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Abstract. This work studies the L-fuzzy context sequences when L is
a complete lattice extending the results obtained in previous works with
L = [0, 1]. To do this, we will use n-ary OWA operators on complete
lattices. With the aid of these operators, we will study the different
contexts values of the sequence using some new relations. As a particular
case, we have the study when L = J ([0, 1]). Finally, we illustrate all the
results by means of an example.
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1 Introduction

The L-Fuzzy Concept Analysis studies the information from an L-fuzzy context
by means of the L-fuzzy concepts. These L-fuzzy contexts are tuples (L,X, Y,R),
with L a complete lattice,X and Y sets of objects and attributes, and R ∈ LX×Y

an L-fuzzy relation between the objects and the attributes.
In some situations, we have a sequence formed by the L-fuzzy contexts

(L,X, Y,Ri), i = {1, . . . , n}, n ∈ N, where Ri is the ith relation between the ob-
jects of X and the attributes of Y . The study of these L-fuzzy context sequences
will be the main target of this work.

A particular case of this sequence is when it represents an evolution in time
of an L-fuzzy context.

To start, we will see some important results about the L-Fuzzy Concept
Analysis.

2 L-Fuzzy Contexts

The Formal Concept Analysis of R. Wille [23] extracts information from a binary
table that represents a Formal context (X,Y,R) with X and Y finite sets of
objects and attributes respectively and R ⊆ X × Y . The hidden information
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consists of pairs (A,B) with A ⊆ X and B ⊆ Y , called Formal concepts, verifying
A∗ = B and B∗ = A, where (·)∗ is a derivation operator that associates the
attributes related to the elements of A with every object set A, and the objects
related to the attributes of B with every attribute set B. These Formal Concepts
can be interpreted as a group of objects A that shares the attributes of B.

In previous works [8,9] we have defined the L-fuzzy contexts (L,X, Y,R), with
L a complete lattice, X and Y sets of objects and attributes respectively and
R ∈ LX×Y a fuzzy relation between the objects and the attributes.

In our case, to work with these L-fuzzy contexts, we have defined the deriva-
tion operators (·)1 and (·)2 given by means of these expressions:

∀A ∈ LX , ∀B ∈ LY , A1(y) = inf
x∈X

{I(A(x), R(x, y))}
B2(x) = inf

y∈Y
{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in the lattice (L,≤).
Some authors use a residuated implication operator in their definitions of

derivation operators [7,19,20].
The information stored in the context is visualized by means of the L-fuzzy

concepts that are pairs (A,B) ∈ (LX×LY ) fulfilling A1 = B and B2 = A. These
pairs, whose first and second components are said to be the fuzzy extension
and intension respectively, represent a group of objects that share a group of
attributes in a fuzzy way.

On the other hand, given A ∈ LX , (or B ∈ LY ) we can obtain the associated
L-fuzzy concept applying twice the derivation operators. In the case of using a
residuated implication, as we do in this work, the associated L-fuzzy concept is
(A12, A1) (or (B2, B21)).

Other important results about this theory are in [6,10,7,2,19,15,16,20].

3 L-Fuzzy Context Sequences

In this section, we are interested in the study of the L-fuzzy context sequences
where L is a complete lattice. We have analyzed these sequences when L = [0, 1]
in [4,5]. To do this, we have given the formal definition:

Definition 1. An L-fuzzy context sequence is a tuple (L,X, Y,Ri), i = {1, . . . ,
n}, n ∈ N, with L a complete lattice, X and Y sets of objects and attributes re-
spectively and Ri ∈ LX×Y , ∀i = {1, . . . , n}, a family of L-fuzzy relations between
X and Y.

In previous works [12,11], we have done some studies in order to aggregate the
information of different contexts with the same set of objects and attributes. The
use of weighted averages [13,14] (with L=[0,1]) in order to summarize the infor-
mation stored in the different relations allows us to associate different weights
to the L-fuzzy contexts highlighting some of them. However, it is possible that
some observations of an L-fuzzy context of the sequence are interesting whereas
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others not so much. For instance, in [3] we study that the used methods to obtain
the L-fuzzy concepts do not give good results when we have very low values in
some relations. Moreover, we want now to do different studies based on different
exigency levels. This is one of the new contributions of this work.

