The specifica-
tion requires that two threads cannot access the critical section at the same time.
We extend Peterson’s algorithm by giving the threads a non-deterministic choice
to restart before entering the critical section. The restart operation succeeds with
probability 1

2 and with probability 1
2 the thread enters the critical section.

Details of experimental results. Table 1 shows the results for MDP examples we ob-
tained using our assume-guarantee algorithm and the monolithic approach (where the
composition is computed explicitly). We also compared our results with the tool pre-
sented in [50] that implements both assume-guarantee and monolithic approaches for
strong simulation [61]. All the results were obtained on a Ubuntu-13.04 64-bit ma-
chine running on an Intel Core i5-2540M CPU of 2.60GHz. We imposed a 4.3GB up-
per bound on Java heap memory and one hour time limit. For MER(6) and PETP(5)
PRISM cannot parse the input file (probably it runs out of memory).
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Table 1. Results for MDPs examples: AGCS stands for our assume-guarantee combined simula-
tion; AGSS stands for assume-guarantee with strong simulation; MONCS stands for our mono-
lithic combined simulation; and MONSS stands for monolithic strong simulation. The number I
denotes the number of CEGAR iterations and |Π | the size of the abstraction in the last CEGAR it-
eration. TO and MO stand for a time-out and memory-out, respectively, and Error means an error
occurred during execution. The memory consumption is measured using the time command.

AGCS AGSS MONCS MONSS
Ex. |G1| |G2| |G′| T ime Mem I |Π | T ime Mem I |Π | T ime Mem Time Mem

CS1(5) 36 405 16 1.13s 112MB 49 85 6.11s 213MB 32 33 0.04s 34MB 0.18s 95MB
CS1(6) 49 1215 19 2.52s 220MB 65 123 11.41s 243MB 40 41 0.04s 51MB 0.31s 99MB
CS1(7) 64 3645 22 5.41s 408MB 84 156 31.16s 867MB 56 57 0.05s 82MB 0.77s 113MB
CSn(3) 125 16 54 0.65s 102MB 9 24 33.43s 258MB 11 12 0.09s 35MB 11.29s 115MB
CSn(4) 625 25 189 6.22s 495MB 15 42 TO - - - 0.4s 106MB 1349.6s 577MB
CSn(5) 3k 36 648 117.06s 2818MB 24 60 TO - - - 2.56s 345MB TO -
MER(3) 278 1728 11 1.42s 143MB 8 14 2.74s 189MB 6 7 1.96s 228MB 128.1s 548MB
MER(4) 465 21k 14 4.63s 464MB 13 22 10.81s 870MB 10 11 11.02s 1204MB TO -
MER(5) 700 250k 17 29.23s 1603MB 20 32 67s 2879MB 15 16 - MO MO -
SN(1) 43 32 18 0.13s 38MB 3 6 0.28s 88MB 2 3 0.04s 29MB 3.51s 135MB
SN(2) 796 32 54 0.9s 117MB 3 6 66.09s 258MB 2 3 0.38s 103MB 3580.83s 1022MB
SN(3) 7k 32 162 4.99s 408MB 3 6 TO - - - 4.99s 612MB TO -
SN(4) 52k 32 486 34.09s 2448MB 3 6 TO - - - 44.47s 3409MB TO -
LE(3, 4) 2 652 256 0.24s 70MB 6 14 1.63s 223MB 6 7 0.38s 103MB TO -
LE(3, 5) 2 1280 500 0.31s 87MB 6 14 Error - - - 1.77s 253MB Error -
LE(4, 4) 3 3160 1280 0.61s 106MB 6 16 TO - - - 9.34s 1067MB TO -
LE(5, 5) 4 18k 12k 3.37s 364MB 6 18 TO - - - - MO TO -
LE(6, 4) 5 27k 20k 6.37s 743MB 6 20 TO - - - - MO TO -
LE(6, 5) 5 107k 78k 23.72s 2192MB 6 20 TO - - - - MO TO -
PETP(2) 68 3 3 0.04s 31MB 0 2 0.04s 87MB 0 1 0.04s 30MB 0.04s 90MB
PETP(3) 4 1730 4 0.19s 65MB 6 8 0.29s 153MB 3 4 0.24s 72MB 1.07s 170MB
PETP(4) 5 54k 5 1.58s 325MB 8 10 3.12s 727MB 4 5 7.04s 960MB 31.52s 1741MB

Summary of results. For all examples, other than the Client-Server protocol, the assume-
guarantee method scales better than the monolithic reasoning; and in all examples our
qualitative analysis scales better than the strong simulation approach.

Two-player Games Examples. We also experimented with our tool on several exam-
ples of games, where one of the players controls the choices of the system and the other
player represents the environment.

– EC is based on [10] and models an error-correcting device that sends and receives
data blocks over a communication channel. Notation EC(n, k, d) means that a data
block consists of n bits and it encodes k bits of data; value d is the minimum
Hamming distance between two distinct blocks. In the first component Player 2
chooses a message to be sent over the channel and is allowed to flip some bits in
the block. The second component restricts the number of bits that Player 2 can flip.
The specification requires that every message is correctly decoded.

– PETG is the Peterson’s algorithm [57] example for MDPs, with the following dif-
ferences: (a) the system may choose to restart instead of entering the critical sec-
tion; (b) instead of a randomized scheduler we consider an adversarial scheduler.
As before, the specification requires mutual exclusion.

– VIR1 models a virus that attacks a computer system with n nodes (based on case
study from PRISM [52]). Player 1 represents the virus and is trying to infect as
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Table 2. Results for two-player games examples

AGCS MONCS AGAS MONAS
Ex. |G1| |G2| |G′| T ime Mem I |Π | T ime Mem Time Mem I |Π | T ime Mem

EC(32, 6, 16) 71k 193 129 3.55s 446MB 1 7 1.15s 281MB 2.34s 391MB 0 2 1.03s 251MB
EC(64, 7, 16) 549k 385 257 70.5s 3704MB 1 131 9.07s 1725MB 16.79s 1812MB 0 2 4.83s 1467MB
EC(64, 8, 16) 1.1m 769 513 - MO - - - MO 52.63s 3619MB 0 2 - MO
EC(64, 8, 32) 1.1m 1025 513 - MO - - - MO 54.08s 3665MB 0 2 - MO
PETG(2) 3 52 3 0.08s 35MB 4 6 0.03s 30MB 0.07s 35MB 4 6 0.03s 29MB
PETG(3) 4 1514 4 0.2s 63MB 6 8 0.25s 74MB 0.22s 62MB 6 8 0.21s 64MB
PETG(4) 5 49k 5 1.75s 316MB 8 10 8.16s 1080MB 1.6s 311MB 8 10 6.94s 939MB
VIR1(12) 14 4097 1 0.91s 159MB 15 30 1.69s 255MB 0.35s 114MB 2 4 1.53s 215MB
VIR1(13) 15 8193 1 1.47s 197MB 16 32 4.36s 601MB 0.6s 178MB 2 4 2.8s 402MB
VIR1(14) 16 16k 1 3.09s 326MB 17 34 8.22s 992MB 0.75s 241MB 2 4 6.49s 816MB
VIR1(15) 17 32k 1 4.47s 643MB 18 36 15.13s 2047MB 1.05s 490MB 2 4 9.67s 1361MB
VIR1(16) 18 65k 1 8.65s 1015MB 19 38 41.28s 3785MB 1.37s 839MB 2 4 23.71s 2591MB
VIR1(17) 19 131k 1 18.68s 1803MB 20 40 - MO 2.12s 1653MB 2 4 62.24s 4309MB
VIR1(18) 20 262k 1 38.68s 3079MB 21 42 - MO 3.35s 2878MB 2 4 - MO
VIR2(12) 13 4096 1 1.02s 151MB 19 34 0.81 154MB 0.68s 122MB 9 14 0.57s 133MB
VIR2(13) 14 8192 1 1.48s 190MB 20 36 1.13s 216MB 1.01s 183MB 9 14 1.01s 208MB
VIR2(14) 15 16k 1 2.9s 315MB 21 38 2.33s 389MB 1.94s 311MB 9 14 2.09s 388MB
VIR2(15) 16 32k 1 5s 631MB 22 40 6.29s 964MB 2.12s 489MB 9 14 4.69s 757MB
VIR2(16) 17 65k 1 9.82s 949MB 23 42 7.55s 1468MB 3.96s 897MB 9 14 6.09s 1315MB
VIR2(17) 18 131k 1 23.33s 1815MB 24 44 23.54s 3012MB 8.16s 1676MB 9 14 15.36s 2542MB
VIR2(18) 19 262k 1 45.89s 3049MB 25 46 55.28s 4288MB 20.3s 2875MB 9 14 28.79s 3755MB

many nodes of the network as possible. Player 2 represents the system and may
recover an infected node to an uninfected state. The specification requires that the
virus has a strategy to avoid being completely erased, i.e., maintain at least one
infected node in the network. VIR2 is a modified version of VIR1 with two special
critical nodes in the network. Whenever both of the nodes are infected, the virus can
overtake the system. The specification is as for VIR1, i.e., the virus can play such
that at least one node in the network remains infected, but it additionally requires
that even if the system cooperates with the virus, the system is designed in a way
that the special nodes will never be infected at the same time.

The results for two-player game examples are shown in Table 2. Along with AGCS
and MONCS for assume-guarantee and monolithic combined simulation, we also con-
sider AGAS and MONAS for assume-guarantee and monolithic alternating simulation,
as for properties in 1-ATL it suffices to consider only alternating simulation. For all the
examples, the assume-guarantee algorithms scale better than the monolithic ones. Com-
bined simulation is finer than alternating simulation and therefore combined simulation
may require more CEGAR iterations.

Concluding Remarks. In this work we considered compositional analysis of MDPs
for qualitative properties and presented a CEGAR approach. Our algorithms are discrete
graph theoretic algorithms. An interesting direction of future work would be to consider
symbolic approaches to the problem.
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Abstract. This paper presents a new synthesis-based approach for writ-
ing low-level memory-safe code. Given a partial program with missing
guards, our algorithm synthesizes concrete predicates to plug in for the
missing guards such that all buffer accesses in the program are memory
safe. Furthermore, guards synthesized by our technique are the simplest
and weakest among guards that guarantee memory safety, relative to the
inferred loop invariants. Our approach is fully automatic and does not
require any hints from the user. We have implemented our algorithm in a
prototype synthesis tool for C programs, and we show that the proposed
approach is able to successfully synthesize guards that closely match
hand-written programmer code in a set of real-world C programs.

1 Introduction

Memory safety errors are a perennial source of crashes and vulnerabilities in
programs written in unsafe languages, and even expert programmers often write
erroneous code that accesses out-of-bounds buffers or invalid memory. Over the
past few decades, there has been much research on helping programmers write
memory safe code. Broadly speaking, existing approaches fall into two categories:

Dynamic instrumentation. Many approaches, such as those employed in
memory managed languages like Java and C#, add run-time checks to guaran-
tee the safety of each memory access. While such approaches prevent memory
corruption and associated security vulnerabilities, they do not prevent run-time
failures and often add significant performance overhead.

Static verification. Much recent research has focused on statically guaran-
teeing memory safety of programs written in unsafe languages [1–5]. While these
techniques can uncover all potential memory safety errors, the errors identified
by the verifier may be hard to understand, debug, and fix.

In this paper, we propose a new approach based on program synthesis to the
design of memory-safe low-level code. Concretely, suppose that a programmer
wishes to write a region of code R implementing a given functionality, but R can
access out-of-bounds memory under certain assumptions about program inputs
or previously taken branches. In our approach, the programmer embeds R within
the scope of an unknown guard predicate whose sole purpose is to ensure the
memory safety of R. This is done using a syntax of the form:

if(??) {R} else { /* handle error */ }
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where the unknown guard is indicated by ??. Our approach uses a new guard
synthesis algorithm to compute a predicate P over program variables such that,
when ?? is replaced by P, all memory accesses within R are provably memory-safe.

Unlike dynamic approaches, our method does not require run-time instrumen-
tation to track allocation sizes or pointer offsets, thereby avoiding the associated
performance overhead. Instead, we statically infer a single guard that guaran-
tees the safety of all memory accesses within a code block. Furthermore, our
approach goes beyond static verification: It not only guarantees memory safety,
but also helps the programmer write safe-by-construction code. The programmer
is only asked to tell us which code snippets must be protected by a guard, rather
than the tedious, low-level details of how to protect them.

Our synthesis algorithm is based on the principle of logical abduction. Abduc-
tion is the problem of finding missing hypotheses in a logical inference task. In
more detail, suppose we have a premise P and a desired conclusion C for an
inference (P and C will be typically generated as constraints from a program)
such that P �|= C. Given P and C, abduction infers a simplest and most general
explanation E such that P ∧ E |= C and P ∧ E �|= false.

Previous work has shown how to use abduction for program verification, by
framing unknown invariants as missing hypotheses in a logical inference prob-
lem [5–7]. While adapting abduction to synthesis is a nontrivial technical chal-
lenge, the end result is an algorithm with several appealing properties:

Optimality of Synthesis. Our algorithm gives a guarantee of optimal syn-
thesis — i.e., the synthesized guards are optimal according to a quantitative
criterion among all guards that guarantee memory safety. Optimality has been
argued to be an important criterion in program synthesis. For instance, Alur et
al. [8] argue that “Ideally, [in synthesis] we would like to associate a cost with each
[synthesized] expression, and consider the problem of optimal synthesis which
requires the synthesis tool to return the expression with the least cost among
the correct ones. A natural cost metric is the size of the expression.” However,
few existing approaches to software synthesis take on such an optimality goal.

The notion of costs used in this paper is two-dimensional: one dimension
quantifies expression complexity (we use the number of variables as a proxy
for complexity), and the other quantifies generality (weaker guards have lower
costs). The guards we synthesize are Pareto-optimal with respect to this notion
of costs — i.e., there is no solution that is weaker as well as less complex.

Automation. Unlike most recent approaches to program synthesis [9–11],
our algorithm can synthesize expressions without the aid of user-specified struc-
tural hints. In particular, the programmer does not need to provide expression
templates with unknown coefficients to be inferred.

Practicality. Ouralgorithm incorporates precise reasoningaboutarraybounds
and low-level pointer arithmetic, which are necessary ingredients for synthesizing
guards to guarantee memory safety. Furthermore, as shown in our experimental
evaluation, the proposed synthesis algorithm can successfully synthesize guards
required for memory safety in real C applications and produces guards that closely
match hand-written code.
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1. int main(int argc, char** argv) {

2. char *command = NULL;

3. if (argc <= 1) {

4. error (0, 0, _("too few arguments"));

5. usage (EXIT_FAIL);

6. }

7. argv++; argc--;

8. while ((optc = getopt(argc, argv, ...)) != -1) {

9. switch(optc) {

10. case ’c’:

11. command = optarg; break;

12. ...

13. }

14. }

15. if (??) usage (EXIT CANCELED);

16. timeout = parse (argv[optind++]);

17. files = argv + optind;

18. if (!target_dir) {

19. if (! (mkdir_and_install ? install_in_parents(files[0], files[1])

20 : install_in_file(files[0], files[1])))

21. ...

22. }

23. }

Fig. 1. Motivating example

2 Motivating Example and Overview

We now present an overview of our approach using a motivating example. Con-
sider the code snippet shown in Figure 1, which is based on the Unix coreutils.
This program parses command line arguments with the help of a clib function
called getopt. Specifically, lines 8-14 process the optional command line argu-
ments while the code after line 16 performs the program’s required functionality.
Here, variable optind used at lines 16-17 is initialized by getopt to be the index
of the next element to be processed in argv. Looking at lines 16-23, the pro-
grammer expects the user to pass some required arguments and accesses them
at lines 16, 19, and 20. However, since the user may have forgotten to pass the
required arguments, the programmer must explicitly check whether the mem-
ory accesses at lines 16,19,20 are safe in order to prevent potentially disastrous
buffer overflow or underflow errors. If her assumptions are not met, the program-
mer wishes to terminate the program by calling the exit function called usage.
However, coming up with the correct condition under which to terminate the
program is tricky even on the small code snippet shown here: The programmer
has performed pointer arithmetic on argv at line 7, and the variable files is
an alias of argv at offset optind which has previously been modified at line 16.

Using our technique, the programmer can use the ?? predicate at line 15 to
indicate the unknown check required for ensuring memory safety of the remainder
of the program. Our technique then automatically synthesizes the guard (argc
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- optind) > 2 as a sufficient condition for the safety of all buffer accesses in
lines 16-23. Since the check inferred by our technique is correct-by-construction,
the remainder of the program is guaranteed to be memory safe.

Algorithm Overview. Our algorithm proceeds in two phases, consisting of con-
straint generation and solving. During constraint generation, we represent the
unknown guards using placeholder formulas χ and then generate verification con-
ditions over these unknown χ’s. The constraint solving phase, which employs an
iterative abduction-based algorithm, infers a concrete predicate for each χ that
makes all generated VCs valid. In addition to guaranteeing Pareto-optimality,
this approach does not require the user to specify templates describing the shape
of the unknown guards. Furthermore, since the abduced solutions imply the va-
lidity of the VCs, we do not need to externally validate the correctness of the
synthesized program using a separate verifier or model checker.

The constraint generation phase consists of two

p

Fig. 2. Auxiliary variables

key ingredients: First, to reason about out-of-
bounds memory accesses, we introduce ghost
variables that trackallocation sizes andpointer off-
sets. Specifically, for each pointer p, a variable p−

indicates the offset of p in the block of memory it
points to, and p+ tracks the size of p relative to p−. This is shown in Figure 2. These
ghost variables enable reasoning about pointer arithmetic in a precise way and al-
low us to generate symbolic verification conditions for memory safety.

The second key ingredient of constraint generation is a dual forwards and
backwards static analysis that simultaneously computes strongest postcondi-
tions and weakest preconditions. For each unknown guard to be synthesized, the
forwards analysis computes a formula φ representing facts that are known at
this program point, while the backwards analysis provides a weakest precondi-
tion ψ for the safety of the code protected by this unknown guard. Now, given
a statement S involving an unknown guard and the two formulas φ and ψ , our
technique generates the VC (φ ∧ χ(v)) → ψ where χ is a predicate represent-
ing the unknown guard and v represents all program variables in scope at this
program point. Here, formulas φ and ψ may also contain other unknowns.

In the constraint solving phase, we use an iterative, worklist-based algorithm
that employs abduction to solve for the unknown χ predicates. Given a set of
constraints C of the form (F1(χ1, . . . χi−1) ∧ χi)→ F2(χi+1, . . . χn) where F (χ)
denotes a formula over unknowns χ, we show how to infer a solution for each
χi such that all constraints in C become valid. Our algorithm guarantees the
Pareto-optimality of the solution relative to the inferred loop invariants. That
is, assuming a fixed set of loop invariants, if we pick any unknown guard and
try to improve it according to our cost metric, then the resulting set of guards
is no longer a solution to our synthesis problem.

Example Redux. We now go back to the code example from Figure 1 to
illustrate our approach. Initially, we assume that argv points to the beginning
of an allocated block of size argc; hence, our analysis starts with the fact:

argv+ = argc ∧ argv− = 0 (1)
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Next, we perform forward reasoning to compute the strongest postcondition
of (1) right before line 20. Here, the forward analysis yields the condition:

φ : argc > 0 ∧ argv+ = argc ∧ argv− = 1 ∧ optind ≥ 0 (2)

The first part of the conjunct (argc > 0) comes from the condition at line 3: Since
usage is an exit function, we know argc > 1 at line 6, which implies argc > 0
after line 7. The second part (argv+ = argc) states that the size of argv is still
argc; this is because argc is decremented while argv is incremented at line 7.
According to the third conjunct (argv− = 1), argv points to the second element
in the original argument array due to the pointer increment at line 7. Finally, the
last conjunct (optind ≥ 0) is a postcondition established by the call to getopt.

Next, we focus on the backwards analysis. To guarantee the safety of the buffer
access files[1] at line 19, we need 1 < files+ and 1 ≥ −files− to ensure there
are no buffer overflows and underflows respectively. Using similar reasoning for
the accesses files[0] and argv[optind++], our analysis generates the following
necessary condition for the safety of the code after line 15:

optind < argv+ ∧ optind ≥ −argv− ∧
ψ : target dir = 0→ (1 < argv+ − optind− 1) ∧

target dir = 0→ 0 ≥ −argv− − optind− 1)
(3)

Observe that files− and files+ do not appear in this formula because the
backwards analysis relates the size and offset of files to those of argv when
computing the weakest precondition of files = argv + optind at line 17. Now,
to synthesize the unknown guard at line 15, we generate the following constraint:

(φ ∧ χ(v))→ ψ (4)

where φ and ψ come from Equations 2 and 3, χ is the unknown guard, and v
represents program variables in scope at line 15. Note that, since argv−, argv+

etc. are ghost variables, they are not allowed to appear in our solution for χ.
Now, inferring a formula to plug in for χ that makes Equation 4 valid is a

logical abduction problem. By using abduction to solve for χ, we obtain the
solution argc - optind > 2. Observe that there are other guards that also
guarantee memory safety in this example, such as:

(S1) argc > optind ∧ (target dir = 0→ argc− optind > 2), or
(S2) argc = 4 ∧ optind = 1

However, both of these solutions are undesirable because (S1) is overly compli-
cated, while (S2) is not sufficiently general.

3 Language and Preliminaries

We describe our techniques using the small imperative language given in Fig-
ure 3. Here, a program takes inputs v and consists of one or more statements. We
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Program P := λv. S
Guard G := ??i | C
Statement S := skip | v := E | S1;S2 | [p] := alloc(E) | [p1] := [p2]⊕E

| access([p], E) | if(G) then S1 else S2;
| while(C) do S | while(C∧??i) do S

Conditional C := E1 comp E2 (comp ∈ {<,>,=}) | C1 ∧ C2 | C1 ∨ C2 | ¬C
Expression E := int | v | E1 + E2 |E1 − E2 | E1 ·E2

Fig. 3. Language used for the formal development

syntactically differentiate between scalar variables v and pointers [p], which are
always written inside brackets. Statements include skip, scalar assignments (v :=
E), sequencing, memory allocations ([p] = alloc(E)), and pointer arithmetic
([p1] = [p2]⊕E) which makes p1 point to offset E in the memory block pointed
to by [p2]. The statement access([p], E) accesses the E’th offset of [p]. Since our
main concern is to guarantee the safety of memory accesses, we use the access
statement to model both array reads and writes. In particular, access([p], E) fails
if E is not a valid offset in the memory region pointed to by E. We say that
an access is safe if it can never fail in any execution; otherwise, it is unsafe. A
program P is memory-safe if all accesses in P are safe.

In this language, unknown predicates ??i occur either as tests in if statements
or as continuation conditions of while loops. We say a guard G1 is an ancestor
of guard G2 if G2 is nested inside G1; conversely, we say G2 is a descendant of G1.
We call a program complete if it does not contain any unknown guards. Given
a program P and a mapping σ from unknown guards to concrete predicates, we
write P [σ] to denote the program obtained by substituting each ??i with σ(??i).

Definition 1. Mapping σ is a solution to the guard synthesis problem defined
by program P iff (i) P [σ] is a complete and memory-safe program, and (ii)
∀v ∈ dom(σ). σ(v) �⇒ false.

According to the second condition, a valid solution cannot instantiate any
unknown predicate with false. Hence, the synthesis problem is unsolvable if we
cannot guarantee memory safety without creating dead code.

Definition 2. Given solutions σ and σ′ to the synthesis problem, we say that
σ refines σ′, written σ′ . σ, if for some unknown χ ∈ dom(σ), we have either
(i) σ′(χ)⇒ σ(χ) and σ(χ) �⇒ σ′(χ), or (ii) |vars(σ(χ))| < |vars(σ′(χ))|.

In other words, solution σ refines σ′ if it improves some guard either in terms of
generality or simplicity.

Definition 3. Solution σ is a Pareto-optimal solution to the synthesis problem
if for all other solutions σ′, we have σ′ . σ.

Intuitively, this means that, if we take solution σ and try to improve any
guard in σ according to our cost metric, then the resulting mapping is no longer
a solution. In the rest of the paper, we use the word “optimality” to mean
Pareto-optimality in the above sense.
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(1)
φ, ψ � skip : φ, ψ, ∅

(2)
φ′ = ∃v′.(v = E[v′/v] ∧ φ[v′/v])
φ, ψ � v := E : φ′, ψ[E/v], ∅

(3)
φ, ψ1 � S1 : φ1, ψ2, C1 φ1, ψ � S2 : φ2, ψ1, C2

φ, ψ � S1;S2 : φ2, ψ2, C1 ∪ C2

(4)
φ, ψ � p− := 0; p+ := E : φ′, ψ′, ∅
φ, ψ � [p] := alloc(E) : φ′, ψ′, ∅

(5)

φ, ψ � (p−1 := p−2 + E) : φ1, ψ1, ∅
φ1, ψ1 � (p+1 := p+2 − E) : φ2, ψ2, ∅
φ, ψ � [p1] := [p2]⊕E : φ2, ψ2, ∅

(6)
ϕsafe = (E ≥ −p− ∧E < p+)

φ, ψ � access([p], E) : φ ∧ ϕsafe, ψ ∧ ϕsafe, ∅

(7a)

φ ∧ C,ψ � S1 : φ1, ψ1, C1 φ ∧ ¬C, ψ � S2 : φ2, ψ2, C2
ψ′ = (C → ψ1) ∨ (¬C → ψ2)

φ, ψ � if(C) then S1 else S2 : φ1 ∨ φ2, ψ′, C1 ∪ C2

(7b)

φ ∧ χi(v), true � S1 : , ϕ, C1
VC = (φ ∧ χi(v)→ ϕ)

φ ∧ χi(v), ψ � S̃1 : φ1, ψ1,
φ ∧ ¬χi(v), ψ � S2 : φ2, ψ2, C2

ψ′ = (χi(v)→ ψ1) ∧ (¬χi(v)→ ψ2)

φ, ψ � if(??i) then S1 else S2 : φ1 ∨ φ2, ψ′,VC ∪ C1 ∪ C2

(8a)
I ∧ C, I � S : , I ′, C I ∧ C ⇒ I ′

φ, ψ � while(C) do S : I ∧ ¬C, I,C

(8b)

, I � S̃ : , I ′, I ∧ C ⇒ I ′

I ∧ C ∧ χi(v), true � S : , ψ, C
VC = (I ∧ C ∧ χi(v)→ ψ)

φ, ψ � while(C∧??i) do S : I ∧ ¬(C ∧ χi(v)), I,C ∪VC

(9)
true, true � S : φ, ψ, C
� λv.S : φ, ψ,ψ ∪ C

Fig. 4. Inference Rules for Constraint Generation

4 Constraint Generation

The constraint generation phase is shown in Figure 4 as inference rules of the
form φ, ψ 
 S : φ′, ψ′, C where S is a statement, φ, ψ, φ′, ψ′ are formulas, and C
is a set of constraints. The meaning of this judgment is that, if all constraints
in C are valid, then {φ}S{φ′} and {ψ′}S{ψ} are valid Hoare triples. We call the
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computation of postcondition φ′ from φ the forward analysis and the computa-
tion of precondition ψ′ from ψ the backward analysis. The constraints C track
assumptions about unknown predicates that must hold to ensure memory safety.

Since some of the rules in Figure 4 describe standard pre- and post-condition
computation, we only explain some of these rules. Rule (4) for memory allocation
[p] = alloc(E) uses ghost variables p− and p+. Since [p] points to the beginning of
a memory block of size E, the allocation has the effect of assigning p− to 0 and p+

to E. Hence, φ′ and ψ′ are obtained by computing the strongest postcondition of
φ and weakest precondition of ψ with respect to the statement p− := 0; p+ := E.

Rule (5) for pointer arithmetic computes the effect of this statement on p−1
and p+1 . Since [p2] points to offset p−2 in memory block M , [p1] points to offset
p−2 +E withinM . Hence, we obtain φ1 as sp(p

−
1 := p−2 +E, φ) and ψ1 as wp(p

−
1 :=

p−2 +E,ψ). Similarly, φ2 = sp(p+1 := p+2 −E, φ1) and ψ2 = wp(p+1 := p+2 −E,ψ1).
Rule (6) describes memory accesses. To guarantee that ψ holds after the

memory access, expression E must evaluate to a valid offset in the memory
block pointed to by [p]. Using ghost variables p− and p+, we can express this as
ϕsafe ≡ E < p+ ∧ E ≥ −p− Hence, the weakest precondition of ψ with respect
to the access statement is ψ ∧ ϕsafe.

Constraint generation for conditionals with unknown guards is given in Rule
(7b). The first line of this rule computes a weakest sufficient condition for en-
suring memory safety of statement S1. Here, we compute the precondition of S1

with respect to true rather than ψ because the unknown guard is only required
to guarantee the safety of S1 rather than the remainder of the entire program.
Thus, the formula ϕ computed here represents the weakest sufficient condition
for ensuring memory safety of S1. When we analyze S1, observe that the forward
analysis propagates φ ∧ χi(v) as the precondition of S1; hence, statement pre-
conditions computed by the forward analysis may refer to unknown predicates
χi. The constraints C1 obtained in this rule describe the restrictions that must
be satisfied by the unknown guards nested inside S1.

The second line in rule (7b) generates a constraint (VC) on the unknown
predicate χi. Specifically, VC stipulates that the conjunction of the unknown
guard χi and the precondition φ should be strong enough to imply the safety of
memory accesses within S1. Note that the generated VC may contain multiple
unknown predicates since both φ and ϕ may refer to other χj ’s.

The third line in rule (7b) uses the notation S̃, which denotes statement S
with each access([p], E) statement within S replaced by skip. Here, we analyze
statement S1 a second time but with two important differences from our previous
analysis. First, since we consider S̃1, we ignore any memory accesses within S1.
Second, we compute the weakest precondition of S̃1 with respect to ψ rather than
true because we need to ensure the safety of memory accesses that come after
S1. However, we ignore all memory accesses within S1 because the synthesized
guard already ensures the safety of these accesses. Also, observe that this rule
discards constraints generated when analyzing S̃1, which is sound because any
constraints generated while analyzing S̃1 are trivially valid.
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Another important point to note about rule (7b) is that the backwards anal-
ysis propagates the constraint (χi(v) → ψ1) ∧ (¬χi(v) → ψ2) as the weakest
precondition for the if statement. Hence, statement postconditions computed by
the backwards analysis may also refer to unknown predicates.

Example 1. Consider the following code example:

1. [p] := alloc(n); [q] := alloc(n); [p] := [p]⊕ 1;
2. if(??1) then
3. n := n+ 1; access([p], 3);
4. if(??2) then access([q], n− 2) else skip
5. else skip

In the forward direction, our analysis computes the following precondition φ
for the if statement at line 2: φ : p− = 1 ∧ p+ = n − 1 ∧ q− = 0 ∧ q+ = n.
Before the assignment at line 3, the forwards analysis computes the precondition
χ1(n)∧p− = 1∧p+ = n−1∧q− = 0∧q+ = n where χ1 denotes unknown guard
??1 and n is the only scalar variable in scope at this point. For the if statement
at line 4, we have the following precondition:

∃n′. (χ1(n
′) ∧ n = n′ + 1 ∧ p− = 1 ∧ p+ = n′ − 1

∧ q− = 0 ∧ q+ = n′ ∧ p+ > 3 ∧ p− ≥ −3)
Note that, since there is an assignment to n at line 3, the variable n inside the
unknown predicate χ1(n) gets substituted by n′.

Now, in the backwards direction, the precondition for the then branch of the
second if statement is (n− 2) < q+ ∧ (n− 2) ≥ −q−. Hence, when analyzing the
if statement at line 4, we generate the following VC:

VC2 :
(χ2(n) ∧ ∃n′. (χ1(n

′) ∧ n = n′ + 1 ∧ p− = 1 ∧ p+ = n′ − 1 ∧ q− = 0
∧ q+ = n′ ∧ p+ > 3 ∧ p− ≥ −3))→ ((n− 2) < q+ ∧ (n− 2) ≥ −q−)

where χ2 represents ??2 and the right-hand-side of the implication is the safety
precondition for the then branch. For the if statement at line 2, the backwards
analysis computes the precondition for the then branch as ϕ : 3 < p+∧3 ≥ −p−.
Using ϕ and formula φ obtained through the forward analysis, we generate the
following VC for the if statement at line 2:

VC1 : (χ1(n) ∧ p− = 1 ∧ p+ = n− 1 ∧ q− = 0 ∧ q+ = n) → (3 < p+ ∧ 3 ≥ −p−)
Hence, our algorithm generates the constraints VC1 ∪ VC2.

Continuing with the inference rules in Figure 4, rules (8b) and (8a) describe
the analysis of while loops with and without unknown safety guards respectively.
Rule (8a) gives the standard Hoare rule for while loops, asserting that I is an
inductive loop invariant. Since the automatic inference of loop invariants is an
orthogonal problem, this paper assumes that loop invariants are provided by
an oracle, and our implementation uses standard abstract interpretation based
techniques for loop invariant generation.

In rule (8b), our goal is to infer an additional guard as part of the loop
continuation condition such that all memory accesses within the loop body are
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safe. As in rule (8a), the first line of rule (8b) asserts that I is inductive. However,

an important difference is that we check the inductiveness of I with respect to S̃
rather than S because I is not required to be strong enough to prove the safety
of memory accesses inside the loop body. In fact, if I was strong enough to prove
memory safety, this would mean the additional unknown guard is unnecessary.

The last two lines of rule (8b) compute the safety precondition ψ for the loop
body (i.e., ψ = wp(true, S)) and generate the constraint VC : I∧C∧χi(v)→ ψ.
In other words, together with continuation condition C and known loop invariant
I, unknown predicate χi should imply the memory safety of the loop body.

Example 2. Consider the following code snippet:

1. [p] = alloc(n); i = 0;
2. while(true ∧ ??1) do
3. access([p], 1); [p] = [p]⊕ 1; i = i+ 1;

Assume we have the loop invariant I : p− + p+ = n ∧ i ≥ 0 ∧ i = p−. The
safety precondition ψ for the loop body is 1 < p+ ∧ 1 ≥ −p−. Hence, rule (8b)
from Figure 4 generates the following verification condition:

(χ1(i, n) ∧ p− + p+ = n ∧ i ≥ 0 ∧ i = p−)→ (1 < p+ ∧ 1 ≥ −p−)
The last rule in Figure 4 generates constraints for the entire program. Since

we add the program’s weakest precondition to C, the synthesis problem has a
solution only if all accesses that are not protected by unknown guards are safe.

5 Constraint Solving

The rules described in Section 4 generate constraints of the form:

Ci : (F1(χ1, . . . χi−1) ∧ χi(v))→ F2(χi+1, . . . χn) (5)

where F1 and F2 are arbitrary formulas containing program variables and un-
knowns. In each constraint, there is exactly one key unknown χi that does not
appear inside boolean connectives or quantifiers. Hence, we refer to Ci as the
constraint associated with χi (or the χi-constraint). Also, the only unknowns
appearing on the right hand side of an implication (i.e., inside F2) in a χi-
constraint represent unknown guards that are syntactically nested inside χi.
Hence, we refer to χi+1, . . . χn as the descendants of Ci, denoted Descends(Ci).
In contrast, the unknowns that appear inside F1 are either ancestors of χi or
appear in the code before χi. We say that Ci sequentially depends on χj if χj
appears inside F1 and is not an ancestor of χi. We write SeqDep(Ci) to denote
the set of χj-constraints such that Ci is sequentially dependent on χj .

Example 3. Consider the following code snippet:

1. [a] := alloc(x);
2. if(??1) then access([a], 1) else skip
3. if(??2) then
4. if(??3) then access([a], x− 3); [b] := alloc(4); else [b] := alloc(2);
5. access([b], 3);
6. else skip
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Let χ1, χ2, χ3 denote the unknowns ??1, ??2, and ??3, and let Ci denote each χi
constraint. Here, we have:

C1 : (a−=0 ∧ a+=x ∧ χ1(x))→ (1 < a+ ∧ 1 ≥ −a−)
C2 : (a−=0 ∧ a+=x ∧ χ1(x) ∧ χ2(x))→ ((χ3(x)→ 3 < 4) ∧ (¬χ3(x)→ 3 < 2))
C3 : (a−=0 ∧ a+=x ∧ χ1(x) ∧ χ2(x) ∧ χ3(x))→ (x− 3 < a+ ∧ x− 3 ≥ −a−)

Therefore, Descends(C1) = ∅, Descends(C2) = {C3}, and Descends(C3) = ∅.
Also, SeqDeps(C1) = ∅, SeqDeps(C2) = {C1}, SeqDeps(C3) = {C1}.

Our constraint solving algorithm is given in Figure 5. A key underlying insight
is that we only solve a constraint Ci when all sequential dependencies of Ci are
resolved. The intuition is that if χi sequentially depends on χj , χj will appear in
a χi-constraint, but not the other way around. Hence, by fixing the solution for
χj before processing χi, we cannot break the optimality of the solution for χj .

The Solve algorithm shown in Figure 5 takes as input constraints C and
returns a mapping S from each unknown χ to a concrete predicate or ∅ if no
solution exists. Initially, we add all constraints C to worklist W and initialize
Resolved to ∅. In each iteration of the Solve loop, we dequeue constraints Δ
that have their sequential dependencies resolved (line (3)) and substitute any
resolved unknowns in Δ with the solution given by S, yielding a new set Δ′ (line
4). Hence, a χi-constraint in Δ′ does not contain any unknowns that χi sequen-
tially depends on. Now, to solve Δ′, we first obtain a sound, but not necessarily
optimal, solution using the function SolveInit. In particular, although the so-
lutions returned by SolveInit may be stronger than necessary, we iteratively
weaken this initial solution using Weaken until we obtain an optimal solution.

The procedure SolveInit processes constraints C top-down, starting with the
outermost guard χi. In each iteration, we pick an unsolved constraint Ci that has
only one unknown on the left-hand side of the implication (line 13). However,
since we don’t yet have a solution for the unknowns V on the right-hand side,
we strengthen Ci to Φ by universally quantifying V (line 16).1 Observe that the
universal quantification of V has the same effect as treating any unknown guard
inside χi as a non-deterministic choice. The resulting constraint Φ is of the form
(χi(v) ∧ φ1) → φ2 where φ1 and φ2 do not contain any unknowns; hence, we
can solve for unknown χi using standard logical abduction. In the algorithm of
Figure 5, this is done by calling an abduction procedure calledAbduce (line 17).
We do not describe the Abduce procedure in this paper and refer the interested
reader to [12] for a description of an abduction algorithm which computes a
logically weakest solution containing a fewest number of variables. Now, given
solution γ for χi, we add it to our solution set S and eliminate unknown χi from
other constraints in C using the Substitute procedure.

Because of the universal quantification of the unknowns on the right-hand side,
the solution S0 returned by SolveInit may be stronger than necessary. Hence,
procedure Weaken iteratively weakens the initial solution until we obtain an
optimal solution. In contrast to SolveInit, Weaken processes the constraints

1 Recall that ∀χj .Φ ≡ Φ[true/χj ] ∧ Φ[false/χj ].
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procedure Solve(C):
input: set of constraints C
output: mapping S from each χi to γ or ∅ if no solution exists

(1) Resolved := ∅; S:= ∅; W := C
(2) while(W �= ∅ )
(3) Δ := {Ci | Ci ∈ W ∧ SeqDep(Ci) ⊆ Resolved }
(4) W := W −G
(5) Δ′ := Substitute(Δ,S)
(6) S0 := SolveInit(Δ′)
(7) S := Weaken(Δ′, S0, S, Resolved)
(8) if(S = ∅) return ∅
(9) Resolved := Resolved � Δ
(10) return S;

procedure SolveInit(C):
(11) S := ∅
(12) while(C �= ∅)
(13) let Ci ∈ C with one unknown χ on LHS
(14) C := C − Ci
(15) V := unknowns of Ci on RHS
(16) Φ := ∀V.Ci
(17) γ := Abduce(Φ)
(18) S := S � [χ �→ γ]
(19) C := Substitute(C, S)
(20) return S

procedure Weaken(Δ,S, S0, Resolved)
(21) Done := {Δi | Δi ∈ Δ ∧ Descends(Δi) = ∅}
(22) Resolved := Resolved � Done

(23) S := S � {[χi �→ γi] | Ci ∈ Done ∧ S0(χi) = γi}
(24) Δ := Δ− Done; S0 := S0− Done

(25) while(Δ �= ∅)
(26) let Cur ∈ Δ s/t Descends(Cur) ⊆ Resolved

(27) let χ = Unknown(Cur)
(28) Δ := Δ− Cur; S0 := S0 − χ
(29) θ := Cur �{Ci|Ci ∈ Resolved ∧χ ∈ Unknowns(Ci) }
(30) θ′ := Substitute(S � S0)
(31) γ := Abduce(θ′)
(32) if Unsat(γ) return ∅
(33) S := S � [χ �→ γ]
(34) Resolved := Resolved � Cur

(35) return S

Fig. 5. The constraint solving algorithm

bottom-up, starting with the innermost guard first. Specifically, the solution
computed by SolveInit for the innermost guard χi cannot be further weakened,
as it is not possible to obtain a weaker solution for χi by plugging in weaker
solutions for the unknowns appearing on the left-hand side of a χi-constraint.
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Hence, we add all constraints with no descendants inΔ to Resolved and update
S with the corresponding solutions given by S0 (lines 21-23).

The while loop in lines 25-34 iterates over the constraints bottom-up and,
in each iteration, picks a χ-constraint Cur all of whose descendants have been
resolved (line 26). Now, the solution given by S0 for χ could be stronger than
necessary; thus, we would like to weaken it using the new optimal solutions
for χ’s descendants. However, since χ will appear on the left-hand side of a
constraint Ci associated with a descendant χi of χ, we need to take care not to
invalidate the solution for χi as we weaken χ. Hence, at line 29, we collect in
set θ all resolved constraints in which χ appears. The idea here is that, when
we abduce a new solution for χ, we will simultaneously solve all constraints in
θ so that we preserve existing solutions for χ’s descendants. Now, to solve for
χ using abduction, we first eliminate all unknowns in θ except for χ. For this
purpose, we substitute all resolved unknowns in θ with their solution given by
S (line 30). However, observe that there may also be unknowns in θ that have
not yet been resolved; these unknowns correspond to ancestors of χ, which only
appear (unnegated) on the outerlevel conjunction of the left-hand side of the
constraints in θ. Hence, to eliminate the unresolved unknowns, we will use the
initial solution given by S0 (also line 30). Observe that we can do this without
undermining optimality because we will later only further weaken the solutions
given by S0, which cannot cause us to further weaken the solution for χ.

After performing the substitution at line 30, the set of constraints θ′ only
contains one unknown χ, which we can now solve using standard abduction
(line 31).2 If the resulting solution γ is false, this means our synthesis problem
does not have a solution. Otherwise, we add the mapping χ �→ γ to our solution
set and continue until all constraints in θ have been processed.

Let us call a solution S to the synthesis problem optimal relative to a set of
loop invariants if, among the set of solutions that any algorithm can generate
using these loop invariants, S is optimal. We have:

Theorem 1. Consider program P such that 
 P : φ, ψ, C according to Figure 4,
and let S be the result of Solve(C). If S �= ∅, then P [S] is memory safe. Fur-
thermore, S is an optimal solution to the synthesis problem defined by P relative
to the loop invariants used during constraint generation.

Example 4. Consider the constraints VC1 and VC2 from Example 1. Here, nei-
ther VC1 nor VC2 have sequential dependencies, and since VC1 contains only
one unknown, we first solve for χ1 in SolveInit, for which abduction yields the
solution n > 4. Next, we plug this solution into VC2 (renaming n to n′), which
yields the following constraint in Prenex Normal Form:

∀n′.(n′ > 4 ∧ χ2(n) ∧ n = n′ + 1 ∧ p− = 1 ∧ p+ = n′ − 1 ∧ q− = 0 ∧ q+ = n′

∧ p+ > 3 ∧ p− ≥ −3)→ (n− 2) < q+ ∧ (n− 2) ≥ −q−)

2 Observe that we can simulatenously solve all constraints in θ using abduction because
a pair of constraints of the form χ∧φ1 ⇒ φ2 and χ∧ψ1 ⇒ ψ2 (where the φ’s and ψ’s
are unknown free) can be rewritten as (χ∧φ1 ∧ψ1)⇒ (φ2 ∧ψ2), which corresponds
to a standard abduction problem.
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Program Lines # holes Time (s) Memory Synthesis successful? Bug?

Coreutils hostname 160 1 0.15 10 MB Yes No

Coreutils tee 223 1 0.84 10 MB Yes Yes

Coreutils runcon 265 2 0.81 12 MB Yes No

Coreutils chroot 279 2 0.53 23 MB Yes No

Coreutils remove 710 2 1.38 66MB Yes No

Coreutils nl 758 3 2.07 80 MB Yes No

SSH - sshconnect 810 3 1.43 81 MB Yes No

Coreutils mv 929 4 2.03 42 MB Yes No

SSH - do authentication 1,904 4 3.92 86 MB Yes Yes

SSH - ssh session 2,260 5 4.35 81 MB Yes No

Fig. 6. Experimental benchmarks and results

Since VC2 has only one unknown left, we solve it using Abduce and obtain
χ2(n) = true. Next, we attempt to weaken the solution for χ1 in Weaken, but
since χ2 does not appear on the right hand side of VC1, we cannot further weaken
the solution for χ1. Hence, we obtain the solution [χ1 �→ n > 4, χ2 �→ true].

Example 5. Consider constraints C1, C2, and C3 from Example 3. Since C1 does
not have sequential dependencies, we first solve C1 and obtain the solution χ1 =
(x > 1). In the next iteration, both C2 and C3 have their sequential dependencies
resolved; hence we plug in x > 1 for χ1 in C2 and C3. In SolveInit, we first
solve C2 since it now contains only one unknown (χ2) on the left hand side. When
we universally quantify χ3 on the right hand side, Abduce yields the solution
χ2 = false. In the next iteration of SolveInit, we obtain the solution true for
χ3. Observe that our initial solution for χ2 is stronger than necessary; hence we
will weaken it. In the procedureWeaken, we simultaneously solve constraints C2
and C3, using existing solutions for χ1 and χ3. Abduce now yields χ2 = x > 2.
Hence, the final solution is [χ1 = x > 1, χ2 = x > 2, χ3 = true].

Example 6. For the constraint generated in Example 2, the Solve procedure
computes the solution χ1(i, n) = i < n− 1.

6 Implementation and Evaluation
We implemented a prototype tool for synthesizing safety guards for C programs.
Our tool is based on the SAIL infrastructure [13] and uses the Mistral SMT
solver [12] for solving abduction problems in linear integer arithmetic.

We evaluated our tool on ten benchmark programs written in C. As shown in
Figure 6, all of our benchmarks are taken either from the Unix coreutils, which
implements basic command line utilities for Unix [14], or OpenSSH, which pro-
vides encrypted communication sessions based on the SSH protocol [15]. For each
benchmark program, we manually removed 1-5 safety guards from the source
code and then used our algorithm to infer these missing guards. 3 In total, we
used our tool to synthesize 27 different safety guards.

3 The URL http://www.cs.utexas.edu/~tdillig/cav14-benchmarks.tar.gz con-
tains all benchmarks, where each missing guard is indicated with SYN.



Optimal Guard Synthesis for Memory Safety 505

The results of our experimental evaluation are shown in Figure 6. Our tool
was able to successfully synthesize all of the missing guards present in these
benchmarks. For 23 of these 27 missing guards, our tool inferred the exact same
predicate that the programmer had originally written, and for 4 out of the 27
missing guards, it inferred a syntactically different but semantically equivalent
condition (e.g., our tool synthesized the guard x �= 0 when the programmer had
originally written x > 0 but x is already known to be non-negative). In two
applications (Coreutils tee and SSH do authentication), the guards synthesized
by our tool did not match the guards in the original program. However, upon
further inspection, we found that both of these programs were in fact buggy.
For example, in Coreutils tee, the program could indeed access the argv array
out-of-bounds. We believe that the existence of such bugs in even extremely
well-tested applications is evidence that writing memory safe code is hard and
that many programmers can benefit from our guard synthesis technique.

As shown in Figure 6, the running time of our algorithm ranges from 0.15 sec-
onds to 4.35 seconds with an average memory consumption of 49 MB. We believe
these results suggest that our approach can be integrated into the development
process, helping programmers write safe-by-construction low level code.

7 Related Work

Program Synthesis. The last few years have seen a flurry of activity in
constraint-based software synthesis [9, 10, 16, 17]. As the first abduction-based
approach to synthesis, our work is algorithmically very different from prior meth-
ods in this area. A concrete benefit is that, unlike prior constraint-based ap-
proaches to synthesis [10, 11, 18, 19], our method does not require a template
for the expressions being synthesized. A second benefit is that we can show the
synthesized expressions to be optimal relative to loop invariants.

There are a few approaches to synthesis that consider optimality as an ob-
jective [20–23]. However, in these papers, optimality is defined with respect to
an explicit quantitative aspect of program executions, for example execution
time. In contrast, in the current work, the cost metric is on the guards that we
synthesize; we want to infer guards that are as simple and as general as possible.

Program Analysis for Memory Safety. Memory safety is a core concern
in low-level programming, and there is a huge literature on program analysis
techniques to guarantee memory safety [3, 24–33]. While many of these tech-
niques can statically detect memory safety errors, they do not help the program-
mer write safe-by-construction code. Furthermore, unlike dynamic approaches to
memory safety [27, 28, 32, 33], our technique guarantees the absence of runtime
failures and does not require additional runtime book-keeping.

Abduction-based Verification. Many memory safety verifiers based on sep-
aration logic use abductive (or bi-abductive) reasoning for performing modular
heap reasoning [5, 34, 35]. In these approaches, abductive reasoning is used to
infer missing preconditions of procedures. A more algorithmic form of abduction
for first-order theories is considered in [12]. The abduction algorithm described
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in [12] computes a maximally simple and general solution and is used as a key
building block in the constraint solving phase of our synthesis algorithm. This
form of SMT-based abduction has also been used for loop invariant genera-
tion [6, 7] and for error explanation and diagnosis [36]. The contribution of the
present paper is to show how abduction can be used in program synthesis.
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Abstract. Modern architectures rely on memory fences to prevent undesired
weakenings of memory consistency. As the fences’ semantics may be subtle, the
automation of their placement is highly desirable. But precise methods for restor-
ing consistency do not scale to deployed systems code. We choose to trade some
precision for genuine scalability: our technique is suitable for large code bases.
We implement it in our new musketeer tool, and detail experiments on more
than 350 executables of packages found in Debian Linux 7.1, e.g. memcached
(about 10000 LoC).

1 Introduction

Concurrent programs are hard to design and implement, especially when running on
multiprocessor architectures. Multiprocessors implement weak memory models, which
feature e.g. instruction reordering, store buffering (both appearing on x86), or store
atomicity relaxation (a particularity of Power and ARM). Hence, multiprocessors allow
more behaviours than Lamport’s Sequential Consistency (SC) [20], a theoretical model
where the execution of a program corresponds to an interleaving of the different threads.
This has a dramatic effect on programmers, most of whom learned to program with SC.

Fortunately, architectures provide special fence (or barrier) instructions to prevent
certain behaviours. Yet both the questions of where and how to insert fences are con-
tentious, as fences are architecture-specific and expensive.

Attempts at automatically placing fences include Visual Studio 2013, which offers
an option to guarantee acquire/release semantics (we study the performance impact of
this policy in Sec. 2). The C++11 standard provides an elaborate API for inter-thread
communication, giving the programmer some control over which fences are used, and
where. But the use of such APIs might be a hard task, even for expert programmers. For
example, Norris and Demsky reported a bug found in a published C11 implementation
of a work-stealing queue [27].

We address here the question of how to synthesise fences, i.e. automatically place
them in a program to enforce robustness/stability [9,5] (which implies SC). This should
lighten the programmer’s burden. The fence synthesis tool needs to be based on a pre-
cise model of weak memory. In verification, models commonly adopt an operational
style, where an execution is an interleaving of transitions accessing the memory (as
in SC). To address weaker architectures, the models are augmented with buffers and
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queues that implement the features of the hardware. Similarly, a good fraction of the
fence synthesis methods, e.g. [23,18,19,24,3,10] (see also Fig. 2), rely on operational
models to describe executions of programs.

Challenges. Thus, methods using operational models inherit the limitations of methods
based on interleavings, e.g. the “severely limited scalability”, as [24] puts it. Indeed,
none of them scale to programs with more than a few hundred lines of code, due to the
very large number of executions a program can have. Another impediment to scalability
is that these methods establish if there is a need for fences by exploring the executions
of a program one by one.

Finally, considering models à la Power makes the problem significantly more diffi-
cult. Intel x86 offers only one fence (mfence), but Power offers a variety of synchron-
isation: fences (e.g. sync and lwsync), or dependencies (address, data or control). This
diversity makes the optimisation more subtle: one cannot simply minimise the number
of fences, but rather has to consider the costs of the different synchronisation mechan-
isms; it might be cheaper to use one full fence than four dependencies.

Our approach. We tackle these challenges with a static approach. Our choice of model
almost mandates this approach: we rely on the axiomatic semantics of [6]. We feel that
an axiomatic semantics is an invitation to build abstract objects that embrace all the
executions of a program.

Previous works, e.g. [30,5,9,10], show that weak memory behaviours boil down to
the presence of certain cycles, called critical cycles, in the executions of the program.
A critical cycle essentially represents a minimal violation of SC, and thus indicates
where to place fences to restore SC. We detect these cycles statically, by exploring an
over-approximation of the executions of the program.

Contributions. Our method is sound for a wide range of architectures, including x86-
TSO, Power and ARM; and scales for large code bases, such as memcached (about
10000 LoC). We implemented it in our new musketeer tool. Our method is the most
precise of the static analysis methods (see Sec. 2). To do this comparison, we implemen-
ted all these methods in our tool; for example, the pensieve policy [32] was designed
for Java only, and we now provide it for x86-TSO, Power and ARM. Thus, our tool
musketeer gives a comparison point for the field.

Outline. We discuss the performance impact of fences in Sec. 2, and survey related
work in Sec. 3. We recall our weak memory semantics in Sec. 4. We detail how we
detect critical cycles in Sec. 5, and how we place fences in Sec. 6. In Sec. 7, we compare
existing tools and our new tool musketeer. We provide the sources, benchmarks and
experimental reports online at http://www.cprover.org/wmm/musketeer.

2 Motivation

Before optimising the placement of fences, we investigated whether naive approaches
to fence insertion indeed have a negative performance impact. To that end, we meas-
ured the overhead of different fencing methods on a stack and a queue from the liblfds

http://www.cprover.org/wmm/musketeer
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Fig. 1. Overheads for the different fencing strategies

lock-free data structure package (http://liblfds.org). For each data structure, we built a
harness (consisting of 4 threads) that concurrently invokes its operations. We built sev-
eral versions of the above two programs:

– (M) with fences inserted by our tool musketeer;
– (P) with fences following the delay set analysis of the pensieve compiler [32],

i.e. a static over-approximation of Shasha and Snir’s eponymous (dynamic) ana-
lysis [30] (see also the discussion of Lee and Padua’s work [22] in Sec. 3);

– (V) with fences following the Visual Studio policy, i.e. guaranteeing acquire/release
semantics (in the C11 sense [2]), but not SC, for reads and writes ofvolatile vari-
ables (see http://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx, accessed
04-11-2013). On x86, no fences are necessary as the model is sufficiently strong
already; hence, we only provide data for ARM;

– (E) with fences after each access to a shared variable;
– (H) with an mfence (x86) or a dmb (ARM) after every assembly instruction that

writes (x86) or reads or writes (ARM) static global or heap data.

We emphasise that these experiments required us to implement (P), (E) and (V)
ourselves, so that they would handle the architectures that we considered. This means
in particular that our tool provides the pensieve policy (P) for TSO, Power and ARM,
whereas the original pensieve targeted Java only.
We ran all versions 100 times, on an x86-64 Intel Core i5-3570 with 4 cores (3.40 GHz)
and 4 GB of RAM, and on an ARMv7 (32-bit) Samsung Exynos 4412 with 4 cores
(1.6 GHz) and 2 GB of RAM.

For each program version, Fig. 1 shows the mean overhead w.r.t. the unfenced pro-
gram. We give the overhead in user time (as given by Linux time), i.e. the time spent
by the program in user mode on the CPU. We refer the reader to our study of the stat-
istical significance of these experiments (using confidence intervals) in the full version
of this paper [8]. Amongst the approaches that guarantee SC (i.e. all but V), the best
results were achieved with our tool musketeer.

http://liblfds.org
http://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx
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3 Related Work

authors tool model style objective
Abdulla et al. [3] memorax operational reachability
Alglave et al. [6] offence axiomatic SC

Bouajjani et al. [10] trencher operational SC
Fang et al. [15] pensieve axiomatic SC

Kuperstein et al. [18] fender operational reachability
Kuperstein et al. [19] blender operational reachability

Linden et al. [23] remmex operational reachability
Liu et al. [24] dfence operational specification
Sura et al. [32] pensieve axiomatic SC

Fig. 2. Fence synthesis tools

The work of Shasha and Snir [30]
is a foundation for the field of
fence synthesis. Most of the work
cited below inherits their notions
of delay and critical cycle. A delay
is a pair of instructions in a thread
that can be reordered by the under-
lying architecture. A critical cycle
essentially represents a minimal vi-
olation of SC. Fig. 2 classifies the
methods mentioned in this section
w.r.t. their style of model (operational or axiomatic). We report our experimental com-
parison of these tools in Sec. 7. Below, we detail fence synthesis methods per style. We
write TSO for Total Store Order, implemented in Sparc TSO [31] and Intel x86 [28].
We write PSO for Partial Store Order and RMO for Relaxed Memory Order, two other
Sparc architectures. We write Power for IBM Power [1].

Operational models. Linden and Wolper [23] explore all executions (using what they
call automata acceleration) to simulate the reorderings occuring under TSO and PSO.
Abdulla et al. [3] couple predicate abstraction for TSO with a counterexample-guided
strategy. They check if an error state is reachable; if so, they calculate what they call the
maximal permissive sets of fences that forbid this error state. Their method guarantees
that the fences they find are necessary, i.e., removing a fence from the set would make
the error state reachable again.

Kuperstein et al. [18] explore all executions for TSO, PSO and a subset of RMO, and
along the way build constraints encoding reorderings leading to error states. The fences
can be derived from the set of constraints at the error states. The same authors [19]
improve this exploration under TSO and PSO using an abstract interpretation they call
partial coherence abstraction, relaxing the order in the write buffers after a certain
bound, thus reducing the state space to explore. Liu et al. [24] offer a dynamic syn-
thesis approach for TSO and PSO, enumerating the possible sets of fences to prevent
an execution picked dynamically from reaching an error state.

Bouajjani et al. [10] build on an operational model of TSO. They look for minimum
violations (viz. critical cycles) by enumerating attackers (viz. delays). Like us, they
use linear programming. However, they first enumerate all the solutions, then encode
them as an ILP, and finally ask the solver to pick the least expensive one. Our method
directly encodes the whole decision problem as an ILP. The solver thus both constructs
the solution (avoiding the exponential-size ILP problem) and ensures its optimality.

All the approaches above focus on TSO and its siblings PSO and RMO, whereas we
also handle the significantly weaker Power, including quite subtle barriers (e.g. lwsync)
compared to the simpler mfence of x86.

Axiomatic models. Krishnamurthy et al. [17] apply Shasha and Snir’s method to single
program multiple data systems. Their abstraction is similar to ours, except that they do
not handle pointers.
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Lee and Padua [22] propose an algorithm based on Shasha and Snir’s work. They
use dominators in graphs to determine which fences are redundant. This approach was
later implemented by Fang et al. [15] in pensieve, a compiler for Java. Sura et al. later
implemented a more precise approach in pensieve [32] (see (P) in Sec. 2). They pair
the cycle detection with an analysis to detect synchronisation that could prevent cycles.

Alglave and Maranget [6] revisit Shasha and Snir for contemporary memory models
and insert fences following a refinement of [22]. Their offence tool handles snippets of
assembly code only, where the memory locations need to be explicitly given.

Others. We cite the work of Vafeiadis and Zappa Nardelli [35], who present an optim-
isation of the certified CompCert-TSO compiler to remove redundant fences on TSO.
Marino et al. [25] experiment with an SC-preserving compiler, showing overheads of
no more than 34%. Nevertheless, they emphasise that “the overheads, however small,
might be unacceptable for certain applications”.

4 Axiomatic Memory Model

mp
T0 T1

(a)x← 1 (c)r1← y
(b)y← 1 (d)r2← x

Final state? r1=1 ∧ r2=0

(a) Wx1

(b) Wy1

(c) Ry1

(d) Rx0

po
rf

po
fr

Fig. 3. Message Passing (mp)

Weak memory can occur as follows: a thread
sends a write to a store buffer, then a cache, and fi-
nally to memory. While the write transits through
buffers and caches, a read can occur before the
value is available to all threads in memory.

To describe such situations, we use the frame-
work of [6], embracing in particular SC, Sun TSO
(i.e. the x86 model [28]), and a fragment of Power.
The core of this framework consists of relations
over memory events.

We illustrate this framework using a litmus test
(Fig. 3). The top shows a multi-threaded program.
The shared variables x and y are assumed to be
initialised to zero. A store instruction (e.g. x ← 1 on T0) gives rise to a write event
((a)Wx1), and a load instruction (e.g. r1← y on T1) to a read event ((c)Ry1). The bot-
tom of Fig. 3 shows one particular execution of the program (also called event graph),
corresponding to the final state r1=1 and r2=0.

In the framework of [6], an execution that is not possible on SC has a cyclic event
graph (as the one shown in Fig. 3). A weaker architecture may relax some of the rela-
tions contributing to a cycle. If the removal of the relaxed edges from the event graph
makes it acyclic, the architecture allows the execution. For example, Power relaxes the
program order po (amongst other things), thereby making the graph in Fig. 3 acyclic.
Hence, the given execution is allowed on Power.

Formalisation. An event is a memory read or a write to memory, composed of a unique
identifier, a direction (R for read or W for write), a memory address, and a value. We
represent each instruction by the events it issues. In Fig. 3, we associate the store in-
struction x← 1 in thread T0 with the event (a)Wx1.
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A set of events E and their program order po form an event structure E � (E, po).
The program order po is a per-thread total order over E. We write dp (with dp ⊆ po)
for the relation that models dependencies between instructions. For instance, there is a
data dependency between a load and a store when the value written by the store was
computed from the value obtained by the load.

We represent the communication between threads via an execution witness X �
(co, rf), which consists of two relations over the events. First, the coherence co is a
per-address total order on write events which models the memory coherence widely
assumed by modern architectures. It links a write w to any write w′ to the same address
that hits the memory after w. Second, the read-from relation rf links a write w to a read r
such that r reads the value written by w. Finally, we derive the from-read relation fr from
co and rf. A read r is in fr with a write w if the write w′ from which r reads hits the
memory before w. Formally, we have: (r, w) ∈ fr � ∃w′.(w′, r) ∈ rf ∧ (w′, w) ∈ co.

In Fig. 3, the specified outcome corresponds to the execution below if each location
initially holds 0. If r1=1 in the end, the read (c) on T1 took its value from the write (b)
on T0, hence (b, c) ∈ rf. If r2=0 in the end, the read (d) took its value from the initial
state, thus before the write (a) on T0, hence (d, a) ∈ fr. In the following, we write rfe
(resp. coe, fre) for the external read-from (resp. coherence, from-read), i.e. when the
source and target belong to different threads.

SC x86 Power
poWR yes mfence sync
poWW yes yes sync, lwsync
poRW yes yes sync, lwsync, dp
poRR yes yes sync, lwsync, dp, branch;isync

Fig. 4. ppo and fences per architecture

Relaxed or safe. When a thread
can read from its own store buffer
[4] (the typical TSO/x86 scenario),
we relax the internal read-from,
that is, rf where source and target
belong to the same thread. When
two threads T0 and T1 can commu-
nicate privately via a cache (a case

of write atomicity relaxation [4]), we relax the external read-from rfe, and call the cor-
responding write non-atomic. This is the main particularity of Power and ARM, and
cannot happen on TSO/x86. Some program-order pairs may be relaxed (e.g. write-read
pairs on x86, and all but dp ones on Power), i.e. only a subset of po is guaranteed to oc-
cur in order. This subset constitutes the preserved program order, ppo. When a relation
must not be relaxed on a given architecture, we call it safe.

Fig. 4 summarises ppo per architecture. The columns are architectures, e.g. x86, and
the lines are relations, e.g. poWR. We write e.g. poWR for the program order between
a write and a read. We write “yes” when the relation is in the ppo of the architecture:
e.g. poWR is in the ppo of SC. When we write something else, typically the name of
a fence, e.g. mfence, the relation is not in the ppo of the architecture (e.g. poWR is
not in the ppo of x86), and the fence can restore the ordering: e.g. mfence maintains
write-read pairs in program order.

Following [6], the relation fence (with fence ⊆ po) induced by a fence is non-
cumulative when it only orders certain pairs of events surrounding the fence. The re-
lation fence is cumulative when it additionally makes writes atomic, e.g. by flushing
caches. In our model, this amounts to making sequences of external read-from and
fences (rfe; fence or fence; rfe) safe, even though rfe alone would not be safe. In Fig. 3,
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placing a cumulative fence between the two writes on T0 will not only prevent their re-
ordering, but also enforce an ordering between the write (a) on T0 and the read (c) on
T1, which reads from T0.

Architectures. An architecture A determines the set safeA of relations safe on A. Fol-
lowing [6], we always consider the coherence co, the from-read relation fr and the
fences to be safe. SC relaxes nothing, i.e. rf and po are safe. TSO authorises the re-
ordering of write-read pairs and store buffering but nothing else.

Critical cycles. Following [30,5], for an architecture A, a delay is a po or rf edge that
is not safe (i.e. is relaxed) on A. An execution (E,X) is valid on A yet not on SC iff
it contains critical cycles [5]. Formally, a critical cycle w.r.t. A is a cycle in po ∪ com,
where com � co ∪ rf ∪ fr is the communication relation, which has the following
characteristics (the last two ensure the minimality of the critical cycles): (1) the cycle
contains at least one delay for A; (2) per thread, (i) there are at most two accesses a and
b, and (ii) they access distinct memory locations; and (3) for a memory location �, there
are at most three accesses to � along the cycle, which belong to distinct threads.

Fig. 3 shows a critical cycle w.r.t. Power. The po edge on T0, the po edge on T1, and
the rf edge between T0 and T1, are all unsafe on Power. On the other hand, the cycle in
Fig. 3 does not contain a delay w.r.t. TSO, and is thus not a critical cycle on TSO.

To forbid executions containing critical cycles, one can insert fences into the pro-
gram to prevent delays. To prevent a po delay, a fence can be inserted between the two
accesses forming the delay, following Fig. 4. To prevent an rf delay, a cumulative fence
must be used (see Sec. 6 for details). For the example in Fig. 3, for Power, we need to
place a cumulative fence between the two writes on T0, preventing both the po and the
adjacent rf edge from being relaxed, and use a dependency or fence to prevent the po
edge on T1 from being relaxed.

5 Static Detection of Critical Cycles

We want to synthesise fences to prevent weak behaviours and thus restore SC. We
explained in Sec. 4 that we should place fences along the critical cycles of the program
executions. To find the critical cycles, we look for cycles in an over-approximation of all
the executions of the program. We hence avoid enumeration of all traces, which would
hinder scalability, and get all the critical cycles of all program executions at once. Thus
we can find all fences preventing the critical cycles corresponding to two executions in
one step, instead of examining the two executions separately.

To analyse a C program, e.g. on the left-hand side of Fig. 5, we convert it to a goto-
program (right-hand side of Fig. 5), the internal representation of the CProver frame-
work; we refer to http://www.cprover.org/goto-cc for details. The pointer analysis we
use is a standard concurrent points-to analysis that we have shown to be sound for our
weak memory models in earlier work [7]. A full explanation of how we handle pointers
is available in [8]. The C program in Fig. 5 features two threads which can interfere.
The first thread writes the argument “input” to x, then randomly writes 1 to y or reads
z, and then writes 1 to x. The second thread successively reads y, z and x. In the cor-
responding goto-program, the if-else structure has been transformed into a guard with

http://www.cprover.org/goto-cc
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void thread 1(int input )
{

int r1;
x = input ;
if (rand()%

y = 1;
else

r1 = z;
x = 1;

}

void thread 2()
{

int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;

}

thread 1
int r1;
x = input ;
Bool tmp;

tmp = rand();
[! tmp%
y = 1;
goto 2;

1: r1 = z;
2: x = 1;

end function

thread 2
int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;
end function

Fig. 5. A C program (left) and its goto-program (right)

the condition of the if followed by a goto construct. From the goto-program, we then
compute an abstract event graph (aeg), shown in Fig. 6(a). The events a, b1, b2 and
c (resp. d, e and f ) correspond to thread1 (resp. thread2) in Fig. 5. We only consider
accesses to shared variables, and ignore the local variables. We finally explore the aeg
to find the potential critical cycles.

An aeg represents all the executions of a program (in the sense of Sec. 4). Fig. 6(b)
and (c) give two executions associated with the aeg shown in Fig. 6(a). For readability,
the transitive po edges have been omitted (e.g. between the two events d′ and f ′). The
concrete events that occur in an execution are shown in bold. In an aeg, the events do
not have concrete values, whereas in an execution they do. Also, an aeg merely indic-
ates that two accesses to the same variable could form a data race (see the competing
pairs (cmp) relation in Fig. 6(a), which is a symmetric relation), whereas an execution
has oriented relations (e.g. indicating the write that a read takes its value from, see e.g.
the rf arrow in Fig. 6(b) and (c)). The execution in Fig. 6(b) has a critical cycle (with
respect to e.g. Power) between the events a′, b′2, d′, and f ′. The execution in Fig. 6(c)
does not have a critical cycle.

Full details of the construction of the aegs from goto-programs, including a se-
mantics of goto-programs in terms of abstract events, are available in the full version of
this paper [8]. Function calls are inlined for better precision. Currently, the implement-
ation does not handle recursion.
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(a) aeg of Fig. 5 (b) ex. with critical cycle (c) ex. without critical cycle

Fig. 6. The aeg of Fig. 5 and two executions corresponding to it

Loops and arrays. We explain how to deal with loops statically. If we build our aeg
directly following the cfg, with a pos back-edge connecting the end of the body to its
entry, we already handle most of the cases. Recall from Sec. 4 that in a critical cycle
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(2.i) there are two events per thread, and (2.ii) two events on the same thread target two
different locations. Let us analyse the cases.

The first case is an iteration i of this loop on which a critical cycle connects two
events (ai) and (bi). The critical cycle will be trivially captured by its static counterpart
that abstracts in particular these events with abstract events (a) and (b).

Now, for a given execution, if a critical cycle connects the event (ai) of an iteration
i to the event (bj) of a later iteration j (i.e., i ≤ j), then these events are abstracted
respectively by (a) and (b) in the aeg. As we do not evaluate the expressions, we
abstracted the loop guard and any local variable that would vary across the iterations.
Thus, all the iterations can be statically captured by one abstract representation of the
body of the loop. Then, thanks to the pos back-edge and the transitivity of our cycle
search, any critical cycle involving (ai) and (bj) is abstracted by a static critical cycle
relating (a) and (b), even though (b) might be before (a) in the body of the loop.

The only case that is not handled by this approach is when (ai) and (bj) are abstrac-
ted by the same abstract event, say (c). As the variables addressed by the events on the
same thread of a cycle need to be different, this case can only occur when (ai) and (bj)
are accessing an array or a pointer whose index or offset depends on the iteration. We
do not evaluate these offsets or indices, which implies that two accesses to two distinct
array positions might be abstracted by the same abstract event (c).

In order to detect such critical cycles, we copy the body of the loop and do not add a
pos back-edge. Hence, a static critical cycle will connect (c) in the first instance of the
body and (c) in the second instance of the body to abstract the critical cycle involving
(ai) and (bj). The back-edge is no longer necessary, as the abstract events reachable
through this back-edge are replicated in the second body. Thus, all the previous cases
are also covered.

We have implemented the duplication of the loop bodies only for loops that contain
accesses to arrays. In case of nested loops, we ensure that we duplicate each of the
sub-bodies only once in order to avoid an exponential explosion. This approach is again
sufficient owing to the maximum of two events per thread in a critical cycle and the
transitivity of po.

Pointers. We explain how to deal with the varying imprecision of pointer analyses in
a sound way. If we have a precise pointer analysis, we insert as many abstract events
as required for the objects pointed to. Similarly to array accesses, a pointer might refer
to two separate memory locations dynamically, e.g., if pointer arithmetic is used. If
such an access is detected inside a loop, the body is replicated as described above. If
the analysis cannot determine the location of an access, we insert an abstract event
accessing any shared variable. This event can communicate with any variable accessed
in other threads.

Cycle detection. Once we have the aeg, we enumerate (using Tarjan’s algorithm [34])
its potential critical cycles by searching for cycles that contain at least one edge that is
a delay, as defined in Sec. 4.
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min dp(e,g) + dp(f,h) + dp(f,g) + 3 · (f(e,f) + f(f,g) + f(g,h)) + 2 · (lwf(e,f) + lwf(f,g) + lwf(g,h))
s.t. cycle 1, delay (e, g): dp(e,g) + f(e,f) + f(f,g) + lwf(e,f) + lwf(f,g) ≥ 1

cycle 2, delay (f, g): dp(f,g) + f(f,g) + lwf(f,g) ≥ 1
cycle 3, delay (f, h): dp(f,h) + f(f,g) + f(g,h) + lwf(f,g) + lwf(g,h) ≥ 1
cycle 4, delay (g, h): f(g,h) ≥ 1

Fig. 7. Example of resolution with between

6 Synthesis

In Fig. 7, we have an aeg with five threads: {a, b}, {c, d}, {e, f, g, h}, {i, j} and {k, l}.
Each node is an abstract event computed as in the previous section. The dashed edges
represent the pos between abstract events in the same thread. The full lines represent
the edges involved in a cycle. Thus the aeg of Fig. 7 has four potential critical cycles.
We derive the set of constraints in a process we define later in this section. We now have
a set of cycles to forbid by placing fences. Moreover, we want to optimise the placement
of the fences.

Challenges. If there is only one type of fence (as in TSO, which only features mfence),
optimising only consists of placing a minimal amount of fences to forbid as many cycles
as possible. For example, placing a full fence sync between f and g in Fig. 7 might
forbid cycles 1, 2 and 3 under Power, whereas placing it somewhere else might forbid
at best two amongst them.

Since we handle several types of fences for a given architecture (e.g. dependencies,
lwsync and sync on Power), we can also assign some cost to each of them. For ex-
ample, following the folklore, a dependency is less costly than an lwsync, which is
itself less costly than a sync. Given these costs, one might want to minimise their sum
along different executions: to forbid cycles 1, 2 and 3 in Fig. 7, a single lwsync between
f and g can be cheaper at runtime than three dependencies respectively between e and
g, f and g, and f and h. However, if we had only cycles 1 and 2, the dependencies
would be cheaper. We see that we have to optimise both the placement and the type of
fences at the same time.

We model our problem as an integer linear program (ILP) (see Fig. 8), which we
explain in this section. Solving our ILP gives us a set of fences to insert to forbid
the cycles. This set of fences is optimal in that it minimises the cost function. More
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Input: aeg (�s,pos,cmp) and potential critical cycles C = {C1, ..., Cn}
Problem: minimise

∑
(l,t)∈potential-places(C) tl × cost(t)

Constraints: for all d ∈ delays(C)
(* for TSO, PSO, RMO, Power *)

if d ∈ poWR then
∑

e∈between(d) fe ≥ 1

if d ∈ poWW then
∑

e∈between(d) fe + lwfe ≥ 1

if d ∈ poRW then dpd +
∑

e∈between(d) fe + lwfe ≥ 1

if d ∈ poRR then dpd +
∑

e∈between(d) fe + lwfe +
∑

e∈ctrl(d) cfe ≥ 1

(* for Power *)
if d ∈ cmp then

∑
e∈cumul(d) fe +

∑
e∈cumul(d)∩¬poWR∩¬poRW lwfe ≥ 1

Output: the set actual-places(C) of pairs (l, t) s.t. tl is set to 1 in the ILP solution

Fig. 8. ILP for inferring fence placements

precisely, the constraints are the cycles to forbid, each variable represents a fence to
insert, and the cost function sums the cost of all fences.

6.1 Cost Function of the ILP

We handle several types of fences: full (f), lightweight (lwf), control fences (cf), and
dependencies (dp). On Power, the full fence is sync, the lightweight one lwsync. We
write T for the set {dp, f, cf, lwf}. We assume that each type of fence has an a priori
cost (e.g. a dependency is cheaper than a full fence), regardless of its location in the
code. We write cost(t) for t ∈ T for this cost.

We take as input the aeg of our program and the potential critical cycles to fence.
We define two sets of pairs (l, t) where l is a pos edge of the aeg and t a type of fence.
We introduce an ILP variable tl (in {0, 1}) for each pair (l, t).

The set potential-places is the set of such pairs that can be inserted into the program
to forbid the cycles. The set actual-places is the set of such pairs that have been set to
1 by our ILP. We output this set, as it represents the locations in the code in need of a
fence and the type of fence to insert for each of them. We also output the total cost of
all these insertions, i.e.

∑
(l,t)∈potential-places(C) tl× cost(t). The solver should minimise

this sum whilst satisfying the constraints.

6.2 Constraints in the ILP

We want to forbid all the cycles in the set that we are given after filtering, as explained
in the preamble of this section. This requires placing an appropriate fence on each delay
for each cycle in this set. Different delay pairs might need different fences, depending
e.g. on the directions (write or read) of their extremities. Essentially, we follow the table
in Fig. 4. For example, a write-read pair needs a full fence (e.g. mfence on x86, or sync
on Power). A read-read pair can use anything amongst dependencies and fences. Our
constraints ensure that we use the right type of fence for each delay pair.

Inequalities as constraints. We first assume that all the program order delays are in
pos and we ignore Power and ARM special features (dependencies, control fences and
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communication delays). This case deals with relatively strong models, ranging from
TSO to RMO. We relax these assumptions below.

In this setting, potential-places(C) is the set of all the pos delays of the cycles in
C. We ensure that every delay pair for every execution is fenced, by placing a fence on
the static pos edge for this pair, and this for each cycle given as input. Thus, we need at
least one constraint per static delay pair d in each cycle.

If d is of the form poWR, as (g, h) in Fig. 7 (cycle 4), only a full fence can fix
it (cf. Fig. 4), thus we impose fd ≥ 1. If d is of the form poRR, as (f, h) in Fig. 7
(cycle 3), we can choose any type of fence, i.e. dpd + cfd + lwfd + fd ≥ 1.

Our constraints cannot be equalities because it is not certain that the resulting system
would be satisfiable. To see this, suppose our constraints were equalities, and consider
Fig. 7 limited to cycles 2, 3 and 4. Using only full fences, lightweight fences, and
dependencies (i.e. ignoring control fences for now), we would generate the constraints
(i) lwf(f,g) + f(f,g) = 1 for the delay (f, g) in cycle 2, (ii) dp(f,h) + lwf(f,h) + f(f,h) +
lwf(g,h) + f(g,h) = 1 for the delay (f, h) in cycle 3, and (iii) f(g,h) = 1 for the delay
(g, h) in cycle 4.

Preventing the delay (g, h) in cycle 4 requires a full fence, thus f(g,h) = 1. By
the constraint (ii), and since f(g,h) = 1, we derive f(f,g) = 0 and lwf(f,g) = 0. But
these two equalities are not possible given the constraint (i). By using inequalities, we
allow several fences to live on the same edge. In fact, the constraints only ensure the
soundness; the optimality is fully determined by the cost function to minimise.

Delays. are in fact in po+
s , not always in pos: in Fig. 7, the delay (e, g) in cycle 1 does

not belong to pos but to po+
s . Thus given a po+

s delay (x, y), we consider all the pos
pairs which appear between x and y, i.e.: between(x, y) � {(e1, e2) ∈ pos | (x, e1) ∈
po∗s∧(e2, y) ∈ po∗s}. For example in Fig. 7, we have between(e, g) = {(e, f), (f, g)}.
Thus, ignoring the use of dependencies and control fences for now, for the delay (e, g)
in Fig. 7, we will not impose f(e,g) + lwf(e,g) ≥ 1 but rather f(e,f) + lwf(e,f) + f(f,g) +
lwf(f,g) ≥ 1. Indeed, a full fence or a lightweight fence in (e, f) or (f, g) will prevent
the delay in (e, g).

Dependencies.need more care, as they cannot necessarily be placed anywhere between
e and g (in the formal sense of between(e, g)): dp(e,f) or dp(f,g) would not fix the
delay (e, g), but simply maintain the pairs (e, f) or (f, g), leaving the pair (e, g) free to
be reordered. Thus if we choose to synchronise (e, g) using dependencies, we actually
need a dependency from e to g: dp(e,g). Dependencies only apply to pairs that start
with a read; thus for each such pair (see the poRW and poRR cases in Fig. 8), we add
a variable for the dependency: (e, g) will be fixed with the constraint dp(e,g) + f(e,f) +
lwf(e,f) + f(f,g) + lwf(f,g) ≥ 1.

Control fences. placed after a conditional branch (e.g. bne on Power) prevent specu-
lative reads after this branch (see Fig. 4). Thus, when building the aeg, we built a set
poC for each branch, which gathers all the pairs of abstract events such that the first
one is the last event before a branch, and the second is the first event after that branch.
We can place a control fence before the second component of each such pair, if the
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second component is a read. Thus, we add cfe as a possible variable to the constraint
for read-read pairs (see poRR case in Fig. 8, where ctrl(d) = between(d) ∩ poC).

Cumulativity. For architectures like Power, where stores are non-atomic, we need to
look for program order pairs that are connected to an external read-from (e.g. (c, d) in
Fig. 3 has an rf connected to it via event c). In such cases, we need to use a cumulative
fence, e.g. lwsync or sync, and not, for example, a dependency.

The locations to consider in such cases are: before (in pos) the write w of the rfe,
or after (in pos) the read r of the rfe, i.e. cumul(w, r) = {(e1, e2) | (e1, e2) ∈ pos ∧
((e2, w) ∈ po∗s ∨ (r, e1) ∈ po∗s)}. In Fig. 7 (cycle 2), (g, i) over-approximates an rfe
edge, and the edges where we can insert fences are in cumul(g, i) = {(f, g), (i, j)}.

We need a cumulative fence as soon as there is a potential rfe, even if the adjacent pos
pairs do not form a delay. For example in Fig. 3, suppose there is a dependency between
the reads on T1, and a fence maintaining write-write pairs on T0. In that case we need
to place a cumulative fence to fix the rfe, even if the two pos pairs are themselves fixed.
Thus, we quantify over all pos pairs when we need to place cumulative fences. As
only f and lwf are cumulative, we have potential-places(C) � {(l, t) | (t ∈ {dp} ∧ l ∈
delays(C)) ∨(t ∈ T\{dp} ∧ l ∈

⋃
d∈delays(C) between(d)) ∨(t ∈ {f, lwf} ∧ l ∈ pos(C))}.

(a)Wx

(b)Ry

(c)Wy

(e)(d) (f)

(g)Rx

f

pos

pos

cmp

cmp

Fig. 9. Cycles sharing the edge (a, b)

Comparison with trencher. We illustrate the
difference between trencher [10] and our ap-
proach using Fig. 9. There are three cycles
that share the edge (a, b). They differ in the
path taken between nodes c and g. Suppose
that the user has inserted a full fence between
a and b. To forbid the three cycles, we need
to fence the thread on the right.

The trencher algorithm first calculates
which pairs can be reordered: in our example,
these are (c, g) via d, (c, g) via e and (c, g) via f . It then determines at which locations
a fence could be placed. In our example, there are 6 options: (c, d), (d, g), (c, e), (e, g),
(c, f), and (f, g). The encoding thus uses 6 variables for the fence locations. The al-
gorithm then gathers all the irreducible sets of locations to be fenced to forbid the delay
between c and g, where “irreducible” means that removing any of the fences would
prevent this set from fully fixing the delay. As all the paths that connect c and g have to
be covered, trencher needs to collect all the combinations of one fence per path. There
are 2 locations per path, leading to 23 sets. Consequently, as stated in [10], trencher
needs to construct an exponential number of sets.

Each set is encoded in the ILP with one variable. For this example, trencher thus
uses 6 + 8 variables. It also generates one constraint per delay (here, 1) to force the
solver to pick a set, and 8 constraints to enforce that all the location variables are set to
1 if the set containing these locations is picked.

By contrast, musketeer only needs 6 variables: the possible locations for fences.
We detect three cycles, and generate only three constraints to fix the delay. Thus, on a
parametric version of the example, trencher’s ILP grows exponentially whereas mus-
keteer’s is linear-sized.
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CLASSIC FAST

Dek Pet Lam Szy Par Cil CL Fif Lif Anc Har
LoC 50 37 72 54 96 97 111 150 152 188 179
dfence – – – – – – – – – – 7.8 3 6.2 3 ∼ 0 ∼ 0 ∼ 0 ∼ 0
memorax 0.4 2 1.4 2 79.1 4 – – – – – – – – – – – – – – – –
musketeer 0.0 5 0.0 3 0.0 8 0.0 8 0.0 3 0.0 3 0.0 1 0.1 1 0.0 1 0.1 1 0.6 4
offence 0.0 2 0.0 2 0.0 8 0.0 8 – – – – – – – – – – – – – –
pensieve 0.0 16 0.0 6 0.0 24 0.0 22 0.0 7 0.0 14 0.0 8 0.1 33 0.0 29 0.0 44 0.1 72
remmex 0.5 2 0.5 2 2.0 4 1.8 5 – – – – – – – – – – – – – –
trencher 1.6 2 1.3 2 1.7 4 – – 0.5 1 8.6 3 – – – – – – – – – –

Fig. 10. All tools on the CLASSIC and FAST series for TSO

7 Implementation and Experiments

We implemented our new method, in addition to all the methods described in Sec. 2,
in our tool musketeer, using glpk (http://www.gnu.org/software/glpk) as the ILP solver.
We compare these methods to the existing tools listed in Sec. 3.

Our tool analyses C programs. dfence also handles C code, but requires some high-
level specification for each program, which was not available to us. memorax works
on a process-based language that is specific to the tool. offence works on a subset
of assembler for x86, ARM and Power. pensieve originally handled Java, but we did
not have access to it and have therefore re-implemented the method. remmex handles
Promela-like programs. trencher analyses transition systems. Most of the tools come
with some of the benchmarks in their own languages; not all benchmarks were however
available for each tool. We have re-implemented some of the benchmarks for offence.

We now detail our experiments. CLASSIC and FAST gather examples from the liter-
ature and related work. The DEBIAN benchmarks are packages of Debian Linux 7.1.
CLASSIC and FAST were run on a x86-64 Intel Core2 Quad Q9550 machine with 4
cores (2.83 GHz) and 4 GB of RAM. DEBIAN was run on a x86-64 Intel Core i5-3570
machine with 4 cores (3.40 GHz) and 4 GB of RAM.

CLASSIC consists of Dekker’s mutex (Dek) [14]; Peterson’s mutex (Pet) [29]; Lamport’s
fast mutex (Lam) [21]; Szymanski’s mutex (Szy) [33]; and Parker’s bug (Par) [13].
We ran all tools in this series for TSO (the model common to all). For each example,
Fig. 10 gives the number of fences inserted, and the time (in sec) needed. When an
example is not available in the input language of a tool, we write “–”. The first four
tools place fences to enforce stability/robustness [5,9]; the last three to satisfy a given
safety property. We used memorax with the option -o1, to compute one maximal
permissive set and not all. For remmex on Szymanski, we give the number of fences
found by default (which may be non-optimal). Its “maximal permissive” option lowers
the number to 2, at the cost of a slow enumeration. As expected, musketeer is less
precise than most tools, but outperforms all of them.

FAST gathers Cil, Cilk 5 Work Stealing Queue (WSQ) [16]; CL, Chase-Lev WSQ [11];
Fif, Michael et al.’s FIFO WSQ [26]; Lif, Michael et al.’s LIFO WSQ [26]; Anc, Mi-
chael et al.’s Anchor WSQ [26]; Har, Harris’ set [12]. For each example and tool, Fig. 10

http://www.gnu.org/software/glpk
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TSO Power
LoC nodes fences time fences time

memcached 9944 694 3 13.9s 70 89.9s
lingot 2894 183 0 5.3s 5 5.3s
weborf 2097 73 0 0.7s 0 0.7s
timemachine 1336 129 2 0.8s 16 0.8s
see 2626 171 0 1.4s 0 1.5s
blktrace 1567 615 0 6.5s – timeout
ptunnel 1249 1867 2 95.0s – timeout
proxsmtpd 2024 10 0 0.1s 0 0.1s
ghostess 2684 1106 0 25.9s 0 25.9s
dnshistory 1516 1466 1 29.4s 9 64.9s

Fig. 11. musketeer on selected benchmarks in DEBIAN series for TSO and Power

gives the number of fences inserted (under TSO) and the time needed to do so. For
dfence, we used the setting of [24]: the tool has up to 20 attempts to find fences. We
were unable to apply dfence on some of the FAST examples: we thus reproduce the
number of fences given in [24], and write∼ for the time. We applied musketeer to this
series, for all architectures. The fencing times for TSO and Power are almost identical,
except for the largest example, namely Har (0.1 s vs 0.6 s).

DEBIAN gathers 374 executables. These are a subset of the goto-programs that have been
built from packages of Debian Linux 7.1 by Michael Tautschnig. A small excerpt of our
results is given in Fig. 11. The full data set, including a comparison with the methods
from Sec. 2, is provided at http://www.cprover.org/wmm/musketeer. For each program,
we give the lines of code and number of nodes in the aeg. We used musketeer on
these programs to demonstrate its scalability and its ability to handle deployed code.
Most programs already contain fences or operations that imply them, such as compare-
and-swaps or locks. Our tool musketeer takes these fences into account and infers
a set of additional fences sufficient to guarantee SC. The largest program we handle
is memcached (∼ 10000 LoC). Our tool needs 13.9 s to place fences for TSO, and
89.9 s for Power. A more meaningful measure for the hardness of an instance is the
number of nodes in the aeg. For example, ptunnel has 1867 nodes and 1249 LoC. The
fencing takes 95.0 s for TSO, but times out for Power due to the number of cycles.

8 Conclusion

We introduced a novel method for deriving a set of fences, which we implemented in
a new tool called musketeer. We compared it to existing tools and observed that it
outperforms them. We demonstrated on our DEBIAN series that musketeer can handle
deployed code, with a large potential for scalability.
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2 Università degli Studi di Napoli Federico II, Italy

1 Introduction

Model checking has come of age. A number of techniques are increasingly used in
industrial setting to verify hardware and software systems, both against models
and concrete implementations. While it is generally accepted that obstacles still
remain, notably handling infinite state systems efficiently, much of current work
involves refining and improving existing techniques such as predicate abstraction.

At scientific level a major avenue of work remains the development of ver-
ification techniques against rich and expressive specification languages. Over
the years there has been a natural progression from checking reachability only
to a large number of techniques (BDDs, BMC, abstraction, etc.) catering for
LTL [28], CTL [10], and CTL

� [12]. More recently, ATL and ATL
� [3] were

introduced to analyse systems in which some components, or agents, can en-
force temporal properties on the system. The paths so identified correspond to
infinite games between a coalition and its complement. ATL is well explored
theoretically and at least two toolkits now support it [4, 19, 20].

It has however been observed that ATL
� suffers from a number of limitations

when one tries to apply it to multi-agent system reasoning and games [1,2,5,15,
17, 21, 31]. One of these is the lack of support for binding strategies explicitly
to various agents or to the same agent in different contexts. To overcome this
and other difficulties, Strategy Logic (SL) [27], as well as some useful variants of
it [8, 24–26], has been put forward. Key game-theoretic properties such as Nash
equilibria, not expressible in ATL

�, can be captured in SL.
In this paper we describe the model checker MCMAS-SLK. The tool supports

the verification of systems against specifications expressed in a variant of SL
that includes epistemic modalities. The synthesis of agents’ strategies to satisfy
a given parametric specification, as well as basic counterexample generation,
are also supported. MCMAS-SLK, released as open-source, implements novel
labelling algorithms for SL, encoded on BDDs, and reuses existing algorithms
for the verification of epistemic specifications [29].

2 Epistemic Strategy Logic

Underlying Framework. Differently from other treatments of SL, originally
defined on concurrent game structures, we here define the logic on interpreted
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© Springer International Publishing Switzerland 2014
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systems [14]. Doing so enables us to integrate the logic with epistemic concepts.
Each agent is modelled in terms of its local states (given as a set of variables), a
set of actions, a protocol specifying what actions may be performed at a given
local state, and a local evolution function returning a target local state given
a local state and a joint action for all the agents in the system. Interpreted
systems are attractive for their modularity; they naturally express systems with
incomplete information, and are amenable to verification [16, 19].

Syntax. SL has been introduced as a powerful formalism to reason about var-
ious equilibria concepts in non-zero sum games and sophisticated cooperation
concepts in multi-agent systems [8, 27]. These are not expressible in previously
explored logics including those in the ATL

� hierarchy. We here put forward an
epistemic extension of SL by adding a family of knowledge operators [14].

Formulas in epistemic strategy logic, or strategy logic with knowledge (SLK),
are built by the following grammar over atomic propositions p ∈ AP, variables
x ∈ Vr, and agents a ∈ Ag (A ⊆ Ag denotes a set of agents):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (a, x)ϕ | Kaϕ | DAϕ | CAϕ.
SLK extends LTL [28] by means of an existential strategy quantifier 〈〈x〉〉 and
agent binding (a, x). It also includes the epistemic operators Ka, DA, and CA for
individual, distributed, and common knowledge, respectively [14]. Intuitively,
〈〈x〉〉ϕ is read as “there exists a strategy x such that ϕ holds”, whereas (a, x)ϕ
stands for “bind agent a to the strategy associated with the variable x in ϕ”. The
epistemic formula Kaϕ stands for “agent a knows that ϕ”; DAϕ encodes “the
group A has distributed knowledge of ϕ”; while CAϕ represents “the group A
has common knowledge of ϕ”. Similarly to first-order languages, we use free(ϕ)
to represent the free agents and variables in a formula ϕ. Formally, free(ϕ) ⊆
Ag ∪ Vr contains (i) all agents having no binding after the occurrence of a
temporal operator and (ii) all variables having a binding but no quantification.
For simplicity, we here consider only formulas where the epistemic modalities
are applied to sentences, i.e., formulas without free agents or variables. Lifting
this restriction is not problematic. To establish the truth of a formula, the set
of strategies over which a variable can range needs to be determined. For this
purpose we use the set sharing(ϕ, x) containing all agents bound to a variable x
within a formula ϕ.

Semantics. The concepts of path, play, strategy, and assignment (for agents
and variables) can be defined on interpreted systems similarly to the way they
are defined on concurrent game structures. We refer to [23, 27] for a detailed
presentation. Intuitively, a strategy identifies paths in the model on which a
formula needs to be verified. Various variants of interpreted systems have been
studied. We here adopt the memoryless version where the agents’ local states
do not necessarily include the local history of the run. Consequently, strategies
are also memoryless. Note that this markedly differs from the previous perfect
recall semantics of SL, which is defined on memoryful strategies. We consider
this setting because memoryful semantics with incomplete information leads to
an undecidable model checking problem [11].
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Given an interpreted system I having G as a set of global states, a state
g ∈ G, and an assignment χ defined on free(ϕ), we write I, χ, g |= ϕ to indi-
cate that the SLK formula ϕ holds at g in I under χ. The semantics of SLK
formulas is inductively defined by using the usual LTL interpretation for the
atomic propositions, the Boolean connectives ¬ and ∧, as well as the tempo-
ral operators X and U. The epistemic modalities are interpreted as standard by
relying on notions of equality on the underlying sets of local states [14]. The in-
ductive cases for strategy quantification 〈〈x〉〉 and agent binding (a, x) are given
as follows. I, χ, g |= 〈〈x〉〉ϕ iff there is a memoryless strategy f for the agents in
sharing(ϕ, x) such that I, χ[x �→ f], g |= ϕ where χ[x �→ f] is the assignment equal
to χ except for the variable x, for which it assumes the value f. I, χ, g |= (x, a)ϕ
iff I, χ[a �→ χ(x)], g |= ϕ, where χ[a �→ χ(x)] denotes the assignment χ in which
agent a is bound to the strategy χ(x).

Model Checking and Strategy Synthesis. Given an interpreted system I,
an initial global state g0, an SLK specification ϕ, and an assignment χ defined on
free(ϕ), the model checking problem concerns determining whether I, χ, g0 |= ϕ.
Given an interpreted system I, an initial global state g0, and an SLK specifi-
cation ϕ, the strategy synthesis problem involves finding an assignment χ such
that I, χ, g0 |= ϕ.

The model checking problem for systems with memoryless strategies and im-
perfect information against ATL and ATL

� specifications is in PSpace [7]. The
algorithm can be adapted to show that the same result applies to SLK. It follows
that SLK specifications do not generate a harder model checking problem even
though they are more expressive.

3 The Model Checker MCMAS-SLK

State Labelling Algorithm. The model checking algorithm for SLK extends
the corresponding ones for temporal logic in two ways. Firstly, it takes as input
not only a formula, but also a binding which assigns agents to variables. Secondly,
it does not merely return sets of states, but sets of pairs 〈g, χ〉 consisting of a
state g and an assignment of variables to strategies χ. A pair 〈g, χ〉 ∈ Ext is
called an extended state; intuitively, χ represents a strategy assignment under
which the formula holds at state g.

Given an SLK formula ϕ and a binding b ∈ Bnd � Ag → Vr, the model
checking algorithm Sat : SLK× Bnd→ 2Ext, returning a set of extended states,
is defined as follows, where a ∈ Ag is an agent, A ⊆ Ag a set of agents, and
x ∈ Vr a variable:

– Sat(p, b) � {〈g, χ〉 : g ∈ h(p) ∧ χ ∈ Asg}, with p ∈ AP;
– Sat(¬ϕ, b) � neg(Sat(ϕ, b));
– Sat(ϕ1 ∧ ϕ2, b) � Sat(ϕ1, b) ∩ Sat(ϕ2, b);
– Sat((a, x)ϕ, b) � Sat(ϕ, b[a �→ x]);
– Sat(〈〈x〉〉ϕ, b) � {〈g, χ〉 : ∃f ∈ Strsharing(ϕ,x). 〈g, χ[x �→ f]〉 ∈ Sat(ϕ, b)};
– Sat(Xϕ, b) � pre(Sat(ϕ, b), b);
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– Sat(ϕ1Uϕ2, b) � lfpX [Sat(ϕ2, b) ∪ (Sat(ϕ1, b) ∩ pre(X, b))];
– Sat(Kaϕ, b) � neg({〈g, χ〉 : ∃ 〈g′, χ′〉 ∈ Sat(¬ϕ,∅).g′ ∼a g});
– Sat(DAϕ, b) � neg({〈g, χ〉 : ∃ 〈g′, χ′〉 ∈ Sat(¬ϕ,∅).g′ ∼D

A g});
– Sat(CAϕ, b) � neg({〈g, χ〉 : ∃ 〈g′, χ′〉 ∈ Sat(¬ϕ,∅).g′ ∼C

A g}).
Above we use h(p) to denote the set of global states where atom p is true;
pre(C, b) is the set of extended states that temporally precede C subject to
a binding b; neg(C) stands for the set of extended states 〈g, χ〉 such that for
each extended state 〈g, χ′〉 ∈ C, there is some variable x ∈ dom(χ) ∩ dom(χ′),
such that the strategies χ(x) and χ′(x) disagree on the action to be carried out
in some global state g′ ∈ dom(χ(x)) ∩ dom(χ′(x)) (i.e., χ(x)(g′) �= χ′(x)(g′));
Strsharing(ϕ,x) is the set of strategies shared by the agents bound to the variable x
in the formula ϕ; finally, ∼a, ∼D

A, and ∼C
A represent the individual, distributed,

and common epistemic accessibility relations for agent a and agents A defined on
the respective notions of equality of agents’ local states. The set of global states
of an interpreted system I satisfying a given formula ϕ ∈ SLK is calculated
from the algorithm above by computing ‖ϕ‖I � {g ∈ G : 〈g,∅〉 ∈ Sat(ϕ,∅)}.
BDD Translation. Given an interpreted system I and an SLK formula ϕ, we
now summarise the steps required to implement the labelling algorithm above
using OBDDs [6]. We represent global states and joint actions as Boolean vectors
v and w, respectively [29]. Similarly, an assignment χ is represented as a Boolean

vector u with K =
∑

x∈Vr

∑
S∈G/∼C

sharing(ϕ,x)

⌈
log2

∣∣∣⋂g∈S
⋂

a∈sharing(ϕ,x) Pa(la(g))
∣∣∣⌉

Boolean variables. Intuitively, for each variable x ∈ Vr and set of shared local
states S ∈ G/ ∼C

sharing(ϕ,x), we store which action should be carried out. An

extended state 〈g, χ〉 ∈ Ext is then represented as a conjunction of the variables
in vg and uχ.

Given a binding b ∈ Bnd, we encode the protocol P (v, w), the evolution func-
tion t(v, w, v′), and the strategy restrictions Sb(v, w, u), as in [20]. The temporal
transition is encoded as Rb

t(v, v
′, u) =

∨
w∈Act t(v, w, v

′) ∧ P (v, w) ∧ Sb(v, w, u).
Observe that we quantify over actions, encoded as w, as in [20], but we store the
variable assignment in the extra parameter u. Quantification over the variable
assignment is performed when a strategy quantifier is encountered.

Given this, the algorithm Sat(·, ·) is translated into operations on BDDs rep-
resenting the encoded sets of extended states.

Implementation and Usage. The model checker MCMAS-SLK [22] contains
an implementation of the procedure described previously. To do this, we took
MCMAS as baseline [19]. MCMAS is an open-source model checker for the ver-
ification of multi-agent systems against ATL and epistemic operators. We used
MCMAS to parse input and used some of its existing libraries for handling
counter-examples, which were extended to handle SLK modalities.

MCMAS-SLK takes as input a system description given in the form of an
ISPL file [19] providing the agents in the system, their possible local states, their
protocols, and their evolution functions. Upon providing SLK specifications, the
checker calculates the set of reachable extended states, encoded as OBDDs, and
computes the results by means of the labelling algorithm described previously. If
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the formula is not satisfied, a counterexample is provided in the form of strategies
for the universally quantified variables.

4 Experimental Results and Conclusions

Evaluation. To evaluate the proposed approach, we present the experimental
results obtained on the dining cryptographers protocol [9,19] and a variant of the
cake-cutting problem [13]. The experiments were run on an Intel Core i7-2600
CPU 3.40GHz machine with 8GB RAM running Linux kernel version 3.8.0-34-
generic. Table 1 reports the results obtained when verifying the dining cryptog-
raphers protocol against the specifications φCTLK � AGψ and φSLK � ℘Gψ, with
[[x]]ϕ � ¬〈〈x〉〉¬ϕ, where:

ψ � (odd∧¬paid1)→ (Kc1(paid2 ∨· · ·∨ paidn)) ∧ (¬Kc1paid2 ∧· · ·∧ ¬Kc1paidn)
℘ � [[x1]] · · · [[xn]][[xenv]] (c1, x1) · · · (cn, xn)(Environment, xenv)

Table 1. Verification results for the dining cryptographers protocol

n crypts possible states reachable states reachability (s) CTLK (s) SLK (s)

10 3.80 × 1014 45056 4.41 0.30 2.11

11 9.13 × 1015 98304 1.79 0.04 5.51

12 2.19 × 1017 212992 2.43 0.02 11.78

13 5.26 × 1018 458752 2.17 0.11 32.41

14 1.26 × 1020 983040 2.08 0.09 85.29

15 3.03 × 1021 2.10× 106 22.67 0.33 171.61

16 7.27 × 1022 4.46× 106 7.13 0.09 451.41

17 1.74 × 1024 9.44× 106 9.77 0.13 768.34

φCTLK is the usual epistemic specification for the protocol [19,30] and φSLK is
its natural extension where strategies are quantified. The results show that the
checker can verify reasonably large state spaces. The performance depends on
the number of Boolean variables required to represent the extended states. In
the case of SLK specifications, the number of Boolean variables is proportional
to the number of strategies (here equal to the number of agents). The last two
columns of Table 1 show that the tool’s performance drops considerably faster
when verifying SLK formulas compared to CTLK ones. This is because CTLK

requires no strategy assignments and extended states collapse to plain states. In
contrast, the performance for CTLK is dominated by the computation of the
reachable state space.

We now evaluate MCMAS-SLK with respect to strategy synthesis and speci-
fications expressing Nash equilibria. Specifically, we consider a variation of the
model for the classic cake-cutting problem [13] in which a set of n agents take
turns to slice a cake of size d and the environment responds by trying to en-
sure the cake is divided fairly. We assume that at each even round the agents
concurrently choose how to divide the cake; at each odd round the environment
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decides how to cut the cake and how to assign each of the pieces to a subset of
the agents. Therefore, the problem of cutting a cake of size d between n agents
is suitably divided into several simpler problems in which pieces of size d′ < d
have to be split between n′ < n agents. The multi-player game terminates once
each agent receives a slice.

The model uses as atomic propositions pairs 〈i, c〉 ∈ [1, n] × [1, d] indicating
that agent i gets a piece of cake of size c. The existence of a protocol for the
cake-cutting problem is given by the following SL specification ϕ:

ϕ � 〈〈x〉〉(ϕF ∧ ϕS),where

– ϕF � [[y1]] . . . [[yn]](ψNE → ψE) ensures that the protocol x is fair, i.e., all
Nash equilibria (y1, . . . , yn) of the agents guarantee equity of the splitting;

– ϕS � 〈〈y1〉〉 . . . 〈〈yn〉〉ψNE ensures that the protocol has a solution, i.e., there
is at least one Nash equilibrium;

– ψNE �
∧n

i=1(
∧d

v=1(〈〈z〉〉(ipi(v))→ (
∨d

c=v (pi(c))) ensures that if agent i has a
strategy z allowing him to get from the environment a slice of size v once the
strategies of the other agents are fixed, he is already able to obtain a slice of
size c ≥ v by means of his original strategy yi (this can be ensured by taking
(�(Environment, x)(1, y1) . . . (n, yn), (i�(Environment, x)(1, y1) · · · (i, z) · · ·
(n, yn), and pi(c)�F 〈i, c〉);

– ψE � (
∧n

i=1 pi(*d/n+) ensures that each agent i is able to obtain a piece of
size *d/n+ (( and pi are the same as in the item above).

We were able to verify the formula ϕ defined above on a system with n = 2 agents
and a cake of size d = 2. Moreover, we automatically synthesised a strategy x
for the environment (see [22] for more details). We were not able to verify larger
examples; for example with n = 2, d = 3, there are 29 reachable states; the
encoding required 105 Boolean variables (most of them represent the assignments
in the sets of extended states), and the intermediate BDDs were found to be
in the order of 109 nodes. This should not be surprising given the theoretical
difficulty of the cake-cutting problem. Moreover, we are synthesising the entire
protocol and not just the agents’ optimal behaviour.

Conclusions. In this paper we presented MCMAS-SLK, a novel symbolic model
checker for the verification of systems against specifications given in SLK. A no-
table feature of the approach is that it allows for the automatic verification of
sophisticated game concepts such as various forms of equilibria, including Nash
equilibria. Since MCMAS-SLK also supports epistemic modalities, this further
enables us to express specifications concerning individual and group knowledge
of cooperation properties; these are commonly employed when reasoning about
multi-agent systems. Other tools supporting epistemic or plain ATL specifica-
tions exist [4, 16, 18, 19]. In our experiments we found that the performance of
MCMAS-SLK on the ATL and CTLK fragments was comparable to that of
MCMAS, one of the leading checkers for multi-agent systems. This is because
we adopted an approach in which the colouring with strategies is specification-
dependent and is only performed after the set of reachable states is computed.
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As described, a further notable feature of MCMAS-SLK is the ability to syn-
thesise behaviours for multi-player games, thereby going beyond the classical
setting of two-player games.

We found that the main impediment to better performance of the tool is the
size of the BDDs required to encode sets of extended states. Future efforts will
be devoted to mitigate this problem as well as to support other fragments of SL.
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Abstract. Two-player games are a useful formalism for the synthesis of reactive
systems. The traditional approach to solving such games iteratively computes
the set of winning states for one of the players. This requires keeping track of
all discovered winning states and can lead to space explosion even when using
efficient symbolic representations. We propose a new method for solving reach-
ability games. Our method works by exploring a subset of the possible concrete
runs of the game and proving that these runs can be generalised into a winning
strategy on behalf of one of the players. We use counterexample-guided back-
tracking search to identify a subset of runs that are sufficient to consider to solve
the game. We evaluate our algorithm on several families of benchmarks derived
from real-world device driver synthesis problems.

1 Introduction

Two-player games are a useful formalism for the synthesis of reactive systems, with
applications in software [15] and hardware design [4], industrial automation [7], etc.
We consider finite-state reachability games, where player 1 (the controller) must force
the game into a goal region given any valid behaviour of player 2 (the environment).

The most successful method for solving two-player games is based on the control-
lable predecessor (Cpre) operator [14], which, given a target set of states, computes the
set from which the controller can force the game into the target set in one round. Cpre
is applied iteratively, until a fixed point is reached. The downside of this method is that
it keeps track of all discovered winning states, which can lead to a space explosion even
when using efficient symbolic representation such as BDDs or DNFs.

We propose a new method for solving reachability games. Our method works by
exploring a subset of the concrete runs of the game and proving that these runs can be
generalised into a winning strategy on behalf of one of the players. In contrast to the
Cpre-based approach, as well as other existing synthesis methods, it does not represent,
in either symbolic or explicit form, the set of states visited by the winning strategy.
Instead, it uses counterexample-guided backtracking search to identify a small subset
of runs that are sufficient to solve the game.

