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Abstract. L-bonds represent relationships between fuzzy formal con-
texts. We study these intercontextual structures w.r.t. antitone Galois
connections in fuzzy setting. Furthermore, we define direct <-product and
>-product of two formal fuzzy contexts and show conditions under which
a fuzzy bond can be obtained as an intent of the product. This extents
our previous work on isotone fuzzy bonds.

1 Introduction

Formal Concept Analysis (FCA) [10] is an exploratory method of analysis of
relational data. The method identifies some interesting clusters (formal concepts)
in a collection of objects and their attributes (formal context) and organizes them
into a structure called concept lattice. Formal Concept Analysis in fuzzy setting
[3] allows us to work with graded data.

In the present paper, we deal with intercontextual relationships in FCA in
fuzzy setting. Particularly, our approach originated in relation to [16] on the
notion of Chu correspondences between formal contexts, which led to obtaining
information about the structure of L-bonds. In [15] we studied properties of
L-bonds w.r.t. isotone concept-forming operators.

The present paper concerns with L-bonds with antitone character; We de-
scribe their properties and explain how these L-bonds relate to the structures
studied in [16]. In addition, we also focus on the direct products of two formal
fuzzy contexts and show conditions under which a bond can be obtained as an
intent of the product.

The paper is structured as follows: in Section 2 we recollect some notions
used in this paper; in Section 3 we define the L-bonds and direct products,
and describe their properties. Our conclusions and related further research are
summarized in Section 4.

2 Preliminaries

In this section, we recall some basic notions used in the paper.
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2.1 Residuated Lattices and Fuzzy Sets

We use complete residuated lattices as basic structures of truth-degrees. A com-
plete residuated lattice [3,12,21] is a structure L = (L, A, v,®, —,0,1) such
that

(i) <L, A, Vv,0,1) is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii) {L,®,1) is a commutative monoid, i.e. ® is a binary operation which is
commutative, associative, and a ® 1 = a for each a € L;

(iii) ® and — satisfy adjointness, i.e. a®b < ciff a < b — c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted
by <. Throughout this paper, L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. Operations ® (multiplication) and
— (residuum) play the role of a (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a € L as

—a=a—0. (1)

L-sets and L-relations An L-set (or fuzzy set) A in a universe set X is a mapping
assigning to each z € X some truth degree A(x) € L. The set of all L-sets in a
universe X is denoted LX, or LX if the structure of L is to be emphasized.

The operations with L-sets are defined componentwise. For instance, the in-
tersection of L-sets A, B € LX is an L-set A n B in X such that (4 n B)(z) =
A(z) A B(x) for each z € X, etc. An L-set A € L is also denoted {4*)z | z € X}.
If for all y € X distinct from 1, zo, ..., z, we have A(y) = 0, we also write

{A(““)/xh A(xZ)/Z’lv RPN A(w")/xn}'

An L-set A € LY is called crisp if A(z) € {0, 1} for each x € X. Crisp L-sets can
be identified with ordinary sets. For a crisp A, we also write 2 € A for A(z) =1
and x ¢ A for A(x) = 0. An L-set A € L is called empty (denoted by (¥) if
A(z) =0foreachz € X.Forae Land A e LX, the L-sets a®A,a — A, A — a,
and —A in X are defined by

(a®A)(z) = a® A(z), (2)
(a - A)(z) =a— Az), (3)
(A —a)(z) = A(z) — a, (4)

—A(z) = A(z) - 0 (5)

An a-complement is an L-set A which satisfies (A — a) —» a = A.

Binary L-relations (binary fuzzy relations) between X and Y can be thought
of as L-sets in the universe X x Y. That is, a binary L-relation I € LX*V
between a set X and a set Y is a mapping assigning to each x € X and each
y €Y atruth degree I(x,y) € L (a degree to which = and y are related by I).

V c LX is called an L-closure system if
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— V is closed under left —-multiplication (or —-shift), i.e. for every a € L and
CeV wehavea —>CeV,
— V is closed under intersection, i.e. for C; € V' (j € J) we have (., C; € V.

