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Abstract. L-bonds represent relationships between fuzzy formal con-
texts. We study these intercontextual structures w.r.t. antitone Galois
connections in fuzzy setting. Furthermore, we define direct �-product and
�-product of two formal fuzzy contexts and show conditions under which
a fuzzy bond can be obtained as an intent of the product. This extents
our previous work on isotone fuzzy bonds.

1 Introduction

Formal Concept Analysis (FCA) [10] is an exploratory method of analysis of
relational data. The method identifies some interesting clusters (formal concepts)
in a collection of objects and their attributes (formal context) and organizes them
into a structure called concept lattice. Formal Concept Analysis in fuzzy setting
[3] allows us to work with graded data.

In the present paper, we deal with intercontextual relationships in FCA in
fuzzy setting. Particularly, our approach originated in relation to [16] on the
notion of Chu correspondences between formal contexts, which led to obtaining
information about the structure of L-bonds. In [15] we studied properties of
L-bonds w.r.t. isotone concept-forming operators.

The present paper concerns with L-bonds with antitone character; We de-
scribe their properties and explain how these L-bonds relate to the structures
studied in [16]. In addition, we also focus on the direct products of two formal
fuzzy contexts and show conditions under which a bond can be obtained as an
intent of the product.

The paper is structured as follows: in Section 2 we recollect some notions
used in this paper; in Section 3 we define the L-bonds and direct products,
and describe their properties. Our conclusions and related further research are
summarized in Section 4.

2 Preliminaries

In this section, we recall some basic notions used in the paper.
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2.1 Residuated Lattices and Fuzzy Sets

We use complete residuated lattices as basic structures of truth-degrees. A com-
plete residuated lattice [3,12,21] is a structure L � �L,�,�,�,�, 0, 1� such
that

(i) �L,�,�, 0, 1� is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii) �L,�, 1� is a commutative monoid, i.e. � is a binary operation which is
commutative, associative, and a� 1 � a for each a 	 L;

(iii) � and � satisfy adjointness, i.e. a� b 
 c iff a 
 b� c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted
by 
. Throughout this paper, L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. Operations � (multiplication) and
� (residuum) play the role of a (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a 	 L as

�a � a� 0. (1)

L-sets and L-relations An L-set (or fuzzy set) A in a universe setX is a mapping
assigning to each x 	 X some truth degree A�x 	 L. The set of all L-sets in a
universe X is denoted LX , or LX if the structure of L is to be emphasized.

The operations with L-sets are defined componentwise. For instance, the in-
tersection of L-sets A,B 	 LX is an L-set A �B in X such that �A � B�x �
A�x�B�x for each x 	 X , etc. An L-set A 	 LX is also denoted �A�x��x � x 	 X�.
If for all y 	 X distinct from x1, x2, . . . , xn we have A�y � 0, we also write

�A�x1��x1,
A�x2��x1, . . . ,

A�xn��xn�.

An L-set A 	 LX is called crisp ifA�x 	 �0, 1� for each x 	 X . Crisp L-sets can
be identified with ordinary sets. For a crisp A, we also write x 	 A for A�x � 1
and x � A for A�x � 0. An L-set A 	 LX is called empty (denoted by �) if
A�x � 0 for each x 	 X . For a 	 L and A 	 LX , the L-sets a�A, a� A,A � a,
and �A in X are defined by

�a�A�x � a�A�x, (2)

�a � A�x � a� A�x, (3)

�A � a�x � A�x � a, (4)

�A�x � A�x � 0. (5)

An a-complement is an L-set A which satisfies �A� a � a � A.
Binary L-relations (binary fuzzy relations) between X and Y can be thought

of as L-sets in the universe X � Y . That is, a binary L-relation I 	 LX�Y

between a set X and a set Y is a mapping assigning to each x 	 X and each
y 	 Y a truth degree I�x, y 	 L (a degree to which x and y are related by I).

V � LX is called an L-closure system if
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– V is closed under left �-multiplication (or �-shift), i.e. for every a 	 L and
C 	 V we have a� C 	 V ,

– V is closed under intersection, i.e. for Cj 	 V (j 	 J) we have
�

j�J Cj 	 V .