We evaluate our algorithm on several benchmarks derived from driver synthesis
problems. We find that it outperforms a highly optimised BDD-based solver on the
subset of benchmarks that do not admit a compact representaion of the winning set,
thus demonstrating the potential of the new approach.
� NICTA is funded by the Australian Government through the Department of Communications
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2 Related Work

Our algorithm is inspired by the RAReQS QBF solver [10]. RAReQS treats a QBF
formula in the prenex normal form as a game between the universal and the existential
player. It uses counterexample-guided backtracking search to efficiently expand quan-
tifier blocks. We build on the ideas of RAReQS, to construct a domain-specific solver
for reachability games that takes advantage of the structure of such games.

One alternative to the Cpre-based method encodes the game as a quantified boolean
formula (QBF), where controller and environment moves are encoded as alternating ex-
istential and universal quantifiers [2]. More recently several SAT-based synthesis meth-
ods have been proposed [13,5]. Similarly to Cpre-based techniques, they incrementally
compute the set of winning (or losing) states, in the DNF form, and refine it using a
SAT solver. Sabharwal et al. [16] explore the duality of games and QBF formulas and
propose a hybrid CNF/DNF-based encoding of games that helps speed up QBF solving.
The bounded synthesis method [11] aims to synthesise a controller implementation with
a bounded number of states. In the present work, we impose a bound on the number of
rounds in the game, which is necessary to encode it into SAT.

Our method uses counterexample-guided abstraction refinement to identify poten-
tially winning moves of the game. Several abstraction refinement algorithms for games
have been proposed in the literature [9,1]. Our algorithm is complementary to these
techniques and can be combined with them.

The idea of solving games by generalising a winning run into a complete strategy
has been explored in explicit-state synthesis [6]. In contrast to these methods, we use
a SAT solver to compute and generalise winning runs symbolically. This enables us to
solve games with very large state spaces, which is not possible using explicit search,
even when performing it on the fly.

3 Background

Games and Strategies. A reachability game G = 〈S,Lc, Lu, I, O, δ〉 consists of a
set of states S, controllable actions Lc, uncontrollable actions Lu, initial state I ∈
S, a set O ∈ 2S of goal states, and a transition function δ : (S,Lc, Lu) → S. The
game proceeds in a sequence of rounds, starting from an initial state. In each round,
the controller picks an action c ∈ Lc. The environment responds by picking an action
u ∈ Lu, and the game transitions to a new state δ(s, c, u).

A controller strategy π : S → Lc associates with every state a controllable action to
play in this state. Given a bound n on the number of rounds, π is a winning strategy in
state s at round i ≤ n if any sequence (si, ui, si+1, ui+1, ..., sn), such that si = s and
sk+1 = δ(sk, π(sk), u), visits the goal set: ∃j ∈ [i, n].sj ∈ O. A state-round pair 〈s, i〉
is winning if there exists a winning strategy in s at round i. A state-round-action tuple
〈s, i, c〉 is winning if there does not exist a spoiling strategy for s and c at round i.

In this paper we are concerned with the problem of solving the game, i.e., checking
whether the initial state I is winning at round 0 for the given bound n. Note that bound-
ing the number of rounds to reach the goal is a conservative restriction: any winning
strategy in the bounded game is winning in the unbounded game. If, on the other hand,
a winning strategy for a bound n cannot be found, n can be relaxed.
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Symbolic Games. In this paper we deal with symbolic games defined over three sets of
boolean variables X , Yc, and Yu. Each state s ∈ S represents a valuation of variables X ,
each action c ∈ Lc (u ∈ Lu) represents a valuation of variables Yc (Yu). The transition
relation δ of the game is given as a boolean formulaΔ(X,Yc, Yu, X

′) over state, action,
and next-state variables.

4 Abstract Game Trees

Our algorithm constructs a series of abstractions of the input game. An abstraction re-
stricts actions available to one of the players. Specifically, we consider abstractions
represented as trees of actions, referred to as abstract game trees. Together with a state-
round pair 〈s, i〉, an abstract game tree defines an abstract game played from this state.
Figure 1a shows an example abstract game. In the abstract game, the environment player
is required to pick actions from the tree, starting from the root node. After reaching a
leaf, it continues playing unrestricted. The tree in Figure 1a restricts the initial envi-
ronment action to the set {a, d}. After choosing action d, the environment reaches a
leaf of the tree and continues playing unrestricted. Alternatively, after choosing a, the
environment is required to play action b in the next round.

Nodes of an abstract game tree are uniquely identified by the list of edge labels along
the path from the root to the node. We identify an abstract game tree with the set of its
nodes. For example, the tree in Figure 1a can be written as {(), (d), (a), (a, b)}. We
denote leaves(T ) the subset of leaf nodes of a tree T .

A partial strategy Strat : T → Lc assigns a controllable action to be played in each
node of the abstract game tree. Figure 1b shows an example partial strategy. The con-
troller starts by choosing action α. If the environment plays a, the controller responds
with β in the next round, and so on. Given a partial strategy Strat, we can map each leaf
l of the abstract game tree to 〈s′, i′〉 = outcome(〈s, i〉, Strat, l) obtained by playing
all controllable and uncontrollable actions on the path from the root to the leaf.

5 The Algorithm

Figure 2 and Algorithm 1 illustrate our algorithm, called EVASOLVER. The algorithm
takes a concrete game G as an implicit argument. In addition, it takes a state-round
pair 〈s, i〉 and an abstract game tree ABSGT and returns a winning partial strategy
for it, if one exists. The initial invocation of the algorithm takes the initial state 〈I, 0〉
and an empty abstract game tree ∅. The empty game tree does not constrain opponent
moves, hence solving such an abstraction is equivalent to solving the original concrete
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Algorithm 1. CEGAR-based algorithm for solving games
function EVASOLVER (〈s, i〉, ABSGT)
output a winning partial strategy if there is one; ∅ otherwise

CAND ← FINDCAND(〈s, i〉, ABSGT)
// FINDCAND returns a precise solution for i = n− 1
if i = n− 1 return CAND

ABSGT ′ ← ABSGT
loop

if CAND = ∅ return ∅
COUNTEREX ← VERIFY(〈s, i〉, ABSGT, CAND)
if COUNTEREX = NULL return CAND

else
ABSGT ′ ← REFINE(ABSGT ′, COUNTEREX )
CAND ← EVASOLVER (〈s, i〉, ABSGT′)

end loop
end function

function REFINE(ABSGT, 〈l, SPOILING〉)
let l = (ei, . . . , er)
return ABSGT ∪ {(ei, . . . , er), SPOILING(()))}

end function

function FINDCAND (〈s, i〉, ABSGT)
φ ← ∧

j=i...n−1 δ(sj , cj , uj , sj+1)∧∨
j=i...n O(sj)

for l ∈ leaves(ABSGT) do
// ej are environment actions along the path from
// the root to l in ABSGT
let l = (ei, . . . , er)
p ← ∧

m=i...r um = em
φl ← rename(φ, l) ∧ (si = s) ∧ p

sol ← SAT (
∧

l∈leaves(ABSGT) φl)

if sol = unsat return ∅
return {〈v, c〉|v∈nodes(ABSGT), c = sol |cv}

end function

function VERIFY(〈s, i〉, ABSGT, CAND)
for l ∈ leaves(〈s, i〉, ABSGT) do

〈s′, i′〉 = outcome(〈s, i〉, ABSGT, l)
SPOILING ← EVASOLVER(〈s′, i′〉, ∅)
if SPOILING �= ∅ return 〈l, SPOILING〉

return NULL // no spoiling strategy found
end function

game. The algorithm is organised as a counterexample-guided abstraction refinement
(CEGAR) loop. The first step of the algorithm uses the FINDCAND function, described
in detail below, to come up with a candidate partial strategy for ABSGT. If it fails to
find a strategy, this means that no winning partial strategy exists for ABSGT. If, on
the other hand, a candidate partial strategy is found, we need to verify if it is indeed
winning for ABSGT.

EvaSolver Verify Refine
CounterexCandidate

FindCand

Candidate

Lose Win (return Candidate)

〈s, i〉,AbsGT

AbsGT
′

Lose (no candidate found)

Fig. 2. CEGAR loop of Algorithm 1

The VERIFY procedure searches for a
spoiling counterexample strategy in each
leaf of the candidate partial strategy by
calling the dual solver EVASOLVER. The
dual solver solves a safety game on be-
half of the environment player, where the
environment must stay away from the
goal for a bounded number of steps. Figure 1c shows a spoiling strategy discovered
in one of the leaves of the abstract game tree. The dual algorithm is analogous to the
primary solver. We do not present its pseudocode due to limited space. If the dual solver
can find no spoiling strategy at any of the leaves, then the candidate partial strategy is
a winning one. Otherwise, the REFINE function extracts the first move of the spoiling
strategy (i.e., the move that the strategy plays in the root node () of the abstract game
tree constructed by the dual solver) and uses it to refine the abstract game by adding a
new edge labelled with this move to the leaf (Figure 1d).

We solve the refined game by recursively invoking EVASOLVER on it. If no partial
winning strategy is found for the refined game then there is also no partial winning
strategy for the original abstract game, and the algorithm returns a failure. Otherwise,
the partial strategy for the refined game is projected on the original abstract game by
removing the leaves introduced by refinements. The resulting partial strategy becomes
a candidate strategy to be verified at the next iteration of the loop.



Solving Games without Controllable Predecessor 537

The loop terminates, in the worst case, after refining the game with all possible envi-
ronment actions. However, to achieve good performance, the algorithm must be able to
solve the game using a small number of refinements. The FINDCAND procedure plays
the key role in achieving this. We use the following criterion to find potentially win-
ning candidates efficiently: we search for a partial strategy such that after playing the
strategy from the root to any of the leaves of the abstract game tree, we can choose
a sequence of follow-up moves for both players taking the game into the goal region.
Effectively, we try to win the game under the assumption that the players cooperate
to reach the goal rather than competing with each other. If such an optimistic partial
strategy does not exist, then we cannot win the abstract game. On the other hand, if we
do find such a strategy, it is likely to either be a winning one or to produce a useful
counterexample that will speed up the search for a winning strategy. This is based on
the observation that in industrial synthesis problems the environment typically repre-
sents a hardware or software system designed to allow efficient control. Environment
actions model responses to control signals, which require appropriate reaction from the
controller, but are not aimed to deliberately counteract the controller. Unlike in truly
competitive games like chess, a straightforward path to the goal is likely to be a good
first approximation of a correct winning strategy.

We find a candidate partial strategy that satisfies the above criterion using a SAT
solver, as shown by the FINDCAND function. We unroll the transition relation δ into
a formula φ that encodes a winning run of the game starting from the ith round. For
each leaf l of the abstract game tree with the path from the root to the leaf labelled
with environment actions (ei, . . . , er), we construct a formula φl describing a win-
ning run through the leaf. The formula consists of three conjuncts. The first conjunct
rename(φ, l) renames variables in φ so that the resulting formulas for leaves sharing a
common edge of the abstract game tree share the corresponding action and state vari-
ables, while using separate copies of all other variables. The second and third conjuncts
fix initial state and environment actions along the path from the root to the leaf. We
invoke a SAT solver to find assignments to state and action variables simultaneously
satisfying all leaf formulas φl. If this formula is unsatisfiable, then state 〈s, i〉 is losing
and the algorithm returns ∅; otherwise, it constructs a spoiling strategy by extracting
values of controllable moves in nodes of the abstract game tree from the solution re-
turned by the SAT solver.

Correctness of EVASOLVER follows from the following properties of the algorithm:
(1) the counterexample-guided search strategy is complete, i.e., it is guaranteed to find
a winning strategy, if one exists, possibly after exploring all possible runs of the game,
and (2) our SAT encoding of the game is sound, i.e., if the SAT formula generated by
FINDCAND is unsatisfiable then there does not exist a winning strategy from state 〈s, i〉.
Memoising Losing States. Our implementation of EVASOLVER uses an important op-
timisation. Whenever the SAT solver invocation in FINDCAND returns unsat , we obtain
a proof that s is a losing state for the controller. We generalise this fact by extracting a
minimal unsatisfiable core from the SAT solver and projecting it on state variables x.
This gives us a cube of states losing for the controller. We modify the winning run for-
mula φ to exclude this cube from a winning run. This guarantees that candidate partial
strategies generated by the algorithm avoid previously discovered losing states.
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6 Evaluation

We evaluate our algorithm on four families of benchmarks derived from driver synthesis
problems. These benchmarks model the data path of four I/O devices in the abstracted
form. In particular, we model the transmit buffer of an Ethernet adapter, the send queue
of a UART serial controller, the command queue of an SPI Flash controller, and the
IDE hard disk DMA descriptor list. Models are parameterised by the size of the cor-
responding data structure. Specifications are written in a simple input language based
on the NuSMV syntax [8]. The transition relation of the game is given in the form of
variable update functions x := f(X,Yc, Yu), one for each state variable x ∈ X .

We compare our solver against two existing approaches to solving games. First, we
encode input specifications as QBF instances and solve them using two state-of-the-art
QBF solvers: RAReQS [10] and depqbf [12], having first run them through the blo-
qqer [3] preprocessor. Second, we solve our benchmarks using the Termite [17] BDD-
based solver that uses dynamic variable reordering, variable grouping, transition rela-
tion partitioning, and other optimisations.

Our experiments, summarised in Figure 3, show that off-the-shelf QBF solvers are
not well-suited for solving games. Although our algorithm is inspired by RAReQS, we
achieve much better performance, since our solver takes into account the structure of
the game, rather than treating it as a generic QBF problem.

All four benchmarks have very large sets of winning states. Nevertheless, in the
UART and IDE benchmarks, Termite is able to represent winning states compactly with
only a few thousand BDD nodes. It scales well and outperforms EVASOLVER on these
benchmarks. However, in the two other benchmarks, Termite does not find a compact
BDD-based representation of the winning set. EVASOLVER outperforms Termite on
these benchmarks as it does not try to enumerate all winning states.

Detailed performance analysis shows that abstract game trees generated in our
benchmarks had average branching factors in the range between 1.03 and 1.2, with
the maximal depth of the trees ranging from 3 to 58. This confirms the the key premise
behind the design of EVASOLVER, namely, solving real-world synthesis problems re-
quires considering only a small number of opponent moves in every state of the game.
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Fig. 3. Performance of different solvers on four parameterised benchmarks. The X-axis shows
the number of state vars in the game (determined by the benchmark parameter).
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7 Conclusion

We presented a method for solving reachability games without constructing the game’s
winning set, and demonstrated that this method can be more efficient than conventional
approaches. Our ongoing work concentrates on further performance improvements as
well as on applying the new technique to a broader class of omega-regular games.

Our ongoing work focuses on further improving the performance of EVASOLVER

via optimised CNF encodings of abstract games, stronger memoisation techniques, and
additional domain-specific heuristics for computing candidate strategies.
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Abstract. G4LTL-ST automatically synthesizes control code for industrial Pro-
grammable Logic Controls (PLC) from timed behavioral specifications of input-
output signals. These specifications are expressed in a linear temporal logic (LTL)
extended with non-linear arithmetic constraints and timing constraints on signals.
G4LTL-ST generates code in IEC 61131-3-compatible Structured Text, which is
compiled into executable code for a large number of industrial field-level devices.
The synthesis algorithm of G4LTL-ST implements pseudo-Boolean abstraction
of data constraints and the compilation of timing constraints into LTL, together
with a counterstrategy-guided abstraction-refinement synthesis loop. Since tem-
poral logic specifications are notoriously difficult to use in practice, G4LTL-ST
supports engineers in specifying realizable control problems by suggesting suit-
able restrictions on the behavior of the control environment from failed synthesis
attempts.

Keywords: industrial automation, synthesis, theory combination, assumption gen-
eration.

1 Overview

Programmable Logic Controllers (PLC) are ubiquitous in the manufacturing and pro-
cessing industries for realizing real-time controls with stringent dependability and safety
requirements. A PLC is designed to read digital and analog inputs from various sensors
and other PLCs, execute a user-defined program, and write the resulting digital and
analog output values to various output elements including hydraulic and pneumatic ac-
tuators or indication lamps. The time it takes to complete such a scan cycle typically
ranges in the milliseconds.

The languages defined in the IEC 61131-3 norm are the industry standard for pro-
gramming PLCs [1]. Programming in these rather low-level languages can be very inef-
ficient, and yields inflexible controls which are difficult to maintain and arduous to port.
Moreover, industry is increasingly moving towards more flexible and modular produc-
tion systems, where the control software is required to adapt to frequent specification
changes [2].

With this motivation in mind, we developed the synthesis engine G4LTL-ST for gen-
erating IEC 61131-3-compatible Structured Text programs from behavioral specifica-
tions. Specifications of industrial control problems are expressed in a suitable extension
of linear temporal logic (LTL) [14]. The well-known LTL operators G, F, U, and X
denote “always”, “eventually”, “(strong) until”, and “next”s relations over linear exe-
cution traces. In addition to vanilla LTL, specifications in G4LTL-ST may also include

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 541–549, 2014.
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1 Input: x, y ∈ [0, 4] ∩ R, err ∈ B, Output: grant1, grant2, light ∈ B, Period: 50ms
2
3 G (x + y > 3→ X grant1)
4 G (x2 + y2 < 7

2
→ X grant2)

5 G (¬(grant1 ∧ grant2))
6 G (err → 10sec(light))
7 G ((G¬err)→ (FG¬light))

Fig. 1. Linear temporal logic specification with arithmetic constraints and a timer

– non-linear arithmetic constraints for specifying non-linear constraints on real-valued
inputs;

– timing constraints based on timer constructs specified in IEC 61131-3.

A timing constraint of the form 10sec(light), for example, specifies that the light signal
is on for 10 seconds. Moreover, the semantics of temporal specifications in G4LTL-ST
is slightly different from the standard semantics as used in model checking, since the
execution model of PLCs is based on the concept of Mealy machines. Initial values for
output signals are therefore undefined, and the synthesis engine of G4LTL-ST assumes
that the environment of the controller makes the first move by setting the inputs.

Consider, for example, the PLC specification in Figure 1 with a specified scan cycle
time of 50ms (line 1). The input variables x, y, err store bounded input and sensor
values, and output values are available at the end of each scan cycle at grant1, grant2,
and light (line 1). According to the specification in line 6, the output light must be on for
at least 10 seconds whenever an error occurs, that is, input signal err is raised. Line 7
requires that if err no longer appears, then eventually the light signal is always off.
The transition-style LTL specifications 3 and 4 in Figure 1 require setting grant1 (resp.
grant2) to true in the next cycle whenever the condition x+ y > 3 (resp. x2 + y2 < 7

2 )
holds. Finally, grant1 and grant2 are supposed to be mutually exclusive (line 5).

The synthesis engine of G4LTL-ST builds on top of traditional LTL synthesis tech-
niques [13,9,15,4] which view the synthesis problem as a game between the (sensor)
environment and the controller. The moves of the environment in these games are de-
termined by setting the input variables, and the controller reacts by setting output vari-
ables accordingly. The controller wins if the resulting input-output traces satisfy the
given specification. Notably, arithmetic constraints and timers are viewed as theories
and thus abstracted into a pseudo-Boolean LTL formula. This enables G4LTL-ST to
utilize CEGAR-like [8,12,10] techniques for successively constraining the capabilities
of the control environment.

Since specifications in linear temporal logic are often notoriously difficult to use in
practice, G4LTL-ST diagnoses unrealizable specifications and suggests additional as-
sumptions for making the controller synthesis problem realizable. The key hypothesis
underlying this approach is that this kind of feedback is more useful for the engineer
compared to, say, counter strategies. The assumption generation of G4LTL-ST uses
built-in templates and heuristics for estimating the importance and for ordering the gen-
erated assumptions accordingly.

Synthesis of control software, in particular, has been recognized as a key Indus-
trie 4.0 technology for realizing flexible and modular controls (see, for example, [3],



G4LTL-ST: Automatic Generation of PLC Programs 543

Table 1. Real-time specification patterns and their encodings

Real-time specification pattern Encoding in LTL

Whenever a, then b for t seconds G (a → (t1.start∧ b ∧ X(b U t1.expire)))
Whenever a continues for more than t seconds, then b (a ↔ t1.start) ∧G(¬(a ∧ X a)↔ X t1.start)

∧G(t1.expire→ b)
Whenever a, then b, until c for more than t seconds G(a ↔ t1.start) ∧ G(¬(c ∧ X c)↔ X t1.start)

∧G (a → (b ∧ X((b U t1.expire)) ∨ G¬t1.expire))

RE-2 on page 44). The synthesis engine G4LTL-ST is planned to be an integral part
of a complete development tool chain towards meeting these challenges. G4LTL-ST is
written in Java and is available (under the GPLv3 open source license) at

http://www.sourceforge.net/projects/g4ltl/files/beta

In the following we provide an overview of the main features of G4LTL-ST in-
cluding Pseudo-Boolean abstractions of timing constraints, the abstraction-refinement
synthesis loop underlying G4LTL-ST and its implementation, and, finally, the template-
based generation for suggesting new constraints of the behavior of the environment for
making the control synthesis problem realizable. These features of G4LTL-ST are usu-
ally only illustrated by means of examples, but the initiated reader should be able to fill
in missing technical details.

2 Timing Abstractions

The timing constraint in Figure 1 with its 10 seconds time-out may be encoded in LTL
by associating each discrete step with a 50ms time delay. Notice, however, that up to
200 consecutive X operators are needed for encoding this simple example.

Instead we propose a more efficient translation, based on standard IEC 61131-3 tim-
ing constructs, for realizing timing specifications. Consider, for example, the timed spec-
ification G (err → 10sec(light)). In a first step, fresh variables t1.start and t1.expire
are introduced, where t1 is a timer variable of type TON in IEC 61131-3. The additional
output variable t1.start starts the timer t1, and the additional input variable t1.expire
receives a time-out signal from t1 ten seconds after this timer has been started. Now, the
timing specification G (err → 10sec(light)) is rewritten as an LTL specification for a
function block in the context of a timer.

G (t1.start→ X F t1.expire)→ G (err→ (t1.start ∧ light ∧ X(light U t1.expire))

The antecedent formula ensures that the expire signal is eventually provided by the
timing block of the environment. Since no provision is being made that there is a time-
out exactly after 10 seconds, however, the precise expected behavior of the time-out
environment is over-approximated.

It is straightforward to generate PLC code using timing function blocks from winning
strategies of the controller (see below for the automatically generated code). Whenever
t1.start is set to true the instruction t1(IN:=0, PT:=TIME#10s) is generated for starting
the timer t1. Instructions that set t1.start to false is ignored based on the underlying
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semantics of timers. Finally, time-out signals t1.expire are simply replaced with the
variable t1.Q of the IEC 61131-3 timing construct.

FUNCTION_BLOCK FB_G4LTL

VAR_INPUT error: BOOL; END_VAR

VAR_OUTPUT light: BOOL; END_VAR

VAR cstate : INT := 0; t1: TON; END_VAR

VAR CONST T1_VALUE : TIME := TIME#10s; END_VAR

CASE cstate OF

0: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (TRUE)) THEN cstate := 6; light := FALSE;

END_IF;

43: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (TRUE)) THEN cstate := 43; light := FALSE;

END_IF;

6: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (TRUE)) THEN cstate := 6; light := FALSE;

END_IF;

396: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (t1.Q = FALSE)) THEN cstate := 396; light := TRUE;

ELSIF ((error = FALSE) AND (t1.Q = TRUE)) THEN cstate := 43; light := FALSE;

END_IF;

81: IF ((error = TRUE) AND ( TRUE )) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (t1.Q = FALSE)) THEN cstate := 396; light := TRUE;

ELSIF ((error = FALSE) AND (t1.Q = TRUE)) THEN cstate := 43; light := FALSE;

END_IF;

12: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (t1.Q = FALSE)) THEN cstate := 81; light := TRUE;

ELSIF ((error = FALSE) AND (t1.Q = TRUE)) THEN cstate := 6; light := FALSE;

END_IF;

END_CASE;

END_FUNCTION_BLOCK

In Table 1 we describe some frequently encountered specification patterns and their
translations using IEC 61131-3-like timing constructs. Each of these patterns requires
the introduction of a fresh timer variable t1 together with the assumption G (t1.start→
X F t1.expire) on the environment providing time-outs. These specification patterns,
however, are not part of the G4LTL-ST input language, since there is no special support
in the synthesis engine for these language constructs, and G4LTL-ST is intended to
be used in integrated development frameworks, which usually come with their own
specification languages.

3 Abstraction-Refinement Synthesis Loop

The input to the synthesis engine of G4LTL-ST are LTL formulas with non-linear arith-
metic constraints with bounded real (or rational) variables, and the workflow of this
engine is depicted in Figure 2. Notice, however, that the abstraction-refinement loop in
Figure 2 is more general in that it works for any decidable theory Th.

In a preliminary step Abstract simply replaces arithmetic constraints on the inputs
with fresh Boolean input variables. The resulting specification therefore is (like the
timer abstraction in Section 2) an over-approximation of the behavior of the environ-
ment. In our running example in Figure 1 (ignoring line 6, 7), Abstract creates two
fresh Boolean variables, say req1 and req2, for the two input constraints x+y > 3 and
x2 + y2 < 7

2 to obtain the pseudo-Boolean specification

G(req1→ X grant1) ∧G(req2→ X grant2) ∧G(¬(grant1 ∧ grant2)) (1)
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Clearly, this pseudo-Boolean specification with input variables req1 and req2 over-
approximates the behavior of the environment, since it does not account for inter-
relationships of the arithmetic input constraints.

Abstract

theory atoms

LTL(Th) formula ϕ

ϕabs

pseudo-Boolean

input variables Xabs

Input variables X Output variables Y

pseudo-Boolean

LTL

LTL controller

check whether the input

formula is realizable

synthesis

No, with

strategy

unchecked
pseudo-Boolean
input valuations

Check whether every

sin ∈ S is (Th)-satisfiable

Schecked :=

Schecked ∪ Sproven

Yes

Report Report ϕ is REALIZABLE

No, with counter-

ϕabs :=

(G(Xabs �= sin))→ ϕabs

S

Theory checker

example sin and

Refine

Extract

with proven-realizable
inputs Sproven ⊆ S

Memorize

Schecked

NOT-REALIZABLE
by controller Mctrl

counter

Menv

Yes

Fig. 2. Abstraction-refinement synthesis loop

In the next step, LTL controller
synthesis checks whether or not the
pseudo-Boolean LTL formula gener-
ated by Abstract is realizable. If the
engine is able to realize a winning
strategy for the control, say Mctrl,
then a controller is synthesized from
this strategy. Otherwise, a candidate
counter-strategy, say Menv , for de-
feating the controller’s purpose is gen-
erated.

The pseudo-Boolean specification
(1), for example, is unrealizable. A
candidate counter-strategy for the en-
vironment is given by only using the
input (true, true), since, in violation
of the mutual exclusion condition (1),
the controller is forced to subsequently
set both grant1 and grant2 .

The Extract module extracts candidate counter-strategies with fewer pseudo-Boolean
input valuations (via a greedy-based method) whose validity are not proven at the the-
ory level. Consequently, the Extract module generates a candidate counter-strategy that
only uses (req1, req2) = (true, true) and the input valuations S = {(true, true)} are
passed to the Theory Checker.

A candidate counter-strategy is a genuine counter-strategy only if all pseudo-Boolean
input patterns are satisfiable at the theory level; in these cases the environment wins
and Theory Checker reports the un-realizability of the control problem. In our running
example, however, the input (true, true) is not satisfiable at the theory level, since the
conjunction of the input constraints x + y > 3 and x2 + y2 < 7

2 is unsatisfiable for
x, y ∈ [0, 4]. G4LTL-ST uses the JBernstein [5] verification engine for discharging
quantifier-free verification conditions involving non-linear real arithmetic. In order to
avoid repeated processing at the theory level, all satisfiable inputs are memorized.

Unsatisfiable input combinations sin are excluded by Refine. In our running exam-
ple, the formula G(¬(req1∧ req2)) is added as a new assumption on the environment,
since the input pair (true, true) has been shown to be unsatisfiable.

G(¬(req1 ∧ req2))→ (1) (2)

In this way, Refine successively refines the over-approximation of the behavior of the
environment. Running the LTL synthesis engine on the refined specification 2 yields a
controller: if one of req1 (x + y > 3) and req2 (x2 + y2 < 7

2 ) holds, the controller
may grant the corresponding client in the next round, since req1 and req2 do not hold
simultaneously.
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Refinement of Timer Environments. The refinement of over-approximations of environ-
mental behavior also works for the abstracted timer environments. Recall from Section 2
that the initial abstraction is given by G (t1.start→ X F t1.expire). Assuming, for ex-
ample, that t1.expire appears two iterations after t1.start in a candidate counter-strategy,
one might strengthen this initial assumption with G (t1.start → ((X¬t1.expire) ∧
(XX¬t1.expire) ∧ (XXX F t1.expire))).

Constraints over input and output variables. Even though the current implementation
of G4LTL-ST is restricted to specifications with arithmetic constraints on inputs only,
the abstraction-refinement synthesis loop in Figure 2 works more generally for arith-
metic constraints over input and output variables. Consider, for example, the specifica-
tion G(x > y → X(z > x)) with input variables x, y ∈ [1, 2] ∩ R and output variable
z ∈ [0, 5] ∩ R. Abstraction yields a pseudo-Boolean specification G(in → Xout) with
in, out fresh input variables for the constraints x > y and z > x, respectively. Now,
pseudo-Boolean LTL synthesis generates a candidate winning strategy Mctrl for the
controller, which simply sets the output out to be always true. The candidate controller
Mctrl is realizable if every pseudo-Boolean output assignment of Mctrl is indeed sat-
isfiable on the theory level. This condition amounts to demonstrating validity of the
quantified formula (∀x ∈ [1, 2] ∩ R) (∃z ∈ [0, 5] ∩ R) z > x. Using the witness, say, 3
for the existentially quantified output variable z, a winning strategy for the controller is
to always set the output z to 3, and the control synthesis problem therefore is realizable.

Otherwise, the candidate controller strategy is not realizable at the theory level, and,
for pseudo-Boolean outputs, refinement due to un-realizability of the control synthe-
sis problem is achieved by adding new constraints as guarantees to the pseudo-Boolean
specification. For example the constraint G(¬(grant1∧grant2)) is added to the pseudo-
Boolean specification, if pseudo-Boolean outputs grant1 and grant2 are mutually ex-
clusive at the theory level.

In this way, the abstraction-refinement synthesis loop in Figure 2 may handle arbi-
trary theory constraints on input and output variables as long as corresponding verifica-
tion conditions in a first-order theory with one quantifier-alternation can be decided. The
implementation of G4LTL-ST could easily be extended in this direction by using, for ex-
amples the verification procedure for the exists-forall fragment of non-linear arithmetic
as described in [7]. So far we have not yet encountered the need for this extensions,
since the PLC case studies currently available to us are restricted to Boolean outputs.

4 Assumption Generation

An unrealizable control synthesis problem can often be made realizable by restrict-
ing the capabilities of the input environment in a suitable way. In our case studies
from the manufacturing domain, for example, suitable restrictions on the arrival rate
of workpieces were often helpful. G4LTL-ST supports the generation of these as-
sumptions from a set of given templates. For example, instantiations of the template
G(?a → (X(¬?a U ?b))), where ?a and ?b are meta-variables for inputs, disallows
successive arrivals of an input signal ?a. For a pre-specified set of templates, G4LTL-
ST performs a heuristic match of the meta-variables with input variables by analyzing
possible ways of the environment to defeat the control specification.



G4LTL-ST: Automatic Generation of PLC Programs 547

Table 2. Experimental result based on the predefined unroll depth (3) of G4LTL-ST. Execution
time annotated with “(comp)” denotes that the value is reported by the compositional synthesis
engine.

# Example

(synthesis)

Timer(T)/

Data(d)

lines of spec Synthesis

Time

Lines of

ST

Ex1 T, D 9 1.598s (comp) 110
Ex2 T 13 0.691s 148
Ex3 T 9 0.303s 80
Ex4 T 13 21s 1374
Ex5 T 11 0.678s (comp) 210
Ex6 - 7 0.446s 41
Ex7 D 8 17s 43
Ex8 T 8 0.397s (comp) 653
Ex9 abstract D,T 3 + model (< 200 loc) 1.55s 550
Ex10 abstract D,T 3 + model (< 200 loc) 3.344s 229
Ex11 abstract D,T 3 + model (< 200 loc) 0.075s 105

# Example

(Assup. gen)

# Learned

Assump.

Time of

Learning

Ex1 1 0.127s
Ex2 1 0.452s
Ex3 1 3.486s
Ex4 4 22s (DFS)
Ex5 1 2.107s
Ex6 1 1.046s
Ex7 1 0.154
Ex8 1 2.877
Ex9 1 8.318

The underlying LTL synthesis engine performs bounded unroll [15] of the negated
property to safety games. Therefore, whenever the controller can not win the safety
game, there exists an environment strategy which can be expanded as a finite tree, whose
leaves are matched with the risk states of the game. Then, the following three steps are
performed successively:
• Extract a longest path from the source to the leaf. Intuitively, this path represents

a scenario where the controller endeavors to resist losing the game (without inten-
tionally losing the game). For example, assume for such a longest path, that the
environment uses (a)(¬a)(¬a)(¬a) to win the safety game.
• Generalize the longest path. Select from the set of templates one candidate which

can fit the path in terms of generalization. For example, the path above may be gen-
eralized as FG¬a. For every such template, the current implementation of G4LTL-
ST defines a unique generalization function.
• Resynthesize the controller based on the newly introduced template. For example,

given φ as the original specification, the new specification will be (¬FG¬a) →
φ, which is equivalent to (GFa) → φ. Therefore, the path is generalized as an
assumption stating that a should appear infinitely often.

If this process fails to synthesize a controller, then new assumptions are added to further
constrain the environment behavior. When the number of total assumptions reaches a
pre-defined threshold but no controller is generated, the engine stops and reports its
inability to decide the given controller synthesis problem.

5 Outlook

The synthesis engine of G4LTL-ST has been evaluated on a number of simple automa-
tion examples extracted both from public sources and from ABB internal projects1. This
synthesized function block can readily be passed to industry-standard PLC development
tools for connecting function blocks with concrete field device signals inside the main
program to demonstrate desired behavior. The evaluation results in Table 2 demon-
strate that, despite the underlying complexity of the LTL synthesis, G4LTL-ST can still

1 Due to space limits, short descriptions of the case studies have been moved to the extended
version [6].
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provide a practical alternative to the prevailing low-level encodings of PLC programs,
whose block size are (commonly) within 1000 LOC. This is due to the fact that many
modules are decomposed to only process a small amount of I/Os. For small sized I/Os,
the abstraction of timers and data in G4LTL-ST together with counter-strategy-based
lazy refinement are particularly effective in fighting the state explosion problem, since
unnecessary unrolling (for timing) and bit-blasting (for data) are avoided. Data analysis
is also effective when no precise (or imprecise) environment model is provided, as is
commonly the case in industrial automation scenarios.

Mechanisms such as assumption generation are essential for the wide-spread de-
ployment of G4LTL-ST in industry, since they provide feedback to the designer in the
language of the problem domain. Extensive field tests, however, are needed for cali-
brating assumption generation in practice. Moreover, a targeted front-end language for
high-level temporal specification of typical control problems for (networks of) PLCs
needs to be developed [11].
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Abstract. Mainstream programming languages offer libraries of concur-
rent data structures. Each method call on a concurrent data structure
appears to take effect atomically. However, clients of such data struc-
tures often require stronger guarantees. For instance, a histogram class
that is implemented using a concurrent map may require a method to
atomically increment a histogram bar, but its implementation requires
multiple calls to the map and hence is not atomic by default. Indeed,
prior work has shown that atomicity errors in clients of concurrent data
structures occur frequently in production code.

We present an automatic and modular verification technique for clients
of concurrent data structures. We define a novel sufficient condition
for atomicity of clients called condensability. We present a tool called
Snowflake that generates proof obligations for condensability of Java
client methods and discharges them using an off-the-shelf SMT solver.
We applied Snowflake to an existing suite of client methods from sev-
eral open-source applications. It successfully verified 76.9% of the atomic
methods without any change and verified the rest of them with small code
refactoring and/or annotations.

1 Introduction

Many modern programming languages provide libraries of concurrent data struc-
tures (e.g., the java.util.concurrent package and Intel Threading Building
Blocks library) that are widely used. A concurrent data structure is an object
that satisfies the well-known correctness criterion called linearizability [19]. At
a high level, this property ensures that the operations of the data structure
can be invoked concurrently from multiple threads while still appearing to ex-
ecute atomically and behaving according to the sequential specification of the
data structure. The linearizability guarantee relieves the programmer from com-
plex reasoning about possible interference among data-structure methods and
removes the need to add explicit synchronization.

While the linearizability guarantee is very useful, it only pertains to an indi-
vidual operation on the data structure. In practice, clients of a concurrent data
structure may require stronger guarantees. For example, consider the AtomicMap
class in Figure 1, which is a subset of Java’s ConcurrentHashMap class and pro-
vides atomic methods for getting, putting and removing elements, as well as

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 550–567, 2014.
c© Springer International Publishing Switzerland 2014
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1 class AtomicMap <K, V> { // data structure

2 V get(K k) { /*..*/ }

3 void put(K k, V v) { /*..*/ }

4 V remove(K k) { /*..*/ }

5 V putIfAbsent (K k, V v) { /*..*/ }

6 boolean replace(K k, V ov, V nv) { /*..*/ }

7 }

1 class AtomicHistogram <K> { // client

2 private AtomicMap <K, Integer > m;

3

4 V get(K k) {

5 return m.get(k);

6 }

7

8 Integer inc(K key) {

9 while (true ) {

10 Integer i = m.get(key);

11 if (i == null ) {

12 Integer r = m.putIfAbsent (key , 1); 

13 if (r == null )

14 return 1;

15 } else {

16 Integer ni = i + 1;

17 boolean b = m.replace(key , i, ni); 

18 if (b)

19 return ni;

20 } } } }

Fig. 1. The classes AtomicMap and AtomicHistogram

conditional versions of put: putIfAbsent only performs the put if the given key
is currently unmapped, and replace only performs the put if the given key is
currently mapped to a given value. As Figure 1 shows, a programmer may use
the AtomicMap class to implement the client AtomicHistogram class, which sup-
ports the method inc to increment one bar of the histogram. The figure shows
a correct implementation of atomic increment [30], which is subtle and error
prone. For example, a naive implementation of this client method, which simply
gets the current value and puts back an incremented value, is not atomic and
can easily violate the sequential specification in the presence of multiple threads.
In this paper, we present an automatic and modular technique for verification
of the atomicity of clients of concurrent data structures, such as our histogram
class.

Prior work on automatic atomicity verification leverages Lipton’s notion of
moverness [23]. Moverness can be applied to verify conflict-serializability of trans-
actions [4] and atomicity of both data-structure and client methods [14, 15, 35].
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The main idea is to prove that individual operations in a method M can com-
mute with operations from other threads, in such a way that M ’s operations
can be always “moved” to be contiguous in any execution. Moverness has been
successfully applied to automatically check atomicity of concurrent code that
uses locks for synchronization [14, 15] and was later extended to support non-
blocking synchronization by paired load-link (LL) and store-conditional (SC)
instructions [35]. Unfortunately, the ABA problem [27] makes moverness too
strong a requirement to prove atomicity of non-blocking algorithms that employ
compare-and-swap (CAS) [35]. Similarly, as we will show in the next section,
the ABA problem makes the moverness requirement too strong to prove the
atomicity of the increment method in Figure 1.

Instead, we define and check a novel sufficient condition for atomicity called
condensability. Our approach handles client classes that use a single concurrent
data structure in their implementation. Consider a client method M that uses
an atomic object o. Intuitively, a call to M in a concurrent execution e is con-
densable if there is a method call m on o in M ’s execution such that (a) either
m does not modify the state of o or it is the only method call in M ’s execution
that does so; and (b) the sequential execution of the entire method M at the
place of m in e results in the same final state of o as m and the same return
value as the original execution of M . A client object is condensable if every
execution of every method of it is condensable. The notion of condensability is
similar in spirit to the idea of moverness, but instead of moving individual oper-
ations in a method, condensability allows relocating the entire method at once.
Condensability targets a common class of clients that access a single concurrent
data structure and provides a modular verification technique for atomicity of
this class of clients. Specifically, condensability can be separately checked for
each method, so changes to one method do not affect the condensability of other
methods. In Section 3, we formalize condensability and prove that condensability
implies atomicity.

We demonstrate the applicability of condensability with an automatic check-
ing tool for Java called Snowflake. The tool takes as input a client class C along
with a sequential specification for each of the methods in the concurrent data
structure that C employs. As we will show later, such specifications are typically
quite simple and are obtainable from documentation of the data structures. For
each method in C, Snowflake generates a set of proof obligations that are suffi-
cient for condensability and provides them to the Z3 SMT solver [8]. If the proof
obligations are discharged, the method is verified to be atomic.

We applied Snowflake to a suite of open-source benchmarks that was used
to evaluate prior work by others [30]. Snowflake succeeds in verifying atomicity
of 76.9% of the atomic methods and rejecting all non-atomic methods in the
benchmark suite. In addition, Snowflake can verify the remaining 23.1% of the
atomic methods after some manual code refactoring.

Related Work. Shacham et al. [30] provide a tool called Colt for finding atom-
icity bugs in client methods of concurrent data structures by heuristically exe-
cuting such code with interference from other threads. They reported many bugs
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in a variety of real-world applications. Tools like Colt identify actual executions
with atomicity bugs and as such have no false positives, but they cannot prove
the absence of such errors.

In later work, Shacham and colleagues have explored conditions on client
methods that allow for exhaustive testing for interference, thereby support-
ing atomicity verification. Shacham [29] shows that a data-independent client
method, whose control flow does not depend on the specific data values used,
need only be tested using a bounded number of data values in order to cover all
possible atomicity violations. Zomer et al. [37] show that an encapsulated client
method, whose only shared state is the underlying data structure, need only be
tested using two threads and one occurrence of the client method. They also
provide a condition called composition closure on the underlying data structure
that allows each client method to be tested separately for interference. Our work
requires client methods to be encapsulated and to support additional restrictions
but does not restrict the data structure itself; indeed maps are not composition
closed. Our restrictions allow us to verify atomicity via a few simple and modular
condensability conditions on each method.

Work on atomicity refinement provides sound rules for extending the scope
of atomic blocks [12, 20]. Some refinement rules, such as Jonsson’s absorption
rule [20], are similar in spirit to our requirements for condensability. However,
the refinement rules must be applied step by step in order to eventually produce
a single atomic block, while condensability directly compares an interleaved ex-
ecution to a sequential version.

Others have ensured atomicity for clients of linearizable data structures by
automatically inserting additional synchronization [5, 16, 18]. Such approaches
provide strong atomicity guarantees by construction but incur synchronization
overheads that our approach avoids.

In addition to prior work on atomicity, condensability is closely related to the
notion of linearization points in linearizability proofs, which are points where
each method can be seen to atomically satisfy its sequential specification. Lin-
earizability is a strong property that combines atomicity with functional cor-
rectness. Therefore, most prior works on linearizability either do not support
complete automation [9, 10, 22, 26, 28, 31] or search for linearizability bugs in a
bounded number of threads [6,7,24,33,34,36]. Notable exceptions are techniques
based on abstract interpretation [2,3,11,32] and observer automata [1]. The first
approach [2, 3, 11, 32] instruments each linearization point with the surrounding
method’s specification and relies on abstract interpretation of the instrumented
class to check that the implementation and specification methods always return
the same value in the context of the most general client. The second approach [1]
instruments each method to generate an abstract event whenever a linearization
point is passed, captures the specification as an observer automata on the ab-
stract events, and checks the safety of the cross-product of the program and the
observer. These approaches are more general than ours and can verify low-level
concurrent data structures, but they require explicit reasoning about all possible
interactions among the methods of the data structure. Condensability imposes
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((v,m) = m.get(k))⇒ (v = m(k) ∧m′ = m)

(m′ = m.put(k, v)′)⇒ (m′ = m[k �→ v])

(m′, v′) = m.putIfAbsent(k, v)⇒
v′ = m(k) ∧
((m(k) = null) ∧ (m′ = m[k �→ v])) ∨
(¬(m(k) = null) ∧ (m = m′))

Fig. 2. Axioms for get, put and putIfAbsent methods

stronger requirements but in turn enables separate verification of methods of a
client class. Finally, a modular set of sufficient conditions for linearizability has
been proposed specifically for concurrent queues [17].

2 Example

We now illustrate our approach for automatically verifying atomicity for clients
of concurrent data structures through the AtomicHistogram example in Figure 1.
Our approach verifies the atomicity of each method in the class in isolation; we
will illustrate how it works on the inc method.

Specifications. We assume that AtomicMap is atomic and that we are given
specifications for its methods. Figure 2 depicts the axioms characterizing the
behavior of the get, put and putIfAbsentmethods of a map. The specifications
are first-order logic assertions with equality and uninterpreted functions. We
model each method as returning a pair of a return value (when the return type
is not void) and a new map, and we model the abstract map state as a function
from each key in the map to its value and from each key not in the map to null.
We use m[k �→ v] to denote the state that maps the key k to the value v and
otherwise agrees with the map state m. The axiom for the putIfAbsentmethod
states that the mapping of the input key k is updated to the input value v if the
previous mapping of k is null, and otherwise the map state remains unchanged.
The return value of putIfAbsent is always the old mapping for the key k.

Purity. To show that the inc method in AtomicHistogram is atomic, we
will show that every possible execution of the method is condensable. Due to
the while loop there are an unbounded number of execution paths. We address
this challenge by leveraging the notion of purity from past work on atomicity
[13, 35]. At a high level, a loop is pure if only the last iteration of the loop has
externally observable effects. If a loop is pure then only the last iteration needs
to be considered when reasoning about atomicity, thereby reducing verification
of atomicity to loop-free programs. Our approach requires and checks that each
loop in a method is pure.

The loop in inc in Figure 1 is pure: each loop iteration attempts to write to
the map (via either putIfAbsent or replace) and only continues to iterate if the
write fails to happen (putIfAbsent returns a non-null value or replace returns
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1 // First path

2 Integer i = m.get(key);

3 assume (i == null );

4 Integer r = m.putIfAbsent (key , 1); 

5 assume (r == null );

6 return 1;

1 // Second path

2 Integer i = m.get(key);

3 assume (!(i == null ));

4 Integer ni = i + 1;

5 Boolean b = m.replace(key , i, ni); 

6 assume (b);

7 return ni;

Fig. 3. The two loop-free paths of inc

false). Given the specifications for the map operations shown above, it is easy
to automatically verify the purity of this loop. Since the loop is pure, henceforth
we need only consider the two loop-free execution paths shown in Figure 3. We
use an assume statement to record the choices made at each conditional.

Condensability. Consider the first path shown in Figure 3. Unfortunately,
moverness cannot prove the atomicity of the path. Though both of the calls to
get and putIfAbsent indicate that the key is not in the map, other threads
can add and then remove the key between get and putIfAbsent, causing an
ABA problem [27]. Using moverness would require that either get be a right
mover, commuting with any subsequent operation from another thread, or that
putIfAbsent be a left mover, commuting with any preceding operation from
another thread. However the get call does not commute with a subsequent op-
eration from another thread that puts the same key into the map. Similarly the
putIfAbsent call does not commute with a preceding operation from another
thread that removes the same key from the map. Although the path is atomic,
the moverness requirement is too strong to prove it.

Instead, given an interleaved execution of the client method, condensability
identifies a method call on the base atomic object called the condensation point
and attempts to prove that the interleaved execution of the client method can be
replaced by a sequential execution of the client method at the condensation point,
which we call the condensed execution. We heuristically identify the condensation
point as a method call that mutates the state of the underlying concurrent
data structure. If the heuristic fails, the static analysis can be repeated for each
method call in the path. The heuristically identified condensation points are
marked with 
 in the paths of Figure 3.

Consider an arbitrary execution X of a concurrent program on a histogram
h that includes the first path of the inc method. We assume the methods of m
are atomic but make no other atomicity assumptions. Since m is atomic, there is
some execution S of the program such that S is equivalent to X for m (i.e. the
execution S contains the same method calls and return values on m as X) and
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S is sequential for m (i.e. each method call on m in S is immediately followed by
its associated return). Therefore, the portion of S that includes the execution of
the first path has the following form:

1 // m0

2 Integer i = m.get(key);

3 // m1

4 // Interleaving (other method calls on m)

5 // m2

6 Integer r = m.putIfAbsent (key , 1); 

7 // m3

Here, the states m0 and m1 denote the pre-state and post-state of the method call
m.get(key), and m2 and m3 denote the pre-state and post-state of the method
call m.putIfAbsent(key, 1) for m in S. While S is sequential for the map m, it
is not necessarily sequential for the histogram h due to the interleaving of other
method calls from other threads between the calls to get and putIfAbsent.

To prove the condensability of this execution of inc, we must prove the fol-
lowing conditions:

1. None of the method calls other than the condensation method call mutate
the state of m.

2. Consider a condensed execution of inc from the condensation point, that is,
a sequential execution of inc starting from the state m2 for the map m.

1 // m2

2 Integer result = h.inc(key);

3 // m3’

2.1. The state of the map after the condensed execution should be the same
as the post-state of the condensation method call.

2.2. The two calls to inc should have the same return value.

The first condition above requires us to prove that m0 = m1, which is easily
discharged given our earlier specification for get. The second condition requires
us to reason about the execution path taken by the condensed execution of inc
which in general can differ from the path taken in the original execution. Since in
the original execution, the call to putIfAbsent from state m2 returns null, it is
easily seen using the specifications for get and putIfAbsent that the condensed
execution of inc will look as follows:

1 // m2

2 Integer i’ = m.get(key);

3 // m2

4 Integer r’ = m.putIfAbsent (key , 1);

5 // m3’

6 return 1;

Specifically, the call to get will return null, so the “then” branch at line 11 in
inc will be executed. Therefore putIfAbsent is called from the same state m2 as
in the original execution, so the (assumed) determinism of putIfAbsent implies
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that m3 = m3’, discharging condition 2.1. Finally, condition 2.2 is trivial in this
case, since both executions of inc end with the statement return 1.

A similar analysis can be done to show that the second path in Figure 3 is
also condensable, and hence that inc is condensable. Note that this analysis
is completely modular: the condensability of inc can be proven without having
to explicitly enumerate the possible interactions with the other methods in the
histogram class, or even to know the full set of such methods.

If each method in the histogram is condensable, then we say that the histogram
itself is condensable. In the next section we formalize the notion of condensability
and show that condensability implies atomicity.

3 Atomicity and Condensability

In this section, we first present some preliminary definitions and formalize the
standard notion of atomicity. Then we define condensability and state our main
theorem, that condensability implies atomicity.

3.1 Executions and Atomicity

Method Calls and Events. Let l, o, n, T , and v denote a label, an object, a
method name, a thread and a value. Let inv(l  o.nT (v)) denote an invocation
event of a method call labeled l by thread T that calls the method n on the object
o with the argument v. Let ret(l  v) denote a response event of the method call
labeled l that returns v.

Operations on event sequences. Let E and E′ be event sequences. For a
thread T , we use E|T to denote the subsequence of all events of T in E. For an
object o, we use E|o to denote the subsequence of all events of o in E.

Executions. An execution X is a sequence of events where each invocation
event has a unique label and every thread T is well-formed in X (i.e. X |T is an
alternating sequence of invocations and responses, with each pair of an invocation
and response having the same label). We say label l is in X and write l ∈ X
if there is an invocation event with label l in X . Let Labels(X) denote the set
of labels in X . The functions iEv and rEv on Labels(X) map a label to the
invocation and the response events associated with the label.

An execution X is equivalent to an execution X ′ if one is a permutation of
the other one; that is, only the events are reordered but the components of the
events (including the argument and return values) are preserved.

Real-time relations. For an execution X , we define the real-time relations
≺X , and .X on Labels(X) as follows: l1 ≺X l2 if and only if rEv(l1) precedes
iEv(l2) in X , and l1 .X l2 if and only if l1 ≺X l2 ∨ l1 = l2.

An execution X is sequential iff ∀l, l′ ∈ X : l .X l′ ∨ l′ .X l.

Definition 1 (Atomicity). An execution X of a program p is atomic for an
object o if and only if there exists an execution S of p (called the justifying
execution of X for o) such that



558 M. Lesani, T. Millstein, and J. Palsberg

– S|o is sequential,
– S|o is equivalent to X |o, and
– S|o is real-time-preserving i.e. ≺X|o ⊆ ≺S|o.1

An object o is atomic iff every execution of every program is atomic for o.

Atomicity considers sequential executions on the object as justifying execu-
tions. On the other hand, linearizability requires the justifying execution to be a
member of a pre-defined sequential specification for the object. In other words,
an atomic object is linearizable with respect to its sequential executions.

3.2 Condensability

Now we can define condensable objects and state our condensability theorem.
A method call on an object o is an accessor if it does not change the state of

o, and otherwise the method is a mutator. For example, a call to putIfAbsent is
a mutator if it returns null and is an accessor otherwise. We say that an object
c composes object o if the only shared object in the implementation of c is o;
any other object accessed by methods of c is either local or thread-local.

The following definition formalizes the notion of condensability that we infor-
mally described in the previous section.

Definition 2 (Condensable). Consider an object c that composes an atomic
object o. A method m of c is condensable if and only if for every execution X
and justifying execution S of X for o, and for every execution e of m in S, there
exists a method call P(e) on o in e such that

1. All the method calls on o in e other than P(e) are accessors.
2. Let s be the sequential execution of m with the same arguments as in e and

the same pre-state for o as P(e) in S,

2.1. s results in the same post-state for o as P(e) in S, and

2.2. s results in the same return value as e.

The method call P(e) is called the condensation point and the execution s is
called the condensed execution. An object is condensable if and only if all of its
methods are condensable.

Note that the condensed execution s of m may take a different path from the
original execution e.

A notable property of the above definition is that the condensability of a
method is independent of that of other methods. This independence supports
modular verification of condensability for each method of an object.

The following theorem states our main result.

Theorem 1 (Condensability). Every condensable object is atomic.

1 Real-time-preservation is often implicitly assumed.
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Please see the technical report [21] for the proof. Let us intuitively explain why
the condensability conditions are sufficient for atomicity. Consider an arbitrary
execution X of a program on c. As o is atomic, there is a justifying execution S
of X for the atomicity of o. Our goal is to produce a justifying execution S′ for
the atomicity of c. The idea is to construct the execution S′ from S as follows:
every execution of a method call on c is removed from S and replaced by its
condensed execution at its condensation point.

By construction, no two method calls on c interleave in S′; thus, S′|c is se-
quential. To prove that S′ is real-time-preserving for c, we need to show that if
a method call m1 on c with execution e1 is before a method call m2 on c with
execution e2 in X , then m1 is before m2 in S′. As e1 is before e2 in X , P(e1) is
before P(e2) in X . We have that S is real-time-preserving for o thus, as P(e1)
is before P(e2) in X , we have that P(e1) is before P(e2) in S as well. Thus, by
the construction of S′, m1 is before m2 in S′.

Therefore, it remains to show that S′ is an execution of the program that is
equivalent to X . Consider two consecutive condensed executions s1 and s2 in S′

that replace two condensation methods calls m1 and m2 in S. To prove that S′ is
an execution of the program, we should show that the state of o in the post-state
of s1 is equal to the state of o that is assumed in the pre-state of s2. This fact
is derived from the following three equalities. First, by condition 2.1 above the
state of o in the post-state of s1 is equal to the state of o in the post-state of
m1. Second, since there is no condensation method call between m1 and m2 and
by condition 1 all the other method calls on o are accessors, the state of o in
the post-state of m1 is equal to the the state of o in the pre-state of m2. Third,
by construction the state of o in the pre-state of s2 is equal to the state of o
in the pre-state of m2. Finally, to complete the proof that S′ is equivalent to S
we leverage condition 2.2 above, which requires each call in S′ to have the same
return value as its counterpart in X .

4 Checking Condensability

In this section, we show how condensability of a loop-free client method can
be represented as constraints and automatically checked. We assume that all
method calls in the client method are on the underlying atomic data structure.
We will relax this assumption in the next section.

Consider a loop-free client method with the input parameter p. Let o be the
underlying atomic data structure. Let P be the set of paths of the method. Let
Pi denote the ith path. Let |P | denote the size of P . Let us denote a path with
the triple (b,m, r) where b is the conjunction of the branch conditions of the
path, m is the sequence of method calls y = o.n(x) of the path and r is the
returned variable of the path. In the sequence of method calls m, let mk denote
the kth method call. Let |m| denote the size of m. See the technical report [21]
for how we compute the paths.



560 M. Lesani, T. Millstein, and J. Palsberg

Assumptions:
Let Pi = (b,m, r):

1. b
Forall k: 0 ≤ k < |m|

Let mk = (y = o.n(x)):
2. (o2∗k+1, y) = o2∗k.n(x)

Forall j: 0 ≤ j < |P |
Let Pj = (bj ,mj , rj):

3. pj = p ∧
4. oj0 = o2∗l

Forall k: 0 ≤ k < |mj |
Let mk = (y = o.n(x)):

5. (ojk+1, y
j) = ojk.n(x

j)

6. bj ⇒
post = oj|mj | ∧
ret = rj

Obligations:
Let Pi = (b,m, r):
Forall k: 0 ≤ k < |m|, k �= l

7. o2∗k = o2∗k+1 ∧
8. post = o2∗l+1 ∧
9. ret = r

p : Input parameter
x, y, r, ret : Variable
o, post : Object state variable
b : Condition

Fig. 4. Checking Condensability of the ith path at its lth method call

We check the condensability of each path separately. Let us focus on the ith
path Pi = (b,m, r). The condensation point of a path is one of its method calls.
Let us consider the condensability of the ith path at its lth method call. We want
to generate assumptions and obligations that verify that for every execution X
and justifying execution S of X for o, for every execution of the ith path in S, the
method call ml is the condensation point. We consider an arbitrary execution
X and an arbitrary justifying execution S of X for o. We assume that the ith
path is executed in S. The set of assumptions and obligations to check the
condensability of the ith path at the lth method call is depicted in Figure 4. We
describe each of them in turn.

To indicate that the ith path is executed in S, we assert the branch conditions
of the path (line 1) and assert that each method call on the path is executed (line
2). The assertion (o2, y) = o1.n(x) denotes a method call n on o with pre-state
o1 and argument x that results in post-state o2 and return value y. The pre-state
and post-state variables of the kth method are o2∗k and o2∗k+1 respectively. Note
that due to arbitrary interleaving with other threads, the method calls of the
path are not necessarily adjacent in S. Therefore, the post-state variable o2∗k+1

of the kth method call is different from the pre-state variable o2∗(k+1) of the
(k + 1)th method call in the path.

Next, we represent the condensed execution s of the client method at the
condensation point. The condensed execution could take any of the possible
paths through the client method, so we must consider all of them. The states
and variables of each path are superscripted with the index of the path, so that
they do not conflict with one another. Consider one such path Pj . First we assert
that the input parameter to the condensed execution is equal to the input value
of the original method execution (line 3). Next we assert that the pre-state of
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the condensed execution oj0 is equal to the pre-state of the condensation point
o2∗l (recall that the condensation point is the lth method call in the original
path) (line 4). Finally the method calls of the condensed execution are asserted
(line 5). Note that since the condensed execution s is sequential, the post-state
of each method call is the same as the pre-state of the subsequent method call.

Next, we identify which path is actually taken by the condensed execution.
Specifically, the path taken is the unique path whose branch conditions are
satisfied. Therefore, line 6 has the effect of equating post to the post-state of the
condensed execution and ret to the return value of the condensed execution.

Finally, we present the proof obligations for condensability of the ith path.
All the method calls in the ith path other than the condensation point must be
accessors i.e., their pre and post-states must be equal (line 7). The post-state
of the condensed execution path post must be equal to the post-state of the
condensation method call o2∗l+1 in the ith path (line 8). The return value of the
condensed execution ret must equal the return value of the ith path (line 9).

As an example, we present the constraints that each line of Figure 4 gen-
erates for the first path of the inc method in Figure 3. Line 1 generates i =
null ∧ r = null. Line 2 generates (m1, i) = get(m0, key) and (m3, r) =
putIfAbsent(m2, key, 1). For the first path of the inc method, line 3 generates
key0 = key, line 4 generates m0

0 = m2, line 5 generates (m0
1, i

0) = get(m0
0, key

0)
and (m0

2, r
0) = putIfAbsent(m0

1, key
0, 1), and line 6 generates (i0 = null ∧ r0 =

null)⇒ (post = m0
2 ∧ ret = r0). Similar constraints are generated for the sec-

ond path. The proof obligations are as follows: Line 7 generates m0 = m1. Lines
8 and 9 generate post = m3 and ret = r.

Note that in Figure 4, the universal quantification can be expanded. Therefore,
the assumptions and proof obligations are quantifier-free formulas that an SMT
solver can discharge automatically.

5 Snowflake

Now we present our tool called Snowflake that automatically verifies condens-
ability of Java methods.

User Input. The user must provide Snowflake with the client method to check
along with the axioms that characterize the methods of the data structure used
by the client method. The user also specifies the variable/field in the client
code that holds the underlying data structure object with the BaseObject Java
annotation. Finally, Snowflake supports optional annotations to declare that a
certain method call in the client method is functional, meaning that the call
is side-effect-free and that its return value is solely a function of the states of
the given receiver object and arguments. A variation on this annotation de-
clares a method call to be argument-functional, which is identical except that
the method’s return value does not depend on the receiver object’s state. These
annotations allow Snowflake to verify condensability modularly, without having
to recursively analyze calls to auxiliary methods in the given client method.
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We presented the axioms for the get, put, and putIfAbsent methods of the
atomic map in Figure 2. The documentation of current data structures typi-
cally presents a pseudocode specification for the conditional atomic methods in
terms of the more basic methods. For example, the sequential specification of
putIfAbsent in terms of get and put methods is depicted in Figure 5. The ax-
iom of putIfAbsent in Figure 2 can be derived from its sequential specifications
in Figure 5 along with the axioms of the get and put methods in Figure 2. Our
tool has embedded axioms for common methods of Java concurrent map and
set data structures and can be extended to support other collection types. We
present the full set of axioms in the technical report [21].

1 V putIfAbsent (K k, V v) {

2 atomic {

3 V v1 = get(k);

4 if (v1 == null )

5 put(k, v);

6 return v1;

7 }

8 }

Fig. 5. The specification of putIfAbsent in terms of get and put

Paths and Purity. As the first step, Snowflake computes the set of paths
of the client method. We adopt the terminology of paths from [13] and [35].
A path of a loop is exceptional if it is executed as the last iteration of the
loop. An exceptional loop path ends in a break or return statement or by the
condition of the loop evaluating to false. A path of a loop is normal if it is not
exceptional. Informally, a loop is pure if its normal paths have no side effects. We
conservatively determine a loop to be pure if for every method call y = o.n(x)
in a normal path of the loop:

– If o is a shared variable, then the method call is an accessor.
– The variable y is a local variable.
– For all paths in the control flow graph from the end of this normal path to

the return of the method call, the next access to y, if any, overwrites it.

For example, the method calls in the normal paths of the incmethod of Figure 1
satisfy these conditions.

An exceptional variant of a method is a copy of the method where each pure
loop of the method is replaced by one of its exceptional paths. The exceptional
variant of an object is the copy of the object where each method is replaced by all
of its exceptional variants. The following theorem is a restatement of Theorem
5.2 from [35]:

Theorem 2. If the exceptional variant of an object is atomic, then the object is
atomic.
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The theorem reduces verification of atomicity for methods with pure loops to
loop-free methods.

Given a client method, Snowflake computes the normal paths of the loops and
the exceptional variants of the method. It then converts each path to its static
single assignment (SSA) form. It first checks the purity of the normal paths using
the conditions described above. If the purity of a normal path cannot be verified,
the client method is rejected.

We check the condensability of each exceptional variant using the method
described in Section 4. We use the following heuristics to guess the condensation
point of a path. If there is a call to a method that can mutate the data structure’s
state in the path, the condensation point is the last such method; otherwise, it
is the first method on the data structure in the path. As mentioned before, if
the heuristic fails, we can iterate our approach with a different method call as
the condensation point.

Now, let us relax the assumption that all the method calls in a path are on
the atomic data structure. If there is a method call that is not on the atomic
data structure and is not annotated as functional, the client method is rejected
because we cannot modularly ensure atomicity. Otherwise, we treat each func-
tional method as an uninterpreted function. Specifically, a functional method
call y = o.n(x) is translated to the assertion y = n(o, x). Therefore, as long as
the ith path and the condensed execution call such a method with equal argu-
ments, we can prove that they will have equal results. Mathematical operations
are treated similarly but we additionally assert axioms such as commutativity
and associativity.

Snowflake represents all of the assertions and obligations, along with axioms
for the atomic data structure in the SMT2 format and invokes the Z3 SMT
solver to check their validity. A method is considered condensable if this process
succeeds for each of the method’s exceptional variants. An object is considered
condensable if each of its methods is found to be condensable.

6 Results

Benchmarks and Platform. We adopt the benchmark suite available from
Colt [30]. This benchmark suite is a collection 112 client methods from 51 real-
world applications such as Apache Tomcat, Cassandra, and MyFaces Trinidad.
We call this collection the Colt suite. It consists of 26 atomic and 86 non-atomic
methods.

Snowflake is written in Java, compiled and executed with JDK version 1.7.0.07
and uses Polyglot [25] version 2.5.1 and Z3 version 4.3.2 [8]. The source code of
Snowflake is available [21].

Results. Snowflake is sound, so it correctly rejects all 86 non-atomic bench-
marks in the Colt suite. Figure 6 shows the result of applying Snowflake to the
26 atomic benchmarks of Colt suite. The pie chart partitions these benchmarks
into three groups. Twenty of the benchmarks (76.9%) are proven atomic without
any change. The other six benchmarks are rejected as non-atomic by Snowflake.
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Fig. 6. Evaluation of Snowflake

However, with small modifications they can also be proven to be atomic: two of
them simply require the addition of functional annotations on some methods,
and the other four benchmarks require some code refactoring. For example, we
refactored a block of code that initializes a new object to a method call and an-
notated the method call as functional. Snowflake verified each of the 26 atomic
benchmarks in an average time of 1.45 seconds with a minimum of 1.16 seconds
and a maximum of 2.66 seconds. We present a list of benchmarks and the run
times of our tool in the accompanying web page [21].

A comparison with Colt is instructive. Since Snowflake is a verification tool,
if it accepts a method, it is atomic, but if it rejects the method, it may still
be atomic. On the other hand, since Colt is a bug-finding tool, if it rejects a
method, it is non-atomic, so it does not find any atomicity errors in the 26 atomic
benchmarks of Colt suite. However Colt may not reject non-atomic benchmarks
and indeed Colt is not able to find atomicity errors in four of the non-atomic
benchmarks. Each of these benchmarks first atomically gets the current value
or puts a value for a key and then performs a separate operation on the value.
Although each operation is atomic, they are not atomic together.

7 Conclusion

We introduced condensability as a modular verification technique for atomicity
of clients of concurrent data structures. We defined the notion of condensability
and proved that it implies atomicity. Condensability of an object can be sepa-
rately checked for each method of the object. We showed how condensability of
a method can be represented as constraints and automatically checked. We pre-
sented our tool, Snowflake, that automatically verifies condensability and applied
it to real-world client methods. In future work, we are interested to generalize
our approach to support impure loops as well as multiple writes to the data
structure.

Acknowledgements. Thanks to Madan Musuvathi and Erez Petrank for ini-
tial discussions on this topic, and to Lorenzo Gomez for contributions to the
Snowflake tool.
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Abstract. While fixing concurrency bugs, program repair algorithms
may introduce new concurrency bugs. We present an algorithm that
avoids such regressions. The solution space is given by a set of program
transformations we consider in for repair process. These include reorder-
ing of instructions within a thread and inserting atomic sections. The
new algorithm learns a constraint on the space of candidate solutions,
from both positive examples (error-free traces) and counterexamples (er-
ror traces). From each counterexample, the algorithm learns a constraint
necessary to remove the errors. From each positive examples, it learns
a constraint that is necessary in order to prevent the repair from turn-
ing the trace into an error trace. We implemented the algorithm and
evaluated it on simplified Linux device drivers with known bugs.

1 Introduction

The goal of program synthesis is to simplify the programming task by letting
the programmer specify (parts of) her intent declaratively. Program repair is the
instance of synthesis where we are given both a program and a specification.
The specification classifies the execution of the program into good traces and bad
traces. The synthesis task is to automatically modify the program so that the
bad traces are removed, while (many of) the good traces are preserved.

In program repair for concurrency, we assume that all errors are caused by
concurrent execution. We formalize this assumption into a requirement that all
preemption-free traces are good. The program may contain concurrency errors
that are triggered by more aggressive, preemptive scheduling. Such errors are
notoriously difficult to detect and, in extreme cases, may only show up after
years of operation of the system. Program repair for concurrency allows the pro-
grammer to focus on the preemption-free correctness, while putting the intricate
task of proofing the code for concurrency to the synthesis tool.

� This research was funded in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM), by the Austrian Science Fund (FWF) project
S11402-N23 (RiSE), and by a gift from Intel Corporation. NICTA is funded by
the Australian Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence Program.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 568–584, 2014.
c© Springer International Publishing Switzerland 2014



Regression-Free Synthesis for Concurrency 569

Program Repair for Concurrency. The specification is provided by asser-
tions placed by the programmer in the code. A trace, which runs without any
assertion failure, is called “good”, and conversely a trace with an assertion fail-
ure is “bad”. We assume that the good traces specify the intent of the pro-
grammer. A trace is complete if every thread finishes its execution. A trace of
a multi-threaded program is preemption-free if a thread is de-scheduled only at
preemption-points, i.e., when a thread tries to execute a blocking operation, such
as obtaining a lock.

Given a multithreaded program in which all complete preemption-free traces
are good, the program repair for concurrency problem is to find a program for
which the following two conditions hold: (a) all bad traces of the original program
are removed; and (b) all the complete preemption-free traces are preserved. We
further extend this problem statement by saying that if not all preemption-free
traces are good, but all complete sequential traces are good, then we need to find
a program such that (a) holds, and all complete sequential traces are preserved.

Regression-free Algorithms. Let us consider a trace-based algorithm for pro-
gram repair, that is, an iterative algorithm that in each iteration is given a trace
(good or bad) of the program-under-repair, and produces a new program based
on the traces seen. We say that such an algorithm is regression-free if after every
iteration, we have that: first, all bad traces examined so far are removed, and
second, all good traces examined so far are not turned into bad traces of the
new program. (Of course, to make this definition precise, we will need to define
a correspondence between traces of the original program and the new program.)

Program Transformations. In order to remove bad traces, we apply the fol-
lowing program transformations: (1) reordering of adjacent instructions i1; i2
within a thread if the instructions are sequentially independent (i.e., if i1; i2 is
sequentially equivalent to i2; i1), and (2) inserting atomic sections. The reorder-
ing of instructions is given priority as it may result in a better performance than
the insertion of atomic sections. Furthermore, the reordering of instructions re-
moves a surprisingly large number of concurrency bugs that occur in practice;
according to a study of how programmers fix concurrency bugs in Linux device
drivers [4], reordering of instructions is the most commonly used.

Our Algorithm. Our algorithm learns constraints on the space of candidate so-
lutions from both good traces and bad traces. We explain the constraint learning
using as an example the program transformation (1), which reorders instructions
within threads. From a bad trace, we learn reordering constraints that eliminate
the counterexample using the algorithm of [4]. While eliminating the counterex-
ample, such reorderings may transform a (not necessarily preemption-free) good
trace into a bad trace — this would constitute a regression. In order to avoid
regressions, our algorithm learns also from good traces. Intuitively, from a good
trace π, we want to learn all the ways in which π can be transformed by re-
ordering without turning it into an error trace— this is expressed as a program
constraint. The program constraint is (a) sound, if all programs satisfying the
constraint are regression-free; and (b) complete, if all programs violating the con-
straint have regressions. However, as learning a sound and complete constraint
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is computationally expensive, given a good trace π we learn a sound constraint
that only guarantees that π is not transformed into a bad trace. We generate the
constraint using data-flow analysis on the instructions in π. The main idea of the
analysis is that in good traces, the data-flow into passing assertions is protected
by synchronization mechanisms (such as locks) and data-flow into conditionals
along the trace. This protection may fail if we reorder instructions. We thus find
a constraint that prevents such bad reorderings.

Summarizing, as the algorithm progresses and sees a set of bad traces and a set
of good traces, it learns constraints that encode the ways in which the program
can be transformed in order to eliminate the bad traces without turning the
good traces into bad traces of the resulting program.

CEGIS vs PACES. A popular recent approach to synthesis is counterexample-
guided inductive synthesis (CEGIS) [17]. Our algorithm can be viewed as an
instance of CEGIS with the important feature that we learn from positive ex-
amples. We dub this approach PACES, for Positive- and Counter-Examples in
Synthesis. The input to the CEGIS algorithm is a specification ϕ (possibly in
multiple pieces – say, as a temporal formula and a language of possible so-
lutions [3]). In the basic CEGIS loop, the synthesizer proposes a candidate
solution S, which is then checked against ϕ. If it is correct, the CEGIS loop
terminates; if not, a counterexample is provided and the synthesizer uses it to
improve S. In practice, the CEGIS loop often faces performance issues, in partic-
ular, it can suffer from regressions: new candidate solutions may introduce errors
that were not present in previous candidate solutions. We address this issue by
making use of positive examples (good traces) in addition to counterexamples
(bad traces). The good traces are used to learn constraints that ensure that these
good traces are preserved in the candidate solution programs proposed by the
CEGIS loop. The PACES approach applies in many program synthesis contexts,
but in this paper, we focus on program repair for concurrency.

Related Work. The closest related work is by von Essen and Jobstmann [7],
which continues the work on program repair [11,9,12]. In [7], the goal is to repair
reactive systems (given as automata) according to an LTL specification, with
a guarantee that good traces do not disappear as a result of the repair. Their
algorithm is based on the classic synthesis algorithm which translates the LTL
specification to an automaton. In contrast, we focus on the repair of concurrent
programs, and our algorithm uses positive examples and counterexamples.

There are several recent algorithms for inserting synchronization by locks,
fences, atomic sections, and other synchronization primitives ([18,5,6,16]). Desh-
mukh et al. [6] is the only one of these which uses information about the correct
parts of the program in bug fixing – a proof of sequential correctness is used to
identify positions for locks in a concurrent library that is sequentially correct.
CFix (Jin et al. [10]) can detect and fix concurrency bugs using specific bug
detection patterns and a fixing strategy for each pattern of bug. Our approach
relies on a general-purpose model checker and does not use any patterns.

Our algorithm for fixing bad traces starts by generalizing counterexample
traces. In verification (as opposed to synthesis), concurrent trace generalization
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init: x = 0; y = 0; z = 0

thread1 thread2 thread3

1: await(x==1) A: x:=1 n: await(z==1)

2: await(y==1) B: y:=1 p: assert(y==1)

3: assert(z==1) C: z:=1

(a) Program P

1

2

3

A

B

C

(b) Reorderings
from bad traces

1

2

3

A

B

C

n

p

(c) Learning from a
good trace

Fig. 1. Program analysis with good and bad traces

was used by Sinha et al. [14,15]; and by Alglave et al. [2] for detecting errors due
to weak memory models. Generalizations of good traces was previously used by
Farzan et al. [8], who create an inductive data-flow graph (iDFG) to represent
a proof of program correctness. They do not attempt to use iDFGs in synthesis.

We use the model checker CBMC [1] to generate both good and bad traces.
Sen introduced concurrent directed random testing [13], which can be used to
obtain good or bad traces much faster than a model checker. For a 30k LOC
program their tool needs only about 2 seconds. We could use this tool to initially
obtain good and bad traces faster, thus increasing the scalability of our tool.

Illustrative Example. We motivate our approach on the program P in Fig-
ure 1a. There is a bug witnessed by the following trace: π1 = A → B → 1 →
2→ 3 (the assertion at line 3 fails). Let us attempt to fix the bug using the al-
gorithm from [4]. The algorithm discovers possible fixes by first generalizing the
trace into a partial order (Figure 1b, without the dotted edges) representing the
happens-before relations necessary for the bug to occur, and second, trying to
create a cycle in the partial order to eliminate the generalized counterexample.
It finds three possible ways to do this: swapping B and C, or moving C before
A, or moving A after C, indicated by the dotted edges in Figure 1b. Assume
that we continue with swapping B and C to obtain program P1 where the first
thread is A;C;B. Program P1 contains an error trace π2 = A → C → n → p
(the assertion at line p fails). This bug was not in the original program, but was
introduced by our fix. We refer to this type of bug as a regression.

In order to prevent regressions, the algorithm learns from good traces. Con-
sider the following good trace π3 = A → B → C → 1 → 2 → n → 3 → p. The
algorithm analyses the trace, and produces the graph in Figure 1c. Here, the
thick red edges indicate the reads-from relation for assert commands, and the
dashed blue edges indicate the reads-from relation for await commands. Intu-
itively, the algorithm now analyses why the assertion at line p holds in the given
trace. This assertion reads the value written in line B (indicated by the thick
red edge). The algorithm finds a path from B to p composed entirely from intra-
thread sequential edges (B → C and n → p) and dashed blue edges (C → n).
This path guarantees that this trace cannot be changed by different scheduler
choices into a path where p reads from elsewhere and fails. From the good trace
π2 we thus find that there could be a regression unless B precedes C and n pre-
cedes p. Having learned this constraint, the synthesizer can find a better way to
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fix π1. Of the three options described above, it chooses the only way which does
not reorder B and C, i.e., it moves A after C. This fixes the program without
regressions.

2 Programming Model and the Problem Statement

Our programs are composed of a fixed number (say n) threads written in the
Cwhile language (Figure 2). Each statement has a unique program location
and each thread has unique initial and final program locations. Further, we as-
sume that execution does not stop on assertion failure, but instead, a variable
err is set to 1. The await construct is a blocking assume, i.e., execution of
await(cond) stops till cond holds. For example, a lock construct can be mod-
elled as atomic { await(lock var == 0); lock var := 1 }. Note that await
is the only blocking operation in Cwhile – hence, we call the await operations
preemption-points.

iexp ::= iexp + iexp | iexp / iexp | iexp * iexp | var | constant

bexp ::= iexp >= iexp | iexp == iexp | bexp && bexp | !bexp

stmt ::= variable := iexp | variable := bexp | stmt; stmt | assume(bexp)

| if (*) stmt else stmt | while (*) stmt | atomic { stmt }
| assert(bexp) | await(bexp)

thrd ::= stmt prog ::= thrd | prog‖thrd
Fig. 2. Syntax of programming language

Semantics. The program-state S of a program P is given by (D, (l1, . . . , ln))
where D is a valuation of variables, and each lt is a thread t program location.
Execution of the thread t statement at location lt is represented as SltS′ where
S = (D, (. . . , lt, . . .)) and S′ = (D′, (. . . , lt

′
, . . .)), and lt

′
and D′ are the program

location and variable valuation after executing the statement from D. A trace π
of P is a sequence S0l0 . . . Sm where (a) S0 = (D, (l1ι , . . . , lnι )) where each ltι is
the initial location of thread t; and (b) each SiliSi+1 is a thread t transition for
some t. Trace π is complete if Sm = (Dm, (l1f , . . . , l

k
f )), where each ltf is the final

location of thread t. We say Sili . . . Sn is equal modulo error-flag to S′
ili . . . S

′
n if

each Sk and S′
k differ only in the valuation of the variable err .

Trace π is preemption-free if every context-switch occurs either at a
preemption-point (await statement) or at the end of a thread’s execution, i.e., if
where SiliSi+1 and Si+1li+1Si+2 are transitions of different threads (say threads
t and t′), either the next thread t instruction after li is an await, or the thread t
is in the final location in Si+1. Similarly, we call a trace sequential if every
context-switch happens at the end of a thread’s execution.

A trace π = S0l0 . . . Sm is bad if the error variable err has values 0 and 1 in
S0 and Sm, respectively; otherwise, π is good trace. We assume that the bugs
present in the input programs are data-independent – if π = S0l0S1 . . . Sn is bad,
so is every trace π′ = S′

0l
′
0S

′
1 . . . S

′
n where li = l′i for all 0 ≤ i < n.

Program Transformations and Program Constraints. We consider two
kinds of transformations for fixing bugs:
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– A reordering transformation θ = l1 � l2 transforms P to P ′ if location l1
immediately precedes l2 in P and l2 immediately precedes l1 in P ′. We only
consider cases where the sequential semantics are preserved, i.e., if (a) l1
and l2 are from the same basic block; and (b) l1; l2 is equivalent to l2; l1.

– An atomic section transformation θ = [l1; l2] transforms P to P ′ if neigh-
bouring locations l1 and l2 are in an atomic section in P ′, but not in P .

We write P
θ1...θk−−−−→ P ′ if applying each of θi in order transforms P to P ′. We say

transformation θ acts across preemption-points if either θ = l1 � l2 and one of
l1 or l2 is a preemption-point; or if θ = [l1; l2] and l2 is a preemption-point.

Given a program P , we define program constraints to represent sets of pro-
grams that can be obtained through applying program transformations on P .
– Atomicity constraint: Program P ′ |= [li; lj ] if li and lj are in an atomic block.
– Ordering constraint: Program P ′ |= li ≤ lj if li and lj are from the same

basic block and either li occurs before lj , or P
′ satisfies [li; lj ].

If P ′ |= Φ, we say that P ′ satisfies Φ. Further, we define conjunction of Φ1 and
Φ2 by letting P ′ |= Φ1 ∧ Φ2 ⇔ (P ′ |= Φ1 ∧ P ′ |= Φ2).

Trace Transformations and Regressions. A trace π = S0l0 . . . Sm trans-
forms into a trace π′ = S′

0l
′
0 . . . S

′
m by switching if: (a) S0l0 . . . Sn = S′

0l
′
0 . . . S

′
n

and the suffixes Sn+2ln+2 . . . Sm and S′
n+2l

′
n+2 . . . S

′
m are equal modulo error-

flag; and (b) ln = l′n+1 ∧ ln+1 = l′n. We label switching transformations as a:
– Free transformation if ln and ln+1 are from different threads. We write π′ ∈

f(π) if a sequence of free transformations takes π to π′.
– Reordering transformation θ = l� � l� acting on π if ln = l� and ln+1 =

l�. We have π′ ∈ θ(π) if repeated applications of θ transformations acting
on π give π′. Similarly, π′ ∈ θf (π) if repeated applications of θ and free
transformations acting on π give π′.

Similarly, π′ is obtained by atomicity transformation θ = [l1, l2] acting on a trace
π if π′ ∈ f(π), and there are no context-switches between l1 and l2 in π′.

Trace analysis graphs. We use trace analysis graphs to characterize data-flow and
scheduling in a trace. First, given a trace π = S0l0 . . ., we define the function
depends to recursively find the data-flow edges into the li. Formally, depends(i) =
∪v{(last(i, v), i)} ∪ depends(last(i, v)) where v ranges over variables read by li,
and last(i, v) returns j if li reads the value of v written by lj and last(i, v) = ⊥
if no such j exists. As the base case, we define depends(⊥) = ∅.

Now, a trace analysis graph for trace π = S0l0 . . . Sn is a multi-graph G(π) =
〈V,→〉, where V = {⊥}∪{i|0 ≤ i ≤ n} are the positions in the trace along with
⊥ (representing the initial state) and → contains the following types of edges.
1. Intra-thread order (IntraThreadOrder ): We have x→ y if either x < y, and

lx and ly are from the same thread, or if x = ⊥.
2. Data-flow into conditionals (DFConds): We have

⋃
a∈conds depends(a) ⊆→

where x ∈ conds iff lx is an assume or an await statement.
3. Data-flow into assertions (DFAsserts): We have

⋃
a∈asserts depends(a) ⊆→

where x ∈ asserts iff lx is an assert statement.
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4. Non-free order (NonFreeOrder): We have x → y if lx and ly write two dif-
ferent values to the same variable. Intuitively, the non-free orders prevent
switching transformations that switch lx and ly.

Regressions. Suppose P
θ1,...,θk−−−−−→ P ′. We say θ1, . . . , θk introduces a regression

with respect to a good trace π = S0l0 . . . Sm of P if there exists a trace π′ =
S′
0l
′
0 . . . S

′
m ∈ θfk ◦ . . . ◦ θ

f
1 (π) such that: (a) π′ is a bad trace of P ′; (b) π does

not freely transform into any bad trace of P ; and (c) for every data-flow into
conditionals edge x→ y (say ly reads the variables V from lx) in G(π), the edge
p(x)→ p(y) is a data-flow into conditionals edge in G(π′) (where l′p(y) reads the
same variables V from l′p(x)). Here, p(i) is the position in π′ of instruction at

position i in π after the sequence of switching transformations that take π to π′.
We say θ1 . . . θk introduces a regression with respect to a set TG of good traces
if it introduces a regression with respect to at least one trace π ∈ TG.

Intuitively, a program-transformation induces a regression if it allows a good
trace π to become a bad trace π′ due to the program transformations. Further,
we require that π and π′ have the conditionals enabled in the same way, i.e., the
assume and await statements read from the same locations.

Remark 1. The above definition of regression attempts to capture the intuition
that a good trace transforms into a “similar” bad trace. The notion of similar
asks that the traces have the same data-flow into conditionals – this condition
can be relaxed to obtain more general notions of regression. However, this makes
trace analysis and finding regression-free fixes much harder (See Example 3).

Example 1. In Figure 1, the trace π = A;B;C;n; p transforms under B � C to
π′ = A;C;B;n; p, which freely transforms to π′′ = A;C;n; p;B. Hence, B � C
introduces a regression with respect to π as π does not freely transform into a
bad trace, and π′ is bad while the await in n still reads from C.

The Regression-free Program-Repair Problem. Intuitively, the program-
repair problem asks for a correct program P ′ that is a transformation of P .
Further, P ′ should preserve all sequential behaviour of P ; and if all preemption-
free behaviour of P is good, we require that P ′ preserves it.

Program repair problem. The input is a program P where all complete sequential
traces are good. The result is a sequence of program transformations θ1 . . . θn and

P ′, such that (a) P
θ1...θn−−−−→ P ′; (b) P ′ has no bad traces; (c) for each complete

sequential trace π of P , there exists a complete sequential trace π′ of P ′ such
that π′ ∈ θ1 ◦ θ2 . . . ◦ θn(π); and (d) if all complete preemption-free traces of
P are good, then for each such trace π, there exists a complete preemption-free
trace π′ of P ′ such that π′ ∈ θ1 ◦ θ2 . . . ◦ θn(π). We call the conditions (c) and
(d) the preservation of sequential and correct preemption-free behaviour.

Regression-free error fix. Our approach to the above problem is through repeated
regression-free error fixing. Formally, the regression-free error fix problem takes
a set of good traces TG, a program P and a bad trace π as input, and produces
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transformations θ1, . . . , θk and P ′ such that P
θ1...θk−−−−→ P ′, π′ ∈ θfk ◦ . . . ◦ θ

f
1 (π) is

a trace in P ′, and θ1, . . . , θk does not introduce a regression with respect to TG.

3 Good and Bad Traces

Our approach to program-repair is through learning regression preventing con-
straints from good traces and error eliminating constraints from bad traces.

3.1 Learning from Good Traces

Given a trace π of P , a program constraint Φ is a sound regression preventing
constraint for π if every sequence of program transformations θ1, . . . , θk, such

that P
θ1...θk−−−−→ P ′ and P ′ |= Φ, does not introduce a regression with respect to π.

Further, if every θ1 . . . θk, such that P
θ1...θk−−−−→ P ′ and P ′ �|= Φ, introduces a re-

gression with respect to π, then Φ is a complete regression preventing constraint.

Example 2. Let the program P be {1 : x := 1; 2 : y := 1}||{A : await(y = 1);
B : assert(x = 1)}. In Figure 3a, the constraint Φ∗ = (1 < 2∧A < B) is a sound
and complete regression-preventing constraint for the trace 1→ 2→ A→ B.

Lemma 1. For a program P and a good trace π, the sound and complete
regression-preventing constraint Φ∗ is computable in exponential time in |π|.

Intuitively, the proof relies on an algorithm that iteratively applies all possible
free and program transformations in different combinations (there are a finite,
though exponential, number of these) to π. It then records the constraints satis-
fied by programs obtained by transformations that do not introduce regressions.

The sound and complete constraints are usually large and impractical to com-
pute. Instead, we present an algorithm to compute sound regression-preventing
constraints. The main issue here is non-locality, i.e., statements that are not
close to the assertion may influence the regression-preventing constraint.

1: x:=1

2: y:=1

A: await(y==1)

B: assert(x==1)

(a)

1: x := 1

2: y:=1A: await(y=1)

B: assert(x==1)

C: a:=1
3: assume(a==1)

4: x:=0

(b)

1: x:=1

2’: y:=2

2: y:=1

A: await(y>=1)

B: assert(x==1)

(c)

Fig. 3. Sample Good Traces for Regression-preventing constraints
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Example 3. The trace in Figures 3b is a simple extension of Figure 3a. However,
the constraint (1 ≤ 2 ∧ A ≤ B) (from Example 2) does not prevent regressions
for Figure 3b. An additional constraint B ≤ C ∧ 3 ≤ 4 is needed as reordering
these statements can lead to the assertion failing by reading the value of x “too
late”, i.e., from the statement 4 (trace: 1→ 2→ A→ C → 3→ 4→ B).

Figure 3c clarifies our definition of regression, which requires that the data-
flow edges into assumptions and awaits need to be preserved. The await can
be activated by both 2 and 2’; in the trace we analyse it is activated by 2.
Moving 2’ before 1 could activate the await “too early” and the assertion would
fail (trace: 2′ → A → B). However, it is not possible to learn this purely with
data-flow analysis – for example, if statement 2’ was y := -1, then this would
not lead to a bad trace. Hence, we exclude such cases from our definition of
regressions by requiring that the await reads A reads from the same location.

Learning Sound Regression-Preventing Constraints. The sound regression-
preventing constraint learned by our algorithm for a trace ensures that the data-
flow into an assertion is preserved. This is achieved through two steps: suppose
an assertion at location la reads from a write at location lw. First, the constraint
ensures that lw always happens before la. Second, the constraint ensures that
no other writes interfere with the above read-write relationship.

For ensuring happens-before relationships, we use the notion of a cover. In-
tuitively, given a trace π of P where location lx happens before location ly, we
learn a Φ that ensures that if P ′ |= Φ, then each trace π′ of P ′ obtained as
free and program transformations acting on π satisfies the happens-before rela-
tionship between lx and ly. Formally, given a trace π of program P , we call a
path x1 → x2 → . . . → xn in the trace analysis graph a cover of edge x → y if
x = x1 ∧ y = xn and each of xi → xi+1 is either a intra-thread order edge, or a
data-flow into conditionals edge, or a non-free order edge.

Given a trace π = S0l0S1l1 . . . Sn, where statement at position r (i.e., lr)
reads a set of variables (say V) written by a statement at position w (i.e., lw),
the the non-interference edges define a sufficient set of happens-before relations
to ensure that no other statements can interfere with the read-write pair, i.e.,
that every other write to V either happens before w or after r. Formally, we have
that interfere(w → r) = {r → w′ | w′ > r ∧ write(lw′) ∩ write(lw) ∩ Read(lr) �=
∅} ∪ {w′ → w | w′ < w ∧ write(lw′) ∩ write(lw) ∩ Read(lr) �= ∅} where Read(l)
and write(l) are the variables read and written at location l. If w = ⊥, we have
interfere(w → r) = {r → w′ | w′ > r ∧ write(lw′) ∩ Read(lr) �= ∅}.

Algorithm 1 works by ensuring that for each data-flow into assertions edge
e, the edge itself is covered and that the interference edges are covered. For
each such cover, the set of intra-thread order edges needed for the covering are
conjuncted to obtain a constraint. We take the disjunction Φ′ of the constraints
produced by all covers of one edge and add it to a constraint Φ to be returned.
If an edge cannot be covered, the algorithm falls back by returning a constraint
that fixes all current intra-thread orders. The algorithm can be made to run in
polynomial time in |π| using standard dynamic programming techniques.
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Algorithm 1. Algorithm LearnGoodUnder

Require: A good trace π
Ensure: Regression-preventing constraint Φ
1. Φ← true;G← G(π)

2. for all e ∈
(
DFAsserts(G) ∪

⋃
f∈DFAsserts(G) interfere(f)

)
do

3. if e is not covered then return
∧
{lx ≤ ly | x→ y is a intra-thread order edge}

4. Φ′ ← false

5. for all x1 → x2 → . . .→ xn cover of e do
6. Φ′ ← Φ′ ∨

∧
{lxi ≤ lxi+1 | xi → xi+1 is a intra-thread order edge and xi �= ⊥

lxi and lxi+1 are from the same execution of a basic block in π }
7. Φ← Φ ∧ Φ′

8. return Φ

Theorem 1. Given a trace π, Algorithm 1 returns a constraint Φ that is a sound
regression-preventing constraint for π and runs in polynomial time in |π|.

Proof (Outline). The fallback case (line 3) is trivially sound. Let us assume
towards contradiction that there is a bad trace π′ = S′

0l
′
0S

′
1l
′
1 . . . S

′
n of P ′ |= Φ,

that is obtained by transformation of π = S0l0S1l1 . . . Sn. For each 0 ≤ i < n,
let p(i) be such that the instruction at position i in π is at position p(i) in π′

after the sequence of switching transformations taking π to π′.
If for every data-flow into assertion edge in x → y in G(π), we have that

p(x) → p(y) is a corresponding data-flow into assertion edge in G(π′), then it
can be easily shown that π′ is also good (each corresponding edge in π′ reads the
same values as in π). Now, suppose x→ y is the first (with minimal x) such edge
in π that does not hold in π′. We will show in two steps that p(x) happens before
p(y) in π′, and that p(y) reads from p(x) which will lead to a contradiction.

For the first step, we know that there exists a cover of x→ y in π. For now,
assume there is exactly one cover – the other case is similar. For each edge a→ b
in this cover, no switching transformation can switch the order of la and lb:
– If a → b is a data-flow into conditionals edge, as π′ has to preserve all

DFConds edges (definition of regression), p(a) happens before p(b) in π′.
– If a→ b is a non-free order edge, no switching transformation can reorder a

and b as that would change variables values (by definition of non-free edges).
– If a→ b is a intra-thread order edge, we have that P ′ |= Φ and Φ =⇒ a ≤ b,

and hence, no switching transformation would change the order of a and b.
Hence, we have that all the happens before relations given by the cover are all
preserved by π′ and hence, p(a) happens before p(a) in π′. The fact that p(y)
reads from p(x) follows from a similar argument with the interfere(x→ y) edges
showing that every interfering write either happens before p(x) or after p(y). ��

3.2 Eliminating Bad Traces

Given a bad trace π of P , a program constraint Φ is a error eliminating constraint

if for all transformations θ1, . . . , θk and P ′ such that P
θ1...θk−−−−→ P ′ and P ′ |= Φ,
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A: x:=1

B: z:=1

C: y:=1

1: await(y:=1)

2: assert(x=1)

1 ≤ 2C ≤ A

A: x:=0

B: x:=1

1: assert(x=1)

[A,B]
A: x:=1

B: y:=1

1: assert(y=1)

B � 1

Fig. 4. Eliminating bad traces

each bad trace π′ in θfk ◦ . . . ◦ θ
f
1 (π) is not a trace of P ′. In [4], we presented an

algorithm to fix bad traces using reordering and atomic sections. The main idea
behind the algorithm is as follows. Given a bad trace π, we (a) first, generalize
the trace into a partial order trace; and (b) then, compute a program constraint
that violates some essential part of the ordering necessary for the bug.

More precisely, the procedure builds a trace elimination graph which contain
edges corresponding to the orderings necessary for the bug to occur, as well as
the edges corresponding program constraints. Fixes are found by finding cycles
in this graph – the conjunction of the program constraints in a cycle form an
error elimination constraint. Intuitively, the program constraints in the cycle will
enforce a happens-before conflicting with the orderings necessary for the bug.

Example 4. Consider the program in Figure 4(left) and the trace elimination
graph for the trace A;B; 1; 2;C. The orderings A happens-before 1 and 2
happens-before C are necessary for the error to happen. The cycle C → A →
1 → 2 → C is the elimination cycle. The corresponding error eliminating con-
straint is C ≤ A ∧ 1 ≤ 2, and one possible fix is to move C ahead of A. For the
bad trace A; 1;B in Figure 4(center), the elimination cycle is A→ 1→ B → A
giving us the constraint [A;B] and an atomic section around A;B as the fix.

The FixBad algorithm. The FixBad algorithm takes as input a program P , a
constraint Φ and a bad trace π. It outputs a program constraint Φ′, sequence of

program transformations θ1, . . . , θk, and a new program P ′, such that P
θ1...θk−−−−→

P ′. The algorithm guarantees that (a) Φ′ is an error eliminating constraint;
(b) P ′ |= Φ ∧ P ′ |= Φ′; and (c) if there is no preemption-free trace π′ of P such
that π freely transforms to π′ (i.e., π′ ∈ f(π)), then none of the transformations
θ ∈ {θ1, . . . , θk} acts across preemption-points. The fact that θ1 . . . θk and P ′

can be chosen to satisfy (c) is a consequence of the algorithm described in [4].

Fixes Using Wait/Notify Statements. Some programs cannot be fixed by
statement reordering or atomic section insertion. These programs are in general
outside our definition of the program repair problem as they have bad sequential
traces. However, they can be fixed by the insertion of wait/notify statements.
One such example is depicted in Figure 4(right) where the trace 1;A;B causes
an assertion failure. A possible fix is to add a wait statement before 1 and a
corresponding notify statement after B. The algorithm FixBad can be modified
to insert such wait-notify statements by also considering constraints of the form
X . Y to represent that X is scheduled before Y – the corresponding program
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transfomation is to add a wait statement before Y and a notify statement after
X . In Figure 4(right), the edge B → 1 represents such a constraint B . 1 – the
elimination cycle 1→ B → 1 corresponds to the above described fix.

4 The Program-Repair Algorithm

Algorithm 2 is a program-repair procedure to fix concurrency bugs while avoiding
regressions. The algorithm maintains the current program P , and a constraint
Φ that restricts possible reorderings. In each iteration, the algorithm tests if P
is correct and if so returns P . If not it picks a trace π in P (line 4). If the trace
is good it learns the regression-preventing constraint Φ for π and the trace π
is added to the set of good traces TG (TG is required only for the correctness
proof). If π is bad it calls FixBad to generate a new program that excludes π
while respecting Φ, and Φ is strengthened by conjunction with the error elimina-
tion constraint Φ′ produced by FixBad . The algorithm terminates with a valid
solution for all choices of P ′ in line 8 as the constraint Φ is strengthened in each
FixBad iteration. Eventually, the strongest program-constraint will restrict the
possible program P ′ to one with large enough atomic sections such that it will
have only preemption-free or sequential traces.

Theorem 2 (Soundness). Given a program P, Algorithm 2 returns a program
P ′ with no bad traces that preserves the sequential and correct preemption-free
behaviour of P. Further, each iteration of the while loop where a bad trace π is
chosen performs a regression-free error fix with respect to the good traces TG.

The extension of the FixBad algorithm to wait/notify fixes in Algorithm 2 may
lead to P ′ not preserving the good preemption-free and sequential behaviours of
P . However, in this case, the input P violates the pre-conditions of the algorithm.

Theorem 3 (Fair Termination). Assuming that a bad trace will eventually be
chosen in line 4 if one exists in P, Algorithm 2 terminates for any instantiation
of FixBad .

Algorithm 2. Program-Repair Algorithm for Concurrency

Require: A concurrent program P , all sequential traces are good
Ensure: Program P∗ such that P∗ has no bad traces
1. Φ← true ;TG ← ∅
2. while true do
3. if Verify(P) = true then return P
4. Choose π from P (non-deterministic)
5. if π is non-erroneous then
6. Φ← Φ ∧ LearnGood (π);TG ← TG ∪ {π}
7. else
8. ([θ1, . . . , θk],P , Φ

′)← FixBad(P , Φ, π); Φ← Φ ∧ Φ′

9. TG ←
⋃

πg∈TG
{π′

g|π′
g ∈ θk ◦ . . . ◦ θ1(πg) ∧ π′

g ∈ P}
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A Generic Program-Repair Algorithm. We now explain how our program-
repair algorithm relates to generic synthesis procedures based on counter-
example guided inductive synthesis (CEGIS) [17]. In the CEGIS approach, the
input is a partial-program P , i.e., a non-deterministic program and the goal is to
specialize P to a program P so that all behaviours of P satisfy a specification. In
our case, the partial-program would non-deterministically choose between vari-
ous reorderings and atomics sections. Let C be the set of choices (e.g., statement
orderings) available in P . For a given c ∈ C, let P(P , c, i) be the predicate that
program obtained by specializing P with c behaves correctly on the input i.

The CEGIS algorithm maintains a set E of inputs called experiments. In each
iteration, it finds c∗ ∈ C such that the ∀i ∈ E : P(P , c∗, i). Then, it attempts to
find an input i∗ such that P(c∗, i∗) does not hold. If there is no such input, then
c∗ is the correct specialization. Otherwise, i∗ is added to E . This procedure is
illustrated in Figure 5(left). Alternatively, CEGIS can be rewritten in terms of
constraints on C. For each input i, we associate the constraint φi where φi(c)⇔
P(P , c, i). Now, instead of E , the algorithm maintains the constraint Φ =

∧
i∈E φi.

Every iteration, the algorithm picks a c such that c |= Φ; tries to find an input
i∗ such that ¬P(P , c, i) holds, and then strengthens Φ by φi∗ .

∃?c∗ :
∧

i∈E

P(P ,c∗, i)

∃?i∗ s.t.
¬P(P ,c∗, i∗)

E = E∪
{i∗}

∃?c∗ : c∗ |= Φ

∃?i∗ s.t.
¬P(P ,c∗, i∗)

∃?i∗ s.t.
P(P ,c∗, i∗)

Φ = Φ∧
FixBad(i∗)

Φ = Φ∧
LearnGood(i∗)

Fig. 5. The CEGIS and PACES spectrum

This procedure is exactly the else branch (i.e., FixBad procedure) of an itera-
tion in Algorithm 2 where i∗ and φi∗ correspond to π and FixBad (π). Intuitively,
the initial variable values in π and the scheduler choices are the inputs to our
concurrent programs. This suggests that the then branch in Algorithm 2 could
also be incorporated into the standard CEGIS approach. This extension (dubbed
PACES for Positive and Counter-Examples in Synthesis) to the CEGIS approach
is shown in Figure 5(right). Here, the algorithm in each iteration may choose to
find an input for which the program is correct and use the constraints arising
from it. We discuss the advantages and disadvantages of this approach below.

Constraints vs. Inputs. A major advantage of using constraints instead of sample
inputs is the possibility of using over- and under-approximations. As seen in
Section 3.1, it is sometimes easier to work with approximations of constraints due
to simplicity of representation at the cost of potentially missing good solutions.
Another advantage is that the sample inputs may have no simple representations
in some domains. The scheduler decisions are one such example – the scheduler
choices for one program are hard to translate into the scheduler choices for
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another. For example, the original CEGIS for concurrency work [16] uses ad-hoc
trace projection to translate the scheduler choices between programs.

Positive-examples and Counter-examples vs. Counter-examples. In standard
program-repair tasks, although the faulty program and the search space C may
be large, the solution program is usually “near” the original program, i.e., the fix
is small. Further, we do not want to change the given program unnecessarily. In
this case, the use of positive examples and over-approximations of learned con-
straints can be used to narrow down the search space quickly. Another possible
advantage comes in the case where the search space for synthesis is structured
(for example, in modular synthesis). In this case, we can use the correct be-
haviour displayed by a candidate solution to fix parts of the search space.

5 Implementation and Experiments

We implemented Algorithm 2 in our tool ConRepair The tool consists of 3300
lines of Scala code and is available at https://github.com/thorstent/ConRepair.
Model checker CBMC [1] is used for generating both good and bad traces, and
on an average more than 95% of the total execution time is spent in CBMC.
Model checking is far from optimal to obtain good traces, and we expect that
techniques from [13] can be used to generate good traces much faster. Our tool
can operate in two modes: In “mixed” mode it first analyses good traces and
then proceeds to fixing the program. The baseline “badOnly” mode skips the
analysis of good traces (corresponds to the algorithm in [4]).

In practice the analysis of bad traces usually generates a large number of
potential reorderings that could fix the bug. Our original algorithm from [4]
(badOnly ce1) prefers reorderings over atomic sections, but in examples where
an atomic section is the only fix, this algorithm has poor performance. To address
this we implemented a heuristic (ce2) that places atomic sections before having
tried all possible reorderings, but this can result in solutions having unnecessary
atomic sections.

The fall back case in Algorithm 1 severely limits further fixes – it forces
further fixes involving the same instructions to be atomic sections. Hence, in our
implementation, we omit this step and prefer an unsound algorithm (i.e., not
necessarily regression-free) that can fix more programs with reorderings. While
the implemented algorithm is unsound, our experiments show that even without
the fallback, in our examples, there is no regression except for one artificial
example (ex-regr.c) constructed precisely for that purpose.

Benchmarks. We evaluate our tool on a set of examples that model real bugs
found and fixed in Linux device drivers by their developers. To this end, we
explored a history of bug fixes in the drivers subtree of the Linux kernel and
identified concurrency bugs. We further focused our attention on a subset of
particularly subtle bugs involving more than two racing threads and/or a mix
of different synchronization mechanisms, e.g., lock-based and lock-free synchro-
nization. Approximately 20% of concurrency bugs that we considered satisfy this
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criterion. Such bugs are particularly tricky to fix either manually or automati-
cally, as new races or deadlocks can be easily introduced while eliminating them.
Hence, these bugs are most likely to benefit from good trace analysis.

Table 1. Results in iterations and time needed

File LOC mixed badOnly ce1 badOnly ce2

ex1.c 60 1 2 2
ex2.c 37 2 5 6
ex3.c 35 1 2 2
ex4.c 60 1 2 2
ex5.c 43 1 8 3
ex-regr.c 30 2 2 2
paper1.c 28 1 3 3a

dv1394.c 81 1 (13+4s) 51 (60s) 5a (9s)
iwl3945.c 66 1(3+2s) 2(2s) 2(2s)
lc-rc.c 40 10 (2+7s) 179 (122s) 203 (134s)
rtl8169.c 405 7 (10+45m) >100 (>6h) 8 (54m)
usb-serial.c 410 4 (56+20m) 6 (38m) 6 (38m)

Table 5 shows our ex-
perimental results: the
iterations and the wall-
clock time needed to
find a valid fix for our
mixed algorithm and
the two heuristics of the
badOnly algorithm. For
the mixed algorithm the
time is split into the
time needed to generate
and analyse good traces
(first number) and the
time needed for the fix-
ing afterwards.

Detailed analysis. The artificial examples ex1.c to ex5.c are used for testing
and take only a few seconds; example paper1.c is the one in Figure 1a. Ex-
ample ex-regr.c was constructed to show unsoundness of the implementation.
Example usb-serial.cmodels the USB-to-serial adapter driver. Here, from the
good traces the tool learns that two statements should not be reordered as it will
trigger another bug. This prompts them to be reordered above a third statement
together, while the badOnly analysis would first move one, find a new bug, and
then fix that by moving the other statement. Thus, the good trace analysis saves
us two rounds of bug fixing and reduces bug fixing time by 18 minutes.

The rtl8169.c example models the Realtek 8169 driver containing 5 concur-
rency bugs. One of the reorderings that the tool considers introduces a new bug;
further, after doing the reordering, the atomic section is the only valid fix. The
good trace analysis discover that the reordering would lead to a new bug, and
thus does the algorithm does not use it. But, without good traces, the tool uses
the faultly reordering and then ce1 takes a very long time to search through all
possible reorderings and then discover that an atomic section is required. The
situation is improved when using heuristic ce2 as it interrupts the search early.
However, the same heuristic has an adverse effect in the dv1394.c example: by
interrupting the search early, it prevents the algorithm from finding a correct re-
ordering and inserts an unnecessary atomic section. The dv1394.c example also
benefits from good traces in a different way than the other examples. Instead
of preventing regressions, they are used to obtain hints as to what reorderings
would provide coverage for a specific data-flow into assertion edge. Then, if a
bad trace is encountered and can be fixed by the hinted reordering, the hinted
reordering is preferred over all other possible ones. Without hints the dv1394.c

example would require 5 iterations. Though hints are not part of our theory they
are a simple and logical extension.



Regression-Free Synthesis for Concurrency 583

Example lc-rc.c models a bug in an ultra-wide band driver that requires
two reorderings to fix. Though there is initially no deadlock, one may easily be
introduced when reordering statements. Here, the good-trace analysis identifies
a dependency between two await statements and learns not to reorder state-
ments to prevent a deadlock. Without good traces, a large number of candidate
solutions that cause a regression are generated.

6 Conclusion

We have developed a regression-free algorithm for fixing errors that are due to
concurrent execution of the program. The contributions include the problem
setup (the definitions of program repair for concurrency, and the regression-free
algorithm), the PACES approach that extends the CEGIS loop with learning
from positive examples, and the analysis of positive examples using data flow to
assertions and to synchronization constructs.