V C LX is called an L-interior system if

— V is closed under left ®@-multiplication, i.e. for every a € L and C' € V we
have a® C e V,

~ V is closed under union, i.e. for Cj € V (j € J) we have | J,,

Cj evV.
Relational products We use three relational product operators, o, <, and », and
consider the corresponding products R = SoT, R=S<T,and R=S+vT (for
Re LX*Z S e LXY T e LY*Z). In the compositions, R(z,z) is interpreted
as the degree to which the object x has the attribute z; S(z,y) as the degree
to which the factor y applies to the object x; T'(y,2) as the degree to which
the attribute z is a manifestation (one of possibly several manifestations) of the
factor y. The composition operators are defined by

(SoT)(w.2) = \/ S(a.y) ©T(y. =), (©)
yeyY

(S<T)(x /\Sxy ) — T(y, z), (7)
yey

(S > T)(@,2) = \T(y.2) = S(z,y). (8)
yeyY

Note that these operators were extensively studied by Bandler and Kohout,
see e.g. [13]. They have natural verbal descriptions. For instance, (SoT)(x, z) is
the truth degree of the proposition “there is factor y such that y applies to object
x and attribute z is a manifestation of y”; (S<T)(z, ) is the truth degree of “for
every factor y, if y applies to object x then attribute z is a manifestation of y”.
Note also that for L = {0,1}, S o T coincides with the well-known composition
of binary relations.

We will need following lemma.

Lemma 1 ([3]). For Re LW>*X Se LX*Y T e LY*Z we have

4(S«4T)=(RoS)<T and Rv(SoT)=(RvS)v

2.2 Formal Concept Analysis in the Fuzzy Setting

An L-context is a triplet (X,Y, Iy where X and Y are (ordinary) sets and I €
LX*Y is an L-relation between X and Y. Elements of X are called objects,
elements of Y are called attributes, I is called an incidence relation. I(x,y) =
a is read: “The object = has the attribute y to degree a.” An L-context is
usually depicted as a table whose rows correspond to objects and whose columns
correspond to attributes; entries of the table contain the degrees I(x,y).



74 J. Konecny

Concept-forming operators induced by an L-context (X, Y, I') are the following
operators: First, the pair (T, of operators T : LX — LY and ¥ : LY — LX is
defined by

/\A ) — I(x,y), /\B ) — I(x,y). (9)

reX yey

Second, the pair (", of operators " : LX — LY and Y : LY — L¥X is defined by

=\ Aw)@I(@y), B'@)= Iy - B, (10

reX yey

Third, the pair (", ") of operators " : LX — LY and ¥ : LY — L¥ is defined by

AMy) = N\ I(z,y) > A@@), B'(2)=\/By)®I(zy),  (11)

reX yey

for Ae LX, B e LY. When we need to emphasize that a pair of concept-forming
operators is induced by a particular L-relation we write it as a subscript, for
instance we write 1; instead of just 1.

Furthermore, denote the corresponding sets of fixed points by BN (X,Y, I),

BV(X,Y,I), and B"Y(X,Y, 1), i.e
BY(X,Y,I)={(A,Bye LX x LY | A" = B, B = A},
BV(X,Y,I)={(A,Bye L* x LY | A" = B, BY = A},
B"(X,Y,I)={{A,BYe L x LY | A" = B, B" = A}.

The sets of fixpoints are complete lattices [1,11,20], called L-concept lattices

associated to I, and their elements are called formal concepts.

For a concept lattice B2 (X,Y,I), where B~ is either of BN, BV, or B"Y,
denote the corresponding sets of extents and intents by Ext“Y(X,Y,I) and
Int®Y(X,Y, I). That is,

Ext® (X,Y,I) = {Ae L* | (A, B) e B>V (X, Y, I) for some B},
Int"(X,Y, 1) = {Be L' | (A, By e B*V(X,Y,I) for some A}.