In order to introduce this subject, let us see the following example.

Example 1. Let (L,X, Y,Ri), i = {1, . . . , n}, be an L-fuzzy context sequence
that represents the sales of sports articles (X) in some establishments (Y )
throughout a period of time (I), and we want to study the places where the
main sales hold taking into account that there are seasonal sporting goods (for
instance skies, bathing suits) and of a certain zone (it is more possible to sale
skies in Colorado than in Florida).

In this case, the weighted average model is not valid since it is very difficult to
associate a weight to an L-fuzzy context (in some months more bath suits are sold
whereas, in others, skies are). To analyze this situation, it could be interesting
the use of the OWA operators [21,17] with the most of the weights near the
largest values. In this way, we give more relevance to the largest observations,
independently of the moment when they have taken place and, on the other
hand, we would avoid some small values in the resulting relations (that can give
problems in the calculation of the L-fuzzy concepts as was studied in [3]).

The next section summarizes the main results about these operators.

4 n−ary OWA Operators

This is the definition of these operators given by Yager [21]:

Definition 2. A mapping F from Ln −→ L, where L = [0, 1] is called an
OWA operator of dimension n if associated with F is a weighting n−tuple W =
(w1, w2, . . . , wn) such that wi ∈[0,1] and

∑

1≤i≤n

wi = 1, where F (a1, a2, . . . , an) =

w1.b1 + w2.b2 + · · · + wn.bn, with bi the ith largest element in the collection
a1, a2, . . . , an.

To study the fuzzy context sequence, we are interested in the use of operators
close to or. To measure this proximity we can use the orness degree [21].

However, Yager’s OWA operators are not easy to be extended to any complete
lattice L. The main difficult is that Yager’s construction is based on a previous
arrangement of the real values which have to be aggregated, which is not always
possible in a partially ordered set. In order to overcome this problem Lizasoain
and Moreno [18] have built an ordered vector for each given vector in the lattice.
This construction allows to define the n-ary OWA operator on any complete
lattice which has Yager’s OWA operator as a particular case.
Their contribution involves the construction, for each vector (a1, . . . , an) ∈ Ln

of a totally ordered vector (b1, . . . , bn) as shown in the following proposition:

Proposition 1. Let (L,≤L) be a complete lattice. For any (a1, a2, . . . , an) ∈ Ln,
consider the values
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• b1 = a1 ∨ · · · ∨ an ∈ L
• b2 = [(a1∧a2)∨· · ·∨(a1∧an)]∨[(a2∧a3)∨· · ·∨(a2∧an)]∨· · ·∨[an−1∧an] ∈ L

...
• bk =

∨{aj1 ∧ · · · ∧ ajk |{j1, . . . , jk} ⊆ {1, . . . , n}} ∈ L
...

• bn = a1 ∧ · · · ∧ an ∈ L

Then a1 ∧ · · · ∧ an = bn ≤L bn−1 ≤ · · · ≤L b1 = a1 ∨ · · · ∨ an.
Moreover, if the set {a1, . . . , an} is totally ordered, then the vector (b1, . . . , bn)

agrees with (aσ(1), . . . , aσ(n)) for some permutation σ of {1, . . . , n}.
On the other hand, it is very easy to see that if {a1, . . . , an} is a chain, bk is

the k−th order statistic.
This proposition allows us to generalize Yager’s n−ary OWA operators from

[0, 1] to any complete lattice. To do this, Lizasoain and Moreno give the following:

Definition 3. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm T
and a t-conorm S. We will say that (α1, α2, . . . , αn) ∈ Ln is a

(i) weighting vector in (L,≤L, T, S) if S(α1, . . . , αn) = 1L and
(ii) distributive weighting vector in (L,≤L, T, S) if it also satisfies that a =
T (a, S(α1, . . . , αn)) = S(T (a, α1), . . . T (a, αn)) for any a ∈ L.