There are several possible directions for future work. One interesting direc-
tion is to examine the possibility of extending the definition of regressions (see
Remark 1 and Example 3) – this requires going beyond data-flow analysis for
learning regression-preventing constraints. Another possible extension is to re-
move the assumption that the errors are data-independent. A more pragmatic
goal would be to develop a practical version of the tool for device-driver synthesis
starting from the current prototype.
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Abstract. Bounded model checking (BMC) has successfully been used
for many practical program verification problems, but concurrency still
poses a challenge. Here we describe a new approach to BMC of sequen-
tially consistent C programs using POSIX threads. Our approach first
translates a multi-threaded C program into a nondeterministic sequen-
tial C program that preserves reachability for all round-robin schedules
with a given bound on the number of rounds. It then re-uses existing
high-performance BMC tools as backends for the sequential verification
problem. Our translation is carefully designed to introduce very small
memory overheads and very few sources of nondeterminism, so that it
produces tight SAT/SMT formulae, and is thus very effective in practice:
our prototype won the concurrency category of SV-COMP14. It solved
all verification tasks successfully and was 30x faster than the best tool
with native concurrency handling.

1 Introduction

Bounded model checking (BMC) has successfully been used to verify sequential
software and to discover subtle errors in applications [11]. However, attempts to
apply BMC directly to the analysis of multi-threaded programs (e.g., [18]) face
problems as the number of possible interleavings grows exponentially with the
number of threads and statements. Context-bounded analysis (CBA) methods
[42,35,48] limit the number of context switches they explore and so fit well into
the general BMC framework. They are empirically justified by work that has
shown that errors manifest themselves within few context switches [44].

In this paper, we develop and evaluate a new technique for context-bounded
BMC of multi-threaded C programs. It is based on sequentialization, an idea
proposed by Qadeer and Wu [49] to reuse without any changes verification tools
that were originally developed for sequential programs. Sequentializations can
be implemented as a code-to-code translation of the input program into a corre-
sponding nondeterministic sequential program. However, such translations alter
the original program structure by injecting control code that represents an over-
head for the backend. Therefore, the design of well-performing tools under this
approach requires careful attention to the details of the translation.
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The first sequentialization for an arbitrary but bounded number of context
switches was given by Lal and Reps [42] (LR). Its basic idea is to simulate in the
sequential program all round-robin schedules of the threads in the concurrent
program, in such a way that (i) each thread is run to completion, and (ii) each
simulated round works on its own copy of the shared global memory. The initial
values of all memory copies are nondeterministically guessed in the beginning
(eager exploration), while the context switch points are guessed during the simu-
lation of each thread. At the end a checker prunes away all infeasible runs where
the initial values guessed for one round do not match the values computed at
the end of the previous round. This requires a second set of memory copies. LR
thus uses a large number of extra variables; the number of assignments involved
in handling these variables, the high degree of nondeterminism, and the late
pruning of infeasible runs can all cause performance problems for the backend
tool. Moreover, due to the eager exploration, LR cannot rely on error checks
built into the backend and also requires specific techniques to handle programs
with heap-allocated memory [40].

Since the set of states reachable by a concurrent program can be much smaller
than the whole state space explored by LR, lazy techniques that explore only
the reachable states can be much more efficient. The first lazy sequentialization
schema was given by La Torre, Madhusudan, and Parlato [35] (LMP). It also
uses several copies of the shared memory, but in contrast to LR these copies are
always computed and not guessed. However, since the local state of a thread is
not stored on context switches, the values of the thread-local variables must be
recomputed from scratch when a thread is resumed. This recomputation poses
no problem for tools that compute function summaries [35,36] since they can
re-use the summaries from previous rounds. However, it is a serious drawback
for applying LMP in connection with BMC because it leads to exponentially
growing formula sizes [29]. It is thus an open question whether it is possible to
design an effective lazy sequentialization for BMC-based backends.

In this paper, we answer this question and design a new, surprisingly sim-
ple but effective lazy sequentialization schema that aggressively exploits the
structure of bounded programs and works well with BMC-based backends. The
resulting sequentialized program simulates all bounded executions of the origi-
nal program for a bounded number of rounds. It is composed of a main driver
and an individual function for each thread, where function calls and loops of
the input program are inlined and unrolled, respectively [17]. In each round, the
main driver calls each such thread simulation function; however, their execution
does not repeat all the steps done in the previous rounds but instead jumps (in
multiple hops) back to the stored program location where the previous round has
finished. We keep the values of the thread-local variables between the different
function activations (by turning them into static variables), which avoids their
recomputation and thus the exponentially growing formula sizes observed by
Ghafari et al. [29]. The size of the formulas is instead proportional to the prod-
uct of the size of the original program, the number of threads and the number
of rounds. The translation is carefully designed to introduce very small memory
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overheads and very few sources of nondeterminism, so that it produces simple
formulas, and is thus very effective in practice. In contrast to LR, only reachable
states of the input program are explored, and thus the translation requires no
built-in error checks nor any special dynamic memory allocation handling, but
can rely on the backend for these.

We have implemented this sequentialization in a prototype tool Lazy-CSeq
that handles (i) the main parts of the POSIX thread API [31], such as dynamic
thread creation and deletion, and synchronization via thread join, locks, and con-
dition variables; (ii) the full C language with all its peculiarities such as differ-
ent data types, dynamic memory allocation, and low-level programming features
such as pointer arithmetics. Lazy-CSeq implements both bounding and sequen-
tialization as source-to-source translations. The resulting sequential C program
can be given to any existing verification tool for sequential C programs. We have
tested Lazy-CSeq with BLITZ [16], CBMC [4], ESBMC [19], and LLBMC [24].

We have evaluated our approach and tool over the SV-COMP benchmark
suite [9]. Lazy-CSeq [30] won the concurrency category of SV-COMP14, where
it significantly outperformed both Threader [46], the previous winner in the
concurrency category [8], and CBMC v4.5 [4], a mature BMC tool with recently
added native concurrency support. The results thus justify the general sequen-
tialization approach, and in contrast to the findings by Ghafari et al. [29], also
demonstrate that a lazy translation can be more suitable for use in BMC than the
more commonly applied LR translation [42,22], as Lazy-CSeq also outperforms
by orders of magnitude our own LR-based CSeq tool [25].

2 Bounded Multi-threaded C Programs

pthread t: type of thread identifiers

pthread create(&t,&f,&arg):
creates a thread with unique identifier t,
by calling function f with argument arg

pthread join(t):
suspends current thread until t terminates

pthread mutex t: type of mutex variables

pthread mutex init(&m): creates an unlocked mutex m

pthread mutex lock(&m): blocks until m is unlocked,
then acquires and locks it

pthread mutex unlock(&m):

unlocks m if called by the owning thread,
returns an error otherwise

pthread mutex destroy(&m): frees m

Fig. 1. Example Pthreads routines

Multi-threaded C programs with
Pthreads. Pthreads is a POSIX
standard [31] for threads that
defines a set of C functions, types
and constants. In the following,
we will refer to C programs that
use the Pthreads API simply as
multi-threaded C programs. In
Fig. 1 we show the part of the
API we use in our running ex-
ample, in particular thread cre-
ation and join, and mutex prim-
itives for thread synchronization;

for simplicity, we omit the attribute and status arguments that various routines
use. We also handle condition variables but omit them here. During the execu-
tion of a multi-threaded C program, we can assume that only one thread is active
at any given time. Initially, only the main thread is active; new threads can be
spawned from any thread by a call to pthread create. Once created, a thread
is added to the pool of inactive threads. At a context switch the current thread
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is suspended and becomes inactive, and one of the inactive threads is resumed
and becomes the new active thread. When a thread is resumed its execution
continues either from the point where it was suspended or, if it becomes active
for the first time, from the beginning.

All threads share the same address space: they can write to or read from
global (shared) variables of the program to communicate with each other. Since
threads can allocate memory dynamically using malloc, different threads can
simultaneously access and alter shared dynamic data structures. We assume the
sequential consistency memory model: when a shared variable is updated its
new valuation is immediately visible to all the other threads [43]. We further
assume that each statement is atomic. This is not guaranteed in general, but we
can always rewrite each statement in a way that it involves only one operation
on a shared variable by possibly using fresh temporary local variables, so that
different interleavings always yield the same result as the original program with
atomic executions. We say a statement is visible if its execution involves either
a read or a write operation of a shared variable, and invisible otherwise.

pthread mutex t m; int c=0;

void P(void *b) {
int tmp=(*b);

pthread mutex lock(&m);

if(c>0)

c++;

else {
c=0;

while(tmp>0) {
c++; tmp--;

}
}
pthread mutex unlock(&m);

}
void C() {
assume(c>0);

c--;

assert(c>=0);

}
int main(void) {
int x=1,y=5;

pthread t p0,p1,c0,c1;

pthread mutex init(&m);

pthread create(&p0,P,&x);

pthread create(&p1,P,&y);

pthread create(&c0,C,0);

pthread create(&c1,C,0);

return 0;

}

Fig. 2. Running Example

Running example.We use a producer/consumer sys-
tem (see Fig. 2) as running example to illustrate
our approach. It has two shared variables, a mu-
tex m and an integer c that stores the number of
items that have been produced but not yet con-
sumed. The main function initializes the mutex and
spawns two threads executing P (producer) and two
threads executing C (consumer). Each producer ac-
quires m, increments c, and terminates by releasing
m. Each consumer first checks whether there are still
elements not yet consumed; if so (i.e., the assume-
statement on c > 0 holds), it decrements c, checks
the assertion c ≥ 0 and terminates. Otherwise it
terminates immediately.

Note that the mutex ensures that at any point
of the computation at most one producer is oper-
ating. However, the assertion can still be violated
since there are two consumer threads, whose be-
haviors can be freely interleaved: with c = 1, both
consumers can pass the assumption, so that both
decrement c and one of them will write the value
−1 back to c, and thus violate the assertion.

Bounded multi-threaded programs. Given a program, an assertion, and a depth
bound, BMC translates the program into a formula that is satisfiable if and only
if the assertion has a counterexample of the given depth or less. The resulting
formula thus gives a static view of the bounded computations of the program.
Since BMC only explores bounded computations, we can simplify the program
before translating it; in particular, we can replace or unwind loops and function
calls by appropriately guarded repeated copies of the corresponding loop and
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bool active[T]={1,0,0,0,0};
int cs,ct,pc[T],size[T]={5,8,8,2,2};
#define G(L) assume(cs>=L);

#define J(A,B) if(pc[ct]>A||A>=cs) goto B;

pthread mutex t m; int c=0;

void P0(void *b) {
0:J(0,1) static int tmp=(*b);

1:J(1,2) pthread mutex lock(&m);

2:J(2,3) if(c>0)

3:J(3,4) c++;

else { G(4)

4:J(4,5) c=0;

if(!(tmp>0)) goto l1;

5:J(5,6) c++; tmp--;

if(!(tmp>0)) goto l1;

6:J(6,7) c++; tmp--;

assume(!(tmp>0));

l1: G(7);

} G(7)

7:J(7,8) pthread mutex unlock(&m);

goto P0; P0: G(8)

8: return;

}
void P1(void *b) {...}
void C0() {
0:J(0,1) assume(c>0);

1:J(1,2) c--;

assert(c>=0);

goto C0; C0: G(2)

2: return;

}
void C1() {...}
int main0() {

static int x=1,y=5;

static pthread t p0,p1,c0,c1;

0:J(0,1) pthread mutex init(&m);

1:J(1,2) pthread create(&p0,P0,&x,1);

1:J(2,3) pthread create(&p1,P1,&y,2);

2:J(3,4) pthread create(&c0,C0,0,3);

3:J(4,5) pthread create(&c1,C1,0,4);

goto main; main: G(4)

5: return 0;

}
int main() {...see Fig. 4...}

Fig. 3. Translation of running example
with unwinding bound of 2

function bodies to yield a bounded pro-
gram. Unwinding has one important
property that is exploited by our ap-
proach: in the resulting bounded pro-
gram, all jumps are forwards, and each
statement is executed at most once in
a run.

We implement unwinding with a few
modifications for multi-threaded C
programs. We do not unwind calls to
any Pthreads routines and convert the
program’s main function into a thread.
We also create and unwind a fresh copy
of each function that appears as an ar-
gument in a call to pthread create

in the unwound program; these copies
will be used to simulate the threads. If
the original program can spawn multi-
ple threads with the same start func-
tion we thus get multiple copies of that
function. We assume the second argu-
ment of pthread create is statically
determined. We denote any programs
with this structure as bounded multi-
threaded C programs.

Fig. 3 shows the transformation re-
sult for the producer/consumer exam-
ple (cf. Fig. 2), obtained using an un-
wind bound of 2. The black parts are
the unwound original program, while
the light gray parts are the instrumen-
tation added by the sequentialization
proper, as described in Section 3. Note

that we get two separate unwound copies of each of the functions P and C, since
the original program spawns two producer and two consumer threads.

3 Lazy Sequentialization for Bounded Programs

We now describe our code-to-code translation from a bounded multi-threaded
programP (which can for example be obtained by the unwinding process sketched
in the previous section) to a sequential program P seq

K that simulates all round-
robin executions with K > 0 rounds of P .

P consists by definition of n + 1 functions f0, . . . , fn (where f0 denotes the
unwound main function) and contains n calls to pthread create, which create
(at most) n threads with the start functions f1, . . . , fn. Each start function is
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associated with at most one thread, so that we can identify threads and func-
tions. For round-robin executions, we fix an arbitrary schedule ρ by permuting
f0, . . . , fn; in each round we execute an arbitrary number of statements from
each thread ρ0, . . . , ρn. For any fixed ρ our translation then guarantees that P
fails an assertion in K rounds if and only if P seq

K fails the same assertion. The
translation thus preserves not only bounded reachability, but allows us to per-
form on the bounded multi-threaded program all analyses that are supported by
the sequential backend tool.

P seq
K is composed of a new function main and a thread simulation function

f seq
i for each thread fi in P . The new main of P seq

K calls, in the order given by ρ,
the functions f seq

i for K complete rounds. For each thread it maintains the label
at which the context switch was simulated in the previous round and where the
computation must thus resume in the current round. Each f seq

i is essentially fi
with few lines of additional control code and with labels to denote the relevant
context switch points in the original code. When executed, each f seq

i jumps (in
multiple hops) to the saved position in the code and then restarts its execution
until the label of the next context switch is reached. We make the local variables
persistent (i.e., of storage class static) such that we do not need to re-compute
them when resuming suspended executions.

We describe our translation in a top-down fashion. We also convey a cor-
rectness proof and provide implementation details as we go along. We start by
describing the (global) auxiliary variables used in the translation. Then, we give
the details of the function main of P seq

K , and illustrate how to construct each
f seq
i from fi. Finally, we discuss how the Pthreads routines are simulated.

Auxiliary Data Structures. While simulating P , the sequentialized program
P seq
K maintains the data structures below; here T is a symbolic constant denoting

the maximal number of threads in the program, i.e., n+ 1.

– bool active[T]; tracks whether a thread is active, i.e., has been created
but not yet terminated. Initially, only active[0] is true since f seq

0 simulates
the main function of P .

– void* arg[T]; stores the argument used for thread creation.
– int size[T]; stores the largest label used as jump target in the thread
simulation functions f seq

i .
– int pc[T]; stores the label of the last context switch point for each thread
simulation function.

– int ct; tracks the index of the thread currently under simulation.
– int cs; contains the label at which the next context switch will happen.

Note that the thread simulation functions f seq
i read but do not write any of

the data structures. T and size[] are computed by the unwinding phase and
remain unchanged during the simulation. arg[] is set by (the simulation of)
pthread create and remains unchanged once it is set. active[] is set by
pthread create and unset by pthread exit. pc[], ct, and cs are updated
by the driver.
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void main(void) {
for(r=1; r<=K; r++) {
ct=0;

// only active threads

if(active[ct]) {
// next context switch

cs=pc[ct]+nondet uint();

// appropriate value?

assume(cs<=size[ct]);

// thread simulation

fseq 0(arg[ct]);

// store context switch

pc[ct]=cs;

}
. . . . . . . . .
ct=n;

if(active[ct]) {
. . . . . . . . .

}}}

Fig. 4. P seq
K : main()

Main Driver. Fig. 4 shows the new function main

in P seq
K , which drives the simulation. Each iteration

of the loop simulates one entire round of a computa-
tion of P . The simulation of each thread fct invokes
the corresponding simulation function f seq

ct with the
argument arg[ct] that was originally used to cre-
ate the thread. The order in which the functions
are called corresponds to the round-robin schedule
ρ, here 0, . . . , n. For each active thread the driver
thus executes the following steps: (i) nondetermin-
istically guess the label for next context switch and
store it in cs, (ii) check that the value is appropri-
ate, (iii) simulate the thread from pc[ct] through
to cs, and (iv) store cs in pc[ct], since in the next
round the computation must restart from this label.

The choice of an appropriate value for cs is simplified by the structure of P ,
more precisely, by the fact that the control flow always moves forward because
all jumps are forward. We can thus pick any value for cs that is between the
value stored in pc[ct] (corresponding to the case that the thread will not make
any progress, hence skips the round) and the largest label in f seq

ct that is added
in the translation (which corresponds to the last possible context switch point in
the code of the corresponding thread fct). We stress that this guess is the only
source of nondeterminism introduced by our translation.

Thread Translation. Each function fi representing a thread in P is converted
into a corresponding function f seq

i in P seq
K that is obtained as follows.

Turning local variables into static variables. Each thread fi in P is simulated in
P seq
K by repeated calls to f seq

i ; each invocation executes a fragment of the code
according to the context switch points that are guessed nondeterministically in
the main function. Since each thread simulation function is only called once
in each round, we can persist the thread-local variables between consecutive
invocations (by turning them into static variables), and so avoid the inefficient
recomputation of their values. However, uninitialized local variables may contain
undefined values, while static variables are initialized to 0 by default. Thus, after
the declaration of these variables we assign them with a nondeterministic value.
For instance, int tmp; is turned into static int tmp=nondet int();. This
directly applies to all primitive C types. For arrays and structured types, we
just do this at the level of the components.

Positioning and returning from a thread. When a function f seq
i is called for the

first time (i.e., in the first round), it starts its execution from the beginning.
In the subsequent calls, it must skip over the statements already executed in
previous calls, in order to resume the simulation from the context switch point.
When the control reaches the label guessed for the context switch, it must return
without executing any further statements. Different solutions exist to implement
this using goto statements and distinct labels associated with every meaningful
context switch point in the code. We tried to use a multiplexer at the top of the
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thread’s body, implemented with a switch and a series of goto statements, to
jump over the statements already executed, directly to the starting label. We
injected additional code at the context switch label to return immediately when
the thread is pre-empted. However, this schema has performed poorly in our
experiments, possibly because it introduces complex control flow branching.

In contrast, the schema we present here, although at first perhaps counter-
intuitive, scales well when used together with BMC backends. We use goto

statements in a way that avoids complex branching in the control flow. We use
consecutive natural numbers as labels, starting with 0 for the first statement
in each function, and label the other statements with numbers increasing in
program order (see Fig. 3). To reduce the nondeterminism, we insert the labels
(which are only used to simulate the context switches) only at the first state-
ment, the last statement, and every visible statement. Note that this suffices, as
we are only interested in assertion violations and in general properties involving
only the shared memory and the local state of one thread.

Together with each label i (except for the last one) we also inject a condi-
tional goto of the form if( pc[ct]>i || i >=cs ) goto i+1; in front of the
statement. Note that the fragment i+1 is evaluated at translation time, and
thus simplifies to an integer literal that also occurs as label. When the thread
simulation function tries to execute statements before the context switch of the
previous round, or after the guessed context switch, the condition becomes true,
and the control jumps to the next label without executing actual statements of
the thread. This achieves the positioning of the control at the program counter
corresponding to pc[ct] with potentially multiple hops, and similarly when the
guessed context switch label is reached, the fall-through to the last statement
of the thread (which is by assumption always a return). Note that, whenever
the control is between these two labels, the injected code is immaterial, and the
statements of f seq

ct in this part of the code are executed as in the original thread.
We use a macro J to package up the injected control code (see Fig. 3).

As an example, consider the program in Fig. 3, and assume that P0 is called
(i.e., ct=1) with pc[1]=2 and cs=6. At label 0, the condition of the injected if

statement holds, thus the goto statement is executed and the control jumps to
label 1. Again, the condition is true, and then the control jumps to label 2. Now,
the condition fails, thus the underlying code is executed, up to label 5. At label
6, the condition of the injected if-statement holds again, thus the control jumps
to label 7, and then to label 8, thus reaching the return statement without
executing any other code of the producer thread.

Handling branching statements. Eager schemas such as LR need to prune away
guesses for the shared variables that lead to infeasible computations. A similar
issue arises in our schema for the guesses of context switches. We remark that
this is the only source of nondeterminism introduced by our translation.

Consider for example the if-then-else in P0, as shown in Fig. 3, and assume
that pc[0]=2 and cs=3, i.e., in this round the sequentialized program is assumed
to simulate (feasible) control flows between labels 2 and 3. However, if c≤0, then
the program jumps from label 2 directly to label 4 in the else-branch; if we
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ignore the G(4) macro, the condition in the if statement inserted by J(4,5)

would be tested, and since it would hold, the control flow would slide through to
label 8, and return to the main driver, which would then set pc[0] to 3. In the
next round, the computation would then duly resume from this label—which
should be unreachable! Similar problems may occur when the context switch
label is in the body of the else-branch, and with goto statements.

Note that assigning pc in the called function rather than in the main driver
would fix this problem. However, this would require to inject at each possi-
ble context-switch point an assignment to pc guarded by a nondeterministic
choice. This has performed poorly in our experiments. The main reason for this
is that the control code is spread “all over” and thus even small increments of
its complexity may significantly increase the complexity of the formulas com-
puted by the backend tools. We therefore simply prune away simulations that
would store unreachable labels in pc. For this, we use a simple guard of the
form assume(cs>=j);, where j is the next inserted label in the code. We insert
such guards at all control flow locations that are target of an explicit or implicit
jump, i.e., right at the beginning of each else block, right after the if statement,
and right after any label in the actual code of the simulated thread. Again, we
package this up in a macro called G (see Fig. 3).

This solution prunes away all spurious control flows. Consider first the case
of goto statements. We assume without loss of generality that the statement’s
execution is feasible in the multi-threaded program and that the target’s label
l is in the code after the planned context switch point. But then the inserted G

assumption fails, and the simulation is correctly aborted. The argument for if

statements is more involved but follows the same lines. First consider that the
planned context switch is the then branch. If the simulation takes the control
flow into the else branch, then the guard fails because the first label in this
branch is guaranteed to be greater than any label in the then branch, and
the simulation is aborted. In the symmetric scenario, the guard after the if

statement will do the job because cs is guaranteed to be smaller than the next
label used as argument in the G. Note that the J macro at the last context switch
point in the else branch (in the example J(6,7)) jumps over this guard so that
it never prunes feasible control flows.

We stress that though the guess of context-switch point is done eagerly and
thus we need to prune away infeasible guesses, the simulation of the input pro-
gram is still done lazily. In fact, even when we halt a simulation at a guard, all
the statements of the input program executed until that point correspond to a
prefix of a feasible computation of the input program.

Simulation of Pthreads Routines. For each Pthreads routine we provide a
verification stub, i.e., a simple standard C function that replaces the original
implementation for verification purposes. Fig. 5 shows the stubs for the routines
used in this paper. Variables of type pthread t are simply mapped to integers,
which serve as unique thread identifiers; all other relevant information is stored
in the auxiliary data structures, as described in Sect. 3.
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typedef pthread t int;

int pthread create(pthread t *t,

void *(*f)(void*), void *arg, int id)

{ active[id] = ACTIVE;

arg[id]=arg;

*t=id;

return 0; }
int pthread join(pthread t t)

{ assume(pc[t]==size[t]); }
int pthread exit(void *value ptr)

{ return 0; }
typedef pthread mutex t int;

int pthread mutex init(pthread mutex t *m)

{ *m=FREE; }
int pthread mutex destroy(pthread mutex t *m)

{ *m=DESTROY; }
int pthread mutex lock(pthread mutex t *m)

{ assert(*m!=DESTROY);

assume(*m==FREE); *m=t; }
int pthread mutex unlock(pthread mutex t *m)

{ assert(*m==t); *m=FREE; }

Fig. 5. Pthreads verification stubs

In pthread createwe simply set the
thread’s active flag and store the
argument to be passed to the thread
simulation function. Note that we do
not need to store the thread start
function, as the main driver calls all
thread simulation functions explic-
itly, and that the pthread create

stub uses an additional integer argu-
ment id that serves as thread identi-
fier and is copied into the pthread t

argument t. The id values are added
to the pthread create calls by the
unwinding phase, corresponding to
the order in which the calls occur in
the unwound program.

In a real Pthreads implementation
a thread invoking pthread join(t) should be blocked until t is terminated. In
the simulation a thread is terminated if it has reached the thread’s last label,
which corresponds to a return but there is no notion of blocking and unblocking.
Instead, the stub for pthread join uses an assume statement with the condi-
tion pc[t]==size[t] (which checks that the argument thread t has reached
its last label) to prune away any simulation that corresponds to a blocking
join. We can then see that this pruning does not change the reachability of er-
ror states. Assume that the joining thread t terminates after the invocation of
pthread join(t). The invoking thread should be unblocked then but the sim-
ulation has already been pruned. However, this execution can be captured by
another simulation in which a context switch is simulated right before the ex-
ecution of the pthread join, and the invoking thread is scheduled to run only
after the thread t is terminated, hence avoiding the pruning as above.

For mutexes we need to know whether they are free or already destroyed, or
which thread holds them otherwise. We thus map the type pthread mutex t to
integers, and define two constants FREE and DESTROY that have values different
from any possible thread index. When we initialize or destroy a mutex we assign
it the appropriate constant. If we want to lock a variable we assert that it is
not destroyed and then check whether it is free before we assign to it the index
of the thread that has invoked pthread mutex lock. Similarly to the case of
pthread join we block the simulation if the lock is held by another thread. If a
thread executes pthread mutex unlock, we first assert that the lock is held by
the invoking thread and then set it to FREE.

4 Implementation and Evaluation

Implementation. We have implemented the sequentialization described in the
previous sections in the prototype tool Lazy-CSeq. It takes as input a multi-
threaded C program p.c and two parameters r and u representing the round and
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unwind bounds, respectively, and produces the sequentialized program cs p.c.
This is an un-threaded but nondeterministic bounded C program that can be
processed by any analysis tool for sequential C (note not just BMC tools).

Lazy-CSeq can also be used as a wrapper around existing sequential verifi-
cation backends. If the optional parameter b to specify the backend is given,
it calls the tool to check for the reachability (within the given bounds) of the
ERROR label in the original program. If the label is reachable, Lazy-CSeq returns
in a separate file a counterexample trace (in the backend format) as witness to
the error. The current version of Lazy-CSeq supports as backends the bounded
model-checkers BLITZ, CBMC, LLBMC and ESBMC. However, since the im-
plemented schema is very generic, the instrumentation for the different backends
differs only in a few lines and other backends can be integrated easily.

Lazy-CSeq is implemented in Python on top of pycparser [7]. It consists of
three main phases, where the input program is first parsed into an abstract syn-
tax tree (AST) then transformed by repeatedly visiting the AST, and finally
un-parsed into C program text. The transformation phase is implemented as a
chain of several modules, each taking the program at some step in the overall
translation process, and producing the program for next step. The modules can
be grouped according to the following main phases of the translation, (i) pre-
processing: merge, introduce workarounds to avoid known backend corner-cases,
perform light input program simplifications; (ii) program bounding: perform
function and loop unwinding, and thread duplication; (iii) instrumentation: in-
sert code for simulation of the pthreadAPI, concurrency simulation, and finalize
the backend specific instrumentation.

Evaluation. We have evaluated our sequentialization approach with Lazy-CSeq
on the benchmark set from the concurrency category of the SV-COMP14 [9]
software verification competition. This set consists of 76 concurrent C files using
the Pthread library, with a total size of about 4,500 lines of code. 20 of the files
contain a reachable error location. We chose this benchmark set because it is
widely used and all tools (but Corral) we compare against have been trained on
this set for the competition.

We ran the experiments on an otherwise idle PC with a Xeon W3520 2.6GHz
processor and 12GB of memory, running Linux with a 64-bit kernel (3.0.6). We
set a 10GB memory limit and a 750s timeout for each benchmark.

The experiments are split into two parts. The first part concerns only the
unsafe programs, where we investigate the effectiveness of several tools at finding
errors. The second part concerns the safe programs, where we estimate whether
limiting the round bounds to small values allows a more extensive exploration of
programs in terms of increased values of loop unwinding bounds. The tools used
in the experiments are BLITZ [16] (4.0), CBMC [4] (4.5 and 4.7), Corral [41],
CSeq [25] (0.5) ESBMC [19] (1.22), LLBMC [24] (2013.1), and Threader [46].

Unsafe instances. The evaluation on unsafe instances is, again, split into two
parts. We first evaluated the performance of Lazy-CSeq with the different se-
quential backend tools; the results are shown on the left of Table 1. Note that
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Table 1. Bug-hunting performance (unsafe instances); −1: timeout (750s); −2: internal
error; −3: manual translation not done; −4: test case rejected; −5: unknown failure
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27 boop simple v 2 2 0.3 0.3 0.3 0.8 0.4 −5 0.4 1.9 1.0 −1 117.6
28 buggy simple loop1 2 1 0.2 0.2 0.2 0.3 0.3 −5 0.3 0.8 0.2 624.7 0.3
32 pthread5 vs 2 2 0.4 0.2 0.3 0.2 0.2 −5 0.8 2.2 −2 −1 −1

40 barrier v 4 1 0.2 0.3 0.2 0.3 0.3 −5 0.6 0.8 −2 −2 0.7
49 bigshot p 1 2 0.3 0.4 0.3 0.3 0.6 0.4 0.3 −3 −4 1.7 −2

50 bigshot s 1 2 0.3 0.4 0.3 0.3 0.6 −5 0.5 −3 −4 4.0 −2

53 fib bench 5 5 36.6 1.1 1.0 15.2 2.1 0.7 1.8 5.8 6.3 31.1 6.9
55 fib bench longer 6 6 155.5 4.1 1.5 402.1 3.1 1.6 3.2 14.4 7.2 150.9 10.4
57 fib bench longest 11 11 −1 425.7 214.0 −1 −1 645.9 75.2 −1 −2 −1 54.3
61 lazy01 1 1 0.3 0.2 0.2 0.2 0.4 0.6 0.5 1.3 0.7 398.6 7.1
63 qrcu 1 2 1.4 0.6 0.8 0.7 −5 0.6 0.7 5.8 −5 −1 −1

65 queue 2 2 1.6 8.4 8.8 1.1 −1 18.8 20.9 −3 128.7 −1 −2

67 read write lock 1 2 0.5 0.3 0.3 0.4 −5 0.4 0.4 1.8 2.6 −1 38.4
69 reorder 2 2 1 0.3 0.6 0.6 −2 1.3 1.0 0.7 1.3 −2 −1 2.4
70 reorder 5 4 1 0.4 0.8 0.9 −2 3.3 2.1 0.7 1.9 −2 −1 3.5
72 sigma 16 1 1.4 7.6 7.8 −2 73.0 −1 219.1 −3 −4 −1 −2

73 singleton 1 3 0.7 0.6 0.5 0.5 −5 −5 1.6 −3 −4 −1 −2

75 stack 2 1 0.2 0.3 0.3 0.3 1.0 3.2 0.8 2.1 2.1 −1 151.9
77 stateful01 1 1 0.2 0.2 0.2 0.3 0.5 0.7 0.7 2.0 0.7 −1 0.9
82 twostage 3 2 1 0.3 0.7 0.8 −2 8.0 9.1 4.9 3.6 −4 −1 −1

only the backend run-times are given. The additional Lazy-CSeq pre-processing
time, which is the same for every backend, is about one second for each file
with our current Python prototype implementation. This could easily and sub-
stantially be reduced with a more efficient implementation. The results show
that the tools were able to process most of the files generated by Lazy-CSeq’s
generic pre-processing, and found most of the errors. This is in marked contrast
to our experience with CSeq, where the integration of a new backend required a
substantial development effort, due to the nature of the LR schema. They also
show that the different backends generally perform relatively uniformly, except
for few cases where the performance gap is noticeably wide, probably due to a
different handling of subtle corner-cases in the input from the backends. Both
observations gives us further confidence that our approach is general and not
bound to a specific verification backend tool.

We then compared the bug-hunting performances of Lazy-CSeq and several
tools with different native concurrency handling approaches. CBMC and ES-
BMC are both BMC tools; CBMC uses partial orders to handle concurrency
symbolically while ESBMC explicitly explores the different schedules [18]. CSeq
is based on eager sequentialization, implementing a variant of LR, and uses
CBMC as sequential backend. Corral uses a dynamic unwinding of function
calls and loops, and implements abstractions on variables with the aim of dis-
covering bugs faster. Threader, the winner in the Concurrency category of the
SV-COMP13 competition, is based on predicate abstraction. For each tool (ex-
cept Threader) we adjusted, for each file, all parameters to the minimum needed
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to spot the error. The results, given on the right of Table 1, show that Lazy-
CSeq is highly competitive. Of the “native” tools only CBMC is able to find all
errors, but only with the most recent bug-fix version. All other tools time out,
crash, or produce wrong results for several files. This shows how difficult it is to
integrate concurrency handling into a verification tool—in contrast to the con-
ceptual and practical simplicity of our approach. Moreover, for simple problems
(with verification times around one second), Lazy-CSeq performs comparably
with the fastest competitor. On the more demanding instances, Lazy-CSeq is
almost always the fastest, except for the Fibonacci tests (53, 55 and 57) that
are specifically crafted to force particularly twisted interleavings. In most cases
(again except for the Fibonacci tests), Lazy-CSeq successfully finds the errors in
all test cases using only three rounds, confirming that few context switches are
sufficient to find bugs.
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Fig. 6. Evaluation of safe benchmarks for increasing
loop unwind bounds

Safe instances. The evalua-
tion on safe instances con-
sisted in comparing Lazy-
CSeq using CBMC v4.7 as
backend with the best tool
with native concurrency
handling. We ran nine sets
of experiments for CBMC,
with unwinding bound to
1, 2, 3, 4, 6, 8, 10, 12, and
14, respectively. Notice that
CBMC considers all possi-
ble interleavings. For Lazy-
CSeq, we ran six repetitions
of the sets, with a bound on
the number of rounds from

one to six, for each of the above unwinding values, respectively.
As shown in Fig. 6, we observe that CBMC starts performing worse than

Lazy-CSeq, in terms of number of instances on which the analysis is completed,
as we increase the loop unwinding bound. Overall, with the settings from the
SV-COMP, Lazy-CSeq, is about 30x faster than CBMC for safe instances. This
points out how the introduction of an extra parameter for BMC, i.e., the bound
on the number of rounds, can offer a different, alternative coverage of the state-
space. In fact, it allows larger loop unwindings, and therefore a deeper explo-
ration of loops, than feasible with other methods.

5 Related Work

We already discussed the main sequentialization approaches [49,42,35] in the
introduction. The lazy schema LMP was empirically shown to be more effective
than LR in analyzing multithreaded Boolean programs [35,34]. This work has
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been extended to parametrized programs [36,37] and used to prove correctness
of abstractions of several Linux device drivers. Other sequentializations cope
with the problem of handling thread creation [22,12] and use different bounding
parameters [39,38,53]. Ghafari et al. [29] observed that LMP is inefficient with
BMC backends. LR has been implemented in CSeq for Pthreads C programs
with bounded thread creation [25,26], and in STORM that also handles dynamic
memory allocation [40]. Poirot [47,22] and Corral [41] are successors of STORM.
Rek implements a sequentialization targeted to real-time systems [15]. None of
the tools specifically targets BMC backends, though.

Biere et al. [11] introduced BMC to capitalize on the capacity of modern
SAT/SMT solvers; see [10,21] for a survey on BMC. The idea of loop unwinding
in BMC of software was inspired by Currie et al. [20]. Several industrial-strength
BMC tools have been implemented for the C language, including CBMC [17],
ESBMC [18], EXE [14], F-SOFT [32], LLMBC [24], and SATURN [55].
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Several approaches [50,28,52,51,4] encode program executions as partial orders,
in which each thread is an SSA program and operations on the shared memory are
constrained by a global conjunct modeling the memory model. In [4] the authors
argued that the formula size of their encodings on the considered benchmarks
(among which are 36 from SV-COMP14) is smaller than those of [50,28,52,51]. In
our work, we have empirically evaluated the formula size of our encoding against
CBMC (see Fig. 7). The main result is that our approach yields smaller formulas
already for small unwind bounds, even for four rounds; with increasing unwind
bounds (e.g., n = 8), CBMC’s formulas contain 5x to 15x more variables and 5x
to 25x more clauses, depending on the number of rounds.

6 Conclusions

We have presented a novel lazy sequentialization schema for bounded multi-
threaded C programs that has been carefully designed to take advantage of BMC
tools developed for sequential programs. We have implemented our approach in
the prototype tool Lazy-CSeq as a code-to-code translation. Lazy-CSeq can also
be used as a stand-alone model checker that currently supports four different
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BMC tools as backends. We validated our approach experimentally on the SV-
COMP14 [9] concurrency benchmarks suite. The results show that:

– Lazy-CSeq can detect all the errors in the unsafe files, and is competitive
with or even outperforms state-of-the art BMC tools that natively handle
concurrency;

– it allows a more extensive analysis of safe programs with a higher number
of loop unwindings by imposing small bounds on the number of rounds;

– it is generic in the sense that works well with different backends.

Laziness allows us to avoid handling all spurious errors that can occur in an
eager exploration. Thus, we can inherit from the backend tool all checks for
sequential C programs such as array-bounds-check, division-by-zero, pointer-
checks, overflow-checks, reachability of error labels and assertion failures, etc.

A core feature of our code-to-code translation that significantly impacts its
effectiveness is that it just injects light-weight, non-invasive control code into
the input program. The control code is composed of few lines of guarded goto

statements and, within the added function main, also very few assignments. It
does not use the program variables and it is clearly separated from the program
code. This is in sharp contrast with the existing sequentializations (LR, LMP
and the like, which can handle also unbounded programs) where multiple copies
of the shared variables are used and assigned in the control code.

As consequence, we get three general benefits that set our work apart from pre-
vious approaches, and that simplify the development of full-fledged, robust model-
checking tools based on sequentialization. First, the translation only needs to han-
dle concurrency—all other features of the programming language remain opaque,
and the backend tool can take care of them. This is in contrast to, for example, LR
where dynamic allocation of thememory is handled byusingmaps [40]. Second, the
originalmotivation for sequentializationswas to reuse for concurrent programs the
technology built for sequential programverification, and in principle, a sequential-
ization could work as a generic concurrency preprocessor for such tools. However,
previous implementations needed specific tuning and optimizations for the differ-
ent tools (see [25]). In contrast, Lazy-CSeqworkswell with different backends (cur-
rently BLITZ, CBMC, ESBMC, and LLBMC), and the only required tuning was
to comply with the actual program syntax supported by them. Finally, the clean
separation between control code and program code makes it simple to generate a
counter-example starting from the one generated by the backend tool.

Future work. We see two main future directions. One is to investigate opti-
mizations to improve the performance of our approach. Partial order reduc-
tion techniques combined with symbolic model checking can improve the per-
formance [54], and the approach of [33] for SAT-based analysis fits well in our
sequentialisation schema. Also, a tuning of the backends on the class of pro-
grams generated in our translations could boost performance. It is well known
that static code optimizations such as constant propagation are essential for per-
formance gain in BMC. The other direction is to extend our approach to weak
memory models implemented in modern architectures (see for example [5,3]),
and to other communication primitives such as MPI [27].
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Lazy-CSeq homepage:
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html.
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Abstract. Model checkers based on Petri net coverability have been
used successfully in recent years to verify safety properties of concurrent
shared-memory or asynchronous message-passing software. We revisit a
constraint approach to coverability based on classical Petri net analysis
techniques. We show how to utilize an SMT solver to implement the
constraint approach, and additionally, to generate an inductive invari-
ant from a safety proof. We empirically evaluate our procedure on a
large set of existing Petri net benchmarks. Even though our technique is
incomplete, it can quickly discharge most of the safe instances. Addition-
ally, the inductive invariants computed are usually orders of magnitude
smaller than those produced by existing solvers.

1 Introduction

In recent years many papers have proposed and developed techniques for the
verification of concurrent software [10,6,1,11,4]. In particular, model checkers
based on Petri net coverability have been successfully applied. Petri nets are a
simple and natural automata-like model for concurrent systems, and can model
certain programs with an unbounded number of threads or thread creation. In a
nutshell, the places of the net correspond to program locations, and the number
of tokens in a place models the number of threads that are currently at that
location. This point was first observed in [9], and later revisited in [3] and, more
implicitly, in [10,6].

The problem whether at least one thread can reach a given program location
(modelling some kind of error), naturally reduces to the coverability problem for
Petri nets: given a net N and a marking M , decide whether some reachable
marking of N covers M , i.e., puts at least as many tokens as M on each place.
While the decidability and EXPSPACE-completeness of the coverability problem
were settled long ago [12,17], new algorithmic ideas have been developed in recent
years [8,7,21,11,13]. The techniques are based on forward or backward state-space
exploration, which is accelerated in a number of ways in order to cope with the
possibly infinite number of states.

In this paper we revisit an approach to the coverability problem based on
classical Petri net analysis techniques: the marking equation and traps [16,18].
The marking equation is a system of linear constraints that can be easily derived
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from the net, and whose set of solutions overapproximates the set of reachable
markings. This system can be supplemented with linear constraints specifying a
set of unsafe markings, and solved using standard linear or integer programming.
If the constraints are infeasible, then all reachable markings are safe. If not,
then one can try different aproaches. In [5] a solution of the constraints is used
to derive an additional constraint in the shape of a trap: a set of places that,
loosely speaking, once marked cannot be “emptied”; the process can be iterated.
More recently, in [22], Wimmel and Wolf propose to use the solution to guide a
state space exploration searching for an unsafe marking; if the search fails, then
information gathered during it is used to construct an additional constraint.

Constraint-based techniques, while known for a while, have always suffered
from the absence of efficient decision procedures for linear arithmetic together
with Boolean satisfiability. Profiting from recent advances in SMT-solving tech-
nology, we reimplement the technique of [5] on top of the Z3 SMT solver [2], and
apply it to a large collection of benchmarks.

The technique is theoretically incomplete, i.e., the set of linear constraints
derived from the marking equation and traps may be feasible even if all reach-
able markings are safe. Our first and surprising finding is that, despite this fact,
the technique is powerful enough to prove safety of 96 out of a total of 115 safe
benchmarks gathered from current research papers in concurrent software veri-
fication. In contrast, three different state-of-the-art tools for coverability proved
only 61, 51, or 33 of these 115 cases! Moreover, and possibly due to the char-
acteristics of the application domain, even the simplest version of the technique
—based on the marking equation— is successful in 84 cases.

As a second contribution, and inspired by work on interpolation, we show that
a dual version of the classical set of constraints, equivalent in expressive power,
can be used not only to check safety, but to produce an inductive invariant. While
some existing solvers based on state-space exploration can also produce such
invariants, we show that inductive invariants obtained through our technique
are usually orders of magnitude smaller. Additionally, while we can use the SMT
solver iteratively to minimize the invariant, the tool almost always provides a
minimal one at the first attempt.

Related Work. Our starting point was the work of Esparza and Melzer on ex-
tending the marking equation with trap conditions to gain a stronger method for
proving safety of Petri nets [5]. We combined the constraint-based approach there
with modern SMT solvers. Their focus on (integer) linear programming tools of
the time enforced some limitations. First, while traps are naturally encoded us-
ing Boolean variables, [5] encoded traps and the marking equation together into
a set of linear constraints. This encoding came at a practical cost: the encoding
required (roughly) n × m constraints for a Petri net with n places and m transi-
tions, whereas the natural Boolean encoding requires m constraints. Moreover,
(I)LP solvers were not effective in searching large Boolean state spaces; our use
of modern SAT techniques alleviates this problem. Second, (I)LP solvers used by
[5] did not handle strict inequalities. Hence, the authors used additional tricks,
such as posing the problem that includes a strict inequality as a minimization
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p1:
p2:
p3:

procedure Process 1
begin

bit1 := false
while true do

bit1 := true
while bit2 do skip od
(∗ critical section ∗)
bit1 := false

od
end

q1:
q2:
q3:
q4:

q5:

procedure Process 2
begin

bit2 := false
while true do

bit2 := true
if bit1 then

bit2 := false
while bit1 do skip od
goto q1

fi
(∗ critical section ∗)
bit2 := false

od
end

Fig. 1. Lamport’s 1-bit algorithm for mutual exclusion [14]

problem, with the goal of minimizing the involved expression, and testing if the
minimal value equaled zero. Unfortunately, this trick led to numerical instabili-
ties. All of these concerns vanish by using an SMT solver.

The marking equation is also the starting point of [22], but the strategies
of this approach and ours are orthogonal: while we use the solutions of the
marking equation to derive new constraints, [22] uses them to guide state space
explorations that search for unsafe markings; new constraints are generated only
if the searches fail.

In contrast to other recent techniques for coverability [7,11,13], our technique
and the one of [22] are incomplete. However, in [22] Wimmel and Wolf obtain
very good results for business process benchmarks, and in this paper we empir-
ically demonstrate that our technique is effective for safe software verification
benchmarks, often beating well-optimized state exploration approaches.

Our technique theoretically applies not only to coverability but also to reach-
ability. It will be interesting to see whether the techniques can effectively verify
reachability questions, e.g., arising from liveness verification [6].

2 Preliminaries

A Petri net is a tuple (P, T, F, m0), where P is a set of places, T is a (disjoint) set
of transitions, F : (P ×T )∪(T ×P ) → {0, 1} is the flow function, and m0 : P → N
is the initial marking. For x ∈ P ∪T , the pre-set is •x = {y ∈ P ∪T | F (y, x) = 1}
and the post-set is x• = {y ∈ P ∪ T | F (x, y) = 1}. We extend the pre- and
post-set to a subset of P ∪T as the union of the pre- and post-sets of its elements.

A marking of a Petri net is a function m : P → N, which describes the number
of tokens m(p) in each place p ∈ P . Assuming an enumeration p1, . . . , pn of P ,
we often identify m and the vector (m(p1), . . . , m(pn)). For a subset P ′ ⊆ P of
places, we write m(P ′) =

∑
p∈P ′ m(p).
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First Process Second Process

p3

s3

p1

s1

p2

s2

t2

q3

t3

q4

t4

q2

t5

q5

t6

q1

t1

bit1

notbit1

notbit2

Fig. 2. Petri net for Lamport’s 1-bit algorithm

A transition t ∈ T is enabled at m iff for all p ∈ •t, we have m(p) ≥ F (p, t). A
transition t enabled at m may fire, yielding a new marking m′ (denoted m

t−→ m′),
where m′(p) = m(p) + F (t, p) − F (p, t). A sequence of transitions, σ = t1t2 . . . tr

is an occurrence sequence of N iff there exist markings m1, . . . , mr such that
m0

t1−→ m1
t2−→ m2 . . .

tr−→ mr. The marking mr is said to be reachable from m0
by the occurrence of σ (denoted m0

σ−→ mr).
A property ϕ is a linear arithmetic constraint over the free variables P . The

property ϕ holds on a marking m iff m |= ϕ. A Petri net N satisfies a property
ϕ (denoted by N |= ϕ) iff for all reachable markings m0

σ−→ m, we have m |= ϕ.
A property ϕ is an invariant of N if it holds for every reachable marking. A
property is inductive if whenever m |= ϕ and m

t−→ m′ for some t ∈ T and
marking m′, we have m′ |= ϕ.

Petri nets are represented graphically as follows: places and transitions are
represented as circles and boxes, respectively. For x, y ∈ P ∪ T , there is an
arc leading from x to y iff F (x, y) = 1. As an example, consider Lamport’s 1-
bit algorithm for mutual exclusion [14], shown in Fig. 1. Fig. 2 shows a Petri
net model for the code. The two grey blocks model the control flow of the two
processes. For instance, the token in place p1 models the current position of
process 1 at program location p1. The three places in the middle of the diagram
model the current values of the variables. For instance, a token in place notbit1
indicates that the variable bit1 is currently set to false. The mutual exclusion
property, which states that the two processes cannot be in the critical section at
the same time, corresponds to the property that places p3 and q5 cannot both
have a token at the same time.

3 Marking Equation

We now recall a well-known method, which we call Safety, that provides a
sufficient condition for a given Petri net N to satisfy a property ϕ by reducing
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the problem to checking satisfiability of a linear arithmetic formula. We illustrate
the method on Lamport’s 1-bit algorithm for mutual exclusion.

Before going into details, we state several conventions. For a Petri net N =
(P, T, F, m0), we introduce a vector of |P | variables M , and a vector of |T |
variables X . The vectors M and X will be used to represent the current marking
and the number of occurrences of transitions in the occurrence sequence leading
to the current marking, respectively. If a place or a transition is given a specific
name, we use the same name for its associated variable. Given a place p, the
intended meaning of a constraint like p ≥ 3 is “at the current marking place
p must have at least 3 tokens.” Given a transition t, the intended meaning of
a constraint like t ≤ 2 is “in the occurrence sequence leading to the current
marking, transition t must fire at most twice.”

The key idea of the Safety method lies in the marking equation:

M = m0 + CX ,

where the incidence matrix C is a |P | × |T | matrix given by

C(p, t) = F (t, p) − F (p, t) .

For each place p, the marking equation contains a constraint that formulates a
simple token conservation law: the number of tokens in p at the current marking
is equal to the initial number of tokens m0(p), plus the number of tokens added by
the input transitions of p, minus the number of tokens removed by the output
transitions. So, for instance, in Lamport’s algorithm the constraint for place
notbit1 is:

notbit1 = 1 + s3 + t5 + t4 − s1 − t4 − t5 = 1 + s3 − s1 .

We equip the marking equation with the non-negativity conditions, modeling
that the number of tokens in a place, or the number of occurrences of a transition
in an occurrence sequence cannot become negative. All together, we get the
following set of marking constraints:

C(P, T, F, m0) ::

⎧⎪⎨
⎪⎩

M = m0 + CX marking equation
M ≥ 0 non-negativity conditions for places
X ≥ 0 non-negativity conditions for transitions

Method Safety for checking that a property ϕ is invariant for a Petri net
N = (P, T, F, m0) consists of checking for satisfiability of the constraints

C(P, T, F, m0) ∧ ¬ϕ(M) . (1)

If the constraints are unsatisfiable, then no reachable marking violates ϕ. To see
that this is true, consider the converse: If there exists an occurrence sequence
m0

σ−→ m leading to a marking m that violates the property, then we can con-
struct a valuation of the variables that assigns m(p) to M(p) for each place
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p, and the number of occurrences of t in σ to X(t) for each transition t. This
valuation then satisfies the constraints.

The method does not work in the other direction: If the constraints (1) are
satisfiable, we cannot conclude that the property ϕ is violated.

As an example, consider the Lamport’s algorithm. Safety successfully proves
the property “if process 1 is at location p3, then bit1 = true” by showing that
C(P, T, F, m0) ∧ p3 ≥ 1 ∧ bit1 �= 1 is unsatisfiable. However, if we apply it to the
mutual exclusion property, i.e., check for satisfiability of C(P, T, F, m0) ∧ p3 ≥
1∧q5 ≥ 1, we obtain a solution, but we cannot conclude that the mutual exclusion
property does not hold.

Note that the marking constraints (1) are interpreted over integer variables.
As usual in program analysis, one can solve the constraints over rationals to
get an approximation of the method. Solving the constraints over rationals will
become useful in Section 5.

4 Refining Marking Equations with Traps

Esparza and Melzer [5] strengthened Safety with additional trap constraints.
A trap of a Petri net N = (P, T, F, m0) is a subset of places Q ⊆ P satisfying
the following condition for every transition t ∈ T : if t is an output transition of
at least one place of Q, then it is also an input transition of at least one place
of Q. Equivalently, Q is a trap if its set of output transitions is included in its
set of input transitions, i.e., if Q• ⊆ •Q. Here we present a variant of Esparza’s
and Melzer’s method that encodes traps using Boolean constraints. We call the
new method SafetyByRefinement.

The method SafetyByRefinement is based on the following observation
about traps. If Q is a trap and a marking m marks Q, i.e., m(p) > 0 for some
p ∈ Q, then for each occurrence sequence σ and marking m′ such that m

σ−→ m′,
we also have m′(p′) > 0 for some p′ ∈ Q. Indeed, by the trap property any
transition removing tokens from places of Q also adds at least one token to some
place of Q. So, while m′(Q) can be smaller than m(Q), it can never become 0.
In particular, if a trap Q satisfies m0(Q) > 0, then every reachable marking m
satisfies m(Q) > 0 as well.

Since the above property must hold for any trap, we can restrict the con-
straints from method Safety as follows. First, we add an additional vector B
of |P | Boolean variables. These variables are used to encode traps: for p ∈ P ,
B(p) is true if and only if place p is part of the trap. The following constraint
specifies that B encodes a trap:

trap(B) ::=
∧
t∈T

⎡
⎣ ∨

p∈•t

B(p) =⇒
∨

p∈t•
B(p)

⎤
⎦ .

Next, we define a predicate mark(m, B) that specifies marking m marks a trap:

mark(m, B) ::=
∨

p∈P

B(p) ∧ (m(p) > 0) .
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Finally, we conjoin the following constraint to the constraints (1):

∀B : trap(B) ∧ mark(m0, B) =⇒ mark(M, B) . (2)

This constraint conceptually enumerates over all subsets of places, and ensures
that if the subset forms a trap, and this trap is marked by the initial marking,
then it is also marked by the current marking. Thus, markings violating the trap
constraint are eliminated.

While the above constraint provides a refinement of the Safety method, it
requires the SMT solver to reason with universally quantified variables. Instead
of directly using universal quantifiers, we use a counterexample-guided heuristic
[5,20] of adding trap constraints one-at-a-time in the following way.

If the set of constraints constructed so far (for instance, the set given by the
method Safety) is feasible, the SMT solver delivers a model that assigns values
to each place, corresponding to a potentially reachable marking m. We search
for a trap Pm that violates the trap condition (2) for this specific model m. If
we find such a trap, then we know that m is unreachable, and we can add the
constraint

∑
p∈Pm

M(p) ≥ 1 to exclude all markings that violate this specific
trap condition.

The search for Pm is a pure Boolean satisfiability question. We ask for an
assignment to

trap(B) ∧ mark(m0, B) ∧ ¬mark(m, B) (3)

Notice that for a fixed marking m, the predicate mark(m, B) simplifies to a
Boolean predicate. Given a satisfying assignment b for this formula, we add the
constraint

∑
p∈P

b(p)=true

M(p) ≥ 1 (4)

to the current set of constraints to rule out solutions that do not satisfy this
trap constraint. We iteratively add such constraints until either the constraints
are unsatisfiable or the Boolean constraints (3) are unsatisfiable (i.e., no traps
are found to invalidate the current solution).

This yields the method SafetyByRefinement. It is still not complete [5]:
one can find nets and unreachable markings that mark all traps of the net.

Let us apply the algorithm SafetyByRefinement to Lamport’s algorithm
and the mutual exclusion property. Recall that the markings violating the prop-
erty are those satisfying p3 ≥ 1 and q5 ≥ 1. Safety yields a satisfying assign-
ment with p3 = bit1 = q5 = 1, and p = 0 for all other places p, which corresponds
to a potentially reachable marking m. We search for a trap marked at m0 but
not at m. To simplify the notation, we simply write p instead of B(p). The
constraints derived from the trap property are:
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p1 ∨ notbit1 =⇒ p2 ∨ bit1
p2 ∨ notbit2 =⇒ p3 ∨ notbit2
p3 ∨ bit1 =⇒ p1 ∨ notbit1

q1 ∨ notbit2 =⇒ q2
q2 ∨ bit1 =⇒ q3 ∨ bit1
q3 =⇒ q4 ∨ notbit2
q4 ∨ notbit1 =⇒ q1 ∨ notbit1
q2 ∨ notbit1 =⇒ q5 ∨ notbit1
q5 =⇒ q1 ∨ notbit2

and the following constraints model that at least one of the places initially
marked belongs to the trap, but none of the places marked at the satisfying
assigment do:

p1 ∨ q1 ∨ notbit1 ∨ notbit2 ¬p3 ∧ ¬q5 ∧ ¬bit1

For this set of constraints we find the satisfying assignment that sets p2, notbit1,
notbit2, q2, q3 to true and all other variables to false. So this set of places is an ini-
tially marked trap, and so every reachable marking should put at least one token
in it. Hence we can add the refinement constraint to marking constraints (1):

p2 + q2 + q3 + notbit1 + notbit2 ≥ 1 .

On running the SMT solver again, we find the constraints are unsatisfiable,
proving that the mutual exclusion property holds.

5 Constructing Invariants from Constraints

We now show that one can compute inductive invariants from the method Safe-
tyByRefinement. That is, given a Petri net N = (P, T, F, m0) and a property
ϕ, if SafetyByRefinement (over the rationals) can prove N satisfies ϕ, then
in fact we can construct a linear inductive invariant that contains m0 and does
not intersect ¬ϕ. We call the new method InvariantByRefinement.

The key observation is to use a constraint system dual to the constraint sys-
tem for SafetyByRefinement. We assume ϕ is a co-linear property, i.e., the
negation ¬ϕ is represented as the constraints:

¬ϕ :: AM ≥ b

where A is a k ×|P | matrix, and b is a k ×1 vector, for some k ≥ 1. Furthermore,
we assume that there are l ≥ 0 trap constraints (4), which are collected in matrix
form DM ≥ 1, for an l × |P | matrix D, and an l × 1 vector of ones, denoted
simply by 1. Consider the following primal system S:

C(P, T, F, m0) marking constraints
AM ≥ b negation of property ϕ

DM ≥ 1 trap constraints

By transforming S into a suitable form and applying Farkas’ Lemma [19], we
get the following theorem.
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Theorem 1. The primal system S is unsatisfiable over the rational numbers if
and only if the following dual system S′ is satisfiable over the rational numbers.

λC ≤ 0 inductivity constraint
λm0 < Y1b + Y21 safety constraint

λ ≥ Y1A + Y2D property constraint
Y1, Y2 ≥ 0 non-negativity constraint

Here λ, Y1 and Y2 are vectors of variables of size 1 × |P |, 1 × k and 1 × l,
respectively.

If the primal system S is unsatisfiable, we can take λ from a solution to S′

and construct an inductive invariant:

I(M) ::= DM ≥ 1 ∧ λM ≤ λm0 .

In order to show that I(M) is an invariant, recall that for every reachable
marking m there is a solution to m = m0 + CX , with X ≥ 0. Multiplying by λ
and taking into account that λ is a solution to S′, we get

λm = λm0 + λCX ≤ λm0 .

Furthermore, every reachable marking satisfies the trap constraints DM ≥ 1.
On the other hand, a marking m that violates the property ϕ does not satisfy
I(M), for it either does not satisfy DM ≥ 1, or both Am ≥ b and Dm ≥ 1 hold.
But in the latter case we have

λm ≥ (Y1A + Y2D)m = Y1Am + Y2Dm ≥ Y1b + Y21 > λm0 .

In order to show that I(M) is inductive, we have to show that if I(m) holds
for some marking m (reachable or not), and m

t−→ m′ for some transition t, then
I(m′) holds as well. Indeed, in this case we have m′ = m + Cet, where et is the
unit vector with 1 in the t-th component and 0 elsewhere. Hence

λm′ = λ(m + Cet) = λm + λCet ≤ λm ≤ λm0 ,

and furthermore, as m satisfies the trap constraints, m′ also satisfies them.
So far, we have assumed that property ϕ is a co-linear property. However, it is

easy to extend the method to the case when ϕ = ϕ1 ∧. . .∧ϕr , and each ϕi is a co-
linear property. In that case, for each ϕi we invoke InvariantByRefinement
to obtain an inductive invariant Ii. One can easily verify that I1 ∧ . . . ∧ Ir is an
inductive invariant with respect to ϕ.

Minimizing invariants. Note that the system S′ from Theorem 1 may in general
have many solutions, and each solution yields an inductive invariant. Solutions
where λ has fewer non-zero components yield shorter inductive invariants I(M),
assuming terms in I(M) with coefficient zero are left out. We can force the
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Inductivity constraints

− p1 + p2 + bit1 − notbit1 ≤ 0
− p2 + p3 ≤ 0

p1 − p3 − bit1 + notbit1 ≤ 0

− q1 + q2 − notbit2 ≤ 0
− q2 + q3 ≤ 0

− q3 + q4 + notbit2 ≤ 0
q1 − q4 ≤ 0

− q2 + q5 ≤ 0
q1 − q5 + notbit2 ≤ 0

Safety constraint

p1 + q1 + notbit1 + notbit2 < target1 + target2 + trap1

Property constraints

p1 ≥ 0 q1 ≥ 0 q4 ≥ 0 bit1 ≥ 0
p2 ≥ trap1 q2 ≥ trap1 q5 ≥ target2 notbit1 ≥ trap1

p3 ≥ target1 q3 ≥ trap1 notbit2 ≥ trap1

Non-negativity constraints

target1, target2, trap1 ≥ 0

Fig. 3. System of constraints S ′ for Lamport’s algorithm and the mutual exclusion
property. Here, λ = (p1 p2 p3 q1 q2 q3 q4 q5 bit1 notbit1 notbit2), Y1 = (target1 target2)
and Y2 = (trap1).

number of non-zero components to be at most K by introducing a vector of |P |
variables Z, adding for each p ∈ P constraints

λ(p) > 0 =⇒ Z(p) = 1
λ(p) = 0 =⇒ Z(p) = 0

and adding a constraint
∑

p∈P Z(p) ≤ K. By varying K, we can find a solution
with the smallest number of non-zero components in λ.

Example. Consider again Lamport’s algorithm and the mutual exclusion prop-
erty. Recall that the negation of the property for this example is p3 ≥ 1∧q5 ≥ 1,
and the trap constraint is p2 + q2 + q3 + notbit1 + notbit2 ≥ 1. Fig. 3 shows the
system of constraints S′ for this example. A possible satisfying assignment sets
q1, q4, and bit1 to 0, p2, p3, and target1 to 2, and all other variables to 1. The
corresponding inductive invariant is:

I(M) ::= (p2 + q2 + q3 + notbit1 + notbit2 ≥ 1) ∧
(p1 + 2p2 + 2p3 + notbit1 + notbit2 + q2 + q3 + q5 ≤ 3) .

If we add constraints that bound the number of non-zero components in λ to
7, the SMT solver finds a new solution, setting p2, p3, notbit1, notbit2, q2, q3,
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target1, target2, and trap1 to 1, and all other variables to 0. The corresponding
inductive invariant for this solution is

I ′(M) ::= (p2 + q2 + notbit1 + notbit2 + q3 ≥ 1) ∧
(p2 + p3 + notbit1 + notbit2 + q2 + q3 + q5 ≤ 2) .

6 Experimental Evaluation

We implemented our algorithms in a tool called Petrinizer. Petrinizer is imple-
mented as a script on top of the Z3 SMT solver [2]. It takes as input coverability
problem instances encoded in the MIST input format1, and it runs one of the se-
lected methods. We implemented all possible combinations of methods: with and
without trap refinement, with rational and integer arithmetic, with and without
invariant construction, with and without invariant minimization.

Our evaluation had two main goals. First, as the underlying methods are
incomplete, we wanted to measure their success rate on standard benchmark
sets. As a subgoal, we wanted to investigate the usefulness and necessity of
traps, the benefit of using integer arithmetic over rational arithmetic, and the
sizes of the constructed invariants. The second goal was to measure Petrinizer’s
performance and to compare it with state-of-the-art tools: IIC [13], BFC2 [11],
and MIST3.

Benchmarks. For the inputs used in the experiments, we collected coverability
problem instances originating from various sources. The collection contains 178
examples, out of which 115 are safe, and is organized into five example suites. The
first suite is a collection of Petri net examples from the MIST toolkit. This suite
contains a mixture of 29 examples, both safe and unsafe. It contains both real-
world and artificially created examples. The second suite consists of 46 Petri nets
that were used in the evaluation of BFC [11]. They originate from the analysis
of concurrent C programs, and they are mostly unsafe. The third and the fourth
suites come from the provenance analysis of messages in a medical system and a
bug-tracking system [15]. The medical suite contains 12 safe examples, and the
bug-tracking suite contains 41 examples, all safe except for one. The fifth suite
contains 50 examples that come from the analysis of Erlang programs [4]. We
generated them ourselves using an Erlang verification tool called Soter [4], from
the example programs found on Soter’s website4. Out of 50 examples in this
suite, 38 are safe. This suite also contains the largest example in the collection,
with 66,950 places and 213,635 transitions. For our evaluation, only the 115 safe
instances are interesting.
1 https://github.com/pierreganty/mist
2 The most recent version of BFC at the time of writing the paper was 2.0. However,

we noticed it sometimes reports inconsistent results, so we used version 1.0 instead.
The tool can be obtained at http://www.cprover.org/bfc/ .

3 MIST consists of several methods, most of them based on EEC [8]. We used the
abstraction refinement method that tries to minimize the number of places in the
Petri net [7].

4 http://mjolnir.cs.ox.ac.uk/soter/

https://github.com/pierreganty/mist
http://www.cprover.org/bfc/
http://mjolnir.cs.ox.ac.uk/soter/
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Table 1. Safe examples that were successfully proved safe. Symbols Q and Z denote
rational and integer numbers.

Suite Safety/Q Safety/Z Ref./Q Ref./Z IIC BFC MIST Total
MIST 14 14 20 20 23 21 19 23
BFC 2 2 2 2 2 2 2 2
Medical 4 4 4 4 9 12 10 12
Bug-tracking 32 32 32 32 0 0 0 40
Erlang 32 32 36 38 17 26 2 38
Total 84 84 94 96 51 61 33 115

Rate of success on safe examples. As shown in Table 1, even with the weakest of
the methods —safety based on marking equation over rationals— Petrinizer is
able to prove safety for 84 out of 115 examples. Switching to integer arithmetic
does not help: the number of examples proved safe remains 84. Using refinement
via traps, Petrinizer proves safety for 94 examples. Switching to integer arith-
metic in this case helps: Another two examples are proved safe, totaling 96 out
of 115 examples. In contrast to these numbers, the most successful existing tool
turned out to be BFC, proving safety for only 61 examples. Even though the
methods these tools implement are theoretically complete, the tools themselves
are limited by the time and space they can use.

Looking at the results accross different suites, we see that Petrinizer performed
poorest on the medical suite, proving safety for only 4 out of 12 examples. On
the other hand, on the bug-tracking suite, which was completely intractable for
other tools, it proved safety for 32 out of 40 examples. Furthermore, using traps
and integer arithmetic, Petrinizer successfuly proved safety for all safe Erlang
examples. We find this result particularly surprising, as the original verification
problems for these examples seem non-trivial.

Invariant sizes. We measure the size of inductive invariants produced by Pe-
trinizer without minimization. We took the number of atomic (non-zero) terms
appearing in an invariant’s linear expressions as a measure of its size. When
we relate sizes of invariants to number of places in the corresponding Petri net
(top left graph in Fig. 4), we see that invariants are usually very succinct. As
an example, the largest invariant had 814 atomic terms, and the corresponding
Petri net, coming from the Erlang suite, had 4,763 places. For the largest Petri
net, with 66,950 places, the constructed invariant had 339 atomic terms.

The added benefit of minimization is negligible: there are only four examples
where the invariant was reduced, and the reduction was about 2-3%. Thus,
invariant minimization does not pay off for these examples.

We also compared sizes of constructed invariants with sizes of invariants pro-
duced by IIC [13]. IIC’s invariants are expressed as CNF formulas over atoms of
the form x < a, for a variable x and a constant a. As a measure of size for these
formulas, we took the number of atoms they contain. As the bottom left graph
in Fig. 4 shows, when compared to IIC’s invariants, Petrinizer’s invariants are
never larger, and are often orders of magnitude smaller.
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Fig. 4. Graph on the top left shows a relation of sizes of constructed invariants to
the number of places in the corresponding Petri nets. Graph on the bottom left shows
comparison in size of invariants produced by Petrinizer and IIC. Axes represent size
on a logarithmic scale. Each dot represents one example. The four graphs in the center
and on the right show time overhead of integer arithmetic, trap refinement, invariant
construction and invariant minimization. Axes represent time in seconds on a loga-
rithmic scale. Each dot represents execution time on one example. The graph on the
top right only shows examples for which at least one trap appeared in the refinement.
Similarly, the bottom center and bottom right graphs only show safe examples.

Performance. To ensure accuracy and fairness, all experiments were performed
on identical machines, equipped with Intel Xeon 2.66 GHz CPUs and 48 GB of
memory, running Linux 3.2.48.1 in 64-bit mode. Execution time was limited to
100,000 seconds (27 hours, 46 minutes and 40 seconds), and memory to 2 GB.

Due to dissimilarities between the compared tools, selecting a fair measure of
time was non-trivial. On the one hand, as Petrinizer communicates with Z3 via
temporary files, it spends a considerable amount of time doing I/O operations.
On the other hand, as BFC performs both a forward and a backward search,
it naturally splits the work into two threads, and runs them in parallel on two
CPU cores. In both cases, the actual elapsed time does not quite correspond to
the amount of computational effort we wanted to measure. Therefore, for the
measure of time we selected the user time, as reported by the time utility on
Linux. User time measures the total CPU time spent executing the process and
its children. In the case of Petrinizer, it excludes the I/O overhead, and in the
case of BFC, it includes total CPU time spent on both CPU cores.

We report mean and median times measured for each tool in Table 2.
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Table 2. Mean and median times in seconds for each tool. We report times for safe
examples, as well as for all examples. Memory-out cases were set to the timeout value
of 100,000 s. Symbols Q and Z denote rational and integer numbers.

Method/tool Safety/Q Safety/Z Ref./Q Ref./Z Safety+inv. Safety+inv.min.
Mean (safe) 69.26 70.20 69.36 72.20 168.46 203.05
Median (safe) 2.45 2.23 2.35 3.81 3.70 4.03
Mean (all) 45.17 46.04 45.52 47.70 109.23 131.58
Median (all) 0.44 0.43 0.90 0.93 0.66 1.00

Method/tool Ref.+inv. Ref.+inv.min. IIC BFC MIST
Mean (safe) 228.88 275.12 56954.09 47126.12 69196.77
Median (safe) 5.96 6.30 100000.00 1642.43 100000.00
Mean (all) 148.57 178.45 44089.93 31017.80 61586.56
Median (all) 1.37 1.94 138.00 0.77 100000.00

Time overhead of Petrinizer’s methods. Before comparing Petrinizer with other
tools, we analyze time overhead of integer arithmetic, trap refinement, invariant
construction, and invariant minimization. The four graphs in the center and on
the right in Fig. 4 summarize the results. The top central graph shows that the
difference in performance between integer and rational arithmetic is negligible.

The top right graph in Fig. 4 shows that traps incur a significant overhead.
This is not too surprising as, each time a trap is found, the main system has
to be updated with a new trap constraint and solved again. Thus the actual
overhead depends on the number of traps that appear during the refinement. In
the experiments, there were 32 examples for refinement with integer arithmetic
where traps appeared at least once. The maximal number of traps in a single
example was 9. In the examples where traps appear once, we see a slowdown of
2-3×. In the extreme cases with 9 traps we see slowdowns of 10-16×.

In the case of invariant construction, as shown on the bottom central graph
in Fig. 4, the overhead is more uniform and predictable. The reason is that
constructing the invariant involves solving the dual form of the main system as
many times as there are disjuncts in the property violation constraint. In most
cases, the property violation constraint has one disjunct. A single example with
many disjuncts, having 8989 of them, appears on the graph as an outlier.

In the case of invariant minimization, as the bottom right graph in Fig. 4
shows, time overhead is quite severe. The underlying data contains examples of
slowdowns of up to 30×.

Comparison with other tools. The six graphs in Fig. 5 show the comparison of
execution times for Petrinizer vs. IIC, BFC, and MIST. In the comparison, we
used the refinement methods, both with and without invariant construction. In
general, we observe that other tools outperform Petrinizer on small examples, an
effect that can be explained by the overhead of starting script interpreters and
Z3. However, on large examples Petrinizer consistently outperforms other tools.
Not only does it finish in all cases within the given time and memory constraints,
it even finishes in under 100 seconds in all but two cases. The two cases are the
large example from the Erlang suite, with 66,950 places and 213,635 transitions
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Fig. 5. Comparison of execution time for Petrinizer vs. IIC, BFC and MIST. Graphs
in the top row show comparison in the case without invariant construction, and graphs
in the bottom row show comparison in the case with invariant construction. Axes
represent time in seconds on a logarithmic scale. Each dot represents execution time
on one example.

and, in the case of invariant construction, the example from the MIST suite,
with 8989 disjuncts in the property violation constraint.

Conclusions. Marking equations and traps are classical techniques in Petri net
theory, but have fallen out of favor in recent times in comparison with state-
space traversal techniques in combination with abstractions or symbolic repre-
sentations. Our experiments demonstrate that, when combined with the power
of a modern SMT solver, these techniques can be surprisingly effective in find-
ing proofs of correctness (inductive invariants) of common benchmark examples
arising out of software verification.

Our results also suggest incorporating these techniques into existing tools as
a cheap preprocessing step. A finer integration with these tools is conceivable,
where a satisfying assignment to a system of constraints is used to guide the
more sophisticated search, similar to [22].
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Abstract. This tool paper describes Leap, a tool for the verification
of concurrent datatypes and parametrized systems composed by an un-
bounded number of threads that manipulate infinite data .
Leap receives as input a concurrent program description and a specifi-
cation and automatically generates a finite set of verification conditions
which are then discharged to specialized decision procedures. The va-
lidity of all discharged verification conditions implies that the program
executed by any number of threads satisfies the specification. Currently,
Leap includes not only decision procedures for integers and Booleans,
but it also implements specific theories for heap memory layouts such as
linked-lists and skiplists.

1 Introduction

The target application motivating the development of Leap is the verification
of concurrent datatypes [16]. Concurrent datatypes are designed to exploit the
parallelism of multiprocessor architectures by employing very weak forms of syn-
chronization, like lock-freedom and fine-grain locking, allowing multiple threads
to concurrently access the underlying data. The formal verification of these con-
current programs is a very challenging task, particularly considering that they
manipulate complex data structures capable of storing unbounded data, and are
executed by an unbounded number of threads.

The problem of verifying parametrized finite state systems has received a lot
of attention in recent years. In general, the problem is undecidable [3]. There
are two general ways to overcome this limitation: (i) algorithmic approaches,
which are necessarily incomplete; and (ii) deductive proof methods. Typically,
algorithmic methods—in order to regain decidability—are restricted to finite
state processes [8,9,14] and finite state shared data. Leap follows an alternative
approach, by extending temporal deductive methods like Manna-Pnueli [20] with
specialized proof rules for parametrized systems, thus sacrificing full automation
to handle complex concurrency and data manipulation. Our target with Leap is
wide applicability, while improving automation is an important secondary goal.
� This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01

STRONGSOFT”
Leap is under development at the IMDEA Software Institute. All examples and
code can be downloaded from http://software.imdea.org/leap
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Most algorithmic approaches to parametrized verification abstract both con-
trol and data altogether [1,2,21] reducing the safety to a (non)reachability prob-
lem in a decidable domain. In these approaches, data manipulation and control
flow are handled altogether, and the verification is limited to simple theories
such as Booleans and linear arithmetic. Leap, on the other hand, separates
the two concerns: (i) the concurrent interaction between threads; and (ii) the
data being manipulated. The first concern is tackled with specialized deduc-
tive parametrized proof rules, which, starting from a parametrized system and a
temporal specification, generate a finite number of verification conditions (VCs).
The second aspect is delegated to decision procedures (DP) specifically designed
for each datatype, which can prove the validity of VCs automatically. Our proof
rules are designed to generate quantifier free VCs, for which it is much easier to
design decidable theories and obtain automatic decision procedures.

There exists a wide range of tools for verifying concurrent systems. Small-
foot [4] is an automatic verifier that uses concurrent separation logic for verifying
sequential and concurrent programs. Smallfoot depends on built-in rules for the
datatypes, which are typically recursive definitions in separation logic. Unlike
Leap, Smallfoot cannot handle programs without strict separation (like shared
readers) or algorithms that do not follow the unrolling that is explicit in the
recursive definitions. TLA+ [7] is able to verify temporal properties of concur-
rent systems with the aid of theorem provers and SMT solvers, but TLA+ does
not support decision procedures for data in the heap. Similarly, HAVOC [11] is
capable of verifying C programs relying on Boogie as intermediate language and
Z3 as backend. Neither Frama-C [12] nor Jahob [17] handle parametrized ver-
ification, which is necessary to verify concurrent datatypes (for any number of
threads). The closest system to Leap is STeP [19], but STeP only handled tem-
poral proofs for simple datatypes. Unlike Leap, none of these tools can reason
about parametrized systems.

Chalice [18] is an experimental language that explores specification and ver-
ification of concurrency in programs with dynamic thread creation, and locks.
VeriCool [28] uses dynamic framing (as Chalice does) to tackle the verifica-
tion of concurrent programs using Z3 as backend. However, none of these tools
implement specialized DPs for complex theories of datatypes. VCC [10] is an
industrial-strength verification environment for low-level concurrent system code
written in C. Despite being powerful, in comparison to Leap it requires a great
amount of program annotation.

So far, the current version of Leap only handles safety properties, but sup-
port for liveness properties is ongoing work.

2 Formal Verification Using Leap

Fig. 1 shows the structure of Leap. Leap receives as input a program and a
specification. Fig. 2 presents an example of a procedure for inserting an element
into a concurrent lock-coupling single-linked list. The input language is a C-
like language with support for assignments—including pointers—, conditionals,
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Fig. 1. Scheme of LEAP

global
addr head, tail
ghost addrSet region

procedure insert (e:elem)
addr prev, curr, aux

begin
1: prev := head;
2: prev->lock;
3: curr := prev->next;
4: curr->lock;
5: while curr->data < e do
6: aux := prev;
7: prev := curr;
8: aux->unlock;
9: curr := curr->next;

10: curr->lock;
11: end while
12: if curr != null /\curr->data > e then
13: aux := malloc(e,null,#);
14: aux->next := curr;

:connect
15: prev->next := aux

$region := region Union {aux};$
16: end if
17: prev->unlock;
18: curr->unlock;
19: return

end procedure

Fig. 2. Example of input program

loops and non-recursive function calls.
Program lines can be assigned a label
to refer to them later in a specification
(e.g., connect labels line 15 in Fig. 2).
In a specification both program lines
and labels can be used to refer to an
specific section of the program. The
input language also supports atomic
sections and ghost code. Ghost code is
written between $ and, is added only
for verification purposes, and it is re-
moved during compilation. Fig. 2 de-
clares a global ghost variable region
for keeping track of address of nodes
belonging to the list, which is updated
at line 15 when a new node is con-
nected added to the list. Leap requires
only small annotations of extra ghost.
A specification consists of quantifier-
free parametrized formulas describing
the property to be verified. Consider the following specification, parametrized
by thread id i:

vars: tid i
specification [aux_ready] :

@connect(i). ->
(rd(heap, prev(i)).data < e /\ rd(heap, curr(i)).data > e /\
rd(heap, aux(i)).data = e /\
rd(heap, prev(i)).next = curr(i) /\ rd(heap, aux(i)).next = curr(i))

This formula describes conditions that every thread i satisfy during insertion
and that guarantee the preservation of the list shape when connecting the node
pointed by aux to the list. In particular, aux_ready states that: (1) the node
pointed by prev (resp. curr) stores a value lower (resp. higher) than e, (2) the
node pointed by aux stores value e, and (3) the field next of the nodes pointed
by prev and aux points to curr. We now give a brief description of how Leap

generates the VCs starting from the program and the specifications received as
input.
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Verification Condition Generation. Given an input program P , Leap in-
ternally creates an implicit representation of a parametrized transition system
S[M ] = P1∨P2∨ . . . ∨PM , where each Pj is an instance of program P . For exam-
ple, if we consider the program from Fig. 2, S[1] is the instance of S[M ] consisting
of in a single thread running insert in isolation, and S[2] is the instance of S[M ]
consisting of two threads running insert concurrently. Leap solves the uniform
verification problem showing that all instances of the parametrized system sat-
isfy the safety property by using specialized proof rules [25] which generate a
finite number of VCs.

Each VC describes a small-step in the execution. All VCs generated by Leap

are quantifier free as long as the specification is quantifier free. We use the the-
ory of arrays [5] to encode the local variables of a system with an arbitrary
number of threads, but the dependencies with arrays are eliminated by sym-
metry. VCs are discharged to specialized DPs which automatically decide their
validity. If all VCs are proved valid, then the specification is verified to be an
invariant of the parametrized program. If a VC is not valid, then the DP gen-
erates a counter-model corresponding to an offending small-step of the system

curr

aux
prev

5

1

head

2

3

curr

aux
prev

5

1

head

2

3

Fig. 3. A counter-example
for is_list when executing
line 15 (up shows before,
down shows after). Dashed
box represents region.

that leads to a violation of the specification. This
is typically a very small heap snippet that the
programmer can use to either identify a bug or
instrument the program with intermediate invari-
ants. Consider property is_list which states the
list shape property, including that the ghost vari-
able region stores the set of addresses of all nodes
belonging to the list. Property aux_ready is not
enough to prove is_list invariant. Fig. 3 shows
a counter example returned by the decision proce-
dure. The output can be used by the user as hint
to strengthen aux_ready, in this case, indicating
that prev must belong to region before executing
line 15 of insert.

Decision Procedures. Leap implements specialized decision procedures in-
cluding some theories of heap memory layouts and locks [23, 24, 27] whose de-
cidability is based on finite model theorems. Our implementation transforms
each VC into queries to the corresponding DP. The decision procedures are im-
plemented on top of off-the-shelf SMT solvers [13, 15]. Leap currently includes
decision procedures for Presburger arithmetic with finite sets and minimum,
lock-based concurrent single-linked lists [23], concurrent skiplists of bounded
height [24] and skiplists of arbitrary height [27]. The modular design of Leap

makes it straightforward to implement extensions for new program statements,
theories and DPs.

Proof Graphs and Tactics. Proofs in Leap are structured as proof graphs,
which describes the inter-dependency between invariants. Proof graphs improve
the efficiency of proof development and proof checking, by establishing the nec-
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essary support for proving consecution (see [20] and optionally specifying tactics
and heuristics. Current implemented tactics include the use of simpler DPs with
some symbols uninterpreted, lazy instantiation of supporting invariants, and ap-
plications of typical first-order tactics like equality propagation and removal of
irrelevant literals. Tactics are very useful when performed prior to the discharge
of a VC to the SMT solver, as bound sizes of candidate models are reduced. For
instance, the proof graph for is_list includes:
=> is_list [15:aux_ready] { pruning : split-goal | | | simplify-pc}

indicating that in order to prove consecution for is_list at line 15, aux_ready
is a useful support. The annotation pruning establishes a tighter domain bound
calculation for the list DP. The graph also lists tactics split-goal and simplify-pc.
In proof creation, these tactics can be explored automatically in parallel dumping
the fastest option to the proof graph file for efficient proof checking.

3 Empirical Evaluation

Fig. 4 reports the use of Leap to verify some concurrent and sequential pro-
grams, executed on a computer with a 2.8 GHz processor and 8GB of memory.
Each row includes the outcome of the verification of a single invariant. Rows 1 to
12 correspond to the verification of a concurrent lock-coupling single-linked lists
implementing a set, including both shape preservation and functional properties.
Formulas list and order state that the shape is that of an ordered single-linked
list, lock describes the fine-grain lock ownership, next captures the relative po-
sition of local pointer variables, region constraints the region of the heap to
contain precisely the list nodes and disj encodes the separation of new cells al-
located by different threads. Functional properties include funSchLinear: search
returns whether the element is present at the linearization point; funSchInsert
and funSchRemove: a search is successful precisely when the element was inserted
and not removed after; funRemove, funInsert and funSearch describe a scenario in
which a thread manipulates different elements than all other threads: an element
is found if and only if it is in the list, an element is not present after removal,
and an element is present after insertion. Rows 13 to 16, and 17 to 20 describe
the verification of two sequential implementation of a skiplist. The first imple-
mentation limits the maximum height to 3 levels, and the second considers an
implementation in which the height can grow beyond any bound, using a more
sophisticated DP. Rows 21 to 23 correspond to a parametrized ticket based mu-
tual exclusion protocol. This protocol is infinite state using integers as tickets.
Lines 24 to 26 correspond to a similar protocol that uses sets of integers.

The first four columns show (1) the formula’s index (i.e., the number of
threads parametrizing the formula), (2) the number of VCs discharged, (3) the
number of such VCs proved by program location reasoning, and (4) by using
a specialized DP. In all cases, all VCs are automatically verified. The next two
columns report the total running time of discharging and proving all VCs (5)
without using any tactic and (6) with tactics enabled. The next columns present
the slowest (7) and average (8) running time to solve VCs, and the final column
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formula #solved vc Brute Heurist. DP time Leap

idx #vc pos dp time time slowest average time
1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLinear 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchInsert 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRemove 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

Fig. 4. Verification running times (in secs.). ∞ represents a timeout of 30 minutes.

includes the analysis time without considering the running time of decision pro-
cedures. Our results indicate that Leap can verify sophisticated concurrent pro-
grams and protocols with relatively small human intervention. Required annota-
tion for our examples was around 15% of the source code (roughly 1 invariant—
containing 6 primitive predicates each—every 7 lines). The time employed by
Leap to analyze the program and generate all VCs is a negligible part of the to-
tal running time, which suggests that research in DP design and implementation
is the crucial bottleneck for scalability. Also, in practice, tactics are important
for efficiency to handle non-trivial systems.

4 Future Work

We are considering the use of CIL/Frama-C as a front-end for C. Extending Leap

with support for liveness properties is ongoing work. Our approach consists of
specializing generalized verification diagrams [6] and transition invariants [22] for
parametrized systems. The development of new theories and decision procedures
for new datatypes such as hash-maps and lock-free lists is currently under devel-
opment. We are also exploring the possibility of increasing automation by auto-
matically generating intermediate specifications. Our approaches include (1) how
to apply effectively weakest precondition propagation for parametrized systems,
and (2) extending our previous work on abstract interpretation-based invariant
generation for parametrized systems [26] to handle complex heap layouts.
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Abstract. Monadic predicates play a prominent role in many decid-
able cases, including decision procedures for symbolic automata. We are
here interested in discovering whether a formula can be rewritten into
a Boolean combination of monadic predicates. Our setting is quantifier-
free formulas over a decidable background theory, such as arithmetic
and we here develop a semi-decision procedure for extracting a monadic
decomposition of a formula when it exists.

1 Introduction

Classical decidability results of fragments of logic [7] are based on careful sys-
tematic study of restricted cases either by limiting allowed symbols of the lan-
guage, limiting the syntax of the formulas, fixing the background theory, or
by using combinations of such restrictions. Many decidable classes of problems,
such as monadic first-order logic or the Löwenheim class [29], the Löb-Gurevich
class [28], monadic second-order logic with one successor (S1S) [8], and monadic
second-order logic with two successors (S2S) [35] impose at some level restric-
tions to monadic or unary predicates to achieve decidability.

Here we propose and study an orthogonal problem of whether and how we can
transform a formula that uses multiple free variables into a simpler equivalent
formula, but where the formula is not a priori syntactically or semantically
restricted to any fixed fragment of logic. Simpler in this context means that we
have eliminated all theory specific dependencies between the variables and have
transformed the formula into an equivalent Boolean combination of predicates
that are “essentially” unary. We call the problem monadic decomposition:

Given an effective representation of a nonempty binary relation R, de-
cide if R equals a finite union

⋃
0≤i<k Ri of k Cartesian products Ri =

Ai×Bi, and if so, construct such Ri effectively.

The fundamental assumption that we are making here is:

We have a Boolean closed class of formulas Ψ and a solver for Ψ .

More precisely, we assume a background structure U with an r.e. (recursively
enumerable) universe U (so all elements a ∈ U can be named; we write a also
for a term denoting a) and an r.e. set Ψ of formulas such that:

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 628–645, 2014.
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1. If a ∈ U , x is a variable and ϕ ∈ Ψ then ϕ[x/a] ∈ Ψ ,
2. If ψ, ϕ ∈ Ψ then ψ ∧ ϕ, ψ ∨ ϕ,¬ϕ ∈ Ψ .
3. Satisfiability of ϕ(x̄) ∈ Ψ (i.e., U |= ∃x̄ϕ(x̄)) is decidable by the solver.

When ϕ(x̄) is satisfiable it follows that we can also effectively generate a witness
ā such that ϕ(ā) holds, because U is r.e.. Effectiveness means that the solver
uses a finite number of steps for deciding satisfiability and for finding a witness.
An effective representation of a relation is given by a formula from Ψ . The
above formulation is very natural from the standpoint of modern logical inference
engines, because Ψ embodies the basic properties supported by any state-of-the-
art satisfiability modulo theories (SMT) solver [12]. One observation that we can
immediately make about Ψ is that it is (without loss of generality) closed under
formation of tuples, i.e., we can always group variables together and view the
group as a single variable. We can also note certain properties that Ψ cannot
express. For example, Ψ cannot represent formulas ϕL(x) that are at least as
expressive as deterministic context free languages L. Otherwise construct ϕL

such that w ∈ L iff ϕL(w) holds; then ϕL(x)∧ϕL′(x) is satisfiable if and only if
L ∩ L′ �= ∅, but that is an undecidable problem [22].

A formula ϕ(x, y) ∈ Ψ denotes the relation R = {(a, b) ∈ U ×U | U |= ϕ(a, b)}.
The main two questions that we are interested in are: 1) deciding if R is monadic;
2) constructing a monadic decomposition of R if R is monadic. The key insight
is that we can define the following equivalence relation over A = {a | ∃bR(a, b)},

x ∼ x′ def
= ∀y y′((R(x, y) ∧R(x′, y′))⇒ (R(x′, y) ∧R(x, y′)))

Moreover, we can decide if a ∼ a′ because a �∼ a′ has the equivalent form
∃y y′ ψ(y, y′) for some ψ(y, y′) ∈ Ψ . This gives us a systematic way of how to
subdivide A into equivalence classes A∼, namely by using the solver for Ψ to
enumerate enough witnesses that cover A∼. The main technical lemma is that
there are finitely many such witnesses if and only if R is monadic. The question
of deciding if R is monadic is not completely settled here. We show that the
problem is decidable for integer linear arithmetic and real algebraic polynomial
arithmetic but the general case is an open problem.

As the main strength of this approach we see its simplicity combined with
its generality. For monadic decomposition to work, there are no assumptions on
Ψ other than the ones listed above. The technique works in all theories where
a solver is available, such as linear arithmetic, bit-vectors, arrays, uninterpreted
function symbols, algebraic data types, algebraic reals, as well as combinations
thereof. The technique provides a general simplification principle, tantamount
to a semantic normal form. It can be used in many different contexts where
it is useful to simplify formulas by eliminating variable dependencies, such as
program analysis, optimization, theorem proving, and compiler optimization. It
also provides a new way how to investigate new decidability results.

Rest of the paper: § 2 describes the motivation. In § 3 and § 4 the problem
is defined formally, we prove the main decomposition Theorem 1, correctness of
the main algorithm, Theorem 2, and we prove some decidable cases, Theorems 3
and 4. § 5 provides some evaluation. § 6 is related work. § 7 concludes.
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⊥, 0 q

λx.(0 ≤ x ≤ 7F16)/[x]

λx.(7F16 < x ≤ 7FF16)/[6 · x〈10,6〉, 2 · x〈5,0〉]

λx.(7FF16 < x ≤ FFFF16 ∧ ¬Surrogate(x))/[14 · x〈15,12〉, 2 · x〈11,6〉, 2 · x〈5,0〉]

λx.(FFFF16 < x ≤ 10FFFF16)/[30 · x〈20,18〉, 2 · x〈17,12〉, 2 · x〈11,6〉, 2 · x〈5,0〉]

Fig. 1. SFT EncUTF8: UTF8 encoder for valid Unicode code points; x〈h,l〉 extracts bits

from h to l from x, e.g., 8〈3,2〉 = 2; Surrogate
def
= λx.D80016 ≤ x ≤ DFFF16, surrogates

are not valid code points; x · y denotes bit-append, e.g., 6 · x〈10,6〉 = C016 + x〈10,6〉.

2 Motivation

We start by describing the concrete application that originally lead us to inves-
tigate monadic decomposition. We then list other potential applications.

Symbolic Automata and Transducers. In the context of web security, it
is important to understand and analyze various properties of sanitizers [38].
Sanitizers are special purpose string encoders that escape or remove potentially
dangerous strings in order to prevent cross site scripting (XSS) attacks. Bek is
a programming language that is specifically designed for this purpose [20] and
builds on the theory and algorithms of Symbolic Finite Transducers or SFTs [44].
Monadic decomposition is a useful technique for enabling many analyses involv-
ing SFTs. One such case is to decide if the range of an SFT is regular and, if
so, to construct the corresponding symbolic automaton or SFA. Unlike in the
classical case [32,45], a range automaton of an SFT is not always regular but
accepted by an Extended SFA or ESFA (SFA with bounded lookahead over the
input) and intersection emptiness of ESFAs is undecidable [9]. Transforming an
ESFA into and SFA, when possible, requires monadic decomposition.

Figure 1 illustrates an SFT EncUTF8 that performs UTF8 encoding that
is also used by some sanitizers [1] as the first encoding step. The input to
EncUTF8 is a sequence of Unicode code points, that are integers ranging from 0
to 10FFFF16, and the output is a sequence of bytes. Each of the four transitions
of EncUTF8 corresponds to the number of bytes needed in the encoding of the
code point.1 For example EncUTF8([1F60A16]) = [F016, 9F16, 9816, 8A16], where
1F60A16 is the code point of the � emoticon [40].

For example, the second rule of EncUTF8 becomes the following transition of
the range ESFA and has lookahead 2, i.e., it reads 2 bytes at a time

q
λ(y,z).∃x(7F16<x≤7FF16∧y=(6·x〈10,6〉)∧z=(2·x〈5,0〉))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

The existential quantifier over x can be eliminated automatically by using any
known quantifier elimination technique for integer linear arithmetic [31].

1 The corresponding encoder in [10, Figure 3] uses 5 states and 11 transitions because
there the input is assumed to be UTF16 encoded.
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q0

q1 q4 q5 q2 q6 q7 q3

0-7F

F1-F3

80-BF 90-BF
80-8F

F0 F4

C2-DF

80-BF

80-BF

80-9F
A0-BF

E0EDE1-EC|EE|EF

Fig. 2. Minimal symbolic automaton that recognizes valid UTF8 encoded strings

For ease of presentation we use the fact that x = y〈4,0〉 · z〈5,0〉. This gives us the

equivalent transition q
λ(y,z).7F16<(y〈4,0〉·z〈5,0〉)≤7FF16∧y=6·y〈4,0〉∧z=2·z〈5,0〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q. Next,

monadic decomposition of the guard yields the following equivalent transition,

q
λ(y,z).y〈5,1〉 �=0∧y〈5,5〉=0∧y=6·y〈4,0〉∧z=2·z〈5,0〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q that, after simplification, is equiv-

alent to the following two transition path q
λy.C216≤y≤DF16−−−−−−−−−−→ q3

λz.8016≤z≤BF16−−−−−−−−−−→ q
where q3 is a new state. The ESFA rules with lookahead 3 and 4 are a bit more
challenging and yield monadic decompositions with higher widths. After fur-
ther minimization [11] of the resulting SFA we obtain the SFA in Figure 2 that
accepts the range of EncUTF8.

Program Analysis. Monadic decomposition can be used to break down depen-
dencies between program variables and thus simplify various symbolic techniques
that are used in the context of modern program analysis [30]. The use of an SMT
solver as a black box is particularly well suited in this context because it allows
seamless combination of different theories for different data types.

Program Synthesis. The range SFA construction of EncUTF8 illustrates an-
other potential usage. We can automatically invert EncUTF8 into a UTF8 de-
coder DecUTF8 in a way that guarantees the correctness criterion that for all
valid input sequences s, DecUTF8(EncUTF8(s)) = s, by using the SFA in Fig-
ure 2 as the control-flow graph of the corresponding transducer and by inverting
the individual rules of the encoder.

Linear Optimization. A new SMT based optimization algorithm SYMBA is
described in [27] that uses linear real arithmetic objective functions and an
SMT solver as a black box. Monadic decomposition is a potential simplification
technique of objective functions in this context [4].

Theorem Proving. In the context of automated first-order resolution based
theorem proving modulo theories, Skolemization may benefit from monadic de-
composition by enabling simpler Skolem functions [26]. The use of SMT solvers in
this context comes into play when the classical resolution technique is extended
to work modulo background theories [24,25].
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Compiler Technology. Monadic decomposition can be used to simplify expres-
sions and thus enable new (or enhance existing) automatic compiler optimization
techniques [3]. Moreover, it may be used for code parallelization.

3 Monadic Predicates

We assume a decidable background U as described above. The Boolean type
is bool with truth values {�,⊥}. In our expressions, all variables are typed
and all terms and formulas are well-typed. The subuniverse of elements of type
τ is denoted by Uτ . We use λ-expressions to define anonymous functions and
relations, given ϕ(x̄) ∈ Ψ where all the free variables of ϕ(x̄) are among x̄ =
(x1, . . . , xn), we write λx̄.ϕ(x̄) or simply ϕ, when the arity n and types of xi are
clear from the context, for the corresponding predicate and [[ϕ]] for the n-ary
relation defined by ϕ.

Let R be an n-ary relation for some n ≥ 2 and of type
∏n

i=1 τi.
2 R is Cartesian

if there exist sets Ui ⊆ Uτi , for 1 ≤ i ≤ n, such that R =
∏n

i=1 Ui. R is monadic

if there exists finite k > 0 and Cartesian Ri, for 1 ≤ i ≤ k, s.t. R =
⋃k

i=1 Ri;
{Ri}ki=1 is called a monadic decomposition of R of width k. R is k-monadic if
R has a monadic decomposition of width k. The (monadic) width of R is the
smallest k such that R is k-monadic. Note that R has width 1 iff it is Cartesian.

Example 1. Let ϕ be the predicate λ(x, y).(x + (y mod 2)) > 5, where x and
y have integer type. Then R = [[ϕ]] is the corresponding binary relation over
integers. R is not Cartesian but it is 2-monadic because R = ([[λx.x > 5]] ×
[[λy.�]]) ∪ ([[λx.x > 4]]× [[λy.odd(y)]]). �

We lift the notions to predicates. A unary formula is a formula with at most
one free variable. An explicitly monadic formula is some Boolean combination
of unary formulas. Observe that the difference between monadic and explicitly
monadic, is that the first notion is semantic (depends on U) while the second is
syntactic (independent of U).

4 Monadic Decomposition

We are interested in the following two problems: 1) Deciding if a predicate ϕ
is monadic; 2) Given a monadic predicate ϕ, effectively constructing a monadic
decomposition of ϕ. We restrict our attention to binary predicates. The decom-
position can be reduced recursively to the binary case and applied to n-ary
predicates with n > 2, such as the range predicates arising from the third and
fourth rules of EncUTF8 in Figure 1.

4.1 Deciding If a Predicate Is Monadic

Consider any term f(x) in the background theory denoting a function over inte-
gers. Let ϕf (x, y) be the formula f(x)

.
= y.3 Then ϕf (x, y) is monadic iff there

2 Type
∏2

i=1 τi is also denoted τ1 × τ2.
3 We assume that formal equality

.
= is allowed.
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Fig. 3. Let Rk(x, y)
def
= y>0 ∧ y&(y−1)=0 ∧ x&(ymod (2k − 1)) �=0 over N, & is bit-

wise-AND; a) Geometrical view of R3: (x, y) is marked iff R3(x, y) holds; if two Y -cuts
Ym and Yn are identical then m ∼ n, e.g., 1 ∼ 9; if two X-cuts Xm and Xn are identical
then m � n, e.g., 22 � 25; b) Venn Diagram view of R3: R3 =

⋃3
i=1Ai ×Bi.

exists k such that ϕf (x, y) is equivalent to
∨

i<k αi(x) ∧ βi(y). Since there can
only be one y for a given x (because f is a function) it follows that |[[βi]]| = 1 for
all i < k. So ϕf is monadic iff f is bounded (finite-valued). While boundedness
of f is an undecidable problem in general by using Rice’s Theorem [37], we can-
not use this argument because we cannot even encode context free languages in
Ψ , so much less arbitrary recursive languages. We show in Section 4.4 that the
question is decidable for some cases, but the general case is an open problem.

4.2 Decomposition Procedure

In the following, we provide a brute force semidecision procedure for monadic
decomposition. While the procedure is complete for monadic predicates, in the
nonmonadic case it will not terminate. The input is a binary predicate ϕ ∈ Ψ .
Let R = [[ϕ]] ⊆ A×B, where we assume that R �= ∅ and

A
def
= {a | ∃bR(a, b)}, B

def
= {b | ∃aR(a, b)}.

Define the relations:

x ∼ x′ def
= ∀y y′((ϕ(x, y) ∧ ϕ(x′, y′))⇒ (ϕ(x′, y) ∧ ϕ(x, y′)))

y � y′ def
= ∀xx′((ϕ(x, y) ∧ ϕ(x′, y′))⇒ (ϕ(x′, y) ∧ ϕ(x, y′)))

For a ∈ A, define the Y-cut of R by a as the set Ya = {b | R(a, b)}. Similarly,
for b ∈ B, define the X-cut of R by b as the set Xb = {a | R(a, b)}. The idea of
cuts can be illustrated geometrically. See Figure 3(a). The following properties
are used below.

Lemma 1. Let R and A be given as above. 1) For all a, a′ ∈ A: a ∼ a′ if and
only if Ya = Ya′ . 2) The relation ∼ is an equivalence relation over A.
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Lemma 1 holds obviously also for � and B. We let [a]∼ (resp. [b]�) denote
the equivalence class {e ∈ A | e ∼ a} (resp. {e ∈ B | e � b}). The following is
the main lemma.

Lemma 2. R is monadic ⇔ the number of ∼-equivalence classes is finite.

Proof. ⇒: Assume R has a monadic decomposition {Ai × Bi}i<n. Let Ãi =⋃
a∈Ai

[a]∼. We show first that {Ãi × Bi}i<n is also a monadic decomposition

of R. Suppose (a, b) ∈ Ãi × Bi. So there is ai ∈ Ai such that a ∼ ai. Since
(ai, b) ∈ Ai×Bi it follows that (ai, b) ∈ R, so b ∈ Yai . But Yai = Ya by Lemma 1
because ai ∼ a, so b ∈ Ya, i.e., (a, b) ∈ R. The direction R ⊆

⋃
i<n Ãi × Bi is

immediate because R ⊆
⋃

i<n Ai ×Bi and Ai ⊆ Ãi.

Next, we normalize {Ãi×Bi}i<n into a form {A′
i×B′

i}i<m where each A′
i ends

up being exactly one ∼-equivalence class of A. For all I ⊆ {i | 0 ≤ i < n} let MI

be the minterm (
⋂

i∈I Ãi)\ (
⋃

j /∈I Ãj). By using standard Boolean laws, each Ãi

is a finite union of disjoint nonempty minterms. Apply the following equivalence
preserving transformations to the monadic decomposition {Ãi×Bi}i<n until no
more transformations can be made:

– replace (MI ∪M)×Bi by (MI ×Bi) ∪ (M ×Bi),
– replace (MI ×Bi) ∪ (MI × Bj) by MI × (Bi ∪Bj).

Let the resulting decomposition be {A′
i×B′

i}i<m, where, for all a ∈ A and b ∈ B,
we have (a, b) ∈ R iff there exists exactly one i such that (a, b) ∈ A′

i × B′
i. In

other words, for all a ∈ A, Ya is the set B′
i such that a ∈ A′

i. It follows that
a ∼ a′ for all a, a′ ∈ A′

i.
Thus, the number of ∼-equivalence classes is bounded by 2n−1 where n is the

monadic width of R, because the number m of different (nonempty) minterms
MI is, due to the powerset construction, at most 2n − 1.
⇐: Assume that the number of ∼-equivalence classes is finite. Let A =⋃n−1
i=0 Ai where Ai = [ai]∼. Let Bi = Yai for 0 ≤ i < n. Thus if (a, b) ∈ Ai ×Bi

then a ∼ ai and b ∈ Yai , i.e., Ya = Yai and b ∈ Yai . So b ∈ Ya, i.e., (a, b) ∈ R.
Conversely, if (a, b) ∈ R then b ∈ Ya. But Ya = Yai = Bi, for some i < n, where
a ∈ Ai and b ∈ Bi. Thus, {Ai ×Bi}i<n is a monadic decomposition of R. �

Next, we provide a simple iterative procedure to compute a witness set WA that
covers A∼. We use the negated form of ∼:

x �∼ x′ ⇔ ∃y y′(ϕ(x, y) ∧ ϕ(x′, y′) ∧ (¬ϕ(x′, y) ∨ ¬ϕ(x, y′)))

So, for all a, a′ ∈ A, a �∼ a′ means that a and a′ must participate in distinct
Cartesian components of a monadic decomposition of ϕ, i.e., if {Ri}i<k is a
monadic decomposition of R, then there exist b, b′ ∈ B and i �= j such that
(a, b) ∈ Ri \Rj and (a′, b′) ∈ Rj \Ri.

Computation of WA : Let (a0, b0) ∈ [[ϕ]] and let WA = {a0}. Repeat:
1. Let ψ(x) be the formula

∧
a∈WA

x �∼ a.
2. If there exists a such that ψ(a) holds then WA := WA∪{a} else terminate.
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Observe that satisfiability checking of ψ in the above procedure as well as
generating the witness a is decidable because we can transform ψ to prenex nor-
mal form as an ∃-formula and treat all the existential variables as free variables.
In other words, the resulting formula is in Ψ . When ψ becomes unsatisfiable
then any further element from A must be ∼-equivalent to one of the elements
already in WA, while all elements in WA belong to distinct ∼-equivalence classes.
Therefore, if ϕ is monadic then the process terminates by Lemma 2, and upon
termination WA is a finite collection of witnesses that divides A into a set A∼ of
∼-equivalence classes [a]∼ for a ∈ WA. For example, if ϕ is Cartesian then ψ is
unsatisfiable initially, because then A∼ = {[a0]∼}.

Computation of witness set WB is analogous to computation of WA. Observe
that |WB|, |WA| < 2n where n is the monadic width of ϕ, which follows from
the proof of Lemma 2. We also have that n ≤ |WB |, |WA|.

Example 2. Consider the relation R = R3 in Figure 3. The width of R is 3.
We have A∼ = {[a]∼ | 1 ≤ a ≤ 7} where [a]∼ = {n | n〈2,0〉 = a} and B� =
{[20]�, [21]�, [22]�} were [2m]� = {2n | nmod 3 = m}. Figure 3(b) illustrates
the equivalence classes as nonempty regions of a Venn Diagram view of R. �

Lemma 3. If R is monadic then, for all a ∈ A∼ and b ∈ B�, we can effectively
construct αa, βb ∈ Ψ such that [[αa]] = a and [[βb]] = b.

Proof. By using Lemma 2 let WA be constructed as above, so A∼ = {[a]∼ | a ∈
WA}. Similarly to WA, construct a finite WB s.t. B� = {[b]� | b ∈WB}. Let

(for b ∈ WB) βb(y)
def
= β[b]�(y)

def
= (

∧
a∈WA∩Xb

ϕ(a, y)) ∧ (
∧

a∈WA\Xb

¬ϕ(a, y))

(for a ∈WA) αa(x)
def
= α[a]∼(x)

def
= (

∧
b∈WB∩Ya

ϕ(x, b)) ∧ (
∧

b∈WB\Ya

¬ϕ(x, b))

Observe that αa is well-defined because for all a′ ∈ [a]∼ we have that Ya = Ya′ .
Similarly for βb. One can show that [[βb]] = [b]� and [[αa]] = [a]∼. Fix a ∈ WA and
consider the definition of αa. Suppose WB∩Ya = {b1, b2} and WB \Ya = {b3, b4}.
Then [a]∼ ⊆ Xb1∩Xb2 and [a]∼ ⊆ (Xb3∪Xb4)

c. So [a]∼ ⊆ [[αa]]. For the direction
[[αa]] ⊆ [a]∼ take a′ ∈ [[αa]]. Suppose, by way of contradiction that, a �∼ a′ and
thus Ya′ �= Ya. Then there exists b ∈WB\Ya such that a′ ∈ Xb. But, by definition
of αa, Xb ∩ [[αa]] = ∅, which contradicts that a′ ∈ Xb and a′ ∈ [[αa]]. �

Lemma 3 is essentially a quantifier elimination property that allows us to elimiate
the ∀ quantifier from the definition of λx.x ∼ a (resp. λy.y � b) by stating that
it is enough to consider the elements in WB (resp. WA). We can now prove the
following result. It gives us a brute force method for monadic decomposition.

Theorem 1. If ϕ(x, y) is monadic then
a) ϕ(x, y) is equivalent to λ(x, y).

∨
a∈WA

(αa(x) ∧ ϕ(a, y)).
b) ϕ(x, y) is equivalent to λ(x, y).

∨
b∈WB

(βb(y) ∧ ϕ(x, b)).
c) ϕ(x, y) is equivalent to λ(x, y).

∨
a∈WA,b∈WB ,(a,b)∈[[ϕ]](αa(x) ∧ βb(y)).
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Proof. We prove (a). The other cases are similar. By Lemma 3 we have [[αa]] =
[a]∼. By construction of WA we have that, for all a ∈ WA we have [a]∼×Ya ⊆ [[ϕ]]
where [a]∼× Ya = [[λ(x, y).αa(x)∧ϕ(a, y)]]. In the other direction, if (a, b) ∈ [[ϕ]]
then a ∈ [[αa]] and b ∈ Ya. In other words, (a, b) ∈ [[λ(x, y).αa(x) ∧ ϕ(a, y)]]. �

Theorem 1 does not guarantee smallest monadic width. Example 3 shows that
the monadic width may be strictly smaller than min(|WB |, |WA|).