The operators induced by an L-context and their sets of fixpoints have been
extensively studied, see e.g. [1,2,4,11,20].

3 L-bonds

This section introduces antitone L-bonds, namely a-bonds and c-bonds, and
describes their properties.

Definition 1. (a) An a-bond from L-context Ky = (X1,Y1,I1) to L-context
Ky = (Xo,Ys, I5) is an L-relation B € LX1*Y2 5.,

Ext™(X1,Y5,8) € Ext" (X1, Y1, 1) and Int™ (X1, Y, B) € Int™ (X3, Vs, Io).
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(b) A c-bond from L-context Ky = (X1,Y1, 1) to L-context Ko = (Xo,Ys, I2)
is an L-relation B € LX1*Y2 g,

Ext™(X1,Y5, 8) € Ext™ (X1, Y1, 1) and Int™ (X1, Y3, ) € Int"Y (X5, Y5, o).

Remark 1. 1) The terms—a-bond and c-bond—were chosen to match with no-
tions of a-morphism and c-morphism [7,14,9]. We show in Theorem 2 that the
a-bonds and c-bonds are in one-to-one correspondence of a-morphisms and c-
morphisms, respectively, on sets of intents of associated concept lattices.

2) Note that all considered sets of extents and intents in Definition 1 are
L-closure systems. From this point of view, the condition of subsethood is nat-
ural.

Theorem 1. (a) B € LX1*Y2 js an a-bond between Ky = (X1,Y1,1;) and Ky =
(Xo,Ys,I5) iff there exist L-relations S; € LY'*Y2 and S, € LX1**2, such
that

52.[1451:564[2. (].2)

(b) B e LX1*¥2 s q c-bond between Ky = (X1,Y1, 1) and Ky = (Xa, Ya, I2) iff
there exist L-relations S; € LY1*Y2 qnd S, € LX1*X2 such that

521—1 DSiZSe I>I2. (13)

Proof. Follows from results in [9]. |

3.1 Morphisms

This section explains correspondence of L-bonds with morphisms of L-interior /L-
closure spaces. First, we recall notions of c-morphisms and a-morphisms. These
morphisms were previously studied in [7,9,14].

Definition 2. (a) A mapping h : V — W from an L-interior system V < LX
into an L-closure system W < LY is called an a-morphism if

- h(a®C) —a—>h( ) for each a€ L and C e V;
= h(Ver Cr) = Apex MCh) for every collection of C, € V.

An a-morphism h : V. — W is called an extendable a-morphism if h can be
extended to an a-morphism of LX to LY, i.e. if there exists an a-morphism
h': LX — LY such that for every C € V we have h'(C) = h(C).

(b) A mapping h : V. — W from an L-closure system V < L* into an L-
closure system W < LY s called a c-morphism if it is a —- and /\-morphism
and it preserves a-complements, i.e. if

- h(a - C)=a— h(C) for eachae L and C e V;
h(Ager Cr) = Npex M(Cr) for every collection of Cr, € V (k€ K);
— if Cis an a-complement then h(C) is an a-complement.



76 J. Konecny

A c-morphism h : V. — W s called an extendable c-morphism if h can be
extended to a c-morphism of LX to LY, i.e. if there exists a c-morphism h' :
LX — LY such that for every C € V we have h'(C) = h(C).

In this paper we consider only extendable {a,c}-morphims.

Theorem 2. (a) The a-bonds between Ky = (X1,Y1, 1) and Ko = (X3, Y2, I3)
are in one-to-one correspondence with

— a-morphisms from Tnt"Y (X1, Y1, I;) to Int™(Xy, Ya, Iy);
— c-morphisms from ExtN(Xg,Yg,Ig) to Exth(Xl,Yl,Il).

(b) The c-bonds between Ky = (X1,Y1,I1) and Ky ={X3,Ys, I) are in one-
to-one correspondence with

— c-morphisms from IntN(Xl,Yl,Il) to IHtAV(XQ,YQ,IQ),'
— a-morphisms from Ext" (X, Y5, I)) to Ext™ (X, Y1, 11).