V � LX is called an L-interior system if

– V is closed under left �-multiplication, i.e. for every a 	 L and C 	 V we
have a� C 	 V ,

– V is closed under union, i.e. for Cj 	 V (j 	 J) we have
�

j�J Cj 	 V .

Relational products We use three relational product operators, �, �, and �, and
consider the corresponding products R � S � T , R � S � T , and R � S � T (for
R 	 LX�Z , S 	 LX�Y , T 	 LY�Z). In the compositions, R�x, z is interpreted
as the degree to which the object x has the attribute z; S�x, y as the degree
to which the factor y applies to the object x; T �y, z as the degree to which
the attribute z is a manifestation (one of possibly several manifestations) of the
factor y. The composition operators are defined by

�S � T �x, z �
�

y�Y

S�x, y � T �y, z, (6)

�S � T �x, z �
�

y�Y

S�x, y � T �y, z, (7)

�S � T �x, z �
�

y�Y

T �y, z � S�x, y. (8)

Note that these operators were extensively studied by Bandler and Kohout,
see e.g. [13]. They have natural verbal descriptions. For instance, �S �T �x, z is
the truth degree of the proposition “there is factor y such that y applies to object
x and attribute z is a manifestation of y”; �S �T �x, z is the truth degree of “for
every factor y, if y applies to object x then attribute z is a manifestation of y”.
Note also that for L � �0, 1�, S � T coincides with the well-known composition
of binary relations.

We will need following lemma.

Lemma 1 ([3]). For R 	 LW�X , S 	 LX�Y , T 	 LY�Z we have

R � �S � T  � �R � S � T and R � �S � T  � �R � S � T.

2.2 Formal Concept Analysis in the Fuzzy Setting

An L-context is a triplet �X,Y, I� where X and Y are (ordinary) sets and I 	
LX�Y is an L-relation between X and Y . Elements of X are called objects,
elements of Y are called attributes, I is called an incidence relation. I�x, y �
a is read: “The object x has the attribute y to degree a.” An L-context is
usually depicted as a table whose rows correspond to objects and whose columns
correspond to attributes; entries of the table contain the degrees I�x, y.
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Concept-forming operators induced by an L-context �X,Y, I� are the following
operators: First, the pair ��, �� of operators � : LX � LY and � : LY � LX is
defined by

A��y �
�

x�X

A�x � I�x, y, B��x �
�

y�Y

B�y � I�x, y. (9)

Second, the pair ��, �� of operators � : LX � LY and � : LY � LX is defined by

A��y �
�

x�X

A�x � I�x, y, B��x �
�

y�Y

I�x, y � B�y, (10)

Third, the pair ��, �� of operators � : LX � LY and � : LY � LX is defined by

A��y �
�

x�X

I�x, y � A�x, B��x �
�

y�Y

B�y � I�x, y, (11)

for A 	 LX , B 	 LY . When we need to emphasize that a pair of concept-forming
operators is induced by a particular L-relation we write it as a subscript, for
instance we write �I instead of just �.

Furthermore, denote the corresponding sets of fixed points by B���X,Y, I,
B���X,Y, I, and B���X,Y, I, i.e.

B���X,Y, I � ��A,B� 	 LX � LY � A� � B, B� � A�,

B���X,Y, I � ��A,B� 	 LX � LY � A� � B, B� � A�,

B���X,Y, I � ��A,B� 	 LX � LY � A� � B, B� � A�.

The sets of fixpoints are complete lattices [1,11,20], called L-concept lattices
associated to I, and their elements are called formal concepts.

For a concept lattice B���X,Y, I, where B�� is either of B��, B��, or B��,
denote the corresponding sets of extents and intents by Ext���X,Y, I and
Int���X,Y, I. That is,

Ext���X,Y, I � �A 	 LX � �A,B� 	 B���X,Y, I for some B�,

Int���X,Y, I � �B 	 LY � �A,B� 	 B���X,Y, I for some A�.

The operators induced by an L-context and their sets of fixpoints have been
extensively studied, see e.g. [1,2,4,11,20].

3 L-bonds

This section introduces antitone L-bonds, namely a-bonds and c-bonds, and
describes their properties.