Example 3. Take R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 1), (5, 2), (3, 5), (4, 5)} where
A = B = {1, 2, 3, 4, 5}. Then |WA| = 5 and |WB| = 5 but R has width 4:
R = ({1, 5} × {1}) ∪ ({2, 5} × {2}) ∪ ({3} × {3, 5}) ∪ ({4} × {4, 5}). �

Example 4. Let φ(x, y) := (0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 ∧ x + y < 2). The example
illustrates a case where φ is satisfied by a finite model of the form:

a b′

a′ b

We get the following predicates by using Lemma 3 and simplifications.

αa(x)
def
= x

.
= a, αa′(x)

def
= x

.
= a′, βb(y)

def
= y

.
= b, βb′(y)

def
= y

.
= b′

where a = 0, a′ = 1, b = 0, b′ = 1. Monadic decomposition of φ reconstructs the
formula αa(x)∧βb(y) ∨ αa(x)∧βb′ (y) ∨ αa′(x)∧βb(y) by using Theorem 1(c).
Case αa′(x) ∧ βb′(y) is not included because φ(1, 1) is false. �

4.3 Another Decomposition Algorithm

If implemented directly, Theorem 1 suggests creating a decomposition which is in
a disjunctive normal form (DNF) with respect to the unary sub-formulas. Instead
of creating what amounts to a DNF, we can use case analysis on ϕ(a, y)∧ϕ(x, b)
for all ([a]∼, [b]�) ∈ A∼×B�. The output may be any explicitly monadic formula,
not necessarily in DNF. Moreover, Theorem 1 suggests full exploration of WA

and WB . We show how to avoid this by using lifted versions of the definitions
of ∼ and �. We lift the definitions of ∼ (resp. �) to all elements of the type of

x (resp. y). We define a1 ∼ a2
def
= Ya1 = Ya2 and b1 � b2

def
= Xb1 = Xb2 . This is

consistent with the earlier definition (due to Lemma 1) and is simpler to work
with because the equivalence classes cover the full universe (of the given type)
and are identical for ϕ and ¬ϕ. For example, consider the equivalence classes
N∼ in Figure 3. Then [0]∼ = N \ (A1 ∪ A2 ∪ A3). Thus

x �∼ x′ ⇔ ∃z(¬(ϕ(x, z)⇔ ϕ(x′, z))), y �� y′ ⇔ ∃z(¬(ϕ(z, y)⇔ ϕ(z, y′))).

We introduce a procedure namedmondec that given a monadic predicate ϕ(x, y)
produces an equivalent explicitly monadic predicate mondec(ϕ); it uses a recur-
sive procedure δ. The argument π of δ below is the path condition and ν is the
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the accumulated side condition; the purpose of ν is to ensure new combinations
from A∼ × B�. Here A (resp. B) is the set of all values of the type of x (resp.
y). We write (ψ ?φt : φf ) for ((ψ ∧ φt) ∨ (¬ψ ∧ φf )).

mondec(ϕ)
def
= δ(�,�), where

δ(ν, π)
def
=

⎧⎨⎩
⊥, if unsat(π ∧ ϕ);
�, else if unsat(π ∧ ¬ϕ);
(ψa

b ? δ(ν ∧ νab , π ∧ ψa
b ) : δ(ν ∧ νab , π ∧ ¬ψa

b )), else let (a, b) |= ν,

νab
def
= a �∼ x ∨ y �� b,

ψa
b

def
= ϕ(a, y) ∧ ϕ(x, b).

Theorem 2. If ϕ is monadic then mondec(ϕ) is defined and mondec(ϕ) is
an explicitly monadic predicate that is equivalent to ϕ.

Proof. Assume ϕ is monadic. Assume also that ϕ is satisfiable or else it is trivially
equivalent to the explicitly monadic predicate ⊥. Let A and B be as above. By
using Lemma 2, A∼ and B� are finite. Observe that the argument ν of δ remains
of the form that all existential quantifiers occur positively in it, so the selection
of (a, b) |= ν in δ is decidable (using the solver for Ψ).

The procedure mondec creates an if-then-else expression that can be thought
of as a binary tree whose leaves are either � or ⊥ and whose nodes are formulas
ψa
b for some a ∈ A and b ∈ B. The formula mondec(ϕ) is explicitly monadic

because each ψa
b is explicitly monadic.

First, we show that mondec(ϕ) is well-defined (terminates) by showing that
there are finitely many nodes. A new node ψa

b is created only when there exists
a ∈ A and b ∈ B such that (a, b) |= ν. In the subsequent recursive calls, any
node that is equivalent to ψa

b is eliminated by the constraint νab . Termination

follows because A∼ and B� are finite and ψa
b ⇔ ψa′

b′ iff a ∼ a′ and b � b′.
Next, we show that ν must be satisfiable if both π∧ϕ and π∧¬ϕ are satisfiable.

Let (a, b) |= π∧ϕ and (a′, b′) |= π∧¬ϕ. We know that it is possible to strengthen
π to π1 so that π1 is equivalent to αa(x) ∧ βb(y) and currently this is not the
case because a �∼ a′ or b �� b′. Moreover, and without loss of generality, π1 is of
the form π ∧ψ where ψ is a conjunction of predicates ψc

d or ¬ψc
d for some c ∈ A

and d ∈ B. We have, by definition of δ, that π has the form
m∧
i=1

ψai

bi
∧

n∧
i=m+1

¬ψai

bi

for some n ≥ m ≥ 0 and n ≥ 1, and that ¬ν is equivalent to
∨n

i=1 ai ∼ x∧bi � y.
Thus, any use of a predicate ψc

d such that (c, d) |= ¬ν is useless because it makes
ψc
d equivalent to some ψai

bi
for some i, 1 ≤ i ≤ n, and so π ∧ ψc

d or π ∧ ¬ψc
d is

either equivalent to π or to ⊥. Therefore, ν must be satisfiable or else π1 cannot
be constructed.

To show that mondec(ϕ) ⇔ ϕ is immediate from the definition of δ. First,
consider a branch π in mondec(ϕ) ending in �. We know that π implies ϕ as
a condition for �. The case ¬mondec(ϕ) ⇒ ¬ϕ is symmetrical by considering
branches π in mondec(ϕ) ending in ⊥. �
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Fig. 4. mondec(R3)

To illustrate mondec, take ϕ(x, y) to be the
predicate R3 in Figure 3. Consider the result
of mondec(ϕ) that starts with (4, 4) |= ϕ so
the root is ψ4

4 . In the depiction of mondec(ϕ)
in Figure 4, the left subtree of a node is the
true case and right subtree of a node is the false
case. For example, ¬ψ4

4 ∧ ψ3
2 ∧ ψ2

2 is a branch
that implies ϕ, this branch covers the case A2 ×B2 in Figure 3(b).

4.4 Two Decidable Cases

We show decidability of monadic decomposition in two cases. We leave decid-
abilty of monadicity for other theories and tight complexity bounds as open
problems.

Consider first integer linear arithmetic. It clearly meets the requirements of U.
Take a linear arithmetic formula ϕ(x, y). Let the predicate ∼ be defined as above,
let ‘x ∈ A’ stand for the formula ∃yϕ(x, y). Construct the following quantified

formula: IsMonadic(ϕ)
def
= ∃x̂(∀x(x ∈ A⇒ ∃x′(|x′| < x̂ ∧ x ∼ x′)))

Theorem 3. Monadic decomposition is decidable for integer linear arithmetic.

Proof. Let ϕ(x, y) be a formula in integer linear arithmetic. We show that ϕ is
monadic ⇔ IsMonadic(ϕ) is true in Presburger arithmetic. Decidability follows
by [34]. Proof of ⇒: Assume ϕ is monadic. Then A∼ is finite by Lemma 2. Let
â = max{min(abs(C)) | C ∈ A∼}+1. Then, for all a ∈ A, a belongs to some C
in A∼, and so there is a′ ∈ C such that |a′| = min(abs(C)) and so |a′| < â and
a ∼ a′. Proof of ⇐: Assume IsMonadic(ϕ) holds. Choose a witness â for x̂ and
consider the classes A = {[a]∼ | 0 ≤ |a| < â}. It follows that A = A∼ is finite,
so ϕ is monadic by Lemma 2. �

The formula IsMonadic(ϕ) has the quantifier prefix ∃∀∃∀ in Prenex normal
form when ϕ is quantifier free. So there are three quantifier alternations in

IsMonadic(ϕ). This implies an upper bound on time complexity 22
cn7

for some
constant c and size n of ϕ for deciding if ϕ is monadic [36]. This is one exponent

lower than the upper bound 22
2cn

known for the full Presburger arithmetic [14].
Moreover, the structure of the formula is quite specific and may justify the design
of a special purpose algorithm. Likewise, but for a different reason:

Theorem 4. Monadic decomposition is decidable for real algebraic arithmetic
with addition and multiplication.

Proof (Sketch). The atomic subformulas of ϕ are of the form p(x, y) ≥ 0, where
p(x, y) is in general a multi-variate polynomial. Thus, for every value b, ϕ(x, b) is
a uni-variate polynomial, and the sign of such polynomials induce a finite set of
intervals that partition the reals. Without loss of generality consider the case for
an a, b and ε, such that for all b′ where ε ≥ b′ > b we have ϕ(a, b) but ¬ϕ(a, b′).
Then ϕ contains an atomic formula p(x, y) ≥ 0 whose truth value changes over
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Fig. 5. Comparison of monadic decomposition algorithms

b, b′. Monadicity of ϕ fails if it is determined by signs of polynomials p(x, y) that
depend on both x and y (recall that polynomials are continuous and differen-
tiable). Thus, we can limit the search for a monadic decomposition up to the
maximal number of regions induced by the polynomials in ϕ. This (potentially
very large) number is bounded by the polynomial degrees and number of atomic
subformulas. �

5 Experiments

We present here a set of micro benchmarks using the sample predicate Rk from
Figure 3 by letting k range from 2 to 16; k also happens to be the monadic width
of Rk. The worst case scenario of the size of a monadic decomposition of Rk,
according to Theorem 1(c), is O(k2k) because |A∼| = 2k and |B�| = k (including
the classes [0]∼ and [0]�). We compare three algorithms, implemented as z3
python scripts, that are indicated in Figure 5 by thm1, mondec, and mondec1.
The output is in all cases an explicitly monadic formula in form of an if-then-
else expression, its size is the number of ψa

b nodes in it, e.g., the size of the
expression in Figure 4 is 5.4 Algorithm thm1 is based on Theorem 1 but avoids
explicit DNF construction. Algorithm mondec1 is a variant of mondec; its python
script is shown in Appendix A. The only difference compared to mondec is that
mondec1 uses the following heuristic for selecting a witness (a, b) |= ν:

(a, b) |= if sat(ν ∧ ϕ ∧ π) then ν ∧ ϕ ∧ π else if sat(ν ∧ ϕ) then ν ∧ ϕ else ν

that amounts to changing a single line of code in the python script. In other
words, for selecting new (a, b) first try to do so in the context of ϕ and π. The
most interesting aspect about this experiment is that it shows that different
heuristics can influence the performance characteristics of monadic decomposi-
tion by an exponential factor. The above heuristic reduces the size of the decom-
position exponentially in this experiment, while constructing nodes in mondec

based solely on ν provides worse performance than exhaustive search of WA and
WB, as in thm1. For example, the time to decompose R9 with mondec gave an

4 The experiments were carried out on a laptop with a 2GHz CPU.
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ouput of size 2281 and took around 11 minutes, while with mondec1 the output
size was 23 and the decomposition took 1.4 seconds. For the formulas arising in
Section 2, all algorithms terminate in a fraction of a second. Appendix A shows
the python script of mondec (and mondec1) generalized to arbitrary arities.

6 Related Work

Study of monadic fragments of logic was started by Löwenheim in 1915 and
spans a full century of literature by now. Work related to automata theory and
its relation to monadic fragments of logic is, likewise, a very thoroughly studied
topic [39]. Despite this, there is renewed interest in this topic, but with a new
angle. From our perspective, this is due to many advances in automated logical
inference engines. The angle is, how to make use of such advances in a modular
way in the context of automata theoretic problems. This makes questions like the
one posed in this paper relevant in many different potential application areas.
Monadic decomposition can also be used to study new decidable fragments of
logics; revisiting techniques in [13,18,6] could be relevant in this context.

Monadic Fragments. Unary relations play a key role in many decision prob-
lems and decidable logics. Monadic first-order logic, or the Löwenheim class [29],
is the classical example of a decidable fragment of first-order logic where all sym-
bols are unary relation symbols. The Löb-Gurevich class [28], is the extension of
the Löwenheim class where also unary function symbols are allowed. Both classes
are decidable by having the finite model property [7]. Monadic second-order logic
allows quantification over unary predicates. Among one of the most celebrated
and applied decidability results are those of the monadic second-order theory
S1S with one successor relation by Büchi [8] and decidability of the monadic
second-order theory S2S of the binary tree with two successor relations by Ra-
bin [35]. The ability to apply Rabin’s theorem and automata based techniques
to establish decidability results of a logic is often described as the logic hav-
ing the tree model property. Modal logics do not have the finite model property
but they do have the tree model property. Vardi attributes [41] their decidabil-
ity to this. Grädel discusses this topic further in [17] and its relation to the
guarded fragment [5]. Unlike in modal logics, simple extensions of the guarded
fragment cause undecidability [16], one exception is the monadic guarded frag-
ment with two variables and equivalence relations that does have the tree model
property [15]. The theorems of Büchi and Rabin have also been revisited and
extended by Gurevich through game based techniques [18]. Another technique
discussed in [18] is the use of the Feferman-Vaught generalized products [13] as
a model-theoretic method for establishing decidability results in the context of
monadic second-order logic.

Symbolic Automata. Remarkably, the Feferman-Vaught theorem is revisited
in [6] where it is shown that a special version of it is closely related to the theory
of M-automata where M is a first-order structure. Although M-automata are
defined as multi-tape automata, by using tuples, they correspond precisely to
SFAs. Independently, a variant of SFAs was originally introduced in the context
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of natural language processing, where they are called predicate-augmented finite
state recognizers [33]. Symbolic finite transducers were introduced in [44], a dif-
ferent notion of symbolic transducers is also studied in [33]. The extension from
SFTs to ESFTs is introduced in [10]. Equivalence of ESFTs, properties of ESFAs,
and the notion of Cartesian ESFTs are studied in [9]. The monadic decomposi-
tion problem first surfaced in the context of trying to lift algorithms for symbolic
automata without lookahead to symbolic automata with lookahead. In classical
automata theory this problem does not exist because lookahead can be elimi-
nated by introducing more states since the alphabet is finite. Most other SFA
algorithms can, in theory, be lifted to finite alphabets. For example, closure under
complement [6, Proposition 2.6] is shown by reduction to NFA determinization
through minterm construction by considering the Boolean combinations of all
guards of the M-automaton as the finite alphabet of the NFA. Practically this
approach does not scale, it suffers from an exponential blowup of the number of
transitions, even before the actual NFA determinization algorithm starts.

Applications. For many analysis tasks, some of which are discussed in Se-
cion 2, monadic decomposition plays a key role in enabling the use of SFA and
SFT algorithms in the context of symbolic automata and transducers. Other
SFA algorithms, such as difference and complement, are discussed in [43] in the
context of SMT solvers, and more algorithms are discussed in [21] in the more
specialized context of string analysis. A symbolic automata toolkit is described
in [42]. SFT algorithms, in particular equivalence checking, are studied in [44]
and their use for web security is discussed in [20]. A new minimization algo-
rithm of SFAs was recently presented in [11], showing that the new algorithm
can enable some analysis scenarios involving monadic second-order logic that
did not scale with earlier techniques; the reduction itself from monadic second-
order formulas to SFAs is essentially the classical one [39] and the performance
is compared to Mona [19,23].

7 Conclusion

We introduced the problem of monadic decomposition of predicates in decidable
theories. Theorem 1 provided an effective means to computing a monadic decom-
position and we described an implementation with correctness proof, Theorem 2,
that avoids expanding solutions directly into DNF; it leverages a Shannon de-
composition. We left the general case of decidability of monadic decomposition
as an open problem. Deciding if a predicate is monadic in a specific background
theory is another interesting open problem. While we show that the problem is
decidable for integer linear arithmetic and polynomial real algebraic arithmetic,
we have not investigated concrete algorithms for these cases.

Acknowledgements. We thank the anonymous reviewers for their constructive
feedback that greatly helped to improve the paper.
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A Monadic Decomposition in Python

Below is a self-contained python script mondec that computes a monadic decom-
position of a predicate R with given variables. It uses z3.

from z3 import *

def nu_ab(R, x, y, a, b):

x_ = [ Const("x_%d" %i,x[i].sort()) for i in range(len(x))]

y_ = [ Const("y_%d" %i,y[i].sort()) for i in range(len(y))]

return Or(Exists(y_,R(x+y_)!=R(a+y_)),Exists(x_,R(x_+y)!=R(x_+b)))

def isUnsat(fml):

s = Solver(); s.add(fml); return unsat == s.check()

def lastSat(s, m, fmls):

if len(fmls) == 0: return m

s.push(); s.add(fmls[0])

if s.check() == sat: m = lastSat(s, s.model(), fmls[1:])

s.pop(); return m

def mondec(R, variables):

phi = R(variables);

if len(variables)==1: return phi

m = len(variables)/2

x,y = variables[0:m],variables[m:]

def d(nu, pi):

if isUnsat(And(pi, phi)): return BoolVal(False)

if isUnsat(And(pi, Not(phi))): return BoolVal(True)

fmls = [BoolVal(True)]

if FLAG: fmls = [BoolVal(True), phi, pi] #---- use the heuristic from Section 5

m = lastSat(nu, None, fmls) #---- try to extend nu with fmls

assert(m != None) #---- nu must be consistent

a,b = [ m.evaluate(z,True) for z in x ],[ m.evaluate(z,True) for z in y ]

psi_ab = And(R(a+y), R(x+b))

phi_a, phi_b = mondec(lambda z: R(a+z),y), mondec(lambda z: R(z+b),x)

nu.push()

nu.add(nu_ab(R, x, y, a, b)) #---- extend nu to exlude case: x~a and y~b

t, f = d(nu, And(pi, psi_ab)), d(nu, And(pi, Not(psi_ab)))

nu.pop()

return If(And(phi_a, phi_b), t, f)

return d(Solver(),BoolVal(True)) #---- nu is initially a fresh z3 solver

def test_mondec(k): #---- decompose R^k from Figure 3

R = lambda v:And(v[1]>0,(v[1]&(v[1]-1))==0,(v[0]& (v[1]%((1<<k)-1)))!=0)

bvs = BitVecSort(2*k) #---- use 2k-bit bitvectors

x,y = Const("x",bvs),Const("y",bvs)

res = mondec(R,[x,y])

assert(isUnsat(res != R([x,y]))) #---- check correctness of decomposition

print "mondec1(", R([x,y]), ") ="; print res

FLAG = True #---- run as mondec1

test_mondec(2) #---- decompose R^2

Running it produces the following decomposition of R2 where Rk is defined in
Figure 3. The output corresponds to the expression (ψ2

2 ?� : (ψ5
1 ?� :⊥)) where

ψa
b is the formula R2(a, y)∧R2(x, b). The script can be run online using Z3Py [2].

mondec1( And(y > 0, y & y - 1 == 0, x & y%3 != 0) ) =

If(And(And(y > 0, y & y - 1 == 0, 2 & y%3 != 0),

And(2 > 0, 2 & 2 - 1 == 0, x & 2%3 != 0)),

True,

If(And(And(y > 0, y & y - 1 == 0, 5 & y%3 != 0),

And(1 > 0, 1 & 1 - 1 == 0, x & 1%3 != 0)),

True,

False))
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28. Löb, M.: Decidability of the monadic predicate calculus with unary function sym-

bols. Journal of Symbolic Logic 32, 563 (1967)
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Abstract. An increasing number of applications in verification and security rely
on or could benefit from automatic solvers that can check the satisfiability of con-
straints over a rich set of data types that includes character strings. Unfortunately,
most string solvers today are standalone tools that can reason only about (some
fragment) of the theory of strings and regular expressions, sometimes with strong
restrictions on the expressiveness of their input language. These solvers are based
on reductions to satisfiability problems over other data types, such as bit vectors,
or to automata decision problems. We present a set of algebraic techniques for
solving constraints over the theory of unbounded strings natively, without reduc-
tion to other problems. These techniques can be used to integrate string reasoning
into general, multi-theory SMT solvers based on the DPLL(T ) architecture. We
have implemented them in our SMT solver CVC4 to expand its already large set
of built-in theories to a theory of strings with concatenation, length, and member-
ship in regular languages. Our initial experimental results show that, in addition,
over pure string problems, CVC4 is highly competitive with specialized string
solvers with a comparable input language.

1 Introduction

In the last few years a number of techniques originally developed for verification pur-
poses have been adapted to support software security analyses as well. These techniques
have benefited from the rise of powerful specialized reasoning engines such as SMT
solvers. Security analyses are frequently required to reason about string values. One
reason is that program inputs, especially in web-based applications, are often provided
as strings which are then processed using operations such as matching against regular
expressions, concatenation, and substring extraction or replacement. In general, both
safety and security analyses could benefit from solvers that can check the satisfiability
of constraints over a rich set of data types that includes character strings. Despite their
power and success as back-end reasoning engines, however, general multi-theory SMT
solvers so far have provided minimal or no native support for reasoning over strings.

A major difficulty is that any reasonably comprehensive theory of character strings
is undecidable [3]. However, several more restricted, but still quite useful, theories of
strings do have a decidable satisfiability problem. These include any theories of fixed-
length strings, which are trivially decidable for having a finite domain, but also some
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fragments over unbounded strings (e.g., word equations [14]). Recent research has fo-
cused on identifying decidable fragments suitable for program analysis and, more cru-
cially, on developing efficient solvers for them. Unfortunately, most string solvers today
are standalone tools that can reason only about (some fragment of) the theory of strings
and regular expressions, sometimes with strong restrictions on the expressiveness of
their input language such as, for instance, the imposition of exact length bounds on all
string variables. These solvers are based on reductions to satisfiability problems over
other data types, such as bit vectors, or to decision problems over automata.

Contribution and Significance. We present an alternative approach, based on alge-
braic techniques for solving (quantifier-free) constraints natively over a theory of un-
bounded strings with length and regular language membership. Our techniques can be
used to construct solvers that can be integrated into general, multi-theory SMT solvers
based on the DPLL(T ) architecture [16]. We have implemented these techniques in our
SMT solver CVC4. As as result and to our knowledge, CVC4 is the first solver able to rea-
son about a language of mixed constraints that includes strings together with integers,
reals, arrays, and algebraic datatypes. Our experimental results show that, in addition,
over pure string problems CVC4 has superior performance and reliability over special-
ized string solvers that can reason about the same fragment of the theory of strings.

We describe our approach here abstractly in terms of derivation rules. After dis-
cussing related work, we define in Section 2 the theory of strings and regular expres-
sions we work with, and present a calculus for this theory. Our string solver is essentially
a specific a proof strategy for this calculus. In Section 3, we present an experimental
evaluation of our implementation in CVC4 against other tools specializing in string con-
straints. We conclude in Section 4 mentioning several areas of future work.

1.1 Related Work

A popular approach for solving string constraints, especially if they involve regular
expressions, is to encode them into automata problems. For example, Hooimeijer and
Weimer [9] present an automata-based solver, DPRLE, for matching problems of the
form e ⊆ r where, in essence, r is a regular expression over a given alphabet and e
is a concatenation of alphabet symbols and string variables. The solver has been used
to check programs against SQL injection vulnerabilities. This approach was improved
in later work by generating automata lazily from the input problem without requiring
a priori length bounds [10]. A comprehensive set of algorithms and data structures
for performing fast automata operations to support constraint solving over strings is
described by Hooimeijer and Veanes [8]. Generally speaking, there are two sorts of
automata-based approaches: one where each transition in the automaton represents a
single character (e.g., [5, 23]), and one where each transition represents a set of char-
acters (e.g., [10, 21, 22]). Most tools based on these approaches provide very limited
support for reasoning about constraints mixing strings and other data types. Also, au-
tomata refinement is typically the main bottleneck, although it is still very useful in
solving membership constraints. Further discussion can be found in [7, 12].

A different class of solvers is based on reducing string constraints to constraints in
other theories. A successful representative of this approach is the Hampi solver [11],
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used in a variety of static analysis systems. Hampi works only with string constraints
over fixed-size string variables. It extends the constraint language to membership in
fixed-size context-free languages but considers only problems over one string variable.
Input problems are reduced first to bit-vector problems and then to SAT. An alternative
approach, developed to support Pex [20], a white-box test generation tool, targets path
feasibility problems for programs using the .NET string library [3]. There, string con-
straints over a large set of string operators, but no language membership predicates, are
abstracted to linear integer arithmetic constraints and then sent to an SMT solver. Each
satisfying solution, if any, induces a fixed-length version of the original string problem
which is then solved using finite domain constraint satisfaction techniques. The Kaluza
solver [19] extends Hampi’s input language to multiple variables and string concatena-
tion by following an approach similar to one used in Pex, except that it simply feeds
fixed-length versions of the input problem to Hampi.

The Java String Analyzer (JSA) [4] works with Java string constraints. It first trans-
lates them to a flow graph and then analyzes the graph by converting it into a context-
free grammar. That grammar is approximated to a regular one which is then encoded
as a multi-level automaton. PASS [12] combines ideas from automata and SMT. Simi-
larly to JSA, it handles almost all Java string operations, regular expressions, and string-
number conversions. However, it represents strings as arrays with symbolic length. This
leads to the generation of several quantified constraints over such arrays, which are then
solved with the aid of a specialized quantifier instantiation procedure.

The work most closely related to ours is Z3-STR [24], a recent string solver developed
as an extension of the Z3 SMT solver through Z3’s user plug-in interface. It considers
unbounded strings with concatenation, substring, replace and length functions and ac-
cepts equational constraints over strings as well as linear integer arithmetic constraints.
Its main idea is to have Z3 treat string function and predicate symbols as uninterpreted
but monitor the inferences of Z3’s equality solver and generate and pass to Z3 selected
string theory lemmas as needed. Roughly speaking, these lemmas are used to force the
identification of equivalent string terms (e.g., the lemma s · ε ≈ s where · is concate-
nation and ε is the empty string), or the dis-identification of terms that Z3 has wrongly
guessed to be equal (e.g., len(t) > 0⇒ s �≈ s ·t). The approach is refutationally incom-
plete because it does not always generate enough axioms to recognize an unsatisfiable
problem. At a very high level, our approach is similar, and similarly incomplete, except
that it uses a different and more comprehensive set of rules to generate suitable axioms,
and so is able to recognize more unsatisfiable cases. Another big difference is that we
have devised it with the goal of implementing it in an internal, fully integrated theory
solver for CVC4, as opposed to an external plug-in, which allows us to leverage several
features of the DPLL(T ) architecture.

1.2 Formal Preliminaries

We work in the context of many-sorted first-order logic with equality. We assume the
reader is familiar with the notions of many-sorted signature, term, literal, formula, free
variable, interpretation, and satisfiability of a formula in an interpretation (see, e.g., [2]
for more details). A theory is a pair T = (Σ, I) where Σ is a signature and I is a
class of Σ-interpretations, the models of T , that is closed under variable reassignment
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(i.e., every Σ-interpretation that differs from one in I only in how it interprets the vari-
ables is also in I). If I is an interpretation and t is a term, we denote by I(t) the value of
t in I. A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. A set Γ of formulas entails in T a Σ-formula ϕ, written
Γ |=T ϕ, if every interpretation in I that satisfies all formulas in Γ satisfies ϕ as well.
The set Γ is satisfiable in T if Γ �|=T ⊥ where ⊥ is the universally false atom. We will
write Γ |= ϕ to denote that Γ entails ϕ in the class of all Σ-interpretations. We will
use≈ as the (infix) logical symbol for equality—which has type σ×σ for all sorts σ in
Σ and is always interpreted as the identity relation. We write s �≈ t as an abbreviation
of ¬ s ≈ t. If e is a term or a formula, we denote by V(e) the set of e’s free variables,
extending the notation to tuples and sets of terms/formulas as expected.

2 A Theory of Strings and Regular Language Membership

We consider a theory TSLRp of strings with length and positive regular language mem-
bership constraints over a signature ΣSLRp with three sorts, Str, Int, and Lan, and an
infinite set of variables of each sort. The interpretations of TSLRp differ only on the
variables. They all interpret Int as the set of integer numbers, Str as the language A∗

of all words over some fixed finite alphabet A of characters, and Lan as the power
set of A∗. The signature includes the following predicate and function symbols: the
usual symbols of linear integer arithmetic, interpreted as expected; a constant symbol,
or string constant, for each word of A∗, interpreted as that word; a variadic function
symbol con : Str × . . . × Str → Str, interpreted as word concatenation; a function
symbol len : Str → Int, interpreted as the word length function; a function symbol
set : Str → Lan, interpreted as the function mapping each word w ∈ A∗ to the lan-
guage {w}; a function symbol star : Lan → Lan, interpreted as the Kleene closure
operator; an infix predicate symbol in : Str × Lan, interpreted as the set membership
predicate; a suitable set of additional function symbols corresponding to regular expres-
sion operators such as language concatenation, conjunction, disjunction, and so on.

We call: string term any term of sort Str or of the form (len s); arithmetic term
any term of sort Int all of whose occurrences of len are applied to a variable; regular
expression any term of sort Lan (possibly with variables). A string term is atomic if
it is a variable or a string constant. A string constraint is a (dis)equality (¬)s ≈ t
with s and t string terms. What algebraists call word equations are, in our terminology,
positive string constraints s ≈ t with s and t of sort Str. An arithmetic constraint
is a (dis)equality (¬)s ≈ t or an inequality s > t where s and t are arithmetic terms.
Note that if x and y are string variables, lenx is both a string and an arithmetic term and
(¬)lenx ≈ len y is both a string and an arithmetic constraint. A (positive) RL constraint
is a literal of the form (s in r) where s is a string term and r is a regular expression. A
TSLRp-constraint is a string, arithmetic or RL constraint. We will denote entailment in
TSLRp (|=SLRp) more simply as |=SLRp.

2.1 The Satisfiability Problem in TSLRp

We are interested in checking the satisfiability inTSLRp of finite sets ofTSLRp-constraints.
We are not aware of any results on the decidability of this problem. In fact, the
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decidability of a strict sublanguage of the above, just word equations with length con-
straints, is classified as an open question by other authors (e.g., [6]). Some other sublan-
guages do have a decidable satisfiability problem. For instance, the satisfiability of word
equations was proven decidable by Makanin [14] and then given a PSPACE algorithm
by Plandowski [17]; that algorithm, however, is highly impractical.

In this work we focus on practical solvers for TSLRp that, although incomplete and
non-terminating in general, can be used to solve efficiently string constraints arising
from verification and security applications. In addition to efficiency, we also strive for
correctness. We want a solver that is both refutation sound: any problem the solver
classifies as unsatisfiable is indeed so; and solution sound: any variable assignment that
the solver claims to be a solution of the input constraints does indeed satisfy them.

Our solver is based on the modular combination of an off-the-shelf solver for linear
integer arithmetic and a novel solver for string and RL constraints, which we will call
just string solver, for brevity. The string solver is in turn obtained as a modular extension
of a congruence-closure-based solver for EUF, the theory of equality with uninterpreted
functions. The extension is obtained by means of theory-specific derivation rules that
assert additional string constraints and RL constraints to the congruence closure mod-
ule (which treats all functions symbols as uninterpreted). The combination between the
string solver and the arithmetic solver is achieved, Nelson-Oppen style, by exchanging
equalities over shared terms, which however are not variables, as in traditional combi-
nation procedures [15], but terms of the form (lenx) where x is a variable.1

In the following, we describe the essence of our combined solver for TSLRp abstractly
and declaratively, as a tableaux-style calculus. Because of the computational complex-
ity of solving even just word equations, this calculus is non-deterministic and allows
many possible proof strategies. Our solver can be understood then as a specific proof
procedure for the calculus. In our description below we focus only on the derivation
rules that deal with string and arithmetic constraints. This is both because of space con-
straints and because currently our treatment of RL constraints is fairly naive—and so
not very interesting. In particular, the Kleene star operator is processed by unrolling:
(s in star r) is reduced to s = ε or to s ≈ con(x, y) ∧ (x in r) ∧ (y in star r) where x
and y are fresh variables, which makes the solver non-terminating in general over such
constraints. A more sophisticated treatment of RL constraints is in the works and will
be presented in a later paper.

2.2 A Calculus for TSLRp

Let S be a set of string constraints and let T (S) be the set of all terms (and subterms)
occurring in S. The congruence closure of S is the set

C(S) = {s ≈ t | s, t ∈ T (S), S |= s ≈ t} ∪ {l1 �≈ l2 | l1, l2 distinct string const.} ∪
{s �≈ t | s, t ∈ T (S), s′ �≈ t′ ∈ S, S |= s ≈ s′ ∧ t ≈ t′ for some s′, t′}

The set C(S) induces an equivalence relation ES over T (S) where two terms s, t are
equivalent iff s ≈ t ∈ C(S) (or, equivalently, iff S |= s ≈ t). For all t ∈ T (S), we
denote its equivalence class in ES by [t]S or just [t] when S is clear or not important.

1 This difference is not substantial if the arithmetic solver treats (len x) like an integer variable.
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con(s, con(t),u) → con(s, t,u) con(s, c1 · · · ci, ci+1 · · · cn,u) → con(s, c1 · · · cn,u)
con(s, ε,u) → con(s,u) len(con(s1, . . . , sn)) → len s1 + · · ·+ len sn

con(s)→ s len(c1 · · · cn) → n
con() → ε

Fig. 1. Normalization rewrite rules for terms

We will denote characters (i.e., elements of the alphabetA) by the letter c and string
constants by l or the juxtaposition c1 · · · cn of their individual characters, with c1 · · · cn
denoting the empty string ε when n = 0. We will use x, y, z to denote string variables
and s, t, u, v, w to denote terms in general.

We will consider term tuples (s1, . . . , sn), with n ≥ 0, and denote them by letters in
bold font, with comma denoting tuple concatenation. For example, if s = (s1, s2) and
t = (t1, t2, t3) we will write (s, t) to denote the tuple (s1, s2, t1, t2, t3). Similarly, if u
is a term, (s, u, t) denotes the tuple (s1, s2, u, t1, t2, t3).

Configurations. Our calculus operates over configurations consisting of the distin-
guished configuration unsat and of tuples of the form 〈S,A,R,F,N,C,B〉 where

– S, A, R are respectively a set of string, arithmetic, and RL constraints;
– F is a set of pairs s �→ a where s ∈ T (S) and a is a tuple of atomic string terms;
– N is a set of pairs e �→ a where e is an equivalence class of ES, the equivalence

relation induced by the constraints in S, and a is a tuple of atomic string terms;
– C is a set of terms of sort Str;
– B is a set of buckets where each bucket is a set of equivalence classes of ES.

Informally, the sets S, A, R initially store the input problem and grow with additional
constraints derived by the calculus; N stores a normal form for each equivalence class
in ES; F maps selected input terms to an intermediate form, which we call a flat form,
used to compute the normal forms in N; C stores terms whose flat form should not
be computed, to prevent loops in the computation of their equivalence class’ normal
form; B eventually becomes a partition of ES used to generate a satisfying assignment
that assigns string constants of different lengths to variables in different buckets, and
different string constants of the same length to different variables in the same bucket.

Derivation Trees. The calculus is defined by the derivation rules described below. A
derivation tree for the calculus is a tree where each node is a configuration and each
non-root node is obtained by applying one of the derivation rules to its parent node. We
call the root of a derivation tree an initial configuration. A branch of a derivation tree is
closed if it ends with unsat. A derivation tree is closed if all of its branches are closed.

Initial configurations encode a satisfiability problem by storing it in the components
S, A and R. By standard transformations, one can convert any finite set of TSLRp-
constraints into an equisatisfiable set S∪A∪R where S is a set of string constraints, A
is a set of arithmetic constraints, and R is a set of RL constraints. We consider only ini-
tial configurations where the other components are empty. For convenience, we assume
that the S component of the initial configuration contains an equation x ≈ t for each
non-variable term t ∈ T (S), where x is a variable of the same sort as t.2 We also assume

2 Such equations can always be added as needed using fresh variables.
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A-Prop
S |= len x ≈ len y

A := A, len x ≈ len y
S-Prop

A |=LIA len x ≈ len y

S := S, len x ≈ len y

Len
x ≈ t ∈ C(S) x ∈ V(S)
A := A, len x ≈ (len t)↓

Len-Split
x ∈ V(S ∪ A) x : Str

S := S, x ≈ ε ‖ A := A, len x > 0

A-Conflict
A |=LIA ⊥
unsat

R-Star
s in star(set t) ∈ R s �≈ ε ∈ C(S)

S := S, s ≈ con(t, z) R := R, z in star(set t)

Fig. 2. Rules for theory combination, arithmetic and RL constraints. The letter z denotes a fresh
Skolem variable

that all terms in the initial configuration are reduced with respect to the rewrite rules in
Figure 1, which can be shown to be terminating and confluent modulo the axioms of
arithmetic.

We say that a configuration is derivable if it occurs in a derivation tree whose initial
configuration satisfies the restrictions above.

We denote by t↓ the normal form of a term t with respect to the rewrite rules in
Figure 1. It is not difficult to see that if t is of sort Str, then t ↓ is either an atomic
string term or has the form con(a1, . . . , an) where n > 1 and a1, . . . , an are atomic;
if t is of integer sort, then t ↓ is an arithmetic term. In a similar vein, we consider
normalized tuples a↓ of atomic terms obtained from an atomic term tuple a by dropping
its empty string components and replacing adjacent string constants by the constant
corresponding to their concatenation. For example, (x, ε, c1, c2c3, y)↓ = (x, c1c2c3, y).

Invariant 1 We are interested in proof procedures that maintain these invariants on the
derivable configurations of the form 〈S,A,R,F,N,C,B〉:

1. All terms are reduced with respect to the rewrite system in Figure 1.
2. F is a partial map from T (S) to normalized tuples of atomic terms.
3. N is a partial map from ES to normalized tuples of atomic terms.
4. For all terms s where [s] �→ (a1, . . . , an) ∈ N or s �→ (a1, . . . , an) ∈ F, we have

S |=SLRp s ≈ con(a1, . . . , an) and S |= ai �≈ ε for i = 1, . . . , n.
5. For all B1, B2 ∈ B, [s] ∈ B1 and [t] ∈ B2, S |= len s ≈ len t iff B1 = B2.
6. C contains only reduced terms of the form con(a).

We denote by D(N) the domain of the partial map N, i.e., the set {e | e �→ a ∈
N for some a}. For all e ∈ D(N), we will write N e to denote the (unique) tuple asso-
ciated to e by N. We will use a similar notation for F.

Derivation Rules. The rules of the calculus are provided in Figures 2 through 6 in
guarded assignment form. A derivation rule applies to a configuration K if all of the
rule’s premises hold for K . A rule’s conclusion describes how each component of K is
changed, if at all. We write S, t as an abbreviation for S ∪ {t}. Rules with two conclu-
sions, separated by the symbol ‖, are non-deterministic branching rules.

In the rules of the calculus, we treat a string constant l in a tuple of terms indiffer-
ently as term or a tuple l1, . . . , ln of string constants whose concatenation equals l. For
example, a tuple (x, c1c2c3, y) with the three-character constant c1c2c3 will be seen
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S-Cycle

t = con(t1, . . . , ti, . . . , tn) t ∈ T (S) \ C
tk ≈ ε ∈ C(S) for all k ∈ {1, . . . , n} \ {i}

S := S, t ≈ ti C := (C, t) \ {ti}
Reset

F := ∅ N := ∅ B := ∅

S-Split
x, y ∈ V(S) x ≈ y, x �≈ y /∈ C(S)
S := S, x ≈ y ‖ S := S, x �≈ y

S-Conflict
s ≈ t ∈ C(S) s �≈ t ∈ C(S)

unsat

L-Split
x, y ∈ V(S) x, y : Str S �|= len x ≈ len y S �|= len x �≈ len y

S := S, len x ≈ len y ‖ S := S, len x �≈ len y

Fig. 3. Basic string derivation rules

also as the tuple (x, c1, c2c3, y), (x, c1c2, c3, y), or (x, c1, c2, c3, y). All equalities and
disequalities in the rules are treated modulo symmetry of≈. We assume the availability
of a procedure for checking entailment in the theory of linear integer arithmetic (|=LIA)
and one for computing congruence closures and checking entailment in EUF (|=).

The first four rules in Figure 2 describe the interaction between arithmetic reasoning
and string reasoning, achieved via the propagation of entailed constraints in the shared
language. R-Star is the only rule for handling RL constraints that we provide here. We
chose it because the constraints matching its premise can be generated, by rule F-Loop in
Figure 5, even if the initial configuration contains no RL constraints. The basic rules for
string constraints are shown in Figure 3. The functionality and rationale of the last three
should be straightforward. Reset is meant to be applied after the set S changes since in
that case normal and flat forms may need updating. S-Cycle identifies a concatenation
of terms with one them when the remaining ones are all equivalent to ε.

The bulk of the work is done by the rules in Figures 4 and 5. Those in Figure 4
compute an equivalent flat form (consisting of a sequence of atomic terms) for all non-
variable terms that are not in the set C. Flat forms are used in turn to compute normal
forms as follows. When all terms of an equivalence class e except for variables and
terms in C have the same flat form, that form is chosen by N-Form1 as the normal form
of e. When an equivalence class e consists only of variables and terms in C, one of them
is chosen by N-Form2 as the normal form of e. The first two rules of Figure 5 use flat
forms to add to S new equations entailed by S in the theory of strings. F-Loop is used to
recognize and break certain occurrences of reasoning loops that lead to infinite paths in
a derivation tree (see [13] for more details).

The rules in Figure 6 are used to put equivalence classes of terms of sort Str into
buckets based on the expected length of the value they will be given eventually by
a satisfying assignment. The main idea is that different equivalence classes go into
different buckets (using D-Base) unless they have the same length. In the latter case,
they go into the same bucket only if we can tell they cannot have the same value (using
D-Add). D-Split is used to reduce the problem to one of the two previous cases. The
goal is that, on saturation, each bucket B can be assigned a unique length nB , and each
equivalence class in B can evaluate to a unique string constant of that length. Card
makes sure that nB is big enough to have enough string constants of length nB .



654 T. Liang et al.

F-Form1

t = con(t1, . . . , tn) t ∈ T (S) \ (D(F) ∪ C)
N [t1] = s1 · · · N [tn] = sn

F := F, t �→ (s1, . . . , sn)↓
F-Form2

l ∈ T (S) \ D(F)
F := F, l �→ (l)

N-Form1

[x] /∈ D(N) s ∈ [x] \ (C ∪ V(S))
F t = F s for all t ∈ [x] \ (C ∪ V(S))

N := N, [x] �→ F s
N-Form2

[x] /∈ D(N) [x] ⊆ C ∪ V(S)
N := N, [x] �→ (x)

Fig. 4. Normalization derivation rules. The letter l denotes a string constant.

F-Unify
F s = (w, u,u1) F t = (w, v,v1) s ≈ t ∈ C(S) S |= len u ≈ len v

S := S, u ≈ v

F-Split

F s = (w, u,u1) F t = (w, v, v1) s ≈ t ∈ C(S) S |= len u �≈ len v
u /∈ V(v1) v /∈ V(u1)

S := S, u ≈ con(v, z) ‖ S := S, v ≈ con(u, z)

F-Loop
F s = (w, x,u1) F t = (w, v, v1, x,v2) s ≈ t ∈ C(S) x /∈ V((v,v1))

S := S, x ≈ con(z2, z), con(v,v1) ≈ con(z2, z1), con(u1) ≈ con(z1, z2,v2)
R := R, z in star(set con(z1, z2)) C := C, t

Fig. 5. Equality reduction rules. The letters z, z1, z2 denote fresh Skolem variables.

Correctness. We now formalize the main correctness properties of our calculus. For
space constraints we must refer the interested reader to a longer version of this pa-
per [13] for their proof. Since our solver can be seen as a specific proof procedure,
it immediately inherits those properties. This means in particular that when our solver
terminates with a sat or unsat answer, that answer is correct. We describe here only the
more restricted case of input problems with no RL constraints, as those constraints are
not the focus of this work. Also, we consider only derivation trees satisfying Invariant 1.

Proposition 1 (Refutation Soundness). For all closed derivation trees with initial
configuration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉, the set S0 ∪ A0 is unsatisfiable in TSLRp.

A derivable configuration 〈S,A,R,F,N,C,B〉 is saturated if (i)N is a total map over
ES, (ii) B is a partition of ES, and (iii) any derivation rule that applies to it except for
Reset leaves the configuration unchanged modulo renaming of Skolem variables.

Proposition 2 (Solution Soundness). If a derivation tree with root 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉
contains a saturated configuration then S0 ∪ A0 is satisfiable in TSLRp.

The proof of Proposition 2 is constructive since it shows how to build systematically
from a saturated configuration a satisfying assignment for the (string and arithmetic)
variables in the input problem S0 ∪ A0. Our implementation follows that construction.

Proof Procedure. A possible proof procedure, a highly simplified version of the one
we have implemented, is defined by the repeated application of the calculus rules ac-
cording to the six steps below. When applying a branching rule the procedure tries the



A DPLL(T ) Theory Solver for a Theory of Strings and Regular Expressions 655

D-Base

s ∈ T (S) s : Str
S |= len s ≈ lenB for no B ∈ B

B := B, {[s]}
Card

B ∈ B |B| > 1

A := A, lenB > "log|A| (|B| − 1)#

D-Add

s ∈ T (S) s : Str B = B′, B S |= len s ≈ lenB [s] �∈ B
for all e ∈ B there are w, u,u1, v,v1 such that

(N [s] = (w, u,u1), N e = (w, v, v1), S |= len u ≈ len v, u �≈ v ∈ C(S))
B := B′, (B ∪ {[s]})

D-Split

s ∈ T (S) s : Str B = B′, B S |= len s ≈ lenB [s] �∈ B e ∈ B
N [s] = (w, u,u1) N e = (w, v,v1) S |= len u �≈ len v

S := S, u ≈ con(z1, z2), len z1 ≈ len v ‖ S := S, v ≈ con(z1, z2), len z1 ≈ len u

Fig. 6. Disequality reduction rules. Letters z1, z2 denote fresh Skolem variables. For each bucket
B ∈ B, lenB denotes a unique term (len x) where [x] ∈ B. | | denotes the cardinality operator.

left-branch configuration first. It interrupts a step and restarts with Step 0 as soon as a
constraint is added to S. The procedure keeps cycling through the steps until it derives
a saturated configuration or the unsat one. In the latter case, it continues with another
configuration in the derivation tree, if any.

Step 0: Reset: Apply Reset to reset buckets, and flat and normal forms.

Step 1: Check for conflicts, propagate: Apply S-Conflict or A-Conflict if the config-
uration is unsatisfiable due to the current string or arithmetic constraints; otherwise,
propagate entailed equalities between S and A using S-Prop and A-Prop.

Step 2: Add length constraints: Apply Len and then Len-Split to completion.

Step 3: Compute Normal Forms for Equivalence Classes. Apply S-Cycle to comple-
tion and then the rules in Figure 4 to completion. If this does not produce a total map
N, there must be some s ≈ t ∈ C(S) such that F s and F t have respectively the form
(w, u,u1) and (w, v,v1) with u and v distinct terms. Let x, y be variables with x ∈ [u]
and y ∈ [v]. If S entails neither lenx ≈ len y nor lenx ≈ len y, apply L-Split to them;
otherwise, apply any applicable rules from Figure 5, giving preference to F-Unify.

Step 4: Partition equivalence classes into buckets. First apply D-Base and D-Add to
completion. If this does not make B a partition of ES, there must be an equivalence
class [x] contained in no bucket but such that S |= lenx ≈ lenB for some bucket B
(otherwise D-Base would apply). If there is a [y] ∈ B such that x �≈ y /∈ C(S), split on
x ≈ y and x �≈ y using S-Split. Otherwise, let [y] ∈ B such that x �≈ y ∈ C(S). It must
be that N [x] and N [y] share a prefix followed by two distinct terms u and v. Let xu, xv
be variables with xu ∈ [u] and xv ∈ [v]. If S |= lenxu �≈ lenxv, apply the rule D-Split
to u and v. If S |= lenxu ≈ lenxv , since it is also the case that neither xu ≈ xv nor
xu �≈ xv is in C(S), apply S-Split to xu and xv . If S entails neither lenxu ≈ lenxv nor
lenxu �≈ lenxv , split on them using L-Split.

Step 5: Add length constraint for cardinality. Apply Card to completion.

One can show that all derivation trees generated with this proof procedure satisfy
Invariant 1. We illustrate the procedure’s workings with a couple of examples.
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Example 1. Suppose we start with A = ∅ and S = {lenx ≈ len y, x �≈ ε, z �≈
ε, con(x, l1, z) ≈ con(y, l2, z)} where l1, l2 are distinct constants of the same length.
After checking for conflicts, the procedure applies Len and Len-Split to completion. All
resulting derivation tree branches except one can be closed with S-Conflict. In the leaf of
the non-closed branch every string variable is in a disequality with ε. In that configura-
tion, the string equivalence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, and {con(x, l1, z),
con(y, l2, z)}. The normal form for the first three classes is computed with N-Form2;
the normal form for the other three with F-Form2 and N-Form1. For the last equivalence
class, the procedure uses F-Form1 to construct the flat forms F con(x, l1, z) = (x, l1, z)
and F con(y, l2, z) = (y, l2, z), and F-Unify to add the equality x ≈ y to S. The proce-
dure then restarts but now with the string equivalence classes {x, y}, {z}, {l1}, {l2},
{ε}, and {con(x, l1, z), con(y, l2, z)}. After similar steps as before, the terms in the last
equivalence class get the flat form (x, l1, z) and (x, l2, z) respectively (assuming x is
chosen as the representative term for {x, y}). Using F-Unify, the procedure adds the
equality l1 ≈ l2 to S and then derives unsat with S-Conflict. This closes the derivation
tree, showing that the input constraints are unsatisfiable. ��
Example 2. Suppose now the input constraints are A = ∅ and S = {lenx ≈ len y, x �≈
ε, z �≈ ε, con(x, l1, z) �≈ con(y, l2, z)} with l1, l2 as in Example 1. After similar steps
as in that example, the procedure can derive a configuration where the string equiva-
lence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, {con(x, l1, z)}, and {con(y, l2, z)}.
After computing normal forms for these classes, it attempts to construct a partition B
of them into buckets. However, notice that if it adds {[x]}, say, to B using D-Base,
then neither D-Base (since S |= lenx ≈ len y) nor D-Add (since x �≈ y �∈ C(S))
is applicable to [y]. So it applies S-Split to x and y. In the branch where x ≈ y, the
proof procedure subsequently restarts, and computes normal forms as before. At that
point it succeeds in making B a partition of the string equivalence classes, by placing
[con(x, l1, z)] and [con(y, l2, z)] into the same bucket using D-Add, which applies be-
cause their corresponding normal forms are (x, l1, z) and (x, l2, z) respectively. Any
further rule applications lead to branches with a saturated configuration, each of which
indicates that the input constraints are satisfiable. ��
Implementation in DPLL(T ). Theory solvers based on the calculus we have described
can be integrated into the DPLL(T ) framework used by modern SMT solvers, which
combines a SAT solver with multiple specialized theory solvers for conjunctions of con-
straints in a certain theory. These SMT solvers maintain an evolving set F of quantifier-
free clauses and a set M of literals representing a (partial) Boolean assignment for F .
Periodically, a theory solver is asked whether M is satisfiable in its theory.

In terms of our calculus, we assume that the literals of an assignment M are par-
titioned into string constraints (corresponding to the set S), arithmetic constraints (the
set A) and RL constraints (the set R). These sets are subsequently given to three in-
dependent solvers, which we will call the string solver, the arithmetic solver, and the
RL solver, respectively. The rules A-Prop and S-Prop model the standard mechanism
for Nelson-Oppen theory combination, where entailed equalities are communicated be-
tween these solvers. The satisfiability check performed by the arithmetic solver is mod-
eled by the rule A-Conflict. Note that there is no additional requirement on the arithmetic
solver, and thus a standard DPLL(T ) theory solver for linear integer arithmetic can be
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used. The behavior of the RL solver is described by the rule R-Star and others we have
omitted here. The remaining rules model the behavior of the string solver.

The case splitting done by the string solver (with rules S-Split and L-Split) is achieved
by means of the splitting on demand paradigm [1], in which a solver may add theory
lemmas to F consisting of clauses possibly with literals not occurring in M . The case
splitting in rules F-Split and D-Split can be implemented by adding a lemma of the form
ψ ⇒ (l1 ∨ l2) to F , where l1 and l2 are new literals. For instance, in the case of F-Split,
we add the lemma ψ ⇒ (u ≈ con(v, z) ∨ v ≈ con(u, z)), where ψ is a conjunction of
literals in M entailing s ≈ t ∧ s ≈ F s ∧ t ≈ F t ∧ lenu �≈ len v in the overall theory.

The rules Len, Len-Split, and Card involve adding constraints to A. This is done by
the string solver by adding lemmas to F containing arithmetic constraints. For instance,
if x ≈ con(y, z) ∈ C(S), the solver may add a lemma of the form ψ ⇒ lenx ≈
len y+ len z to F , where ψ is a conjunction of literals from M entailing x ≈ con(y, z),
after which the conclusion of this lemma is added to M (and hence to A).

In DPLL(T ), when a theory solver determines that M is unsatisfiable (in the solver’s
theory) it generates a conflict clause, the negation of an unsatisfiable subset of M . The
string solver maintains a compact representation of C(S) at all times. To construct con-
flict clauses it also maintains an explanation ψs,t for each equality s ≈ t it adds to S by
applying S-Cycle, F-Unify or standard congruence closure rules. The explanation ψs,t

is a conjunction of string constraints in M such that ψs,t |=SLRp s ≈ t. For F-Unify,
the string solver maintains an explanation ψ for the flat form of each term t ∈ D(F)
where ψ |=SLRp t ≈ con(F t). When a configuration is determined to be unsatisfiable
by S-Conflict, that is, when s ≈ t, s �≈ t ∈ C(S) for some s, t, it replaces the occurrence
of s ≈ t with its corresponding explanation ψ, and then replaces the equalities in ψ
with their corresponding explanation, and so on, until ψ contains only equalities from
M . Then it reports as a conflict clause (the clause form of) ψ ⇒ s ≈ t.

All other rules (such as those that modify N, F and B) model the internal behavior of
the string solver.

3 Experimental Results

We have implemented a theory solver based on the calculus and proof procedure de-
scribed in the previous section within the latest version of our SMT solver CVC4. The
string alphabet A for this implementation is the set of all 256 ASCII characters. To
evaluate our solver we did an experimental comparison with two of the string solvers
mentioned in Section 1.1: Z3-STR (version 20140120) and Kaluza (latest version from
its website). These solvers, which have been widely used in security analysis, were
chosen because they are publicly available and have an input language that largely in-
tersects with that of our solver. All results in this section were collected on a 2.53 GHz
Intel Xeon E5540 with 8 MB cache and 12 GB main memory.3

Modulo superficial differences in the concrete input syntax, all three tools accept
as input a set of TSLRp constraints and report on its satisfiability with a sat, unsat or
unknown answer. In the first case, CVC4 and Z3-STR can also provide a solution, i.e., a

3 Detailed results and binaries can be found at
http://cvc4.cs.nyu.edu/papers/CAV2014-strings/.

http://cvc4.cs.nyu.edu/papers/CAV2014-strings/
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Table 1. Comparative results

CVC4 Z3-str Kaluza Kaluza-orig
Result × � × � × �

unsat 11,625 317 11,769 7,154 13,435 27,450 805
sat 33,271 1,583 31,372 n/a 25,468 n/a 3

unknown 0 0 3 0
timeout 2,388 2,123 84 84
error 0 120 1,140 18,942

satisfying assignment for the variables in the input set. Kaluza can do that for at most
one query variable which must be specified before-hand in the input file.

An initial series of regression tests on all three tools revealed several usability and
correctness issues with Kaluza and a few with Z3-STR. In Kaluza, they were caused
by bugs in its top level script which communicates with different tools, e.g. the solvers
Yices and Hampi, via the file system. They range from failure to clean up temporary files
to an incorrect use of the Unix grep tool to extract information from the output of those
tools. Since Kaluza is not in active development anymore, we made an earnest, best
effort attempt to fix these bugs ourselves. However, there seem to be more serious flaws
in Kaluza’s interface or algorithm. Specifically, often Kaluza incorrectly reports unsat
for problems that are satisfiable only if some of their input variables are assigned the
empty string. Moreover, in several cases, Kaluza’s sat/unsat answer for the same input
problem changes depending on the query variable chosen. Because of this arbitrariness,
in our experiments we removed all query variables in Kaluza’s input.

We found that in several cases Z3-STR returns spurious solutions, assignments to
the input variables that do not in fact satisfy the input problem. Also, it classifies some
satisfiable problems as unsat. Prompted by our inquiries, the Z3-STR developers have
produced a new version of Z3-STR that fixes the spurious solutions problem. Unfortu-
nately, that version was not ready in time for us to redo the experiments. As for Z3-STR’s
unsoundness, it looks like it is caused by an internal restriction that, for efficiency but
without loss of generality, limits the possible values of “free” string variables to a fixed
finite set of string constants. The authors define a variable as free in an input problem if
its values are completely unconstrained by the problem. For instance, in the constraint
set {x ≈ con(y, z)} variables y and z would be free according to this definition, while
x would not. It appears that the criterion used by Z3-STR to recognize free variables
sometimes misclassifies a variable as free when in fact it is not, causing the system to
miss solutions that are outside the finite domain imposed on free variables.

In contrast, on our full set of benchmarks, we did not find any evidence of erroneous
behavior in CVC4 when compared with the other two solvers. Every solution produced
by CVC4 was confirmed by both CVC4 and Z3-STR by adding the solution as a set
of constraints to the input problem and checking that the strengthened problem was
satisfiable. Furthermore, no unsat answers from CVC4 were contradicted by a confirmed
solution from Z3-STR.



A DPLL(T ) Theory Solver for a Theory of Strings and Regular Expressions 659

Comparative Evaluation. For our evaluation we selected 47,284 benchmark problems
from a set of about 50K benchmarks generated by Kudzu, a symbolic execution frame-
work for Javascript, and available on the Kaluza website [18]. The discarded problems
either had syntax errors or included a macro function (CapturedBrack) whose mean-
ing is not fully documented. We translated those benchmarks into CVC4’s extension of
the SMT-LIB 2 format to the language of TSLRp

4 and into the Z3-STR format. Some
benchmarks contain regular membership constraints (s in r), which Z3-STR does not
support. However, in all of these constraints the regular language denoted by r is finite
and small, so we were able to translate them into equivalent string constraints.

We ran CVC4, Z3-STR and two versions of Kaluza, the original one and the one with
our debugged main script, on each benchmark with a 20-second CPU time limit. The
results are summarized in Table 1. There, the column Kaluza-orig refers to the original
version of Kaluza while the error line counts the total number of runtime errors. The
results for Z3-STR and the two versions of Kaluza are separated in two columns: the ×
column contains the number of provably incorrect answers while the � column contains
the rest. By provably incorrect here we mean an unsat answer for a problem that has a
verified solution or a sat answer but with a spurious solution. Note that the figures for
the two versions of Kaluza are unfairly skewed in their favor because neither version
returns solutions, which means that their sat answers are unverifiable unless one of the
other solvers produces a solution for the same problem. For a more detailed discussion,
we look at the benchmark problem set broken down by the CVC4 results. For brevity
we discuss only our amended version of Kaluza below.

None of the 11,625 unsat answers provided by CVC4 were provably incorrect. Z3-
STR also answered sat on 11,568 of them and returned an error for the remaining 57;
Kaluza agreed on 11,394 and returned an error for the rest. All of CVC4’s 33,271 sat
answers were corroborated by a confirmed solution. Z3-STR agreed on 31,616 of those
problems although it returned a spurious solution for 244 of them. Also, it incorrectly
found 317 problems unsatisfiable and produced an error on 29 problems, timing out on
the remaining 1,304. Kaluza agreed on 25,468 problems (unverifiable because of the
absence of solutions), erroneously classified 7,154 as unsatisfiable, reported unknown
for 3, produced an error for 562, and timed out on 84.

CVC4 timed out on 2,388 problems, but produced no errors and no unknown an-
swers. For the problems that CVC4 timed out on, Z3-STR classified 201 as unsatisfiable,
returned an error for 34 and produced solutions for the remaining 1,339, all of which
were spurious. Kaluza classified 2,041 as unsatisfiable and returned an error on the rest.

These results provide strong evidence that CVC4’s string solver is sound. They also
provide evidence that unsat answers from Z3-STR and Kaluza for problems on which
CVC4 times out cannot be trusted. They also show that CVC4’s string solver answers
sat more often than both Z3-STR and Kaluza, providing a correct solution in each case.
Thus, it is overall the best tool for both satisfiable and unsatisfiable problems.

Moving to run time performance, a comparison with Kaluza is not very meaningful
because of its high unreliability and the unverifiability of its sat answers. In principle,

4 The SMT-LIB 2 standard does not include a theory of strings yet although there are plans to do
so. CVC4’s extension is documented at http://cvc4.cs.nyu.edu/wiki/Strings

http://cvc4.cs.nyu.edu/wiki/Strings
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Fig. 7. Runtime comparison of CVC4, Z3-STR and the amended Kaluza. Times are in seconds

the same could be said of Z3-STR due to its refutation unsoundness.5 However, an anal-
ysis of our detailed results shows that CVC4 has nonetheless better runtime performance
overall. This can be easily seen from the cactus plot in Figure 7, which shows for each of
the three systems how many non-provably incorrect benchmarks it cumulatively solves
within a certain amount of time.

4 Conclusion and Further Work

We have presented a new approach for solving quantifier-free constraints over a theory
of unbounded strings with length and regular language membership. Our approach inte-
grates a specialized theory solver for such constraints within the DPLL(T ) framework.
We have given experimental evidence that our implementation in the SMT solver CVC4
is highly competitive with existing tools.

In our ongoing work, we plan to extend the scope of our string solver to support a
richer language of string constraints that occur often in practice, especially in security
applications. In preliminary implementation work in CVC4, we have found that com-
monly used predicates (such as the predicate contains for string containment) can be
handled in an efficient manner by extending the calculus mentioned in this paper. We are
also working on a more sophisticated approach for dealing with RL constraints, using a
separate dedicated solver that is similarly integrated into the DPLL(T ) framework.

At the theoretical level, we would like to devise a proof strategy that is solution-
complete, that is, guaranteed to eventually produce a solution for every satisfiable input.
Note that a fair proof strategy can be trivially obtained by incrementally setting an
upper bound on the total length of all strings in a problem solution. The challenge is
to devise a more efficient fair strategy than that one. Additionally, we would like to
identify fragments where our calculus is terminating, and thus refutation complete.

Acknowledgments. We would like to thank Nestan Tsiskaridze for her insightful com-
ments, and the developers of Z3-STR for their technical support in using their tool and
several clarifications on it.

5 Z3-STR could be faster and time out less often simply because it unduly prunes search space.
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Abstract. Rewriting is essential for efficient bit-vector SMT solving.
The rewriting algorithm commonly used by modern SMT solvers itera-
tively applies a set of ad hoc rewriting rules hard-coded into the solver
to simplify the given formula at the preprocessing stage. This paper
proposes an automatic approach to rewriting. The solver starts each in-
vocation with an empty set of rewriting rules. The set is extended by
applying at run-time an automatic SAT-based algorithm for new rewrit-
ing rule generation. The set of rules differs from instance to instance.
We implemented our approach in the framework of an algorithm for
equivalence and constant propagation, called 0-saturation, which we ex-
tended from purely propositional reasoning to bit-vector reasoning. Our
approach results in a substantial performance improvement in a state-
of-the-art SMT solver over various SMT-LIB families.

1 Introduction

Bit-vector reasoning is applied in a variety of domains [10,8,13,21,15,18,14]. Mod-
ern bit-vector solvers, such as Boolector [6] and Mathsat [7], employ rewrit-
ing [11,1,9] at the preprocessing stage. Rewriting applies a set of rewriting
rules until fixed point to simplify the formula. For example, the statement
x = bvule(0, z) (where bvule stands for unsigned-less-than-equal) can be rewrit-
ten to x = true, while x = bvadd(y,−y) (where bvadd stands for addition) can
be rewritten to x = 0. Normally, the rewriting rules are designed manually by the
developers of each solver and are embedded into the solver’s code offline (that
is, during solver development time). The same set of rules is used irrespective
of the input instance. Rewriting is applied to simplify the directed acyclic graph
(DAG) representing the formula. The number of rewriting rules can reach into
the hundreds. For example, citing [9], “in MathSAT, close to 300 rewrite rules
have been defined”.

We propose an alternative approach to rewriting. Table 1 summarizes the
differences between our approach and the standard method. In our approach,
the solver starts with an empty set of rules. It then attempts to generate a rule
on the fly at run-time whenever it identifies a situation where a rewriting rule
is likely to be applied. For example, when one of the operands of an operation
belongs to a set of pre-defined constants, such as 0, as in x = bvule(0, z), the
solver checks whether the result can be rewritten to a pre-defined constant. To
that end, it uses incremental SAT solver invocations over a new CNF instance

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 663–679, 2014.
c© Springer International Publishing Switzerland 2014
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comprising the formula under consideration (x = bvule(0, z) in our case), bit-
blasted to CNF. In our case, the algorithm will learn that x = bvule(0, z) can be
rewritten to x = true. The process of trying to generate a rule is also triggered
when two operands are related by a simple function, such as unary minus, as
in x = bvadd(y,−y). Hence, the algorithm will realize that x = bvadd(y,−y)
can be rewritten to x = 0. Whenever a new rule is generated, it is immediately
applied and also stored in a hash table of rules, which is reused as long as the
solver is alive. Hence the set of rules is instance-specific.

Our algorithm is implemented in the framework of 0-saturation [19,12,17], a
process of constant and equivalence propagation, initially proposed in the context
of propositional reasoning. We extended 0-saturation to handle bit-vector rea-
soning. The added value of 0-saturation over DAG rewriting is that 0-saturation
enables propagating equivalences implied by user-given assertions.

We implemented our algorithm in Intel’s SMT solver Hazel on top of an exist-
ing preprocessor. Section 4 shows that using our approach pays off experimetally.
It improves the performance of Hazel on 20 out of 23 tested SMT-LIB [4] fami-
lies. New Hazel outperforms the leading SMT solvers Boolector and Mathsat on
most of the tested families. Moreover, there are 10 families on which new Hazel
outperforms base Hazel, Boolector and Mathsat significantly: it either solves
more instances or is at least 2x faster. The overhead of generating the rules at
run-time rather than offline is negligible in practice.

The most relevant previous work is [20], where an offline instance-generic
automatic generator of rewriting rules for bit-vector reasoning is proposed. Un-
fortunately, it does not work in practice [20]. The algorithm was halted after
generating approximately 120,000 rules, and the generated rules could not sim-
plify real-world problems. In contrast, our approach explores a narrower rule
space and, being instance-specific, restricts it further by exploring only rules
relevant to the input problem. [20] successfully applies a semi-automatic algo-
rithm. First the algorithm automatically generates rule candidates for a specific
width range from a rule space restricted to equivalences. Then, based on unspec-
ified criteria, a human manually chooses which of those rules to embed into the
solver. One problem that might have prevented full automation of this algorithm
is that the set of candidates is width-specific, hence manual effort is required to
choose width-independent rules only. Our approach avoids this problem since,
being instance-specific, it knows the widths of the operations it needs to generate
rules for. Offline instance-generic automatic rule generation is also applied for
peephole super-optimization [2,3] and symbolic binary execution [18].

In what follows, Section 2 provides preliminaries and describes 0-saturation.
Section 3 introduces bit-vector 0-saturation with automatic rule generation. Sec-
tion 4 provides experimental results. We conclude in Section 5.

Table 1. Comparing Our Approach to Rewriting to the Standard Method

Standard Method Our Approach
When are the rules created? Offline (solver development time) Run-time
How are the rules generated? Manually Automatically
Where are the rules stored? Hard-coded Hash table
Are the rules instance-specific? No Yes
Rewriting framework DAG-based rewriting 0-Saturation
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2 Preliminaries and 0-Saturation

We start with some basic notions. A bit is a Boolean variable, which can be
interpreted as 0 or 1. A bit-vector v of width n is a sequence of n bits, where the
right-most bit is the least significant bit. The set of all bit-vectors of width n is
denoted by BVn. A constant is a bit-vector whose every bit is substituted by 0
or 1. The set of all constants for width n is denoted by BCn. We do not define a
separate Boolean type Bool for propositional variables, but use BV1 to formally
represent propositional variables (unlike in the SMT-LIB 2.0 language [5]).

We denote bitwise negation by ∼. Generalizing propositional logic, we let a
bit-vector literal be a bit-vector variable v or its bitwise negation ∼v. We denote
the set of bit-vector literals of width n by BLn. Next we define a binary operation
and a triplet. Our definition of a triplet is a strict generalization of the definition
of a propositional triplet [19,12,17].

Definition 1 (Binary Operation; Binary Operation Width; Predicate/
Non-Predicate Binary Operation). A binary operation o is a function that
maps any two constants in BCn to a constant in BCm, where w(o) = n is the
operation width. Each binary operation belongs to one of the following categories:

1. A predicate operation has m = 1 and w(o) > 1.
2. A non-predicate operation has m = w(o).

Definition 2 (Triplet; Triplet Member/Width/Type; Predicate/Non-
Predicate Triplet). A triplet is an application of a binary operation o: x =
o(y, z), where y, z ∈ BLn ∪ BCn, x ∈ BLm ∪ BCm, w(t) = w(o) = n is the
triplet width, and x, y, z are triplet members. The pair {o,w(o)} constitutes the
triplet type. A triplet is predicate/non-predicate iff o is predicate/non-predicate,
respectively.

For example, given y, z ∈ BVn>1, x = bvule(y, z) is a predicate triplet, while
x = bvadd(y, z) is a non-predicate triplet. We define a binding as follows:

Definition 3 (Binding). A binding x = y for x, y ∈ BLn ∪BCn stands for the
equality between x and y.

Next we review the 0-saturation algorithm [19,12,17], initially presented as a
way to simplify a propositional formula by constant and equivalence propagation.
Our paper generalizes 0-saturation to handle bit-vectors. We provide a generic
framework for the algorithm that fits both the propositional and the bit-vector
cases.

Consider the 0-saturation algorithm in Alg. 1. Given a set of triplets T and
a set of bindings B, 0-saturation carries out in-place rewriting of T to a set of
triplets equisatisfiable to T∧B, but potentially having fewer triplets and variables
than T , since the algorithm may render triplets tautological and replace variables
by the representatives of their respective equivalence classes (see below). The
algorithm classifies the triplets into three categories by associating one of the
following statuses with each triplet:



666 A. Nadel

1. unknown: The triplet must be evaluated by the main loop of the algorithm
(lines 5 to 7). Initially all the triplets are unknown (see line 2).

2. tautological : The triplet is a tautology. Once a triplet becomes tautological,
its status will never change. Tautological triplets are essentially removed
from T .

3. active: No further information can be learned from the triplet at this stage.
An active triplet becomes unknown if and when one of its members is
changed.

The algorithm divides the set of variables and constants into separate equivalence
classes, where one literal of each variable appears in the equivalence classes. Each
equivalence class has one and only one representative. Initially each class contains
one constant or one variable serving as the representative (see line 3). For ex-
ample, for the propositional case, assuming that both constants 0 and 1 appear,
the initial equivalence classes would look as follows: [0] , [1] ,

[
v1
]
,
[
v2
]
, . . . ,

[
vn

]
(representatives are underlined). Line 4 merges each binding {p = q} ∈ B, that
is, it merges the equivalence classes of p and q by applying the function Merge.

Consider the function Merge at line 10. If a literal or a constant is merged
with its negation or if two different constants are merged, a contradiction excep-
tion is thrown. Otherwise, Merge negates all the members of the equivalence
classes of p and/or q, if p and/or q appear negated in their respective equivalence
classes; then, it merges the equivalence classes of p and q. The new representative
can be picked in an arbitrary manner, except that a constant must always be a
representative. Line 14 forces the algorithm to reevaluate each triplet contain-
ing the former representative q or its negation by changing the status of such
triplets to unknown. Finally, line 15 replaces all the occurences of the former
representative q or its negation ∼q with the new representative p or its negation
∼p, respectively.

The main loop of the algorithm (line 5) tries to rewrite the formula by apply-
ing the function Propagate over unknown triplets. Propagate may change
the status of t and other triplets. The main loop operates until no more un-
known triplets exist or until Merge discovers a contradiction. We assume that
a contradiction in Merge is handled through the exception mechanism.

The function Propagate (line 16) comprises the heart of the algorithm.
It tries, if possible, to apply rewriting rules in order to infer and merge new
bindings and render the triplet under evaluation tautological. We discuss the
core rewriting algorithm at length in Section 3.

3 Bit-Vector 0-Saturation with Automatic Rule
Generation

This section introduces our algorithm for automatic rule generation in the con-
text of bit-vector 0-saturation. Section 3.1 provides the algorithm’s high-level
scheme, while Section 3.2 refines and formalizes the algorithm.

In order to look for rewriting rules systematically, it is necessary to define all
the possible conditions that may trigger a rule and all the possible conclusions
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Algorithm 1. 0-Saturation Algorithm

1: function 0-saturation(Triplets S, Bindings B)
2: For each t ∈ S, set stt(t) := unknown
3: Initialize equivalence classes to hold one variable and one constant each
4: For each {p = q} ∈ B, Merge(p, q)
5: while There exists t ∈ S, such that stt(t) = unknown do
6: t := t ∈ S, such that stt(t) = unknown
7: stt(t) := Propagate(t)

8: function NegateEqClassIfRequired(Literal or constant r)
9: if (r is negated in its eq. class) then Negate all the members of r’s eq. class

10: function Merge(Literal or constant p, Literal or constant q)
11: if (p = ∼q) or ((p �= q) and p and q are constants) then throw contradiction
12: NegateEqClassIfRequired(p); NegateEqClassIfRequired(q)
13: Merge the eq. classes

[
p, vp1 , . . . , v

p
k

]
and

[
q, vq1 , . . . , v

q
l

]
into[

p, vp1 , . . . , v
p
k, q, v

q
1 , . . . , v

q
l

]
� See text for the way to pick the new representative

14: For any triplet t containing q or ∼q, s.t. stt(t) = active, set stt(t) := unknown
15: Replace q and ∼q by p and ∼p, respectively, in any triplet containing q or ∼q
16: function Propagate(Triplet t)
17: if A rewriting rule is applicable for t then
18: Use Merge to merge new bindings resulting from applying the rule
19: if t becomes a tautology after applying the rule return tautological

20: return active

that a rule may imply. One can then learn the actual rules implied by the logic
under consideration.

For the propositional case, an exhaustive list of rewriting rules for 0-saturation
of the following form per a Boolean operation is provided in [17]: a rule is trig-
gered when one of the members of a triplet t is either the constant 0 or 1 or
is equivalent up to negation to another member. The rule implies either a con-
tradiction or one or two new bindings of t members or their negations to the
constants or to other t members. Whenever a rule is triggered, t becomes tau-
tological. For example, one of the rewriting rules listed in [17] would infer the
binding ∼x = y from the triplet ∼x = and(y, y) (where and stands for the
Boolean and), rendering the triplet tautological. In [17] the rules are hard-coded
into the solver, and no formal procedure for generating the rules is provided.

3.1 Automatic Rule Generation: High-Level Algorithm

In our approach to bit-vector 0-saturation, a rule may be triggered when, given
a triplet x = o(y, z), one of its members x, y, z is a pre-defined rewriting constant
and/or when one member constitutes a pre-defined rewriting function of another
member (rewriting constants and functions will be defined shortly). Usually,
applying a rewriting rule binds triplet members to rewriting constants or to
rewriting functions of other members.
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Next we define a successor, a predecessor and a neighbor. The two equations
in the following definition result from substituting x by ∼x and −x, respectively,
in the definition of unary minus −x = ∼x+ 1.

Definition 4 (Successor; Predecessor; Neighbor). The successor of x ∈
BLn ∪ BCn is x+ 1 = −∼x; the predecessor of x is x− 1 = ∼−x. x’s successor
or predecessor is x’s neighbor.

The following definitions capture the notion of rewriting constants, rewriting
functions, rewriting identities, and rewriting values:

Definition 5 (Rewriting Constant). The set of Rewriting Constants RC
comprises the following constants defined for every type BCw:

1. 0 = 0 . . . 0︸ ︷︷ ︸
w

2. −1 = 1 . . . 1︸ ︷︷ ︸
w

3. 1 = 0 . . . 0︸ ︷︷ ︸
w−1

1

4. 2 = 0 . . . 0︸ ︷︷ ︸
w−2

10 for w ≥ 2; 2 = 0 for w = 1

5. −2 = 1 . . . 1︸ ︷︷ ︸
w−1

0

Definition 6 (Rewriting Function). Given a bit-vector formula e, the set of
Rewriting Functions RFe comprises the following parametrized set of functions:

1. f1(e) = e
2. f2(e) = e− 1 = ∼−e
3. f3(e) = e− 2 = ∼−∼−e
4. f4(e) = e+ 1 = −∼e
5. f5(e) = e+ 2 = −∼−∼e
6. f6(e) = −e
7. f7(e) = −e− 1 = ∼e
8. f8(e) = −e− 2 = ∼−∼e
9. f9(e) = −e+ 1 = −∼−e

10. f10(e) = −e + 2 = −∼−∼−e

Definition 7 (Rewriting Identity; x-identity; y-identity; z-identity).
The set of rewriting identities I = {ix, iy, iz} comprises the x-identity ix, the
y-identity iy, and the z-identity iz.

The rewriting identities ix, iy, and iz are used to represent situations where,
given a triplet x = o(y, z), x, y, and z, respectively, are neither rewriting con-
stants nor rewriting functions of another triplet member.

Definition 8 (Rewriting Value; Trivial Rewriting Value). Let x = o(y, z)
be a triplet. The set I ∪ RC ∪ RFx ∪ RFy ∪ RFz comprises all the rewriting
values. The rewriting value is trivial if and only if it is a rewriting identity.
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If one or more triplet members is a non-trivial rewriting value (that is, it is
either a rewriting constant or a rewriting function of another triplet member), a
rewriting rule may be triggered. Triplet members may be bound to non-trivial
rewriting values as a result of applying a rule. We picked the rewriting values
bearing the following reasons in mind:

1. The constants 0, −1 and 1 are essential to be able to generate a variety
of rules for multiple operations. For example, both x = bvadd(y, 0) and
x = bvmul(y, 1) (where bvmul stands for multiplication) can be rewritten to
x = y, while x = bvule(y,−1) can be rewritten to x = −1.

2. Bitwise negation is essential for rewriting bitwise operations. For example,
−1 = bvand(y,∼y) is a contradiction (where bvand stands for bitwise and).
In addition, having bitwise negation and the constants −1,0 ensures that our
procedure covers the propositional case.

3. Unary minus is essential for rewriting arithmetic operations. For example,
x = bvadd(y,−y) can be rewritten to x = 0.

4. Capturing the neighbors of a literal and the neighbors of its unary minus is
useful for rewriting a variety of operations. For example, x = bvadd(y,−y−1)
can be rewritten to x = −1. We have chosen to look at neighbors up to depth
2 in order to attempt to create rules to capture sequences of successors and
predecessors. To that end, we have also included the constants 2 and −2.

5. Our algorithm can check whether triplet members are rewriting values in-
stantaneously by holding a pointer to each literal’s negation and unary mi-
nus, since all our rewriting values can be expressed using constants, bitwise
negation and unary minus only.

Next we define the notions of a premise and a skeleton, where the expression
ge1 �→e2 stands for g, where each instance of e1 is substituted by e2.

Definition 9 (Premise). Given a formula F , a triplet t ≡ x = o(y, z), the
ordered set {σx, σy, σz}, where σx ∈ {ix} ∪RC ∪RFy ∪RFz, σy ∈ {iy} ∪RC ∪
RFx ∪ RFz, and σz ∈ {iz} ∪ RC ∪ RFx ∪ RFy, is a premise if the following
conditions hold

1. F =⇒ x = σix �→x
x ∧ y = σ

iy �→y
y ∧ z = σiz �→z

z

2. One of the values {σx, σy, σz} is non-trivial.

Definition 10 (Skeleton; Skeleton Member). Given a triplet t ≡ x =

o(y, z) and a premise {σx, σy , σz}, the formula S ≡ σix �→x
x = o(σ

iy �→y
y , σiz �→z

z )

is a skeleton and
{
σix �→x
x , σ

iy �→y
y , σiz �→z

z

}
are skeleton members.

In the definitions above, we assume that F is the current formula (that
is, a set of triplets, and, possibly, bindings), maintained by the 0-saturation
algorithm. If F implies that at least one of the members of a given triplet
t ≡ x = o(y, z) is a non-trivial rewriting value, a premise is well-defined. For
example, given the triplet x = bvadd(y, 1) and assuming x = y + 1, the sets
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{ix, iy, 1}, {y + 1, iy, iz}, and {y + 1, iy, 1} are all premises. Premise definition
will be refined in Section 3.2.

A skeleton is used to isolate an application of the triplet’s operation, given
a premise, irrespectively of irrelevant triplet members. In our example, x =
bvadd(y, 1) is the skeleton given the premise {ix, iy, 1}; y + 1 = bvadd(y, z) is
the skeleton given the premise {y + 1, iy, iz}; and y + 1 = bvadd(y, 1) is the
skeleton given the premise {y + 1, iy, 1}.

Let us move now to a high-level sketch of our algorithm.

1. When the SMT solver starts, it applies 0-saturation as part of preprocessing.
The solver maintains a hash table of rewriting rules for each triplet type
that had at least one rule generated for it. The hash tables map each rule’s
premise to the rule’s conclusion, which can either be a contradiction, a set
of bindings of triplet members to rewriting values, or empty (meaning that
no action can be carried out under the current premise). The conclusion also
defines whether the triplet becomes a tautology after application of the rule.

2. Whenever an unknown triplet t is evaluated by the propagation algorithm
Propagate (line 16), the solver first checks whether both y and z are con-
stants of any kind (not necessarily rewriting constants). If they are, it merges
x with the constant o(y, z), marks the triplet tautological, and exits. Other-
wise, it carries out premise detection, that is, it checks whether the current
formula implies any premise, given t.1 If a premise is not detected, no fur-
ther information can be learned from the triplet and the algorithm renders
it active.

3. If a premise is detected, the solver checks if a rule with the corresponding
premise appears in the hash table. If it does, the solver applies the rule
in the following sense. If the conclusion is empty, the solver renders the
triplet active (storing empty conclusions prevents regeneration of the same
empty conclusion over and over again). If the conclusion is a contradiction,
a contradiction exception is thrown. If the conclusion is a set of bindings,
the solver binds triplet members to their corresponding values. The solver
may also mark the triplet tautological, if required by the conclusion.

4. If a premise is detected, but no corresponding rule is found in the hash table,
the solver enters the conclusion generation stage. It bit-blasts the skeleton,
corresponding to the triplet and the premise, to a fresh SAT instance. Then,
the solver checks for a contradiction in the instance and for all the possible
new bindings between the skeleton members and non-trivial rewriting con-
stants or rewriting functions of other skeleton members using incremental
SAT invocations. If there is no contradiction and no bindings can be learned,
the conclusion is empty. The newly generated conclusion is either a contra-
diction, an empty set, or a set of bindings. In the latter case, the conclusion
also specifies whether the triplet becomes tautological (more details are pro-
vided in Section 3.2). In the end, the conclusion is inserted into the hash
table, and the new rule is applied as described in the previous step.

1 Let us assume for now that an arbitrary premise is picked whenever more than one
premise exists. Section 3.2 discusses premise redundancy and premise subsumption.
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We distinguish between tautological and non-tautological conclusions, since,
unlike in propositional case, in bit-vector 0-saturation, it is possible to conceive
of an operation and a rule, where applying the rule would not make the corre-
sponding triplet a tautology. For example, one could design an operation such
that when x becomes 0, y must also become 0, but while z’s range is reduced,
z is still neither fixed nor a don’t care. We did not find such operations in the
current SMT-LIB language, but our algorithm takes into consideration their
possible existence.

Note that we restrict ourselves to rewriting rules of a certain pre-defined
format, which is most relevant to 0-saturation. It is possible to extend our pro-
cedure, e.g., by rewriting triplets to triplets of a different type or by considering
more than one triplet at once for rewriting. We leave the exploration of such
possibilities to future work.

Our procedure can be applied in a straightforward manner given a bit-vector
formula in the SMT-LIB 2.0 language [5], since the vast majority of that lan-
guage’s operations are binary, and hence can be represented as triplets. However,
some of the operations, such as unary minus, are unary, while ite (if-then-else)
has 3 operators. In principle our procedure can easily be extended to acco-
modate non-binary operators. However, in our current implementation we use
simple hard-coded rules for unary operators and ite.

3.2 Refining and Formalizing the Algorithm

This section refines the algorithm described in the previous section, bearing the
following three main goals in mind:

1. Eliminating premise redundancy mainly by disallowing syntactically differ-
ent but semantically identical premises so as to prevent the algorithm from
generating essentially the same rule multiple times. For example, only the
first of the two sets {y, iy, iz}, {ix, x, iz} will qualify as a premise by our
refined definition, given the triplet v = bvadd(v, z).

2. Generating stronger conclusions by binding triplet members to rewriting
constants rather than to rewriting functions, whenever possible. For example,
given the triplet x = bvand(y, z) and the premise {−1, iy, iz}, binding both
y and z to −1 is likely to simplify the instance more substantially than just
binding y to z.

3. Generating weaker premises by disqualifying rules whose premise would be
subsumed by another rule with the same conclusion. For example, if for
some triplet t the same conclusion is implied by both p = {ix,−z + 2, iz}
and p′ = {−1,−z + 2, iz}, then p is the desirable premise for the new rule,
since it leaves more opportunities for applying the rule by not restricting x.

We refine the notion of rewriting values by defining the notions of x-value,
y-value, and z-value, the rewriting values for x, y, and z, respectively.

Definition 11 (x-value). Given a triplet x = o(y, z), the rewriting value σx is
an x-value if it belongs to the set Vx ∪ {ix}, where Vx is defined as follows:
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1. Vx := {0,−1} if o is a predicate operation
2. Vx := RC ∪RFy ∪RFz if o is a non-predicate operation and w > 1
3. Vx := {0,−1, y,∼y, z,∼z} if o is a non-predicate operation and w = 1

For a predicate operation, a non-trivial x-value can only be one of the con-
stants {0,−1}. For non-predicate operations, a non-trivial x-value can belong to
the set RC ∪RFy ∪RFz as expected, except in cases where the width is 1, and
the set is refined to eliminate redundancies.

Definition 12 (y-value). Given a triplet x = o(y, z), the rewriting value σy is
a y-value if it belongs to the set Vy = RC ∪RFz ∪ {iy}.

Definition 13 (z-value). Given a triplet x = o(y, z), the rewriting value σz is
a z-value if it belongs to the set Vz = RC ∪ {iz}.

A y-value or a z-value may not belong to RFx to eliminate redundancy. This
is because any expression of the form y = f(x) ∈ RFx or z = f(x) ∈ RFx can
be represented as x = f−1(y) ∈ RFy or x = f−1(z) ∈ RFz, respectively. For
the same reason, a z-value may not belong to RFy (hence, a non-trivial z-value
may only be a rewriting constant). Note that the set RFx is redundant and is
used no more. Now we can formulate a refined notion of a premise.

Definition 14 (Premise (Refined)). Given a formula F , a triplet t, the or-
dered set {σx, σy, σz}, where σx ∈ Vx, σy ∈ Vy, σz ∈ Vz, is a premise if

F =⇒ x = σix �→x
x ∧ y = σ

iy �→y
y ∧ z = σiz �→z

z and one of the following con-
ditions hold:

1. One and only one of the values {σx, σy , σz} is non-trivial, or
2. σx ∈ RC and σy ∈ RC ∪ RFz and σz = iz, or
3. σx ∈ RFy and σy = iy and σz ∈ RC, or
4. σx ∈ RFz and σy ∈ RC and σz = iz, or
5. σx ∈ RFy and σy ∈ RFz and σz = iz

Our refined definition of a premise is aimed towards eliminating redundancy.
In particular, the case where both y and z are constants is not part of the
definition, since it is covered by the higher-level algorithm, which simply binds x
to the constant o(y, z). We also skip all the cases where some triplet member v is a
constant and there is another triplet member u, such that u = f(v) (for example,
{y + 1, 1, iz} is thus skipped). This is because such cases are mostly covered
by the case where both v, u are constants ({2, 1, iz} in our case), while cases
which are not covered by our rewriting constant set are simply skipped (e.g.,
{y + 2, 2, iz} would be covered by {4, 2, iz}, but 4 is not a rewriting constant).
In addition, we skip the case where both x and y are functions of z, since it is
mostly covered by the case where x is a function of y and y is a function of z.

Next we define a total order between values, which is essential for generating
stronger conclusions, and formalize the notion of a conclusion.

Definition 15 (Order over Values). The following order relation induces a
total order between any two values in I∪RFy∪RFz∪RC: I < RFy∪RFz < RC.
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Definition 16 (Conclusion;Contradictory/Empty/Partial/Tautological
/Interesting Conclusion). Given a triplet t and a premise {σx, σy, σz}, c is

a conclusion if the following conditions hold. Let S ≡ σix �→x
x = o(σ

iy �→y
y , σiz �→z

z )
be the skeleton.

1. If S =⇒ ⊥, then c ≡ ⊥, in which case the conclusion is contradictory.
2. If S �=⇒ ⊥, then c ≡ {ρx, ρy, ρz, taut ∈ {false, true}}, where ρx ∈ Vx, ρy ∈

Vy, ρz ∈ Vz, and the following equations hold:
(a) ρz is the maximal value, such that S =⇒ σiz �→z

z = ρiz �→z
z

(b) ρy is the maximal value, such that S =⇒ σ
iy �→y
y = ρ

iy �→y
y

(c) ρx is the maximal value, such that S =⇒ σix �→x
x = ρix �→x

x , where the
order is refined in the following two cases: if σx ∈ RFy, then I < RFy <
RFz < RC; if σx ∈ RFz, then I < RFz < RFy < RC

(d) taut = true iff σix �→x
x = ρix �→x

x ∧ σiy �→y
y = ρ

iy �→y
y ∧ σiz �→z

z = ρiz �→z
z =⇒ S

If the conclusion is {σx, σy , σz, false}, it is empty. The conclusion is interest-
ing if it is not empty. An interesting conclusion with taut = false or taut = true
is partial or tautological, respectively.

A conclusion can be characterized as follows:

1. If the skeleton is contradictory, then the conclusion must be contradictory.
2. A conclusion always exists, since setting each value in the conclusion to the

corresponding value in the premise comprises the empty conclusion, if no
other conclusion is available.

3. Any non-empty conclusion (if available) is preferred to the empty conclusion.
4. Rewriting constants are always preferred to rewriting functions.
5. A non-contradictory conclusion is tautologial iff binding its values to the

premise values implies the skeleton.

Finally, we formally define a rule aiming towards generating rules with weaker
premises as we discussed.

Definition 17 (Rule; Contradictory/Empty/Partial/Tautological/
Interesting Rule). Given a triplet t, a premise p = {σx, σy, σz}, and a con-
clusion c, r ≡ p =⇒ c is a rule if there exists no premise p′ =

{
σ′x, σ

′
y, σ

′
z

}
that

subsumes p, where p′ subsumes p iff:

1. c is a conclusion, given p′, and
2. σ′x ∈ {σx, ix} and σ′y ∈ {σy, iy} and σ′z ∈ {σz , iz}, and
3. (σ′x = ix and σx �= ix) or (σ′y = iy and σy �= iy) or (σ′z = iz and σz �= iz)

The rule is contradictory/ empty/partial/ tautological/ interesting if c is con-
tradictory/empty/partial/tautological/interesting, respectively.

We are now ready to present our algorithm for bit-vector 0-saturation with
automatic rule generation. Consider Alg. 2. The main function PropagateBV
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is designed so as to be inserted into Alg. 1 in place of Propagate. Propa-
gateBV receives a triplet t. It may apply empty rewriting rules and/or zero or
one interesting rules for the triplet. It returns the status, that is, either unknown,
active, or tautological . The status is active if no rules or only empty rules could
be applied; it is tautological if a tautological rule was applied, and it is unknown
if a partial rule was applied. The function may also throw a contradiction ex-
ception. Any expression of the form “if c then s1 & s2” in the pseudo-code
of Alg. 2 means that if c holds, the algorithm applies s1 and then immediately
applies s2.

First, the algorithm enters the premise detection stage to check whether the
triplet has a premise. The structure and the order of premise detection (lines 3
to 14) ensure that any generated rule will be correct w.r.t both premise sub-
sumption as dictated by Def. 17 and premise redundancy as dictated by Def. 14.
PropagateBV triggers the process of conclusion generation by invoking the
function GetC for any identified premise. GetC returns active for an empty
conclusion, tautological for a tautological conclusion, and unknown for a partial
conclusion. We will describe GetC later.

When an empty rule is returned by GetC, PropagateBV will continue look-
ing for other rules. PropagateBV returns immediately if it finds a non-empty
rule. Consider a situation where different non-empty rules may be applied for a
given triplet. For example, both the rules {ix,−1, iz} =⇒ {−1,−1,−1, true}
and {ix, iy,−1} =⇒ {−1,−1,−1, true} are applicable for rewriting the triplet
x = bvor(−1,−1) (where bvor stands for bitwise or). Our algorithm will gen-
erate one of the rules and exit. It might seem at first that if the generated rule
is partial, while there exists at least one tautological rule for the same triplet,
exiting is undesirable, since the opportunity to render the triplet tautological
might be missed. However, if a partial rule is applied, PropagateBV returns
unknown, thus PropagateBV will be invoked again over the same triplet, hence
one of the tautological rules will eventually be applied.

Let us consider the function GetC. It maintains a hash table for every triplet
type with a non-empty set of rules. Each hash table entry contains a rule: its
premise is mapped to its conclusion. GetC starts by looking for a conclusion
for the given triplet in the corresponding hash table. If it is found, the algo-
rithm acts based on the conclusion type. Namely, it returns active for an empty
conclusion and throws a contradiction for a contradicting conclusion. For other
conclusions, it merges the resulting bindings and returns tautological for a tau-
tological conclusion and unknown for a partial conclusion.

If no rule is found in the hash table (line 28), GetC generates one. To generate
a rule, GetC bit-blasts the skeleton to a new SAT solver instance Q. If Q is
unsatisfiable, a contradictory rule is generated, otherwise the function generates
a conclusion by invoking the auxiliary function CL to find maximal values for the
conclusion. If the conclusion is interesting, the function checks whether the rule
is tautological with another new SAT solver instance. The function then inserts
the rule into the corresponding hash table and triggers the same behavior as if
the newly generated rule was found in the hash table.



Bit-Vector Rewriting with Automatic Rule Generation 675

Algorithm 2. Rewriting for Bit-Vector 0-saturation

1: function PropagateBV(Triplet t ≡ x = o(y, z))
2: r := active
3: if Both y and z are constants then Merge(x, o(y, z)) & return tautological
4: if z ∈ RC then r := GetC(t, ix, iy , z) & if r �= active return r
5: if y ∈ RC then r := GetC(t, ix, y, iz) & if r �= active return r
6: if x ∈ RC then r := GetC(t, x, iy , iz) & if r �= active return r
7: if x ∈ RFy then r := GetC(t, x, iy , iz) & if r �= active return r
8: if x ∈ RFz then r := GetC(t, x, iy, iz) & if r �= active return r
9: if y ∈ RFz then r := GetC(t, ix, y, iz) & if r �= active return r
10: if x, y ∈ RC then r := GetC(t, x, y, iz) & if r �= active return r
11: if x ∈ RC and y ∈ RFz then r := GetC(t, x, y, iz) & if r �= active return r
12: if x ∈ RFy and z ∈ RC then r := GetC(t, x, iy , z) & if r �= active return r
13: if x ∈ RFz and y ∈ RC then r := GetC(t, x, y, iz) & if r �= active return r
14: if x ∈ RFy and y ∈ RFz then r := GetC(t, x, y, iz)
15: return r

16: function CL(SAT Instance Q; σ ∈ {σx, σy , σz})
17: return a maximal ρ, such that Q ∧ (σ �= ρ) is UNSAT, where ρ must be

x-value/y-value/z-value iff σ is σx/σy/σz, respectively

18: function GetC(Triplet t ≡ x = o(y, z) of type = {o, w}; Premise p = {σx, σy , σz})
19: if rules [type] [p] exists then
20: c := rules [type] [p]
21: if c is empty then return active
22: if c is contradictory then throw contradiction
23: c must be of the form {ρx, ρy, ρz, taut}
24: if ρx �= σx then Merge(x, ρix �→x

x )

25: if ρy �= σy then Merge(y, ρ
iy �→y
y )

26: if ρz �= σz then Merge(z, ρiz �→z
z )

27: if taut = true then return tautological else return unknown
28: else
29: Bit-blast the skeleton σix �→x

x = o(σ
iy �→y
y , σiz �→z

z ) to a new SAT instance Q
30: if Q is unsatisfiable then
31: rules [type] [p] := ⊥
32: else
33: ρx := CL(Q, σx); ρy := CL(Q, σy); ρz := CL(Q, σz)
34: if ρx �= σx or ρy �= σy or ρz �= σz then

35: Bit-blast σix �→x
x = ρix �→x

x ∧σiy �→y
y = ρ

iy �→y
y ∧σiz �→z

z = ρiz �→z
z ∧(σix �→x

x �=
o(σ

iy �→y
y , σiz �→z

z )) to a new SAT instance R
36: if R is unsatisfiable then taut := true else taut := false
37: rules [type] [p] := {ρx, ρy, ρz, taut}
38: else
39: rules [type] [p] := {σx, σy , σz, false}
40: Go to line 20
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4 Experimental Results

We implemented our new algorithm in Intel’s eager bit-vector solver Hazel, which
operates by invoking bit-vector preprocessing, followed by bit-blasting to CNF
and SAT solving. Both base and new Hazel use the standard manual offline
instance-generic DAG-based rewriting, where the novel automatic rewriting in
new Hazel is applied after the manual rewriting (switching off manual rewriting
in Hazel is impossible). We compared the performance of the new version of
Hazel to base Hazel and the latest publicly available versions of the state-of-the-
art SMT solvers Boolector [6] (version 1.6.0) and Mathsat [7] (version 5.2.10;
SMT’11 competition configuration). We also gathered some statistics.

The benchmark families we used belong to the QF BV category of SMT-
LIB [5]. Since this category contains tens of thousands of benchmarks, we could
not use all of them. We decided to pick all 23 families of the ASP sub-category,
since, while these families are difficult and versatile, they contain a tractable
number of benchmarks. In our analysis we skipped about 12% of the bench-
marks that could not be solved by any of the four solvers within the time-out
of 20 minutes. We used machines running Intel Xeon processors with 3Ghz
CPU frequency and having 32Gb of memory. Detailed experimental results are
available at [16].

Consider Table 2, which presents the results. Each row corresponds to one
family. Column 1 contains the family name, abbreviated to the first three letters
(except for GraphColouring and GraphPartitioning, which are represented as GC
and GP, respectively). Column 2 contains the number of instances. Each pair
of neighboring columns of the subsequent eight columns provides the overall
run-time in seconds (where the time-out value was added to the run-time for
unsolved instances) and the number of unsolved instances for the solver listed
in the column heading. The best performance is highlighted.

Compare the performance of the new version of Hazel over the 23 families to
that of the other solvers. New Hazel outperforms base Hazel on 20 families (that
is, new Hazel either solves more instances or the same number of instances in
less time on 20 families). New Hazel outperforms Mathsat on 21 families and
Boolector on 14 families. Moreover, there are 10 families on which new Hazel
significantly outperforms all the other solvers: it either solves more instances or is
at least 2x faster. These results testify clearly that our approach can considerably
boost the performance of modern SMT solvers.

The final seven columns of Table 2 contain statistics. Column 11 shows the av-
erage 0-saturation run-time, including automatic rule generation, as a percent of
the overall run-time of new Hazel. One can see that the run-time of 0-saturation
is negligible. Columns 12 and 13 demonstrate the impact of 0-saturation on the
size of the CNF by showing the average percent of CNF clauses and variables,
respectively, in new Hazel as compared to base Hazel (for example, f in Col-
umn 12 means that if base Hazel generated c clauses, then new Hazel generated
f/100 ∗ c CNF clauses). Note that for the vast majority of families 0-saturation
significantly reduces the number of CNF clauses and variables. One notable ex-
ception is the Wei family, where the number of CNF clauses is slightly greater
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when 0-saturation is applied. This can happen because 0-saturation may need
to create variables, if required by the rule’s conclusion (e.g., new neighbors may
be created). Although 0-saturation did not reduce the number of clauses in the
Wei case, it did simplify the CNF instances considerably, as the performance
speed-up attests. Columns 14 and 15 provide the average number of interest-
ing rules generated and applied, respectively, by new Hazel, while columns 16
and 17 provide the same data for the non-interesting rules. One can see that
0-saturation creates only few rules, but applies them very often, sometimes up
to hundreds of thousands of times.

Finally, we report that our algorithm did not generate any contradictory or
partial rules in our experiments.

Table 2. Performance Comparison and Statistics

Boolector Mathsat Base Hazel New Hazel 0-sat CNF Red Intr Rules Non-I Rules
Fam # Time Un Time Un Time Un Time Un %Tm %Cls %Var # Applied # Applied
Dis 4 3582 2 2523 2 4800 4 515 0 0.7 49 25 7 1707424 10 915729
Sol 23 5825 1 24802 18 27600 23 2200 1 0.5 56 52 8 48037 10 15890
Lab 10 12000 10 12000 10 10342 8 6996 0 0.1 67 48 12 1070897 15 209523
Edg 29 30693 23 32391 24 25073 19 5345 0 0.2 61 56 3 322700 11 85153
Wei 29 5550 2 20228 10 25625 16 2591 0 0.1 101 100 6 6390 5 2940
Sud 8 7213 6 7213 6 5918 4 3229 0 0.4 63 67 6 156591 10 122519
GC 12 2771 1 5674 4 4952 4 3362 1 0.8 71 44 2 16077 9 8496
GP 7 1418 0 2939 2 2514 1 205 0 0.6 74 72 3 29798 13 6234
Fas 17 3869 0 6487 3 4272 2 1152 0 2.7 81 57 2 125189 5 4445
Ham 29 271 0 4036 3 3678 3 2694 1 0.7 81 71 5 10700 10 7134
Sok 29 872 0 15700 8 2662 0 833 0 0.7 23 20 11 45167 16 14044
Hie 12 1165 0 267 0 123 0 56 0 1.2 65 63 2 45234 9 26376
15P 15 477 0 2654 0 359 0 168 0 1.8 35 25 8 146586 11 18110
Han 15 1345 0 1584 0 200 0 101 0 1.9 63 48 10 136458 11 44241
Gen 29 1226 0 506 0 352 0 220 0 2.6 89 82 3 29794 12 11944
Cha 8 117 0 60 0 18 0 12 0 4.7 67 29 2 105654 9 35987
Kni 3 67 0 1347 1 1798 1 1280 1 0.3 70 65 9 17734 12 9014
Blo 29 1023 0 30521 22 16213 5 11737 5 0.0 67 61 2 13208 9 6037
Sch 29 1053 0 8061 4 6938 3 6643 3 2.7 65 23 8 61756 11 32450
Wir 19 6330 0 16511 12 8712 5 8567 5 0.6 85 63 9 172717 15 60664
Tra 29 6449 0 33339 26 34800 29 34800 29 0.0 73 80 6 20007 12 9811
Con 21 294 0 612 0 382 0 499 0 0.7 87 62 2 6538 4 651
Maz 29 879 0 2610 0 2518 0 3543 1 0.9 92 53 6.5 10009 3 1995

5 Conclusion

We have proposed a new preprocessing algorithm for bit-vector SMT solving:
bit-vector 0-saturation with automatic rewriting rule generation. Applying our
algorithm in Intel’s SMT solver Hazel resulted in a substantial performance
improvement over 23 ASP families from SMT-LIB. New Hazel outperforms the
base version of Hazel on 20 families; it outperforms Mathsat on 21 families and
Boolector on 14 families. Moreover, there are 10 families on which new Hazel
outperforms base Hazel, Boolector, and Mathsat significantly: it either solves
more instances or is at least 2x faster. Our approach can be improved further
by extending it to generate more types of rewriting rules automatically.
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Abstract. The standard method for deciding bit-vector constraints is via eager
reduction to propositional logic. This is usually done after first applying powerful
rewrite techniques. While often efficient in practice, this method does not scale on
problems for which top-level rewrites cannot reduce the problem size sufficiently.
A lazy solver can target such problems by doing many satisfiability checks, each
of which only reasons about a small subset of the problem. In addition, the lazy
approach enables a wide range of optimization techniques that are not available
to the eager approach. In this paper we describe the architecture and features
of our lazy solver (LBV). We provide a comparative analysis of the eager and
lazy approaches, and show how they are complementary in terms of the types
of problems they can efficiently solve. For this reason, we propose a portfolio
approach that runs a lazy and eager solver in parallel. Our empirical evaluation
shows that the lazy solver can solve problems none of the eager solvers can and
that the portfolio solver outperforms other solvers both in terms of total number
of problems solved and the time taken to solve them.

1 Introduction

Many software and hardware verification tasks require precise modeling of computer
arithmetic and bit-level operations. The verification conditions coming from such ap-
plications can be expressed as satisfiability problems in the theory of fixed-width bit-
vectors (Tbv). The standard technique for deciding the satisfiability in Tbv of a quantifier-
free formula, vividly called bit-blasting, reduces the problem to a Boolean satisfiability
(SAT) one, by replacing word-level operators with their bit-level circuit equivalents.
Current state-of-the-art decision procedures for Tbv build on bit-blasting by applying
powerful rewriting simplifications to the input formula before the final bit-blasting step.
While often efficient in practice, this eager approach has several limitations: (i) the
entire formula must be bit-blasted and solved at once, which may be difficult if the
problem is too large; (ii) word-level structure and information can only be leveraged
during preprocessing, not during solving; (iii) the complexity of the problem is a func-
tion of the bit-width; and (iv) eager solvers do not fit cleanly into theory combination
frameworks.
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A lazy solver can address these limitations, explicitly targeting problems that are
difficult for eager solvers and thus providing a complementary approach. The lazy ap-
proach for bit-vectors was first proposed in [8, 16]. In this paper, we revisit this ap-
proach, extending and improving it in several ways. Our lazy solver integrates alge-
braic, word-level reasoning with bit-blasting. Designed for easy plug-and-play com-
bination with solvers for other theories, the procedure integrates an on-line lazy Tbv

solver (LBV) into the DPLL(T ) framework [20], separating theory-specific reasoning
from the search over the Boolean structure of the input problem. This separation offers
benefits orthogonal to those provided by eager bit-vector solvers but also poses inter-
esting trade-offs. On one hand, it has the potential of incurring additional overhead and
losing important connections between subproblems; on the other hand, depending on
the Boolean structure of the problem, it often allows the Tbv solver to reason about much
smaller problems at a time. We use a specialized decision heuristic to reduce the size
of these sub-problems even further by considering only literals relevant to the current
search context.

Our approach is particularly useful on problems whose subproblems fall into one
of the efficiently decidable fragment of the bit-vector theory (e.g., the core theory of
concatenation and extraction [11], the theory of bit-vector inequalities, or fragments
decidable using equational reasoning). To target such problems, our LBV solver is built
as the combination of several algebraic solvers specialized for some of these fragments
together with a complete bit-blasting solver. The bit-blasting solver uses a dedicated
SAT solver SATbb, distinct from the DPLL(T ) Boolean engine driving the main search
(SATmain). The separation of the two SAT engines fits cleanly into the DPLL(T ) frame-
work and allows the solvers to be tuned independently.

Experiments (described in Section 6) confirm our claim that the lazy approach is
complementary to the eager approach, as the lazy solver efficiently solves problems
that are either impossible or very difficult for eager solvers. At the same time, it is not
realistic to expect the lazy solver to do well on problems that are easy for eager solvers
(and indeed it is often slower on these problems). For this reason we propose a portfolio
approach that runs an eager solver and a lazy solver in parallel. Additional experiments
show that our portfolio solver outperforms eager solvers both in terms of the number of
problems solved and the time taken to solve them.

The rest of the paper is organized as follows. Section 2 frames our contributions
in terms of related work. Sections 3 and 4 provide technical preliminaries and a brief
overview of the DPLL(T ) framework. Section 5 describes the components of our lazy
solver LBV including some optimizations enabled by the lazy framework. We present
an experimental evaluation of the solver followed by an in-depth analysis in Section 6.
Finally, we conclude with future work in Section 7.

2 Related Work

The predominant approach to solving bit-vector constraints is via reduction to SAT.
Boolector, a specialized solver for bit-vectors and arrays, and the winner of the 2012
SMT-COMP for QF BV logic, employs preprocessing before encoding the bit-vector
formula into the AIG format [7]. Z3, a DPLL(T )-style SMT solver, applies bit-blasting



682 L. Hadarean et al.

to all bit-vector operators, but has specialized equality reasoning [13]. STP2 does sim-
plifications and solving for linear modular arithmetic, and then uses an eager encoding
into CNF for bit-vector reasoning as well as an abstraction refinement loop for array
axiom instantiation [18].