Definition 4. Let (α1, . . . , αn) ∈ Ln be a distributive weighting vector in
(L,≤L, T, S). For each (a1, . . . , an) ∈ Ln, call (b1, . . . , bn) the totally ordered
vector constructed in Proposition 1. The function Fα : Ln −→ L given by

Fα(a1, . . . , an) = S(T (α1, b1), . . . , T (αn, bn)),

(a1, . . . , an) ∈ Ln, is called n−ary OWA operator.

We will use these n−ary OWA operators in the following sections.

5 L-Fuzzy Context Sequences General Study

Returning to the initial situation, we can give a definition that summarizes the
information stored in the L-fuzzy context sequence:

Definition 5. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm
T and a t-conorm S. Let (L,X, Y,Ri), i = {1, . . . , n}, be the L-fuzzy context
sequence, α = (α1, α2, . . . , αn) a distributive weighting vector and Fα the n−ary
OWA operator associated with α. We can define an L-fuzzy relation RFα that
aggregates the information of the different L-fuzzy contexts by means of this
expression:

RFα(x, y) =Fα(R1(x, y), R2(x, y), . . . , Rn(x, y)) =

=S(T (α1, b1(x, y)), T (α2, b2(x, y)), . . . , T (αn, bn(x, y)),

∀x ∈ X, y ∈ Y

with (b1(x, y), b2(x, y), . . . , bn(x, y)) the totally ordered vector constructed in
Proposition 1 for (R1(x, y), R2(x, y), . . . , Rn(x, y)).
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In general, the election of the distributive weighting vector will be very im-
portant in order to obtain different results.

On the other hand, we want also to establish different demand levels for a more
exhaustive study of the L-fuzzy context sequence. To do this, we are going to
define n relations using n−ary OWA operators where the distributive weighting
vector α has just one non-null value αk = 1, for a certain k ≤ n.

Relevant Case 1. Let (L,X, Y,Ri), i = {1, . . . , n}, be an L-fuzzy context se-
quence with (L,≤L, T, S) a complete lattice, X and Y sets of objects and at-
tributes respectively and Ri ∈ LX×Y , ∀i = {1, . . . , n}, and consider k ∈ N, k ≤ n.
We define the relation RF

αk
using the n−ary OWA operator Fαk with the dis-

tributive weighting vector αk = (α1, α2, . . . , αn) such that αk
k = 1L and αk

i =
0L, ∀i 	= k :

∀x ∈ X, y ∈ Y, RF
αk
(x, y) = Fαk(R1(x, y), R2(x, y), . . . , Rn(x, y)) =

= S(T (0L, b1(x, y)), T (0L, b2(x, y)), . . . , T (1L, bk(x, y)), . . . , T (0L, bn(x, y))

The value RF
αk
(x, y) is the minimum of the k largest values associated with

the pair (x, y) in the relations Ri. So, this new relation measures the degree in
which the object x is at least k times related with the attribute y.

Observe that the defined αk is a distributive weighting vector. Moreover,
notice that if L = [0, 1], then we are using step-OWA operators [22].

Proposition 2. For any t-norm T and a t-conorm S, it is verified that

RF
αk
(x, y) = bk(x, y), ∀(x, y) ∈ X × Y.

Proof. Taking into account the basic properties of a t-norm T and a t-conorm
S, and the definition of the distributive weighting vector.

Another interesting case is obtained when we want to analyze the average of
the k largest values associated with the pair (x, y) in the relations Ri. In order
to do it, we can consider the following relation:

Relevant Case 2. If L = [0, 1], T (a, b) = ab and S(a, b) = min{a+b, 1}, ∀a, b ∈
[0, 1], using a distributive weighting vector α̂k such that α̂k

i = 1/k, i ≤ k and
α̂k
i = 0, i > k, the obtained relation RF

α̂k
is given by:

RF
α̂k
(x, y) =

k∑

i=1

bi(x, y)

k
, ∀(x, y) ∈ X × Y (1)

Remark 1. It is immediate to prove that if h ≤ k, then RF
αh

≥ RF
αk

and
RF

α̂h
≥ RF

α̂k
.