Proof. Follows from Theorem 1 and results in [9,14].

Theorem 3. (a) The system of all a-bonds is an L-closure system.
(b) The system of all c-bonds is an L-closure system.

Proof. (a) Consider a collection of a-bonds ;. By Theorem 1 the §;s are in the
form 8; = I; < S; = Se <« Is. We have

ﬂﬁj = ﬂ(h a8i;) =114 (ﬂ Si;)

jeJ jeJ jeJ
= [ (Sej < I2) = (| ] Sej) <« Iz;
JjeJ jeJ

a—>PB=a—-(11<5)=051H<(a—5)
=a— (Se<lz) =(a®S.) < L.

Thus, (;c; 8j and @ — f are a-bonds. Proof of (b) is similar. O

3.2 Direct Products

In this part, we focus on direct products of L-contexts related to a-bonds and
c-bonds.

Definition 3. Let Ky =<(X1,Y7,11), Ko = (X9, Y, Is) be L-contexts.

(a) A direct <-product of K; and Kz is defined as the L-contert KiHKy =
(Xa x Y1, X1 x Yo, Ay with A({xa,y1),{x1,¥2)) = l(w1,y1) — I2(2,92)
for all z1 € Xq1,20 € Xo,y1 € Y1,y2 € Y.

(b) A direct v-product of Ki and Ky is defined as the L-context KiHK, =
<X2 X YlaXl X Y2>A> with A(<$2,y1>,<x1,y2>) = IZ(anyQ) - Il(fﬂl,yl)
fOT all PANS X1,.Z‘2 € Xg,yl € Yl,yg € }/2
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The following theorem shows that K;HKy (resp. K;HKs) induces a-bonds
(resp. c-bonds) as its intents.

Theorem 4. (a) The intents of KiHKs w.r.t {1, |) are a-bonds from Ky to Ka,
i.e for each ¢ € LX2*Y1 ¢ is an a-bond from K, to Ks.

(b) The intents of KiHKy w.r.t {1,|) are c-bonds from K; to Kg, i.e for each
b e L2V ¢l 4s q c-bond from K; to Ka.

Proof. (a) For ¢ € L*2*Y1 we have

$'ye) = N\ b@am) = A,y ()

{z2,y1)€X2xY1

/\ /\ d(z2,y1) = (I1(21,y1) = L2(22,2))

szXQ Y1 EY1

A (Lm) = (6@, 51) = L(w,12)))

:L’QEXQ y1€Y1

A L@nm) =\ (@@2,0) > L@, 1))

Yy1€Y] 26X

N (L@nm) =\ (@7, 2) = L(x2,12)))

Y1€Y1 T2€Xo

/\ Li(z1,91) = (67 < I2)(y1,92)

Yy1€Y1

(11 < (¢T < 1)) (w1, y2)
= ((l10¢") « L)(21,12).

Thus ¢! is an a-bond by Theorem 1. Proof of (b) is similar. o

Not all a-bonds are intents of the direct product as the following examples
shows.

Ezample 1. Consider L-context K = {{x}, {y}, {*¥x,y)}> with L being the
three-element Lukasiewicz chain. Obviously, {*-%(z,y)} is an a-bond from K to
K. We have KHK = {{{z, )}, {{z, v}, {{z, y), {x, y)>}). The only intent of KHK
is {(z,y)}; thus the a-bond {*-%{x,y)} is not among its intents.

Example 2. Consider following L-context with L being three-element Lukasiewicz
chain.

011
1

K=Y g

1022 111

2 2

There are 11 a-bonds from K; to K, but K;HK;y has only 9 concepts; see
Figure 1.

Since the definition of direct <-product and direct »-product differ only in the
direction of residuum, we can make the following corollary.
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111
111
111
1
/211\
111 ;11 111
11
011><211><221
1 1
R
\ 2 /22
1 11
2 11 X
021 221
1
P
011

Fig. 1. System of a-bonds between K; and K> from Example 2. Boxed a-bonds are
those which are not intents of K;HKa,.