Some solvers encode the problem into a different domain such as (linear and non-
linear) modular arithmetic [1]. These solvers are efficient at dealing with large data-
paths and arithmetic operations. However some constructs, such as bit-wise operations,
cannot be encoded and have to be bit-blasted away, while others, such as selection and
concatenation, are very expensive for arithmetic solvers. Yet another approach [6, 11],
based on word-level reasoning, uses Shostak-style canonizers and solvers to compute
a canonical form for bit-vector expressions. However, it is limited to a restricted set of
operators: concatenation, extraction and linear equations over bit-vectors.

The framework for a lazy bit-vector solver was first introduced by Bruttomesso et
al. [8]. They describe an implementation of a DPLL(T )-style lazy layered solver for
Tbv in the SMT solver MathSAT [10]. Their approach lazily encodes the problem into
linear integer constraints and uses word-level inference rules during solving. Later work
by Franzen [16] moves from encoding the problem into linear integer arithmetic to bit-
blasting the formula to the main SAT solver instead.

Our work explores significant new ideas within this lazy framework, with the follow-
ing contributions: (i) a dedicated SAT solver for Tbv that supports bit-blasting-based
propagation with lazy explanations; (ii) specialized Tbv sub-solvers that reason about
fragments of Tbv; (iii) inprocessing techniques to reduce the size of the bit-blasted for-
mula when possible; and (iv) decision heuristics to minimize the number of literals sent
to the bit-vector solver by the main SAT engine.

These new features greatly improve performance: our solver solves 450 more prob-
lems in roughly one third of the time compared to the only other lazy bit-vector solver.
This brings the lazy framework from a niche player to a serious contender.

3 Formal Preliminaries

We assume familiarity with standard notions from many-sorted first-order logic. A sig-
nature Σ is a non-empty set of sort symbols together with a set of function symbols and
a set of predicate symbols, each equipped with their respective arity and sorts. We call
0-arity function symbols constants.

A constraint is a conjunction of literals. We are concerned with the constraint satis-
fiability problem for a theory T with signature ΣT , which consists of deciding whether
a ΣT -constraint is T -satisfiable, that is, satisfiable in a model of T . We will use |= to
denote propositional satisfiability and vars(F ) for the set of variables of a propositional
formula F .

A bit-vector is a finite vector over the set {0, 1} of binary digits. We consider the
theory Tbv of bit-vectors with signature Σbv = Σeq ∪ Σcon ∪ Σineq ∪ Σari ∪ Σbool ∪
Σshift, consisting of infinitely many sort symbols [n] with n > 0, and the function and
predicate symbols listed in Table 1 together with their type (given after the symbol ::).
Each sort [n] denotes the set of bit-vectors of width n.
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Table 1. Tbv signature Σbv

Σeq sorts [n] n > 0 constants 0, 1 :: [1]

equal = :: [n] × [n] . . .

Σcon concat ◦ :: [m]× [n]→ [m+ n] extract [i : j] :: [m]→ [i− j + 1]

Σineq less < :: [n] × [n] less-eq ≤ :: [n]× [n]

Σari plus + :: [n] × [n]→ [n] neg − :: [n]→ [n]

times × :: [n] × [n]→ [n] div / :: [n]× [n]→ [n]

rem % :: [n] × [n]→ [n]

Σbool and & :: [n] × [n]→ [n] or | :: [n]× [n]→ [n]

not ∼ :: [n]→ [n] xor ⊕ :: [n]× [n]→ [n]

Σshift left shift << :: [n] × [n]→ [n] right shift >> :: [n]× [n]→ [n]

We will write t[n] for some fixed n to denote that t is a Σbv-term of sort [n]. Note that
except for the constants, the function and predicate symbols in Table 1 are overloaded;
for example, + stands for any of the symbols in the infinite family {+ :: [n], [n] →
[n]}n>0. For simplicity, we restrict our attention to a subset of the bit-vector operators
described in the SMT-LIB v2.0 standard [4]; the missing ones can easily be expressed
in terms of those given here.

The Tbv-satisfiability of conjunctions of equalities between terms over the core sub-
signature Σeq ∪ Σcon is decidable in polynomial time [9, 11]. However, adding almost
any of the additional operators, or allowing for arbitrary Boolean structure, makes the
Tbv-satisfiability problem NP-hard [6].

4 The DPLL(T ) Framework

State-of-the-art SMT solvers efficiently decide the satisfiability of quantifier-free first-
order formulas with respect to a background theory T by using the DPLL(T ) frame-
work [20]. The framework extends the Davis-Putnam-Logemann-Loveland (DPLL) de-
cision procedure for SAT to handle reasoning in a theory T by relying on a theory solver
(T -solver): a decision procedure for the T -satisfiability of ΣT -constraints. Algorithm
1 gives a simplified algorithmic view of the DPLL(T ) framework with a generalized
theory interface. The algorithm takes as input a T -formula ψ and returns sat if ψ is
T -satisfiable and unsat otherwise. Variable C stores the set of working clauses and A
the current truth assignment for C as a sequence of T -literals.We use [] for the empty
assignment and ; for the concatenation of two assignments. Initially, A is empty and C is
simply the set of clauses obtained by converting ψ to Conjunctive Normal Form (CNF).
We say that a pair 〈A,C〉 is inconsistent if the assignment A falsifies some clause in C;
it is consistent otherwise. An assignment A propositionally satisfies ψ if ψ is satisfied
by every full assignment extending A.

In Algorithm 1, the SAT and theory solver work together to augment A and C via
SatSolve and TheoryCheck, respectively. The input to SatSolve is an assignment
and a set of clauses 〈A,C〉. The return value is a new pair 〈A′,C′〉 derived from the
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Algorithm 1. DPLL(T )
Input: ψ input formula
A← [];
C← toCNF(ψ);
while true do

〈A,C〉 ← SatSolve(A, C );
if ⊥ ∈ C then

return unsat;

final← Satisfies(A, ψ);
〈P, L〉 ← TheoryCheck(A, final) ;
if L = ∅ and final then

return sat;

〈A,C〉 ← 〈A;P,C ∪ L〉

input one such that either 〈A′,C′〉 is consistent or ⊥ ∈ C′.1 If the input pair 〈A,C〉
is consistent, SatSolve can extend A with implied literals, deduced by Boolean Con-
straint Propagation (BCP), or with one decision literal, chosen non-deterministically
from the currently unassigned ones. On the other hand, suppose that 〈A,C〉 is incon-
sistent. If A contains no decision literals, then the search is complete (no satisfying
assignment can be found) and SatSolve indicates this by extending C with the empty
clause ⊥. Otherwise, it resolves the conflict in 〈A,C〉 by doing CDCL-style conflict
analysis [19], popping literals from A until 〈A,C〉 becomes consistent, and then adding
at least one new implied literal.

The function Satisfies checks whether A propositionally satisfies the input for-
mula ψ, setting final to true if so, and to false otherwise. An efficient implementation
of Satisfies is described in Section 5.2.

The function TheoryCheck implements a T -solver and returns a sequence P of prop-
agations and a set L of theory lemmas that are used to update 〈A,C〉 as follows:

1. If TheoryCheck finds A to be T -unsatisfiable it identifies a T -unsatisfiable subset
{l1, . . . , ln} of literals in A and returns 〈[], {¬l1 ∨ · · · ∨ ¬ln}〉. Adding this clause
to C forces SatSolve to backtrack and search for a different assignment.

2. If A is T -satisfiable, TheoryCheck computes a (possibly empty) sequence P of
theory-propagated literals (unassigned literals in C that are T -entailed by A), re-
turning 〈P, ∅〉. P is added to A, which helps guide the SAT search in the right
direction by avoiding unnecessary decisions.

3. TheoryCheck may not be able to efficiently determine the T -satisfiability of A
as this may require reasoning by cases. TheoryCheck can request case splits by
returning a set L of clauses encoding a T -valid formula. This effectively delegates
the case splitting to the main Boolean engine.2

1 SatSolve, which encapsulates the SAT solver, also manages the mapping between atoms and
their propositional abstractions and vice versa.

2 For Satisfies to work correctly, it is then necessary to update the current formula ψ to
ψ ∧

∧
ϕ∈L ϕ.
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We say a call to TheoryCheck is final when the parameter final is set to true. Final calls
to TheoryCheckmust either ensure that A is T -satisfiable, or return one or more theory
lemmas.

Two important aspects of theory solvers are not captured here. The first is that actual
implementations of TheoryCheck are stateful: they store a copy of the assignment A
internally and are instructed to push and pop literals from it as A is modified by the
main loop. In practice, it is crucial that the theory solver be able to backtrack efficiently
when A is shrunk, and reason incrementally when it is extended. The second aspect is
that a theory solver must be able to provide an explanation for each theory-propagated
literal p. This is a clause of the form ¬l1 ∨ · · · ∨ ¬ln ∨ l for some subset {l1, . . . , ln}
of A, explaining why the literal was entailed. Explanations are needed by SatSolve

during its conflict analysis. It is important for efficiency that the theory solver be able
to compute explanations lazily, only as needed by SatSolve.

5 A Lazy Bit-Vector Solver

We now proceed to give the details of our lazy bit-vector solver LBV, designed to fulfill
the requirements of the TheoryCheck interface described above.

5.1 Subsolvers

The LBV solver consists of four sub-solvers: the equality solver LBVeq, the core solver
LBVcore, the inequality solver LBVineq and the bit-blasting solver LBVbb. Each sub-
solver is incremental and provides the theory solver functionalities described in Sec-
tion 4. The architecture of LBV was designed to be modular and extensible: all the
bit-vector reasoning is confined within the solver, and it is easy to enhance it by adding
more sub-solvers.

Algorithm 2. LBVCheck
Input: 〈A, final 〉
〈Peq, Leq, complete〉 ← LBVCheckeq(A, final) ;
if complete then

return 〈Peq, Leq〉 ;

〈Pineq, Lineq, complete〉 ← LBVCheckineq(A;Peq, final) ;
if complete then

return 〈Peq;Pineq, Leq ∪ Lineq〉 ;

〈Pbb, Lbb〉 ← LBVCheckbb(A;Peq;Pineq, final) ;
return 〈Peq;Pineq;Pbb, Leq ∪ Lineq ∪ Lbb〉

Algorithm 2 shows the implementation of LBVCheck, the TheoryCheck from Algo-
rithm 1 corresponding to the LBV solver. LBVCheck calls the subsolvers in increasing
order of computational cost. For each i ∈ {eq, ineq, bb}, LBVChecki returns a sequence
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Pi of literals, a set Li of clauses, and a Boolean value indicating whether the solver
is complete or not. A solver i is complete if LBVChecki detects an inconsistency or
if it determines that A is consistent (which it can only do if all the literals in A fall
into the sub-solver’s fragment of Tbv). If none of the solvers detect an inconsistency,
LBVCheck returns the collection of all the propagated literals and lemmas generated by
the individual sub-solvers.

The sub-solvers process all literals in A. However, except for LBVbb, they reason on
an abstraction of the literals. In particular, LBVeq treats all function and predicate sym-
bols other than = as uninterpreted, while LBVineq (as well as LBVcore) treats as fresh
variables any terms or predicates whose top symbol does not belong to its signature.

Equality Solver. The equality solver LBVeq, corresponding to LBVCheckeq, uses a
variant of well-known polynomial-time congruence-closure (CC) algorithms [14] to
decide the satisfiability of constraints in Σeq. Standard CC algorithms assume that sorts
have an unbounded cardinality. This makes them incomplete for reasoning about equal-
ity and disequality constraints in Tbv. For example, the formula x[1] �= y[1] ∧ x[1] �=
z[1] ∧ y[1] �= z[1] is not satisfiable: there are only two distinct bit-vectors of width 1.

We handle the finite cardinality of the bit-vector sorts by trying to build a satisfying
valuation for all the terms in a given Σeq-constraint. In final calls to check, once the
CC algorithm is done and has not detected any inconsistency, LBVeq attempts to assign
a distinct constant value to each congruence class c0[n], . . . , c

k
[n] for each sort [n] in the

input problem. If this is not possible (because k > 2n), it returns a lemma of the form:∨
0≤i<j≤2n

ri[n] = rj[n]

where ri is a representative for class ci[n], stating that at least two of the first 2n + 1
congruence classes must be merged.

This process continues until either the splits lead to an inconsistency or the sub-
solver finds a satisfying valuation. The cardinality lemmas are currently generated only
if the congruence classes consist just of bit-vector constants and variables (otherwise
the solver reports that it is incomplete).

Core Solver. The core solver is based on the slicing algorithms presented in [9, 11].
It decides conjunctions of equalities over Σeq ∪ Σcon in polynomial time, by reducing
the problem to just equality reasoning. The key idea of the algorithm is expressing each
variable as a concatenation of disjoint slices. The coarsest such decomposition that
guarantees that none of the slices overlap given the input set of equalities, is called the
coarsest base. In our experience, the core solver is most efficient on problems involving
only core theory terms, and thus it is heuristically turned on for such instances.

Inequality Solver. The inequality solver LBVineq can decide the satisfiability of (Σeq∪
Σineq)-constraints by using an incremental special-purpose algorithm.3 LBVineq only

3 This problem is a special case of modular difference logic that can be reduced to integer
difference logic, as there is no wrap-around behavior due to overflows.
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needs to reason about < and ≤ since equality can be expressed in terms of ≤, and
disequalities can be reasoned about by requesting a splitting lemma. For the rest of this
section we assume all inequalities are unsigned (the signed case is analogous). We will
use � to denote either < or ≤, and �∗ for the transitive closure of �. A valuation M
is a mapping from bit-vector variables v[n] to constant values in [n]. For convenience,
we extend M to map constants to themselves, and to map other bit-vector terms and
formulas to the constants obtained by mapping their sub-expressions and simplifying.
A valuation M satisfies a bit-vector constraint φ if M(φ) = true.

Definition 1. Let I be a conjunction of inequality constraints over variables and con-
stants of the same sort [n]. A valuation M is the least model of I if M satisfies I and for
all valuations M′ satisfying I and all terms t in I , M(t) ≤ M′(t).

It can be shown that every such satisfiable constraint I has a least model. Given I ,
LBVineq builds the least model by incrementally processing the inequalities. We will
use I to refer to the already processed inequalities, and define the starting model M as:

M(t[n]) :=

{
t[n] if t[n] is a constant,

0[n] otherwise

where 0[n] is the binary representation of 0 in n bits. We maintain the invariant that M is
the least model of I. Given a new inequality a � b, we want to extend M to a least model
of I ∪ {a � b}, or discover that the problem is unsatisfiable. If M(a) � M(b) already
holds, we are done. Otherwise, the least model property guarantees that terms a and b
have the least possible values. Therefore, to satisfy a � b we must increase b’s value, if
possible, to match that of a. The update cannot violate previously satisfied inequalities
of the form {t1 � t2 | t2 �∗ b}. The only terms whose values may need to be updated
further are terms t such that b �∗ t. We reach a conflict when: (i) we try to update
the model value of a constant, (ii) increasing the model value leads to an overflow or
(iii) we detect an inequality cycle. The algorithm can be efficiently implemented using
a priority queue that prioritizes updating the value of terms with lower model values.

(a) (b)

Fig. 1. The nodes are bit-vector terms; gray nodes are constants and white ones variables. Each
node has an associated constant, its M value. The continuous edges represent inequalities. The
dotted edges are reason edges: they point to the node that forced the last update to the current
node’s value.
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Example 1. Consider the following set of inequalities over bit-vector terms of bit-width
8 where, for brevity, we use decimal numerals to denote bit-vector constants: I = {2 <
a, a ≤ c, b < c, c ≤ 3}. Figure 1a shows the least satisfying model for I. To process
the new inequality a ≤ b, we add the corresponding inequality edge, and update the
value of b to M(a). This in turn requires increasing the value of c to M(b) + 1. We
identify a conflict while revisiting c ≤ 3: 3 is a constant and M(c) ≤ 3 does not hold
(Figure 1b). Because c has the lowest possible value, I must be unsatisfiable. We build
the following conflict by including c ≤ 3 and traversing back along the constraints that
force the value of c to be 4: {2 < a, a ≤ b, b < c, c ≤ 3}.

Bit-Blasting Solver. Finally, the bit-blasting solver LBVbb can decide the satisfiability
of bit-vector constraints over the entire Σbv signature. At its heart is a second SAT
solver SATbb distinct from the DPLL(T ) Boolean engine. Our implementation uses the
open source MiniSAT solver [15]. We instrumented MiniSAT to efficiently implement
the main requirements on a T -solver: incrementality, conflict detection and propagation
of entailed literals.

Incrementality. Most SAT solvers do not have full support for incremental solving.4 In-
crementality can be simulated through a feature known as solve with assumptions [15]:
given a fixed set C of input clauses, the SAT solver can check their satisfiability with
respect to the assumption that some of the variables appearing in C are assigned to be
true or false. We exploit this feature by creating a marker variable aBB for each atom a
in the formula being checked. When a appears in an assertion, instead of bit-blasting a,
we bit-blast aBB ⇔ a. We can then call solve with assumptions with the set of literals
ABB := {aBB | a ∈ A} ∪ {¬aBB | ¬a ∈ A}.
Conflict Generation. If A is unsatisfiable, we use SATbb to determine an inconsistent
subset of ABB via resolution and return the corresponding subset of A as a conflict.

Propagation. On a non-final call to LBVCheckbb, we want to be able to determine
whether any theory literals can be propagated without doing a full SAT check. To do
this, we again use solve with assumptions but only allow the SAT solver to do Boolean
Constraint Propagation (BCP), stopping it before any decisions are made. If BCP suc-
ceeds in deducing the value of a marker variable aBB , the corresponding atom a can be
propagated to have the same value that BCP assigned to aBB . The explanation for the
propagation can be computed using the SAT solver’s conflict resolution infrastructure.
As mentioned in Section 4, it is important to compute propagation explanations lazily
as not all propagated literals may need to be explained. Unfortunately, the interaction
between the SAT solver’s solve-with-assumptions feature and non-chronological back-
tracking can cause the solver to lose the explanation for a propagated literal. To over-
come this problem, we implemented a simple check that detects when backtracking can
lead to the loss of explanations, and in such cases backtrack to a more conservative level
instead. Algorithm 3 shows the implementation of LBVCheckbb. BvSatBCP implements
the call to SATbb limited to BCP, while BvSatSolve is a normal full call to SATbb.

4 More input clauses can be added during solving, but the main challenge of removing problem
clauses remains.
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Algorithm 3. LBVCheckbb
Input: 〈A, final 〉
〈P, L〉 ← BvSatBCP(A) ;
if final and L = ∅ then

L ← BvSatSolve(A) ;

return 〈P, L〉 ;

5.2 Lazy Techniques

The lazy DPLL(T ) framework enables several techniques that are difficult or impossible
to use with eager solvers. In this section we discuss two of these techniques: applying
word-level rewrites during solving (inprocessing) and reducing the problem size by only
reasoning about atoms relevant in the current search context (relevancy-based decision
heuristics).

Inprocessing Techniques. Before engaging in potentially expensive SAT reasoning,
LBVbb relies on the inprocessing module to check if the problem can be solved or sig-
nificantly simplified by word-level simplification techniques. This is done by a process,
described in Algorithm 4, that has the flavor of Gaussian elimination. It works by iter-
ating over a worklist of theory literals W while maintaining a substitution map σ.

Initially, W is initialized to the set of literals A assigned to true in the current search
context. For each worklist assertion w ∈ W , we first apply the substitution map, and
then rewrite it using word-level simplification techniques (Simplify). The SolveEq

procedure then attempts to solve the updated assertion w to obtain a new substitution.
Alternatively, it can also learn new equalities entailed by w and add these to the work-
ing list.5 The working list W and the substitution map σ are updated with this new
information, and the process is repeated to a fixpoint.6

If any of the assertions in W reduces to false , we have a conflict. If there are no
such obvious inconsistencies we can run the LBVCheckbb routine on the simplified set
of assertions W . We do this heuristically, if the problem has been reduced enough in
terms of the circuit size. We found checking the simplified assertions when they are less
than 50% of the size of the original assertions to be a good heuristic.

Relevancy-Aware Decision Heuristics. The idea of relevancy is best understood with
a simple example. Let ψ = ¬a ∧ (b ∨ ϕ) with assignment A = [¬a; b]. Note that A
propositionally satisfies ψ regardless of how many unassigned literals are in ϕ. The
literals in ϕ are irrelevant.

The DPLL(T ) framework makes it easy to add a decision heuristic that avoids split-
ting on irrelevant literals. In particular, we can (i) detect when an assignment A be-
comes propositionally satisfying and stop early in order to reduce the number of literals

5 In our implementation, we solve xor equations and slice equations between concatenation
expressions to get new equalities.

6 The data-structures are enhanced with extra book-keeping information to keep track of expla-
nations. We omit these details for simplicity.
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Algorithm 4. IN-PROCESSING

Input: A
〈W, σ〉 ← 〈A, []〉;
changed← true;
while changed do

changed← false;
for w ∈ W do

w← Simplify(σ(w)) ;
〈W’, σ′〉 ← SolveEq(w);
if W’ �= ∅ or σ �= [] then

changed← true ;

〈W, σ〉 ← 〈W ∪W’, σ;σ′〉;

if false ∈ W then
return Conflict;

return BvSatSolve(W);

sent to theory solvers and (ii) employ decision heuristics that allow the SAT solver to
decide only on literals relevant in the current search context. We use circuit-based tech-
niques of maintaining justification frontiers [2,17] to track which literals are relevant in
each context.7 The call to Satisfies in Algorithm 1 examines the Boolean structure of
ψ and determines whether the current assignment A is sufficient to propositionally sat-
isfy it. It does so by incrementally computing the justification frontier as the assignment
A changes.

This heuristic, which we also call the justification heuristic, has a significant perfor-
mance impact on bit-vector benchmarks, as shown in Section 6.

6 Experimental Results

In this section we present a comparative experimental evaluation of the eager and lazy
approaches8. To this end we implemented both the lazy theory solver LBV as well as
an eager theory solver within the SMT solver CVC4. After applying the same prepro-
cessing steps as the lazy solver, the eager solver uses standard bit-blasting techniques
to assert the formula to its MiniSAT backend. To gauge the complementarity of the
two approaches we used CVC4’s portfolio infrastructure which allows us to run the
two solvers in different parallel threads. In this setup, CVC4 waits for the first thread
that finishes with an answer and then kills the other, thus getting the best performance
between the two theory solvers each time (modulo memory usage).

All experiments were performed on AMD Opteron 250 2.4GHz machines with a
time limit of 5 minutes and memory limit of 3GB. We evaluate our solvers’ perfor-
mance on a large selection of SMT-LIB v2.0 benchmarks from the QF BV logic [5].
Because of time constraints, we could not include all 31K QF BV benchmarks from

7 A different technique to reduce the number of literals sent to theory solvers is proposed in [12].
8 Source code and binaries at http://cvc4.cs.nyu.edu/papers/CAV2014-bitvectors/

http://cvc4.cs.nyu.edu/papers/CAV2014-bitvectors/
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(a) cvcLz vs cvcLz-J (b) cvcLz vs cvcLz-P (c) cvcLz vs cvcLz-Alg

Fig. 2. Impact of various features of the lazy solver. All plots are on a logarithmic scale.

SMT-LIB v2.0. Instead, we selected 3786 of them by focusing on examples coming
from verification applications: we excluded the answer-set programming asp family as
well as the check2 and crafted families that contain toy examples. To prevent very large
families such as sage (26K) and spear (1694) from dominating the results, we used a
randomized process to select a representative fraction of the benchmarks from them.
Because many of the sage problems are very easy, we considered only benchmarks
that take more than 10 seconds to solve. From the spear family we included all small
sub-families, and randomly selected a fraction of the largest subfamily. For brevity, we
merge here the four families with a brummayerbiere prefix into brummayerbiere*, uclid
and uclid-contrib-smtcomp09 into uclid*, and stp and stp-samples into stp*.

We use cvcE to refer to the implementation of the eager solver in CVC4, cvcLz for the
lazy LBV solver and cvcPll for the parallel solver. The letters preceeded by a minus sign
represent which feature of cvcLz has been turned off : J for the justification heuristic,
P for LBVbb propagation, Alg for all of the algebraic sub-solvers (LBVeq, LBVcore,
LBVineq) plus the word-level in-processing techniques.

The scatter plots in Figure 2 compare the runtime performance of the full featured
lazy solver with a version without one of the features above. Figure 2a shows the impact
of the justification heuristic. While overall the justification heuristic improves perfor-
mance, it has a negative impact on benchmarks in the mcm family. These problems
consist of conjunctions of large disjunctions. On such problems the justification heuris-
tic forces SATmain to choose a naive pattern of decisions by always initially deciding on
the first disjunct of each conjunct. Figure 2b shows that LBVbb propagation is essen-
tial to solving difficult benchmarks, although it adds some overhead to the easier ones.
Figure 2c shows the impact of all the word-level techniques enabled by the lazy ap-
proach. The plot shows a relatively small overhead when these techniques do not help,
but dramatic improvements when they do apply.

Table 2 compares the performance of cvcE, cvcLz and that of the only other bit-vector
solver that supports lazy bit-blasting: mathsatL (smtcomp2012 version with lazy solv-
ing enabled). The eager solver cvcE performs better on families that involve bit-level
manipulations, such as the brummayerebiere* families. The lazy solver cvcLz excels
on families calypto, tacas07, lfsr, core and simple processors that benefit from alge-
braic reasoning. Furthermore, cvcLz solves 6 problems that none of the other solvers



692 L. Hadarean et al.

Table 2. Eager vs Lazy

cvcE cvcLz mathsatL
set solved time (s) solved time (s) solved time (s)

vs (VS3,11) 0 0.0 0 0.0 0 0.0
be (bench-ab,285) 285 57.5 285 2.4 285 2.4
br (brummayerbiere*,206) 138 3732.3 112 2923.2 100 3937.5
co (core,672) 132 3208.4 672 596.4 509 22345.5
lf (lfsr,240) 186 9451.9 240 2286.3 177 12412.2
si (simple-processor,64) 33 1566.4 64 48.7 18 845.6
ca (calypto,23) 10 9.2 15 100.7 11 233.4
dw (dwp-formulas,332) 332 68.2 332 5.5 332 5.9
ga (galois,4) 1 0.4 1 0.4 1 2.5
gu (gulwani-pldi08,6) 6 49.1 6 63.9 6 73.8
mc (mcm,185) 64 3937.7 13 392.9 2 278.9
pi (pipe,1) 0 0.0 0 0.0 0 0.0
ru (rubik,7) 5 157.9 2 110.6 6 313.4
sa (sage,189) 188 205.0 188 174.9 189 51.2
sp (spear,680) 675 24057.0 648 9347.0 478 14579.5
st (stp*,427) 424 170.3 424 108.6 425 70.5
ta (tacas07,5) 3 19.3 5 294.4 5 136.8
uc (uclid*,423) 414 2651.5 420 3148.9 420 1132.5
uu (uum,8) 2 33.9 1 1.5 1 0.3
wi (wienand-cav2008,18) 14 32.2 14 34.7 14 37.5

2912 49408.4 3442 19641.2 2979 56459.6
us (unique-solve) 4 6 0

Table 3. Comparison with other solvers

cvcPll yices2 stp2 z3 boolector sonolar mathsat
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

vs (11) 0 0.0 0 0.0 1 270.3 3 341.7 2 258.7 0 0.0 0 0.0
be (285) 285 39.1 285 0.0 285 0.2 285 8.5 285 3.0 285 0.1 285 2.5
br (206) 137 3024.0 113 1718.1 143 3188.5 115 4005.1 155 4060.8 125 1858.9 123 3741.9
co (672) 672 726.6 326 5717.9 191 3126.4 672 798.4 656 32176.8 266 2796.8 587 21791.1
lf (240) 240 2481.3 181 8394.7 196 8896.3 232 12183.3 213 15939.2 219 3385.1 139 7644.1
si (64) 64 57.8 35 824.3 54 1911.1 60 1134.6 60 2377.2 37 1038.4 25 1283.3
ca (23) 15 349.1 9 6.1 11 3.5 11 50.8 9 45.0 9 20.4 11 56.2
dw (332) 332 47.4 332 0.0 332 0.9 332 10.0 332 0.0 332 0.2 332 4.2
ga (4) 1 0.5 1 0.1 1 0.1 1 0.2 1 0.3 1 0.1 1 0.6
gu (6) 6 44.8 6 25.5 6 26.7 6 31.2 6 42.1 6 39.3 6 56.5
mc (185) 63 6152.2 54 5308.3 44 3616.9 55 4302.8 45 3452.2 50 3592.0 42 3429.4
pi (1) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
ru (7) 5 142.7 5 99.5 7 323.4 6 148.2 7 343.5 7 190.1 6 342.8
sa (189) 188 215.5 189 9.9 189 35.2 189 49.5 189 706.9 189 39.9 189 49.1
sp (680) 677 11028.4 680 400.5 679 1756.6 675 7546.6 676 5360.9 677 6910.1 676 13175.0
st (427) 424 168.0 425 5.1 425 41.9 425 58.8 425 22.9 425 46.7 425 47.1
ta (5) 5 249.8 3 1.5 5 348.4 3 7.2 5 465.6 5 410.4 5 54.9
uc (423) 419 3315.6 416 58.6 422 902.0 421 1856.4 422 1368.0 423 1207.7 423 1226.6
uu (8) 2 605.9 2 30.4 2 29.1 2 11.1 2 11.5 2 17.7 2 64.5
wi (18) 14 30.8 14 68.6 14 64.6 14 41.4 14 23.3 9 36.1 14 36.6

3549 28679.7 3076 22669.3 3007 24542.1 3507 32585.9 3504 66658.1 3067 21590.1 3291 53006.6
us * 3 1 2 10 0 1
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we considered could solve in the given time limit. The unique-solve row at the bottom
of Table 2 and Table 3 shows this figure for all other solvers.

Finally, in Table 3 we compare cvcPll with other state-of-the-art bit-vector solvers:
yices (2.1.1), stp2 (r1673), z3 (r0e74362), boolector (1.6), sonolar (smtcomp2012) and
mathsat (smtcomp2012 with eager solver). For the parallel solver cvcPll we report wall
clock time. The portfolio solver cvcPll solves the largest number of problems. We at-
tribute this increase in performance to the complementary nature of the two approaches.
To illustrate that the lazy cvcLz approach complements eager solvers, we also simulated
running cvcLz in parallel with two of the most efficent eager bit-vector solvers: boolec-
tor and z3. We did this by chosing the best result from either solver for each problem.
Even for these solvers, cvcLz greatly improves on their performance: the combined
boolector+cvc4L solves 57 more problems in a quarter of the original boolector total
time and z3+cvcL solves 42 more problems in just over half the total time.

Discussion. We now provide a more detailed analysis of the tradeoffs between the two
approaches, based on our experimental results.

The eager solver cvcE is particularly efficient on hardware equivalence checking
benchmarks that verify the equivalence of a bit-level implementation to its word-level
specification. In such cases the correctness of the proof often depends on bit-level prop-
erties that benefit from efficient propositional analysis more than the kind of algebraic
reasoning done in the lazy solver. This is especially obvious in the difference in the per-
formance of cvcE and cvcLz on the brummayerbiere* family, as can be seen in Table 2.

Maintaining the word-level structure during the computation in LBV requires es-
tablishing a common language between SATmain, the SAT solver driving the main
DPLL(T ) search, and SATbb. In our approach, this language consists of the Tbv-atoms
and represents a frontier that partitions the problem between the two solvers. LBV con-
flicts can be seen as interpolants between the part of the problem describing the control
flow (the Boolean abstraction) and the datapath. Restricting the conflict language to
Tbv-atoms limits the granularity of the conflicts: we cannot express bit-level conflicts.
In some cases this can prove inefficient. Consider the following example.

Example 2. The following assertions are unsatisfiable. All paths through the disjunction
force the last bit of the xi variables to be 0[1]. Therefore their disjunction must also have
the least significant bit equal to 0[i] which makes the equality false.

n∨
i=0

xi = y ◦ 1[1] ∧
n∧
i=0

(xi = ti ◦ 0[1] ∨ xi = si ◦ 0[1])

In Example 2, an eager solver may potentially learn that the last bit of xi has to be
0. The lazy solver on the other hand, will have to try all possible paths through the
disjunction and learn a conflict for each one of them.

For problems with expensive arithmetic operators, the benefits of maintaining the
word-level structure outweigh this limitation. While eager solvers have sophisticated
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rewrite techniques, such techniques are usually only applicable at the top level. Equiva-
lence checking problems between higher level designs can require proving the equiva-
lence of results obtained by taking different control-flow paths. These can be encoded as
large ite (if-then-else) term trees with a similar structure, as in the following example.

Example 3. The formula below is unsatisfiable. The conditions on all paths through the
ite trees force the leaves to be equal.

ite(x0 = y0, x0 ∗ (ite(x1 = y1, 2 ∗ x1, 2)), 2) �=
2∗ ite(x0 = y0, y0 ∗ (ite(x1 = y1, y1, 1)), 1)

Collecting the assertions down any ite path in the example, and applying simple
equality substitutions renders each such path trivially unsatisfiable. No multiplication
reasoning is required. However, bitblasting this expression results in a difficult SAT
problem as the large circuits required to model the products obscure the trivial incon-
sistency. The calypto, lfsr and simple processors (Table 2) exhibit this type of struc-
ture. On these families, our LBV in-processing module can often simplify each call to
TheoryCheck to false or a significantly simpler circuit. Other verification problems,
such as checking the correctness of sorting algorithms, rely on the arithmetic properties
of a total order. The equality, core and inequality subsolvers can decide such problems,
often without any bit-level reasoning at all.

7 Future Work

For future work, we plan to both improve the performance of the lazy solver and in-
vestigate heuristics for automatically selecting between the eager and lazy solvers. In
Section 6 we gave some intuition for which of the two approaches is best suited for
which problem structure. It would be interesting to see if it is possible to statically
determine which solver is likely to perform better.

The lazy solver can be improved by adding more sub-theory solvers, such as a sub-
solver complete for some fragment of modular arithmetic. The inprocessing module
currently only handles equality reasoning, xor solving and slicing. Although it is al-
ready remarkably efficient, the SolveEq routine could be generalized to other types of
equation solving.

Another way to improve the performance of the lazy solver is to minimize the con-
flicts obtained from the bit-blasting subsolver. The conflicts returned by that subsolver
with assumptions infrastructure are not guaranteed to be minimal. Indeed, in our expe-
rience they are often non-minimal, in some cases larger than minimal ones by a factor
of 10. The challenge here is to minimize the conflict in an efficiently since satisfiability
queries in Tbv are potentially very expensive.

One way to expand the scope of the lazy bit-vector solver, and overcome some of
its limitation, would be to increase the kind of conflicts it can return. Currently, the
solver can only return conflicts in terms of bit-vector atoms. It would be interesting to
experiment with expanding this vocabulary dynamically, by adding conflicts that refer
to individual bits of the terms. This could potentially be supported by using the splitting
on demand framework [3].



A Tale of Two Solvers: Eager and Lazy Approaches to Bit-Vectors 695

References
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Abstract. This paper describes a new architecture for first-order resolution and
superposition theorem provers called AVATAR (Advanced Vampire Architecture
for Theories and Resolution). Its original motivation comes from a problem well-
studied in the past — dealing with problems having clauses containing proposi-
tional variables and other clauses that can be split into components with disjoint
sets of variables. Such clauses are common for problems coming from applications,
for example in program verification and program analysis, where many ground lit-
erals occur in the problems and even more are generated during the proof-search.

This problem was previously studied by adding various versions of splitting.
The addition of splitting resulted in some improvements in performance of the-
orem provers. However, even with various versions of splitting, the performance
of superposition theorem provers is nowhere near SMT solvers on variable-free
problems or SAT solvers on propositional problems.

This paper describes a new architecture for superposition theorem provers,
where a superposition theorem prover is tightly integrated with a SAT or an SMT
solver. Its implementation in our theorem prover Vampire resulted in drastic im-
provements over all previous implementations of splitting. Over four hundred
TPTP problems previously unsolvable by any modern prover, including Vampire
itself, have been proved, most of them with short runtimes. Nearly all problems
solved with one of 481 variants of splitting previously implemented in Vampire
can also be solved with AVATAR.

We also believe that AVATAR is an important step towards efficient reason-
ing with both quantifiers and theories, which is one of the key areas in modern
applications of theorem provers in program analysis and verification.

Definitions of Avatar (from various dictionaries):

(Hindu Mythology) the descent of a deity to the earth in an incarnate form
or some manifest shape; the incarnation of a god

(Science Fiction) a hybrid creature, composed of human and alien DNA and
remotely controlled by the mind of a genetically matched human being

(Automated Reasoning) a first-order theorem prover, which embodies a
SAT solver controlling the prover’s behaviour

1 Introduction

The work described in this paper started with an attempt to make further improvement
in dealing with problems having clauses containing propositional variables and other
clauses that can be split into components with disjoint sets of variables. The problem
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of dealing with such clauses started with splitting with backtracking, implemented in
Spass [20] and splitting without backtracking [12] implemented in Vampire [9]. A very
extensive investigation of various ways of organising splitting in a theorem prover was
undertaken in [7], where both kinds of splitting were augmented with various options,
including the use of BDDs and SAT solvers. Though the use of splitting results in
the improvement of theorem provers performance, the methods used in them cannot
compete with the methods used in SAT solvers on propositional problems or methods
used in SMT solvers on ground problems with equality.

In first-order theorem proving, theorem provers based on variants of resolution and
superposition calculi (in the sequel simply called superposition provers) are predom-
inant. This is confirmed by the results of the last CASC competitions1, see [19] for a
description of CASC. The top three theorem provers Vampire [9], E-MaLeS and E [17]
are resolution and superposition-based, while the fourth one iProver [8] implements
both an instance-based calculus and resolution with superposition.

Superposition theorem provers use saturation algorithms. They deal with a search
space consisting of clauses. Inferences performed by saturation algoritms are of three
different kinds:

1. Generating inferences derive news clause from clauses in the search space. These
new clauses can then be immediately simplified and/or deleted by other kinds of in-
ference. Examples of generating inferences are binary resolution and superposition.

2. Simplifying inferences replace a clause by another clause that is simpler in some
strict sense. Examples of simplifying inferences are demodulation (rewriting by
ordered unit equalities) and subsumption resolution (binary resolution inference
whose conclusion subsumes one of the premises).

3. Deletion inferences delete clauses from the search space. Examples of deletion in-
ferences are subsumption and tautology deletion.

On hard problems the search space of superposition provers is often growing rapidly,
and simplifications and deletions consume considerable time. Performance of such
provers degrades especially fast when they generate many clauses having more than
one literal (multi-literal clauses for short) and heavy clauses (clauses of large sizes).
There are several reasons for this degradation of performance:

1. The complexity of algorithms implementing inference rules depends on the size of
clauses. For example, subsumption and subsumption resolution are known to be
NP-complete and algorithms implementing them are exponential in the number of
literals in clauses.

2. Storing heavy clauses requires more memory. Moreover, every literal in a clause
(and sometimes every term occurring in such a literal) are normally added to one
or more indexes. Index maintenance requires considerable space and time and op-
erations on these indexes slow down significantly when the indexes become large.

3. Generating inferences applied to heavy clauses usually generate heavy clauses.
Generating inferences applied to clauses with many literals usually generate clauses
with many literals. For example, resolution applied to two clauses containing n1

and n2 literals typically gives a clause with n1 + n2 − 2 literals.

1 http://www.cs.miami.edu/˜tptp/CASC/24/

http://www.cs.miami.edu/~tptp/CASC/24/
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To deal with multi-literal and heavy clauses, one can simply start discarding them af-
ter some time, thus losing completeness as in [14]. Alternatively, one can use splitting.
There are two kinds of splitting described in the literature: splitting with backtrack-
ing (originally introduced in SPASS [20]) or splitting without backtracking (originally
introduced in Vampire [13]).

In this paper we introduce a new way of splitting clauses, driven by a SAT or an
SMT solver. This results in a new architecture for first-order theorem proving, which
we call AVATAR. We show that the use of AVATAR instead of standard architectures
results in a considerable improvement in the performance of theorem provers. Hun-
dreds of problems unsolvable by any prover for years were solved when AVATAR was
implemented in Vampire. Moreover, we believe that AVATAR is a significant step to-
wards major improvements in one of the main problems in modern first-order theorem
proving: reasoning with both quantifiers and theories.

2 Preliminaries

We assume that the reader is familiar with SAT solving and has some knowledge of first-
order theorem provers. A deeper knowledge of superposition theorem proving, as well
as SMT solving, is useful, but not necessary, since we give some background material
on saturation algorithms implemented in superposition theorem provers.

Recall that a (first-order) clause is a disjunction L1 ∨ . . . ∨ Ln of literals, where a
literal is an atomic formula or a negation of an atomic formula. A literal or clause is
ground if it contains no occurrences of variables. In the context of splitting we some-
times consider a clause as a set of its literals. In other words, we assume that clauses
do not contain multiple occurrences of the same literal and clauses equal up to permu-
tation of literals are considered equal. We assume that all predicates and functions in
first-order logic are uninterpreted and that the language may contain (but not necessarily
contains) the equality predicate, denoted by =. The empty clause is denoted by �.

Unlike SMT solving, clauses containing variables are considered implicitly univer-
sally quantified. Suppose that C is a clause with variables x1, . . . , xk. Then ∀C will
denote the formula (∀x1) . . . (∀xk)C, also called the universal closure of C. In first-
order theorem proving the semantics of a clause is its universal closure, so a set of
clauses C1, . . . , Cn is satisfiable if and only if so is the set of formulas ∀C1, . . . , ∀Cn.
Any clause obtained by applying a substitution to a clause C is called an instance of
C. If this instance is also a ground clause, it is called a ground instance of C. Satis-
fiability of a set of clauses in first-order predicate logic (in the SMT terminology it is
the logic of equality and uninterpreted predicates and functions) is characterised by the
Herbrand theorem: a set S of clauses is unsatisfiable if and only if some finite set of
ground instances of clauses in S in unsatisfiable.

Our next aim is to explain splitting. In very simple terms, splitting is based on the
following idea. Suppose that S is a set of (first-order) clauses and C1 ∨ C2 a clause
such that the variables of C1 and C2 are disjoint. Then ∀(C1 ∨ C2) is equivalent to
(∀C1)∨ (∀C2), which implies that the set S ∪ {C1 ∨C2} is unsatisfiable if and only if
both S ∪ {C1} and S ∪ {C2} are unsatisfiable.
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Let C1, . . . , Cn be clauses such that n ≥ 2 and all the Ci’s have pairwise disjoint

sets of variables. Then we say that the clause D
def
= C1∨ . . .∨Cn is splittable into com-

ponents C1, . . . , Cn. We will also say that the set C1, . . . , Cn is a splitting of D. For ex-
ample, every ground multi-literal clause is splittable. There may be more than one way
to split a clause, however there is always a unique splitting such that each component
Ci is non-splittable; we call this splitting maximal. It is easy to see that a maximal split-
ting has the largest number of components and every splitting with the largest number
of components is the maximal one. There is a simple algorithm for finding the maximal
splitting of a clause [12], which is, essentially, the union-find algorithm.

In the sequel, when we speak about a splitting of a clause we will only consider max-
imal splittings and only deal with components that are non-splittable. We will denote
arbitrary clauses by D and components by C, maybe with indexes.

Splittable clauses appear especially often when theorem provers are used for soft-
ware verification and static analysis. Problems used in these applications usually have
a large number of ground clauses (coming from program analysis) and a small number
of non-ground clauses (for example, axiomatisations of memory or objects).

3 Saturation Algorithms

In this section we briefly discuss saturation algorithms with redundancy elimination
used in superposition theorem provers. Essentially, a saturation algorithm works with a
set of clauses S (the current search space) and uses a collection of generating, simplify-
ing and deletion inferences. The theoretical basis of saturation algorithms is the notion
of redundancy given e.g., in [1]: a clause D is redundant if D is a logical consequence of
clauses in the search space, which are strictly smaller than D w.r.t. a simplification or-
dering : on clauses. Both simplifying and deletion inferences in saturation algorithms
are designed in such a way that they only remove redundant clauses.

There is more than one saturation algorithm. For illustration we will use the Otter
saturation algorithm [9], though AVATAR works equally well with other saturation
algorithms. For an overview of saturation algorithms we refer to [15,9].

A simplified description of the Otter saturation algorithm is shown in Figure 1. The
algorithms maintains three sets of clauses:

1. active: the set of clauses selected for generating inferences. The algorithm is de-
signed in such a way that all generating inferences among active clauses are applied.

2. passive : clauses that are waiting to be activated. The Otter saturation algorithm
uses passive clauses for simplifying and deletion inferences.

3. unprocessed : clauses that have been generated recently. Unprocessed clauses are
waiting in a queue for a retention test, which normally includes simplification and
deletion inferences applied to these clauses. If a clause C passes the retention test,
this clause (or a clause obtained by simplifying C) is added to passive clauses,
otherwise it is discarded.

At every step, the algorithm either processes a clause new , picked from unprocessed
clauses, or performs generating inferences with the so-called given clause, which is the
clause most recently added to active .
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input: init : set of clauses;
var active , passive , unprocessed : set of clauses;
var given , new : clause;
active := ∅;
unprocessed := init ;
loop

while unprocessed �= ∅
new:=pop(unprocessed );
if new = � then return unsatisfiable;
if retained(new ) then (* retention test *)

simplify new by clauses in active ∪ passive ; (* forward simplification *)
if new = � then return unsatisfiable;
if retained(new ) then (* another retention test *)

delete and simplify clauses in active and (* backward simplification *)
passive using new ;

move the simplified clauses to unprocessed ;
add new to passive

if passive = ∅ then return satisfiable or unknown
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=forward infer(given , active); (* forward generating inferences *)
add backward infer(given, active) to unprocessed ;

(* backward generating inferences *)

Fig. 1. Otter Saturation Algorithm

All operations performed by the saturation algorithm that may take considerable time
to execute, are normally implemented using term indexing, that is, building a special
purpose index data structure that makes the operation faster. For example, all theo-
rem provers with built-in equality reasoning have an index for forward demodulation
(rewriting by ordered unit equalities from active ∪ passive).

4 AVATAR

In this section we describe AVATAR and how it handles splitting. AVATAR consists
of two components: a resolution (or resolution and superposition) theorem prover FO
and a SAT solver SAT. Later we will consider how an SMT solver can be used in
place of SAT. The SAT solver stores propositional clauses, which considered clause
components as propositional literals. To consider them as propositional literals, we will
use a mapping [·] from components to propositional literals. This mapping satisfies the
following properties:

1. [C] is a positive literal if and only if C is either a non-ground component or a
positive ground literal;

2. For a negative ground component ¬C we have [¬C] = ¬[C].
3. [C1] = [C2] if and only if C1 is equal to C2 up to variable renaming and symmetry

of equality.
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FO SAT

¬[C1] ∨ . . . ∨ ¬[Cm] ∨ [C′
1] ∨ . . . ∨ [C′

n] (split clause)

¬[C1] ∨ . . . ∨ ¬[Cm] (contradiction clause)

Solve!

C-interpretation

unsatisfiable

Fig. 2. Cooperation between the components of AVATAR

To implement this mapping, Vampire uses a component index, which maps every com-
ponent C that is either positive or non-ground, into [C]. For every such component C
passed to this index, if C is equal to an already stored component C′ up to variable
renaming and symmetry of equality, the index returns [C′], otherwise it introduces a
new propositional variable [C] and stores the association between C and [C]. We call
a C-interpretation, or a component interpretation any set of propositional variables of
the form [C] or their negations, which does not contain both a variable and its negation.
The definition of a truth of a propositional variable literal in a C-interpretation is stan-
dard. If, for a component C, neither [C], not ¬[C] belongs to the interpretation, [C] is
considered undefined, that is, neither true nor false.

During the proof search, FO and SAT exchange information. The information ex-
change is described in Figure 2.

In a nutshell, AVATAR works as follows. The superposition prover FO works as
usual, using a saturation algorithm. The difference is in the treatment of splittable
clauses. If there is a splittable clause C1∨ . . .∨Cn with components C1, . . . , Cn, which
passed the retention test, it is not added to passive . Instead, [C1]∨ . . .∨ [Cn] it is passed
to the SAT solver. The SAT solver adds the new clause to existing clauses and checks
all clauses for satisfiability. If it is unsatisfiable, we are done. Otherwise, it computes
a C-interpretation I , which is a model of all clauses stored in it. For each literal in the
interpretation, if this literal has a form [C] for some component C, the component C
is passed to FO where it is used as an assertion. The exception are literals of the form
¬[C], where C is a non-ground component, since such a literal does not correspond to
any component.

To explain the cooperation in more detail, we should modify the superposition cal-
culus to deal with these assertions. The description is similar, but not the same as in
splitting with backtracking.

An assertion is a finite set of components. A clause with assertions, or simply an
A-clause is a pair, consisting of a clause D and an assertion A. Such a clause with
assertions will be denoted by (D ← A), or simply D when the assertion A is empty.
We will denote assertions by A and A-clauses as F . An A-clause (D ← C1, . . . , Cm)
is logically equivalent to ∀D ∨ ¬∀C1 ∨ . . . ∨ ¬∀Cm (or, equivalently, to ∀C1 ∧ . . . ∧
∀Cm → ∀D). A standard clause D can be considered as an A-clause with the empty
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set of assertions. We will extend the notation [·] to assertions: for an assertion A =
{C1, . . . , Cm}, we define [A] = {[C1], . . . , [Cm]}.

We call an A-clause (D ← A) splittable if the clause D is splittable. Likewise,
every A-clause of the form (� ← A) is called an empty A-clause. We can change the
superposition calculus (or any other calculus on clauses) to a calculus on clauses with
assertions by turning any rule of the superposition calculus

D1 · · · Dk

D

into a set of rules
(D1 ← A1) · · · (Dk ← Ak)

(D ← A1 ∪ . . . ∪Ak)
,

where A1, . . . , Ak are assertions. Later we will explain how the addition of assertions
affects simplification and deletion rules.

AVATAR uses A-clauses instead of ordinary clauses. At each time moment, the com-
ponents used in assertions are those that are computed by the SAT solver as its last
model. Since this model changes over time, clauses with assertions can be added and
deleted.

We are now ready to describe the AVATAR algorithm. It is defined as a sequence of
steps performed by the superposition prover FO and the SAT solver SAT. These steps
are interleaved. Each step performed by the superposition prover is followed by a step
by the SAT solver and vice versa. After each step performed by FO, some information
is passed from it to SAT, as shown in Figure 2. Likewise, after each step performed by
SAT, some information is passed from it to FO. These steps are described in detail in
the next two sections.

5 The SAT Algorithm

We start with the SAT algorithm since it is simpler that the algorithm employed by
FO. Essentially, the SAT solver is behaving like a standard incremental SAT solver.
It receives, from time to time, new propositional clauses from FO and checks, upon a
“solve” request, satisfiability of the clauses it stores. If they are satisfiable, it passes back
to FO a C-interpretation satisfying all the propositional clauses. Otherwise, it returns
unsatisfiable.

6 The FO Algorithm

In a nutshell, the FO algorithm behaves like a standard saturation algorithm. The main
differences are that it operates on A-clauses and that splittable clauses are not stored.
Instead, for each splittable or empty A-clause (C1 ∨ . . . ∨ Cn ← C′

1, . . . , C
′
m), FO

passes the propositional clause [C1] ∨ . . . ∨ [Cn] ∨ ¬[C′
1] ∨ . . . ∨ ¬[C′

m] to SAT.
In reality, the FO algorithm is more sophisticated than standard saturation algorithms

because of the way it treats simplified and deleted A-clauses. To illustrate the problem,
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consider an example. Suppose that we have two clauses D,D′ such that D subsumes
D′. If D and D′ occur in the search space of a standard saturation algorithm, D′ will be
treated as redundant and can be deleted. In AVATAR, we deal with A-clauses. Suppose
that A-clauses (D ← A) and (D′ ← A′) occur in the current search space and D
subsumes D′. If A ⊆ A′, then (D′ ← A′) can still be considered as redundant and
deleted. If not, we can only delete it temporarily, since the model computed by the SAT
solver can change and make a literal in [A] false, while all the literals in [A′] remain
true. In this case (D ← A) will later be removed from the search space and, to preserve
completeness, (D′ ← A′) must then be undeleted.

For this reason we introduce a special storage for A-clauses that can be temporarily
deleted and then undeleted. This storage will be denoted in the saturation algorithm as
locked . Elements of locked are pairs (F, λ), where F is an A-clause and λ a set of C-
literals. If (F, λ) ∈ locked , we will informally call λ a lock of F . The same A-clause F
can occur in locked with different locks.

We say that a C-interpretation I unlocks a pair ((C ← A), λ) if

1. all C-literals in [A] are true in I;
2. at least one C-literal in λ is either false or undefined in A.

When a pair (F, λ) is added to locked , all of the literals in λ are true in the current
model int computed by the SAT solver (this follows from a general invariant of the
AVATAR algorithm: for every A-clause (D ← A) in the search space, each literal in
[A] is true in this model). If one of the literals in λ later becomes false or undefined,
the A-clause F must be unlocked by removing it from locked and adding it to the set of
unprocessed clauses.

The FO algorithm is shown on Figure 3. Its parts that are specific to AVATAR are
marked by �. Simplifications will be explained separately.

The AVATAR algorithm maintains, in addition to the sets active , passive , and
unprocessed , the following collections.

• A C-interpretation int returned by the SAT solver. This interpretation makes the
assertions of all stored clauses, apart from locked ones, true. We store this inter-
pretation to maintain locking and unlocking operations. To check which clauses
should be locked or unlocked, we compute, at each step, the difference between the
current and the previous values of int .
• The set of A-clauses sat queue waiting to be passed to the SAT solver. We store

A-clauses in sat queue instead of passing them immediately to the SAT solver
because changes in the model found by the SAT solver can induce considerable
changes in A-clauses and other data structures used by the saturation algorithm, so
recomputing this model too often may result in the overall degradation of perfor-
mance. The only exception is made when an empty A-clause is derived. In this case
we recompute the interpretation immediately, since the new model int will make
the given clause (and potentially many other stored clauses) locked or even deleted.
• The set locked of locked A-clauses with locks. A-clauses in this set are temporar-

ily deleted, since for some components C in their assertions, [C] can be false or
undefined in the current C-interpretation int . However, they can be unlocked later.
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input: init: set of clauses;
var active , passive , unprocessed : sets of A-clauses, initially empty;
var given , new : A-clauses;

�var sat queue : set of A-clauses, initially empty;
�var locked : set of pairs (A-clause,lock), initially empty;
�var int : C-interpretation, initially empty;

forall D ∈ init
� if D is splittable or empty
� then move it to sat queue

else move it to unprocessed
loop (* main loop *)

� if sat queue �= ∅ then
� forall A-clauses (C1 ∨ . . . ∨ Cn ← C′

1, . . . , C
′
m) ∈ sat queue

� pass the clause [C1] ∨ . . . ∨ [Cn] ∨ ¬[C′
1] ∨ . . . ∨ ¬[C′

m] to SAT
� sat queue:=∅;
� send the request “solve” to SAT;
� if SAT returns unsatisfiable, then return unsatisfiable;
� int := the the C-interpretation returned by SAT
� forall pairs ((C ← A), λ) ∈ locked unlocked by int
� remove this pair from locked and add (C ← A) it to unprocessed ;
� forall A-clauses (C ← A) in the set active , passive or unprocessed such that [A] �⊆ int
� remove (C ← A) from this set and add ((C ← A),∅) to locked ;
� forall components [C] ∈ int such that (C ← C) �∈ active ∪ passive ∪ unprocessed

add (C ← C) to unprocessed
forall new ∈ unprocessed

� if new is splittable or empty
� then add new to sat queue

else if retained (new) (* retention test *)
� then simplify new by clauses in active ∪ passive ; (* forward simplification *)
� if new was added to unprocessed
� (* backward simplification *)
� then simplify clauses in active ∪ passive by new
� if sat queue is non-empty, then start the main loop again;

if passive = ∅ then return satisfiable or unknown;
given := select(passive); (* clause selection *)
move given from passive to active ;
unprocessed:=forward infer(given, active); (* forward generating inferences *)
add backward infer(given, active) to unprocessed ; (* backward generating inferences *)

Fig. 3. The FO Algorithm

7 Simplifications

We already gave a hint as to how simplifications are performed, when we discussed the
use of locking and treatment of subsumed clauses.

Consider now simplification rules. All simplification rules in Vampire and other su-
perposition provers have the following form:
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if new is unconditionally deleted by A-clauses in active ∪ passive
then do nothing

else if new is conditionally deleted by A-clauses in active ∪ passive with a lock λ
then add (new , λ) to locked

else if new is unconditionally simplified by A-clauses in active ∪ passive into new ′

then add new ′ to unprocessed
else if new is conditionally simplified by A-clauses in active ∪ passive into new ′

with a lock λ
then add new ′ to unprocessed ;

add (new , λ) to locked

Fig. 4. Forward Simplification

D1 · · · ��Dm

D
.

(1)

This means that D is a logical consequence of D1, . . . , Dm and addition of D to the
search space makes Dm redundant. There are three commonly used simplification rules:
subsumption, subsumption resolution, and demodulation (rewriting by unit equalities).
A inference on A-clauses corresponding to (1) is

(D1 ← A1) · · · (Dm ← Am)

(D ← A)
,

where A = A1 ∪ . . . ∪ Am. If A = Am, then (Dm ← Am) can be safely deleted.
Otherwise, consider the assertion A′ = A − Am. At the moment this inference is
performed, all literals in [A] are true in the current C-interpretation int . However, there
may be a moment in the future, when [Am] is still true, while some literals in [A′]
false. In that case (Dm ← Am) must be put back in the search space. Thus, we lock
(Dm ← Am) with the lock A′. Any change to int , which makes a C-literal in [A′] false
will trigger unlocking of this A-clause.

To define simplifications formally, we introduce new notions. Suppose that a clause
C can be simplified into a clause C′ using clauses C1, . . . , Cm. Consider A-clauses
(C ← A) and Fi = (Ci ← Ai) for i = 1, . . . ,m. Define A′ = A1 ∪ . . . ∪ Am.
If A′ ⊆ A, then we say that (C ← A) is unconditionally simplified by F1, . . . , Fm

into (C ← A). If A′ �⊆ A, then we say that (C ← A) is conditionally simplified
by F1, . . . , Fm into (C ← A ∪ A′) with the lock A′ − A. In a similar way we can
define notions (C ← A) is unconditionally deleted by F1, . . . , Fm and (C ← A) is
conditionally deleted by F1, . . . , Fm with the lock A′ −A.

Forward simplification in AVATAR is shown in Figure 4. Backward simplification is
similar and not included in this paper.

To avoid excessive locking and unlocking, it is desirable to have a SAT solver, which
tries to return a model similar to the previously returned one. To this end, one can
use the following simple rule: if a new A-clause passed to the SAT solver contains
a C-literal [C] undefined in the previous C-interpretation, we satisfy this clause by
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making [C] true. Such A-clauses are common and appear when a new component is
found. Using this rule also helps the SAT solver, since it does not have to be run at all
when all recently added A-clauses have this property.

When all literals in a new A-clause passed to the SAT solver are false in the current
C-interpretation int , this interpretation must change. For example, this always happens
when we derive an empty A-clause (�← A). Phase saving in SAT solvers introduced
in [10] assigns to a propositional variable a value that was most recently assigned to it.
Although we did not make experiments with various strategies in a SAT solver, phase
saving seems to be useful for achieving a “small model difference” effect. We also use
a data structure allowing one to find locked and unlocked clauses upon changes in the
SAT solver model in time linear in the size of the number of found clauses plus the
number of variables that changed their values.

8 Term Indexing

When we discuss the use of splitting in superposition theorem provers, it is very impor-
tant to understand how the use of splitting affects other components of such provers.
The efficiency and power of modern superposition theorem provers comes from two
techniques: redundancy elimination (see [1] for the theory and [14] for the implemen-
tation aspects) and term indexing [18].

Even when simplifications are used, the search space can quickly grow to hundreds
of thousands of clauses. To perform inferences on such a large search space efficiently,
theorem provers maintain several indexes storing information about terms and clauses.
These indexes make it easier to find candidates for inferences. In some cases inferences
can be performed only by using the relevant index, without retrieving clauses used
for these inferences. The number of different indexes in theorem provers varies and
can be as many as about 10. Frequent insertions and deletions in an index can affect
performance of a theorem prover. A typical example is when a theorem prover generates
an equality a = b between two constants and uses it to rewrite a into b. For nearly all
indexing techniques used in the superposition theorem provers, every term and clause
containing a must be removed from all indexes and a new term containing b inserted in
them again. Doing this single simplification step on an indexed set with 100,000 clauses
can take a very long time.

In AVATAR, clauses can be locked and then unlocked. This happens often when the
number of clauses stored by the SAT solver grows and it recomputes its C-model int .
Frequent deletions of a clause from all indexes it is stored in, followed by its insertion in
these indexes, can be very expensive. There is an alternative to deleting locked clauses
and information about them from indexes. If an A-clause is deleted or simplified con-
ditionally, we do not remove it from indexes at all. Instead, we change index retrieval
operations. For each successful retrieval operation we check if the result is a locked
clause. If it is locked, we ignore the retrieved clause and the corresponding inference.
This alternative is not yet implemented in Vampire and requires further experiments.
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9 Experiments

For our experiments we reproduced the experiments from [7], where various versions
of splitting were considered. In fact, AVATAR and some decisions made in it (such as
treatment of locked literals in indexes and addition of negations of ground components)
are due to what we learned from experiments [7]. We will not show all results from [7]
but only consider the most relevant part, where we compare the performance of differ-
ent versions of splitting. Note that such comparisons are very hard for the following
reasons:

1. One cannot simply compare AVATAR to, say, splitting with backtracking, since the
latter can be used with different options, giving very different results.

2. In general, a value of a strategy (a collection of parameter-value pairs) is hard to
understand. Some strategies perform very well on the average but cannot solve
problems unsolvable by other strategies. Modern theorem provers treat hard prob-
lems with a cocktail of strategies. For example, Vampire has a CASC mode [9]
doing exactly that. A collection of strategies, each of which is bad on the average,
can easily outperform a collection of strategies, each of which is good on the aver-
age. On the other hand, having too many strategies is not good, since running all of
them may consume a considerable time, so strategies that solve many problems are
useful as part of a collection: indeed, theorem provers are normally used with short
time limits, so that one cannot afford running too many strategies on a problem.

New strategies are most useful if they solve many new problems, and especially with
short running times. In this case they can be used to create more powerful cocktails than
those used before.

Our experiments have shown that AVATAR shows outstanding results both in terms
of its average performance and in the number of problems that it can solve and that
were previously unsolvable by any existing prover.

For benchmarking we used unsatisfiable TPTP problems having non-unit clauses
and rating greater than 0.2 and less than 1. Essentially, the rating is the percentage of
existing provers that cannot solve a problem. For example, rating greater than 0.2 means
that less than 80% of existing theorem provers can solve the problem. Likewise, rating
1 means that the problem cannot be solved by the existing provers. However, the rating
evaluation uses a single mode of every prover, so it is possible that the same prover
can solve a problem of rating 1 using a different mode. For this reason, we also added
problems of rating 1 that are solvable by some version of Vampire. We excluded very
large problems since for them it was preprocessing, but not other options, that affects
results the most. This resulted in selecting 6892 TPTP problems for our experiments.

To conduct our experiments, we took a Vampire strategy that is believed to be nearly
the best in the overall number of solved problems, and generated the 481 variations of
this strategy obtained by setting the splitting parameters to all possible values described
in [7], In addition, we used a single run of this strategy using AVATAR.

Only 5,273 (about 77% of all problems) were solved by at least one splitting strategy.
The results are summarised in Table 1. They show that AVATAR is very robust, resulting
in a considerable increase of the number of solved problems over the best strategies
using other versions of splitting.
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Table 1. Problems solved by each setting of the splitting strategy

splitting strategies worst average best
off 25 3833 3869 3880
backtracking 64 2538 3889 4381
non-backtracking 416 2489 3595 4126
AVATAR 1 4716 4716 4716

The second series of experiments was run on our cluster of 45 servers. Each server
has 16G RAM and 4 cores. We used 3 cores on each server since we observed that
using all 4 often results in the operating system putting two instances of Vampire on
the same core. This results in 135 instances on Vampire running in parallel. The ex-
periments were run for over 6 months in 2012–2013. The aim of this series of exper-
iments was to solve as many TPTP problems overall as possible; and its results were
used to configure Vampire for the last CASC competition CASC-24. Eventually, Vam-
pire with AVATAR was able to solve 421 problems unsolvable by Vampire without
AVATAR and by any other prover. To get the results of other provers, we used the file
ProblemAndSolutionStatistics shipped with TPTP, which records results on
every TPTP problem by nearly all theorem provers in the recent history. On the con-
trary, Vampire using splitting with and without backtracking was able to solve only 17
problems unsolvable by any strategy using AVATAR. Solving over 400 previously un-
solvable problems is a remarkable result since such all these problems are very hard. In
the past, the implementation of various novelties in Vampire would normally result in
solving from a few to about 30 previously unsolvable problems.

The experimental results were so successful that all previously implemented code
for handling splitting was completely removed from the latest versions of Vampire,
resulting in considerable simplifications in its code and better maintainability.

10 Using an SMT Solver or Other Theory Solvers

Another interesting feature of AVATAR is that for a combination of first-order logic
with theories one can use any theory solver instead of a SAT solver. In particular, for
problems with equality one can use an SMT solver for logic with equality and uninter-
preted functions. Non-ground components are then treated in the SMT solver as before,
as propositional variables. Ground components can be used by the SMT solver as the-
ory literals. We added to Vampire a very simple SMT solver for logic with equality and
uninterpreted functions. This addition allowed us to solve some TPTP problems previ-
ously unsolved by any prover, including Vampire using AVATAR and a SAT solver.

The SAT and the SMT solvers implemented in Vampire are very simple and much
weaker than best SAT and SMT solvers. It will be interesting to see how the use of
better SAT and SMT solvers affects the performance of AVATAR.

There is an interesting option that can be used for logic with equality and maybe
other theories. Instead of passing back to FO a propositional model, an SMT solver can
pass some canonical representation of the congruence relation computed by it. Also,
the SMT solver can use ground (and maybe also non-ground) unit equalities produced
by the superposition prover. We leave these extensions as future work.
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11 Related Work

The author believes that proving theorems with both quantifiers and theories is the main
problem in modern first-order theorem proving. In particular, it is crucial for applica-
tions of theorem provers in program analysis and also in interactive theorem provers.
AVATAR offers an architecture different from those proposed in first-order theorem
provers able to handle theories, including SPASS+T [2,11], Z3 [5], CVC4 [3], Princess
[16] and Beagle [4].

This paper was motivated by our analysis of the results [7], which contains an ex-
tensive discussion of splitting in superposition theorem provers. In particular, it uses
splitting in various forms and SAT solvers, but not in the way discussed in this paper.
Earlier work on splitting includes [20] and [13].

Paper [6] describes a calculus DPLL(Γ) using a superposition prover together with
a SAT or an SMT solver (Z3) in a way similar to AVATAR. Ground literals decided and
implied by the SAT solver were used as hypotheses to first-order clauses. Our approach
is different in several aspects:

1. We use arbitrary components, while DPLL(Γ) uses only ground literals;
2. We consider the SAT solver as a black box producing models, while in DPLL(Γ)

the SAT solver and the superposition prover architectures and calculi are mutu-
ally dependent. The backjump rule and locking (disabling) first-order clauses in
DPLL(Γ) essentially uses decision levels of the SAT solvers. The use of decision
levels makes DPLL(Γ) is very similar to splitting with backtracking, though with
some improvements due to the use of a SAT solver.

Also, [6] discuss very different benchmarks, where theory reasoning and E-matching
are often required to solve problems.

12 Conclusion

We described a new architecture AVATAR for first-order theorem provers. In this archi-
tecture, splitting in a theorem prover is driven by a SAT (or an SMT) solver. When the
input problem is ground, AVATAR is as efficient as a SAT solver (or an SMT solver for
logic with equality). On non-ground problems, an implementation of AVATAR in Vam-
pire outperforms the previous versions of Vampire by a very large margin. In particular,
using AVATAR allowed us to solve 421 TPTP problems previously unsolvable by any
first-order theorem prover.

We believe that AVATAR will become a standard architecture for future first-order
theorem provers and can be especially successful in reasoning with both quantifiers and
theories. It turned out to be effective in passing information from a first-order theorem
prover to a SAT or an SMT solver. Nonetheless, AVATAR does not solve the reverse
problem: passing information from an SMT solver to the first-order prover, which is
currently done by other approaches, such as E-matching.

Acknowledgments. We thank Krystof Hoder, who implemented the first version of
AVATAR, Giles Reger, Laura Kovács and Martin Suda for discussions and reading pre-
liminary versions of this paper.
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Abstract. Separation logic (SL) is a widely used formalism for verifying heap
manipulating programs. Existing SL solvers focus on decidable fragments for
list-like structures. More complex data structures such as trees are typically un-
supported in implementations, or handled by incomplete heuristics. While com-
plete decision procedures for reasoning about trees have been proposed, these
procedures suffer from high complexity, or make global assumptions about the
heap that contradict the separation logic philosophy of local reasoning. In this pa-
per, we present a fragment of classical first-order logic for local reasoning about
tree-like data structures. The logic is decidable in NP and the decision proce-
dure allows for combinations with other decidable first-order theories for reason-
ing about data. Such extensions are essential for proving functional correctness
properties. We have implemented our decision procedure and, building on earlier
work on translating SL proof obligations into classical logic, integrated it into
an SL-based verification tool. We successfully used the tool to verify functional
correctness of tree-based data structure implementations.

1 Introduction

Separation logic (SL) [30] has proved useful for building scalable verification tools
for heap-manipulating programs that put no or very little annotation burden on the
user [2,5,6,12,15,40]. The high degree of automation of these tools relies on solvers for
checking entailments between SL assertions. Typically, the focus is on decidable frag-
ments such as separation logic of linked lists [4] for which entailment can be checked
efficiently [10, 31]. Although there exist expressive decidable SL fragments that sup-
port complex data structures such as trees [18], these fragments have very high com-
plexity. Therefore, reasoning about tree data structures is mostly unsupported in actual
implementations, or handled by incomplete heuristics [29, 35]. This raises the question
whether a practical and complete entailment procedure for SL of trees can be realized.

Contributions. In this paper, we give a positive answer to this question. Our solution
builds on our earlier work on reducing entailment checking in separation logic to sat-
isfiability checking in classical first-order logic [32]. Our main technical contribution
therefore lies in the identification of a fragment of first-order logic that (1) supports
reasoning about mutable tree data structures; (2) is sufficiently expressive to serve as
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a target of our SL reduction; and (3) is decidable in NP. We call this logic GRIT (for
Graph Reachability and Inverted Trees). The decision procedure for GRIT exploits lo-
cality of an axiomatic encoding of the logic’s underlying theory and reduces satisfiabil-
ity of GRIT formulas to satisfiability in effectively propositional logic (EPR). The latter
is automated using an SMT solver. One advantage of this approach is that it allows for
combinations with other decidable first-order theories. We therefore study several de-
cidable extensions of our basic logic that utilize such combinations to support reasoning
about data values stored in trees (e.g., sortedness constraints).

We have implemented our decision procedure on top of the SMT solver Z3 [11] and
integrated it into our SL-based verification tool GRASShopper [33]. We successfully
used the tool to automatically verify memory safety and consistency properties of tree-
based data structures such as skew heaps and binary search trees. We have further used
the tool to verify functional correctness of a tree-based set data structure and a union-
find data structure. Proving such strong functional correctness properties often requires
user-provided hints in the form of intermediate lemmas. However, GRASShopper can
verify them completely automatically.

Related Work. The decision procedure for the target logic of our SL reduction draws
ideas from the efficient SMT-based techniques for reasoning about reachability in func-
tion graphs [19, 23, 36, 38]. These techniques can be generalized to logics of trees [39]
by viewing trees as inverted lists [3]. We make three important improvements over [39].
First, our logic does not make the global assumption that the entire heap forms a forest.
This is important because such global assumptions contradict the philosophy of sepa-
ration logic, where assertions express properties of heap regions rather than the entire
heap. In particular, such assumptions preclude the encoding of the frame rule, which
is crucial for enabling compositional program verification using separation logic. Sec-
ond, we greatly simplify the decision procedure presented in [39]. This simplification
turns a decision procedure that is mostly of theoretical interest into a procedure that is
efficiently implementable. Finally, we consider extensions for reasoning about data.

Most other known decidable logics for reasoning about trees rely on monadic second-
order logic (MSOL) [22, 37]. However, the high complexity of MSOL over trees limits
its usefulness in verification. There exist some other expressive logics that support reach-
ability in trees with lower complexity [8, 13, 17, 41]. All these logics are still at least in
EXPTIME, and their decision procedures are given in terms of automata-theoretic tech-
niques, tableaux procedures, or small model properties. These can be difficult to combine
efficiently with SMT solvers. One exception is the STRAND logic [26], which combines
MSOL over trees with a data logic. There exists an implementation of a decision proce-
dure for a decidable fragment of STRAND, which integrates MONA and an SMT solver.
While the complexity of this procedure is at least double exponential, it has shown to be
practically efficient [27]. However, similar to the logic in [39], STRAND makes global
assumptions about the structure of the heap and is therefore inappropriate for an encod-
ing of separation logic. Another orthogonal logic for reasoning about heap structures and
data is described in [7]. This logic is incomparable to GRIT because it supports nested
list structures but not trees, while GRIT supports trees but no nested structures.

Other tools that have been used for proving functional correctness of linked data
structure implementations include Bedrock [9], Dafny [24], Jahob [42], HIP/SLEEK
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1 struct Node { var d: int; var l, r: Node; ghost var p: Node; }
2

3 procedure extract max(rt, ghost pr: Node, implicit ghost C: set[int]) returns (nrt, max: Node)
4 requires bst(rt, pr, C) � rt � null;
5 ensures bst(nrt, pr, C � {max.d}) � acc(max);
6 ensures max.r � null � max.p � null � max.d � C � (�z � (C � {max.d})). z < max.d);
7 {
8 var c, m: Node;
9 if (rt.r != null) {

10 c, m := extract max(rt.r, rt);
11 rt.r := c;
12 return rt, m;
13 } else {
14 c := rt.l; rt.p := null;
15 if (c != null) c.p := pr;
16 return c, rt;
17 } }

Fig. 1. Extracting the node with the maximal value from a sorted binary search tree

[29], and VeriFast [21]. While these tools can handle more programs and properties
than GRASShopper supports, they also require more user guidance, either in the form
of annotated ghost state or lemmas for discharging intermediate proof obligations.

Static shape analysis tools such as Forester [2] can automatically infer data structure
invariants, e.g., that a specific reference points to a sorted tree. However, they only
infer restricted properties about data stored in the heap and can usually not verify full
functional correctness of data structure implementations.

2 Motivating Example and Overview

We motivate our approach through an example of a procedure that extracts the node
storing the maximal value from a sorted binary search tree. The procedure and its spec-
ification are shown in Figure 1.

Specification. The extract max procedure takes as argument the root of a binary search
tree. The tree represents a set of integer values C, which is declared as an additional ghost
parameter of the procedure. The precondition of the procedure, denoted by the requires
clause, is an SL assertion that relates the two parameters using the inductive predicate
bst(rt,pr,C). This predicate describes a heap region that forms a sorted binary search tree
with root rt, parent node pr, and that stores the set of values C. We call the heap nodes in
the region that are described by an SL assertion the footprint of the assertion. Note that
the contract of extract max provides the implicit guarantee that the procedure does not
modify any allocated heap nodes that are outside of the footprint of its precondition.

The predicate bst is defined as follows:

bst�x, y, C	 
 x�null� C��� �DE. acc�x	 � bst�x.l, x,D	 � bst�x.r, x, E	 �
x.p � y � C��x.d��D�E � �u � D. u � x.d � �u � E. u � x.d	

The atomic predicate acc(x) in the definition of bst represents a heap region that consists
of the single heap node x. That is, acc(x) means that x is in the footprint of the predicate.
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Such SL assertions are combined to assertions describing larger heap regions using
spatial conjunction, denoted by ‘�’. Spatial conjunction asserts that the composed heap
regions are disjoint in memory. Hence, bst describes an actual tree and not a DAG. Note
that atomic assertions such as x � null only express constraints on values but describe
empty heap regions.

The procedure extract max returns a pair of nodes (nrt, max) where nrt is the new
root of the remaining tree, and max the node that has been removed. The postcondition,
denoted by the ensures clauses, states that the procedure indeed yields the modified
tree with the maximal node max properly removed.

One important detail in the contract of extract max is the keyword implicit in the dec-
laration of the ghost variable C. This annotation means that C is existentially quantified
across the procedure contract. That is, we do not need to explicitly provide the actual
value of C at call sites to extract max, such as the recursive call on line 10. Instead, the
verifier will automatically infer the existence of the actual value and use it when assum-
ing the postcondition. This is in contrast to most other automated verification systems,
which do not support implicit ghost parameters. However, to make our approach for
reasoning about trees work, we do require the program to be annotated with ghost par-
ent pointers. These must be updated along with the forward pointers that span the trees.
We argue in the companion report [34] that in many cases these annotations with ghost
parent pointers can be inferred automatically using simple heuristics.

Verification. The actual verification of extract max involves a sequence of transforma-
tions that progressively make the semantics of separation logic explicit until we obtain
a program in which all contracts are expressed in GRIT. The logic is closed under ver-
ification condition (VC) generation, and the generated VCs are then discharged using
the decision procedure that we present in Sec. 5. The transformation includes the trans-
lation of SL assertions into first-order logic, the encoding of the semantics of SL Hoare
triples by making the footprints of procedure contracts explicit, the insertion of checks
for memory safety and absence of memory leaks, etc. The details of these transforma-
tions are described in our previous work [32, 33]. In the following, we only provide an
abridged summary.

GRIT. The GRIT logic can express properties of sets of heap nodes using set operations
and certain forms of set comprehensions. The logic further provides predicates that
describe the structure of the heap. For example, the GRIT predicate Tree�S, x, y, l, r, p�
expresses that the heap region described by the set S forms a tree with root x, parent
node y, left pointer field l, right pointer field r, and parent pointer field p. Another
important predicate is the reachability predicate R�f, x, y�, which expresses that x can
reach y by following the pointer field f in the heap. The logic also provides special
constructs for expressing updates of pointer fields and frame conditions of procedure
calls. Specifically, the frame predicate Frame�S, F, f, f �� expresses that the values of
the pointer fields f and f � agree on the heap nodes in the set S�F .

Reduction to GRIT. We next explain how we reduce the problem of checking verifica-
tion conditions with SL assertions to checking satisfiability of GRIT formulas. To this
end, consider the path of extract max that goes through the “then” branch of the condi-
tional on line 9 to the return point on line 12. Our goal is to check that the postcondition
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S � S1�S2 � S1 � �x.R�p, x, rt	� � S2 � �� footprint of precondition
Tree�S1, rt, pr, l, r, p	 � rt � null� S1�S2��� precondition

rt.r � null� line 9
F � F1�F2 � F1 � �x.R�p, x, rt.r	� � F2 � �� initial footprint of rec. call

F � F �

1 � F �

2 � F �

1 � �x.R�p1, x, c	� � F �

2 � �m� � final footprint of rec. call
Tree�F1, c, rt, l1, r1, p1	 �m.r1�m.p1�null� F �

1�F
�

2��� postcondition of rec. call
Frame�S, F, l, l1	 � Frame�S, F, r, r1	 � Frame�S, F, p, p1	 � frame condition of rec. call

r2 � write�r1, rt, c	 � line 11
nrt � rt�max � m� line 12

S� � S�

1�S
�

2 � S�

1 � �x.R�p2, x, nrt	� � S�

2 � �max� � footprint of postcondition
��Tree�S�

1, nrt, pr, l1, r2, p2	 � max.p2 � null� max.r2 � null�
S�

1�S
�

2 � �� S� � S	
negated postcondition

Fig. 2. Verification condition for a path of extract max with simplified pre and postconditions

of extract max holds after this path has been executed, assuming the precondition holds
initially. For exposition purposes, we consider the simplified precondition tree(rt,pr) �
rt � null and the simplified postcondition

tree(nrt,pr) � acc�max� � �max.r � null�max.p � null�

That is, we abstract from the data values by defining the predicate tree as follows:

tree�x, y� � x � null	 acc�x� � tree�x.l, x� � tree�x.r, x� � x.p � y

The VC that is obtained from the simplified contract of extract max and the consid-
ered path reduces to the GRIT formula shown in Fig. 2. This formula is unsatisfiable
and thus the obtained VC is valid. We next explain this GRIT formula in more detail.

Translation of SL Assertions. The reduction to GRIT translates each SL assertion into
a conjunction of two GRIT formulas: one formula that describes the footprint of the SL
assertion, and another formula that describes the structure of the heap region captured
by the assertion. The generation of the footprint formula proceeds recursively on the
structure of the SL assertion, introducing auxiliary set variables to represent the foot-
prints of all spatial conjuncts. These auxiliary set variables are implicitly existentially
quantified, capturing the semantics of spatial conjunction. For example, in Fig. 2, the
footprint of the precondition is described by the set S, which is itself the disjoint union
of the sets S1 and S2. Here, S1 represents the actual footprint of the tree rooted in rt.
The variable S1 is defined as the set of all nodes that can reach rt via the parent field
p. S2 is the footprint of the SL assertion rt � null. Note that the defining formula for
the footprint S� of the negated postcondition is pulled over the negation. Yet, we do
not introduce universal quantifiers for the set variables S�

1 and S�
2 in the negated post-

condition. The dualization of the universal quantifiers for the auxiliary set variables is
possible because these variables are uniquely defined by the translated SL assertions.
We refer the reader to the companion tech report [34] for the details of how to translate
SL assertions with tree predicates to GRIT.

Implicit Frame Inference. The recursive call to extract max on line 10 is handled
by assuming the translated postcondition of the call and the defining formula of the
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footprint F of the call’s precondition. The latter is used to express the call’s frame
condition using the predicate Frame. Note that the actual frame S�F , i.e., the set of
heap nodes that are not touched by the recursive call, is automatically inferred by the
decision procedure of GRIT from the defining formulas of the footprint sets S and F .

3 Graph Reachability and Stratified Sets

Our reduction of separation logic to first-order logic decomposes SL assertions into
constraints on the shape of the heap and constraints on the footprint sets. The crux in
this translation is the handling of inductive predicates such as bst and tree. To avoid
the need for reasoning about induction, both the shape constraints and the footprint
sets are expressed in terms of reachability over pointer fields in the heap. To support
such an encoding, we define a first-order logic of graph reachability and stratified sets
(GRASS). This logic can express structural properties of mutable finite graphs as well as
sets of nodes in these graphs. The general GRASS logic is undecidable. The logic GRIT,
which we formally introduce in the next section, then imposes syntactic restrictions on
GRASS that will ensure decidability while being sufficiently expressive to serve as a
target for our reduction of separation logic over trees.

We follow standard notation and conventions for syntax and semantics of many-
sorted first-order logic with equality. The signature of the GRASS logic is ΣGS �
�SGS , ΩGS , ΠGS�whereSGS � 
node, field, set� is the set of sorts. The set of function
symbols ΩGS consists of the symbols null : node, read : field� node  node, write :
field� node� node  field, and a countable infinite set of constant symbols for each
sort in SGS . The constant symbol null is a dedicated constant symbol of sort node that
we use to represent null pointers. The set of predicate symbols ΠGS consists of the
symbols B : field � node � node � node and �: node � set. The GRASS logic then
comprises all first-order formulas over the signature ΣGS .

We define the semantics of GRASS formulas with respect to a theory TGS of first-
order structures over ΣGS . A structure A is in TGS iff the following conditions are
satisfied. First,A interprets the sort node by a finite set nodeA. The interpretation of the
remaining sorts and symbols, with the exception of constant symbols, is then uniquely
determined by the interpretation of nodeA as follows. First, the sort field is interpreted
by the set of all functions in nodeA  nodeA, and the sort set by the set of all subsets
of nodeA. We consider the elements of nodeA to represent nodes in a heap graph and
the elements of fieldA pointer fields. The function symbols read and write represent
field look-up and field update. They must satisfy the following properties

�u � nodeA, f � fieldA. readA�f, u� � � if u � nullA then u else f�u�� and

�u, v�nodeA, f �fieldA. writeA�f, u, v� � λw � nodeA. if w�u then v else fA�w�

The between predicate B�f, x, y, z� denotes that x reaches z via an f -path that must
go though y. To formally define the semantics of B, we note that for a binary relation
r over a set X (respectively, a unary function r : X  X), we denote by r� the
reflexive transitive closure of r. Furthermore, for f � fieldA we define fA � λu �
nodeA. readA�f, u�. Then for all u, v, w � nodeA and f � fieldA we require

BA�f, u, v, w� � �u,w� � f�A � �u, v� � 
�u1, fA�u1�� � u1 � nodeA � u1 � w��
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x : node variable, t : node constant, S : set constant, Fld � �P,L, R�, f � Fld
T ::� x � t � null � read�f, T 	 TFld ::� f � write�TFld, T, T 	

A ::� T � T � TFld � TFld � B�TP , T, T, T 	 � T � S R ::� A � �R � R�R

F� ::� �x.R where the variables x do not occur below read or write in R

F ::� A � F� � Tree�S, T, TL, TR, TP 	 � Frame�S, S, TFld, TFld	 � �F � F � F

Fig. 3. Logic of graph reachability and inverted trees (GRIT)

The second conjunct states that u reaches v without going through w. Finally, the inter-
pretation of the set membership relation � inA is as expected. We define the reachability
predicate R�f, x, y� as a short-hand for B�f, x, y, y�.

4 The GRIT Logic

We now introduce the logic of graph reachability and inverted trees (GRIT). In our
formal treatment, we restrict ourselves to the case of binary trees. However, the logic
and decision procedure can be easily generalized to trees of arbitrary bounded rank. We
do not discuss the case of unranked trees. Surprisingly, the treatment of unranked trees
is much simpler than the bounded case.

Syntax. Figure 3 defines the syntax of GRIT formulas. A GRIT formula F is a Boolean
combination of atomic formulas A, restricted quantified formulas F�, tree predicates
Tree�S, t, l, r, p�, and frame predicates Frame�A,S, f, f ��. The atomic formulasA form
a subset of the atomic formulas of GRASS. Namely, we partition the constant symbols
of sort field into three disjoint sets: a set of parent fields P , a set of left successor
fields L, and a set of right successor fields R. Equalities between terms of sort field
are then restricted to terms that are built from field constants in the same partition.
To ensure decidability of the logic, we do not allow quantification over formulas that
contain terms in which node variables appear below the function symbols read and
write, as in read�p, x�. Also, we restrict the reachability predicate B to parent fields.
This restriction yields a much simpler and more practical decision procedure compared
to the logic proposed in [39]. We assume that all GRIT formulas are closed.

Syntactic Short-Hands. Throughout the remainder of the paper, we will use syntactic
short-hands for disjunction, implication, bi-implication, and existential quantification
in GRIT formulas. Further note that we can express standard set operations such as
union and intersection using restricted quantified GRIT formulas and fresh auxiliary set
constants. For example, the formula t � S � T stands for the GRIT formula

��t � S1� � �x. x � S1 � x � S 	 x � T

where S1 is a fresh set constant. Set equality, subset inclusion, and set comprehensions
can be expressed similarly. To ease the notation, we will use the expected syntactic
short-hands for such encodings. Finally, we write t.f to mean read�f, t�.

Semantics. GRIT formulas are interpreted in the models of the theory TGS , which we
have defined in the previous section. Thus, we only need to provide the semantics of the
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predicates Tree and Frame. We define the semantics of these predicates in terms of for-
mulas in our general graph reachability logic with stratified sets. The defining formulas
are chosen in such a way that we obtain a simple and efficient decision procedure by
first expanding the predicates with their defining formulas and then applying quantifier
instantiation techniques. In the following, let A be a structure in TGS .

As we have seen in Sec. 2, the tree predicate is crucial for the translation of SL tree
predicates such as tree. A tree predicate Tree�S, t, l, r, p� holds true in A if A contains
a tree with footprint S, root t, spanned by the given fields l, r, and p. Our formal
definition of Tree, which we provide below, uses the reachability predicates to give a
noninductive definition of trees. Formally,A satisfies Tree�S, t, l, r, p� iff the following
formula holds in A:

t � null� S � � 	 (1)

�x, y. x � S � y � S � R�p, x, y� � R�p, y, x� � x � y � (2)

�x. x � S � x.l � null	 R�p, x.l, x� � (3)

�x, y. x � S � B�p, x.l, y, x� � y � x.l 	 y � x � (4)

�x. x � S � x.r � null	 R�p, x.r, x� � (5)

�x, y. x � S � B�p, x.r, y, x� � y � x.r 	 y � x � (6)

�x, y. y � S � R�p, x, y� � x � y 	 B�p, x, y.l, y� 	 B�p, x, y.r, y� � (7)

�x. x � S � x.l � x.r � x.l � null � (8)

�x. x � S � x.l � x� x.r � x � (9)

�x. x � S � R�p, x, t� (10)

The first disjunct (1) defines the structure of an empty tree and the second disjunct the
structure of nonempty trees. We explain the conjuncts (2)-(10) in the second disjunct in
more detail. The conjunct (2) ensures that the set S does not contain nontrivial p cycles.
The conjuncts (3)-(7) express that on S the field p is the inverse of l and r. Specifically,
(3) and (4) together are equivalent to the formula �x.x � S � x.l � null	 x.l.p � x.
Using reachability constraints to express this property rather than field reads yields a
simpler and more efficient decision procedure. Conjunct (8) expresses that fields l and
r must not point to the same nodes on S, unless they both point to null. Conjunct (9)
expresses that l and r do not have self-loops on S. Finally, conjunct (10) defines the
footprint S as the set of all nodes that can reach t via the parent field.

The frame predicate Frame�A,S, f, f �� expresses that the fields f and f � coincide
when they are restricted to the nodes in the set A�S. In our formal definition of the frame
predicate, we distinguish between parent fields and successor fields. For successor fields
f, f � � L (respectively R), we define Frame�A,S, f, f �� by the GRASS formula

�x.x � A�S � x.f � x.f � (11)

For parent fields p, p� � P , it is not sufficient if the frame predicate states that the fields
p and p� coincide on the set A�S. Instead, we also need to ensure that all information
contained in the reachability predicate B for the two fields is consistent on this set. For
parent fields p, p�, we therefore define Frame�A,S, p, p�� by the formula

�x, y, z.x � A�S � �B�p, x, y, z� � B�p�, x, y, z�� (12)
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Note that the formula (12) is stronger than formula (11). In fact, we are only allowed
to use formula (12) for the encoding of the frame rule if we make sure that the set S
is parent-closed. That is, for all nodes t, t�, if t � S and R�p, t�, t�, then t� � S. This
holds in particular if S is the footprint of an SL tree predicate whose parent field is p.
There exists a more general treatment of the frame predicate that preserves reachability
information and does not make assumptions about the set S. The details can be found
in [20, 33]. Since the footprints of tree manipulating programs are typically defined
by tree predicates and hence parent-closed, we stick to the simpler definition given by
formula (12).

5 Decision Procedure for GRIT

We next describe the decision procedure for the satisfiability problem of GRIT. In the
following, let F be a GRIT formula. The decision procedure works in two phases: the
first phase reduces F to an equisatisfiable GRASS formula F �. The second phase re-
duces F � to an equisatisfiable formula in effectively propositional logic (EPR), which
is then checked using an EPR decision procedure. The EPR fragment, also known as
the Bernays-Schönfinkel class, consists of formula of the form �x�yϕ�x,y� where ϕ
is quantifier-free and does not contain function symbols. Satisfiability of EPR formulas
can be decided in NEXPTIME and reduces to NP, if the number of universally quanti-
fied variables is bounded [25].

The first phase of the reduction involves the following sequence of steps:

1. Substitute all occurrences of the predicates Tree and Frame in F by their defining
formulas given in Sec. 4. The resulting formula is a GRASS formula F1.

2. Convert F1 into negation normal form, yielding F2.
3. Replace every literal of the form��f � f �� in F2, where f and f � are terms of sort

field, by the formula �x.��read�f, x� � read�f �, x��. The resulting formula is F3.
4. Skolemize F3, yielding F �.

Clearly, each of these transformation steps produces an equisatisfiable formula with re-
spect to the theory TGS . Note that the Skolemization step only introduces fresh Skolem
constants of sort node.

Next, conjoin F � with the theory axioms defining the predicate B and the functions
read and write for the theory TGS . The axiom defining the predicateB are obtained from
the inference rules in the decision procedure proposed in [23]. The axioms defining
the functions read and write are McCarthy’s well-known read over write axioms for
arrays [28]1. We denote the resulting formula by G.

All the remaining quantifiers in G are universal quantifiers. The final step of the re-
duction is to instantiate all those universally quantified variables in G that appear below
function symbols. The resulting formula is then in EPR (modulo function symbols ap-
pearing in ground terms, which can be eliminated using Ackermann reduction). The
quantifier instantiation step exploits the careful design of the defining formulas of the
tree and frame predicates, as well as the restrictions on the quantified formulas that are

1 The complete list of all axioms can be found in the companion tech report [34].
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allowed to appear in the input formula F . These restrictions guarantee that the resulting
quantified constraints can be viewed as a so-called Ψ -local theory extension [16]. That
is, it is sufficient to instantiate the variables below function symbols in G with a finite
set of ground terms T that we can compute from G. Suppose that G�T � is the resulting
EPR formula. The completeness argument for the reduction to EPR works by proving
that each model A of G�T � can be embedded into some structure in TGS that satisfies
F �. Specifically, we need to be able to construct actual binary trees in those regions of
A that have been constrained by tree predicates. This construction must preserve the
cardinality of modelA for the resulting structure to satisfy F � and hence F .

To this end, let TG be the set of all ground terms appearing in G, and let PF be
the set of all positive ground literals appearing in F . To ensure that each tree region
Tree�S, t, l, r, p� � PF contains sufficiently many nodes to construct a binary tree, we
use the idea from [39] to introduce an auxiliary function fca that denotes the first com-
mon ancestor of two nodes with respect to the parent field p and footprint set S. We
define this function using the following axioms:

�x, y. R�p, x, t� � R�p, y, t� � R�p, x, fca�p, x, y��

�x, y. R�p, x, t� � R�p, y, t� � R�p, y, fca�p, x, y��

�x, y, z. R�p, x, t� � R�p, y, t� � R�p, x, z� � R�p, y, z� � R�p, fca�p, x, y�, z�

�x, y, z, w. R�p, w, t� � fca�p, x, y� � w � fca�p, x, z� � w � fca�p, y, z� � w �

x � y 	 x � z 	 y � z 	 w � null

For each atom Tree�S, t, l, r, p� � PF , conjoin these axioms with G to obtain G1.

r

x y z
(a) spurious model

r

x y
z

fca(p,x,y)

(b) model with
fca�p, x, y�

Fig. 4. Role of the fca

Next, we define the set of ground terms T , which we use for
the instantiation, as the least set of ground terms that satisfies
the following properties:

– TG � T
– if t.l � T and Tree�S, c, l, r, p� � PF then t.r � T
– if t.r � T and Tree�S, c, l, r, p� � PF then t.l � T
– if t.f � T and f � f � � PF then t.f � � T
– if t.f � T and Frame�A,S, f, f �� � PF then t.f � � T
– if t.f � T and Frame�A,S, f �, f� � PF then t.f � � T
– if t.write�f, u, v� � T then t.f � T
– if t.f � T and write�f, u, v� � T then t.write�f, u, v� � T
– if write�f, u, v� � T then u.write�f, u, v� � T
– if t � T , t� � T , Tree�S, c, l, r, p� � PF , and neither t nor
t� contain fca then fca�p, t, t�� � T

It is easy to see that T is polynomial in the size of TG.
Let A be a universally quantified first-order formula. We de-

note by A�T � the conjunction of all instances I of A that satisfy the following prop-
erties: I is obtained from A by instantiating all quantified variables of A that appear
below function symbols with terms of matching sort in T . Moreover, all ground terms
appearing in I are already in T . For example, if A is of the form �x.A1�f�x�� and
t � T then A1�f�t�� is in A�T � only if f�t� � T . Now, let G1�T � be the formula that is
obtained by substituting all universally quantified subformulas A in G1 by A�T �.
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By construction, the formula G1�T � is satisfiable if the input formula F is satisfiable
modulo the theory TGS . Hence, our decision procedure is sound. To prove complete-
ness, let A be a model of G1�T �. Define the partial structure A�T by restricting the
interpretation of the sort node in A to the set 
 tA � t � T �. Let PMod�G1�T �� be
the set of all such partial structures for G1�T �. Then the following lemma implies the
completeness of our decision procedure.

Lemma 1. Let AT � PMod�G1�T ��. Then AT can be completed to a structure A �
TGS that satisfies G.

The crucial observation in the proof of Lemma 1 is that the addition of fca ensures
that in the partial models AT , for every tree node t, there are at most two other nodes
which can reach t directly via the parent field, i.e., without visiting any other nodes.
Hence, these two nodes can be chosen as the direct left and right successors of t in the
model completion. We explain the importance of the first common ancestor terms for
the completeness of the decision procedure through an example.

Example 1. Consider the following unsatisfiable formula:

Tree�S, t, l, r, p� � S � 
x, y, z, t� � S � 
w.R�p, w, t�� � �R�p, x, y��
�R�p, x, z� � �R�p, y, x� � �R�p, y, z� � �R�p, z, x� � �R�p, z, y�

The formula is unsatisfiable because the nodes x, y, z and t cannot be arranged in a
binary tree without adding auxiliary nodes to the tree (which violates the definition of
S) or making at least two of x, y, z mutually reachable via p. Without the first common
ancestor, the reduced formula produced by the decision procedure would admit the
model shown in Fig. 4 (a). This happens because the original formula does not contain
any l or r terms to trigger the instantiation of the quantifiers in the defining formula
of Tree. However, with the additional fca terms and axioms, the instantiated formula
implies that the tree must contain at least one additional node, as indicated in Fig. 4 (b).
This yields the contradiction.

By construction, G1�T � is an EPR formula whose size is polynomial in the input
formula F . It thus follows that the satisfiability problem for the quantifier-bounded
fragments of GRIT is in NP. Since NP-hardness is immediate we obtain the following
complexity result.

Theorem 1. The satisfiability problem for the quantifier-bounded fragments of GRIT is
NP complete.

6 Extensions

In this section, we discuss several extensions of GRIT to support reasoning about trees
and data. Such extensions are needed, for instance, to prove that a binary search tree is
sorted. In general, it is possible to extend the logic with additional axioms about data as
long as they preserve the locality properties that underpin the axiomatization of GRIT.
We present extensions with data that we used in our experimental evaluation and we
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provide some general principles how to design such extensions. The extensions that we
discuss preserve the decidability and complexity of GRIT.

To support reasoning about data, we extend the signature of GRIT with an additional
sort data for data values, fields from node to data, and sets with data elements. The
read and write functions are extended as expected. In the following, we let d range
over data fields. In our implementation, we interpret the data sort in the theory of linear
integer arithmetic. However, we can combine GRIT with any decidable quantifier-free
first-order theory that is signature disjoint from GRIT and stably-infinite to interpret the
data sort. The extensions that we discuss build on such quantifier-free combinations.

We consider three categories of extensions with data: monadic predicates on node,
binary predicates on node, and projections of node sets to data sets.

Monadic Predicates. Properties such as upper and lower bounds on the values con-
tained in a tree are expressible using monadic predicates. Such formulas have the fol-
lowing form: �x. x � S  Q�x.d� where Q is a predicate over data and S a node set.
One example of such a predicate is the ensures clause on line 6 in Fig. 1.

Monadic predicates also form Ψ -local theory extensions. To support such extensions,
the set T of ground terms for the quantifier instantiation must additionally satisfy:

– if d � T and t � T then t.d � T

For each ground node term t � T , we add a ground term that reads t’s data. The com-
pleteness of this instantiation follows from results about axioms satisfying stratified sort
restrictions [1].

Binary Predicates. To define a sorted tree or a heap, we need to relate the data of a node
to the data of its children. The following properties are examples of binary predicates:

– heap property: �x, y � S. R�p, x, y� � x.d � y.d
– sorted tree (left subtree): �x, y � S. B�p, x, y.l, y� � x.d � y.d

Here, we assume that S is the footprint of a tree. To ensure completeness of the decision
procedure for such predicates, we first check that the relation on nodes is transitive.
Without transitivity, the property cannot be generalized from direct successors in a tree
to an entire path in that tree, and Lemma 1 does not hold anymore. Transitivity prevents
us from expressing properties that require counting, but still allows ordering relations.

The case of the heap property is simple since it satisfies a stratified sort restriction. It
does not require any additional treatment beyond the addition of data ground terms as in
the case of monadic predicates. On the other hand, the sortedness property is more inter-
esting because the variable y appears in a read term. Thus, instantiating the axiom can
potentially generate new terms. However, our decision procedure performs only local
instantiation. To obtain completeness we need to ensure that we have sufficiently many
left and right successor terms. Therefore, the set T of ground terms must additionally
satisfy:

– if fca�p, t1, t2� � T and Tree�S, c, l, r, p� � PF then fca�p, t1, t2�.l � T and
fca�p, t1, t2�.r � T .

Note that the axioms for the first common ancestor and the defining formula of Tree
together imply that the following holds for all nodes x and y in a partial model:

fca�p, fca�p, x, y�.l, fca�p, x, y�.r� � fca�p, x, y�
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The additional terms ensure that all nodes in a tree are assigned to the left, respectively,
right subtrees of the first common ancestor nodes, enforcing sortedness across the tree.

Set Projection. Lastly, we consider a way of referring to the content of a data structure.
This class of extensions enables reasoning about functional correctness properties. In
common cases such as implementations of sets, the content is obtained by projecting
the footprint onto a data field. For instance, given the footprint S of a data structure, the
content C can be defined as C � 
v � �x � S. v � x.d�.

This definition does not directly fit into our logic, due to the existential quantifier
inside the set comprehension. We replace this quantifier by a Skolem function which
we call witness. The witness function maps an element c of C back to a node in S that
stores c. The values not in C are mapped to null. witness is axiomatized as follows:

�x.x � S � x.d � C
�v.v � C � witness�d, v, C� � S � v � witness�d, v, C�.d
�v.v � C � witness�d, v, C� � null

The witness function maps the data values back to nodes. Therefore, it does not respect
the stratification restriction used to prove the Ψ -locality of the monadic extensions. For
completeness, the set of terms T needs to additionally satisfy:

– if d � Tdata and v, C � T then witness�d, v, C�,witness�d, v, C�.d � T

The axioms are local since witness is the inverse of d. Hence, reading the data of a
witness gives a value which is already in the set of ground terms.

The set implementations which we used in our experiments do not store duplicate
elements and witness becomes the one-to-one inverse of the data field. In such cases,
we strengthen the above axioms with �x. x � S � x � witness�d, x.d, C�.

Limitations. As mention earlier, there is no precise characterization of the limit of
extensions that preserve the locality properties on which our decision procedure is built.
However, not all extensions are local. For example, the following relation between a
parent and child node does not generalize to reachability: �x, y � S. x.p � y � x.d �
y.d� 1. Therefore, the height of a tree cannot be expressed.

7 Implementation and Evaluation

Implementation. We have extended our tool GRASShopper with the decision proce-
dure for tree data structures storing integer values. The tool is implemented in OCaml
and available under a BSD license. The source code distribution including all bench-
marks can be downloaded from the project web page [14]. GRASShopper takes as input
an annotated C-like program and generates verification conditions which are checked
using Z3 [11]. Annotations include procedure contracts and loop invariants expressed in
a mixed specification language that supports both SL and GRASS assertions. The tool
automatically adds checks to ensure that there are no memory safety violations such as
accesses to unallocated memory, memory leaks, double frees, etc.
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Currently, all annotations with ghost parent pointers must be manually provided. We
plan to extend GRASShopper to automatically infer these annotations. For example,
each modification of a forward successor field induces a matching modification of the
parent field. Furthermore, a procedure that takes the root of a tree as parameter must be
augmented with an additional ghost parameter for the parent of the root. The companion
report [34] contains more information on how to automate these steps.

To handle dynamic memory allocation we require that the parent of all unallocated
nodes points to null and that all nodes eventually reach null via parents. These restric-
tions are not harmful because outside of trees we can choose the parents arbitrarily.

The translation of SL tree predicates into GRIT is currently hard-coded into the im-
plementation of the tool. The first-order specifications of common properties and fea-
tures such as sortedness and content sets are provided as predefined building blocks.
Using these building blocks, adding support for a new data structure requires about
10 lines of code. We plan to implement a heuristic translation of SL tree predicates to
GRIT. The tool already provides such a heuristic for list data structures. GRASShop-
per also incorporates optimizations and sparser term generation. For instance, we do
not currently generate the fca terms. This source of incompleteness proved irrelevant in
our examples. In every example, the data structure is traversed along the left and right
successor nodes which ensures that sufficiently many ground terms are already present.

Evaluation. We have used GRASShopper to verify complex properties of various data
structure implementations. The results of our experiments are summarized in Table 1.
For each procedure, the table lists the number of lines of code, lines of specification,
lines of ghost annotations, the number of generated verification conditions, and the total
running time of the tool. All examples in the table have been successfully verified. The
number of lines of code does not include specifications or ghost state. The specifications
include contracts and loop invariants. The ghost annotations include annotations that are
needed to express the specification (e.g., implicit ghost parameter), or proof automation
(e.g., updates of ghost fields). We now describe our experiments in more detail.

First, we used GRASShopper to prove functional correctness of set data structures
that store integer values. We considered implementations based on binary search trees
and sorted lists. The experiments with lists show that the extension we present for GRIT
are applicable across different data structure types. We further verified a union-find
data structure. We looked at the data structure from two different perspectives. One
perspective views them as shared lists, the other as unranked inverted forests. Each
perspective allows us to prove different properties of the implementation. Using the tree
view, we proved functional correctness, e.g., that the union operation indeed merges the
equivalence classes associated with two given pointers into the data structure. The list
view allows us to reason about single paths from a node n in the data structure to the
root node of the tree that n belongs to (i.e., the representative of that equivalence class).
Using the list view, we proved the correctness of path compaction in the find operation.

We have also considered other tree data structures for which we have proved the
preservation of structural invariants under the data structure operation but not full func-
tional correctness of these operations. In particular, we have proved that skew heap op-
erations respect the heap property, i.e., that the data value of a child node is not greater
than its parent’s value. Skew heaps are typically used to implement priority queues. At
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Table 1. Verified data structures

Data structure Procedure #L. Code #L. Spec #L. Ghost # VCs time in s

set as binary tree
functional correctness

contains 17 3 3 9 3
destroy 8 2 2 7 1

extract max 14 5 3 9 20
insert 24 2 3 15 61

remove 33 2 11 35 117
rotate left 8 3 4 11 15

rotate right 8 3 4 11 14
traverse 7 2 3 5 9

set as sorted list
functional correctness

contains 15 7 6 4 1
delete 26 7 6 8 12

difference 20 3 1 15 13
insert 25 7 6 8 69

traverse 12 7 6 2 0.1
union 20 3 1 15 15

union-find (tree-view)
functional correctness

find 12 2 1 4 0.2
union 10 3 1 4 0.3
create 11 3 0 3 0.1

union-find (list-view)
path compaction

find 12 3 1 4 0.1
union 9 7 1 4 3
create 10 1 0 3 0.1

skew heap
shape, heap property

insert 17 2 2 7 0.3
union 11 2 4 12 35

extract max 9 2 1 11 6

the moment, we cannot prove functional correctness of this data structure because our
tool does not yet support reasoning about the theories that are needed for specifying the
priority queue operations (e.g., multisets or sequences).

8 Conclusions

We have presented a new approach for automated verification of programs that manip-
ulate heap-allocated data structures. The approach is based on a decidable fragment of
first-order logic that supports reasoning about mutable finite graphs and can express that
certain subgraphs form trees. The logic makes no global assumptions about the struc-
ture of its graph models such as that the entire graph is a forest. This allows us to use
the logic for automated reasoning about separation logic of trees. Furthermore, we have
studied extensions of our graph logic for reasoning about data stored in heap structures.
We used these extensions to automatically verify complex properties (including full
functional correctness) of tree data structures such as binary search trees, skew heaps,
and union-find. In the future, we will investigate how to extend our techniques to reason
about nested data structures that combine trees, lists, and arrays.
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Abstract. We present a new procedure for testing satisfiability (over the
reals) of a conjunction of polynomial equations. There are three possible
return values for our procedure: it either returns a model for the input
formula, or it says that the input is unsatisfiable, or it fails because the
applicability condition for the procedure, called the eigen-condition, is
violated. For the class of constraints where the eigen-condition holds, our
procedure is a decision procedure. We describe satisfiability-preserving
transformations that can potentially convert problems into a form where
eigen-condition holds. We experimentally evaluate the procedure and
discuss applicability.

1 Introduction

Satisfiability problems in nonlinear real arithmetic arise in several applications,
including formal verification and synthesis of software programs, control systems,
and cyber-physical systems. In this paper, we consider the problem of checking
satisfiability of a conjunction of multilinear polynomial equations over the reals.

There has been significant progress recently on solving nonlinear real arith-
metic constraints [12,13,9,10,16,4,1,7]. Our main interest is identifying efficiently
decidable nonlinear arithmetic fragments that arise in formal verification and
synthesis, and developing procedures for those fragments that easily integrate
with and complement existing techniques in SMT [8]. We present here a proce-
dure that is tailored for a subclass of nonlinear problems that have finitely-many
(maybe zero) models over an algebraically closed field (complex numbers). Our
procedure can be viewed as inspired by SAT solvers: we search for a model by
finding the finitely-many values a variable can potentially take in any model,
and then nondeterministically guessing the right value. Whereas in SAT, each
variable is known a priori to take one of two values, in our setting, we have to
do some work to determine if there is a variable that takes only finitely-many
values. We describe the procedure and report preliminary experimental results.