Definition 1. (a) An a-bond from L-context K1 � �X1, Y1, I1� to L-context
K2 � �X2, Y2, I2� is an L-relation β 	 LX1�Y2 s.t.

Ext���X1, Y2, β � Ext���X1, Y1, I1 and Int���X1, Y2, β � Int���X2, Y2, I2.
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(b) A c-bond from L-context K1 � �X1, Y1, I1� to L-context K2 � �X2, Y2, I2�
is an L-relation β 	 LX1�Y2 s.t.

Ext���X1, Y2, β � Ext���X1, Y1, I1 and Int���X1, Y2, β � Int���X2, Y2, I2.

Remark 1. 1) The terms—a-bond and c-bond—were chosen to match with no-
tions of a-morphism and c-morphism [7,14,9]. We show in Theorem 2 that the
a-bonds and c-bonds are in one-to-one correspondence of a-morphisms and c-
morphisms, respectively, on sets of intents of associated concept lattices.

2) Note that all considered sets of extents and intents in Definition 1 are
L-closure systems. From this point of view, the condition of subsethood is nat-
ural.

Theorem 1. (a) β 	 LX1�Y2 is an a-bond between K1 � �X1, Y1, I1� and K2 �
�X2, Y2, I2� iff there exist L-relations Si 	 LY1�Y2 and Se 	 LX1�X2 , such
that

β � I1 � Si � Se � I2. (12)

(b) β 	 LX1�Y2 is a c-bond between K1 � �X1, Y1, I1� and K2 � �X2, Y2, I2� iff
there exist L-relations Si 	 LY1�Y2 and Se 	 LX1�X2 , such that

β � I1 � Si � Se � I2. (13)

Proof. Follows from results in [9]. ��

3.1 Morphisms

This section explains correspondence of L-bonds with morphisms of L-interior/L-
closure spaces. First, we recall notions of c-morphisms and a-morphisms. These
morphisms were previously studied in [7,9,14].

Definition 2. (a) A mapping h : V � W from an L-interior system V � LX

into an L-closure system W � LY is called an a-morphism if

– h�a� C � a� h�C for each a 	 L and C 	 V ;
– h�
�

k�K Ck �
�

k�K h�Ck for every collection of Ck 	 V .

An a-morphism h : V � W is called an extendable a-morphism if h can be
extended to an a-morphism of LX to LY , i.e. if there exists an a-morphism
h� : LX � LY such that for every C 	 V we have h��C � h�C.

(b) A mapping h : V � W from an L-closure system V � LX into an L-
closure system W � LY is called a c-morphism if it is a �- and

�
-morphism

and it preserves a-complements, i.e. if

– h�a� C � a� h�C for each a 	 L and C 	 V ;
– h�
�

k�K Ck �
�

k�K h�Ck for every collection of Ck 	 V (k 	 K);
– if C is an a-complement then h�C is an a-complement.
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A c-morphism h : V � W is called an extendable c-morphism if h can be
extended to a c-morphism of LX to LY , i.e. if there exists a c-morphism h� :
LX � LY such that for every C 	 V we have h��C � h�C.

In this paper we consider only extendable {a,c}-morphims.

Theorem 2. (a) The a-bonds between K1 � �X1, Y1, I1� and K2 � �X2, Y2, I2�
are in one-to-one correspondence with

– a-morphisms from Int���X1, Y1, I1 to Int���X2, Y2, I2;
– c-morphisms from Ext���X2, Y2, I2 to Ext���X1, Y1, I1.

(b) The c-bonds between K1 � �X1, Y1, I1� and K2 � �X2, Y2, I2� are in one-
to-one correspondence with

– c-morphisms from Int���X1, Y1, I1 to Int���X2, Y2, I2;
– a-morphisms from Ext���X2, Y2, I2 to Ext���X1, Y1, I1.

Proof. Follows from Theorem 1 and results in [9,14].

Theorem 3. (a) The system of all a-bonds is an L-closure system.
(b) The system of all c-bonds is an L-closure system.

Proof. (a) Consider a collection of a-bonds βi. By Theorem 1 the βis are in the
form βi � I1 � Si � Se � I2. We have

�

j�J

βj �
�

j�J

�I1 � Sij � I1 � �
�

j�J

Sij

�
�

j�J

�Sej � I2 � �
�

j�J

Sej � I2;

a� β � a� �I1 � Si � I1 � �a � Si

� a� �Se � I2 � �a� Se � I2.