The observation of the L-fuzzy contexts defined from these new relations gives
the idea for the following propositions:
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Proposition 3. Consider k ∈ N, such that k ≤ n. If (A,B) is an L-fuzzy
concept of the L-fuzzy context (L,X, Y,RF

αk
), then ∀h ∈ N, h ≤ k, there exists

an L-fuzzy concept (C,D) of the L-fuzzy context (L,X, Y,RF
αh
) such that A ≤ C

and B ≤ D.

Proof. If h ≤ k, then RF
αk
(x, y) ≤ RF

αh
(x, y) ∀(x, y) ∈ X × Y.

Let (A,B) be an L-fuzzy concept of the L-fuzzy context (L,X, Y,RF
αk
). Then,

as any implication operator is increasing on its second argument,

∀y ∈ Y, B(y) = inf
x∈X

{I(A(x), RF
αk

(x, y))} ≤ inf
x∈X

{I(A(x), RF
αh

(x, y))} = D(y)

Thus, the L-fuzzy set B derived from A in (L,X, Y,RF
αk
) is a subset of the

L-fuzzy set D derived from A in (L,X, Y,RF
αh

). Therefore, B ≤ D.
As the used implication operator I is residuated, if we derive the set D in

(L,X, Y,RF
αh

), we obtain the set C=D2 and the pair (C,D) is an L-fuzzy
concept of the L-fuzzy context (L,X, Y,RF

αh
). Now, applying the properties of

this closure operator formed by the composition of the derivation operators in
(L,X, Y,RF

αh
) [6]: A ≤ A12 = D2 = C. Therefore, the other inequality also

holds.
The proposition is analogously proved using the relations RF

α̂k
and RF

α̂h
.

The following result sets up relations between the L-fuzzy concepts associated
with the same starting set (see section 2) in the different L-fuzzy contexts.

Proposition 4. Consider h, k ∈ N, such that h ≤ k ≤ n, and A ∈ LX. If the
L-fuzzy concepts associated with the set A in the contexts (L,X, Y,RF

αk
) and

(L,X, Y,RF
αh

) are denoted by (Ak, Bk) and (Ah, Bh), then Bk ≤ Bh.
The same result is obtained if we consider the L-fuzzy contexts associated with

the relations RF
α̂k

and RF
α̂h

.

Proof. Consider A ∈ LX and the L-fuzzy contexts associated with the relations
RF

αk
and RF

αh
. Unfolding the fuzzy extensions of both L-fuzzy concepts, and

taking into account that a fuzzy implication operator is increasing on its second
argument, ∀y ∈ Y :

Bk(y) = inf
x∈X

{I(A(x), RF
αk

(x, y))} ≤ inf
x∈X

{I(A(x), RF
αh

(x, y))} = Bh(y)

This inequality holds for every A ∈ LX and for every implication I.
The result can be similarly proved considering the L-fuzzy contexts associated

with the relations RF
α̂k

and RF
α̂h

.

6 L-Fuzzy Context Sequences on J ([0, 1])

One of the most interesting situations is when we use interval-valued L-Fuzzy
contexts. We have previously published some works [11,2] in which the chosen
lattice is L = J ([0, 1]).

In this case, notice that (J ([0, 1]),≤) with the usual order ([a1, c1] ≤ [a2, c2]
⇐⇒ a1 ≤ a2 and c1 ≤ c2) is a complete but not totally ordered lattice.