Why restrict to conjunction of equations? Consider a simple loop that com-
putes the product of two input natural numbers x0, y0:

s := 0; y := y0 ; while (y > 0) { s := s + x0; y := y-1 }
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Suppose we want to find a loop invariant of the form s = ax0y0 + bx0y (we
could pick a general degree 2 polynomial over x0, y0, y here, but just to keep
expressions small we picked a restricted template here). We want to know if

∃a, b∀s, x0, y0, y, s1, y1 : s = ax0y0+bx0y∧s1 = s+x0∧y1 = y−1⇒ s1 = ax0y0+bx0y1

We can answer the above by checking if the right-hand side polynomial can be
written as a sum of (multiples of) the polynomials on the left. Again picking
just the minimal template for the multipliers for ease of presentation, we get

∃a, b, u, v, w : ∀s, x0, y0, y, s1, y1 :

s1 − ax0y0 − bx0y1 = u(s− ax0y0 − bx0y) + v(s1 − s− x0) + wx0(y1 − y + 1)

Equating the coefficients of the monomials over the ∀ variables, we get

∃a, b, u, v, w : 1 = v∧−a = −ua∧−b = w∧0 = u−v∧0 = −ub−w∧0 = −v+w

which is a conjunction of polynomial equations; see also [15,23,21,27,11,22,25].

A Running Example. We illustrate the main idea in the new procedure for
satisfiability testing of nonlinear equations using a small example. Consider the
conjunction of the following three equations:

x1x2 − x1x3 = −2x2 x1x2 = x3 x2x3 = 1

The first two equations can be written in matrix notation as(
x2 − x3

x2

)
x1 =

(
−2x2

x3

)
Here, it is possible to write the right-hand side vector, (−2x2;x3), as a linear
combination of the vector, (x2 − x3;x2), on the left-hand side. Doing so, we get(

x2 − x3

x2

)
x1 =

(
0 −2
−1 1

)(
x2 − x3

x2

)
This constraint can be true iff either x1 is an eigenvalue of the 2 × 2 matrix or
the vector (x2−x3;x2) is identically zero. The two eigenvalues of the matrix are
−1 and 2.

Let us branch on the three cases. In the first branch, x1 = −1. The original
three equations simplify to x2 + x3 = 0, x2x3 = 1. Recursively applying the
same analysis, we find that these two equations can be written as(

1
x3

)
x2 =

(
−x3

1

)
=

(
0 −1
1 0

)(
1
x3

)
Hence, the value of x2 should be an eigenvalue of the matrix (0,−1; 1, 0) or
the vector (1;x3) should be identically zero. There are no real eigenvalues of
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this matrix and the vector (1;x3) can never be equal to 0. Hence, we get a
contradiction in each subcase, and we backtrack.

In the second branch, x1 = 2. The original three equations simplify to 2x2 =
x3, x2x3 = 1. Again, we rewrite the two equations in matrix notation as(

2
x3

)
x2 =

(
x3

1

)
=

(
0 1
0.5 0

)(
2
x3

)
Hence, the value of x2 should be an eigenvalue of the matrix (0, 1; 0.5, 0) or the
vector (2;x3) should be identically zero. The matrix has two real eigenvalues,
namely ±

√
2/2. If we pick x2 =

√
2/2 and continue, we find a value

√
2 for x3

and thus get a model for the original three constraints.

2 Search-Based Procedure

In this section, we formally describe our satisfiability checking procedure for
nonlinear equations.

We first fix some notation. Let X be a finite set of variables. Elements of X
are denoted by x, y with possible subscripts. We use Q, IR and C to denote the
set of rationals, (algebraic) reals and complex numbers respectively, and we use
c, d with subscripts to denote elements of these sets. The set of polynomials over
X with coefficients in IR is denoted by IR[X ], and its elements are denoted by p, q
with possible subscripts. Let us assume that we can represent and compute over
algebraic numbers. Our description of the procedure will represent and compute
using constants in IR, but all these constants will be algebraic.

A (partial) model M is simply a set of assignments x �→ c where x is a variable
and c is an algebraic real number from IR. Each variable x occurs at most once
in M .

The input to our procedure is a set S := {p1 = 0, . . . , pn = 0} of polynomial
equations where every pi ∈ Q[X ]. The output is either a model M binding every
variable occurring in an input polynomial to a constant, or a string “Unsatisfi-
able” or a string “Condition Failed”.

We describe our search procedure using inference rules that operate over the
state (S′,M ′) consisting of the set S′ of equations, and partial model M ′. The
initial state is (S, ∅), where S is the input equations. The procedure works by
applying one of the inference rules in Figure 1. The Split inference rule makes
a non-deterministic guess. Starting from the initial state, if we are able to reach
a state (∅,M) using the inference rules, then we output the model M (Rule
Success). If every derivation starting from (M, ∅) (irrespective of the guesses)
reaches a contradiction ⊥, then we output the string “Unsatisfiable”. In all other
cases, we output the string “Condition Failed”.

Among the inference rules in Figure 1, the rules Fail, Delete, and Success

are self explanatory. The rule Unit Prop checks to see if there is an equation of
the form x = c in S, and if so, it adds it to the model M and replaces x by c in
S (the result is denoted by S[x �→ c]). We assume expressions are normalized to
polynomial forms with leading coeffient 1.

The rule Split first checks if the set S satisfies the eigen-condition.
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Split:
(S ∪ {Av = xv},M)

(S ∪ {x = λ1},M) | . . . | (S ∪ {x = λk},M) | (S ∪ {v = 0},M)
where λ1, . . . , λk are all the real eigenvalues of A.

Unit Prop:
(S ∪ {x = c},M)

(S[x �→ c],M ∪ {x �→ c}) Success:
(∅,M)

output model M

Delete:
(S ∪ {0 = 0},M)

(S,M)
Fail:

(S ∪ {1 = 0},M)

⊥

Fig. 1. Inference rules describing the satisfiability checking procedure

Definition 1 (eigen-condition). A set S satisfies the eigen-condition if there
exists a variable x such that some subset S1 ⊆ S of k equations can written in
the form xv = Av for some (k × 1)-vector v of polynomials in IR[X − {x}] and
some constant (k × k)-matrix A in IR(k×k).

If the set S satisfies the eigen-condition and A, x,v are the corresponding
witnesses, then the inference rule Split non-deterministically picks either a real
eigenvalue of A as the value of x, or sets v to 0. Note that if A has no real
eigenvalues, then setting v to 0 is the only option.

The eigen-condition can be efficiently tested using a greatest fixpoint proce-
dure: we start with a set T = {pix = qi | pi, qi ∈ IR[X − {x}], i = 1, 2, . . .}
containing all polynomials in S that are linear in x. In each iteration, we remove
one element, say pix = qi, from T if qi is not in the linear subspace spanned by
all the pj ’s (i.e., if qi can not be written as a linear combination of pj ’s) in the
monomial basis. If the fixpoint is nonempty, the eigen-condition holds for S. If
the fixpoint is empty for all choices of x, the eigen-condition is violated for S.

The monomial basis of polynomials and eigenvalues of matrices have been
used for discovering (formal power series) invariants for nonlinear (hybrid) sys-
tems [17,20]. Our work uses similar ideas, but to more generally find models for
nonlinear polynomial equations.

Theorem 1 (Soundness). Let S := {p1 = 0, . . . , pn = 0} be a set of poly-
nomial equations where each pi ∈ Q[X ]. Starting from the state (S, ∅), if there
is a derivation that reaches (∅,M), then M is a model for S in the theory IR
of reals. Starting from (S, ∅), if every derivation reaches the state ⊥, then S is
unsatisfiable in the theory IR of reals.

The procedure can fail on certain inputs. We provide some examples below
where the procedure fails. These examples will motivate some “pre-processing”
steps that will make the procedure “fail” less often, and also lead to a charac-
terization of the class of problems for which the procedure will not fail.

Example 1. Consider the set Squad = {x2 + 2x + 2 = 0}, the set Sgb = {x =
2y, x = 3y}, and the set Sinf = {x = y}. None of these sets satisfy the eigen-
condition. None of the inference rules is applicable on the state (S, ∅), where S
is one of the above sets, and hence, our procedure “fails” on each of them.
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A polynomial is called multilinear if every variable has degree at most one in
every monomial in that polynomial. Note that x2 + 2x + 2 is not multilinear,
whereas xy + 2x+ 2 is multilinear.

3 Transformations: Toward Completeness

In this section, we describe satisfiability-preserving transformations, and also
characterize the class of problems where our procedure will not fail.

The first transformation, called multilinear transformation, turns a non-
multilinear polynomial equations (such as x2 + 2x + 2 = 0) into a multilinear
equations by introducing new clone variables. Instead of defining it formally, we
just illustrate it on the example Squad. The multilinear transformation transforms
Squad into the equi-satisfiable set S′

quad = {x = xclone, xxclone +2x+2 = 0}. The
set S′

quad, which can be written as (1;xclone + 2)x = (−2, 1;−2, 0)(1;xclone + 2),
satisfies the eigen-condition and our procedure can detect that it is unsatisfi-
able. Note that if p is a polynomial over a single variable, then the multilinear
transformation transforms p = 0 into a equation set xv = Av such that p is the
characteristic polynomial of A.

The second transformation, calledGröbner basis (GB) transformation, applies
the inference rules for computing Gröbner basis [3,2] to the polynomials in S. If
these GB computation rules are exhaustively applied, then {p1 = 0, . . . , pn = 0}
is replaced by the equi-satisfiable {q1 = 0, . . . , qk = 0} where {q1, . . . , qk} is a
Gröbner basis of {p1, . . . , pn}. Again, we just illustrate the GB transformation
by an example. Using the GB transformation, the set Sgb is transformed into
the set S′

gb = {x = 2y, y = 0}, which can be deduced to be satisfiable by our
procedure using two applications of the Unit Prop inference rule.

Finally, consider the third example, Sinf = {x = y}, on which our procedure
fails. If our procedure does not fail on a set S, then it implies that the set S has
finitely many (maybe zero) models. The set Sinf = {x = y} has infinitely-many
models, and hence our procedure necessarily fails on it; moreover, any simple
“model count preserving” transformation will not help.

Theorem 2 (Completeness). Let S be the class of polynomial equation sets
that have finitely-many (maybe zero) models over the complex numbers. If S ∈ S,
then the the procedure that uses the inference rules in Figure 1 along with the
inference rules for computing multilinear transformations and Gröbner bases,
will never fail on S.

Proof (Sketch). If S is unsatisfiable over the complex numbers, then by Hilbert’s
Nullstellensatz, the Gröbner basis of S will be {1 = 0}, which will be detected as
“unsatisfiable” by the Fail rule. Note that we only need the GB rules and the
Fail rule in this case. If S is satisfiable and has finitely many models over the
complex numbers, let c1, . . . , cm be all the (complex) values that some specific
variable, say x, takes in all the models. Consider the polynomial p := (x−c1)(x−
c2) · · · (x − cm) in C[x]. Since S contains polynomials in Q[X ], the polynomial
p is in IR[x]. If we compute GB using a purely lexicographic ordering where
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x has the least precedence, then pk will belong to the GB (for some k > 0,
by Hilbert’s Nullstellensatz). Using the multilinear transformation, the single
variable equation, pk = 0, can be transformed into a set of equations where eigen-
condition holds and the real values among c1, . . . , cm can be computed using the
Split rule. The argument is then recursively applied to prove completeness. ��

The completeness result suggests that we can improve applicability of rules in
Figure 1 by lazily applying GB transformation steps. Our model searching proce-
dure complements the GB procedure that detects unsatisfiability (over complex
numbers). In analogy to SAT solving, GB procedure is similar to a resolution-
based procedure, whereas our procedure is similar to the DPLL algorithm [6].

4 Experiments

Boolean SAT problems can be encoded as nonlinear real arithmetic problems:
for e.g., the clause ¬x ∨ y ∨ z can be encoded as x(1 − y)(1 − z) = 0. These
nonlinear problems satisfy the eigen-condition and our base procedure never
fails on them. It performs DPLL-style search for a model on these examples.
In fact, optimizations that have been developed for SAT (conflict-driven clause
learning) can be adapted and incorporated into our nonlinear procedure.

Our procedure also works well on problems coming from template-based ver-
ification and synthesis [23,15] (see some nonlinear benchmark examples in [14])
and hybrid systems [21,27,11,22,25]. In fact, using a preliminary (and rather
naive) implementation of our procedure (in Python, using floats and not using
algebraic numbers) with some heuristics for handling cases where eigen-condition
fails, we were able to solve all the nonlinear examples in [14] in time competitive
with Z3 [13,18] (and faster than Z3 on a couple of problems). On the nonlinear
encodings of SAT benchmarks, we are competitive with Z3’s nonlinear solver on
small problems, but much worse when problem size is larger – this is perhaps
because our implementation does not learn from conflicts.

All nonlinear benchmarks and the tool itself can be obtained from
http://www.csl.sri.com/users/tiwari/softwares/nl_eigen_solver.

5 Conclusion

We presented a backtracking-based search procedure for checking satisfiability
of polynomial equations over the reals, which is complete for a subclass of non-
linear problems that have finitely-many (maybe zero) models over the complex
numbers. Our procedure can be viewed as a generalization of DPLL-style SAT
solving to nonlinear arithmetic. Preliminary results indicate it is effective on a
wide range of (exists-forall) nonlinear real arithmetic problems that arise during
analysis and synthesis of programs and cyber-physical systems. General non-
linear satisfiability problems, as well as ∃∀ nonlinear problems [5], can both
be turned into a conjunction of polynomial equations using the Positivstellen-
satz [24,19,26], and our procedure can then be used to solve these problems.

http://www.csl.sri.com/users/tiwari/softwares/nl_eigen_solver


A Nonlinear Real Arithmetic Fragment 735

References

1. Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-
valued special functions. J. Autom. Reasoning 44(3), 175–205 (2010)

2. Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: A constraint-based comple-
tion procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 285–301.
Springer, Heidelberg (1994)

3. Buchberger, B.: A critical-pair completion algorithm for finitely generated ideals in
rings. In: Börger, E., Hasenjaeger, G., Rödding, D. (eds.) Rekursive Kombinatorik
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Abstract. Yices is an SMT solver developed by SRI International. The first ver-
sion of Yices was released in 2006 and has been continuously updated since then.
In 2007, we started a complete re-implementation of the solver to improve per-
formance and increase modularity and flexibility. We describe the latest release
of Yices, namely, Yices 2.2. We present the tool’s architecture and discuss the
algorithms it implements, and we describe recent developments such as support
for the SMT-LIB 2.0 notation and various performance improvements.

1 Introduction

SRI International has a long history in developing formal verification tools. Shostak de-
veloped his decision procedures and combination method while at SRI in the 1980s [1].
Since then, SRI has continuously extended and supported decision procedures as part
the PVS theorem prover [2, 3]. Methods for combining Boolean satisfiability solvers
and decision procedures were also pioneered at SRI in the ICS solver [4]. In 2006, we
released Yices 1, an efficient SMT solver that was the state of the art. Yices 1 intro-
duced an innovative Simplex-based decision procedure designed to efficiently integrate
with a SAT solver [5], included a congruence-closure algorithm inspired by Simplify’s
E-graph [6], and used an approach for theory combination based on the Nelson-Oppen
method [7] complemented with lazy generation of interface equalities (an optimization
of the method proposed by Bozzano et al. [8]). These main ingredients and others intro-
duced by Yices 1 are now common in general-purpose SMT solvers such as Z3, CVC,
MathSAT, VeriT, and SMTInterpol [9–13].

Although Yices 1 remains a decent SMT solver to this day, it has some limitations:

– Yices 1 relies on a complex type system that includes predicate subtypes as in
PVS. This logic is very expressive but it has a major drawback: type-correctness is
undecidable in general. This is very confusing for users and leads to many problems
as the behavior of Yices 1 on specifications that are not type correct is chaotic.

– Yices 1 was designed to be used mostly via a textual interface (i.e., by reading
specifications from files), but many applications require close interaction with an
SMT solver via a programmable interface. Yices 1 can be used as a library but its

� This work was supported in part by DARPA under contract FA8750-12-C-0284 and by the
NSF Grant SHF:CSR-1017483. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
funding agencies.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 737–744, 2014.
c© Springer International Publishing Switzerland 2014
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API is cumbersome and incomplete, which makes it difficult to integrate Yices 1 in
other software.

– Yices 1 has poor performance on certain classes of problems, most notably prob-
lems that involve bitvectors.

To address these issues, we started a complete re-implementation of Yices in 2007.
Prototypes of the resulting new Yices 2 solver entered the SMT Competition in 2008
and in 2009. We then released a full-featured version of Yices 2 in May 2012, with
a few updates for bug fixes since then. This paper describes our latest SMT solver—
Yices 2.2—the first solver in the Yices family to support the SMT-LIB 2.0 notation.

2 Logic

The Yices 2 logic is the Yices 1 logic without the most complex type constructs. Prim-
itive types include the arithmetic types int and real, bitvectors, and Boolean. One
can extend this set by declaring new uninterpreted and scalar types. An uninterpreted
type denotes a nonempty collection of object with no cardinality constraint. A scalar
type denotes a nonempty finite collection of objects. In addition to these atomic types,
Yices 2 provides constructors for function and tuple types. Yices 2 uses a simple form
of subtyping: int is a subtype of real, and the subtyping relation extends in a natural
way to tuple and function types. Details are given in the Yices 2 manual [14].

Yices 2 supports the usual Boolean and arithmetic operators, and all the bitvector
operators defined in the SMT-LIB 1.2 and SMT-LIB 2.0 specifications [15, 16]. It also
includes operations on tuples, and an update operation that applies to any function
type. If f is a function, then the term (update f t1 . . . tn v) is the function that maps
(t1, . . . , tn) to v and is equal to f at all other points. This generalizes the SMT-LIB
store operation to arbitrary function types.

In summary, the Yices 2 logic is broadly similar to the array, arithmetic, and bitvector
logics defined in SMT-LIB 2.0, with extensions to support tuples and scalar types, and
with a more general function-update operation. Yices 2’s subtyping mechanism allows
arithmetic terms of integer and real types to be mixed arbitrarily (whereas Int and
Real are disjoint types in SMT-LIB 2.0).

3 System Architecture

Figure 1 shows the core architecture of the Yices 2 library. The software is decomposed
into three main modules for manipulating terms and types, contexts, and models, which
are the main data types available in the Yices API. Additional components include the
front ends that process specifications in different input languages, but these components
are not part of the library.

Internally, Yices 2 maintains a global database of terms and types. The API provides
a large number of functions for constructing terms and types, for pretty printing, and so
forth. Unlike Yices 1, Yices 2 provides a complete API: all term and type constructors
defined in the Yices 2 language are present in the API. We have paid special attention
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Fig. 1. Toplevel Architecture

to memory consumption by using compact data structures for terms and types, and by
employing hash-consing to maximize sharing of subterms.

The second main module implements operations on contexts. A context is a central
data structure that stores assertions to be checked for satisfiability. The API includes
operations for creating and configuring contexts, adding and removing assertions, and
for checking satisfiability of the asserted formulas. Internally, a context includes a solver
and a module to simplify assertions and convert them into the internal form used by the
solver. Contexts are highly flexible and can be configured to support a specific class of
formulas, to apply different preprocessing and simplification procedures, and to use a
specific solver or combination of solvers.

If the set of assertions in a context is satisfiable, then one can build a model of the
formulas. Such a model maps uninterpreted symbols present in the assertions to con-
crete values such as rational or bitvector constants. A model is a separate object that can
be queried and examined independently of the context from which it was built. Once a
model is created from a context, it is not affected by further operations on this context.
The model can remain in existence after the context is deleted.

A particular focus is to make Yices 2 easy to use as a library and enable flexible
operations on multiple contexts and models while using a shared set of terms. Efficient
operation on multiple contexts is crucial to applications related to software or control
synthesis, such as exists/forall SMT solving [17–19].

4 Solvers

Yices includes a Boolean satisfiability solver and theory solvers for four main theories:
uninterpreted functions with equalities, linear arithmetic, bitvectors, and arrays. These
solvers can be combined as illustrated in Figure 2. It is also possible to select different
solvers or combinations depending on the problem. For example, a specialized solver
can be built by attaching the arithmetic solver directly to the SAT solver. The API
provides functions to select the right solver combination when a context is created.

The SAT solver uses the CDCL approach. It is similar in performance and implemen-
tation to solvers such as Minisat 1.4 [20] or Picosat [21], with extensions to communicate
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Fig. 2. Solver Architecture

with the theory solvers. For example, theory solvers can dynamically create literals and
add clauses during the CDCL search, and can assign literals via theory propagation.

The solver for uninterpreted functions (UF) implements a congruence closure al-
gorithm. The implementation is inspired by Simplify [6] with support for explana-
tions [22], and a heuristic for dynamic Ackermannization [23, 24]. This UF solver sup-
ports Boolean terms. This enables the UF solver to store equalities as binary terms of
the form (eq t u) and efficiently perform propagation by congruence closure. A simple
example is the following propagation

(eq t u) = false ∧ t = v ∧ u = w ⇒ (eq w v) = false,

effectively deducing that w �= v follows from t �= u by congruence. This idea was
introduced by the first Yices 2 prototype in 2008 and has since been adopted by other
solvers.

The main arithmetic solver implements a decision procedure based on Simplex [5].
Yices also includes two specialized solvers for the difference-logic fragments of linear
arithmetic. These two solvers rely on a variant of the Floyd-Warshall algorithm. One
deals with integer difference logic and the other with real difference logic.

The bitvector solver is based on the “bit-blasting” approach. It applies various sim-
plifications to bitvector constraints, then convert them to a pure Boolean SAT problem
that is handled by the CDCL solver. In problems that combine uninterpreted functions
and bitvectors or arrays and bitvectors, the bitvector solver dynamically adds constraints
in the SAT solver as it receives equalities from the UF solver.

The array solver relies on instantiating the classic array axioms:

((update f i v) i) = v (1)

((update f i v) j) = (f j) if i �= j (2)

The solver eagerly generates instances of axiom (1) for every update term. On the
other hand, it uses a lazy strategy for generating instances of axiom (2). After the UF
and other theory solvers have built a consistent model (as explained below), the array
solver searches for instances of axiom (2) that are false in this model. It adds these
instances to the clause database, which triggers search for a different model.
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5 Recent Developments

Yices 2.1 was released in August 2012. Since then, we have implemented new features,
most notably a front end for SMT-LIB 2.0. Yices 2.2 supports most of the SMT-LIB 2.0
specification, except proof generation and construction of unsat cores.

Fig. 3. Yices-2.2 on QF UF Benchmarks

We have also added new preprocessing procedures, such as, the symmetry-breaking
algorithm of Déharbe et al. [25]. Figure 3 shows the resulting performance improvement
on the QF UF benchmarks of SMT-LIB. The left part is a “scatter plot” comparing
Yices-2.2 and Yices-2.1. Every point above the diagonal is a benchmark that Yices-2.2
solves faster than Yices-2.1. Yices-2.2 solves all benchmarks, whereas Yices-2.1 has
two timeouts. The right part of the figure compares Yices-2.2 with other solvers1 on
the same benchmarks. All solvers in this graph use symmetry breaking, but Yices-2.2
is significantly faster. This data was collected on Linux machines (Ubuntu 12.04) with
a timeout of 20 min. and a memory limit of 6 GB.

Another recent development is a new theory-combination method. In Yices, theory
combination always involves UF on one side and another theory T (arithmetic or bitvec-
tor) on the other. Given two sets of formulas Γ1 and Γ2, such that Γ1 is satisfiable in UF
and Γ2 is satisfiable in T , the goal is to ensure that Γ1∪Γ2 is satisfiable in the combined
theory. For this purpose, Yices 2.2 uses a model-based approach [24]. Given a model
M1 of Γ1 (computed by the UF solver) and a model M2 of Γ2, we must ensure that M1

and M2 agree on equalities between variables that occur in Γ1 ∩ Γ2. By construction,
the UF solver propagates all implied equalities to the bitvector and arithmetic solvers.
The only conflicts between M1 and M2 are then pairs of shared variables (x, y) such
that

M2 |= x = y but M1 |= x �= y.

To fix this conflict, Yices 2.2 attempts to modify M1 locally by merging the congruence
classes of x and y while keeping M2 unchanged. This merging is applied if it does not

1 All experiments mentioned in this paper used solvers that entered the main track of SMT-
COMP 2012, plus Z3 version 4.2.
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conflict with existing disequalities in the UF solver, and if it does imply an equality
u = v where u and v are shared variables that have distinct values in M2 (i.e., merging
of x and y would cause more variables to become equal in theory T ). If the conflict
cannot be solved, Yices 2.2 generates an interface lemma that forces backtracking and
search for different models. For example, in linear arithmetic, an interface lemma has
the form

(eq x y) ∨ (x < y) ∨ (y < x),

which includes the UF atom (eq x y) and two arithmetic atoms. However, local mod-
ification of M1 is often successful and can often make M1 and M2 consistent without
generating any lemmas. This algorithm is particularly effective on the SMT-LIB bench-
marks that mix arrays and bitvectors. As shown in Figure 4, Yices 2.2 is competitive on
such benchmarks with solvers specialized for bitvector problems. Yices 2.2 is generally
fast, but Boolector 1.5 solves the most benchmarks (one more than Yices 2.2).

Fig. 4. Yices-2.2. vs. other Solvers on QF AUFBV Problems

6 Conclusion

Yices 2 is a complete re-implementation of the Yices 1 solver. It is designed to be modu-
lar and extensible, to be efficient on a large class of problems, and to provide a rich API
to enable advanced applications of SMT solving such as exists/forall SMT. Yices 2 now
supports both versions of the SMT-LIB notation in addition to its own input language.
Yices 2.2 is distributed at http://yices.csl.sri.com. Precompiled binaries
are available for common operating systems such as Linux, Windows, Mac OS X and
FreeBSD. Yices 2.2 is free for research and other non-commercial use.
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Abstract. We present the first scalable bound analysis that achieves
amortized complexity analysis. In contrast to earlier work, our bound
analysis is not based on general purpose reasoners such as abstract in-
terpreters, software model checkers or computer algebra tools. Rather,
we derive bounds directly from abstract program models, which we ob-
tain from programs by comparatively simple invariant generation and
symbolic execution techniques. As a result, we obtain an analysis that is
more predictable and more scalable than earlier approaches. We demon-
strate by a thorough experimental evaluation that our analysis is fast
and at the same time able to compute bounds for challenging loops in a
large real-world benchmark. Technically, our approach is based on lossy
vector addition systems (VASS). Our bound analysis first computes a
lexicographic ranking function that proves the termination of a VASS,
and then derives a bound from this ranking function. Our methodology
achieves amortized analysis based on a new insight how lexicographic
ranking functions can be used for bound analysis.

1 Introduction

Automatic methods for computing bounds on the resource consumption of pro-
grams are an active area of research [22,19,7,20,28,8,5,21,6]. We present the first
scalable bound analysis for imperative programs that achieves amortized com-
plexity analysis. Our techniques can be applied for deriving upper bounds on how
often loops can be iterated as well as on how often a single or several control
locations can be visited in terms of the program input.

The majority of earlier work on bound analysis has focused on mathemati-
cally intriguing frameworks for bound analysis. These analyses commonly employ
general purpose reasoners such as abstract interpreters, software model check-
ers or computer algebra tools and therefore rely on elaborate heuristics to work
in practice. In this paper we take an orthogonal approach that complements
previous research. We propose a bound analysis based on a simple abstract pro-
gram model, namely lossy vector addition systems with states. We present a
static analysis with four well-defined analysis phases that are executed one af-
ter each other: program abstraction, control-flow abstraction, generation of a
lexicographic ranking function and bound computation.
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A main contribution of this paper is a thorough experimental evaluation.
We compare our approach against recent bounds analysis tools [7,5,6,12], and
show that our approach is faster and at the same time achieves better results.
Additionally, we demonstrate the scalability of our approach by a comparison
against our earlier tool [28], which to the best of our knowledge represents the
only tool evaluated on a large publicly available benchmark of C programs.
We show that our new approach achieves better results while increasing the
performance by an order of magnitude. Moreover, we discuss on this benchmark
how our tool achieves amortized complexity analysis in real-world code.

Our technical key contribution is a new insight how lexicographic ranking
functions can be used for bound analysis. Earlier approaches such as [7] simply
count the number of elements in the image of the lexicographic ranking function
in order to determine an upper bound on the possible program steps. The same
idea implicitly underlies the bound analyses [15,19,16,20,28,6,12]. However, this
reasoning misses arithmetic dependencies between the components of the lexi-
cographic ranking function (see Section 2). In contrast, our analysis calculates
how much a lexicographic ranking function component is increased when another
component is decreased. This enables amortized analysis.

Related Work. An interesting line of research studies the amortized analysis
of first-order functional programs (e.g. [22,21]) formulated as type rules over a
template potential function with unknown coefficients; these coefficients are then
found by linear programming. It is not clear how to transfer this approach to an
imperative setting. Promising first steps for the amortized analysis of imperative
programs are reported in [8]. Quantifier elimination is applied for simplifying a
constraint system over template cost functions. Since quantifier elimination is
expensive, the technique does not yet scale to larger programs.

Lexicographic ranking functions in automated termination analysis have been
pioneered by Bradley et al. (see [10] and follow-up papers) who employ an elab-
orate constraint solving technique. A recent paper experimentally compares ter-
mination analysis by lexicographic ranking and transition invariants [13] imple-
mented on top of a software model checker. [7] iteratively constructs a lexico-
graphic ranking function by solving linear constraint systems. [11] is a hybrid of
the approaches [13] and [7]. [10], [13] and [11] compute a lexicographic ranking
function for a single control location (i.e., one loop header) at a time, while
the application of bound analysis requires to find a common lexicographic rank-
ing function for all control locations. [7] computes such a ranking function, but
is limited to fairly small programs. Our approach complements the cited ap-
proaches as it represents a simple and scalable construction of a lexicographic
ranking function for all control locations.

Bound Analysis. The COSTA project (e.g. [5,6]) studies the extraction of cost
recurrence relations from Java bytecode programs and proposes new methods for
solving them with the help of computer algebra systems. [15] proposes to extend
the polyhedra abstract domain with max- and non-linear expressions. [19] intro-
duces multiple counters and exploits their dependencies such that upper bounds
have to be computed only for restricted program parts. [16] proposes an abstract
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void main(uint n) {
int a = n, b = 0;

l1 : while (a > 0) {
a--; b++;

l2 : while (b > 0) {
b--;

l3 : for (int i = n-1; i > 0; i--)

if (a > 0 && ?) {
l4 : a--; b++;

} } } }

begin

l1

l2

l3

l4

end

a = n
b = 0
i = 0

τ1 ≡
a′ ≤ a − 1

b′ ≤ b + 1

i′ ≤ i

τ2 ≡
a′ ≤ a

b′ ≤ b − 1

i′ ≤ i + (n − 1)

Id τ3 ≡
a′ ≤ a

b′ ≤ b

i′ ≤ i − 1

τ4 ≡
a′ ≤ a − 1

b′ ≤ b + 1

i′ ≤ i − 1

Id

Id

Id

Fig. 1. Our running example, ’?’ denotes non-determinism (arising from a condition
not modeled in the analysis). On the right we state the lossy VASS obtained by ab-
straction, Id denotes a′ ≤ a, b′ ≤ b, i′ ≤ i.

interpretation-guided program transformation that separates the different loop
phases such that bounds can be computed for each phase in isolation. [20] employs
proof-rules for bound computation combinedwithdisjunctive abstract domains for
summarizing inner loops. [28] proposes a bound analysis based on the size-change
abstract domain. [17,12] discuss how to alternate between bound analysis and in-
variant analysis for the mutual benefit of the computed bounds and invariants.

2 Motivation and Overview

The example presented in Figure 1 (encountered during our experiments) is
challenging for an automated bound analysis: (C1) There are loops whose loop
counter is modified by an inner loop: the innermost loop modifies the counter
variables a and b of the two outer loops. Thus, the inner loop cannot be ignored
(i.e., cannot be sliced away) during the analysis of the two outer loops. (C2) The
middle loop with loop counter b requires a path-sensitive analysis to establish the
linear loop bound n: it is not enough to consider how often the innermost loop
can be executed (at most n2 times) but rather how often the if-branch of the
innermost loop (on which b is actually incremented) can be executed (at most n
times). (C3) Current bound analysis techniques cannot model increments and
instead approximate increments by resets, e.g., approximate the increment of
b by an assignment to a value between 0 and n (using the fact that n is an
upper bound of b)! Because of this overapproximation no bound analysis from
the literature is able to compute the linear loop bound n for the middle loop.
We now illustrate the main steps of our analysis:

1. Program Abstraction: First, our analysis abstracts the program to the VASS
depicted in Figure 1. We introduce VASSs in Section 3. In this paper we are
using parameterized VASSs, where we allow increments that are symbolic but
constant throughout the program (such as n− 1). We extract lossy VASSs from
C programs using simple invariant generation and symbolic execution techniques
(described in Section 7).
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2. Control Flow Abstraction: We propose a new abstraction for bound anal-
ysis, which we call control flow abstraction (CA) (described in Section 4). CA
abstracts the VASS from Figure 1 into a transition system with four transitions:
ρ1 ≡ a′ ≤ a− 1∧ b′ ≤ b+ 1∧ i′ ≤ i, ρ2 ≡ a′ ≤ a∧ b′ ≤ b− 1∧ i′ ≤ i+ (n− 1),
ρ3 ≡ a′ ≤ a ∧ b′ ≤ b ∧ i′ ≤ i− 1, ρ4 ≡ a′ ≤ a− 1 ∧ b′ ≤ b+ 1 ∧ i′ ≤ i− 1.
CA effectively merges loops at different control locations into a single loop cre-
ating one transition for every cyclic path of every loop (without unwinding inner
loops). This significantly simplifies the design of the later analysis phases.

3. Ranking Function Generation: Our ranking function generation (Algorithm
2 stated in Section 5) finds an order on the transitions resulting from CA such
that there is a variable for every transition, which decreases on that transi-
tion and does not increase on the transitions that are lower in the order. This
results in the lexicographic ranking function l = 〈a, a, b, i〉 for the transitions
ρ1, ρ4, ρ2, ρ3 in that order. Our soundness theorem (Theorem 1) guarantees that
l proves the termination of Figure 1.

4. Bound Analysis: Our bound analysis (Algorithm 3 stated in Section 6)
computes a bound for every transition ρ by adding for every other transition
τ how often τ increases the variable of ρ and by how much. In this way, our
bound analysis computes the bound n for ρ2, because ρ2 can be incremented
by ρ1 and ρ4, but this can only happen n times, due to the initial value n of
a. Further, our bound analysis computes the bound n ∗ (n − 1) for ρ3 from the
fact that only ρ2 can increase the counter i by n− 1 and that ρ2 has the already
computed transition-bound n. Our soundness result (Theorem 2) guarantees
that the bound n obtained for ρ2 is indeed a bound on how often the middle
loop of Figure 1 can be executed.

Our bound analysis solves the challenges (C1)-(C3): CA allows us to analyze
all loops at once (C1) creating one transition for every loop path (C2). The
abstract model of lossy VASS is precise enough to model counter increments,
which is a key requirement for achieving amortized complexity analysis (C3).

2.1 Amortized Complexity Analysis

In his influential paper [27] Tarjan introduces amortized complexity analysis us-
ing the example of a stack, which supports two operations push (which puts an
element on the stack) and popMany (which removes several elements from the
stack). He assumes that the cost of push is 1 and the cost of popMany is the
number of removed elements. We use his example (see Figure 2) to discuss how
our bound analysis achieves amortized analysis: Our analysis first abstracts the
program to a VASS and then applies CA. This results in the three transitions
ρ1 ≡ i′ = i− 1∧n′ = n+1, ρ2 ≡ i′ = i− 1∧n′ = n, ρ3 ≡ i′ = i∧n′ = n− 1 (the
first two transitions come from the outer loop, the last transition from the inner
loop). Algorithm 2 then computes the lexicographic ranking function 〈i, i, n〉 for
the transitions ρ1, ρ2, ρ3 in that order. Our bound analysis (Algorithm 3) then
computes the joint bound m for the transitions ρ1 and ρ2. Our bound analysis
further computes the bound m for transition ρ3 from the fact that only ρ1 can
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void main(int m) {
int i=m, n = 0; //stack = emptyStack();

l1 : while (i > 0) {
i--;

if (?) //push

n++; //stack.push(element);

else //popMany

l2 : while (n > 0 && ?)

n--; //element = stack.pop();

} }

Fig. 2. Model of Tarjan’s stack example [27] for amortized complexity analysis

increase the counter n by 1 and that ρ1 has the already computed bound m.
Adding these two bounds gives the amortized complexity bound 2m for Figure 2.
We highlight that our analysis has actually used the variable n of transition ρ3
as a potential function (see [27] for a definition)! A lexicographic ranking func-
tion 〈x1, . . . , xn〉 can be seen as a multidimensional potential function. Consider,
for example, the ranking function 〈a, a, b, i〉 for the transitions ρ1, ρ4, ρ2, ρ3 of
Figure 1. The potential of ρ3 can be increased by ρ2 whose potential in turn can
be increased by ρ1 and ρ4.

3 Lossy VASSs and Basic Definitions

In this section we define lossy VASSs (introduced in [9]) and state definitions
that we need later on. We will often drop the ‘lossy’ in front of ‘VASS’ because
we do not introduce non-lossy VASSs and there is no danger of confusion. In
this paper, we will use VASSs as minimal program model for bound analysis of
sequential programs without procedures. We leave the extension to concurrent
and recursive programs for future work.

Definition 1 (Lossy Vector Addition System with States (VASS)). We
fix some finite set of variables Var = {x1, . . . , xn}. A lossy vector addition
system with states (VASS) is a tuple P = (L,E), where L is a finite set of

locations, and E ⊆ L × Zn × L is a finite set of transitions. We write l1
d−→ l2

to denote an edge (l1, d, l2) for some vector d ∈ Zn. We often specify the vector
d ∈ Zn by predicates x′i ≤ xi + di with di ∈ Z.

A path of P is a sequence l0
d0−→ l1

d1−→ · · · with li
di−→ li+1 ∈ E for all i.

A path is cyclic, if it has the same start- and end-location. A path is simple,
if it does not visit a location twice except for start- and end-location. We write
π = π1 ·π2 for the concatenation of two paths π1 and π2, where the end-location
of π1 is the start-location of π2. We say π′ is a subpath of a path π, if there are
paths π1 and π2 with π = π1 · π′ · π2.

The set of valuations of Var is the set VVar = Var → N of mappings from Var

to the natural numbers. A trace of P is a sequence (l0, σ0)
d0−→ (l1, σ1)

d1−→ · · ·
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such that l0
d0−→ l1

d1−→ · · · is path of P , σi ∈ VVar and σi+1(xj) ≤ σi(xj) + di
for all i and 1 ≤ j ≤ n. P is terminating, if there is no infinite trace of P .

Values of VASS variables are always non-negative. We describe how to obtain
VASSs from programs by abstraction in Section 7. The non-negativity of VASS
values has two important consequences: (1) Transitions in VASSs contain implicit
guards: for example a transition x′ ≤ x + c can only be taken if x + c ≥ 0. (2)
VASS transitions can be used to model variable increments as well as variable
resets: we replace the assignment x := k, where k ∈ Z, by the VASS transition
x′ ≤ x+k during program abstraction (we point out that lossiness is essential for
abstracting assignments). This only increases the set of possible program traces
and thus provides a conservative abstraction.

Parameterized VASSs. In our implementation we use a slight generalization of
lossy VASSs. We allow the increment n in a transition predicate x′ ≤ x+n to be
symbolic but constant; in particular, we require that n does not belong to the
set of variables Var . Our bound algorithm works equally well with symbolic in-
crements under the condition that we know the sign of n. We call these extended
systems parameterized VASSs. See Figure 1 for an example.

In the following we introduce some standard terminology that allows us to
precisely speak about loops and related notions.

Definition 2 (Reducible Graph, Loop Header, Natural Loop, Loop-
nest Tree, e.g. [4]). Let G = (V,E) be a directed graph with a unique entry
point such that all nodes are reachable from the entry point. A node a dominates
a node b, if every path from entry to b includes a. An edge l1 → l2 is a back edge,
if l2 dominates l1. G is reducible, if G becomes acyclic after removing all back
edges. A node is a loop header, if it is the target of a back edge. The (natural)
loop of a loop header h in a reducible graph is the maximal set of nodes L such
that for all x ∈ L (1) h dominates x and (2) there is a back edge from some
node n to h such that there is a path from x to node n that does not contain h.

In the rest of this paper we restrict ourselves to VASSs and programs whose
control flow graph is reducible. This choice is justified by the fact that irreducible
control flow is very rare in practice (e.g. see the study in [26]). For analyzing
irreducible programs we propose to use program transformations that make the
program reducible; we do not elaborate this idea further due to lack of space.

Next, we define a special case of path, which corresponds to the notion of
bound used in this paper (defined below).

Definition 3 (Loop-path). A loop-path π is a simple cyclic path, which starts
and ends at some loop header l, and visits only locations inside the natural loop
of l.

Example: l2
τ2−→ l3

Id−→ l2 is a loop-path for the VASS in Figure 1. However,

l2
Id−→ l1

τ1−→ l2 is not a loop-path because it does not stay inside the natural loop

of l2. l2
τ2−→ l3

Id−→ l4
τ4−→ l3

Id−→ l2 is not a loop-path, because it is not simple (l3
is visited twice).
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Procedure: CA(P )
Input: a reducible VASS P
Output: a transition system T
T := ∅;
foreach loop header l in P do

foreach loop-path π = l
d1−→ l1 · · · ln−1

dn−−→ l do
T := T ∪ {d1 + · · ·+ dn};

return T ;

Algorithm 1. CA creates a transition system from a given VASS

Definition 4 (Instance of a loop-path). Let π = l1
d1−→ l2

d2−→ · · · ln−1
dn−1−−−→

l1 be a loop-path. A path ν is an instance of π iff ν is of the form l1
d1−→ l2∗ l2

d2−→
l3 ∗ l3 · · · ln−1 ∗ ln−1

dn−1−−−→ ln = l1, where li ∗ li denotes any (possibly empty) path
starting and ending at location li which does not contain l1. A path p contains
an instance ν of π iff ν is a subpath of p. Let be ν be an instance of π contained

in p; a transition t on p belongs to ν, if t is on ν and t = li
di−→ li+1 for some i.

We note the following facts about instances: Every transition in a path belongs
to at most one instance of a loop-path. Every transition in a given cyclic path
belongs to exactly one instance of a loop-path.

Example: There are four instances of loop-paths in the path π = l1
τ1−→ l2

τ2−→
l3

Id−→ l4
τ3−→ l3

Id−→ l2
τ2−→ l3

Id−→ l2
Id−→ l1 of the VASS in Figure 1: l1

τ1−→ l2
Id−→ l1,

l2
τ2−→ l3

Id−→ l2 (twice) and l3
Id−→ l4

τ3−→ l3.

Definition 5 (Path-bound). A path-bound for a loop-path π is an expression

b over Var such that for every trace (l0, σ0)
d0−→ · · · of P the path l0

d0−→ · · ·
contains at most b(σ0) instances of π.

Path-bounds have various applications in bound and complexity analysis: the
computational complexity of a program can be obtained by adding the bounds of
the loop-paths of all loops; a loop bound can be obtained by adding the bounds
of all loop-paths of a given loop; the number of visits to a single control location
l can be obtained by adding the bounds of the loop-paths that include l (our
notion of a path-bound can be seen as a path-sensitive generalization of the
notion of a “reachability-bound” [20]); similarly one can obtain a bound on the
number of visits to a set of control locations. More generally, one can obtain
resource bounds for a given cost model by multiplying the bound on the number
of visits to a control location with the cost for visiting this location.

4 Control Flow Abstraction

Control flow abstraction (CA), stated in Algorithm 1, is based on two main
ideas: (1) Given a program P , CA results into one transition for every loop-path
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Procedure: Ranking(T )
Input: a transition system T
Output: a lexicographic ranking function l , which has one component for every

transition ρ ∈ T
S := T ;
l := “lexicographic ranking function with no components”;
while there is a transition ρ ∈ S and a variable x such that ρ |= x′ < x and for
all ρ′ ∈ S we have ρ′ |= x′ ≤ x do

S := S \ ρ;
l := l .append(x);

if S = ∅ then return lelse return “Transitions S maybe non-terminating”

Algorithm 2. Ranking computes a lexicographic ranking function

π for all loop headers l of P . This enables a path-sensitive analysis, which
ensures high precision during ranking function generation and bound analysis.
(2) The control structure is abstracted: effectively, all loops are merged into a
single loop. This allows to compute a common lexicographic ranking function for
all loops later on. CA maps VASSs to transition systems. Transition systems are
not meant to be executed; their sole purpose is to be used for ranking function
generation and bound analysis.

Definition 6 (Transition System). A transition system is a set of vectors
d ∈ Zn. We often specify a transition d ∈ Zn by predicates x′i ≤ xi + di, where
di ∈ Z. We also write d |= x′i ≤ xi (resp. d |= x′i < xi) for di ≤ 0 (resp. di < 0).

Loop-PathContraction. Algorithm1creates one transition for every loop-pathπ =

l
d1−→ l1 · · · ln−1

dn−→ l. The transitiond1+· · ·+dn represents the accumulated effect
of all variable increments along the path. The key idea of loop-path contraction is
to ignore any inner loop on π.We will incorporate the effects of the inner loops only
later on during the ranking function generation and bound analysis phase.

CA Represents Our Choice of Precision in the Analysis: CA facilitates a high
degree of disjunctiveness in the analysis, where we keep one disjunct for every
loop-path. By encapsulating the level of precision in a single analysis phase, we
achieve a modular analysis (only during CA we need to deal with the control
structure of the VASS). This simplifies the design of the later termination and
bound analysis and also allows us to easily adjust the analysis precision if the
number of paths is prohibitively high (see the discussion on path merging in [25]).

5 Ranking Function Generation

In this section we introduce our algorithm for ranking function generation: Algo-
rithm 2 reads in a transition system obtained fromCA and returns a lexicographic
ranking function that provides a witness for termination. The key idea of the al-
gorithm is to incrementally construct a lexicographic ranking function from local
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ranking functions. We call a variable x a local ranking function for a transition
ρ, if ρ |= x′ < x. A tuple l = 〈y1, y2, · · · , yk〉 ∈ Vark is a lexicographic ranking
function for a transition system T iff for each ρ ∈ T there is a ranking function
component yi that is a local ranking function for ρ and ρ |= y′j ≤ yj for all j < i.
Algorithm 2 maintains a candidate lexicographic ranking function l and a set of
transitions S for which no ranking function component has been added to l . In
each step the algorithm checks if there is a transition ρ in S and a variable x
such that (1) x is a local ranking function for ρ and (2) no remaining transition
increases the value of x, i.e., the condition ∀ρ′ ∈ S.ρ′ |= x′ ≤ x is satisfied. If
(1) and (2) are satisfied, ρ is removed from the set of remaining transitions S
and x is added as the component for ρ in the lexicographic ranking function l .
Conditions (1) and (2) ensure that the transition ρ cannot be taken infinitely
often if only transitions from S are taken. The algorithm stops, if no further
transition can be removed. If S is empty, the lexicographic ranking function l is
returned. Otherwise it is reported that the remaining transitions S might lead
to non-terminating executions.

Next we state the correctness of the combined application of Algorithm 1 and
Algorithm 2. The proof can be found in [25].

Theorem 1. If Algorithm 2 returns a lexicographic ranking function l for the
transition system T obtained from Algorithm 1 then VASS P is terminating.

Reasons for Failure. There are two reasons why our ranking function generation
algorithm may fail: (1) There is a transition ρ without a local ranking function,
i.e., there is no variable x with ρ |= x′ < x. Such a transition ρ will never
be removed from S. (2) There is a cyclic dependency between local ranking
functions, i.e., for every transition ρ ∈ S there is a local ranking function x
but the condition “ρ′ |= x′ ≤ x for all ρ′ ∈ S” is never satisfied. We found
cyclic dependencies to be very rare in practice (only 4 instances); we provide a
discussion of the failures encountered in our experiments in [25].

Non-determinism. We note that in presence of transitions with more than one
local ranking function, the result of Algorithm 2 may depend on the choice for
x. However, it is straight-forward to extend Algorithm 2 to generate all possible
lexicographic ranking functions.

6 Bound Computation

In this section we introduce our bound algorithm: Algorithm 3 computes a bound
b for a transition ρ of the transition system T . The main idea of Algorithm 3 is
to rely only on the components of the lexicographic ranking function l for bound
computation. Let x be the component of ρ in l . We recall that the termination
algorithm has already established that x is a local ranking function for ρ and
therefore we have ρ |= x > x′. Thus ρ can be executed at most InitialValue(x)
often unless x is increased by other transitions: Algorithm 3 initializes b :=
InitialValue(x) and then checks for every other transition ρ′ if it increases x,
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Procedure: Bound(ρ)
Input: a transition ρ
Output: a bound for transition ρ
Global: transition system T , lexicographic ranking function l
x := ranking function component of ρ in l ;
b := InitialValue(x);
foreach transition ρ′ ∈ T with ρ′ �|= x′ ≤ x do

Let k ∈ N s.t. x′ ≤ x+ k in ρ′;
b := b + Bound(ρ′) · k;

Let k ∈ N s.t. x′ ≤ x− k in ρ;
return b = b/k;

Algorithm 3. Bound returns a bound for transition ρ

i.e., ρ′ �|= x′ ≤ x. For every such transition ρ′ Algorithm 3 recursively computes a
bound, multiplies this bound by the height of the increase k and adds the result
to b. Finally, we divide b by the decrease k of x on transition ρ.

Termination. Algorithm 3 terminates because the recursive calls cannot create a
cycle. This is because Algorithm 3 uses only the components of l for establishing
bounds and the existence of the lexicographic ranking function l precludes cyclic
dependencies.

Soundness. Our soundness result (Theorem 2, for a proof see [25]) rests on the
assumption that the CFG of P is an SCC whose unique entry point is also its
unique exit point. We can always ensure this condition by a program transforma-
tion that encloses P in a dummy while-loop while(y > 0){P ;y--;}, where y is a
fresh variable with InitialValue(y) = 1. We point out that this program trans-
formation enable us to compute path-bounds in terms of the program inputs for
CFGs with multiple SCCs (e.g., a program with two successive loops).

Theorem 2. Let b be a bound computed by Algorithm 3 for a transition ρ ob-
tained from a loop-path π during CA. Then b is a path-bound for π.

Greedy Bound Computation. The bound computed by Algorithm 3 depends on
the lexicographic ranking function l. Clearly, it is possible to run the algorithm
for multiple lexicographic ranking functions and choose the minimum over the
generated bounds. However, we found the greedy approach to work well in prac-
tice and did not see a need for implementing the enumeration strategy.

Complexity of the Algorithm / Size of Bound Expressions. For ordinary VASS,
the complexity of Algorithm 3 is polynomial in the size of the input with a small
exponent (depending on the exact definition of the complexity parameters). Un-
fortunately, this statement does not hold for parameterized VASSs, for which
bound expressions can be exponentially big: We consider n transitions ρ1, . . . , ρn
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with the local ranking functions x1, . . . , xn and the lexicographic ranking func-
tion 〈x1, . . . , xn〉. We assume that transition ρi increments xj by some constant
cij for i < j. Then, Algorithm 3 computes the bound stated in the following
formula, which is exponentially big for symbolic coefficients cij :

b(ρn) =
∑

k∈[0,n−1]

∏
i1<···<ik∈[1,n−1]

InitialValue(xi1)ci1i2 · · · cikn

However, in practical examples the variable dependencies are sparse, i.e., most
coefficients cij are zero (confirmed by our experiments). We highlight that Algo-
rithm 3 exploits this sparsity as it does not compute the bound using the explicit
formula stated above but rather computes the bound for the current transition
ρ using only the bounds of the transitions that actually increase the counter
of ρ (i.e., cij > 0). We note that in our experiments the computed bounds are
small and the running time of Algorithm 3 is basically linear in the number of
transitions. We conclude that in practice one should make use of the fine-grained
precision offered by the possibly exponentially-sized bound expressions.

Preprocessing: Merging Transitions. Before the bound computation our analy-
sis applies the following rule until no more transitions can be merged: Let ρ1
and ρ2 be two transitions with the same local ranking function x in l such
that x′ ≤ x + k ∈ ρ1 and x′ ≤ x + k ∈ ρ2 for some k (i.e., both transitions
decrement x by the same amount). We replace ρ1 and ρ2 by the transition
ρ = {y′ ≤ y +max{k1, k2} | y′ ≤ y + k1 ∈ ρ1 ∧ y′ ≤ y + k2 ∈ ρ2}. It is not dif-
ficult to see that merging transitions is sound and always improves the bound
computed by Algorithm 3 (we do not give a formal proof here for lack of space).

Example: We have obtained the loop bound of the middle loop in Figure 1 from
the path-bound n of its single transition ρ2 (see Section 2). We have obtained
2m as the amortized complexity of Figure 2 by adding the path-bounds of its
transitions ρ1, ρ2, ρ3 applying merging to ρ1 and ρ2 (see Section 2.1).

7 Program Abstraction

In this section we describe how to abstract programs to VASSs.

Definition 7 (Program). Let Σ be a set of states. The set of transition rela-
tions Γ = 2Σ×Σ is the set of relations over Σ. A program is a tuple P = (L,E),
where L is a finite set of locations, and E ⊆ L× Γ × L is a finite set of tran-

sitions. We write l1
ρ−→ l2 to denote a transition (l1, ρ, l2). We assume the set

of reachable states Reach(l) is defined for every location l ∈ L in the standard
way. Let e1, e2 ∈ Σ → Z be integer-valued expressions over the states, and let
c ∈ Z be some integer. We say e1 ≥ 0 is invariant for l, if e1(s) ≥ 0 holds for all

s ∈ Reach(l). We say e′2 ≤ e1 + c is invariant for l1
ρ−→ l2, if e2(s2) ≤ e1(s1) + c

holds for all (s1, s2) ∈ ρ with s1 ∈ Reach(l1). We say e1 is a norm, if e1 ≥ 0 is
invariant for every location l.
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Definition 8 (Abstraction of a Program). A VASS V = (L,E′) with vari-
ables Var is an abstraction of a program P = (L,E) iff (1) every x ∈ Var is a

norm and (2) for each transition l1
ρ−→ l2 ∈ E there is a transition l1

d−→ l2 ∈ E′

such that every x′ ≤ x+ c ∈ d is invariant for l1
ρ−→ l2.

The above definition suggests a three-step methodology for abstracting pro-
grams: (1) Guess a set of norms N ⊆ Σ → Z. (2) For every x ∈ N show that
x ≥ 0 is invariant at all locations l. If this is not the case, discard the norm x. (3)

For every x ∈ N and every transition l1
ρ−→ l2 find a constant expression c such

that x′ ≤ x + c is invariant for l1
ρ−→ l2. Next, we describe how we implement

this methodology.

7.1 Abstracting Programs to VASSs: Our Implementation

Guessing Norms. The key idea of Algorithm 2 is to find a local ranking function
for every transition. We recall that a transition is obtained from a loop-path
during CA. For this reason, our main heuristic is to consider expressions as
norms that are local ranking functions for at least one loop-path of the program

under analysis. Our implementation iterates over all loop-paths π = l
ρ1−→ l1

ρ2−→
· · · ln−1

ρn−→ l: Let rel(π) = ρ1 ◦ · · · ◦ ρn be the transition relation obtained by
contracting all transition relations along π. We implement the computation of
rel(π) by symbolic backward execution, which returns a set of guards e ≥ 0 (we
note that guards are normalized, e.g., n ≥ i is transformed into n − i ≥ 0) and
updates x′ = e, where e is some expression over the program variables and x′

denotes the value of x after executing π. A local ranking function is an expression
r such that (a) r ≥ 0 is a guard of rel(π) and (b) δr = r − r ′ > 0, where r ′

denotes the expression r where every variables x is replaced by expression e
according to the update x′ = e of rel(π). For every local ranking function r
our implementation adds the expression max{r + δr , 0} to the set of norms N .
Clearly, all norms x = max{r + δr , 0} ∈ N satisfy the invariant x ≥ 0.

Abstracting Transitions. In our implementation we derive a transition predicate

x′ ≤ x + c for a given norm x = max{e, 0} ∈ N and transition l1
ρ−→ l2 as

follows: We obtain the expression e′ from e by replacing variables with their
updates according to ρ. The expression e′ either constitutes an increment, i.e.,
e′ = e + k1, or a reset, i.e., e′ = k2, for some expression ki. For now, assume ki
is constant. We proceed by a case distinction: If e′ = e + k1 and e + k1 ≥ 0 is

invariant for l1
ρ−→ l2, then our implementation derives the transition predicate

x′ ≤ x + k1. This derivation is sound, because of the invariant e + k1 ≥ 0. (We
motivate this derivation rule as follows: assume r ≥ 0 and δr = r − r ′ hold on
ρ, we have e′ = e + (−δr ) ≥ 0 for e = r + δr .) Otherwise, our implementation
derives the transition predicate x′ ≤ x + max{ki, 0}. This derivation is sound
because of properties of maxima. If ki is not constant, we first search for an
invariant ki ≤ u with u constant, and then proceed as above (replacing ki with
u). We implement invariant analysis by symbolic backward execution (see [25]).
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Bounded 1 logn n nlogn n2 n3 n>3 EXP Time w/o Time-outs # Time-outs
Loopus 383 131 0 151 0 81 16 4 0 437s 5
KoAT 321 121 0 142 0 54 0 3 0 682s 282
PUBS 279 116 5 129 5 15 4 0 6 1000s 58
Rank 84 56 0 19 0 8 1 0 0 173s 6

Fig. 3. Analysis results for the benchmark from [12]

Non-linear Local Ranking Functions. In our experiments we only found few loops
that do not have a linear local ranking function. However, these loops almost
always involve the iterated division or multiplication of a loop counter by a
constant such as in the transition relation ρ ≡ x > 1 ∧ x′ = x/2. For such loops
we can introduce the logarithm of x as a norm, i.e., y = log x, and then try to
establish y > 0 from the condition x > 1 and derive the transition relation by
y′ ≤ y − 1 from the update x′ = x/2.

Data Structures. Previous approaches [18,24] have described how to abstract
programs with data structures to integer programs by making use of appropri-
ate norms such as the length of a list or the number of elements in a tree. In
our implementation we follow these approaches using a light-weight abstraction
based on optimistic aliasing assumptions.

8 Experiments

We implemented the discussed approach as an intraprocedural analysis (we use
function inlining) based on the LLVM [23] compiler framework. Our tool Loopus
computes loop bounds (depending on a command-line parameter, see [1]) either
in terms of (1) the inputs to the SCC to which the loop belongs, or (2) the
function inputs (this is implemented by enclosing the function body in a dummy
loop as described in Section 6). At the same time Loopus also computes the
asymptotic complexity of the considered SCC. We use the Z3 SMT solver [14]
for removing unsatisfiable paths during the analysis. Given a loop condition of
form a �= 0 Loopus heuristically decides to either assume a > 0 or a < 0 as loop-
invariant; this assumption is reported to the user. Similarly, Loopus assumes
x > 0 when an update of a loop counter of the form x = x ∗ 2 or x = x/2 is
detected. The task of validating these assumptions is orthogonal to our approach
and can be performed by standard tools for invariant generation. Loopus and
more details on our experimental evaluation are available at [1].

8.1 Comparison to Tools from the Literature

We compare Loopus against the tools KoAT [12], PUBS [5,6] and Rank [7]. For
the comparison we use the benchmark [2], which consists of small example pro-
grams from the bound analysis literature and the benchmark suite which was
used to evaluate T2 [11]. Since Loopus expects C code but KoAT expects a
transition system as input, we needed to obtain C programs for comparison,
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Analyzed Outer Dep. Inner Dep. Paths > 1 Non-Trivial
Loops 4210 255 305 1276 1475
Bounded 3205[3060] 120 [112] 148 [129] 744 [695] 831 [812]
/ Overall 76% [73%] 47% [44%] 49% [42%] 58%[54%] 56% [55%]
SCCs 2833 181 193 902 937
Bounded 2289 70 95 542 564
/ Overall 81% 39% 50% 60% 60%

Fig. 4. Loop and SCC Statistic of our current implementation for the cBench Bench-
mark, the results obtained with the implementation of [28] are given in square brackets

see [25] for details. Figure 3 states the results for the different tools (the results
for KoAT, PUBS and Rank were taken from [12]). Columns 2 to 9 state the num-
ber of programs that were found to have the given complexity by the respective
tool. The table shows that Loopus can compute bounds for more loops than
the other tools. Moreover one can see significant differences in analysis time,
which are due to time-outs (the table shows the analysis time without time-outs
and the number of time-outs separately; the time-out is set to 60s for all tools).
The detailed comparison available at [1] shows that there are 84 loops for which
Loopus computes an asymptotically more precise bound than any of the 3 other
tools, compared to 66 loops for which one of the 3 other tools computed an
asymptotically more precise bound than Loopus .

8.2 Evaluation on Real-World Code

We evaluated Loopus on the program and compiler optimization benchmark
Collective Benchmark [3](cBench), which contains a total of 1027 different C
files (after removing code duplicates) with 211.892 lines of code.

Data Structures. For expressing bounds of loops iterating over arrays or recursive
data structures Loopus introduces shadow variables representing appropriate
norms such as the length of a list or the size of an array. Loopus makes the
following optimistic assumptions which are reported to the user: Pointers do not
alias, a recursive data structure is acyclic if a loop iterates over it, a loop iterating
over an array of characters is assumed to be terminating if an inequality check
on the string termination character ’\0’ is found.1 We made these assumptions
in order to find interesting examples, a manual check on a sample of around
100 loops in the benchmark found the assumptions to be valid with respect to
termination. The task of validating an assumption is orthogonal to our approach
and can be performed by standard tools for shape analysis.

Results. In Figure 4, we give our results on different loop classes. We recall
that our bound analysis is based on an explicitly computed termination proof.
We do not list the results of our termination analysis separately, because a
bound was computed for 98% of all loops for which termination was proven.

1 This assumption is necessary since the type system of C does not distinguish between
an array of characters and a string.
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Details on the reasons for failure of our termination analysis and bound analysis,
which occurred during the experiments, are given in [25]. In column Analyzed
we state the results over all loops in the benchmark. We summarize the results
over all loop categories except Analyzed in the column Non-Trivial.

Challenging Loop Classes. The loop-class ‘Outer Dependent’ captures all outer
loops whose termination behavior is affected by the executions of an inner loop.
(E.g., in Figure 1 termination of loop l1 depends on loop l3, while in Figure 2
termination of loop l1 does not depend on loop l2.) We define an inner loop to
be in the set of ‘Inner Dependent’ loops if it has a loop counter that is not reset
before entering the loop. (E.g., in Figure 1 loop counter i of loop l3 is always
reset to n − 1 before entering the loop, while loop counter b of loop l2 is never
reset.) The loop-class ’Paths > 1’ contains all loops which have more than 1
path left after program slicing (see [25]). The categories for the SCCs are the
same as for the loops: we define an SCC to be in a certain category if it contains
at least one loop which is in that category. Success ratios of around 50% in the
difficult categories demonstrate that our method is able to handle non-trivial
termination and complexity behavior of real world programs.

Amortization. For 107 loops out of the 305 loops in the class ‘Inner Dependent’,
the bound that our tool computed was amortized in the sense that it is asymp-
totically smaller than one would expect from the loop-nesting depth of the loop.
In 12 cases the amortization was caused by incrementing a counter of the inner
loop in the outer loop as in Figures 1 and 2. The 12 loops are available at [1]. For
these loops a precise bound cannot be computed by any other tool (as discussed
in the beginning of Section 2).

Performance. The results were obtained on a Linux machine with a 3.2 Ghz dual
core processor and 8 GB Ram. 92 loops of the 4302 loops in our benchmark are
located in 44 SCCs with an irreducible control flow. We thus analyzed 4210 loops.
The total runtime of our tool on the benchmark (more than 200.000 LoC) did
not exceed 20 minutes. The time-out limit of maximal 420 seconds computation
time per SCC was not reached. There were only 27 out of 2833 SCCs (174 out
of 4210 loops) on which the analysis spent more than 10 seconds.

Experimental Comparison. For the purpose of a realistic comparison, we ran the
tool of [28] on the same machine with an equal time out limit of 420 second. The
results are given in square brackets in Figure 4. Note the significant increase in
the number of loops bounded in each of the challenging categories. The execution
of the tool [28] took an order of magnitude longer (nearly 13 hours) and we got
78 time-outs. The main reason for the drastic performance increase is our new
reasoning on inner loops: The approach of [28] handles inner loops by inserting
the transitive hull of an inner loop on a given path of the outer loop. This can
blow up the number of paths exponentially. We avoid this exponential blow-up
thanks to CA: CA allows us to analyze inner and outer loops at the same time
and thus eliminates the need for transitive hull computation.
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analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012)

9. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In:
Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 323–333. Springer,
Heidelberg (1999)

10. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005)

11. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

12. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: Ábrahám, E., Havelund, K.
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Abstract. We present an approach for inferring symbolic resource
bounds for purely functional programs consisting of recursive functions,
algebraic data types and nonlinear arithmetic operations. In our ap-
proach, the developer specifies the desired shape of the bound as a
program expression containing numerical holes which we refer to as tem-
plates. For e.g, time ≤ a ∗ height(tree) + b where a, b are unknowns, is
a template that specifies a bound on the execution time. We present a
scalable algorithm for computing tight bounds for sequential and parallel
execution times by solving for the unknowns in the template. We em-
pirically evaluate our approach on several benchmarks that manipulate
complex data structures such as binomial heap, lefitist heap, red-black
tree and AVL tree. Our implementation is able to infer hard, nonlinear
symbolic time bounds for our benchmarks that are beyond the capability
of the existing approaches.

1 Introduction

This paper presents a new algorithm and a publicly available tool for infer-
ring resource bounds of functional programs.1 We focus on functional languages
because they eliminate by construction low-level memory errors and allow the
developer to focus on functional correctness and performance properties. Our
tool is designed to automate reasoning about such high-level properties. We ex-
pect this research direction to be relevant both for improving the reliability of
functional programming infrastructure used in many enterprises (e.g. LinkedIn,
Twitter, several banks), as well as for reasoning about software and hardware
systems within interactive theorem provers [17], [21], [29], [12], [19], which often
model stateful and distributed systems using functional descriptions.

The analysis we present in this paper aims to discover invariants (e.g. function
postconditions) that establish program correctness as well as bounds on parallel
and sequential program execution time. Such invariants often contain invocations
of user-defined recursive functions specific to the program being verified, such
as size or height functions on a tree structure. We therefore need a verification
technique that can prove invariants that are expressed in terms of user-defined

1 To download the tool please see http://lara.epfl.ch/w/software

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 762–778, 2014.
c© Springer International Publishing Switzerland 2014
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functions. To the best of our knowledge, our tool is the first available system
that can establish such complex resource bounds with this degree of automation.

Our tool can show, for example, that a function converting a propositional
formula into negation-normal form takes no more than 44·size(f)−20 operations,
where size(f) is the number of nodes in the formula f . The tool also proves that
the depth of the computation graph (time in an infinitely parallel implementa-
tion) is bounded by 5 · h(f) − 2, where h(f) ≥ 1 is the height of the formula
tree. As another example, it shows that deleting from an AVL tree requires the
number of operations given by 145 ·h(t)+19, where h(t) ≥ 0 is the height of the
tree t, whereas the depth of the computation graph is 51 · h(t) + 4.

Our tool takes as input the program, as well as the desired shapes of invariants,
which we call templates. The goal of the analysis becomes finding coefficients
in the templates. The coefficients in practice tend to be sufficiently large that
simply trying out small values does not scale. We therefore turn to one of the
most useful techniques for finding unknown coefficients in invariants: Farkas’
lemma. This method converts a ∃∀ problem on linear constraints into a purely
existential problem over non-linear constraints.

The challenge that we address is developing a practical technique that makes
such expensive non-linear reasoning work on programs and templates that con-
tain invocations of user-defined recursive functions, that use algebraic data types
(such as trees and lists), and that have complex control flow with many disjunc-
tions.

We present a publicly available tool that handles these difficulties through
an incremental and counterexample-driven algorithm that soundly encodes al-
gebraic data types and recursive functions and that fully leverages the ability
of an SMT solver to handle disjunctions efficiently. We show that our technique
is effective for the problem of discovering highly application-specific inductive
resource bounds in functional programs.

2 Background and Enabling Techniques

We first present key existing technology on which our tool builds.

2.1 Instrumenting Programs to Track Resource Bounds

Our approach decouples the semantics of resources such as execution time from
their static analysis. We start with the exact instrumentation of programs with
resource bounds, without approximating e.g. conditionals or recursive invoca-
tions. To illustrate our approach, consider a simple Scala [22] program shown
in Fig. 1, which appends a list l2 to the reverse of l1. We use this program as
our running example. The recursive function size counts the length of its list
argument; it is user-defined and omitted for brevity.

Fig. 2 illustrates the instrumentation for tracking execution time on this
example. For every expression e in the program the resource consumed by e
is computed as a function of the resources consumed by its sub-expressions.
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def revRec(l1:List, l2:List) : List =
(l1 match {
case Nil() ⇒ l2
case Cons(x,xs) ⇒
revRec(xs, Cons(x, l2))

})
ensuring(res ⇒ time ≤ a∗size(l1) + b))

Fig. 1. Appending l2 to the reverse of l1

def revRec(l1:List,l2:List):(List,Int) =
(l1 match {
case Nil() ⇒ (l2, 1)
case Cons(x,xs) ⇒
val (e, t) = revRec(xs, Cons(x,l2))
(e, 5 + t) })

ensuring(res ⇒ res. 2 ≤ a∗size(l1) + b))

Fig. 2. After time instrumentation

For instance, the execution time of an expression (such as e1 ∗ e2) is the sum
of the execution times of its arguments (e1 and e2) plus the time taken by the
operation (here, ∗) performed by the expression (in this case, 1). We expose the
resource usage of a procedure to its callers by augmenting the return value of the
procedure with its resource usage. The resource consumption of a function call is
determined as the sum of the resources consumed by the called function (which
is exposed through its augmented return value) plus the cost of invoking the
function. The cost of primitive operations, such as +, variable access, etc., are
parametrized by a cost model which is, by default, 1 for all primitive operations.

Another resource that we consider in this paper is depth, which is a measure
of parallelism in an expression. Depth [6] is the longest chain of dependencies
between the operations of an expression. The depth and work (the sequential
execution time) of programs have been used by the previous works to accurately
estimate the parallel running times on a given parallel system [6]. Fig. 3 and
Fig. 4 illustrate the instrumentation our tool perform to compute the depth
of a procedure that traverses a tree. We compute the depth of an expression

def traverse(t: Tree) = (t match {
case Leaf() ⇒ f(t)
case Node(l,v,r) ⇒
traverse(l) + traverse(r) + f(t)

)
ensuring(res ⇒ depth ≤ a∗height(t) + b)

Fig. 3. A tree traversal procedure

def traverse(t: Tree):(Tree,Int)= (t match{
case Leaf() ⇒ f(t)
case Node(l,v,r) ⇒
val (el, dl) = traverse(l)
val (er, dr) = traverse(r)
val (e, d) = f(t)
(el+er+e, max(max(dl,dr)+1,d)+5)) })

ensuring(res ⇒ res. 2 ≤ a∗height(t) + b)

Fig. 4. After depth instrumentation

similarly to its execution time, but instead of adding the resource usages of the
sub-expressions, we compute their maximum.

Every inductive invariant for the instrumented procedure obtained by solving
for the unknowns a, b is a valid bound for the resource consumed by the
original procedure. Moreover, the strongest invariant is also the strongest bound
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on the resource. Notice that the instrumentation increases the program sizes,
introduces tuples and, in the case of depth instrumentation, creates numerous
max operations.

2.2 Solving Numerical Parametric Formulas

Our approach requires deciding validity of formulas of the form ∃a.∀x.¬φ, where
a is a vector of variables. The formulas have a single quantifier alternation. We
thus need to find values for a that will make φ unsatisfiable. We refer to φ as
a parametric formula whose parameters are the variables a. When the formula
φ consists only of linear inequalities, finding values for the parameters a can
be converted to that of satisfying a quantifier-free nonlinear constraint (Farkas’
constraint) using a known reduction, sketched below.

A conjunction of linear inequalities is unsatisfiable if one can derive a contra-
diction 1 ≤ 0 by multiplying the inequalities by non-negative values, subtracting
the smaller terms by non-negative values and adding the coefficients in the in-
equalities. E.g, ax+by+c ≤ 0∧x−1 ≤ 0 is unsatisfiable if there exist non-negative
real numbers λ0, λ1, λ2 such that λ1 · (ax+ by+ c)+λ2 · (x− 1)−λ0 ≤ 0 reduces
to 1 ≤ 0. Hence, the coefficients of x and y should become 0 and the constant
term should become 1. This yields a nonlinear constraint λ1a+ λ2 = 0 ∧ λ1b =
0∧ λ1c− λ2 − λ0 = 1∧ λ0 ≥ 0∧ λ1 ≥ 0∧ λ2 ≥ 0. The values of a and b in every
model for this nonlinear constraint will make the inequalities unsatisfiable.

This approach has been used by previous works [7,9,15] to infer linear invari-
ants for numerical programs. There are two important points to note about this
approach: (a) In the presence of real valued variables, handling strict inequalities
in the parametric formula requires an extension based on Motzkin’s transposi-
tion theorem as discussed in [24]. (b) This approach is complete for linear real
formulas by Farkas’ Lemma, but not for linear integer formulas. However, the
incompleteness did not manifest in any of our experiments. Similar observation
has also been documented in the previous works such as [15].

2.3 Successive Function Approximation by Unfolding

To construct verification conditions (VCs) in the presence of algebraic data-types
(ADTs) and recursive functions we use the approach employed in the Leon ver-
ifier [5,28]. The approach constructs VCs incrementally wherein each increment
makes the VC more precise by unrolling the function calls that have not been
unrolled in the earlier increments (referred to as VC refinement). The functions
in the VCs at any given step are treated as uninterpreted functions. Hence, every
VC created is a sufficient but not necessary condition for the postcondition to be
inductive. The postcondition is inductive if any of the generated VCs are valid.
The refinement of VCs continues forever until the postcondition is proven. In
our implementation, we enforce termination by bounding the number of times a
recursive function call is unrolled (fixed as 2 in our experiments).
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We explain the VC generation and refinement on the revRec function shown
in Fig. 2. The initial VC that we create for revRec is shown below

∀l1, l2, res, x, xs, e, t, r, f1, f2, size, revRec. ¬φ
φ ≡ ((l1 = Nil() ∧ res = (l2, 1)) ∨ (l1 = Cons(x, xs) ∧ res = (e, 5 + t) ∧ (e, t) =

revRec(xs, Cons(x, l2))) ∧ f2 > ar + b ∧ r = size(l1) ∧ res = (f1, f2) (1)

The function symbols in the VC are universally quantified as they are treated as
uninterpreted functions. The combined algorithm presented in the next section
solves for the parameters a, b so that the VC holds for any definition of size and
revRec. If the formula (1) has no solution, it then refines the VC by unrolling
the calls to size and revRec. For instance, unrolling r = size(l1) in the above
formula will conjoin the predicate with the formula (l1 = Nil() ∧ r = 0) ∨ (l1 =
Cons(x1, xs1)∧r = 1+ r2∧r2 = size(xs1)) that corresponds to the body of size.
The subsequent refinements will unroll the call r2 = size(xs1) and so on. Note
that, whereas unfolding is the key mechanism in Leon [5, 28], here it is used in
a new combination, with the inference of numerical parameters.

3 Invariant Inference Algorithm

We next present core techniques of our algorithm for inferring resource bounds.
The algorithm introduces new techniques and combines the existing techniques
to overcome their individual weaknesses.

3.1 Solving Formulas with Algebraic Data Types and Recursion

We first describe our approach for solving parametric formulas that are simi-
lar to constraint (1) with ADTs, uninterpreted functions, linear and nonlinear
arithmetic operations.

Eliminating Uninterpreted Functions and ADT Constructors from
Parametric Disjuncts. Let d be a parametric formula with parameters param
defined over a set of variables X and uninterpreted function symbols Xf . We
reduce this to a formula d′ that does not have any uninterpreted functions and
ADT constructors using the axioms of uninterpreted functions and ADTs as
described below. We convert d to negation normal form and normalize the re-
sulting formula so that every atomic predicate (atom) referring to uninterpreted
functions or ADTs is of the form r = f(v1, v2, . . . , vn) or r = cons(v1, v2, . . . , vn)
where f is a function symbol, cons is the constructor of an ADT and r, v1, . . . , vn
are variables. We refer to this process as purification. Let F and T be the set of
function atoms and ADT atoms in the purified formula.

let δ1 =
∧
{(

n∧
i=1

vi = ui)⇒ (r = r′) | r = f(v1, . . . , vn),
r′ = f(u1, . . . , un) ∈ F}

let δ2 =
∧
{(

n∧
i=1

vi = ui)⇔ (r = r′) | r = cons(v1, . . . , vn),
r′ = cons(u1, . . . , un) ∈ T }

let δ = (purify(d) \ (F ∪ T )) ∧ δ1 ∧ δ2
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where δ \ (F ∪ T ) is a formula obtained by substituting with true every atomic
predicate in F or T . Notice that the above elimination procedure uses only the
fact that the ADT constructors are injective. Due to this the completeness of
our approach may not be immediately obvious. In section 3.2 we formalize the
completeness property of our approach.

Applying the above reduction to the disjunct dex of Constraint (1) along which
l = Nil(), results in a constraint of the form sketched below. We consider tuples
also as ADTs.

purify(dex) =

{
(l1 = Nil() ∧ res = (l2, 1) ∧ f2 > ar + b

∧r = size(n1) ∧ res = (f1, f2)

δex = (f2 > ar + b ∧ ((l2 = f1 ∧ f2 = 1)⇔ res = res)) (2)

The formula δ obtained by eliminating uninterpreted function symbols and
ADTs typically has several disjunctions. In fact, if there are n function symbols
and ADT constructors in d then d′ could potentially have O(n2) disjunctions

and O(2n
2

) disjuncts. Our approach described in the next subsection solves the
parametric formulas incrementally based on counter-examples.

3.2 Incrementally Solving Parametric Formulas

Figure 5 presents our algorithm for solving an alternating satisfiability problem.
Given a parametric formula, the goal is to find an assignment ι for params such
that replacing params according to ι results in unsatisfiable formula. We explain
our algorithm using the example presented in the earlier section. Consider the
VC given by constraint (1). Initially, we start with some arbitrary assignment
ι for the parameters a and b (line 5 of the algorithm). Say ι(a) = ι(b) = 0
initially. Next, we instantiate (1) by replacing a and b by 0 (line 8), which results
in the non-parametric constraint: φex : ((l1 = Nil() ∧ res = (l2, 1)) ∨ (l1 =
Cons(x, xs) ∧ res = (e, 5 + t) ∧ (e, t) = revRec(xs, Cons(x, l2)) ∧ f2 > 0 ∧ r =
size(l1) ∧ res = (f1, f2).

If the constraint becomes unsatisfiable because of the instantiation then we
have found a solution. Otherwise, we construct a model σ for the instantiated
formula as shown in line 11. For the constraint φex shown above, l1 �→ Nil(), l2 �→
Nil(), res �→ (Nil(), 1), r �→ −1 and size �→ λx.(x = Nil() → −1 | 0) is a
model. In the next step, we combine the models ι and σ and construct σ′. Note
that ι is an assignment for parameters and σ is an assignment for universally
quantified variables. Using the model σ′ we choose a disjunct of the parametric
formula (1) that is satisfied by σ′. For our example, the disjunct chosen will be
dex : l1 = Nil() ∧ res = (l2, 1) ∧ f2 > ar + b ∧ r = size(l1) ∧ res = (f1, f2).
This operation of choosing a disjunct satisfying a given model can be performed
efficiently in time linear in the size of the formula without explicitly constructing
a disjunctive normal form.

The function elimFunctions invoked at line 14 eliminates the function symbols
and ADT constructors from the disjunct d using the approach described in sec-
tion 3.1. Applying elimFunctions on dex results in the formula δex given by (2).
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1 input : A parametric linear formula φ with parameters ’params’
2 output : Assignments for params such that φ(params) is unsatisfiable
3 or ∅ if no such assignment exists
4 def solveUNSAT(params, φ) {
5 construct an arbitrary initial mapping ι : params �→ R
6 var C = true
7 while(true) {
8 let φinst be obtained from φ by replacing every t ∈ params by ι(t)
9 if (φinst is unsatisfiable) return ι

10 else {
11 choose σ such that σ |= φinst

12 let σ′ be ι � σ
13 choose a disjunct d of φ such that σ′ |= d
14 let δ be elimFunctions(d)
15 choose a disjunct d′ of δ such that σ′ |= d′

16 let dnum be elim(d′)
17 let Cd be unsatConstraints(dnum)
18 C = C ∧ Cd

19 if (C is unsatisfiable) return ∅
20 else {
21 choose m such that m |= C
22 let ι be the projection of m onto params }}}}

Fig. 5. A procedure for finding parameters for a formula to make it unsatisfiable.
unsatConstraints generates nonlinear constraints for unsatisfiability of a disjunct as
illustrated in section 2.2.

We choose a disjunct d′ of δ that satisfies the model σ′. For our example, the dis-
junct of δex that will be chosen is d′ex : l2 = f1∧f2 = 1∧res = res∧f2 > ar+b.

Eliminating Non-numerical Predicates from a Disjunct (elim). We now
describe the operation elim at line 16. Let d′ be the parametric disjunct chosen
in the previous step. d′ is a conjunction of atomic predicates (atoms). Let dt
denote the atoms that consist of variables of ADT type or boolean type. Let dn
denote the atoms that do not contain any parameters and only contain variables
of numerical type. Let dp denote the remaining atoms that has parameters and
numerical variables.

For the example disjunct d′ex, dt is l2 = f1, dn is f2 = 1 and dp is f2 > ar+b.
The disjunct dt can be dropped as dt cannot be falsified by any instantiation
of the parameters. This is because dp and dt will have no common variables.
The remaining disjunct dn ∧ dp is completely numerical. However, we simplify
dn ∧ dp further as explained below. We construct a simplified formula d′n by
eliminating variables in dn that do not appear in dp by applying the quantifier
elimination rules of Presburger arithmetic on dn [23]. In particular, we apply
the one-point rule that uses equalities to eliminate variables and the rule that
eliminates relations over variables for which only upper or lower bounds exist.
dn ∧ dp is unsatisfiable iff d′n ∧ dp is unsatisfiable.
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Typically, dn has several variables that do not appear in dp. This elimination
helps reduce the sizes of the disjuncts and in turn the sizes of the nonlinear
constraints generated from the disjunct. Our experiments indicate that the sizes
of the disjuncts are reduced by 70% or more.

We construct nonlinear Farkas’ constraints (line 17) for falsifying the dis-
junct dnum, obtained after elimination phase, as described in section 2.2. We
conjoin the nonlinear constraint with previously generated constraints, if any
(lines 17,18). A satisfying assignment to the new constraint will falsify every
disjunct explored thus far. We consider the satisfying assignment as the next
candidate model ι for the parameters and repeat the above process.

If the nonlinear constraint C is unsatisfiable at any given step then we con-
clude that there exists no solution that would make φ unsatisfiable. In this case,
we refine the VC by unrolling the functions calls as explained in section 2.3 and
reapply the algorithm solveUNSAT on the refined VC.

Correctness, Completeness and Termination of solveUNSAT

Let F denote parametric linear formulas belonging to the theory of real arith-
metic, uninterpreted functions and ADTs, in which parameters are real valued
and appear only as coefficients of variables.

Theorem 1. Let φ ∈ F be a linear parametric formula with parameters params.

1. The procedure solveUNSAT is correct for F . That is, if ι �= ∅ then ι is an
assignment for parameters that will make φ unsatisfiable.

2. The procedure solveUNSAT is complete for F . That is, if ι = ∅ then there does
not exist an assignment for params that will make φ unsatisfiable.

3. The procedure solveUNSAT terminates.

The correctness of procedure solveUNSAT is obvious as the procedure returns a
model ι iff ι makes the formula φ unsatisfiable. The algorithm terminates since,
in every iteration of the solveUNSAT algorithm, at least one satisfiable disjunct
of elimFunctions(d) is made unsatisfiable, where d is a disjunct of φ. The number
of disjuncts that can be falsified by the solveUNSAT procedure is bounded by
O(2n

2

), where n is the number of atoms in φ. Note that, in practice, our tool
explores a very small fraction of the disjuncts (see section 4). The proof of
completeness of the procedure is detailed in [20]. An important property that
ensures completeness is that the operation elimFunctions is applied only on a
satisfiable disjunct d. This guarantees that the predicates in d involving ADT
variables do not have any inconsistencies. Since the parameters can only influence
the values of numerical variables, axioms that check for inconsistencies among
the ADT predicates can be omitted.

Theorem 1 implies that the procedure we described in the previous sections
for solving parametric VCs, in the presence of recursive functions, ADTs and
arithmetic operations, that iteratively unrolls the recursive functions in the VC
and applies the solveUNSAT procedure in each iteration is complete when the
recursive functions are sufficiently surjective [27, 28] and when the arithmetic
operations in the VCs are parametric linear operations over reals.
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3.3 Solving Nonlinear Parametric Formulas

Nonlinearity is common in resource bounds. In this section, we discuss our ap-
proach for handling nonlinear parametric formulas like φex : wz < xy ∧ x <
w − 1 ∧ y < z − 1 ∧ ax + b ≤ 0 ∧ ay + b ≤ 0 where a, b are parameters. Our
approach is based on axiomatizing the nonlinearity operations. We handle multi-
plication by using axioms such as ∀x, y. xy = (x−1)y+y, ∀x, y. xy = x(y−1)+x
and monotonicity properties like (x ≥ 0 ∧ y ≥ 0 ∧ w ≥ x ∧ z ≥ y) ⇒ xy ≤ wz.
Similarly, we axiomatize exponential functions of the form Cx, where C is a
constant. For example, we use the axiom ∀x. 2x = 2 · 2x−1 together with the
monotonicity axiom for modelling 2x. The axioms are incorporated into the ver-
ification conditions by recursive instantiation as explained below.

Axioms such as xy = (x−1)y+y that are recursively defined are instantiated
similar to unrolling a recursive function during VC refinements. For example, in
each VC refinement, for every atomic predicate r = xy that occurs in the VC,
we add a new predicate r = (x − 1)y + y if it does not exist. We instantiate
a binary axiom, such as monotonicity, on every pair of terms in the VC on
which it is applicable. For instance, if r = f(x), r′ = f(x′) are two atoms
in the VC and if f has a monotonicity axiom, then we conjoin the predicate
(x ≤ x′ ⇒ r ≤ r′) ∧ (x′ ≤ x ⇒ r′ ≤ r) to the VC. This approach can be
extended to N-ary axioms. If the axioms define a Local Theory Extension [16]
(like monotonicity) then the instantiation described above is complete.

Consider the example formula φex shown above. Instantiating the multipli-
cation axioms a few times will produce the following formula (simplified for
brevity): wz < xy ∧ xy = (x − 1)(y − 1) + x + y − 1 ∧ ((x ≥ 0 ∧ y ≥ 0 ∧ x ≤
w ∧ y ≤ z) → xy ≤ wz) ∧ x < w − 1 ∧ y < z − 1 ∧ ax + b ≤ 0 ∧ ay + b ≤ 0.
This formula can be solved without interpreting multiplication. a = −1, b = 0 is
a solution for the parameters.

3.4 Finding Strongest Bounds

For computing strongest bounds, we assume that every parameter in the tem-
plate appears as a coefficient of some expression. We approximate the rate of
growth of an expression in the template by counting the number of function
invocations (including nonlinear operations) performed by the expression. We
order the parameters in the descending order of the estimated rate of growth
of the associated expression, breaking ties arbitrarily. Let this order be 4. For
instance, given a template res≤a∗f(g(x,f(y))+c∗g(x)+a∗x +b, we order the param-
eters as a 4 c 4 b. We define an order ≤∗ on Params �→ R by extending ≤
lexicographically with respect to the ordering 4. We find a locally minimum
solution ιmin for the parameters with respect to ≤∗ as explained below.

Let ι be the solution found by the solveUNSAT procedure. ι is obtained by
solving a set of nonlinear constraints C. We compute a minimum satisfying
assignment ιmin for C with respect to the total order ≤∗ by performing a binary
search on the solution space of C starting with the initial upper bound given by
ι. We stop the binary search when, for each parameter p, the difference between
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the values of p in the upper and lower bounds we found is ≤ 1. We need to
bound the difference between the upper and lower bounds since the parameters
in our case are reals. ιmin may not falsify φ although ι does. This is because C
only encodes the constraints for falsifying the disjuncts of φ explored until some
iteration. We use ιmin as the next candidate model and continue the iterations
of the solveUNSAT algorithm.

In general, the inferred bounds are not guaranteed to be the strongest as the
verification conditions we generate are sufficient but not necessary conditions.
However, it would be the strongest solution if the functions in the program are
sufficiently surjective [27, 28], if there are no nonlinear operations and there is
no loss of completeness due to applying Farkas’ Lemma on integer formulas. Our
system also supports finding a concrete counter-example, if one exists, for the
values smaller than those that are inferred.

3.5 Inference of Auxiliary Templates

We implemented a simple strategy for inferring invariant templates automati-
cally for some functions. For every function f for which a template has not been
provided, we assume a default template that is a linear combination of integer
valued arguments and return values of f . For instance, for a function size(l) we
assume a template a∗res+b≤0 (where, res is the return value of size). This enables
us to infer and use correctness invariants like size(l)≥0 automatically.

3.6 Analysis Strategies

Inter-Procedural Analysis. We solve the resource bound templates for the
functions modularly in a bottom-up fashion. We solve the resource bound tem-
plates of the callees independent of the callers, minimize the solution to find
strong bounds and use the bounds while analysing the callers. The auxiliary
templates that we infer automatically are solved in the context of the callers in
order to find context-specific invariants.

Targeted Unrolling. Recall that we unroll the functions in a VC if the VC
is not solvable by solveUNSAT (i.e, when the condition at line 19 is true). As an
optimization we make the unrolling process more demand-driven by unrolling
only those functions encountered in the disjuncts explored by the solveUNSAT

procedure. This avoids unrolling of functions along disjuncts that are already
unsatisfiable in the VC.

Prioritizing Disjunct Exploration. Typically, the VCs we generate have a
large number of disjuncts some of which are easier to reduce to false compared
to others. We bias the implementation to pick the easier disjuncts by using
timeouts on the nonlinear constraints solving process. Whenever we timeout
while solving a nonlinear constraint, we block the disjunct that produced the
nonlinear constraint in the VC so that it is not chosen again. In our experiments,
we used a timeout of 20s. This strategy, though conceptually simple, made the
analysis converge faster on many benchmarks.
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4 Empirical Evaluation

We have implemented our algorithm on top of the Leon verifier for Scala [5],
building on the release from the GitHub repository. We evaluate our tool on
a set of benchmarks shown in Fig. 6 written in a purely functional subset of
Scala programming language. The experiments were performed on a machine
with 8 core, 3.5 GHz, intel i7 processor, having 16GB RAM, running Ubuntu
operating system. For solving the SMT constraints generated by tool we use the
Z3 solver of [10], version 4.3. The Benchmarks used in the evaluation comprises
of approximately 1.5K lines of functional Scala code with 130 functions and 80
templates. All templates for execution bounds specified in the benchmarks were
precise bounds. Fig. 6 shows the lines of codes loc, number of procedures P and a
sample template for running time bound that was specified, for the benchmarks.

Benchmark loc P Sample template used in benchmark

List Operations (list) 60 8 a∗(size(l)∗size(l))+b
Binary search tree (bst) 91 8

addAll a∗(lsize(l)∗(height(t)+lsize(l)))+b∗lsize(l)+c
removeAll a∗(lsize(l)∗height(t))+b∗lsize(l)+c

Doubly ended queue (deq) 86 14 a∗qsize(q)+b
Prop. logic transforms (prop) 63 5 a∗size(formula)+b
Binary Trie (trie) 119 6 a∗inpsize(inp)+c
qsort, isort, mergesort (sort) 123 12 a∗(size(l)∗size(l))+b
Loop transformations (loop) 102 10 a∗size(program)+b
Concatenate variations (cvar) 40 5

strategy 1 a∗((n∗m)∗m)+c∗(n∗m)+d∗n+e∗m+f
strategy 2 a∗(n∗m)+b∗n+c∗m+d

Leftist heap (lheap) 81 10
merge a∗rheight(h1)+b∗rheight(h2)+c
removeMax a∗leftRightheight(h) + b

Redblack tree (rbt) 109 11 a∗blackheight(t)+b
AVL tree (avl) 190 15 a∗height(t)+b
Binomial heap (bheap) 204 12

merge a∗treenum(h1)+b∗treenum(h2)+c
deleteMin a∗treenum(h1)+b∗minchildren(h2)+c

Speed benchmarks(speed) 107 8 a∗((k+1)∗(len(sb1)+len(sb2)))+b∗size(str1)+c
Fold operations (fold) 88 7

listfold, treefold a∗(k∗k)+b, a∗size(t)+b

Fig. 6. Benchmarks used in the evaluation comprising of approx. 1.5K lines of scala
code, 130 functions and 80 templates. P denotes the number of procedures.

The benchmark list implements a set of list manipulation operations like
append, reverse, remove, find and distinct–that removes duplicates. bst imple-
ments a binary search tree with operations like insert, remove, find, addall and
removeall. The function lsize(l) (used in the templates) is the size of the list of el-
ements to be inserted/removed from the tree. deq is an amortized, doubly-ended
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queue with enqueue, dequeue, pop and concat operations. prop is a set of propo-
sitional logic transformations like converting a formula to negation normal form
and simplifying a formula. lheap is a leftist heap data-structure implementation
with merge, insert and removemax operations. This benchmark also specified a

logarithmic bound on the right height : 2rheight(h)≤a∗heapSize(h) + b which was
solved by the tool. The function leftRightheight (used in the template) computes
the right height of the left child of a heap.

trie is a binary prefix tree with operations: insert–that inserts a sequence of in-
put bits into the tree, find, create –that creates a new tree from an input sequence
and delete–that deletes a sequence of input bits from the tree. The benchmark
cvars compares two different strategies for sequence concatenation. One strat-
egy exhibits cubic behavior on a sequence of concatenation operations (templates
shown in Fig. 6) and the other exhibits a quadratic behavior. rbt is an implemen-
tation of red-black tree with insert and find operations. This benchmark also

specified a logarithmic bound on the black height: 2blackheight(h)≤a∗treeSize(h)+b

which was solved by the tool.
avl is an implementation of AVL tree with insert, delete and find operations.

bheap implements a binomial heap with merge, insert and deletemin operations.
The functions treenum and minchildren (used in templates), compute the number
of trees in a binomial heap and the number of children of the tree containing
the minimum element, respectively. speed is a functional translation of the code
snippets presented in figures 1,2, 9 of [14], and the code snippets on which it
was mentioned that the tool failed (Page 138 in [14]). The benchmark fold is a
collection of fold operations over trees and lists. These were mainly included for
evaluation of depth bounds.

Fig. 7 shows the results of running our tool on the benchmarks. The column
bound shows the time bound inferred by the tool for the sample template shown
in Fig. 6. This may provide some insights into the constants that were inferred.
The bounds inferred are inductive. Though the constants inferred could poten-
tially be rationals, in many cases, the SMT solver returned integer values. In case
a value returned by the solver for a parameter is rational, we heuristically check
if the ceil of the value also yields an inductive bound. This heuristic allowed us
to compute integer values for almost all templates.

The column time shows the total time taken for analysing a benchmark. In
parentheses we show the time the tool spent in minimizing the bounds after
finding a valid initial bound. The subsequent columns provide more insights into
the algorithm. The column VC size shows the average size of the VCs generated
by the benchmarks averaged over all refinements. The tool performed 11 to 42
VC refinements on the benchmarks. The column disj. shows the total number of
disjuncts falsified by the tool and the column NL size shows the average size of
the nonlinear constraints solved in each iteration of the solveUNSAT procedure.

Our tool was able to solve 78 out of 80 templates. Two templates were not
solvable because of the incompleteness in the handling of nonlinearity. The re-
sults also show that our tool was able to keep the average size of the generated
nonlinear constraints small in each iteration in spite of the large VC sizes, which
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Sample bound inferred time avg.VC disj. NL
time≤ (min.time) size size

list 9∗(size(l)∗size(l))+2 17.7s (8.7s) 1539.7 108 59.9

bst 8∗(lsize(l)∗(height(t)+lsize(l))) 31s (14.2s) 637.4 79 84
+2∗lsize(l)+1

29∗(lsize(l)∗height(t))+7∗lsize(l)+1

deq 9∗qsize(q)+26 17.3s (8.6s) 405.7 80 27.9

prop 52∗size(formula)−20 19.5s (1.2s) 1398.5 59 38.1

trie 42∗inpsize(inp)+3 3.3s (0.5s) 356.8 54 23.5

sort † 8∗(size(l)∗size(l))+2 6.8s (1.6s) 274.9 85 29.6

loop 16∗size(program)−10 10.6s (4.9s) 1133.8 44 52.4

cvar 5∗((n∗m)∗m)−(n∗m)+0∗n+8∗m+2 25.2s (14.7s) 1423.2 61 49.4
9∗(n∗m)+8∗m+0∗n+2

lheap 22∗rheight(h1)+22∗rheight(h2)+1 166.7s (144s) 1970.5s 152 106.4
44∗leftRightheight(h)+5

rbt 178∗blackheight(t)+96 124.5s (18.8s) 3881.2 149 132.6

avl 145∗height(t)+19 412.1s (259.1s) 1731.8 216 114

bheap 31∗treenum(h1)+38∗treenum(h2)+1 469.1s (427.1s) 2835.5 136 157.2
70∗treenum(h1)+31∗minchildren(h2)+22

speed 39∗((k+1)∗(len(sb1)+len(sb2))) 28.6s (6.4s) 1084.9 111 85.8
+18∗size(str1)+34

fold 12∗(k∗k)+2 8.5s (0.8s) 331.8 44 23
12∗size(t)+1

Fig. 7. Results of running our tool on the benchmarks. † the tool failed on 2 templates
in the sort benchmark.

is very important since even the state-of-the-art nonlinear constraint solvers do
not scale well to large nonlinear constraints.

Fig. 8 shows the results of applying our tool to solve templates for depth
bounds for our benchmarks. All the templates used were precise. The tool was
able to solve all 80 templates provided in the benchmarks. In Fig. 8, the bench-
marks which have asymptotically smaller depth compared to their execution time
(work) are starred. Notice that the constants involved in the depth bounds are
much smaller for every benchmark compared to its work, even if the depth is not
asymptotically smaller than work. Notice that the tool is able to establish that
the depth of mergesort is linear in the size of its input; the depth of negation
normal form transformation is proportional to the nesting depth of its input
formula and also that the depth of fold operations on trees is linear in the height
of the tree.

Comparison with CEGIS. We compared our tool with Counter Example
Guided Inductive Synthesis(CEGIS) [26] which, to our knowledge, is the only ex-
isting approach that can be used to find values for parameters that would falsify
a parametric formula containing ADTs, uninterpreted functions and nonlinear
operations. CEGIS is an iterative algorithm that, given a parametric formula φ
with parameters param and variables X , makes progress by finding a solution
for param that rules out at least one assignment for X that was feasible in the
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Inferred depth bound: depth≤ time

list 5∗(size(l)∗size(l))+1 9.7s

bst 4∗(lsize(l)∗(height(t)+lsize(l)))+2∗lsize(l)+1 335.8s
4∗(lsize(l)∗height(t))+4∗lsize(l)+1

deq 3∗qsize(q)+13 106.4s

prop* 5∗nestingDepth(formula)−2 31.4s

trie 8∗inpsize(inp)+1 4.1s

msort* 45∗size(l)+1 20.2s
qsort 7∗(size(l)∗size(l))+5∗size(l)+1 164.5s
isort 5∗(size(l)∗size(l))+1 3s

loop 7∗size(program)−3 404s

cvar 3∗((n∗m)∗m)− 1
8
∗(n∗m)+n+5∗m+1 270.8s

3∗(n∗m)+3∗n+4∗m+1

lheap 7∗rheight(h1)+7∗rheight(h1)+1 42s
14∗leftRightheight(h)+3

rbt 22∗height(t)+19 115.3s

avl 51∗height(t)+4 185.3s

bheap 7∗treenum(h1)+7∗treenum(h2)+2 232.5s
22∗treenum(h1)+7∗minchildren(h2)+16

speed 6∗((k+1)∗(len(sb1)+len(sb2)))+5∗size(str1)+6 41.8s

fold* 6∗k+1 3.1s
5∗height(tree)+1

Fig. 8. Results of inferring bounds on depths of benchmarks

earlier iterations. In contrast to our approach which is guaranteed to terminate,
CEGIS may diverge if the possible values for X is infinite. We actually imple-
mented CEGIS and evaluated it on our benchmarks. CEGIS diverges even on the
simplest of our benchmarks. It follows an infinite ascending chain along which
the parameter corresponding to the constant term of the template increases in-
definitely. We also evaluated CEGIS by bounding the values of the parameters
to be ≤ 200. In this case, CEGIS worked on 5 small benchmarks (viz. list, bst,
deq, trie and fold) but timed out on the rest after 30min. For the benchmarks
on which it worked, it was 2.5 times to 64 times slower than our approach.

5 Related Work

We are not aware of any existing approach that can handle the class of templates
and programs that our approach handled in the experimental evaluation.

Template-Based Invariant Inference. The work of [8] is possibly closest
to ours because it performs template-based analysis of imperative programs for
finding heap bounds and handles program paths incrementally using the idea of
path invariants from [4]. [8] infers only linear bounds. It handles data-structures
using a separate shape analysis that tracks the heap sizes. Our approach is
for functional programs. We handle a wide range of recursive functions over
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ADTs and are not restricted to size. We integrate the handling of ADTs into
the template solving process, which allows us to solve precise templates. We
support nonlinearity and are capable of computing strongest bounds. We are
able to handle complex data-structure implementations such as Binomial Heap.
[3] presents an approach for handling uninterpreted functions in templates. We
handle disjunctions that arise because of axiomatizing uninterpreted functions
efficiently through our incremental algorithm that is driven by counter-examples
and are able to scale to VCs with hundreds of uninterpreted functions. Our
approach also supports algebraic data types and handles sophisticated templates
that involve user-defined functions. The idea of using Farkas’ lemma to solve
linear templates of numerical programs goes back at least to the work of [7] and
has been generalized in different directions by [25], [9], [15]. [9] and [25] present
systematic approaches for solving nonlinear templates for numerical programs.
Our approach is currently based on light-weight axiomatization of nonlinear
operations which is targeted towards practical efficiency. It remains to be seen if
we can integrate more complete non-linear reasoning into our approach without
sacrificing scalability.

Symbolic Resource Bounds Analyses. [14] (SPEED) presents a technique
for inferring symbolic bounds on loops of C programs that is based on instru-
menting programs with counters, inferring linear invariants on counters and
combining the linear invariants to establish a loop bound. This approach is
orthogonal to ours where we attempt to find solutions to user-defined templates.
In our benchmarks, we included a few code snippets on which it was mentioned
that their tool did not work. Our approach was able to handle them when the
templates were provided manually. Our approach is also extensible to other re-
source bounds such as depth. The COSTA system of [1] can solve recurrence
equations and infer nonlinear time bounds, however, it does not appear to sup-
port algebraic data types nor user-defined functions within resource bounds.

Other Related Works. Counterexample-guided refinement ideas are ubiqui-
tous in verification, as well as in software synthesis, where they are used in
counterexample-guided inductive synthesis (CEGIS) algorithms by [26], [13],
and [18]. One important difference in approaches such as ours is that an in-
finite family of counterexamples is eliminated at once. Our experimental results
of comparison with CEGIS in section 4 indicates that these approaches may suf-
fer from similar divergence issues particularly for the resource bound inference
problem. Recent work [2] provides a general framework and system for inferring
invariants, which can also handle ∃∀ problems of the form we are considering.
The comparison of two approaches requires further work because our target are
contracts with function invocations whereas [2] targets temporal logic formulas.
The underlying HSF tool [11] has been shown applicable to a wide range of
analysis problems. HSF could simplify the building of a resource analyzer such
as ours, though it does not support algebraic data types and resource bound
computation out of the box.
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Abstract. We show how Max-SMT-based invariant generation can be exploited
for proving non-termination of programs. The construction of the proof of non-
termination is guided by the generation of quasi-invariants – properties such
that if they hold at a location during execution once, then they will continue to
hold at that location from then onwards. The check that quasi-invariants can in-
deed be reached is then performed separately. Our technique considers strongly
connected subgraphs of a program’s control flow graph for analysis and thus
produces more generic witnesses of non-termination than existing methods. More-
over, it can handle programs with unbounded non-determinism and is more likely
to converge than previous approaches.

1 Introduction

While the problem of proving program termination has now been extensively studied
[1–22], relatively less work has been done on proving non-termination of programs.

In this paper we present a new method for proving non-termination of sequential
non-deterministic programs that leverages Max-SMT-based invariant generation [23,
24]. Our method analyses each Strongly Connected SubGraph (SCSG) of a program’s
control flow graph and, by means of Max-SMT solving, tries to find a formula at every
node of the SCSG that satisfies certain properties. First, the formula has to be a quasi-
invariant, i.e, it must satisfy the consecution condition of inductive invariants, but not
necessarily the initiation condition. Hence, if it holds at the node during execution once,
then it continues to hold from then onwards. Second, the formula has to be edge-closing,
meaning that it forbids taking any of the outgoing edges from that node that exit the
SCSG. Now, once we have computed an edge-closing quasi-invariant for every node of
the SCSG, if a state is reached that satisfies one of them, then program execution will
remain within the SCSG from then onwards. The existence of such a state is tested with
an off-the-shelf reachability checker. If it succeeds, we have proved non-termination of
the original program, and the edge-closing quasi-invariants of the SCSG and the trace
given by the reachability checker form the witness of non-termination.

Our approach differs from previous methods in two major ways. First, edge-closing
quasi-invariants are more generic properties than non-termination witnesses produced
by other provers, and thus are likely to carry more information and be more useful in
bug finding. Second, our non-termination witnesses include SCSGs, which are larger
structures than, e.g., lassos. Note that the number of SCSGs present in any CFG is
finite, while the number of lassos is infinite. Because of these differences, our method
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δ0: int i, j;
j := -1;

δ1: while (i > 0 && j != 0)
i := i + j;
j := j + 2;

δ2:

δ0

δ1 δ2

τ1

τ2

τ3

τ5

τ4

Rτ1 : j′ = −1

Rτ2 : i ≥ 1 ∧ j ≤ −1 ∧
i′ = i + j ∧ j′ = j + 2

Rτ3 : i ≥ 1 ∧ j ≥ 1 ∧
i′ = i + j ∧ j′ = j + 2

Rτ4 : i ≤ 0 ∧ i′ = i ∧ j′ = j

Rτ5 : i ≥ 1 ∧ j = 0 ∧ i′ = i ∧ j′ = j

(a) (b)

δ1τ2

τ3

τ4

τ5
δ1τ2

τ4

τ5τ3

SCSG-1 SCSG-2

δ1

τ3

τ4

τ5

τ2

SCSG-3

For SCSG-3 :

Iteration 1 :
Solution for Mδ1 : j ≥ 1
Disabled transitions : τ2, τ5

Quasi-invariant Qδ1 : j ≥ 1

Iteration 2 :
Solution for Mδ1 : i ≥ 1
Disabled transitions : τ4

Quasi-invariant Qδ1 : j ≥ 1 ∧ i ≥ 1

Reachable path : δ0 → δ1 → δ1

(c) (d)

Fig. 1. Example program (a) together with its corresponding CFG (b), non-trivial SCSGs (c) and
non-termination analysis (d)

is more likely to converge. Moreover, lasso-based methods can only handle periodic
non-termination, while our approach can deal with aperiodic non-termination too.

Our technique is based on constraint solving for invariant generation [25] and is
goal-directed. Before discussing it formally, we describe it with a simple example.
Consider the program in Fig. 1(a). The CFG for this program is shown in Fig. 1(b).
The edges of the CFG represent the transitions between the locations. For every tran-
sition τ, we denote the formula of its transition relation by Rτ(i, j, i′, j′). The unprimed



Proving Non-termination Using Max-SMT 781

variables represent the values of the variables before the transition, and the primed ones
represent the values after the transition. By Rτ(i, j) we denote the conditional part of τ,
which only involves the pre-variables. Fig. 1(c) shows all non-trivial (i.e. with at least
one edge) SCSGs present in the CFG. For every SCSG, the dashed edges are those that
exit the SCSG and hence are not part of it. Note that SCSG-1 is a maximal strongly
connected subgraph, and thus is a strongly connected component of the CFG. Notice
also that τ3 is an additional exit edge for SCSG-2, and similarly τ2 is an exit edge for
SCSG-3. The non-termination of this example comes from SCSG-3.

Our approach considers every SCSG of the graph one by one. In every iteration of
our method, we try to find a formula at every node of the SCSG under consideration.
This formula is originally represented as a template with unknown coefficients. We
then form a system of constraints involving the template coefficients in the Max-SMT
framework. In a Max-SMT problem, some of the constraints are hard, meaning that any
solution to the system of constraints must satisfy them, and others are soft, which may
or may not be satisfied. Soft constraints carry a weight, and the goal of the Max-SMT
solver is to find a solution for the hard constraints such that the sum of the weights for
the soft constraints violated by the solution is minimized. In our method, essentially
the hard constraints encode that the formula should obey the consecution condition,
and every soft constraint encodes that the formula will disable an exit edge. A solution
to this system of constraints assigns values to template coefficients, thus giving us the
required formula at every node.