Thus,
�

j�J βj and a� β are a-bonds. Proof of (b) is similar. ��

3.2 Direct Products

In this part, we focus on direct products of L-contexts related to a-bonds and
c-bonds.

Definition 3. Let K1 � �X1, Y1, I1�,K2 � �X2, Y2, I2� be L-contexts.

(a) A direct �-product of K1 and K2 is defined as the L-context K1�K2 �
�X2 � Y1, X1 � Y2, Δ� with Δ��x2, y1�, �x1, y2� � I1�x1, y1 � I2�x2, y2
for all x1 	 X1, x2 	 X2, y1 	 Y1, y2 	 Y2.

(b) A direct �-product of K1 and K2 is defined as the L-context K1�K2 �
�X2 � Y1, X1 � Y2, Δ� with Δ��x2, y1�, �x1, y2� � I2�x2, y2 � I1�x1, y1
for all x1 	 X1, x2 	 X2, y1 	 Y1, y2 	 Y2.
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The following theorem shows that K1�K2 (resp. K1�K2) induces a-bonds
(resp. c-bonds) as its intents.

Theorem 4. (a) The intents of K1�K2 w.r.t ��, �� are a-bonds from K1 to K2,
i.e for each φ 	 LX2�Y1 , φ� is an a-bond from K1 to K2.

(b) The intents of K1�K2 w.r.t ��, �� are c-bonds from K1 to K2, i.e for each
φ 	 LX2�Y1 , φ� is a c-bond from K1 to K2.

Proof. (a) For φ 	 LX2�Y1 we have

φ��x1, y2 �
�

�x2,y1	�X2�Y1

φ�x2, y1 � Δ��x2, y1�, �x1, y2�

�
�

x2�X2

�

y1�Y1

φ�x2, y1 � �I1�x1, y1 � I2�x2, y2

�
�

x2�X2

�

y1�Y1

�I1�x1, y1 � �φ�x2, y1 � I2�x2, y2

�
�

y1�Y1

�I1�x1, y1 �
�

x2�X2

�φ�x2, y1 � I2�x2, y2

�
�

y1�Y1

�I1�x1, y1 �
�

x2�X2

�φT�y1, x2 � I2�x2, y2

�
�

y1�Y1

I1�x1, y1 � �φT
� I2�y1, y2

� �I1 � �φ
T
� I2�x1, y2

� ��I1 � φ
T � I2�x1, y2.

Thus φ� is an a-bond by Theorem 1. Proof of (b) is similar. ��

Not all a-bonds are intents of the direct product as the following examples
shows.

Example 1. Consider L-context K � ��x�, �y�, �0.5��x, y��� with L being the
three-element �Lukasiewicz chain. Obviously, �0.5��x, y�� is an a-bond from K to
K. We have K�K � ���x, y��, ��x, y��, ��x, y�, �x, y���. The only intent of K�K

is ��x, y��; thus the a-bond �0.5��x, y�� is not among its intents.

Example 2. Consider following L-context with L being three-element �Lukasiewicz
chain.

K1 �
0 0 0 1

2
1 0 1

2
1
2

K2 �
0 1 1
1 1 1
1
2

1
2 1

.

There are 11 a-bonds from K1 to K2, but K1�K2 has only 9 concepts; see
Figure 1.

Since the definition of direct �-product and direct �-product differ only in the
direction of residuum, we can make the following corollary.
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1 1 1
1 1 1

1 1 1
1
2
1 1

1 1 1
0 1 1

1
2
1 1

1
2
1 1

1 1 1
1
2

1
2
1

1
2
1 1

0 1 1
1 1 1
0 1

2
1

1
2
1 1

1
2

1
2
1

1
2
1 1

0 1
2
1

1
2

1
2
1

1
2

1
2
1

1
2

1
2
1

0 1
2
1

Fig. 1. System of a-bonds between K1 and K2 from Example 2. Boxed a-bonds are
those which are not intents of K1�K2.