Then, we can give the following definition:
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Definition 6. Let (J ([0, 1]),≤,T,S) be the complete lattice of the closed inter-
vals in [0, 1] endowed with the t-norm T and the t-conorm S and consider the
sequence of interval-valued L-fuzzy contexts (J ([0, 1]), X, Y,Ri), i = {1, . . . , n}.
If [α, β] = ([α1, β1], [α2, β2], . . . , [αn, βn]) is a distributive weighting vector of
intervals and F[α,β] the n-ary OWA operator associated with [α, β], then the
interval-valued L-fuzzy relation RF[α,β]

that aggregates the information of the
different L-fuzzy contexts can be defined ∀(x, y) ∈ X × Y as:

RF[α,β]
(x, y) =F[α,β](R1(x, y), R2(x, y), . . . , Rn(x, y)) =

=S(T([α1, β1], [b1(x, y), d1(x, y)]), . . . ,T([αn, βn], [bn(x, y), dn(x, y)])

where ([b1(x, y), d1(x, y)], [b2(x, y), d2(x, y)], . . . , [bn(x, y), dn(x, y)]) is the totally
ordered vector constructed from (R1(x, y), R2(x, y), . . . , Rn(x, y)).

Also in this case two relevant situations can be highlighted. In the first one
we will establish an exigence level k and in order to measure the degree in which
an object is at least k times related to an attribute we will use the following
relation:

Relevant Case 3. Consider k ∈ N such that k ≤ n. If we represent by �α�k

the distributive weighting vector �α�k = ([α1, β1], [α2, β2], . . . , [αn, βn]) such that
[αk, βk] = [1, 1], and [αi, βi] = [0, 0], ∀i 	= k, we can define the relation RF

[α]k
as:

∀(x, y) ∈ X × Y,

RF
�α�k

(x, y) =S(T([0, 0], [b1(x, y), d1(x, y)]), . . . ,

T([1, 1], [bk(x, y), dk(x, y)]), . . . ,T([0, 0], [bn(x, y), dn(x, y)])

It is immediate to prove that, also in this case, for any t-norm T and t-conorm
S , the following proposition holds:

Proposition 5. RF
�α�k

(x, y) = [bk(x, y), dk(x, y)], ∀(x, y) ∈ X × Y .

The second interesting family of relations is associated with the average of
the observations:

Relevant Case 4. In the complete lattice (J ([0, 1]),≤), consider the t-norm T
and the t-conorm S given for any [a1, c1], [a2, c2] ∈ J ([0, 1]) by

T([a1, c1], [a2, c2]) = [a1a2, c1c2]
S([a1, c1], [a2, c2]) = [min{a1 + a2, 1},min{c1 + c2, 1}]

If k ≤ n and we use the weighting vector �α̂�k = ([α1, β1], . . . , [αn, βn]) ∈
J ([0, 1])n verifying [αi, βi] = [ 1k ,

1
k ] for every i ≤ k, and [αi, βi] = [0, 0] for

every i > k, we can define the relation RF
[α̂]k

as follows:

RF
�α̂�k

(x, y) =

[
k∑

i=1

bi(x, y)

k
,

k∑

i=1

di(x, y)

k

]

, ∀(x, y) ∈ X × Y
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Let see an example to better understand the difference of using both ways of
aggregated information in L = J ([0, 1]):

Example 2. We come back to the L-fuzzy context sequence (L,X, Y,Ri), i =
{1, . . . , 5}, of Example 1 that represents the sports articles X = {x1, x2, x3}
sales in some establishments Y = {y1, y2, y3} during 5 months. Every interval-
valued observation of the relations Ri ∈ J ([0, 1])X×Y , represents the variation
of the percentage of the daily product sales in each establishment along a month.