Consider the analysis of SCSG-3 (refer to Fig. 1(d)). Note that there is a single
node δ1 and a single transition τ3 in SCSG-3. We denote by E = {τ2, τ4, τ5} the set of
exit edges for SCSG-3. By Qδ1 (i, j) we denote the quasi-invariant at node δ1. Initially
Qδ1 (i, j) � true. In the first iteration, for node δ1 we assign a template Mδ1 (i, j) : a.i +
b.j ≤ c.

We then form the Max-SMT problem consisting of the following system of hard and
soft constraints:

(Consecution) ∀ i, j, i′, j′. Mδ1 (i, j) ∧ Qδ1 (i, j) ∧ Rτ3 (i, j, i′, j′)→ Mδ1 (i′, j′)

(Edge-Closing) For all τ ∈ E: ∀ i, j. Mδ1 (i, j) ∧ Qδ1 (i, j)→ ¬Rτ(i, j)
The consecution constraint is hard, while the edge-closing constraints are soft (with

weight, say, 1). The edge-closing constraint for τ ∈ E encodes that, from any state
satisfying Mδ1 (i, j) ∧ Qδ1 (i, j), the transition τ is disabled and cannot be executed.

In the first iteration, a solution for Mδ1 gives us the formula j ≥ 1. This formula
satisfies the edge-closing constraints for τ2 and τ5. We conjoin this formula to Qδ1 ,
updating it to Qδ1 (i, j) � j ≥ 1. We also update E = {τ4} by removing τ2 and τ5, as these
edges are now disabled.

In the second iteration, we again consider the same template Mδ1 (i, j) and try to solve
the Max-SMT problem above with updated Qδ1 (i, j) and E. This time we get a solution
that gives us the formula i ≥ 1, which satisfies the edge-closing constraint for τ4. We
again update Qδ1 (i, j) � j ≥ 1 ∧ i ≥ 1 by conjoining the new formula. We update E = ∅
by removing the disabled edge τ4. Now all exit edges have been disabled, and thus the
quasi-invariant Qδ1 (i, j) is edge-closing.

In the final step of our method, we use a reachability checker to determine if any
state satisfying Qδ1 (i, j) at location δ1 is reachable. This test succeeds, and a path δ0 →
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δ1 → δ1 is obtained. Notice that the path goes through the loop once before we reach the
required state. At this point, we have proved non-termination of the original program.

2 Preliminaries

2.1 SMT and Max-SMT

Let P be a finite set of propositional variables. If p ∈ P, then p and ¬p are literals.
The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l is ¬p. A clause
is a disjunction of literals. A propositional formula is a conjunction of clauses. The
problem of propositional satisfiability (abbreviated as SAT) consists in, given a formula,
determining whether or not it is satisfiable, i.e., if it has a model: an assignment of
Boolean values to variables that satisfies the formula.

An extension of SAT is the satisfiability modulo theories (SMT) problem [26]: to
decide the satisfiability of a given quantifier-free first-order formula with respect to a
background theory. In this setting, a model (which we may also refer to as a solution)
is an assignment of values from the theory to variables that satisfies the formula. Here
we will consider the theories of linear real/integer arithmetic (LRA/LIA), where literals
are linear inequalities over real and integer variables respectively, and the more general
theories of non-linear real/integer arithmetic (NRA/NIA), where literals are polynomial
inequalities over real and integer variables, respectively.

Another generalization of SAT is the Max-SAT problem [26]: it consists in, given a
weighted formula where each clause has a weight (a positive number or infinity), finding
the assignment such that the cost, i.e., the sum of the weights of the falsified clauses, is
minimized. Clauses with infinite weight are called hard, while the rest are called soft.
Equivalently, the problem can be seen as finding the model of the hard clauses such that
the sum of the weights of the falsified soft clauses is minimized.

Finally, the problem of Max-SMT [27] merges Max-SAT and SMT, and is defined
from SMT analogously to how Max-SAT is derived from SAT. Namely, the Max-SMT
problem consists in, given a weighted formula, to find an assignment that minimizes the
sum of the weights of the falsified clauses in the background theory.

2.2 Transition Systems

Our technique is applicable to sequential non-deterministic programs with integer vari-
ables and commands whose transition relations can be expressed in linear (integer)
arithmetic. By v we represent the tuple of program variables. For the sake of presen-
tation, we assume that the non-determinism of programs can come only from non-
deterministic assignments of the form i := nondet(), where i ∈ v is a program
variable. Note that, however, this assumption still allows one to encode other kinds
of non-determinism. For instance, any non-deterministic branching of the form if(∗){}
else{} can be cast into this framework by introducing a new program variable k ∈ v and
rewriting into the form k := nondet(); if(k ≥ 0){} else{}.

We model programs with transition systems. A transition system S = (v, u,L, Θ,T )
consists of a tuple of program variables v, a tuple of non-deterministic variables u, a set
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of locations L, a map Θ from locations to formulas characterizing the initial values of
the variables, and a set of transitionsT . Each transition τ ∈ T is a triple (δ, δ′,R), where
δ, δ′ ∈ L are the pre and post locations respectively, and R is the transition relation:
a formula over the non-deterministic variables u, the program variables v and their
primed versions v′, which represent the values of the variables after the transition. The
transition relation of a non-deterministic assignment of the form i := nondet(), where
i ∈ v, is represented by the formula i′ = u1, where u1 ∈ u is a fresh non-deterministic
variable. Note that u1 is not a program variable, i.e., u1 � v, and is added only to
model the non-deterministic assignment. Thus, without loss of generality on the kind of
non-deterministic programs we can model, we will assume that every non-deterministic
variable appears in at most one transition relation. A transition that includes a non-
deterministic variable in its transition relation is called non-deterministic (abbreviated
as nondet).

In what follows we will assume that transition relations are described as conjunctions
of linear inequalities over program variables and non-deterministic variables. Given a
transition relation R = R(v, u, v′), we will use R(v) to denote the conditional part of
R, i.e., the conjunction of linear inequalities in R containing only variables in v. For a
transition system modeling real programs, the following conditions are true:

For τ = (δ, δ′,R) ∈ T : ∀v, u∃v′. R(v)→ R(v, u, v′). (1)

For δ ∈ L :
∨

(δ,δ′ ,R)

R(v) � true. (2)

For τ1 = (δ, δ1,R1), τ2 = (δ, δ2,R2) ∈ T , τ1 � τ2 : R1(v) ∧ R2(v) � false. (3)

Condition (1) guarantees that next values for the program variables always exist if the
conditional part of the transition holds. Condition (2) expresses that, for any location, at
least one of the outgoing transitions from that location can always be executed. Finally,
condition (3) says that any two different transitions from the same location are mutually
exclusive, i.e., conditional branching is always deterministic.

Example 1. Let us consider the program shown in Figure 2. Note how the two non-
deterministic assignments have been replaced in the CFG by assignments to fresh non-
deterministic variables u1 and u2. Condition (2) is trivially satisfied for δ0 and δ2, since
the conditional part of their outgoing transition relations is empty. Regarding δ1, clearly
the formula x ≥ y ∨ x < y is a tautology. Condition (3) is also easy to check: the
conditional parts of Rτ2 ,Rτ3 and Rτ4 are pairwise unsatisfiable. Finally, condition (1)
trivially holds since the primed parts of the transition relations consist of equalities
whose left-hand side is always a different variable. ��

A state is an assignment of a value to each of the variables in v and u. A configuration
is a pair (δ, σ) consisting of a location δ ∈ L and a state σ. For any pair of configurations
(δ, σ) and (δ′, σ′), if there is a transition τ = (δ, δ′,R) ∈ T such that (σ, σ′) |= R,
we write (δ, σ)

τ→ (δ′, σ′). A computation is a sequence of configurations (δ0, σ0),
(δ1, σ1), ... such that σ0 |= Θ(δ0), and for each pair of consecutive configurations there

exists τi ∈ T satisfying (δi, σi)
τi→ (δi+1, σi+1). A configuration (δ, σ) is reachable if

there exists a computation ending at (δ, σ). A transition system is terminating if all its
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δ0: int x, y;
δ1: while (x ≥ y)

if (x ≥ 0)
x := nondet();
y := y + 1;

else

y := nondet();
δ2:

δ0 δ1 δ2
τ1

τ2

τ3

τ4

Rτ1 : x′=x ∧ y′=y

Rτ2 : x ≥ y ∧ x ≥ 0 ∧
x′=u1 ∧ y′=y + 1

Rτ3 : x ≥ y ∧ x < 0 ∧
x′=x ∧ y′=u2

Rτ4 : x < y ∧ x′=x ∧
y′=y

Fig. 2. Program involving non-deterministic assignments, together with its CFG

computations are finite, and non-terminating otherwise. The goal of this paper is, given
a transition system, to prove that it is non-terminating.

3 Quasi-invariants and Non-termination

Here we will introduce the core concept of this work, that of a quasi-invariant: a prop-
erty such that, if it is satisfied at a location during execution once, then it continues to
hold at that location from then onwards. The importance of this notion resides in the
fact that it is a key ingredient in our witnesses of non-termination: if each location of an
SCSG can be mapped to a quasi-invariant that is edge-closing, i.e., that forbids execut-
ing any of the outgoing transitions that leave the SCSG, and the SCSG can be reached
at a configuration satisfying the corresponding quasi-invariant, then the program is non-
terminating (if nondet transitions are present, additional properties are required, as will
be seen below). A constructive proof of this claim is given at the end of this section.

First of all, let us define basic notation. For a strongly connected subgraph (SCSG)
C of a program’s CFG, we denote by LC the set of locations of C, and by TC the set of

edges of C. We define EC def
= {τ = (δ, δ′,R) | δ ∈ LC, τ � TC} to be the set of exit edges

of C.
Consider a map Q that assigns a formula Qδ(v) to each of the locations δ ∈ LC.

Consider also a mapU that assigns a formula Uτ(v, u) to each transition τ ∈ TC, which
represents the restriction that the non-deterministic variables must obey.1 The map Q is
a quasi-invariant map on C with restrictionU if:

(Consecution)

For τ = (δ, δ′,R) ∈ TC : ∀v, u, v′. Qδ(v) ∧ R(v, u, v′) ∧ Uτ(v, u)→ Qδ′ (v
′) (4)

Condition (4) says that, whenever a state at δ ∈ LC satisfying Qδ is reached and a
transition from δ to δ′ can be executed, then the resulting state satisfies Qδ′ . This con-
dition corresponds to the consecution condition for inductive invariants. Since inductive

1 For the sake of presentation, we assume that Uτ is defined for all transitions, whether they are
deterministic or not. In the former case, by convention Uτ is true.
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invariants are additionally required to satisfy initiation conditions [25], we refer to prop-
erties satisfying condition (4) as quasi-invariants, hence the name for Q.

Example 2. In order to explain the roles of Q andU, consider the program in Figure 2.
It is easy to see that if x ≥ y were a quasi-invariant at δ1, the program would be non-
terminating (provided δ1 is reachable with a state such that x ≥ y). However, due to the
non-deterministic assignments, the property is not a quasi-invariant. On the other hand,
if we add the restrictions Uτ2 := u1 ≥ x+1 and Uτ3 := u2 ≤ y, which constrain the non-
deterministic choices in the assignments, the quasi-invariant holds and non-termination
is proved. ��

Additionally, our method also needs that Q andU are reachable and unblocking:

(Reachability) ∃ δ ∈ LC. ∃ σ s.t. (δ, σ) is reachable and σ |= Qδ(v) (5)

(Unblocking) For τ = (δ, δ′,R) ∈ TC : ∀v∃u. Qδ(v) ∧ R(v)→ Uτ(v, u) (6)

Condition (5) says that there exists a computation reaching a configuration (δ, σ)
such that σ satisfies the quasi-invariant at location δ.

As for condition (6), consider a state σ at some δ ∈ LC satisfying Qδ(v). This condi-
tion says that, for any transition τ = (δ, δ′,R) ∈ TC from δ, if σ satisfies the conditional
part R(v), then we can always make a choice for the non-deterministic assignment that
obeys the restriction Uτ(v, u).

The last property we require from quasi-invariants is that they are edge-closing. For-
mally, the quasi-invariant map Q on C is edge-closing if it satisfies all of the following
constraints:

(Edge-Closing) For τ = (δ, δ′,R) ∈ EC : ∀v. Qδ(v)→ ¬R(v) (7)

Condition (7) says that, from any state at δ ∈ LC that satisfies Qδ(v), all the exit transi-
tions are disabled and cannot be executed.

The following is the main result of this section:

Theorem 1. Q, U that satisfy (4), (5), (6) and (7) for a certain SCSG C of a CFG P
imply non-termination of P.

In order to prove Theorem 1, we need the following lemma:

Lemma 1. Let us assume that Q, U satisfy (4), (6) and (7) for a certain SCSG C.
Let (δ, σ) be a configuration such that δ ∈ LC and σ |= Qδ(v). Then there exists a

configuration (δ′, σ′) such that δ′ ∈ LC, σ′ |= Qδ′ (v) and (δ, σ)
τ→ (δ′, σ′) for a certain

τ ∈ TC.

Proof. By condition (2) (which is implicitly assumed to hold), there is a transition τ of
the form (δ, δ′,R) for a certain δ′ ∈ L such that σ |= R(v). Now, by virtue of condition
(7), since σ |= Qδ(v) we have that τ ∈ TC. Thus, δ′ ∈ LC. Moreover, thanks to condition
(6) and σ |= Qδ(v) and σ |= R(v), we deduce that there exist values ν for the non-
deterministic variables u such that (σ, ν) |= Uτ(v, u). Further, by condition (1) (which
is again implicitly assumed), we have that there exists a state σ′ such that (σ, ν, σ′) |=
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Prove-NT (SCSG C, CFG P)
For δ ∈ LC, set Qδ(v)← true

For τ ∈ TC, set Uτ(v, u)← true

EC ← EC
while EC � ∅ do

At δ ∈ LC, assign a template Mδ(v)
At τ ∈ TC, assign a template Nδ(v, u)
Solve Max-SMT problem with

hard constraints (8), (9), (10) and soft constraints (11)
if no model for hard clauses is found then return Unknown, ⊥ fi
For δ ∈ LC, let M̂δ(v) = Solution for Mδ(v)
For τ ∈ TC, let N̂τ(v, u) = Solution for Nτ(v, u)
For δ ∈ LC, set Qδ(v)← Qδ(v) ∧ M̂δ(v)
For τ ∈ TC set Uτ(v, u)← Uτ(v, u) ∧ N̂τ(v, u)
Remove from EC disabled edges

done
for all δ ∈ LC do

if Reachable (δ, σ) in P s.t. σ |= Qδ(v) then
let Σ = reachable path to (δ, σ)
return Non-Terminating, (Q,U, Σ)

fi
done
return Unknown, ⊥

Fig. 3. Procedure Prove-NT for proving non-termination of a program P by analyzing SCSG C

R(v, u, v′). All in all, by condition (4) and the fact that σ |= Qδ(v) and (σ, ν, σ′) |=
R(v, u, v′) and (σ, ν) |= Uτ(v, u), we get that σ′ |= Qδ′ (v

′), or equivalently by renaming
variables, σ′ |= Qδ′ (v). So (δ′, σ′) satisfies the required properties. ��

Now we are ready to prove Theorem 1:

Proof (of Theorem 1). We will construct an infinite computation, which will serve as a
witness of non-termination. Thanks to condition (5), we know that there exist a location
δ ∈ LC and a state σ such that (δ, σ) is reachable and σ |= Qδ(v). As (δ, σ) is reachable,
there is a computation Σ whose last configuration is (δ, σ). Now, since Q,U satisfy (4),
(6) and (7) for C, and δ ∈ LC and σ |= Qδ(v), we can apply Lemma 1 to inductively
extend Σ to an infinite computation of P. ��

4 Computing Proofs of Non-termination

In this section we explain how proofs of non-termination are effectively computed. As
outlined in Section 1, first of all we exhaustively enumerate the SCSGs of the CFG.
For each SCSG C, our non-termination proving procedure Prove-NT, which will be
described below, is called. By means of Max-SMT solving, this procedure iteratively
computes an unblocking quasi-invariant map Q and a restriction map U for C. If the
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construction is successful and eventually edge-closedness can be achieved, and more-
over the quasi-invariants of C can be reached, then the synthesized Q, U satisfy the
properties of Theorem 1, and therefore the program is guaranteed not to terminate.

In a nutshell, the enumeration of SCSGs considers a strongly connected component
(SCC) of the CFG at a time, and then generates all the SCSGs included in that SCC.
More precisely, first of all the SCCs are considered according to a topological ordering
in the CFG. Then, once an SCC S is fixed, the SCSGs included in S are heuristically
enumerated starting from S itself (since taking a strictly smaller subgraph would imply
discarding some transitions a priori arbitrarily), then simple cycles in S (as they are
easier to deal with), and then the rest of SCSGs included in S.

Then, once the SCSG C is fixed, our non-termination proving procedure Prove-NT
(Fig. 3) is called. The procedure takes as input an SCSG C of the program’s CFG,
and the CFG itself. For every location δ ∈ LC, we initially assign a quasi-invariant
Qδ(v) � true. Similarly, for every transition τ ∈ TC, we initially assign a restriction
Uτ(v, u) � true. The set EC keeps track of the exit edges of C that have not been
discarded yet, and hence at the beginning we have EC = EC. Then we iterate in a loop
in order to strengthen the quasi-invariants and restrictions till EC = ∅, that is, all the exit
edges of C are disabled.

In every iteration we assign a template Mδ(v) ≡ mδ,0+
∑
�∈v mδ,� ·� ≤ 0 to each δ ∈ LC.

We also assign a template Nτ(v, u) ≡ nτ,0+
∑
�∈v nτ,� ·�+

∑
u∈u nτ,u ·u ≤ 0 to each τ ∈ TC.2

Then we form the Max-SMT problem with the following constraints:3

• For τ = (δ, δ′,R) ∈ TC :

∀v, u, v′. Qδ(v) ∧ Mδ(v) ∧ R(v, u, v′) ∧Uτ(v, u) ∧ Nτ(v, u)→ Mδ′ (v
′) (8)

• For δ ∈ LC : ∃v. Qδ(v) ∧ Mδ(v) ∧
∨

τ=(δ,δ′ ,R)∈TC
R(v) (9)

• For τ = (δ, δ′,R) ∈ TC :

∀v∃u. Qδ(v) ∧ Mδ(v) ∧ R(v)→ Uτ(v, u) ∧ Nτ(v, u) (10)

• For τ = (δ, δ′,R) ∈ EC : ∀v. Qδ(v) ∧ Mδ(v)→ ¬R(v) (11)

The constraints (8), (9) and (10) are hard, while the constraints (11) are soft.
The Max-SMT solver finds a solution M̂δ(v) for every Mδ(v) for δ ∈ LC and a solu-

tion N̂τ(v, u) for every Nδ(v, u) for τ ∈ TC. The solution satisfies the hard constraints
and as many soft constraints as possible. In other words, it is the best solution for hard
constraints that disables the maximum number of transitions. We then update Qδ(v) for
every δ ∈ LC by strengthening it with M̂δ(v), and update Uτ(v, u) for every τ ∈ TC
by strengthening it with N̂τ(v, u). We then remove all the disabled transitions from EC

and continue the iterations of the loop with updated Q, U and EC. Note that, even if
none of the exit edges is disabled in an iteration (i.e. no soft constraint is met), the
quasi-invariants found in that iteration may be helpful for disabling exit edges later.

When all exit transitions are disabled, we exit the loop with the unblocking edge-
closing quasi-invariant map Q and the restriction mapU.

2 Actually templates Nτ(v, u) are only introduced for nondet transitions. To simplify the pre-
sentation, we assume that for other transitions, Nτ(v, u) is true.

3 For clarity, leftmost existential quantifiers over the unknowns of the templates are implicit.
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Finally, we check whether there exists a reachable configuration (δ, σ) such that δ ∈
LC and σ |= Qδ(v) with an off-the-shelf reachability checker. If this test succeeds, we
report non-termination along with Q,U and the path Σ reaching (δ, σ) as a witness of
non-termination.

The next theorem formally states that Prove-NT proves non-termination:

Theorem 2. If procedure Prove-NT terminates on input SCSG C and CFG P with Non-
Terminating, (Q,U, Σ), then program P is non-terminating, and (Q,U, Σ) allow build-
ing an infinite computation of P.

Proof. Let us prove that, if Prove-NT terminates with Non-Terminating, then the con-
ditions of Theorem 1, i.e., conditions (4), (5), (6) and (7) are met.

First of all, let us prove by induction on the number of iterations of the while loop
that conditions (4) and (6) are satisfied, and also that for τ = (δ, δ′,R) ∈ EC − EC,

∀v. Qδ(v)→ ¬R(v).

Before the loop is executed, for all locations δ ∈ LC we have that Qδ(v) � true and
for all τ ∈ TC we have that Uτ(v, u) � true. Conditions (4) and (6) are trivially met.
The other remaining condition holds since initially EC = EC.

Now let us see that each iteration of the loop preserves the three conditions. Regard-
ing (4), by induction hypothesis we have that for τ = (δ, δ′,R) ∈ TC,

∀v, u, v′. Qδ(v) ∧ R(v, u, v′) ∧ Uτ(v, u)→ Qδ′ (v
′).

Moreover, the solution computed by the Max-SMT solver satisfies constraint (8), i.e.,
has the property that for τ = (δ, δ′,R) ∈ TC,

∀v, u, v′. Qδ(v) ∧ M̂δ(v) ∧ R(v, u, v′) ∧ Uτ(v, u) ∧ N̂τ(v, u)→ M̂δ′ (v
′).

Altogether, we have that for τ = (δ, δ′,R) ∈ TC,

∀v, u, v′.(Qδ(v) ∧ M̂δ(v)) ∧ R(v, u, v′) ∧ (Uτ(v, u) ∧ N̂τ(v, u))→ (Qδ′(v
′) ∧ M̂δ′ (v

′)).

Hence condition (4) is preserved.
As for condition (6), the solution computed by the Max-SMT solver satisfies con-

straint (10), i.e., has the property that for τ = (δ, δ′,R) ∈ TC,

∀v∃u. (Qδ(v) ∧ M̂δ(v)) ∧ R(v)→ (Uτ(v, u) ∧ N̂τ(v, u)).

Thus, condition (6) is preserved.
Regarding the last property, note that the transitions τ = (δ, δ′,R) ∈ EC that satisfy

the soft constraints (11), i.e., such that

∀v. (Qδ(v) ∧ M̂δ(v))→ ¬R(v)

are those removed from EC. Therefore, this preserves the property that for τ = (δ, δ′,R)
∈ EC − EC,

∀v. Qδ(v)→ ¬R(v).
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Now, if the while loop terminates, it must be the case that EC = ∅. Thus, on exit of the
loop, condition (7) is fulfilled.

Finally, if Non-Terminating is returned, then there is a location δ ∈ LC and a state
satisfying σ |= Qδ(v) such that configuration (δ, σ) is reachable. That is, condition (5)
is satisfied.

Hence, all conditions of Theorem 1 are fulfilled. Therefore, P does not terminate.
Moreover, the proof of Theorem 1 gives a constructive way of building an infinite com-
putation by means of Q,U and Σ. ��

Note that constraint (9):

For δ ∈ LC : ∃v. Qδ(v) ∧ Mδ(v) ∧
∨

τ=(δ,δ′,R)∈TC
R(v)

is not actually used in the proof of Theorem 2, and thus is not needed for the correctness
of the approach. Its purpose is rather to help Prove-NT to avoid getting into dead-
ends unnecessarily. Namely, without (9) it could be the case that for some location
δ ∈ LC, we computed a quasi-invariant that forbids all transitions τ ∈ TC from δ. Since
Prove-NT only strengthens quasi-invariants and does not backtrack, if this situation
were reached the procedure would probably not succeed in proving non-termination.

Now let us describe how constraints are effectively solved. First of all, constraints
(8), (9), and (11) are universally quantified over integer variables. Following the same
ideas of constraint-based linear invariant generation [25], these constraints are soundly
transformed into an existentially quantified formula in NRA by abstracting program and
non-deterministic variables and considering them as reals, and then applying Farkas’
Lemma [28]. As regards constraint (10), the alternation of quantifiers in

∀v∃u. Qδ(v) ∧ Mδ(v) ∧ R(v)→ Uτ(v, u) ∧ Nτ(v, u)

is dealt with by introducing a template Pu,τ(v) ≡ pu,τ,0 +
∑
�∈v pu,τ,� · � for each u ∈ u and

skolemizing. This yields4 the formula

∀v. Qδ(v) ∧ Mδ(v) ∧ R(v)→ Uτ(v, Pu,τ(v)) ∧ Nτ(v, Pu,τ(v)),

which implies constraint (10), and to which the above transformation into NRA can
be applied. Note that, since the Skolem function is not symbolic but an explicit linear
function of the program variables, potentially one might lose solutions.

Finally, once a weighted formula in NRA containing hard and soft clauses is ob-
tained, (some of the) existentially quantified variables are forced to take integer values,
and the resulting problem is handled by a Max-SMT(NIA) solver [27, 29]. In particu-
lar, the unknowns of the templates Pu,τ(v) introduced for skolemizing non-deterministic
variables are imposed to be integers. Since program variables have integer type, this
guarantees that only integer values are assigned in the non-deterministic assignments of
the infinite computation that proves non-termination.

There are some other issues about our implementation of the procedure that are worth
mentioning. Regarding how the weights of the soft clauses are determined, we follow a

4 Again, existential quantifiers over template unknowns are implicit.
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heuristic aimed at discarding “difficult” transitions in EC as soon as possible. Namely,
the edge-closing constraint (11) of transition τ = (δ, δ′,R) ∈ EC is given a weight which
is inversely proportional to the number of literals in R(v). Thus, transitions with few
literals in their conditional part are associated with large weights, and therefore the
Max-SMT solver prefers to discard them over others. The rationale is that for these
transitions there may be more states that satisfy the conditional part, and hence they
may be more difficult to rule out. Altogether, it is convenient to get rid of them before
quasi-invariants become too constrained.

Finally, as regards condition (3), our implementation can actually handle transition
systems for which this condition does not hold. This may be interesting in situations
where, e.g., non-determinism is present in conditional statements, and one does not
want to introduce additional variables and locations as was done in Section 2.2 for
presentation purposes. The only implication of overriding condition (3) is that, in this
case, the properties that must be discarded in soft clauses of condition (11) are not
the transitions leaving the SCSG under consideration, but rather the negation of the
transitions staying within the SCSG.

5 Experiments

In this section we evaluate the performance of a prototype implementation of the tech-
niques proposed here in our termination analyzer CppInv, available at
www.lsi.upc.edu/˜albert/cppinv-CAV.tar.gz together with all of the bench-
marks. This tool admits code written in (a subset of) C++ as well as in the language of
T2 [20]. The system analyses programs with integer variables, linear expressions and
function calls, as well as array accesses to some extent. As a reachability checker we
use CPA [30].

Altogether, we compare CppInv with the following tools:

– T2 [20] version CAV’13 (henceforth, T2-CAV), which implements an algorithm
that tightly integrates invariant generation and termination analysis [19].

– T2 [20] version TACAS’14 (henceforth, T2-TACAS), which reduces the problem
of proving non-termination to the search of an under-approximation of the program
guided by a safety prover [31].

– Julia [32], which implements a technique described by Payet and Spoto [33] that
reduces non-termination to constraint logic programming.

– AProVE [11] with the Java Bytecode front-end, which uses the SMT-based non-
termination analysis proposed in [34].

– A reimplementation of TNT [35] by the authors of [31] that uses Z3 [36] as an
SMT back-end.

Unfortunately, because of the unavailability of some of the tools (T2-TACAS, T2-CAV,
TNT) or the fact that they do not admit a common input language (Julia, AProVE), it
was not possible to run all these systems on the same benchmarks on the same com-
puter. For this reason, for each of the tables below we consider a different family of
benchmarks taken from the literature and provide the results of executing our tool (on
a 3.40 GHz Intel Core i7 with 16 GB of RAM) together with the data of competing

www.lsi.upc.edu/~albert/cppinv-CAV.tar.gz
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systems reported in the respective publications. Note that the results of third-party sys-
tems in those publications may have some inaccuracies, due to, e.g., the conversion
of benchmarks in different formats. However, in those cases the distances between the
tools seem to be significant enough to draw conclusions on their relative performance.

Table 1 shows comparative results on benchmarks taken from [31]. In that paper,
the tools T2-TACAS, AProVE, Julia and TNT are considered. The time limit is set to
60 seconds both in that work as well as in the executions of CppInv. The benchmarks
are classified according to three categories: (a) all the examples in the benchmark suite
known to be non-terminating previously to [31]; (b) all the examples in the benchmark
suite known to be terminating previously to [31]; and (c) the rest of instances. Rows
of the table correspond to non-termination provers. Columns are associated to each of
these three categories of problems. Each column is split into three subcolumns reporting
the number on “non-terminating” answers, the number of timed outs, and the number
of other answers (which includes “terminating” and “unknown” answers), respectively.
Even with the consideration that experiments were conducted on different machines,
the results in columns (a) and (c) of Table 1 show the power of the proposed approach
on these examples. As for column (b), we found out that instance 430.t2 was wrongly
classified as terminating. Our witness of non-termination has been manually verified.

Table 1. Experiments with benchmarks from [31]

(a) (b) (c)
Nonterm TO Other Nonterm TO Other Nonterm TO Other

CppInv 70 6 5 1 16 237 113 35 9
T2-TACAS 51 0 30 0 45 209 82 3 72

AProVE 0 61 20 0 142 112 0 139 18
Julia 3 8 70 0 40 214 0 91 66
TNT 19 3 59 0 48 206 32 12 113

Table 2 (a), which follows a similar format to Table 1, compares CppInv, T2-CAV
and AProVE on benchmarks from [19] (all with a time limit of 300 seconds). Note that,
in the results reported in [19], due to a wrong abstraction in the presence of division, T2
was giving two wrong non-termination answers (namely, for the instances rlft3.t2

and rlft3.c.i.rlft3.pl.t2.fixed.t2, for which the termination proofs produced
by CppInv[24] have been checked by hand). For this reason we have discarded those
two programs from the benchmark suite. In this case, the performance of our tool is
slightly worse than that of T2-CAV. However, it has to be taken into account that T2-
CAV was exploiting the cooperation between the termination and the non-termination
provers, while we still do not apply this kind of optimizations.

In Table 2 (b), CppInv is compared with the results of Julia and AProVE from [34]
on Java programs coming from [37]. CppInv was run on C++ versions of these bench-
marks, which admitted a direct translation from Java. The time limit was set to 60
seconds. Columns represent respectively the number of terminating instances (YES),
non-terminating instances (NO), instances for which the construction of the proof failed
before the time limit (MAYBE), and timeouts (TO). For these instances AProVE gets
slightly better results than CppInv. However, it should be taken into account that four
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programs of this set of benchmarks include non-linear expressions, which we cannot
handle. Moreover, when compared on third-party benchmarks (see Tables 1 and 2 (a)),
our results are better.

Finally, Table 2 (c) shows the results of running our tool on programs from the on-
line programming learning environment Jutge.org [38] (see www.jutge.org), which
is currently being used in several programming courses in the Universitat Politècnica
de Catalunya. As a paradigmatic example in which it is easy to write wrong non-
terminating code, we have considered the exercise Binary Search. The programs in this
benchmark suite can be considered challenging since, having been written by students,
their structure is often more complicated than necessary. In this case the time limit was
60 seconds. As can be seen from the results, for a ratio of 89% of the cases, CppInv is
able to provably determine in less than one minute if the program is terminating or not.

Table 2. Experiments with benchmarks from [19] (a), from [37] (b) and from Jutge.org (c)

(a) (b)

Nonterm TO Other
CppInv 167 39 243

T2-CAV 172 14 263
AProVE 0 51 398

YES NO MAYBE TO
CppInv 1 44 9 1

AProVE 1 51 0 3
Julia 1 0 54 0

(c)

YES NO MAYBE TO
Binary search 2745 484 22 391

All in all, the experimental results show that our technique, although it is general and
is not tuned to particular problems, is competitive with the state of the art and performs
reasonably and uniformly well on a wide variety of benchmarks.

6 Related Work

Several systems have been developed in recent years for proving non-termination. One
of these is, e.g., the tool TNT [35], which proceeds in two phases. The first phase ex-
haustively generates candidate lassos. The second one checks each lasso for possible
non-termination by seeking a recurrent set of states, i.e., a set of states that is visited in-
finitely often along the infinite path that results from unrolling the lasso. This is carried
out by means of constraint solving, as in our approach. But while there is an infinite
number of lassos in a program, our SCSGs can be finitely enumerated. Further, we can
handle unbounded non-determinism, whereas TNT is limited to deterministic programs.

Other methods for proving non-termination that use an off-the-shelf reachability
checker like our technique have also been proposed [39, 31]. In [39], the reachabil-
ity checker is used on instrumented code for inferring weakest preconditions, which
give the most general characterization of the inputs under which the original program is
non-terminating. While in [39] non-determinism can be dealt with in a very restricted

www.jutge.org
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manner, the method in [31] can deal with unbounded non-determinism as we do. In the
case of [31], the reachability checker is iteratively called to eliminate every terminating
path through a loop by restricting the state space, and thus may diverge on many loops.
Our method does not suffer from this kind of drawbacks.

Some other approaches exploit theorem-proving techniques. For instance, the tool
Invel [37] analyzes non-termination of Java programs using a combination of theorem
proving and invariant generation. Invel is only applicable to deterministic programs.
Another tool for proving non-termination of Java programs is AProVE [11], which uses
SMT solving as an underlying reasoning engine. The main drawback of their method is
that it is required that either recurrent sets are singletons (after program slicing) or loop
conditions themselves are invariants. Our technique does not have such restrictions.

Finally, the tool TRex [40] integrates existing non-termination proving approaches
within a Terminator-like [41] iterative procedure. Unlike TRex, which is aimed at
sequential code, Atig et al. [42] focus on concurrent programs: they describe a non-
termination proving technique for multi-threaded programs, via a reduction to non-
termination reasoning for sequential programs. Our work should complement both of
these approaches, since we provide significant advantages over the underlying non-
termination proving tools that were previously used.

7 Conclusions and Future Work

In this paper we have presented a novel Max-SMT-based technique for proving that
programs do not terminate. The key notion of the approach is that of a quasi-invariant,
which is a property such that if it holds at a location during execution once, then it
continues to hold at that location from then onwards. The method considers an SCSG
of the control flow graph at a time, and thanks to Max-SMT solving generates a quasi-
invariant for each location. Weights of soft constraints guide the solver towards quasi-
invariants that are also edge-closing, i.e., that forbid any transition exiting the SCSG.
If an SCSG with edge-closing quasi-invariants is reachable, then the program is non-
terminating. This last check is performed with an off-the-shelf reachability checker.
We have reported experiments with encouraging results that show that a prototypical
implementation of the proposed approach has comparable and often better efficacy than
state-of-the-art non-termination provers.

As regards future research, a pending improvement is to couple the reachability
checker with the quasi-invariant generator, so that the invariants synthesized by the for-
mer in unsuccessful attempts are reused by the latter when producing quasi-invariants.
Another line for future work is to combine our termination [24] and non-termination
techniques. Following a similar approach to [19], if the termination analyzer fails, it
can communicate to the non-termination tool the transitions that were proved not to
belong to any infinite computation. Conversely, when a failed non-termination analysis
ends with an unsuccessful reachability check, one can pass the computed invariants to
the termination system, as done in [40]. Finally, we also plan to extend our program-
ming model to handle more general programs (procedure calls, non-linearities, etc.).

Acknowledgments. We thank the Jutge.org team for providing us with benchmarks.
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Abstract. We present a novel approach to termination analysis. In a
first step, the analysis uses a program as a black-box which exhibits only
a finite set of sample traces. Each sample trace is infinite but can be
represented by a finite lasso. The analysis can ”learn” a program from
a termination proof for the lasso, a program that is terminating by con-
struction. In a second step, the analysis checks that the set of sample
traces is representative in a sense that we can make formal. An exper-
imental evaluation indicates that the approach is a potentially useful
addition to the portfolio of existing approaches to termination analysis.

1 Introduction

Termination analysis is an active research topic, and a wide range of methods
and tools exist [12,14,23,27,29,36,39]. Each method provides its own twist to
address the same issue: in the presence of loops with branching or nesting, the
termination argument has to account for all possible interleavings between the
different paths through the loop.

If the program is lasso-shaped (a stem followed by a single loop without
branching), the control flow is trivial; there is only one path. Consequently,
the termination argument can be very simple. Many procedures are specialized
to lasso-shaped programs and derive a simple termination argument rather ef-
ficiently [4,5,7,11,24,31,33]. The relevance of lasso-shaped programs stems from
their use as the representation of an infinite trace through the control flow graph
of a program with arbitrary nesting.

We present a new method that analyzes termination of a general program P
but has to find termination arguments only for lasso-shaped programs. In our
method we see the program P as a blackbox from which we can obtain sample
traces. We transform a sample trace πi into a lasso-shaped program and use exist-
ing methods to compute a termination argument for this lasso-shaped program.
Afterwards we construct a “larger” program Pi (which may have branching and
nested loops) for which the same termination argument is applicable. We call
this construction learning, because we learned the terminating program Pi from
a sample trace πi. Our algorithm continues iteratively until we learned a set of
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programs P1, . . . ,Pn that forms a decomposition of the original program P . This
decomposition can be seen as a program of the form choose(P1, . . . ,Pn), i.e., a
nondeterministic choice of programs P1, . . . ,Pn, that is semantically equivalent
to the original program P .

Our technical contribution is this method, which does not only extend the
existing portfolio of termination analyses but also provides a new functionality:
the decomposition of a program P into modules P1, . . . ,Pn. This decomposi-
tion is not guided by the syntax of the program, this decomposition exploits a
novel notion of modularity where a module is defined by a certain termination
argument. This novel notion of modularity is the conceptual contribution of our
paper.

program sort(int i)

�1: while (i>0)

�2: int j:=1

�3: while(j<i)

// if (a[j]>a[i])

// swap(a[j],a[i])

�4: j++

�5: i--

�1

�2

�3

�4

�5

i>0

j:=1

j<ij++

j>=i

i--

Let us explain our algorithm informally using the program Psort depicted
above which is an implementation of bubblesort. Termination of Psort can be
shown, e.g., by using the quadratic ranking function f(i, j) = i2 − j, or the
lexicographic ranking function f(i, j) = (i, i−j). Intuitively, neither of the two
ranking functions is a simple termination argument.

Now, let us pick some ω-trace from Psort. We take the trace that first enters
the outer while loop and then takes the inner while loop infinitely often. We
denote this trace using the ω-regular expression Outer.Innerω. We see that
this trace is terminating. Its termination can be shown using the linear ranking
function f(i, j) = i− j. Moreover, we see that this ranking function is not only
applicable to this trace, this ranking function is applicable to all traces that
eventually always take the inner loop.

(Inner+Outer)∗.Innerω (1)

Now, let us pick another ω-trace from Psort. This time we take the trace
that always takes the outer while loop. We see that this trace is terminating.
Its termination can be shown using the linear ranking function f(i, j) = i.
Moreover, we see that this ranking function is not only applicable to this trace,
this ranking function is applicable to all traces that take the outer while loop
infinitely often.

(Inner∗.Outer)ω (2)
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Finally, we consider the set of all ω-trace of the program Psort

(Outer+ Inner)ω,

check that each trace has the form (1) or has the form (2), and conclude that
Psort is terminating.

If we are to automate the reasoning from the example above, a number of
questions arise.

(A) How does one effectively represent a set of traces that share a common
reason for termination, like the sets (1) and (2) above? The answer is given in
Section 2 where we define a module, which is a program whose traces adhere to
a certain fairness constraint.

(B) What is a termination argument whose applicability to a whole set of
traces can be checked effectively? The answer is given in Section 3 where we
present a Floyd-Hoare style annotation for termination proofs.

(C) How can we learn a set of terminating traces (represented as a program
with a fairness constraint) from a single terminating sample trace? The answer
is given in Section 4 where we construct a terminating module from a given
termination proof.

(D) How can we check that a set of modules P1, . . . ,Pn covers the behavior
of the original program P and can we always decompose P into a set of modules
P1, . . . ,Pn? One facet of the question is the theoretical completeness, which
is answered in Section 5. The other facet is the practical feasibility, which is
analyzed via an experimental evaluation in Section 6.

2 Fair Module

Preliminaries. The key concept in our formal exposition is the notion of an
ω-trace, which is an infinite sequence of program statements π = st1st2 . . .. We
assume that the statements are taken from a given finite set of program state-
ments Σ. If we consider Σ as an alphabet and each statement as a letter, then
an ω-trace is an infinite word over this alphabet. In order to stress the usage of
statements as letters of an alphabet, we sometimes frame each statement/letter.
For example, we can write the alphabet of our running example Psort as Σsort =
{ i>0 , j:=1 , j<i , j++ , j>=i , i-- } and π = j<i j:=1 .( j:=1 j++ j:=1 )ω is an ω-trace.

The definition of an ω-trace as an arbitrary (infinite) sequence means that the
notion is independent of the programming language semantics, which we even
have not introduced yet. We will do so now. A valuation ν is a function that maps
the program variables )v to values. We use the term valuation instead of state
to stress that this is independent from the program counter (and independent
from control flow). We call a set of valuations a predicate and use the letter I
to denote predicates. The letter I is used reminiscent to invariant, because we
will use predicates to represent invariants at locations. We assume that each
statement st comes with a binary relation over the set of valuations (the set of
its precondition/postcondition pairs). We say that the Hoare triple {I}st{I ′} is
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valid, if the binary relation for st holds between precondition I and postcondition

I ′. We use the interleaved sequences of valuations and statements ν0
st1→ . . .

stn→ νn
as a shorthand to denote that each pair of valuations (νi, νi+1) is contained in
the transition relation of the statement sti+1.

An ω-trace may not correspond to any possible execution for one out of two
reasons. First, there may be a finite prefix that does not have any possible
execution, like e.g., the prefix x<0 x:=1 x<0 of the ω-trace ( x<0 x:=1 )ω. Secondly,
there may be no starting valuation ν0 for any infinite execution, although every
finite prefix is executable which holds e.g., for the ω-trace ( x>=0 x++ )ω. In both
cases we call such an ω-trace terminating.

The notion of an ω-trace is also independent of a program (a trace may
not correspond to a path in the program’s control flow graph). We introduce
a program as a control flow graph whose edges are labeled with statements.
Formally, a program is a graph P = 〈Loc, δ, �init〉 with a finite set Loc of nodes
called locations, a set δ of edges labeled with statements, i.e., δ ⊆ Loc × Σ ×
Loc and an initial node called the initial location �init. We call the program P
terminating if each of its ω-traces is terminating.

Module: Program with Fairness Contraint. In our method we will decompose
a program into modules such that each module represents traces that share a
common reason for termination. We now formalize our notion of a module.

Definition 1 (module). A module is a program together with a fairness con-
straint given by a distinguished location �fin, i.e.,

P = 〈Loc, δ, �init, �fin〉

where the set of location can be partitioned into two disjoint sets, LocU , and
LocV , such that

– the initial location is contained in LocU ,
– the final location is contained in LocV , and
– no location in LocV has a successor in LocU , i.e.,

(�, st, �′) ∈ δ implies � ∈ LocU or �′ ∈ LocV

A fair ω-trace of a module P is an ω-trace that labels a fair path in the graph of
P, which is a path that visits the distinguished location �fin infinitely often. We
call the module P terminating if each of its fair ω-traces is terminating.

A non-fair ω-trace of a terminating module (i.e., an ω-trace that labels a
path in its control flow graph without satisfying the fairness constraint) can be
non-terminating.

For the reader who is familiar with the concept of Büchi automata, a module
is reminiscent of a Büchi automaton with exactly one final state. A Büchi au-
tomaton of this form recognizes an ω-regular language of the form U.V ω, where
U and V are regular languages over the alphabet of statements U, V ⊆ Σ∗.
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�0

�2

�3

�4

�5

�′3

�′4

i>0

j:=1

j<ij++

j>=i

i--

j:=1

j<ij++

�0

�2

�3

�4

�5

i>0

j:=1

j<ij++

j>=i

i--

Example 1. Let us con-
sider again our running
example Psort. The sets
that we gave informally
by the ω-regular expres-
sions (1) and (2) can
be represented as mod-
ules. The module Psort

1

depicted on the left rep-
resents all traces that
eventually only take the
inner while loop. The
module Psort

2 depicted
on the right represents all traces that take the outer while loop infinitely often.

In this example, the decomposition of the program into modules is defined by
the nestings structure of while loops. In Section 5 we present an algorithm that
finds a decomposition automatically but does not rely on any information about
the structure of the while loops in the program.

3 Certified Module

In this section we present a termination argument for modules that consists of
two parts: a ranking function and an annotation of the module’s locations.

First, we extend the usual notion of a ranking function to our definition of
a module. The crux in the following definition lies in the fact that we do not
require that the value of the ranking function has to decrease after a fixed number
of steps. We only require that the value of the ranking function has to decrease
every time the final location �fin is visited. As a consequence our ranking function
is a termination argument that is applicable to each fair ω-trace, but does not
have to take non-fair ω-traces into account.

Definition 2 (ranking function for a module). Given a module P, we call
a function f from valuations into a well-ordered set (W,≺) a ranking function
for P if for each finite path

�0
st1→ · · · stk→ �k

stk+1→ · · · stn→ �n

that starts in the initial location (i.e., �0 = �init) and visits the final location in
the k-th step and in the n-th step (i.e., �k = �n = �fin) and for each sequence of
valuations ν0, . . . , νn such that the pair (νi, νi+1) is in the transition relation of
the statement sti, i.e.,

ν0
st1→ · · · stk→ νk

stk+1→ · · · stn→ νn

the value of the ranking function decreases whenever �fin is visited, i.e.,

f(νn) ≺ f(νk).
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In all the following examples we take Z as domain of the program variables.
Our well-ordered set W will be (Z ∪ {∞},≺). The ordering ≺ is the natural
order restricted to pairs where the second operand is greater than or equal to
zero (i.e., a ≺ b if and only if a < b ∧ b ≥ 0).

Example 2. The function f : dom → Z ∪ {∞} defined as f(i, j) = i − j is a
ranking function for the module Psort

1 depicted in Example 1.

Lemma 1. If the module P has a ranking function f , then each fair trace of
the module is terminating.1

How can we check that a function is a ranking function for a module? We
next introduce a novel kind of annotation, called rank certificate that serves as a
proof for this task. Informally, a rank certificate is a Floyd-Hoare annotation that
ensures that the value of the ranking function has decreased whenever the final
location �fin was visited. Therefore, we introduce an auxiliary variable oldrnk

that represents the value of the ranking function at the previous visit of �fin.
Initially, the auxiliary variable oldrnk has the value ∞ which is a value strictly
greater than all other values from our well-ordered W.

Definition 3 (certified module). Given a module P = 〈Loc, δ, �init, {�fin}〉 and
a function f from valuations into a well-ordered set (W,≺), we call a mapping I
from locations to predicates a rank certificate for the function f and the module
P if the following properties hold.

– The initial location �init is mapped to the predicate where the auxiliary vari-
able oldrnk has the value ∞, i. e.,

I(�init) ⇔ oldrnk =∞.

– The accepting state is mapped to a predicate in which the value of the ranking
function f over the program variables is smaller than the value of the variable
oldrnk, i. e.,

I(�fin) ⇒
(
f()v) ≺ oldrnk

)
.

– The outgoing edges of non-accepting locations correspond to valid Hoare
triples, i.e.,

{ I(�) } st { I(�′) } is valid for (�, st, �′) ∈ δ, � �= �fin

and outgoing edges of the final location correspond to valid Hoare triples if
we insert an additional assignment statement that assigns the value of the
ranking function to the auxiliary variable oldrnk , i.e.,

{ I(�) } oldrnk:=f(�v) ; st { I(�′) } is valid for (�fin, st, �
′) ∈ δ

We call the triple (P , f, I) a certified module.

1 An extended version of this paper that also contains the correctness proofs is avail-
able online.
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�1{oldrnk =∞}

�2

{oldrnk =∞}

�3{oldrnk =∞}

�4{oldrnk =∞}

�5{oldrnk =∞}

�′3
{i− j < oldrnk

∧ oldrnk ≥ 0}

�′4
{i− j = oldrnk

∧ i− j > 0}

i>0

j:=1

j<ij++

j>=i

i--

j:=1

j<ij++

Example 3. The fig-
ure on the right de-
picts a certified mod-
ule (Psort

1 , f, I) where
f is the ranking func-
tion f(i, j) = i − j
and I is the mapping
of locations to pred-
icates indicated by writ-
ing the predicate be-
neath the location.

Theorem 1 (soundness). Each fair ω-trace of a certified module (P , f, I) is
terminating.

4 Learning a Terminating Program

In this section we present a method for the construction of a certified module
(P , f, I). The crux of this method is that we do not construct a termination
argument (a ranking function f together with a rank certificate I) for the re-
sulting module P . Instead, we construct vice versa the resulting module P as
the largest module for which a given termination argument (a ranking function
f together with a rank certificate I) is applicable. We obtain this termination
proof from a single ω-trace. We call this method learning, because we learn a
terminating program (given as a certified module) from a single sample trace.

The input to our method is a terminating ω-trace st1 . . . stk−1(stk . . . stn)
ω that

is ultimately periodic. We call an ultimately periodic trace a lasso. We call the
prefix st1 . . . stk−1 the stem of the lasso and we call the periodic part stk . . . stn
the loop of the lasso. For better legibility we use u (resp. v) to denote the stem
(resp. loop) of the lasso. We construct a certified module (P , f, I) in the following
three steps.

Step 1. Synthesize Ranking Function f

First, we construct a module Puvω that has only one single ω-trace, namely
the lasso uvω. We call Puvω the lasso module of uvω and construct Puvω =
〈Loc, δ, �init, {�fin}〉 formally as the module that has one location for each state-
ment (i.e., Loc = {�0, . . . , �n−1}), where �0 is the initial location, �k is the
final location and the transition graph resembles the shape of a lasso, i.e.,
δ = {(�i, sti, �i+1) | i = 1, . . . n− 2} ∪ {(�n−1, stn, �k)}.

The lasso module Puvω can be seen as a program that consists of a single while
loop. This allows us to use existing methods [4,5,7,11,24,31,33] to synthesize a
ranking function for Puvω .
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�1 �2 �3 �4i>0 j:=1

j<i

j++

Example 4. Given the ω-trace
i>0 j:=1 ( j<i j++ )ω, we construct
the lasso module Puvω depicted
on the right and synthesize the ranking function f(i, j) = i− j for this module.

Step 2. Compute Rank Certificate I
{ true } oldrnk:=∞ { I(�1) }

{ I(�i) } sti { I(�i+1) } for 1 ≤ i < k

I(�k)⇒ f(�v) < oldrnk

{ I(�k) } oldrnk:=f( v) stk { I(�k+1) }
{ I(�i) } sti+1 { I(�i+1) } for k < i < n

{ I(�n) } stn { I(�k) }

Given the lasso module Puvω and
the ranking function f , we now com-
pute a rank certificate I. Since Puvω

has a “lasso shape” a mapping I
from the locations of Puvω to predi-
cates is a rank certificate if and only
if the Hoare triples and the implica-
tion shown on the right are valid.

program rankDecrease()

oldrnk :=∞
�1 : st1
...

...
�k−1 : stk−1

�k : while (true)

assert(f()v) < oldrnk)
oldrnk := f()v)
stk

�k+1 : stk+1

...
...

�n : stn

The predicates I(�i) for which these im-
plications are valid, can be obtained by
proving partial correctness of the program
rankDecreaseuvf depicted on the left. The
program rankDecreaseuvf first assigns the
value ∞ (which is strictly larger than any
other element in the well-ordered setW) to
the variable oldrnk. Afterwards the state-
ments st1 . . . stk−1 are executed and the pro-
gram rankDecreaseuvf enters a nonter-
minating while loop. We use an assert
statement to state the correctness speci-
fication of the program rankDecreaseuvf.
The program is correct if at the beginning

of the while loop the inequality f()v) < oldrnk holds. After this assert state-
ment, the current value of the function f is assigned to the variable oldrnk and
then the statements stk . . . stn are executed.

A Floyd-Hoare annotation I(�1), . . . , I(�n) that shows partial correctness of
the program rankDecreaseuvf is also a rank certificate for our ranking function
f and our lasso module Puvω . This Floyd-Hoare annotation can be computed by
static analysis [15].

�1

{oldrnk =∞}

�2

{oldrnk =∞}

�3

{i− j ≺ oldrnk}

�4

{i− j ≤ oldrnk

∧ i− j ≥ 0}

i>0 j:=1

j<i

j++

Example 5. Continuing
Example 4 we con-
struct the program
rankDecreaseuvf for
Puvω and compute
the rank certificate
depicted in the figure on the right. The rank certificate I is represented by the
predicates denoted beneath the locations.
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An Alternative Variant of Step 2. Some methods for the synthesis of a ranking
function [7,24] also provide a supporting invariant. This is a predicate I such
that

– I is invariant under executions of the loop st1 . . . stk−1,
– I is an overapproximation of the reachable valuations after executing the

stem stk . . . stn,
– and each execution of the loop starting in a valuation contained I decreases

the ranking function f .

If we have a supporting invariant I for the ranking function f , we do not have
to construct and analyze the program rankDecreaseuvf. Alternatively, we can
set the predicate I(�k) to

I ∧ f()v) < oldrnk ∧ oldrnk ≥ 0

and obtain the remaining predicates I(�0), . . . , I(�k−1), and I(�k+1), . . . , I(�n)
as strongest postconditions by using an interpolating theorem prover.

Step 3. Construct Module P
We extend the lasso module Puvω to a module P that also has the ranking
function f and that also has the rank certificate I. Therefore we modify Puvω

according to the following two rules.

Modification Rule 1: Merge Locations. If the predicates mapped to the lo-
cations �i and �j coincide (i.e., I(�i) = I(�j)) then we may merge both
locations.

Modification Rule 2: Add Transitions. Let st be some program statement
and let �i, and �j be locations. If �i �= �j and the Hoare triple { �i } st { �j }
is valid, we may add the transition (�i, st, �j). If �i = �j and the Hoare triple
{ �i } oldrnk:=f(�v) ; st { �j } is valid, we may add the transition (�i, st, �j).

If we apply these modifications to a certified module we obtain again a certified
module. Every strategy for applying these modfications gives rise to an algorithm
that is an instance of our method.

�1

{oldrnk =∞}

�3

{i− j ≺ oldrnk}

�4

{i− j ≤ oldrnk

∧ i− j ≥ 0}

Σ
Σ

j<i

j++

Example 6. Continuing Ex-
ample 4 we merge loca-
tions �1 and �2. Afterwards
we add for each program
statement that occurs in
Psort a selfloop at �1 and
a transition between �1 and �3. We obtain the certified module Pext depicted
on the right. The set of fair ω-traces of this module is given by the ω-regular
expression Σ∗.( j<i j++ )ω. If we take the intersection of the program Psort and
the module Pext we obtain the module Psort

1 from Example 1. In our algorithm
(Section 5), we do not need to construct modues such as Psort

1 explicitly (we
only use their implicit representation through Pext).
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5 Overall Algorithm

Until now, we have formalized (and automated) one part of our method, which
is to construct a terminating module from a given sample trace. We still need
to formalize (and automate) how to check that a set of modules covers all be-
haviours of the program. We will say that the program P has a decomposition
into the modules P1, . . . ,Pn if the set of ω-traces of the program P is the union
of the set of fair ω-traces of the modules P1, . . . ,Pn.

We can automate the check that indeed all cases are covered by reducing it
to the inclusion between Büchi automata. Both a program and a module are
special cases of Büchi automata (where the set of states is the set of program
locations and the set of final states contains all program locations respectively
the final location �fin only). By definition, the ω-traces of the program P are
exactly the infinite words accepted by the Büchi automaton P (and form the
language L(P) recognized by P), and the fair ω-traces of the module Pi are
exactly the infinite words accepted by the Büchi automaton Pi (and form the
language L(Pi) recognized by Pi), for i = 1, . . . , n. The inclusion

L(P) ⊆ L(P1) ∪ · · · ∪ L(Pn)

can be checked by a model checker such as [26] or by a tool for manipulating
Büchi automata such as [38].

We will use Büchi automata also in order to prove that decomposing a program
into certified modules is in principle a complete method for termination analysis.

Theorem 2 (completeness). If a program P is terminating then it can be
decomposed into a finite set of certified modules, i.e., there are certified modules

(P1, f1, I1), . . . , (Pn, fn, In)

such that the following equality holds.

L(P) = L(P1) ∪ · · · ∪ L(Pn)

Overall Algorithm. Having reduced the check that a set of modules is a decom-
position of a program, we are ready to present our algorithm for termination
analysis, depicted below. The algorithm iteratively constructs certified modules
(Pi, fi, Ii) until all ω-traces of the program are known to be terminating or we
encounter an ω-trace for which we cannot find a termination argument.

At the beginning of each iteration (line 2) we check if there is an ω-trace of the
program P that is not already a fair ω-trace of one of the modules P1, . . . ,Pn−1

(for which termination has already been proven). As mentioned above, we re-
duce this check to language inclusion of Büchi automata. Therefore we know
that whenever there exists a counterexample to language inclusion there exists
also a lasso-shaped counterexample. We take such a lasso-shaped ω-trace uvω

and construct a program (called lasso module) whose only ω-trace is uvω (see
Step 1 in Section 4). Next, we analyze termination of the lasso module Puvω . If
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input : program P
output: certified modules (P1, f1, I1), . . . , (Pn, fn, In)

1 for n = 0, 1, 2, . . . do
2 if L(P) � L(P1) ∪ · · · ∪ L(Pn−1) then
3 take ω-trace u.vω that is counterexample to inclusion;
4 construct lasso module Puvω ;
5 fn := synthesizeRankingFunction(Puvω);
6 if fn = no ranking function found then
7 return “unable to decide termination of P”
8 end
9 In := computeRankCertificate(fn, Puvω);

10 Pn := extendCertifiedModule(Puvω , fn, In);
11 else
12 return “P is terminating,”

“found decomposition (P1, f1, I1), . . . , (Pn, fn, In)”
13 end

14 end

Algorithm 1. Decomposition of a program P into certified modules

we cannot find a ranking function fn for Puvω our algorithm is unable to de-
cide termination of P and returns. Otherwise we take a ranking function fn and
construct a rank certificate In for fn and Puvω (see Step 2 in Section 4). After-
wards we use the rank certificate to construct the module Pn. Termination of
each fair ω-trace of Pn can be shown using the ranking function fn and the rank
certificate In, i.e., (Pn, fn, In) is a certified module (see Step 3 in Section 4). If
we were not able to find a counterexample to inclusion in line 2, the program P
is already decomposed into certified modules. We have proven termination and
return the certified modules (P1, f1, I1), . . . , (Pn, fn, In).

Our approach lends itself to a variation of the above algorithm where one uses
an exit condition different from the inclusion check in line 2. In that case, the
algorithm returns the modules P1, . . . ,Pn−1constructed so far and, in addition,
a “remainder program” Prem which is constructed via the language-theoretic
difference of Büchi automata.

Prem := P\(P1 ∪ · · · ∪ Pn−1)

This is interesting in a variety of contexts, e.g., when we found an ω-trace that is
nonterminating, or when we found an ω-trace whose termination analysis failed,
or simply in case of a timeout. The remainder program can then be analyzed
manually, or it can be used as a runtime monitor, etc.

6 Evaluation

It is unlikely that one approach outperforms all others on all kinds of programs, ei-
ther in effectiveness (how many termination problems can be solved?) or in
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efficiency (... in what time?). In this paper, we have presented the base algorithmof
a new approach to termination analysis. To explore optimizations and possibilities
of integration with other approaches must remain a topic of future work.

The question is whether our approach is a potentially useful addition to the
portfolio of existing approaches. Therefore, the goal of the present experimental
evaluation must be restricted to showing that the approach has a practical po-
tential in principle, regarding effectiveness and regarding efficiency. This is not
obvious since there are at least two “mission-critical” questions, namely:

– Will the algorithm just learn one terminating program P1,P2, . . . after the
other, going through an infinite (or just unrealistically high) number of sam-
ple traces π1, π2, . . . ?

– Will the check of inclusion between Büchi automata (which is notoriously
difficult and still an object of ongoing work [8,37]) be a ‘bad’ bottleneck?

We put the evaluation into the context of a previous, very thorough evalua-
tion2 in [9] that contained 260 terminating programs. Out of the 260 programs,
our tool can handle 236 programs. This, we believe, indicates the potential effec-
tiveness of our approach. In comparison regarding effectiveness, Cooperating-

T2, the “winner” of the evaluation in [9] (a highly optimized tool which inte-
grates several approaches) can handle 14 programs that our tool cannot han-
dle, but our tool can handle 5 programs that Cooperating-T2 cannot handle
(namely a.10.c.t2.c, eric.t2.c, sas2.t2.c, spiral.t2.c and sumit.t2.c). This confirms our
point that no single approach provides a “silver bullet” and that it is desirable
to have a large portfolio of approaches.

We implemented the algorithm presented in Section 5 in the tool Ultimate

BuchiAutomizer that analyzes termination of C programs. The input programs
and the modules are represented by Büchi automata. In order to support (possibly
recursive) functions, we use Büchi automata over nested words [1] (we do not in-
troduce the formalism in order to avoid the notational overhead) and implemented
an automata library for these automata. We do not check the inclusion

L(P) ⊆ L(P1) ∪ · · · ∪ L(Pn)

directly. Instead, we complement the modules and check the emptiness of their
intersection with the program

L(P) ∩ L(P1) ∪ · · · ∪ L(Pn)

which allow us to reuse intermediate results in further iterations. For comple-
menting our Büchi automata we extended[41] the rank-based approach [18] to
(Büchi) nested word automata. The sample ω-traces whose termination we ana-
lyze are obtained as counterexamples of an emptiness check that is implemented
in our automata library. This emptiness check is purely automata theoric, does
not exploit any information about the program, but prefers short counterex-
amples. We use the tool LassoRanker [24,31] to synthesize ranking functions

2 http://verify.rwth-aachen.de/brockschmidt/Cooperating-T2/

http://verify.rwth-aachen.de/brockschmidt/Cooperating-T2/
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and supporting invariants for lassos. The Floyd-Hoare annotation is obtained
via interpolation (alternative variant of Step 2 in Section 4). For interprocedural
ω-traces we resort to nested interpolants [25]. As interpolating theorem prover we
use SMTInterpol [10]. While constructing the modules, we apply Modification
rule 1 (merge locations) always and we apply Modification rule 2 (add tran-
sitions) lazily in the following sense. Only if the automata library queries the
existence of a transition in the module, we check whether this transition can be
added by applying Modification rule 2. Our tool is available as a command line
version for download as well as via a web interface at the following URL.

http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer/

The following table shows the results for a subset of the benchmarks from [9]
where our tool run on a computer with an Intel Core i5-3340M CPU with
2.70GHz. Our tool and as well as LassoRanker the SMT solver, and the au-
tomata library are written in Java. The maximum heap size of the Java virtual
machine was set to 4GB (-Xmx4G).

For each examplewe list the lines of codeof this example, the overall runtime that
our tool needed and the time that our tool spend for analyzing lassos, constructing
modules, and checking language inclusion of Büchi automata. Furthermore, we list
the number of certifiedmodules that had a trivial ranking function (e.g., f(x) = 0),
the number of certified modules that had a non-trivial ranking function, and the
number of states of the largest module that was constructed.
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a.10.c.t2.c 183 9s 2.8s 0.7s 2.1s 2 9 5
bf20.t2.c 156 6s 0.7s 0.9s 1.9s 6 7 9
bubbleSort.t2.c 109 5s 0.7s 0.3s 1.2s 5 5 5
consts1.t2.c 40 2s 0.3s 0.1s 0.2s 2 1 5
edn.t2.c 294 119s 18.8s 7.7s 89.0s 141 15 58
eric.t2.c 53 10s 1.1s 1.7s 5.0s 4 6 14
firewire.t2.c 178 28s 3.6s 1.3s 19.0s 12 7 8
mc91.t2.c 47 12s 1.2s 0.6s 4.3s 4 10 8
p-43-terminate.t2.c 727 124s 2.1s 4.2s 110.6s 6 18 5
reverse.t2.c 1351 14s 3.1s 1.2s 2.9s 2 3 12
s3-work.t2.c 3229 28s 2.1s 4.1s 11.5s 6 12 22
sas2.t2.c 192 12s 1.3s 3.0s 5.5s 12 6 17
spiral.c 65 38s 0.9s 1.3s 32.7s 8 12 14
sumit.t2.c 83 4s 1.0s 0.2s 0.7s 4 2 4
traverse twice.t2.c 1428 12s 1.7s 1.4s 3.2s 2 4 18
ud.t2.c 279 32s 2.1s 3.8s 22.1s 30 25 32

More results3 of our tool can be found at the SV-COMP 2014 [6] where our
tool participated in the demonstration category on termination.

3 http://sv-comp.sosy-lab.org/2014/results/

http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer/
http://sv-comp.sosy-lab.org/2014/results/
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Discussion. A reader who is familiar with Büchi automata may wonder why it is
feasible to complement Büchi automata of these sizes. The answer lies in the flexi-
bility that our definition of a module allows.We tuned the construction of modules
in away that the “amount of nondeterminism” is kept low.However, it is still part of
our future work to find a class of Büchi automata that can be easily complemented
but does not hinder the module from accepting many traces.

7 Related Work

Our method is related to control flow refinement [22]. There, a multi-path loop
is transformed into a semantically equivalent code fragment with simpler loops.
For example, following the algebraic decomposition rule

(a+ b)∗ = (b∗ab∗)+ + b∗

the loop with the choice of two paths a and b is transformed into the nondeter-
ministic choice of two loops, one where a appears and one where it does not.

We extend control flow refinement by adding fairness constraints [40] and our
reasoning is based on ω-regular languages. In our running example (if we read
a as the outer and b as the inner loop) we decomposed the ω-regular expression
describing the nested loops as follows

(a+ b)ω = (a+ b)∗bω + (b∗a)ω.

We do not enforce the use of a fixed set of algebraic decomposition rules. In-
stead, we propose an algorithm that builds a decomposition on demand from
simple termination arguments. Thus, we partition a set of traces only when it
is necessary and, by construction, we produce only modules that are guaranteed
to have a simple termination argument.

There are many other termination analyses, e. g., [3,14,16,19,20,21,39]. Most
related are the termination analyses based on transition invariants and termina-
tion analyses based on size-change termination.

Termination analyses based on transition invariants [9,12,13,23,27,29,34,35]
combine different, independently obtained ranking functions to a termination
argument. Using transition invariants it is sufficient to cover finite repetitions of
the loop. In our running example, one could cover the loop by

(a+ b)+ = b+ + (b∗ab∗)+

using the same simple ranking functions as our method for each case. Covering
only finite traces is sound, as it can be shown that

(a+ b)ω = (a+ b)∗ bω + (a+ b)∗ (b∗ab∗)ω

using Ramsey’s Theorem. In our approach, instead of having to introduce (a+b)∗,
we can get a more precise characterization of the code before the infinite loop;
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also, we can base our case-distinction on which path was taken before the loop
was reached. Furthermore, we get smaller expressions. Compare the expression

(a+ b)∗(b∗ab∗)ω

with our expression (b∗a)ω. Although they describe exactly the same traces,
our expression is simpler and therefore leads to a simpler termination proof.
Redefining the loop entry point or unfolding the loops are intrinsic techniques
in our approach (as opposed to add-on heuristics). If for the program (ab)ω, it
is simpler to prove the correctness of the loop (baba), we use the fact that

(ab)ω = a(baba)ω.

The idea of size-change termination [4,17,28] is to track the value of (auxiliary)
variables and show the absence of infinite executions by showing that one value
would be decreased infinitely often in a well-ordered domain. The (auxiliary)
variables can be seen as a predefined set of mutually independent termination
arguments.

In contrast with the above approaches, a termination argument in our setting
is a stand alone module (its validity is checked for the corresponding fair ω-
traces, independently from all other program traces). In contrast, a component
of a lexicographic ranking function, a disjunct of a transition invariant, or a
size-change variable makes sense only as part of a global termination argument
(whose validity has to be checked for the global program).

Finally, we use “learning” as a metaphor rather than as a technical term, in con-
trast with the work in [30] which uses machine learning for termination analysis.

8 Conclusion and Future Work

We have presented a algorithm for termination analysis that transforms a pro-
gram into a nondeterministic choice of programs. Our transformation is not
guided by the syntactic structure of the program, but by its semantics. Instead
of decomposing the program into modules and analyzing termination of the
modules, we construct modules that we learned from sample traces and that are
terminating by construction.

The general idea of such a transformation is the same as for trace refine-
ment [32]: move disjunction over abstract values to the disjunction over sets of
traces. The formalization of the shared idea and the exploration of its theoretical
and practical consequences for program analyses is a topic of future work.
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Abstract. We present a new model checking procedure for the termi-
nation analysis of multi-threaded programs. Current termination provers
scale badly in the number of threads; our new approach easily handles
100 threads on multi-threaded benchmarks like Producer-Consumer. In
our procedure, we characterize the existence of non-terminating execu-
tions as Mazurkiewicz-style concurrent traces and apply causality-based
transformation rules to refine them until a contradiction can be shown.
The termination proof is organized into a tableau, where the case splits
represent a novel type of modular reasoning according to different causal
explanations of a hypothetical error. We report on experimental results
obtained with a tool implementation of the new procedure, called Arctor,
on previously intractable multi-threaded benchmarks.

1 Introduction

One of the most exciting recent advances in computer-aided verification is the ex-
tension of CEGAR-based model checking to liveness properties. Counterexample-
guided abstraction refinement (CEGAR) [5] has been very successful in the
verification of safety properties, where model checkers likeMagic [4], ARMC [23],
and SLAB [10] can handle even complex multi-threaded programs. For quite
some time, the common belief was that CEGAR is limited to safety — until a
new generation of CEGAR-based model checkers, notably the termination check-
ers Terminator [6] and T2 [2,8], proved capable of verifying the termination of
difficult recursive functions, such as McCarthy’s 91 function [16], as well as of
reasonably complicated industrial software, such as device drivers. Unlike the
model checkers for safety, however, the termination provers have been targeted
to sequential programs only, and experiments show that they indeed scale badly
for multi-threaded programs.

In this paper, we present Arctor (Abstraction Refinement of Concurrent
Temporal Orderings), the first termination checker that scales to a large number
of concurrent threads. On typical multi-threaded programs such as the Producer-
Consumer benchmark shown in Fig. 1, where the CEGAR-based tools and, like-
wise, termination provers based on classic techniques for term rewrite systems,
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Producer 1 Producer 2 Consumer 1 Consumer 2
while (p1>0) {
if(*) q1++;

else q2++;

p1--;

}

while (p2>0) {
if(*) q1++;

else q2++;

p2--;

}

while (true) {
await(q1>0);

skip; //step 1

skip; //step 2

q1--;

}

while (true) {
await(q2>0);

skip; //step 1

skip; //step 2

q2--;

}

1 2 3
a1 : p1 > 0

a2 : q′1 = q1 + 1

a3 : q′2 = q2 + 1

a4 : p′1 = p1 − 1

1 2 3 4
c1 : q1 > 0 c2 : true c3 : true

c4 : q′1 = q1 − 1

Fig. 1. The Producer-Consumer benchmark, shown here for 2 producers and 2 con-
sumers (Top: pseudocode; Bottom: control flow graphs with labeled transitions for
Producer 1 and Consumer 1). The producer threads draw tasks from individual pools
and distribute them to nondeterministically chosen queues, each served by a dedicated
consumer thread; two steps are needed to process a task. The integer variables p1
and p2 model the number of tasks left in the pools of Producers 1 and 2, the integer
variables q1 and q2 model the number of tasks in the queues of Consumers 1 and 2.

such as AProVE [3,13], can handle no more than two threads, Arctor proves
termination for 100 threads in less than three minutes. Table 1 shows the ex-
perimental data for the Producer-Consumer benchmark, the full experimental
evaluation is presented in Section 7.

The CEGAR-based termination provers Terminator and T2 build on the
Ramsey-based approach, introduced by Podelski and Rybalchenko [21], which
searches for a termination argument in the form of a disjunction of wellfounded
relations. If the transitive closure of the transition relation is contained in the
union of these relations, we call the disjunction a transition invariant ; Ramsey’s
theorem then implies that the transition relation is wellfounded as well. The
approach is attractive, because it is quite easy to find individual relations: one
can look at the available program statements and take any decreasing transitions
as hints for new relations. In the Producer-Consumer example, the termination
can be proved with the disjunction of the relations p′1 < p1, p

′
2 < p2, q

′
1 < q1,

and q′2 < q2. The bottleneck of this approach is the containment check: with an
increasing number of relations it becomes very expensive to check the inclusion
of the transitive closure of the program transition relation in the transition
invariant.

Similar to the Ramsey-based approach, Arctor works with multiple well-
founded relations that are individually quite simple and therefore easy to dis-
cover. The key difference is that we avoid disjunctive combinations, which would
require us to analyze the transitive closure of the transition relation, and instead
combine the relations only either conjunctively or based on a case-split analysis.
Intuitively, our proof in the Producer-Consumer example makes a case distinc-
tion based on which thread might run forever. The case that Producer 1 runs
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Table 1. Running times of the termination provers Terminator, T2, AProVE, and
Arctor on the Producer-Consumer benchmark. MO stands for memout; the time spent
until memout was in all cases more than 1 hour. U indicates that the termination
prover returned “unknown”; Z3-TO indicates a timeout in the Z3 SMT solver.

Terminator T2 AProVE Arctor

Threads Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Vertices

1 3.37 26 2.42 38 3.17 237 0.002 2.3 6
2 1397 1394 3.25 44 6.79 523 0.002 2.6 11
3 × MO U(29.2) 253 U(26.6) 1439 0.002 2.6 21
10 × MO Z3-TO × × MO 0.027 3.0 135
20 × MO Z3-TO × × MO 0.30 4.2 470
60 × MO Z3-TO × × MO 20.8 35 3810
100 × MO Z3-TO × × MO 172 231 10350

forever is ruled out by the ranking function p1. Analogously, Producer 2 can-
not run forever because of the ranking function p2. To rule out that one of the
consumers, say Consumer 1, runs forever, we introduce the ranking function q1,
which allows an infinite execution of the while loop in Consumer 1 only if the
while loop of Producer 1 or the while loop of Producer 2 also run forever, which
we have already ruled out with the ranking functions p1 and p2. We discuss this
example in more detail in Section 3; the informal reasoning should already make
clear, however, that the case split has significantly simplified the proof: not only
is the termination argument for the individual cases simpler than a direct argu-
ment for the full program, the cases also support each other in the sense that the
termination argument from one case can be used to discharge the other cases.

Our termination checking algorithm is an extension of the causality-based
proof technique for safety properties from our previous work [15]. To prove a
safety property, we build a tableau of Mazurkiewicz-style concurrent traces, which
capture causal dependencies in the system. The root of the tableau is labeled by
a default initial trace, which expresses, by way of contradiction, the assumption
that there exists a computation from the initial to the error configuration of the
system. We then unwind the tableau by following proof rules that capture, step
by step, more dependencies; for example, the necessary action rule uses Craig
interpolation to find necessary intermediate transitions. We terminate as soon
as all branches are found to be contradictory.

In Arctor, we show termination with a similar proof by contradiction that
is also guided by the search for an erroneous computation. The difference to
the safety case is that, instead of assuming the existence of a computation that
leads to an error configuration, we start by assuming the existence of a non-
terminating execution, and then pursue the causal consequences that follow from
this assumption. In this way, we build a tableau of potentially non-terminating
traces. The discovery of a ranking function for the currently considered trace
may either close the branch, if the rank decreases along all transitions, or result
in one or more new traces, if the rank remains equal or increases along some
transitions: in this case, we conclude that the existence of an execution for the
current trace implies the existence of an execution for some other trace, in which
at least one of these transitions occurs infinitely often.
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Related Work. In addition to the approaches discussed above, there is a
substantial body of techniques for automated termination proofs, in particu-
lar for term rewrite systems. Many of these techniques, including simplifica-
tion orders, dependency pairs, and the size-change principle, are implemented in
AProVE [3,13]. Arctor is the first termination checker that is capable of handling
multi-threaded programs with a substantial number of threads. Arctor is based
on three key innovations: a novel notion of modular reasoning, a novel composi-
tion of ranking functions, and a novel tableau construction based on causality. In
the following we point to related work in each of these areas. Modular reasoning.
The case split in Arctor is a new type of modularity, where the verification task
is split according to different causal explanations of a hypothetical error. Other
termination provers apply different types of modular reasoning, such as the tradi-
tional split according to threads [7], or a split according to ranking functions, by
eliminating, after each discovery of a new ranking function, those computations
from the program that can now be classified as terminating [12,2]. Composition of
ranking functions. Similar to the lexicographic combination of ranking functions,
constructed for example by T2 [2,8], Arctor combines ranking functions within
a branch of the tableau conjunctively. The key difference is that Arctor only
imposes a partial order, not a linear order, on the individual ranking functions:
the same ranking function may be combined independently with multiple other
ranking functions from further splits or previously discharged cases. Causality-
based tableaux. Concurrent traces and the causality-based tableaux are related to
other partial-order methods, such as partial order reduction [14], Mazurkiewicz
traces [19], and Petri net theory [24]. As explained above, the tableau construc-
tion in Arctor is based on our previous work on the causality-based verification
of safety properties [15].

2 Concurrent Traces

We begin by introducing concurrent traces, which are the basic objects that our
verification algorithm constructs and transforms. Concurrent traces capture the
dependencies in a transition system.

2.1 Transition Systems

We consider concurrent systems described in some first-order assertion language.
For a set of variables V , we denote by Φ(V) the set of first-order formulas over V .
For each variable x ∈ V we define a primed variable x′ ∈ V ′, which denotes the
value of x in the next state. We call formulas from the sets Φ(V) and Φ(V ∪ V ′)
state predicates and transition predicates, respectively.

A transition system is a tuple S = 〈V , T, init〉 where V is a finite set of
system variables; T ⊆ Φ(V ∪ V ′) is a finite set of system transitions; init ∈ Φ(V)
is a state predicate, characterizing the initial system states. A fair transition
system is enriched with two sets of just and compassionate transitions J,C ⊆ T .
The requirement is that a just (compassionate) transition that is continuously
(infinitely often) enabled, should be infinitely often taken.
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A state of S is a valuation of system variables V . We call an alternating
sequence of states and transitions s0, t1, s1, t2, . . . a run of S, if init(s0) holds,
and for all i ≥ 1, ti(si−1, si) holds. We say that S is terminating if there does
not exist an infinite run; otherwise S is non-terminating. We denote the set of
runs by L(S), and the set of non-terminating runs by Ln(S) ⊆ L(S).

Transition systems are well suited for the representation of multi-threaded
programs with interleaving semantics: the set of transitions of the system consists
of all the transitions of the individual threads.

2.2 Finite Concurrent Traces

Finite concurrent traces were introduced in our previous work on causality-based
proofs of safety properties [15].

A finite concurrent trace is a labeled, directed, acyclic graph A = 〈N,E, ν, η〉,
where 〈N,E〉 is a graph with nodes N , called actions, and edges E; ν : N →
Φ(V ∪ V ′), η : E → Φ(V ∪ V ′) are labelings of nodes and edges with transition
predicates. The source and target functions s, t : E → N map each edge to its
first and second component, respectively. We denote the set of finite concurrent
traces by A.

A concurrent trace describes a set of system runs. For a particular concurrent
trace its actions specify which transitions should necessarily occur in a run, while
its edges represent the (partial) ordering between such transitions and constrain
the transitions that occur in-between.

Trace Language. For a transition system S = 〈V , T, init〉, the language of a
concurrent trace A = 〈N,E, ν, η〉 is defined as a set L(A) of finite system runs
such that for each run s0, t1, s1, t2, . . . , tn, sn ∈ L(A) there exists an injective
mapping σ : N → {t1, . . . , tn} such that:

1. for each action a ∈ N and ti = σ(a) the formula ν(a)
(
si−1, si

)
holds.

2. for each edge e = (a1, a2) ∈ E, and ti = σ(a1), tj = σ(a2), we have that
a) i < j, and b) for all i < k < j, the formula η(e)

(
sk−1, sk

)
holds.

We call a concurrent trace A = 〈N,E, ν, η〉 contradictory if any of its actions
is labeled with an unsatisfiable predicate, i.e. if there exists n ∈ N such that
ν(n) implies ⊥. Obviously, the language of such a trace is empty.

Given two concurrent traces A = 〈N,E, ν, η〉 and A′ = 〈N ′, E′, ν′, η′), a trace
morphism f : A → A′ is a pair f = 〈fN : N → N ′, fE : E → E′〉 of injective
mappings for nodes and edges of one trace to those of another, preserving sources
and targets: fN ◦ t = t′ ◦ fE , and fN ◦ s = s′ ◦ fE.

Trace Inclusion. For any two concurrent traces A = 〈N,E, ν, η〉 and A′ =
〈N ′, E′, ν′, η′) we define the trace inclusion relation ⊆ as follows: A ⊆ A′ iff
there exists a trace morphism λ = 〈λN : N ′ → N, λE : E′ → E〉 such that for
all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′), and for all e′ ∈ E′ . η(λE(e′)) =⇒ η′(e′).

We write A⊆λA
′ if trace inclusion holds for a particular trace morphism λ.

Proposition 1 ([15]). For A,A′ ∈ A, if A ⊆ A′ then L(A) ⊆ L(A′).
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2.3 Infinite Concurrent Traces

In order to reason about potentially non-terminating computations, we need infi-
nite traces. We define an infinite concurrent trace as a tuple I = 〈As, Ac, φs, φc〉
where As, Ac are two finite concurrent traces, which we call the stem and the
cycle, and φs, φc are two transition predicates. They define the set of infinite
system runs in the following way: the stem should occur once in the beginning
of the run, while the cycle should occur infinitely often after the stem. Transi-
tion predicates φs and φc restrict the transitions that are allowed to appear in
the stem and cycle part of the run, respectively. We denote the set of infinite
concurrent traces by I, and in the following call them simply (concurrent) traces.

Trace Language. For a transition system S = 〈V , T, init〉, the language of
an infinite concurrent trace I = 〈As, Ac, φs, φc〉 is defined as a set L(I) of infinite
system runs such that for each run s0, t1, s1, t2, . . . ∈ L(I) there exists an infinite
sequence of indices i1, i2, . . . such that:

1. s0, t1, . . . ti1 , si1 ∈ L(As), and for all 0<j≤ i1 the formula φs
(
sj−1, sj

)
holds.

2. for all k ≥ 2 it holds that sik−1
, tik−1+1, . . . tik , sik ∈ L(Ac), and for all

ik−1<j≤ ik the formula φc
(
sj−1, sj

)
holds.

Trace Inclusion. We lift the trace inclusion relation to infinite concurrent
traces. For any two infinite concurrent traces I = 〈As, Ac, φs, φc〉 and I ′ =
〈A′

s, A
′
c, φ

′
s, φ

′
c〉 we define the trace inclusion relation ⊆ as follows: I ⊆ I ′ iff

there exists a pair of trace morphisms λ = 〈λs, λc〉, where λs : A′
s → As and

λc : A′
c → Ac, written also λ : I ′ → I, such that As ⊆λs A′

s, Ac ⊆λc A′
c,

φs =⇒ φ′s, and φc =⇒ φ′c. For a particular pair of trace morphisms λ we write
also I ⊆λ I ′.

Proposition 2. For I, I ′ ∈ I, if I ⊆ I ′ then L(I) ⊆ L(I ′).

Graphical Notation. We show action identities in circles, and labeling for-
mulas in squares. We omit any of these parts when it is not important or would
create clutter in the current context. The cycle part of the trace is depicted in
round brackets, superscripted with ω. The predicate φc is shown under the edge,
connecting opening and closing brackets.

3 Motivating Example

In the introduction, we gave an informal sketch of the termination proof for the
Producer-Consumer benchmark from Fig. 1. Using the concept of concurrent
traces from the previous section, we can now explain the termination argument
more formally.

Our analysis starts with the assumption (by way of contradiction) that there
exists some infinite run. The assumption is expressed as the concurrent trace at
Position 1 in Fig. 2: infinitely often some transition should occur. The transition
is so far unknown, and therefore characterized by the predicate �. Our argu-
ment proceeds by instantiating this unknown action with the transitions of the
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1 : ( � )
ω

5 : ( c1 )
ω

6 : ( c1 c2 c3 c4 )
ω

Terminating : q1

7 :(
c1 c2 c3 c4

q′1 > q1 )
ω

8 :(
c1 c2 c3 c4

a2 )
ω

9 :(
c1 c2 c3 c4

a1 a2 a4 )
ω

2 : ( a1 )
ω

3 : ( a1 a4 )
ω

Terminating : p1

4 :(
a1 a4

p′1 > p1 )
ω

⊥

p1 p2

q1 q2

. . .

. . .

Action Split

Necessary Action

Invariance Split

Action Split

Necessary Action

Action Split

Necessary Action

Invariance Split

Fig. 2. Termination proof for the Producer-Consumer example. Bottom left : partially
ordered ranking function discovered in the analysis.

transition system, resulting in one new trace per transition. The Action Split
proof rule represents a case distinction, and we will need to discharge all cases.

For example, transition a1 of Producer 1, gives us the trace shown in Position
2. A consequence of the decision that a1 occurs infinitely often is that a4 must
also occur infinitely often: after the execution of a1, the program counter of
producer 1 equals 2, and the precondition for the execution of a1 is that it is equal
to 1. The only transition, that can achieve that goal, is a4 (here we oversimplify to
make the presentation clearer; in the algorithm we derive the necessity of action
a4 by an interpolation-based local safety analysis). The requirement that both a1
and a4 occur infinitely often is expressed as the trace in Position 3, obtained from
the trace in Position 1 by the Necessary Action proof rule. The edge between a1
and a4 specifies an ordering between the two transitions; between them, there
may be an arbitrary number of other transitions. The trace in Position 3 is
terminating: p1 is decreased infinitely often and is bounded from below; it is
therefore a ranking function. The only remaining situation in which an infinite
run might exist is if some transition increases p1, i.e., that satisfies the predicate
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p′1 > p1, is executed infinitely often. This situation is expressed by the trace in
Position 4, obtained by the application of the Invariance Split proof rule. Since
there is no transition in the program transition relation that satisfies p′1 > p1,
we arrive at a contradiction.

Let us explore another instantiation of the unknown action in the trace at
Position 1, this time with transition c1 of Consumer 1: we obtain the trace
of Position 5. Again, exploring causal consequences, local safety analysis gives
us that actions c2, c3, and c4 should also occur infinitely often in the trace:
we insert them, and get the trace at Position 6. Termination analysis for that
trace gives us the ranking function q1: it is bounded from below by action c1
and decreased by action c4. Again, we conclude that the action increasing q1
should occur infinitely often, and introduce it in the trace of Position 7. Next,
we try all possible instantiations of the action characterized by the predicate
q′1 > q1: there are two transitions that satisfy the predicate, namely a2 and
b2. We explore the instantiation with a2 in the trace at Position 8; for b2, the
reasoning proceeds similarly. The local safety analysis allows us to conclude that,
besides a2, transitions a1 and a4 should occur infinitely often (Position 9). At
this point, we realize that the trace at Position 9 contains as a subgraph the trace
at Position 2, namely the transition a1. We can conclude, without repeating the
analysis done at Positions 2–4, that there is no infinite run corresponding to the
trace at Position 9.

We call the graph of traces corresponding to this analysis the causal trace
tableau. The tableau for the Producer-Consumer benchmark is (partially) shown
in Fig. 2. The analysis can also be understood as the construction of a partially-
ordered composition of ranking functions; the final ranking for the Producer-
Consumer example is shown at the bottom left of Fig. 2.

We study causal trace tableaux in more detail in the following Section 4. The
proof rules driving the analysis are presented in Section 5.

4 Causal Trace Tableaux

We prove termination by constructing a graph labeled by concurrent traces. We
call such graphs causal trace tableaux.

4.1 Initial Abstraction

At the root of the tableau, we start with a single infinite concurrent trace,
containing two actions: the initial action i in the stem part, marked with init ′,
and the infinitely repeating action w in the cycle part, marked with �. The
marking ensures that all possible non-terminating system traces are preserved.

Initial Abstraction. For a transition system S = 〈V , T, init〉 we define
InitialAbstraction(S) as an infinite concurrent trace I = 〈As, Ac, φs, φc〉, where
– As = 〈Ns, Es, νs, ηs〉, and N = {i}, E = ∅, ν = {(i, init ′)}, η = ∅.
– Ac = 〈Nc, Ec, νc, ηc〉, and N = {w}, E = ∅, ν = {(w,�)}, η = ∅.
– φs = φc = �.

Proposition 3. Ln(S) ⊆ L(InitialAbstraction(S)).
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4.2 Causal Transitions

The children of a node in the tableau are labeled with traces that refine the trace
of the parent node. We call the rules that construct the children traces from the
parent trace causal transitions. Technically, causal transitions are special graph
morphisms, as described below.

We follow [9,11] and use the so-called single-pushout (SPO) and double-pushout
(DPO) approaches to describe graph transformations. All graph transformations
that we use are non-erasing and lie at the intersection of both approaches.

Trace Productions. A finite trace production p : (L
r−→ R) is a trace mor-

phism r : L→ R, where L,R ∈ A are finite concurrent traces. The traces L and
R are called the left-hand side and the right-hand side of p, respectively. A given
production p : (L

r−→ R) can be applied to a trace A if there is an occurrence of
L in A, i.e. a trace morphism λ : L→ A, called a match. The resulting trace A′

can be obtained from A by adding all elements of R with no pre-image in L.
An infinite trace production p : (L

r−→ R) where L,R ∈ I are infinite concur-
rent traces and r = 〈rs, rc〉 is a pair of trace morphisms, describes a transfor-
mation of trace L into trace R as a composition of two finite trace productions.
In the following we denote the set of infinite trace productions by Π , and call
them simply trace productions. We denote the result of the application of a trace
production p to a trace I under a pair of morphisms λ = 〈λs, λc〉 by pλ(I).

Causal Transitions. For the purpose of system analysis we use special trace
productions; we call them causal transitions. For a given transition system S,
a causal transition τ : {τ1, . . . , τn} is a set of trace productions τi : (L

ri−→ Ri),
where all productions share the same left-hand side L; we will denote L by τ�,
and call transition premise. We say that a causal transition τ is sound if the
condition below holds:

∀I ∈ I . I ⊆λ τ� =⇒ L(I) ⊆
⋃
τi∈τ
L
(
τλi (I)

)

4.3 Causal Trace Tableaux

Causal Trace Tableau. For a transition system S, we define a (causal) trace
tableau as a tuple Υ = 〈V, F, γ, δ,�, λ〉, where:
– (V, F ) is a directed forest with vertices V and edges F . Vertices are parti-

tioned into internal vertices and leaves: V = VN�VL, VN = {v ∈ V |∃(v, v′) ∈
F}, VL = {v ∈ V | �(v, v′) ∈ F}.

– γ : V → I is a labeling of vertices with concurrent traces.
– δ : F → Π is a labeling of edges with trace productions. We require that

for all edges with the same source v, the labeling productions have the same
left-hand side. Thus, we have an induced labeling of internal vertices v ∈ VN
with causal transitions: δ(v) = {δ((v, v′)) | (v, v′) ∈ F}.

– �: VL �→ VN is a partial covering function; for (v, v′) ∈� we call v a covered
vertex, and v′ a covering vertex.

– λ is a labeling of internal or covered vertices with trace morphisms:
∀v ∈ VN . λ(v) : δ(v)� → γ(v); for all (v, v′) ∈� . λ(v) : γ(v′)→ γ(v).
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We call a trace tableau Υ = 〈V, F, γ, δ,�, λ〉 complete if all its leaf vertices are
either contradictory or covered. A trace tableau is said to be correct if:

1. ∃v ∈ V . InitialAbstraction(S) ⊆ γ(v).
2. for all v ∈ VN we have that a) δ(v) is sound, b) γ(v) ⊆λ(v) δ(v)�, and c) for

all (v, v′) ∈ F it holds that δ
(
(v, v′)

)λ(v)(
γ(v)

)
⊆ γ(v′).

3. for all (v, v′) ∈� we have γ(v) ⊆λ(v) γ(v
′) and (v′, v) �∈ (F ∪�)∗.

A trace tableau is a forest, which can be seen as an unwinding of the system
causality relation from some set of initial vertices. The label γ(v) of the vertex v
represents all possible infinite runs for that vertex. The first correctness condition
requires that a tableau contains all non-terminating system runs. The second
one guarantees the applicability of the causal transition δ(v) of a vertex v to its
label γ(v) and the full exploration of the causal transition consequences, thus
preserving the set of system runs. Indeed, we have:

γ(v) ⊆λ(v) δ(v)� =⇒ L
(
γ(v)

)
⊆

⋃
(v,v′)∈F

L
(
δ
(
(v, v′)

)λ(v)(
γ(v)

))
⊆

⋃
(v,v′)∈F

L
(
γ(v′)

)
The last correctness condition ensures that we can apply at the covered vertex

all the causal transitions in the subtree originating from the covering vertex;
additionally, it guarantees that the resulting tableau is acyclic.

5 Proof Rules for Termination

We now present the causal transitions needed for proving termination. We omit
the proof rules for safety properties presented in [15], which can be applied to the
stem part of a concurrent trace without any changes. The infinity-specific causal
transitions are illustrated in Fig. 3; some have so called application conditions,
showed to the right of the causal transition name.

Basic Rules. These are the most important causal transitions, sufficient for
the approach completeness in the case of an unconditionally terminating system.

Action Split, given some action a in the cycle part of a trace, and a transition
predicate ψ, considers two alternatives: either a satisfies ψ or ¬ψ infinitely often.

Invariance Split makes a case distinction about the program behavior at in-
finity: for a predicate φ either all the actions in the cycle part satisfy it, or a
violating action should happen infinitely often. We exploit the rule when we in-
troduce new actions based on the ranking function: in that case the first branch
is terminating, and we may consider only the second one. But, in general, the
rule is useful without the a priori knowledge of a ranking function: it considers
two cases, where each one is easier to reason about individually.

Local Safety Rules. The rules in this category make the approach efficient
for the case we cannot find a perfect ranking function in one step.

Necessary Action is applied when there are two ordered actions a and b in the
cycle part of a concurrent trace, and a transition predicate φ, such that the label
of a implies φ, and the label of b implies ¬φ′, i.e. there is a contradiction between
these actions (b “ends” in the region ¬φ, while a “starts” in the region φ). Given
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Basic Rules

L

φ
a ω

=⇒

R1

φ ∧ ψ
a ω

R2

φ ∧ ¬ψ
a ω

Action Split

L

G

ω
=⇒

R1

G ω

φ

R2

G ω

¬φ

Invariance Split: �x ∈ G . sat(η(x)∧¬φ)

Local Safety Rules

L

φ
a

¬φ′b
ω

=⇒

R

φ
a

¬φ′b
¬φ ∧ φ′b

ω

Necessary action: �y . (y ‖ a→b ∨ y→a ∨ b→y)
∧ sat(η(y)∧ ¬φ ∧ φ′)

L

a b
ω

=⇒

R1

a b
ω

R2

b a
ω

Order Split: a ‖ b

Unrolling Rules

L

G2G1

ω
=⇒

R

G2G2G1

ω

Cycle-to-Stem

L

G

ω
=⇒

R

G G

ω

Unrolling

Fairness Rules

L

G ω

En(a)
=⇒

R

G a ω

En(a)

Justice: �a ∈ G

L

G En(a)
b

ω

=⇒

R

G
En(a)
b

a

ω

Compassion: �a ∈ G

Fig. 3. Proof rules for termination. Action identities are arbitrary, and used to show
the context preserved by the application of a causal transition. G stands for the rest
of the trace besides the depicted parts.

the repetitive character of the trace, we have that a should follow b again; the
causal transition introduces a new “bridging” action x in between. Actions a
and b can be the same single action, where the precondition contradicts the
postcondition. The predicate φ may be obtained by Craig interpolation between
the labels of b and a. The application condition for this causal transition ensures
that there is no other action y in the trace already that could play the role of x.

Order Split considers alternative interleavings of two previously concurrent
events. Either one or another ordering should happen infinitely often.

Unrolling rules use the infinite repetition of the cycle part of a trace.
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Cycle-to-Stem causal transition allows us to shift the cycle part G2 into the
stem part G1, thus going from the reasoning at infinity to the safety reasoning.
This rule is need for the completeness of conditional termination.

Unrolling exploits the infinite repetition: we can unroll the complete graph G
of the cycle part, and the unrolled version should still repeat infinitely often.

Fairness rules allow for the direct account of two well-known concurrent
phenomena: weak and strong fairness (or justice and compassion) [17,18].

Justice causal transition allows to introduce a just transition a in the cycle
part of a trace in case it is continuously enabled and never taken.

Compassion causal transition states that a compassionate transition a which
is infinitely often enabled should be also infinitely often taken.

Proposition 4. The defined above causal transitions are sound.

The following lemma is applied in the combination with the invariance split
causal transition: in case a ranking function can be found for the cycle part of a
concurrent trace, it allows to discard the left branch of the result.

Lemma 1. Assume that a set S is well-ordered by a relation .. If, for an infinite
sequence s1, s2, . . . of elements from S, for an infinite number of pairs (si, si+1)
it holds that si : si+1, then there exists an infinite number of pairs (sj , sj+1)
such that sj ≺ sj+1.

6 The Termination Analysis Algorithm

Our termination analysis algorithm (see Algorithm 1) operates on the causal
trace tableau defined above. We start with the single vertex in the tableau,
labeled with InitialAbstraction(S). At each iteration of the algorithm main loop
we select some vertex v from the queue Q of unexplored tableau leaves, and
analyze only the cycle part of its label. First, we try to cover v by some other
vertex v′: this can be done if the trace of v is included in the trace of v′ (thus,
all causal transitions at v′ subtree can be repeated). Moreover, we require that
the covering does not create any loops, and the resulting tableau is acyclic.

If the covering attempt was unsuccessful, we unroll and linearize the cyclic part
of the v’s label. The unrolling is necessary in order to detect possible conflicts
between iterations of the cycle. If the linear trace L is unconcretizable - we apply
the local safety refinement to the cyclic trace: this includes such causal transitions
as order split and necessary action. The refinement procedure is essentially the
same as in [15], so we do not repeat it here. After the refinement step, we put
the newly created children of v into the queue and proceed.

On the contrary, if the unrolled cycle is concretizable, we check it for termi-
nation; any ranking function synthesis algorithm such as [1,22] can be used for
that purpose. If we have found a ranking function for the cycle - we apply the
invariance split causal transition and Lemma 1. As a result, we introduce into
the cycle all possible system transitions able to ”repair” it: preserve its infinite
repetition despite the existence of a ranking function.
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Algorithm 1. Causality-based Termination Analysis

Input : Transition system S = 〈V, T, init〉
Output: terminating/termination unknown
Data: Termination tableau Υ = 〈V, F, γ, δ,�, λ〉, queue Q ⊆ VL,

Safety tableau Υs = 〈Vs, Fs, γs, δs,�s, λs〉, queue Qs ⊆ VLs

begin
set V ←− {v0}, γ(v0)←− InitialAbstraction(S), Q←− {v0}
set all of {F, δ,�, λ, Vs, Fs, γs, δs,�s, λs} ←− ∅
while Q not empty do

take some v from Q
if ∃ v′ ∈ VN and λ′ : γ(v′)→ γ(v) .
γ(v) ⊆λ′ γ(v′) and v is not reachable from v′ by F ∪� then
add (v, v′) to �
set λ(v)←− λ′

else
set L←− Linearize(Unroll(γ(v)))
if Unconcretizable(L) then

LocalSafetyRefine(v, L)
else if Terminating(L) then

InvarianceSplit(v, L)
else

put CycleToStem(v) into Vs and Qs

put children of v into Q

return SafetyAnalysis(Υs, Qs)

Finally, if the cycle is both concretizable and no ranking function can be found
for it, the termination part of our algorithm gives up and transfers the analyzed
trace to the safety part of the algorithm. For that purpose we concatenate the
stem and the cycle into the finite concurrent trace, and put the resulting ver-
tex into the safety tableau for processing. Thus, the safety tableau is the forest
that originates from the vertices of the termination tableau for which no ter-
mination argument can be found. We apply the method of [15] to analyze it. If
all the leaves of the safety tableau are found to be unreachable, we mark the
corresponding leaves of the termination tableau as contradictory, and report the
program as terminating; otherwise we report a possibly non-terminating exe-
cution. The following theorems show that the proposed approach is sound and
relatively complete for the program termination analysis.

Theorem 1 (Soundness). If there exists a correct and complete causal trace
tableau for a transition system S, then S is terminating.

Theorem 2 (Relative Completeness). If a transition system S is terminat-
ing, then a correct and complete causal trace tableau for S can be constructed,
provided that all necessary first-order formulas are given.

As the termination problem is, in general, undecidable, our approach has its
limitations. In particular, it heavily depends on the power of termination proving
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Table 2. Detailed experimental evaluation for the set of multi-threaded benchmarks.
MO stands for memout; the time spent until memout was in all cases more than 1
hour. U indicates that the termination prover returned “unknown”; Z3-TO indicates a
timeout in the Z3 SMT solver.

Terminator T2 AProVE Arctor

Benchmark Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Vertices

Chain 2 0.65 20 0.52 20 1.58 131 0.002 2.0 3
Chain 4 1.45 25 0.54 22 2.13 153 0.002 2.2 7
Chain 6 24.4 57 0.58 24 2.58 171 0.002 2.5 11
Chain 8 × MO 0.63 26 3.48 210 0.002 2.5 15
Chain 20 × MO 2.36 55 16.5 941 0.007 2.5 39
Chain 40 × MO 40.5 288 536 1237 0.023 2.8 79
Chain 60 × MO Z3-TO × × MO 0.063 3.0 119
Chain 100 × MO Z3-TO × × MO 0.320 3.9 199

Phase 1 × MO U(4.53) 48 1.60 132 0.002 2.4 7
Phase 2 × MO U(4.53) 48 2.16 144 0.002 2.4 7
Phase 3 × MO U(30.6) 301 3.83 199 0.002 2.5 16
Phase 8 × MO × MO 47.0 1506 0.003 2.6 61
Phase 10 × MO × MO × MO 0.012 2.7 79
Phase 20 × MO × MO × MO 0.061 3.3 169
Phase 60 × MO × MO × MO 1.18 4.2 529
Phase 100 × MO × MO × MO 7.38 6.1 889

Semaphore 1 3.05 26 2.81 46 3.22 230 0.002 2.6 8
Semaphore 2 622 691 U(20.7) 219 U(6.52) 465 0.002 2.6 16
Semaphore 3 × MO U(15.8) 239 U(10.42) 1138 0.003 2.6 24
Semaphore 10 × MO U(83.5) 470 U(246) 1287 0.023 2.8 80
Semaphore 20 × MO × MO × MO 0.073 3.3 160
Semaphore 60 × MO × MO × MO 0.58 4.0 480
Semaphore 100 × MO × MO × MO 1.59 5.1 800

techniques for simple loops such as [1,22], and on the methods for reachability
analysis. For the latter we apply our previous work [15], which is limited to
theories, supporting Craig interpolation.

7 Experimental Evaluation

We have implemented the termination analysis algorithm in a model checker
called Arctor1. The implementation consists of approximately 1500 lines of
Haskell code and can currently handle multi-threaded programs with arbitrary
control flow, finite data variables, and unbounded counters.

Table 2 shows experimental results obtained with the termination provers
Terminator, T2, AProVE, and Arctor on the benchmarks described below, ex-
cept for the results on the Producer-Consumer benchmark, which were discussed
already in the introduction (see Table 1). All experiments were performed on an
Intel Core i7 CPU running at 2.7 GHz.

Producer-Consumer. The Producer-Consumer benchmark from the intro-
duction (see Fig. 1) is a simplified model of the Map-Reduce architecture
from distributed processing: producers model the mapping step for separate
data sources, consumers model the reducing step for different types of input

1 available at http://www.react.uni-saarland.de/tools/arctor/

http://www.react.uni-saarland.de/tools/arctor/
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data. The natural requirement for such an architecture is that the distributed
processing terminates for any finite amount of input data.

Chain. The Chain benchmark consists of a chain of n threads, where each
thread decreases its own counter xi, but the next thread in the chain can
counteract, and increase the counter of the previous thread. Only the last
thread in the chain terminates unconditionally.

Phase. The Phase benchmark is similar to the Chain benchmark, except that
now each thread can either increase or decrease its counter xi. Each such
phase change is, however, guarded by the next thread in the chain, which
limits the number of times the phase change can occur.

Semaphore. The Semaphore benchmark represents a model of a concurrent
system where access to a critical resource is guarded by semaphores. We
verify individual accessibility for a particular thread (i.e., the system with-
out the thread should terminate) under the assumption of a fair scheduler.
Since other tools do not support fairness, we have eliminated the fairness
assumption for all tools including Arctor using the transformation from [20],
which enriches each wait statement with a decreasing and bounded counter.

Arctor verifies all benchmarks efficiently, requiring little time and memory to
handle even 100 threads. We have also tried out our approach on more compli-
cated examples (available from the tool homepage), which represent models of
publicly available industrial programs. These include parallel executions of GNU
make, parallel computations in CUDA programs for GPUs, and Google’s imple-
mentation of the Map-Reduce architecture for its App Engine platform. While
other tools are not able to handle even two concurrent threads in these programs,
Arctor verifies programs with dozens of threads within several minutes.

8 Conclusion

We have presented a new model checking procedure for the termination analysis
of multi-threaded programs. The procedure has been implemented in Arctor, the
first termination prover that scales to a large number of concurrent threads. Our
approach is based on three key innovations: a novel notion of modular reasoning,
a novel composition of ranking functions, and a novel tableau construction based
on causality. With respect to the modular reasoning, the case split in Arctor is
a new, and very effective, type of modularity, where the verification task is split
according to different causal explanations of a hypothetical error.With respect to
the composition of ranking functions, Arctor combines ranking functions within
a branch of the tableau conjunctively, similar to the lexicographic combination in
T2, but Arctor only imposes a partial order, not a linear order, on the individual
ranking functions: the same ranking function may be combined independently
with multiple other ranking functions from further splits or previously discharged
cases. Finally, Arctor explores causal dependencies in a tableau of Mazurkiewicz-
style concurrent traces in order to systematically discover case splits and ranking
functions.
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Abstract. Typical CEGAR-based verification methods refine the ab-
stract domain based on full counterexample traces. The finite state model
checking algorithm IC3 introduced the concept of discovering, gener-
alizing from, and thereby eliminating individual state counterexamples
to induction (CTIs). This focus on individual states suggests a simpler
abstraction-refinement scheme in which refinements are performed rela-
tive to single steps of the transition relation, thus reducing the expense
of refinement and eliminating the need for full traces. Interestingly, this
change in refinement focus leads to a natural spectrum of refinement
options, including when to refine and which type of concrete single-step
query to refine relative to. Experiments validate that CTI-focused ab-
straction refinement, or CTIGAR, is competitive with existing CEGAR-
based tools.

1 Introduction

IC3 [10,9] constructs an inductive proof of an invariance property by reacting
to individual states. These states, called counterexamples to induction (CTIs),
arise as counterexample models to one-step consecution queries: a CTI is not yet
known to be unreachable and has at least one successor that either is or can lead
to an error state. In focusing on states and single steps of the transition relation,
IC3 differs from the k-induction [23] and interpolation [35,36] extensions of BMC
[7], which fundamentally rely on unrolling the transition relation. IC3’s practical
value is now widely appreciated.

This paper suggests a similar refocusing from sequences to single steps of
the transition relation when performing predicate abstraction-refinement-based
analysis of infinite state systems. The new method is referred to as CTIGAR,
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for counterexample to induction-guided abstraction-refinement, to contrast with
CEGAR’s focus on counterexample traces [18,19].

Injecting predicate abstraction into IC3 is straightforward: an abstract CTI is
a conjunction of the predicates that are satisfied by the corresponding concrete
CTI. This straightforward and inexpensive abstraction contrasts with previous
adaptations of IC3 to infinite state analysis that put excessive effort into com-
puting non-trivial underapproximations of preimages [16,31]. Because IC3’s in-
ductive generalization procedure typically expands the (abstract) CTI cube well
beyond a preimage, there is little point in making such an effort.1

In CEGAR, failure to concretize an abstract counterexample trace of arbitrary
length is the trigger for domain refinement. In CTIGAR, there are two triggering
situations for domain refinement, both over single-step queries: for lifting or for
consecution. This focus on single-step queries rather than traces contrasts with
a recent attempt at combining CEGAR with IC3 [17].

Lifting [15] a full state to a partial assignment is an important generalization
mechanism in state-of-the-art IC3 implementations. The partial assignment de-
scribes similar states that also step into the same target as the original full state.
With a concrete CTI, the one-step lifting query must succeed [15]; however, with
an abstract CTI, it can fail. A failure is one possible point for refinement.

Consecution relative to frame Fi, which over-approximates the set of states
reachable in at most i steps, for CTI s checks whether any s-state is reachable
from an Fi-state other than an s-state. It can happen that an abstract CTI ŝ
fails consecution while its corresponding concrete CTI s passes consecution. This
situation is another possible point for refinement.

In both scenarios, one can eagerly address the failure or lazily ignore it and
continue. Lazy operation allows the introduction of spurious transitions into the
partially constructed traces. The corresponding CTIs are marked as having al-
lowed such transitions and can be revisited later if necessary. Morever, in both
cases, addressing a failure requires only looking at a one-step concrete query,
not an arbitrarily long unwinding of the transition relation. When the underly-
ing theory admits interpolation, an interpolant derived from the concrete query
enriches the domain sufficiently so that the refined abstract CTI passes its query.