Corollary 1. (a) The extents of the direct �-product of �X1, Y1, I1� and
�X2, Y2, I2� are a-bonds from �X2, Y2, I2� to �X1, Y1, I1�.

(b) The extents of the direct �-product of �X1, Y1, I1� and �X2, Y2, I2� are c-bonds
from �X2, Y2, I2� to �X1, Y1, I1�.

3.3 Strong Antitone L-bonds

As classical bonds connect contexts with antitone Galois connections, we also
consider L-bonds from �X1, Y1, I1� to �X2, Y2, I2� defined as L-relations J 	
LX1�Y2 such that

Ext���X1, Y2, J � Ext���X1, Y1, I1 and Int���X1, Y2, J � Int���X2, Y2, I2.
(14)

In what follows, we call the L-relations defined by (14) strong antitone L-bonds.

Using the double negation law. If the double negation law holds true in L, each
pair of concept-forming operators (9)–(11) is definable by any of other two. As
a consequence, we have

B���X,Y, I and B���X,Y,�I are isomorphic as lattices (15)

with �A,B� �� �A,�B� being an isomorphism. In addition, we have

Ext���X,Y,�I � Ext���X,Y, I and, dually, Int���X,Y,�I � Int���X,Y, I.
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Theorem 5. Let the double negation law hold true in L. the strong antitone
L-bonds from �X1, Y1, I1� to �X2, Y2, I2� are exactly a-bonds from �X1, Y1,�I1�
to �X2, Y2, I2�; and c-bonds from �X1, Y1, I1� to �X2, Y2,�I2�.

Note that the incidence relation Δ in direct product K1�K2 then becomes

Δ��x2, y1�, �x1, y2� � �I1�x1, y1 � I2�x2, y2;

that is in agreement with results in [16]. Similarly, the incidence relation Δ in
direct product K1�K2 becomes

Δ��x2, y1�, �x1, y2� � I1�x1, y1 � �I2�x2, y2.

Using an alternative notion of complement. The mutual reducibility of concept-
forming operators (9)–(11) does not hold generally. In [8], we proposed a new no-
tion of complement of L-relation to overcome that. Using this notion we showed
that each for each I 	 LX�Y , one can define �I 	 LX��Y�L� as

�I�x, �y, a� � I�x, y � a,

and obtain
Ext���X,Y � L,�I � Ext���X,Y, I

and, similarly,

Int���X,Y � L,�I � Int���X � L, Y, ��ITT
Unfortunately, the opposite direction holds true only for those L-contexts

�X,Y, I� whose set Ext���X,Y, I (resp. Int���X,Y, I) is a c-closure system [7];
i.e. an L-closure system generated by a system of all a-complements of some
T � LX .

Theorem 6. If Ext���X1, Y1, I1 is a c-closure system, the strong antitone L-
bonds from �X1, Y1, I1� to �X2, Y2, I2� are exactly a-bonds from �X1, Y1 � L,�I1�
to �X2, Y2, I2�. If Int

���X2, Y2, I2 is a c-closure system, the antitone L-bonds
from �X1, Y1, I1� to �X2, Y2, I2� are exactly c-bonds from �X1, Y1, I1� to
�X2 � L, Y2, ��IT2 T�.

We omit further details due to the lack of space.

4 Conclusions and Further Research

We studied bonds between fuzzy contexts related to mutually different types of
concept-forming operators and their relationship to antitone fuzzy bonds.

Our future research includes:

– Covering the L-bonds described above and isotone L-bonds in [15] by a
general framework. The isotone and antitone concept-forming operators are
one type of operators in [6,5]; also in [18].

– Generalizing the described theory to bond L-contexts which each use differ-
ent residuated lattice as the structure of truth-degrees. Results described in
[17] seem to be promising for this goal.
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12. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (November
2001)

13. Kohout, L.J., Bandler, W.: Relational-product architectures for information pro-
cessing. Information Sciences 37(1-3), 25–37 (1985)

14. Konecny, J.: Closure and Interior Structures in Relational Data Analysis and Their
Morphisms. PhD thesis, Palacky University (2012)

15. Konecny, J., Ojeda-Aciego, M.: Isotone L-bonds. In: Ojeda-Aciego, Outrata (eds.)
[19], pp. 153–162
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