R1 =

⎛
⎝

[0. 7, 0. 8] [1, 1] [0. 8, 1]
[0, 0] [0. 1, 0. 4] [0. 1, 0. 3]
[0, 0. 2] [0. 1, 0. 3] [0, 0. 6]

⎞
⎠R2 =

⎛
⎝

[1, 1] [0. 8, 1] [1, 1]
[0. 8, 0. 9] [0. 4, 0. 5] [0. 1, 0. 3]
[0, 0] [0, 0. 2] [0. 2, 0. 4]

⎞
⎠

R3 =

⎛
⎝

[1, 1] [1, 1] [1, 1]
[0. 6, 0. 8] [0. 5, 0. 5] [0. 7, 0. 8]
[0, 0] [0. 1, 0. 2] [0. 2, 0. 4]

⎞
⎠R4 =

⎛
⎝

[0. 5, 0. 5] [0. 4, 0. 6] [0. 6, 0. 8]
[0. 1, 0. 3] [0. 5, 0. 6] [0. 3, 0. 5]
[0. 6, 0. 6] [0. 8, 0. 9] [0. 8, 1]

⎞
⎠

R5 =

⎛
⎝

[0. 1, 0. 4] [0, 0. 2] [0, 0. 2]
[0, 0] [0. 1, 0. 3] [0, 0. 2]
[0. 8, 1] [1, 1] [0. 9, 0. 9]

⎞
⎠

We want to study in what establishments are the highest sales for each prod-
uct, no matter when the sale has been carried out, taking into account that there
are seasonal sporting goods that are sold in certain periods of time and not in
others (skies, bathing suits . . . ).

If we fix the demand level, for instance to k = 3, and we want to analyze if
the products have been sold at least during three months, then associated with
the distributive weighting vector �α�3, we have the relation:

RF�α�3
=

⎛

⎝
[0. 7, 0. 8] [0. 8, 1] [0. 8, 1]
[0. 1, 0. 3] [0. 4, 0. 5] [0. 1, 0. 3]
[0, 0. 2] [0. 1, 0. 3] [0. 2, 0. 6]

⎞

⎠

Now, we take the L-fuzzy context (L,X, Y,RF�α�3
) and obtain the interval-valued

L-fuzzy concept derived from the crisp singleton {x2} using the interval-valued
implication operator defined from the Brouwer-Gödel implication (I(a, b) =
1, a ≤ b and I(a, b) = b in other case) [1]:

({x1/[1, 1], x2/[1, 1], x3/[0, 0. 2]}, {y1/[0. 1, 0. 3], y2/[0. 4, 0. 5], y3/[0. 1, 0. 3]})
In this case, we can say that x1 and x2 have been important sales mainly in

establishment y2 at least during three months.
On the other hand, we can analyze the average sale of each article in the three

months with highest sales. To do this, we will use the weighting vector �α̂�3 and
the obtained relation is:

RF�α̂�3
=

⎛

⎝
[0. 9, 0. 93] [0. 93, 1] [0. 93, 1]
[0. 5, 0. 67] [0. 46, 0. 53] [0. 36, 0. 53]
[0. 46, 0. 6] [0. 63, 0. 73] [0. 63, 0. 83]

⎞

⎠
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In this case, we will take the interval-valued implication operator obtained
from the fuzzy implication I(a, b) = min{1, b/a} associated with the t-norm
T (a, b) = ab [1]. Then, taking as a starting point x2, we obtain the interval-
valued L-fuzzy concept:

({x1/[1, 1], x2/[1, 1], x3/[0. 89, 0. 89]}, {y1/[0. 5, 0. 67], y2/[0. 46, 0. 53], y3/[0. 36, 0. 53]})

We can say that, taking the average of the sales in the three months with highest
sales, all the articles have been acceptable sales in all the establishments (the
sales in y1 and y3 that were not important with the previous definition, now are
because they are compensated using the values of the three months).

The use of the n−ary OWA operators allow us to ignore the small values of
the relations (the sales of a non-seasonal sporting goods are close to 0) since, in
this case, if we take the average of all the relations, the results will be biased.

7 Conclusions and Future Work

In this work, we have used OWA operators to study the L-fuzzy context sequence
and the derived information by means of the L-fuzzy contexts.

A more complete study can be done when we work with L-fuzzy context
sequences that represent the evolution in time of an L-fuzzy context.

On the other hand, these L-fuzzy contexts that evolve in time can be generalize
if we study L-fuzzy contexts where the observations are other L-fuzzy contexts.
This is the task that we will study in the future.
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