Corollary 1. (a) The extents of the direct <-product of {(Xi1,Y1,I1) and
(X3,Y5,I5) are a-bonds from {(Xs,Ys, I3y to (X1,Y1,I1).

(b) The extents of the direct v-product of (X1,Y1,I1) and (X3, Y2, Is) are c-bonds
fmm <X2,Y2,IQ> to <X1,Y1,Il>.

3.3 Strong Antitone L-bonds

As classical bonds connect contexts with antitone Galois connections, we also
consider L-bonds from {(X;,Y7,11) to (Xs,Ys,I5) defined as L-relations J €
LX1XY2 quch that

Ext™(X1,Ys,J) € Ext™(X,,Y1, 1) and Int™ (X, Y5, J) € Int™( Xy, Ya, I).
(14)
In what follows, we call the L-relations defined by (14) strong antitone L-bonds.

Using the double negation law. If the double negation law holds true in L, each
pair of concept-forming operators (9)—(11) is definable by any of other two. As
a consequence, we have

B™(X,Y,I) and B"(X,Y, —I) are isomorphic as lattices (15)
with (A, B) — (A, —=B) being an isomorphism. In addition, we have

Ext™(X,Y,—I) = Ext"V(X,Y, I) and, dually, Int™(X, Y, —I) = Int"V(X, Y, I).
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Theorem 5. Let the double negation law hold true in L. the strong antitone
L-bonds from (X1,Y1, 1) to {Xs,Ys, I5) are exactly a-bonds from (X1,Y1,—I1)
to (Xo,Ys, I5); and c-bonds from (X1,Y1,11) to (X, Ys, —Is).

Note that the incidence relation A in direct product K;HK, then becomes

A2, y1),{71,y2)) = ~L1i(21,91) = L2(22, Y2);

that is in agreement with results in [16]. Similarly, the incidence relation A in
direct product K;HKs becomes

A(lzo, y1),{x1,92)) = Ii(x1,351) = —I2(z2,92).

Using an alternative notion of complement. The mutual reducibility of concept-
forming operators (9)—(11) does not hold generally. In [8], we proposed a new no-
tion of complement of L-relation to overcome that. Using this notion we showed
that each for each I € LX*Y one can define —I € LX*(Y*L) a9

v—I(x,<y,a>) = I(l’,y) - a,

and obtain
Ext™(X,Y x L,~I) = Ext"(X,Y,I)

and, similarly,
Int™(X,Y x L,~I) = Int""(X x L,Y, (-I")T)

Unfortunately, the opposite direction holds true only for those L-contexts
(X,Y,I) whose set Ext™(X,Y,I) (resp. Int™(X,Y, I)) is a c-closure system [7];
i.e. an L-closure system generated by a system of all a-complements of some
TcL™.

Theorem 6. If ExtN(Xl,Yl,Il) is a c-closure system, the strong antitone L-
bonds from (X1,Y1, 1) to{Xs,Ys, Is) are exactly a-bonds from (X1,Y1 x L,~I;)
to (Xy,Ys, L. If Int™(Xy,Ys, 1) is a c-closure system, the antitone L-bonds
from (X1,Y1,I;) to {(X3,Ys,Is) are exactly c-bonds from (Xy,Y1,I1) to
(X x L, Y, (mI3)T).

We omit further details due to the lack of space.

4 Conclusions and Further Research

We studied bonds between fuzzy contexts related to mutually different types of
concept-forming operators and their relationship to antitone fuzzy bonds.
Our future research includes:

— Covering the L-bonds described above and isotone L-bonds in [15] by a
general framework. The isotone and antitone concept-forming operators are
one type of operators in [6,5]; also in [18].

— Generalizing the described theory to bond L-contexts which each use differ-
ent residuated lattice as the structure of truth-degrees. Results described in
[17] seem to be promising for this goal.
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