Overall, then, the characteristics of CTIGAR are as follows:
1. straightforward abstraction: an abstract CTI is derived from a concrete CTI

by evaluating the available predicates over the (possibly partial) assignment
of the concrete CTI;

2. intermediate refinement triggers : refinement is suggested either when lifting
an abstract CTI fails or when consecution against an abstract CTI fails but
against the corresponding concrete CTI succeeds;

1 Abstract CTIs constitute underapproximate preimages whenever the abstract do-
main is sufficiently precise (Section 3.1), which can be enforced. Our experiments in
Section 4, however, show that abstract CTIs that are not underapproximate preim-
ages can be eliminated without costly refinement in many cases. In fact, the best
experimental configurations do not enforce preimages.
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3. lazy or eager modes : a suggested refinement can be addressed immediately
(eager), ignored in hopes that the overall analysis succeeds or until the dis-
covery of a counterexample trace (lazy), or delayed until an intermediate
trigger, such as encountering a threshold number of suggested refinements;

4. simple refinement : refinement considers one step of the transition relation
rather than an arbitrarily long unwinding;

5. explicit concrete states : the concrete CTIs that are derived from SMT models
can be useful for some types of predicate synthesis; see Section 4.1.

CTIGAR otherwise operates identically to finite state IC3, except that an SMT
solver is used in place of a SAT solver, and atoms are predicates.

This paper is organized as follows. In Section 2, basic concepts and IC3 are
recalled. Section 3 presents CTIGAR; Section 4 evaluates CTIGAR empirically.
Finally, Section 5 discusses CTIGAR in a broader context.

2 Preliminaries

2.1 Formulas and Transition Relations

The term formula refers to either a propositional logic formula or a formula in
first-order logic.

Propositional Formulas. A propositional formula is defined as usual over a set X
of propositional atoms, the logical constants � and ⊥ (denoting true and false,
respectively), and the standard logical connectives ∧, ∨, →, and ¬ (denoting
conjunction, disjunction, implication, and negation, respectively). A literal is an
atom x ∈ X or its negation ¬x. A clause C is a set of literals interpreted as a
disjunction. A cube is the negation of a clause.

First-Order Logic. The logical connectives from propositional logic carry over
into first-order logic. First-order terms are constructed as usual over a set of
variables V , functions, and constant symbols. An atom in first-order logic is a
predicate symbol applied to a tuple of terms.

Semantics and Satisfiability. A model of a formula consists of a non-empty do-
main and an interpretation that assigns a denotation to the predicate, function,
and constant symbols. A formula is satisfiable if there is some model under which
it is true, and unsatisfiable otherwise. A formula F implies another formula G,
denoted F ⇒ G, if every model of F is a model of G. Given a conjunction, an
unsatisfiable core is a subset of the conjuncts that is unsatisfiable.

Theories. A first-order theory is defined by a signature, which is a fixed set of
function and predicate symbols, and a set of axioms restricting the models under
consideration to those that satisfy the axioms. Symbols that do not occur in the
axioms are called uninterpreted and interpreted otherwise. Quantifier free linear
arithmetic (QFLIA/QFLRA) is the theory for the first order language over the
functions +, −, the predicates < and =, and the constants 0, 1, . . . interpreted
over either the integers Z or the rational numbers Q.
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Transition Systems. Let X be a fixed set of uninterpreted symbols representing
the state variables or registers (in either propositional or first-order logic). A
state s is an interpretation mapping X to elements of the domain. The symbolic
representation of the state s is a cube that is true under s but false in all
other states. Depending on the context, s may denote a state or its symbolic
counterpart. A formula represents the set of states in which it evaluates to true.
I(X) and P (X) are used to represent the initial and the safe states of a transition
system, respectively. Given X , let X ′ be a corresponding set of primed symbols,
and let A′ be the formula obtained by replacing the symbols X in a formula
A with the corresponding symbols in X ′. Z is a set of symbols used to encode
primary inputs (which may be introduced to “determinize” a non-deterministic
choice). A transition relation T : (X ∪ Z) × X ′ associates states s to their
successor states t′ under an input assignment z.

A formula S (representing a set of states) satisfies consecution if S ∧ T ⇒ S′.
S satisfies consecution relative to a formula G if G ∧ S ∧ T ⇒ S′. A formula S
satisfies initiation if I ⇒ S, i.e., if the corresponding set of states contains all
initial states.

2.2 IC3 for Finite State Transition Systems

IC3 maintains a growing sequence of
frames F0(X), . . . , Fk(X) satisfying the
four invariants to the right. Each frame
Fi over-approximates the states reachable
from I in i or fewer steps (due to invari-
ants 1, 2, and 4).

I ⇔ F0 (1)

∀0 ≤ i < k . Fi ⇒ Fi+1 (2)

∀0 ≤ i ≤ k . Fi ⇒ P (3)

∀0 ≤ i < k . Fi ∧ T ⇒ F ′
i+1 (4)

IC3 aims at finding either a counterexample to safety or an inductive invariant
Fi such that Fi ⇔ Fi+1 for some level 0 ≤ i < k. Until this goal is reached, the
algorithm alternates between two phases:
– If no bad state is reachable from the frontier Fk (i.e., Fk ∧T ⇒ P ), then k is

increased, and the new frontier is initialized to P . Furthermore, consecution
is checked for each clause in each frame, and passing clauses are pushed
forward. Otherwise, IC3 adds a ¬P -predecessor s as proof obligation 〈s, k−1〉.

– IC3 processes a queue of proof obligations 〈s, i〉, attempting to prove that
the state s that is backwards reachable from ¬P is unreachable from Fi.
This attempt succeeds if IC3 finds a clause c ⊆ ¬s satisfying consecution
relative to Fi (i.e., Fi∧c∧T ⇒ c′), in which case the frames F1, . . . , Fi+1 are
strengthened by adding c.2 Otherwise, the failed consecution query reveals
a predecessor t of s. If i = 0 and t ∧ I is satisfiable, then t provides the
initial state of a counterexample. Otherwise, a new proof obligation 〈t, i− 1〉
is added.

For a more detailed introduction to IC3, the reader is referred to [10,11].
Proof obligations are the focus of the extension of IC3 to infinite state transition
systems, presented in the next section.

2 To initiate forward propagation and in anticipation that s will be rediscovered at a
higher level, 〈s, i+ 1〉 is added as a proof obligation unless i = k.
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3 CTIGAR

CTIGAR is the natural abstraction-refinement extension of IC3 to infinite state
systems. Not only does much of the algorithmic flow remain the same, but the
extra abstraction-refinement machinery follows IC3 in spirit: it performs one-
step incremental refinements in response to CTIs. This section presents CTIGAR
within the known framework of IC3, first expanding IC3 concepts as necessary,
then presenting CTIGAR’s handling of extended proof obligations, and finally
discussing when and how domain refinement is accomplished.

3.1 CTIGAR Extensions of IC3 Concepts

Concrete counterexample to induction (CTI). Central to IC3 is the evaluation
of many consecution queries. Each has the form Fi ∧ ¬s ∧ T ⇒ ¬s′ and tests
for the inductiveness of formula ¬s relative to frame Fi. When the query is not
valid, the counterexample reveals a predecessor, t, of s. CTI t explains why s is
not inductive relative to Fi: t can reach s, and it is not known to be unreach-
able within i steps. A CTI can be expressed in any theory as a conjunction of
equations between state variables and values. In CTIGAR, t is called a concrete
CTI to distinguish it from an abstract CTI, introduced next.

Abstract CTI. As in standard predicate abstraction, the abstraction domain is
a set of first-order atoms X over state variables V . An abstract CTI ŝ = α(s)
corresponding to a given concrete CTI s is an over-approximation of s that is
expressed as a Boolean combination of the predicates of the domain.

For a concrete state s that assigns values to every state variable in V , α(s)
is a cube obtained by evaluating the atoms X over s, and it is the most precise
abstraction. Expressing the most precise abstraction of a partial assignment re-
quires, in general, a disjunction of cubes (obtained by an AllSAT query [34]).
However, a “best effort” cube abstract CTI can be derived more simply by includ-
ing only first-order literals that are equivalent to � under the partial assignment.
The latter abstraction method is used in this work.3

For example, consider concrete CTI s : x = 1 ∧ y = −1 ∧ z = 0 and abstract
domain {x < y, x < z}. The corresponding abstract CTI is ŝ : ¬(x < y)∧¬(x <
z). If w were also a state variable, making s partial, and the domain were to
include the predicate y < w, then the abstract CTI would remain the same:
y < w is equivalent to neither � nor ⊥ under the partial assignment s.

Lifted CTI. A failed consecution query Fi∧¬t∧T ⇒ ¬t′ reveals a concrete CTI
s as well as an assignment z to the primary inputs. “Lifting” the full assignment
s to a partial one is an important generalization mechanism in state-of-the-art
IC3 implementations. In the original paper on IC3, static lifting was accom-
plished by considering the k-step cone of influence [10]; a dynamic approach

3 Both methods were implemented, and the “best effort” cube-based one was found
to be both simpler to implement and faster: experiments show that AllSAT-derived
(DNF) abstract CTIs fare no better than “best effort” (cube) abstract CTIs.
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Fig. 1. Single-step abstraction failures

based on ternary simulation was then proposed [24]; and a SAT-based approach
was described in [15]. The SAT-based approach extends to the theory setting in
a straightforward manner and is thus appropriate for CTIGAR.

The lifting query takes the form s∧ z∧T ∧¬t′, which asks whether an s-state
has a successor other than t under input assignment z. Since this is not the case
by construction, the query yields an unsatisfiable core that typically reveals a
significantly reduced partial assignment that can replace s.

Assuming that T is total, lifting the concrete CTI always succeeds. However, in
CTIGAR it is the abstract CTI rather than the concrete CTI that is important.
In the corresponding query ŝ ∧ z ∧ T ∧ ¬t′, the abstract state ŝ replaces s.
If this query is unsatisfiable, both ŝ and the lifted abstract state revealed by
the unsatisfiable core constitute an underapproximate preimage of the successor
CTI. The query, however, may be satisfiable, since ŝ over-approximates s and
may therefore include states that transition to ¬t-states under input assignment
z in addition to those—s at minimum—that transition to t-states. Failed lifting
may eventually result in a spurious CTI, as discussed in Section 3.2 below.

3.2 The CTIGAR Flow

IC3 with CTIGAR is, as in propositional IC3, centered around the handling of
proof obligations in lowest-frame-first order. Recall from Sections 2.2 and 3.1
that two types of queries are performed in relation to proof obligation 〈s, i〉:
➀ A lifting query u∧z∧T ⇒ t′ is performed to eliminate non-essential symbols

from the original predecessor cube u to obtain cube s.
➁ A consecution query Fi ∧¬s∧T ⇒ ¬s′ tests if ¬s is inductive relative to Fi.

– If it succeeds, the argument is generalized to produce a stronger clause
c ⊆ ¬s that is inductive relative to Fi.

– If it fails, the assignment to unprimed state variables provides a CTI v,
which is lifted to cube t ⊆ v and enqueued as proof obligation 〈t, i− 1〉.

Abstraction failures. The presence of abstract states complicates the situation
in the sense that the following abstraction failures may arise:
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➀ Lifting Abstraction Failure (LAF). The formula ŝ∧ z ∧ T ∧¬t̂′ is satisfiable,
i.e., ŝ contains at least one concrete state that has a successor outside of t̂
under the inputs z, as indicated in Figure 1(a).

➁ Consecution Abstraction Failure (CAF). The formula Fi ∧ ¬ŝ ∧ T ∧ ŝ′ is
satisfiable when Fi ∧ ¬s ∧ T ∧ s′ is not. In this setting, Fi contains at least
one concrete state t outside ŝ which has successor(s) in ŝ that are not s, as
illustrated in Figure 1(b). The transition from t to ŝ is spurious : ¬s is strong
enough to be relatively inductive, while ¬ŝ is not.

Proof Obligations. In CTIGAR, the components of a proof obligation reflect the
possibility of abstraction failures. A proof obligation 〈ŝ, [s, ] i, n〉 comprises:
– an abstract CTI ŝ (reduced from α(s) if abstract lifting succeeded);
– an optional concrete CTI s present if an LAF occurred;
– the frame index i, as in propositional IC3;
– the number n of spurious transitions encountered along the trace.
A trace is a sequence of proof obligations in which the last element is a CTI

to the property P ; and for each two consecutive elements, the CTI of the first
element stems from a failed consecution query of the second. In this context, ta
denotes a CTI derived from the unprimed state variables V of a failed abstract
consecution query Fi ∧ ¬ŝ ∧ T ∧ ŝ′, and tc a CTI derived from a failed concrete
consecution query Fi ∧ ¬s ∧ T ∧ s′.

The concrete CTI s is not included if abstract lifting succeeds because the
lifted abstract CTI ŝ describes only states that transition into the successor. In
other words, the lifted abstract cube ŝ is as good as s in a concrete counterex-
ample trace when abstract lifting succeeds.

Because of the possibility of abstraction failures when lifting (LAF) or testing
consecution (CAF), the operations of lifting to construct a new proof obligation
and of handling a proof obligation are tightly coupled:

➀ Lifting in CTIGAR. Let s be either the concrete CTI sa, derived via a failed
abstract consecution query, or sc, derived via a failed concrete consecution query.
The cube t (t̂, respectively), represents the successor of s, and z describes the
primary input assignment from the failed query. The new proof obligation is
constructed as follows:

1. Construct the abstract CTI ŝ = α(s);

2. Perform abstract lifting via the query

{
ŝ ∧ z ∧ T ⇒ t′ if s = sc
ŝ ∧ z ∧ T ⇒ t̂′ if s = sa

:

(a) if lifting succeeds, let ŝ� be the lifted abstract CTI and enqueue
new obligation 〈ŝ�, i − 1,m〉, where m = n + 1 if s is the result
of a CAF (see ➁) and therefore spurious, and m = n otherwise;

(b) if lifting fails, enqueue the new obligation 〈ŝ, s, i− 1,m〉, where
the presence of s indicates an LAF and the value of m is as
above.
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Table 1. Overview of Lifting and Consecution in CTIGAR

➀ Lifting ➁ Consecution

ŝ ∧ z ∧ T ⇒ t′ / ŝ ∧ z ∧ T ⇒ t̂′ Fi ∧ ¬ŝ ∧ T ⇒ ¬ŝ′
succeeds: fails (LAF): succeeds: fails for 〈ŝ, i, n〉:

Proof obligation Proof obligation generalize and Extract and consider CTI ta
〈ŝ�, i− 1, m〉, 〈ŝ, s, i− 1,m〉, add c ⊆ ¬ŝ fails for 〈ŝ, s, i, n〉:
where m = n+ 1 in case of CAF to F1,. . . , Fi+1 query Fi ∧ ¬s ∧ T ⇒ ¬s′
and m = n otherwise succeeds: fails:

Extract CTI tc CTI ta (CAF)

Case 2b indicates the occurrence of an LAF, which will be discussed in Sec-
tion 3.3. Analogously to propositional IC3, CTIGAR uses consecution queries
to discharge proof obligations.

➁ Consecution in CTIGAR. Let 〈ŝ, [s, ] i, n〉 be an extended proof obligation.
A failure of consecution when i = 0 indicates a counterexample trace. This
situation is addressed in Section 3.3. Consecution is checked as follows:

Abstract consecution is checked via the query Fi ∧ ¬ŝ ∧ T ⇒ ¬ŝ′;
1. if consecution succeeds, an SMT solver is used to generalize ŝ in

standard IC3 fashion ([28,12]), resulting in a clause c ⊆ ¬ŝ that is
inductive relative to Fi.

2. if consecution fails, the CTI ta is extracted;
(a) if concrete CTI s is present, then concrete consecution is checked

via the query Fi ∧ ¬s ∧ T ⇒ ¬s′;
i. if concrete consecution succeeds, then ta triggers a new proof

obligation (see ➀)—this situation constitutes a CAF;
ii. if concrete consecution fails, CTI tc is extracted, and tc trig-

gers a new proof obligation (see ➀).
(b) if s is absent, then ta is not spurious, and ta triggers a new proof

obligation (see ➀).

The CAF in step 2(a)i is addressed Section 3.3. Table 1 summarizes the sce-
narios that can arise in CTIGAR.

The following section addresses abstraction lifting (LAF) and consecution
(CAF) failures and counterexample traces.

3.3 Refinement

During lifting and the handling of proof obligations in Section 3.2, abstraction
failures of type LAF or CAF may occur. This section presents a range of refine-
ment strategies to address these failures. CTIGAR can react to LAFs and CAFs
eagerly (immediately when they occur), lazily, or on a spectrum in between. In
the latter two cases, refinement is postponed until a possible counterexample
trace is discovered (which cannot be ignored), or until the number of spurious
transitions exceeds a threshold.
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Refinement can take many forms depending on the abstract domain. In the
context of predicate abstraction, Craig interpolation [21,36] (popularized by [29])
is widely used to obtain refinement predicates. An interpolant for a pair of for-
mulas (A,B), where A⇒ B is valid, is a formula J whose uninterpreted symbols
occur in both A and B, such that A⇒ J and J ⇒ B. Interpolants always exist
in first-order logic, and efficient interpolating decision procedures are available
for a wide range of theories (e.g., [13,22]).

➀ Lifting refinement. Recall from Section 3.2 (Figure 1(a)) that an LAF arises
when the domain is too weak for abstract lifting. An LAF occurs when s∧z∧T ⇒
t′ holds, where t is the successor of s and z is the assignment to the inputs, while
ŝ∧z∧T ⇒ t′ fails. Refinement ensures that the lifting query will succeed for the
newly computed abstraction ŝ. When interpolation is possible, one can extract
from the valid query s ∧ z ∧ T ⇒ t′ an interpolant R:

s⇒ R and R⇒ (z ∧ T → t′) .

The conjuncts of the formula R are added as first-order atoms to the abstract
domain. Since s ⇒ R, the new precise abstraction of s is ŝ ∧ R, where ŝ is the
old abstraction of s. Furthermore, because R ⇒ (z ∧ T → t′), the new abstract
lifting query (ŝ∧R)∧ z ∧T ⇒ t′ is valid. Abstract lifting succeeds in the refined
domain, thus eliminating this particular LAF.

➁ Consecution refinement. Recall from Section 3.2 that a CAF introduces a
spurious transition (Figure 1(b)). In other words, the abstract domain is too
weak for ¬ŝ to be relatively inductive even though ¬s is. A CAF occurs when
Fi∧¬s∧T ⇒ ¬s′ holds but Fi∧¬ŝ∧T ⇒ ¬ŝ′ fails. Refinement ensures that the
abstract consecution query will succeed for the newly computed abstraction ŝ.
When interpolation is possible, one can extract from the valid query Fi∧¬s∧T ⇒
¬s′ an interpolant R:

Fi ∧ ¬s ∧ T ⇒ R′ and R′ ⇒ ¬s′ .

The formula ¬R is added to the abstract domain. Since R′ ⇒ ¬s′, s ⇒ ¬R, so
that the new cube abstraction of s is ŝ ∧ ¬R, where ŝ is the old abstraction of
s. Furthermore, because s⇒ ŝ ∧ ¬R,

Fi ∧ (¬ŝ ∨R) ∧ T ⇒ Fi ∧ ¬s ∧ T ⇒ R′

so that the new abstract consecution query

Fi ∧ (¬ŝ ∨R) ∧ T ⇒ (¬ŝ′ ∨R′)

is valid. Under the refined domain, abstract consecution thus succeeds, eliminat-
ing this particular CAF.
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Fig. 2. Lazy refinement of abstraction failures

Eager and Lazy Refinement. In the flow described in Section 3.2, CAFs merely
trigger an incrementation of the spurious transition count (STC). When a po-
tential new obligation’s STC reaches some threshold controlling the degree of
laziness, a consecution refinement is triggered. The STC indicates the number
of spurious transitions on the trace rooted at that obligation. In this setting, a
refinement can be triggered for four reasons:

– A counterexample trace is discovered, but the trace has at least one CAF
anywhere (Figure 2(b)), triggering a consecution refinement.4

– A CTI s is disjoint from the initial states I, its abstraction ŝ is not, and
abstract lifting fails (a LAF). This situation triggers a lifting refinement.

– An obligation’s STC reaches a threshold, triggering either a consecution
refinement or a lifting refinement.5

– The trace rooted at an obligation has reached a threshold number of LAFs
(Figure 2(a)), triggering a lifting refinement.6

Any (even multiple) CAF or LAF points can be analyzed during refinement.
Addressing any one blocks the current arrangement of the obligation queue.

4 Implementation and Experimental Evaluation

4.1 Implementation

The experimental evaluation in this section is performed using a prototype of
CTIGAR based on the IC3 reference implementation [8]. It uses linear integer
arithmetic as the background theory and a combination of MathSAT 5 [2] and
Z3 [22] as SMT solvers. The implementation includes a simple ANTLR 4 [39]
parser that does not perform any optimizations at all on the resulting control
flow graphs.

4 Otherwise, the trace is a witness to the failure of the property.
5 CAFs only occur for obligations for which LAFs occurred, so both are useful.
6 If lifting refinements are triggered eagerly, CAFs never occur.
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Abstract Domain. The abstract domain is initialized with the the atom I (encod-
ing the initial program location), and inequalities of the form x < y for all pairs
of program variables x, y; additionally, the initial domain is enriched according
to the equations discovered by a Karr analysis [32,38] of the whole program.

Refinement predicates of the form
∑

i bixi = c are replaced by
∑

i bixi ≤ c and∑
i bixi ≥ c, and conjunctions are split into their arguments. Interpolants used

for refinement are usually conjunctions in practice. Otherwise, the entire inter-
polant can be treated as a new predicate; additionally, atoms can be extracted
and added as predicates as well.

Refinement State Mining. Orthogonal to interpolation-based refinement, refine-
ment state mining (RSM) is a predicate discovery scheme deriving linear equali-
ties from CTIs. The concrete cubes encountered in lifting and consecution queries
are partitioned into sets Sl according to their program location l (represented by
dedicated program counter variable pc). If the size of an Sl exceeds a threshold,
a solver is deployed to discover a linear equality

∑
k bkxk = c (where all bk and

c are coefficients, and xk are program variables in Sl) covering as many states
in Sl as possible while minimizing the number of coefficients that are zero. If
the query succeeds, the covered states are removed from Sl and the resulting
predicate is added to the abstract domain.

Similar to the Daikon tool [25], the discovered predicates are not necessarily
invariants or guaranteed to eliminate spurious CTIs. Alternatively, invariant
finding algorithms such as the one described in [40] could be used.

4.2 Benchmarking

The prototype CTIGAR implementation was run on a collection of 110 lin-
ear integer arithmetic benchmarks from various sources: The InvGen bench-
mark suite as found in [27] , the Dagger benchmarks suite as found in [26],
and the benchmark suite as found in [1]. Duplicates were only run once. Some
benchmarks were omitted from this collection. The benchmarks crawl cbomb.c,
fragtest.c, linpack.c, SpamAssassin-loop*.c and p*-*.c contain point-
ers or other C constructs that the prototype does not handle. The bench-
marks half.c, heapsort*.c, and id trans.c contain truncating integer di-
visions, which the prototype does not handle. The benchmarks puzzle1.c,
sort instrumented.c, and test.c do not contain assert statements. The bench-
marks spin*.c rely on functions that provide mutex functionality, which the
prototype does not handle. All benchmarks are safe.

4.3 Evaluation Configurations

CTIGAR was run in multiple configurations. All configurations that use lazy
refinement permit at most three spurious transitions in a single trace to the
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Table 2. Runtime results for CTIGAR and CPAChecker. All times are in seconds.

Lifting refinement LLE LLL LCE LCL CPAChecker

Number of solved benchmarks 87 86 83 87 64
Cumulative time 7061.68 7547.85 8516.06 7745.06 1170.85

# Solved — unsolved by CPA 29 31 30 34
Cumulative time 1134.49 2702.17 5425.5 5113.44

# Solved — faster than CPA 16 16 18 20
Cumulative time (CTIGAR) 12.38 17.35 14.68 29.24
Cumulative time (CPA) 53.34 848.99 59.14 860.31

Consecution refinement CCE CCL CAE CAL CPAChecker

Number of solved benchmarks 86 91 91 92 64
Cumulative time 5414.57 8150.29 6154.33 5880.74 1170.85

# Solved — unsolved by CPA 31 36 34 36
Cumulative time 2010.26 5149.72 2033.03 2247.59

# Solved — faster than CPA 19 20 20 20
Cumulative time (CTIGAR) 18.03 34.34 18.92 21.06
Cumulative time (CPA) 62.05 863.98 65.34 863.98

error. We chose 3 based on a manual analysis: three spurious transitions seem
sufficient for lazy refinement while avoiding long irrelevant trace postfixes.

➀ Configurations using lifting refinement:
(a) LLE: Eager refinement, triggered by a LAF.
(b) LLL: Lazy refinement, triggered by a LAF.
(c) LCE: Eager refinement, triggered by a CAF.
(d) LCL: Lazy refinement, triggered by a CAF.

➁ Configurations using consecution refinement:
(a) CCE: Eager refinement. Refinement is triggered by every CAF, regard-

less of whether the abstract state is lifted or not.
(b) CCL: Lazy refinement. Refinement is triggered as above.
(c) CAE: Eager refinement. Refinement is triggered by a CAF only if the

abstract state is unlifted.
(d) CAL: Lazy refinement. Refinement is triggered as above.

These versions of the prototype implementation of CTIGAR were compared
against CPAChecker [6], the winner of the second software verification compe-
tition. The last column in Table 2 refers to the performance of CPAChecker in
its competition configuration:
config/sv-comp13--combinations-predicate.properties.

The measurements were performed on AMD Opteron(TM) 6272 CPUs at
2100 MHz. No memory threshold was set. The timeout set for the benchmarks
was 1200 seconds, wall time. However, if CTIGAR or CPAChecker did not run
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into the timeout, the run time is reported in the operating systems’s user mode
used for the benchmark, which is more accurate than the wall time.

4.4 Discussion of Runtime Results

All configurations solved substantially more benchmarks than CPAChecker.7

CPAChecker was typically faster on benchmarks that were solved by both the
prototype CTIGAR implementation and CPAChecker. However, there were 16-
20 benchmarks in each configuration that were solved faster by our prototype.

The consecution refinement strategies proved be be somewhat more success-
ful and faster than the lifting refinement strategies. In general, lazy refinement
strategies seem to be slightly more successful than eager refinement strategies.

Deploying the interpolation procedure presented in [1] increased the compu-
tational overhead of interpolation while not providing measurable improvement
of the abstract domain.

Figure 3 to the right presents a
comparison of the number of predi-
cates in the abstraction domain vs.
the runtime for all terminating in-
stances across all configurations in
a log-log-plot. It shows that perfor-
mance only degrades polynomially
with the number of predicates in the
domain rather than exponentially.

Figure 4(a) depicts the percent-
age of successful abstract lifting calls
across different configurations (both
in consecution and lifting refine-
ment). Abstract lifting succeeds in
around 60% to 80% of all cases, pro-
viding CTIs that are underapproxi-
mate preimages.
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Fig. 3. Number of abstraction domain
predicates vs. runtime for terminating in-
stances.

As evident from Figure 4(b), the best configurations (notably CAL) do not
immediately address lifting failures but instead lazily proceed with abstract
CTIs that do not underapproximate preimages. Strictly using underapproximate
preimages is, apparently, not essential. This observation contrasts with previous
approaches [16,31]. The experiments also show that a large portion of abstract
CTIs are not underapproximate preimages yet are successfully generalized and
eliminated, avoiding the cost of computing non-trivial underapproximate preim-
ages.

7 CPAChecker returned UNSAFE on MADWiFi-encode ie ok.c, but it assigns non-
integer values to some integer variables in its error path assignment. A manual
inspection of the benchmark reveals that it is in fact safe; nonetheless, the benchmark
is counted as solved by CPAChecker. In addition to the 64 solved benchmarks,
CPAChecker returned with the message Analysis incomplete: no errors found,

but not everything could be checked. on 16 benchmarks.
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Fig. 4

5 Related Work

Since the inception of the original IC3 [10,9] numerous attempts have been made
to lift the approach to richer logics and infinite domains.Welp and Kühlmann [42]
propose interval simulation as a means of generalizing proof obligations in the
domain of bit-vectors. Refinement is not required in this setting, as intervals
approximate values in the finite concrete domain conservatively. The same holds
for region abstraction applied in the context of timed systems [33].

A more general approach applicable to infinite state transition systems and
a wider set of theories is to replace the SAT engine underlying IC3 with an
SMT solver. In an attempt to avoid a diverging sequence of proof obligations
in the infinite concrete domain, Cimatti and Griggio [16] suggest a non-trivial
under-approximation of the pre-image (an effort countermanded by the subse-
quent generalization step). To avert the overhead of the pre-image computation,
the algorithm in [16] relies on the Lazy Abstraction with Interpolants (LAwI)
refinement scheme [37] as long as the resulting interpolants can be converted
into clausal form efficiently, effectively using IC3 as a fallback only.

An inherent drawback of the path-wise unwinding deployed in [16] is that
the generalized clauses are not relatively inductive. A recent follow-up publica-
tion [17] therefore uses a monolithic transition relation (previously dismissed as
inefficient in [16]), replacing the pre-image computation with (implicit) predicate
abstraction. Unlike in CTIGAR, refinement is triggered by an abstract coun-
terexample trace and based on an unwinding of the transition relation. Hoder
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and Bjørner [31] uses Horn clauses to represent recursive predicate transform-
ers. Proof obligations are generalized using a specialized interpolation procedure
for linear arithmetic. Effectively, this amounts to an eager refinement step po-
tentially introducing new literals that are linear combinations of the atoms in
the consecution query. Vizel et al. [41] implement lazy abstraction for finite state
systems by projecting the frames to a sequence of variable sets (of monotonically
increasing size), which are refined if a spurious counterexample trace is found.

The following discussion represents an attempt to put CTIGAR into a broader
context. Unlike CTIGAR, conventional predicate abstraction tools [4,20] con-
struct an explicit abstract transition relation. Most of these tools, however, use
Cartesian abstraction rather than computing the most precise abstraction [5]
and refine spurious abstract transitions using a focus operation [3]. SatAbs [20]
in particular prioritizes transition refinement (triggered by a spurious abstract
counterexample trace) over refining the abstract domain, resulting in a succession
of relatively simple single-step SAT queries. In contrast, CTIGAR, following IC3,
strengthens frames (rather than the abstract transition relation) using single-
step consecution queries triggered by single states, and only refines the domain
in case of abstraction failures. CTIGAR as well as [17] deploy implicit predicate
abstraction. Similarly, lazy abstraction [30,37] does not maintain an explicit ab-
stract transition relation, but uses traces and sequence interpolation to refine the
safely reachable states. The fact that CTIGAR derives interpolants from single
transition steps instead may have advantages beyond the resulting simplicity
of the SMT queries: Cabodi’s work suggests that—at least in the propositional
case—sequential interpolation is inferior to standard interpolation [14].

6 Conclusion

The impact of using abstract CTIs on lifting and consecution queries is in-
evitable: abstraction introduces spurious transitions. Focusing on that impact
within the IC3 algorithm, rather than outside of it, naturally leads to a
CTI-guided, rather than a counterexample trace-guided, abstraction-refinement
scheme—CTIGAR rather than CEGAR. The potential benefits of CTIGAR over
CEGAR are obvious: faster and more focused refinement triggers, explicit states
for state-mining-based predicate synthesis, and one-step interpolation queries
for interpolation-based refinement. More broadly, CTIGAR continues the trend
started by IC3 of focusing on individual states and single-step queries instead of
traces and multi-step queries (BMC and its derivatives).

The prototype implementation of CTIGAR performs competitively against a
state-of-the-art CEGAR-based tool in terms of number of solved benchmarks,
confirming its potential. Results vary but are robust across parameter settings:
lazy vs. eager, lifting- vs. consecution-based refinement. It is expected that fur-
ther experience with CTIGAR will reveal implementation techniques that close
the performance gap between our CTIGAR prototype implementation and well-
tuned checkers like CPAChecker.
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Based on Approximate Property-Directed
Reachability and Datapath Abstraction
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Abstract. This paper introduces the Averroes formal verification sys-
tem which exploits the power of two complementary approaches: counter-
example-guided abstraction and refinement (CEGAR) of the design’s
datapath and the recently-introduced IC3 and PDR approximate reach-
ability algorithms. Averroes is particularly suited to the class of hardware
designs consisting of wide datapaths and complex control logic, a class
that covers a wide spectrum of design styles that range from general-
purpose microprocessors to special-purpose embedded controllers and
accelerators. In most of these designs, the number of datapath state
variables is orders of magnitude larger than the number of control state
variables. Thus, for purposes of verifying the correctness of the control
logic (where most design errors typically reside), datapath abstraction is
particularly effective at pruning away most of a design’s state space leav-
ing a much reduced “control space” that can be efficiently explored by
the IC3 and PDR method. Preliminary experimental results on a suite
of industrial benchmarks show that Averroes significantly outperforms
verification at the bit level. To our knowledge, this is the first empir-
ical demonstration of the possibility of automatic scalable unbounded
sequential verification.

1 Introduction

This paper explores the possibility of scaling formal verification of complex hard-
ware systems beyond what is possible today by exploiting the power of two com-
plementary approaches: counterexample-guided datapath abstraction and refine-
ment and the recently-introduced IC3 [1] and PDR [2] approximate reachability
algorithms. Our prototype implementation of this verification framework, which
we call the Averroes system for sequential verification, is premised on the conjec-
ture that the complexity of sequential verification can be reduced significantly
by a) abstracting away irrelevant datapath “state” that basically clutters reach-
ability analysis without providing any useful guidance for its convergence, and
b) performing approximate reachability on this abstracted state space. The ap-
proach can be viewed as a “layering” of two CEGAR loops: an inner loop that
performs approximate reachability on the datapath-abstracted state space, and
an outer datapath refinement loop that tightens the abstraction based on the
spurious counterexamples generated by the inner loop. Initial empirical evalua-
tion of this approach shows that it significantly outperforms bit-level verification
on a set of industrial RTL benchmarks and suggests that the combination of
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datapath abstraction and approximate reachability makes it possible to perform
automatic unbounded scalable verification on real-world industrial benchmarks.

The rest of the paper is organized in 9 sections. Sections 2 and 3 briefly review
previous work and cover preliminaries. We then provide a high-level description
of the IC3/PDR approach in Section 4 followed by an example, in Section 5,
to motivate datapath abstraction. Sections 6 and 7 provide an overview and a
detailed description of the Averroes algorithm. Preliminary experimental evalua-
tion is covered in Section 8, and Section 9 ends the paper with some conclusions.

2 Previous Work

The recently introduced IC3 algorithm [1] and its re-implementation in PDR [2]
represent a major milestone in the decades’ long quest for scalable model check-
ing (MC). Both can be described as SAT-based induction methods and both
share some features of the earlier attempts at using induction [3,4]. In particu-
lar, assuming that a given safety property P holds but is not inductive (i.e., is
not closed under the transition relation), induction methods can be viewed as
ways of performing approximate reachability with the goal of finding an assertion
that strengthens (i.e., restricts) P so that it becomes an inductive invariant [5].
Alternatively, such methods can be seen as an application of counterexample-
guided abstraction refinement (CEGAR) [6,7,8] whereby overapproximations of
the reachable states are refined iteratively until enough unreachable states have
been eliminated to prove that P does in fact hold or to produce a counterexam-
ple trace. Eliminating the need to compute exact reachability makes it possible
for induction methods to converge in a number of iterations that can be much
smaller than the sequential depth of the transition relation. Additionally, induc-
tion methods can be applied without having to unroll the transition relation
which allows them to have better scalability than the earlier memory-intensive
BDD [9,10] or BMC [11,12] approaches.

Several extensions of the IC3/PDR approach have already been proposed. In
[13], the authors describe an extension to PDR that enables reasoning about
nonlinear predicate transformers and linear real arithmetic. In [14], IC3-style
reachability is generalized to handle transition systems described by first-order
formulas, combined with control flow graph (CFG) analysis, and used to verify
safety properties of software. The work that is closest to ours is [15] where
Kurshan’s visible variable abstraction [6] is layered on top of IC3 to significantly
scale performance, over just IC3, on a set of large industrial benchmarks.

The datapath/control dichotomy has been addressed by many authors. In [16],
properties are classified as control, data, and data/control, and various degrees
of data sensitivity are introduced and analyzed. A formal model of systems that
can be decomposed into an interconnection of datapath and controller modules
is described in [17] and used to automatically generate an abstraction by datap-
ath reduction. In [18], datapath abstraction is shown to yield significant savings
in both runtime and memory in a symbolic verification system. The Reveal veri-
fication system [19] performs automatic datapath abstraction from Verilog RTL
models and iteratively refines them in a standard CEGAR flow. It is important
to note that all of these approaches were limited to bounded verification that
involved unrolling a design’s transition relation a fixed number of times. To our
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knowledge, the approach described in this paper is the first to couple datapath
abstraction and refinement with unbounded model checking.

3 Preliminaries

Our concern in this paper is to determine if a sequential hardware design satisfies
a specified safety property. We assume that the design’s behavior is encoded by
a transition relation T (X,X+) where X and X+ denote n-bit vectors of current-
and next-state variables. In general, T is easily derivable from any suitable design
description, e.g., a netlist or a model in a hardware description language such
as Verilog. Furthermore, T may involve additional non-state variables including
primary inputs and signals that model combinational blocks in the design. These
extra variables are assumed to be part of the definition of T even when not ex-
plicitly listed. In the sequel, we will assume that T is available as a propositional
formula in conjunctive normal form (CNF). We also assume the existence of
two additional predicates (also available as CNF formulas) on the design’s state
variables: I(X) denoting the design’s initial (reset) state(s), and P (X) denoting
the set of states that satisfy the desired safety property. We will informally re-
fer to the states that satisfy (resp. violate) P (X) as good (resp. bad or error)
states. Finally, we denote by R(X) the design’s set of reachable states, i.e., those
states that can be reached from I(X) in one or more transitions. A trace Π is a
state sequence 〈s0 (X) , s1 (X) , · · · , sk−1 (X)〉 such that each si is a set of states,
s0(X) ∈ I(X), and si(X) ∧ T (X,X+)→ si+1(X

+) holds for 0 ≤ i ≤ k− 2. The
length of a trace with k states is k − 1. An empty trace is one whose state
sequence (as a set) is empty; its length is undefined.

The verification task can now be stated as follows: prove that all states in
R are good or derive a counterexample trace that starts in I and ends in ¬P .
The algorithms we consider in this paper solve this task by induction. Using
Bradley’s terminology [5], these algorithms consist of two main steps:

– Initiation: prove that the initial states are good: I → P .
– Consecution: derive a strengthening assertion A(X) such that A∧P ∧T →

A+ ∧ P+, where A+ and P+ are shorthand for A(X+) and P (X+).

What distinguishes these algorithms from earlier induction approaches is that
the strengthening assertion A is derived incrementally rather than monolithically
[1,2]. Furthermore, in contrast to methods that perform exact image computa-
tions (symbolically using BDDs or through SAT-based unrolling of the transition
relation), these algorithms create and repeatedly tighten a sequence of approxi-
mate reachability frontiers without having to unroll the transition relation. Thus,
they do not suffer from the memory explosion inherent in earlier approaches and
are demonstrably more scalable. The first such algorithm in this category was
Bradley’s IC3 [1] which was subsequently re-implemented and enhanced by Een
et al. [2] who dubbed it PDR. In the rest of this paper we will refer to this class
of algorithms as IC3/PDR to emphasize their incremental inductive nature (the
first two Is in IC3) and their property-directed slant (the PDR viewpoint).
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1. trace Reach-CEGAR(T,I,P){
2. F0 = I;
3. if (F0 & !P)
4. then return CE trace;// len(CEX)=0
5. if (F0 & T & !P+)
6. then return CE trace;// len(CEX)=1
7. k = 1;
8. Fk = P; 
9. while (true){
10. Fk+1 = P;
11. while (Fk & T & !P+)// CTI
12. if Reachable(CTI,I)
13. then return CEX trace;// len(CEX) k+1
14. else Refine(1,k+1);
15. if (Fi = Fi-1 for some 2 i k+1)
16. then return empty trace;// P holds
17. k++;
18. }
19. }

Fig. 1. High-Level Pseudo Code for CEGAR-Based Reachability

4 Reachability Approximation and Refinement

For our purposes we find it useful to view the IC3/PDR approach as a clever
application of CEGAR whereby a series of reachability overapproximations are
systematically refined based on counterexamples to induction (CTIs) [5] until
either a) a feasible state sequence from the initial state to an error state (a
counterexample trace) is found or b) the refinements become sufficient to render
the property being checked inductive, i.e., an overapproximation of the reachable
states that satisfies the property is found. A sketch of this approach, loosely mim-
icking IC3, is given in Fig. 1. The procedure, which we call Reach-CEGAR,
takes as input T , I, and P , and returns a trace. An empty trace indicates that
P holds; otherwise the returned trace represents a counterexample CEX demon-
strating how P is violated.

Reach-CEGAR maintains an array of frontiers F0, F1, · · · , Fk, · · · such that
F0 = I and Fj , j > 0 is an overapproximation of what is reachable after j
steps from I. After checking for 0- and 1-step counterexamples (lines 2 to 6),
Reach-CEGAR enters its main loop (lines 9 to 18). At iteration k > 0, the
goal is to check for the existence of CTIs that correspond to counterexample
traces whose length is at least k + 1. Each satisfying assignment to the current-
state variables in the query on line 11 is a CTI that is checked to determine
if it is reachable from I (line 12). If unreachable, the CTI is used to tighten
the approximations of frontiers 1 to k + 1 (line 14) by constraining them with
appropriate refinement clauses. This process continues until either a reachable
CTI is found (line 13) or all CTIs from the current frontier have been ruled out
as unreachable. At that point Reach-CEGAR checks for convergence (line 15)
which is indicated when two frontier approximations become equal. If converged,
Reach-CEGAR returns an empty trace signaling that P is satisfied (line 16).
Otherwise, it increments the iteration counter (line 17) and proceeds to check
for the existence of CTIs that correspond to longer counterexample traces.
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This sketch hides many details that are critical to the performance of the
algorithm. Specifically, in IC3/PDR Reachable and Refine are not separate
procedures. Instead, the reachability check implied byReachable is decomposed
into a collection of 1-step backward reachability checks that are queued and
processed in some order. Each such check may spawn further checks and/or yield
one or more refinements that are propagated backward and forward to tighten
the frontier approximations. The checks and attendant refinements, which are
performed through appropriate calls to an incremental SAT solver, are closely
choreographed to improve the quality of the derived refinement clauses and speed
up convergence. Different implementations will thus yield different refinements
that can lead to drastically different performance.

There is, however, a critical detail in the implementation of Reach-CEGAR
that deserves mention. Let ρj denote the CNF formula corresponding to the
refinement clauses associated with frame j. With a slight abuse of notation, we
will also view ρj as a set of clauses. At the beginning of each major iteration
k, Reach-CEGAR insures that the sets of refinement clauses are distinct and
subsumption-free, i.e., ω � υ where ω ∈ ρj and υ ∈ ρi for i � j. The frontier
overapproximations can now be expressed as:

Fj = P ∧
k+1
∧
i=j

ρi, j ∈ [1, k + 1]

which in turn implies that F1 → F2 → · · · → Fk+1, and reduces the convergence
check on line 15 to checking that the set of refinement clauses at some frame j
has become empty (ρj = 1). At that point, the refinement clauses at the last
frontier serve as an inductive strengthening assertion [5] that helps prove the
property: ρk+1 ∧ P ∧ T → ρ+k+1 ∧ P+

5 Motivating Example

Fig. 2 gives the Verilog description and corresponding state transition graph
(STG) of an example sequential circuit that will serve to demonstrate the poten-
tial benefits of combining datapath abstraction with approximate reachability.
The circuit clearly satisfies the specified property P (X,Y ) = (Y ≤ X) since, as
can be seen from the STG, the reachable states satisfy R(X,Y ) = (Y = X).

When IC3 is run on this example it proves the property after eliminating two
CTIs and generating three refinement clauses. At exit the refinement clauses and
corresponding frontier approximations are:

ρ1 = ¬x1 F1 = P ∧ ρ1 ∧ ρ2 ∧ ρ3
ρ2 = 1 F2 = P ∧ ρ2 ∧ ρ3
ρ3 = (¬x0 ∨ y0) ∧ (¬x1 ∨ y1) F3 = P ∧ ρ3

Note that the clause set for frontier 2 is empty (ρ2 = 1) implying that F3 = F2.
In contrast, PDR proves the property by eliminating 6 CTIs and learning 7

refinement clauses. The difference between the two programs is due to their par-
ticular choices for the initial frontier approximations (PDR sets Fk = 1 instead
of Fk = P ) and the manner in which they perform backward reachability and
refinement. The difference becomes more pronounced when the bit width of the
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`define W 2
`define MAX `W'b11
module example(CLK);
input wire CLK;
reg [`W-1:0] X, Y;
initial begin
X = `W'd0;
Y = `W'd0;

end
always @(posedge CLK) begin
X <= (Y>X)? X :

((Y==X) || (X!=`MAX))? (X+`W'd1) : Y;
Y <= (Y==X)? (Y+`W'd1) :

((Y>X) || (X!=`MAX))? Y : X;
end
wire P = (Y<=X);

endmodule

0,0

1,12,2

3,3

0,3

3,0

2,0

1,0

1,3

3,1

2,1

1,2 0,2 0,1

2,3

3,2

R(X, Y)

P(X, Y)

¬P(X, Y)

Fig. 2. Verilog description and corresponding STG of an example sequential circuit
with a specified safety property. The state variables are 2-bit unsigned integers X =
x1x0 and Y = y1y0 and their values are used to label the states (X followed by Y )
in the STG. The good states are represented by circles (reachable states) and squares
(unreachable states); squares with rounded corners correspond to bad states. Note that
the circuit’s sequential depth is exponential in the bit width W : 2W = 22 = 4.

state variables in the example is increased from 2 to 64. The results are shown in
Table 1. For each bit width, the table compares five measures of performance for
IC3 and PDR: runtime, number of frames, number of CTI checks, total and net
number of refinement clauses, and total and net number of refinement literals.
The number of net refinement clauses and literals reflects the effect of clause
subsumption. With a time-out of 1500 seconds, both programs completed the
verification up to a bit width of 8; neither program finished for larger bit widths.
In most cases PDR outperformed IC3, carrying out many more CTI checks while
learning fewer refinement clauses (after subsumption). However, for both pro-
grams the number of accumulated refinement clauses grows rapidly as the bit

Table 1. IC3 v. PDR on Example Circuit of Figure 2 for Different Bit Widths

Bit
Width

Sequential
Depth

Runtime, sec Frames CTI Checks
Refinement Clauses Refinement Literals

Total Net Total Net

IC3 PDR IC3 PDR IC3 PDR IC3 PDR IC3 PDR IC3 PDR IC3 PDR

2 4.00E+00 0.02 0.02 2 4 2 6 3 12 3 7 5 22 5 12
4 1.60E+01 0.07 0.05 15 15 16 71 84 114 34 32 258 328 87 69
8 2.56E+02 59.59 3.82 232 141 293 4782 31527 6503 740 195 178736 38364 3267 679
16 6.55E+04 T.O. T.O. 311 1074 402 299511 179776 327581 1241 9576 2273502 4252418 13779 113497
32 4.29E+09 T.O. T.O. 207 1080 200 313973 28018 327958 325 11431 724242 3932210 6786 126096
64 1.84E+19 T.O. T.O. 200 923 241 244916 11470 259737 356 8922 636123 2857933 13744 97484
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1. trace DP-CEGAR(T,I,P){
2. = DP-Abstract(T,I,P);
3. = 1; // Initialize datapath lemmas
4. while (true){
5. ACEX = Reach-CEGAR         ;
6. if empty(ACEX)
7. then return empty trace;// P holds
8. CEX = DP-Concretize(ACEX);
9. if Feasible(CEX)
10. then return CEX trace;// P fails
11. else   =   && DP-Refine ;
12. }
13. }

ˆ ˆ ˆ(T,I,P)

ˆ ˆ ˆ(T,I,P, )

(ACEX)

Fig. 3. High-Level Pseudo Code for CEGAR-Based Datapath Abstraction

width increases. The large gap between the total and net number of refinement
clauses also indicates that both programs learn weak clauses that end up being
subsumed by stronger ones in later iterations. This suggests that the refinement
process gets mired in irrelevant bit-level details that miss the big picture about
the property being checked.

6 Datapath Abstraction and Refinement

Our proposed procedure for integrating an IC3/PDR-style reachability compu-
tation within a datapath abstraction and refinement framework is summarized
in Fig. 3. The initial datapath abstraction is performed by DP-Abstract which
returns first-order logic (FOL) versions of the bit-level transition, initial, and
property formulas (line 2) by, basically, replacing wide datapath signals with
uninterpreted terms, and datapath operators and predicates with, respectively,
uninterpreted functions and predicates. Single-bit control signals are not ab-
stracted [19]. The abstract formulas are overapproximations of the bit-level ver-
sions and, thus, represent a sound abstraction. The procedure then initializes Δ
(line 3) which serves as a database of derived datapath refinement lemmas. The
reachability computation is carried out by calling a modified version of Reach-
CEGAR (line 5) that operates on the abstract formulas. Note, in particular,
that this version of Reach-CEGAR takes as a fourth argument a formula rep-
resenting the learned datapath lemmas which it augments to all the queries
it performs. If Reach-CEGAR returns an empty trace, DP-CEGAR termi-
nates with the conclusion that the property holds (line 7). However, if Reach-
CEGAR returns a non-empty abstract trace ACEX, a concrete bit-level version
is constructed by DP-Concretize (line 8) and checked for feasibility (line 9).
If found to be feasible, CEX is returned as a witness for the violation of the
property (line 10). Otherwise, a datapath refinement procedure, similar to that
in [20], is called to refute this spurious CEX by generating one or more data-
path lemmas (line 11), and another round of abstract reachability is invoked.
The hypothesis behind this architecture is that the approximate CEGAR-based
reachability computation is now performed on an abstracted version of the
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design that eliminates irrelevant bit-level details and, thus, is more scalable.
More specifically, the abstract CEGAR-based reachability procedure is now op-
erating on approximate reachability frontiers in an abstract approximate state
space. The combination of these two orthogonal approximations can lead to
drastic pruning by generating two types of refinement lemmas: reachability re-
finement lemmas, and datapath refinement lemmas. The latter are “universal”
in that they are invariants that tighten the datapath abstraction by relating the
uninterpreted terms, functions, and predicates. The former are derived during
the approximate reachability computation, except they are now in terms of the
abstract state variables. They are, thus, expected to be much stronger than the
bit-level refinement clauses derived by IC3 and PDR.

To illustrate the potential of this approach, consider its application to the
example sequential design from Section 5. Datapath abstraction creates the fol-
lowing uninterpreted variables, constants, predicates, and functions from the
corresponding bit-level equivalents1:

ˆ ˆ,

ZERO

MAX
ˆ ˆGT( , )
ˆINC( )
ˆINC( )

X Y

Y X

X

Y

reg [`W-1:0] X, Y;

`W'd0
`W'd11...1

Y > X

X + `W’d1

Y + `W’d1

DP-Abstract

DP-Concretize

When Reach-CEGAR is applied to the abstract transition relation it returns
the 0-step counterexample

ACEX = (X̂ = ZERO) ∧ (Ŷ = ZERO) ∧ (GT(Ŷ , X̂))

since it does not know the semantics of the abstract constant ZERO and the
abstract predicate GT. However, upon concretization and bit-level feasibility
checking, DP-CEGAR concludes that this counterexample is spurious and de-
rives the following datapath lemma

δ1 = ¬GT(ZERO, X̂)

to rule it out. The second call to Reach-CEGAR returns a 1-step abstract
counterexample which is also found to be infeasible and is refuted by the data-
path lemma

δ2 = ¬[(Ŷ = X̂) ∧ (X̂+ = INC(X̂))∧
(Ŷ + = INC(Ŷ )) ∧ (GT(Ŷ +, X̂+))]

This lemma is a constraint that relates the uninterpreted GT predicate and the
uninterpreted INC function: in words, it states that applying INC to equal values

1 Note that this abstraction is reversible; we just need to maintain the correspondence
between the abstract entities and their bit-level counterparts.
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cannot yield results in which one is greater than the other. The third, and final
call, to Reach-CEGAR returns an empty trace after eliminating two CTIs and
generating two abstract single-literal refinement clauses: ¬GT(X̂, Ŷ ) and (Ŷ =

X̂). Thus, after eliminating 0- and 1-step counterexamples with two datapath
lemmas, DP-CEGAR is able to prove the property in just one reachability
iteration regardless of the bit width of the state variables.

7 The Averroes Algorithm

In this section we describe the Averroes program, a prototype implementation
of DP-CEGAR. Averroes2 is written in C++ and accepts design descriptions
in a variety of formats including RTL Verilog. It calls DP-Abstract to create an
initial abstraction of T , I, and P , similar to that described in [19], and passes it
on to Reach-CEGAR, an IC3/PDR approximate reachability procedure to be
described shortly. Abstract counterexample traces returned byReach-CEGAR
are bit blasted and checked for feasibility one transition at a time. Each infeasible
transition in a counterexample triggers the generation of one or more datapath
refinement lemmas using a simplified version of the minimal unsatisfiable subset
(MUS) extractor in [20]. Feasibility checking is done using the bit vector (BV)
theory in the Yices (version 1.0.35) SMT solver [21].

Fig. 4 highlights the major steps of the approximate reachability computation
in Reach-CEGAR (lines 9–18 in Fig. 1). The formulas processed by Reach-
CEGAR are all in the first-order logic of equality with uninterpreted functions
(EUF) and all reasoning is done using the Yices SMT solver. Satisfying solutions
returned from the SMT solver are converted to a conjunction of literals which
take several forms:

– positive or negated bit-level variables
– positive or negated uninterpreted predicates
– equalities or disequalities between uninterpreted constants, terms, and func-

tions

The procedure utilizes a queue Q of proof obligations each of which is a pair
(c(X), k) where c(X) is a conjunction of literals (a cube) and k is a frame number.
The following numbered list corresponds to the numbered boxes in Fig. 4:

1. At the start of major iteration k, frame k is overapproximated to P (Fk = P ).
The iteration then repeatedly checks for CTIs using the function 1-step which
calls the SMT solver with the query: Fk ∧ T ∧Δ ∧ ¬P+

2. A satisfying solution s(X) ∈ Fk(X) to this query indicates a CTI that must
now be checked for reachability from I(X). Before proceeding with that
check, however, the solution is “expanded” to remove irrelevant literals using
a) cone of influence (COI) reduction, and b) finding MUSes, if any exist, of

the formula3 s ∧ P ∧ T ∧Δ ∧ P+[22]. The enlarged cube
�
s is now added to

2 The Averroes tool and some hand-crafted examples are available at
http://web.eecs.umich.edu/~suholee/AVERROES.html

3 PDR does this at the bit level using 3-valued simulation. In our case, this formula
may be satisfiable and not yield an expansion of the cube!

http://web.eecs.umich.edu/~suholee/AVERROES.html
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Fig. 4. Implementation of Reach-CEGAR in the Averroes Verifier.Reach-CEGAR
performs approximate reachability computation on an EUF abstraction of the bit-level
transition relation.

the Q as a proof obligation in frame k, meaning “can
�
s be eliminated from

Fk by showing that it is unreachable from I along paths whose length is at
least k?”

3. An empty queue signifies that the current CTI has been successfully elimi-
nated and the algorithm proceeds to check for the existence of another CTI
from the current frame.

4. The reachability computation starts here by retrieving a proof obligation
(t, j) from the queue.

5. The 1-step function checks the formula Fj−1 ∧T ∧Δ∧ t+ ∧P+ to determine
if t can be reached in one step from frame j − 1.

6. If t is not reachable from frame j − 1, it is enlarged to
�

t by extracting one

or more MUSes from the UNSAT formula in step 5. The negation of
�

t is
now added as a refinement clause to frame j (which means that all frames
1 ≤ i ≤ j are tightened as a result of the unreachability of t in frame j).

7. The processing of cube t terminates if we reach the last frontier k.
8. Otherwise, t is added as a proof obligation in frame j + 1. This step is

optional but, as pointed out in [2], it helps to improve performance and to
find counterexample traces that are longer than k + 1.

9. If the current proof obligation is (t, 1) and t is found to be reachable from
frame 0, then we have found an abstract counterexample trace ACEX and
the procedure terminates.

10. If t in frame j is found to be reachable (in one step) from frame j − 1, the
satisfying solution r to the query in step 5 is enlarged similarly to how s was
enlarged in step 2. Specifically, irrelevant literals are removed from r by COI
reduction and MUS extraction, if any exist, from r ∧P ∧ T ∧Δ∧¬t+ ∧P+.

Processing continues by re-inserting (t, j) into the queue and adding (
�
r , j−1)

as a new proof obligation.
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Table 2. Statistics of the Large Industrial Benchmarks

Benchmark Regs FFs
State
Bits

%Regs
%Reg
Bits

AIG
Size

mult hold 1 6 2 258 75 99 24452
mult hold 2 6 2 514 75 100 98052
mult hold 3 6 2 1026 75 100 392708
mult hold 4 6 10 266 38 96 24638
mult viol 1 7 2 268 78 99 25008
mult viol 2 7 2 524 78 100 99119
mult viol 3 7 2 1036 78 100 394797
mult viol 4 7 10 279 41 96 25193
mult viol 5 7 10 279 41 96 25193
mult viol 6 7 10 279 41 96 25190
mult viol 7 7 10 279 41 96 25190

fifo hold 2 28 10 474 74 98 6848
fifo hold 3 44 10 866 81 99 17968
fifo hold 4 76 10 1642 88 99 53904

M0+ hold 56 26 1306 68 98 41630

11. When all CTIs from the current frontier k have been eliminated, refinement
clauses from earlier iterations are checked to see if they can be moved forward
to tighten later frontiers. A refinement clause ω ∈ Fj , 1 ≤ j ≤ k that causes
the query Fj ∧ T ∧ Δ ∧ ¬ω+ ∧ P+ to be UNSAT indicates that cube ¬ω
in frame j + 1 is unreachable in one step from frame j and can thus be
eliminated from frame j + 1. This is accomplished by propagating clause ω
forward: Fj+1 = Fj+1 ∧ ω.

12. The procedure terminates proving that P holds if two successive frames
become equal, i.e., if Fj = Fj+1 for some 1 � j � k. This check is equivalent
to finding the clause set associated with frame j has become empty.

13. Otherwise, a new frame is created and initialized to P and the procedure
continues to check for CTIs corresponding to longer counterexample traces.

8 Experimental Evaluation

Anecdotally, abstracting a design’s datapath is commonly believed to yield scal-
able verification of its control logic. However, unlike verification at the bit-level
which enjoys a large corpus of benchmarks and published results, there is little
documentation in the open literature of the effectiveness of datapath abstrac-
tion on a diverse set of word-level benchmarks. The dearth of publicly-available
RTL benchmarks that preserve the word-level semantics of a design was one
of the main challenges we faced when evaluating the effectiveness of Averroes.
Realizing that reporting on hand-crafted synthetic benchmarks would not be
convincing, we opted instead to evaluate performance on a set of 139 indus-
trial Verilog benchmarks that we obtained under non-disclosure agreements.4

4 Companies understandably want to protect the IP of their, or their customers’, RTL
designs. However, to spur further research in this space, it is important to find a way
to make such RTL designs publicly available without compromising their owners’ IP
rights.
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Fig. 5. Verification Results of the Generic Industrial Benchmarks

Of these, 124 were medium-sized “generic” benchmarks that were used for ini-
tial calibration. Their code sizes ranged between 298 and 805 lines; in terms of
flip-flops, the smallest had 514 and the largest had 931. The remaining 15 bench-
marks included 11 large multipliers, 3 FIFO designs, and the ARM Cortex-M0+
core [23]. The code sizes for these ranged from 116 to 10,226 lines. Table 2
lists additional statistics including the number of multi-bit registers (Regs), the
number of single-bit flip-flops (FFs), the total number of state bits (FFs + the
number of bits in the registers), the percentage of registers and register bits in
the benchmark, and the number of AND nodes in the AIG representation [24]
of its synthesized bit-level netlist. The multiplier benchmarks involved checking
the sequential equivalence before and after clock gating optimizations; in four of
these the property holds, and in the remaining seven it fails. The FIFO bench-
marks check a “read-after-write” property for different FIFO depths. Finally,
the M0+ experiment involved checking self-equivalence under partial initializa-
tion (i.e., when only a subset of the state bits are initialized on reset); this is
sometimes referred to as self-equivalence with don’t-cares or SEQX. In all cases,
the verification involved an unbounded check to determine if the given safety
property holds, on all, or is violated, by some, reachable states.

We compared the performance of Averroes to that of IC3 and PDR with and
without pre-processing. In their default modes, IC3 and PDR simplify the input
design before they start the approximate reachability loop: IC3 applies AIG
sweeping [25]; PDR invokes the ABC dprove command [26]. Such pre-processing
can greatly reduce the size of the input circuit which helps with the subsequent
reachability computation. All experiments were run on a 3.2GHz Xeon desktop
computer with a 16 GB memory. A time-out of 10,000 seconds was used for
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Table 3. Verification Results of the Large Industrial Benchmarks

Benchmark
Runtime, sec Frames CTI Checks Refinement Clauses Solver Calls

IC3 PDR AVR IC3 PDR AVR IC3 PDR AVR IC3 PDR AVR IC3 PDR AVR

mult hold 1 T.O. T.O. 0.02 1 3 1 41595 3 4 256 131720 3 776723 6331714 22
mult hold 2 T.O. T.O. 0.02 1 3 1 9559 3 4 512 13008 3 159978 1032718 22
mult hold 3 ERR T.O. 0.02 N/A 3 1 N/A 3 4 N/A 5986 3 N/A 546718 22
mult hold 4 ERR T.O. 0.04 N/A 2 2 N/A 2 8 N/A 1 8 N/A 10 56
mult viol 1 ERR 116.15 0.05 N/A 2 1 N/A 2 5 N/A 3 3 N/A 21 15
mult viol 2 ERR 256.32 0.18 N/A 2 1 N/A 2 5 N/A 2 3 N/A 16 15
mult viol 3 ERR 1483.92 0.75 N/A 2 1 N/A 2 5 N/A 2 3 N/A 16 15
mult viol 4 ERR T.O. 0.54 N/A 2 7 N/A 2 30 N/A 262365 29 N/A 8177493 335
mult viol 5 ERR T.O. 11.88 N/A 2 22 N/A 2 47 N/A 252987 69 N/A 7961852 3040
mult viol 6 ERR T.O. 299.23 N/A 2 115 N/A 2 120 N/A 247035 275 N/A 8102702 55251
mult viol 7 ERR T.O. 1884.52 N/A 2 451 N/A 2 536 N/A 239809 754 N/A 7826919 425892

fifo hold 2 13.79 14.87 1.35 9 12 8 1599 12 115 1691 4030 115 30060 94230 1574
fifo hold 3 249.94 201.58 12.88 16 20 16 6455 20 355 6759 17772 317 306131 612147 9711
fifo hold 4 5322.7 746.94 264.85 33 31 28 29898 36984 1804 25700 24609 1403 2602365 1611008 103590

M0+ hold ERR T.O. 917.76 N/A 8 17 N/A 5315 1154 N/A 3783 911 N/A 75898 45755

a. IC3 and PDR were run with pre-processing.

mult hold 1 ERR T.O. 0.02 N/A 2 1 N/A 134 4 N/A 217 3 N/A 1307 22
mult hold 2 ERR T.O. 0.02 N/A 2 1 N/A 257 4 N/A 512 3 N/A 3147 22
mult hold 3 ERR T.O. 0.02 N/A 2 1 N/A 521 4 N/A 612 3 N/A 2915 22
mult hold 4 ERR T.O. 0.04 N/A 2 2 N/A 189 8 N/A 250 8 N/A 1611 56
mult viol 1 ERR 0.62 0.05 N/A 2 1 N/A 256 5 N/A 383 3 N/A 1439 15
mult viol 2 ERR 10.86 0.18 N/A 2 1 N/A 386 5 N/A 532 3 N/A 2129 15
mult viol 3 ERR 219.93 0.75 N/A 2 1 N/A 537 5 N/A 798 3 N/A 3396 15
mult viol 4 ERR T.O. 0.54 N/A 2 7 N/A 181 30 N/A 284 29 N/A 1821 335
mult viol 5 ERR T.O. 11.88 N/A 2 22 N/A 191 47 N/A 252 69 N/A 1596 3040
mult viol 6 ERR T.O. 299.23 N/A 2 115 N/A 177 120 N/A 273 275 N/A 1751 55251
mult viol 7 ERR T.O. 1884.52 N/A 2 451 N/A 179 536 N/A 260 754 N/A 1660 425892

fifo hold 2 19.67 21.12 1.35 9 16 8 1944 7191 115 2090 5544 115 38000 192592 1574
fifo hold 3 259.1 1252.89 12.88 17 29 16 6468 28402 355 8000 39937 317 273378 2525164 9711
fifo hold 4 4715.67 10454.09 264.85 32 32 28 29359 98122 1804 42802 153114 1403 2453754 7618089 103590

M0+ hold ERR T.O. 917.76 N/A 8 17 N/A 5532 1154 N/A 4363 911 N/A 77808 45755

b. IC3 and PDR were run without pre-processing.

each verification run. Each of the 124 generic benchmarks was provided with a
single specified safety property and were meant to calibrate the performance of
Averroes against that of IC3 and PDR. Fig. 5 compares the runtime of Averroes
against that of IC3 and PDR as a function of the number of flip-flops in these
benchmarks. In almost all cases, Averroes is the fastest verifier and, unlike IC3
and PDR, its performance is largely independent of the number of flip-flops. This
validates the hoped-for benefit of datapath abstraction. Oddly, the performance
of IC3 and PDR with pre-processing was worse than without! This seems to
be due to the fact that there was not much structural reduction due to pre-
processing causing pre-processing overhead to outweigh its benefit.

Table 3 shows the results of our experiments on the 15 large benchmarks;
time-outs are indicated as T.O., and ERR indicates that IC3 reported an error
and was unable to process the benchmark5. As with the generic benchmarks,
Averroes was the fastest verifier across this entire set of 15 benchmarks. IC3
and PDR had particular difficulty with the multiplier benchmarks. IC3 either

5 We traced this error to an incorrect time-out exit that occurred before the specified
time-out value!
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Table 4. Runtimes (in Seconds) of FIFO on Various Depths

depth State Bits IC3 PDR AVR AVR MA AVR MAA

22 474 13.79 14.87 1.35 1.8 8.28
23 866 249.94 201.58 12.88 10.92 20.57
24 1642 5322.7 746.94 264.85 120.51 21.93
25 3186 T.O. T.O. T.O. 2538.49 23.31
26 6266 T.O. T.O. T.O. T.O. 19.17
27 12418 T.O. T.O. T.O. T.O. 24.02
28 24714 T.O. T.O. T.O. T.O. 20.58
29 49298 T.O. T.O. T.O. T.O. 21.15
210 98458 T.O. T.O. T.O. T.O. 27.9
211 196770 T.O. T.O. T.O. T.O. 29.02
212 393386 T.O. T.O. T.O. T.O. 23.57
213 786610 T.O. T.O. T.O. T.O. 33.79
214 1573050 T.O. T.O. T.O. T.O. 46.85
215 3145922 T.O. T.O. T.O. T.O. 57.04
216 6291658 T.O. T.O. T.O. T.O. 79.19

timed out or had an error exit. PDR timed out on eight out of the eleven cases.
A possible explanation for this behavior is that the combinational logic in the
multiplier benchmarks, which involves wide (32- to 256-bit) datapath signals, led
to bit-level formulas that were too large and complicated for IC3 and PDR to
handle effectively. An examination of the runtime per solver call for mult hold 2
and fifo hold 2 confirms this. These two benchmarks have similar sizes in terms
of state bits, but mult hold 2 leads to an AIG whose size is more than 14 times
larger than that of fifo hold 2. PDR made 3,147 solver calls in 10,000 seconds
for the multiplier benchmark, averaging about 3.18 seconds per call. The corre-
sponding data for the FIFO benchmark were 192,592 calls in 21.12 seconds, an
average of 110 micro seconds per call which is more than four orders of magnitude
faster. Additionally, the peculiarly low number of solver calls for mult hold 4 in
Table 3-a seemed too suspicious; on closer examination we found out that the
first 10 calls were very quick, but the solver timed out on the 11th. This again
suggests a difficult formula that thwarted the solver.

In contrast to PDR’s performance, Averroes was able to solve all 11 cases,
most in fractions of a second. Other performance metrics, such as the number
of net refinement clauses and number of solver calls, are significantly less than
those for PDR suggesting that datapath abstraction was effective in reducing the
“size” of the reachability search space and that the abstract refinement clauses
were much stronger than their bit-level counterparts in pruning the space. The
cases requiring longer runtimes, about 30 minutes for mult viol 7, were due to
extremely long counterexample traces that require the traversal of many frames
which, in turn, translate into many solver calls. For instance, the counterexample
trace for mult viol 7 consisted of 1002 transitions which required the traversal
of 451 frames and making 425,892 solver calls.

The three FIFO benchmarks involved checking a “read-after-write” property
for the FIFO entries. The FIFO depths (number of entries) ranged from 4 (for
fifo hold 2) to 16 (for fifo hold 4) and each benchmark had two FIFOs whose
width is 32 bits and two FIFOs whose width is 16 bits. Again, Averroes outper-
forms both IC3 and PDR on these benchmarks, on average being about 20 times
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faster. This is another indication of the effectiveness of datapath abstraction. To
dramatize this, we carried out a parametric experiment by increasing the width of
the FIFO entries. As expected, the runtime of Averroes did not change, whereas
the runtimes of IC3 and PDR exhibited exponential behavior. However, all three
verifiers exhibited exponential behavior as FIFO depths were increased! Upon
reflection, this too should have been expected since FIFOs are basically “small”
memories and datapath abstraction alone is insufficient to handle them. While
memory abstraction is beyond the scope of this paper, we present in Table 4 data
showing the performance of Averroes when it is augmented with the structural
memory abstraction described in [27]. This type of abstraction can be layered on
top of any model checking verifier and can certainly be added to IC3 and PDR.
But as the column labeled AVR MA in this table shows, memory abstraction
scales the performance of Averroes only to a FIFO depth of 32. Further scaling
requires integrating memory abstraction with datapath abstraction of the mem-
ory addresses. This is shown in column AVR MAA. Clearly the combination of
memory abstraction and memory address abstraction yields a verification flow
that is largely independent of memory size. The linear increase in the runtime
of Averroes is due to the bit-level feasibility checks on wider memory addresses
as memory size increases.

The last benchmark in Table 3 is the SEQX instance of the Cortex-M0+. The
verification goal here was to show that the M0+ core is self-equivalent when
41 of its state bits are left uninitialized on reset (i.e., their initial value is X
or don’t care). Specifically, SEQX holds when none of these don’t-care values
propagate to observable outputs. Effectively, the verifier is establishing the state
equivalence of 241 possible initial states. We should note that SEQX becomes
quite trivial if the number of uninitialized state bits is small. In fact, bit-level
verifiers can quickly solve such problems using structural hashing techniques.
However, as the number of uninitialized state bits increases, structural hashing
ceases to be effective (not very many equivalent signals to merge) and bit-level
verifiers fail. This is clearly shown in Table 3: neither IC3 nor PDR was able to
prove self-equivalence; Averroes required about 15 minutes to show that SEQX
holds for M0+.

9 Conclusion

Many complex computational problems can be scalably handled by judicious
elimination of irrelevant details. The Averroes verifier described in this paper
integrates two orthogonal abstractions that, together, yield a scalable system for
the verification of control-centric properties in hardware designs containing wide
datapaths and complex control logic. To our knowledge, this is the first public
demonstration of an automated verification flow for unbounded model checking
of safety properties in industrial benchmarks. To be sure, there are many other
abstraction approaches that have been shown to work well in different domains.
However, for the particular control logic bugs targeted by our approach, datapath
abstraction seems to provide the most scalability. Specifically, our preliminary
evidence strongly suggests that scalability is quite achievable by augmenting
bit-level reasoning with RTL word-level abstractions.
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QUICr: A Reusable Library for Parametric

Abstraction of Sets and Numbers

Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

University of Colorado Boulder

Abstract. This paper introduces QUICr, an abstract domain combina-
tor library that lifts any domain for numbers into an efficient domain for
numbers and sets of numbers. As a library, it is useful for inferring rela-
tional data invariants in programs that manipulate data structures. As a
testbed, it allows easy extension of widening and join heuristics, enabling
adaptations to new and varied applications. In this paper we present the
architecture of the library, guidelines on how to select heuristics, and an
example instantiation of the library using the Apron library to verify
set-manipulating programs.

1 Introduction

Programs do not consist entirely of scalar variables. In nearly all program-
ming languages, collections are either implemented as a library or built-in as
a first-class type. Therefore, when verifying programs, it is vital to support con-
tainers as well as scalar values. In the decision procedures community, this is
widely recognized with support for arrays, sets, and maps [1–3], but when invari-
ant generation is concerned, such as in abstract interpretation [4], only arrays
have been carefully considered [5–11], leaving other containers rarely explored
[12–14]. Given that there is a plethora of abstract domains for reasoning about
scalars [15, 16], it is necessary to build abstract domains that not only reason
about containers, but also interact efficiently and precisely with existing domains
for scalars. The best way to ensure interaction is, rather than building abstract
domains for containers, building domain combinators that construct abstract
domains for containers from existing abstract domains for numbers. Recently,
such a domain for arrays was created [5], and a domain for sets was created [12].
This paper describes an implementation of the domain for sets called QUICr1.

The implementation of the domain for sets is an OCaml functor that takes a
numeric abstract domain and builds a domain for simultaneous reasoning about
numbers and sets of numbers. It constructs a relational abstract domain such
that without knowing the specific contents of a set, that set can be related to
another set by equality or subset relationships. This kind of reasoning is useful
for a variety of applications:

– Whole-program verification of container-manipulating programs – The QUICr
library can reason about constants and known sets as well as unknown sets.

1 Library available at http://pl.cs.colorado.edu/projects/quicgraphs

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 866–873, 2014.
c© Springer International Publishing Switzerland 2014
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It does not conflate known parts with unknown parts unnecessarily and thus
can keep track of sets that are partially known and partially unknown. It-
eration over these sets as well as addition and removal from these sets is
supported allowing the inference of a wide range of program properties.

– Modular verification of container-manipulating programs – If a whole pro-
gram is not known, a precondition can be provided as a relational constraint
between sets without knowing any contents. Inferred loop invariants and
post-conditions will also be relational with respect to any existing sets. The
QUICr library will automatically utilize any capabilities of the underlying
numerical domain to express relationships between set variables.

– Shape/data abstraction combinators – Advanced domain combinators such
as those provided by shape analyzers [17–19] typically cannot to incorporate
collection data abstractions into their inductive definitions. To verify both
shape and data properties of programs, current analyzers [20] rely on multi-
set abstractions. By adding relational domains, data can be related between
multiple inductive definitions and thus more precisely represented.

– Parametric abstraction combinators – Effective reasoning about sets enables
the construction of new domain combinators that do not yet exist today with-
out relational set abstractions. When combining abstract domains [21, 22],
it is often useful to be able to express relationships between an unbounded
number of elements in each abstract domain. With a relational domain for
sets it is possible to express these relationships efficiently and effectively.

The goal of this paper is to both document how to use the QUICr library
as well as to inspire thinking about applications for set domains. Towards this
goal we provide an overview of the underlying representation as it is imple-
mented in the library (Section 2). This knowledge is sufficient to understand
the heuristics currently employed in the library and how the heuristics can be
extended to handle additional and different situations that may arise from as-
of-yet unknown applications (Section 3). To demonstrate that the QUICr li-
brary is precise and efficient with the built-in heuristics, we also give results
from some modular verification of container-manipulating programs (Section 4).

Abstract Interpreter

QUICr

Numeric Domain
Apron/PPL
Other

Code

Invariants
Proofs

2 Overview of QUIC Graphs

The QUICr library provides an implementation of the
QUIC graphs [12] abstract domain combinator for nu-
meric domains. It is used as part of an abstract in-
terpretation system (see inset) that not only proves
properties of programs, but performs necessary invari-
ant generation. QUICr represents, accumulates and
manipulates set constraints, while sharing equality in-
formation with the numeric domain in a way similar
to Nelson Oppen [23]. This combination allows repre-
senting and inferring constraints that consist of both
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A

B

C

D

E∪
∪

∪

ν < 10

ν < 113 < ν < 11

ν < x

∧ x ≤ 11
3 <

ν <
11

ν < 11
a

b

c

d

3 < ν

Fig. 1. Example QUIC graph and accompanying numeric domain instances, showing
a sequence of inferences: a is derived by pushing the external numeric domain fact
x ≤ 11 and ν < x; b is derived by inferring a new self-loop with � and pushing a ; c

is derived by pushing b & ν < 10 and 3 < ν; and d is derived by inference/transitive
closure of the graph

set constraints involving union, intersection, subset, and equality, along with nu-
meric constraints that are dictated by the representations used by the underlying
numeric domain.

[x = y]

A:=C ∪ {x};
B:=C ∪ {y}[
x = y ∧ A = B

∧ A = C ∪ {x}

]
For straight-line code, QUICr can be used to implement

a decision procedure and can compute the validity of Hoare
triples for set manipulating programs. For example, the inset
shows a Hoare triple that can be validated using QUICr in-
stantiated with an equivalence classes-based numeric domain.
The QUICr library manipulates the formulas to learn that
A = B because they are both equal to C unioned with the same value. The prob-
lem that QUICr solves is not only how to efficiently represent and manipulate
these formulas to construct a decision procedure, but how to do so to automati-
cally infer loop invariants.

QUICr represents set constraints using a constraint hypergraph where each
vertex represents either the empty set, a singleton set, or a set variable, while each
hyperedge represents a constraint between the linked vertexes. Each constraint
is constructed of three parts: (1) a union of each edge target; (2) an intersection
of each edge source; and (3) a numeric domain instance that labels the edge and
represents a fact that holds on each element ν in the intersection. Each edge
then represents the constraint that each element in the intersection must satisfy
the label constraint and must also be in the union.

Figure 1 shows an instance of a QUIC graph. On the left is a graph represent-
ing the set constraints and on the right is a numerical domain constraint. This
particular graph represents the following three basic facts:

A ⊆ {ν ∈ B ∪ C | 3 < ν} B ⊆ {ν ∈ D ∪ E | ν < x} x ≤ 11

There are several other edges shown using lighter lines that represent facts de-
rived from the basic facts. These derived facts come froma three-part lazy inference
process that (1) pushes facts from one edge to another, strengthening numeric do-
main instances along the way, (2) infers new edges from the existing edges using a
lazy form of transitive closure, and (3) cycles equalities found in the set constraints
back to the numeric constraints as necessary. These three inference operations rely
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Table 1. Heuristics refine the candidate generation strategy to both improve perfor-
mance and increase precision over a naive candidate generation by providing hints [24]
for join and widen operations

Name Description Effect

Empty
Remove

Replace edges with empty set
with equivalent edges without that
empty set.

Improves performance by removing re-
dundant edges.

Min
Rewrite

Assign a total order to all vertexes
in the graph and for each edge
and add an edge using the identi-
cal edge using the minimum equiv-
alent vertex for each vertex.

Increases use of empty sets and thus of
Empty Remove; increases use of single-
ton sets and reductions associated with
singletons; creates likely-common edges.

Patt
Match

Pattern matching identifies certain
subgraphs and eagerly adds de-
rived facts based on those sub-
graphs.

Improves precision by adding additional
candidates that correspond to likely
edges in the join; often arise from specific
code patterns (iteration over sets).

solely on basic domain operators provided by numeric domains, such as built-in
meet, join, and widen operators. These inferred strengthenings are used to imple-
ment domain operations such as join, widen, and containment.

Because the graph representation can be exponential in number of variables,
the QUICr implementation lazily derives facts, on demand. To implement this,
QUICr uses a rewrite rules approach, which has two benefits: (1) it allows easy
viewing of progress – each rule can print out status information to indicate
where it is being applied and why; (2) it allows easy extension of the rules –
adding new rules or reordering rule application is simply a matter adding new
calls or reordering calls in the rule application function. This architecture can
thus be easily extended to improve precision by identifying application-specific
reductions or to increase performance by eliminating application of some rules.

To implement join and widen operations, QUICr employs a generator/checker
strategy. A list of candidate edges is generated with unknown numeric domain
constraints. The analyzer attempts to derive each of these edges in both inputs
to join or widen. When the edge can be derived in both, it is added to the
result using a computed numeric domain constraint. Otherwise, the candidate is
ignored. Initially, the candidates are chosen to be all of the edges from both sides
of the join. Unfortunately, this strategy suffers from a variety of problems. Edges
that are derivable by lazy inference in both graphs, but are not directly in either
graph will be lost. Additionally, there can be many edges that are redundant or
nearly redundant, causing many extra checker invocations. To improve precision
and performance, QUICr employs heuristics to refine the initial list of candidate
edges. The implemented heuristics and their effects are detailed in Table 1.

3 QUICr Usage and Extension

QUICr is implemented as a functor in the OCaml language. A functor is a mod-
ule constructor that takes a module as a parameter and produces another module.
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In this case, it takes a numeric abstract domain as a parameter and produces an
abstract domain for sets of numbers. The current requirements on the numeric ab-
stract domain are that (1) it must be possible to add and remove fresh variables
from the domain – this is used to add or remove the bound variable; (2) it must
provide sound top, bottom, meet, join, widen, and containment operators – these
are used when pushing facts; and (3) it must provide an interface to retrieve and
add equality constraints in the numeric domain. If these conditions are met, any
numerical abstract domain can be substituted.

Unlike the implementation in [12], QUICr is more general and comes with
four numerical domains provided: (1) a simple equivalence class abstract domain,
where variables can be equal to each other and numeric constants; and domains
provided by Apron: (2) boxes; (3) octagons; and (4) polyhedra. Additionally, it
can be instantiated with any numeric domain that meets the Apron interface
(such as PPL [16]). Adapting other existing domains only requires developing a
functor that behaves as an interface adapter.

While built-in heuristics that are described in Table 1 are sufficient for many
applications (see Section 4), they might not be sufficient for every application. If
this is the case, additional heuristics can be added. The easiest form of heuristic
to add is additional pattern matches. QUICr provides a graph matching system
that can match arbitrary subgraphs against a template pattern. These matches
can trigger rewrites and refine candidate generation. This is especially useful if a
particular pattern is not being discovered by the built-in heuristics. For example,
patterns are provided to identify nested unions and to then unnest the unions.
This situation arises frequently when iteratively copying and manipulating sets.

Once instantiated, QUICr provides pretty printers for set constraints. It can
output to both the console as well as to HTML and LATEX. The provided example
application uses the HTML output to produce programs annotated with the
standard mathematical representation of sets.

4 Instantiation

Provided with the library is an example analyzer that allows selecting from the
command line among the three of the four included numeric domains. It uses
a simple input language reminiscent of JavaScript to analyze set and number
manipulating programs. To evaluate the effectiveness of the QUICr, it is instan-
tiated with the Apron-provided polyhedra numeric domain [15]. Then, by hand
translation of Python programs, the resulting abstract domain is applied to all of
the set-manipulating programs in the Python test suite, attempting to validate
the assertions specified in the test suite. For example, the copy test iteratively
copies one set to another, producing a set identical to the original. The results
are shown in Table 2.

The shown benchmarks are those that include loops over the contents of a set
or multiple sets and therefore must infer loop invariants. The inference of these
loop invariants is based on the widening operation and thus not guaranteed to
be precise. However, it is nearly always fast and is able to prove a significant
number of real properties automatically.
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Table 2. Results on a set of small benchmarks. #N: # of numeric domain variables,
#S: # of set variables, #A: # of assertions to be proved, #P: # of assertions au-
tomatically proved, T(s): Time taken (seconds), #I: number of iterations of abstract
interpreter before convergence. – represents a time out (600 seconds). Heuristics were
selected based on the first four tests and validated on remaining tests.

#N #S #A #P T(s) #I

copy 1 6 2 2 0.2 2
filter 4 6 2 2 0.6 3
merge 2 14 2 1 0.6 4
partition 4 8 4 4 1.1 3
generic max 3 8 6 3 0.9 6
b filter 6 6 2 2 0.7 3
b map 9 7 2 2 0.2 5
b max min 3 4 1 1 0.4 3

. . .

#N #S #A #P T(s) #I

b reduce 7 4 1 0 0.4 3
iter ind 20 12 1 1 84.4 39
mul ret 9 2 2 2 0.2 6
nest dep 5 7 1 0 2.2 12
resize1 15 5 5 4 1.7 18
simp cond 11 5 4 3 4.6 12
simp nest 9 10 2 0 – 1399
srange 6 2 2 2 0.1 6

Total 37 29 98.3 125

5 Ongoing Development

Not only is QUICr useful today, but it is useful as a platform for development
of future set and multi-set domain combinators. The graph structure can be
extended by adding additional edge types. For example, we are evaluating an
edge type that utilizes an underapproximating numeric domain. With such an
edge type, it is possible to infer equalities with set comprehensions and to support
set complement operations.

Additionally, the graph structure can be extended to add additional bound
variables. Currently there is one bound variable per edge, but this may be an
unnecessary restriction. With multiple bound variables, more complex relation-
ships can be represented in the base domain. For example, with multiple bound
variables we could represent the constraint that a set consists of elements that
are the sum of elements from two other sets. We want to exploit this to be able
to infer functions that map one set onto another.

Despite our use of QUICr to perform verification of container-manipulating
programs, we believe that sets can be used as part of many other analyses. It is
our desire for the QUICr library to be integrated into new, innovative domain
combinators that effectively use set relations to represent unbounded numbers of
connections between domains. We also hope to see additional extensions beyond
our own to support more advanced set operations including cardinality queries,
Cartesian products, and multi-set operations.
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9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339–348 (2008)

10. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

11. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL, pp. 338–350 (2005)

12. Cox, A., Chang, B.-Y.E., Sankaranarayanan, S.: QUIC graphs: Relational invariant
generation for containers. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920,
pp. 401–425. Springer, Heidelberg (2013)

13. Pham, T.-H., Trinh, M.-T., Truong, A.-H., Chin, W.-N.: FixBag: A fixpoint cal-
culator for quantified bag constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 656–662. Springer, Heidelberg (2011)

14. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In:
POPL, pp. 187–200 (2011)
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Chmeĺık, Martin 473
Chong, Nathan 226
Chowdhury, Omar 131
Cimatti, Alessandro 334, 424
Collingbourne, Peter 226
Cook, Byron 358
Cox, Arlen 866

Daca, Przemys�law 473
D’Antoni, Loris 209
Datta, Anupam 131
Deligiannis, Pantazis 226
Deters, Morgan 646
Dillig, Isil 491

Dillig, Thomas 491
Dima, Cătălin 441
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Griggio, Alberto 334, 424
Gurfinkel, Arie 17, 260

Hadarean, Liana 680
Hagemann, Willem 407
Hall, Benjamin A. 358
Hamadi, Youssef 343
Hansen, Henri 391
Heizmann, Matthias 797
Henzinger, Thomas A. 568
Hoenicke, Jochen 797
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Rümmer, Philipp 150
Ryzhyk, Leonid 533, 568

Sagiv, Mooly 35
Sakallah, Karem A. 849
Sánchez, Alejandro 620
Sánchez, César 620
Sankaranarayanan, Sriram 866
Sharma, Rahul 88
Sharma, Rohan 293
Sinn, Moritz 745
Stattelmann, Stefan 541
Stenman, Jari 150
Sun, Jun 391

Tarrach, Thorsten 568
Thakur, Aditya 35
Tinelli, Cesare 646, 680
Tiwari, Ashish 729
Tomasco, Ermenegildo 585
Tonetta, Stefano 334, 424



Author Index 877

Veanes, Margus 628
Veith, Helmut 745
Vizel, Yakir 260
Voronkov, Andrei 696

Walker, Adam 533
Wang, Chao 114
Weissenbacher, Georg 831
Wendler, Philipp 327

Wies, Thomas 711

Wijs, Anton 310
Wintersteiger, Christoph M. 343

Yordanov, Boyan 343

Zufferey, Damien 711
Zuleger, Florian 745


	Foreword
	Preface
	Organization
	How Do We Get Inductive Invariants?
	Hardware Model Checking
	Designing and Verifying Molecular Circuits andSystems Made of DNA
	Automated Testing
	The First Syntax-Guided Synthesis Competition(SyGuS-COMP 2014)
	References

	Hardware Model Checking CompetitionCAV 2014 Edition
	SYNTCOMP -Synthesis Competition for Reactive Systems
	Reference

	Table of Contents
	Software Verification
	The Spirit of Ghost Code
	1 Introduction
	2 GhostML
	2.1 Syntax
	2.2 Semantics
	2.3 Type System
	2.4 Type Soundness

	3 From GhostML to MiniML
	3.1 Well-Typedness Preservation
	3.2 Correctness of Erasure

	4 Implementation
	5 Related Work
	6 Conclusion and Perspectives
	References

	SMT-Based Model Checking for Recursive Programs
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Model Checking Recursive Programs
	5 Model Based Projection
	6 Implementation and Experiments
	7 Related Work
	8 Conclusion
	References

	Property-Directed Shape Analysis
	1 Introduction
	2 A Motivating Example
	3 Property-Directed Reachability
	4 Property-Directed Reachability for Linked-List Programs
	4.1 Reachability Logics

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Shape Analysis via Second-Order Bi-Abduction
	1 Introduction
	2 Logic Syntax for Shape Specification
	3 Overview of Our Approach
	4 Second-Order Bi-Abduction with an Annotation Scheme
	5 Derivation of Shape Predicates
	5.1 Base Splitting of Pre/Post-Predicates
	5.2 Deriving Pre-Predicates
	5.3 Deriving Post-Predicates
	5.4 Predicate Normalization for More Concise Definitions

	6 Soundness Lemmas and Theorem
	7 Implementation and Experimental Results
	8 Related Work and Conclusion
	References

	ICE: A Robust Framework for Learning Invariants
	1 Introduction
	2 Illustrative Example
	3 The ICE-Learning Framework
	4 An ICE-Learning Algorithm for Numerical Invariants
	5 Learning Universally Quantified Properties
	References

	From Invariant Checking to Invariant InferenceUsing Randomized Search
	1 Introduction
	2 Preliminaries
	2.1 Metropolis Hastings
	2.2 Cost Function

	3 Numerical Invariants
	3.1 Proposal Mechanism
	3.2 Example
	3.3 Evaluation

	4 Arrays
	4.1 Evaluation

	5 Strings
	6 Relations
	6.1 Evaluation

	7 Related Work
	8 Conclusion
	References

	SMACK: Decoupling Source Language Detailsfrom Verifier Implementations
	1 Introduction
	2 Translation from LLVM IR to Boogie IVL
	3 An Example Translation
	4 Our Experience with SMACK
	References


	Security
	Synthesis of Masking Countermeasures against Side Channel Attacks
	1 Introduction
	2 Preliminaries
	3 Motivating Example
	4 Synthesis of Masking Countermeasures
	4.1 Computing the Candidate Program
	4.2 Verifying the Candidate Program

	5 Partitioned Synthesis to Improve Performance
	6 Experiments
	7 Conclusions
	References

	Temporal Mode-Checking for Runtime Monitoring of Privacy Policies 
	1 Introduction
	2 Policy Specification Logic
	3 Temporal Mode Checking
	4 Runtime Monitoring Algorithm
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	String Constraints for Verification
	1 Introduction
	2 A Simple Example
	3 Defining the String Logic Ee,r,l
	4 Inference Rules
	4.1 Removing Disequalities
	4.2 Simplifying Equalities
	4.3 Removing Membership Predicates
	4.4 Propagating Term Lengths

	5 Completeness of the Procedure
	6 Complete Verification of String-Processing Programs
	6.1 Horn Constraints with Strings
	6.2 Constraint-Based Craig Interpolation

	7 Implementation
	8 Conclusions and Future Work
	References

	A Conference Management System with Verified Document Confidentiality
	1 Introduction
	2 Overall Architecture and Security Guarantees
	3 System Specification
	3.1 State, Actions, and Step Function

	4 Security Model
	4.1 Relevant Literature
	4.2 Bounded-Deducibility Security
	4.3 Discussion
	4.4 Instantiation to Our Running Examples
	4.5 More Instances

	5 Verification
	5.1 Unwinding Proof Method
	5.2 Compositional Reasoning
	5.3 Verification of Concrete Instances

	References

	Vac - Verifier of Administrative Role-BasedAccess Control Policies
	1 Introduction
	2 Software Architecture and Verification Approaches
	3 Implementation and Availability
	4 Experimental Results
	5 Conclusions
	References


	Automata
	From LTL to Deterministic Automata:A Safraless Compositional Approach
	1 Introduction
	2 Linear Temporal Logic
	2.1 The Formula af (ϕ,w)  

	3 DRAs for Simple FG-Formulae
	3.1 From Mojmir Automata to DRAs
	3.2 The Automaton R(ϕ)

	4 DRAs for Arbitrary FG-Formulae
	4.1 The Product Automaton

	5 DRAs for Arbitrary Formulae
	5.1 Master Transition System
	5.2 The GDRA A(ϕ)

	6 The Alternation-Free Linear-Time μ-Calculus
	7 Experimental Results
	8 Conclusions
	References

	Symbolic Visibly Pushdown Automata
	1 Introduction
	2 Motivating Example: Dynamic Analysis of Programs
	3 Symbolic Visibly Pushdown Automata
	3.1 Preliminaries
	3.2 Model

	4 Closure Properties and Decision Procedures
	4.1 Closure Properties
	4.2 Decision Procedures

	5 Applications and Evaluation
	5.1 XML Validation
	5.2 HTML Filters
	5.3 Runtime Program Monitors
	5.4 Experimental Results

	6 Conclusion
	References


	Model Checking and Testing
	Engineering a Static Verification Tool for GPU Kernels
	1 Introduction
	2 Overview of the GPUVerify Technique
	3 Applying GPUVerify to a Large Set of Benchmarks
	4 Engineering Issues for Efficient Verification
	5 False Positives and Error Reporting
	6 Engagement With Industry
	7 Lessons Learned and Future Problems
	References

	Lazy Annotation Revisited
	1 Introduction
	2 Informal Discussion of Lazy Annotation
	3 Formal Description of Lazy Annotation
	3.1 Comparison to BMC
	3.2 Comparison to PDR

	4 Improvements to Lazy Annotation
	5 Experiments
	5.1 First Experiment
	5.2 Second Experiment

	6 Conclusion
	References

	Interpolating Property Directed Reachability
	1 Introduction
	2 Preliminaries
	3 SAT-Based Model Checking
	3.1 Interpolation-Based Model Checking
	3.2 Property Directed Reachability

	4 Interpolating Property Directed Reachability
	4.1 Basic Algortihm
	4.2 The Whole Picture

	5 Experiments
	6 Conclusion
	References

	Verifying Relative Error Bounds Using SymbolicSimulation
	1 Introduction
	2 Background
	2.1 Relative Error
	2.2 Floating Point Numbers
	2.3 Symbolic Simulation

	3 Bounded Product Reduction
	3.1 Reciprocal
	3.2 Reciprocal Square Root
	3.3 Power-of-Two

	4 Deciding Symbolic Product Inequalities
	4.1 Brute Force
	4.2 Partial Product Summation
	4.3 Polynomial Expansion

	5 Case Studies
	6 Summary
	7 Related Work
	References

	Regression Test Selectionfor Distributed Software Histories
	1 Introduction
	2 Overview
	3 Test Selection Technique
	3.1 Modeling Distributed Software Histories
	3.2 Test Selection for Two Versions
	3.3 Test Selection for Distributed Software Histories

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	GPU-Based Graph Decomposition into Strongly Connected and Maximal End Components
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes and Maximal-End Components
	2.2 SCC Decomposition Using Forward-Backward Search
	2.3 Sequential MEC Decomposition Algorithms

	3 GPU-Based Graph Decomposition Algorithm
	3.1 GPU Basics
	3.2 Related GPU Implementations
	3.3 SCC Decomposition on the GPU
	3.4 MEC Decomposition on the GPU

	4 Experiments
	5 Conclusions
	References

	Software Verification in the Google App-Engine Cloud
	1 Introduction
	2 Background
	3 Verification in the Google App-Engine Cloud
	4 Experimental Evaluation
	5 Conclusion
	References

	The NUXMV Symbolic Model Checker
	1 Introduction
	2 Functionalities
	2.1 Analysis of Finite-State Domains
	2.2 Analysis of Infinite-State Domains
	2.3 Miscellaneous Functionalities

	3 Architecture
	4 Performance Evaluation
	5 Applications
	6 Conclusions and Future Work
	References


	Biology and Hybrid Systems
	Analyzing and Synthesizing GenomicLogic Functions
	1 Introduction
	2 Background
	2.1 Formal Syntax and Semantics of Vector Equations

	3 Gene Expression Computation as a Path Synthesis Problem
	3.1 Comparison Operators

	4 Synthesis of Vector Equations
	5 Predicting Sea Urchin Development
	6 Related Work
	6.1 Program Synthesis
	6.2 Computational Biology and Synthesis

	7 Conclusion
	References

	Finding Instability in Biological Models
	1 Introduction
	2 Verifying Stability in Qualitative Networks
	2.1 Over-approximating Recurring States
	2.2 Computing the Greatest Fixed Point νF
	2.3 Example

	3 Finding Instability
	3.1 Concrete Implementations of Shrink and Cut
	3.2 Efficiency of FindInstability
	3.3 Example

	4 Benchmarks and Evaluation
	4.1 Trivially Stable Systems and Systems with Multiple Self-Loops
	4.2 Systems with cyclic instability
	4.3 Non-trivially Stable Systems

	5 Conclusions
	References

	Invariant Verification of Nonlinear HybridAutomata Networks of Cardiac Cells
	1 Introduction
	2 Hybrid Automata Modules and Networks
	3 Annotations for Modules in a Network
	3.1 IS Discrepancy and Approximations

	4 Checking Bounded Invariants of HA Networks
	4.1 Simulations of Dynamical Systems
	4.2 Verification Algorithm
	4.3 Soundness and Relative Completeness

	5 Checking Invariants for Cardiac Cell Networks
	5.1 The MAH Cardiac Cell Network Model
	5.2 Experimental Results

	6 Related Work, Discussion and Conclusions
	References

	Diamonds Are a Girl’s Best Friend: Partial Order Reduction for Timed Automata with Abstractions
	1 Introduction
	2 Preliminaries
	3 Reduction of Abstract Transition Systems
	3.1 Stubborn Sets
	3.2 Ignoring Problem and Key Events
	3.3 Abstraction-Refinement and Independence

	4 Experiments
	5 Conclusion
	References

	Reachability Analysis of Hybrid SystemsUsing Symbolic Orthogonal Projections
	1 Introduction
	2 Template Polyhedra and Support Functions
	3 Symbolic Orthogonal Projections
	3.1 Beyond Template Polyhedra

	4 Reachability Analysis Using Sops
	4.1 A Reachability Algorithm for Linear Systems with Invariants
	4.2 Le Guernic and Girard’s Reachability Algorithm

	5 Experimental Results
	6 Conclusion
	References

	Verifying LTL Properties of Hybrid Systems with K-LIVENESS
	1 Introduction
	2 Background
	2.1 Hybrid and Timed Automata
	2.2 LTL
	2.3 Transition Systems
	2.4 SMT-Based Verification of Reachability for PRHA
	2.5 IC3 and K-LIVENESS

	3 SMT-Based Verification of LTL for PRHA
	3.1 K-LIVENESS for Hybrid Automata
	3.2 Linking the Fairness to Time Progress
	3.3 The K-ZENO Algorithm
	3.4 Completeness for Rectangular Hybrid Automata

	4 Related Work
	5 Experimental Evaluation
	5.1 Implementation
	5.2 Benchmarks
	5.3 Evaluation

	6 Conclusions and Future Work
	References


	Games and Synthesis
	Safraless Synthesis for Epistemic Temporal Specifications
	1 Introduction
	2 KLTL Realizability and Synthesis
	3 Automata for Infinite Words and Trees
	4 LTL Synthesis under Imperfect Information
	5 Safraless Procedure for Positive KLTL Synthesis
	6 Antichain Algorithm
	7 Implementation and Case Studies
	8 Conclusion
	References

	Minimizing Running Costs in Consumption Systems
	1 Introduction
	2 Preliminaries
	3 The Results
	3.1 A Proof of Theorem 6
	3.2 A Proof of Lemma 15
	3.3 Proof of Theorem 7

	4 Future work
	References

	CEGAR for Qualitative Analysis of Probabilistic Systems
	1 Introduction
	2 Game Graphs and Alternating-Time Temporal Logics
	2.1 Two-player Games
	2.2 Alternating-time Temporal Logic

	3 Combined Simulation Relation Computation
	4 MDPs and Qualitative Logics
	4.1 Markov Decision Processes
	4.2 Qualitative Logics for MDPs
	4.3 Characterization of Qualitative Simulation for MDPs

	5 CEGAR for Combined Simulation
	5.1 Simulation Abstraction and Alternating-Simulation Abstraction
	5.2 Sound Assume-Guarantee Rule
	5.3 Counter-examples Analysis
	5.4 CEGAR

	6 Experimental Results
	References

	Optimal Guard Synthesis for Memory Safety
	1 Introduction
	2 Motivating Example and Overview
	3 Language and Preliminaries
	4 Constraint Generation
	5 Constraint Solving
	6 Implementation and Evaluation
	7 Related Work
	References

	Don’t Sit on the Fence
	1 Introduction
	2 Motivation
	3 Related Work
	4 Axiomatic Memory Model
	5 Static Detection of Critical Cycles
	6 Synthesis
	6.1 Cost Function of the ILP
	6.2 Constraints in the ILP

	7 Implementation and Experiments
	8 Conclusion
	References

	MCMAS-SLK: A Model Checkerfor the Verification of Strategy LogicSpecifications
	1 Introduction
	2 Epistemic Strategy Logic
	3 The Model Checker MCMAS-SLK
	4 Experimental Results and Conclusions
	References

	Solving Games without Controllable Predecessor
	1 Introduction
	2 Related Work
	3 Background
	4 Abstract Game Trees
	5 The Algorithm
	6 Evaluation
	7 Conclusion
	References

	G4LTL-ST: Automatic Generation of PLC Programs
	1 Overview
	2 Timing Abstractions
	3 Abstraction-Refinement Synthesis Loop
	4 Assumption Generation
	5 Outlook
	References


	Concurrency
	Automatic Atomicity Verification for Clientsof Concurrent Data Structures
	1 Introduction
	2 Example
	3 Atomicity and Condensability
	3.1 Executions and Atomicity
	3.2 Condensability

	4 Checking Condensability
	5 Snowflake
	6 Results
	7 Conclusion
	References

	Regression-Free Synthesis for Concurrency
	1 Introduction
	2 Programming Model and the Problem Statement
	3 Good and Bad Traces
	3.1 Learning from Good Traces
	3.2 Eliminating Bad Traces

	4 The Program-Repair Algorithm
	5 Implementation and Experiments
	6 Conclusion
	References

	Bounded Model Checking of Multi-threadedC Programs via Lazy Sequentialization
	1 Introduction
	2 Bounded Multi-threaded C Programs
	3 Lazy Sequentialization for Bounded Programs
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusions
	References

	An SMT-Based Approachto Coverability Analysis
	1 Introduction
	2 Preliminaries
	3 Marking Equation
	4 Refining Marking Equations with Traps
	5 Constructing Invariants from Constraints
	6 Experimental Evaluation
	References

	LEAP: A Tool for the Parametrized Verification of Concurrent Datatypes
	1 Introduction
	2 Formal Verification Using Leap
	3 Empirical Evaluation
	4 Future Work
	References


	SMT and Theorem Proving
	Monadic Decomposition
	1 Introduction
	2 Motivation
	3 Monadic Predicates
	4 Monadic Decomposition
	4.1 Deciding If a Predicate Is Monadic
	4.2 Decomposition Procedure
	4.3 Another Decomposition Algorithm
	4.4 Two Decidable Cases

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	A DPLL(T) Theory Solver for a Theoryof Strings and Regular Expressions
	1 Introduction
	1.1 Related Work
	1.2 Formal Preliminaries

	2 A Theory of Strings and Regular Language Membership
	2.1 The Satisfiability Problem in TSLRp
	2.2 A Calculus for TSLRp

	3 Experimental Results
	4 Conclusion and Further Work
	References

	Bit-Vector Rewritingwith Automatic Rule Generation
	1 Introduction
	2 Preliminaries and 0-Saturation
	3 Bit-Vector 0-Saturation with Automatic Rule Generation
	3.1 Automatic Rule Generation: High-Level Algorithm
	3.2 Refining and Formalizing the Algorithm

	4 Experimental Results
	5 Conclusion
	References

	A Tale of Two Solvers: Eager and Lazy Approaches to Bit-Vectors
	1 Introduction
	2 Related Work
	3 Formal Preliminaries
	4 The DPLL(T) Framework
	5 A Lazy Bit-Vector Solver
	5.1 Subsolvers
	5.2 Lazy Techniques

	6 Experimental Results
	7 Future Work
	References

	AVATAR: The Architecture for First-Order Theorem Provers
	1 Introduction
	2 Preliminaries
	3 Saturation Algorithms
	4 AVATAR
	5 The SAT Algorithm
	6 The FO Algorithm
	7 Simplifications
	8 Term Indexing
	9 Experiments
	10 Using an SMT Solver or Other Theory Solvers
	11 Related Work
	12 Conclusion
	References

	Automating Separation Logic with Trees and Data
	1 Introduction
	2 Motivating Example and Overview
	3 Graph Reachability and Stratified Sets
	4 The GRIT Logic
	5 Decision Procedure for GRIT
	6 Extensions
	7 Implementation and Evaluation
	8 Conclusions
	References

	A Nonlinear Real Arithmetic Fragment
	1 Introduction
	2 Search-Based Procedure
	3 Transformations: Toward Completeness
	4 Experiments
	5 Conclusion
	References

	Yices 2.2
	1 Introduction
	2 Logic
	3 System Architecture
	4 Solvers
	5 Recent Developments
	6 Conclusion
	References


	Bounds and Termination
	A Simple and Scalable Static Analysis for BoundAnalysis and Amortized Complexity Analysis
	1 Introduction
	2 Motivation and Overview
	2.1 Amortized Complexity Analysis

	3 Lossy VASSs and Basic Definitions
	4 Control Flow Abstraction
	5 Ranking Function Generation
	6 Bound Computation
	7 Program Abstraction
	7.1 Abstracting Programs to VASSs: Our Implementation

	8 Experiments
	8.1 Comparison to Tools from the Literature
	8.2 Evaluation on Real-World Code

	References

	Symbolic Resource Bound Inferencefor Functional Programs
	1 Introduction
	2 Background and Enabling Techniques
	2.1 Instrumenting Programs to Track Resource Bounds
	2.2 Solving Numerical Parametric Formulas
	2.3 Successive Function Approximation by Unfolding

	3 Invariant Inference Algorithm
	3.1 Solving Formulas with Algebraic Data Types and Recursion
	3.2 Incrementally Solving Parametric Formulas
	3.3 Solving Nonlinear Parametric Formulas
	3.4 Finding Strongest Bounds
	3.5 Inference of Auxiliary Templates
	3.6 Analysis Strategies

	4 Empirical Evaluation
	5 Related Work
	References

	Proving Non-termination Using Max-SMT
	1 Introduction
	2 Preliminaries
	2.1 SMT and Max-SMT
	2.2 Transition Systems

	3 Quasi-invariants and Non-termination
	4 Computing Proofs of Non-termination
	5 Experiments
	6 Related Work
	7 Conclusions and Future Work
	References

	Termination Analysisby Learning Terminating Programs
	1 Introduction
	2 Fair Module
	3 Certified Module
	4 Learning a Terminating Program
	5 Overall Algorithm
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Causal Terminationof Multi-threaded Programs
	1 Introduction
	2 Concurrent Traces
	2.1 Transition Systems
	2.2 Finite Concurrent Traces
	2.3 Infinite Concurrent Traces

	3 Motivating Example
	4 Causal Trace Tableaux
	4.1 Initial Abstraction
	4.2 Causal Transitions
	4.3 Causal Trace Tableaux

	5 Proof Rules for Termination
	6 The Termination Analysis Algorithm
	7 Experimental Evaluation
	8 Conclusion
	References


	Abstraction
	Counterexample to Induction-GuidedAbstraction-Refinement (CTIGAR)
	1 Introduction
	2 Preliminaries
	2.1 Formulas and Transition Relations
	2.2 IC3 for Finite State Transition Systems

	3 CTIGAR
	3.1 CTIGAR Extensions of IC3 Concepts
	3.2 The CTIGAR Flow
	3.3 Refinement

	4 Implementation and Experimental Evaluation
	4.1 Implementation
	4.2 Benchmarking
	4.3 Evaluation Configurations
	4.4 Discussion of Runtime Results

	5 Related Work
	6 Conclusion
	References

	Unbounded Scalable Verification Based on Approximate Property-Directed Reachability and Datapath Abstraction
	1 Introduction
	2 Previous Work
	3 Preliminaries
	4 Reachability Approximation and Refinement
	5 Motivating Example
	6 Datapath Abstraction and Refinement
	7 The Averroes Algorithm
	8 Experimental Evaluation
	9 Conclusion
	References

	QUICr: A Reusable Library for ParametricAbstraction of Sets and Numbers
	1 Introduction
	2 Overview of QUIC Graphs
	3 QUICr Usage and Extension
	4 Instantiation
	5 Ongoing Development
	References


	Author Index



